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Chapter 2

Introduction

2.1 Static equilibrium from unitary dynamics

Statistical mechanics and thermodynamics were initially developed in the 1800s through the
desire to describe the macroscopic properties of physical systems. Insights from these two
fields have contributed significantly to our understanding and development of topics in engi-
neering, material sciences and more. Despite much success our understanding of statistical
mechanics from a foundational point of view is still lacking, with many open questions re-
maining unanswered. In the past two decades the age old question of how closed quantum
systems approach thermodynamic equilibrium has seen a resurgence of interest. The recent
uptick in interest in the foundational arguments of statistical mechanics has been largely ig-
nited novel by experiments in ultracold atomic gases as well as new insights from quantum
information theory, giving us new experimental insight and theoretical tools to investigate the
emergence of statistical mechanics in isolated quantum systems [1-10].

The typical starting point for the construction of statistical mechanics begins with a
closed, isolated system governed by some Hamilton H, typically a classical system. To
derive the typical ensembles of statistical mechanics one might make an assumption on the
dynamics of the system, such as Ergodicity or one introduces the principle of equal a-priori
probability which allows you to assign the microcanonical distribution to the energetically
accessible microstates of the system [11,/12]. In this thesis we will keep with the spirit of
this approach. We will begin our discussion with a closed, isolated system governed by some
Hamiltonian /7. We will however make a stronger demand than the typical constructions that
one might find in a textbook. The key difference is insisting that static equilibrium and sta-
tistical mechanics must emerge from the dynamics of quantum mechanics, as it is the more

fundamental theory of reality. So let us begin our discussion by considering some generic
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Hamiltonian /7 governing the dynamics of some quantum system initialized in the pure state
) which is normalized |(t|1))|? = 1. We will take the convention that the initialization time
will be set at ¢ = 0. We will also throughout this document take the convention that 4 = 1

and kg = 1. We will assume that the Hamiltonian has a spectral decomposition of the form,
H=>" En|Eu)(Enl. (2.1)

where for convenience we will assume that the spectrum is finite. It is helpful then to imag-
ine our system is constructed by some d dimensional local Hilbert space and we have N total
lattice sites, giving us a Hilbert space size of d”¥. The thermodynamic limit is then recov-
ered when we take N — oo. While this construction isn’t necessary for what follows, this
condition is satisfied in a number of interesting models. For example magnetic systems like
the spin 1/2 Heisenberg model where d = 2, or other lattice models with local degrees of
freedom which have a finite local Hilbert space dimension. We will also assume our model
does not have any additional symmetries apart from energy avoiding potential problems like
sets of non-commuting conserved quantities, degeneracy and integrability [1,/13-22].

We may express our initial state |t) in the energy eigenbasis in the following way,

) = emlBm), cm = (V|En). (2.2)

m

Dynamics in this system will be generated by the Schrédinger equation,

d .
i |0) = Hlv), (2.3)

which admits the energy eigenkets as time independent states as time evolution of these states
simply picks up a global phase,

X d o —iEt
This then allows us to write the time evolution of our pure state as,

(1) = cme P E). 2.5)

The time evolution in equation [2.5]is called unitary because the evolution is generated by a

unitary operator,

() = Ut)|w) with U(t) = e | (2.6)
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The first thing to notice is that the time evolution of equation [2.5] will not be sufficient on
it’s own to define static equilibrium. What we have here is a normalized vector with entries
rotating in the complex plain with frequencies E,,. So on it’s own |¢(t)) will not relax
to some notion of static equilibrium. So we must track something else to investigate the
emergence of static equilibrium. Intuitively we will introduce an observable A, and track it’s
expectation value in time. We say that equilibration has occurred if the expectation value of

A settles down to a stationary value in time,

(A(t)) = A(c0). 2.7)

1.0

0.8 -

0.6 1

(A(t))

0 10 20 30 40 50

Figure 2.1: Typical expectation value of an observable in time, relaxing to an approximate
equilibrium. Numerics were performed on a spin 1/2 J1-J2 type model in one dimension for
L = 22 lattice sites. To see further details see Contribution 1 in chapter [3| The dynamics
presented here are from observable state pair (A;(t))y in Contribution 1.

We call the equilibrium value A(oo) however it’s important to note we have yet to demon-

5
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strate it’s existence. First let us expand the expectation value of A in the energy eigenbasis,

(A1) = Cnn Ay e Erm =B, (2.8)
From equation [2.§] we can see that our expression that we have a quasi-periodic function, so
it doesn’t make sense to for example define A(co) = limy_,(A(t)), as in general this limit
does not exist. Instead, if we expect (A(t)) to relax to equilibrium and stay there, it must
equilibrate and sit at the value of A(oco) for most times ¢.Therefore the equilibrium value will
also be the average value of our expectation value taken over all time, assuming equilibration

did indeed occur. We can then define the equilibrium value in the following way [2,[23-28]],
A(oo) = 1 © [ (At 29)

00) = lim — . .
T—00 T 0

This form has a few advantages, firstly, if we assume our Hamiltonian has a non-degenerate

spectrum, then we can evaluate this limit easily and recover,

A(o0) =Y el Ag e (2.10)
k

Equation [2.10| tells us that the equilibrium value only depends on the diagonal terms of the
observable in the energy eigenbasis, which is time independent. Secondly we can introduce
the diagonal ensemble from this expression. To see this define the density matrix p(t) =
|1(t))(1(t)], then we define the diagonal ensemble as,

T

1
w=lim = [ p(t)dt = |ex|*|E)(Ex| | (2.11)
0

T—00 T A

This allows us to rewrite the equilibrium value as,

A(0) = Tr [Aw] | 2.12)

This is true for all observables where their expectation value reaches some static value in time
after an initial out of equilibrium period. Next we need to understand under what conditions
this equilibration process can occur. One way to make progress is to consider the average

distance of (A(t)) and the equilibrium value A(oo) in time. To study this, we define the
following quantity [6,24,27],
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T

o2 = fim ~ [ |Tr [A (o(t) —w)] 2ar | (2.13)

Note here that this is an infinite time average statement, and does not tell us anything about

finite time dynamics. This quantity can be interpreted in a few ways. Firstly we may consider

A

it the average distance squared between (A(¢)) and A(co) over all time. So if this quantity is
small, we expect that (A(t)) spends the majority of it’s time arbitrarily close to to it’s equi-
librium value. It might also be interpreted as the second moment of the following probability

distribution,

P(z) = lim Tﬁ&(w—f(t)) . (2.14)

T—00 0 T

P(z) can be understood as the probability that, if we pick a random time ¢ € [0, o), the
value of f(t) is exactly x (see also [29H31])). Figure[2.2)is an example of P(z) forming as we
take 7 — o00. The moments of this distribution can be written as [31]],

kg = lim e T((fl(t)) — A(o0))dt |, (2.15)

T—00 T 0

where we identify the case of ko = 7. Interestingly 0% can be bounded quite tightly. To do
this let us make a slightly stronger assumption on the energies ;.. We will assume that we

have non-degenerate energy gaps,
En+ E,=E +E, = {m,n}={k,l}, (2.16)

where we demand this holds for all indices. This property is expected to hold for example
in quantum chaotic models with level repulsion [[1,2,32,33]]. With this assumption one can
derive the following bound [24}27],

o4 < ||A[|*Tr [w?]. (2.17)

Where || A|| should be interpreted as the largest singular value of A. For most relevant initial
conditions we expect that Tr [w?] will be exponentially small in system size [2,[24,27,31].
This bound can also be generalized to cases where the Hamiltonian has degenerate gaps and
to cases where the initial state is mixed [6,24,34,(35]].

For the higher moments k, one can derive a generic bound. First we need to generalize

the non-degenerate gaps condition given in equation [2.16]to larger sums of energies,

7
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Figure 2.2: Example of P;(z) converging to P(z) where P(z) = [ %5(x — (A(t))) and

P(z) is recovered as 7 — oo. P,(x) represents the approx1mat10n of P,(x) by binning

samples and constructing a histogram. See Contribution 2 figure 1 for further details.

q q
Y B =) E, = {m}={n}. (2.18)
=1 =1

This condition is quite strong. A possible mathematical justification for it is that the set of
Hermitian matrices that fit this condition have full Lebesgue measure in the set of possible
dV x d" matrices, Contribution 2 [31]]. A more physical argument for this condition is that
it is expected to hold in non-integrable and chaotic models such as those with Wigner-Dyson
level statistics [9,36-38]. It is important to note that this assumption further restricts the class
of systems we are talking about, but allows us to in return make stronger statements. Using

this assumption on the energies we can derive the following bound on the moments of P(x),

8
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Contribution 2 [31]],
q
kol < (all AV (2.19)

Using equation in conjunction with our probability distribution P(x) we can further
provide a concentration bound on equilibrium, Contribution 2 [31]],

Pr [|(A(t)) — A(o0)| > 6] < 2e x exp (— (2.20)

)
6\\A!\\/Tr[w2]> '
If Tr [w?] ~ 1/d", then the right hand side of equation decays doubly exponentially
fast. This can be compared with previous bounds where the result is exponentially tight
(24,27.,31,39].

One can see right away that the bound for the moments in equation [2.19]is not as tight as
it could be. For example equation [2.19]is off by a constant factor of 4 compared to One
can follow the general procedure of [24] to recover[2.17]to also derive a tighter bound on £
or any k. Let us briefly derive the case for 3 to see this. First let us assume that A(oco) = 0.
Then,

) 1 T . _ . _ o
ks = lim — dt g Amvnémcne’(Em En)t E Ak,lékcle’(E"’ Bt E Ap,qépcqu(Ep Eq)t
0 m,n k,l

T—00 T
p,q

2.21)

expanding out we have,

T

.1 - BB
kg = lim = [ dt E A A1 Ay gCmCrrciCycge’ Em T Bt Ep=En=EBi=Eg)t (3 03y
T—00 T
O mnklpg

From here we use our assumption on the energy eigenstates defined in equation This

means we only have the following surviving terms,

ks = leml’leel’lep* (Amm Ak dpp + AmmArpApk + AmpArmApp +  (223)
m,k,p

Am,pAk,mAp,k + Am,kAk,pAp,m + Am,pAk,k + Ap.m) (224)

Here, we see that due to the equilibrium expectation value being zero, we can eliminate the

first three, and the final term, leaving us with,

Ky = Z | |? ko2 (Amp Akm Ap i + Ak Ak pApm) (2.25)

m,k,p
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And this can be further compressed to be,

kg = 2Tr [AwAwAw] . (2.26)

So now that we have a nice expression, we continue by bounding it. First let’s apply Cauchy-
Schwarz with Tr [ATB] < \/Tr[Af A])\/Tr [B!B], this leaves us with (using the fact that all

of our matrices will be Hermitian),

k| < 24/Tr [AAw?]\/Tr [wAwA2w Awl (2.27)

We will shift a few terms around in the second square root,

|kg| < 24/Tr [AAw?]\/Tr [A2wAw? Aw]. (2.28)

In the first square root we have A? and w? as positive operators, and in the second we have
A? and wAwW? Aw = (wAw)2 as positive operators. For any positive operators P, () we have
that, Tr [PQ] < || P|| Tr [Q)], allowing us to write,

[153] < 20/[A[]? Tr [w2] /]| A[ [ Tr [w? Aw? A]. (2.29)

Next we can use the Cauchy-Schwarz inequality and the positive operator norm bound

one more time and arrive at,

k3| < 2||A|[>\/Tr [w2]y/Tr [w?]. (2.30)

It can be shown that, Contribution 2 [31]],

Tr w9 < /Tr[w?], (2.31)

which leads us to conclude that,

ra] < 2|AIPYTr [y Tr o] < 20| AlIPY T ] (232)
indicating that equation [2.19)can be most likely improved on a case by case basis.

The bounds in equations [2.17} [2.19]and [2.20] give us an intuitive way to understand when

equilibration can emerge for an observable. By assumption we have begun our dynamics in

a pure state and this property is conserved in time,
Tr [p(t)] = Tr [p(t)*] = 1. (2.33)

This is a general property of pure states. Mixed states such as w however do not have this

property. We can define the purity of a quantum density matrix as,

10
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v=Tro? | (2.34)

where o is some density matrix. Using d” as the Hilbert space dimension we have that,

1

<<l @2.39)

where the lower bound is saturated when ¢ is the maximally mixed state,

1 d
o= )il (2.36)
=1

|1;) is chosen to be a complete orthonormal basis for the Hilbert space. We have v = 1
precisely when we have a pure state. We can therefore see from equation that the upper
bound on our average distance to equilibrium will be very small if our diagonal ensemble w

is very mixed. Recalling the definition of w,

T

!
w=lim = [ pt)dt = |cx|*|Ex) (Ex. (2.37)
0 k

T—00 T

w will be very mixed when we have a large number of eigenstates contributing to the dynam-
ics |cx|? > 0 but each individual term |cx|? is small. So with the condition of Tr [w?] being
small, we have a strong criteria for equilibration to occur on average, over an infinite interval.
In ﬁgurewe see three example states and how the purity v = Tr [w?] decays exponentially
fast with system size.

Now clearly we can never have p = w as one is a pure state and the other is a mixed state,
so the full system will never become w. They can however become indistinguishable for
certain observables and subsystems. So far we have focused on single observables such that
(WA@Y — Tr [/Alw} . The bound in equation [2.17| can be used to show that sufficiently

small subsystems of our quantum system equilibrate under unitary dynamics [6,24,34]. To

see this we need to introduce some extra machinery to setup the problem. Suppose we split
our total system into two subsystems. Let us call them .S, B for the subsystem and the bath,
such that N = Ng+ Np. Then our subsystem has dimension d"s and our bath has dimension
dVe . The state of the subsystem is given by tracing out the degrees of freedom of the bath, so
we define the subsystem states with the following partial trace pg(t) = Trp [p(t)] and wg =
Trp [w]. The final ingredient we need is the trace distance between two density matrices,
which characterizes the difficulty of distinguishing two states experimentally. For any two

quantum states py, p, the trace distance is defined as,

11
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Figure 2.3: Purity of the diagonal ensemble for a variety of system sizes L and states. To
see further details see Contribution 2 in chapter [ figure 2.

1
D(p1,p2) = 5T { (p1— P2)2} : (2.38)

Then it is possible to show that [6}34],

1 /[ 1
lim — [ D(ps(t), §Q/dNS Tr [w \/dQNS Tr [w?], (2.39)

T—00 T 0

which tells us that the subsystem S equilibrates when Tr [w?] is sufficiently small (or more
importantly when it is small enough to drown out the size of d?¥s), or when a large number
of eigenstates contribute to the dynamics in a non-negligible way.

By appealing to infinite time averages we have demonstrated that equilibration can occur,

and we expect some notion of static equilibrium to emerge, most notably with expectation

12



PHD. THESIS - JONATHON RIDDELL; MCMASTER UNIVERSITY - PHYSICS AND ASTRONOMY

values given to us for observables in equilibrium as Tr [Aw] for subsystems. This doesn’t
tell us much about how long such processes might take. It is then desirable to extend our
understanding to allow for statements about finite time processes during equilibration. For
example a bound of the form,

ITr [ A (p(t) — )] I < F(0), (240)

where f(t) is some decreasing function of time. One could also investigate the finite time

average,
1 [7 A
o4(r) = ;/O 1T [Ap(1) — )] P (2.41)

Solving this problem in general is quite difficult. To see this let’s consider again the general

expression for our observable evolving in time,

~

(A(t) = Cnn Ay e Em =Bt (2.42)

These terms can conveniently be grouped and rewritten as,

(A(t)) =) vac, (2.43)

where o = (m,n), v, = Emcnflmm is constant and G, = E,,, — F,,. From this expression we
see that in general we are trying to understand time dependent properties of a large dephasing
problem. We start with some atypical configuration of our complex numbers v,e'“>* and as
we evolve our system in time these numbers slowly form a dense cloud about A(co) on the
real line, with complex components canceling. See figure [2.4] for an example of the terms

iGat eyolving in time.

(NG

If the problem lacks transport or ”slow equilibration” processes then this process appears
to be quite quick, and independent of system size. Initial conditions can be easily found
however where equilibration timescales scale with the size of the system Contribution 1 [40],
[41-46]. An easy way to see this is by example. Consider the following spin 1/2 Heisenberg

like Hamiltonian,

L
H=> Ji(SFS7, +he) +m SIS, + 1 (S) S, + he) + 725757,
j=1

Consider tracking the observable A=5 Z equilibrating under the Hamiltonian and the initial
4

states,

1) = | TT -, (2.44)

13
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Figure 2.4:  Plot of v,(t) = v,e'“! for an equilibrating observable. Numerics were per-
formed on a spin 1/2 J1-J2 type model in one dimension for L = 18 lattice sites. To see
further details see Contribution 1 in chapter[3] The dynamics presented here are from observ-
able state pair (A;(t))y) in Contribution 1.

) = [ 11 ), (2.45)
1)y tell us that,

If we let L be even, then the patterns for |¢);),

(1] Sglin) = (Ua|SZ[w2) =0, (2.46)
where,
Z
Se=>_57. (2.47)
j=1

is a conserved quantity since [H, SZ] = 0. Combining this fact with the

tot

It turns out that SZ,
fact that our model is translation invariant we expect the equilibrium value in both cases for

our observable to be,
A(0) = 0. (2.48)

So we have two states that arrive at an identical equilibrium value eventually. The problem in
comparing these two dynamical processes directly is that |¢/1) will see equilibration indepen-
dent of system size (for sufficiently large systems) while |¢)5) will have its equilibration time
scale with the system size. This is due to the fact that the primary drivers of dynamics will be
the spin flipping terms in the dynamics for this observable. |t/;) has all spins anti-parallel and
will therefore admit spin flip operations on all lattice sites at ¢ = 0, while |¢)2) only admits

~

nearest neighbor spin flip operations in two locations at t = 0. We will then see (12| A(t)]1)2)

14
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remain stationary for times proportional to the system size. If it is not immediately obvious
it may be instructive to look at the Hadamard formula (see ref. [47]] lemma 5.3),

e Ae™H = A 4 s[H, A] + %[H[H, Al +.... (2.49)
The Hadamard formula tells us that the dynamics can be thought of us nested commutation
relations. These nested commutation relations tell us how our local observable will pick up
non-local terms in time, smearing it across the lattice. For some initial conditions each new
nested commutator will contribute significantly to the dynamics, while for others one doesn’t
see significant changes until much higher order terms. It is therefore quite difficult to consider
initial conditions generically, as this would fail to exclude systems with significant transport.

With these difficulties in mind, little progress has been made on finite time statements
[2,128,48]]. Some results do exist however these techniques restrict us to regimes outside of
our interests here like thermal quenches, coupling to a heat bath, integrable models or early
times, Contribution 1 [40]], [23,[25}42] 49H57]].

Another interesting problem related to equilibration is that of recurrences. Quantum dy-
namics is both unitary and reversible, and therefore the idea of static equilibrium emerging
at all seems to conflict with the nature of quantum theory. This conflict can most naturally
be seen by considering the Poincaré recurrence theorem [58-64] which states that, for time
independent quantum mechanical systems with discrete (but potentially countably infinite)
energy eigenvalues, for every € > 0 and 7jy > 0 there exists a 7' > T such that,

[(T)) = 1(0))] < e (2.50)

|1(t)) is again the state of the system at time ¢. This theorem tells us that if we wait long
enough our quantum state will return arbitrarily close to it’s initial conditions. This theorem
calls into question the long lasting and stable equilibrium we are trying to justify in this
chapter. To resolve this problem we can appeal to our intuition. Observing the nature around
us, it appears as if these recurrences are rare and should take an extremely long time to
occur. It is therefore desirable to understand rigorously when such recurrences might occur.
Intuitively we would expect these recurrences to occur at later and later times as we add
degrees of freedom to the system. This might be observed by the fact that the initial conditions
we are interested in look very different from static equilibrium, especially thermodynamic
equilibrium. We wouldn’t expect to see all of the air in a room collect itself in one corner,
even if this was the initial conditions. We therefore expect these recurrences to happen at
astronomically large timescales. Interestingly some powerful results can be obtained when

one considers the average recurrence time or the average spacing of recurrences. Let ¢,
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denote a sequence of recurrences labeled by the index n. Then we wish to understand the
quantity [65]],
.ty
T (u,A) = lim —. (2.51)

n—oo M

It turns out that we can provide a lower bound on this average recurrence time, Contribution
2 [31],

L exp (ﬂ> < To(u,A), (2.52)

2e? eTrjw?]
where we say a recurrence occurred if 1 — F'(¢) < A with a time width of length u. Again
we see the purity of the diagonal ensemble as the key ingredient in our expression. This
expression matches the scaling of previous estimates in the literature [65,/66].

In this subsection we have demonstrated that purity of the diagonal ensemble Tr [w?] is a
suitable diagnostic for the emergence of static equilibrium for sub-systems of a total system,
and also indicates the robustness of that equilibrium against recurrences. Despite this success
w looks nothing like the usual ensembles of statistical mechanics, so our next task is to relate

our w to the ensembles of statistical mechanics.

2.2 Jaynes’ principle

So far we have justified why we expect equilibrium to emerge, first for individual observables
and then for sub-systems of our quantum system. Our equilibrium expectation values are

given to us by the diagonal ensemble,

(A(co)) = (A), = Tr [Aw] . (2.53)

In practice w isn’t something easy to work with, and it is desirable to derive, under reasonable
assumptions, a potentially easier to use ensemble in it’s place. To do this we employ a
method found in a number of statistical mechanics textbooks, Jaynes’ principle of maximum
entropy [11,/12,/67]]. This is sometimes also referred to as Gibbs algorithm. This is a method
of statistical inference. Using limited information about our state, like the energy, we pick
the most unbiased ensemble to use in place of w. We will address when we can substitute
these maximum entropy ensembles in place of w in the next section.

In practice we want to take
w=Y_|el’| Ex)(Exl. (2.54)
k
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and replace |c;|? with probabilities that are analytically easier to work with. Jaynes’ principle
of maximum entropy states that the most unbiased distribution we can assign to |cy|? is the

one which maximizes the von Neumann entropy [68]],

Sun(p) = —kTr[plnp] | (2.55)

Plugging in w gives us the Shannon entropy,

S(w) =~k Y |ex|*In fc . (2.56)
k

We want to maximize the entropy in equation [2.55| under several constraints C',, = 0 given to
us by the time independent properties of p. We will throughout this document setk = kg = 1,
where kp is the Boltzmann constant.

An instructive way to approach this problem would be to first include all possible con-
served quantities as constraints as our state p will keep these properties for all time. Since
our eigenvalues are non-degenerate the set of conserved quantities can be listed as () =
| Ek) (El
introduce the ensemble A, where Ay, = pj, is a diagonal density matrix in the energy eigen-

, which are projectors onto the subspace of individual energy eigenkets. We will

basis like w. A will serve as the ensemble we recover from the maximum entropy arguments.
We will look for an unbiased distribution p; such that it obeys the constraints given to us by
our pure state p. From here we can cast our constraints for A in the following way,

Then as usual we introduce a Lagrange multiplier for each constraint ;. Then we employ
the Lagrange multiplier method to maximize the entropy under these constraints. Construct-

ing the Lagrangian function,

dN
LA X)) = Sun(A) + ) AC. (2.58)
n=1

We will now arbitrarily set \,, = 0 if |c;|> = 0. Then performing the optimization we recover
the probability distribution,

D= ML (2.59)

or equivalently A\, = 14In p. This case however is quite trivial, since we have the constraints

of pr = |cx|? giving us straightforwardly that
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A=w. (2.60)

So the diagonal ensemble is the maximum entropy ensemble given to us if we include every
single projector onto the energy eigenbasis as our conserved quantities. Interestingly the
fact that constraints C,, are linear functionals of the density, one can use Jaynes’ principle to
coarse grain our constraints, giving us a number of different possible ensembles [[69]].

We can now move onto more familiar ensembles. Let us assume we still have a non-
degenerate Hamiltonian and the energies F,, are ordered by their indices m such that F,,, <

E,,+1. Then let us assume we have some state p which has support only on the subspace,

E
Tos = span{|Ex)lu — 6 < =% <}, (2.61)

where ¢ is assumed to be some small quantity. This may be approximately satisfied by p.
Then can set p, = 0 if |Ey) ¢ T,5. Performing the Gibbs algorithm then recovers the

microcanonical ensemble [11}/12],

|
Te=g 2 |ENEl | (2.62)

EkeTu,é

Here ) = dim7, ;. This gives us the usual starting point for statistical mechanics, that
we assign equal probabilities for energetically accessible microstates p, = ﬁ, where M
corresponds to the number of energetically accessible microstates. One can for example

recover the Boltzmann entropy by subbing this state into our definition of the entropy,

S =kplnQ. (2.63)

Another important ensemble is recovered when we instead look at a constraint of just the

expectation value of energy,

(E) = Tr[pH] = (Y[H|¢). (2.64)

Note that this is usually considered in the context of a system connected to a large bath of
energy, but here we treat it again as an isolated system. Completing the optimization problem

we find that,

A

= L 2= e (2.65)
k

This is the standard canonical ensemble or the Gibbs state and Z is the partition function. The

Lagrange multiplier /3 is set by demanding the energy of the canonical ensemble matches our
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initial conditions,
(V|H[p) = (E) = Tr[pgH] . (2.66)

We can also rewrite our ensemble in any basis as,

|y —BH
pB:Eeﬁ,Z:Tr[eﬂ] : (2.67)

For a great review of it’s properties see [[70]]. Inserting this state into our definition of entropy

gives,
S =kglnZ+ B(E). (2.68)
Interestingly this tells us that,
0S
— = 2.69

and from thermodynamics we can then identify = =, where 7' is temperature. Substituting

1
T b
this in, and re-arranging we can write,

—TnZ = (E)-TS§, (2.70)

which again referencing thermodynamics allows us to identify the free energy,

F=-ThhZ 2.71)

Interestingly the microcanonical ensemble and the canonical ensemble can give equiva-
lent local expectation values under some assumptions. For example keeping the system size
of S fixed and growing the bath one can write for translationally invariant locally interacting
system [[71-74],

lim || TI'B [Tuﬁ] — TI'B [pﬁ] ||1 =0. (272)

NBHOO

Despite 7,5 # ps we can recover equivalence of these ensembles for subsystems. A notable
counter example where the ensembles are not equivalent are long range interacting systems
[75-79]. This identification is similar to the conclusion that p(t) # w but they become
identical for some subsystem as you grow the bath to an infinite size. Now that we have
unbiased guesses to approximate the properties of w, our next task is to investigate when

these guesses give a correct approximation.
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2.3 From the diagonal ensemble to statistical mechanics

In the last section we have used Jaynes’ principle of maximum entropy to derive the most
unbiased ensembles we could based off of limited information about our state. The problem
we face now is understanding when we can compare the diagonal ensemble w with an ensem-
ble from statistical mechanics. Despite pz being the most convenient to use analytically, we
will for now compare w to the microcanonical ensemble 7, ;. This is due to the fact that we
are dealing with an isolated system, and we expect p(t) to have the majority of it’s support
around some energy density u [11,[72]. A possible justification for this exists again from
results relying on concentration bounds. Consider a Hamiltonian which is a sum of n terms,
where each term acts at most on k terms. We also impose that the Hamiltonian be written
a way where the norm of such terms is less than or equal to unity. Let m be the maximum

number of neighbors of any local terms that interact. If we consider a product state p with
energy (F) = Tr[pH] and some real number a > 4/ %’”2) then [80],

'na2

na? _
Tr [pHZ<E)+na] < e 9 and Tr [pH§<E>—na} <e ®(m2)7 (2.73)

where II ; is the projection onto the subspace of eigenvectors with energy eigenvalues £, >
f. While this statement doesn’t give us the distribution of excited energies, it at least bounds
the type of distributions we might be interested in. Energy excitations too far from the mean
(E) are suppressed like the tails of a Gaussian distribution. See [81] for a discussion on the
distribution of |cy|? terms.

The goal now will be to understand why we can compare w to 7, 5. It is probably obvious
already that trivially w # 7,s. So let us return to our arbitrary observable A. We then have

our infinite time average value,

A(o0) =Y el App, (2.74)
k
and the microcanonical average,
1
Tr [1y5A] = o > A (2.75)
Ep€Tys

In the following subsections we will present two potential explanations for why these two
expectation values should be equal. Note that if we define a full set of observables for some
subsystem .5, and these expectation values are identical, this would constitute equivalence of

ensembles for the diagonal ensemble and the microcanonical ensemble,

Trp [w] = Trp [Tus) - (2.76)
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2.3.1 The strong eigenstate thermalization hypothesis

The eigenstate thermalization hypothesis is a generalization of arguments seen in quantum
chaos. Chaos in the quantum regime was initially studied largely in the single particle regime
and reveals that chaotic Hamiltonians can be successfully treated as random matrices [33},36,
37,82-96]. If we expressed an observables in the energy eigenbasis of a random Hamiltonian

we would in general recover the elements [1],

where we have kept the convention of our Hilbert space being d”, A= dLN Yo /lmm and
R, » 18 a random variable with zero mean and unit variance. Applying this equation to our

definition of our static equilibrium expectation value, we get,

A(00) = Y lew[ Ay = A. (2.78)

This however should feel insufficient to the reader, if we treat our equilibrium problem
purely with equation then A(oo) is independent of energy and temperature. To remedy
this shortcoming of random matrix theory the eigenstate thermalization hypothesis (ETH)
has been proposed [1,8},9,97-100],

A = A(E)opp +e PR F(E )Ry | (2.79)

Here £ = ZmtEu ig the average energy, o = E,, — E,, is the frequency, A(E), f(E,«)
are smooth functions of their arguments and S(F) is the thermodynamic entropy. This gives
us a an expression where the diagonal entries of our observable A is a smooth function of
energy up to small corrections, while the off-diagonal elements are exponentially suppressed
and behave similar to the off-diagonal given to us by random matrix theory given in equation
In fact equation and equation [2.77] give identical predictions if one focuses on a
small enough region of the spectrum. This equation isn’t exact for finite systems but for the
systems we are interested in for this document we expect that equation [2.79| will hold in the
thermodynamic limit.

An interesting thing to distinguish is the diagonal and off-diagonal statements of ETH. If
we look again at our pure state dynamics,

~

(A(t)) = Cnn Ay e Em =Bt (2.80)

m,n
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Assume non-degenerate energies we can conveniently split our dynamics up,

(A) = leml*Amm + Y Cmn A e Fm=F0" (2.81)
m m#,n

We can then identify important parts of equation[2.79] Firstly the diagonal ETH which applies
to the time independent part of our pure state evolution tells us that flmym is a smooth function
of energy up to small corrections. These corrections are exponentially suppressed by the
thermodynamic entropy S(E). The second part or the off-diagonal ETH statement tells us
that the off-diagonal elements of our observable flmﬁ are all suppressed exponentially by
the thermodynamic entropy. The off-diagonal ETH plays an important role in suppressing
fluctuations about equilibrium. Let A(co) = 0, then the fluctuations about equilibrium can

be captured by 0% with A(co) = 0,
o = lim = [ (A(t))%dt. (2.82)
Assuming the model obeys the off-diagonal portion of ETH one can show that [1],
o4 < 1;1113;( | Ay |? o e~ SE) (2.83)

This observation aligns quite nicely with our analytic bound given in equation To see

this it is interesting to introduce the Rényi entropies [68]],

Sa(p) = ! InTr[p*] | (2.84)

—

where we recover our von Neumann entropy when,

lim S, (p) = Sun(p)- (2.85)

a—1

From here we can rewrite our bound in equation with the second Rényi entropy,
o < ||A|2Tr [w?] = || AP 2w (2.86)

We expect both Sy(w) and S(E) to be extensive in the number of lattice sites N [39, 101~
103], giving the same scaling between the ETH ansatz and the analytical argument relying
on the diagonal ensemble.

The form in equation has been numerically verified in a large range of models [1,
21,99,/104-126] and is expected to hold in generic non-integrable models. This ansatz is

supposed to hold for relevant observables, which is usually taken to be local observables,
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that is, observables with support on some subsystem of the lattice. There is some evidence
that this might be extended out to as much as half the total system size. Despite a large
body of numerical evidence there is no analytical proof of the ansatz for any class of models.
There has however been some progress. For example one can bound the off-diagonal of the

observable’s elements as [127,(128]],

’Em — En‘ _|Em—En|-R
Y ) gk
R Y
where g, k and R are constants. This bound however falls quite short of the e~
by equation There has also been advances in the direction of the diagonal portion of the
hypothesis [[129,/130].
Returning to the single observable A, we can see agreement now between A(oco) and that

(En|A|E,)| < (2.87)

S(E) predicted

of the microcanonical ensemble. Let us again assume our pure state |¢)) has the majority of

it’s support on some microcanonical window defined by v and ¢, then we see that,

A(o0) =Y el Ay = A(E), (2.88)
k
and likewise the microcanonical average is,
Tr [Tu,éA] ~ A(E). (2.89)
In fact it can be shown that [9],
. 1 _
A(oc) = Tr [Ap[g] +0 (N) + O(A?) + Qe 5BV, (2.90)

where A is the quantum uncertainty in our energy,

A= \/Z 2B — ()2, @91)

and we have that Tr [wH] = Tr[pgH]. We can see that ETH is a sufficient condition for
thermalization from unitary dynamics. It turns out that thermalization is not only sufficient
but it is necessary, that is, thermalization implies ETH and ETH implies thermalization [131]].
An interesting consequence of equation is the following. Let us partition our system
again into our subsystem S and the bath B. We will assume we have some complete basis of
operators An on S which satisfies equation Then assuming |Ey) € T, 5,

i || Tep [|E)ER]) = Tep (1] || = 0. (2.92)
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This tells us that on subsystems of our total system, the energy eigenstates are identical to the

microcanonical ensemble. Assuming we have equivalence of ensembles we will also have,

|| Trp [| Ex)(Ex|] — Trp [ps] || = 0, (2.93)

lim
N—o00
where we have assumed that Ej, = Tr[H pg]. This also leads us to an interesting conclusion.

Assume Ej ~ Ej, then the local statistics of these energy eigenstates are also identical,
Jim [ Trp [| Be) (Bel] = Trp [| 2 (B[] || = 0. (2.94)

These three observations lead us to identify a new ensemble, the eigenstate ensemble | Ey. ) ( Ey|

that, similar to 7, 5, encodes the equilibrium properties of our subsystems.

2.3.2 Eigenstate typicality

The previous section discussed the strong version of ETH, namely that all eigenstates obey
the hypothesis. We can make analytic progress by relaxing this statement to typical or the
vast majority of eigenstates obey this hypothesis. Doing this is sometimes called the weak
ETH or eigenstate typicality. Under certain assumptions a general expression for the weak
ETH has been derived and used for a variety of results [49,|132,/133]]. The statement is the
following, take 0 < a < D+r1 where D denotes the dimension of our lattice. Let H be a
translation-invariant, non-degenerate Hamiltonian and let p be an equilibrium ensemble such
that [p, H] = 0 with a finite correlation length £. A state with finite correlation length means

that the expectation values of spatially separated observables are bounded by,

PN ~ ~ ~ ~ _d(A,B)
max [(AB) — (A)(B) < [|Alll|Blle™ <} (2.95)

where d(/l, B ) is the distance between the lattice support of the two observables. Then taking
A to be some observable with support on some connected region of at most N sites we
have [49],

Prp,c, (\(Ek]/l\Ek) Ty [p/i] | > 5) < exp (—caND%lg—D%) , (2.96)

where c is some constant and Prg, ¢, is the probability of sampling the energy eigenstate
| Ex) from the ensemble p. This equation tells us that the probability of finding an eigenstate
expectation value of our observable A6 away from the ensemble average is exponentially

suppressed by both ¢ and N. Then as we approach the thermodynamic limit it should be

24



PHD. THESIS - JONATHON RIDDELL; MCMASTER UNIVERSITY - PHYSICS AND ASTRONOMY

increasingly rare to see energy eigenstates sampled from p giving expectation values of A
which are far from the ensemble average. While it is just a bound, the dimensional depen-
dence of equation is interesting, and further work is required to find what the optimal
scaling would be for this bound.

While equation|2.96|should not be mistaken for the weak ETH, it does single out a class of
models where the eigenstates on average do satisfy the condition of ETH where expectations
of an observable in the energy eigenbasis are identical to the ensemble average given to us by
Jaynes’ principle in statistical mechanics. It can be further used to make a statement about the
equivalence of our eigenstates and the ensembles of statistical mechanics on subsystems. Let
us assume we are in a system that satisfies equation [2.96] We can then bound the probability

of sampling an energy eigenstate far from the local description of an equilibrium ensemble p,

Prigyyep (|| Tep [|Ek) (Exl] = Trg [p] |1 = 6), (2.97)

Using the union bound we have that,

< dim(S)Prig,e, (rgg;; Tr [A (Trp | Ex)(Ex|] — Trg [p])] > 5) , (2.98)
< dim(S) exp (—cS N DF ¢ DHT), (2.99)

where dim(S) is the dimension of the subsystem. Putting everything together this tells us
that,

Pris) e (1T [| Bk} Eil] = Trs [p]]], > 6) < dim(S) exp (—eNPTE PiT), (2.100)

where our ensemble might be p = 7, 5. This demonstrates that with typicality arguments
alone, our eigenstates can be shown to have a very high probability of being locally identical
to our ensembles from statistical mechanics.

Another interesting thing to investigate would be the average distance between the re-

duced density matrices,

> okl Trp [ ) (Ex|] — Trg o] |1 (2.101)
k

We can bound this in the following way. Let us define Ay, = || Trg [| Ex) (Ex|] — Trg [p] |]1,

> el T (| E)(El] = Trp (o] [ =Y prale (2.102)
k k

25



PHD. THESIS - JONATHON RIDDELL; MCMASTER UNIVERSITY - PHYSICS AND ASTRONOMY

We partition our sum into two sectors, let A = 10
NDFI
ZPk,kAk = Z Pk Ak + Z Pre kD, (2.103)
K AR<A Ap>A
In N
SK— + max Ay Y pi, (2.104)
NTH Ak>A Ak>A 7
In N i 1 . D
< K—— + dim(S) exp (—cANDFE D1, (2.105)
N
In N 1\
< K—" + Cdim(S) (—) . (2.106)
N N
Then this gives us,
__D_
In N 1\« "
> il Teg [| Ee)(Bel] = Trp [o] | < K—— + C dim(S) (N) . (2.107)
1

k

where K, C, c are all constants independent of the system size. So we see from these two
derivations that in sufficiently large systems, it is extremely unlikely that we sample an eigen-
state that does not obey the diagonal portion of ETH. In particular this probability vanishes in
the thermodynamic limit. We also have that the average distance between all Trg [| Ey) (Fk|]

and Trp [p] decays to zero in the thermodynamic limit.

2.4 Volume law scaling of entanglement

The von Neumann entropy given to us in equation [2.55] can also tell us important properties
of the state, like purity and entanglement. Let us briefly recall some properties of S, . We
will not list an exhaustive list but focus on the important concepts for our discussion. For a
more complete discussion see [68}/134, 135].

Firstly, S,n(p) = 0if and only if p is a pure state, making it a test that reveals the purity

of our state. Therefore,

Sun (|Ex)(Ex|) = 0. (2.108)

As we have mentioned previously, it is maximized as,
Syn(I/dY) = Nlnd, (2.109)

for the maximally mixed state. Note that this maximal value scales like the number of lattice

sites in our system or the volume of our system. We call this behavior a volume law scaling
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or refer to the entropy as extensive. S,y is invariant to a change in basis such that S,y (p) =
Sun(UpU T), where U is a unitary matrix. It is also additive for independent systems,

Sun(ps @ pp) = Sun(ps) + Sun(pB)- (2.110)

If our state is pure and our two subsystems are independent, we say they are unentangled.
These states are also sometimes called separable. If the state is not separable however we
say that the subsystem S' is entangled with the bath B. The entanglement entropy is a way
of measuring how much entanglement is present between a bi-partition of a system in a pure
state, and it is given by,

Sun(ps) = Sun(pB)- (2.111)

The more mixed pg is the more entangled the subsystem and the bath are. This obser-
vation has interesting consequences. The von Neumann entropy is sub-additive for systems

with entanglement,

Sun(p) < Sun(ps) + Sun(ps). (2.112)

In general we expect the thermodynamic entropy to be extensive [|1,/11,|12]], that is, it
scales with the system size,
Sun(Tus) o< N. (2.113)

Using the sub-additive property of the von Neumann entropy, we therefore expect that the

subsystems entropy must also scale like the system size,

SvN(TvN) S SUN<TI'S [TUN]) + SUN(TI‘B [T’UN]) XX Ns + NB. (2114)

We can now link this back to ETH. We expect that for individual eigenstates satisfying

eigenstate thermalization, that,

Trp [| Ex) (Ex]] = Trp [Tus) (2.115)
meaning that the entanglement entropy of our energy eigenstate should follow a volume law,

This observation is a common test for eigenstate thermalization and has been confirmed in
a wide variety of non-integrable models [[1,|117,136-139]]. This is contrary to the properties
of the ground state energy eigenstate of gapped quantum systems, which has entanglement

entropy grow like an area law [140-142]. Models not obeying ETH can also see volume laws
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in the entanglement entropy of the eigenstates, however these are only observed for vanishing

fractions of the system size Ng/N [16,/117,/143,144] while ETH models continue to support

this volume law for non-vanishing fractions of Ng/N. Due to limitations of numerical studies

it is unclear if this volume law holds for subsystems making up half of the system Ng/N =

1/2. Some evidence suggests that it does hold for half the system to leading order [[136].
Since we expect that Trp [w] &~ Trp [7,,4] it is also expected that [[137,/145-151]],

Sun(Trp [p(t)]) o< Ng , for sufficiently large t. (2.117)

In fact, models obeying ETH starting from our of equilibrium conditions have linearly in-
creasing entanglement entropy between subsystems [21]. Interestingly random pure states
are nearly maximally entangled on average [152].

2.5 Notable counter examples

In this section we will discuss classes of models that do not obey eigenstate thermalization
and in most initial conditions, we do not expect the system to relax it’s observables to tradi-
tional thermal expectation values. The classes of models we will cover here are the so called
integrable models. Despite there being some variety to what these can look like we will focus
on free fermionic models in the first two subsections and in the third we will briefly make a

note of two interacting classes of models which also do not satisfy eigenstate thermalization.

2.5.1 Non-interacting extended models

In this subsection we will focus on free fermionic models and comment briefly on bosonic

models at the end of the subsection. We will consider free fermionic models of the form,

H=> Mjflf; (2.118)
2

where M is the co-efficient matrix that is real symmetric and f; is a fermionic annihilation

operator acting on lattice site j that obeys the canonical anti-commutation relations,

{fms Fu} = {5 A3 =0, LS5 fa} = 0. (2.119)

This model can be extended to include terms which include pair creation and annihilation

terms of the form,
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while still being mappable to free, non-interacting fermions. For simplicity we will keep
B = 0 and mention studies where B # 0. Our model Hamiltonian is easily solved. Since M

is real symmetric we can decompose it into,
M = ADAT, (2.121)

where A is a real orthonormal matrix and D is a diagonal matrix with entries of the form

Dy, 1, = €. This transformation gives us new fermionic operators,
L
de =Y Ajifs, (2.122)
j=1

which also obey the standard canonical anti-commutation relations,

{dp,d,} ={d!  d} =0, {d  d,}=05mnn (2.123)

m’'n

The interesting aspect of these models is that they have an extensive number of conserved
quantities. To see this, consider the Heisenberg equation,

d - A
—A=1[H, A 2.124
SA=ilH, A 2.124)

This equation tells us that if we have [H, 121] = 0 then the observable A has it’s expectation

value conserved in time. In our free fermionic Hamiltonian we can see that,

[H,dld] =0, Vk. (2.125)

If there are IV total lattice sites then there are N conserved quantities in equation [2.118 We

can always write the time evolution of a fermionic operator in this class of models as,

Fn) = () fom, (2.126)
k
where a; ;(t) is the single particle propagator given to us by,
{50, fa} = ama(?). (2.127)
In this section we will work with models which are extensive,
1
Ajp ~ —= (2.128)

\/N’

which tells us that we have delocalizing dynamics such that [31,49,56].
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Amn(t) = 0ast — oco. (2.129)

Equilibration and thermalization have been studied for this class of models as well. The
eigenstates of our free Hamiltonian in equation [2.118are Gaussian states [54},/153]], meaning
they are fully described by their two point correlation functions,

(f1 fa) or (dldy). (2.130)

This is due to the eigenstates being constructed from the vacuum state |0) by our fermionic
creation operators d,Tc. Then it is easy to see that one can apply Wick’s theorem [[154,155] to
reduce higher order correlation functions to products of two point correlation functions for
these states. The thermal ensemble pg = %e‘ﬂH also has this property [155]. Interestingly
even if one starts with an out of equilibrium state that does not have this property, and the
model has the capacity for delocalizing transport, then most initial pure state p will relax to
a state with Gaussian statistics [54,55]. We can therefore focus our attention on two point
correlation functions when we study equilibration in this class of models.

With delocalizing dynamics and an initial pure state with decaying correlations in space

one can show that [56]],

(LS} = O Falt) e ~ ey 25— 00, @.131)
where « and s are constants and
0 fu®oe = Tim = [ (10 fult)l. 2132)

T—00 T 0

Similar results were found in [55]]. One can also study the probability distribution given

to us in equation [2.14] and for example bound it’s moments as, Contribution 2 [31]],

q
Ky < (q02%> , (2.133)

where ¢ and v are constants and we assume the single particle spectrum is generic. This gives

the concentration bound,

Pr [[(f, () = (fF, fa(00))| > 6] < 2¢ x exp (— ’ \@) (2.134)

ec?

So we see that analytical results in this class of models are much more accessible, strong

statements on the decay to equilibrium are possible. Now let us explore what equilibrium
looks like.

30



PHD. THESIS - JONATHON RIDDELL; MCMASTER UNIVERSITY - PHYSICS AND ASTRONOMY

Due to the presence of the conserved quantities we need to instead derive a maximum
entropy ensemble that takes these symmetries into consideration, to properly reflect the equi-
librium state. Following Jaynes’ principle we can arrive at the generalized Gibbs ensemble,

1 T 9
pﬁj — Ze—ijl BJQJ’ (2135)

where we have deliberately kept r and (); arbitrary. For any given problem r is the number
of relevant conserved quantities to conserve and (); the set of relevant conserved quantities.
In general, if we have a sufficiently well behaved initial condition, the two point correlation
functions relax to the generalized Gibbs ensemble defined by [[14} 19,22, 55./56,/156],

Qi = d! dy., VE, (2.136)

giving us N total conserved quantities. This requirement can be relaxed for example in
translation invariant systems, where the number of conserved quantities required may be
reduced by instead considering current operators as our charges [55],

1 1 2mly
L T , . 2RW gt
Q; = 7 Ex faferj +he= 7 El cos ( N ) d)d;. (2.137)

If we assume the initial state has exponentially decaying correlations with length &, then we
only have » ~ £ non-negligible charges or values of (Q;(t)) = (Q);) for the state. While
these results do not depend on a generalized form of ETH directly it’s possible to derive a
generalized weak ETH for such models when they are translation invariant. It can be shown
that eigenstates chosen at random give identical expectation values to the generalized Gibbs
ensemble in the thermodynamic limit [18,/157]]. Let us write the charges as,

Q; = qi(k)dldy, (2.138)
k

where k = 27j /N, for 1 < j < N and we have deliberately chosen to work in one dimen-
sion, analogous results hold for all dimensions d,

1 1
T -
(Exl fiuful Ex) = 5- /dk1 ST (2.139)

The above equation tells us that energy eigenstates of translation invariant Hamiltonians of
the form given in equation have expectation values which agree with the Generalized
Gibbs ensemble. These statitics are generalized Fermi-Dirac statistics. Note that the number
of conserved quantities in this expression doesn’t need to be extensive.

A large body of work has also studied the the entanglement entropy of these free models.

Both analytical and numerical work has shown a volume law scaling for small subsystems.
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In particular for subsystems such that N,/N — 0, a volume law is observed [16,(117,143,
1441|158,/159]. If we assume the model is translation invariant and let Ng/N = 1/2 and take
N — oo, it is observed that the average entanglement entropy of the energy eigenstates is no
longer maximal [143],

lim 2(S)/(L1In2) ~ 0.5378.. ., (2.140)

L—oo
where the maximal value would have been unity and (S) is the average entanglement entropy
of all eigenstates for a bipartition. It can be shown that this average entanglement entropy
can be bounded above and below by [143],

Ngln2(1—&) < (S) <Ngln2—£§ (2.141)
N )~ - 2N’

from this bound it easy to see that the first term on the upper and lower bound is not only
the volume law we expect from chaotic eigenstates, but is the maximal value. The correct-
ing terms vanish if we keep Ng fixed and take the system size to the thermodynamic limit,
however they are non-negligible when Ng /N is finite.

It is also interesting to explore how things change if instead of fermions, we study bosonic
models. Here we present a proof of generalized eigenstate typicality for such models. The
derivation is similar to [18,|157]]. First consider a Hamiltonian in one dimension (similar
results hold for all d),

H=> hy;blb;. (2.142)
i,J

Where b, is the bosonic annihilation operator and we assume the coefficient matrix / is trans-

lation invariant. These operators obey the commutation relations,

(b, bl] = 6y, (2.143)
(b, by] = [bf, b] = 0. (2.144)

The Hamiltonian A can be diagonalized by introducing new momentum bosonic operators

of the form,

. 1 b
dy = mze’fﬂbj. (2.145)

J

Where k = Q’TT", n =1,2,... L. Itis easy to see that as . — oo the possible values of &k

sit on a dense set in the interval (0, 27). Which recovers the Hamiltonian,
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H=>"epddy. (2.146)

So we see that the eigenstates are completely defined by their distribution of momentum
eigenmodes in reciprocal space with (JL@Zk) = 0,1,2.... Defining the correlations in real

space we write the occupation matrix,

(bf b)) = = Z di dj,) e (2.147)

We can partition the space into a number of cells which contain g > 1 points and require the

cells have enough points such that,

1 1
— < Ak € — 2.148
v < <N, (2.148)

Where N, is the size of the individual subsets of points in k space. This allows us to ap-
proximate each cell with a chosen value of e**(™~") a2 ¢¥(m=7) where 7 is the label for the
subsets of k£ space. Then we may write,

(b)) = % 3 npeitetmem, (2.149)

Where n,. is the density of bosons in the cell r. Then, consider charges written as,

= qixd}dy. (2.150)
k

Such that they are well approximated by,

Qi=9 nmtir (2.151)

We wish to count the number of eigenstates that might be fixed by these constraints. So
we must figure out how many ways one can distribute gn, bosons in g places. Note that,
Ny € [0, 00). The counting problem is the same as the traditional derivation of Bose-Einstein

statistics [11]]. The total number of ways of distributing the bosons is,

(n.g+g—1)!
mg) = — = 2.152
So the total number of states is,
T - 1 r '
W= || "9+9 z(”gfg') (2.153)
n.g'( n.g!(g)!
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We then maximize the function below with the constraints of our conserved quantities,

air (mw — Z A\ig Z nq) =0 (2.154)

Then applying the Stirling approximation and reorganizing gives,

1

T g 1 (2.155)

n,

which is a generalized Bose-Einstein statistic. In the thermodynamic limit the summation

can be expressed as an integral,

oo 1 e'k(m—n)

So we see that bosonic systems satisfy this notion as well, that is, typical eigenstates
converge to this generalized Gibbs ensemble. It is interesting to note that 