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In this section I list all the contributed works to this thesis. All articles contributed as chapters
are currently in the peer review process. Throughout the introduction I will refer to these
articles as ”Contribution x” where x will be the number in the list below.
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integrable systems and correlation functions. arxiv:2112.09475, Dec 2021, submitted
to Phys. Rev. E. Presented in chapter 3.
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submitted to Phys. Rev. Lett. Presented in chapter 4.

3. Jonathon Riddell, Wyatt Kirkby, D. H. J. O’Dell, Erik S. Sørensen. Scaling at the
OTOC Wavefront: Integrable versus chaotic models, arXiv:2111.01336, Nov 2021, in
preparation for Phys. Rev. B. Presented in chapter 5.
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Chapter 2

Introduction

2.1 Static equilibrium from unitary dynamics

Statistical mechanics and thermodynamics were initially developed in the 1800s through the
desire to describe the macroscopic properties of physical systems. Insights from these two
fields have contributed significantly to our understanding and development of topics in engi-
neering, material sciences and more. Despite much success our understanding of statistical
mechanics from a foundational point of view is still lacking, with many open questions re-
maining unanswered. In the past two decades the age old question of how closed quantum
systems approach thermodynamic equilibrium has seen a resurgence of interest. The recent
uptick in interest in the foundational arguments of statistical mechanics has been largely ig-
nited novel by experiments in ultracold atomic gases as well as new insights from quantum
information theory, giving us new experimental insight and theoretical tools to investigate the
emergence of statistical mechanics in isolated quantum systems [1–10].

The typical starting point for the construction of statistical mechanics begins with a
closed, isolated system governed by some Hamilton Ĥ , typically a classical system. To
derive the typical ensembles of statistical mechanics one might make an assumption on the
dynamics of the system, such as Ergodicity or one introduces the principle of equal a-priori
probability which allows you to assign the microcanonical distribution to the energetically
accessible microstates of the system [11, 12]. In this thesis we will keep with the spirit of
this approach. We will begin our discussion with a closed, isolated system governed by some
Hamiltonian H . We will however make a stronger demand than the typical constructions that
one might find in a textbook. The key difference is insisting that static equilibrium and sta-
tistical mechanics must emerge from the dynamics of quantum mechanics, as it is the more
fundamental theory of reality. So let us begin our discussion by considering some generic

3
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Hamiltonian H governing the dynamics of some quantum system initialized in the pure state
|ψ⟩ which is normalized |⟨ψ|ψ⟩|2 = 1. We will take the convention that the initialization time
will be set at t = 0. We will also throughout this document take the convention that ℏ = 1

and kB = 1. We will assume that the Hamiltonian has a spectral decomposition of the form,

Ĥ =
∑

m

Em|Em⟩⟨Em|, (2.1)

where for convenience we will assume that the spectrum is finite. It is helpful then to imag-
ine our system is constructed by some d dimensional local Hilbert space and we have N total
lattice sites, giving us a Hilbert space size of dN . The thermodynamic limit is then recov-
ered when we take N → ∞. While this construction isn’t necessary for what follows, this
condition is satisfied in a number of interesting models. For example magnetic systems like
the spin 1/2 Heisenberg model where d = 2, or other lattice models with local degrees of
freedom which have a finite local Hilbert space dimension. We will also assume our model
does not have any additional symmetries apart from energy avoiding potential problems like
sets of non-commuting conserved quantities, degeneracy and integrability [1, 13–22].

We may express our initial state |ψ⟩ in the energy eigenbasis in the following way,

|ψ⟩ =
∑

m

cm|Em⟩, cm = ⟨ψ|Em⟩. (2.2)

Dynamics in this system will be generated by the Schrödinger equation,

i
d

dt
|ψ⟩ = Ĥ|ψ⟩, (2.3)

which admits the energy eigenkets as time independent states as time evolution of these states
simply picks up a global phase,

i
d

dt
|Ek⟩ = Ĥ|Ek⟩ = Ek|Ek⟩, =⇒ |Ek(t)⟩ = e−iEkt|Ek⟩. (2.4)

This then allows us to write the time evolution of our pure state as,

|ψ(t)⟩ =
∑

m

cme
−iEmt|Em⟩. (2.5)

The time evolution in equation 2.5 is called unitary because the evolution is generated by a
unitary operator,

|ψ(t)⟩ = U(t)|ψ⟩ with U(t) = e−iĤt . (2.6)

4
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The first thing to notice is that the time evolution of equation 2.5 will not be sufficient on
it’s own to define static equilibrium. What we have here is a normalized vector with entries
rotating in the complex plain with frequencies Em. So on it’s own |ψ(t)⟩ will not relax
to some notion of static equilibrium. So we must track something else to investigate the
emergence of static equilibrium. Intuitively we will introduce an observable Â, and track it’s
expectation value in time. We say that equilibration has occurred if the expectation value of
Â settles down to a stationary value in time,

⟨Â(t)⟩ → A(∞). (2.7)

0 10 20 30 40 50
  t

0.2

0.0

0.2

0.4

0.6

0.8

1.0

A(
t)

Figure 2.1: Typical expectation value of an observable in time, relaxing to an approximate
equilibrium. Numerics were performed on a spin 1/2 J1-J2 type model in one dimension for
L = 22 lattice sites. To see further details see Contribution 1 in chapter 3. The dynamics
presented here are from observable state pair ⟨A1(t)⟩|ψ⟩ in Contribution 1.

We call the equilibrium valueA(∞) however it’s important to note we have yet to demon-
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strate it’s existence. First let us expand the expectation value of A in the energy eigenbasis,

⟨Â(t)⟩ =
∑

m,n

c̄mcnÂm,ne
i(Em−En)t. (2.8)

From equation 2.8 we can see that our expression that we have a quasi-periodic function, so
it doesn’t make sense to for example define A(∞) = limt→∞⟨Â(t)⟩, as in general this limit
does not exist. Instead, if we expect ⟨Â(t)⟩ to relax to equilibrium and stay there, it must
equilibrate and sit at the value of A(∞) for most times t.Therefore the equilibrium value will
also be the average value of our expectation value taken over all time, assuming equilibration
did indeed occur. We can then define the equilibrium value in the following way [2, 23–28],

A(∞) = lim
τ→∞

1

τ

∫ τ

0

⟨Â(t)⟩dt. (2.9)

This form has a few advantages, firstly, if we assume our Hamiltonian has a non-degenerate
spectrum, then we can evaluate this limit easily and recover,

A(∞) =
∑

k

|ck|2Ak,k. (2.10)

Equation 2.10 tells us that the equilibrium value only depends on the diagonal terms of the
observable in the energy eigenbasis, which is time independent. Secondly we can introduce
the diagonal ensemble from this expression. To see this define the density matrix ρ(t) =

|ψ(t)⟩⟨ψ(t)|, then we define the diagonal ensemble as,

ω = lim
τ→∞

1

τ

∫ τ

0

ρ(t)dt =
∑

k

|ck|2|Ek⟩⟨Ek| . (2.11)

This allows us to rewrite the equilibrium value as,

A(∞) = Tr
[
Âω
]

. (2.12)

This is true for all observables where their expectation value reaches some static value in time
after an initial out of equilibrium period. Next we need to understand under what conditions
this equilibration process can occur. One way to make progress is to consider the average
distance of ⟨Â(t)⟩ and the equilibrium value A(∞) in time. To study this, we define the
following quantity [6, 24, 27],

6
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σ2
A = lim

τ→∞

1

τ

∫ τ

0

|Tr
[
Â (ρ(t)− ω)

]
|2dt . (2.13)

Note here that this is an infinite time average statement, and does not tell us anything about
finite time dynamics. This quantity can be interpreted in a few ways. Firstly we may consider
it the average distance squared between ⟨Â(t)⟩ and A(∞) over all time. So if this quantity is
small, we expect that ⟨Â(t)⟩ spends the majority of it’s time arbitrarily close to to it’s equi-
librium value. It might also be interpreted as the second moment of the following probability
distribution,

P (x) = lim
τ→∞

∫ τ

0

dt
τ
δ(x− f(t)) . (2.14)

P (x) can be understood as the probability that, if we pick a random time t ∈ [0,∞), the
value of f(t) is exactly x (see also [29–31]). Figure 2.2 is an example of P (x) forming as we
take τ → ∞. The moments of this distribution can be written as [31],

κq = lim
τ→∞

1

τ

∫ τ

0

(⟨Â(t)⟩ − A(∞))qdt , (2.15)

where we identify the case of κ2 = σ2
A. Interestingly σ2

A can be bounded quite tightly. To do
this let us make a slightly stronger assumption on the energies Ek. We will assume that we
have non-degenerate energy gaps,

Em + En = El + Ek =⇒ {m,n} = {k, l}, (2.16)

where we demand this holds for all indices. This property is expected to hold for example
in quantum chaotic models with level repulsion [1, 2, 32, 33]. With this assumption one can
derive the following bound [24, 27],

σ2
A ≤ ||Â||2 Tr

[
ω2
]
. (2.17)

Where ||Â|| should be interpreted as the largest singular value of Â. For most relevant initial
conditions we expect that Tr [ω2] will be exponentially small in system size [2, 24, 27, 31].
This bound can also be generalized to cases where the Hamiltonian has degenerate gaps and
to cases where the initial state is mixed [6, 24, 34, 35].

For the higher moments kq one can derive a generic bound. First we need to generalize
the non-degenerate gaps condition given in equation 2.16 to larger sums of energies,

7
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Figure 2.2: Example of Pτ (x) converging to P (x) where Pτ (x) =
∫ τ
0

dt
τ
δ(x − ⟨A(t)⟩) and

P (x) is recovered as τ → ∞. P̃τ (x) represents the approximation of Pτ (x) by binning
samples and constructing a histogram. See Contribution 2 figure 1 for further details.

q∑

i=1

Emi =

q∑

i=1

Eni =⇒ {mi} = {ni}. (2.18)

This condition is quite strong. A possible mathematical justification for it is that the set of
Hermitian matrices that fit this condition have full Lebesgue measure in the set of possible
dN × dN matrices, Contribution 2 [31]. A more physical argument for this condition is that
it is expected to hold in non-integrable and chaotic models such as those with Wigner-Dyson
level statistics [9,36–38]. It is important to note that this assumption further restricts the class
of systems we are talking about, but allows us to in return make stronger statements. Using
this assumption on the energies we can derive the following bound on the moments of P (x),

8
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Contribution 2 [31],
|κq| ≤

(
q||A||

√
Tr [ω2]

)q
. (2.19)

Using equation 2.19 in conjunction with our probability distribution P (x) we can further
provide a concentration bound on equilibrium, Contribution 2 [31],

Pr
[∣∣⟨A(t)⟩ − A(∞)

∣∣ ≥ δ
]
≤ 2e× exp

(
− δ

e||A||
√

Tr[ω2]

)
. (2.20)

If Tr [ω2] ∼ 1/dN , then the right hand side of equation 2.20 decays doubly exponentially
fast. This can be compared with previous bounds where the result is exponentially tight
[24, 27, 31, 39].

One can see right away that the bound for the moments in equation 2.19 is not as tight as
it could be. For example equation 2.19 is off by a constant factor of 4 compared to 2.17. One
can follow the general procedure of [24] to recover 2.17 to also derive a tighter bound on κ3
or any κq. Let us briefly derive the case for κ3 to see this. First let us assume that A(∞) = 0.
Then,

κ3 = lim
τ→∞

1

τ

∫ τ

0

dt
∑

m,n

Am,nc̄mcne
i(Em−En)t

∑

k,l

Ak,lc̄kcle
i(Ek−El)t

∑

p,q

Ap,q c̄pcqe
i(Ep−Eq)t

(2.21)
expanding out we have,

κ3 = lim
τ→∞

1

τ

∫ τ

0

dt
∑

m,n,k,l,p,q

Am,nAk,lAp,q c̄mcnc̄kclc̄pcqe
i(Em+Ek+Ep−En−El−Eq)t (2.22)

From here we use our assumption on the energy eigenstates defined in equation 2.18. This
means we only have the following surviving terms,

κ3 =
∑

m,k,p

|cm|2|ck|2|cp|2(Am,mAk,kAp,p + Am,mAk,pAp,k + Am,kAk,mAp,p + (2.23)

Am,pAk,mAp,k + Am,kAk,pAp,m + Am,pAk,k + Ap.m) (2.24)

Here, we see that due to the equilibrium expectation value being zero, we can eliminate the
first three, and the final term, leaving us with,

κ3 =
∑

m,k,p

|cm|2|ck|2|cp|2(Am,pAk,mAp,k + Am,kAk,pAp,m) (2.25)

9
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And this can be further compressed to be,

κ3 = 2Tr [AωAωAω] . (2.26)

So now that we have a nice expression, we continue by bounding it. First let’s apply Cauchy-
Schwarz with Tr

[
A†B

]
≤
√

Tr [A†A])
√

Tr [B†B], this leaves us with (using the fact that all
of our matrices will be Hermitian),

|κ3| ≤ 2
√

Tr [AAω2]
√

Tr [ωAωA2ωAω] (2.27)

We will shift a few terms around in the second square root,

|κ3| ≤ 2
√

Tr [AAω2]
√

Tr [A2ωAω2Aω]. (2.28)

In the first square root we have A2 and ω2 as positive operators, and in the second we have
A2 and ωAω2Aω = (ωAω)2 as positive operators. For any positive operators P,Q we have
that, Tr [PQ] ≤ ||P ||Tr [Q], allowing us to write,

|κ3| ≤ 2
√

||A||2 Tr [ω2]
√

||A||2 Tr [ω2Aω2A]. (2.29)

Next we can use the Cauchy-Schwarz inequality and the positive operator norm bound
one more time and arrive at,

|κ3| ≤ 2||A||3
√

Tr [ω2]
√

Tr [ω4]. (2.30)

It can be shown that, Contribution 2 [31],

Tr [ωq] ≤
√

Tr [ω2]
q
, (2.31)

which leads us to conclude that,

|κ3| ≤ 2||A||3
√

Tr [ω2]
√

Tr [ω4] ≤ 2||A||3
√

Tr [ω2]
3
, (2.32)

indicating that equation 2.19 can be most likely improved on a case by case basis.
The bounds in equations 2.17, 2.19 and 2.20 give us an intuitive way to understand when

equilibration can emerge for an observable. By assumption we have begun our dynamics in
a pure state and this property is conserved in time,

Tr [ρ(t)] = Tr
[
ρ(t)2

]
= 1. (2.33)

This is a general property of pure states. Mixed states such as ω however do not have this
property. We can define the purity of a quantum density matrix as,

10
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γ = Tr
[
σ2
]

, (2.34)

where σ is some density matrix. Using dN as the Hilbert space dimension we have that,

1

dN
≤ γ ≤ 1, (2.35)

where the lower bound is saturated when σ is the maximally mixed state,

σ =
1

dN

d∑

i=1

|ψi⟩⟨ψi|. (2.36)

|ψi⟩ is chosen to be a complete orthonormal basis for the Hilbert space. We have γ = 1

precisely when we have a pure state. We can therefore see from equation 2.17 that the upper
bound on our average distance to equilibrium will be very small if our diagonal ensemble ω
is very mixed. Recalling the definition of ω,

ω = lim
τ→∞

1

τ

∫ τ

0

ρ(t)dt =
∑

k

|ck|2|Ek⟩⟨Ek|. (2.37)

ω will be very mixed when we have a large number of eigenstates contributing to the dynam-
ics |ck|2 > 0 but each individual term |ck|2 is small. So with the condition of Tr [ω2] being
small, we have a strong criteria for equilibration to occur on average, over an infinite interval.
In figure 2.3 we see three example states and how the purity γ = Tr [ω2] decays exponentially
fast with system size.

Now clearly we can never have ρ = ω as one is a pure state and the other is a mixed state,
so the full system will never become ω. They can however become indistinguishable for
certain observables and subsystems. So far we have focused on single observables such that
⟨ψ|Â(t)|ψ⟩ → Tr

[
Âω
]
. The bound in equation 2.17 can be used to show that sufficiently

small subsystems of our quantum system equilibrate under unitary dynamics [6, 24, 34]. To
see this we need to introduce some extra machinery to setup the problem. Suppose we split
our total system into two subsystems. Let us call them S,B for the subsystem and the bath,
such thatN = NS+NB. Then our subsystem has dimension dNS and our bath has dimension
dNB . The state of the subsystem is given by tracing out the degrees of freedom of the bath, so
we define the subsystem states with the following partial trace ρS(t) = TrB [ρ(t)] and ωS =

TrB [ω]. The final ingredient we need is the trace distance between two density matrices,
which characterizes the difficulty of distinguishing two states experimentally. For any two
quantum states ρ1, ρ2 the trace distance is defined as,

11
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Figure 2.3: Purity of the diagonal ensemble for a variety of system sizes L and states. To
see further details see Contribution 2 in chapter 4 figure 2.

D(ρ1, ρ2) =
1

2
Tr
[√

(ρ1 − ρ2)
2

]
. (2.38)

Then it is possible to show that [6, 34],

lim
τ→∞

1

τ

∫ τ

0

D(ρS(t), ωS)dt ≤
1

2

√
dNS Tr [ω2

B] ≤
1

2

√
d2NS Tr [ω2], (2.39)

which tells us that the subsystem S equilibrates when Tr [ω2] is sufficiently small (or more
importantly when it is small enough to drown out the size of d2NS ), or when a large number
of eigenstates contribute to the dynamics in a non-negligible way.

By appealing to infinite time averages we have demonstrated that equilibration can occur,
and we expect some notion of static equilibrium to emerge, most notably with expectation

12
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values given to us for observables in equilibrium as Tr
[
Âω
]

for subsystems. This doesn’t
tell us much about how long such processes might take. It is then desirable to extend our
understanding to allow for statements about finite time processes during equilibration. For
example a bound of the form,

|Tr
[
Â (ρ(t)− ω)

]
|2 ≤ f(t), (2.40)

where f(t) is some decreasing function of time. One could also investigate the finite time
average,

σ2
A(τ) =

1

τ

∫ τ

0

|Tr
[
Â (ρ(t)− ω)

]
|2. (2.41)

Solving this problem in general is quite difficult. To see this let’s consider again the general
expression for our observable evolving in time,

⟨Â(t)⟩ =
∑

m,n

c̄mcnÂm,ne
i(Em−En)t. (2.42)

These terms can conveniently be grouped and rewritten as,

⟨Â(t)⟩ =
∑

α

vαe
iGαt, (2.43)

where α = (m,n), vα = c̄mcnÂm,n is constant and Gα = Em−En. From this expression we
see that in general we are trying to understand time dependent properties of a large dephasing
problem. We start with some atypical configuration of our complex numbers vαeiGαt and as
we evolve our system in time these numbers slowly form a dense cloud about A(∞) on the
real line, with complex components canceling. See figure 2.4 for an example of the terms
vαe

iGαt evolving in time.
If the problem lacks transport or ”slow equilibration” processes then this process appears

to be quite quick, and independent of system size. Initial conditions can be easily found
however where equilibration timescales scale with the size of the system Contribution 1 [40],
[41–46]. An easy way to see this is by example. Consider the following spin 1/2 Heisenberg
like Hamiltonian,

H =
L∑

j=1

J1
(
S+
j S

−
j+1 + h.c

)
+ γ1 S

Z
j S

Z
j+1 + J2

(
S+
j S

−
j+2 + h.c

)
+ γ2S

Z
j S

Z
j+2.

Consider tracking the observable Â = SZL
4

equilibrating under the Hamiltonian and the initial
states,

|ψ1⟩ = | ↑↓↑↓↑ . . . ⟩, (2.44)
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Figure 2.4: Plot of vα(t) = vαe
iGαt for an equilibrating observable. Numerics were per-

formed on a spin 1/2 J1-J2 type model in one dimension for L = 18 lattice sites. To see
further details see Contribution 1 in chapter 3. The dynamics presented here are from observ-
able state pair ⟨A1(t)⟩|ψ⟩ in Contribution 1.

|ψ2⟩ = | ↑↑ . . . ↑↓↓ . . . ↓⟩. (2.45)

If we let L be even, then the patterns for |ψ1⟩, |ψ2⟩ tell us that,

⟨ψ1|SZtot|ψ1⟩ = ⟨ψ2|SZtot|ψ2⟩ = 0, (2.46)

where,

SZtot =
Z∑

j=1

SZj . (2.47)

It turns out that SZtot is a conserved quantity since [H,SZtot] = 0. Combining this fact with the
fact that our model is translation invariant we expect the equilibrium value in both cases for
our observable to be,

A(∞) = 0. (2.48)

So we have two states that arrive at an identical equilibrium value eventually. The problem in
comparing these two dynamical processes directly is that |ψ1⟩ will see equilibration indepen-
dent of system size (for sufficiently large systems) while |ψ2⟩ will have its equilibration time
scale with the system size. This is due to the fact that the primary drivers of dynamics will be
the spin flipping terms in the dynamics for this observable. |ψ1⟩ has all spins anti-parallel and
will therefore admit spin flip operations on all lattice sites at t = 0, while |ψ2⟩ only admits
nearest neighbor spin flip operations in two locations at t = 0. We will then see ⟨ψ2| ˆA(t)|ψ2⟩

14
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remain stationary for times proportional to the system size. If it is not immediately obvious
it may be instructive to look at the Hadamard formula (see ref. [47] lemma 5.3),

esHÂe−sH = Â+ s[H, Â] +
s2

2
[H[H, Â]] + . . . . (2.49)

The Hadamard formula tells us that the dynamics can be thought of us nested commutation
relations. These nested commutation relations tell us how our local observable will pick up
non-local terms in time, smearing it across the lattice. For some initial conditions each new
nested commutator will contribute significantly to the dynamics, while for others one doesn’t
see significant changes until much higher order terms. It is therefore quite difficult to consider
initial conditions generically, as this would fail to exclude systems with significant transport.

With these difficulties in mind, little progress has been made on finite time statements
[2, 28, 48]. Some results do exist however these techniques restrict us to regimes outside of
our interests here like thermal quenches, coupling to a heat bath, integrable models or early
times, Contribution 1 [40], [23, 25, 42, 49–57].

Another interesting problem related to equilibration is that of recurrences. Quantum dy-
namics is both unitary and reversible, and therefore the idea of static equilibrium emerging
at all seems to conflict with the nature of quantum theory. This conflict can most naturally
be seen by considering the Poincaré recurrence theorem [58–64] which states that, for time
independent quantum mechanical systems with discrete (but potentially countably infinite)
energy eigenvalues, for every ϵ > 0 and T0 > 0 there exists a T > T0 such that,

||ψ(T )⟩ − |ψ(0)⟩| < ϵ. (2.50)

|ψ(t)⟩ is again the state of the system at time t. This theorem tells us that if we wait long
enough our quantum state will return arbitrarily close to it’s initial conditions. This theorem
calls into question the long lasting and stable equilibrium we are trying to justify in this
chapter. To resolve this problem we can appeal to our intuition. Observing the nature around
us, it appears as if these recurrences are rare and should take an extremely long time to
occur. It is therefore desirable to understand rigorously when such recurrences might occur.
Intuitively we would expect these recurrences to occur at later and later times as we add
degrees of freedom to the system. This might be observed by the fact that the initial conditions
we are interested in look very different from static equilibrium, especially thermodynamic
equilibrium. We wouldn’t expect to see all of the air in a room collect itself in one corner,
even if this was the initial conditions. We therefore expect these recurrences to happen at
astronomically large timescales. Interestingly some powerful results can be obtained when
one considers the average recurrence time or the average spacing of recurrences. Let tn
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denote a sequence of recurrences labeled by the index n. Then we wish to understand the
quantity [65],

Tr(u,∆) = lim
n→∞

tn
n
. (2.51)

It turns out that we can provide a lower bound on this average recurrence time, Contribution
2 [31],

u

2e2
exp

(
1−∆

eTr[ω2]

)
≤ Tr(u,∆), (2.52)

where we say a recurrence occurred if 1 − F (t) ≤ ∆ with a time width of length u. Again
we see the purity of the diagonal ensemble as the key ingredient in our expression. This
expression matches the scaling of previous estimates in the literature [65, 66].

In this subsection we have demonstrated that purity of the diagonal ensemble Tr [ω2] is a
suitable diagnostic for the emergence of static equilibrium for sub-systems of a total system,
and also indicates the robustness of that equilibrium against recurrences. Despite this success
ω looks nothing like the usual ensembles of statistical mechanics, so our next task is to relate
our ω to the ensembles of statistical mechanics.

2.2 Jaynes’ principle

So far we have justified why we expect equilibrium to emerge, first for individual observables
and then for sub-systems of our quantum system. Our equilibrium expectation values are
given to us by the diagonal ensemble,

⟨Â(∞)⟩ = ⟨Â⟩ω = Tr
[
Âω
]
. (2.53)

In practice ω isn’t something easy to work with, and it is desirable to derive, under reasonable
assumptions, a potentially easier to use ensemble in it’s place. To do this we employ a
method found in a number of statistical mechanics textbooks, Jaynes’ principle of maximum
entropy [11, 12, 67]. This is sometimes also referred to as Gibbs algorithm. This is a method
of statistical inference. Using limited information about our state, like the energy, we pick
the most unbiased ensemble to use in place of ω. We will address when we can substitute
these maximum entropy ensembles in place of ω in the next section.

In practice we want to take

ω =
∑

k

|ck|2|Ek⟩⟨Ek|, (2.54)
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and replace |ck|2 with probabilities that are analytically easier to work with. Jaynes’ principle
of maximum entropy states that the most unbiased distribution we can assign to |ck|2 is the
one which maximizes the von Neumann entropy [68],

SvN(ρ) = −k Tr [ρ ln ρ] . (2.55)

Plugging in ω gives us the Shannon entropy,

S(ω) = −k
∑

k

|ck|2 ln |ck|2. (2.56)

We want to maximize the entropy in equation 2.55 under several constraints Cn = 0 given to
us by the time independent properties of ρ. We will throughout this document set k = kB = 1,
where kB is the Boltzmann constant.

An instructive way to approach this problem would be to first include all possible con-
served quantities as constraints as our state ρ will keep these properties for all time. Since
our eigenvalues are non-degenerate the set of conserved quantities can be listed as Qk =

|Ek⟩⟨Ek|, which are projectors onto the subspace of individual energy eigenkets. We will
introduce the ensemble Λ, where Λk,k = pk is a diagonal density matrix in the energy eigen-
basis like ω. Λ will serve as the ensemble we recover from the maximum entropy arguments.
We will look for an unbiased distribution pk such that it obeys the constraints given to us by
our pure state ρ. From here we can cast our constraints for Λ in the following way,

Ck = Tr [ΛQk]− Tr [ρQk] = pk − |ck|2 = 0. (2.57)

Then as usual we introduce a Lagrange multiplier for each constraint λk. Then we employ
the Lagrange multiplier method to maximize the entropy under these constraints. Construct-
ing the Lagrangian function,

L(Λ, λn) = SvN(Λ) +
dN∑

n=1

λnCn. (2.58)

We will now arbitrarily set λn = 0 if |ck|2 = 0. Then performing the optimization we recover
the probability distribution,

pk = eλk−1, (2.59)

or equivalently λk = 1+ln pk. This case however is quite trivial, since we have the constraints
of pk = |ck|2 giving us straightforwardly that

17



PHD. THESIS - JONATHON RIDDELL; MCMASTER UNIVERSITY - PHYSICS AND ASTRONOMY

Λ = ω. (2.60)

So the diagonal ensemble is the maximum entropy ensemble given to us if we include every
single projector onto the energy eigenbasis as our conserved quantities. Interestingly the
fact that constraints Cn are linear functionals of the density, one can use Jaynes’ principle to
coarse grain our constraints, giving us a number of different possible ensembles [69].

We can now move onto more familiar ensembles. Let us assume we still have a non-
degenerate Hamiltonian and the energies Em are ordered by their indices m such that Em <

Em+1. Then let us assume we have some state ρ which has support only on the subspace,

Tu,δ = span{|Ek⟩|u− δ ≤ Ek
N

≤ u}, (2.61)

where δ is assumed to be some small quantity. This may be approximately satisfied by ρ.
Then can set pk = 0 if |Ek⟩ /∈ Tu,δ. Performing the Gibbs algorithm then recovers the
microcanonical ensemble [11, 12],

τu,δ =
1

Ω

∑

Ek∈Tu,δ

|Ek⟩⟨Ek| . (2.62)

Here Ω = dimTu,δ. This gives us the usual starting point for statistical mechanics, that
we assign equal probabilities for energetically accessible microstates pk = 1

M
, where M

corresponds to the number of energetically accessible microstates. One can for example
recover the Boltzmann entropy by subbing this state into our definition of the entropy,

S = kB lnΩ. (2.63)

Another important ensemble is recovered when we instead look at a constraint of just the
expectation value of energy,

⟨E⟩ = Tr [ρH] = ⟨ψ|H|ψ⟩. (2.64)

Note that this is usually considered in the context of a system connected to a large bath of
energy, but here we treat it again as an isolated system. Completing the optimization problem
we find that,

pk =
e−βEk

Z
, Z =

∑

k

e−βEk . (2.65)

This is the standard canonical ensemble or the Gibbs state and Z is the partition function. The
Lagrange multiplier β is set by demanding the energy of the canonical ensemble matches our
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initial conditions,

⟨ψ|H|ψ⟩ = ⟨E⟩ = Tr [ρβH] . (2.66)

We can also rewrite our ensemble in any basis as,

ρβ =
1

Z
e−βH , Z = Tr

[
e−βH

]
. (2.67)

For a great review of it’s properties see [70]. Inserting this state into our definition of entropy
gives,

S = kB lnZ + β⟨E⟩. (2.68)

Interestingly this tells us that,

∂S

∂⟨E⟩ = β, (2.69)

and from thermodynamics we can then identify β = 1
T

, where T is temperature. Substituting
this in, and re-arranging we can write,

− T lnZ = ⟨E⟩ − TS, (2.70)

which again referencing thermodynamics allows us to identify the free energy,

F = −T lnZ. (2.71)

Interestingly the microcanonical ensemble and the canonical ensemble can give equiva-
lent local expectation values under some assumptions. For example keeping the system size
of S fixed and growing the bath one can write for translationally invariant locally interacting
system [71–74],

lim
NB→∞

||TrB [τu,δ]− TrB [ρβ] ||1 = 0. (2.72)

Despite τu,δ ̸= ρβ we can recover equivalence of these ensembles for subsystems. A notable
counter example where the ensembles are not equivalent are long range interacting systems
[75–79]. This identification is similar to the conclusion that ρ(t) ̸= ω but they become
identical for some subsystem as you grow the bath to an infinite size. Now that we have
unbiased guesses to approximate the properties of ω, our next task is to investigate when
these guesses give a correct approximation.
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2.3 From the diagonal ensemble to statistical mechanics

In the last section we have used Jaynes’ principle of maximum entropy to derive the most
unbiased ensembles we could based off of limited information about our state. The problem
we face now is understanding when we can compare the diagonal ensemble ω with an ensem-
ble from statistical mechanics. Despite ρβ being the most convenient to use analytically, we
will for now compare ω to the microcanonical ensemble τu,δ. This is due to the fact that we
are dealing with an isolated system, and we expect ρ(t) to have the majority of it’s support
around some energy density u [11, 72]. A possible justification for this exists again from
results relying on concentration bounds. Consider a Hamiltonian which is a sum of n terms,
where each term acts at most on k terms. We also impose that the Hamiltonian be written
a way where the norm of such terms is less than or equal to unity. Let m be the maximum
number of neighbors of any local terms that interact. If we consider a product state ρ with

energy ⟨E⟩ = Tr [ρH] and some real number a ≥
√

O(m2)
n

then [80],

Tr
[
ρΠ≥⟨E⟩+na

]
≤ e

− na2

O(m2) and Tr
[
ρΠ≤⟨E⟩−na

]
≤ e

− na2

O(m2) , (2.73)

where Π≥f is the projection onto the subspace of eigenvectors with energy eigenvalues Ek ≥
f . While this statement doesn’t give us the distribution of excited energies, it at least bounds
the type of distributions we might be interested in. Energy excitations too far from the mean
⟨E⟩ are suppressed like the tails of a Gaussian distribution. See [81] for a discussion on the
distribution of |ck|2 terms.

The goal now will be to understand why we can compare ω to τu,δ. It is probably obvious
already that trivially ω ̸= τu,δ. So let us return to our arbitrary observable A. We then have
our infinite time average value,

A(∞) =
∑

k

|ck|2Ak,k, (2.74)

and the microcanonical average,

Tr [τu,δA] =
1

Ω

∑

Ek∈Tu,δ

Ak,k. (2.75)

In the following subsections we will present two potential explanations for why these two
expectation values should be equal. Note that if we define a full set of observables for some
subsystem S, and these expectation values are identical, this would constitute equivalence of
ensembles for the diagonal ensemble and the microcanonical ensemble,

TrB [ω] ≈ TrB [τu,δ] . (2.76)
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2.3.1 The strong eigenstate thermalization hypothesis

The eigenstate thermalization hypothesis is a generalization of arguments seen in quantum
chaos. Chaos in the quantum regime was initially studied largely in the single particle regime
and reveals that chaotic Hamiltonians can be successfully treated as random matrices [33,36,
37,82–96]. If we expressed an observables in the energy eigenbasis of a random Hamiltonian
we would in general recover the elements [1],

Âm,n =
¯̂
Aδm,n +

√
Â2

dN
Rm,n, (2.77)

where we have kept the convention of our Hilbert space being dN , ¯̂
A = 1

dN

∑
m Âm,m and

Rm,n is a random variable with zero mean and unit variance. Applying this equation to our
definition of our static equilibrium expectation value, we get,

A(∞) =
∑

m

|cm|2Am,m =
¯̂
A. (2.78)

This however should feel insufficient to the reader, if we treat our equilibrium problem
purely with equation 2.77 then A(∞) is independent of energy and temperature. To remedy
this shortcoming of random matrix theory the eigenstate thermalization hypothesis (ETH)
has been proposed [1, 8, 9, 97–100],

Âm,n = A(Ē)δm,n + e−S(Ē)/2f(Ē, α)Rm,n . (2.79)

Here Ē = Em+En
2

is the average energy, α = Em − En is the frequency, A(Ē), f(Ē, α)
are smooth functions of their arguments and S(Ē) is the thermodynamic entropy. This gives
us a an expression where the diagonal entries of our observable A is a smooth function of
energy up to small corrections, while the off-diagonal elements are exponentially suppressed
and behave similar to the off-diagonal given to us by random matrix theory given in equation
2.77. In fact equation 2.79 and equation 2.77 give identical predictions if one focuses on a
small enough region of the spectrum. This equation isn’t exact for finite systems but for the
systems we are interested in for this document we expect that equation 2.79 will hold in the
thermodynamic limit.

An interesting thing to distinguish is the diagonal and off-diagonal statements of ETH. If
we look again at our pure state dynamics,

⟨Â(t)⟩ =
∑

m,n

c̄mcnÂm,ne
i(Em−En)t. (2.80)

21



PHD. THESIS - JONATHON RIDDELL; MCMASTER UNIVERSITY - PHYSICS AND ASTRONOMY

Assume non-degenerate energies we can conveniently split our dynamics up,

⟨Â(t)⟩ =
∑

m

|cm|2Âm,m +
∑

m ̸=,n

c̄mcnÂm,ne
i(Em−En)t. (2.81)

We can then identify important parts of equation 2.79. Firstly the diagonal ETH which applies
to the time independent part of our pure state evolution tells us that Âm,m is a smooth function
of energy up to small corrections. These corrections are exponentially suppressed by the
thermodynamic entropy S(Ē). The second part or the off-diagonal ETH statement tells us
that the off-diagonal elements of our observable Âm,n are all suppressed exponentially by
the thermodynamic entropy. The off-diagonal ETH plays an important role in suppressing
fluctuations about equilibrium. Let A(∞) = 0, then the fluctuations about equilibrium can
be captured by σ2

A with A(∞) = 0,

σ2
A = lim

τ→∞

1

τ

∫ τ

0

⟨Â(t)⟩2dt. (2.82)

Assuming the model obeys the off-diagonal portion of ETH one can show that [1],

σ2
A ≤ max

m̸=n
|Am,n|2 ∝ e−S(Ē). (2.83)

This observation aligns quite nicely with our analytic bound given in equation 2.17. To see
this it is interesting to introduce the Rényi entropies [68],

Sα(ρ) =
1

1− α
lnTr [ρα] , (2.84)

where we recover our von Neumann entropy when,

lim
α→1

Sα(ρ) = SvN(ρ). (2.85)

From here we can rewrite our bound in equation 2.17 with the second Rényi entropy,

σ2
A ≤ ||Â||2 Tr

[
ω2
]
= ||Â||2e−S2(ω). (2.86)

We expect both S2(ω) and S(Ē) to be extensive in the number of lattice sites N [39,101–
103], giving the same scaling between the ETH ansatz and the analytical argument relying
on the diagonal ensemble.

The form in equation 2.79 has been numerically verified in a large range of models [1,
21, 99, 104–126] and is expected to hold in generic non-integrable models. This ansatz is
supposed to hold for relevant observables, which is usually taken to be local observables,
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that is, observables with support on some subsystem of the lattice. There is some evidence
that this might be extended out to as much as half the total system size. Despite a large
body of numerical evidence there is no analytical proof of the ansatz for any class of models.
There has however been some progress. For example one can bound the off-diagonal of the
observable’s elements as [127, 128],

|⟨Em|Â|En⟩| ≤
|Em − En|

R
e−

|Em−En|−R
gk , (2.87)

where g, k and R are constants. This bound however falls quite short of the e−S(Ē) predicted
by equation 2.79. There has also been advances in the direction of the diagonal portion of the
hypothesis [129, 130].

Returning to the single observable Â, we can see agreement now between A(∞) and that
of the microcanonical ensemble. Let us again assume our pure state |ψ⟩ has the majority of
it’s support on some microcanonical window defined by u and δ, then we see that,

A(∞) =
∑

k

|ck|2Âk,k ≈ A(Ē), (2.88)

and likewise the microcanonical average is,

Tr
[
τu,δÂ

]
≈ A(Ē). (2.89)

In fact it can be shown that [9],

A(∞) = Tr
[
Âρβ

]
+O

(
1

N

)
+O(∆2) +O(e−S(Ē)/2), (2.90)

where ∆ is the quantum uncertainty in our energy,

∆ =

√∑

k

|ck|2(Ek − ⟨E⟩)2, (2.91)

and we have that Tr [ωH] = Tr [ρβH]. We can see that ETH is a sufficient condition for
thermalization from unitary dynamics. It turns out that thermalization is not only sufficient
but it is necessary, that is, thermalization implies ETH and ETH implies thermalization [131].
An interesting consequence of equation 2.79 is the following. Let us partition our system
again into our subsystem S and the bath B. We will assume we have some complete basis of
operators Ân on S which satisfies equation 2.79. Then assuming |Ek⟩ ∈ Tu,δ,

lim
N→∞

||TrB [|Ek⟩⟨Ek|]− TrB [τu,δ] || = 0. (2.92)
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This tells us that on subsystems of our total system, the energy eigenstates are identical to the
microcanonical ensemble. Assuming we have equivalence of ensembles we will also have,

lim
N→∞

||TrB [|Ek⟩⟨Ek|]− TrB [ρβ] || = 0, (2.93)

where we have assumed that Ek = Tr [Hρβ]. This also leads us to an interesting conclusion.
Assume Ek ≈ El, then the local statistics of these energy eigenstates are also identical,

lim
N→∞

||TrB [|Ek⟩⟨Ek|]− TrB [|El⟩⟨El|] || = 0. (2.94)

These three observations lead us to identify a new ensemble, the eigenstate ensemble |Ek⟩⟨Ek|
that, similar to τk,δ, encodes the equilibrium properties of our subsystems.

2.3.2 Eigenstate typicality

The previous section discussed the strong version of ETH, namely that all eigenstates obey
the hypothesis. We can make analytic progress by relaxing this statement to typical or the
vast majority of eigenstates obey this hypothesis. Doing this is sometimes called the weak
ETH or eigenstate typicality. Under certain assumptions a general expression for the weak
ETH has been derived and used for a variety of results [49, 132, 133]. The statement is the
following, take 0 < α < 1

D+1
where D denotes the dimension of our lattice. Let H be a

translation-invariant, non-degenerate Hamiltonian and let ρ be an equilibrium ensemble such
that [ρ,H] = 0 with a finite correlation length ξ. A state with finite correlation length means
that the expectation values of spatially separated observables are bounded by,

max
Â,B̂

|⟨ÂB̂⟩ − ⟨Â⟩⟨B̂⟩| ≤ ||Â||||B̂||e−
d(Â,B̂)

ξ , (2.95)

where d(Â, B̂) is the distance between the lattice support of the two observables. Then taking
Â to be some observable with support on some connected region of at most Nα sites we
have [49],

PrEk∈ρ
(
|⟨Ek|Â|Ek⟩ − Tr

[
ρÂ
]
| ≥ δ

)
≤ exp

(
−cδN 1

D+1 ξ−
D
D+1

)
, (2.96)

where c is some constant and PrEk∈ρ is the probability of sampling the energy eigenstate
|Ek⟩ from the ensemble ρ. This equation tells us that the probability of finding an eigenstate
expectation value of our observable Â, δ away from the ensemble average is exponentially
suppressed by both δ and N . Then as we approach the thermodynamic limit it should be
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increasingly rare to see energy eigenstates sampled from ρ giving expectation values of Â
which are far from the ensemble average. While it is just a bound, the dimensional depen-
dence of equation 2.96 is interesting, and further work is required to find what the optimal
scaling would be for this bound.

While equation 2.96 should not be mistaken for the weak ETH, it does single out a class of
models where the eigenstates on average do satisfy the condition of ETH where expectations
of an observable in the energy eigenbasis are identical to the ensemble average given to us by
Jaynes’ principle in statistical mechanics. It can be further used to make a statement about the
equivalence of our eigenstates and the ensembles of statistical mechanics on subsystems. Let
us assume we are in a system that satisfies equation 2.96. We can then bound the probability
of sampling an energy eigenstate far from the local description of an equilibrium ensemble ρ,

Pr|Ek⟩∈ρ (||TrB [|Ek⟩⟨Ek|]− TrB [ρ] ||1 ≥ δ) , (2.97)

Using the union bound we have that,

≤ dim(S)Pr|Ek⟩∈ρ

(
max
Â∈S

Tr [A (TrB [|Ek⟩⟨Ek|]− TrB [ρ])] ≥ δ

)
, (2.98)

≤ dim(S) exp (−cδN 1
D+1 ξ−

D
D+1 ), (2.99)

where dim(S) is the dimension of the subsystem. Putting everything together this tells us
that,

Pr|Ek⟩∈ρ(||TrB [|Ek⟩⟨Ek|]− TrB [ρ]||1 ≥ δ) ≤ dim(S) exp (−cδN 1
D+1 ξ−

D
D+1 ), (2.100)

where our ensemble might be ρ = τu,δ. This demonstrates that with typicality arguments
alone, our eigenstates can be shown to have a very high probability of being locally identical
to our ensembles from statistical mechanics.

Another interesting thing to investigate would be the average distance between the re-
duced density matrices,

∑

k

ρk,k||TrB [|Ek⟩⟨Ek|]− TrB [ρ] ||1. (2.101)

We can bound this in the following way. Let us define ∆k = ||TrB [|Ek⟩⟨Ek|]− TrB [ρ] ||1,
∑

k

ρk,k||TrB [|Ek⟩⟨Ek|]− TrB [ρ] ||1 =
∑

k

ρk,k∆k. (2.102)
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We partition our sum into two sectors, let ∆ = lnN

N
1

D+1
,

∑

k

ρk,k∆k =
∑

∆k≤∆

ρk,k∆k +
∑

∆k>∆

ρk,k∆k, (2.103)

≤ K
lnN

N
1

D+1

+ max
∆k>∆

∆k

∑

∆k>∆

ρk,k, (2.104)

≤ K
lnN

N
1

D+1

+ dim(S) exp (−c∆N 1
D+1 ξ−

D
D+1 ), (2.105)

≤ K
lnN

N
1

D+1

+ C dim(S)

(
1

N

)−c′ξ−
D
D+1

. (2.106)

Then this gives us,

∑

k

ρk,k||TrB [|Ek⟩⟨Ek|]− TrB [ρ] ||1 ≤ K
lnN

N
1

D+1

+ C dim(S)

(
1

N

)−cξ−
D
D+1

, (2.107)

where K,C, c are all constants independent of the system size. So we see from these two
derivations that in sufficiently large systems, it is extremely unlikely that we sample an eigen-
state that does not obey the diagonal portion of ETH. In particular this probability vanishes in
the thermodynamic limit. We also have that the average distance between all TrB [|Ek⟩⟨Ek|]
and TrB [ρ] decays to zero in the thermodynamic limit.

2.4 Volume law scaling of entanglement

The von Neumann entropy given to us in equation 2.55 can also tell us important properties
of the state, like purity and entanglement. Let us briefly recall some properties of SvN . We
will not list an exhaustive list but focus on the important concepts for our discussion. For a
more complete discussion see [68, 134, 135].

Firstly, SvN(ρ) = 0 if and only if ρ is a pure state, making it a test that reveals the purity
of our state. Therefore,

SvN(|Ek⟩⟨Ek|) = 0. (2.108)

As we have mentioned previously, it is maximized as,

SvN(I/dN) = N ln d, (2.109)

for the maximally mixed state. Note that this maximal value scales like the number of lattice
sites in our system or the volume of our system. We call this behavior a volume law scaling
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or refer to the entropy as extensive. SvN is invariant to a change in basis such that SvN(ρ) =
SvN(UρU

†), where U is a unitary matrix. It is also additive for independent systems,

SvN(ρS ⊗ ρB) = SvN(ρS) + SvN(ρB). (2.110)

If our state is pure and our two subsystems are independent, we say they are unentangled.
These states are also sometimes called separable. If the state is not separable however we
say that the subsystem S is entangled with the bath B. The entanglement entropy is a way
of measuring how much entanglement is present between a bi-partition of a system in a pure
state, and it is given by,

SvN(ρS) = SvN(ρB). (2.111)

The more mixed ρS is the more entangled the subsystem and the bath are. This obser-
vation has interesting consequences. The von Neumann entropy is sub-additive for systems
with entanglement,

SvN(ρ) ≤ SvN(ρS) + SvN(ρB). (2.112)

In general we expect the thermodynamic entropy to be extensive [1, 11, 12], that is, it
scales with the system size,

SvN(τu,δ) ∝ N. (2.113)

Using the sub-additive property of the von Neumann entropy, we therefore expect that the
subsystems entropy must also scale like the system size,

SvN(τvN) ≤ SvN(TrS [τvN ]) + SvN(TrB [τvN ]) ∝ NS +NB. (2.114)

We can now link this back to ETH. We expect that for individual eigenstates satisfying
eigenstate thermalization, that,

TrB [|Ek⟩⟨Ek|] ≈ TrB [τu,δ] , (2.115)

meaning that the entanglement entropy of our energy eigenstate should follow a volume law,

SvN(TrB [|Ek⟩⟨Ek|]) ∝ NS. (2.116)

This observation is a common test for eigenstate thermalization and has been confirmed in
a wide variety of non-integrable models [1, 117, 136–139]. This is contrary to the properties
of the ground state energy eigenstate of gapped quantum systems, which has entanglement
entropy grow like an area law [140–142]. Models not obeying ETH can also see volume laws
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in the entanglement entropy of the eigenstates, however these are only observed for vanishing
fractions of the system size NS/N [16,117,143,144] while ETH models continue to support
this volume law for non-vanishing fractions ofNS/N . Due to limitations of numerical studies
it is unclear if this volume law holds for subsystems making up half of the system NS/N =

1/2. Some evidence suggests that it does hold for half the system to leading order [136].
Since we expect that TrB [ω] ≈ TrB [τu,δ] it is also expected that [137, 145–151],

SvN(TrB [ρ(t)]) ∝ NS , for sufficiently large t. (2.117)

In fact, models obeying ETH starting from our of equilibrium conditions have linearly in-
creasing entanglement entropy between subsystems [21]. Interestingly random pure states
are nearly maximally entangled on average [152].

2.5 Notable counter examples

In this section we will discuss classes of models that do not obey eigenstate thermalization
and in most initial conditions, we do not expect the system to relax it’s observables to tradi-
tional thermal expectation values. The classes of models we will cover here are the so called
integrable models. Despite there being some variety to what these can look like we will focus
on free fermionic models in the first two subsections and in the third we will briefly make a
note of two interacting classes of models which also do not satisfy eigenstate thermalization.

2.5.1 Non-interacting extended models

In this subsection we will focus on free fermionic models and comment briefly on bosonic
models at the end of the subsection. We will consider free fermionic models of the form,

Ĥ =
∑

i,j

Mi,jf
†
i fj, (2.118)

where M is the co-efficient matrix that is real symmetric and fj is a fermionic annihilation
operator acting on lattice site j that obeys the canonical anti-commutation relations,

{fm, fn} = {f †
m, f

†
n} = 0, {f †

m, fn} = δm,n. (2.119)

This model can be extended to include terms which include pair creation and annihilation
terms of the form,

Bi,jf
†
i f

†
j + B̄i,jfifj, (2.120)
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while still being mappable to free, non-interacting fermions. For simplicity we will keep
B = 0 and mention studies where B ̸= 0. Our model Hamiltonian is easily solved. Since M
is real symmetric we can decompose it into,

M = ADAT , (2.121)

where A is a real orthonormal matrix and D is a diagonal matrix with entries of the form
Dk,k = ϵk. This transformation gives us new fermionic operators,

dk =
L∑

j=1

Aj,kfj, (2.122)

which also obey the standard canonical anti-commutation relations,

{dm, dn} = {d†m, d†n} = 0, {d†m, dn} = δm,n. (2.123)

The interesting aspect of these models is that they have an extensive number of conserved
quantities. To see this, consider the Heisenberg equation,

d

dt
Â = i[H, Â]. (2.124)

This equation tells us that if we have [H, Â] = 0 then the observable A has it’s expectation
value conserved in time. In our free fermionic Hamiltonian we can see that,

[H, d†kdk] = 0, ∀k. (2.125)

If there are N total lattice sites then there are N conserved quantities in equation 2.118. We
can always write the time evolution of a fermionic operator in this class of models as,

fm(t) =
∑

k

am,k(t)fm, (2.126)

where aj,k(t) is the single particle propagator given to us by,

{f †
m(t), fn} = am,n(t). (2.127)

In this section we will work with models which are extensive,

Aj,k ∼
1√
N
, (2.128)

which tells us that we have delocalizing dynamics such that [31, 49, 56].
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am,n(t) → 0 as t→ ∞. (2.129)

Equilibration and thermalization have been studied for this class of models as well. The
eigenstates of our free Hamiltonian in equation 2.118 are Gaussian states [54, 153], meaning
they are fully described by their two point correlation functions,

⟨f †
mfn⟩ or ⟨d†kdk⟩. (2.130)

This is due to the eigenstates being constructed from the vacuum state |0⟩ by our fermionic
creation operators d†k. Then it is easy to see that one can apply Wick’s theorem [154, 155] to
reduce higher order correlation functions to products of two point correlation functions for
these states. The thermal ensemble ρβ = 1

Z
e−βH also has this property [155]. Interestingly

even if one starts with an out of equilibrium state that does not have this property, and the
model has the capacity for delocalizing transport, then most initial pure state ρ will relax to
a state with Gaussian statistics [54, 55]. We can therefore focus our attention on two point
correlation functions when we study equilibration in this class of models.

With delocalizing dynamics and an initial pure state with decaying correlations in space
one can show that [56],

⟨f †
m(t)fn(t)⟩ − ⟨f †

m(t)fn(t)⟩∞ ∼ 1

tα(1+s)
as t→ ∞, (2.131)

where α and s are constants and

⟨f †
m(t)fn(t)⟩∞ = lim

τ→∞

1

τ

∫ ∞

0

⟨f †
m(t)fn(t)⟩dt. (2.132)

Similar results were found in [55]. One can also study the probability distribution given
to us in equation 2.14, and for example bound it’s moments as, Contribution 2 [31],

κq ≤
(
qc2

ν

N

)q
, (2.133)

where c and ν are constants and we assume the single particle spectrum is generic. This gives
the concentration bound,

Pr
[∣∣⟨f †

mfn(t)⟩ − ⟨f †
mfn(∞)⟩

∣∣ ≥ δ
]
≤ 2e× exp

(
− δ

ec2

√
L

ν

)
. (2.134)

So we see that analytical results in this class of models are much more accessible, strong
statements on the decay to equilibrium are possible. Now let us explore what equilibrium
looks like.
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Due to the presence of the conserved quantities we need to instead derive a maximum
entropy ensemble that takes these symmetries into consideration, to properly reflect the equi-
librium state. Following Jaynes’ principle we can arrive at the generalized Gibbs ensemble,

ρβj =
1

Z
e−

∑r
j=1 βjQ̂j , (2.135)

where we have deliberately kept r and Qj arbitrary. For any given problem r is the number
of relevant conserved quantities to conserve and Qj the set of relevant conserved quantities.
In general, if we have a sufficiently well behaved initial condition, the two point correlation
functions relax to the generalized Gibbs ensemble defined by [14, 19, 22, 55, 56, 156],

Qk = d†kdk,∀k, (2.136)

giving us N total conserved quantities. This requirement can be relaxed for example in
translation invariant systems, where the number of conserved quantities required may be
reduced by instead considering current operators as our charges [55],

Qj =
1

L

∑

x

f †
xfx+j + h.c =

1

L

∑

l

cos

(
2πlj

N

)
d†ldl. (2.137)

If we assume the initial state has exponentially decaying correlations with length ξ, then we
only have r ∼ ξ non-negligible charges or values of ⟨Qj(t)⟩ = ⟨Qj⟩ for the state. While
these results do not depend on a generalized form of ETH directly it’s possible to derive a
generalized weak ETH for such models when they are translation invariant. It can be shown
that eigenstates chosen at random give identical expectation values to the generalized Gibbs
ensemble in the thermodynamic limit [18, 157]. Let us write the charges as,

Qj =
∑

k

qj(k)d
†
kdk, (2.138)

where k = 2πj/N , for 1 ≤ j ≤ N and we have deliberately chosen to work in one dimen-
sion, analogous results hold for all dimensions d,

⟨Ek|f †
mfn|Ek⟩ →

1

2π

∫
dk

1

1 + e
∑
j βjqj(k)

. (2.139)

The above equation tells us that energy eigenstates of translation invariant Hamiltonians of
the form given in equation 2.118 have expectation values which agree with the Generalized
Gibbs ensemble. These statitics are generalized Fermi-Dirac statistics. Note that the number
of conserved quantities in this expression doesn’t need to be extensive.

A large body of work has also studied the the entanglement entropy of these free models.
Both analytical and numerical work has shown a volume law scaling for small subsystems.
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In particular for subsystems such that Ns/N → 0, a volume law is observed [16, 117, 143,
144, 158, 159]. If we assume the model is translation invariant and let NS/N = 1/2 and take
N → ∞, it is observed that the average entanglement entropy of the energy eigenstates is no
longer maximal [143],

lim
L→∞

2⟨S⟩/(L ln 2) ≈ 0.5378 . . . , (2.140)

where the maximal value would have been unity and ⟨S⟩ is the average entanglement entropy
of all eigenstates for a bipartition. It can be shown that this average entanglement entropy
can be bounded above and below by [143],

NS ln 2

(
1− NS

N

)
≤ ⟨S⟩ ≤ NS ln 2−

N2
S

2N
, (2.141)

from this bound it easy to see that the first term on the upper and lower bound is not only
the volume law we expect from chaotic eigenstates, but is the maximal value. The correct-
ing terms vanish if we keep NS fixed and take the system size to the thermodynamic limit,
however they are non-negligible when NS/N is finite.

It is also interesting to explore how things change if instead of fermions, we study bosonic
models. Here we present a proof of generalized eigenstate typicality for such models. The
derivation is similar to [18, 157]. First consider a Hamiltonian in one dimension (similar
results hold for all d),

Ĥ =
∑

i,j

hi,j b̂
†
i b̂j. (2.142)

Where b̂i is the bosonic annihilation operator and we assume the coefficient matrix h is trans-
lation invariant. These operators obey the commutation relations,

[b̂i, b̂
†
j] = δij, (2.143)

[b̂i, b̂j] = [b̂†i , b̂
†
j] = 0. (2.144)

The Hamiltonian h can be diagonalized by introducing new momentum bosonic operators
of the form,

d̂k =
1

Ld/2

∑

j

eik·j b̂j. (2.145)

Where k = 2πn
L
, n = 1, 2, . . . L. It is easy to see that as L → ∞ the possible values of k

sit on a dense set in the interval (0, 2π). Which recovers the Hamiltonian,

32



PHD. THESIS - JONATHON RIDDELL; MCMASTER UNIVERSITY - PHYSICS AND ASTRONOMY

Ĥ =
∑

k⃗

ϵkd̂
†
kd̂k. (2.146)

So we see that the eigenstates are completely defined by their distribution of momentum
eigenmodes in reciprocal space with ⟨d̂†kd̂k⟩ = 0, 1, 2 . . . . Defining the correlations in real
space we write the occupation matrix,

⟨b̂†mb̂n⟩ =
1

Ld

∑

k

⟨d̂†kd̂k⟩eik(m−n). (2.147)

We can partition the space into a number of cells which contain g ≫ 1 points and require the
cells have enough points such that,

1

N
≪ ∆kx ≪

1

NA

. (2.148)

Where NA is the size of the individual subsets of points in k space. This allows us to ap-
proximate each cell with a chosen value of eik(m−n) ≈ eik⃗r(m−n) where r is the label for the
subsets of k space. Then we may write,

⟨b̂mb̂n⟩ =
g

Ld

∑

r

nre
ikr(m−n). (2.149)

Where nr is the density of bosons in the cell r. Then, consider charges written as,

Q̂i =
∑

k

qi,kd̂
†
kd̂k. (2.150)

Such that they are well approximated by,

Q̂i = g
∑

r

nmqi,r (2.151)

We wish to count the number of eigenstates that might be fixed by these constraints. So
we must figure out how many ways one can distribute gnr bosons in g places. Note that,
nm ∈ [0,∞). The counting problem is the same as the traditional derivation of Bose-Einstein
statistics [11]. The total number of ways of distributing the bosons is,

w(nr, g) =
(nrg + g − 1)!

nrg!(g − 1)!
(2.152)

So the total number of states is,

W =
∏

r

(nrg + g − 1)!

nrg!(g − 1)!
≈ (nrg + g)!

nrg!(g)!
(2.153)
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We then maximize the function below with the constraints of our conserved quantities,

∂

∂nr

(
lnW −

∑

i

λig
∑

r

nrqi,r

)
= 0 (2.154)

Then applying the Stirling approximation and reorganizing gives,

nr =
1

e
∑
i λiqi,r − 1

, (2.155)

which is a generalized Bose-Einstein statistic. In the thermodynamic limit the summation
can be expressed as an integral,

⟨b̂†mb̂n⟩ =
1

2π

∫
dk

eik(m−n)

e
∑
i λiqi,k − 1

(2.156)

So we see that bosonic systems satisfy this notion as well, that is, typical eigenstates
converge to this generalized Gibbs ensemble. It is interesting to note that the results for
equilibration to a generalized Gibbs ensemble can be extended to bosonic systems as well
[55].

2.5.2 Localized free fermions

A counter example to both thermalization and it’s generalized form are localized models.
There are many ways to induce localization for free models but here we discuss two. Consider
the model written as,

H =
N∑

j=1

−J
2
(f †
j fj+1 + h.c) + λjf

†
j fj+1, (2.157)

where J dictates the strength of the nearest neighbor hopping term and λi will be an onsite,
model dependent disordered potential. The Anderson model is recovered when we draw λi

from a uniform distribution on the interval λi ∈ [−λ, λ] [160]. Anderson localization (AL)
is induced for any disorder parameter λ > 0 for the one dimensional Anderson insulator
[137, 145, 161–163]. AL systems have exponentially suppressed transport. One can see this
for example with the Lieb-Robinson bound. In the generic case where we expect ETH to
hold we recover the bound [21, 164],

||[A(t), B]|| ≤ C||A||||B||e−
|x|−vt
ξ , (2.158)
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where |x| is the distance between the support of A and B on the lattice and v is the Lieb-
Robinson velocity. For Anderson localized models we instead get [21, 165, 166],

||[A(t), B]|| ≤ C||A||||B||e−
|x|
ξ , (2.159)

where we call ξ in this case the localization length and the Lieb-Robinson velocity is zero.
Energy eigenstates of the AL models obey area laws in their entanglement entropy and en-
tanglement entropy is bounded to this area law for all time [21,137,165,167,168]. The single
particle eigenstates are localized, giving us the relation [161, 165, 169],

Am,k ∼ e−|k−m|/ξ. (2.160)

In general we don’t expect this model to relax it’s subsystems to expectation values given by
a generalized Gibbs ensemble. The generalized Gibbs ensemble still obeys a volume law for
it’s subsystems which cannot emerge for an initial pure state evolving under our Anderson
localized model [168].

The second model that is interesting is the Aubry-André model [20, 170]. Instead of our
onsite potentials being random we now have quasi-periodic terms,

λj = λ cos (2πσj) . (2.161)

Where now the disorder parameter λ is a multiplicative constant controlling the strength
of our quasi-periodic potential. The value σ is responsible for the qausi-periodicity, it is
usually taken to be the inverse golden ratio,

σ =

√
5− 1

2
. (2.162)

This model has an extended and a localized phase due to it’s self-duality with a reciprocal
space given by [20, 171],

dk =
1√
L

∑

j

ei2πjkσfj. (2.163)

The critical point between the extended phase and localized phase is located at λc = J

with λc < J being the extended regime. This model has also seen an extensive amount
of research done on it [14, 49, 171–178]. Interestingly if one allows for long range hop-
ping it is possible to induce an energy dependent mobility edge where the model has sin-
gle particle eigenstates which are both extended and localized [179, 180]. Recent evidence
suggests that the localization of the Aubrey-André model is more classical than Anderson
localization [174]. This model has been experimentally realized in a number of experi-
ments [181–187]. Despite the differences in localization between the Aubrey-André model
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and the Anderson model in the classical limit, the Aubrey-André model still has the typical
markers of single particle localization discussed above. It has area laws for it’s energy eigen-
state’s entanglement entropy and obeys a zero velocity Lieb-Robinson bound in its localized
phase. In general we also don’t expect this model to relax it’s subsystems to a generalized
Gibbs ensemble description.

2.5.3 Interacting examples

In this section we will discuss one dimensional spin 1/2 Heisenberg type models of the form,

H = J

N∑

j=1

(
Sxj S

x
j+1 + Syj S

y
j+1 +∆SzjS

z
j+1 + λjS

Z
j

)
. (2.164)

We will assume similar to the Anderson insulator, that λi is generated by a uniform distribu-
tion on the interval λi ∈ [−λ, λ]. ∆ is the anisotropy parameter, when ∆ = 0 we recover
a model that can be mapped to free fermions with the Jordan-Wigner transformation [153].
When ∆ ̸= 0, the resulting mapping returns a Hamiltonian with interactions between neigh-
boring fermions. In that case we refer to the model as being interacting rather than free.

When λ = 0 and ∆ > 0 this model is solvable by the Bethe ansatz and is therefore in-
tegrable [188]. The model has been numerically explored and confirmed to obey the weak
eigenstate thermalization hypothesis [189]. This model, similar to free models, has an ex-
tensive number of conserved quantities and it is therefore interesting to study the generalized
ETH and compare eigenstates to the generalized Gibbs ensemble. A number of studies reveal
that this model similarly satisfies the generalized ETH [190–192]. Studies of the entangle-
ment entropy in this model reveal volume laws for small subsystems, and some evidence
suggests the scaling is independent of the parameter δ, giving us entanglement entropy scal-
ing on subsystems equivalent to the free case [117].

If instead we instead consider our model with λ > 0 our model is the typical model
to study the many body localization (MBL) transition [21]. When λ > 0 but is small, the
majority of the eigenstates are chaotic, however when λ ≫ J the model transitions to the
MBL phase [21,149,162,193–199] with a critical disorder existing somewhere in the interval
λc ∈ [3, 6]. Intermediate values of λ support a phase coexistence with the so called many body
localization edge [21]. In this intermediate regime the middle of the spectrum is expected to
obey ETH while the localized states at the edge of the spectrum become more numerous [21].
The MBL phase has localization that is distinct from Anderson localization. The eigenstates
have area law entanglement [21, 149, 162, 199], similar to AL however in a non-equilibrium
context, it the entanglement between subsystems grows like a logarithm [137,146,200–203],
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SvN(TrB [ρ(t)]) ∼ ln t. (2.165)

MBL phases can equilibrate, however the phase lacks dissipation and therefore the equilib-
rium properties cannot be well described from the usual ensembles of statistical mechan-
ics [21].

While equation 2.164 is the traditional model to study MBL, it has been numerically
observed in a number of models [21,137,146,149,162,193–203]. There is also some experi-
mental evidence of it’s existence [185]. Despite much progress in our understanding of MBL,
it is still an open question if MBL would be stable in the thermodynamic limit and a grow-
ing amount of evidence suggests it may just be a prethermalization phenomenon [204–211].
Recent studies might suggest the transition takes place at much larger disorder strengths
λc > 20 [210, 211] indicating that it might be necessary to understand the intermediate
regime as a prethermal MBL regime, where thermalization timescales grow exponentially
with disorder [204].

2.6 Scrambling of quantum information

The process of equilibrating to a thermal expectation value has extremely interesting con-
sequences. Imagine we have two states, |ψ1⟩ and |ψ2⟩, each with interesting and distinct
properties. We could for example distinguish them by saying that,

⟨ψ1|Â|ψ1⟩ ≠ ⟨ψ2|Â|ψ2⟩, (2.166)

for a local observable A. In principle there would be many observables satisfying this condi-
tion. We could also choose these states such that they have roughly equal energy,

⟨ψ1|H|ψ1⟩ ≈ ⟨ψ2|H|ψ2⟩. (2.167)

Assuming the dynamics generated by H thermalize the expectation value of Â, we conclude
that since the energy densities of the two states are very similar, they relax the observables to
the same thermal value,

A(∞) = ⟨Â⟩β. (2.168)

From this observation we can see that equilibration to a thermal ensemble effectively ”erases”
the local information that initially distinguished our states. Quantum mechanics however
tells us that information is conserved. Instead of erasing the information, the system has
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scrambled the information, making it impossible to determine initial conditions by measuring
local observables alone. This mirrors classical chaos, where incomplete information will give
us exponential inaccuracy. Studying scrambling then might tell us about quantum chaos, and
how to diagnose the differences in dynamics given to us by ETH, integrable and localized
models.

A popular function to investigate scrambling is the out of time ordered correlator (OTOC)
[151, 212–220],

C(x, t) = ⟨[Â(t), B̂]†[Â(t), B̂]⟩ , (2.169)

where the average is usually taken over some equilibrium ensemble. Some studies have
considered pure states as well [168, 221, 222]. The variable x is taken to be the distance
between the local observables Â and B̂ on the lattice, where one can vary x by moving the
support of either observable on the lattice. The OTOC captures how non-local Â becomes in
time, picking up support on farther and farther regions of the lattice as t gets larger. At t = 0

we usually have [Â, B̂] = 0 and we will see C(x, t) grow as a function of time as Â(t) begins
pickup terms that do not commute with B̂.

If one approaches the classical limit the commutator becomes a Poisson bracket which
is a standard diagnostic of classical chaos. We therefore expect the OTOC in non-integrable
models to initially grow exponentially fast controlled by the quantum Lyapunov exponent
[220],

C(0, t) ∼ eλLt, (2.170)

where λL is upper bounded (assuming a thermal average) by [220],

λL ≤ 2πkBT

ℏ
. (2.171)

ETH can be viewed as a generalization of RMT which is a diagnostic of quantum chaos,
and we therefore expect that if C(x, t) can diagnose chaos, it must clearly differentiate ETH
obeying models and integrable models. If our Hamiltonian H only has local interactions, the
initial growth of the OTOC will be a power law when x ̸= 0 [168, 221, 221, 223–227],

C(x, t) ∼ tl(x), (2.172)

where l(x) is a linear function of x depending on the structure of the interactions inH , usually
derived from the Hadamard formula. After the power law regime is exited we have an OTOC
universal wave form, [228–230],

C(x, t) ∼ exp
(
−λL(x/vB − t)1+p/tp

)
. (2.173)
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vB here is the butterfly velocity and p is a constant. This form has been verified in a large
class of models [15, 138, 228–238]. For free models one can explicitly derive that p = 1/2

and therefore the existence of the waveform given in equation 2.173 is not sufficient to dif-
ferentiate quantum chaotic models from integrable models [230]. For quantum spin models
in general it is believed that p > 0 and the form will not reduce to the Lyapunov exponential
growth [230]. The form of this universal waveform is usually found by fitting regimes where
C(x, t) ≪ 1 [229, 233]. Despite the appealing form of equation 2.173, it doesn’t appear
to be a good diagnostic of quantum chaos, Contribution 3 [239], where for example in two
dimensions the value of p is identical between chaotic and integrable models [230]. Early
results indicate that the waveform of C(x, t) when x ≈ vBt could be a diagnostic of quantum
chaos by studying the waveform, Contribution 3 [239],

C(x, t) ∼ e−m(x)(x−vBt)2+b(x)(x−vBt), (2.174)

where m(x), b(x) are spatially dependent functions with different scaling in free and chaotic
regimes. Notably in free models m(x), b(x) have power law decays, while in non-integrable
models they decay exponentially, Contribution 3 [239].

The time it takes C(x, t) ∼ 1 is referred to as the scrambling time and the late time value
of the OTOC does appear to be a diagnostic of chaos. Let Â and B̂ be Hermitian and unitary.
Then for a Hamiltonian that satisfies ETH, the late time value of the OTOC is [240, 241],

C(x, t→ ∞) = 2− 2
(
⟨Â2⟩⟨B̂⟩2 + ⟨Â⟩2⟨B̂2⟩ − ⟨Â⟩2⟨B̂⟩2

)
. (2.175)

Therefore the exact factorization and late time value of C(x, t) being non-zero can be con-
sidered markers of chaos. However some evidence suggests this late time scrambling does
not always indicate chaos in the classical limit [242].
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Chapter 3

Relaxation of non-integrable systems and
correlation functions
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We investigate early-time equilibration rates of observables in closed many-body quantum systems
and compare them to those of two correlation functions, first introduced by Kubo and Srednicki.
We explore whether these different rates coincide at a universal value that sets the timescales of
processes at a finite energy density. We find evidence for this coincidence when the initial conditions
are sufficiently generic, or “typical”. We quantify this with the effective dimension of the state
and with a “state-observable effective dimension” which estimate the number of energy levels that
participate in the dynamics. Our findings are confirmed by proving that these different timescales
coincide for dynamics generated by Haar-random Hamiltonians. This also allows to quantitatively
understand the scope of previous theoretical results on equilibration timescales and on random
matrix formalisms. We approach this problem with exact, full spectrum diagonalization. The
numerics are carried out in a non-integrable Heisenberg-like Hamiltonian, and the dynamics are
investigated for several observable/state pairs.

The current rate of development of quantum technolo-
gies means that experiments on quantum many body sys-
tems away from equilibrium are within reach. One of the
more easily realizable mechanisms in this context is that
of a quantum quench [1]. In it, one prepares a simple
initial state |Ψ〉 of a lattice system, such as a low en-
ergy eigenstate of Hamiltonian H0, and the Hamiltonian
is suddenly switched to H for which |Ψ〉 is no longer an
eigenstate. This drives the system far from equilibrium,
and the subsequent dynamics can be traced through the
expectation values of observables A,

〈A(t)〉 ≡ 〈Ψ| e−iHtAeiHt |Ψ〉 , (1)

where t is the time elapsed after the quench.
The experimental relevance of this setting has trig-

gered a large amount of theoretical work, aimed at de-
scribing the complex dynamics of a wide variety of mod-
els [2, 3]. One of the most prominent features of these
quantum dynamics is that physically relevant observ-
ables often thermalize, in the sense that there is some
time T such that 〈A(t)〉 ∼ 〈A〉β for t ≥ T , where

〈A〉β = Tr
[
e−βH

Z A
]

is the expectation value of a Gibbs

ensemble with average energy 〈Ψ|H|Ψ〉. It is by now
established that thermalization occurs generically as a
consequence of the eigenstate thermalization hypothesis
(ETH) [4, 5]. The ETH implies that energy eigenstates
within a microcanonical window have thermal expecta-
tion values, from which it follows that 〈A(t)〉 → 〈A〉β ,

where 〈...〉 denotes the long-time average.

∗ riddeljp@mcmaster.ca
† lpgp@umd.edu
‡ alvaro.alhambra@mpq.mpg.de

Less is known about how fast systems thermalize and
about how the ETH affects the approach to thermal equi-
librium (also called relaxation or equilibration). It has
been argued that the ETH is behind fast relaxation to
steady state values [6–14]. It has also been shown to play
a role in fluctuation-dissipation relations [3, 15–18], cer-
tain kinds of transport [3, 19–21], and in the appearance
of random matrix-like phenomena [3, 21–24]. However,
our theoretical understanding of these processes, their
timescales, and of how the ETH influences them remains
far from complete.

Here, we investigate the relaxation timescales of A by
numerically analyzing the early-time decay of the expec-
tation value 〈A(t)〉 for various observables and states.
We focus on a non-integrable Heisenberg model that we
study via exact diagonalization. For the cases studied, we
observe numerically that at early times the expectation
value decays as

〈A(t)〉 ' 〈A(0)〉e−
σ2At

2

2 ' 〈A(0)〉
(

1− σ2
At

2

2

)
, (2)

for some constant σA > 0. This sets the initial relaxation
rate, which dominates until later phenomena, such as hy-
drodynamic tails [21, 25, 26], become relevant. We thus
identify σA as the object of study of previous works on
the timescales of equilibration [8–10, 27, 28].

We study the relaxation rate σA, and relate it to those
of two correlation functions: C(t) describing the long-
time out of equilibrium fluctuations, introduced by Sred-
nicki [15], and the Kubo function CKubo(t) describing the
dissipation of perturbations near thermal equilibrium.
We also calculate these rates analytically in a random
matrix theory model, for which we show that they co-
incide up to a d−1 error, with d the Hilbert space di-
mension. Inspired by this result and other insights from
random matrix theory frameworks [7, 29], we theorize,
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and numerically analyze, that in “generic” situations, the
decay rate of all these quantities closely matches. This
sets a universal timescale, which may only depend on few
parameters such as the temperature [30].

The coincidence of correlation functions introduced by
Srednicki and Kubo has been previously referred to as a
“fluctuation-dissipation theorem” [3, 16]. With our anal-
ysis, we go beyond this connection by exploring how this
fluctuation-dissipation relation can already arise at the
initial relaxation process of the system. This is also sup-
ported by previous results [11, 31] which found other ini-
tial conditions under which thermal correlation functions
coincide with the post-quench evolution of observables.

To study the relation between the different decay rates,
we numerically determine σA for different initial condi-
tions and system sizes, up to L = 24, and compare it
to the rates σG and σK which characterize the dynamics
of the Srednicki and Kubo correlation functions, respec-
tively. We find that they are of the same order of magni-
tude in all cases studied, and they converge to the same
value for at least one of the observables and initial state
considered. We also observe that they are closer the more
generic or “typical” the initial conditons are, which we
quantify with the so-called effective dimension [32, 33] of
the initial state, and with a modified version of it that
also depends on the observable measured.

With these results, we illustrate with exact numerics
previous theoretical arguments regarding timescales of
relaxation [15, 27, 28], narrowing down their regime of
applicability. We conclude that the accuracy of many ex-
isting theoretical predictions, (in particular, their ability
to predict the relaxation timescale accurately) crucially
depends on the typicality of the initial conditions, which
appears to be challenging to quantify rigorously. We pro-
pose the aforementioned two quantities as figures of merit
of this typicality, and we conclude that their value also
relates to the validity of random matrix theory models
studied in the literature [6, 7, 17, 34–37].

The paper is structured as follows. We define the
model, observables, and states considered in our simu-
lations in Sec. I, and we study the decay rates of the ob-
servables in Sec. II. In Sec. III, we define the correlation
function of Srednicki and in Sec. IV that of Kubo. We
compare the different decay rates in Sec. V. In Sec. VI,
we show that all timescales coincide for Haar random
Hamiltonians of large dimensional systems. In Sec. VII,
we further investigate the conditions under which 〈A(t)〉,
C(t), and CKubo(t) have similar decay rates. We end with
some remarks and open questions in Sec. VIII.

I. NON-INTEGRABLE MODEL: HEISENBERG
CHAIN

We provide numerical results using a Heisenberg chain
with next-nearest neighbour interactions

H =
L∑

j=1

J1

(
S+
j S
−
j+1 + h.c

)
+ γ1 S

Z
j S

Z
j+1

+ J2

(
S+
j S
−
j+2 + h.c

)
+ γ2S

Z
j S

Z
j+2, (3)

where SZj = |↑〉〈↑| − |↓〉〈↓| is the Pauli operator along

Z for spin j and S+
j = |↑〉〈↓|. We characterize this

model by the coefficient vector (J1, γ1, J2, γ2). It is non-
integrable and obeys the ETH for generic parameters.
However, it is quasi-free for (J1, γ1, J2, γ2) = (J1, 0, 0, 0)
and Bethe-ansatz solvable when (J1, γ1, J2, γ2) =
(J1, γ1, 0, 0) [38–40]. Unless otherwise stated, we take
(J1, γ1, J2, γ2) = (−1, 1,−0.2, 0.5) for the figures.

The Hamiltonian in Eq. (3) has a number of sym-
metries which allows us to block-diagonalize it. In
particular, it preserves total magnetization in the

mz =
∑L
j=1 S

Z
j direction and is translation invariant.

In our numerics, we choose initial states with 〈mz〉 = 0,
which allows to further exploit the Z2 spin flip symme-
try. Our initial states are also chosen such that they have
support in the k = {0, π} translation sectors. This allows
us to access exact dynamics from the maximally symmet-
ric blocks of the Hamiltonian using the spatial reflection
symmetry.

We investigate two observables of interest,

A1 := SZ1 , (4)

A2 :=
1

L

L∑

j=1

SZj S
Z
j+1. (5)

Observable A1 has support on a single site and is there-
fore not translation invariant. This requires eigenstates
from different symmetry sectors of the Hamiltonian to
contribute to its dynamics. This is fundamentally dif-
ferent from the translation-invariant observable A2, for
which dynamics are generated only between eigenstates
in the same symmetry sector.

We study three initial states that, as we see below,
showcase rapid and slow examples of the relaxation pro-
cess when probed by the observables introduced above.
Let,

|ψ〉 := | ↑↓↑↓ . . . ..〉, (6)

|ψ′〉 :=
1√
2

(| ↑↓↑↓ . . . ..〉+ | ↓↑↓↑ . . . ..〉) , (7)

|φ〉 :=
1√
L

L−1∑

r=0

T̂ r| ↑↑ . . . ↑↓ . . . ↓↓〉, (8)

where T̂ is the translation operator shifting the state of
each spin by one lattice site.
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One expects the Néel-type state |ψ〉 to rapidly ap-
proach equilibrium due to every ↑ being neighboured by
two ↓ terms. Also, |ψ′〉 being a superposition of two such
states, we expect it to behave similarly, although its “cat
state” structure may slightly change the physics. Mean-
while, |φ〉 is a translation invariant state where the gen-
erating state | ↑↑ . . . ↑↓ . . . ↓↓〉 only has two points that
will initially admit spin flip dynamics. Due to this prop-
erty, we expect it to exhibit slower equilibration that is
more likely to feature hydrodynamic tails associated with
transport.

In summary, we focus on the observable-state pairs

〈A1(t)〉|ψ〉 := 〈ψ|A1(t)|ψ〉, (9a)

〈A2(t)〉|φ〉 := 〈φ|A2(t)|φ〉, (9b)

〈A2(t)〉|ψ′〉 := 〈ψ′|A2(t)|ψ′〉. (9c)

II. INITIAL DECAY RATE

We observe that the initial decay of expectations after
a quench takes the form

〈A(t)〉 ' (〈A(0)〉 − 〈A(∞)〉) e−
σ2At

2

2 + 〈A(∞)〉 (10)

' (〈A(0)〉 − 〈A(∞)〉)
(

1− σ2
At

2

2

)
+ 〈A(∞)〉,

where 〈A(∞)〉 represents a late time “equilibrated” value
that for simplicity we will take to be 〈A(∞)〉 = 0
throughout.

A Taylor expansion to second order shows that

σ2
A = − 1

〈A(0)〉
d2〈A(t)〉
dt2

∣∣∣
t=0

= −〈[H, [H,A]]〉
〈A(0)〉

=

∑
j,k cjc

∗
kAjk(Ej − Ek)2

∑
j,k cjc

∗
kAjk

, (11)

where in the last line we expand in the energy eigenbasis
{|Ej〉} such that H =

∑
j Ej |Ej〉 〈Ej |, the initial state

is |Ψ〉 =
∑
j cj |Ej〉 and Ajk = 〈Ej |A |Ek〉. This sec-

ond derivative has previously appeared in the analysis of
general equilibration timescales [9].

Since we focus on an early-time regime, both the Gaus-
sian and the quadratic functions give good approxima-
tions, with the Gaussian being slightly more accurate in
most cases. The accuracy of the approximation is shown
in Fig. 1 for the observable-state pair in Eq. (9a) (the
other two show similar behaviour). Here, we see that
the Gaussian does a marginally better job at approxi-
mating the decay in the dynamical region of interest and
both functions get progressively worse at approximating
the dynamics as t increases. This differs from the expo-
nential decay ∼ e−σt associated with Fermi’s golden rule
found in some regimes [12, 41, 42]. In the cases studied
here, a leading linear term is already ruled out from the
fact that for our initial states and observables it holds
that [A, |Ψ〉〈Ψ|] = 0.

0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250
τ

10−6

10−5

10−4

D̄
(τ

)

Quadratic

Gaussian

FIG. 1. Early time fit of 〈A1(t)〉|ψ〉 as defined in Eq. (9a)
with respect to a quadratic and a Gaussian. We define a
discrete approximation of the functions to be compared at
the times t ∈ {n∆t|n ∈ N ∧ n∆t ≤ τ}. We take D̄(τ) =

||〈−→A1(t)〉|ψ〉 −
−→
f (t)||1/||〈A1(t)〉|ψ〉||1 where −→g (t) is the vector

with components g(n∆t), and f(t) is the fitted function on the
discrete interval. Here ∆t = 0.01 and the fits are performed
for L = 24 dynamics.

We first investigate the dependence of the initial de-
cay rate σA with respect to various parameters of the
Hamiltonian in Eq. (3). To produce a systematic pic-
ture of the dependence of σA on the parameters of the
Hamiltonian, we take (J1, γ1, J2, γ2) = (J1,

J1∆
2 , J2,

J2∆
2 ).

We further fix the relation J2 = 1
2.7J1. The results are

shown in Fig. 2 for L = 18. We vary J1 ∈ [−2,−1]
and ∆ ∈ [0.1, 1.1]. In this regime we see that the σ2

A
of 〈A1(t)〉|ψ〉 is largely independent of ∆ in the tested
regime. On the contrary, the decay rate σA of 〈A2(t)〉|φ〉
varies quite strongly with respect to ∆, most likely due
to its construction hindering spin flip dynamics early.
Our third example sits in-between these two. While
the timescales associated with 〈A2(t)〉|ψ′〉 vary weakly
with respect to ∆, the effect is non-negligible. Unsur-
prisingly, the timescales are much more sensitive to J1

since it directly controls the magnitude of interactions
which do not commute with the observables studied. As
we will see, we can associate this lack of dependence on
certain Hamiltonian parameters with the coincidence of
timescales that we explore.

III. FLUCTUATIONS: SREDNICKI’S
CORRELATION FUNCTION

We now consider the correlation function C(t), first
defined in [15], which quantifies the “correlations in time”
of 〈A(t)〉, as [43]

C(t) =
〈A(t+ t′)〉〈A(t′)〉

〈A(t′)〉2
, (12)
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FIG. 2. The plots use the parameters of (J1, γ1, J2, γ2) = (J1,
J1∆

2
, J2,

J2∆
2

) with J2 = 1
2.7
J1 fixed. All data shown here has

a system size of L = 18. (First row) Heat map of σ2
A as a function of J1 and ∆ for our three observable/state pairs. (Second

row) We define ∆σ2
A = maxσ2

A −minσ2
A, where the maximum and minimum are extracted from the data of the first row. To

illustrate the individual variation of σ2
A with respect to ∆ we cut the data from the first row by fixing J1 = −1.8. Normalizing

the σ2
A by dividing out ∆σ2

A indicates how much change in the value is due to changes in ∆ compared to J1.

where X(t′) ≡ limT→∞
∫ T

0
dt′

T X(t′). It can also be writ-
ten as

C(t) =

∑
j 6=k |cj |2|ck|2|Ajk|2e−it(Ej−Ek)

∑
j 6=k |cj |2|ck|2|Ajk|2

. (13)

The ETH and properties of the observable and the
state imply that, for short times, this function decays as

C(t) ' e−
σ2Gt

2

2 ' 1 − σ2
Gt

2

2 (since it is at early times, the
quadratic function is also a good approximation). This
is discussed in more detail in Appendix A. Moreover, the
initial decay rate is given by

σ2
G =

∑
j 6=k |cj |2|ck|2|Ajk|2(Ek − Ej)2

∑
j 6=k |cj |2|ck|2|Ajk|2

=
Tr [D(|Φ〉〈Φ|)[A,H]D(|Φ〉〈Φ|)[H,A]]

Tr [(D(|Φ〉〈Φ|)A)2]
, (14)

where D(|Φ〉〈Φ|) :=
∑
k |ck|2|Ek〉〈Ek| is the so-called di-

agonal ensemble. Note that 〈A(∞)〉 = Tr [D(|Φ〉〈Φ|)A] =
0. This can be seen by expanding Eq. (13) to second or-
der at short times. With this expression, σG could be
calculated by more efficient methods than exact diago-
nalization, such as tensor networks [44].

It will be often the case that σG characterizes relax-
ation timescales beyond the short-time behaviour of C(t).
We prove in Appendix B that the rate at which the corre-

lation function changes is upper bounded by
∣∣∣dC(t)dt

∣∣∣ ≤ σG
at all times – a form of quantum speed limit on C(t). The
main results of [45] also apply to this function. They
show that σG characterizes not only the initial rate but

also the timescales for C(t) to equilibrate to the steady
state value in generic situations (see Appendix C).

Unlike the form of σA in Eq. (11), σG in Eq. (14) im-
plies that the characteristic rate σG is independent of
the terms in the Hamiltonian that commute with A. In
our examples, both observables commute with the term
γ1S

Z
j S

Z
j+1 and as such σG is independent of γ1. We can

now compare this conclusion to that of Fig. 2, where
we see that σA is mostly independent of γ1 only for
〈A1(t)〉|ψ〉. This already hints to situations where we
expect σA ∼ σG.

In [15], it was argued that C(t) exactly models the de-
cay of 〈A(t)〉 after possible large out-of-equilibrium fluc-
tuations that happen after the system has thermalized.
We have not been able to numerically verify this claim,
since it appears that the potential fluctuations that this
correlation function models happen at late times (likely
scaling quickly with system size). In any case, from the
definition in Eq. (12), we can establish that C(t) quanti-
fies the correlations in time of the fluctuations of 〈A(t)〉.

Notice that this function depends on the same initial
conditions as 〈A(t)〉 (with the difference that it does not
depend on the phases of cjc

∗
kAjk). We may then expect

what is one of our main points: that in some “generic”
cases, e.g. in which the dependence with the phases is
unimportant, its decay rate may be close to σA in Eq. (2).
This is in fact the conclusion reached by slightly differ-
ent arguments of previous works on relaxation timescales
[27]. These suggests that, given ETH, the relevant decay
timescale in which 〈A(t)〉 → 〈A〉β is close to precisely σG
(see Eq. (15) of [27]).

We now explain why this can be expected. As dis-
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cussed in e.g. [27], the initial relaxation rate can be un-
derstood as follows: for many-body systems, the expec-
tation value of an observable

〈A(t)〉 =
∑

jk

cjc
∗
kAjke

−it(Ej−Ek), (15)

at time time t > 0 is a sum over a dense set of complex
numbers oscillating at different frequencies in the com-
plex plane. If these complex numbers are spread evenly
enough among the plane, they will typically collectively
cancel. This will cause the oscillating part of 〈A(t)〉 to
average to zero, leading to equilibration to a steady value.
This will happen quickly in general, provided that there
are not too many spurious correlations among the coef-
ficients cjc

∗
kAjk and the energy gaps, that might make

the spread uneven. We thus identify this spread and lack
of correlations between the complex coefficients with the
concept of “typicality”. A similar picture is also provided
in [28].

The conclusion stemming from this is that the relax-
ation or “dephasing” time is controlled by the variance of
the energy gaps, as weighted by the absolute value of the
coefficients in Eq. (15) [9, 27, 28]. This exactly coincides
with the expression for σG in Eq. (14). This implies that
the initial decay rate is the same as that of a correlation
function C(t), which we already know to be σG from the
discussion in Sec. (III), and so σA ' σG.

However, from this coarse argument it is not clear
whether a conclusion as strong as σA ' σG can hold
in full generality — in fact, we will see that at times
they are only within the same order of magnitude. Nev-
ertheless, it suggests that this coincidence of timescales
will be closer the more evenly spread the coefficients in
Eq. (15) are in the complex plane, and the fewer spurious
correlations there are between them. We explore this nu-
merically in Sec. V below, and further explain it in Sec.
VII.

IV. DISSIPATION: THE KUBO THERMAL
RESPONSE FUNCTION

The Kubo correlation function models the dissipa-
tion of small perturbations away from thermal equilib-
rium [46]

CKubo(t) ∝
∑

j 6=k

e−βEj − e−βEk
Ek − Ej

|Ajk|2ei(Ej−Ek)t. (16)

By a similar argument as that used for C(t) in Ap-
pendix A, this function has an initial Gaussian/quadratic
decay

CKubo(t) ' CKubo(0)e−σ
2
Kt

2 ' CKubo(0)
(
1− σ2

Kt
2
)
,

(17)

with a characteristic decay rate given by

σ2
K =

∑

j,k

e−βEk − e−βEj
CKubo(0)

|Ajk|2(Ek − Ej) (18)

=
1

CKubo(0)
Tr

[[
A,

e−βH

Z

]
[A,H]

]
. (19)

The initial decay rate σK also characterizes other aspects
of the dynamics of the correlation function, as was the
case for C(t). Theorem 5 in [45] shows that in some cases
σK also governs the equilibration timescale of CKubo, and
Appendix E shows that σK also upper bounds its rate of
change.

Based on the ETH, the work of Srednicki [15] argues
that C(t) behaves similarly to CKubo(t). We reproduce
the theoretical argument based on the ETH ansätz in
Appendix D. The reason behind it is similar to that of
the previous section: states that have a support uni-
formly spread over many energy eigenstates will behave
in a more “thermal”, or “typical” manner, so that both
correlation functions evolve similarly by virtue of be-
ing largely independent of the coefficients of Eqs. (15)
and (16). More specifically, if the function f(〈H〉, ω) of
the ETH ansätz [see Eq.(A1)] decays rapidly at frequen-
cies ω > W and the initial state has variance λ, then

C(t) ' CKubo(t) +O(β2W 2) +O
(
W 2

λ2

)
. (20)

The function f(〈H〉, ω) has been thoroughly explored in
numerical simulations [3, 16, 22, 47, 48], showing a rel-
atively fast decay with frequency. This suggests that
the two error terms in this equation are small, so that
C(t) ' CKubo(t) or that, at least, σG ' σK . We check this
similarity for our examples in Sec. V below. This coinci-
dence of the dynamics of C(t) and CKubo(t) has been pre-
viously identified as a quantum “fluctuation-dissipation”
relation [16].

Note that the argument leading to Eq. (20) crucially
relies on the coefficients cj and Ajk being uniformly
distributed (see Eq. (D1)). Thus, as we find, in the
more “non-generic” situations, hidden correlations be-
tween these coefficients can make the argument fail. This
also agrees with the fact that only some of the examples
studied in [16] show that C(t) ∼ CKubo(t), which cor-
respond to the quenches in which we expect typicality.
That is, when the lack of structure or correlations be-
tween the coefficients cj , e

−βEj and Ajk, is more promi-
nent.

V. COMPARISON OF TIMESCALES

In the discussion above we have introduced three dif-
ferent rates: σA, σG and σK , defined respectively in
Eqs. (11), (14) and (18), and speculated with the possibil-
ity that they may coincide in certain cases. We now nu-
merically compute these quantities, and explore whether
this coincidence indeed happens.
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〈A1(t)〉|ψ〉
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〈A2(t)〉|ψ′〉

FIG. 3. Ratio between σ2
G defined in Eq. (14) and σ2

A defined
in Eq. (2), as a function of system size. We see that in the
case of 〈A1(t)〉|ψ〉 the ratio approaches 1 for larger L.

First, we compare the decay rates σA and σG in each
of our three pairs of initial states and observables in
Eqs. (9). The results are shown in Fig. 3, where we see
that σA and σG are of the same order of magnitude, and
that they converge in the case of the state-observable pair
〈A1(t)〉|ψ〉 in Eq. (9a) as the size of the system grows. At
system size L = 24, we see the decay rates strongly coin-
cide, with σ2

G/σ
2
A ≈ 1.0105. This shows that, at least in

the latter case, the two rates converge, which is consistent
with our expectation from Fig. 2. Given our discussion
above, we thus expect that 〈A1(t)〉|ψ〉 is the most “typi-
cal” scenario, with 〈A2(t)〉|φ〉 being the least.

The case of 〈A2(t)〉|φ〉 is the one for which σA and σG
differ the most, and also the one for which σA is more
sensitive to changes in γ1 (see Fig. 2). A possible reason
for this is that we expect that transport processes are
relevant in the relaxation of state |φ〉. These are generally
associated with an “atypicality” of the dynamics, and a
breakdown of random matrix theory features [36], which
can potentially cause correlations between the coefficients
of Eq. (15).

Additionally, Fig. 4 compares the rates σG and σK .
We observe that the two timescales are similar for both
state-observable pairs 〈A1(t)〉ψ and 〈A2(t)〉φ, with the
former being the closest. Indeed, for 〈A1(t)〉|ψ〉 and
the largest system size tested L = 24 we have that
σ2
G/σ

2
K ≈ 0.9864. This shows how in some cases

the aforementioned “fluctuation-dissipation” relation can
emerge in certain situations, as previously found in [16].
On the other hand, the rates σG and σK differ signif-
icantly for the third case of 〈A2(t)〉|ψ′〉 (although still
within an order of magnitude).

Moreover, comparing Figs. 3 and 4 shows that the cases
when σK ∼ σG coincide with those for which σK ∼ σA.
This is not surprising since, as per the discussions above,
we expect that the most typical situations are the ones
in which all these rates are similar. Here, the most typi-
cal case is 〈A1(t)〉ψ, with 〈A2(t)〉|ψ′〉 being somewhat far
from it.

10 12 14 16 18 20 22 24
L

0.2

0.4

0.6

0.8

1.0

1.2

σ
2 G
/σ

2 K

〈A1(t)〉|ψ〉
〈A2(t)〉|φ〉
〈A2(t)〉|ψ′〉

FIG. 4. Ratio between σ2
G defined in Eq. (14) and σ2

K defined
in Eq. (17) as a function of system size. The thermal state
was restricted to energy eigenstates with non-zero weight in
the states defined in Eqs. (6) and (8)]. The value of β was
determined so that the thermal state had identical energy to
the initial pure state.

VI. RANDOM MATRIX THEORY ANALYSIS

We have seen how in the model of Eq. (3) the dif-
ferent timescales considered coincide for certain state-
observable combinations. We now explore the conclu-
sions of the previous sections in the paradigmatic model
of “typicality”, with a Hamiltonian diagonalized by a ran-
dom unitary matrix [35].

This is a simpler model in which the characteristic re-
laxation rates can be analytically computed exactly. Let
us define an arbitrary Hamiltonian in which the eigenba-
sis is chosen at random, as

HU ≡ UHU†, (21)

where U is drawn from the Haar measure over the unitary
group [49]. This model, which has previously appeared
in the study of equilibration of closed systems [6, 35,
50], is motivated by the fact that quantum non-integrable
systems have highly entangled eigenstates, that highly
resemble random states [3, 4, 51–53].

With it, we are able to give analytical expressions
for the average squared decay rates 〈σ2

A〉U , 〈σ2
G〉U and

〈σ2
K〉U , where 〈·〉U indicates the average over the Haar

measure. Given that the corresponding thermal state
of this model is always the maximally mixed state, the
thermal state corresponding to D(|Φ〉〈Φ|) is always the
infinite temperature state β = 0.

In Appendix F, we show that

〈σ2
G〉U ' 〈σ2

A〉U +O
(

1

d

)
= 〈σ2

K〉U +O
(

1

d

)
(22)

= 2
(
〈H2〉MC − 〈H〉2MC

)
+O

(
1

d

)
,

where d = 2L is the dimension of the total Hilbert space
and 〈B〉MC = Tr [B] /d. That is, the rates coincide with
the energy variance at infinite temperature for L � 1.
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The intuitive reason behind this is that the random-
ness in the eigenstates washes out any correlations be-
tween {Ajk}, {cj , ck} and Ej − Ek, such that the rel-
evant timescale does not depend on the observable nor
the initial state but only on the spectrum. The “ ' ”
in Eq. (22) relies on the accuracy of the approxima-
tion 〈f/g〉U ≈ 〈f〉U/〈g〉U , sometimes referred to as the
“annealed approximation” [54–60], which we justify an-
alytically in Appendix G.

To derive Eq. (22), we need to compute the average
of certain correlation functions over the unitary group.
These involve the fourth moment of the Haar measure,
which results in cumbersome analytical expressions of
hundreds of coefficients coming from the Weingarten cal-
culus [49]. We deal with these analytically with the re-
cently introduced RTNI package [61]. In contrast, the
calculations with the same model of e.g., [7] only involve
second moments, which can be done by hand.

The result in Eq. (22) supports the fact that, in typ-
ical instances of the dynamics where RMT is accurate,
the timescales studied here coincide with a “universal”
value. It is also consistent with previous studies of RMT
models [7, 29], where such coincidence of timescales for
different dynamical processes is already hinted at.

VII. TYPICALITY OF THE DYNAMICS AND
THE EFFECTIVE DIMENSION

Here, we propose to quantify the typicality of the sit-
uations studied with two figures of merit, and connect
them to the dynamics of the observables and correlation
functions.

The dephasing argument in Sec. III suggests that
the more “evenly spread” in frequency the coefficients
cjc
∗
kAjk are, the more we expect the decay rates to coin-

cide, σA ∼ σG. On top of that, the result of the Sec. VI
shows that, when these are fully random, the rates co-
incide for large Hilbert space dimension d. Motivated
by these facts, we aim to understand our numerical find-
ings from Sec. V in terms of two different measures of
typicality of the initial conditions.

The first one contains information about the state and
the Hamiltonian, and is the so-called effective dimension,
also commonly referred to as the inverse participation
ratio. The effective dimension DΦ of a pure state |Φ〉,
defined by

D−1
Φ ≡ Tr

[
D(|Φ〉〈Φ|)2

]
=


∑

j

|cj |4

 , (23)

controls the long-time equilibration of isolated quantum
systems [32, 62, 63]. Here, |Φ(t)〉〈Φ(t)| = D(|Φ〉〈Φ|) is
the diagonal ensemble: the initial state dephased in the
energy eigenbasis.

The effective dimension quantifies the number of eigen-
states that participate in the process. A “typical” state
thus has a large effective dimension. It is known to grow

exponentially in system size under very general condi-
tions on the eigenstates [64, 65] and to be close to the
maximal value d if the initial state is chosen at ran-
dom [66, 67]. Importantly, it bounds the size of late time
fluctuations around equilibrium [32, 33].

A shortcoming of this measure is that it does not de-
pend on the observable studied. To account for it, we
consider a second measure of typicality DΦ,A that incor-
porates information of the off-diagonal matrix elements
of the observable, which play a role in dynamics. We re-
fer to DΦ,A as a state-observable effective dimension, and
define it by [68]

D−1
Φ,A ≡

∑

j 6=k
|cj |2|c∗k|2|Ajk|2. (24)

It holds that D−1
Φ,A ≤ ||A||2D−1

Φ [32, 33], where ||A|| is the

largest singular value of A. Comparing D−1
Φ,A and D−1

Φ ,

we can roughly think of D−1
Φ,A as an inverse effective di-

mension that accounts for the observables off-diagonal
elements. Notice that this expression only contains in-
formation about the off-diagonal terms which generate
the dynamics, and not the diagonal ones.

The state-observable effective dimension is related to
the fluctuations around equilibrium, as

D−1
Φ,A = lim

T→∞

∫ ∞

0

|〈A(t)〉 − Tr [D (|Φ〉〈Φ|)A] |2dt.(25)

where we have assumed non-degeneracy in the energy
gaps.

The significance of these two measures for the dy-
namics at earlier times can be understood as follows:
the larger the effective dimensions, the more off-diagonal
terms Ajk can participate in the dynamics. This implies
that the particular details and structure of individual
off-diagonal matrix elements contribute less at an earlier
time, making treatments akin to random-matrix theory,
such as in [7, 11, 17, 69], more accurate. That is, we
generally expect that the larger the effective dimensions
DΦ and DΦ,A, the more typical the dynamics is.

When that is the case, the initial state and the energy
eigenbasis are closer to being “mutually unbiased” [70],
which effectively means that the energy eigenbasis and a
basis of low-entangled states including |Ψ〉 can be related
by a random matrix. In [7], this was shown to imply that

〈A(t)〉 ∝
∑

j,k

e−it(Ej−Ek), (26)

where the sum includes the set of energy gaps that partic-
ipate in the dynamics. That is, 〈A(t)〉 resembles the spec-
tral form factor of the Hamiltonian, and depends weakly
on the details of the coefficients Ajk and cj . This is
consistent with the random matrix theory result of Sec-
tion VI, which show that in a random-matrix model the
timescales are set only by the Hamiltonian.

Another way to understand this is as follows: if we
compute the coefficients cj , Ajk with a random matrix
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formalism, they will be all of similar weight, and close
to maximally evenly distributed in the complex plane,
leading on expectation to Eq. (26).

In contrast, in a local model with energy conservation,
such as that of Eq. (3), the coefficients Ajk and cj have
non-trivial structure, and set the range of participating
energy gaps to be those around the average energy (those
for which cjc

∗
kAjk is not too small). Due to this, the

decay rates σA can be significantly different from that
of an actual form factor or the Loschmidt echo, which
would correspond to the energy variance [71, 72] as we
found in Eq. (22).

Exactly the same argument applies to C(t) and
CKubo(t), and one can thus infer that they will behave
similarly to 〈A(t)〉 on the basis of them also evolving like
an spectral form factor

∑
j,k e

−it(Ej−Ek) of the partic-

ipating energy gaps. This idea is consistent with [73],
which proposes that the coincidence of correlation func-
tions and form factors is a key indicator of the validity
of random matrix theory ansätze.

Given this discussion, we expect that the larger the
effective dimensions DΦ and DΦ,A, the closer the decay
rates σA, σG and σKubo shown in Fig. 3 of Sec. V become.
We confirm this by calculating the effective dimensions
as a function of system size for the three different initial
states. The results are shown in Figs. 5 and 6, where we
see an exponential decay in all cases. We also observe
a noticeable difference between the different states, with
Dψ > Dψ′ > Dφ, and with Dψ,A1

> Dψ′,A2
> Dφ,A3

for sufficiently large systems with L ≥ 16. This agrees
with our expectations that the effective dimensions can
serve to witness the situations in which the decay rates
coincide. This is also consistent with the results of
Sec. V and with Figs. 3 and 4. We find that 〈A1(t)〉
is the most typical scenario, and the one in which the
timescales σA, σG, σK most resemble each other. In con-
trast, 〈A2(t)〉|φ〉 is a more atypical scenario in which the
decay rates differ the most.

These results suggest that the effective dimensions con-
sidered can serve as

• Figures of merit of the typicality of the dynamics,
and of the validity of RMT frameworks.

• Indicators of the coincidence of the relaxation rate
of the quench with correlation functions.

An interesting open problem is to make this connection
more precise and quantitative, perhaps in the form of a
bound similar to those for late-time fluctuations in [32,
33, 74].

VIII. CONCLUSIONS

We have analyzed the early time relaxation rate of
observables with different initial conditions for a non-
integrable quantum system. As a general conclusion, we

10 12 14 16 18 20 22 24
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10−1

D
−

1
Φ

|ψ〉
|φ〉
|ψ′〉

FIG. 5. D−1
Φ,A as a function of system size, up to L = 24. We

see clear exponential decay setting in at large system sizes at
different rates.
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Φ
,A
/||
A
||2

〈A1(t)〉|ψ〉
〈A2(t)〉|φ〉
〈A2(t)〉|ψ′〉

FIG. 6. Inverse effective dimension D−1
Φ as a function of sys-

tem size, up lo L = 24. We see a clear exponential decay,
with different states decaying at diverging rates.

observe a close link between the coincidence of differ-
ent dynamical quantities and their initial relaxation rates
with the typicality of the initial conditions. We quantify
this typicality with two notions of “effective dimensions”
that, in broad terms, quantify the number of frequencies
involved in the evolution of an observable. This allows us
to better understand how and when the complex relax-
ation behaviour of these quantum systems can be under-
stood in simpler terms, either by linking it to correlation
functions, or by having random matrix theory/typicality
treatments to accurate describe dynamics.

We see that, in typical cases, the rate σA at which
an observable initially decays is related to the rate σK ,
which dictates the approach to thermal equilibrium from
perturbations, and to the rate σG, which dictates tem-
poral fluctuations. This suggests a connection between
(short-time) equilibration, fluctuation, and dissipation
processes of an observable for typical states – a sort of
equilibration-fluctuation-dissipation relation, formalized
by σA ' σK ' σG, that goes beyond some previously
studied fluctuation-dissipation relations [16].

A full theoretical characterization of relaxation dynam-
ics and their timescales remains a largely open problem
[10, 12, 75]. Our findings suggest that, while it may be
possible to describe the dynamics of very generic situa-
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tions, the existence of “atypical” situations make general
rigorous results challenging [76–78]. This impacts the
regimes in which previous upper bounds on equilibration
timescales correctly capture the dynamics of isolated sys-
tems [9, 27]. An important milestone could be to find
more systematic ways of knowing when a particular dy-
namics can be considered typical, via the effective dimen-
sions proposed here, or some related figure of merit.

The present results confirm the intuition provided
by a large number of previous theoretical works that
make similar connections through either typicality argu-
ments [7, 62, 79] or random matrix theory ansätze [4, 17,
37, 50, 80]. They are also consistent with the picture that
links typicality and the validity of different random ma-
trix formalisms to the absence of macroscopic transport
phenomena [36].
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APPENDICES

Appendix A: Initial Gaussian decay

Here we explain why we expect C(t) to decay as a Gaussian for early times, which also implies that it is well
approximated by a quadratic function. Similar results should also apply for CKubo, as well as for the central quantity
〈A(t)〉. For the latter, however, the complex coefficients in the expansion Eq. (15) make that analysis far from
straightforward.

We follow a method for estimating expectation values based on ETH that can be found in several references
[3, 16, 81, 82], and that allows us to transform sums over energy gaps into integrals over frequencies. First, notice the
dependence of Eq. (13) on the matrix elements Ajk. We can then make use of the ETH ansatz

〈Ej |A |Ek〉 ≡ Ajk = A(E)δjk + e−S(E)/2f(E,Ej − Ek)Rjk. (A1)

Here, Ej , Ek are energies belonging to the same microcanonical ensemble with energy E. S(E) is the microcanonical
entropy of that ensemble, f(E,ω) is a function that decays monotonically with ω and Rjk are the coefficients of a
random matrix.

The randomness in Eq. (A1), and the small level spacing in the thermodynamic limit, suggests that we can replace
the sums

∑
k,j |cj |2|ck|2 in (13) with integrals over the energy sum and differences

∫ ∫
dEdωeβES(E+ω)p(E−ω/2)p(E+

ω/2) [3]. Here eβES(E) is the density of states at energy E, and βE is the inverse temperature corresponding to average
energy E. The integral is as follows

C(t)− C(∞) ∝
∫ ∫

dEdωeβE(S(E+ω)−S(E))p(E − ω/2)p(E + ω/2)|f(E,ω)|2eiωt, (A2)

where p(E) is the probability of being in energy E, the continuum limit of the coefficients |cj |2, and C(∞) = C(t).
For physically relevant initial states, such as product or shortly-correlated states on lattices, this energy distribution

is always close to a Gaussian (see [83, 84] for rigorous statements)

p(E) ' 1√
2πλ

e−
(E−〈H〉)2

2λ2 , (A3)

where 〈H〉 = 〈Φ|H |Φ〉 and λ2 = 〈Φ|H2 |Φ〉 − (〈Φ|H |Φ〉)2. Typically, λ2 ∼ N , so that the energy fluctuations are
subextensive, and thus the energy density is essentially free of uncertainty. We can then write

p(E + ω/2)p(E − ω/2) ∝ e−
(E−〈H〉)2

λ2 e−
ω2

2λ2 . (A4)

This means that the energy is highly peaked around the average value, with small fluctuations around it. This fixes
the “effective” temperature βE = β〈H〉 ≡ β. At the same time, S(E + ω) can only change significantly if ω changes
by an extensive amount. As such, we can approximate S(E + ω)− S(E) to leading order in ω, obtaining

eβE(S(E+ω)−S(E)) ' eβE ω
2 = eβ

ω
2 . (A5)

Notice that the only dependence left on E is on the function f(E,ω), which again changes very slowly with E (it
should be effectively constant within the same energy density). Putting everything together, we can write

C(t)− C(∞) ∝
∫

dωeβ
ω
2 |f(〈H〉, ω)|2eitωe− ω2

2λ2

∝
∫

dω|f(〈H〉, ω)|2eitωe−( ω√
2λ
− βλ√

8
)2
. (A6)

An extra constraint on the observable is imposed by its locality. This implies that Tr
[
ρA2

]
must be finite and O (1)

for any ρ, and it was argued in [81] [Eq. (12)] that this implies that at large enough ω, f decays at least as fast as

f(〈H〉, ω) ∼ e− β|ω|4 . (A7)

This exponential decay at large frequencies has been numerically verified in at least [3, 16, 22, 47, 48] (see [27, 85]
for mathematically rigorous but weaker statements). It further justifies the approximation in Eq. (A5), since the
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integrand will be very suppressed at large ω [86]. Essentially, this means that if we are interested in short times t,
for which the high frequencies matter more, we can assume that f(E,ω) decays like a simple exponential in |ω|. We
do not have an estimate for the cut-off frequency or time at which this argument starts to fail, but it is likely some
timescale related to the transport processes in the system.

We see then that the integrand at short times is just a product of Gaussians and of decaying exponentials, with
the Fourier factor eiωt. We conclude that

∫
dωe−

(ω−ω0)2

2σ2 eitω ∝ e−σ2(t−t0)2 , (A8)

where ω0 and σ depend on the details of the function f , and on the constants β and λ.

At the same time, we can see that if we Taylor-expand C(t) and write it as in Eq. (13), we have

C(t) = 1− t2

2

∑
j,k |cj |2|ck|2|Ajk|2(Ek − Ej)2

∑
j,k |cj |2|ck|2|Ajk|2

+O
(
t3
)

= 1− σ2
Gt

2

2
+O

(
t3
)
, (A9)

where we have defined

σ2
G :=

∑
j,k |cj |2|ck|2|Ajk|2(Ek − Ej)2

∑
j,k |cj |2|ck|2|Ajk|2

. (A10)

Given the form of (A8), this shows that the initial decay constant is σ = σG and t0 = 0, which is confirmed by our
numerical examples.

A similar argument can be also done for the Gaussianity of the early-time decay of 〈A(t)〉 (e.g. see [28]), with
the extra potential difficulty of the relative phases of the complex cj , Ajk. Our numerical calculations support the
conclusion that both C(t) and 〈A(t)〉 decay as Gaussians at early times.

Appendix B: Upper bound on the rate of change of C(t)

From Eq. (13) in the main text we have that

∣∣∣∣
dC(t)
dt

∣∣∣∣ =
1∑

jk |cj |2|ck|2|Ajk|2

∣∣∣∣∣∣
∑

j 6=k
|cj |2|ck|2|Ajk|2eit(Ej−Ek)(Ej − Ek)

∣∣∣∣∣∣
. (B1)

Using the Cauchy-Schwarz inequality and Eq. (14) in the main text gives that

∣∣∣∣∣∣
∑

j 6=k
|cj |2|ck|2|Ajk|2eit(Ej−Ek)(Ej − Ek)

∣∣∣∣∣∣

2

≤
∑

j 6=k
|cj |2|ck|2|Ajk|2

∑

j 6=k
|cj |2|ck|2|Ajk|2(Ej − Ek)2

≤


∑

jk

|cj |2|ck|2|Ajk|2



2

σ2
G. (B2)

Thus,

∣∣∣∣
dC(t)
dt

∣∣∣∣ ≤ σG. (B3)

This bounds the rate of change of C(t) by its short time decay rate σG, and this holds at all times t.
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Appendix C: Upper bound on the equilibration timescale of C(t)

Defining C(∞) := C(t) = D(|Φ〉 〈Φ|), we have

C(t)− C(∞) =

∑
j 6=k |cj |2|ck|2|Ajk|2eit(Ej−Ek)

∑
j,k |cj |2|ck|2|Ajk|2

(C1)

=

∑
j 6=k |cj |2|ck|2|Ajk|2eit(Ej−Ek)

Tr [D(|Φ〉 〈Φ|)AD(|Φ〉 〈Φ|)A]
. (C2)

Let us denote the normalized distribution qα := 1
K |cj |2|ck|2|Ajk|2, where α = (j, k) denotes pairs of energy levels and

K := Tr
[
D(|Φ〉 〈Φ|)A†D(|Φ〉 〈Φ|)A

]
. Then, we can write

〈|C(t)− C(∞)|2〉T =
∑

α,β

qαqβ

〈
e−it(Gα−Gβ)

〉
T
, (C3)

where 〈f(t)〉T := 1
T

∫ T
0
f(t)dt denotes time average.

Lemma 2 of [45] and Proposition 5 of [9] imply that

〈|C(t)− C(∞)|2〉T ≤ 3π

(
a(ε)

σGT
+ δ(ε)

)
. (C4)

Here, a(ε) and δ(ε) are functions of energy gaps that depend on the form of the distribution qα, and therefore depend
on the observable, initial state, and Hamiltonian of the system. One can argue that, typically, one can find ε such
that a(ε) ∼ 1 and δ(ε) � 1 for generic many-body systems (see [9, 45] for more details, and [12] for a discussion of
cases when this condition may not hold).

The variance of the energy gaps Gα with respect to the distribution qα is given by

σ2
G =

1

K

∑

jk

|cj |2|ck|2|Ajk|2(Ej − Ek)2 (C5)

=
Tr [D(|Φ〉 〈Φ|)[A,H]D(|Φ〉 〈Φ|)[H,A]]

Tr [D(|Φ〉 〈Φ|)AD(|Φ〉 〈Φ|)A]
, (C6)

and when a(ε) ∼ 1 it dominates the approach to equilibrium of C(t). Note that this matches the short-time decay
rate (Eq. (14)) as well as the fastest rate of change of the correlation function (Eq. (B3)).

Appendix D: The Kubo function and C(t)

Making use of the ETH ansatz as in Eq. (A2), we obtain that, for the Kubo function in Eq. (16),

CKubo(t) ∝
∫

dE

∫
dωeβES(E+ω)e−βES(E)|f(E,ω)|2eiωt sinh(βω2 )

ω
e−βE . (D1)

The integrand is thus proportional to the Gibbs distribution e−βE . In most situations, this is very peaked around the
average energy 〈H〉 [87], in the same way as above for the initial pure states are (since both are states with short-range
correlations). This means that the typical energy fluctuations are subextensive, and the system has a well defined
energy density. As such, we can treat it in the same way as the diagonal distribution in Eq. (A3): effectively a Dirac δ
function centered at the average energy 〈H〉. Moreover, as in Eq. (A5), we can approximate eβE(S(E+ω)−S(E)) ' eβE ω

2

and write

CKubo(t) ∝
∫

dωeβ
ω
2 |f(〈H〉, ω)|2eiωt sinh(βω2 )

ω
. (D2)

Notice that the difference between Eq. (D2) and Eq. (A6) is only on the last factor, and that for small ω,

sinh(βω2 )

ω
' 1 +O(β2ω2) (D3)

e−
ω2

2λ2 ' 1 +O
(
ω2

λ2

)
. (D4)
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Thus, if the function f decays quickly on an energy scale of ω ∼W , we expect that

C(t) ' CKubo(t) +O(β2W 2) +O
(
W 2

λ2

)
. (D5)

This is the conclusion of [15]. That this is the case, and that these two functions coincide, has been verified in at
least [16, 22, 48]. There, it is shown that f(E,ω) is constant for some small interval around ω = 0, and then quickly
decays in an exponential fashion. We provide further evidence within our setting in Sec. V.

Appendix E: Upper bound on the rate of change of CKubo(t)

From Eq. (16) in the main text, we have that the rate of change of the Kubo correlation function satisfies

∣∣∣∣
d CKubo(t)

dt

∣∣∣∣ =
1

CKubo(0)

∣∣∣∣∣∣
∑

j 6=k

e−βEj − e−βEk
Ek − Ej

|Ajk|2ei(Ej−Ek)t(Ej − Ek)

∣∣∣∣∣∣
. (E1)

The Cauchy-Schwarz inequality implies that

∣∣∣∣∣∣
∑

j 6=k

e−βEj − e−βEk
Ek − Ej

|Ajk|2ei(Ej−Ek)t(Ej − Ek)

∣∣∣∣∣∣

2

≤

∣∣∣∣∣∣
∑

j 6=k

e−βEj − e−βEk
Ek − Ej

|Ajk|2
∣∣∣∣∣∣

∣∣∣∣∣∣
∑

j 6=k

e−βEj − e−βEk
Ek − Ej

|Ajk|2(Ej − Ek)2

∣∣∣∣∣∣

= CKubo(0)

∣∣∣∣∣∣
∑

j 6=k

(
e−βEj − e−βEk

)
|Ajk|2(Ej − Ek)

∣∣∣∣∣∣
= C2

Kubo(0)σ2
K , (E2)

where we used the definition of σK , Eq. (17) in the main text.
Therefore,

∣∣∣∣
d CKubo(t)

dt

∣∣∣∣ ≤ σK , (E3)

as claimed in the main text.

Appendix F: Decay rates for random Hamiltonians

We focus on a model of a quantum system in which the eigenbasis of the Hamiltonian is chosen randomly as
HU = UHU†, where we average over U drawn from the Haar measure on the unitary group. We now calculate the
rates analyzed in the main text, by performing analytical calculations consisting on those Haar averages, and show
that for typical random Hamiltonians, the timescales coincide. These calculations are done with the Mathematica
package RTNI [61].

For a given state |Ψ〉 and observable A, we can write the decay rates as

σ2
A = −〈[HU , [HU , A]]〉

〈A(0)〉 , (F1)

σ2
G =

Tr [DU (|Φ〉〈Φ|)[A,HU ]DU (|Φ〉〈Φ|)[HU , A]]

Tr [(DU (|Φ〉〈Φ|)A)2]
, (F2)

where if H =
∑
j Ej |Ej〉 〈Ej |, the dephasing in the random eigenbasis is defined as

DU (|Φ〉〈Φ|) =
∑

j

U |Ej〉 〈Ej |U†|Φ〉〈Φ|U |Ej〉 〈Ej |U†. (F3)

For the Kubo function, we consider the limit β → 0, which is such that

lim
β→0

CKubo(t)

CKubo(0)
=

Tr [A(t)A]

Tr [A2]
, (F4)
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and thus in this model we have the corresponding rate

σ2
K =

Tr [[HU , A][A,HU ]]

Tr [A2]
. (F5)

Denoting the Haar average
∫

Haar
·dU = 〈·〉U , let us first calculate 〈σ2

A〉U .

〈σ2
A〉U = −

〈 〈[HU , [HU , A]]〉
〈A(0)〉

〉

U

(F6)

= − 1

〈A(0)〉
(〈

Tr
[
|Φ〉〈Φ|H2

UA
]

+ Tr
[
|Φ〉〈Φ|AH2

U

]
− 2 Tr [|Φ〉〈Φ|HUAHU ]

〉
U

)
. (F7)

Since the Hamiltonian appears twice, this sum of expectation values is computed with the first and second moments
of the Haar measure. The result, to leading order in the inverse of the system’s dimension d−1, is

〈σ2
A〉U = 2

(
〈H2〉MC − 〈H〉2MC

) (〈A(0)〉 − 〈A〉MC)

〈A(0)〉 +O
(

1

d2

)
, (F8)

where 〈A〉MC = Tr[A]
d is the microcanonical average. Notice that our assumption of Tr [D(|Φ〉〈Φ|)A] = 0 from the

main text here translates to 〈A〉MC = 0.
Now we calculate the other rate, which is significantly more involved. It reads

〈σ2
G〉U =

〈
Tr [DU (|Φ〉〈Φ|)[A,HU ]DU (|Φ〉〈Φ|)[HU , A]]

Tr [(DU (|Φ〉〈Φ|)A)2]

〉

U

. (F9)

As a first simplification, we use the so-called “annealed approximation”, which states that we can approximate the
average of the ratio is similar to the ratio of the averages

〈σ2
G〉U '

〈Tr [DU (|Φ〉〈Φ|)[A,HU ]DU (|Φ〉〈Φ|)[HU , A]]〉U
〈Tr [(DU (|Φ〉〈Φ|)A)2]〉U

. (F10)

As explained in Appendix G below, this approximation can be made rigorous through concentration arguments and
Levy’s lemma. Let us now calculate the numerator and denominator separately. If we decompose the dephased states
as in Eq. (F3), and define U |Ej〉 〈Ej |U† ≡ P jU , the numerator of Eq. (F10) is

∑

j,k

2
〈

Tr
[
P jU |Φ〉〈Φ|P jUAHUP

k
U |Φ〉〈Φ|P kUHUA

]〉
U

(F11)

−
〈

Tr
[
P jU |Φ〉〈Φ|P jUHUAP

k
U |Φ〉〈Φ|P kUHUA

]〉
U

(F12)

−
〈

Tr
[
P jU |Φ〉〈Φ|P jUAHUP

k
U |Φ〉〈Φ|P kUAHU

]〉
U
. (F13)

Due to cancellations of some of the unitaries, these three correlators involve at most four pairs {U,U†}, and can
thus be calculated with the fourth moment of the Haar measure. Because of this, it is an analytical expression with
3× 4!2 = 1728 terms, for which then the sum over j, k has to be taken. This sum can then be simplified to

2

(
〈H2〉MC − 〈H〉2MC

)

(d− 1)(d+ 1)(d+ 2)(d+ 3)
× (F14)

(
2
(
d2 − 1

)
〈A(0)2〉+ 〈A(0)〉2

(
d2 + d+ 2

)
− 2〈A(0)〉〈A〉MCd(3d+ 1) + d

(
(d+ 1)2〈A2〉MC − 〈A〉2MC(d− 1)d

) )
.

The denominator on the other hand consists of a single correlator, which can be written as
∑

j,k

Tr
[
P jU |Φ〉〈Φ|P jUAP kU |Φ〉〈Φ|P kUA

]
. (F15)

This still requires the 4th moment of the Haar measure, and involves 4!2 = 576 terms. With the sums over j, k, they
simplify to the expression

1

d(d+ 1)(d+ 2)(d+ 3)

(
d
(
〈A〉2MCd(d+ 1) + d(d+ 4)〈A〉2MC + 2(d+ 4)〈A(0)2〉+ 〈A〉2MC

)
(F16)

+ 〈A(0)〉2(d(d+ 5) + 2) + 2〈A(0)〉〈A〉MC(d− 1)d+−2〈A(0)2〉
)
.
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Now, with the denominator and numerator, their ratio to leading order yields the average rate

〈σ2
G〉U ' 2

(
〈H2〉MC − 〈H〉2MC

) 〈A(0)〉 − 〈A〉MC

〈A(0)〉 +O
(

1

d

)
. (F17)

We end with the computation of the Kubo decay rate

〈σ2
K〉U =

2

Tr [A2]

(
〈Tr

[
HUAHUA−A2H2

U

]
〉U
)
. (F18)

This again only requires the second moment of the Haar measure, from which it follows that

〈σ2
K〉U = 2d2 (〈A2〉MC − 〈A〉2MC)(〈H2〉MC − 〈H〉2MC)

(d2 − 1)〈A2〉MC
(F19)

= 2

(
1− 〈A〉

2
MC

〈A2〉MC

)(
〈H2〉MC − 〈H〉2MC

)
+O

(
1

d2

)
. (F20)

We can now compare Eq. (F8), Eq. (F17) and Eq. (F19). We see that when we set the thermal or long-time
value to zero 〈A〉MC = 0 (as discussed in the main text, this is necessary to compare them given the definition of the
correlation functions), the three timescales coincide up to leading order

〈σ2
G〉U ' 〈σ2

A〉U +O
(

1

d

)
= 〈σ2

K〉U +O
(

1

d

)
= 2
( 〈
H2
〉

MC
− 〈H〉2MC

)
+O

(
1

d

)
. (F21)

This is the energy variance in the microcanonical distribution of the Hamiltonian H.

Appendix G: The annealed approximation

In Eq. (F10) we assumed that the average of the ratio of the correlators is approximately equal to the ratio of
their averages. This has been previously referred to in the literature as the “annealed” approximation [54–60, 88]. Its
general form is as follows. Given two functions two functions f, g : U(d)→ R, such that g(U) > 0, then

〈
f

g

〉

U

' 〈f〉U〈g〉U
(G1)

We now show why concentration bounds imply that this approximation is very often accurate. For the two functions
f, g, let us write

〈f〉U =

∫

Haar

dUf(U) =

∫

Haar

dU
f(U)

g(U)
g(U). (G2)

Defining the deviation g(U) = 〈g〉U + δU , we write

〈f〉U =

∫

Haar

dU
f(U)

g(U)
g(U) =

〈
f

g

〉

U

〈g〉U +

∫

Haar

dU
f(U)

g(U)
δU . (G3)

We thus need to show that the second term is small. To do so, let us define the following quantities

K1 ≡ max
U

∣∣∣∣
f(U)

g(U)

∣∣∣∣ , (G4)

K2 ≡
maxU g(U)

〈g〉U
, (G5)

K3 ≡ min

{
K : ∀U, V |g(U)− g(V )|

〈g〉U
≤ K||U − V ||2

}
. (G6)

The first two are the results of optimizations, and the last is the Lipschitz constant of g(U)/〈g〉U . We now divide the
Haar average into two and bound

∣∣∣∣
∫

Haar

dU
f(U)

g(U)
δU

∣∣∣∣ ≤
∣∣∣∣∣

∫

|δU |≤ε
dU

f(U)

g(U)
δU

∣∣∣∣∣+

∣∣∣∣∣

∫

|δU |>ε
dU

f(U)

g(U)
δU

∣∣∣∣∣ (G7)

≤ εK1 +K1K2〈g〉U × Prob(|δU | > ε). (G8)
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The second term can be upper bounded with Levy’s lemma for the Haar distribution [89], which states that

Prob(|δU | > ε) ≤ exp

(
− dε2

4〈g〉UK3

)
. (G9)

This finally allows us to write, from Eq. (G3),

〈
f

g

〉

U

=
〈f〉U
〈g〉U

+ ε′, (G10)

where |ε′| ≤ K1

(
ε
〈g〉U +K2exp

(
− dε2

4K3

))
. For instance, under the assumption that K1,K2,K3 ≤ O(polylog(d)),

choosing ε = 〈g〉Ud−1/2 × polylog(d) yields the bound ε′ ≤ poly(d−1).
In our case, we have

f(U) = Tr [DU (|Φ〉〈Φ|)[A,HU ]DU (|Φ〉〈Φ|)[HU , A]] (G11)

g(U) = Tr
[
(DU (|Φ〉〈Φ|)A)2

]
. (G12)

The assumption that g(U) > 0 holds here since g(U) it is a trace of two positive matrices DU (|Φ〉〈Φ|) and
ADU (|Φ〉〈Φ|)A. To prove a more explicit bound on the error of the annealed approximation, one needs to give
upper bounds on the constants Ki, which can in principle be obtained from the explicit expressions of f(U) and g(U).
The assumption that Ki ≤ O(polylog(d)) is likely to be satisfied in this case, since it requires that those constants
grow at most polynomially in the system size.
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We show that the dynamics of generic quantum systems concentrate around their equilibrium
value when measuring at arbitrary times. This means that the probability of finding such values
away from that equilibrium is exponentially suppressed, with a decay rate given by the effective
dimension. Our result allows us to place a lower bound on the recurrence time of quantum systems,
since recurrences corresponds to the rare events of finding a state away from equilibrium. In many-
body systems, this bound is doubly exponential in system size. We also show corresponding results
for free fermions, which display a weaker concentration and earlier recurrences.

I. INTRODUCTION

Closed quantum systems obey the Schrödinger equa-
tion, so that their dynamics are both unitary and re-
versible. Most large systems seem to quickly evolve to-
wards a steady state for long times, with only very small
out-of-equilibrium fluctuations around it. This process
is usually called equilibration, and is associated with the
emergence of statistical physics [1, 2]. The equilibrated
or average expectation value of an observable A is

⟨A(∞)⟩ = lim
T→∞

∫ T

0

dt

T
⟨A(t)⟩, (1)

where ⟨A(t)⟩ = ⟨Ψ| e−iHtAeiHt |Ψ⟩ for some initial state
Ψ and Hamiltonian H.

If a system equilibrates, it is because the probabil-
ity of finding ⟨A(t)⟩ very close to ⟨A(∞)⟩ at any given
time is overwhelmingly large. We show that this is in-
deed the case: the dynamics of quantum systems with a
generic spectrum concentrate highly around the steady-
state value ⟨A(∞)⟩.

More specifically, we show that when sampling times at
random t ∈ [0,∞) the probability of finding the system
away from equilibrium is exponentially suppressed. The
decay rate of that exponential is given by the effective
dimension or inverse participation ratio. This is defined

as Tr
[
ω2
]−1

, where ω is the diagonal ensemble

ω = lim
T→∞

∫ T

0

dt

T
e−iHt |Ψ⟩ ⟨Ψ| eiHt, (2)

which is such that Tr [Aω] = ⟨A(∞)⟩.
That this equilibration happens, leaving little or no

memory from the initial conditions, seems to conflict with

∗ riddeljp@mcmaster.ca
† npagliar@uwo.ca
‡ alvaro.alhambra@mpq.mpg.de

the unitarity and reversibility of the dynamics. This con-
flict can be seen by considering the Poincaré recurrence
theorem in quantum mechanics [3–7], which states that
any closed quantum evolution eventually returns arbi-
trarily close to its initial state.
The solution to this problem is that even if the

initial state is eventually recovered to an arbitrarily
good approximation, this only happens at extremely
long times. These recurrences constitute large out-of-
equilibrium fluctuations, that can be understood as the
rare events of finding a system far from its equilibrated
state.
Based on this idea, we show how a lower bound on

the average spacing between recurrences follows from our
concentration results, as the inverse of the tail bound. We
find that recurrences occur at time intervals that are at
least exponential in the effective dimension. This gives,
for the first time, a mathematically rigorous scaling on
the average recurrence time, that matches the scaling of
previous estimates [8, 9]. See [10, 11] for other results.
We also show equivalent results for free fermion Hamil-

tonians with generic single-particle modes. We find that
under the assumption of extensivity in the single particle
eigenstates a similar concentration bound and recurrence
time result hold, but with a slower exponential scaling
on the lattice size. This shows the markedly different be-
haviour with respect to generic models. See Table I for
a summary.
Our results constitute a qualitative improvement over

previous bounds on out-of-equilibrium fluctuations [12–
14] for systems with a generic spectrum. These only fo-
cused on the variance induced by the probability measure

limT→∞
∫ T
0

dt
T , while we are able to analyze arbitrarily

high moments thereof. The improvement is exponential
in the same sense in which the Chernoff-Hoeffding bound
is exponentially better than Chebyshev’s inequality.
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⟨A(t)⟩ | ⟨Ψ| e−itH |Ψ⟩ |2

Generic e
Ω
(
Tr[ω2]−1/2

)
e
Ω
(
Tr[ω2]−1

)

Free eΩ(
√
L) eΩ(L)

TABLE I. Lower bounds on the recurrence time for different
dynamical quantities. Tr

[
ω2

]−1
is the effective dimension of

a generic system and L is the number of sites in a fermionic
lattice. In the free case, the observable and initial state are
restricted to specific forms. See Sec. IV for the precise state-
ments.

II. THE CONCENTRATION BOUND

We consider functions of time f(t) that track some
physical property of interest. In the cases here, f(t) =
⟨A(t)⟩ is the expectation value of a time-evolved oper-
ator A(t). This allows us to define the moments of a
probability distribution

f(∞) ≡ lim
T→∞

∫ T

0

dt

T
f(t), (3)

κq ≡ lim
T→∞

∫ T

0

dt

T
(f(t)− f(∞))

q
. (4)

These moments are bounded for arbitrary q as κq ≤
(2||A||)q. This means that they uniquely determine a
characteristic function with an infinite radius of conver-
gence

ϕ(λ) =
∑

q

kqλ

q!
. (5)

This function defines a probability distribution, which we
can write formally as

P (x) = lim
T→∞

∫ T

0

dt

T
δ(x− f(t)). (6)

Here P (x) should be understood as the probability that,
if we pick a random time t ∈ [0,∞), the value of f(t) is
exactly x (see also [15] and [16] for an overview of previ-
ous results). Note that in order to compute

∫
xqP (x)dx

the limit in T is swapped with the integral in x. For
justification of this see Appendix A. An example of P (x)
forming for f(t) = ⟨A(t)⟩ is given in Fig. 1.

Below we prove that the moments κq are bounded by

κq ≤ (qg)
q
, (7)

where g is some small quantity, decreasing quickly as the
size of the system grows and such that g → 0 in the
thermodynamic limit. A bound of this form implies that
the distribution concentrates highly around the average,
as per the following elementary lemma.
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= 1000.00

FIG. 1. Convergence of PT (x) to P (x) where PT (x) =∫ T
0

dt
T
δ(x − ⟨A(t)⟩) and P (x) is recovered as T → ∞. P̃T (x)

represents the approximation of PT (x) by binning samples
and constructing a histogram. 1000 bins were used to cre-
ate this histogram. Numerics were performed on a spin
1/2 chain with 22 sites. The data is normalized such that∫∞
−∞ P̃T (x)dx = 1. The Hamiltonian is a Heisenberg type
model with nearest and next nearest neighbour interactions.
Further details can be found in Appendix D.

Lemma 1. Let |κq| ≤ (qg)
q
for q even. Then,

Pr
[∣∣f(t)− f(∞)

∣∣ ≥ δ
]
≤ 2e× exp

(
− δ

eg

)
. (8)

Proof. Let us set f(∞) = 0 for simplicity, and focus on
the case x ≥ δ. We have that

Pr [⟨A(t)⟩ ≥ δ] =

∫

x≥δ
P (x)dx (9)

≤ 1

δq

∫

x≥δ
xqP (x)dx (10)

≤ κq
δq

(11)

≤
(qg
δ

)q
. (12)

A similar inequality holds for x ≤ −δ, so that
Pr
[∣∣f(t)

∣∣ ≥ δ
]
≤ 2

(
qg
δ

)q
. The bound is obtained by

choosing q = ⌊ δeg ⌋.

We now simply need to find the corresponding g for
the concentration bound to hold, which we do for various
physical problems.

III. MODELS AND THEIR MOMENTS

A. Generic models

First we consider models governed by a Hamiltonian

H =
∑D
m=1Em|Em⟩⟨Em|, which we assume to have a



3

discrete and generic spectrum.

Definition 1. Let H be a Hamiltonian with spectrum
H =

∑
j Ej |Ej⟩ ⟨Ej |, and let Λq,Λ

′
q be two arbitrary sets

of q energy levels {Ej}. H is generic if for all q ∈ N and
all Λq,Λ

′
q, the equality

∑

j∈Λq

Ej =
∑

j∈Λ′
q

Ej (13)

implies that Λq = Λ′
q.

This condition is expected to hold in non-integrable
and chaotic models, such as those with Wigner-Dyson
level statistics [17]. It is an extension of the well-known
non-degenerate gaps condition, which is the q = 2 case
[1]. Notably, the probability of uniformly choosing a
non-generic Hamiltonian is zero, as seen in the follow-
ing lemma.

Lemma 2. For any positive integer d ≥ 2, the set of
d × d complex Hermitian matrices that are not generic
has Lebesgue measure zero.

The proof is a straightforward generalization of the
q = 2 case in [18] and can be found in Appendix B.

Consider f(t) = ⟨ψ|A(t)|ψ⟩ to be the pure state time
evolution of some observable A. The first concentration
result is as follows.

Theorem 1. Let H be a generic non-integrable Hamilto-
nian, ω the diagonal ensemble, and ||A|| the largest sin-
gular value of A. The moments in Eq. 1 are such that

κq ≤
(
q||A||

√
Tr[ω2]

)q
. (14)

We thus have the bound

Pr
[∣∣⟨A(t)⟩ − ⟨A(∞)⟩

∣∣ ≥ δ
]

(15)

≤ 2e× exp

(
− δ

e||A||
√
Tr[ω2]

)
.

This states that the probability of finding ⟨A(t)⟩ away
from ⟨A(∞)⟩ even by a small amount is exponentially

suppressed in
√

Tr[ω2]. Previous results [12, 19] only
yield the bound

Pr
[∣∣⟨A(t)⟩ − ⟨A(∞)⟩

∣∣ ≥ δ
]
≤ ||A||2Tr[ω2]

δ2
. (16)

A particular observable of interest is the initial state
itself, A = |Ψ⟩ ⟨Ψ|. In this case, the quantity at hand is
the fidelity with the initial state

F (t) = ⟨Ψ| e−itH |Ψ⟩ ⟨Ψ| eitH |Ψ⟩ . (17)

Theorem 2. Let H be generic and let A = |Ψ⟩ ⟨Ψ|, then

κq ≤
(
qTr

[
ω2
])q

. (18)

Notably, assuming a generic Hamiltonian, the average
fidelity is F (∞) = Tr

[
ω2
]
, so that we have the concen-

tration bound

Pr
[∣∣F (t)− Tr[ω2]

∣∣ ≥ δ
]
≤ 2e× exp

(
− δ

eTr[ω2]

)
. (19)

This improves on Eq. (15) by a factor of
√

Tr [ω2] when
substituted into A = |Ψ⟩⟨Ψ| and ||A|| = 1. Eq. (18)
appeared previously in [20].
It is well known that Tr

[
ω2
]
is exponentially sup-

pressed in system size for generic models for sufficiently
well behaved initial conditions. As an example, see figure
2, which shows a clear exponential decay of Tr

[
ω2
]
with

system size L.

10 12 14 16 18 20 22 24
L

10 4

10 3

10 2

10 1

Tr
(

2 )

|  
|
| ′

FIG. 2. Tr
[
ω2

]
for a variety of system sizes and states.

Numerics were done with the same model as Fig. 1. More
details on the states and the model can be found in App. D.

B. Generic extended free fermions

The second class that we consider are generic extended
free fermionic models

H =

L∑

m,n=1

Mm,nf
†
mfn, (20)

where fn is a fermionic annihilation operator for the
lattice site n. The fermionic operators obey the stan-
dard canonical anti-commutation relations {fm, fn} =
{f†m, f†n} = 0, {f†m, fn} = δm,n. We assume M is real
symmetric, so it is diagonalized with a real orthogonal
matrix O such that M = ODOT . D is a diagonal matrix
with entries Dk,k = ϵk, which allows us to rewrite the
Hamiltonian as

H =
L∑

k=1

ϵkd
†
kdk, (21)
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where ϵk are the single particle energy eigenmodes, and
we have new fermionic operators in eigenmode space
defined in terms of the real space fermionic operators:

dk =
∑L
j=1Oj,kfj . This class of models notably does not

obey Def. 1. However, we can instead give the following
definition.

Definition 2. Let H =
∑L
k=1 ϵkd

†
kdk be a free Hamil-

tonian. Let Λq,Λ
′
q be two arbitrary sets of q eigenmodes

{ϵj}. Then H is a generic extended free fermionic model
if, for all q ∈ N and all Λq,Λ

′
q, the equality

∑

j∈Λq

ϵj =
∑

j∈Λ′
q

ϵj (22)

implies that Λq = Λ′
q and the entries of O are such that

Oj,k =
cj,k√
L
, (23)

with cj,k = O(1).

The equivalent of Lemma 2 also holds here by apply-
ing it to the matrix M and the energy eigenmodes. This
definition crucially excludes localized models, which have
entries of the form, Om,k ∼ e−|k−m|/ξ, with ξ the local-
ization length. The bound on the moments is as follows.

Theorem 3. Let H be a generic extended free fermionic
Hamiltonian and let A = f†mfn. Then, for even q,

κq ≤
(
qc2
√
ν

L

)q
, (24)

where ν = N
L is the filling factor of the fermions on the

lattice and c =
√
Lmaxkj{Om,kj , On,kj}.

The corresponding concentration bound is

Pr
[∣∣⟨f†mfn(t)⟩ − ⟨f†mfn(∞)⟩

∣∣ ≥ δ
]

(25)

≤ 2e× exp

(
− δ

ec2

√
L

ν

)
.

Theorem 3 can be contrasted with the bound found in
[21] for the second moment. The authors consider a po-
tentially extensive observable and do not limit the anal-
ysis to extensive models, recovering κ2 ≤ ||a||2νL for an
observable A =

∑
m,n f

†
mam,nfn.

The last quantity of interest is the single particle prop-
agator

{f†m(t), fn} = am,n(t). (26)

For example, if we initialize our state as |Ψ⟩ = f†m|0⟩,
then the fidelity is

F (t) = |am,m(t)|2. (27)

The more general |am,n(t)|2 is also studied in the con-
text of out of time ordered correlators [22–25]. Consider

|am,n(t)|2 =
∑

k,l

Om,kOn,kOm,lOn,le
i(ϵk−ϵl)t. (28)

The infinite time average of this quantity is taken as

ωm,n =
∑

k

O2
m,kO

2
n,k. (29)

For extended models with non-degenerate frequencies
this quantity decays to zero since ωm,n ∼ 1

L and κ2 ≤ c
L2 ,

where c is weakly dependent on system size and is O(1)
in the thermodynamic limit [23]. We can bound the mo-
ments for the single particle propagator as follows.

Theorem 4. Let H be a generic free fermionic Hamilto-
nian, and let our dynamical function f(t) = |am,n(t)|2 be
the squared single particle propagator, then we can bound
the moments by

κq ≤
(
qc4

L

)q
, (30)

where c =
√
Lmaxkj{Om,kj , On,kj}.

Finally, the corresponding concentration bound is

Pr
[
||am,n(t)|2 − ωm,n

∣∣ ≥ δ
]
≤ 2e× exp

(
− δL

ec4

)
. (31)

IV. RECURRENCE TIME

All the quantities analyzed above always come back
arbitrarily close to their initial values at t = 0. For large
systems, however, such recurrences only happen at as-
tronomically large timescales, inaccessible to both exper-
iments and numerical studies. We now put a lower bound
on those timescales through a suitably defined notion of
average recurrence time, both for observables and also
the whole state.

Definition 3. A (u,∆, A)-recurrence occurs at a time
interval C∆ = [t∆, t∆ +∆] if, for all t ∈ C∆,

|⟨A(t)⟩ − ⟨A(0)⟩| ≤ u||A||. (32)

Similarly, a (u,∆)-recurrence occurs if, for all t ∈ C∆,
1− F (t) ≤ u. (33)

Notice that an (u,∆)-recurrence implies an (u,∆, A)-
recurrence for all A, and that conversely an (u,∆, A)-
recurrence for all A implies an (u,∆)-recurrence. How-
ever, individual observables may have additional earlier
recurrences.
Let us also define tn∆(A) as the time for the n-th

(u,∆, A)-recurrence, so that tn∆(A) < tn+1
∆ (A), and anal-

ogously, tn∆ for the fidelity. This motivates the following
definition, inspired by that in [9].
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Definition 4. The average (u,∆, A)-recurrence time is

T (u,∆, A) ≡ lim
n→∞

tn∆(A)

n
, (34)

with T (u,∆) analogously defined.

These quantities can be easily bounded with the con-
centration bounds above. First, for T (u,∆, A).

Corollary 1. Let H be generic, and let w.l.o.g. ⟨A(0)⟩−
⟨A(∞)⟩ = cA||A|| ≥ 0. Then, for u ≤ cA,

∆

2e
exp

(
cA − u

e
√
Tr[ω2]

)
≤ T (u,∆, A). (35)

Proof. From the definition of the distribution P (x) in Eq.
(6) and Eq. (15) we have that

lim
n→∞

∆n

tn∆(A) + ∆
≤ Pr [|⟨A(t)⟩ − ⟨A(0)⟩| ≤ u||A||]

≤ Pr [|⟨A(t)⟩ − ⟨A(∞)⟩| ≥ (cA − u)||A||]

≤ 2e× exp

(
u− cA

e
√

Tr [ω2]

)
. (36)

Notice that limn→∞ ∆n
tn∆(A)+∆ = ∆/T (u,∆, A). Solving

for T (u,∆, A) yields the result.

With typical out-of-equilibrium initial conditions, we
have that cA = O(1). The larger recurrences should have
a duration comparable to that of the initial equilibration
time TAeq, which we can define as the time it takes for
⟨A(t)⟩ to settle around the steady value ⟨A(∞)⟩. The
recurrences with u = O(1) are then on average spaced
by a time

T ≳ TAeqe
Ω
(
Tr[ω2]

−1/2
)
. (37)

Note that for local Hamiltonians and observables, TAeq is
believed to generally scale as a low-degree polynomial in
system size [26].

For the fidelity, the bound on the recurrence follows
exactly the proof of Corollary 1 but using Eq. (19) in-
stead.

Corollary 2. Let H be generic. Then,

∆

2e2
exp

(
1− u

eTr[ω2]

)
≤ T (u,∆). (38)

Proof. Again from Eq. (6) and Eq. (19) we have that

lim
n→∞

∆n

tn∆ +∆
≤ Pr [F (t) ≥ 1− u]

≤ Pr
[
|F (t)− Tr[ω2]| ≥ 1− u− Tr[ω2]

]

≤ 2e× exp

(
−1− u− Tr[ω2]

eTr[ω2]

)

≤ 2e2 × exp

(
− 1− u

eTr[ω2]

)
. (39)

Also, limn→∞ ∆n
tn∆+∆ = ∆/T (u,∆), and solving for

T (u,∆) yields the result.

In many-body systems, the fidelity initially decays as

F (t) = e−σ
2t2/2 where σ2 = ⟨Φ|H2 |Φ⟩ − ⟨Φ|H |Φ⟩2 is

the energy variance [27–29]. Recurrences with u = O(1)
likely decay in a similar fashion, with ∆ ∼ σ−1, so that
on average they are spaced by a time

T ≳ σ−1e
Ω
(
Tr[ω2]

−1
)
. (40)

This closely matches the behaviour found in [9], which
gives an exact calculation of the average recurrence time
assuming a Gaussian wavefunction. It also matches the
scaling of other previous estimates [8], so Eq. (38) should
be close to optimal.
Finally, we also have corresponding bounds for

fermions.

Corollary 3. Let H be a generic free fermionic Hamil-
tonian, and let w.l.o.g. ⟨f†mfn(0)⟩−⟨f†mfn(∞)⟩ = cf ≥ 0.
Then, for u ≤ cf ,

∆

2e
exp

(
cf − u

ec2

√
L

ν

)
≤ T (u,∆, f†mfn), (41)

as well as for the fidelity in Eq. (27).

Corollary 4. Let H be a generic free fermionic Hamil-
tonian. Then,

∆

2e
exp

(
(1− u)L

ec4

)
≤ T (u,∆). (42)

The analogue of Eq. (37) and Eq. (40) also holds fol-
lowing the same considerations. These bounds however

scale as eΩ(
√
L) and eΩ(L) respectively, which are expo-

nential in the number of sites L. This is a fast scaling,
but still exponentially slower than that from Corollaries
1 and 2. Even shorter recurrence times are also found in
specific instances of Bose gases [30–32], which can even
be experimentally tested [33] with cold atoms.

V. CONCLUSION

We have shown how in generic systems both ob-
servables and the fidelity with the initial state equili-
brate around their time-averaged values, with out-of-
equilibrium fluctuations suppressed exponentially in the

effective dimension Tr
[
ω2
]−1

. This number scales expo-
nentially under very general conditions on the state and
the Hamiltonian [18, 34–36], so in generic systems fluc-
tuations are most often doubly exponentially suppressed.
Since partial or full recurrences are far from equilibrium
fluctuations, our bounds yield an estimate of their occur-
rence, with a scaling that we believe is almost optimal.
Equivalent results with a slower scaling also hold for free
fermions.
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Previous works [18, 34, 36–39] start with the bound
on the second moment in [12, 13] to obtain results on
equilibration, so the present findings naturally strengthen
them. Also, Theorem 2 in [40] extends [12, 13] to two-
point correlation functions, and the corresponding con-
centration bound is straightforward.

Our bounds on the recurrence time apply to individual
states. A given Hamiltonian should also have other later
state-independent recurrences. For instance, the recent
result for random circuits [41] suggests that a recurrence

in complexity of e−itH might still doubly exponential,
but with a larger exponent that Eq. (40).
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in matrix product states,” (2020), arXiv:2008.11764
[quant-ph].

[36] J. Haferkamp, C. Bertoni, I. Roth, and J. Eisert, PRX
Quantum 2 (2021), 10.1103/prxquantum.2.040308.

[37] N. Linden, S. Popescu, A. J. Short, and A. Winter, New
Journal of Physics 12, 055021 (2010).

[38] M. Friesdorf, A. H. Werner, M. Goihl, J. Eisert, and
W. Brown, New Journal of Physics 17, 113054 (2015).

[39] T. Farrelly, F. G. Brandão, and M. Cramer, Phys. Rev.
Lett. 118, 140601 (2017).
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Appendix A: Defining moments

The average value of ⟨A(t)⟩ in Eq. (1) motivates the formal definition of the following probability distribution

P (x) = lim
T→∞

∫ T

0

dt

T
δ(x− ⟨A(t)⟩).

We would like to compute the moments as

κq ≡ lim
T→∞

∫ T

0

dt

T
(⟨A(t)⟩ − ⟨A(∞)⟩)q .

This requires swapping the integral over x and limit in T and can be justified using the dominated convergence theorem.
To use this famous result we must prove that the absolute value of the integrand is bounded by an integrable function.
Consider

κq =

∫
xq lim

T→∞
PT (x)dx.

For book-keeping purposes let g(t) = (⟨A(t)⟩ − ⟨A(∞)⟩). We may bound the integrand inside the limit

|xqPT (x)| = |x
q

T

∫ T

0

dtδ(x− g(t))| ≤ |x|q
T

∫ T

0

dtδ(x− g(t)).

Integrating the absolute value of the right-hand side and applying Fubini’s theorem we find

∫ ∣∣∣∣∣
|x|q
T

∫ T

0

dtδ(x− g(t))

∣∣∣∣∣ dx ≤
∫ |x|q

T

∣∣∣∣∣

∫ T

0

dtδ(x− g(t))

∣∣∣∣∣ dx ≤
∫ |x|q

T

∫ T

0

dtδ(x− g(t))dx

≤ 1

T

∫ T

0

dt|g(t)|q.

The function g(t) is continuous and therefore bounded on the interval [0, T ], so the integral is finite, therefore its
positive and negative components are as well, thus the q-th absolute moment is bounded. We may therefore conclude
that the absolute value of the integrand is bounded by an integrable function, so by the dominated convergence
theorem we may swap the integral and limit.

Note that equivalently, one may define the moments for finite T and then take the limit.

Appendix B: Generic spectra

Lemma 1. The set of generic Hermitian matrices in Md(C) has full Lebesgue measure.

Proof. Note that this proof is similar to the proof that the set of non-diagonalizable matrices has Lebesgue measure
zero. Let H be some Hermitian d× d matrix. We start by defining the function

F (H) =
∏

n1,m1,...,nq,mq

ni ̸=mi

(
q∑

i=1

Eni
− Emi

)
.

This function is zero precisely when the spectrum is not generic. Clearly swapping eigenvalues does not change the
function F , i.e. F is a symmetric polynomial of the eigenvalues. By the fundamental theorem of symmetric (real)
polynomials F can be written uniquely as a polynomial in the elementary symmetric polynomials in Ei’s, which are
precisely trace powers of H.

Recall that H can be expressed in some basis. For example some generalized Pauli basis, or even the standard
basis. This is conceptually equivalent to saying that the vector space of all possible H can be parameterized by the
coefficients of the basis elements in the expansion. Thus, we may expand H in this basis and then take trace powers,
showing us that F is a real polynomial in the space of these coefficients.

It is a well known fact from measure theory that the zero set of a multivariate polynomial has Lebesgue measure
zero.
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Appendix C: Bounding the moments

1. Proof for generic models

Theorem 1. Let H be a generic non-integrable Hamiltonian, ω the diagonal ensemble, and ||A|| the largest singular
value of A. The moments in Eq. 1 are such that

κq ≤
(
q||A||

√
Tr[ω2]

)q
. (C1)

Proof. First we prove the following inequality:

|Tr [(Aω)q] | ≤
(
||A||

√
Tr [ω2]

)q
. (C2)

To realize this, consider the matrix Aω, which is not Hermitian and therefore may have complex eigenvalues and may
potentially not be diagonalizable. This, however, does not prevent us from finding a complete set of eigenvalues such
that their multiplicity summed is the dimension of Aω. The matrix is always similar to its Jordan form, and we can
in general always write

Tr [Aω] =
∑

i

λi, (C3)

where λi is the i-th (potentially complex) eigenvalue of Aω. More generally, we can always write

Tr [(Aω)q] =
∑

i

λqi . (C4)

From here we can bound the following:

|Tr [(Aω)q] | = |
∑

i

λqi | (C5)

≤
∑

i

|λqi | (C6)

= ||λ||qq (C7)

≤ ||λ||q2 =

(∑

i

|λi|2
)q/2

(C8)

where we used the triangle inequality in (C6), and in (C8) we use the property ||x||p+a ≤ ||x||p for any vector x and
real numbers p ≥ 1 and a ≥ 0. Note that, using the Shur decomposition, we may write Aω = QUQ†, where Q is a
unitary matrix, and U is upper triangular with the same spectrum on the diagonal as Aω. Using this, we have that

Tr
[
(Aω)(Aω)†

]
= Tr

[
QUQ†(QUQ†)†

]
= Tr

[
UU†] =

∑

i

|λi|2 + other non-negative terms.

Thus,

∑

i

|λi|2 ≤ Tr
[
Aωω†A†] ≤ ||AA†||Tr

[
ωω†] ≤ ||A||2 Tr

[
ωω†] = ||A||2 Tr

[
ω2
]
.

This gives us our desired inequality.
Moving on, let us derive a general bound for the q-th moment of models satisfying Definition 1. For simplicity, and

w.l.o.g., let us assume that ⟨A(∞)⟩ = 0. Expanding the definition of the moments we arrive at

κq = lim
τ→∞

1

τ

∫ τ

0

dt
∑

m1,n1,...,mq,nq

q∏

i=1

(Ami,ni
c̄mi

cni
) ei(Emi

−Eni
)t. (C9)
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The assumption that the Hamiltonian is generic means that only certain terms in the sum survive after averaging
over all time: those for which the sets of {mi} and {ni} coincide up to permutations, which we denote with {σ(i)}.
Due to the equilibrium expectation value being zero, we can also eliminate all terms for which i = σ(i) for 1 ≤ i ≤ q.
Thus, we want all permutations on q elements except those that have a fixed point. Such permutations are called
derangements. The number of distinct derangements is denoted by !q, the subfactorial of q, and has no explicit
formula. However, it may be computed recursively, the first few being 0, 1, 2, 9, 44, 265. Let Dq denote the set of
derangements on {1, 2, .., q}. Eq. (C9) becomes

κq =
∑

m1,...,mq

q∏

i=1

|cmi |2
∑

σ∈Dq

q∏

i=1

Ami,σ(mi). (C10)

Given a derangement σ, it can be decomposed as the product of cycles σ1, σ2, ..., σr with lengths ℓ1, ℓ2, ..., ℓr,
respectively, such that

∑r
j=1 lj = q. In each term of the inner summation we can collect terms of the same cycle. For

example for q = 6 and σ = σ1σ2 = (m1,m2)(m3,m4,m5,m6) the term can be written as

(Am1,m2Am2,m1)(Am3,m4Am4,m5Am5,m6Am6,m3).

Summing over m1,m2,m3,m4,m5,m6 we have that this term is precisely

Tr
[
(Aω)2

]
Tr
[
(Aω)4

]
.

In general, each cycle of a term will correspond to a product of trace powers i.e. σ = σ1, σ2, ..., σr corresponds to

Tr
[
(Aω)ℓ1

]
Tr
[
(Aω)ℓ2

]
...Tr

[
(Aω)ℓr

]
.

We may apply Eq. (C2) term-wise to get

Tr
[
(Aω)ℓ1

]
Tr
[
(Aω)ℓ2

]
...Tr

[
(Aω)ℓr

]
≤
(
||A||

√
Tr [ω2]

)ℓ1+ℓ2+...+ℓr
=
(
||A||

√
Tr [ω2]

)q
.

In each moment’s inner summation there are precisely !q terms of this form because there are !q derangements, thus

κq ≤!q
(
||A||

√
Tr [ω2]

)q
≤
(
q||A||

√
Tr [ω2]

)q
. (C11)

The q = 2 case can be found in [19].

Theorem 2. Let H be generic and let A = |Ψ⟩ ⟨Ψ|, then

κq ≤
(
qTr

[
ω2
])q

. (C12)

Proof. The moments defined for the fidelity are defined as

κq = lim
τ→∞

1

τ

∫ τ

0

dt

q∏

i=1

∑

mi ̸=ni

|cmi
|2|cni

|2ei(Emi
−Eni

)t, (C13)

=
∑

m1,...mq

q∏

i=1

|cmi
|2
∏

σ∈Dq

|cσ(mi)|2. (C14)

In the above expression we can note that there are !q possible derangements using genericity given in Definition 1.
Each mi will have one pair given to us from σ(mi), implying each individual term in the sum is Tr

[
ω2
]q
, so our final

expression is

κq =!qTr
[
ω2
]q ≤

(
qTr

[
ω2
])q

. (C15)
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2. Generic free models

This class of models conserves total particle number, which we will denote as

N =

L∑

j=1

⟨f†j fj⟩ =
L∑

k=1

⟨d†kdk⟩. (C16)

Theorem 3. Let H be a generic extended free fermionic Hamiltonian and let A = f†mfn. Then, the even moments
are bounded above by

κq ≤
(
qc2
√
ν

L

)q
, (C17)

where ν = N
L is the filling factor of the fermions on the lattice and c =

√
Lmaxkj{Om,kj , On,kj}.

Proof. Consider

κ2n = lim
T→∞

1

T

∫ ∞

0

dt
n∏

j=1

∑

kj ̸=lj
Om,kjOn,lj ⟨d†kjdlj ⟩e

i(ϵkj
−ϵlj )t

∑

pj ̸=qj
Om,pjOn,qj ⟨d†qjdpj ⟩e

i(ϵqj−ϵpj )t. (C18)

Let us define the tensor (note the j dependence)

Bkj ,lj =





Om,kjOn,lj ⟨d†kjdlj ⟩ j odd

Om,ljOn,kj ⟨d†kjdlj ⟩ j even

0 kj = lj

. (C19)

This allows us to rewrite our equation as

κ2n = lim
T→∞

1

T

∫ ∞

0

dt
2n∏

j=1

∑

kj ,lj

Bkj ,lje
i(ϵkj

−ϵlj )t. (C20)

This can likewise be rewritten as

κ2n = lim
T→∞

1

T

∫ ∞

0

dt
∑

k1,l1,...k2n,l2n

2n∏

j=1

Bkj ,lje
i(ϵkj

−ϵlj )t. (C21)

Assuming a generic single-particle spectrum, this means we have the following surviving terms:

κ2n =
∑

k1,...k2n

∑

σ∈S2n

2n∏

j=1

Bkj ,σ(kj) (C22)

where S2n denotes the symmetric group on 1, 2 . . . 2n. We can then enforce the fact that these terms are zero if
kj = σ(kj) for 1 ≤ j ≤ 2n. So denoting the derangements as D2n as earlier, we arrive at

κ2n =
∑

k1,...k2n

∑

σ∈D2n

2n∏

j=1

Bkj ,σ(kj). (C23)

Next, recognizing that each definition of B contains two extensive terms multiplied, let c =
√
Lmaxkj{Om,kj , On,kj},
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κ2n ≤ c4n

L2n

∑

k1,...k2n

∑

σ∈D2n

2n∏

j=1

⟨d†kjdσ(kj)⟩ (C24)

As in Theorem 1, each term will be a trace of powers of Λ, and there can be at most n products of traces of Λ.
Since 0 ≤ Λ ≤ I, each trace of Λ can further be bounded by Tr [Λp] ≤ Tr [Λ] = N = νL, which means we can bound
κ2n by

κ2n ≤!(2n)
c4nνn

L2n−n ≤
(
4n2c4ν

L

)n
, (C25)

where c′ is weakly dependent on system size and 0 ≤ ν ≤ 1. Choosing q = 2n and reorganizing gives the desired
result.

Theorem 4. Let H be a generic free fermionic Hamiltonian, and let our dynamical function f(t) = |am,n(t)|2 be the
squared single particle propagator, then we can bound the moments by

κq ≤
(
qc4

L

)q
, (C26)

where c =
√
Lmaxkj{Om,kj , On,kj}.

Proof. The q-th moment can be written as

κq = lim
T→∞

1

T

∫ ∞

0

dt

q∏

i=1

∑

ki ̸=li
Om,kiOn,kiOm,liOn,lie

i(ϵki
−ϵli )t, (C27)

through the usual procedure and using definition 2 we recover

κq =
∑

k1,...kq

q∏

i=1

Om,kiOn,ki
∏

σ∈Dq

Om,σ(ki)On,σ(ki), (C28)

defining c =
√
Lmaxkj{Om,kj , On,kj}, we factor out four of these, and sum up the indices, giving us

κq ≤
!qc4q

Lq
≤
(
qc4

L

)q
. (C29)

Appendix D: Numerics

The numerics for the figures in the main body were carried out on the spin 1/2 Hamiltonian,

H =
L∑

j=1

J1
(
S+
j S

−
j+1 + h.c

)
+ γ1 S

Z
j S

Z
j+1 + J2

(
S+
j S

−
j+2 + h.c

)
+ γ2S

Z
j S

Z
j+2,

where (J1, γ1, J2, γ2) = (−1, 1,−0.2, 0.5) giving us a non-integrable model. We perform exact diagonalization exploit-
ing total spin conservation and translation invariance. We choose pure states that allow us to further exploit the Z2

spin flip symmetry and the spatial reflection symmetry. In Fig. 1 we see the approximated probability distribution
function P̃T (x) as a histogram. The observable is A = σZ1 , the Pauli-z matrix on the first lattice site. The initial state
is a Néel type state:

|ψ⟩ = | ↑↓ . . . ⟩. (D1)
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In Fig. 2 we calculate the purity of the diagonal ensemble Tr
[
ω2
]
for three states. The states featured are

|ψ⟩ := | ↑↓↑↓ . . . ..⟩, (D2)

|ψ′⟩ := 1√
2
(| ↑↓↑↓ . . . ..⟩+ | ↓↑↓↑ . . . ..⟩) , (D3)

|ϕ⟩ := 1√
L

L−1∑

r=0

T̂ r| ↑↑ . . . ↑↓ . . . ↓↓⟩. (D4)
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Out of time ordered correlators (OTOCs) are useful tools for investigating foundational questions such as
thermalization in closed quantum systems because they can potentially distinguish between integrable and non-
integrable dynamics. Here we discuss the properties of wavefronts of OTOCs by focusing on the region around
the main wavefront at x = vBt, where vB is the butterfly velocity. Using a Heisenberg spin model as an ex-
ample, we find that a propagating Gaussian with the argument −m(x) (x− vBt)

2 + b(x)t gives an excellent
fit for both the integrable case and the chaotic case. However, the scaling in these two regimes is very different:
in the integrable case the coefficients m(x) and b(x) have an inverse power law dependence on x whereas in
the chaotic case they decay exponentially. In fact, the wavefront in the integrable case is a rainbow caustic
and catastrophe theory can be invoked to assert that power law scaling holds rigorously in that case. Thus, we
conjecture that exponential scaling at the OTOC wavefront is a robust signature of a nonintegrable dynamics.

Introduction: The hallmark of chaos in classical dynam-
ics is an exponential sensitivity to small changes in initial
conditions (butterfly effect). This is at odds with quantum
mechanics where unitary time evolution means that the over-
lap between two states is constant in time. Although quan-
tum systems do not display chaos, there are qualitative dif-
ferences in behavior depending upon whether their classical
limit is integrable or nonintegrable (chaotic) [1]. In the lat-
ter case we have ‘quantum chaos’ which is well studied in
single-particle quantum mechanics, including in experiments
[2–12]. On the theoretical side, the main approach has tradi-
tionally been through spectral statistics [13, 14]. These have
universal properties that depend only on the symmetries of
the Hamiltonian and show close agreement with the predic-
tions of random matrix theory (RMT)[15–18]. More recently,
attention has shifted to many body quantum chaos and par-
ticularly its role in foundational issues such as thermalization
in closed quantum systems. One limitation of RMT is that it
does not describe thermodynamic quantities like temperature
and energy that are needed for such analyses [19]. This is
remedied by the eigenstate thermalization hypothesis (ETH)
[20–24] which has been numerically verified in a range of
generic models [25–28] but is violated in integrable and lo-
calized systems [29–38], as expected. The ETH generalizes
RMT and gives identical predictions if one focuses on a small
enough region of the spectrum. Any diagnostic of quantum
chaos should therefore clearly differentiate between the inte-
grable and ETH cases. While the ETH does give rise to the
notion of chaotic eigenstates, it is a time independent state-
ment and does not resemble classical chaos. In fact, aside
from the weak ETH (eigenstate typicality) [39–41], it has no
classical counterpart.

The out-of-time-ordered correlator (OTOC) has risen to
prominence as a dynamical diagnostic for quantum many
body chaos [42–52]. It takes the form

C(x, t) = 〈[Â(t), B̂]†[Â(t), B̂]〉, (1)

where Â and B̂ are operators that at t = 0 only have local
support (act on different individual lattice sites) and hence
commute. The average is usually taken over an ensemble di-

agonal in the energy basis, but some studies have considered
pure states as well [53–55]. As Â evolves in time it picks up
weight throughout the lattice, becoming non-local and caus-
ing C(x, t) to become non-zero. This, in effect, tracks the
tendency of dynamics to smear information across the sys-
tem, and it becomes impossible to determine the initial con-
ditions from local data alone. In this respect the OTOC re-
sembles classical chaos where incomplete information leads
to exponential inaccuracy. Indeed, the late time value of the
OTOC in local spin models does appear to be an indicator of
chaos [43, 53–65]. In the classical limit commutators become
Poisson brackets which are a diagnostic for classical chaos,
and the general expectation is therefore that OTOCs in nonin-
tegrable models experience exponential growth [52],

C(0, t) ∼ eλLt , (2)

where λL is the quantum Lyapunov exponent and obeys [52],

λL ≤ 2πkBT/~ . (3)

Models that approach the bound are known as fast scram-
blers. However, doubt has been cast upon whether exponen-
tial growth of the OTOC really is unique to chaotic systems
because integrable systems near unstable points behave simi-
larly [66–71].

An OTOC should also display spatial dependence as infor-
mation propagates across the system. A new conjecture gives
the early time growth of the OTOC wavefront as [72–74]

C(x, t) ∼ exp

[
−λL

(x/vB − t)1+p

tp

]
. (4)

This has been verified in several cases and used to study the
many body localization transition [72–83]. For interacting
models Eq. (4) is usually fitted in regimes where C(x, t)� 1
[73, 79], corresponding to early times significantly before the
arrival of the main front. When the broadening coefficient
takes the value p = 0, it reduces to the simple “Lyapunov-
like” exponential growth of Eq. (2), but for quantum spin
models expected to obey ETH it is believed that in general
p > 0 [74]. However, broadening is not necessarily a general
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indicator of how close one is to a chaotic model in the sense of
ETH [84, 85], and puzzles remain concerning the value of p in
this early growth regime. For example, in two dimensions the
values of p coincide in chaotic and integrable models, so the
broadening coefficient is inadequate for distinguishing them
[74], while some studies [72, 74, 86–89] differ on whether the
distinction between values of p even exists in either regime.

The aim of this Letter is to show that the main wavefront
(region around x = vBt which is the edge of the OTOC “light
cone”) carries information on integrability. While there can
be signatures of chaos in OTOCs at late times, including long-
time oscillations [74, 85, 90–92], it is preferable to examine
the main front rather than the signal either at early times (ex-
ponentially small) or late times (more contamination from the
environment or numerical errors). Recent numerical work in
free models has shown that the OTOC in this region is well-
fitted by a propagating Gaussian of the form [54, 93],

CG(x, t) ∼ e−m(x)(x−vBt)2+b(x)t, (5)

where m(x) and b(x) are well behaved functions of x. A
Gaussian also occurs in random circuit models [84] and wave-
front results suggest it would also be found in the critical Ising
model [60]. Here we will employ rigorous arguments from
catastrophe theory to show that in many models that can be
mapped to free fermions the wavefront takes on a universal
Airy function form that can be locally described by Eq. (5).
This allows us to extract the scaling of m(x), b(x) analyti-
cally, verifying the findings of [54, 93]. For the chaotic case,
we numerically verify the Gaussian wave form of Eq. (5) and
show that the scaling of m(x), b(x) is very different from the
free model. In locally interacting models the Gaussian wave
form Eq. (5) therefore carries signatures of whether the model
is free or ETH-obeying.

Model: We consider a Heisenberg spin Hamiltonian with
nearest and next nearest interactions:

Ĥ =
L−1∑

j=1

J1

(
Ŝ+
j S
−
j+1 + h.c

)
+ ∆ŜZj Ŝ

Z
j+1

+
L−2∑

j=1

J2

(
Ŝ+
j S
−
j+2 + h.c

)
+ γŜZj Ŝ

Z
j+2 , (6)

and open boundary conditions. This model has both free and
non-integrable regimes. In particular, we consider two choices
of the coefficient vector ~c = (J1,∆, J2, γ). The first one,
~cf = (−1, 0, 0, 0) is the XX chain and is free while the sec-
ond, ~cETH = (−0.5, 1,−0.2, 0.5) has all parameters non-zero
which has been verified to obey the ETH with periodic bound-
ary conditions [25]. In the supplementary materials (SM) [94]
we demonstrate that an alternative choice of parameters for
~cETH leads to the same basic results. Suitable operators for
Â(t) and B̂ must be chosen for the OTOC in Eq. (1). In the
ETH regime we use spin operators Â(t) = σZ1 , and B̂ = σZm,
where x is the distance between sites 1 and m, and the av-
erage 〈. . .〉 is taken over the thermal ensemble restricted to

eigenstates with zero magnetization, mz =
∑L
j=1〈ŜZj 〉 = 0.

In the integrable case we perform a Jordan-Wigner transfor-
mation from spins to fermions and for simplicity the OTOC
we use in this case is

C(x, t) = |am,n(t)|2 (7)

where am,n(t) = {f̂†m(t), f̂n}. Here, f̂m is the annihilation
operator for a fermion on sitem. Note that if instead of Eq. (7)
we use Eq. (1) with operators σzm, then in the case of a pure
Gaussian state or a thermal ensemble the dominant dynamical
term is in fact |am,n(t)|2, see Refs. [54, 93] for further details.

Airy light cones in free systems: In 1972 Lieb and Robinson
[95] showed that quantum correlations in spin systems prop-
agate at finite speeds and spread out in a light cone-like fash-
ion. Pioneering experiments with ultracold atoms and trapped
ions [96–101], where a sudden quench leads to a nonequilib-
rium state, have confirmed this behavior. In particular, the
wavefront for interacting bosonic atoms in an optical lattice
was measured to have an Airy function profile [96] in qual-
itative agreement with theoretical calculations which can be
done analytically in certain limits [102]. The associated prob-
lem of domain wall propagation [103–110] also yields Airy
functions or related kernels for the wavefront. The Airy func-
tion shape implies a dynamical scaling behavior, such as a t1/3

broadening of the magnetization domain wall in an XX chain
[103]. This body of results has led to the notion of an Airy
universality class for free systems [111–113].

A more general understanding of light cones can be gained
by realizing that they are caustics [114]. These are singu-
larities of the ray description of a wave, where in the present
case the rays are trajectories of quasiparticles excited by the
quench. Caustics are regions where rays coalesce, leading to
a diverging probability density in the classical limit. Signif-
icantly, only certain morphologies of caustic are structurally
stable and hence occur generically in nature; these form a hi-
erarchy described by catastrophe theory where each catastro-
phe forms an equivalence class with its own scaling properties
similar to universality classes for phase transitions [115, 116].
The simplest catastrophe is the fold which occurs where rays
coalesce in pairs and an everyday example of this is the rain-
bow, and another is a ship’s wake [117, 118].

In the wave theory each caustic is dressed by a characteris-
tic wavefunction, and in the case of the fold it is the Airy func-
tion [119]. To see how this works, consider the case where the
quench excites a Bogoliubov fermion on the site at x = 0, say.
The resulting wavefunction is

Ψ(x, t) = 〈xb|e−iĤtb̂†x=0|0b〉 = 〈xb|
∑

k

e−iε(k)t |k〉

≈
√
a

2π

∫ π
a

−πa
dk ei[kx−ε(k)t] (8)

where a is the lattice constant. The operators b̂x are the lin-
ear combinations of f̂m and f̂†m that diagonalize the Hamilto-
nian via a Bogoliubov transformation and ε(k) is the Bogoli-
ubov dispersion relation [for the XX chain ε(k) = J1 cos ka].
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Figure 1. Wavefronts of C(x, t). (a) The integrable case, ~cf . Here
x = 10. Exact numerical results (solid red) along with a fit to
the Gaussian form Eq. (5) (green), and the Airy result from Eq.
(9) (blue). The expected t−1 decay in the amplitude is also shown
(black). (b) ETH case, ~cETH, at different positions x. Solid lines
indicate the OTOC data, and dashed lines are fits to Eq. (5) centered
at x = vBt.

Defining Φ(k, x, t) = kx − ε(k)t, a caustic occurs at quasi-
momentum kc, where two conditions are satisfied [119]:
(∂Φ/∂k)kc = 0 and (∂2Φ/∂k2)kc = 0. The first condition
is Fermat’s principle that gives classical rays as saddles of the
action kẋ−ε(k) and the second defines the caustic as the place
where saddles coalesce. These conditions correspond exactly
to the Lieb-Robinson (LR) bound for a light cone as being de-
termined by the maximum value of the group velocity dε/dk
of the fermions [114, 120, 121], vLR = maxk |dε/dk|.

The fact that light cones are caustics allows a number of
powerful results from catastrophe theory to be applied: i) The
only structurally stable catastrophes in two dimensions (the
space-time formed by x and t) are fold lines that meet at
cusp points, as anyone who has ironed a shirt knows. For a
light cone the only place a cusp could occur is at the origin
where the two edges meet. However, in the present case of
the XX model the dispersion relation is so simple that only
two rays can coalesce and no cusp occurs, just two pure fold
lines that meet at x = t = 0. This result is special and

if a symmetry breaking term is added the two folds will in-
stead generically meet at a cusp (coalescence of three rays)
and the back-to-back Airy functions are locally replaced by a
Pearcey function [114]; ii) The defining feature of a fold catas-
trophe is that the phase Φ(k, x, t) is cubic in k. This is why
the Airy function is the universal wavefunction at a fold be-
cause Ai(z) = (1/2π)

∫∞
−∞ ds exp[i(zs + s3/3)]; iii) There

exists a diffeomorphism from the physical variables (k, x, t)
to the canonical Airy cubic form (s, z). Therefore, a Taylor
expansion truncated at precisely third order about the caus-
tic gives the exact semiclassical description in the neighbor-
hood of that point. Performing the transformation of variables,
s3 = 2(k − kc)3/[t∂3

kε(kc)] gives [72, 74, 94]

ΨAi(x, t) ∼
√
a

( −2

∂3
kε(kc)t

)1/3

eiΦ(kc,x,t) Ai(z) , (9)

where z = (x− vBt)
∣∣t∂3

kε(kc)/2
∣∣−1/3

. (10)

In Fig. 1(a), we plot |ΨAi(x, t)|2 alongside the numerical
result at the point x = 10, with the caustic (z = 0) marked
by the vertical dotted line. The Airy wavefunction gradually
goes out of phase at longer times because the Taylor expansion
was made at a single point, but the range could be extended
via a uniform mapping [122]. From the asymptotics of the
Airy function as z → −∞ it follows that the amplitude of the
OTOC wavefront decays as |z|3/2/(x− vt)2 ∼ 1/t (in agree-
ment with Refs. [60, 61]), and the fringe spacing becomes
constant. In this way one also finds that the amplitude along
the wavefront x/t = vB decays as x−2/3 [94]. Furthermore,
Eq. (9) also correctly predicts the early time growth. Keeping
just the first term of the z →∞ asymptotic series for the Airy
function [94] gives the universal p = 1/2 form of the OTOC
in Eq. (4) [72–74].

While an Airy function has been derived for OTOCs before
[72, 74, 113], the point we emphasize here is that catastrophe
theory guarantees that this result is rigorously true and robust
to perturbations. Hence, deviations from it imply some quali-
tative change to the dynamics. One possibility is the presence
of a symmetry breaking term which gives one of the higher
catastrophes [114] (such as a cusp in the XY model which has
a double cone). Another possibility is nonintegrable dynam-
ics, and it is to that case we now turn.

Profile of the wavefront in the ETH case: In Fig. 1(b) we
plot the exact results for the OTOC for ~cETH. Fringes are par-
tially visible at smaller x but the Airy nodes have disappeared.
Although structural stability implies that catastrophes are sta-
ble against weak chaos, ~cETH corresponds to strong chaos
which disrupts the rays and their interference significantly.
At x = 3 the wavefront has quite a sharp slope, indicating
that the process of scrambling (the increase in non-locality of
the observable) is still in full swing. By x = 8, the slope of
the OTOC at the wavefront has significantly decreased. The
Gaussian waveform of Eq. (5) provides an excellent local fit
to the wavefront in both the integrable [54, 93] and chaotic
regimes, as seen from the dashed curves in Fig. 1(a) and 1(b),
respectively. The fit is performed over the range t = x

vB
±∆
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where ∆ ≈ 0.5 gives a reasonably large window to describe
the shape of C(x, t). Within the fitting window, for a fixed x,
the parameters m(x) and b(x) in Eq. (5) can be determined
with very high precision with errors on each term of the order
of 10−7 to 10−9. A crucial ingredient to identify the parame-
ters in the ETH case is to first determine the butterfly velocity
vB , which can be done using velocity-dependent Lyapunov
exponents [74, 123], as demonstrated in the SM [94]. We find
that the velocity for the ETH model characterized by ~cETH is
roughly vB ≈ 1.28 (in contrast to vB = 1 for ~cf ). Although
the integrable and ETH wavefronts both display flattening, the
scaling properties of m(x) and b(x) are fundamentally differ-
ent in the two regimes as we now show.

Scaling in Free Models: By expanding the Airy wavefunc-
tion given in Eq. (9) about the caustic at z = 0 we obtain

m(x) =
cm

x
2
3

, b(x) =
cb

x
1
3

, (11)

where cm and cb are constants that depend explicitly on the
dispersion relation (see the SM [94] for details). Due to the
universality of the Airy wavefunction, this scaling is expected
to hold for many models which can be written in terms of
freely propagating quasiparticles. Furthermore, corrections
beyond quadratic order in x − vBt can be obtained. How-
ever, the cubic term in the exponent falls off rapidly (at least
as x−1), and so it is reasonable, even at moderate distances, to
keep only the Gaussian approximation. We have numerically
verified Eq. (11) and the results are shown in Fig. 2(a). Fitting
the scaling of each parameter for distances 0 < x ≤ 650 we
find,

m(x) ∝ 1

xam
, b(x) ∝ 1

xab
, (12)

with am = 0.68857± 0.00008, and ab = 0.33043± 0.00002,
indicating good agreement with the expected values. We also
note that because m(x) ∝ b(x)2, m(x) falls off significantly
quicker than b(x). This may point to an intermediate regime
in x where the OTOC is well described by C(x, t) ∼ eb(x)t.

Scaling in ETH regime: In Fig. 2(b) we show a plot of the
data for the ~cETH case. A linear trend emerges, implying that
the spatial dependence on m(x) and b(x) in the ETH regime
exhibits exponential rather than power-law decay,

b(x) ∼ e−cx, m(x) ∼ e−wx, (13)

where c, w > 0 are constants. We find that c = 0.38 ± 0.02
and w = 0.66 ± 0.05. Like the free case, m(x) ∝ b(x)2,
however, as shown in the SM [94], this is not generally the
case.

The exponentially decaying behavior of m(x) and b(x) is
clearly distinct from the free fermion case. This indicates that
the Gaussian waveform can distinguish ETH-obeying from
free dynamics. In both Figs. 2(a) and (b)m(x), b(x) decay by
upwards of two orders of magnitude as a function of position,
however the exponential decay in the ETH regime ensures that
this occurs over a short distance of x ≈ 10 while in the free

0 200 400 600
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b(x)

101
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4 6 8 10
x
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Figure 2. Log-linear plots for the Gaussian parameters m(x) (red)
and b(x) [blue]. (a) The free Hamiltonian, ~cf . Dashed lines are fits
to Eq. 12. Inset is a log-log plot of the same data. (b) The ETH
Hamiltonian, ~cETH, using the same data as in Fig. 1(b) indicating
exponential decay of m(x), b(x).

model it takes a distance of x ≈ 600. Thus, the general flat-
tening of the OTOC at the wavefront (see e.g. Fig. 1) occurs
much faster in thermalizing models.

Conclusions: Close to the wavefront, integrable and ETH
models can be distinguished by the difference in scaling of
the parameters m(x), b(x) in Eq. (5). The ability of mod-
ern experiments to measure quantum light cone profiles [96–
101] and OTOCs [124–129] holds out the possibility that this
prediction can be tested in the laboratory. A remaining open
question concerns the transition from integrable to ETH dy-
namics [130–132] and the degree to which structural stabil-
ity protects the Airy wavefront. A resolution of this question
would constitute a quantum version of the celebrated KAM
theorem [133].
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In these supplementary materials we give the details of the Airy function and its asymptotics, the calculation
of OTOC wavefront in terms of the Airy function, the extraction of the butterfly velocity from the OTOC and
also provide some alternative examples to those presented in the main text.

I. THE AIRY FUNCTION

The Airy function was constructed by the astronomer G. B. Airy in 1838 in order to describe the interference of light at a
rainbow which is the simplest example of a caustic [1]. It has the integral representation

Ai(z) =
1

2π

∫ ∞

−∞
ds ei(zs+ 1

3 s
3) , (SM1)

which can be interpreted as an elementary path integral where the paths being summed are labeled by s [2]. The key feature
is that the phase is cubic in s; this means that it has a maximum of two stationary points (corresponding to two rays according
to Fermat’s principle) that merge at the point z = 0 which is the location of the caustic. Thus, the Airy function describes
the interference between two waves when z < 0 (the interference fringes are the supernumerary arcs which can sometimes be
observed inside the main bow) and one single evanescent wave when z > 0. For the calculation of the profile at very early times
(far from the wavefront) we can use the z →∞ asymptotics of the Airy function which are given by [3],

Ai(z) ∼ e−
2
3 z

3/2

2
√
πz1/4

∞∑

n=0

(−1)n
un

( 2
3 )nz3n/2

, (SM2)

where un = (2n + 1)(2n + 3)...(6n − 1)/(216nn!). Truncating this series at n = 0 gives the universal p = 1/2 form of the
OTOC in Eq. (4) in the main text for early entanglement growth in free systems. However, this asymptotic expansion is not valid
close to the wavefront and that case is dealt with in the next section.

II. DERIVATION OF GAUSSIAN IN FREE MODELS

For models which can be mapped onto free-fermions, the Hamiltonian is,

Ĥ =
∑

k

ε(k)

(
b̃†k b̃k −

1

2

)
(SM3)

where ε(k) is the dispersion relation. Starting with a single Bogoliubov localized Fermion,

〈xb|e−iĤtb̂†x=0|0b〉 = 〈xb|
∑

k

e−iε(k)t |k〉 =
1

N

π
a− 2π

Na∑

k=−πa

ei(kx−ε(k)t) ≈
√
a

2π

∫ π
a

−πa
dk ei(kx−ε(k)t) . (SM4)

Now, we want to calculate the local form of the light cone via the focusing of trajectories. Using Φ = kx − ε(k)t, we require
the conditions

∂Φ

∂k

∣∣∣∣
kc

=
∂2Φ

∂k2

∣∣∣∣
kc

= 0 , (SM5)

to define the kc. Hence, near the coalescing saddles of Φ,

Φ ≈ kcx− ε(kc)t+ (x− vBt)(k − kc)−
1

6
t∂3
kε(kc)(k − kc)3 +O(k4) , (SM6)
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where vB = ∂kε(kc) is the butterfly velocity, and the second-order term vanishes since ∂2
kΦ(kc) = ∂2

kε(kc) = 0. Assuming
that the dispersion ε(k) only has two coalescing saddles, catastrophe theory indicates that the cubic form (a fold) is sufficient to
qualitatively describe the local form of Φ. When a larger number of saddles coalesce one obtains one of the higher catastrophes
(sometimes called generalized Airy functions), which we will not discuss here but an introduction in the context of spin chains
can be found in Ref. [2]. Now, letting,

s3 ≡ −t
2
∂3
kε(kc)(k − kc)3 (SM7)

and

z ≡ (x− vBt)
( −2

∂3
kε(kc)t

)1/3

(SM8)

Thus,

Ψ(x, t) ≈
√
a

2π

( −2

∂3
kε(kc)t

)1/3

ei(kcx−ε(kc)t)
∫ s+

s−

ds ei(zs+ 1
3 s

3) , (SM9)

where,

s± =

(−t
2
∂3
kε(kc)

)1/3 (
±π
a
− kc

)
. (SM10)

At sufficiently long times, these limits approach infinity and we recover the Airy function, which was defined in Eq. (SM1).
Ai[z] can be approximated near z = 0 by making use of,

ln (Ai[z]) ≈ −2

3
ln 3− ln(Γ[

2

3
])− 31/3 Γ[ 2

3 ]

Γ[ 1
3 ]
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2
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1
3
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)
z3 +O(z4) (SM11)

Thus, we expect the above wavefunctions to locally take the form,

Ψ(x, t) ≈ Ãe−m̃(x−vBt)2

e−b̃(x−vBt)e−ζ(x−vBt)
3

..., (SM12)

where,

Ã =

√
a

πΓ[ 2
3 ]

( −1

36∂3
kε(kc)t

)1/3

ei(kcx−ε(kc)t) (SM13)
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2

( −6
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t−2/3 (SM14)
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( −6
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t−1/3 (SM15)
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t−1 (SM16)

Each term in the exponential contains factors of the form (x−vBt)n
tn/3 for integer n. Assuming close proximity to the light cone

relative to the distance from the origin, such that δx ≡ x− vBt, with δx/x� 1, then,

δx

t1/3
≈
(vB
x

)1/3

δx+
1

3

(vB
x4

)1/3

δx2 +
2

9

(vB
x7
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δx3 + ... (SM17)

δx2
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≈ 1

3
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B
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δx4 + ... (SM18)

δx3

t
≈
(vB
x

)
δx3 +

(vB
x

)
δx4 +

(vB
x

)
δx5 + ... (SM19)

Keeping terms of order lower than O(δx/x), amounts to replacing each factor of t with x/vB . Note that the second-order
term in Eq. (SM17) is suppressed by a factor of x−2/3v

−1/3
B when compared to the lowest-order term of Eq. (SM18), and so at
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large x there is no need to consider both, although including them will provide lowest-order corrections to m̃ and b̃ at fixed x.
Furthermore, all the terms in Eq. (SM19) can be neglected since any term of cubic order or above in δx will not only be small,
but also further suppressed by at least x−1. Therefore our Gaussian approximation remains valid, and we can then rewrite Eq.
(SM12) by replacing t→ x/vB in Eqs. (SM13)-(SM16). Thus we define the Gaussian form,

ΨG(x, t) ≡ Ae−m(x−vBt)2

e−b(x−vBt) (SM20)

such that CG(x, t) = |ΨG(x, t)|2 approximates the OTOC near the wavefront according to Eq. (5) of the main text, now with,

A =

√
a

πΓ[ 2
3 ]

( −vB
36∂3

kε(kc)x

)1/3

ei(kcx−ε(kc)t) (SM21)

m =
1

2

( −6vB
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kε(kc)
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3 ]
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3 ]

)2

x−2/3 (SM22)

b =
Γ[ 2

3 ]

Γ[ 1
3 ]

( −6vB
∂3
kε(kc)

)1/3

x−1/3 (SM23)

from which Eq. (11) of the main text follows directly.
From Eq. (SM20), and CG(x, t) = |ΨG(x, t)|2, it follows that exactly along the wavefront, there is a scaling C(x = vBt, t) ∼

x−2/3. This was verified numerically for the XX model in Fig. SM1, for 1 ≤ x ≤ 100, giving an approximate amplitude scaling
of C(x = vBt, t) ∼ x−0.664 at less than 0.5% error.

100 101 102

x

10−2

10−1

C
(x

=
v B
t)

C ∼ −0.664 x− 1.619

Figure SM1. OTOC amplitude scaling at the wavefront. Red circles indicate the amplitude of C evaluated along the light cone (x = vBt) as
a function of the site number. A linear fit to the log-log data is shown as a black-dashed line.

III. VELOCITY

In this section we follow [4, 5] and extract the butterfly velocity from the OTOC using velocity dependent Lyapunov exponents.
This method supposes that,

C(x, t) ∼ eλ(v)t, (SM24)

such that,

λ(v) ∼ −(v − vB)α. (SM25)

We can therefore find the butterfly velocities by looking for constant rays in the OTOC data such that λ(v) = 0. In this study
however we do not limit ourselves to rays x = vt for a set of velocities, we instead allow the rays to have a constant shift in
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)

Figure SM2. Velocity dependent Lyapunov exponent plotted against velocities v. Horizontal green line indicates the velocity axis, the solid
black line is λ(v) and the blue dotted line is our fit for λ(v) ∼ −(v − vB)α.

time to account for the possibility that the form in Eq. (SM24) fits better before the classical wave-front arrives. We therefore
investigate and fit the contours given by,

t =
x

v
− ts, (SM26)

where ts is the shift time we vary from ts = 0 → 1. We then select the time shift with the most numerical agreement with Eq.
(SM24).

We find numerically that,

α ≈ 1.2801± 0.0009, vB = 1.29, ts ≈ 0.108 (SM27)

IV. ALTERNATIVE EXAMPLE

In this section we discuss an example where m(x) does not scale as ∼ b(x)2 demonstrating that this behavior is not generic
and the ETH obeying models may have corrections to the scaling of m(x) independent of b(x). We start be re-parametrizing our
Hamiltonian in Eq. (6) for convenience. We restrict the possible parameter choices in our Hamiltonian as,

Ĥ =
∑

n=1,2

Jn
∑

j

(
ŜXj Ŝ

X
j+n + ŜYj Ŝ

Y
j+n + ∆ŜZj Ŝ

Z
j+n

)
. (SM28)

Here we choose values of J1 = −1, J2 = 0.3703704 and ∆ = 0.75 which corresponds to a chiral phase of the ground state [6].
We similarly determine the butterfly velocity as in section III, and find that,

α ≈ 1.2964± 0.0004, vB = 1.26, ts ≈ 0.06. (SM29)

This then allows us to reconfirm that the Gaussian wave can be confirmed for each x, shown in Fig. SM3. The fitting interval
was again on an interval of length ∆t = 1 indicating a large dynamical regime of validity. With this we can extract the forms of
m(x) and b(x) which again decay exponentially.
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In Fig. SM4 we again see that,

b(x) ∼ e−cx, m(x) ∼ e−wx. (SM30)

However this time, we get the behavior that, c = 0.2666± 0.0003 and w = 0.398± 0.0009, therefore we see that w 6≈ 2c. We
can see why this might be the case with a simple derivation of the form of Eq. (5) in the main text.

We are interested solely in the dynamical region centred around t = x/vB . With standard expansions one can arrive at the

propagating Gaussian form. Let τ = t − x
vB

and ∆ =
Ċ
(
x, xvB

)

C
(
x, xvB

) . Since C(x, t) is a positive function for the regime we are

interested in,

C(x, t) = exp [lnC(x, t)] , (SM31)

this allows us to expand inside the logarithm,

C(x, t) = Ke
ln


1+∆τ+O



C̈

(
x, x
vB

)

C

(
x, x
vB

) τ2





, (SM32)

= Ke
ln(1+∆τ)+ln


1+O




C̈

(
x, x
vB

)

C

(
x, x
vB

)
∆(1+τ)

τ2





. (SM33)

Expanding one more time we arrive at,

C(x, t) = Ke
∆τ− 1

2 ∆2τ2+O( 1
3 ∆3τ3)+O




C̈

(
x, x
vB

)

Ċ

(
x, x
vB

)
(1+τ)

τ2



. (SM34)

In Eq. (SM34) we see that the first order term and the second order term are related by squaring the first order term if,

C̈
(
x, x

vB

)

Ċ
(
x, x

vB

)
(1 + τ)

≈ 0. (SM35)
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Figure SM3. C(x, t) for the Hamiltonian in Eq. (SM28). Solid lines indicate the OTOC data, and dashed lines are the fitted Gaussian
waveform given in Eq. (5) in the main text. Errors on the fits are on the order of 10−7 to 10−9 for all fitting parameters. The interval fitted is
of total length ∆t = 1 centred around x = vBt.
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Figure SM4. Log-linear plot for m(x) and b(x) for the Hamiltonian characterized by the Hamiltonian in Eq. (SM28). Solid circles indicate
data points from the fitting in Fig. SM3 and dashed lines indicate a fit to a linear equation. This rough linear scaling indicates the points are
falling off exponentially fast.

This is of course not always the case. However for free fermions it turns out this is true for sufficiently large x. In the case of
free fermions, the OTOC given in Eq. (7) in the main text experiences a change in curvature at the light cone. At a given fixed
lattice point at large x, C(x, t = x

vB
) is an inflection point in a slice along the temporal direction. This property is inherited

from the local Airy description, where Ai′′[z] = zAi[z], and hence Ai′′[0] = 0. This interestingly allows one to approximate the
butterfly velocity (for free models) as,

vB ≡
x

t∗
, (SM36)

for which one defines t∗ such that,

d2

dt2
C(x, t)

∣∣∣∣
t=t∗

= 0 (SM37)

In Fig. SM5 we see that for free fermions this conjecture approximates the butterfly velocity to vB ≈ 0.988 which corresponds
to a 1.21% difference. This method is however unreliable in the cases where only small x are accessible.
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Chapter 6

Summary and conclusion

In this thesis we reviewed how statistical mechanics can emerge in isolated quantum systems
in chapter 2. We did this by first establishing how static equilibrium can emerge for observ-
ables and subsystems. We found that the purity of the diagonal ensemble is a strong indicator
of the emergence of static equilibrium,

Tr
[
ω2
]

, ω =
∑

k

|ck|2|Ek⟩⟨Ek|. (6.1)

If equilibrium is well defined we came to the conclusion that the expectation values of the
diagonal ensemble were the static equilibrium expectation values,

A(∞) = Tr
[
Âω
]
. (6.2)

It was briefly discussed that, despite a number of strong infinite time analytical results being
available, the field has many open problems regarding finite time descriptions of the path to
equilibrium.

We then derived the microcanonical ensemble τu,δ and the Gibbs ensemble ρβ using
Jaynes’ principle of maximum entropy. These are the traditional ensembles studied in sta-
tistical mechanics. It was noted that ω ̸= τu,δ ̸= ρβ globally, but equivalence of ensemble
results allow us to equate τu,δ and ρβ on subsystems of the total system. Eigenstate thermal-
ization was introduced to equate the expectation values of the microcanonical ensemble and
the diagonal ensemble,

A(∞) = Tr
[
Âω
]
=
∑

k

|ck|2Ak,k ≈ Tr
[
Âτu,δ

]
=

1

Ω

∑

k∈Tu,δ

Ak,k, (6.3)

by requiring that the diagonal entries of the observable Â are well approximated by a smooth
function of energy Âk,k ≈ A(Ek). We expect this to be an exact expression in the thermo-
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dynamic limit. Eigenstate thermalization was the key ingredient introduced to connect our
notion of static equilibrium to the predictions of statistical mechanics. Notably little progress
has been made analytically on the validity of eigenstate thermalization despite an abundance
of numerical work verifying it.

We next introduced the weak form of the eigenstate thermalization hypothesis that re-
quires that typical eigenstates obey the hypothesis. We discussed analytical progress that
has been made in this direction, which provides a proof of weak ETH for locally interact-
ing, translation invariant interacting models. We then briefly derived consequences of these
statements. Volume law scaling of eigenstate entanglement entropy was then discussed as an
indicator of eigenstate thermalization.

We then finished the introductory section by introducing classes of models which do not
fit into this description. These classes of models can be broadly put into two categories.
Models which thermalize to a generalized Gibbs ensemble due to the presence of a large
collection of conserved quantities in the dynamics. The second class of models are localized
models, which lack the transport required to thermalize the systems in question.

In chapter 3 we investigated the early time relaxation of pure states towards equilibrium.
We found that, if the initial condition lacked transport and was sufficiently well behaved,
the initial dynamics looked identical to the dynamics of the Kubo formula from linear re-
sponse theory, and the late time fluctuation correlation function defined in [9]. We proposed
a possible equilibration, fluctuation, dissipation relation,

σA ≈ σG ≈ σK , (6.4)

relating the early time relaxation of these three processes together. Random matrix theory ar-
guments were used to show that in the infinite temperature regime the corrections to equation
6.4 should be on the order of O(1/dN) where dN is the Hilbert space size. Notably how-
ever, it was easy to find initial conditions where this was not true. Further work is required
to investigate if the initial conditions that don’t fall into this description can be potentially
captured by higher order response theory or some other approach.

In chapter 4 we derived a number of results pertaining to equilibration and recurrence
times. In particular we derived the equations 2.19, 2.20 and 2.134. We showed that the
expectation value of ⟨ψ|Â(t)|ψ⟩ concentrates about the equilibrium point A(∞), and used
this bound to show the average recurrence time would approach infinity in the thermody-
namic limit for typical dynamics. Despite the strength of these results, they come at the
cost of strong assumptions on the energies of the model, namely that the spectrum is non-
degenerate, the frequencies are non-degenerate and so on. Further work is required to relax
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the assumptions on the spectrum and investigate the consequences of doing so.
In chapter 5 we investigated the possibility of distinguishing quantum chaotic systems

from non-chaotic systems with information from the OTOC wavefront. We conclude that,
despite the universal waveform not carrying such information, the classical wavefront at x =

vBt does in fact carry that information in the form of a Gaussian wave form,

C(x, t) ∼ e−m(x)(x−vBt)2+b(x)(x−vBt), (6.5)

where the functions m(x), b(x) scaling like a power law in free models and exponentially in
chaotic models. Further work is required to investigate if this Gaussian waveform tells us
about the interacting integrable regime, and if similar descriptions and scaling are found in
other models.
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quasiperiodic aubry-andré model. Phys. Rev. B, 101:024202, Jan 2020.

[16] Lucas Hackl, Lev Vidmar, Marcos Rigol, and Eugenio Bianchi. Average eigenstate
entanglement entropy of the xy chain in a transverse field and its universality for trans-
lationally invariant quadratic fermionic models. Phys. Rev. B, 99:075123, Feb 2019.

[17] Martı́ Perarnau-Llobet, Arnau Riera, Rodrigo Gallego, Henrik Wilming, and Jens Eis-
ert. Work and entropy production in generalised gibbs ensembles. New Journal of
Physics, 18(12):123035, 2016.

[18] Jonathon Riddell and Markus P. Müller. Generalized eigenstate typicality in
translation-invariant quasifree fermionic models. Phys. Rev. B, 97:035129, Jan 2018.

[19] Sushruth Muralidharan, Kinjalk Lochan, and S. Shankaranarayanan. Generalized ther-
malization for integrable system under quantum quench. Phys. Rev. E, 97:012142, Jan
2018.
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lations after quantum quenches in the xxz spin chain: Failure of the generalized gibbs
ensemble. Phys. Rev. Lett., 113:117203, Sep 2014.

[193] D.M. Basko, I.L. Aleiner, and B.L. Altshuler. Metal–insulator transition in a weakly
interacting many-electron system with localized single-particle states. Annals of
Physics, 321(5):1126–1205, 2006.

108



PHD. THESIS - JONATHON RIDDELL; MCMASTER UNIVERSITY - PHYSICS AND ASTRONOMY

[194] Vadim Oganesyan and David A. Huse. Localization of interacting fermions at high
temperature. Phys. Rev. B, 75:155111, Apr 2007.

[195] Arijeet Pal and David A. Huse. Many-body localization phase transition. Phys. Rev.
B, 82:174411, Nov 2010.

[196] John Z. Imbrie. On many-body localization for quantum spin chains. Journal of
Statistical Physics, 163(5):998–1048, Jun 2016.
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