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Lay Abstract
The sense of touch is understudied compared to the senses of sight and hearing. But

simply reaching for a coin without looking involves complex calculations and decision-

making. We studied how the brain may approach tasks like this. We were interested

in how well the brain deals with multiple sources of information that do not always

agree with each other. We investigated these questions in computer simulations and

in experiments with undergraduate participants. Using carefully designed 3D-printed

discs, we tested dozens of participants across 3 different experiments. Our results

show that humans may use information in the best possible way and applications

relevant to VR and robot-assisted surgery.
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Abstract
Perception relies on the integration of numerous noisy inputs (cues). Cue combination

has been relatively understudied in somatosensation, compared to vision and audi-

tion. Here, we investigated whether haptic cutaneous and hand configuration cues

are combined optimally to discriminate between coin-sized discs of different sizes.

When the hand is open such that the thumb and index fingers span the diameter

of a disc to contact its perimeter, cutaneous cues occur from the indentation of the

skin caused by the curvature of the disc (smaller discs cause greater indentation). Si-

multaneously, the hand configuration cue (relating to the perceived distance between

fingers), provides an additional cue to size. These cues may vary in their reliability.

In three experiments involving 34 participants, we measured these cues and consid-

ered three hypotheses for how humans may use them: humans rely solely on the least

noisy cue (Winner-Take-All Model), humans combine cues based on a simple aver-

age (Average-Measurement Model), or humans combine cues via an optimal weighted

average (Optimally-Weighted Model). Each experiment tested participants using a

two-interval forced-choice (2IFC) paradigm with 3D printed disc stimuli. On each

trial, under occluded vision, participants felt two discs sequentially and responded

which felt larger. Participants were tested with each finger’s cutaneous cue alone,

the hand configuration cue alone, and all cues together. In two experiments, the pre-

sented discs were both circular. In a third experiment, unknown to participants, some

of the presented discs were oval-like cue conflict stimuli. Participant performance was

compared to predictions of the cue combination models. We conclude that humans
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may combine haptic cutaneous and hand configuration cues optimally to judge the

size of held objects.
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Chapter 1

Introduction

1.1 An Introduction to Somatic Perception

For humans, touch is the first of our senses to develop (Gallace & Spence 2010;

Gottlieb 1971). Touch facilitates our interactions with the world and is critical for

manipulating, interacting with, and experiencing our environment. Anything felt

must be translated from interactions with the skin to neural impulses for the brain to

decode.

1.1.1 Neuroanatomy and Neurophysiology

Four types of mechanoreceptors respond to different interactions upon glabrous (non-

hairy) skin, sending signals to the brain through afferent nerve fibres. Merkel cell

receptors respond to curvature, static indentations on the skin, and slow-moving stim-

uli. They are innervated by slowly adapting type 1 (SA1 ) afferents. Ruffini corpuscles
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are sensitive to the stretching of skin and are innervated by slowly adapting type 2

(SA2 ) afferents. Meissner corpuscles are sensitive to low-frequency vibrations and are

innervated by rapidly adapting (RA) afferents. Pacinian corpuscles (PC s) are sen-

sitive to high-frequency vibrations and are innervated by PC afferents (Bensmaia &

Manfredi 2012; Yau et al. 2016). In regular interactions with the environment, all of

these mechanorecptors contribute neural responses to some degree (Saal & Bensmaia

2014; Yau et al. 2016).

As the skin itself is a uniquely flexible and deformable organ which we move in

order to feel during tactile exploration, the brain utilizes proprioceptive information,

which relates to the configuration of limbs and digits in space. Muscle spindles,

innervated by group Ia and II nerve fibres, respond to muscle stretch associated with

joint movement. Golgi tendon organs, innervated by group Ib nerve fibres, respond

to muscle tension (Fallon & Macefield 2007).

The touch and proprioceptive signals branch in the brainstem and thalamus along

the way to the primary somatosensory cortex (Brodmann areas 3a, 3b, 1, and 2).

Neurons in 3b primarily receive thalamic inputs from core regions of the ventral pos-

terolateral nucleus (VPL) and respond best to cutaneous stimulation (Yau et al. 2016).

Neurons in area 3a receive their inputs from the region surrounding the VPL and re-

spond primarily to proprioceptive stimulation (Yau et al. 2016). However, this is

not a strict rule. The thalamus is a complex structure in itself with many branch-

ing pathways at multiple levels (Guillery & Sherman 2002). While neurons further

2
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along the pathway receive more convergent information, there is substantial horizon-

tal interconnectivity as well (Buonomano & Merzenich 1998). As such, neurons in S1

can receive information from both cutaneous and proprioceptive sources (Yau et al.

2016). Ultimately, through this complex system of neuronal impulses and pathways,

environmental stimuli relate to subjective perception.

1.1.2 Perception: Representation and Links

The brain is constantly, relentlessly bombarded by information. Perhaps luckily, hu-

mans are not always conscious of this. The feeling of clothes on the body, the weight

of the limbs, and the effort of breathing are generally only apparent when attention is

brought towards them. Nevertheless, the brain deals with the influx and endeavours

to represent the world. The world we perceive, however, is not necessarily the world

as it is. Various illusions across all sensory modalities, including touch, speak to that

end (Lederman & Jones 2011). Cortical neurons can only represent the world based

on their neural inputs. Palmer (1978) terms this representation the mental world.

Thus, the ‘real world’ is a represented world and the mental world is a representing

world which should reflect certain qualities of the represented world. When studying

the brain, researchers often create representations of the mental world. Effectively,

this becomes a representation of a representation of the represented world. In so do-

ing, one should be clear about what aspects of the representation are being modeled,

how the representations relate to each other, and what assumptions are being made.

When studying perception, researchers seek to examine the relationship between

3
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stimuli, the resulting neural activation, and the perception itself. The idea that

phenomenal states (perception) are lawfully related to physiological states (neural

activation) is itself an assumption. This leads us to the concept of linking proposi-

tions. An important linking proposition, termed the Identity proposition states that

statistically identical neural signals lead to statistically identical sensations (Teller

1984). The Contrapositive Identity proposition is essentially following the modus tol-

lens argument of the Identity proposition. Thus, sensations that are not statistically

identical imply physiological states that are not statistically identical (Teller 1984).

These propositions are particularly relevant in perception research that involves de-

tection or discrimination.

1.2 Frameworks for Investigating Detection and

Discrimination

1.2.1 Signal Detection Theory

Modern signal detection theory (SDT ) arose in the 1950s to analyze noisy data

from radar readings. Nearly simultaneously, the theory emerged in the field of psy-

chophysics as well, building on earlier contributions from researchers including Fech-

ner and Gauss (Wixted 2020). Fechner, who was prominent in establishing the field

of psychophysics, hypothesized that internal measurements of sensations existed and

were affected by the same type of measurement error that Gauss described in phys-

ical measurements (Link 1994). According to SDT , when an experimenter delivers

4
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a stimulus, the participant obtains sensory evidence—a measurement, which comes

from the resulting state of their nervous system (Ehrenstein & Ehrenstein 1999; Gold

& Shadlen 2007). Depending, for example, on whether a stimulus is present or absent,

the magnitude of the measurement may differ. Due to noise in the nervous system, a

repeated stimulus may evoke a different measurement each time. This measurement

can be described as a random variable whose mean depends on whether a stimulus

is present or absent (Gold & Shadlen 2007). Thus, the signal-plus-noise distribution

can be described by a Gaussian distribution centred on the true signal value when the

stimulus is present. Because of noise, when the stimulus is absent, there could still be

evidence that the stimulus is present. Thus, the noise distribution can be described

by a Gaussian distribution centred on 0 (no signal), when the stimulus is absent. The

overlap of these distributions depend on the sensitivity of the participant and the

difficulty of the task. To quantify the overlap, d’ is a measure of how far apart the

peaks are, relative to their spread (Ehrenstein & Ehrenstein 1999).

d′ = µsignal − µnoise

σ
(1.1)

SDT assumes that a participant also has an implicit criterion: a measurement

beyond which the participant reports the stimulus is present. Where this criterion

is placed affects how often the participant will correctly detect the stimulus when

it’s present (hit), incorrectly detect the stimulus when it’s absent (false alarm), cor-

rectly detect no stimulus when it’s absent (correct rejection), and incorrectly detect

no stimulus when it’s present (miss). By plotting the hit rate together with the false

5
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alarm rate, researchers can plot receiver operating characteristic (ROC ) curves for

the participant. This is useful to evaluate the sensitivity of the participant (d’) be-

cause these curves are “isosensitivity functions”. Different hit and false alarm rates

can lead to the same curve and different curves correspond to different sensitivities.

Alternatively, instead of measuring whether a stimulus is present or absent, and es-

sentially comparing the noise distribution to the signal distribution, other tasks offer

different advantages. A two-alternative forced-choice (2AFC ) or two-interval forced-

choice (2IFC ) experiment allows participants to compare two measurements. There

is no need to set an individual criterion, where the participant must subjectively have

enough evidence to justify responding positively (stimulus present); the participant

always responds positively in 2IFC tasks (Ehrenstein & Ehrenstein 1999). 2IFC test-

ing has shown participants can differentiate between smaller stimulus intensities than

would be captured by unforced testing (Ehrenstein & Ehrenstein 1999). Differences

in sensation are also more easily detected than verbalizing absolute magnitudes (Luce

& Krumhansl 1988; Wixted 2020).

1.2.2 Bayesian Inference

Bayes’ Theorem

Bayes’ theorem describes how to mathematically utilize conditional probabilities to

reach some conclusion. It involves three key elements: priors, likelihoods, and posteri-

ors. The principles of Bayes’ theorem can be used to make inferences in the presence of

uncertainty in a myriad of applications. The theorem was first written in its discrete

6
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form by Pierre-Simon Laplace (Fienberg 2006; Laplace 1774).

P (Hi|D) = P (D|Hi)P (Hi)∑n
j=1 P (D|Hj)P (Hj)

(1.2)

Equation 1.2 shows a modern form of the theorem. The Hs are the hypotheses. These

are events or possibilities that have different probabilities associated with them. The

priors, P (H), are the probability of a given hypothesis before considering any data.

When data are collected, you can then obtain likelihoods, P (D|H), which correspond

to the probability of obtaining those data if the hypothesis were true. Combining

these together with Bayes’ Theorem, you can ultimately obtain posterior probabilities,

P (H|D), for each hypothesis given the data. Combining prior knowledge and new

data in this way yields optimal conclusions.

Bayesian Coin Examples

A couple of simple coin examples illustrate these principles. In the first example,

there is a large jar filled with 700 fair coins (50% chance to land either heads or tails),

and 300 heads-biased coins (specially weighted coins that land heads 80% of the time

and tails, 20%). A randomly selected coin is chosen from the jar and flipped 20 times.

If it landed on heads 15 times, which of the two coin-types was it?

H1 = Fair, H2 = Biased

P (H1) = 0.7, P (H2) = 0.3

P (D|H1) =
(

20
15

)
0.515 ∗ 0.55, P (D|H2) =

(
20
15

)
0.815 ∗ 0.25

7
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P (H1|D) = (20
15)(0.515∗0.55)(0.7)

(20
15)(0.815∗0.25)(0.3)+(20

15)(0.515∗0.55)(0.7)
= 16.5%

P (H2|D) = (20
15)(0.815∗0.25)(0.3)

(20
15)(0.815∗0.25)(0.3)+(20

15)(0.515∗0.55)(0.7)
= 83.5%

Even though the biased coin was far less likely to be selected from the jar, there were

enough data points (flips) to conclude that the selected coin was most likely to be

biased. This is the optimal conclusion for maximizing correct responses.

What if we consider another extreme, however, with a uniform prior and limited

data? There are now 500 coins in the jar which have a 90% chance of landing on heads

and another 500 coins which have a 95% chance of landing heads. We’re only going

to flip a coin once, attempt to classify it, and return it to the jar. Every time a coin

lands on heads, Bayesian inference would classify it as a 95-biased coin. Whenever

a coin lands on tails, it will be classified as a 90-biased coin. As a result, many 90-

biased coins will be misclassified as 95-biased coins. However, given the limited data

available, this is still the optimal procedure in order to be correct most often. If we flip

1000 different coins from the jar, we would expect to encounter 500 90-biased coins.

450 of those would be expected to land on heads, and be misclassified as 95-biased

coins. The remaining 50 would be correctly classified as 90-biased coins. We would

also expect to encounter 500 95-biased coins. 475 of those would be expected to land

on heads and be correctly classified as 95-biased coins. The remaining 25 would be

misclassified as 90-biased coins. However, in the long run, we would expect an overall

correct classification of 50+475
1000 = 52.5% which is better than chance. We still glean

useful, optimal information in a simple, contrived, yet potentially counter-intuitive

example.

8
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As investigators, we’re not only interested in applying Bayes’ theorem to jars of

coins. We use these methods to run simulations and analyze data. Rather than having

a couple of hypotheses about coin-types, we can have thousands of hypotheses over

different empirical parameters of interest. Further, many researchers have found the

Bayesian framework to be useful in summarizing how the brain handles uncertainty

and environmental statistics.

Priors and Perception

Humans are generally used to light shining more or less directly from above, whether

it’s artificial indoor light or noon sun. Adams et al. (2004) studied this visual light-

from-above prior. Participants were shown bump-dimple visual stimuli with shadow

details consistent with overhead light. Prior to training, participant responses were

consistent with an overhead light prior. Participants were then trained with shifted

light and given haptic feedback as to whether the stimuli were bumps or dimples.

When shown the visual-only stimuli again, their responses were consistent with shifted

light prior. This shift generalized to a novel task, which lends evidence against an

alternative hypothesis that the change was a cognitive strategy. Adams et al. (2004)

argue that the light-from-above prior can be modified, temporarily with training, and

the brain updates its priors according to environmental data.

The rabbit illusion is a tactile illusion where a series of taps feel closer together

as the time between them decreases (Geldard & Sherrick 1972). Goldreich and Tong

(2013) explain the illusion as resulting from a low-speed prior on the skin. In daily

9
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life, humans are used to slow-moving stimuli on the skin. Clothing may shift and

slide along our skin, but generally without notable speed. Quick-moving stimuli, like

those that produce the rabbit illusion, would be less likely. The brain, used to slow

stimuli and not confident in the location of the stimulus (due to low acuity or weak

taps), could infer that perhaps the stimuli weren’t moving so quickly and instead the

stimuli were closer together.

1.3 Empirically Exploring Perception

1.3.1 Investigating Perception in Cue Combination

Cue Combination and Cue Conflict

Generally, cue combination research has focused on multimodal cues between various

senses and unimodal cues outside of haptics. Alais and Burr (2004) demonstrate

optimal cue combination across auditory and visual stimuli. When localizing a spatial

source by a beep and a flash, participants were better with both cues than with

either alone. Even though vision was typically more reliable, audition provided useful

information that was also integrated. Alais and Burr (2004) also experimentally

manipulated the flash by degrading it and reducing its reliability. On some trials,

they introduced cue conflicts where the beep and flash were displaced in opposite

directions. Participants judged the location of the event to be closer to where the flash

was than where the beep was. When the flash was degraded, however, participant

localizations were pushed closer to where the beep was. Experimenters were able to

10
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show that participants rely more on whichever of the two cues was more reliable.

Hillis et al. (2004) demonstrate optimality for two visual cues to depth: texture and

disparity. Many studies in these domains find that the reliability of cues is considered

during the process of perception (Alais & Burr 2004; Buckley & Frisby 1993; Hillis

et al. 2004; Jacobs 1999; Negen et al. 2018; van Beers et al. 2002).

Some studies have shown that a single cue can dominate perception (Colavita 1974;

Girshick & Banks 2009; Hecht & Reiner 2009; Shams et al. 2000). Shams et al. (2000)

found a scenario of auditory dominance. When a light, flashed once, is delivered with

multiple auditory beeps, the light is perceived as having flashed multiple times. The

Colavita Effect refers to a scenario of perceptual visual dominance. Participants were

asked to press either a ‘light key’ or ‘tone key’ to indicate whether a light or tone was

presented. On trials when both stimuli were presented simultaneously, participants

tended to select the ‘light key’ even when controlling for different stimuli intensity

and verbal instructions (Colavita 1974).

1.3.2 Investigating Perception in Haptics

Studies of touch can be organized into those that investigate affective touch (pertain-

ing to emotion, eg. a caress), discriminative touch (for decision-making, eg. orien-

tation discrimination), passive touch (without participant movement, eg. the Rabbit

Illusion), active touch (with non-manipulative movement, eg. Braille reading), and

haptics (active touch with grasping, manipulative movement, eg. stereognosis). We

11
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imagine the literature surrounding somatosensation as spanning two orthogonal con-

tinua. One being a discriminative–affective continuum, moving from what you feel to

how you feel. The other, relating to the degrees of freedom allowed in the study, a

passive–active–haptic continuum. These continua can lead to many different types of

sensory tasks (Table 1.1).

Table 1.1: Examples of Tactile Task Categorization

Passive Active Haptic

Affective
Palm/forearm
brushing
(Löken et al. 2011)

Surface texture
pleasantness
(Chen et al. 2009)

Petting a dog

Discriminative Tap localization Braille reading Stereognosis

Affective Touch

Touch can be used to explore, interact, and communicate. Affective touch relates to

the emotion involved in touch. For example, many studies delve into how touch is

perceived according to its speed. Löken et al. (2009) found that C-tactile fibres (un-

myelinated, slow-conducting afferents innervating hairy skin) respond best to stimuli

that move at intermediate speeds, not too fast nor too slow, within 1–10cm/s. This

intermediate speed was also reported to be the most pleasant by participants. Björns-

dotter and Olausson (2011) followed up on this study with a functional magnetic res-

onance imaging (fMRI ) study. They found affective touch at speeds of 3cm/s to be

more pleasant than at 30cm/s and found increased activation in the posterior insula,

a cortical destination for C-tactile fibres. von Mohr et al. (2017), studying attachment

and ostracism, show that slow, affective touch can reduce negative feelings of social
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exclusion. Investigations of affective touch help us understand the emotional role of

touch and the neurophysiology underlying it. In this thesis, however, we focus more

on discriminative touch.

Passive Discriminative Touch

An example of passive discriminative touch is the two-point orientation discrimina-

tion (2POD) task which can be used to assess tactile spatial acuity and has medical

applications (Tong et al. 2013). Traditionally, physicians who need to assess patient

tactile acuity, which can be used as an indicator of serious nerve injuries, relied on

two-point discrimination (2PD). The patient would be tapped with either one prong

or two at progressively decreasing separations to find the threshold where they could

no longer tell the difference. It’s a useful task which could even be accomplished

with a paper clip (Finnell et al. 2004). 2PD, however, benefitted from a non-spatial

cue that could inflate performance, making patients seem to have greater acuity than

they should (Craig & Johnson 2000; Johnson & Phillips 1981; Tong et al. 2013). Tap-

ping with one prong seems to result in stronger mechanoreceptor activation than with

two, even at zero separation (Vega-Bermudez & Johnson 1999). By always using two

prongs and switching orientation (vertical to horizontal) instead, this issue is avoided

and the test should be more reliable. Investigations into passive discriminative touch

provide insight into how the nervous system responds when forces are applied to it,

and when humans must then make decisions.

13
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Active Discriminative Touch

We define active touch as generally characterized by self-directed motion of the skin

surface with low degrees of freedom. For example, Lederman and Taylor (1972)

investigated the perception of roughness in active touch. Participants’ arms rested

on a padded swivel where they were allowed to move their fingertips horizontally,

but not vertically, across grooved plates. A clever fulcrum design also allowed the

experimenters to control the force participants used while scanning. Lederman and

Taylor (1972) found that groove width was most important, but perceived roughness

also increased with force. Since roughness perception can depend on the force applied,

and the scanning speed, Yoshioka et al. (2011) examined how, given a rough surface,

a constant perception of roughness arises from fluctuating forces and speeds. They

found that the cutaneous input of the surface on the skin allowed for the perception

of roughness, but proprioception from the motion of the hand itself was necessary

for the perception of roughness constancy. Active touch literature explores areas

of somatosensation that have some overlap with motion and proprioception while

maintaining substantial control.

Haptic Discriminative Touch

Haptic touch is characterized by cutaneous stimulation, proprioception, and free mo-

tion. In the study of haptics, Lederman and Klatzky (1987) have shown that there

are common techniques that people use to discern haptic cues for object identifica-

tion. For example, when given an object to recognize, people first tend to grasp the

object. This technique, termed “enclosure”, allows for the extraction of structural
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information including the overall ‘global shape’ of the object. Other techniques like

“contour following”, “pressure” and “static contact”, allow more information to be

extracted. These techniques are involved with manual stereognosis: the ability to use

hands to identify objects without vision or audition, which is routinely assessed in

neurological patients (Reidy et al. 2016). Reidy et al. (2016) examined sterognosis in

older (over 65 years) and younger (under 30 years) adults with everyday items and

euro coins. They were interested in how older adults, without apparent neurological

impairment, fare against similarly healthy younger adults. There was no difference

in older and younger adults in their ability to discriminate between object types like

buttons, keys, coins, and rings. Older adults, however, were significantly worse at

identifying individual euro coin denominations by touch alone. The study of haptics

favours high degrees of freedom where the hand may freely move and explore stimuli.

The Questions at Hand

Our investigations sat firmly on the discriminative line, somewhere between active and

haptic touch. Participants took part in ‘controlled haptic’ experiments where they

were allowed to move toward, reach, and grasp stimuli in a controlled manner. We

were interested in haptic cues relating to the sizes of different coin-sized discs. When

feeling for a coin, without looking, to find a dime next to a quarter, the task may

seem trivial. Finding a dollar next to a two-dollar coin may be more difficult, but still

doable. When holding a coin between the index finger and thumb, there is a point of

contact on each finger. These points of contact relate to the size of the coin through

the curvature of the coin. The greater the curvature, the greater the indentation,
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and the smaller the coin. These are cutaneous cues on the thumb, Cutaneous Cue 1

(Cut.1 ), and index finger, Cutaneous Cue 2 (Cut.2 ). Simultaneously, a proprioceptive

cue relating to where your fingers are in space relates to the size of the coin as well.

The further apart the fingers of the hand are configured around the coin, the larger

the coin must be. This Configuration Cue (Config.) along with Cut.1 and Cut.2 may

be combined in order to perceive the overall size of the coin. Do humans combine

these cues optimally or in some other fashion? Upon which cues, if any, do humans

most rely? We investigated three hypotheses for how these cues may be combined

through a series of model simulations and three experiments.

16

http://www.mcmaster.ca/


Chapter 2

Simulations and Modelling

2.1 Three Hypothesized Models of Cue Combina-

tion

This thesis explores predictions of three hypothesized models of cue combination. If

the brain has some internal understanding of its own sensory variability, as previ-

ous research in other modalities suggests, how might that information be used in

a disc comparison task with three cues? Interactions with physical stimuli evoke

afferent action potentials holding information, from various sources, that relate to

physical properties of the stimuli (similar physiological states lead to similar phenom-

enal states). In the disc example, each point of contact is a source of information

relating to object size, each of which gives a cutaneous cue to size (Cutaneous Cue

1 (Cut.1 ) and Cutaneous Cue 2 (Cut.2 )). The configuration of the hand itself is a

source of information which gives rise to a configuration cue to size (Configuration Cue

17
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(Config.)). These cues are internal measurements relayed through afferents. These

disc size measurements could be described by any relevant unit; we used mm radius.

We denote the stimulus by s, the overall percept resulting from the cues by ŝ, the cue

measurements on a given trial by x, and the standard deviation of the measurement

or percept by σ. Perhaps the brain employs a strategy where the most reliable cue is

fully relied upon in a form of sensory dominance. We refer to this possibility as the

Winner-Take-All (WTA) model.

WTA: Humans rely solely on the cue with the highest reliability.

ŝ = xbest (2.1)

σŝ = σsmallest (2.2)

With such a model, the percept ŝ is equivalent to the measurement of the most reliable

of the three cues. Similarly, the sigma of the combined estimate is equivalent to the

reliability of the most reliable cue.

Alternatively, perhaps the brain is unaware of its own reliability or does not use

that information and instead favours a quick, simple average of the cues. We refer to

this possibility as the Average-Measurement (AVG) model.

AVG: Humans combine cues based on an unweighted average of their cues.

ŝ = xCut.1 + xCut.2 + xConfig.

3 (2.3)
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σŝ = 1
3
√

σ2
Cut.1 + σ2

Cut.2 + σ2
Config. (2.4)

With this model, the percept is the simple average of cues. The equation for the

combined sigma follows from the percept formula (Appendix A1).

Perhaps, instead, the brain knows the reliability of each cue and optimally uses

that information to weight the measurements from each of the individual cues. We

refer to this possibility as the Optimally-Weighted (OPT ) model.

OPT : Humans combine cues optimally, weighting each according to its reliability.

ŝ =
xCut.1
σ2

Cut.1
+ xCut.2

σ2
Cut.2

+ xConfig.

σ2
Config.

1
σ2

Cut.1
+ 1

σ2
Cut.2

+ 1
σ2

Config.

(2.5)

σŝ =
√√√√ 1

1
σ2

Cut.1
+ 1

σ2
Cut.2

+ 1
σ2

Config.

(2.6)

Under the OPT model, the percept is the weighted average of the cues such that

more reliable cues are relied upon more. The combined sigma formula follows from

the percept formula (Appendix A2).

2.2 Model Predictions Depend on Relative Sigma

Values

To explore the predictions of each model, we present a simple simulation of a two-

interval forced-choice (2IFC ) comparison task in which simulated participants are
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asked to decide, for example, which of two discs has the larger diameter. Monte Carlo

simulations reveal, depending on the relative sigmas of each cue, the models make

similar or differing predictions. We used a range of stimulus values (in disc radius)

from -5mm to +5mm, in increments of 0.1mm, relative to the reference. These were

created using 1000 trials at each comparison level. At each of those comparison levels,

the proportion of times the comparison measurement was greater than that of the

reference is plotted in Figure 2.1. By sampling from Gaussian distributions centred

on the stimulus value, with the sigma corresponding to the reliability of the cue, a cue

is obtained. These cues are then combined according to the percept formulas above.

On each trial, the comparison percept for each model is compared to the reference

percept. Whichever had the larger value on that trial is taken as the response as to

which stimulus was perceived to be greater. The proportion of times one stimulus is

perceived greater than the other is plotted in the graph to create these psychometric

functions for each model.

When one of the cue sigmas is exceptionally good, the OPT and WTA models

make similar predictions (Fig. 2.1A). As the sigma (inverse of reliability) of a cue

in the optimal measurement equation approaches zero, becoming more reliable, that

cue is increasingly relied upon. In the limit that one cue’s sigma approaches zero,

the OPT model becomes similar to the WTA model. When the sigmas of each cue

are similar, the OPT and AVG models give similar predictions (Fig. 2.1B). Notice

in the measurement equation for the OPT model, what matters most is the relative

differences in sigma between the cues. If each cue is weighted the same, this becomes
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Figure 2.1: Monte Carlo simulations of model predictions under dif-
ferent relative sigma values. A) When the sigma of one cue is much
smaller than the others, OPT and WTA models make similar predic-
tions. B) When the sigmas of each cue are similar, OPT and AVG
models make similar predictions. C) When the relative sigmas vary,
each model makes different predictions.

equivalent to the AVG model. When the cue reliabilities vary, each model makes

different predictions (Fig. 2.1C). Thus, it is possible to distinguish between all three

hypotheses, depending on the relative sigmas of each cue. This simulation was done,

however, by simulating thousands of trials at hundreds of comparison levels. Can we

reasonably expect to be able to distinguish the OPT model from the WTA and AVG

models using noisy human participants and a feasible number of trials per comparison

level?
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2.3 A Simulated Sigma Experiment Reveals Clas-

sification Difficulty

Here, we simulate a sigma experiment with thousands of Bayesian-optimal observer

participants who will combine cues according to the OPT model. The observers

will complete a simulated Method of Constant Stimuli (MCS) two-interval forced-

choice (2-IFC) experiment. The experiment will be split into four conditions. In each

condition, there will be 8 comparison levels with 20 trials per comparison level. The

first three conditions will be the comparison task with each cue individually, so we

can attempt to work backwards and estimate what the true sigmas of each observer

are. The fourth condition will be a Combined Condition: the same comparison task

using all three cues together. This will allow us to test to what extent we can then

infer which model the observers are using.

To begin, we set a Gaussian distribution for the mean sigma of each cue for the over-

all population of simulated Bayesian-optimal observer participants (Fig. 2.2A). The

sigmas for each cue of any individual observer are sampled from these population-level

Gaussians. In turn, each observer, defined by their respective sigmas for each cue,

completes the full simulated experiment. On a given trial, each observer compares

a reference stimulus with a comparison stimulus. In the Combined Condition, for

example, the measurement distribution for each cue is a Gaussian centred on the true

radius of the piece, with a standard deviation equal to the sigma a given observer

has for that cue (Fig. 2.2B). The three cues to reference size are combined according
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Figure 2.2: Not to scale, for illustrative purposes. A) Example of
population-level distributions of possible sigmas for observers. From
left to right, Config., Cut.2, Cut.1. The sigmas for each cue of an
observer are sampled from these Gaussians. Depicted is one such sam-
ple to define the sigmas of a single observer. The sigmas of all 1000
observers are determined in this way. B) Depiction of measurement dis-
tributions for the example observer in a Combined Condition where the
mean of the measurement for each cue is centered on the true stimulus
value and the sigmas are equivalent to the sigmas of each cue for that
observer. Light grey: Cut.1, medium grey: Cut.2, dark grey: Config.
C) Example calculation of a trial to see what the observer believes was
the greater stimulus. D) The proportion of times ŝcomp > ŝref results
in a psychometric function.
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to the optimal percept formula as are the three cues for the comparison (Fig. 2.2C).

The proportion of times the comparison is perceived greater than the reference leads

to a psychometric function (Fig. 2.2D). Data for each observer are analyzed as any

real-world participant would be. We apply Bayesian inference to the data in each

individual and combined cue condition which results in a Posterior probability dis-

tribution function (PDF) over sigma (Appendix B1). The mode of that PDF also

defines the best-fit cumulative normal distribution for each psychometric function. By

integrating over the sigma PDF for each of the individual-cue conditions, we calculate

the sigma cumulative distribution functions (CDFs). By uniformly sampling from the

ordinate of the sigma CDFs and interpolating to the abscissa, we can sample sigma

values from the sigma PDFs. This sampling procedure is preferable to using the

mode of the sigma PDF as a single estimate because the samples collectively reflect

the confidence we have in our estimate. A single sample from each of the three sigma

PDFs, from the three individual-cue conditions in the simulation, yields a triplet.

Sampling thousands of these, we combine each triplet according to the three hypothe-

sized model equations. This results in three different combined sigma values—one for

each model. Thus, each model defines a different combined-cue psychometric func-

tion. We calculate the probability that the data collected in the Combined Condition

came from each of the three prospective combined psychometric functions. Across

the thousands of sampled triplets, we use Bayesian model comparison to calculate a

posterior probability for each model for each observer.

The results across all observers are found in the boxplots (Fig. 2.3). The entire
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Figure 2.3: Boxplot of Posterior Probabilities in the simulated sigma
experiment for each Model by Observer-type and Population Param-
eter. Grey line = median; Black diamond = mean. A-C) Top row.
Posterior probabilities for each model by observer-type when partici-
pants tend to have one cue with a relatively exceptional sigma. D-F)
Middle row. Posterior probabilities for each model by observer-type
when participants tend to have similar sigmas. G-I) Bottom row. Pos-
terior probabilities for each model by observer-type when participants
tend to have varied sigmas.

simulation was completed with observers combining cues according to each of the

models under three different population-level conditions: one sigma was exceptional

(MCut.1 = MCut.2 = 8mm, SCut.1 = SCut.2 = 2mm; MConfig. = 2mm, SConfig. = 1mm),
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the relative sigmas were similar (MCut.1 = MCut.2 = MConfig. = 4mm; SCut.1 =

SCut.2 = SConfig. = 0.1mm), or relative sigmas varied (MCut.1 = 7mm, SCut.1 =

2mm; MCut.2 = 6mm, SCut.2 = 3mm; MConfig. = 3mm, SConfig. = 1mm). Since we

know for certain which model each observer is using, these simulations should give

a reasonable expectation for what proportion of participants could be correctly or

incorrectly classified. The distance between the boxes in the boxplots helps provide

a sense of how confidently observers are categorized. From the boxplots in the first

column of Fig. 2.3, we see that the classifications are not strongly confident, but are

correct the majority of the time when identifying OPT observers. Table 2.1 shows

an overall classification accuracy across observers of 59.13% with Exceptional Sigma,

53.87% with Similar Sigma, and 53.30% with Varied Sigma. 67-79% of OPT ob-

servers are correctly identified as such regardless of population scenario. WTA and

AVG observers, however, each have one scenario where more observers are likely to

be classified as optimal than as WTA or AVG respectively.

Table 2.1: Observer Classification in Sigma Simulation

Classification OPT Observer WTA Observer AVG Observer Population Parameters
OPT Classification 677 516 98 Exceptional Sigma
WTA Classification 315 445 250
AVG Classification 8 39 652
OPT Classification 793 125 763 Similar Sigma
WTA Classification 139 758 172
AVG Classification 68 117 65
OPT Classification 740 438 254 Varied Sigma
WTA Classification 241 471 358
AVG Classification 19 91 388
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2.3.1 Non-optimal Observer Classification is Sensitive to Un-

derlying Population Parameters

When evaluating WTA observers, we find that, as the first simulation suggested, it’s

difficult to differentiate between the OPT and WTA models when one cue is much

better than the others. We can see that although the scale often tips towards the OPT

model, there is a substantial amount of uncertainty shown through the boxplots, as

the mean and median posteriors for OPT and WTA are close to 50% (Fig 2.3B).

As revealed in the first simulation, when the sigmas are similar, the AVG observers

are hard to distinguish from the OPT observers. In the Similar Sigma scenario only,

the group of observers classified as AVG had the least members.

These simulations reveal that such a task can provide useful information even when

distilled to a manageable task with limited trials per comparison. The classifications

across observer-type and scenario-type are informative and usually correct, with two

caveats. When one cue sigma is much better than the others, WTA observers are

harder to classify as such. Also, when all the cues have similar sigmas, AVG observers

are harder to classify as such.

We can move forward acknowledging and appreciating that this inverse problem,

figuring out which model most likely produced the data collected, is a difficult one to

solve. Considering the trial to trial variability, it should be no surprise that perfectly

distinguishing between all three possibilities is not a trivial undertaking. While there

are a few misclassifications, the inference is still informative, optimal, and correct most
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of the time, across all three models. Consider the coin example from Section 1.2.2.

Further, such a task would reveal which of the three population parameter scenarios

are likely. This can provide further information to consider the trustworthiness of

classifications. We do, however, want to see more confident, correct classifications

within each model. By running the sigma experiment with real participants, we

can learn some information about the underlying population parameters and which

pitfalls to avoid. Additionally, there are other experimental variations, like a cue

conflict experiment, which can aid our investigation.

2.4 A Simulated Cue Conflict Experiment Better

Differentiates Between Models

By modifying and extending the previous simulation, we simulate a full cue conflict

experiment with thousands of Optimal, WTA, and Average-model observers. Using

the same range and values for population parameters as above, we extend the simula-

tion into a cue conflict paradigm. To create the conflict, we will set up our cues such

that each cue has a different ‘true value’ and the respective measurement distributions

are centered on that value. The measurement distributions for Cut.1 and Cut.2 will

be centered on the same value some fixed distance from the reference. Simultaneously,

Config. will be centered on a value separated by the same absolute distance but in the

opposite direction. As such, the -3 conflict condition will be defined as the condition

where Config. corresponds to a value -3mm from the normal (circular, non-conflict)

reference and Cut.1 and Cut.2 correspond to a +3mm value from reference. For the
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-2 conflict condition, Config. is -2mm from the reference and Cut.1 and Cut.2 are

+2mm from the reference. For the +2 conflict condition, Config. is +2mm from the

reference and Cut.1 and Cut.2 are -2mm from the reference. For the +3 conflict

condition, Config. is +3mm from the reference and Cut.1 and Cut.2 are -3mm from

the reference. These ‘virtual’ conflict discs used for the simulation were defined in the

same way for the real discs used in a later experiment (Fig. 2.4).

Figure 2.4: A) Illustration of a -3 Conflict Disc. The diameter of the
disc is equal to a -3mm radius disc (stimulus level, ∆ = mm radius
separation from reference). The curvature is that of a +3mm disc. B)
Illustration of a +3 Conflict Disc. The diameter of the disc is equal to
a +3mm disc. The curvature is that of a -3mm disc.

For the cue conflict conditions, a different conflict disc will replace the reference

in each condition and be compared to normal, circular comparison discs. Creating

conflict discs with cue values that are equidistant in opposite directions from the

reference is convenient because simply seeing which side of 0 (the reference) the Point
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of Subjective Equality (PSE) is in each conflict condition tells us whether Cut.1 and

Cut.2 together or Config. had more influence on the observer.

Figure 2.5: Example of cue conflict with Bayesian optimal observer
under varied sigma. A-C) Sigma portion of the experiment, used to
estimate the sigma of each cue in order to make the predictions for
the cue conflict experiment. E-H) Cue conflict experiments under the
4 different cue conflicts. PSEs indicated by black vertical line, zero
indicated by grey line. D) Summary of the PSEs from each of the
conflict conditions along with the predictions of each model, based on
the estimated sigmas.

Previously, with the sigma experiment, each model makes a prediction for how the

sigmas of the individual cues relate to the sigma of the combined cues. With a cue

conflict, each model will also make a prediction for what the PSE should be in each

conflict condition. We now have two parameters to aid in the model comparison: the
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sigma and the mu (PSE). Figure 2.5 shows an example of the cue conflict with a

Bayesian optimal observer.

2.4.1 The Cue Conflict Simulation is More Accurate and Re-

silient to Population Parameters

With limited noisy data, the sigma simulation struggled to confidently and accurately

classify certain observers. Completing the cue conflict simulation with each of the

three population parameter scenarios, and the same process of creating observers ac-

cording to the different models, reveals greater classification confidence and accuracy

than in the sigma experiment. Table 2.2 shows how many observers were classified

as each model. It reveals an overall classification accuracy across observers of 90.07%

with Exceptional Sigma, 66.73% with Similar Sigma, and 93.50% with Varied Sigma.

The simulation reveals that in all but one scenario, the cue conflict experiment al-

lows us to correctly identify the majority of observers regardless of the population

sigma parameters. The simulation only fails to correctly identify OPT observers in

the Similar Sigma scenario. This matches our expectation, from earlier simulations,

that the OPT and AVG models are difficult to tell apart when sigmas are similar.

Nevertheless, not only is accuracy higher, but the inference is also more confident, as

evidenced by the boxplots in Figure 2.6. Mean and median posteriors for the correct

classification are generally high, except for the OPT and AVG observers in the Simi-

lar Sigma scenario. This is important to note since confidence seems to appropriately

correlate with correctness.
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Figure 2.6: Boxplot of Posterior Probabilities in the simulated cue
conflict experiment for each Model by Observer-type and Population
Parameter. Grey line = median; Black diamond = mean. A-C) Top
row. Posterior probabilities for each model by observer-type when
participants tend to have one cue with a relatively exceptional sigma.
D-F) Middle row. Posterior probabilities for each model by observer-
type when participants tend to have similar sigmas. G-I) Bottom row.
Posterior probabilities for each model by observer-type when partici-
pants tend to have varied sigmas.

These simulations reinforce the intuition we gained earlier by exploring the dif-

ferent predictions each model makes. It goes a step further, simulating a reasonable

experiment and showing the differences population-level parameters can have on the
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Table 2.2: Observer Classification in Cue Conflict Simulation

Classification OPT Observer WTA Observer AVG Observer Population Parameters
OPT Classification 870 157 10 Exceptional Sigma
WTA Classification 129 843 1
AVG Classification 1 0 989
OPT Classification 217 18 196 Similar Sigma
WTA Classification 0 981 0
AVG Classification 783 1 804
OPT Classification 940 69 65 Varied Sigma
WTA Classification 25 931 1
AVG Classification 35 0 934

results. Additionally, it shows how perfectly optimal observers can, on occasion, still

appear non-optimal even when they really are optimal.

2.4.2 The Cue Conflict Paradigm Reveals a Unique Phe-

nomenon

An interesting observation of note, is that about 10% of the observers in the cue

conflict experiment exhibit a positive slope PSE shift while all model predictions

predict a negative slope. Figure 2.7 shows an example of one such observer. Upon

further investigation, this occurs when Config. is better than Cut.1 or Cut.2 , but noise

causes the estimated sigma for Config. to be worse than either Cut.1 or Cut.2 . The

predictions are based on the sigma estimated in the sigma portion of the experiment,

but the conflicts are completed using the actual sigmas that define the observer.

We can estimate the sigma of participants from noisy data, and our estimates may

occasionally be inaccurate, but of course participants are not using our estimates in

the task—they’re using the sigma that they actually have.
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Using the insight and intuition gained through these simulation exercises, we can

better explore and interpret data from participants with real humans.

Figure 2.7: An example observer whose predictions are negative
(flipped) with respect to the slope of its PSEs. A-C) Sigma portion
of the experiment, used to estimate the sigma of each cue in order to
make the predictions for the cue conflict experiment. E-H) Cue con-
flict experiments under the 4 different cue conflicts. PSEs indicated
by black vertical line, zero indicated by grey line. D) Summary of the
PSEs from each of the conflict conditions along with the predictions of
each model, based on the estimated sigmas.
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Chapter 3

Haptic Size Discrimination Sensory

Sigma Experiments

3.1 Materials and Methods

3.1.1 Participants

Participants were McMaster University undergraduate students. Persons with any one

or more of the following conditions did not participate, as these conditions are known

to adversely affect tactile acuity or the ability to perform tactile tasks: diabetes,

nervous system disorder or injury (tremor, epilepsy, multiple sclerosis, stroke, etc.),

learning disability, dyslexia, attention deficit disorder, cognitive impairment, carpal

tunnel syndrome, arthritis of the hands, and hyperhidrosis. These entrance criteria

were clearly listed in the online study announcement on the SONA system and in

the letter of information (LOI ). Twelve participants took part in Experiment 1 (3

35



Ph.D. Thesis – Keon S. Allen; McMaster University – Department of PNB

women, 9 men; mean age 19.3 years). Eleven participants took part in Experiment 2

(1 woman, 10 men; mean age 18.8 years). Participants gave signed informed consent

to participate and received monetary compensation or course credit for their time.

This study was approved by the McMaster Research Ethics Board.

3.1.2 Materials

All stimuli were designed in OpenSCAD, a 3D script-based modeller. Stimuli were

3D printed with precision using the Ultimaker 2 Go 3D printer. In Experiments 1 and

2, the stimuli were flat coin-shaped discs. The thickness of the discs were consistent

within each experiment while radii varied. In each experiment, discs were fastened

to a wheel that rotates to present the correct discs for a given trial. This wheel

was controlled by an ISM-7411 NEMA 23 National Instruments Integrated Stepper

motor that interfaced with the experiment program via an ethernet cable and the

National Instruments LabVIEW SoftMotion module. Plastic thimbles, 0.5mm in

thickness, were designed and 3D printed, using the above resources, in a range of

sizes such that each participant found two thimbles that fit comfortably over their

index finger and thumb. An adjustable laboratory scissor jack acted as a rest and

guide for the hand and was affixed to a Heavy Duty 20-inch linear bearing slide rail

(Firgelli Automations Canada). The rail guided participants’ hands to the appropriate

disc as their arms extended. An FE7B series photoelectric retroreflective infrared

light sensor (Honeywell) sent a voltage change to a USB 6210 data acquisition device

(National Instruments) when its beam was broken or unbroken. Thus, the computer

was aware of hand positioning relative to the wheel. A GO PRO Session 5 camera
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automatically took pictures of participant hand position on some trials. The camera

was controlled through the experiment program via WiFi. Participant responses were

recorded with a wireless Bluetooth clicker that interfaced with the experiment program

to save their responses. The experiment programs and Bayesian analyses were coded in

National Instruments LabVIEW 2018 on PC. Frequentist stats were completed using

Python and relevant packages and modules including pandas, numpy, statsmodels,

and matplotlib.

3.1.3 Procedure

The discs, wheel, and their mechanisms were hidden from participant view behind the

white box shown in Figure 3.1B. Each experiment tested participants using a two-

interval forced-choice (2IFC ) paradigm. On a given trial, participants extended their

right hand to feel one disc in the first interval and a different disc in the second interval.

Their task was always to report which disc felt larger, using the Bluetooth clicker.

Participants in Experiments 1 and 2 were tested in four different conditions measuring

the reliabilities of the cues alone and altogether. The four conditions were as follows:

the Cutaneous Cue 1 (Cut.1 ) condition, measuring the cutaneous cue on the thumb;

the Cutaneous Cue 2 (Cut.2 ) condition, measuring the cutaneous cue on the index

finger; the Configuration Cue (Config.) condition, measuring the hand configuration

cue; and the Combined Cues condition, measuring the sigma when participants have

access to all cues (Figure 3.2). In Cut.1 and Cut.2 , participants used only the thumb

or index finger, respectively, of their right hand to feel the edge perpendicular to the

face of the disc. The discs were left-aligned for the thumb and right-aligned for the
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Figure 3.1: A) View of the rotating wheel with disc stimuli attached.
B) View of the covered apparatus with all stimuli and electronics hid-
den from participants. C) View of the hand rest.

index such that the time and distance to reach the disc did not vary systematically

with disc size. In the Configuration Cue condition, participants wore thimbles on

their index finger and thumb before grasping the disc edge. Thus, they felt the

distance between their fingers without feeling the curvature of the object. In the

Combined Cues condition, participants did the same task with thimbles removed,

having access to both cutaneous and hand configuration cues to size. On each trial,

the order of presentation of the reference and comparison disc (ie. which came first)

was randomized. Participants reported via Bluetooth clicker which disc felt larger.

Participants completed up to thirty practice trials before starting each condition.

Experiment 1

Experiment 1 took place over two sessions a week apart. The conditions were partially

counterbalanced such that, Config., Comb., and Cut.1 or Cut.2 conditions had equal
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Figure 3.2: A) Demonstration of Cut.1 (cutaneous cue on the thumb
finger). B) Demonstration of Cut.2 (cutaneous cue on the index). C)
Demonstration of Config. (configuration cue without cutaneous stim-
ulation). D) Demonstration of Combined Condition (all cues present).

chances of occurring at the beginning, middle, or end of the experiment. Although

Cut.1 and Cut.2 conditions always occurred in succession, their order was also ran-

domized. Participants completed two blocks of each condition across two days for a

total of four blocks of 40 trials each. Discs in Experiment 1 had the following radii

in millimetres: 10, 13, 14, 14.5, 15, 15.5, 16, 17, and 20. The 15mm disc was the

reference to be compared with any of the other discs during each trial. In each block,

the stimuli were delivered by Method of Constant Stimuli, with each comparison disc

being delivered five times in pseudo-random order. Accordingly, each participant was

tested for a total of 160 trials, 20 times with each of the 8 comparison discs, in each

condition.
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Experiment 2

Experiment 2 took place in one 2.5-3 hour session. The conditions were partially

counterbalanced in the same way as in Experiment 1. Each condition consisted of

two blocks of 40 trials. Discs in Experiment 2 had the following radii in millimetres:

5, 8, 9, 9.5, 10, 10.5, 11, 12, and 15. The 10mm disc was the reference to be compared

with any of the other discs during each trial. The stimuli were delivered using a

Bayesian Adaptive Procedure which allowed us to present the disc on each trial from

which the most information about the participant’s psychometric function could be

learned (Goldreich et al. 2009; Kontsevich & Tyler 1999). The Bayesian adaptive

procedure can be applied to any psychometric function parameterization; we defined

our psychometric functions as cumulative normal distributions of the stimulus level,

∆ (Eq. 3.1).

P (comp > ref |∆) =
∫ inf

0

1
σ

√
2π

exp
(

−(∆m − ∆)2

2σ2

)
d∆m = Ψ(∆) (3.1)

3.2 Results

3.2.1 Experiment 1

We applied Bayesian parameter estimation to the data in order to estimate each

participant’s sigma for each condition. Each participant’s sigmas were combined ac-

cording to each model’s formulas to generate the model prediction. Figure 3.3 sum-

marizes these data, displaying the mean estimates for each condition along with the
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mean expected sigma, given those estimates, for each model. Each model aims to

predict what performance would be expected in the Combined Condition, given Cu-

taneous and Configuration Conditions. One-way repeated measures ANOVAs reveal

significant effects of condition (p = 0.006, F(3, 33) = 4.961) and model prediction

(p = 0.001, F(2, 22) = 9.038). Paired-sample t-tests demonstrate that the Average-

Measurement (AVG) model prediction is statistically significantly different than both

the Optimally-Weighted (OPT ) (p = 0.010, t(11) = 3.094) and Winner-Take-All

(WTA) model predictions (p = 0.013, t(11) = 2.922). There was, however, no sig-

nificant difference between the predictions of the WTA and OPT models (p = 0.050,

t(11) = 2.197). There was a significant difference between the Combined Condition

and the AVG model prediction (p = 0.010, t(11) = 3.099) but not between Combined

and OPT (p = 0.730, t(11) = 0.354) or Combined and WTA (p = 0.206, t(11) =

1.343).

Table 3.1: Exp. 1 Model Posterior Probabilities by Participant

Participant OPT WTA AVG Classification
1 0.472 0.527 0.001 WTA
2 0.458 0.540 0.002 WTA
3 0.507 0.493 0.000 OPT
4 0.535 0.463 0.002 OPT
5 0.548 0.447 0.004 OPT
6 0.052 0.182 0.766 AVG
7 0.588 0.045 0.367 OPT
8 0.481 0.519 0.000 WTA
9 0.548 0.451 0.000 OPT
10 0.560 0.440 0.000 OPT
11 0.665 0.118 0.217 OPT
12 0.528 0.472 0.000 OPT
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Figure 3.3: Mean sigma estimates from each participant in Exper-
iment 1 (Grey). Mean model predictions for performance in Com-
bined Condition, based on the Cutaneous and Configuration conditions
(Colour). Error bars = +/- SE. Asterisk (*) = Significant t-test.

Applying Bayesian model comparison, we calculated posterior probabilities for each

participant for each model. The individual posterior probabilities for each participant

in Experiment 1 are found in Table 3.1. Median posterior probabilities corroborate

the trends from the above frequentist statistics. The median posterior probabilities

are as follows: OPT = 0.532, WTA = 0.457, AVG = 1.39 ·10−3. Overall, the Bayesian

model comparison categorized 8 participants as OPT , but the posterior probabilities

were often quite close for OPT and WTA.
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Figure 3.4: Scatterplot of participant sigma estimates for the Com-
bined Condition plotted against their respective sigma estimates for
their best (lowest) individual sigma in Experiment 1.

The frequentist and Bayesian statistics agree that the AVG model does not convinc-

ingly account for participant data. We find, however, that it is harder to distinguish

between the OPT and WTA models. While the OPT model is slightly more favoured

according the Bayesian inference, we would like the answer to be more definitive.

These results are somewhat unsurprising, however, considering the model predictions

from 2.1. We appear to be dealing with a scenario where we have an exceptional sigma.

The Config. condition sigma is much more reliable than Cut.1 and Cut.2 as shown

in Figure 3.3. Still, 8 of the 12 participants did better in the Combined Condition

than they did in their best individual cue condition (Figure 3.4). A paired-samples
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t-test on the data from Figure 3.4 would be identical to that of the Combined and

WTA statistic reported above (p = 0.206, t(11) = 1.343). Although not statistically

significant, the scatter plot suggests a possible trend. As with the Bayesian analysis,

this observation suggests that the majority of participants were better described as

OPT than WTA.

3.2.2 Experiment 2

Experiment 1 provided evidence against the AVG model but was unable to convinc-

ingly distinguish between the OPT and WTA models. We reasoned that this difficulty

may have resulted from the fact that Config. had a much smaller sigma than Cut.1

and Cut.2 in most participants. In Experiment 2, with the goal of enhancing Cut.1

and Cut.2 , we made the discs smaller so that they would indent the fingers more

sharply. We hoped to reduce the sigma of the cutaneous cues so that the cutaneous

and configuration cues would have more similar sigma values, facilitating the classifi-

cation of participants as either OPT or WTA.

Figure 3.5 shows a reduction in sigma in the Cutaneous Conditions. The reliabil-

ities of the cues in the Cutaneous and Configuration Conditions are relatively closer

together and we begin to observe a greater difference between the predictions of the

OPT and WTA models.

One-way repeated measures ANOVAs reveal non-significant effects of condition

(p = 0.104, F(3, 30) = 2.236) and model prediction (p = 0.187, F(2, 20) = 1.825).

Paired-sample t-tests demonstrate that the AVG model prediction is not statistically
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Figure 3.5: Mean sigma estimates from each participant in Exper-
iment 2 (Grey). Mean model predictions for performance in Com-
bined Condition, based on the Cutaneous and Configuration conditions
(Colour). Error bars = +/- SE. Asterisk (*) = Significant t-test.

significantly different than the OPT (p = 0.185, t(10) = 1.425) or WTA predictions

(p = 0.233, t(10) = 1.269). There was, however, a significant difference between the

predictions of the WTA and OPT models (p = 0.004, t(10) = 3.666). There was no

significant difference between the Combined Condition and the AVG model prediction

(p = 0.193, t(10) = 1.395), between Combined and OPT (p = 0.997, t(10) = 0.004),

or between Combined and WTA (p = 0.180, t(10) = 1.441).

Calculated posterior probabilities provide additional nuance and context to the
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Table 3.2: Exp. 2 Model Posterior Probabilities by Participant

Participant OPT WTA AVG Classification
1 0.500 0.482 0.019 OPT
2 0.188 0.385 0.427 AVG
3 0.010 0.659 0.331 WTA
4 0.199 0.370 0.430 AVG
5 0.838 0.131 0.031 OPT
6 0.455 0.437 0.109 OPT
7 0.773 0.044 0.183 OPT
8 0.538 0.462 0.000 OPT
9 0.720 0.269 0.011 OPT
10 0.502 0.498 0.000 OPT
11 0.524 0.362 0.114 OPT

above findings. The individual posterior probabilities for each participant in Exper-

iment 2 are found in Table 3.2. The median posterior probabilities are as follows:

OPT = 0.502, WTA = 0.393, AVG = 0.097). Overall, the Bayesian model compar-

ison categorized 8 of the 11 participants as OPT . While the posterior probabilities

for OPT and WTA were often close, the posterior probabilities from Experiment 2

were generally more strongly in favour of OPT over WTA than were the posterior

probabilities from Experiment 1.

For most participants, the configuration cue was most informative in their task.

Figure 3.6 compares performance on the participants’ best individual condition to

performance in the Combined condition. Participants tended to perform better when

having access to all cues than any one cue alone. Points that fall below the identity

line in Figure 3.6 are participants whose Combined Condition sigmas were lower

than that of their best individual cue. This more closely follows a prediction of the
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Figure 3.6: Scatterplot of participant sigma estimates for the Com-
bined Condition plotted against their respective sigma estimates for
their best (lowest) individual sigma in Experiment 2.

OPT Model than the WTA Model since information is apparently gained even from

relatively poorer cues. A paired-samples t-test on the data from Figure 3.6 would be

identical to that of the Combined and WTA statistic reported above (p = 0.180, t(10)

= 1.441).

3.3 Discussion

In Experiment 1, a novel investigation, the disparity between the cue sigmas was

greater than anticipated. This experiment gave us better insight into the perceptive
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capabilities of humans, provided evidence in support of the OPT and WTA models

over the AVG model, and prepared us to design Experiment 2.

Experiment 2 reduced overall disc size to more sharply indent the skin. The ma-

nipulation appeared to have an effect with the mean sigmas for Cut.1 and Cut.2 being

reduced by 4.84mm and 3.75mm respectively. In contrast, the mean sigma of Config.

decreased by only 0.038mm. As we intended, the manipulation of disc size appears

to preferentially affect the Cutaneous Cues over the Configuration Cue. This is con-

sistent with earlier research using spherical stimuli. The responses of slowly adapting

type 1 (SA1 ) afferents increase with curvature (Goodwin & Wheat 2004).

In both experiments 1 and 2, the frequentist and Bayesian statistics generally

agreed, but the latter seemed to be more powerful at discerning between model pre-

dictions. The frequentist stats were computed using our best single estimate for each

participant’s cue sigma to investigate the repeated measures data on the participants

as a group. The Bayesian statistics, however, utilize all of the raw data for each

participant to do full Bayesian inference on each participant as an individual.

These experiments provide evidence regarding the extent to which humans can

utilize these haptic cues. The results are weakly in favour of OPT over WTA. In the

following chapter, we set forth to better differentiate between these models and learn

the extent to which these cues may be weighted.
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Chapter 4

Haptic Size Discrimination Cue

Conflict Experiment

Experiment 3 was designed as a cue conflict experiment that uniquely allowed us to

test different, but related, predictions of the models. For regular, non-conflict discs,

the Point of Subjective Equality (PSE), where a comparison disc feels subjectively

equal to the reference, is at a 0mm difference from the reference. That is, the reference

feels equal in size to a disc of its own size. This PSE can change, however, as conflict

stimuli are introduced.
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4.1 Materials and Methods

4.1.1 Participants

Participants were McMaster University undergraduate students. Persons with any one

or more of the following conditions did not participate, as these conditions are known

to adversely affect tactile acuity or the ability to perform tactile tasks: diabetes,

nervous system disorder or injury (tremor, epilepsy, multiple sclerosis, stroke, etc.),

learning disability, dyslexia, attention deficit disorder, cognitive impairment, carpal

tunnel syndrome, arthritis of the hands, and hyperhidrosis. These entrance criteria

were clearly listed in the online study announcement on the SONA system and in

the letter of information (LOI ). Eleven participants took part in Experiment 3 (2

women, 9 men; mean age 19.1 years). Participants gave signed informed consent to

participate and received monetary compensation or course credit for their time. This

study was approved by the McMaster Research Ethics Board.

4.1.2 Materials

All stimuli were designed in OpenSCAD, a 3D script-based modeller. Stimuli were

3D printed with precision using the Ultimaker 2 Go 3D printer. The materials used

were the same as in Experiment 2 with the exceptions noted here. The comparison

and reference discs were the same as in Experiment 2. A set of cue conflict stimuli

were also introduced, however. The cue conflict stimuli were designed such that each

indicates a curvature and radius in conflict with one another. Figure 4.1 illustrates

the design of -3 and +3 conflict stimuli. The magnitude of the number indicates the
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difference in radius (mm) from the reference, and the sign indicates in which direction

the lateral distance across the face of the disc changed. Thus, a -3 conflict disc (Fig.

4.1A) has the lateral diameter of a disc with a radius that is -3mm from the reference

of 10mm: a 7mm radius. Simultaneously, it has the lateral curvature of a disc +3mm

from the reference of 10mm: a 13mm radius. A +3 conflict disc (Fig. 4.1B) has the

lateral diameter of a disc with a radius that is +3mm from the reference of 10mm: a

13mm radius. Simultaneously, it has the lateral curvature of a disc -3mm from the

reference of 10mm: a 7mm radius. The same logic applies to the -2 and +2 conflict

discs.

Figure 4.1: Reproduced from Fig. 2.4. A) Illustration of a -3 Conflict
Disc. The diameter of the disc is equal to a -3mm radius disc (stimulus
level, ∆ = mm radius separation from reference). The curvature is that
of a +3mm disc. B) Illustration of a +3 Conflict Disc. The diameter
of the disc is equal to a +3mm disc. The curvature is that of a -3mm
disc.
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4.1.3 Procedure

The methodology used was generally the same as in Experiment 2 with the exceptions

noted here. Instead of 2 blocks of 40 trials for each of 4 conditions, participants com-

pleted one block of 40 trials for each of 7 different conditions. The first 3 conditions

were the same as the earlier experiments, to estimate participant sigmas for the indi-

vidual cues (Cutaneous Cue 1 (Cut.1 ), Cutaneous Cue 2 (Cut.2 ), and Configuration

Cue (Config.)). The remaining 4 conditions are all Cue Conflict Conditions. From

the participant’s point of view, these were no different from the Combined Conditions

of the earlier experiments. In each of these conflict conditions, however, the 10mm ra-

dius reference disc was swapped out for 4 different cue conflict stimuli. The conditions

were partially counterbalanced with restrictions: individual cue conditions occurred

at the beginning of the experiment, but Cut.1 and Cut.2 conditions occurred suc-

cessively in random order; conflict conditions occurred at the end of the experiment

in random order, but ±2 conditions occurred together and ±3 conditions occurred

together. The task was otherwise carried out in the same manner as before.

4.2 Results

Figure 4.2 demonstrates an overview of participant performance in each experimental

condition. Observing the mean sigma estimates across participants for each condition,

we found similarities to earlier experiments. The mean sigma of the cues decreases

from Cut.1 to Cut.2 to Config. The four Cue Conflict Conditions are analagous to

the earlier Combined Conditions of previous experiments because participants have
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access to all cues. As an aside, sigmas in the Conflict Conditions generally appear

to be lower than the the sigmas of any individual cue, with the exception of the

particularly noisy +3 Condition. Nevertheless, Experiment 3 was not intended as a

replication of Experiments 1 and 2. The predictions and planned analyses are different

than in the earlier experiments.

Figure 4.2: Sigma estimates for each individual cue condition and
each of the four conflict conditions.

As the reference in each of the Conflict Conditions is one of four conflict discs,

each model predicts that the PSE should shift linearly in the direction of the cues

upon which the participant most relies. For example, if a participant is relying solely
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on Config., a +3 conflict disc would feel subjectively equal to a 13mm radius disc.

Since, in a two-interval forced-choice (2IFC ) task, the response is to which disc felt

larger, the participant would be guessing when comparing the +3 conflict disc to a

13mm comparison disc. On average, the proportion of times one disc is reported to

be greater than the other would be 0.5: a rightward shift of 3mm in the PSE .

The mean PSE shift across participants, as a function of conflict condition, is

shown in Figure 4.3. Each model predicts a different linear PSE shift. The Average-

Measurement (AVG) model predicts a negative slope because of the influence of both

Cut.1 and Cut.2 , which produce measurements counter to Config. The Winner-

Take-All (WTA) model predicts a positive slope equal to 1, since as noted above,

the magnitude of the PSE shift would be equal to that of the Conflict Condition.

On average, the shifting PSEs most closely match the predictions of the Optimally-

Weighted (OPT ) model. The prediction of the slope for the optimal model is based

on Equation 4.1 where s is the Conflict Condition and ŝ is the PSE (Appendix A3).

The positive slope indicates that Config. was more heavily relied upon than Cut.1 or

Cut.2 . Additionally, the slope is not equal to 1, which implies that Cut.1 and Cut.2

did indeed influence perception and cues were combined.

ŝ = s

 1
σ2

Config.
− 1

σ2
Cut.2

− 1
σ2

Cut.1
1

σ2
Cut.1

+ 1
σ2

Cut.2
+ 1

σ2
Config.

 (4.1)

Mounting evidence from Experiments 1, 2, and 3 has allowed us to determine that

the AVG model does not adequately predict or describe participant data. Subsequent
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Figure 4.3: The mean PSE shift across participants by Conflict Con-
dition (Error bars = ± SE)

analyses are focused on distinguishing between OPT and WTA. Figure 4.4 shows

the PSE shifts for each individual participant. Occasionally, the models predicted a

negative slope, but that is not unexpected given our investigations in 2.4.2. There,

we found that if sigma estimates themselves are noisy enough, Cut.1 or Cut.2 can

occasionally appear to have a lower sigma than Config. even when that does not

reflect reality. If this does occur, then the model predictions which are based on

those sigma estimates can be negative. The PSE shifts, however, are still likely to

be positive if Config. was truly more relied upon. Notably, the actual recorded PSEs
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of each participant have positive slopes even if the model prediction was negative.

This matched our results from Figure 4.2 and earlier experiments, where Config.

has the lowest sigma of any individual cue, on average. Thus, participants appear

to combine these cues, relying on Config. more than the others, although Cut.1

and Cut.2 generally have influence on perception as well. Table 4.1 displays the

posterior probabilities for each participant across the three models, rounded to two

decimal places. The majority of participants were strongly OPT over WTA or AVG.

Participant 11, however, appeared to be strongly WTA.

Table 4.1: Exp. 3 Model Posterior Probabilities by Participant

Participant OPT WTA AVG Classification
1 1.000 0.000 0.000 OPT
2 1.000 0.000 0.000 OPT
3 1.000 0.000 0.000 OPT
4 0.999 0.001 0.000 OPT
5 1.000 0.000 0.000 OPT
6 0.994 0.006 0.000 OPT
7 0.999 0.000 0.001 OPT
8 0.973 0.027 0.000 OPT
9 0.871 0.001 0.127 OPT
10 1.000 0.000 0.000 OPT
11 0.000 1.000 0.000 WTA

4.3 Discussion

Consistent with the results in Chapter 2, the cue conflict paradigm appears to be a

more powerful method for differentiating between different cue combination hypothe-

ses. The PSE shifts appear to be robust to the noise that makes sigma estimation
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Figure 4.4: The PSE shifts of each participant plotted with the WTA
prediction, the OPT prediction, and 95% Bayesian Credible Intervals
around the OPT prediction. The AVG prediction was omitted from
these subplots to avoid clutter. The mean PSE shifts (Fig. 4.3) replot-
ted for quick reference.

difficult. Of the models considered, the OPT model has strong support in every

participant, with the exception of Participant 11.

Reflecting on Participant 11’s PSE shifts in Figure 4.4 shows that the PSE shifted

linearly with a slope almost equal to 1. Participant 11 appears to be the only partici-

pant who did not combine cues. There are a few possible reasons for this. Participant

11 is either WTA or did not perceive the conflict stimuli as discs, but some object
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with two sources of information, rather than one.

Additionally, we’ve observed a trend where the sigmas in the Conflict Conditions

appear to increase successively. As the Conflict Condition number increases, so does

the lateral curvature and the diameter of the stimulus. We’ve observed that increased

curvature leads to a reduction in sigma, as the cutaneous cue becomes more reliable.

This led to the question: does sigma increase for Config. as diameter increases? While

this is theoretically plausible, a repeated measures ANOVA over Conflict Condition

yielded a non-significant result (p = 0.532, F(3, 30) = 0.749).
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Chapter 5

Discussion

5.1 Summary of Main Findings

In Chapter 2, we found that each of the considered models makes predictions that are

similar or different to the predictions of other models depending on their relative sigma

values. We considered three different scenarios for relative sigmas: Exceptional, Sim-

ilar, and Varied Sigmas. We found that the model classification inference struggled

to correctly identify observers within models, although its classification was better

than chance within each observer population. The uncertainty of the classifications,

however, was captured in the posterior probabilities for each model as well. When

simulating a cue conflict experiment, we found that the classifications were generally

correct within models and within population. The improved classifications were cou-

pled with posterior probabilities that implied greater certainty in the classifications.

Altogether, this chapter revealed limitations due to noisy data and how that can affect
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model predictions. It also demonstrated that our analyses and statistics are able to

accurately differentiate between the models despite noise and population parameters.

In chapter 3, Experiment 1 showed the relative sigmas of each cue. The data

suggested we were dealing with an Exceptional Sigma scenario where Configuration

Cue (Config.) was much better than Cutaneous Cue 1 (Cut.1 ) and Cutaneous Cue

2 (Cut.2 ). Our simulations revealed that, in such a scenario, the Winner-Take-All

(WTA) and Optimally-Weighted (OPT ) models make similar predictions. Although

we found strong evidence against the Average-Measurement (AVG) model, we were

unable to convincingly differentiate between the WTA and OPT models. In order to

tell them apart, we aimed to lower the sigmas of the cutaneous cues. Our intention

was that this would cause OPT , but not WTA, to predict a lower sigma, permitting us

to differentiate between these two models. Experiment 2 demonstrated that reducing

overall disc size did preferentially reduce the sigmas of the cutaneous cues. Our

inferences also became more in favour of OPT over WTA.

In Chapter 4, we concluded our investigation with a cue conflict experiment. By

introducing conflict stimuli such that the cutaneous cues were in conflict with the

configuration cue, we were able to glean information from Point of Subjective Equal-

ity (PSE) shifts. The PSEs showed that participants generally rely more on Config.

than Cut.1 or Cut.2 but information from all cues are integrated in a way consistent

with OPT . Our inferences in this experiment were notably confident in their classifi-

cations. These results mirror the results of our model simulations and lend credence

to the results. Participant 11, however, was more strongly WTA than OPT or AVG.
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One of the assumptions we made in our experiments is that participants will perceive

the cues as all originating from the same source. We believed this to be a reasonable

assumption, given that the cues do arise from the same physical source: a 3D-printed

disc. Other cue combination studies, like Alais and Burr (2004), pair two different

stimuli together, which really do come from independent sources, and found that hu-

mans can combine those cues too. Bayesian causal inference, however, is a theory

that involves “competitive priors” between single and multiple cue sources and can

account for many studies on multisensory perception (Shams & Beierholm 2022). In

the conflict experiment, it’s possible that the conflict stimuli could break the expec-

tations of some participants and cause them to perceive the cues as arising from two

independent sources. Participant 11’s data could have arisen from the participant’s

choice to pay attention to only Config., either because they misunderstood the task,

or because they felt the cues as arising from two independent sources and chose to

use Config.

5.2 Paths for Future Investigation

The conflict experiment was extremely informative and generated new questions. Are

some fraction of participants WTA or resistant to the experimental manipulation?

How large can a cue conflict be made before participants begin to notice it? Does

Config. sigma increase with disc diameter? Future experiments can include these

questions in their investigations.

In the experiments we conducted, we manipulated disc size to lower the cutaneous

61

http://www.mcmaster.ca/


Ph.D. Thesis – Keon S. Allen; McMaster University – Department of PNB

sigmas and bring their performance closer to Config. performance. A future study

could aim to lessen the disparity between cutaneous and configuration cues by pref-

erentially worsening Config. and making its sigma higher. Potentially, this could be

accomplished by numbing or vibrating select areas of the hand, but this manipulation

would not be trivial. Ideally, if the manipulations resulted in each of the three cues

having Similar Sigmas, then the difference between the predictions of the WTA and

OPT models would be at their greatest.

Future experiments could also investigate heteroscedasticity in the measurement.

As a first approximation, our experiments assume that participants have a single

value for sigma for each cue. It’s possible, however, that the increasing sigma, as

conflict increases, reflects a real trend. An investigation into the matter could consider

whether participants have a ‘fractional sigma’, analagous to a Weber fraction (Norwich

1987). The ‘fractional sigma’ could be multiplied by the stimulus level to give the

sigma (mm) for that cue and stimulus.

Our experiments involve controlled haptics. The hand moves towards and grasps

the target, but participants could not freely explore the stimuli. Future experiments

could reduce the level of control in favour of greater external validity. Participants

could be allowed time to grasp, scan with all of their fingers, and feel the weight of

different objects as they see fit. This would allow the participant to have access to

not only more of the cues we have currently, but additional cues including weight and

texture. Would Config. still be most informative? Would participants be consciously

aware of the cue upon which they most relied?
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In our experiments, from one interval to another within a trial, there is a short delay

between stimulus presentations. Thus, participants must engage working memory to

hold the perceived size of the first disc in order to compare it to the second. Could

participant performance improve if we delivered the reference and comparison in each

hand simultaneously? If so, how much improvement could be seen?

Our results support the OPT model over the WTA and AVG models. Similar

to research discussed in Section 1.3.1, the data suggest that participants have some

internal monitor of cue reliability and use that information when integrating sensory

signals. Because it is currently unknown how the brain achieves this, we point to this

direction as ripe for future research as well.

5.3 Applications for Current and Upcoming Fields

As haptic feedback for virtual reality seems to be on the cusp of great improvement,

learning more about how haptic cues are combined is especially timely. Some of the

most advanced haptic VR gloves, like ManusVR and HaptX, are either lacking in

cutaneous stimulation or limited by the number tactors and the range of motion of

the hand itself. Our research suggests ways to aid both virtual object discrimination

and immersion. While the configuration cue is generally the better cue, a substantial

amount of information and influence comes from the cutaneous cues as well. By inte-

grating even a few different curvatures or stimuli to the finger in conjunction with the

configuration cues delivered by the gloves, novel shapes could presumably be perceived

and disambiguating information could be gleaned to grant the user a more immersive
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experience. We have shown that cutaneous and configuration cues can be integrated

even when in conflict with one another. Adding a few different cutaneous cues, and

pairing them with the configuration cues, even when in conflict, can produce unique

sensation that users are likely to integrate. By creatively employing cue conflicts, it

may be possible to stretch the use of the limited tactile actuators some VR gloves use.

This opens up new possibilities, experiences, and would likely improve performance

on VR tasks that require discrimination.

At the conjunctions of robotics and medicine, telesurgery and robot-assisted surgery,

haptic feedback is an important aspect. Progress in the area of robot-assisted, minimally-

invasive cardiac surgery has been hampered by the lack of haptic feedback (Bethea

et al. 2004). Without feedback, surgeons using the da Vinci surgical system, a no-

feedback system, struggled to apply appropriate force when performing surgical tasks,

like suturing, leading to damaged tissues (Bethea et al. 2004). The da Vinci system

is the most prevalent today (El Rassi & El Rassi 2020). Until recently, robot-assisted

surgical devices have often lacked any haptic feedback at all, forcing surgeons to over-

rely on visual cues to the detriment of their craft (El Rassi & El Rassi 2020). When

the option is available, surgeons find haptic feedback valuable, preferring it over no

feedback and over audio feedback (Koehn & Kuchenbecker 2015). In the study by

Koehn and Kuchenbecker (2015), haptic feedback was delivered in the form of vibra-

tions during contact of the tools with tissue and other tools. Over the past decade,

researchers have been investigating ways to deliever cutaneous and kinaesthetic cues
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to achieve ‘transparency’ or ‘telepresence’, a precise recreation of the remote environ-

ment where the surgeon feels as though they are in the remote environment (El Rassi

& El Rassi 2020). Force feedback, cutaneous feedback, and vibrotactile feedback all

improve performance alone compared to no feedback, but a system that combines

them all should lead to more improvement (El Rassi & El Rassi 2020). El Rassi and

El Rassi (2020) raise the issue of the difficulty of representing cutaneous feedback

and trying to replicate the performance of multiple mechanoreceptors. We argue that

the solution does not have to be perfectly veridical. Even sparse cutaneous cues in

conjuction with other haptic cues can influence perception, improve discrimination,

and be integrated together with the other cues into an overall percept.
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Appendix A

Supplemental Derivations

A1 Chapter 2 Supplement: AVG

From equation 2.3, the measurements are averaged (summed and divided by three):

ŝ = xCut.1 + xCut.2 + xConfig.

3 (A.1)

Measurement distributions are modeled as Gaussian. When Gaussian distributions

are added, their variances add.

ŝ = xCut.1 + xCut.2 + xConfig. ⇒ σ2
ŝ = σ2

Cut.1 + σ2
Cut.2 + σ2

Config. (A.2)

The standard deviation (sigma) is the square root of the variance:

σŝ =
√

σ2
Cut.1 + σ2

Cut.2 + σ2
Config. (A.3)
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Lastly, when multiplying a Gaussian sample by a constant, the standard deviation

becomes multiplied by the same constant. So when multiplying 1
3 to ŝ, we must do

the same to σŝ:

σŝ = 1
3
√

σ2
Cut.1 + σ2

Cut.2 + σ2
Config. (A.4)

A2 Chapter 2 Supplement: OPT

From equation 2.5:

ŝ =
xCut.1
σ2

Cut.1
+ xCut.2

σ2
Cut.2

+ xConfig.

σ2
Config.

1
σ2

Cut.1
+ 1

σ2
Cut.2

+ 1
σ2

Config.

(A.5)

This equation can be conceptualized as xs multiplied by some weights, ws:

ŝ = wCut.1xCut.1 + wCut.2xCut.2 + wConfig.xConfig. (A.6)

The x-values can be factored out to obtain the weights. For example:

wCut.1 =
1

σ2
Cut.1

1
σ2

Cut.1
+ 1

σ2
Cut.2

+ 1
σ2

Config.

(A.7)

Over many trials, the xs approximate a Gaussian sample. When multiplying a

Gaussian sample by a constant, the result is a Gaussian whose standard deviation

had been multiplied by the same constant. Thus:

wCut.1σCut.1 = σCut.1

1
σ2

Cut.1
1

σ2
Cut.1

+ 1
σ2

Cut.2
+ 1

σ2
Config.

=
1

σCut.1
1

σ2
Cut.1

+ 1
σ2

Cut.2
+ 1

σ2
Config.

(A.8)
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When adding Gaussian samples together, their variances add. Thus:

σ2
ŝ=

 1
σCut.1

1
σ2

Cut.1
+ 1

σ2
Cut.2

+ 1
σ2

Config.

2

+

 1
σCut.2

1
σ2

Cut.1
+ 1

σ2
Cut.2

+ 1
σ2

Config.

2

+

 1
σConfig.

1
σ2

Cut.1
+ 1

σ2
Cut.2

+ 1
σ2

Config.

2

(A.9)

Simplifying:

σ2
ŝ =

1
σ2

Cut.1
+ 1

σ2
Cut.2

+ 1
σ2

Config.(
1

σ2
Cut.1

+ 1
σ2

Cut.2
+ 1

σ2
Config.

)2 = 1
1

σ2
Cut.1

+ 1
σ2

Cut.2
+ 1

σ2
Config.

(A.10)

The square root of the variance gives us the standard deviation and Equation 2.6:

σŝ =
√√√√ 1

1
σ2

Cut.1
+ 1

σ2
Cut.2

+ 1
σ2

Config.

(A.11)

A3 Chapter 4 Supplement

From equation 2.5:

ŝ =
xCut.1
σ2

Cut.1
+ xCut.2

σ2
Cut.2

+ xConfig.

σ2
Config.

1
σ2

Cut.1
+ 1

σ2
Cut.2

+ 1
σ2

Config.

(A.12)

Let s denote the stimulus level of the conflict stimuli (can have values of -3, -2, 2, or

3). In the conflict conditions, the Configuration Cue (Config.) is displaced opposite to

Cutaneous Cue 1 (Cut.1 ) and Cutaneous Cue 2 (Cut.2 ) but with the same magnitude,

the percept formula gives the following:

ŝ =
−s

σ2
Cut.1

+ −s
σ2

Cut.2
+ +s

σ2
Config.

1
σ2

Cut.1
+ 1

σ2
Cut.2

+ 1
σ2

Config.

(A.13)
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Rearranged:

ŝ =
s

σ2
Config.

+ −s
σ2

Cut.1
+ −s

σ2
Cut.2

1
σ2

Cut.1
+ 1

σ2
Cut.2

+ 1
σ2

Config.

(A.14)

Factored out, the form gives Equation 4.1:

ŝ = s

 1
σ2

Config.
− 1

σ2
Cut.2

− 1
σ2

Cut.1
1

σ2
Cut.1

+ 1
σ2

Cut.2
+ 1

σ2
Config.

 (A.15)
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Appendix B

Bayesian Analyses

B1 Estimating Sigma

In the Sigma experiments, the reference was always at 0. The mean of the psycho-

metric function does not change, so the psychometric function was defined by the

sigma alone. We began by generating a list of hypotheses for sensory sigma across an

extensive range of values.

σ1 = 0.01mm, σ2 = 0.06mm, . . . , σ801 = 40.01mm (B.1)

We applied a uniform prior across the sigma hypotheses.

P (σ1) = P (σ2) = . . . = P (σ801) = 1
801 (B.2)
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On each trial, participants reported which of two discs felt larger. These data

are recorded as the proportion of times the comparison was judged greater than the

reference. Each sigma hypothesis produces a probability that the comparison will be

perceived greater than the reference in a given trial through Equation 3.1:

Assuming the Gaussian random sample

P (comp > ref |∆) =
∫ inf

0

1
σ

√
2π

exp
(

−(∆m − ∆)2

2σ2

)
d∆m = Ψ(∆) (B.3)

As depicted in Figure 2.2B, ∆m comes from a Gaussian measurement distribution

centered on the true stimulus value, defined as the difference in mm between the com-

parison and the reference (size of the comparison disc minus the size of the reference).

The ∆ is the true stimulus level. The ∆-value of the reference is 0 (it is the size of the

reference minus the size of the reference). By integrating from 0 to inf, we calculate

the probability that the participant will obtain a comparison measurement greater

than the reference measurement.

When participants feel a stimulus in each interval on a given trial, the measurement

they receive is a Gaussian sample centered on the true level (∆). Reporting which of

two stimuli felt larger is analagous to taking the difference score of the measurements

of each interval in a trial. The variances add. Thus, when estimating the psychometric

function, we multiply our sensory sigma hypotheses by
√

2 to find the psychometric

sigma.
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We calculate the likelihoods for each sigma hypothesis by calculating how probable

their data are given the curve defined by σi, number of times perceived greater k, and

total number of comparisons n.

P (D|σi) =
∏
∆

Ψ(∆)k∆(1 − Ψ(∆))n∆−k∆ (B.4)

Subsequently, using Bayes’ formula (1.2), with the likelihoods and priors above,

allows us to generate posterior probability distribution functions (PDFs) over sigma.

We find which hypothesis number had the greatest posterior, and that sensory sigma

is our best estimate for the participant’s sigma.

B2 Bayesian Model Comparison Formulae

The marginal likelihood formula below results from the sigma sampling method de-

scribed in section 2.

P (D|Mi) =
∑
σŝ

P (D|σŝ, Mi) · P (σŝ|Mi) (B.5)

For the Cue Conflict, the likelihood formula includes µŝ.

P (D|Mi) =
∑

σŝ,µŝ

P (D|σŝ, µŝ, Mi) · P (σŝ, µŝ|Mi) (B.6)
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Using the marginal likelihoods in Bayes’ formula results in the posterior probabil-

ities.

P (Mi|D) = P (D|Mi)P (Mi)∑3
j=1 P (D|Mj)P (Mj)

(B.7)
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