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Abstract
Streamflow in Western North America (WNA) has been experiencing pronounced
changes in terms of volume and timing over the past century, primarily driven
by natural climate variability and human-induced climate changes. This thesis
advances on previous work by revealing the most recent streamflow changes in
WNA using a comprehensive suite of classical hydrometric methods along with
novel Deep Learning (DL) based approaches for change detection and classifica-
tion. More than 500 natural streams were included in the analysis across western
Canada and the United States. Trend analyses based on the Mann-Kendall test
were conducted on a wide selection of classic hydrometric indicators to represent
varying aspects of streamflow over 43 years from 1979 to 2021. A general geograph-
ical divide at approximately 46◦N degrees latitude indicates that total streamflow
is increasing to the north while declining to the south. Declining late summer
flows (July–September) were also widespread across the WNA domain, coinciding
with an overall reduction in precipitation. Some changing patterns are regional
specific, including: 1) increased winter low flows at high latitudes; 2) earlier spring
freshet in Rocky Mountains; 3) increased autumns flows in coastal Pacific North-
west; and 4) dramatic drying in southwestern United States. In addition to classic
hydrometrics, trend analysis was performed on Latent Features (LFs), which were
extracted by Variation AutoEncoder (VAE) from raw streamflow data and are
considered “machine-learned hydrometrics”. Some LFs with direct hydrological
implications were closely associated with the classical hydrometric indicators such
as flow quantity, seasonal distribution, timing and magnitude of freshet, and snow-
to-rain transition. The changing patterns of streamflows revealed by LFs show
direct agreement with the hydrometric trends. By reconstructing hydrographs
from select LFs, VAE also provides a mechanism to project changes in streamflow
patterns in the future. Furthermore, a parametric t-SNE method based on DL
technology was developed to visualize similarity among a large number of hydro-
graphs on a 2-D map. This novel method allowed fast grouping of hydrologically
similar rivers based on their flow regime type and provides new opportunities for
streamflow classification and regionalization.
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Chapter 1

Background

1.1 Climate Change and Streamflow in Western
North America

Changes to streamflow volume and timing have been widely reported for Western
North America (WNA) over the past century and are largely driven by human-
induced climate change and natural climate variability. Increasing trends in air
temperature in WNA have been observed since the 1960’s, with warming patterns
particularly strong in high latitudes and during winter (Hicke et al., 2022). WNA,
defined here as eleven American states (Washington, Oregon, California, Idaho,
Nevada, Montana, Utah, Wyoming, Colorado, Arizona, and New Mexico) and four
Canadian provinces (British Columbia and Alberta) and territories (Yukon and
Northwest Territory) that have hydrological regimes that are strongly affected by
alpine and/or cryosphere processes (Fig. 2.1). In WNA, warming climate has al-
tered streamflow regimes through a number of processes including: glacier wastage,
permafrost thaw, snow-to-rain transition and enhanced evapotranspiration. In ad-
dition, there are associated change to general atmospheric circulation the absolute
amount and timing of precipitation.

There is a diversity of flow regimes in WNA rivers and streams. Strong lati-
tude and altitude gradients influence temperature the disposition of snow and rain
throughout the year, whereas physiographic features such as the Cordillera have
fundamental controls on moisture transport and the presence of glaciers. Further-
more, in the northern reaches of WNA permafrost is widespread and its presence
strongly influences streamflow response.

Glacier mass loss in WNA has been the greatest globally since the 1960s
(Zemp et al., 2019), and the losses have strongly accelerated in the recent decades
(Hugonnet et al., 2021). Water derived from glacial wastage can provide important
compensation for reduced summer flows, as glaciated watersheds have subdued
losses during the late summer compared with unglaciated watersheds (Hodgkins,
2009; La Frenierre and Mark, 2014). However, this addition of water will decline
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as wastage continues, and (Moore et al., 2020) indicate that flows have already
passed peak water at watersheds with relatively smaller glaciated areas; indicat-
ing the buffering effect of glaciers will recede in the coming decades. Permafrost
thaw is accelerating and widespread in high latitudes of WNA (Smith et al., 2010),
and there is considerable evidence that this is changing streamflow regimes. Most
notably, significant upward trends in baseflow and winter flows have been ob-
served for major north-draining basins (e.g. Mackenzie and Yukon Rivers) this
is attributed to increases in groundwater associated with thawing permafrost and
enhanced recharge and subsurface connectivity through deeper flow paths (Aziz
and Burn, 2006; Walvoord and Striegl, 2007).

A more general phenomenon associated with warming is the snow-to-rain tran-
sition and earlier melt of snowpacks, which have been observed and is projected in
climate models across the entire WNA domain (Knowles et al., 2006; Bintanja and
Andry, 2017). Lower winter snow accumulation often results in a reduced spring
freshet (Adam et al., 2009) whereas increased winter rainfall and intermittent melt
led to more active winter flows (Musselman et al., 2018; Musselman et al., 2021).
Widespread earlier snowmelt in WNA is a primary cause for declines in summer
flows (Rood et al., 2008). In addition, while there is considerable spatial vari-
ability, annual precipitation decreased across WNA at the end of the last century
(Hicke et al., 2022). Reduced precipitation coupled with enhanced evapotranspi-
ration driven by warming collectively have caused the recent mega-droughts in
south-western North America (Williams et al., 2020) and droughts are expected
to occur with increasing frequency and severity in the coming century (Cook et al.,
2015).

Streamflow variability in WNA is strongly influenced by large-scale oscillations
in climate, including the Pacific Decadal Oscillation (PDO), Arctic Oscillation
(AO), Pacific North America (PNA), and El Nino-Southern Oscillation (ENSO).
Of these, PDO is considered the most influential as it is well correlated with
regional air temperatures and precipitation anomalies across WNA, particularly
during the cold season (Nov- Apr) and in high latitudes (Mantua and Hare, 2002).
The warm phase of the PDO typically coincides with anomalously warmer tem-
peratures in northwestern North America (i.e. western Canada and Alaska) and
anomalously dry periods in interior Alaska and the Pacific Northwest and wet
periods in coals Gulf Alaska and southwestern United States (Mantua and Hare,
2002). Typically, the cool and warm PDO phases shift every 20 to 35 years, with
the last complete phase of PDO was a 30-year warm phase from 1977 to 2006
(Hodgkins, 2009). This warm phase of PDO is considered a main driver of accel-
erated mass loss and permafrost thaw across WNA over the last several decades
(Brabets and Walvoord, 2009; Moore et al., 2009). In recent years, the regularity
of the PDO has substantially declined, with shorter periodicity and weaker ampli-
tude (Li et al., 2020). This reduced predictability and higher frequency shifts in
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the cool/arm phase act to complicate resolving patterns of change in WNA.

Changes to streamflow have significant ecological and societal impacts. For ex-
ample, in headwater streams of the Rocky Mountains, decline summer streamflow
when evaporative demand was greatest resulted in drought stress on floodplain
forests (Rood et al., 2008). Many species of salmonoid fish are highly sensitive to
stream thermal regimes, and declining flows and associated warmer water tempera-
tures in the Canadian Rocky Mountains and the Pacific Northwest have negatively
affected spawning, growth, and populations (Beechie et al., 2006; Battin et al.,
2007; Williams et al., 2015). From a societal perspective, increases in water avail-
ability in the north have expanded interest in hydropower generation as there are
numerous projects in the planning and development phase (Cherry et al., 2017). In
contrast, severe and persistent drought in the southwestern United States brings
massive challenges for existing water supply and governance systems. Water short-
ages for domestic, industrial and agricultural use have resulted in great loss of the
economy of US Southwest and threaten food security (MacDonald, 2010). In 2022,
Lake Meade was at its lowest level since it began filling behind the Hoover Dam in
1936. These are a small selection of the hundreds of challenges and opportunities
facing WNA water resources. Considering the complexity of water supply, man-
agement and governance systems in North America, and the litany of challenges,
understanding how climate change affects streamflow, and how we can detect it,
provides key information for adaptive management under an uncertain future.

1.2 Streamflow Hydrometrics
Streamflow hydrometrics are pre-defined indicators that quantitatively character-
ize an aspect of streamflow. There are hundreds of hydrometrics that have been
presented in the literature to describe the natural flow regime from various per-
spectives, induing flow magnitude, timing, frequency, duration, rate of change,
low- and high-flow events (i.e. floods or droughts), and seasonality (Olden and
Poff, 2003). Hydrometrics can be as simple as basic hydrograph statistics (e.g.
average, minimum, maximum and standard deviation) or more complex indices
such as Seasonality Index (SI, Coopersmith et al., 2014). Many hydrometric are
derivative functions of the hydrograph such as the slope of the Flow Duration
Curve (FDC) or the Baseflow Index (BI). There also exist combination hydromet-
rics that combine climate and flow information such as the runoff ratio, aridity
index and streamflow elasticity, all of which are useful tools that link catchment
response to seasonality and climate change.

Performing trend analyses on the time series of hydrometrics is one of the most
standard approaches to identify and measure changes in streamflow over a pe-
riod of interest. However, the natural drivers of streamflow variability and change
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(climate, ecosystem change) are complex and affect a variety of hydrological pro-
cesses in multiple ways (Hicke et al., 2022). Therefore, it is not practical to fully
describe the changes in streamflow with a single hydrometric, and a combination
of hydrometrics is typically required to encapsulate changes in the flow regime.
Subject to geographic variation in climate, geology, topography and vegetation
cover, flow regimes often show remarkable regional dependency (Poff et al., 1997).
Consequently, a hydrometric may be indicative for some flow regimes, but not
useful for others. For example, the timing of spring peak flows are sensitive indi-
cators of climate change in snow-dominated streams but are less useful for streams
that are rain dominated or with little snow accumulation. As a result, to effec-
tively understand changes to streamflow regime, a combination of hydrometrics are
needed which often requires careful consideration and knowledge of the physical,
hydrological and ecological processes in specific watersheds and regions. Further-
more, hydrometric combinations are commonly subject to information redundancy
through intercorrelation, which reduces the effectiveness of trend detection (Olden
and Poff, 2003). Selecting a subset of hydrometrics able to fully represent hydro-
logical change while minimizing intercorrelation remains a challenge across larger
scales.

1.3 Deep Learning in Hydrology
Deep Learning (DL) has been widely embraced in scientific research and appli-
cations in areas such as image classification and segmentation, signal de-noising,
time series prediction and forecasting, and information compression. Compared
with other disciplines, DL is relatively nascent in hydrological applications. How-
ever, there is considerable emerging research that explores the promise and fea-
sibility of DL in hydrological applications that can be grouped into three main
categories: 1) modelling dynamic hydrological variables, and 2) hydrological in-
formation extracted from remote sensing imagery (Shen, 2018). Two types of DL
approaches have attached considerable attention in hydrology: Long Short-Term
Memory (LSTM) and Convolutional Neural Networks (CNN). LSTMs provide a
powerful tool for time series prediction and forecasting and have been successfully
applied in rainfall-runoff modelling (Kratzert et al., 2018), soil moisture predic-
tion (Sungmin and Orth, 2021), and spatio-temporal gap filing of data (Ren et al.,
2019). With regards to CNN, there has been considerable success in image segmen-
tation and classification applied to extract vegetation (Kattenborn et al., 2021),
soil (Padarian et al., 2019) and snow coverage (Wang et al., 2020) information
from remote sensing products that act in support for hydrological modelling.

One of the most attractive capabilities of DL is automatic feature extraction
from raw data, making it particularly useful for ’big data’ analysis. Traditional
machine learning algorithms are limited as they take only human-crafted features
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as inputs, yet representative features are often difficult to design and require con-
siderable domain expertise (LeCun et al., 2015). In contrast, DL models are able to
automatically learn useful features from raw data using a general-purpose learning
procedure, which greatly reduces the time in data preparation. The limited re-
quirement for human guidance and intervention makes DL a data driven approach
that is particularly well suited for big data across multiple fields. Considering the
ever-increasing volumes of data in hydrology, DL is an exciting tool to advance
hydrological science.

DL networks are considered more interpretable than traditional neural net-
works, which hare often are referred to as ’black boxes’ as their inner mechanisms
are unknown and often hard to identify, quick and interpret. Consequently, this
limits their utility in processes-based research such as hydrology as they are con-
sidered to have a lower confidence (Shen, 2018). In comparison, DL networks are
referred to as ’grey boxes’ that can be probed, investigated, and visualized to dis-
cover what patterns are recognized by the networks (Shen, 2018). For example,
CNNs produce a feature map from every intermediate layers that offer useful in-
sights of what patterns have been recognized at each layer, and associating those
patterns that appear on feature maps with real-world objects in input images was
found helpful to probe, investigate, and understand internal learning procedures
of CNN models (LeCun et al., 2015). With improved transparency and the ability
to interpret within the network, the promise of DL in hydrology is considerable
across many aspects of the field.

1.4 Research Objectives
The objective of this thesis is to identify and attribute climate driven streamflow
changes across WNA using traditional methods and deep learning technologies.
More than 30,000 annual daily hydrographs (ADHs) form 700 undisturbed Water
Survey of Canada and United States Geological Survey were gathered representing
the breadth of WNA flow regimes. While there have been smaller-scale or country-
specific investigations of trends in flow regimes within this domain (Lins and Slack,
1999; Zhang et al., 2001; Burn and Hag Elnur, 2002; Dery and Wood, 2005), the
most recent analysis that covered the entire domain was published 17 years ago
(Stewart et al., 2005). Considering the acceleration of climate change in WNA
(Hicke et al., 2022) and the more frequent phase changes of large-scale elections
(i.e. PDO, Li et al., 2020) there is a pressing need to revisit this region as a whole
to evaluate the shifts in streamflow regimes. Moreover, the expansive nature of
this data allows for the application of emerging DL models to detect streamflow
changes.

This thesis consists of three distinct chapters that are written as journal manuscripts.
In Chapter 2, a novel DL-based embedding technique was developed to visualize
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the similarity among the large number of hydrographs. Conventional methods of
visualization similarly among time series (e.g. cross correlation matrices) are im-
practical and intractable for big data due to the high computational demand and
challenge of pattern recognition and interpretation of results. In this chapter, I
develop a novel method that integrates the state-of-the-art embedding technique,
t-SNE, with a DL autoencoder. This approach provides and efficient and intu-
itive way to visualize similarity among the large number of ADHs, as the t-SNE
projected the ADHs on to a 2D map where similar AHDs were grouped based on
similarity in the flow regime. Furthermore, the original t-SNE was non-parametric
and unable to provide parametric mapping from data space to t-SNE latent space
(Maaten, 2009), which limited its ability to project new data on to existing t-
NSE maps without retraining, limiting the utility in hydrological applications. To
address this challenge, I used an autoencoder (an important member of the DL
family) to approximate the non-linear mapping of t-SNE. This merging of t-SNE
and autoencoder is a new parametric technique for embedding hydrograph data.
Practically, incorporating this with clustering techniques, t-SNE map can facili-
tate classification and regionalization of streamflows and watersheds and benefit
hydrological prediction and also be used to identify redundancy in hydrometric
networks.

In Chapter 3, the streamflow changes in WMA over the last 43 years (1979
to 2021) were examined using classical trend analysis methods. Trend-Free Pre-
Whitening (TFPW) Mann-Kendall test (Yue et al., 2002) was implemented with 55
annual-based hydrometrics that characterize streamflow from perspectives of flow
magnitude, timing, duration, frequency, rate of changes, seasonality, and high- and
low-flow events. As changes in streamflow have considerable spatial variability, the
WNA domain was divided into six hydro-climate regions including Northwestern
(Alaska, Yukon, Northwestern Territories, and northern BC), Canadian Rocky
Mountains (CRM), U.S. Rocky Mountains (USRM), Coastal Pacific NorthWest
(CPNW), Coastal Pacific Middle West (CPMW), and Southwest (Arizona, New
Mexico, and southern California). Hydrometric trends detected from individual
streams were synthesized on the basis of the sub-regions, and the changing patterns
of streamflow for the six sub-regions were reported separately. In addition, grid-
based trend analysis was performed for air temperature and precipitation collected
from ERA5 reanalysis product (Hersbach et al., 2020) across WNA over the same
observation period. The link between changing climate and hydrometric response
for each region provided new insights into the attribution of hydrometric changes
regional scales. A comparison of glaciated and non-glaciated streams in the regions
of WNA was also completed. A dashboard app is provided to allow readers to
further explore the dataset.

In Chapter 4, a DL-based approach was proposed to automatically extract fea-
tures from ADHs and apply them to investigate changes in streamflow. DL’s
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exceptional ability to learn features from raw data provides and opportunity to
explore new concepts in hydrology and, perhaps, ’see the unseen’. Furthermore,
the superior interpretability of DL networks offers new opportunities to explore
the physical meaning of machine-extracted features. In this chapter, Variational
AutoEncoder (VAE), a relatively new DL model, was developed and trained to
extract Latent Features (LFs) from ADHs. LFs are considered machine-learning
hydrological features (analogous to machine determined hydrometrics), and once
extracted trend analysis was applied on the LFs. Spatial patters of trends in LFs
were compared with those of the hydrometric produced in Chapter 3, and new
patters of streamflow change revealed by the LFs are highlighted. Interpreting
and understanding the hydrological implications of the LFs are at the core of this
study. LF were related to classical hydrometric using Spearman rank correlation
to establish how LF were related to the changes observed in Chapter 3. A key com-
ponent of VAE, the decoder allows ADHs to be reconstructed form any given LFs,
which I demonstrate is an effective way of identifying the hydrological implications
of LFs and what changes are expected to occur in the hydrographs for different
regions. This research is a pioneering application to design VAEs that suitable
for streamflow data and is a promising DL-based approach for fast detection of
streamflow change from a large number of streams.
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Chapter 2

Classifying Annual Daily
Hydrographs in Western North
America using t-Distributed
Stochastic Neighbor Embedding
(t-SNE)

2.1 Introduction
Hydrologists typically acquire process knowledge from detailed place based studies
and from representative experimental catchments, where hydrometric and biophys-
ical attributes can be intensively measured over time. There are large number of
global catchment observation networks, yet in many parts of the world they are
in decline due to the expense in establishing, operating and maintaining their in-
frastructure (Laudon et al., 2017). Consequently, extrapolating process knowledge
to watersheds that are hydrologically similar, yet not necessarily measured, has
been a major focus of the hydrological community for the past several decades
with initiatives such as the Prediction in Ungauged Basins (PUB) program (Siva-
palan et al., 2003), whose goal was to predict flow quantiles at ungauged or poorly
gauged basins according to the historical flow data collected at hydrologically sim-
ilar basins.

Catchment classification has a long history as a means to generalize the func-
tional behaviour that exists within watersheds, quantify their similarity, and to
transfer information among them (Wagener et al., 2007). While there is no univer-
sal hydrological classification, the degree of similarity that exists is often defined
from intrinsic and response characteristics of watersheds such as: climate (e.g.
temperature, precipitation), watershed biophysical characteristics (e.g. geological
conditions, soil type, relief, and vegetation), and the flow regime (e.g. annual
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hydrograph). Climate indices for classification (e.g. Köppen, Thornthwaite) are
widely applied at varying time scales and have an long history identifying the
intrinsic seasonality, thermal and moisture regimes of a region. Physiographic
and biophysical indices such as soils, topography and geology strongly influence
catchment behaviour (Buttle, 2006; Bormann, 2010), yet are not always ideal in
defining process controls on catchment behaviour across scales and regions (Merz
and Bloschl, 2005). Often, catchments with similar climate and physical conditions
are not hydrologically similar (Oudin et al., 2010; Ali et al., 2012).

Evaluating catchment similarity based solely in terms of streamflow charac-
teristics is popular; particularly in aquatic ecology where habitats are particularly
sensitive to flow regimes (Poff et al., 1997). However, as Sawicz et al. (2011) notes,
ecological studies are not typically aimed at understanding the behaviour of the
catchment including the causes of a particular regime. Over time, the flow regime
of a catchment is a descriptor of the seasonal behaviour of the streamflow (Haines
et al., 1988) and by its nature is an integrator of a variety of hydrological processes
produced by the interaction between climate and catchment physical characteris-
tics. After decades of development, there are hundreds of indices available which
quantitatively characterize five major components of flow regime: magnitude, tim-
ing, duration, frequency, and rate of change (Poff et al., 1997). Flow statistics
(e.g. mean, max, and quantiles, standard deviation) at varying temporal scale are
widely-used indices that reveal first-order information regarding magnitude, dis-
tribution, and variation of stream flow over a period of interest (Hall and Minns,
1999; Carey et al., 2010; Ali et al., 2012; Toth, 2013). More sophisticated indices,
often explicitly reflecting specific hydrological processes, are preferred in catch-
ment classification with respect to hydrological functions and system complexity
(Sawicz et al., 2011). However, it remains a challenge to design a combination
of hydrological indices that fully describe dominant hydrological characteristics of
flow regimes, maximize distinctiveness among different flow regimes, as well as
avoid information redundancy.

Classification based on flow statistics using clustering algorithms such as C-
means and artificial neural networks (ANN) (Hall and Minns, 1999), hierarchical
models (Snelder et al., 2005), and Bayesian clustering algorithm (Kennard et al.,
2010; Sawicz et al., 2014), have been successfully applied for catchment classifica-
tion and regionalization. The premise is to identify groups (or regions) in a way
that similarity within a region is maximized whereas similarity between regions is
minimized. Self-organized mapping (SOM), an unsupervised ANN machine learn-
ing technique has become increasingly appealing as it produces a low dimensional
(typically two) representation of higher dimensional data that is simple to visualize.
SOM preserves the topological structure of data as it transforms information from
high-dimension feature space, and clusters information visually on maps where
clustered points are more similar that distal points. When hydrological indices are
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transformed, catchments with homogeneous features are close on the 2-D map, and
distance on the map can be used to visually infer similarity (Di Prinzio et al., 2011;
Ley et al., 2011; Razavi and Coulibaly, 2013; Toth, 2013). Previously, SOM has
been applied for catchment grouping with a moderate (∼50) number of samples
(Ley et al., 2011; Toth, 2013), yet for extremely large data sets with thousands
or millions of samples, computational time increases with sample size, challenging
the utility of SOM application for very large data sets.

The objective of this research is to design and implement a novel method to
visualize and classify streamflow regimes for a large streamflow data set focused on
undisturbed rivers western North America. The classification is based on annual
daily hydrographs (ADHs) from 304 sites over multiple years, providing 17110
ADHs for classification. The large nature of this data set renders traditional SOM
impractical, and we therefore utilize t-distribution Stochastic Neighbor Embedding
(t-SNE), an alternative machine learning algorithm proposed by Maaten (2009),
to map ADHs to 2D feature space to assess flow similarity and compare this to
traditional Principal Component Analyses. Furthermore, we develop an encoder
neural network that allows additional data to be projected on to the t-SNE map;
overcoming previous challenges with the non-parametric t-SNE technique. While
this methodology only focuses on a limited region and does not attempt a universal
classification, we attempt to show the novelty, flexibility and potential of this
approach for future classification activities.

2.2 Methods

2.2.1 Data
Daily flow data were gathered from Western North America (WNA) stream gauges
in the Referenced Hydro-metric Basin Network (RHBN) and Hydro-climate Data
Network (HCDN), which are operated by Water Survey of Canada (WSC) and
United States Geological Survey (USGS), respectively. Streams selected for the
networks have predominantly natural flow regimes, with minimum human dis-
turbance (e.g. significant land-use change, dams, reservoirs, and hydro-power
stations) during long-term observation periods. In total, 304 HCDN and RHBN
stream gauges were deemed suitable in WNA, including four Canadian provinces/territories
(British Columbia, Alberta, Yukon, and Northwest Territory) and eleven American
states (Washington, Oregon, California, Idaho, Nevada, Montana, Utah, Wyoming,
Colorado, Arizona and New Mexico) (Fig. 2.1). The observation length varies
among gauges, ranging from ten to over one hundred years. At each site, the long-
term daily hydrograph was broken into the Annual Daily Hydrographs (ADHs).
Each ADH contains 365 values of daily flow over a year from 1 January to 31
December (leap days excluded if applicable). Small gaps (≤ 7 days) in ADHs
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were filled up via linear interpolation. ADHs with gaps > 7 consecutive days were
excluded.

Figure 2.1: Selected HCDN and RHBN streamflow gauges in
western North America. Those manually labeled with flow regime
type are highlight with colors.

During initial data screening, ADHs with atypical shapes (e.g. sudden zig-zag
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patterns) were detected and excluded due to uncertainty in data quality. Further-
more, we excluded the ADHs of extreme years as they are less representative to
the general flow pattern. In this case, extreme wet years are defined as ADHs
with a maximum flow one hundred times higher than its long-term average, while
extreme dry years are ADHs with a minimum flow 100 times smaller than its long-
term average. From an initial set of 19499 ADHs, 17110 ADHs were preserved for
analysis (see Fig. 2.2).

Figure 2.2: Distribution of average daily flow of the selected
ADHs.

Selected ADHs were pre-processed prior to analysis. First, ADHs for a given
stream were divided by its long-term average, which helps limit the scaling factor of
watershed size and enhance comparability. Subsequently, a log transformation was
applied to reduce skewness of the data as machine learning algorithms typically
have improved performance on normally distributed data. A small number (10−6)
was added to ADHs to avoid invalid values during log transformation (see Eq. 2.1).
Furthermore, min-max normalization (see Eq. 2.2) was applied to scale values of
ADHs into a range of 0 and 1, which was recommended by the original paper of
t-SNE (Maaten and Hinton, 2008).

f(x) = log(x + e−6) (2.1)

f(x) = x − xmin

xmax − xmin

(2.2)

where x denotes daily flow values of an ADH, as well as xmin and xmax are the
minimum and maximum value of this ADH.
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2.2.2 Labelled Samples
A subset of ADHs were manually labelled with flow regime types. The determi-
nation of flow regime type was based on visual assessment to the shape of ADHs,
which is subjective to some degree. 2480 ADHs were labelled that represent seven
distinctive flow regimes in the WNA domain (Fig. 2.3). ADHs selected for the
same type typically come from streams that are geographically clustered. Class 1 is
characterized by frequent rain events during winter and low flows in summer, with
streams mostly located in coastal Pacific North West (PNW). Class 2 is similar to
Class 1, but has a distinct snowmelt-driven spring freshet, and are mainly located
in the interior PNW. Class 3 has extremely low winter flows, large spring freshet
and many summer rain events. All of Class 3 gauges are located in Alaska. Class
4 exhibits a large spring freshet followed by summer storm events with gauges
located in the Northwest Territories and northern Alberta. Class 5 is similar to
Class 4, with later summer rain events and gauges are located in Yukon and north-
ern British Columbia. Class 6 is characterized by dominant snowmelt freshet in
spring that accounts for more than 70% of the annual discharge with gauges pri-
marily located Canadian Rockies between British Columbia and Alberta. Class 7
has a spring freshet along with occasional winter events and gauges are most often
located in Idaho. The labelled ADHs were used to evaluate the performance of
t-SNE, with details provided in later sections.

Figure 2.3: ADHs for the seven flow regimes normalized by min-
max method. The number in the parenthesis indicates the number
of ADHs in that class. Day of year starts with January 1st.

2.2.3 t-distribution Stochastic Neighbor Embedding (t-SNE)
t-distribution Stochastic Neighbor Embedding (t-SNE; Maaten and Hinton, 2008)
is a state-of-the-art technique for dimensionality reduction and high-dimensional
data visualization. It is a variant of the SNE that was originally proposed by
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Hinton and Roweis (2002). SNE represents similarity between datapoints using
conditional probabilities that are converted from pairwise Euclidean distances (Eq.
2.3).

pi|j = exp(−∥xi − xj∥2/2σ2
i )∑

k ̸=i exp(−∥xi − xk∥2/2σ2
i ) (2.3)

where xi and xj denote datapoints in the original feature space, ∥xi − xj∥2 is the
Euclidean distance, pi|j is the conditional probability between xi and xj, and σi is
the variance of the Gaussian distribution centered at xi. The value of σi primarily
depend on the data density at xi, which varies among datapoints. Details on how
to determine the value of σi can be found in the paper of Maaten and Hinton
(2008). The conditional probabilities between the low-dimensional counterpart yi

and yj is indicated as qi|j. Through minimizing the differences between pi|j and qi|j,
SNE attempts to copy the local and global structure of datapoints from original
to new feature space. Kullback-Leibler Divergence (KLD), a measure of difference
between probabilities, is employed by SNE as the loss function (see Eq. 2.4).

KL(P ∥ Q) =
∑

i

∑
j

pij · log
pij

qij

(2.4)

Compared with original SNE, t-SNE has two major adjustments: 1) the use
of joint probabilities (Eq. 2.5) instead of conditional probabilities to represent
similarities, and 2) the use of a Student t-distribution instead of Gaussian distri-
bution to compute similarities between two datapoints in low-dimensional space
(Eq. 2.6).

pij = pi|j + pj|i

2N
(2.5)

qij = (1 + ∥yi − yj∥2)−1∑
k ̸=l (1 + ∥yk − yl∥2)−1 (2.6)

where N is the total number of datapoints, where yi and yj denote datapoints in
the embedded feature space, and pij and qij denote the joint probability in high-
and low-dimensional space. The first adjustment simplifies the form of loss func-
tion improving training efficiency. The second adjustment effectively alleviated
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the "crowding problem", a common challenge faced by SNE and many other di-
mensionality reduction techniques (Goodfellow et al., 2016). Datapoints that lie
moderately distant in high-dimensional space tend to be crushed together in the
embedded space, which prevents gaps from forming between natural clusters. Us-
ing a heavy-tailed distribution (i.e. Student t-distribution) to calculate pairwise
similarities for low-dimensional representation effectively alleviates the crowding
problem and preserves the local and global structure of datapoints in the embedded
space. In all trials of Maaten and Hinton (2008), t-SNE produced considerably
better visualization than other embedding techniques, including SNE, Sammon
mapping, curvilinear components analysis, Isomap, maximum variance unfolding,
locally linear embedding, and Laplacian Eigenmaps.

Datapoint arrangement on t-SNE maps are sensitive to two parameters: 1) per-
plexity and 2) learning rate. The perplexity is considered a smooth measure of
the effective number of neighbors and is used to determine σi of the Gaussian dis-
tribution for high-dimensional datapoints (Maaten and Hinton, 2008). Intuitively
speaking, it controls the "roundness" of the arrangement of the datapoints in the
embedded space. Conventionally, perplexity is chosen from a range between 5
and 50, with Maaten and Hinton (2008) recommending a perplexity of 30. Learn-
ing rate (η) is an important parameter for optimization that determines the final
convergence of loss function. In this study, we follow the process of Maaten and
Hinton (2008) and choose perplexity as 30 and η as 100.

Results from the t-SNE map were compared with Principle Component Analysis
(PCA), likely the most popular linear embedding technique and evaluated based
on the separability of ADHs with distinct flow patterns. A subset of ADHs were
labelled with flow regime type as detailed earlier, and then projected on the 2D
map using t-SNE and PCA respectively. K-Nearest Neighbors (KNN, Goldberger
et al., 2005) was used to classify datapoints on both embedded maps, with k set to
30. Favorable embedding techniques should arrange the ADHs of different types
into separable clusters on 2D map and allow accurate classification with simple
classifiers (e.g. KNN). Here, we employed classification accuracy as a quantitative
indicator for separability of datapoints, and better embedding technique should
result in higher accuracy. Tools for t-SNE, PCA, and KNN are all available in
scikit-learn package in Python (Pedregosa et al., 2011).

As a non-parametric method, t-SNE does not produce the mapping function
between high- and low-dimensional data representation. It is impossible to project
additional data on to an existing t-SNE map, which has been recognized as a major
shortcoming of t-SNE technique (Maaten and Hinton, 2008). One solution is to
merge new data to the original dataset and re-run t-SNE, yet it is computationally
inefficient for large datasets. In addition, datapoints in the original dataset could
be displaced on the new t-SNE map as inclusion of new data alters the similarity
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matrix (i.e. pairwise joint probabilities). The location inconsistency of embed-
ded datapoint is highly unfavourable. To address this, Maaten (2009) proposed
an alternative solution that build an parametric t-SNE through incorporating an
autoencoder.

2.2.4 Autoencoder
An autoencoder is a neural network that is trained to copy inputs to outputs
through the use of an encoder and decoder. The encoder function h = f(x)
converts input data x to latent features h, while the decoder function r = g(h)
reconstruct data from latent features to its original format. As a lossy technique,
autoencoders are not trained to copy perfectly, but to transfer the most salient
information of input data to latent features (with less dimensions) while ignoring
noise. This approach is widespread in dimensional reduction and feature learning
(Goodfellow et al., 2016).

Encoder networks are often considered a universal function approximators.
They are trained to approximate complicated, non-linear functions that map high-
dimensional data to low-dimensional representation. Here, we use an encoder
network to approximate the mapping between ADHs and t-SNE 2D data. Conse-
quently, newly collected ADHs can be projected on the existing t-SNE map using
the trained encoder, and there is no need to re-run t-SNE with the entire dataset.
The objective is to minimize the distances between the datapoints projected by
the t-SNE and encoder. Mean Absolute Error (MAE) was employed as the loss
function.

The performance of the encoder network largely depends on the choice of model
hyperparameters, which are referred to as untrainable parameters as they do not
change during the training procedure. The network architecture (i.e. number
of layers and nodes) and activation function are critical hyperparameters for the
encoder. In an iterative manner, we tested a variety of architectures and activa-
tion functions in order to search for the optimal model configuration (see Table
A1.1 in Appendix A). ADH samples are split into two subsets: training (75%)
and testing (25%). The dimension of input layer is 365 (match to the values in
ADHs), and the output layer has two dimensions. Network architecture defines
the depth (i.e. number of layers) and width (i.e. number of nodes) of the encoder
network. Our baseline architecture is a three-layer fully-connected network, with
512, 256, and 128 nodes for each layer. Activation functions bring non-linearity to
neural networks, and enable the encoder model to approximate complicated, non-
linear functions. The choice of activation function affects the optimization process
(Goodfellow et al., 2016), and we selected the Rectified Linear Unit (ReLU, as
f(x) = max(0, x)) as the default function for the baseline model. A modified
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version of ReLU, called leaky ReLU (as f(x) = max(a ∗ x, x)), has been recom-
mended as providing additional network optimization benefits (Maas et al., 2013),
and a number were tested with tuned a ranging from 0.02 to 0.4. A dropout layer
(Srivastava et al., 2014) was added after the first dense layer to avoid overfitting,
and the dropout rate is tuned within a range between 0.1 and 0.2. The optimizer
was chosen as Adam (Kingma and Ba, 2015) for all tested encoders. It employed
a default learning rate of 0.001. Each model was trained 1000 epochs during the
training procedure. The encoder networks were built using Keras (2.4.3 version),
a Python package for deep learning (Chollet et al., 2015).

2.3 Results

2.3.1 t-SNE vs PCA
Following the normalization of the ADHs, a PCA and t-SNE were implemented
on the labelled data (Fig. 2.4). Although the first two PCs explained 69.8% of the
total variance, the PCA suffered from the "crowding issue", with points clustered
within a relatively narrow region on the 2D map. In contrast, t-SNE had points
that were more evenly dispersed across the 2D map, yet with distinct clusters.
Classes 1, 2 and 7 were notably separate on both PCA and t-SNE maps, with
class 6 more separable on the t-SNE map. Classes 3-5 were mixed together on
both maps, yet they form an individual cluster on the t-SNE map that is isolated
from the other clusters. All three of these classes were dominated by gauges
in the northern part of the domain (Alaska, Yukon, Northwest Territories, and
northern British Columbia), highlighting their similarity (Fig. 2.3). Consequently,
we merged Classes 3-5 into one (as Class 5) for subsequent analyses.

Figure 2.4: 2D map of PCA and t-SNE with labelled ADHs of
seven flow regimes. Color of data points indicate flow regime type.
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Based on the ADH arrangement on 2D map and KNN classification accuracy, t-
SNE was superior to PCA. The PCA and t-SNE transformed data were classified
using KNN, with a classification accuracy of 84.5% (PCA) and 90.3% (t-SNE),
indicating the t-SNE map had enhanced separability among the flow regimes. A
confusion matrix (Table 2.1) indicated that misclassification most often occurred
among ADHs from Class 2 (the interior PNW) and Class 7 (predominantly Idaho),
which are geographically proximal. This is reasonable as both flow regimes were
characterized by a large spring freshet and winter storm events, yet flows in Class
7 typically had a more dominant freshet and less winter events than Class 2. In
certain years dominated by either greater/less snow and rain in the winter resulted
in ADHs resembling the other class. This highlights the challenge of subjectively
labelling ADHs for classification, and suggests that refining the selection of labelled
AHDs for these two classes may be warranted.

Figure 2.5: KNN-classified data points on PCA and t-SNE map.
Black points represent misclassified ADHs.

Table 2.1: Confusion matrix of KNN classification with t-SNE datapoints

Class 1 Class 2 Class 5 Class 6 Class 7
Class 1 0.996 0.004 0.000 0.000 0.000
Class 2 0.043 0.823 0.000 0.003 0.131
Class 5 0.000 0.000 0.989 0.011 0.000
Class 6 0.000 0.000 0.000 1.000 0.000
Class 7 0.000 0.019 0.000 0.000 0.981
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2.3.2 Global t-SNE Map
A global t-SNE map was constructed with all ADHs, with labelled ADHs high-
lighted in color based on their flow regime (Fig. 2.6). ADHs from the same flow
regime remained clustered on the map, yet the absolute location of labelled ADHs
has changed from the previous map (Fig. 2.4). However, the topological relations
among the clusters of flow regimes were largely preserved. For instance, the clus-
ters for Class 1 and 2, which have similar ADH shape, remained close on the global
t-SNE map, while those that were distinct (e.g. Class 1 and 6) are widely spaced
across the map.

Figure 2.6: t-SNE map with all ADH samples. ADHs labeled
with flow regime type are highlighted with colors.
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A large number of compact clusters on the t-SNE map were observed for Class 1
and 2 as the ADHs in these clusters were highly correlated (Fig. 2.7). Both classes
are featured by high-frequency rainfall events during wet season. The timing
of rainfall occurrences are usually random, resulting in large variability in ADH
shape. Therefore, the ADHs of those two classes fall into a broader zone on the t-
SNE map in comparison with those of snow-dominated regime (e.g. Class 6 and 7).
Approximately 50 of those clusters were scrutinized, and they result from same-
year ADHs from a number of geographically proximate watersheds located near
the Pacific coast (i.e. southern BC, Washington, Oregon, and northern California).
This suggests that climate for a given year drives similar hydrological responses
across these watersheds, which have highly similar responses. There are 24 streams
whose ADHs consistently occur in these clusters.

Figure 2.7: Small, compact clusters of ADHs are mostly observed
in the division of Class 1 and 2 (a). ADHs of the three selected
clusters exhibit strong correlation within clusters (b, c, d). Streams
whose ADHs are frequently included in the compact clusters are all
located in coastal PNW region (e).

2.3.3 Encoder
A number of encoders were tested, and the encoder with best MAE on the testing
dataset employed a nine-layer architecture with activation functions of LeakyReLU
(alpha=0.07) (see Encoder 50 in Table A1.1). The Dropout layer slightly improved
loss and remarkably reduced the gap in MAE between the training and testing set.
This trained encoder achieved a MAE of 1.07 on training set, and 3.81 on testing
set. The average displacement between the projected ADH points and their en-
coded counterparts on the t-SNE map was 5.93 for the testing set, which was small
compared to the extent of the map (Fig. 2.8). The points formed a near-circular
shape distribution on t-SNE map (see Fig. 2.6), so the map extent was measured
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by a radius to the map centroid. The radius that covers 98% data points on t-
SNE map was 115.9. The ratio of average displacement to map radius is only 0.05,
suggesting the errors of encoder projection are limited. For each flow regime class,
the within-class distance is calculated as the average distance of datapoints to the
centroid of the class. The within-class distance for the five flow regime types range
from 22.6 to 38.5, with an average of 32.4. The average displacement is less than
1/5 of the average within-class distance, also indicating the errors of encoder pro-
jection under an acceptable level. Furthermore, the average displacement without
outliers (> 95 percentile) is 4.36 for testing set.

Figure 2.8: Lines on map indicate the displacement between orig-
inal t-SNE points and their counterpart projected by encoder. The
displacements for training set are very small, while those for testing
set are relatively large.

To illustrate the potential use of an encoder and the t-SNE map for classifi-
cation, an ADH with an unknown flow regime type was randomly selected and
projected onto the t-SNE map using the optimal encoder (Fig. 2.9). Its ten near-
est neighbours were identified and ADHs plotted with the unknown ADH (Fig.
2.9). They are found sharing a great similarity in the shape of ADH. The NSE
between the target ADH and its nearest neighbours are higher than 0.9. This ADH
is projected into a zone, where many datapoints were labeled with Class 6. Based
on this procedure, the ADH is presumed to belong in Class 6; a flow regime that
resembles the snow-dominated regime of the Canadian Rockies. The implications
of this procedure are discussed below.
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Figure 2.9: A randomly selected ADH on t-SNE map projected by
Encoder (a). Original (b) and normalized ADHs (c) of ten nearest
neighbors.

2.4 Discussion
The t-SNE map provides an novel and intuitive way to visualize similarities for
large sets of stream hydrographs, as ADHs with similar shapes remain close on the
2D map. Here, we propose that the distance between points on the 2D map can be
used as a similarity metric among watersheds, or for a given watershed the space it
occupies on the map can be used to infer its relative variability in flows. In terms
of grouping watersheds, t-SNE is superior to PCA with respect to separability of
ADHs from different flow regimes. Furthermore, t-SNE is particularly suited to
large data sets, requires less computational power, and is more interpretable than
conventional visualization tools (i.e. pairwise similarity matrix). While we have
only used data from western North America, t-SNE can be more broadly applied
to larger or more constrained data sets.

If new hydrographs are obtained, ADHs can be projected on the t-SNE map
with the trained encoder, allowing hydrographs to be quickly associated with like
counterparts and information, such as flow regime type, seasonal pattern, and dom-
inant hydrological processes can be estimated according to its nearest neighbors
on t-SNE map. In this way, this approach can be used for comparative analysis,
flow regime classification and regionalization and potentially for change detection.
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2.4.1 A Novel Similarity Metric
To confirm the validity of t-SNE distance as a metric of similarity, the pairwise t-
SNE distances between ADHs on the 2-D map are compared with the counterparts
of cross correlations (Xcorr), which is a conventional metric used to measure sim-
ilarity between time series. Xcorr is calculated for every pair of ADHs. For every
single ADH, the average of Xcorr for all other ADHs is 0.20, while that for its 10
nearest neighbor is 0.87. It manifest that ADHs close on t-SNE map indeed share
considerable similarity of flow regime pattern. Regression analysis between t-SNE
distance and Xcorr indicates a significant relationship (p-value < 0.01) with a
Spearman R of -0.80. Nash-Sutcliffe Efficiency (NSE) is another widely-used met-
ric that measure the consistency between hydrographs. The relationship between
t-SNE distance and NSE is also statistically significant and with Spearman R of
-0.75.

Cross Correlation Matrix (CCM) is an alternative method to visualize pairwise
similarity between hydrographs, yet is impractical for large datasets. Our dataset
produces a 17110-by-17110 CCM, with more than 140 million entries (after re-
moving twins), making it computationally expensive to generate and difficult to
recognize and interpret patterns at this scale. On the other hand, the t-SNE map
provides an intuitive and efficient way to visualize similarity of ADHs, which is
simply indicated by their distance on the map.

2.4.2 Misclassification of Mixed Regimes
Misclassification is a ubiquitous feature of machine learning algorithms, and Class
2 had the highest misclassification rate in our procedure. This is unsurprising as
Class 2 is a mixed regime with both snowmelt driven freshet and high flows in
winter, is a relative superposition of Class 7 and Class 1, and lies between them
on the 2-D map. Depending upon winter temperatures, the ADHs in Class 2 tend
to shift towards Class 1 in warm years and Class 7 in cold years, which is expected
as warm anomalies bring rain (which prevails in the PNW) and cold anomalies
enhance snow accumulation and melt (such as in the Canadian Rockies). We
presume that watersheds that are more sensitive to climate anomalies are also
more subject to misclassification.

2.4.3 Labeling Strategy
The performance of the t-SNE map is based on the separability of ADHs among
different flow regimes, and the accuracy of the KNN classification provides a quan-
titative measure of this separability. Data quality of labelled ADHs is critical as it
directly links to classification accuracy. While our strategy allowed a large number
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of samples to be labelled in a practical time frame, there is the potential for misla-
beling ADHs for atypical years. The general nature of hydrological variability can
impart a large variance on ADHs, and that in some years hydrographs have flow
patterns that are unrepresentative of their labelled class. This inherent variability
also explains why some samples from each class are apart from the majority on
the t-SNE map.

Manually labelling ADHs is time consuming and there is considerable subjec-
tivity and process knowledge that is required for meaningful classification. To
remove subjectivity, Generative Adversarial Networks (GAN) have been used to
artificially generate samples that closely mimic real ones (Goodfellow et al., 2014).
GAN samples preserve the main patterns of the training data and introduce some
random variation, and have considerable potential to create high-quality labelled
samples of ADHs. Fed with a limited number of ADHs, GAN can generate an
infinite number of samples for each flow regime, enlarging the sample size and
reducing the influence of human subjectivity. While not used in this work, we
suggest GAN is a promising tool for improving classification.

2.4.4 Optimal Encoder Selection
An effective encoder is a critical component of this approach as it determines the
reliability of the mapping function between ADHs and the t-SNE data points and
allows insertion of new data onto the t-SNE map. In this work, we tested 55
encoder models with various network architectures and activation functions (see
Table A1.1) before selecting the optimal encoder (i.e. with minimum MAE) for
ADH dataset. Here, we demonstrate the sensitivity of encoders to network depth
and activation function type.

We found even for models with exactly the same configuration (i.e. hyperpa-
rameters), they often ended up with different MAE loss during training procedure,
which is likely attributed to the randomness of initial state of dense layers. There-
fore, for each model configuration, 30 identical models were built and trained
independently. The median of their final MAE losses was used to represent the
model performance, and the variance was indicated by the error bars in Fig. 2.10.

In many deep learning applications, deeper networks prevail due to their strong
capability in recognizing and processing complicated patterns of data (Goodfellow
et al., 2016). However, in our case, the encoder’s performance did not consistently
improve with the depth of network. A clear reduction in MAE was observed when
increasing the number of layers from one to four, but further deepening of the
layers show very slow improvement (Fig. 2.10). The relative few number of layers
was likely due to the relative simplicity of ADHs compared with photographic
images, which are the most common application of DL research.
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Another method to enhance encoder performance was to widen the layers of
the network, as increasing the nodes of the initial layer from 128 to 1024 provided
marked improvement in MAE (Fig. 2.10). However, further expansion to 2048
nodes only marginally improved encoder’s performance, suggesting wider layers
are unnecessary. In the trials, we found the nine-layer network with an initial
layer of 2048 nodes (N2048-L9, see Encoder 39 in Table A1.1) produced the lowest
MAE of testing set, so this architecture is employed by the final encoder.

Using LeakyReLU as the activation function instead of ordinary ReLU sub-
stantially improved the encoder’s performance. Decreasing the values of a from
0.4 to 0.02, we found the MAE of testing set continuously declined and reached
to the minimum at a = 0.07, but with a slight increase below that (Fig. 2.10).
With an appropriate a, LeakyReLU reduced the MAE by 10%. Our final encoder
employed a LeakyReLU with a = 0.07 as the activation function.

Figure 2.10: Changes of encoders performance with width and
depth of network (left) and alpha of LeakyReLU activation function
(right).

Gaps of loss between the training and testing set are very common in super-
vised learning, as models always tend to perform less reliable on "unseen" data.
However, huge gaps are often considered a sign of overfitting. In this case, there is
a relatively large gap between the MAE of training and testing set, so a Dropout
layer (Srivastava et al., 2014) was inserted behind the top Dense layer in selected
the network in order to improve model generalization. During training, Dropout
deactivate a number of randomly selected nodes (neurons) at each iteration. As
a result, it prevents models from depending exclusively on certain neurons and
therefore improve generalization. In this case, we found that Dropout effectively
narrowed the gap of MAE between training and testing set. However, the reduc-
tion is mostly led by increasing loss of training set, while the loss of testing set
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largely remain the same. This indicated that model generalization had little im-
provement. Presumably, a more effective way to enhanced encoder generalization
is to increase diversity and sample size of ADHs datasets.

2.4.5 Potential use of t-SNE maps
As a clustering technique, t-SNE is a powerful technique that has had very limited
application to hydrological data sets (Mazher, 2020; Liu et al., 2021), yet there
are many potential uses as ’big data’ and machine learning emerge in hydrology.
First, the t-SNE map provides an intuitive way to visualize the similarity of ADHs
and other large time series data sets, and the encoder improves its practical use by
turning the t-SNE from a non-parametric to a parametric method. It overcomes a
major challenge of t-SNE by allowing new data to be projected on an existing map
as it becomes available. The approach of information visualization can benefit a
broad range of research that seeks to establish similarity among time series such
and need not be restricted to streamflow hydrographs. For example, watershed
classification, regionalization and streamflow change detection are all potential
future areas of research using this methodology. t-SNE can also be used to infer
similarity in other time series and signals to assess natural groupings and patterns.

Perhaps the most obvious use of t-SNE is in watershed classification as the
parametric t-SNE technique can effectively identify natural groupings of water-
sheds and place new data within these groupings. While there is considerable
research over the past few decades on hydrological classification (Wagener et al.,
2007), t-SNE is a novel data-driven approach that allows fast identification of ho-
mogeneous and similar regimes, and process inference can be quickly transferred
to their nearest neighbours. If the location is close enough on the t-SNE map, it
would be possible to reconstruct hydrographs of ungauged watersheds according to
their nearest neighbours (Patil and Stieglitz, 2012). Another potential utilization
of t-SNE is identifying information redundancy, which is important in designing
hydrometric and other monitoring networks (Coulibaly et al., 2013). For example,
a number of highly homogeneous watersheds on the t-SNE map from the PNW sug-
gest high consistency in the hydrographs and potential information redundancy in
the network. However, the validity of information redundancy detected by t-SNE
should be further verified with entropy-based approaches (Singh, 1997; Mishra and
Coulibaly, 2009).

2.5 Conclusion
Here, we demonstrate the potential of t-SNE as an approach to compare similarity
among hydrographs that is particularly useful for large data sets. By converting
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annual daily hydrographs to 2-D representation, their degree of similarity is in-
dicated by distance on the map. t-SNE distance can be used as novel similarity
metric, supplementing other comparative metrics such as Xcorr and Nash-Sutcliffe
efficiency. In this application on reference watersheds in western North America,
t-SNE outperformed PCA analysis for dimensional reduction, suggesting its poten-
tial in classifying and regionalizing streamflows. A deep learning encoder network
was developed and trained to project new data onto existing maps to identify
hydrological counterparts, overcoming previous challenges of the non-parametric
t-SNE approach. While subjectivity in classification limits deep learning algo-
rithms in some circumstances, we believe that t-SNE is underutilized in hydrolog-
ical applications and that it has considerable potential for extremely large data
sets.

It provides an intuitive way to compare similarity among hydrographs that is
particularly useful for "big data" of streamflows. Converting ADHs to 2-D rep-
resentation, t-SNE map allows hydrologists to visualize the similarity of a large
number of ADHs, and the degree of similarity is indicated by their distance on
the map. t-SNE distance could serve as novel similarity metric for hydrographs,
as supplementary to Xcorr and NSE. t-SNE is considered outperforming the lin-
ear dimensionality reduction technique (i.e. PCA), as samples from different flow
regime types become more separable on t-SNE map than on PCA map. Thus,
t-SNE map could facilitate classifying and regionalizing streamflows.

It allows to project new hydrographs of interest to an existing map, so hydrolo-
gists could quickly identify hydrologically homogeneous counterparts from archive
databases. It facilitates the process of transferring knowledge and understanding
obtained from well-studied sites to new sites, and therefore increase the values of
existing datasets and historical research to hydrological systems. We believe it
could benefit some PUB programs.

In this case, t-SNE map reveals information redundancy in current hydrometric
network in coastal Pacific Northwest region. Thus, it is considered a useful tool
to evaluate the efficiency of hydrometric network. We hope this paper could raise
the attention of hydrological community to t-SNE, so colleagues may find more
possible applications for this relatively new technique in hydrological sciences.
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Chapter 3

Identifying the streamflow
changes in western North
America from 1979 to 2021 - Part
1: Insights from hydrometric
trend analysis

3.1 Introduction
Changes in the flow regimes of rivers across the entirety of Western North America
(WNA) have been widely reported and are expected to accelerate as a result
of climate change (Groisman et al., 2000; DeBeer et al., 2016; Williams et al.,
2020). For example, transitions from snowmelt towards rainfall-driven regimes
are not uncommon (Burn et al., 2010; Burn and Whitfield, 2017), yet as WNA
crosses several hydroclimate zones, detecting and quantifying trends in streamflow
and attributing them to specific climate and other factors remains a challenge
(Dethier et al., 2020). In addition, identifying integrated and specific metrics
of change is complicated by the dozens of widely used indicators that describe
flow regimes (Poff et al., 1997), all of which are subject to change with time.
Most common analyses of change focus on annual peaks or a small number of
specified metrics (e.g. low flows, timing of peak, etc). Finally, studies have taken
a range of approaches to rationalize data to enhance statistical performance based
on political, geographical and statistical clustering based on flow characteristics
(Hall and Minns, 1999; McDonnell and Woods, 2004).

Across WNA, from the southern mountains of New Mexico to the Arctic coast,
the processes that generate annual and seasonal flows are distinct, and the influ-
ence of low-frequency climate oscillations and shifts on streamflow varies among
regions and across scales (Whitfield et al., 2010). A complex picture emerges
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attempting to describe and synthesize change over WNA, yet throughout this do-
main, there have been numerous studies that have described changes and ascribed
their cause. For example, in the subarctic and arctic, increasing winter low flows
are widely reported while other observed changes include increasing mean annual
flow, earlier spring freshet, and enhanced inter-annual variability (Zhang et al.,
2001; Burn et al., 2004; Dery et al., 2009b; Burn et al., 2010). Some of the most
widely observed trends are increasing winter (Jan-Mar) baseflows and related low
flow hydrometrics. St. Jacques and Sauchyn (2009) detected upward winter flow
trends in the Northwest Territories for the 1978-2007 period and (Walvoord and
Striegl, 2007) suggested that groundwater contribution to streamflow on average
increased by 0.9% per year across the Yukon River Basin for the period 1949-
2005. Increases in low flows are typically attributed to thawing permafrost, which
enhances percolation and supports deeper flow paths that can contribute greater
groundwater fluxes throughout the year (Walvoord and Striegl, 2007). Other pat-
terns for many northern streams include increased mean annual flows and earlier
onset of spring freshet (St. Jacques and Sauchyn, 2009; Burn et al., 2004). An in-
tensifying hydrological cycle was used to explain enhanced inter-annual variability
in streamflow from 1964-2007 by Dery et al. (2009b).

Earlier onset of spring freshet is another feature widely reported throughout
WNA, particularly for streams in the Canadian Rocky Mountains (Zhang et al.,
2001; Stewart et al., 2005; Dery et al., 2009b; Burn et al., 2010). Examples in-
clude significant increase in spring flow during 1967-1997 in southern BC, whereas
late summer and autumn flows significantly declined (Zhang et al., 2001). Sim-
ilarly, Burn and Hag Elnur (2002) reported significant decreasing trends in the
annual maximum flow at majority of streams in southern BC during 1957-1997.
Barhney et al. (2017) also reported declines in August flow at majority of glacier-
ized streams in Canadian Rocky Mountains from 1975-2012, which was considered
a consequence of reducing contribution from glacier and perennial snow patches.
In contrast, Hernandez-Henriquez et al. (2017) indicated positive detectable trends
over recent time periods, and for 1986-2015 showed fall increases for glacierized
rivers around Vancouver Island and southern coastal BC. In recent work, Moore
et al. (2020) suggest wastage flux contributions from net glacial mass loss recently
passed peak water, with declines in August flows expected to continue the coming
decades in terms of magnitude and significance. Further south in the north cen-
tral Rocky Mountains of the United States (i.e. Idaho, Montana, and Wyoming),
Leppi et al. (2012) also reported declining August flow, where 89% of the streams
exhibited declining slopes from 1950-2008. They considered that the warming air
temperature along with intensifying evapotranspiration during spring and sum-
mer were the primary driver for declining late summer flow. Declining patterns of
streamflow were detected at most gauging stations in southern Alberta over the
last century (St. Jacques et al., 2010). Rood et al. (2005) reported the streamflow
at 35 headwater catchments in Rocky Mountains (on both Canada and US side)

29

http://www.mcmaster.ca/
https://www.science.mcmaster.ca/ees/


Ph.D. Thesis – Weigang Tang
McMaster University, School of Earth, Environment & Society

declined an average of 20% from 1910 to 2002.

Declines in summer flow, particularly late summer, were also observed in the
Pacific North West (PNW). Kormos et al. (2016) showed that August and Septem-
ber flow declined at majority of PNW stream gauges, with an average decline of
22% over a 65-year period from 1948-2013. In addition, 7-day minimum flow dur-
ing summer declined an average of 27%. Significant negative trends in September
flow was also reported by Chang et al. (2012) for most streams in the PNW. Fur-
thermore, Luce and Holden (2009) found 25th percentile annual flow significantly
declined at most PNW streams, and nearly half of the streams dropped by more
than 29% from 1948-2006. In contrast, March flow significantly increased in the
majority of PNW streams (Chang et al., 2012). Stewart et al. (2005) reported
remarkable increase in monthly fractional flows in March and April in western US,
and Kormos et al. (2016) observed that the centroid of flow mass had advanced
an average of 7.8 days over 65 years as flows were redistributed between summer
and spring.

The Pacific Decadal Oscillation (PDO) strongly influences streamflow in WNA
through its influence on air temperature and precipitation (Woo and Thorne, 2003;
Gobena and Gan, 2006; St. Jacques et al., 2014; Bawden et al., 2015). Under the
negative PDO phase, catchments in WNA tend to be cooler and wetter, while
positive PDO phase leads to warmer and drier conditions. Historically, PDO
phase switched every 20-35 years and four complete phases were observed in the
last century 1900-1924 (cool), 1925-1945 (warm), 1946-1976 (cool), and 1977-1997
(warm). However, this cycle was broken in last two decades, when phase shifting of
PDO became much more frequent: 1998-2002 (cool), 2003-2007 (warm), 2008-2013
(cool), and 2014-present (warm) (Li et al., 2020). Warm-phase PDO is considered
an important driver for changes in streamflow in WNA over last three decades,
such as increased winter flow in Arctic (Hodgkins, 2009), and earlier snowmelt
and decreased streamflow in northwestern North America (Stewart et al., 2005;
Rood et al., 2005; Dery et al., 2009a; St. Jacques et al., 2010). Other large scale
pressure features such as the El Nino-Southern Oscillation (ENSO) and Pacific-
North America (PNA) pattern influence flows as El Nino and positive PNA often
leads to a warm, dry climate and lower streamflow, while La Nina and negative
phase PNA typically to create a cool and wetter condition with higher streamflow
in WNA (Woo and Thorne, 2003; Gobena and Gan, 2006).

Changing streamflow regimes in WNA have profound socioeconomic and ecolog-
ical consequences. For example, hydropower operation in the Colorado river basin
has declined remarkably as severe aridity during the last several decades substan-
tially diminished water storage in reservoirs (Sabo et al., 2010), and in 2021, the
United States declared an emergency water shortage for the Colorado River for the
first time. Reduced water supply from rivers has already harmed agricultural and
relevant industries for southwestern states, leading to multi billion-dollar losses
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every year (MacDonald, 2010). Water stress is considered the primary challenge
to socioeconomic and environmental sustainability in southwestern USA in 21st
century (MacDonald, 2010). In addition to agriculture, shifts in flow regime also
adversely influence fisheries at streams in PNW and Rocky Mountains. Increasing
magnitude of peak flows during spawning and incubation period has led to high
mortality rate of salmon (Battin et al., 2007). This is in addition to higher stream
temperature during summer, which was jointly driven by elevated air tempera-
ture and less cold water melting from glaciers, threatens endangered populations
of many native fish species (Leppi et al., 2012). In contrast, Arctic rivers which
are expanding their hydroelectric potential, the possibility of increased autumn
and winter flows could promote electricity generation (Cherry et al., 2017). While
these are just a few select examples, changes to river flow regimes have broad
impacts, and quantifying and understanding the drivers of change is critical for
future design, management and adaptation.

The objective of this study is to provide a comprehensive overview of stream-
flow changes across WNA domain during the latest decades from 1979 to 2021.
Trend analysis were performed on a selection of hydrometrics aiming to exam-
ine changes from various aspects. This study focused on not only hydrometric
trends at individual streams but also regional-scale flow regime shifting. Trending
patterns of hydrometrics were synthesized into six hydro-climate regions, where
streams exhibit distinctive flow regimes. Detected changes in streamflows were
associated with regional changing climates. Comparative analysis was conducted
between glacial and non-glacial watersheds for three relatively cold hydro-climate
regions, in order to identify the impact of glaciers on streamflows response to cli-
mate changes. This information update and advance previous work by focusing on
the most recently available data, by examining a wider range of flow regime param-
eters than are typically evaluated, and by providing an easily navigable dashboard
to explore patterns and trends in this large data set.

3.2 Methods

3.2.1 Data
Daily flow data were collected for stream gauges in the Referenced Hydrometric
Basin Network (RHBN) and Hydro-Climate Data Network (HCDN), which are
operated by Water Survey of Canada (WSC) and United States Geological Survey
(USGS), respectively. Both networks select streams with a natural flow regime
with minimal land use change and are intended for long-term hydrometric analysis.
Stream gauging stations in RHBN and HCDN are widely used in previous studies
regarding changes in streamflow and relevant hydrological processes (Zhang et al.,
2001; Burn and Hag Elnur, 2002; Stewart et al., 2005; Burn and Whitfield, 2017).
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We define WNA to include four Canadian provinces/territories (British Columbia,
Alberta, Yukon, and Northwest Territory) and eleven American states (Wash-
ington, Oregon, California, Idaho, Nevada, Montana, Utah, Wyoming, Colorado,
Arizona and New Mexico). Long-term flow data were split into Annual Daily Hy-
drographs (ADHs). Each ADH includes 365 values of daily flow, from 1 January
to 31 December (leap days excluded if applicable). Strict criteria were applied to
select high-quality, complete ADHs. ADHs with gaps larger than 7 days were ex-
cluded. Gaps smaller than or equal to 7 days were filled using linear interpolation.
This study focuses on the 43-year period from 1979 to 2021 and only stations hav-
ing at least 30 valid ADHs during this period were included. In total, 126 RHBN
and 430 HCDN stream gauging stations were included in this study (see Table
A2.1 in Appendix B).

Monthly air temperature and precipitation were obtained from the ERA5 cli-
mate reanalysis product (Hersbach et al., 2020) from 1979 to 2021 with complete
spatial and temporal coverage of the WNA domain at 0.1◦. We conducted trend
analysis on this data across the WNA domain over the study period (see Appendix
B) to identify possible drivers of changes in streamflow.

Watersheds containing glaciers were identified using data of global glacier cov-
erage from the Global Land Ice Measurements from Space data (GLIMS, http:
//glims.colorado.edu/glacierdata). The area of glacier coverage in each wa-
tershed was obtained by clipping glacier coverage with the watershed boundary.
We considered watersheds glaciated when glacier area was > 0.5% of the total
basin area; and in total 53 watersheds were identified throughout the domain.

3.2.2 Hydrometric Calculation
Table 3.1: Description of selected hydrometrics

Symbol Name Description Category

Qmean Mean mean of annual daily flows Magnitude
Qmedian Median median of annual daily flows Magnitude
Qstd STD standard deviation of annual daily

flows
Others

Qrange Range range of annual daily flows Others
Qskew Skewness skewness of annual daily flows Others
Q10p 10th Percentile 10th percentile of annual daily flows Magnitude
Q25p 25th Percentile 25th percentile of annual daily flows Magnitude
Q75p 75th Percentile 75th percentile of annual daily flows Magnitude
Q90p 90th Percentile 90th percentile of annual daily flows Magnitude
Qmin7d 7d Min Flow minimum of 7-day average flow Magnitude

Continued on next page
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Table 3.1: Description of selected hydrometrics

Symbol Name Description Category

Qmax Max Flow maximum of annual daily flows Magnitude
Nhigh # High Flow Events number of high flow events Event
Dhigh Duration of High Flow duration of high flow Event
Nlow # Low Flow Events number of low flow events Event
Dlow Duration of Low Flow duration of low flow Event
Tcen Day of Centroid day of centroid of flow mass Timing
T25p Day of 25th Perc day of cumulative flow exceeding

25% of annual total flow
Timing

T50p Day of 50th Perc day of cumulative flow exceeding
50% of annual total flow

Timing

T75p Day of 75th Perc day of cumulative flow exceeding
75% of annual total flow

Timing

Tsprmax Day of Spring Freshet
Peak

day of maximum of 14-day average
flow in spring window (from Feb 1st
to May 31st)

Timing

Qjan January January flow Monthly
Qfeb February February flow Monthly
Qmar March March flow Monthly
Qapr April April flow Monthly
Qmay May May flow Monthly
Qjun June June flow Monthly
Qjul July July flow Monthly
Qaug August August flow Monthly
Qsep September September flow Monthly
Qoct October October flow Monthly
Qnov November November flow Monthly
Qdec December December flow Monthly
Fjan Jan (%) January fractional flow Monthly
Ffeb Feb (%) February fractional flow Monthly
Fmar Mar (%) March fractional flow Monthly
Fapr Apr (%) April fractional flow Monthly
Fmay May (%) May fractional flow Monthly
Fjun Jun (%) June fractional flow Monthly
Fjul Jul (%) July fractional flow Monthly
Faug Aug (%) August fractional flow Monthly
Fsep Sep (%) September fractional flow Monthly
Foct Oct (%) October fractional flow Monthly
Fnov Nov (%) November fractional flow Monthly
Fdec Dec (%) December fractional flow Monthly

Continued on next page
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Table 3.1: Description of selected hydrometrics

Symbol Name Description Category

Qspr Spring Flow sum of monthly flow from March to
May

Seasonal

Fspr Spring Fraction Flow ratio of spring flow to annual total
flow

Seasonal

Qsmr Summer Flow sum of monthly flow from June to
August

Seasonal

Fsmr Summer Fraction Flow ratio of summer flow to annual total
flow

Seasonal

Qaut Autumn Flow sum of monthly flow from Septem-
ber to November

Seasonal

Faut Autumn Fractional
Flow

ratio of autumn flow to annual total
flow

Seasonal

Qwin Winter Flow sum of monthly flow from December
to February

Seasonal

Fwin Winter Fractional Flow ratio of winter flow to annual total
flow

Seasonal

Qlsmr Late Summer Flow sum of monhtly flow from July to
September

Seasonal

Flsmr Late Summer Frac-
tional Flow

ratio of late summer flow to annual
total flow

Seasonal

SI Seasonal Index seasonal index (Coopersmith et al.,
2014)

Others

55 hydrometric indices were applied to characterize the ADHs. We classify
hydrometrics into six groups: 1) magnitude, 2) timing, 3) event, 4) monthly, 5)
seasonal, and 6) others (see Table 3.1). For Nhigh and Dhigh, high flow events
share a similar definition with Peak-Over-Threshold events proposed by Burn and
Whitfield (2017). A threshold for high flow here is taken as the 75th percentile
of the long-term hydrograph (rather than ADHs). Segments above the threshold
were taken as high flow events (Fig.3.1). Nhigh is the count of over-threshold
segments in an ADH, and Dhigh is the sum of length of the over-threshold segments.
Likewise, low flow events are the under-threshold segments in a hydrograph, and
the threshold for low flow is the 25th percentile of the long-term hydrograph at a
site. Nlow and Dlow indicate the number of and the total duration of the low flow
events in an ADH.
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Figure 3.1: Example of high and low flow pulses.

Monthly hydrometrics applied include the monthly mean flows and monthly
fractional flows. Monthly fractional flow is the percentage of monthly flow to
annual total flow. Monthly flow of several continuous months can be combined
together to form a seasonal flow, yet this varies by region. Seasonality Index (SI)
proposed by Coopersmith et al. (2014) was adopted to examine the changes in
seasonality and intra-annual variability of streamflow.

3.2.3 Trend Analysis
Mann-Kendall (MK) test is one of the most prevailing, if not the most prevailing
tool for trend analysis in meteorology and hydrology (e.g. Zhang et al., 2001;
Burn and Hag Elnur, 2002; St. Jacques et al., 2014) for detecting monotonic linear
trends from long-term time series. As a non-parametric approach, MK has no
requirement for data distribution. MK score (S) compares the value at one time
step with a later one (j > i, see Eq.3.1). A positive MK score indicates values
are generally increasing trend, while a negative score indicates time series values
decreasing over time. The Z-score determines the significance level of a trend
(Eq.3.4).

S = sgn(xj − xi) =


1, if xj > xi

0, if xj = xi

−1, if xj < xi

(3.1)
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E[S] =
n−1∑
i=1

n∑
j=i+1

sgn(xj − xi) (3.2)

V ar[S] = 1
18[n(n − 1)(2n + 5) −

p∑
k=1

qk(qk − 1)(2qk + 5)] (3.3)

ZMK =


E[S]−1√

V ar(S)
, E[S] > 0

0, E[S] = 0
E[S]+1√

V ar(S)
, E[S] < 0

(3.4)

where E[S] and V ar[S] is the mean and variation of MK scores. In Eq.3.3, p is
the total number of tie groups in the data, and qk is the number of data points
in the k-th tie group. Null hypothesis (i.e. no monotonic trend) is rejected if
|ZMK | > Z1−α/2, where Z1−α/2 is 100 · (1 − α/2)-th percentile of standard normal
distribution and α is a user-defined threshold of p-value. Here, α was chosen as
0.1. In addition to significance level, slope of trend line was calculated using Sen’s
slope estimator (Eq. 3.5), which is also known as Theil-Sen estimator (Sen, 1968).

Sen′s slope = Med(xj − xi

j − i
), j > i (3.5)

where xi and xj denote the value at time step i and j respectively. Magnitude of
changes in hydrometrics are measured by net change and the rate of change. Net
change is the absolute difference between the start and end point on the trend line
(i.e. Sen’s slope). The rate of change is the net change divided by the long-term
average of the hydrometric.

Serial correlation increases the chance of detecting significant trend from a time
series (Hamed and Rao, 1998) and prewhitening time series is typically recom-
mended before implementing MK test (Burn and Hag Elnur, 2002). In this case,
Trend-Free PreWhitening (TFPW; Yue et al., 2002) was adopted in this case,
which consists of three steps: 1) removal of Sen’s slope from the original time
series, 2) removal of lag-1 autocorrelation from the detrended time series, and 3)
adding back Sen’s slope to the prewhitened time series (see Eq. 3.6-3.8).
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x
′

t = xt − β · t (3.6)
y

′

t = x
′

t − ρ · x
′

t−1 (3.7)
yt = y

′

t + β · t (3.8)

where xt, x
′
t, y

′
t, and yt represent the original, detrend, prewhiten, and TFPW times

series, respectively. β is the Sen’s slope; ρ is the estimated lag-1 autocorrelation
coefficient; t denotes the time step. More details regarding TFPW can be found
in the paper of Yue et al. (2002). Functions regarding MK test, Sen’s slope, and
TFPW are all available in the Python package of pymannkedall (Hussain and
Mahmud, 2019).

3.2.4 Regional Analysis
Streams in WNA domain were assigned into six hydro-climate zones based on ge-
ographic location and shape of hydrographs: 1) Northwest, 2) Canadian Rocky
Mountains (CRM), 3) US Rocky Mountains (USRM), 4) Coastal Pacific North
West (CPNW), 5) Coastal Pacific Middle West (CPMW), and 6) Southwest. We
acknowledge that this grouping has limitations as it is not based on objective cri-
teria (e.g. Dethier et al., 2020), yet classifying and grouping watersheds based
on geographical boundaries, hydrometric indicators, climate or other geophysical
parameters are also subjective and beyond the scope of this change detection work.
The grouping of streams benefits from t-SNE map developed in Chapter 2 that
greatly facilitate finding and identifying streams with similar flow patterns. Each
region contains at least 50 stream gauging stations (Fig.3.2). Field significance
of changes in a hydrometric indicator within these regions was assessed using a
bootstrap procedure with 10000 iterations. The time series of the gauging sta-
tions in a hydro-climate zone were permuted iteratively. In each iteration, we run
MK test with the permuted time series, and counted the number of significant
trends (Nsig). After 10000 iterations, it formed a distribution of Nsig. The critical
value related to the regional significance level (p < 0.1) can be estimated as 90th
percentile of the distribution. If the actual number of significant trends is higher
than the critical value, the hydrometric changes in the region are considered to
be field significant. More details regarding this bootstrap method can be found in
the paper of Renard et al. (2008).
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Figure 3.2: Stream gauging stations in six hydroclimate regions.
The numbers in the legend indicate how many streams the corre-
sponding region includes.

3.3 Result and Discussion
Across the WNA domain, there is considerable spatial heterogeneity in chang-
ing hydrometric indicators with regionally distinct patterns. Changes for indi-
vidual streams were evaluated on the basis of direction (positive or negative),
slope (i.e. magnitude of change), and significance level of trend line derived from
TFMK and Sen’s slope. Changes at regional scale were evaluated on the ba-
sis of field significance, percentage of positive and negative trends, and average
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of net change or rate of change for streams within every hydro-climate region.
Due to the expansive nature of the analysis, not all hydrometrics and trends are
discussed in this paper. However, we provide a companion dashboard applica-
tion (https://app-trend-map.herokuapp.com) that has been developed to allow
viewers to inspect all outputs for all sites, including the trend maps for all target
hydrometrics along with the MK-test outcomes and other associated significance
metrics.

We consider Qmean as the single most important hydrometric representing the
average amount of water availability/flow within a watershed. For the entire WNA
domain, there is a general divide at approximately the 46th parallel north (near
the southern border of Oregon and Montana). On the north side, more than three
quarters of streams showed increasing trends in Qmean, while on the south side,
most streams (> 80%) exhibited decreasing trends (Fig. 3.3). This general pattern
across WNA suggests overall wetting in the north with a more pronounced drying
in the south. In the following sections, we outline the major changes across the
domain and provide context with regards to regional climate and previous research.

Although trends of most hydrometrics present considerable spatial heterogene-
ity, declines in late summer flows predominate across the entire WNA domain.
Nearly 80% of the WNA streams exhibited negative trends in Qlsmr, with one
third statistically significant. On average, Qlsmr declined by 18% from 1979 to
2021 in WNA domain. This drying pattern was stronger in western USA than
Canada. The average decline of Qlsmr for the 430 USA streams was 22.6%, while
that for the 126 Canadian streams was only 6.6%. Given high demand of water
for domestic, industrial or agricultural use, declines in late summer flows likely
further challenge water security.
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Figure 3.3: Map of trends in Qmean (left), Q10p (middle) and Q10p

(right). Positive trends are represented by red upward triangles,
while negative trends by blue downward triangles. Triangles are
solid if the corresponding trend is statistically significant (p-value
< 0.1).

3.3.1 Northwest
Streamflows in the Northwest domain exhibited widespread and significant increas-
ing trends over the observation period, and increases were particularly strong for
those cold-season low-flow hydrometrics. Significant positive trends were observed
for approximately one quarter of the streams for Qmean, yet near half the streams
had increases in low-flow hydrometrics, including Q10p, Q25p and Qmin7d. These
low flows typically occurred in winter; and except for June-August, all monthly
flows had a field significant increase that was most pronounced from December-
April. Compared with Burn and Hag Elnur (2002) who noted increasing monthly
flow from February to May, our analysis indicated a longer period of increase (nine
months from September to May), suggesting enhanced streamflow increases over
the last four decades. Similar patterns were reported in the paper of Durocher
et al. (2019), who observed an increasing streamflow magnitude at a number of
WNA rivers flowing to Arctic Oceans that was not detected in records before 2000
(McClelland et al., 2006). St. Jacques and Sauchyn (2009) reported upward trends
in winter flow at gauges in the Northwest Territories, and ascribed this increase
to thawing permafrost and enhanced subsurface flow and baseflow. Increasing
groundwater contribution driven by permafrost thaw was also observed in Yukon
River Basin (Walvoord and Striegl, 2007) and interior Alaska (Jones and Rinehart,
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2010). Cold-season flows, defined here as the sum of monthly flows from September
to May, increased by an average of 24% at the 53 selected streams across North-
west domain from 1979 to 2021. Although much less significant, the increase in
Q75p and Q90p were also field significant, which was surprising as increases in high
flow metrics have seldom been reported in previous studies for northern regions.

Figure 3.4: Percentage of the five trend types at Northwest
streams for the hydrometrics. If the change is field significant, hy-
drometric symbol is coloured with red (positive), blue (negative),
or purple (both).

Earlier spring freshet of snow-dominated streams in WNA have been previously
reported. Aziz and Burn (2006) found earlier onset of spring freshet at streams
across Mackenzie River Basin. However, the advance of spring freshet was rela-
tively weak in Alaska, and some streams even exhibited delayed onset of spring
pulse (Stewart et al., 2005). In our analysis, the early onset of thaw and freshet
was identified according to the timing of spring peak flow (Tsprmax). The majority
of streams in Northwest domain showed an advancing trend in Tsprmax, and eleven
of them were statistically significant, with an average advance of 16 days.

Nearly 90% of the streams in Northwest domain exhibited a negative trend in
Fsmr, half of which were statistically significant. On average, summer flow contri-
bution to annual total flow dropped from 56% to 49% over the observation period.
Widespread decrease in Fsmr suggest that summer flows increased slower than
cold-season flows and therefore accounted for a smaller proportion of annual total
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flow. Increasing volumes of water in low-flow months (i.e. cold season) substan-
tially weakened the seasonality of flow regime at Northwestern rivers, lowering SI
across the domain.

14 of 53 streams in the Northwest domain had glacier coverage, and Wilcoxon
rank-sum test was applied to assess potential glacier influence on late summer flows
(i.e. Qjul, Qaug, Qsep and Qlsmr). Significant differences were observed between
glacierized and non-glacierized watersheds in the change rate of Qlsmr, with the
unexpected pattern of late summer flows slightly decreased at glacial watersheds
while increased at non-glacial watersheds (Fig. 3.5). Streamflow at non-glacial
watersheds increased through all the three months, while at glacial ones it mildly
declined in July and August.

Figure 3.5: Comparison of rate of change of late summer flow
between glacial and non-glacial streams in Northwest domain. The
two numbers inside the plot indicate the median changing rate for
the glacial and non-glacial group, respectively.

3.3.2 Coastal Pacific North West (CPNW)
Changes in Qmean and Qmedian suggested that the CPNW has become a wetter
area over last four decades. Most CPNW streams exhibited a positive trend in
Qmean and Qmedian, with an average increase of ∼12% for both hydrometrics, al-
though only a small portion of those trends proved to be statistically significant.
High flows increased slightly faster than average flows, and in general Q90p in-
creased 15% over the 43-year period, and the positive trend in Q90p proved to be
field significant. Luce and Holden (2009) previously reported declining trends in
annual mean, median, 75th-percentile flow in PNW that were not observed in this
analysis. However, it is important to note that their analysis covered a longer and
earlier period from 1947-2006 and included streams from not only coastal states
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of Washington and Oregon but interior states of Idaho and Montana, which were
assigned to USRM domain in this study.

Figure 3.6: Percentage of the five trend types at CPNW streams.

In contrast, low flows in CPNW tended to decline. Q10p and Qmin7d declined
significantly at more than 20% of the streams, and the negative trends proved
field significant. As low flows typically occurred during summer, negative trends
prevailed across CPNW in terms of summer flows. Qjul, Qaug, and Qsmr all de-
creased an average of ∼20% over last 43 years. Kormos et al. (2016) also reported
declining Qmin7d and Qsmr in PNW, and they attributed decreasing low flows to
reduced summer precipitation. According to the ERA5 reanalysis product, signif-
icant reduction in summer precipitation occurred across the CPNW domain over
last four decades (see Fig. A2.2 in Appendix B). This decline was particularly
strong in July, and the decreasing rate of the monthly precipitation was up to 1.2
mm per year.

One of the most distinct changes in CPNW was the increase in autumn flows.
More than 80% of the streams exhibited a positive trend, and one quarter were
statistically significant. On average, Qaut increased 22% over last four decades
across CPNW. The increases in Qoct were even more widespread (at 96% of the
streams) and greater (rose by 43% from 1979 to 2021). ERA5 data suggest a
substantial rise in October precipitation in CPNW during the same period that
may in part explain the increased autumn flows.

There are 15 glacial watersheds identified in CPNW. Late summer flows de-
creased significantly slower at glacial than non-glacial watersheds (Fig. 3.7). The
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average decrease of Qlsmr for glacial and non-glacial streams were 7% and 17%,
respectively. The difference was most significant in July and gradually reduced
through September. This result provides some evidence of enhanced for glacial
contributions to streamflow in the late summer that is expected from enhance
wastage (Moore et al., 2020).

Figure 3.7: Comparison of rate of change of late summer flow
between glacial and non-glacial streams in CPNW.

3.3.3 Coastal Pacific Middle West (CPMW)
Streamflow changes in CPMW domain largely resemble to its northern neighbours
but experienced stronger decrease in low flows during late summer. CPMW was
predominated by declining trends of low flows (i.e. Q10p, Q25p, Qmin7d), and around
half of those trends were statistically significant. The duration of low-flow peri-
ods (Dlow) has been substantially prolonged, with an average extension of 34 days
for the CPMW streams. As a typical dry period in CPMW, the three late sum-
mer months (i.e. July, August, and September) exhibited widespread declines in
streamflow, with field significant negative trends for Qjul, Qaug and Qsep. In to-
tal, Qlsmr decreased at more than 80% of the CPMW streams, with an average
reduction of 25% from 1979 to 2021.
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Figure 3.8: Percentage of the five trend types at CPMW streams.

3.3.4 Canadian Rocky Mountains (CRM)
The majority of streams in CRM domain had a positive trend in Qmean, yet only
10% were statistically significant. Comparatively, more significant positive trends
were observed for low flows. The increase in Q10p, Q25p and Qmin7d were all field
significant, and Qmin7d increased an average of 8% over last 43 years. For streams
in CRM domain, low flows often occur during winter, so accordingly winter flows
in CRM significantly increased.

Increasing spring flow driven by earlier snowmelt has been reported in previous
studies (Zhang et al., 2001; Aziz and Burn, 2006; Rood et al., 2008) and was also
observed in our analysis. Almost all of the streams exhibited a positive trend in
Qspr, and one fifth of them were statistically significant. Across CRM domain,
Qspr increased an average of 18% over last 43 years with the strongest increase
observed in May. Both monthly total and fractional flow in May (Qmay and Fmay)
showed field significant increases. The increased flows in early season advanced the
timing of hydrometrics in the year. Negative trends were widely observed at the
CRM for all timing hydrometrics, yet only the trend for T50p was field significant.
On average, the centroid of ADHs advanced 3 days from 1979 to 2021. This
observation agrees with the previous study of Dery et al. (2009b) that reported
earlier onset of spring freshet at snow-dominated streams across western Canada.
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Figure 3.9: Percentage of the five trend types at CRM streams.

In contrast, monthly flow for July and August decreased significantly over the
observation period, with an average reduction of 7% and 17%, respectively. Most
of statistically significant negative trends in Qaug were observed in southern BC.
Reduction in fractional flows were even more remarkable. Nearly 60% of the CRM
streams showed significant decrease in Faug, and the negative trend for Fjul and
Fsep proved field significant. On average, the contribution of late summer flow
to annual total (i.e. Flsmr) at CRM streams dropped from 30% to 25% over the
observation period. Trend analysis on the ERA5 dataset (Fig. A2.2) indicated a
reduction in summer precipitation across the CRM domain, which was considered
a likely contributor to drying summer streamflow. Noteworthy, the declines in
Qlsmr were significantly slower at glacial watersheds (Fig.3.10). The 21 glacial
watersheds located CRM domain had an average decrease of Qlsmr of 4%, much
lower than that for non-glacial ones (15%). This manifested that glacier was
important buffer against drought for local streams.
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Figure 3.10: Comparison of rate of change of late summer flow
between glacial and non-glacial streams in CRM.

3.3.5 US Rocky Mountains (USRM)
Across USRM domain, positive and negative trends in Qmean were approximately
equal in number, and few changes were statistically significant. Previously reported
declines in Qmean in USRM from 1910 to 2002 (Rood et al., 2005) were no longer
significant during more recent decades. Changes of spring and late summer flow
in USRM shared considerable similarity with CRM. Spring flows also increased
and were field significant. On average, Qspr increased by 9% over the observation
period, yet the rate of increase was less than half of CRM. Negative trends in the
timing of centroid were widely observed at USRM streams, and on average Tcen

advanced 4 days over the last four decades, signaling an earlier onset of freshet.
Earlier spring freshet was one of the most distinct hydrometric patterns in western
USA, which has also been reported in previous studies (Cayan et al., 2001; Stewart
et al., 2005).

Streamflows in August and September had field significant negative trends
across the USRM. On average, Qaug and Qsep declined by 21% and 25% from
1979 to 2021, respectively. Furthermore, a large portion of USRM streams had a
significant decline in the late summer fractional flows (Fjul, Faug, and Fsep). On
average, the contribution of late summer flows declined from 16% to 12% over
the observation period. Declining summer flows in this domain were some of the
strongest changes in WNA. These declines have been attributed to reduced sum-
mer precipitation and enhanced evapotranspiration associated with warming air
temperatures along with the influence of PDO (Rood et al., 2005; Kormos et al.,
2016). In this study, trend analysis of ERA5 climate data showed significant in-
crease in air temperature and reduction in precipitation during summer period
across the USRM domain (see Fig. A2.1 and A2.2). According to Rood et al.
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(2005), earlier spring freshet likely resulted in drier soil condition during summer,
and therefore could further reduce summer flows.

In contrast to CRM with significant increase in low flows, trends of low-flow
hydrometrics at USRM streams suggested significant drying patterns. Field signif-
icant negative trends were observed for Q10p, Q25p, and Qmin7d, while the duration
and frequency of drought events (Dlow and Nlow) significantly increased. How-
ever, a disparity in the trending direction between eastern and western slopes
was observed (see Q10p in Fig. 3.3). Most drying trends of low flows mostly ap-
peared at streams in western slopes (i.e. Idaho), while significant positive trends
in Q10p, Q25p, and Qmin7d were observed at eastern-slope streams (i.e. Montana
and Wyoming).

Figure 3.11: Percentage of the five trend types at USRM streams.

3.3.6 Southwest
Across the entire Southwest domain, declining flows were observed and nearly all of
the magnitude-related hydrometrics exhibited field significant decreases. Negative
trends in Qmean were detected at almost all streams (only three exceptions), and
more than half of them were statistically significant (Fig. 3.3). Over the last
four decades, Qmean at the selected 137 streams in Southwest domain dramatically
declined an average of 45%. Furthermore, significant declines also observed for
both high and low flows, with an average of 36% and 49% decrease for Q10p and
Q90p, respectively. The drying patterns were seasonally consistent, as all monthly
flows exhibited field significant negative trending patterns. The average decrease
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of the monthly flows ranged from 20% to 42%, with the greatest declines observed
in April, May, June, and July, while the declines in winter was relatively small. In
addition, the duration and frequency of dry pulses (i.e. Dlow and Nlow) increased
markedly across the Southwest and on average Dlow prolonged 79 days over the
observation period.

Figure 3.12: Percentage of the five trend types at Southwest
streams.

Changes in streamflow are largely attributed to a widespread and well docu-
mented reduction in precipitation. Based on the ERA5 data, reduction in annual
precipitation was widespread in the interior states (i.e. Utah, Colorado, Arizona
and New Mexico), with an average reduction of 200 mm from 1979 to 2021. Most
of this drying was observed in spring and summer. The widespread drying in this
region had been widely reported (MacDonald, 2010; Cook et al., 2015; Williams et
al., 2020), and our analysis showed that the drying patterns remained very strong
in the most recent years.

3.3.7 Dashboard Application
The companion dashboard application (https://app-trend-map.herokuapp.com),
which may take up to 30 seconds to load, allows the visualization of all analysis
presented within the paper and additional functionalities. At the top of the dash-
board, the region can be selected within WNA, and in fact the entire Canadian
and United States RHBN and HDCN data set can be explored. Watersheds can
be filtered by glacial coverage and individual watersheds can be selected. In terms
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of tests, the select hydrometric indicator can be chosen from a dropdown list. Five
different iterations of the Mann-Kendall test can be chosen, and the significance
level set as 0.01, 0.05 or 0.10. There are various outputs to visualize the results,
including the yearly trend line, the daily trend line bar for the mean hydrograph
and metrics of net change. Statistical values are presented and colour are used to
indicate significant positive (red) and negative (blue) trends. At the bottom left,
summary changes for the select regions can be visualized.

3.4 Conclusion
Changes in streamflow measured via a wide variety of hydrometric indicators sug-
gest considerable shifts across WNA from 1979 to 2021, although degree and di-
rection of shifting varied among the six hydro-climate regions. A general divide
between wetting and drying trending pattern was detected roughly at 46th paral-
lel north. Increasing trends in annual flows predominated in the north side, while
decreasing trends prevailed in the south side. Streams in Northwest domain was
featured by significant increases of low flow during cold season (from September
to May) and therefore weaker seasonality. Forward shifts of streamflows from
summer to spring observed in CRM domain implied that earlier warming climate
had advanced snowmelt-driven spring freshets. Similarly, significant increases of
spring flow were also observed in USRM domain, along with field significant neg-
ative trending patterns of low flow. The Southwest domain had a comprehensive
drying pattern, as streamflows dramatically declined throughout the entire year
and at all flow percentiles. Streamflows in CPMW domain also suffered from
widespread negative trends, and declines were particularly strong for summer low
flows. In CPNW domain, streams exhibited the significant increase in high flows
and autumn flows, which was rarely reported in previous studies. Except for the
Northwest, streams in all other five hydro-climate regions have large declines in
late summer flows, which is considered the most outstanding and extensive changes
of streamflows in WNA. Noteworthy, glacial watersheds usually exhibited higher
resilience, as late summer flows declined significantly slower than glacial than non-
glacial ones. However, this buffer effect of glacier against droughts is expected to
be gradually weakened along with accelerated shrinkage in glacier cover and mass
driven by warming climates. At monthly and seasonal scales, streamflow changes
often highly correspond with the changing pattern of local precipitation, such as
increased October flows in CPNW and declined late summer flows in western USA.
However, this correlation with precipitation was weaker in cold regions. For exam-
ple, the dramatic increase of streamflows in Northwest during cold season did not
coincide with evident increases of precipitation. This supports the previous asser-
tions that changes in the cryosphere (e.g. permafrost thaw) are influencing the
magnitude and seasonality of flows in cold regions. In conclusion, this study pro-
vides an overview of the documented changes of streamflows across WNA domain
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during latest four decades. We refrain from commenting on the water security
impacts of these changes, yet believe this information is useful to help understand
the direction and drivers of change to inform water resource management.
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Chapter 4

Identifying the streamflow
changes in western North
America from 1979 to 2021 - Part
2: Insights from machine-learned
features

4.1 Introduction
In the face of a rapidly changing climate, identifying and contextualizing changes
to streamflow has broad societal and scientific importance. There are numer-
ous methods to describe and characterize the streamflow hydrograph, and the
term “hydrometrics” encompasses a broad suite of human-designed indicators that
quantitatively characterize streamflow. Hydrometrics can be as simple as the basic
statistics of flow records (i.e. average, minimum, maximum, percentile, and stan-
dard deviation) or complex indices such as seasonality index (Coopersmith et al.,
2014), slope of the flow duration curve, and streamflow elasticity (Sawicz et al.,
2011). There are several hundred hydrometrics available that describe the char-
acteristics of flow regimes, including seasonal pattern of flows, timing, frequency
and duration of floods and droughts, daily, seasonal, and annual flow variability,
and rate of changes (Olden and Poff, 2003). How these hydrometrics change with
time is complex as there are multiple drivers of change including shifting land use,
river regulation, and complex climate drivers over multiple timescales. Histori-
cally, the most common method to detect changes in streamflow is to perform the
Mann-Kendall test (or its variants) on time series of hydrometrics (Lins and Slack,
1999; Zhang et al., 2001; Burn and Hag Elnur, 2002), where statistically significant
trends are considered evidence for changes in streamflow. This approach however
is not without critique (Wang et al., 2020).
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Climate change is having a profound and comprehensive influence on a variety
of hydrological processes (DeBeer et al., 2016). How these changes are manifested
in streamflow is complex and often unclear due to numerous confounding feedback
within the hydrological cycle. Consequently, individual hydrometrics are inade-
quate to fully describe changes in streamflow. When performing trend analyses,
there is typically a chosen set of hydrometrics that sufficiently represent key process
and changes for given streams. However, flow regimes are regionally diverse and
vary geographically based on climate, geology, topography and vegetation cover
(Poff et al., 1997). Therefore, some hydrometrics may be indicative for some flow
regimes but not applicable for others. For example, the timing and magnitude of
spring freshet is a sensitive indicators for snow-dominated streams (Barnett et al.,
2005) but are less useful in regions with little snow accumulation. As such, the
hydrometric indicators used to assess trends must be designed specifically for dif-
ferent geographic regions or flow regimes. Furthermore, hydrometric sets are often
subject to information redundancy (Olden and Poff, 2003) that potentially reduces
their effectiveness and efficiency for trend analysis. Practically, this provides chal-
lenges to select and design hydrometric suites suitable for change detection, and
there remains considerable subjectivity and domain expertise required when eval-
uating how streamflow regimes are changing.

Deep Learning (DL) has achieved rapid and considerable success in many fields
of science and engineering, and its potential and capabilities in hydrology have been
explored and discussed in recent work (Shen, 2018; Reichstein et al., 2019; Beven,
2020). DL improves on previous machine learning algorithms due to its exceptional
capability for self-extracting features from raw data (LeCun et al., 2015), which
saves considerable labour and time for manually designing features and model pre-
training. In the family of DL algorithms, autoencoder is the prevailing method for
dimensionality reduction and feature learning (Goodfellow et al., 2016). Kingma
and Welling (2014) proposed a modified version, called Variational Auto-Encoder
(VAE), which improves generalization and is adaptive and robust to “unseen”
samples. VAE transforms input data into Latent Features (LFs) that are a low-
dimension representation, yet preserve the most salient features of the input data.
In this way, LFs are regarded as machine-learned features from raw data. While
VAE provides exceptional feature learning capabilities, there are few studies to
explore its utility in hydrological applications.

The objective of this study is to use machine learned features (LFs) to identify
streamflow changes in Western North America (WNA) over the last four decades
(1979-2021). We obtain Annual Daily Hydrograph (ADHs) from more than 500
natural streams (i.e. minimally disrupted by human activities over observation pe-
riod) across WNA domain and use VAE to extract a number of LFs to characterized
the machine-learned features describing the flow regimes in WNA. Trend analy-
sis is performed on the extracted LFs for each stream with sufficient flow records
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and are compared with results from classical hydrometrics on the same data set
presented in Chapter 3. The coherence and differences between the changes in
LFs and classical hydrometrics is scrutinized to identify changes not represented
in typical hydrometric sets. Finally, we seek to identify the physical meaning and
hydrological implications of the extracted LFs, and provide guidance of future
applications of this approach.

4.2 Data
Daily streamflow data were obtained from the Referenced Hydro-metric Basin
Network (RHBN) and Hydro-climate Data Network (HCDN), which are operated
by Water Survey of Canada (WSC) and USGS, respectively. Both networks in-
clude streams of with natural flow regimes that are minimally affected by human
activities (e.g. significant land-use change, dams, reservoirs, and hydro-power
stations) across the observation period. They have been widely used to detect
changes of streamflow across North America (Lins and Slack, 1999; Zhang et al.,
2001; Burn and Hag Elnur, 2002; Stewart et al., 2005). Long-term daily flow
data were broken into Annual Daily Hydrographs (ADHs). Each ADH contains
365 values of daily flow within one year from 1 January to 31 December (leap
days excluded if applicable). Small gaps (≤7 days) were filled using linear in-
terpolation, while ADHs with large gaps (>7 days) were excluded from analysis.
ADHs were collected from streams across western North America (WNA), cover-
ing four Canadian Provinces/Territories (British Columbia, Alberta, Yukon, and
Northwest Territory) and eleven American states (Washington, Oregon, California,
Idaho, Nevada, Montana, Utah, Wyoming, Colorado, Arizona and New Mexico).
In total, 30510 ADHs from nearly 700 stream gauges in the WNA domain were
included in this dataset. Data are divided into three subsets in a ratio of 0.6,
0.2, and 0.2 for training, validating, and testing VAE models respectively. Fur-
thermore, a subset of streams with long, continuous flow records were selected
for trend analysis of LFs. Those streams must have at least 30 full-record ADHs
within 43-year period from 1979 to 2021. In total, 557 streams were qualified (see
Fig.4.1) and are the same data set presented in Chapter 3.
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Figure 4.1: Streamflow gauges of HCDN and RHBN selected for
trend analysis

Flow data often has a highly skewed distribution, which can deteriorate the
performance of deep-learning models, so a site-specific normalization method (Eq.
4.1) was applied.

yi = max[1,
√

xi/P99.8%(√x1,
√

x2,
√

x3, ...,
√

xn)] (4.1)

where xi, x2, x3, ..., xn denote the daily flow records, P99% indicates the 99-th
percentile of long-term streamflow data, and yi is the normalized values of daily
flow. Square-root transformation was applied to alleviate the skewness of distri-
bution in the flow data. In this case, VAE can only generate values within a range
between 0 and 1, as a sigmoid function was employed as the activation function
for the last layer of decoder. Therefore, it was necessary to re-scale values of in-
put ADHs in the 0-1 range. A high percentile (P99%) was employed as the upper
bound in the rescale equation instead of the maximum (P100%) to eliminate the
most extreme events in the analysis.
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4.3 Methods

4.3.1 Variational AutoEncoder (VAE)
Autoencoder is a distinct type of neural network that attempts to copy input
to output information through fewer variables and consists of two sub-networks:
encoder and decoder. An encoder function z = f(x) converts input data (x) into
a new lower-dimension representation (z) called Latent Features (LFs). In the
next step, a decoder function x̂ = d(z) reconstructs data to the original format (x̂)
based on the LFs. An autoencoder is trained to maximally transfer the most salient
features of input data into LFs as well as filter out insignificant variations (noise).
Autoencoder is recognized as extremely effective for dimensionality reduction and
information compression. It is more powerful than linear embedding techniques
(e.g. PCA) due to the strong capability of learning non-linear structures of datasets
(Goodfellow et al., 2016).

Proposed by Kingma and Welling (2014), VAE is considered an excellent combi-
nation of deep learning and Bayesian inference. It employs approximate inference
q(x|z) and pmodel(x|z) as the encoder and decoder as opposed to z = f(x) and
x̂ = d(z). Instead of converting input data to fixed codes, VAE attempts to learn
the probability distribution of z in latent space. Conventionally, z is presumed
to form a Gaussian distribution N (µ, σ) and the VAE encoder is trained to learn
the two primary parameters: mean (µ) and variance (σ). Then, the VAE decoder
randomly samples z from the distribution defined by the learned parameters µ and
σ and converts them back to the original format of inputs. The VAE workflow is
illustrated in Fig. 4.2.

Figure 4.2: Diagram of VAE model, from Rocca (2019). x and x̂
denote input and output data. µx and σx indicate the mean and
variance for a Gaussian distribution N for latent variables z.
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Another feature of VAE is the two-term loss function (Eq. 4.2) that con-
sists of both reconstruction loss Ez∼q(z|x) log pmodel(x|z) and regularization loss
DKL(q(z|x)||pmodel(z). Reconstruction loss is the cross entropy between q(z|x)
and pmodel(x|z)) that forces VAE to reconstruct data as close to the original in-
put as possible. Regularization loss measures the KL divergence between q(z|x)
and p(z), and p(z) denotes the prior distribution of z. This helps VAE to learn
well structured latent spaces, therefore reducing overfitting to training data and
enhance model generalization (Chollet, 2017). Additional mathematical details
regarding VAE can be found in the paper of Kingma and Welling (2014).

L(q) = Ez∼q(z|x) log pmodel(x|z) − DKL(q(z|x)||pmodel(z)) (4.2)

Building and Testing the VAE

In this study, Keras (Chollet et al., 2015), a Python package for deep learning re-
search, was used to build VAE models. Success of VAE largely depends on whether
LFs capture salient features from the input ADH dataset. In order to search for
the VAE that is most suitable for ADHs in WNA, a number of hyper-parameters
were tuned, including the depth (i.e. # layers) and width (i.e. # nodes) of encoder
and decoder network, and the dimensions of latent space. The baseline model was
built with one-layer encoder and decoder with 128 nodes, and the dimension of
latent space was set as six. Typically, the encoder adopted a downward-triangle
structure, while the decoder was upward-triangle (Fig. 4.2). In the encoder net-
work, the number of nodes of new layer is always half of its previous one, while
the nodes of last layer must be no less than 32. Encoders were tested with an
initial layer of 128, 256, 512, 1024, and 2048 nodes. Conversely, decoders were
built up from bottom to top. In decoder network, a new layer was put on top of
the existing layers, and is half size of the lower one. Decoders were tested with
a last layer of 128, 256, 512, 1024, and 2048 nodes. Different combination of en-
coder and decoder were tested to search for the optimal model architecture. As
recommended in Chollet (2017), Rectified Linear Unit (ReLU) was used as the
activation function for all layers except for the last one, which employed Sigmoid.
Adam (Kingma and Ba, 2015) was chosen for the optimizer. Nash-Sutcliffe Effi-
ciency (NSE; Nash and Sutcliffe, 1970), as a supplementary metric, was utilized
to evaluate VAE performance through measuring goodness-of-fit between original
and reconstructed ADHs.

4.3.2 Trend Analysis
MK test is the prevailing statistical test for trend analysis due to its simplicity of
use and minimum requirement for time series data (i.e. non-parametric), yet is
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limited as it can only detect monotonic trends in the time series. The original MK
test (Mann, 1945; Kendall, 1975) is subject to serial correlation in time series, and
a number of modified versions have been proposed in previous studies that allow
more robust trend detection in hydrological time series (Hamed and Rao, 1998;
Yue and Wang, 2002; Yue et al., 2002; Yue and Wang, 2004). One of the variations
of MK test, Trend-Free Mann-Kendall test (TFMK; Yue and Wang, 2002), was
employed in this study to examine the potential trends in time series of LFs. The
trend line of the time series was fitted using Sen’s slope (Sen, 1968), which is often
used to estimate the magnitude of changes. LFs were extracted from ADHs, so
they are treated as annual-based “hydrometrics". For every stream, the extracted
LFs from ADHs are arranged in yearly order to form a time series of LFs for trend
analysis. In order to make this study comparable to Chapter 3, the same working
scheme was adopted for trend analysis.

4.3.3 Correlation with Hydrometrics
An important aspect of this study is to interpret LFs extracted from streamflow
data with respect to classical hydrometric indicators; which have well documented
rationales. 52 hydrometrics were selected that represent various aspects of stream-
flow characteristics including magnitude, timing, duration, frequency, and rate of
change. Spearman’s rank test was used to calculate the correlation between LFs
and these hydrometrics, which is most appropriate considering the highly skewed
nature of most hydrometrics.

4.4 Results

4.4.1 VAE Model Selection
The performance of the VAE was largely dependent upon the decoder architecture
and less sensitive to the choice of the encoder network. (Fig.4.3). Wider decoder
networks always resulted in smaller training loss, yet this was not the case for
the test loss. Test loss exhibited marked improvement from 128 to 512 layers,
yet further widening of decoder deteriorated VAE performance. We presumed
deeper networks were more capable of approximating complicated inferences, yet
in this case, VAE did not exhibited consistent improvement with the depth of
the decoder network. There was a significant improvement in training loss when
the number of layers was increased from one to three (Fig.4.4), yet improvement
became subtle with four layers and even led to higher training loss when additional
layers were appended. This degrading effect is more apparent on the testing set,
as loss typically increased if the decoder network grew deeper than three layers
(Fig. 4.4). After many iterations, a three-layer decoder with a final layer of
512 nodes (512-D3) was considered optimal for this ADH dataset. The encoder
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had less of an influence on VAE performance as training losses remained largely
invariant based on encoder architecture (Fig. 4.3). One-layer encoders resulted in
higher testing losses than deeper counterparts, suggesting multiple layers for the
encoder. To achieve a balance of power between encoder and decoder, a symmetric
architecture is typically preferred by autoencoder. A three layer encoder (512-E5)
was chosen for VAE as a mirror of the selected decoder.

Figure 4.3: Comparison of VAE network architecture. The num-
ber before dash (-) indicates the number of nodes of the initial
layer for an encoder (E) and of the last layer for a decoder (D).
The number after E or D indicates the number of layers of the net-
work. For example, 128-E3 represent a three-layer encoder with an
initial layer of 128 nodes, denoted as [128, 64, 32], and 128-D3 is
a three-layer decoder with a last layer of 128 nodes (i.e. [32, 64,
128]).

Figure 4.4: Comparison of VAE decoder with different number
of layers.

After the VAE architecture was established, the next step was to obtain the
optimal number of LFs (between 2 and 20) that described the ADHs. Both training
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and testing loss declined sharply when the number of LFs grew from two to eight,
yet further additional LFs did not dramatically improve performance (Fig.4.5).
This suggests that eight LFs were sufficient to capture most features of WNA flow
regimes and the selected VAE model employed eight LFs between the encoder and
decoder.

Figure 4.5: Comparison of VAE performance with different num-
ber of LFs.

4.4.2 Site Performance of VAE
For all sites, VAE performed best for high-latitude mountainous streams and had
poor performance for dry regions in the southwestern USA (Fig. 4.6). Performance
of VAE was evaluated by site-average NSE, which measured the goodness-of-fit be-
tween the original and reconstructed ADHs for a given stream. Higher NSE values
indicate the VAE has captured the salient features of the site ADHs. Streamflow
regimes dominated by snowmelt have a lower degree of natural complexity than
rain-dominated ones, so embedding dimension is more likely to succeed (Aksamit
and Whitfield, 2019). For example, in WNA snow-dominated streams, hydro-
graphs are typically dominated by freshet during the melt season that accounts
for a large proportion of the annual flow. While freshet occurs at different times
across WNA, and changes over short and long time scales, its seasonal and reg-
ular nature enhances the ability of VAE to simulate ADHs. In contrast, streams
in the southwestern USA (i.e. southern California, Arizona, and New Mexico)
are characterized by intermittent and short-lived events that are result in very
poor NSEs. The episodic nature of these flows makes it difficult for the VAE to
capture, comprehend and reconstruct ADHs in this region. This issue has been
previously recognized, as the low predictability of streams in the dry southwest
USA has been attributed to large inter-annual variability of climate and low gauge
density (Patil and Stieglitz, 2012). While also dominated by rainfall, streams in
the coastal pacific have higher NSE largely because precipitation is more seasonal;
generally occurring in winter. Furthermore, due to high gauge density, training
samples include numerous ADHs that increase the chance of VAE recognizing and
extracting the salient features of the flow regime.
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Figure 4.6: Site-average NSE map.

4.4.3 Interpretation of LFs
Assessing what streamflow characteristics have been identified as LFs by the VAE
model is critical to understanding their value in hydrological analysis. We used
two approaches to interpret LFs: 1) Spearman rank correlation between LFs and
hydrometrics (Fig. 4.7), and 2) Reconstructed Hydrograph Evolution (RHE; Fig.
4.8). RHEs provide an approach to evaluate the influence of each LF on the
temporal distribution of streamflow across a year and are generated for each of
the eight LFs individually. For each target LF, values are spread across a range
from the 1st to 99th percentile of the corresponding distribution formed by all
ADHs, while other LFs are held constant at their median value. Following this,
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the artificially adjusted LFs were fed to the VAE decoder to generate a series of
synthetic ADHs exhibiting the evolution of the hydrograph with the values of the
target LF. Both approaches reveal that LFs are commonly associated with different
hydrometrics and hydrograph components. However, the relation between LFs
and the hydrograph varies, with some LFs exhibiting a stronger connection with
hydrometrics and the general shape of the ADHs than others. Among the LFs,
LF4 and LF6 are most closely linked to classical hydrometrics.

Figure 4.7: Spearman’s correlation matrix between hydrometrics
and LFs. Only show correlation that prove statistically significant
(p < 0.01)
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Figure 4.8: Evolution of ADHs with changing LFs.

LF6 effectively divides streams into snow- and rain-dominated regime across
WNA. In the coastal Pacific and US southwest, rainfall dominated regimes have
a positive value of LF6 (Fig. 4.9). In contrast, mountainous and high latitude
streams dominated by snowmelt freshet, the most distinct feature of these streams,
generally have negative values of LF6. By lowering the value of LF6 in the RHE,
there was a progressive decline in spring freshet and it acted as an effective bi-
nary classifier of snow versus rain dominated regimes in WNA. As the strength of
the correlation between LFs and hydrometrics varies by flow regime, we assigned
streams to a snow or rain-dominated group based on their LF6 value. Following
this, Spearman rank correlation was conducted for these three groups (all, snow
and rain) separately.
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Figure 4.9: Map of site average of LF6.

LF4 is a broad indicator of streamflow quantity, exhibiting statistically sig-
nificant correlations with almost all magnitude-related hydrometrics (e.g. flow
percentiles and monthly flows), yet the strength of correlation with high flows is
weaker. For streams grouped as rainfall dominated (LF6> 0), Spearman’s corre-
lation of LF4 with Qmin is substantially lower than that with Qmax. For streams
in the snow group (LF6< 0), high flows most often occur during spring and early
summer, so there were weaker relations between LF4 and corresponding monthly
flows (from May to September).

LF2 is related to LF4 in that for snow-dominated streams, it is associated with
the magnitude of peak flows, and has very high correlation (> 0.6) with Qmax7d and
Qmax14d. The RHE of LF2 indicates that increasing the value of LF2 will boost
the dominant peak flows of the reconstructed ADHs (Fig. 4.10). As peak flow
in snow dominated streams typically occurs from May to July, LF2 had strong
correlations with monthly flows during this period (Qmay, Qjun, and Qjul). In
contrast, streams in the rain group lacked any relation between LF2 and peak
flows. Overall, LF2 represents the balance of seasonal flow distribution between
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winter and late summer. LF2 is negatively correlated with winter fractions (Fjan,
Ffeb, and Fmar), while positively related to late summer fractions (Faug, Fsep,
and Foct). In WNA, rain-dominated streams typically feature higher winter flows
compared with summer. Increasing the value of LF2 narrows the gap between
winter and summer and result in comparatively uniform streamflow throughout
a year (Fig. 4.10). This resultant low seasonality explains the strong negative
correlation between LF2 and SI, which is not observed for streams in snow group.
Finally, the ability to shift the flow distribution between winter and late summer
suggests LF2 is influential to the timing of flow mass center and cumulative flow
percentiles of ADHs, shown by the strong negative correlations with the timing
hydrometrics of Tcen, T25p, T50p, and T75p.

Figure 4.10: Control of LF2 on the shape of snow- and rain-
dominated ADHs.

In terms of timing hydrometrics, LF8 had a strong correlation with Tcen and
T50p for snow-dominated streams, which were absent for the rain group. Northern
streams in general had a lower LF8 value compared with southern streams, as
freshet typically occurred later with increasing latitude. For example, streams in
Alaska and Yukon had the lowest values of LF8 of the snow-dominated streams.
Low LF8 values were also observed for streams in southern BC that have substan-
tive glacial coverage. LF8 is positively correlated with spring streamflow (March,
April and May) and negatively correlated with late summer flows (July through
October). Applying the RHE, freshet shifts from spring to summer when LF8 is
lowered whereas increasing LF8 advances freshet and increases early season flows.
(Fig. 4.8).

LF7 is most strongly correlated to late autumn monthly flows (Qnov and Qdec)
for rain dominated streams, and has only a very weak association with the snow
group hydrometrics. Coastal Pacific streamflow regimes are most often rainfall
dominated during winter, with northern streams (in Southern BC, Washington
and northern Oregon) having distinct high-autumn flows compared with more

65

http://www.mcmaster.ca/
https://www.science.mcmaster.ca/ees/


Ph.D. Thesis – Weigang Tang
McMaster University, School of Earth, Environment & Society

southerly streams (southern Oregon, California). LF7 has a clear ascending gradi-
ent from north to south (Fig. 4.11) Similar gradients were observed for Fnov and
Fdec in a descending order, which explains the strong negative correlation.

Figure 4.11: Map of site-average LF7 of coastal Pacific streams.

There were certain LFs that had weak correlations with hydrometrics and un-
certain hydrological meaning. LF1 and LF3 have correlation coefficients > 0.4
with only one or two hydrometric indicators (FF eb and FJan), which are limited
to streams in the rain group. LF5 had the most ambiguous meaning as it had no
correlation greater than > 0.4 for any hydrometric in either group. The RHE also
suggests that the shape of the reconstructed ADH was insensitive to changes in
the LF5 value (Fig. 4.8).

4.4.4 Trend Analysis on LFs
As each LF has a yearly value, we performed trend analyses for each LF at each
site for the 43 years of data in an analogous approach to hydrometric trend analysis
performed in Chapter 3. The changing pattern of streamflow revealed by the LFs
were in considerable agreement compared with classical hydrometrics, suggesting
the LF are hydrologically meaningful and may be an effective approach for change
detection (Fig. 4.12).
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Figure 4.12: Trend map of LFs in WNA.

The trend in LF4 exhibited considerable similarity with Qmean (Fig.4.13) across
the domain. Significant declines were widely observed in the southwestern USA,
where severe recent drought has been widely reported (Cook et al., 2015; Williams
et al., 2020), reinforcing the utility of LF4 as an indicator of streamflow quantity
and concurring with the hydrometric analysis presented in Chapter 3. Further-
more, where streamflow increases were observed in the Northwest, Coastal Pacific
Northwest and US Rocky Mountains, LF4 also increased and was highly consistent
with Qmean and Qmedian.
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Figure 4.13: Trend map of annual mean flow (Qmean) in WNA.

Positive trends in LF6 were apparent in the southern portion of Rocky Moun-
tains (Utah, Colorado, and northern New Mexico) and CPNW, many of which
are statistically significant. As an indicator of snow-to-rain transition (SRT), the
increases in LF6 suggests these streams are becoming increasingly dominated by
rain. This weakening snowmelt signal has been previously reported in mountains
areas of WNA (Regonda and Rajagopalan, 2005; Mote et al., 2005). Represent-
ing the integrated impacts of SRT is complex, and typically requires a number of
hydrometrics that include timing of onset and peak of spring freshet, centroid of
flow mass, seasonal fractional flows, and date of snowmelt (Whitfield and Can-
non, 2000; Stewart et al., 2005; Dudley et al., 2017). However, LF6 was able to
represent SRT through a single metric.

For central coastal Pacific sites in the United States, there were widespread
significant increases in LF7 (Fig. 4.12). While similar, streams above and below
this region are distinct in that they do not have characteristically higher flows in
November and December. As noted, there is a strong negative correlation between
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LF7 and Qnov and Qdec, and this result suggests that northern coastal Pacific sites
are gradually shifting in their flow regime similar to streams to the south, with
less flows during early winter.

Earlier snowmelt and spring freshet have been widely reported across the moun-
tainous areas of WNA (Barnett et al., 2005; Regonda and Rajagopalan, 2005). A
strong positive trend in LF8 was identified in the U.S. Rocky Mountains, partic-
ularly in Western Idaho. This increase indicates the earlier arrival of freshet as it
is negatively correlated to the timing metrics, which again is confirmed through
the results in Chapter 3. As negatively related to the timing of snowmelt-driven
freshet, increasing LF8 indicates earlier arrival of spring freshet at those streams.
This result is supported by previous findings of snowmelt-driven streamflows shift-
ing toward earlier dates across interior PNW (Regonda and Rajagopalan, 2005).

4.5 Discussion

4.5.1 Evolution of ADH based on LF trends
Understanding the temporal evolution of streamflow hydrographs is critical for
water resource management, and we present a new approach to estimate the pro-
gressive evolution of streamflow over time based on trends in LFs. First, we se-
lected streams that had statistically significant (p < 0.1) trends for at least one LF
and whose goodness-of-fit (NSE > 0.7) was high between the original and recon-
structed ADHs to ensure that LFs preserved the salient features of the hydrograph.
Then, LFs with statistically significant slopes had the 43 years of LF data replaced
by the value on the trend line (the Sen’s slope). For LFs without a significant trend,
the long-term LF median over the observation period was used. Following this,
the synthetic time series of LFs were entered into the VAE decoder to reconstruct
ADHs. As synthetic time series deliberately exclude non-significant fluctuation
while preserving the first-order changes of shifting LFs, the reconstructed ADHs
highlight the primary expected changes in the ADH while minimizing variation.

Based on this procedure, streams in the southern Rocky Mountains (i.e. Utah,
Colorado, New Mexico) show RHEs that have substantial reduction during the
spring and summer season (Fig.4.14). All of these streams had significant in-
creases in LF4, with some having upward trends in LF6. The trends in the LFs
suggest notable reduction of spring freshet and weakened snowmelt-driven signals;
a reflection of the severe drought and warming temperatures over the last several
decades (Williams et al., 2020).
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Figure 4.14: Trend line of LFs from 1979 to 2021 (left) and re-
constructed ADHs with modified LFs (right). LFs with statistically
significant trend are presented in colors, while those non-significant
trend show in grey.

On the western slopes of the US Rocky Mountains, significant increases in LF8
capture the distinct patterns of advancing spring freshet on the RHE (Fig. 4.15).
On the Eastern slopes, there is an increase of peak flows as a result of negative
trends in LF2 (Fig. 4.16). Both earlier onset of freshet and increased peak flows
were identified within the classic hydrometrics outlined in Chapter 3.

Figure 4.15: Trend line of LFs from 1979 to 2021 (left) and recon-
structed ADHs with modified LFs (right) at ID-13310700. Statisti-
cally significant trend lines are colored, while non-significant ones
are in grey.
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Figure 4.16: Trend line of LFs from 1979 to 2021 (left) and Recon-
structed ADHs with modified LFs (right) at MT-12381400. Statis-
tically significant trend lines are colored, while non-significant ones
are in grey.

RHE also revealed patterns that were not identified in the classical hydrometric
analysis. A diminishing spring freshet signal was observed on the RHE at a number
of streams with considerable glacial coverage in the CPNW. Most of these streams
had significant negative trends in LF8 and a positive trend in LF6; both of which
are related to spring flow. Coopersmith et al. (2014) found that reduced snowpacks
in the PNW led to lower spring peak flows, yet no significant negative trends
were detected in spring monthly flows in the Chapter 3 analysis. It is possible
that snowmelt-driven changes were overwhelmed by high winter rainfall events
that contribute a large portion of streamflow in PNW. In contrast, the VAE-
extracted features are associated with different components of streamflow and are
particularly indicative of low and average flows, highlighting their sensitivities to
changes in low-frequency signals. The decline in spring peaks on the RHE does
suggest that reduced snowpacks in the PNW affecting spring flow.

Figure 4.17: Trend line of LFs from 1979 to 2021 (left) and Recon-
structed ADHs with modified LFs (right) at WA-12167000. Statis-
tically significant trend lines are colored, while non-significant ones
are in grey.
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The decoder’s ability to reconstruct ADHs from LFs provides an opportunity
to project future flow regimes assuming that the trends in LF are stationary.
For example, if we assume that the LF will progress along the Sen’s slope, LFs
can be extrapolated and the decoder can generate projected future ADHs. An
example of this procedure for a stream in the Northwest Territories provided in
Figure 4.18, where the RHE over the 43 year observation period indicates a late-
summer secondary peak in flows. ADHs built with extrapolated LFs suggest this
new peak will become more prominent over the next 20 years and there will be
a sharper recession of spring freshet can be expected. While forcing hydrological
models with climate projections scenarios is the most prevailing and physically
based approach to prediction future streamflow (Burn et al., 2010), the data-
driven technique provides a simple and fast ways to project future regimes based
on current statistically significant changes in LFs.

Figure 4.18: Trend line of LFs from 1979 to 2041 (left) and re-
constructed ADHs with modified LFs (right) at NT-10MC002. Ex-
tended trend line is in dashed line. ADHs built with observed LFs
are in green-blue colors, and those with extrapolated values are in
yellow-magenta colors.

4.5.2 Potential Use in Flow Regime Classification
A subset samples of ADHs were labelled using the t-SNE map developed in Chapter
2 that represent seven different flow regimes in WNA: three snow-dominated (Class
1-3), one mixed (Class 4), and two rain-dominated regimes (Class 5 and 6) (see
Fig. 4.19). Results indicate that samples from each of the flow regimes for a
distinct joint distribution in latent feature space. ADHs from rain-dominated
classes typically had a positive LF6, while those from the snow-dominated classes
had a negative value. As a mixed flow regime, ADHs in Class 4 exhibited both
winter rainfall events and distinct spring freshet, and as a consequence their LF6
values remained close to zero. Among the four snow-regime classes (also including
Class 4), the timing of the spring freshet became gradually later, and their LF8
progressed from low to high values. In comparison, the ADHs in Class 3 and
Class 4 (mostly from southern Idaho) have a more compressed high-flow signal
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and flows that occur earlier, also resulting in a larger LF8 value. With respect
to the magnitude of peak flow, LF2 is an effective indicator in snow dominated
regimes. Class 1 and 2 include ADHs from high elevation and high latitudes, and
typically exhibit an extended period of freshet-driven flows. Although having a
similar ADH shape, Class 1 has a higher LF4 than Class 2. LF4 is an indicator of
the total streamflow magnitude, which is greater overall in Class 1. In contrast,
Class 6, which consists mostly of ADHs from Southern California, is the driest
flow regime and has the lowest LF4. Between the two rainfall-dominated classes
(Class 5 and 6), the most distinct difference is that Class 5 had higher flow during
early winter than Class 6. This is reflected in LF7, which is negatively related
to November and December flows for rainfall-dominated streams, with LF7 much
lower in Class 5 than Class 6.

A parallel coordinates plot indicate that ADHs from different flow regimes have
unique patterns in LFs (Fig. 4.19). Embedded data, if sufficiently preserving the
salient features from the original dataset, are often favorable because they greatly
improve the efficiency of classification (Goodfellow et al., 2016). As low-dimension
representation of ADHs, LFs could potentially be used for a broader range of
hydrological classification on larger streamflow datasets.

Figure 4.19: ADHs and parallel coordinates plot of six flow
regimes.
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4.5.3 Limitation of VAE
Here we present a data driven methodology and a DL algorithm to learn and
extract the most salient features from ADHs from Western North American flow
regimes. This VAE approach stands in contrast to manually designing and inspect-
ing classical hydrometrics to characterize changes in streamflow regimes. Novel
machine-learned features (LFs) provide an opportunity to characterize changes
in flow regimes from a new perspective that is not limited to previous human-
designed features. Applying a decoder, it is possible to reconstruct ADHs with
any given LFs, so detected and expected changes of LFs can be directly projected
on the shape of the AHDs. However, despite significant changes in LFs that can
be detected, we believe it is most appropriate to use LFs as a general indicator
of shifting flow directions as opposed to quantitative measures of changing magni-
tude. As the transformation from AHDs to LFs is highly non-linear, there is a lack
of firm connection between LFs and specific hydrological processes. Our current
interpretation of LFs, which is based on Spearman’s correlation with hydrometrics
and visual examination of RHEs, is plausible but not adequate to establish connec-
tions between LFs and changes in hydrological processes resulting in streamflow
shifts. We encourage future efforts to bridge this gap.

The VAE provided several useful LF indicators, most notably LF6 that easily
distinguished snow and rain-dominated flow regimes. However, this indicator is
specific to this data set, the streams in Western North America. Retraining with
new data is necessary to further explore and expand this VAE approach.

The VAE excelled in learning the general ADH pattern, yet typically failed to
copy high, short-lived events. As a consequence, the current VAE model is unsuit-
able for characterizing events such as intermittent or sudden floods. However, it is
possible to enhance the learning capability of VAE to extremes in ADHs by making
the loss function more sensitive to errors in high/low values. Another potential
approach is to choose a different normalization with a weaker distortion of high
values than the square root. Overall, it is possible to adjust the normalization and
loss function of the VAE based on different research objectives.

Finally, it is important to note that LF features are determined objectively.
Hydrometric indicators are often designed with very specific human or societal
implications (e.g. lenghts of low flows, high flows, etc.), and as a consequence
their utility in an operational way may be limited.

4.6 Conclusion
In this work, we present an approach using deep learning to identify features of
streamflow change in Western North America. Latent features were extracted us-
ing VAE models; five of which had direct hydrological implications. Furthermore,
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LFs were found to be closely associated with a variety of classical hydrometric indi-
cators such as flow quantity, seasonal distribution, timing and magnitude of freshet,
and snow-to-rain transition. Trends in LFs over the 43 years period show direct
agreement with associated hydrometric trends outlined in Chapter 3. Through
utilization of the LFs, the VAE decoder provides an intuitive way to visualize the
evolution of streamflow over time, as temporal changes in the LFs are projected on
the shape of the ADH. This also provides a mechanism to estimate future changes
in streamflow regimes by extrapolating LF trends forward in time. Furthermore,
as ADHs from different flow regimes form distinct joint distributions in latent fea-
ture space, LFs have considerable potential for streamflow classification and flow
regime regionalization. As data-driven approaches become more common in hy-
drological analyses, we believe that VAE is a useful tool to learn features of raw
flow data that may be absent in traditional hydrometric analyses.
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Chapter 5

Conclusion

Over the past century, changes to streamflow timing and volume have been widely
observed across Western North America (WNA). These changes are driven in part
by natural climate variability and anthropogenic climate change. This thesis ad-
vances on previous work by identifying the most recently streamflow changes in
WNA using a comprehensive suite of classical hydrometric methods along with
novel Deep Learning (DL) based approaches. The period of interest was the most
recent 43 years (1979 to 2021) and included more than 500 streams in Canada
and the United States. Both reference hydrometric and DL approaches suggest
streamflow regimes have significantly shifted at most WNA streams over the past
four decades, yet changes in magnitude, timing and direction exhibit considerable
spatial dependency.

Results in Chapter 3 indicate that the most consistent change across the WNA is
a decline in streamflow during late summer. Statistically significant negative trends
were identified for August and September at almost all middle and low-latitude
streams. Glaciers provided some buffer against these declining summer flows, even
when their areal coverage was relatively small. An approximate dividing line of at
46◦N latitude existed, where streams north of this line had increased overall water
availability, while streams south most often dried. As changing hydrometrics have
considerable spatial dependency, streams were divided into six regions for analysis.
Streams in the Northwest domain had consistent increase in winter (and therefore
total) flow; an observation previously reported in the literature and ascribed to
degrading permafrost. In the Canadian Rocky Mountains, the proportion of spring
flow increased whereas summer flows diminished. Declines in summer flows were
also observed in the Coastal Pacific Midwest along with prolonged dry periods. In
the Coastal Pacific Northwest, a distinct change was an increase in autumn flows,
which is related to substantial increases in October precipitation during the study
period. Across the Southwest, streamflows exhibited a dramatic decline in water
availability and field significant negative trends were observed for all magnitude-
related hydrometrics (e.g. monthly flows and flow percentiles). On average, annual
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flows declined by 45% over the last 43 years across this region, underscoring the
water emergency in this region.

DL techniques provide a powerful tool to extract and process information from
streamflow data. In this thesis, two DL-based models, parametric t-SNE and VAE
have been developed and trained. The t-SNE (Chapter 2) proves and intuitive
approach to visualize similarity among a large number of hydrographs on a 2-D
map, and was able to outperform conventional clustering techniques such as PCA
and correlation matrices. The t-SNE was able to identify and classify hydrographs
rapidly, and with a DL-based encoder network was able to project new samples
of ADHs on the existing map; a new parametric approach. As a diagnostic tool,
t-SNE allows the rapid identification of an ADH flow regime of a new hydrograph
based on their neighbours hydrological and geographical identities. Potential ap-
plications of this approach are hydrograph reconstruction for ungauged watersheds
or identifying information redundancy in monitoring networks.

The DL VAE model (Chapter 4) was developed and trained to automatically
learn and extract latent features (LFs) from raw streamflow data, which were then
used for trend analysis. This provided an opportunity to assess change in WNA
flow regimes form an alternate DL perspective. This DL approach has two primary
advantages to classical hydrometric analysis: 1) LFs are free from information
redundancy and present distinct aspects of streamflow characteristics, and 2) LF
can represent complex changing patterns efficiently, overcoming the challenge of
selecting from dozens of classical hydrometric indicators.

Understanding and interpreting LFs was achieved by: 1) relating them to clas-
sical hydrometrics that have well understood meaning using Spearman’s rank cor-
relation coefficient, and 2) tuning the LFs and observing the shape evolution of
reconstructed ADHs. In terms of the relation between LFs and hydrometrics, some
were more interpretable than others. For example, LF6 was closely associated with
streamflow seasonal distribution and represented snow-to-rain transition, which
would typically require multiple hydrometrics to describe. LF4 was an indicator
of magnitude-related hydrometrics and describe mean annual flows and all flow
percentiles, yet correlation with high flows were weaker. Some LF were only in-
terpretable for certain flow regimes (e.g. rain vs snow). LF2 was highly correlated
with the magnitude of spring freshet and LF8 freshet timing, yet only for snow
dominated streams.

Trend analysis of the LFs revealed patterns that were consistent with the hy-
drometric analysis. Positive trends in LF4 at streams in the Northwest domain
and negative trends in the Southwest supported the increases/decreases observed
in those regions and was a sensitive indicator of streamflow amount. A forward
shifting of streamflow observed in the Rocky Mountains was supported by the
positive trends in LF8. In addition, LFs revealed changes that were obscured from
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traditional hydrometrics. Strong positive trends in LF8 at streams in the southern
Rocky Mountains imply snow-to-rain transitions of the streamflow regime; possibly
related to declining winter snow accumulation. Furthermore, significant increases
in LF7 for the Pacific coastal regions suggest that the relatively northern streams
(in BC, Washington and Oregon) have been shifting towards a flow regime closer
to those in northern California that have less flow in early winter.

With the VAE decoder, a new method was proposed to reconstruct future
ADHs by using statistically significant changes in LFs. By tuning LFs along their
trendline (i.e. Sen’s slope) provided an intuitive way to project changes in the
hydrograph based on the trends in the machine learned features. While this ap-
proach has limitations in that it assumes stationarity in the change magnitude and
direction, it provides a useful data-driven approach to visualize change.

5.1 Limitations
As with all DL and comparative approaches, there were subjective choices that
were made that influence the interpretation of the analysis. In Chapter 3, streams
were divided into six regions with respect to their geographic location. While this
was a pragmatic approach that allowed the evaluation of field-significance, there
are alternate ways of grouping streams as evidence in Chapters 2 and 4. To further
assess the significance of change in a region, alternate clustering and classification
regimes would result in different outcomes, yet the overall hydrometric analysis on
given streams would remain unchanged.

Despite its potential for classification, the t-SNE in Chapter 2 is based purely on
ADH shape and ignores underlying hydrological processes and biophysical setting.
In addition, the t-SNE model was developed and trained exclusively on WNA
streams, and to apply this further it must be retrained for ‘unseen’ flow regimes.

The VAE model in Chapter 4 is poor at recognizing features related to short
lived intermittent events. In most cases, ADHs reconstructed with LFs could copy
the general flow pattern, yet fits were poor for catchments with transient rainfall-
driven events (typically in the Southwest). This limits the VAE model, and its
poor performance for extreme events may be attributed to the choice of data
normalization which alternate methods may improve. In addition, the physical
meaning and linkage between LF and hydrometrics is dependent on flow regimes,
and the grouping of rain and snow dominated groups based on LF6 was in part
subjective.
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5.2 Recommendation for Future Study
This thesis provides a comprehensive and up-to-date overview of streamflow changes
in WNA and a general framework for streamflow change detection that could be ap-
plicable across other geographical regions. North America, Europe, Australia, and
China are all prospective candidates, where national- or continental-scale stream
gauging network have been well established and operated for decades and where
this approach can be applied.

Climate change and variability will continue to reshape streamflow around the
world, and extending the observation period with newly collected streamflow data,
the framework and supplementary dashboard app will provide consistent updating
of trends and patterns in the domains of interest. In addition, it is possible to
add new hydrometrics and hydro-climate indices to the dashboard to help water
resource management decisions.

While this thesis has highlighted hotspots of streamflow change across WNA,
there is still uncertainty in the underlying mechanisms that are driving this change
and in how watersheds respond to change. While ERA5 data was used to assess
links with changes in precipitation and temperature, there is considerable nuance
in understanding the drivers and response to change that are beyond the scope
of this thesis. For example, geology, soil, permafrost topography and vegetation
all strongly influence hydrometric response, and process-based mechanisms remain
critical for understanding future hydrological regimes.

As a member in the family of generative models, VAE is able to create an
unlimited number of synthetic hydrographs that closely resemble training samples
and their variation. The generation of large statistically meaningful synthetic data
sets can benefit a range of hydrological modeling applications. In addition, more
research on LFs and their joint distribution will help generate flow regimes that
can be used for machine learning models that require labelled samples for training
and testing purpose, alleviating the need for large empirical data sets.
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Figure A2.1: Maps of trends in monthly and seasonal air tem-
perature across WNA. Non-significant changes (p-value>0.1) are
masked with a 50% transparent layer of white color.
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Figure A2.2: Maps of trends in monthly and seasonal precipita-
tion across WNA.
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Table A2.1: Information of selected stations from HCDN and RHBN

STATION
ID

STATION NAME PROV LATITUDE LONGITUDE AREA
(SQKM)

NETWORK

05AA008 CROWSNEST RIVER AT FRANK AB 49.597321 -114.410640 403.00 RHBN
05AA023 OLDMAN RIVER NEAR WAL-

DRON’S CORNER
AB 49.813889 -114.183327 1446.10 RHBN

05AD003 WATERTON RIVER NEAR WA-
TERTON PARK

AB 49.113659 -113.839400 613.00 RHBN

05AD005 BELLY RIVER NEAR MOUN-
TAIN VIEW

AB 49.099602 -113.697723 319.00 RHBN

05BA002 PIPESTONE RIVER NEAR LAKE
LOUISE

AB 51.433109 -116.174950 306.00 RHBN

05BB001 BOW RIVER AT BANFF AB 51.172230 -115.571770 2210.00 RHBN
05BL022 CATARACT CREEK NEAR

FORESTRY ROAD
AB 50.285259 -114.588710 166.00 RHBN

05CA009 RED DEER RIVER BELOW
BURNT TIMBER CREEK

AB 51.646252 -115.019250 2250.00 RHBN

05DA007 MISTAYA RIVER NEAR
SASKATCHEWAN CROSSING

AB 51.884270 -116.689190 248.00 RHBN

05DA009 NORTH SASKATCHEWAN
RIVER AT WHIRLPOOL POINT

AB 52.001190 -116.470930 1920.00 RHBN

05DA010 SILVERHORN CREEK NEAR
THE MOUTH

AB 51.799919 -116.583950 21.00 RHBN

07AA001 MIETTE RIVER NEAR JASPER AB 52.864120 -118.107170 629.00 RHBN
07AA002 ATHABASCA RIVER NEAR

JASPER
AB 52.910191 -118.058700 3870.00 RHBN

07AG003 WOLF CREEK AT HIGHWAY NO.
16A

AB 53.598351 -116.271840 826.00 RHBN

07BB002 PEMBINA RIVER NEAR EN-
TWISTLE

AB 53.604191 -115.004740 4400.00 RHBN

07BJ001 SWAN RIVER NEAR KINUSO AB 55.315540 -115.417170 1900.00 RHBN
07GG001 WASKAHIGAN RIVER NEAR

THE MOUTH
AB 54.752010 -117.205700 1040.00 RHBN

15024800 STIKINE R NR WRANGELL AK AK 56.708056 -132.130278 25692.80 HCDN
15052500 MENDENHALL R NR AUKE BAY

AK
AK 58.429722 -134.572778 220.41 HCDN

15072000 FISH C NR KETCHIKAN AK AK 55.391944 -131.193889 83.14 HCDN
15085100 OLD TOM C NR KASAAN AK AK 55.395194 -132.408627 15.28 HCDN
15129500 SITUK R NR YAKUTAT AK AK 59.586366 -139.494188 93.14 HCDN
15239050 MF BRADLEY R NR HOMER AK AK 59.777746 -150.756295 23.70 HCDN
15258000 KENAI R AT COOPER LANDING

AK
AK 60.492778 -149.807778 1642.06 HCDN

15266300 KENAI R AT SOLDOTNA AK AK 60.477500 -151.079444 5205.90 HCDN
15290000 L SUSITNA R NR PALMER AK AK 61.708889 -149.226667 160.32 HCDN
15292000 SUSITNA R AT GOLD CREEK

AK
AK 62.767778 -149.691111 15954.40 HCDN

15292700 TALKEETNA R NR TALKEETNA
AK

AK 62.346944 -150.016944 5195.54 HCDN

15302000 NUYAKUK R NR DILLINGHAM
AK

AK 59.935556 -158.187778 3859.10 HCDN

15304000 KUSKOKWIM R AT CROOKED
CREEK AK

AK 61.871111 -158.100833 2849.00 HCDN

15356000 YUKON R AT EAGLE AK AK 64.789444 -141.197778 9065.00 HCDN
15484000 SALCHA R NR SALCHAKET AK AK 64.472778 -146.923889 5620.30 HCDN
15493000 CHENA R NR TWO RIVERS AK AK 64.902374 -146.359366 2419.00 HCDN
15511000 L CHENA R NR FAIRBANKS AK AK 64.885690 -147.249648 886.71 HCDN
15514000 CHENA R AT FAIRBANKS AK AK 64.845833 -147.701111 5128.20 HCDN
15515500 TANANA R AT NENANA AK AK 64.565278 -149.091667 14504.00 HCDN
15565447 YUKON R AT PILOT STATION

AK
AK 61.934444 -162.880556 2590.00 HCDN

15744500 KOBUK R NR KIANA AK AK 66.973611 -160.130833 24656.80 HCDN
15896000 KUPARUK R NR DEADHORSE

AK
AK 70.281667 -148.959722 8106.70 HCDN

15908000 SAGAVANIRKTOK R NR PUMP
STA 3 AK

AK 69.014648 -148.820034 4821.85 HCDN

09384000 LITTLE COLORADO R ABV LY-
MAN LAKE NR ST. JOHNS,

AZ 34.314444 -109.361667 1934.73 HCDN

09402000 LITTLE COLORADO RIVER
NEAR CAMERON, ARIZ.

AZ 35.926389 -111.566667 16835.00 HCDN

09415000 VIRGIN RIVER AT LITTLE-
FIELD, ARIZ.

AZ 36.891667 -113.923611 13183.10 HCDN

09444500 SAN FRANCISCO RIVER AT
CLIFTON, ARIZ.

AZ 33.049444 -109.295278 7163.94 HCDN

09447800 BONITA CREEK NEAR
MORENCI, AZ.

AZ 32.955618 -109.531188 781.96 HCDN

09448500 GILA R AT HEAD OF SAFFORD
VALLEY NR SOLOMON ARI

AZ 32.868333 -109.510556 20450.64 HCDN

09471000 SAN PEDRO RIVER AT
CHARLESTON, ARIZ.

AZ 31.625833 -110.173889 3157.21 HCDN

09480000 SANTA CRUZ RIVER NEAR
LOCHIEL, ARIZ.

AZ 31.355278 -110.588889 212.90 HCDN

Continued on next page
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Table A2.1: Information of selected stations from HCDN and RHBN

STATION
ID

STATION NAME PROV LATITUDE LONGITUDE AREA
(SQKM)

NETWORK

09484000 SABINO CREEK NEAR TUCSON,
AZ.

AZ 32.316742 -110.810367 103.65 HCDN

09484600 PANTANO WASH NEAR VAIL,
AZ.

AZ 32.035914 -110.677582 1179.59 HCDN

09492400 EAST FORK WHITE RIVER
NEAR FORT APACHE, AZ.

AZ 33.822272 -109.814541 128.97 HCDN

09494000 WHITE RIVER NEAR FORT
APACHE, AZ.

AZ 33.736441 -110.166767 1628.23 HCDN

09497800 CIBECUE CREEK NEAR
CHYSOTILE, AZ.

AZ 33.843105 -110.557609 750.86 HCDN

09497980 CHERRY CREEK NEAR GLOBE,
AZ.

AZ 33.827826 -110.856227 516.80 HCDN

09498500 SALT RIVER NEAR ROO-
SEVELT, ARIZ.

AZ 33.619444 -110.920833 11152.54 HCDN

09505200 WET BEAVER CREEK NEAR
RIMROCK, AZ.

AZ 34.674744 -111.672094 285.68 HCDN

09505350 DRY BEAVER CREEK NEAR
RIMROCK, AZ.

AZ 34.728631 -111.775708 365.66 HCDN

09505800 WEST CLEAR CREEK NEAR
CAMP VERDE, AZ.

AZ 34.538636 -111.694036 614.94 HCDN

09508300 WET BOTTOM CREEK NR
CHILDS, ARIZ.

AZ 34.160833 -111.692222 94.28 HCDN

09510200 SYCAMORE CREEK NEAR
FORT MCDOWELL, AZ.

AZ 33.694211 -111.541802 425.31 HCDN

09512280 CAVE CREEK BLW COTTON-
WOOD CR NEAR CAVE CREEK,
AZ.

AZ 33.887260 -111.954039 188.71 HCDN

09513780 NEW RIVER NEAR ROCK
SPRINGS, AZ.

AZ 33.974202 -112.099046 177.47 HCDN

09535100 SAN SIMON WASH NEAR PISIN-
IMO, AZ.

AZ 32.044237 -112.370971 1482.93 HCDN

07EC002 OMINECA RIVER ABOVE OS-
ILINKA RIVER

BC 55.916859 -124.567580 5560.00 RHBN

07EE007 PARSNIP RIVER ABOVE MIS-
INCHINKA RIVER

BC 55.081940 -122.913060 4930.00 RHBN

07EE009 CHUCHINKA CREEK NEAR THE
MOUTH

BC 54.529720 -122.612220 310.00 RHBN

07FB001 PINE RIVER AT EAST PINE BC 55.718441 -121.211560 12100.00 RHBN
07FB004 DICKEBUSCH CREEK NEAR

THE MOUTH
BC 55.537781 -121.596810 82.40 RHBN

07FB008 MOBERLY RIVER NEAR FORT
ST. JOHN

BC 56.092499 -121.366780 1520.00 RHBN

07FC003 BLUEBERRY RIVER BELOW
AITKEN CREEK

BC 56.677639 -121.222330 1770.00 RHBN

08CD001 TUYA RIVER NEAR TELE-
GRAPH CREEK

BC 58.072250 -130.826450 3550.00 RHBN

08CG001 ISKUT RIVER BELOW JOHN-
SON RIVER

BC 56.734440 -131.668990 9500.00 RHBN

08DA005 SURPRISE CREEK NEAR THE
MOUTH

BC 56.109341 -129.477400 218.00 RHBN

08DB001 NASS RIVER ABOVE SHUMAL
CREEK

BC 55.262249 -129.085040 18400.00 RHBN

08EB004 KISPIOX RIVER NEAR HAZEL-
TON

BC 55.433849 -127.716160 1880.00 RHBN

08ED001 NANIKA RIVER AT OUTLET OF
KIDPRICE LAKE

BC 53.930328 -127.451690 732.00 RHBN

08EE008 GOATHORN CREEK NEAR
TELKWA

BC 54.648609 -127.123330 125.00 RHBN

08EE012 SIMPSON CREEK AT THE
MOUTH

BC 54.809940 -127.204160 13.20 RHBN

08EE025 TWO MILE CREEK IN DISTRICT
LOT 4834

BC 55.296108 -127.620750 21.20 RHBN

08EG012 EXCHAMSIKS RIVER NEAR
TERRACE

BC 54.362190 -129.312840 370.00 RHBN

08FB006 ATNARKO RIVER NEAR THE
MOUTH

BC 52.360081 -126.005860 2550.00 RHBN

08FE003 KEMANO RIVER ABOVE POW-
ERHOUSE TAILRACE

BC 53.563549 -127.952360 556.00 RHBN

08FF003 LITTLE WEDEENE RIVER BE-
LOW BOWBYES CREEK

BC 54.136391 -128.690000 180.00 RHBN

08GA010 CAPILANO RIVER ABOVE IN-
TAKE

BC 49.396240 -123.145843 173.00 RHBN

08GA061 MACKAY CREEK AT MON-
TROYAL BOULEVARD

BC 49.356159 -123.099861 3.63 RHBN

08GD004 HOMATHKO RIVER AT THE
MOUTH

BC 50.986359 -124.918640 5680.00 RHBN

08HA001 CHEMAINUS RIVER NEAR
WESTHOLME

BC 48.878361 -123.704640 355.00 RHBN

Continued on next page
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Table A2.1: Information of selected stations from HCDN and RHBN

STATION
ID

STATION NAME PROV LATITUDE LONGITUDE AREA
(SQKM)

NETWORK

08HA003 KOKSILAH RIVER AT
COWICHAN STATION

BC 48.727829 -123.670810 209.00 RHBN

08HB002 ENGLISHMAN RIVER NEAR
PARKSVILLE

BC 49.316109 -124.285271 319.00 RHBN

08HB008 SPROAT RIVER NEAR ALBERNI BC 49.289719 -124.910278 351.00 RHBN
08HB025 BROWNS RIVER NEAR

COURTENAY
BC 49.692829 -125.069250 87.90 RHBN

08HB075 DOVE CREEK NEAR THE
MOUTH

BC 49.736580 -125.085720 41.10 RHBN

08HF004 TSITIKA RIVER BELOW
CATHERINE CREEK

BC 50.440361 -126.578510 365.00 RHBN

08JB002 STELLAKO RIVER AT GLENAN-
NAN

BC 54.007801 -125.008920 3600.00 RHBN

08JD006 DRIFTWOOD RIVER ABOVE
KASTBERG CREEK

BC 55.976139 -126.677670 403.00 RHBN

08JE001 STUART RIVER NEAR FORT ST.
JAMES

BC 54.416859 -124.270620 14200.00 RHBN

08JE004 TSILCOH RIVER NEAR THE
MOUTH

BC 54.610809 -124.247760 431.00 RHBN

08KA009 MCKALE RIVER NEAR 940 M
CONTOUR

BC 53.444061 -120.220140 253.00 RHBN

08KB003 MCGREGOR RIVER AT LOWER
CANYON

BC 54.231171 -121.668750 4780.00 RHBN

08KE016 BAKER CREEK AT QUESNEL BC 52.973888 -122.509440 1550.00 RHBN
08LA001 CLEARWATER RIVER NEAR

CLEARWATER STATION
BC 51.655720 -120.066050 10300.00 RHBN

08LB076 HARPER CREEK NEAR THE
MOUTH

BC 51.354382 -119.881640 166.00 RHBN

08LD001 ADAMS RIVER NEAR SQUILAX BC 50.937592 -119.656340 3210.00 RHBN
08LG016 PENNASK CREEK NEAR

QUILCHENA
BC 49.964920 -120.134930 87.60 RHBN

08LG056 GUICHON CREEK ABOVE
TUNKWA LAKE DIVERSION

BC 50.607830 -120.910860 78.20 RHBN

08MA002 CHILKO RIVER AT OUTLET OF
CHILKO LAKE

BC 51.624859 -124.143360 2130.00 RHBN

08MA006 LINGFIELD CREEK NEAR THE
MOUTH

BC 51.673859 -124.145310 98.80 RHBN

08MB006 BIG CREEK ABOVE GROUND-
HOG CREEK

BC 51.523689 -123.115890 1010.00 RHBN

08MF062 COQUIHALLA RIVER BELOW
NEEDLE CREEK

BC 49.541889 -121.119970 85.50 RHBN

08MF065 NAHATLATCH RIVER BELOW
TACHEWANA CREEK

BC 49.953861 -121.862870 712.00 RHBN

08MG001 CHEHALIS RIVER NEAR HARRI-
SON MILLS

BC 49.300030 -121.937770 383.00 RHBN

08MG005 LILLOOET RIVER NEAR PEM-
BERTON

BC 50.336021 -122.800250 2100.00 RHBN

08MH001 CHILLIWACK RIVER AT VED-
DER CROSSING

BC 49.097382 -121.967480 1230.00 RHBN

08MH006 NORTH ALOUETTE RIVER AT
232ND STREET, MAPLE RIDGE

BC 49.242649 -122.580180 37.30 RHBN

08MH016 CHILLIWACK RIVER AT OUT-
LET OF CHILLIWACK LAKE

BC 49.083649 -121.458440 335.00 RHBN

08NB005 COLUMBIA RIVER AT DONALD BC 51.483299 -117.180390 9700.00 RHBN
08NC004 CANOE RIVER BELOW KIMMEL

CREEK
BC 52.731529 -119.384860 305.00 RHBN

08ND013 ILLECILLEWAET RIVER AT
GREELEY

BC 51.012630 -118.085140 1150.00 RHBN

08NE006 KUSKANAX CREEK NEAR
NAKUSP

BC 50.282909 -117.734480 330.00 RHBN

08NE077 BARNES CREEK NEAR NEE-
DLES

BC 49.905182 -118.125470 204.00 RHBN

08NE114 HIDDEN CREEK NEAR THE
MOUTH

BC 49.234539 -117.239170 56.70 RHBN

08NF001 KOOTENAY RIVER AT KOOTE-
NAY CROSSING

BC 50.887032 -116.046100 416.00 RHBN

08NH005 KASLO RIVER BELOW KEMP
CREEK

BC 49.907619 -116.953490 442.00 RHBN

08NH016 DUCK CREEK NEAR WYNNDEL BC 49.202629 -116.533910 57.00 RHBN
08NH084 ARROW CREEK NEAR ERICK-

SON
BC 49.159119 -116.452490 78.30 RHBN

08NH130 FRY CREEK BELOW CARNEY
CREEK

BC 50.082001 -116.784860 585.00 RHBN

08NJ013 SLOCAN RIVER NEAR CRES-
CENT VALLEY

BC 49.460079 -117.564800 3330.00 RHBN

08NJ130 ANDERSON CREEK NEAR NEL-
SON

BC 49.501949 -117.261280 9.07 RHBN

08NL004 ASHNOLA RIVER NEAR KERE-
MEOS

BC 49.207630 -119.993520 1050.00 RHBN
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08NL007 SIMILKAMEEN RIVER AT
PRINCETON

BC 49.459702 -120.503530 1810.00 RHBN

08NL038 SIMILKAMEEN RIVER NEAR
HEDLEY

BC 49.376968 -120.152310 5580.00 RHBN

08NL070 SIMILKAMEEN RIVER ABOVE
GOODFELLOW CREEK

BC 49.094101 -120.672550 408.00 RHBN

08NM174 WHITEMAN CREEK ABOVE
BOULEAU CREEK

BC 50.212219 -119.538610 114.00 RHBN

08NM240 TWO FORTY CREEK NEAR
PENTICTON

BC 49.650890 -119.400030 4.94 RHBN

08NM242 DENNIS CREEK NEAR 1780 ME-
TRE CONTOUR

BC 49.624168 -119.381430 3.73 RHBN

08NN015 WEST KETTLE RIVER NEAR
MCCULLOCH

BC 49.702919 -119.092470 233.00 RHBN

08OA002 YAKOUN RIVER NEAR PORT
CLEMENTS

BC 53.613892 -132.209720 480.00 RHBN

08OA003 PREMIER CREEK NEAR QUEEN
CHARLOTTE

BC 53.258610 -132.075040 NaN RHBN

08OB002 PALLANT CREEK NEAR QUEEN
CHARLOTTE

BC 53.057301 -132.051360 76.70 RHBN

09AA006 ATLIN RIVER NEAR ATLIN BC 59.595360 -133.814423 6860.00 RHBN
09AE003 SWIFT RIVER NEAR SWIFT

RIVER
BC 59.930828 -131.768620 3390.00 RHBN

10AC005 COTTONWOOD RIVER ABOVE
BASS CREEK

BC 59.117500 -129.825550 882.00 RHBN

10BE001 LIARD RIVER AT LOWER
CROSSING

BC 59.412498 -126.097220 104000.00 RHBN

10BE004 TOAD RIVER ABOVE NONDA
CREEK

BC 58.854969 -125.382610 2540.00 RHBN

10BE007 TROUT RIVER AT KILOMETRE
783.7 ALASKA HIGHWAY

BC 59.335972 -125.940250 1170.00 RHBN

10BE009 TEETER CREEK NEAR THE
MOUTH

BC 59.454170 -126.227500 209.00 RHBN

10CB001 SIKANNI CHIEF RIVER NEAR
FORT NELSON

BC 57.238220 -122.691470 2180.00 RHBN

10CD001 MUSKWA RIVER NEAR FORT
NELSON

BC 58.788109 -122.661640 20300.00 RHBN

10CD004 BOUGIE CREEK AT KILOME-
TRE 368 ALASKA HIGHWAY

BC 58.030251 -122.720170 335.00 RHBN

10CD005 ADSETT CREEK AT KILOME-
TRE 386.0 ALASKA HIGHWAY

BC 58.105999 -122.715580 109.00 RHBN

12355000 FLATHEAD RIVER AT FLAT-
HEAD, BRITISH COLUMBIA

BC 49.000556 -114.476389 1105.93 HCDN

09423350 CARUTHERS C NR IVANPAH CA CA 35.244989 -115.298876 2.24 HCDN
10258000 TAHQUITZ CR NR PALM

SPRINGS CA
CA 33.805000 -116.558333 43.77 HCDN

10258500 PALM CANYON CREEK NR
PALM SPRINGS CALIF

CA 33.745000 -116.534722 241.13 HCDN

10259000 ANDREAS CREEK NEAR PALM
SPRINGS, CALIF.

CA 33.760000 -116.549167 22.40 HCDN

10259200 DEEP C NR PALM DESERT CA CA 33.631136 -116.392234 79.12 HCDN
10263500 BIG ROCK CREEK NEAR VALY-

ERMO,CALIF.
CA 34.420833 -117.838611 59.31 HCDN

10296000 W WALKER R BL L WALKER R
NR COLEVILLE, CA

CA 38.379722 -119.449167 466.20 HCDN

10296500 W WALKER R NR COLEVILLE,
CA

CA 38.515278 -119.454167 647.50 HCDN

10308200 E F CARSON R BL
MARKLEEVILLE C NR
MARKLEEVILLEC

CA 38.713889 -119.763889 714.84 HCDN

10310000 W F CARSON R AT WOOD-
FORDS, CA

CA 38.769444 -119.831944 169.39 HCDN

10336645 GENERAL C NR MEEKS BAY CA CA 39.051852 -120.118521 19.60 HCDN
10336660 BLACKWOOD CREEK NR

TAHOE CITY CALIF
CA 39.107500 -120.161111 29.01 HCDN

10336676 WARD C AT HWY 89 NR TAHOE
PINES CA

CA 39.132129 -120.157691 24.72 HCDN

10336780 TROUT CREEK NR TAHOE VAL-
LEY CALIF

CA 38.920000 -119.971389 95.05 HCDN

10343500 SAGEHEN CREEK NR TRUCKEE
CALIF

CA 39.431667 -120.236944 27.20 HCDN

11015000 SWEETWATER R NR DES-
CANSO CA

CA 32.834774 -116.623075 117.76 HCDN

11025500 SANTA YSABEL CREEK NEAR
RAMONA, CALIF.

CA 33.106944 -116.865278 290.08 HCDN

11042400 TEMECULA CREEK NEAR
AGUANGA, CALIF.

CA 33.459167 -116.922778 339.29 HCDN

11055801 CITY C NR HIGHLAND CA.+
CANALS

CA 34.143889 -117.187778 50.76 HCDN
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11058500 EAST TWIN CREEK NEAR AR-
ROWHEAD SPRINGS, CALIF.

CA 34.179167 -117.264722 22.79 HCDN

11075800 SANTIAGO C A MODJESKA CA CA 33.712778 -117.644167 33.67 HCDN
11098000 ARROYO SECO NR PASADENA

CALIF
CA 34.222222 -118.176667 41.44 HCDN

11111500 SESPE CREEK NR WHEELER
SPRINGS CALIF

CA 34.577778 -119.256944 128.20 HCDN

11124500 SANTA CRUZ CR NR SANTA
YNEZ CA

CA 34.596667 -119.907778 191.66 HCDN

11132500 SALSIPUEDES CR NR LOMPOC
CA

CA 34.588611 -120.407500 121.99 HCDN

11138500 SISQUOC RIVER NEAR
SISQUOC, CALIF.

CA 34.839722 -120.167222 727.79 HCDN

11141280 LOPEZ C NR ARROYO GRANDE
CA

CA 35.235556 -120.471389 54.13 HCDN

11143000 BIG SUR RIVER NR BIG SUR
CALIF

CA 36.245833 -121.772222 120.44 HCDN

11148900 NACIMIENTO R BL SAPAQUE C
NR BRYSON CA

CA 35.788579 -121.093805 403.45 HCDN

11149900 SAN ANTONIO RIVER NEAR
LOCKWOOD CALIF

CA 35.896667 -121.087222 562.03 HCDN

11151300 SAN LORENZO C BL BITTER-
WATER C NR KING CITY CAL

CA 36.268056 -121.065278 603.47 HCDN

11152000 ARROYO SECO NEAR
SOLEDAD, CAL.

CA 36.280556 -121.321667 631.96 HCDN

11160000 SOQUEL CR AT SOQUEL CALIF CA 36.991389 -121.954722 104.12 HCDN
11160500 SAN LORENZO R AT BIG TREES

CALIF
CA 37.044444 -122.071389 274.54 HCDN

11162500 PESCADERO CREEK NEAR
PESCADERO CALIF

CA 37.260833 -122.327778 118.88 HCDN

11176400 ARROYO VALLE BL LANG CN
NR LIVERMORE CALIF

CA 37.561389 -121.682778 336.70 HCDN

11180500 DRY C A UNION CITY CA CA 37.606045 -122.023850 24.32 HCDN
11180960 CULL C AB CULL C RES NR

CASTRO VALLEY CA
CA 37.717707 -122.054407 15.06 HCDN

11182500 SAN RAMON CREEK AT SAN
RAMON, CALIF.

CA 37.773056 -121.993611 15.26 HCDN

11186001 COMBINED FLOW OF KERN R
AND KERN R NO 3 CA

CA 35.945278 -118.476667 2191.14 HCDN

11189500 SF KERN R NR ONYX CALIF CA 35.737500 -118.172778 1372.70 HCDN
11200800 DEER CREEK NEAR FOUNTAIN

SPRINGS CALIF
CA 35.941667 -118.821944 215.75 HCDN

11202001 NF OF MF TULE R NR
SPRINGVILLE CALIF (TOTAL
FLO

CA 36.174722 -118.694722 101.79 HCDN

11224500 LOS GATOS CREEK AB NUNEZ
CANYON NR COALINGA CAL

CA 36.214722 -120.469722 248.12 HCDN

11230500 BEAR CR NR LAKE T.A.EDISON
CALIF

CA 37.338333 -118.973056 135.98 HCDN

11237500 PITMAN C BL TAMARACK
CREEK CALIF

CA 37.198333 -119.213333 59.31 HCDN

11253310 CANTUA CREEK NR CANTUA
CREEK CALIF

CA 36.402222 -120.432500 120.18 HCDN

11264500 MERCED R AT HAPPY ISLES
BRIDGE NR YOSEMITE CALI

CA 37.731667 -119.557778 468.79 HCDN

11266500 MERCED RIVER AT POHONO
BRIDGE NEAR YOSEMITE, CA

CA 37.716944 -119.665278 831.39 HCDN

11274500 ORESTIMBA CREEK NR NEW-
MAN CALIF

CA 37.315556 -121.124167 347.06 HCDN

11274630 DEL PUERTO C NR PATTERSON
CA

CA 37.486599 -121.209103 187.44 HCDN

11284400 BIG C AB WHITES GULCH NR
GROVELAND CA

CA 37.841871 -120.184910 41.72 HCDN

11294000 HIGHLAND C BL SPICER MEAD-
OWS RES CALIF

CA 38.390000 -120.006111 117.59 HCDN

11299600 BLACK C NR COPPEROPOLIS
CA

CA 37.961036 -120.615204 37.32 HCDN

11315000 COLE C NR SALT SPRINGS DAM
CALIF

CA 38.519167 -120.211667 54.39 HCDN

11316800 FOREST CREEK NEAR
WILSEYVILLE, CALIF.

CA 38.403333 -120.445833 53.87 HCDN

11342000 SACRAMENTO RIVER AT
DELTA CALIF

CA 40.939722 -122.416111 1100.75 HCDN

11367500 MCCLOUD RIVER NR MC-
CLOUD CALIF

CA 41.188333 -122.064444 927.22 HCDN

11368000 MCCLOUD RIVER AB SHASTA
LAKE CALIF

CA 40.958333 -122.218611 1564.36 HCDN

11372000 CLEAR CREEK NR IGO CALIF CA 40.513333 -122.523056 590.52 HCDN
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11379500 ELDER CREEK NEAR
PASKENTA CALIF

CA 40.024722 -122.508611 239.32 HCDN

11381500 MILL C NR LOS MOLINOS CALIF CA 40.054722 -122.023056 339.29 HCDN
11383500 DEER CREEK NEAR VINA

CALIF
CA 40.014167 -121.947222 538.72 HCDN

11402000 SPANISH CREEK ABOVE
BLACKHAWK CREEK AT KED-
DIE,

CA 40.003056 -120.953333 476.56 HCDN

11413000 NORTH YUBA RIVER BELOW
GOODYEARS BAR, CALIF.

CA 39.525000 -120.936944 647.50 HCDN

11425500 SACRAMENTO RIVER AT
VERONA, CALIF.

CA 38.774444 -121.597222 3240.09 HCDN

11427000 NF AMERICAN R AT NORTH
FORK DAM CALIF

CA 38.936111 -121.022778 885.78 HCDN

11427700 DUNCAN CREEK NR FRENCH
MEADOWS CALIF

CA 39.135833 -120.477500 25.74 HCDN

11441500 S.F. SILVER CREEK NEAR ICE
HOUSE, CALIF

CA 38.818889 -120.364167 71.22 HCDN

11449500 KELSEY CREEK NEAR
KELSEYVILLE, CALIF.

CA 38.927500 -122.842500 94.79 HCDN

11451100 NF CACHE C AT HOUGH
SPRING NEAR CLEARLAKE
OAKS,

CA 39.165556 -122.618889 155.92 HCDN

11456000 NAPA RIVER NEAR ST. HELENA
CALIF

CA 38.497778 -122.426944 210.83 HCDN

11461000 RUSSIAN RIVER NEAR UKIAH,
CALIF.

CA 39.195556 -123.193889 259.00 HCDN

11465200 DRY CREEK NR GEYSERVILLE
CALIF

CA 38.698611 -122.956944 419.58 HCDN

11468000 NAVARRO RIVER NEAR
NAVARRO, CALIF.

CA 39.172222 -123.668333 784.77 HCDN

11468500 NOYO RIVER NR FORT BRAGG
CALIF

CA 39.428333 -123.736667 274.54 HCDN

11469000 MATTOLE RIVER NR PETRO-
LIA CALIF

CA 40.311667 -124.263333 621.60 HCDN

11473900 MIDDLE FORK EEL R NR DOS
RIOS CALIF

CA 39.706389 -123.324167 1929.55 HCDN

11475560 ELDER CREEK NEAR
BRANSCOMB CALIF

CA 39.729722 -123.642778 16.84 HCDN

11475800 SF EEL RIVER AT LEGGETT
CALIF

CA 39.874722 -123.719444 642.32 HCDN

11476500 SF EEL RIVER NR MIRANDA
CALIF

CA 40.181944 -123.775000 1390.83 HCDN

11476600 BULL CREEK NEAR WEOTT,
CALIF.

CA 40.351389 -124.002778 72.78 HCDN

11477000 EEL RIVER AT SCOTIA CALIF CA 40.491667 -124.098611 8062.67 HCDN
11478500 VAN DUZEN RIVER NR

BRIDGEVILLE CALIF
CA 40.480556 -123.889722 574.98 HCDN

11480390 MAD R AB RUTH RES NR FOR-
EST GLEN CA

CA 40.284313 -123.335303 242.60 HCDN

11481200 LITTLE R NR TRINIDAD CALIF CA 41.011111 -124.080556 104.90 HCDN
11481500 REDWOOD C NR BLUE LAKE

CALIF
CA 40.906111 -123.814167 175.34 HCDN

11482500 REDWOOD CREEK AT ORICK
CALIF

CA 41.299444 -124.050000 717.43 HCDN

11519500 SCOTT RIVER NEAR FORT
JONES, CALIF.

CA 41.640833 -123.013889 1691.27 HCDN

11521500 INDIAN CREEK NEAR HAPPY
CAMP, CALIF.

CA 41.835278 -123.381944 310.80 HCDN

11522500 SALMON RIVER AT SOMES BAR
CALIF

CA 41.377778 -123.476389 1945.09 HCDN

11523200 TRINITY R AB COFFEE C NR
TRINITY CTR CA

CA 41.111389 -122.704444 385.91 HCDN

11525500 TRINITY RIVER AT LEWISTON
CALIF

CA 40.719444 -122.802500 1862.21 HCDN

11528700 S F TRINITY RIVER BL HYAM-
POM, CALIF.

CA 40.650000 -123.493056 1978.76 HCDN

11530000 TRINITY R AT HOOPA CALIF CA 41.050000 -123.670833 7389.27 HCDN
11532500 SMITH RIVER NEAR CRESCENT

CITY, CALIF.
CA 41.789444 -124.053889 1577.31 HCDN

06614800 MICHIGAN RIVER NEAR
CAMERON PASS, CO.

CO 40.496094 -105.865012 4.03 HCDN

06620000 NORTH PLATTE RIVER NEAR
NORTHGATE, CO

CO 40.937500 -106.337778 3706.29 HCDN

06746095 JOE WRIGHT CREEK ABOVE
JOE WRIGHT RESERVOIR, CO.

CO 40.539982 -105.882790 8.90 HCDN

07083000 HALFMOON CREEK NEAR
MALTA, CO.

CO 39.172222 -106.388611 61.12 HCDN
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07096000 ARKANSAS RIVER AT CANON
CITY, CO.

CO 38.433889 -105.256667 8073.03 HCDN

07105945 ROCK CREEK ABOVE FORT
CARSON RESERVATION, CO.

CO 38.707493 -104.846640 17.48 HCDN

09034900 BOBTAIL CREEK NEAR JONES
PASS, CO.

CO 39.760264 -105.906401 15.65 HCDN

09035800 DARLING CREEK NEAR LEAL,
CO.

CO 39.800542 -106.026407 22.94 HCDN

09035900 SOUTH FORK OF WILLIAMS
FORK NEAR LEAL, CO.

CO 39.795820 -106.030573 72.84 HCDN

09047700 KEYSTONE GULCH NEAR DIL-
LON, CO.

CO 39.594431 -105.972516 23.57 HCDN

09065500 GORE CREEK AT UPPER STA-
TION, NEAR MINTURN, CO.

CO 39.625819 -106.278082 37.78 HCDN

09066000 BLACK GORE CREEK NEAR
MINTURN, CO.

CO 39.596375 -106.265026 32.41 HCDN

09066200 BOOTH CREEK NEAR
MINTURN, CO.

CO 39.648319 -106.323083 16.10 HCDN

09066300 MIDDLE CREEK NEAR
MINTURN, CO.

CO 39.645819 -106.382251 15.52 HCDN

09081600 CRYSTAL RIVER AB
AVALANCHE C, NEAR RED-
STONE, CO

CO 39.232222 -107.226667 432.53 HCDN

09085000 ROARING FORK RIVER AT
GLENWOOD SPRINGS, CO.

CO 39.543611 -107.328889 3758.09 HCDN

09107000 TAYLOR RIVER AT TAYLOR
PARK, CO.

CO 38.860271 -106.566697 331.62 HCDN

09110000 TAYLOR RIVER AT ALMONT,
CO.

CO 38.664444 -106.844722 1235.43 HCDN

09112500 EAST RIVER AT ALMONT CO. CO 38.664444 -106.847500 748.51 HCDN
09119000 TOMICHI CREEK AT GUNNI-

SON, CO.
CO 38.521667 -106.940278 2747.99 HCDN

09124500 LAKE FORK AT GATEVIEW,
CO.

CO 38.298889 -107.229444 865.06 HCDN

09132500 NORTH FORK GUNNISON
RIVER NEAR SOMERSET, CO.

CO 38.925833 -107.433611 1362.34 HCDN

09146200 UNCOMPAHGRE RIVER NEAR
RIDGWAY, CO.

CO 38.183889 -107.745278 385.91 HCDN

09147500 UNCOMPAHGRE RIVER AT
COLONA, CO.

CO 38.331389 -107.778889 1160.32 HCDN

09165000 DOLORES RIVER BELOW RICO,
CO.

CO 37.638889 -108.059722 271.95 HCDN

09239500 YAMPA RIVER AT STEAMBOAT
SPRINGS, CO.

CO 40.483611 -106.831667 1564.36 HCDN

09251000 YAMPA RIVER NEAR MAY-
BELL, CO.

CO 40.502778 -108.029167 8831.90 HCDN

09304500 WHITE RIVER NEAR MEEKER,
CO.

CO 40.033611 -107.861667 1955.45 HCDN

09306242 CORRAL GULCH NEAR
RANGELY, CO.

CO 39.920250 -108.472872 81.99 HCDN

09352900 VALLECITO CREEK NEAR BAY-
FIELD, CO.

CO 37.477500 -107.543056 186.74 HCDN

09361500 ANIMAS RIVER AT DURANGO,
CO.

CO 37.279167 -107.879722 1792.28 HCDN

08NH032 BOUNDARY CREEK NEAR
PORTHILL

ID 48.997219 -116.568060 242.00 RHBN

12306500 MOYIE RIVER AT EASTPORT,
IDAHO

ID 48.999444 -116.178611 1476.30 HCDN

12321500 BOUNDARY CREEK NR
PORTHILL ID

ID 48.997222 -116.568056 251.23 HCDN

12411000 COEUR D’ALENE R AB
SHOSHONE CK NR PRICHARD,
IDA

ID 47.708333 -115.976389 867.65 HCDN

12413000 COEUR D’ALENE RIVER AT
ENAVILLE IDAHO

ID 47.572222 -116.252778 2318.05 HCDN

12413500 COEUR D’ALENE RIVER NR
CATALDO, IDAHO

ID 47.563889 -116.306944 3159.80 HCDN

12414500 ST. JOE RIVER AT CALDER, ID ID 47.274722 -116.188056 2667.70 HCDN
12414900 ST. MARIES RIVER NEAR

SANTA IDAHO
ID 47.176389 -116.491667 712.25 HCDN

13037500 SNAKE RIVER NR HEISE,ID ID 43.612500 -111.659167 14897.68 HCDN
13073000 PORTNEUF RIVER AT TOPAZ

ID
ID 42.625000 -112.088889 1476.30 HCDN

13075000 MARSH CREEK NR MCCAM-
MON ID

ID 42.630000 -112.224722 914.27 HCDN

13082500 GOOSE CREEK AB TRAPPER
CREEK NR OAKLEY ID

ID 42.125000 -113.938889 1639.47 HCDN

13083000 TRAPPER CREEK NR OAKLEY
ID

ID 42.165833 -113.983611 133.18 HCDN
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13120000 N FK BIG LOST RIVER AT WILD
HORSE NR CHILLY ID

ID 43.933056 -114.113056 295.26 HCDN

13120500 BIG LOST RIVER AT HOWELL
RANCH NR CHILLY ID

ID 43.998333 -114.020000 1165.50 HCDN

13139510 COMBINATION BIG WOOD
R/SLOUGH AT HAILEY ID

ID 43.518056 -114.319444 1657.60 HCDN

13147900 LITTLE WOOD RIVER AB HIGH
FIVE CREEK NR CAREY I

ID 43.491667 -114.058333 642.32 HCDN

13168500 BRUNEAU RIVER NR HOT
SPRING ID

ID 42.771111 -115.719444 6811.70 HCDN

13185000 BOISE RIVER NR TWIN
SPRINGS ID

ID 43.659167 -115.726111 2149.70 HCDN

13186000 SF BOISE RIVER NR FEATH-
ERVILLE ID

ID 43.494444 -115.305556 1644.65 HCDN

13200000 MORES CREEK AB ROBIE
CREEK NR ARROWROCK DAM
ID

ID 43.648056 -115.988889 1033.41 HCDN

13235000 SF PAYETTE RIVER AT LOW-
MAN ID

ID 44.085278 -115.621111 1181.04 HCDN

13240000 LAKE FORK PAYETTE RIVER
AB JUMBO CR NR MCCALL I

ID 44.913611 -115.996389 126.65 HCDN

13269000 SNAKE RIVER AT WEISER ID ID 44.245556 -116.980000 23828.00 HCDN
13296500 SALMON RIVER BL YANKEE

FORK NR CLAYTON ID
ID 44.268333 -114.731944 2077.18 HCDN

13302500 SALMON RIVER AT SALMON ID ID 45.183333 -113.894444 9738.40 HCDN
13305000 LEMHI RIVER NR LEMHI ID ID 44.940000 -113.637778 2318.05 HCDN
13310700 SF SALMON RIVER NR KRAS-

SEL RANGER STATION ID
ID 44.986944 -115.725000 853.13 HCDN

13313000 JOHNSON CREEK AT YELLOW
PINE ID

ID 44.962222 -115.499444 551.67 HCDN

13316500 LITTLE SALMON RIVER AT
RIGGINS ID

ID 45.413056 -116.324722 1491.84 HCDN

13317000 SALMON RIVER AT WHITE
BIRD ID

ID 45.750278 -116.323056 9194.50 HCDN

13336500 SELWAY RIVER NR LOWELL ID ID 46.086667 -115.512778 4946.90 HCDN
13337000 LOCHSA RIVER NR LOWELL ID ID 46.150556 -115.586389 3056.20 HCDN
13338500 S FK CLEARWATER RIVER AT

STITES ID
ID 46.086667 -115.975556 2978.50 HCDN

13340000 CLEARWATER RIVER AT
OROFINO ID

ID 46.478611 -116.256389 14452.20 HCDN

13340600 N FK CLEARWATER RIVER NR
CANYON RANGER STA ID

ID 46.840556 -115.619722 3522.40 HCDN

13342500 CLEARWATER RIVER AT
SPALDING, ID

ID 46.448611 -116.826389 24786.30 HCDN

13345000 PALOUSE RIVER NR POT-
LATCH, ID.

ID 46.915278 -116.950000 821.03 HCDN

05014500 SWIFTCURRENT CREEK AT
MANY GLACIER MT.

MT 48.799167 -113.655833 81.33 HCDN

06019500 RUBY RIVER ABOVE RESER-
VOIR NEAR ALDER MT

MT 45.175278 -112.147778 1393.42 HCDN

06037500 MADISON RIVER NEAR WEST
YELLOWSTONE, MT.

MT 44.656944 -111.067500 1087.80 HCDN

06043500 GALLATIN RIVER NEAR GAL-
LATIN GATEWAY MT

MT 45.497500 -111.420000 2136.75 HCDN

06061500 PRICKLY PEAR CREEK NEAR
CLANCY, MT.

MT 46.519167 -111.945833 497.28 HCDN

06099500 MARIAS RIVER NEAR SHELBY,
MT.

MT 48.427222 -111.888889 8396.78 HCDN

06191000 GARDNER RIVER NEAR MAM-
MOTH YNP

MT 44.992500 -110.690556 523.18 HCDN

06191500 YELLOWSTONE RIVER AT
CORWIN SPRINGS, MT.

MT 45.111944 -110.793611 6793.57 HCDN

06192500 YELLOWSTONE RIVER NEAR
LIVINGSTON, MT.

MT 45.597222 -110.565278 9197.09 HCDN

06207500 CLARKS FORK YELLOWSTONE
RIVER NEAR BELFRY MT

MT 45.010278 -109.064722 2988.86 HCDN

06214500 YELLOWSTONE RIVER AT
BILLINGS MT

MT 45.796667 -108.470000 4649.05 HCDN

06289000 LITTLE BIGHORN RIVER AT
STATE LINE NEAR WYOLA M

MT 45.006944 -107.614444 499.87 HCDN

12302055 FISHER RIVER NEAR LIBBY,
MT.

MT 48.355556 -115.313889 2170.42 HCDN

12304500 YAAK RIVER NEAR TROY, MT. MT 48.561944 -115.969167 1983.94 HCDN
12330000 BOULDER CREEK AT

MAXVILLE, MT.
MT 46.472222 -113.233056 184.67 HCDN

12332000 MIDDLE FORK ROCK CREEK
NEAR PHILIPSBURG, MT.

MT 46.195000 -113.500000 318.57 HCDN

12354500 CLARK FORK AT ST. REGIS,
MT.

MT 47.301944 -115.086389 1836.31 HCDN
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12355500 N F FLATHEAD RIVER NEAR
COLUMBIA FALLS, MT.

MT 48.495556 -114.126667 4009.32 HCDN

12358500 MIDDLE FORK FLATHEAD
RIVER NEAR WEST GLACIER
MT

MT 48.495278 -114.009167 2921.52 HCDN

12370000 SWAN RIVER NEAR BIGFORK,
MT.

MT 48.024444 -113.978889 1737.89 HCDN

12374250 Mill Cr ab Bassoo Cr nr Niarada
MT

MT 47.829664 -114.697630 50.79 HCDN

12375900 South Crow Creek near Ronan MT MT 47.491600 -114.026774 19.72 HCDN
12377150 Mission Cr ab Reservoir nr ST Ig-

natius MT
MT 47.322987 -113.979547 32.18 HCDN

12381400 South Fork Jocko River near Arlee
MT

MT 47.195486 -113.850653 150.95 HCDN

12390700 PROSPECT CREEK AT THOMP-
SON FALLS, MT.

MT 47.586111 -115.354167 471.38 HCDN

07203000 VERMEJO RIVER NEAR DAW-
SON, NM

NM 36.680556 -104.785556 779.59 HCDN

07207500 PONIL CREEK NEAR CIMAR-
RON, N. MEX.

NM 36.573611 -104.946111 442.89 HCDN

07208500 RAYADO CREEK AT SAUBLE
RANCH NEAR CIMARRON, N.M

NM 36.372222 -104.969444 168.35 HCDN

07211500 CANADIAN R NR TAYLOR
SPRINGS, NM

NM 36.296944 -104.493333 7381.50 HCDN

07216500 MORA RIVER NEAR GOLON-
DRINAS N. MEX.

NM 35.890833 -105.163056 691.53 HCDN

07218000 COYOTE CREEK NEAR GOLON-
DRINAS, N. MEX.

NM 35.916667 -105.163611 556.85 HCDN

07226500 UTE CREEK NEAR LOGAN, NM NM 35.438382 -103.525794 5242.75 HCDN
08267500 RIO HONDO NEAR VALDEZ, N.

MEX.
NM 36.541667 -105.555833 93.76 HCDN

08269000 RIO PUEBLO DE TAOS NEAR
TAOS, N. MEX.

NM 36.439444 -105.503056 172.49 HCDN

08271000 RIO LUCERO NEAR ARROYO
SECO, N. MEX.

NM 36.508333 -105.530278 42.99 HCDN

08275500 RIO GRANDE DEL RANCHO
NEAR TALPA, N. MEX.

NM 36.297778 -105.581944 214.97 HCDN

08276500 RIO GRANDE BELOW TAOS
JUNCTION BRIDGE NR TAOS,N

NM 36.320000 -105.753889 25200.70 HCDN

08279000 EMBUDO CREEK AT DIXON,
NM

NM 36.210833 -105.913056 789.95 HCDN

08289000 RIO OJO CALIENTE AT LA
MADERA, NM

NM 36.349722 -106.043611 1085.21 HCDN

08291000 SANTA CRUZ RIVER NEAR
CUNDIYO, N. MEX.

NM 35.964722 -105.903889 222.74 HCDN

08324000 JEMEZ RIVER NR JEMEZ,NM NM 35.661667 -106.742778 1217.30 HCDN
08377900 RIO MORA NEAR TERRERO,

NM
NM 35.777222 -105.657500 137.79 HCDN

08378500 PECOS R NR PECOS, NM NM 35.708333 -105.681944 489.51 HCDN
08380500 GALLINAS CREEK NEAR MON-

TEZUMA, N. MEX.
NM 35.651944 -105.318333 217.56 HCDN

08387000 RIO RUIDOSO AT HOLLYWOOD,
N. MEX.

NM 33.326667 -105.627222 310.80 HCDN

08405500 BLACK RIVER ABOVE
MALAGA, N. MEX.

NM 32.228889 -104.150556 888.37 HCDN

08408500 DELAWARE RIVER NR RED
BLUFF, N M

NM 32.023056 -104.054167 1784.51 HCDN

09364500 ANIMAS RIVER AT FARMING-
TON, NM

NM 36.721389 -108.201389 3522.40 HCDN

09386900 RIO NUTRIA NEAR RAMAH, NM NM 35.282529 -108.553411 184.94 HCDN
09430500 GILA RIVER NEAR GILA, NM NM 33.061111 -108.536667 4827.76 HCDN
09430600 MOGOLLON CREEK NEAR

CLIFF, NM
NM 33.166667 -108.649167 178.71 HCDN

09431500 GILA RIVER NEAR REDROCK,
NM

NM 32.726944 -108.675000 7327.11 HCDN

10EB001 SOUTH NAHANNI RIVER
ABOVE VIRGINIA FALLS

NT 61.636108 -125.797030 14500.00 RHBN

10ED002 LIARD RIVER NEAR THE
MOUTH

NT 61.742722 -121.227970 275000.00 RHBN

10ED003 BIRCH RIVER AT HIGHWAY NO.
7

NT 61.333580 -122.094250 542.00 RHBN

10FA002 TROUT RIVER AT HIGHWAY
NO. 1

NT 61.139809 -119.843060 9270.00 RHBN

10FB005 JEAN-MARIE RIVER AT HIGH-
WAY NO. 1

NT 61.445530 -121.238190 1310.00 RHBN

10GA001 ROOT RIVER NEAR THE
MOUTH

NT 62.479721 -123.433060 9820.00 RHBN

10GB006 WILLOWLAKE RIVER ABOVE
METAHDALI CREEK

NT 62.650059 -122.899250 20200.00 RHBN
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10LA002 ARCTIC RED RIVER NEAR THE
MOUTH

NT 66.787437 -133.089650 18750.00 RHBN

10LC007 CARIBOU CREEK ABOVE HIGH-
WAY NO. 8 (DEMPSTER HIG...

NT 68.087280 -133.492320 590.00 RHBN

10MC002 PEEL RIVER ABOVE FORT
MCPHERSON

NT 67.258888 -134.888810 70600.00 RHBN

10ND002 TRAIL VALLEY CREEK NEAR
INUVIK

NT 68.736191 -133.493100 68.30 RHBN

10244950 STEPTOE C NR ELY, NV NV 39.201389 -114.687500 28.75 HCDN
10249300 S TWIN R NR ROUND MOUN-

TAIN, NV
NV 38.887500 -117.244444 51.80 HCDN

10301500 WALKER R NR WABUSKA, NV NV 39.152778 -119.097222 6734.00 HCDN
10310500 CLEAR CREEK NEAR CARSON

CITY, NV
NV 39.113242 -119.798237 39.49 HCDN

10312000 CARSON R NR FORT
CHURCHILL, NV

NV 39.291667 -119.311111 3372.18 HCDN

10316500 LAMOILLE C NR LAMOILLE, NV NV 40.690833 -115.475556 64.75 HCDN
10322500 HUMBOLDT R AT PALISADE,

NV
NV 40.606944 -116.201389 12975.90 HCDN

10329500 MARTIN C NR PARADISE VAL-
LEY, NV

NV 41.533333 -117.427778 445.48 HCDN

10352500 MC DERMITT C NR MC DER-
MITT, NV

NV 41.966667 -117.833611 582.75 HCDN

13161500 BRUNEAU RIVER AT ROWLAND
NV

NV 41.933333 -115.673611 989.38 HCDN

10396000 DONNER UND BLITZEN RIVER
NR FRENCHGLEN,OREG.

OR 42.791111 -118.866667 518.00 HCDN

11501000 SPRAGUE RIVER NEAR CHILO-
QUIN,OREG.

OR 42.584722 -121.848611 4092.20 HCDN

13331500 MINAM RIVER AT MI-
NAM,OREG.

OR 45.620000 -117.725556 621.60 HCDN

14020000 UMATILLA RIVER AB
MEACHAM CR NR GIB-
BON,OREG.

OR 45.719722 -118.322222 339.29 HCDN

14034500 WILLOW CREEK AT HEPPNER,
OREG.

OR 45.350556 -119.548889 250.71 HCDN

14044000 M FK JOHN DAY R AT RITTER,
OREG.

OR 44.888889 -119.140278 1333.85 HCDN

14046500 JOHN DAY RIVER AT SERVICE
CREEK, OREG.

OR 44.793889 -120.005556 13183.10 HCDN

14048000 JOHN DAY R AT MCDONALD
FERRY,OREG.

OR 45.587778 -120.408333 19632.20 HCDN

14092750 SHITIKE CR, AT PETERS PAS-
TURE, NR WARM SPRINGS, OR

OR 44.750395 -121.633397 57.48 HCDN

14096850 BEAVER CREEK, BLW QUARTZ
CR, NR SIMNASHO, OR.

OR 44.958727 -121.394229 374.62 HCDN

14105700 COLUMBIA RIVER AT THE
DALLES,OREG.

OR 45.607500 -121.172222 18130.00 HCDN

14137000 SANDY RIVER NEAR MARMOT,
OREG.

OR 45.391667 -122.127778 678.58 HCDN

14138800 BLAZED ALDER CREEK NEAR
RHODODENDRON, OREG.

OR 45.452618 -121.891468 21.29 HCDN

14138870 FIR CREEK NEAR BRIGHT-
WOOD, OR

OR 45.480119 -122.025638 14.02 HCDN

14138900 NORTH FORK BULL RUN RIVER
NEAR MULTNOMAH FALLS, OR

OR 45.494286 -122.035917 21.68 HCDN

14139800 SOUTH FORK BULL RUN RIVER
NEAR BULL RUN, OR

OR 45.444564 -122.109529 40.70 HCDN

14141500 LITTLE SANDY RIVER NEAR
BULL RUN, OREG.

OR 45.415398 -122.171475 59.87 HCDN

14154500 ROW RIVER ABOVE PITCHER
CREEK NEAR, DORENA, ORE

OR 43.736111 -122.872222 546.49 HCDN

14158500 MCKENZIE RIVER AT OUTLET
OF CLEAR LAKE, OR

OR 44.360955 -121.995617 237.08 HCDN

14158790 SMITH R AB SMITH R RES NR
BELKNAP SPRGS,OREG.

OR 44.334567 -122.047007 40.57 HCDN

14166500 LONG TOM RIVER NEAR NOTI,
OREG.

OR 44.049845 -123.426210 226.52 HCDN

14178000 NO SANTIAM R BL BOULDER
CR NR DETROIT,OREG.

OR 44.706944 -122.100000 559.44 HCDN

14179000 BREITENBUSH RIVER ABV
FRENCH CR, NR DETROIT

OR 44.752778 -122.127778 279.72 HCDN

14182500 LITTLE NORTH SANTIAM
RIVER NEAR MEHAMA, OR

OR 44.791511 -122.578974 286.85 HCDN

14185000 SOUTH SANTIAM RIVER BE-
LOW CASCADIA, OREG.

OR 44.393056 -122.509722 450.66 HCDN

14185900 QUARTZVILLE CREEK NEAR
CASCADIA, OREG.

OR 44.540278 -122.434722 256.93 HCDN
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14187000 WILEY CREEK NEAR FOSTER,
OR

OR 44.372348 -122.623138 134.75 HCDN

14190500 LUCKIAMUTE RIVER NEAR SU-
VER, OREG.

OR 44.783333 -123.233333 621.60 HCDN

14191000 WILLAMETTE RIVER AT
SALEM,OREG.

OR 44.944444 -123.041667 18855.20 HCDN

14301000 NEHALEM RIVER NEAR FOSS,
OREG.

OR 45.704167 -123.754167 1727.53 HCDN

14301500 WILSON RIVER NEAR TILLAM-
OOK, OREG.

OR 45.484722 -123.688889 416.99 HCDN

14303200 TUCCA CREEK NEAR BLAINE,
OR.

OR 45.324276 -123.546501 8.06 HCDN

14305500 SILETZ RIVER AT SILETZ, OR OR 44.715117 -123.887335 526.33 HCDN
14306340 EAST FORK LOBSTER CREEK

NEAR ALSEA, OR.
OR 44.247899 -123.636494 14.73 HCDN

14306500 ALSEA RIVER NEAR TIDEWA-
TER, OREG.

OR 44.386111 -123.830556 865.06 HCDN

14307620 SIUSLAW R NR MAPLETON,
OREG.

OR 44.062500 -123.881944 1522.92 HCDN

14308000 SOUTH UMPQUA RIVER AT
TILLER, OREG.

OR 42.930556 -122.947222 1162.91 HCDN

14308990 COW CREEK ABV GALESVILLE
RES, NR AZALEA, OR.

OR 42.823177 -123.125892 167.76 HCDN

14309500 WEST FORK COW CREEK
NEAR GLENDALE, OR

OR 42.804004 -123.610907 224.92 HCDN

14316700 STEAMBOAT CREEK NEAR
GLIDE,OREG.

OR 43.350000 -122.727778 587.93 HCDN

14318000 LITTLE RIVER AT PEEL, OREG. OR 43.252778 -123.025000 458.43 HCDN
14321000 UMPQUA RIVER NEAR ELK-

TON, OREG.
OR 43.586111 -123.554167 9538.97 HCDN

14325000 SOUTH FORK COQUILLE RIVER
AT POWERS, OREG.

OR 42.891667 -124.069444 437.71 HCDN

14338000 ELK CREEK NEAR TRAIL,
OREG.

OR 42.675000 -122.743889 334.11 HCDN

14359000 ROGUE RIVER AT RAYGOLD
NR CENTRAL PT,OREG.

OR 42.437500 -122.986111 5317.27 HCDN

14362000 APPLEGATE RIVER NEAR COP-
PER, OREG.

OR 42.058333 -123.113889 582.75 HCDN

14362250 STAR GULCH NEAR RUCH, OR. OR 42.154014 -123.075323 41.42 HCDN
14377100 ILLINOIS RIVER NEAR KERBY,

OREG
OR 42.231944 -123.662500 984.20 HCDN

14400000 CHETCO RIVER NR BROOK-
INGS, OREG.

OR 42.123611 -124.186111 701.89 HCDN

09180500 COLORADO RIVER NEAR
CISCO UTAH

UT 38.810556 -109.292778 10619.00 HCDN

09183500 MILL CREEK AT SHELEY TUN-
NEL, NEAR MOAB, UT.

UT 38.483040 -109.404004 74.30 HCDN

09299500 WHITEROCKS RIVER NEAR
WHITEROCKS, UTAH

UT 40.586944 -109.926944 292.67 HCDN

09310500 FISH CREEK ABOVE RESER-
VOIR NEAR SCOFIELD, UTAH

UT 39.774444 -111.190278 155.66 HCDN

09312600 WHITE RIVER BL TABBYUNE C
NEAR SOLDIER SUMMIT, UT

UT 39.875793 -111.037388 195.29 HCDN

09315000 GREEN RIVER AT GREEN
RIVER, UTAH

UT 38.986111 -110.150556 12561.50 HCDN

09330500 MUDDY CREEK NEAR EMERY,
UTAH

UT 38.981944 -111.248611 271.95 HCDN

09378170 SOUTH CREEK ABOVE RESER-
VOIR NEAR MONTICELLO, UT

UT 37.846661 -109.369563 21.90 HCDN

09378630 RECAPTURE CREEK NEAR
BLANDING, UT

UT 37.755550 -109.476511 10.42 HCDN

09379500 SAN JUAN RIVER NEAR BLUFF,
UTAH

UT 37.146944 -109.864167 7770.00 HCDN

09404450 EAST FORK VIRGIN RIVER NR
GLENDALE, UTAH

UT 37.338611 -112.603611 192.18 HCDN

09408400 SANTA CLARA RIVER NR PINE
VALLEY UTAH

UT 37.383333 -113.482500 48.43 HCDN

10023000 BIG CREEK NEAR RANDOLPH,
UT

UT 41.609942 -111.254088 131.46 HCDN

10128500 WEBER RIVER NEAR OAKLEY,
UTAH

UT 40.736111 -111.245833 419.58 HCDN

10131000 CHALK CREEK AT COALVILLE
UTAH

UT 40.920556 -111.400833 647.50 HCDN

10166430 WEST CANYON CREEK NEAR
CEDAR FORT, UT

UT 40.405226 -112.100496 70.17 HCDN

10172200 RED BUTTE CREEK AT FT.
DOUGLAS NR. SLC, UTAH

UT 40.780000 -111.805278 18.78 HCDN

10172700 VERNON CREEK NEAR VER-
NON, UTAH

UT 39.979444 -112.379444 64.75 HCDN
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10172800 SOUTH WILLOW CREEK NEAR
GRANTSVILLE, UT

UT 40.496331 -112.574403 11.07 HCDN

10172870 TROUT CR NR CALLAO UTAH UT 39.744167 -113.889167 21.21 HCDN
10173450 MAMMOTH CREEK ABV WEST

HATCH DITCH, NEAR HATCH,
UT

UT 37.622757 -112.516877 268.53 HCDN

10174500 SEVIER RIVER AT HATCH
UTAH

UT 37.651111 -112.429444 880.60 HCDN

10205030 SALINA CREEK NEAR EMERY
UTAH

UT 38.911944 -111.529722 134.16 HCDN

10234500 BEAVER RIV NR BEAVER UTAH UT 38.280556 -112.573611 235.69 HCDN
10242000 COAL CREEK NEAR CEDAR

CITY, UT
UT 37.672199 -113.034670 208.69 HCDN

12013500 WILLAPA RIVER NEAR
WILLAPA, WASH.

WA 46.650000 -123.652778 336.70 HCDN

12020000 CHEHALIS RIVER NEAR DOTY,
WASH.

WA 46.617500 -123.276389 292.67 HCDN

12025000 NEWAUKUM RIVER NEAR
CHEHALIS, WA

WA 46.620104 -122.945126 404.90 HCDN

12025700 SKOOKUMCHUCK RIVER NEAR
VAIL, WA

WA 46.772603 -122.594009 103.30 HCDN

12027500 CHEHALIS RIVER NEAR
GRAND MOUND, WASH.

WA 46.776111 -123.034444 2318.05 HCDN

12035000 SATSOP RIVER NEAR SATSOP,
WA

WA 47.001944 -123.493611 774.41 HCDN

12039500 QUINAULT RIVER AT QUIN-
AULT LAKE, WASH.

WA 47.457778 -123.888056 683.76 HCDN

12040500 QUEETS RIVER NEAR CLEAR-
WATER, WASH.

WA 47.538889 -124.313889 1152.55 HCDN

12041200 HOH RIVER AT US HIGHWAY
101 NEAR FORKS, WA

WA 47.806747 -124.251033 655.80 HCDN

12043000 CALAWAH RIVER NEAR
FORKS, WA

WA 47.960077 -124.392987 337.18 HCDN

12048000 DUNGENESS RIVER NEAR SE-
QUIM, WASH.

WA 48.014444 -123.131389 404.04 HCDN

12054000 DUCKABUSH RIVER NEAR
BRINNON, WASH.

WA 47.684167 -123.010278 172.24 HCDN

12056500 NF SKOKOMISH R BLW STRCSE
RPDS NR HDSPRT, WASH.

WA 47.514444 -123.328611 148.15 HCDN

12073500 HUGE CREEK NEAR WAUNA,
WA

WA 47.389262 -122.699024 15.67 HCDN

12082500 NISQUALLY RIVER NEAR NA-
TIONAL, WA

WA 46.752608 -122.083719 350.00 HCDN

12092000 PUYALLUP RIVER NEAR ELEC-
TRON, WA

WA 46.903716 -122.035109 240.88 HCDN

12095000 SOUTH PRAIRIE CREEK AT
SOUTH PRAIRIE, WA

WA 47.139546 -122.092613 205.84 HCDN

12114500 CEDAR RIVER BELOW BEAR
CREEK NEAR CEDAR FALLS,
WA

WA 47.342054 -121.548986 66.56 HCDN

12115000 CEDAR RIVER NEAR CEDAR
FALLS, WA

WA 47.370107 -121.625101 102.80 HCDN

12115500 REX RIVER NEAR CEDAR
FALLS, WA

WA 47.350662 -121.663158 34.72 HCDN

12117000 TAYLOR CREEK NEAR SELL-
ECK, WA

WA 47.386491 -121.846222 44.85 HCDN

12134500 SKYKOMISH RIVER NEAR
GOLD BAR, WASH.

WA 47.837500 -121.665556 1385.65 HCDN

12141300 MIDDLE FORK SNOQUALMIE
RIVER NEAR TANNER, WA

WA 47.485940 -121.647881 401.51 HCDN

12143600 SF SNOQUALMIE RIVER AT
EDGEWICK, WA

WA 47.452604 -121.717885 165.01 HCDN

12144000 SF SNOQUALMIE RIVER AT
NORTH BEND, WA

WA 47.492880 -121.790111 210.11 HCDN

12144500 SNOQUALMIE RIVER NEAR
SNOQUALMIE, WASH.

WA 47.545278 -121.841111 971.25 HCDN

12145500 RAGING RIVER NEAR FALL
CITY, WA

WA 47.539824 -121.909005 78.98 HCDN

12147500 NORTH FORK TOLT RIVER
NEAR CARNATION, WA

WA 47.712324 -121.788727 102.89 HCDN

12147600 SOUTH FORK TOLT RIVER
NEAR INDEX, WA

WA 47.706771 -121.600107 14.13 HCDN

12167000 NF STILLAGUAMISH RIVER
NEAR ARLINGTON, WA

WA 48.261492 -122.047641 683.75 HCDN

12175500 THUNDER CREEK NEAR
NEWHALEM, WA

WA 48.672629 -121.072896 273.82 HCDN

12178100 NEWHALEM CREEK NEAR
NEWHALEM, WA

WA 48.655959 -121.238456 69.68 HCDN
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Table A2.1: Information of selected stations from HCDN and RHBN

STATION
ID

STATION NAME PROV LATITUDE LONGITUDE AREA
(SQKM)

NETWORK

12186000 SAUK R ABV WHITECHUCK R
NR DARRINGTON, WASH.

WA 48.168889 -121.469444 393.68 HCDN

12189500 SAUK RIVER NEAR SAUK,
WASH.

WA 48.424722 -121.567222 1849.26 HCDN

12401500 KETTLE RIVER NEAR FERRY,
WASH.

WA 48.981389 -118.765278 5749.80 HCDN

12404500 KETTLE RIVER NEAR LAU-
RIER, WASH.

WA 48.984444 -118.215278 9842.00 HCDN

12409000 COLVILLE RIVER AT KETTLE
FALLS, WASH.

WA 48.594444 -118.061389 2608.13 HCDN

12422500 SPOKANE RIVER AT SPOKANE,
WASH.

WA 47.659444 -117.448056 11111.10 HCDN

12424000 HANGMAN CREEK AT
SPOKANE, WASH.

WA 47.652778 -117.448611 1784.51 HCDN

12431000 LITTLE SPOKANE RIVER AT
DARTFORD, WASH.

WA 47.784722 -117.403333 1722.35 HCDN

12442500 SIMILKAMEEN RIVER NEAR
NIGHTHAWK, WASH.

WA 48.984722 -119.617222 9194.50 HCDN

12445000 OKANOGAN RIVER NEAR
TONASKET, WASH.

WA 48.632500 -119.460556 18803.40 HCDN

12447200 OKANOGAN RIVER AT MAL-
OTT, WASH.

WA 48.280556 -119.703056 20927.20 HCDN

12447390 ANDREWS CREEK NEAR
MAZAMA, WASH.

WA 48.823056 -120.144722 57.24 HCDN

12449950 METHOW RIVER NR PATEROS,
WASH.

WA 48.077500 -119.983889 4589.48 HCDN

12451000 STEHEKIN RIVER AT STE-
HEKIN, WASH.

WA 48.329722 -120.690556 831.39 HCDN

12452800 ENTIAT RIVER NEAR ARDEN-
VOIR, WASH.

WA 47.818611 -120.421944 525.77 HCDN

12457000 WENATCHEE RIVER AT PLAIN,
WASH.

WA 47.763056 -120.665000 1530.69 HCDN

12459000 WENATCHEE RIVER AT PE-
SHASTIN, WASH.

WA 47.583333 -120.612778 2590.00 HCDN

12462500 WENATCHEE RIVER AT MONI-
TOR, WASH.

WA 47.499444 -120.423333 3369.59 HCDN

12465000 CRAB CREEK AT IRBY, WASH. WA 47.360556 -118.848889 2698.78 HCDN
12488500 AMERICAN RIVER NEAR NILE,

WASH.
WA 46.977500 -121.168056 204.35 HCDN

13351000 PALOUSE RIVER AT HOOPER,
WASH.

WA 46.758611 -118.147778 6475.00 HCDN

14113000 KLICKITAT RIVER NEAR PITT,
WASH.

WA 45.756667 -121.208889 3359.23 HCDN

14216500 MUDDY CREEK BELOW CLEAR
CREEK NEAR COUGAR, WA

WA 46.075669 -121.998698 349.52 HCDN

14222500 EAST FORK LEWIS RIVER
NEAR HEISSON, WASH.

WA 45.836944 -122.465000 323.75 HCDN

14236200 TILTON RIVER AB BEAR
CANYON CREEK NEAR
CINEBAR, WA

WA 46.595384 -122.459556 360.99 HCDN

06186500 YELLOWSTONE RIVER AT YEL-
LOWSTONE LK OUTLET, YNP

WY 44.567500 -110.380000 2605.54 HCDN

06188000 LAMAR RIVER NR TOWER
FALLS RANGER STATION, YNP

WY 44.927778 -110.393056 1709.40 HCDN

06218500 WIND RIVER NEAR DUBOIS,
WYO.

WY 43.578611 -109.759167 600.88 HCDN

06221400 DINWOODY CREEK ABOVE
LAKES, NEAR BURRIS, WYO.

WY 43.345556 -109.409444 228.44 HCDN

06224000 BULL LAKE C AB BULL LAKE
WYO

WY 43.176944 -109.202222 484.33 HCDN

06278300 SHELL CREEK ABOVE SHELL
CREEK RESERVOIR, WYO.

WY 44.508056 -107.403056 59.83 HCDN

06280300 SOUTH FORK SHOSHONE
RIVER NEAR VALLEY, WYO.

WY 44.208333 -109.554167 769.23 HCDN

06298000 TONGUE RIVER NR DAYTON
WYO

WY 44.849444 -107.303889 528.36 HCDN

06309200 MIDDLE FORK POWDER RIVER
NEAR BARNUM, WY

WY 43.577740 -107.138400 117.54 HCDN

06311000 NORTH FORK POWDER RIVER
NEAR HAZELTON, WY

WY 44.027778 -107.080278 63.46 HCDN

06622700 NORTH BRUSH CREEK NEAR
SARATOGA, WY

WY 41.370278 -106.520000 96.87 HCDN

06623800 ENCAMPMENT RIV AB HOG
PARK CR NR ENCAMPMENT
WYO

WY 41.023611 -106.824167 188.29 HCDN

06630000 N PLATTE R AB SEMINOE RES
NR SINCLAIR WYO

WY 41.872222 -107.056944 10813.25 HCDN

06632400 ROCK CR AB KING CANYON
CANAL, NR ARLINGTON, WYO

WY 41.585278 -106.222222 162.91 HCDN
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Table A2.1: Information of selected stations from HCDN and RHBN

STATION
ID

STATION NAME PROV LATITUDE LONGITUDE AREA
(SQKM)

NETWORK

06635000 MEDICINE BOW R AB SEMINOE
RESERVOIR, NR HANNA,

WY 42.009722 -106.512500 6055.42 HCDN

09188500 GREEN RIVER AT WARREN
BRIDGE, NEAR DANIEL, WYOM

WY 43.018889 -110.117500 1212.12 HCDN

09196500 PINE CREEK ABOVE FREMONT
LAKE, WYO.

WY 43.030556 -109.769444 196.32 HCDN

09210500 FONTENELLE CR NR
HERSCHLER RANCH, NR
FONTENELLE

WY 42.096111 -110.415833 393.68 HCDN

09223000 HAMS FORK BELOW POLE
CREEK, NEAR FRONTIER, WY

WY 42.110556 -110.708889 331.52 HCDN

10032000 SMITHS FORK NEAR BORDER,
WY

WY 42.293333 -110.868056 427.35 HCDN

13010065 SNAKE RIVER AB JACKSON
LAKE AT FLAGG RANCH WY

WY 44.098889 -110.667500 1222.29 HCDN

13011500 PACIFIC CREEK AT MORAN,
WY

WY 43.851111 -110.516389 437.71 HCDN

13011900 BUFFALO FORK ABOVE LAVA
CREEK NEAR MORAN,WY

WY 43.837222 -110.439167 836.57 HCDN

13018300 CACHE CREEK NEAR JACKSON
WY

WY 43.452222 -110.703333 27.45 HCDN

13023000 GREYS RIVER AB RESERVOIR,
NR ALPINE, WY

WY 43.143056 -110.976111 1160.32 HCDN

08AA009 GILTANA CREEK NEAR THE
MOUTH

YT 61.195000 -136.982190 190.00 RHBN

08AC001 TAKHANNE RIVER AT KM 167
HAINES HIGHWAY

YT 60.113441 -136.927640 375.00 RHBN

09AA012 WHEATON RIVER NEAR CAR-
CROSS

YT 60.127781 -134.883610 864.00 RHBN

09AC001 TAKHINI RIVER NEAR WHITE-
HORSE

YT 60.851109 -135.741100 7050.00 RHBN

09AH004 NORDENSKIOLD RIVER BE-
LOW ROWLINSON CREEK

YT 62.051170 -136.280270 6410.00 RHBN

09BC001 PELLY RIVER AT PELLY
CROSSING

YT 62.829720 -136.580570 48900.00 RHBN

09CB001 WHITE RIVER AT KILOMETRE
1881.6 ALASKA HIGHWAY

YT 61.988171 -140.558670 6230.00 RHBN

09EA004 NORTH KLONDIKE RIVER
NEAR THE MOUTH

YT 64.001968 -138.596280 1090.00 RHBN

09EB003 INDIAN RIVER ABOVE THE
MOUTH

YT 63.770000 -139.629580 2210.00 RHBN

09FC001 OLD CROW RIVER NEAR THE
MOUTH

YT 67.634438 -139.696400 13900.00 RHBN

10AB001 FRANCES RIVER NEAR WAT-
SON LAKE

YT 60.473888 -129.118900 12800.00 RHBN
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