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Abstract

Energy-efficient powertrain components and advanced vehicle control strategies are

two effective methods to promote the potential of hybrid electric vehicles (HEVs).

Aiming at hybrid system efficiency improvement, this thesis presents a comprehen-

sive review of energy-efficient hybrid powertrain specific engines and proposes three

improved energy management strategies (EMSs), from a basic non-adaptive real-time

approach to a state-of-the-art learning-based intelligent approach.

To evaluate the potential of energy-efficient powertrain components in HEV efficiency

improvement, a detailed discussion of hybrid powertrain specific engines is presented.

Four technological solutions, i.e., over-expansion cycle, low temperature combustion

mode, alternative fuels, and waste heat recovery techniques, are reviewed thoroughly

and explicitly. Benefits and challenges of each application are identified, followed by

specific recommendations for future work. Opportunities to simplify hybrid-optimized

engines based on cost-effective trade-offs are also investigated.

To improve the practicality of HEV EMS, a real-time equivalent consumption mini-

mization strategy (ECMS)-based HEV control scheme is proposed by incorporating
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powertrain inertial dynamics. Compared to the baseline ECMS without such consid-

erations, the proposed control strategy improves the vehicle drivability and provides a

more accurate prediction of fuel economy. As an improvement of the baseline ECMS,

the proposed dynamic ECMS offers a more convincing and better optimal solution

for practical HEV control.

To address the online implementation difficulty faced by ECMS due to the equivalence

factor (EF) tuning, a predictive adaptive ECMS (A-ECMS) with online EF calcula-

tion and instantaneous power distribution is proposed. With a real-time self-updating

EF profile, control dependency on drive cycles is reduced, and the requirement for

manual tuning is also eliminated. The proposed A-ECMS exhibits great charge sus-

taining capabilities on all studied drive cycles with only slight increases in fuel con-

sumption compared to the basic non-adaptive ECMS, presenting great improvement

in real-time applicability and adaptability.

To take advantage of machine learning techniques for HEV EMS improvement, a deep

reinforcement learning (DRL)-based intelligent EMS featuring the state-of-the-art

asynchronous advantage actor-critic (A3C) algorithm is proposed. After introducing

the fundamentals of reinforcement learning, formulation of the A3C-based EMS is

explained in detail. The proposed algorithm is trained successfully with reasonable

convergence. Training results indicate the great learning ability of the proposed

strategy with excellent charge sustenance and good fuel optimality. A generalization

test is also conducted to test its adaptability, and results are compared with an

A-ECMS. By showing better charge sustaining performance and fuel economy, the

proposed A3C-based EMS proves its potential in real-time HEV control.
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Introduction
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1.1 Motivation

The gradual decline of global fossil resources and severe greenhouse gas emission

issues have brought significant challenges such as increasing fuel prices and stringent

emission regulations faced by public and automotive manufacturers [1]. According

to the International Energy Agency, extending recent trends in energy use to 2050

yields 70% and 60% growth in global energy demand and emissions, respectively,

compared to 2011 [2]. In response to the growing public concern over the environment

and people’s livelihoods attributed to the transportation sector, scientific groups and

industries have exerted great effort in seeking renewable and efficient solutions to

replace conventional petroleum-based vehicles [3].

Recent research activities and projects have proven powertrain electrification a promis-

ing long-term solution, and technological advancements have promoted the develop-

ment and popularization of electrified vehicles [4]. Ever since the emergence of elec-

trified vehicles, the automotive industry has witnessed remarkable improvements in

fuel economy and emission reductions [5].

Electric vehicles (EVs) and hybrid electric vehicles (HEVs), which are no or less de-

pendent on fossil fuels, respectively, are the two variants of electrified vehicles. EVs

with higher energy efficiency and zero tailpipe emissions are considered the foresee-

able future of the automobile industry. However, issues associated with safety, cost,

durability, and range anxiety concerns are the biggest challenge for their market pen-

etration and expansion [6]. As another major portion of electrified vehicles, HEVs

have attracted wide research attention around the globe.
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With less energy consumption, lower emissions, and higher mileage, HEVs present

a midterm solution by combining the benefits of internal combustion engine vehi-

cles (ICEVs) and EVs [7]. Compared to ICEVs, HEVs provide more flexibility in

engine operation by introducing an additional propulsion system. In addition to an

engine, a typical hybrid electric powertrain also includes an energy storage system

and one/more electric motors (EMs) [8]. The multiple energy sources of HEVs allow

various available patterns of power flow to meet vehicle load requirements through

different powertrain topologies [9].

Although HEVs present higher fuel efficiency and lower emissions than conventional

vehicles, further performance improvements are still demanded. Energy-efficient pow-

ertrain components are a feasible approach to further explore the potential of HEV

systems. Along with the development of HEVs, engines as a crucial power source

have been continually evolving over the years [10–12]. Researchers have been cre-

ating, evaluating, and choosing new technological solutions for engines to apply to

HEVs. The combination of energy-efficient engines with the hybrid-electric concept

has been proven as an effective way to improve vehicle performance [13].

Apart from powertrain components, the ability of HEV to maximize its overall hybrid

system efficiency is also indelibly associated with the vehicle energy management

strategy (EMS) [14]. Therefore, developing dedicated and efficient EMSs is another

promising method to further exploit the potential of HEVs.

On this account, this thesis aims to investigate enhanced hybrid electric vehicles

through the pursuit of energy-efficient engines and improved energy management

strategies.
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1.2 Contributions

The thesis has several original contributions, which can be summarized as follows:

(1) A comprehensive review of hybrid powertrain specific engines is provided. Cur-

rent research status is identified, and the viewpoints from discussions provide

insights on future research opportunities.

(2) An improved equivalent consumption minimization strategy (ECMS) incorpo-

rating powertrain inertial dynamics is proposed. With the proposed strategy,

vehicle drivability can be improved, a more accurate prediction of fuel econ-

omy can be made for real-world driving tasks, and novel hybrid powertrain

configurations can be evaluated more realistically and critically. The proposed

methodology can be extended to other optimal control strategies and powertrain

configurations.

(3) A predictive adaptive equivalent consumption minimization strategy (A-ECMS)

with online equivalence factor (EF) calculation and instantaneous power split-

ting is proposed to improve the real-time applicability of HEV EMS. With a

real-time self-updating EF profile, the control dependency of HEV EMS on

drive cycles is reduced, and the need for manual tuning of the EF is eliminated.

The proposed A-ECMS can be implemented on various hybrid architectures.

(4) A deep reinforcement learning (DRL)-based EMS featuring state-of-the-art asyn-

chronous advantage actor-critic (A3C) algorithm is developed to further improve

the intelligence and real-time capabilities of HEV EMS. With the proposed

4
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EMS, control dependency on drive cycles can be completely relieved while main-

taining good charge sustaining performance and fuel economy. The proposed

approach can be applied to different electrified powertrain configurations.

1.3 Thesis Outline

The rest of the thesis is organized as follows:

Chapter 2 introduces the fundamentals of HEVs, engines in HEVs, and HEV EMSs.

Different HEV variants are identified and compared, and the potential for efficiency

improvement is investigated. Engines in different HEV configurations are described,

and the hybrid engine modeling techniques are thoroughly explained. The existing

HEV EMSs are categorized, and the advantages and disadvantages of each category

are briefly discussed.

Chapter 3 provides an in-depth review of four technology pathways to energy-efficient

hybrid powertrain specific engines: over-expansion cycle, low temperature combus-

tion (LTC) concept, alternative fuels, and waste heat recovery (WHR) techniques.

Working principles, influencing factors, benefit potentials, advantages, and disadvan-

tages of each technological solution are discussed in detail. Challenges are specified,

and recommendations are given accordingly. Opportunities for simplification from a

hybrid-optimized engine standpoint are identified.

Chapter 4 presents a real-time ECMS incorporating powertrain inertial dynamics.

An inertial-based dynamic vehicle model of a power-split HEV is constructed, which

5
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is numerically verified by an energy balance analysis and experimentally validated by

comparing with disclosed testing results. A comparative study is performed between

the proposed strategy and a baseline steady-state ECMS without inertial consider-

ations. Simulation results are compared and discussed in terms of battery state-of-

charge (SOC), vehicle mode shifts, powertrain dynamics, engine operations, and fuel

consumption.

Chapter 5 proposes a predictive A-ECMS for a multi-mode hybrid powertrain ar-

chitecture. A control-oriented HEV model is constructed with primary powertrain

component modeling. Based on the HEV model, the optimal control problem is de-

scribed, and the formulation of the proposed A-ECMS is explained thoroughly. A

basic non-adaptive ECMS is also implemented for comparison. Simulation results of

the two ECMS are compared and discussed in detail.

Chapter 6 develops a DRL-based HEV EMS with A3C algorithm. Fundamentals of

reinforcement learning (RL) is presented, including key concepts and algorithms. A

control-oriented HEV model of a series configuration is introduced as the simulation

platform, based on which the optimal control problem is identified. Formulation of the

A3C-based EMS is explained thoroughly and explicitly. The proposed algorithm is

then trained on a typical drive cycle, and training results are compared with dynamic

programming (DP) benchmark and an A-ECMS. The trained EMS is also tested on

a different long drive cycle to verify its generalization and adaptability.

Chapter 7 summarizes the conclusions and future work.
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As a brief introduction to the research background of the thesis, this chapter presents

the fundamentals of HEVs. To further explore the potential of HEV systems, pow-

ertrain components and HEV EMS are two effective pathways that should be com-

prehensively investigated. As a result, this chapter provides a detailed description of

hybrid engines and HEV EMS. The discussions in this chapter lay the foundation for

the following research work.

2.1 Hybrid Electric Vehicles

Owing to the improved fuel economy and emission performance, HEVs have received

wide research attention from industry and academics alike and are sharing an in-

creasing percentage of vehicles in the market. Over the years, there have been a large

number of vehicles in the market with a broad spectrum of hybridization ratios, from

the simplest start-stop systems to full hybrid vehicles [15]. In the meantime, different

HEV variants have also been developed.

For example, as the most eco-friendly HEV variant, plug-in hybrid electric vehicles

(PHEVs) can travel a long distance solely on battery power due to the larger battery

size and the ability to charge externally from the electric grid [16]. Another type of

HEVs is called range-extended electric vehicles (REEVs), also known as series HEVs

or series PHEVs, depending on whether it can be charged externally. REEVs mostly

operate like EVs since only battery power is used for propulsion. When the battery

level is low, a range extender, which is an internal combustion engine (ICE) that

drives a generator, begins to charge the battery and enables extended range [17]. A

8
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comparison of conventional HEVs, PHEVs, and REEVs is given in Table 2.1.

Table 2.1: Comparison of conventional HEV, PHEV, and REEV.

Type Conventional HEV PHEV REEV

Powertrain
ICE &
Electric motor

ICE &
Electric motor

ICE &
Electric motor

Battery charging
On-board by ICE
Regenerative braking

On-board by ICE
Regenerative braking
Electricity from grid

On-board by ICE
Regenerative braking
Electricity from grid
(for plug-in REEV)

Battery size Small/Medium Medium Medium

Electric driving range Small/Medium Large
Medium/Large
(for plug-in REEV)

ICE size Small/Medium Small/Medium Small/Medium

Fuel consumption Medium Low
Medium/Low
(for plug-in REEV)

HEVs possess the ability to improve fuel economy and exhaust emissions due to

the following factors. Firstly, HEVs are equipped with electric motors with higher

efficiency and improved torque characteristics compared to ICEs. Secondly, HEVs

recapture braking energy instead of losing it to friction and heat. Thirdly, it is

possible to shut down the engine or operate it at peak efficiencies due to the multiple

power sources. Besides, HEVs enable engine downsizing since the traction motor will

share part of the maximum power demand, so the engine only needs to fulfill average

loads. Last but not least, HEVs can benefit from energy-efficient engines specific to

electrified powertrains. The combination of these capabilities results in a significant

increase in efficiency for HEVs.
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2.2 Engines in Hybrid Electric Vehicles

As a crucial propulsion component in HEVs, engines significantly affect vehicle perfor-

mance in terms of fuel economy, emissions, drivability, etc. Therefore, energy-efficient

engines offer the opportunity to further improve HEV efficiency. In this regard, this

section gives a brief introduction of engines in HEVs, based on which technology

pathways to energy-efficient hybrid engines will be presented in Chapter 3.

2.2.1 Engines in Various HEV Configurations

According to the power flow from source to load, existing HEV configurations can be

fundamentally divided into three types: series, parallel, and power-split, as shown in

Fig. 2.1.

In series configurations, the engine can operate independently of the vehicle power

demand and consistently at peak efficiencies since no mechanical connection exists

between the engine and driving wheels, as shown in Fig. 2.1a. Generally, engines in

series HEVs are smaller than those in conventional ICEVs, presenting excellent po-

tential in engine downsizing [18]. As a result, the engine only accounts for a minority

of the power demand in series HEVs. Although the commercial application of series

HEVs is still limited to heavy-duty vehicles and buses [4], automotive manufacturers

are making efforts to expand the market.

In parallel HEVs, the ICE and the EM provide traction power individually or together,

and the torque contributions are combined. According to the position of EMs in the

10
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Figure 2.1: HEV configurations: (a) Series; (b) Parallel; (c) Power-split.
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drivetrain, parallel HEVs with a single motor can be sub-categorized into P0, P1,

P2, P3, and P4. Similarly, dual-motor architectures can be sub-categorized as P1-P2,

P2-P4, etc. [19]. Some examples of these configurations are depicted in Fig. 2.1b.

Although engine speed is constrained by vehicle speed in parallel HEVs, the power

distribution between the engine and EM can be varied so that engine runs at peak

efficiency at each speed of operation. Such a target leads to a growing body of

literature on vehicle supervisory control algorithms. Offline control strategies such as

DP [20], as well as online control strategies such as ECMS [21] and model predictive

control (MPC) [22], have been widely researched for parallel architectures. In most

cases, the engine works as the primary power source, and the traction motor assists in

vehicle propelling during accelerations. As a result, engines in parallel configurations

are usually bigger than those in series configurations. Due to the higher flexibility

in powertrain design, parallel configurations receive more research attention and are

primarily used in light-duty vehicles over recent years [18].

Power-split or series-parallel HEV integrates series and parallel configurations with

a power-split device, i.e., planetary gear set, as shown in Fig. 2.1c. It combines

the advantages of both series and parallel architectures, offering the possibility of

all-electric and hybrid-electric driving with high-efficiency engine operations. Engine

operation in such configurations is less steady than series configurations but less

transient than parallel configurations [8]. However, this architecture suffers from the

drawback of higher power losses in path mechanical-to-electrical, which need to be

mitigated through proper energy management.

Engine characteristics of these three configurations are listed and compared in Table
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2.2.

Table 2.2: Comparison of engines in series, parallel, and power-split configurations.

Features Series Parallel Power-split

Size Small Large Medium

Power source Secondary Primary -

Coupled to wheels No Yes No

Controllability of speed and torque Speed & torque Torque Speed & torque

Transient Low High Medium

Zero-emission operation Possible Possible Possible

In recent years, multi-mode power-split powertrains have been proposed, such as the

intelligent multi-mode drive (iMMD) of Honda [23], the two-mode electric variable

transmission (EVT) of General Motors Company [24], and the single-input electrically

variable transmission (SiEVT) of Chrysler (now Stellantis N.V.) with three electrified

modes [25]. Schematic diagrams of the SiEVT layout and its operation modes are

illustrated in Fig.2.2. Multiple modes are commonly realized by adding clutches

or brakes to the transmission and are expected to improve both fuel economy and

drivability. Since the design process is more complex than single-mode power-split

configuration, significant efforts have been made on powertrain topology selection and

control development [26].

2.2.2 Modeling Techniques for Hybrid Engines

HEV is a complex multidisciplinary system. Research and development of HEVs

requires a fairly deep knowledge of various academic subjects, such as mechanical
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design, electronic control units, etc., and is thus time-consuming. By developing

virtual prototypes of vehicle designs before investing in physical prototypes, designers

can obtain great insight into the vehicle behavior and substantially reduce time and

cost. Therefore, computational models are an effective tool for HEV development.

Modeling of a physical system aims for different purposes. Detailed modeling, software-

in-the-loop (SIL) modeling, and hardware-in-the-loop (HIL) modeling should be adopted

at different stages of the HEV development cycle [18]. In general, detailed modeling

is employed at an early stage, focusing on detailed information of individual pow-

ertrain components such as engines and EMs. Engine models at this stage require

higher fidelity and computational loads. SIL modeling is widely adopted in HEV

control system development, and engine models at this stage are less accurate but

more computationally efficient.

Therefore, hybrid engine modeling can be low-fidelity that only give steady-state char-

acteristics, medium-fidelity where detailed modeling at certain locations is provided,

or high-fidelity where most engine dynamics are captured and presented. In this sec-

tion, widely-used engine modeling techniques for hybrid applications are introduced

in the order of increasing fidelity and complexity.

Quasi-static Map Model

In most situations, engine models for HEV development are control-oriented, and

detailed modeling of the physical process inside engines is unnecessary. Quasi-static

map models are sufficient and efficient when studies focus on a system level, such as
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vehicle supervisory control development, where engines are only seen as one of the

powertrain components. Most studies on HEV control strategy designs employ this

approach [27].

In quasi-static map models, engines are assumed to be perfect actuators responding

instantly to commands. Generally, there are two inputs to such models, i.e., a torque

command given by the upper-layer controller and a speed signal resulting from the

coupling of the engine with other powertrain components. The outputs of such engine

models are usually effective torque, fuel consumption, and possible emissions. Such

model structure can be described in Fig. 2.3. Inside the model, the feasible operating

range is limited by physical speed and torque constraints, as expressed in Eq. (2.2.1):

ωeng,min ≤ ωeng(t) ≤ ωeng,max (2.2.1a)

Teng,min ≤ Teng(t) ≤ Teng,max(ωeng(t)) (2.2.1b)

where the upper torque limit varies with engine speed. To calculate fuel consumption,

brake specific fuel consumption (BSFC) maps are commonly used. Such maps are

usually obtained from steady-state engine tests and are therefore only valid for warm

engine operations or where thermal effects can be neglected. If warm-up losses are

to be addressed, the model can be extended by introducing a correction factor which

is a function of coolant temperature, to account for additional fuel use [28]. Fig. 2.4

shows a typical engine map with BSFC contour and maximum torque curve.

Although dynamics are not directly modeled in such models, some can be added to
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Figure 2.3: Schematic of a quasi-static map engine model in Simulink®.
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the torque calculation. For instance, the air/fuel dynamics can be represented as a

delay between torque command and actual torque output by coupling with a transfer

function; the crankshaft dynamics can be reflected as inertia [29].

Mean Value Model

Sometimes, however, the transient performance of specific engine parts needs to be

captured. Quasi-static map models are no longer sufficient at these locations, and

detailed modeling is required. Detailed engine models can be analytical or mathemat-

ical models derived from basic principles of physics such as thermodynamic laws and

conservation of mass and energy. Theoretically, a fully dynamic model should include

all the physics behind the engine. However, the intense computational load makes it

extremely tough to derive such a model. Therefore, proper assumptions should be

made to simplify the model by neglecting less irrelevant dynamics based on research

purposes.

Mean value engine models (MVEMs) are employed in hybrid engine modeling when

particular dynamics inside engines are of interest while computational efficiency is

also required. Such model designs are not unique, depending on the designer’s expe-

rience and research focus. In MVEMs, parameters and variables are averaged over

one or several engine cycles [30]. Gas is assumed to be ideal with constant specific

heat capacity. Basic principles of physics and fluid flow equations are applied to

model engine subsystems, including the throttle system, intake manifold system, and

combustion system, as illustrated in Fig. 2.5. The model input is the throttle position

that gives the air mass flow. Engine speed, torque, fuel consumption, and emissions
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are taken as the model outputs. Since spatial dimensions are not included, MVEM

is a kind of zero-dimensional model.
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Figure 2.5: Illustration of a mean value engine model.

Fluid Dynamic Model

Fluid dynamic models are another type of analytical model based on conservation laws

and flow equations. They can describe the unsteady combustion and heat transfer

process and the non-uniform pressure and temperature distributions in manifolds

and cylinders, thus giving a more accurate description of engines. But also, they are

computationally intensive and thus not preferable for control-oriented modeling [31].

The most common fluid dynamic model for hybrid engines is the 1-D simulation

model employing engine simulation software, e.g., GT-POWER [32] and Simcenter

Amesim [33]. Such models come with higher accuracy and computational loads, thus

preferred in studies where engine dynamics are greatly important. Fig. 2.6 presents an

example of a Simcenter Amesim model for a naturally-aspirated four-cylinder engine.

Apart from the discussed methods, there are other types of models for hybrid engine

modeling, such as black-box models. In real practice, most engine models combine
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Figure 2.6: A typical engine model built in Simcenter Amesim.

several modeling approaches to different degrees to meet reasonable accuracy with

acceptable computational demands.

2.3 Energy Management Strategies in Hybrid Elec-

tric Vehicles

As indicated in Section 2.1, the flexibility in ICE operation provides HEVs with

additional degrees of freedom (DOF) to efficiently control the power distribution

between power sources. Since the effectiveness of EMS has great and direct influences

on HEV performance, developing efficient EMS is another effective method to further

exploit the potential of HEVs. Recently, HEV EMS has been extensively explored

with different objectives such as fuel consumption minimization [34, 35], emission

reduction [36,37], battery lifetime [38,39], etc.
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Generally, the existing EMSs can be classified into rule-based, optimization-based,

and learning-based control strategies [40], details of which are presented in the fol-

lowing.

2.3.1 Rule-based Control Strategies

Rule-based control strategies are designed based on the engineer’s experience and

expertise through either deterministic or fuzzy rules [41]. Examples of deterministic

and fuzzy rules used in rule-based control strategies are given in Fig. 2.7.
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Figure 2.7: Rule-based control strategies with (a) deterministic and (b) fuzzy rules.

Generally, control parameters for main powertrain components, i.e., ICE, EMs, and

the battery, are calibrated through tests and then designed into a set of look-up
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tables to be used in the controller, as illustrated in Fig. 2.8. Although such control

strategies are simple and easy to implement, they suffer from drawbacks such as

significant calibration efforts, lack of optimality, and poor adaptability to powertrain

architectures and drive cycles [42].
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Figure 2.8: Examples of look-up tables used in rule-based control strategies.

2.3.2 Optimization-based Control Strategies

Optimization-based control strategies deal with HEV energy management as an opti-

mal control problem, which relies on optimization algorithms to solve [43]. They can

be further divided into off-line and online strategies based on the requirement for a

prior knowledge of the drive cycle [7].

Off-line strategies can find the global optimal control sequence, but they are heavily

dependent on the entire drive cycle and thus not real-time implementable. In addition,
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the high computational loads of global optimization approaches also make off-line

strategies hard to apply in real-time controls [18]. Representatives of off-line control

algorithms are DP [44], Pontryagin’s minimum principle (PMP) [45], particle swarm

optimization (PSO) [46], genetic algorithm (GA) [47], linear programming (LP) [48],

quadratic programming (QP) [49], slope-weighted energy-based rapid control analysis

(SERCA) [50], etc.

In contrast, online strategies provide higher adaptability to drive cycles with near-

global optimal solutions. Vehicle states are updated in real-time, and the local optimal

solution is derived by instantaneously minimizing the predefined cost function [51].

Among existing online strategies, ECMS and MPC are two well-known candidates

that have been widely investigated and used.

ECMS originates from PMP, where metrics of interest such as fuel consumption,

battery electrical energy, exhaust emissions, etc., are converted into an equivalent

amount of fuel consumption through an EF [52]. By tuning the EF, the equivalent

fuel consumption can be minimized instantaneously, arriving at a near-global optimal

control sequence [53]. Fig. 2.9 illustrates the working principle of ECMS for HEVs.

MPC relies on the future information provided by the prediction models to opti-

mize control solutions. By minimizing a predefined cost function over the prediction

horizon, MPC can achieve similar performance to DP if the prediction method is

accurate [54].
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Figure 2.9: Illustration of ECMS for HEVs.

2.3.3 Learning-based Control Strategies

As the artificial intelligence (AI) technique penetrates our daily lives deeper and

deeper, the automotive industry starts to explore learning-based control strategies

for HEVs to keep up with the pace. Learning-based EMS relies on data mining

algorithms and learns from historical data such as previous driving information for

online training. Based on their learning algorithms, learning-based EMSs can be

further categorized into RL, DRL, supervised learning, unsupervised learning, deep

learning (DL), etc [55].

As a representative of learning-based strategies, RL derives the optimal control law on

a trial-and-error basis. During state transitions, the learning agent receives an obser-

vation (or state) of the environment along with an immediate reward that measures

the success of the training and then gives an action (or control) to the environment
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for the following state. Through continuous interactions between the agent and the

environment, an optimal control policy can be obtained after sufficient training [56].

An illustration of RL-based HEV EMS is given in Fig. 2.10.
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Figure 2.10: Illustration of RL-based EMS for HEVs.

RL-based EMSs present several advantages over the control strategies discussed above,

namely:

• Higher optimality than rule-based EMSs

• Lighter computational burden and the capability of using online as opposed to

off-line global optimization-based EMSs

• Less dependency on drive cycle information compared to online optimization-

based EMSs

Due to these benefits, RL-based EMSs have been extensively explored in recent years
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on a variety of hybrid architectures, such as series HEV [57], parallel HEV [58],

power-split HEV [59], PHEV [60], etc.

2.4 Summary

This chapter provides a detailed description of HEVs, engines in HEVs, and HEV

EMS. The improved efficiency of HEVs is a result of multiple contributing factors.

Thanks to them, HEVs and their variants are taking up an increasing portion of the

automotive market. Further efficiency improvement of HEVs can be achieved through

energy-efficient engines and efficient vehicle control strategies. Therefore, engines in

various HEV configurations and hybrid engine modeling techniques are introduced.

The existing HEV EMSs are categorized, and the advantages and disadvantages of

each category are briefly discussed. The fundamentals presented in this chapter will

be the basis of the discussions and analyses in this thesis.
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Hybrid Electric Vehicle Specific

Engines
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This chapter provides a comprehensive review of energy-efficient hybrid electric vehi-

cle specific engines through discussions on the following four aspects (bolded).

• The amount of useful work that can be extracted from fuel combustion depends

on the operating cycle being used. A higher expansion ratio, which generally

leads to more useful work, is restricted in conventional Otto-cycle engines due to

knock limit [61]. Hence, adopting alternative operating cycles or making

modifications to the existing Otto cycle is a feasible technology pathway

to realize higher engine efficiency.

• ICEs are heat engines where the combustion of fuels transforms chemical energy

into kinetic energy through thermodynamic cycles. The combustion process, by

which the engine emissions are formed, is especially important as it affects

not only emission characteristics but also fuel efficiency. Therefore, energy-

efficient engines can be achieved by developing clean and efficient combustion

approaches, among which advanced combustion concepts and alternative

fuels are most widely recognized [62].

• Of the chemical energy that is not converted into useful work, a huge majority is

wasted as heat via hot exhaust gases and coolant. Recovering the waste heat

of engines can bring about a significant improvement in engine efficiency and

therefore has the potential to make major advances in engine development [63].
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3.1 Over-expansion Cycle

The Otto cycle is the most common thermodynamic cycle in automobile engines

and has dominated the market since the beginning of automobile manufacturing.

However, in Otto-cycle engines where the compression ratio equals the expansion

ratio, the expansion ratio (compression ratio) cannot be significantly enhanced due

to the knock limit [64]. Therefore, the actual thermal efficiency of Otto engines is

generally low. Efforts have been made to explore alternative thermodynamic cycles

to improve engine thermal efficiency, and the over-expansion cycle is proposed.

3.1.1 Overview of Over-expansion Cycle

Over-expansion cycle is a modified Otto cycle designed to improve efficiency by

enabling a higher expansion ratio than the compression ratio [65]. Modern over-

expansion engines are often realized by variable valve timing (VVT) technology.

Philosophies of VVT are thoroughly explained in [66]. Fig. 3.1 depicts a P-V dia-

gram of an Otto cycle and an over-expansion cycle implemented with late intake valve

closing (LIVC). In the over-expansion cycle, the working charge expands beyond the

point where compression begins, allowing more mechanical work to be converted from

thermal energy and thus achieving higher thermal efficiency.

There are two famous representatives of over-expansion cycles, i.e., the Atkinson cycle

and the Miller cycle. Both Atkinson and Miller cycles typically have a higher geo-

metric compression ratio (GCR) to differentiate themselves from their VVT cousins.

The Atkinson cycle is mostly defined as the implementation of LIVC plus increased
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Figure 3.1: P-V diagram of Otto cycle vs. over-expansion cycle with LIVC.

GCR, and the Miller cycle is defined as the implementation of early intake valve

closing (EIVC) plus increased GCR. In another definition, the Miller cycle is defined

as a variant of the Atkinson cycle with intake boosted by turbochargers or super-

chargers, which can be seen as an extension of the original Atkinson cycle to boosted

engines [61]. Sometimes these two terms are used interchangeably. Therefore, the

term Atkinson cycle is used for both within this chapter for the sake of simplicity.

Fig. 3.2 compares the BSFC of an Atkinson engine (Toyota’s TNGA 2.5L engine) and

an Otto engine (Ricardo’s 2.4L engine, initially used in the 2007 Toyota Camry). En-

gine data is obtained from the Advanced Light-Duty Powertrain and Hybrid Analysis

(ALPHA) tool by U.S. Environmental Protection Agency (EPA) [67]. It can be seen

that the Atkinson engine presents higher fuel efficiency than the Otto engine. As pre-

dicted by EPA, adopting Atkinson cycle can reduce carbon dioxide (CO2) emissions
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by 3-8% if effects of exhaust gas recirculation (EGR) and high compression ratio are

included. Recent progress in engine technologies suggests this benefit to be higher,

up to 10-14% [68]. Moreover, fuel savings from the Atkinson cycle are projected to be

8-10.3%, and manufacturers are on track to meet and even exceed this number [69].

3.1.2 Atkinson Cycle in HEVs

Recent years have witnessed the widespread use of Atkinson-cycle engines in HEVs

among major automotive manufacturers such as Toyota, Ford, and Honda. Almost all

HEVs and PHEVs in the US market are equipped with Atkinson-cycle engines [70],

e.g., Toyota Prius, Camry Hybrid, Ford Fusion Hybrid, Honda Accord Hybrid, and

Chevrolet Volt.

In the 2018 Camry Hybrid, Toyota’s A25A-FXS engine, which is a naturally aspirated

Atkinson-cycle engine with a compression ratio of 14:1, is used and equipped with

VVT and cooled EGR. Although details of this specific engine are not found, a

similar engine (A25A-FKS) calibrated for use in the non-hybrid 2018 Camry has

been studied [71,72]. The peak engine brake thermal efficiency (BTE) is reported to

be 40%, and CO2 emissions are reduced by 18.6% compared to the engine in MY 2015

without Atkinson and EGR features. However, as other improvements are involved

in the model upgrade, the numbers may exaggerate the contribution of the Atkinson

cycle alone. Similarly, Toyota’s 2ZR-FXE engine used in the third-generation Prius

and Lexus CT200h combines the Atkinson cycle, cooled EGR, and port fuel injection

(PFI), claiming the same peak BTE of 40% [73].
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Figure 3.2: Comparison of BSFC between (a) Atkinson and (b) Otto engine.
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Apart from manufacturers’ data, Li Y et al. explored the fuel-saving potential of

an Atkinson gasoline engine on a series HEV [74]. The cumulative fuel consumption

was reduced by 4.58% compared with the original Otto engine, and oxides of nitrogen

(NOx) and CO2 emissions were reduced by 46.1% and 18.37%, respectively. In another

study, four range extenders, including an Atkinson-cycle engine, were tested and

compared on a REEV platform [75]. Results indicated that the Atkinson-cycle engine

was the most efficient solution under a combined urban-highway drive cycle, achieving

a 6% reduction in energy consumption and 9% in well-to-wheel CO2 emissions than

the baseline Otto-cycle engine.

Atkinson engines are opening up new possibilities to achieve better fuel economy and

emission performance in HEVs. It is estimated that 20-30% of the fuel improvement

brought by HEVs is attributed to the Atkinson cycle [73]. However, it also has

drawbacks. The major challenge of Atkinson and Miller cycles in hybrid applications

is the reduced power density due to the charge backflow in the Atkinson cycle and

the reduced valve period in the Miller cycle.

One possible solution is to implement VVT with variable compression ratio (VCR) to

switch between Otto operation at high loads and Atkinson operation at low/medium

loads. At low/medium loads, the engine operates on the Atkinson cycle, aiming for

higher fuel efficiency. When high loads are required, a smaller compression ratio

is enabled by VCR so that the engine can run on the Otto cycle without causing

knock. Such a method improves the fuel efficiency through the Atkinson effect while

satisfying the peak power requirement by Otto operation. Another solution is to use

the Miller cycle with boosting to get back to the desired power density, which also
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brings additional costs.

3.2 Low Temperature Combustion

Compression ignition (CI) and spark ignition (SI) engines are two traditional combus-

tion systems that have evolved over decades. However, both combustion concepts still

have limitations. CI engines with conventional diesel combustion (CDC) are known to

have higher thermal efficiency but significant emissions. On the contrary, SI engines

have lower emissions but are relatively less efficient [76]. In such a scenario, advanced

combustion concepts which can achieve clean and efficient combustion modes are

highly demanded.

For this reason, a variety of innovative combustion concepts such as gasoline direct

injection (GDI), gasoline compression ignition (GCI), and partially premixed combus-

tion (PPC) have been developed over the years [77]. Interestingly, the vast majority

of these new technologies share the common feature of a premixed lean combustion

pattern that leads to a lower temperature environment. The LTC concept is thereby

proposed and has become mainstream of existing advanced combustion technologies.

3.2.1 Fundamentals of LTC

LTC is an advanced combustion concept with flameless fuel burning and a lower

combustion temperature than conventional engine combustion. The flameless, lower
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temperature combustion results from the dilution effect enabled by either lean com-

bustion (excess air) or EGR and sufficient energy to drive the chemical reactions. A

comparison of SI, CI, and LTC is given in Fig. 3.3, and the working principle of a

four-stroke LTC engine is depicted in Fig. 3.4.

Figure 3.3: Comparison of SI, CI, and LTC.

Intake Compression Expansion Exhaust

Figure 3.4: Working principle of a four-stroke LTC engine.

On the one hand, LTC presents higher fuel efficiency than SI due to the lower tem-

perature, higher compression ratio, and lean combustion. On the other hand, LTC

enables simultaneously ultra-low emissions of NOx and soot compared to CI, reduc-

ing the aftertreatment requirements. However, LTC suffers from higher hydrocar-

bon (HC) emissions and a narrow operating range located at low-to-medium engine

loads [78].
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3.2.2 Classification of LTC

Over the decades, different LTC strategies have been developed and classified in

literature [79]. Based on degrees of charge premixing, there are mainly two categories:

homogeneous charge compression ignition (HCCI) and premixed charge compression

ignition (PCCI). HCCI is an ideal LTC concept that uses very early fuel injection

timing to obtain a homogeneous mixture of fuel and air before combustion. However,

the biggest challenge of HCCI is the combustion phasing control since combustion

timing is dominated by chemical kinetics and not controlled by injection timing [80].

This challenge motivates the development of PCCI, which can be considered a mix of

CDC and HCCI combustion. In PCCI, control over combustion events can be achieved

with direct fuel injection. However, it is found that the combustion control at high

loads is difficult due to the high reactivity of diesel fuels [81]. Although using gasoline

allows better control at high loads, low load conditions become difficult again [82].

Due to this reason, a type of dual-fuel PCCI, i.e., reactivity-controlled compression

ignition (RCCI), is proposed using both gasoline and diesel [83]. Fuel proportion

can be adjusted according to load conditions to achieve more stable operations. The

potential of RCCI has been confirmed in different engine platforms [84, 85] and with

different fuel types [86, 87]. However, it also has limitations, such as that at high

loads, the pressure rise rate is excessively high if maintaining both NOx and soot

emissions at ultra-low levels [88].

Based on different fuel types and levels of fuel stratification [89], the existing LTC

strategies can be classified as illustrated in Fig. 3.5.
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Figure 3.5: The landscape of advanced LTC strategies.

3.2.3 Single-Mode LTC

Powertrain Configuration

Due to the benefits of LTC, researchers have been working on integrating LTC with

different hybrid architectures to exploit its fuel-saving and emission reduction poten-

tials. An HCCI engine was examined in eight powertrain configurations with various

degrees of hybridization [90], among which the PHEVs were equipped with all-electric

range (AER) from 10 to 40 miles. As summarized in Fig. 3.6, results indicate that

the fuel-saving benefit of HCCI declines with the increase of vehicle hybridization

degree. One reason is that the engine running time is shortened, and therefore fewer

opportunities are left for the engine to benefit from HCCI.
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Figure 3.6: Fuel consumption of studied powertrain configurations (data collected
from [90]).

However, as stated earlier, the main drawback of LTC is its narrow operating range

at low-to-medium engine loads. When LTC is applied in conventional ICEVs, engines

have to switch back and forth between LTC mode for low loads and SI/CI mode for

high loads, leading to undesired transients. While for HEVs where engines can be

decoupled from the drivetrain, it is possible to operate the engine at high-efficiency

LTC region only, and combustion control is also less complex due to fewer transients.

As a result, series HEVs and REEVs offer excellent platforms for LTC applications.

Solouk A et al. investigated a series HEV with an HCCI engine, and results showed

12.6% fuel reduction compared to the baseline SI engine [91]. In another work of

the author [92], both series HEV and REEV were examined with an HCCI engine.

Results presented significant fuel reduction of 17.7% and 18%, respectively.

In addition to HCCI, attempts have also been made to integrate RCCI into HEVs.

A power-split HEV with an RCCI engine was examined and found with the best

performance among all studied hybrid and non-hybrid powertrain configurations [93].
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A series HEV equipped with an RCCI engine using dual fuels of EN590 and E85

was evaluated under Real Driving Emissions (RDE) test, and results showed 6.5%

energy savings over a conventional diesel vehicle with significant CO2, NOx, and soot

reductions [94], as illustrated in Table 3.1. In another study of Garćıa et al. [95],

the RCCI engine was integrated into a parallel HEV that showed ultra-low NOx and

soot emissions. Solouk A et al. also explored a series HEV equipped with an RCCI

engine [96]. Results showed 14.2% fuel improvement over an SI-HEV and 3% over a

CI-HEV with much lower NOx emissions.

Table 3.1: Performance of RCCI-HEV vs. ICEV (data collected from [94]).

Parameter ICEV RCCI-HEV

Energy consumption [MJ/km] 1.71 1.66

CO2 [g/km] 1.20 105

NOx [g/km] 0.49 0.04

Soot [g/km] 0.0089 0.0001

HC [g/km] 0.13 1.72

CO [g/km] 0.69 1.94

One thing to be noted is that LTC-HEVs are likely to enable a simpler and cheaper

aftertreatment system (ATS) due to the emission benefit. However, the relatively

low exhaust temperature may also deteriorate the conversion efficiency of ATS. This

issue should be considered in real applications. Other concerns such as full oxygen

storage capacity that may cause additional fuel use should also be accounted for when

quantifying its benefit [97].
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Control Strategy

As discussed in section 3.2.3, a higher hybridized powertrain may reduce the engine

running time, thus impairing the benefit of LTC. On the other hand, it increases

the flexibility of decoupling engines from road load, enabling more opportunities for

high-efficiency LTC operation. Therefore, tradeoffs must be made to optimize the

operation and maximize the overall HEV efficiency.

It is pointed out that the fuel-saving potential will be considerably affected by the

vehicle control strategy [90]. Table 3.2 compares two control strategies (original and

improved) for a series PHEV with LTC. Significant improvement can be observed in

engine efficiency and fuel economy through control strategy optimization. Similarly,

different energy management strategies were compared in another work [91], where

DP exhibited the best performance, achieving 15.3% higher fuel economy than the

rule-based control.

Table 3.2: Comparison of control strategies (data collected from [90]).

Parameter Original strategy Improved strategy

Engine efficiency 34.1% 38.4%

Percentage of engine ON 22.5% 27.4%

Percentage of HCCI mode 52.9% 98.7%

Percentage of fuel reduction 1% 8%

It is worthy to note that the combustion mode shift brings out dynamics and thus

fuel penalties and torque fluctuations [98]. This cost should be addressed in EMS

design to suppress frequent mode shifts.
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Driving Condition

Apart from powertrain configurations and vehicle control strategies, LTC-HEV per-

formance also depends on driving conditions [99]. Driving patterns with higher ag-

gressiveness and power demand are advantageous to HCCI-HEVs since engines have

to run for a longer time, and thus there are more opportunities to benefit from

LTC [92,96]. Three drive cycles, namely the New European Driving Cycle (NEDC),

Urban Dynamometer Driving Schedule (UDDS), and JC08 drive cycle, were com-

pared in Fig. 3.7. Results showed that JC08 presented the greatest fuel improvement

in both series HEV and REEV configurations.
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Figure 3.7: Fuel improvement under three drive cycles (data collected from [92]).

However, it should be mentioned that if the driving condition is so acceleration-

demanding that the requested torque of the engine is outside its LTC region, the

fuel benefit and emission reduction will be deteriorated [90]. Therefore, appropriate

engine sizing is essential for a specific application of LTC-HEV.
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3.2.4 Multi-Mode LTC

Previously discussed advantages of LTC-HEV are all based on single LTC mode, while

multi-mode LTC has been proven more efficient than single-mode LTC [100–102]. A

multi-LTC SI-RCCI-HCCI engine was compared with two single-LTC engines, i.e.,

an RCCI engine and an HCCI engine, in a REEV platform [100]. Results showed

a maximum of 1.4% fuel improvement over the single-mode HCCI or RCCI engine

under the studied drive cycles, as depicted in Fig. 3.8. Another SI-RCCI-HCCI

engine was applied to a series REEV, which offered 2% fuel benefit over the single-

mode LTC-HEV [101]. Similarly, an SI-RCCI-HCCI engine was integrated with a

parallel HEV, and results presented 8.8% fuel savings over an SI-HEV in UDDS and

1.8% in Highway Fuel Economy Test (HWFET).
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Figure 3.8: Fuel improvement under three drive cycles (data collected from [100]).

These works reveal that multi-mode LTC-HEVs can achieve a few percent of improve-

ment over single-mode LTC-HEVs. However, the complex combustion control and
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system design, such as fuel injection system adjustment, might offset these limited

benefits. Therefore, it is interesting to see a quantification of such benefits and costs

in future research.

3.3 Alternative Fuels

ICEs are popularized in the transportation industry because of their higher power

density than other power systems. However, conventional ICEs use petroleum-based

fuels and produce harmful emissions and greenhouse gas after combustion, leading to

severe environmental challenges. As a result, cleaner alternative fuels are receiving

more and more attention. Examples of alternative fuels are hydrogen (H2), biodiesel,

ethanol, compressed natural gas (CNG), liquefied natural gas (LNG), and electricity

[103].

Compared to petroleum-based engines, alternative fueled (AF) ICEs are more benefi-

cial to environment and public health due to less CO2 and hazardous emissions [104].

On the other hand, electrified powertrains can be considered adopting the alternative

fuel of electricity. Therefore, combining these two solutions gives the possibility of

further improvement in performance, known as alternative-fueled HEV (AF-HEV).

AF-HEVs can serve as a bridge to zero-emission alternative vehicles such as fuel cell

electric vehicles (FCEVs) and battery electric vehicles (BEVs) [105].
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3.3.1 Hydrogen Fueled HEVs

H2, which can be obtained from natural resources and produce zero emissions when

burned with oxygen, is considered the most promising alternative fuel [106]. The

basics of H2 as a sustainable energy source are explained in [107].

H2 can be used in vehicles via two routes, either as the fuel of fuel cells to generate

electricity or as the fuel of ICEs to combust. Since H2 has a higher heating value and

wide range of flammability, H2-ICEs offer the advantages of a higher power, higher

efficiency, and near-zero emission except for NOx at high loads [108]. Manufacturers

such as BMW [109], Mazda [110], and Aston Martin [111] have developed hydrogen-

powered ICEVs for commercial and racing purposes.

However, pure H2-ICEs have drawbacks of lower energy density, poor volumetric

efficiency, and high self-ignition temperature [112]. As a result, an alternative way

of using H2 is mixing it into conventional fuels, known as H2 enriched ICEs. There

has been some work on H2 enriched engines over the years [113–115], which present

better fuel economy and lower emissions than ICEs with conventional fuels. However,

such engines need an additional injection system and are therefore more complex than

pure H2-ICEs [116].

As HEVs play increasingly crucial roles in the automotive industry, attempts have

been made to integrate H2-ICEs into HEVs [108,112,117–119]. H2-ICE powered HEVs

are much less carbon-intensive and more fuel-efficient compared to petroleum-ICE-

based HEVs. Ford Motor Company declared the industry’s first hydrogen concept

HEV, Ford H2RV, which integrated a supercharged H2-ICE [117]. Results showed that
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the projected fuel economy could reach 45 miles per gallon (mpg), and emissions were

near zero. However, the coexistence of H2 and high voltage presented safety concerns.

Following this, He X et al. designed a hybrid-electric sport utility vehicle (SUV) which

was converted from a 2002 Ford Explorer and equipped with an H2-fueled ICE [118].

Vehicle testing demonstrated the capability of storage and management of H2 onboard

the vehicle. Results indicated a gasoline-equivalent economy of 25 mpg, compared to

15-20 mpg in the original Explorer, with much lower emissions.

Apart from pure H2-ICE HEVs, H2 enriched ICE-powered HEVs have also been inves-

tigated [108,119]. Although such vehicles are expected to have less benefit than pure

H2-ICE HEVs, they require fewer costs and easier implementation. Arat HT carried

out an experimental study on an SI-HEV with 10% H2 enrichment [108]. Results

showed a 3.56% increase in engine torque and 2.37% in engine power. Fuel consump-

tion and emissions were reduced by 12.6% and 14-33%, respectively, compared to

the stock engine. A more striking comparison was conducted in another study [119],

where four vehicles, including a diesel ICEV (V1), V1 with 8% H2 enrichment (V2),

hybrid versions of V1 (V3) and V2 (V4), were compared in terms of fuel consump-

tion and emissions. Among all, V4 showed the highest fuel economy with a 14.32%

improvement over V1. NOx and CO2 emissions were also reduced by 15% and 33%,

respectively.

3.3.2 Other Alternative Fueled HEVs

Despite the benefit of hydrogen-powered vehicles, there are also drawbacks and limi-

tations. Lack of appropriate infrastructure for hydrogen supply, high cost, and safety
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issues are the biggest challenges [120]. As a result, using or mixing with other alter-

native fuels presents another promising path to reducing emissions and fuel costs.

Toyota gives an example of such alternative-fueled HEVs. In March 2018, Toyota

revealed a prototype of the world’s first hybrid electric flexible-fuel vehicle (FFV) in

Brazil [121]. The prototype is claimed to combine Toyota’s Hybrid Synergy Drive

(HSD) with the FFV, which can be fueled by both gasoline and alternative fuels

such as ethanol. Initial studies by Toyota indicated that the Hybrid FFV had great

potential in CO2 reductions. In research work [122], an SI-HCCI HEV fueled by

methane (CH4)-H2 mixture was experimentally examined under different mixing ra-

tios. Results indicated that adding H2 to CH4 was beneficial for the combustion

process and emission reductions, especially in lean-burn operations. 80% CH4 with

20% H2 blend showed the best performance in most operating conditions, as shown

in Fig. 3.9. In another study [123], a CNG engine was incorporated in a power-split

hybrid powertrain, which declared a 55.9% improvement in fuel economy.

AF-HEVs have demonstrated significant emission reduction benefits with various al-

ternative fuels and their blends. However, such vehicles require new fuel infrastruc-

tures, the investment cost of which is usually 4-6 times higher than using petroleum

only [124]. At the same time, such vehicles enable simpler and cheaper aftertreatment

systems, which may redeem these costs after all. Therefore, it is still recommended

to study this subject in-depth in the next decade to exploit its potential thoroughly.
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Figure 3.9: Emissions with different fuel blends at (a) 100% WOT; (b) 50% WOT
(data collected from [122]).
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3.4 Waste Heat Recovery

ICEs are heat engines that convert the chemical energy of fuels into kinetic energy

of crankshafts. During the process, more than 60% of the total energy is contained

in engine coolant and exhaust gases, later lost as heat [125]. A schematic of power

flows in ICEs is shown in Fig. 3.10.

30% Power

30% Coolant

35% Exhaust

5% Friction
Total Fuel Energy

100%

Waste Heat Recovery

Figure 3.10: Schematic diagram of power flows in ICEs.

The technological solutions discussed previously aim at the in-cylinder process, while

WHR aims at the after-combustion process. Instead of optimizing engine combustion,

WHR improves fuel efficiency by directly recovering and reusing the wasted energy

in engine coolant and exhaust. Although engines are not the only energy source of

HEVs, the huge potential in waste heat is still worthy of investigation. Over the years,

numerous WHR methods have been proposed and evaluated for automotive applica-

tions, among which thermoelectric generators (TEGs) and thermodynamic bottoming

cycles have attracted the most attention. A comparison of the two techniques is given

in Table 3.3.
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Table 3.3: Comparison of TEGs and thermodynamic bottoming cycles.

Heat source

temperature
Advantages Disadvantages

Thermo-

electric

generator

Medium/high

(Exhaust gas)

Absence of moving parts;

Silent operation;

Compact system structure;

High reliability & scalability;

Low maintenance effort

Low efficiency;

High cost;

Transient control requirement;

Engine backpressure increase

Thermo-

dynamic

bottoming

cycle

Low/medium/

high

(Coolant/

exhaust gas)

High efficiency;

Flexible working fluid

Large scale;

High cost;

Complex system structure;

Engine backpressure increase

3.4.1 Thermoelectric Generators

Among existing approaches, TEG offers the exclusive advantage of direct conversion of

heat into electricity without any moving parts, which leads to a noiseless environment

[126]. In addition, the compact configuration, high reliability and scalability, and low

maintenance make TEGs more suitable for automotive applications [127].

Fundamentals of TEGs

TEG works on the Seebeck effect and converts the waste heat in engine exhaust

gas into electrical energy. A general TEG system consists of multiple thermoelectric

modules (TEMs) that generate electric current when there is a temperature difference

between their ends. Each TEM consists of multiple thermoelectric couples (TCs)

connected electrically in series and thermally in parallel. Each TC contains a pair
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of p- and n-type semiconductors made with different materials [128]. The working

principle of a single TC is depicted in Fig. 3.11.

Heat source

Heat sink

P Ne- e-

Hot

Cold Cold

R

I

Figure 3.11: Working principle of a single TC.

Generally, there are two locations of TEGs found in the literature for automotive

engines, either on the exhaust heat exchanger [129, 130] or on the engine cooling

system [131]. Since the former has a simpler layout and higher temperature difference,

it is more attractive for vehicle applications. TEMs are usually placed on the surface

of an exhaust heat exchanger, and hot exhaust gas flows from inlet to outlet, providing

thermal energy to the hot side of TEGs. For the cold side, a coolant heat exchanger

is used to maintain the low temperature of the coolant [128]. A typical TEG system

configuration is illustrated in Fig. 3.12. Besides the upper and lower sides, TEMs

can also be placed on four sides of a flat heat exchanger [132], or all surfaces of a

cylindrical heat exchanger [133].
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Figure 3.12: A typical TEG system configuration.

TEGs in HEVs

Previous studies on TEGs in conventional ICEVs are notably rich, and their potentials

in fuel efficiency improvement have been widely proven [134–136]. In an ICEV, the

electricity generated by TEG will be mainly used to power the vehicle’s electrical

accessories. However, in HEVs, the electrical energy can be fully utilized to either

directly propel the vehicle or charge the battery for later use. These additional

benefits motivate the expansion of TEGs to HEV applications. Fig. 3.13 presents

the structure of a typical HEV integrated with a TEG system.

Over the years, major manufacturers such as BMW [137], Nissan [138], and Hyundai

[139] have studied TEGs, and automakers such as Ford [140] and Honda [141] have

designed prototypes for HEV applications. For example, the Ford TEG system has

an exhaust heat exchanger with multiple parallel channels lined with thermoelectric

material. The system claims a peak power of 414 W with 4.6 kg of thermoelectric ma-

terial. The Honda TEG system includes a flat exhaust heat exchanger with 16 TEMs

placed on each upper and lower side. The system is rated to produce a maximum
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Figure 3.13: Structure of a typical TEG-HEV system.
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power of 450 W and achieve 3% fuel improvement in the studied series HEV.

Since engines in HEVs mostly run at higher loads, the exhaust temperature of HEVs

is usually higher compared to conventional ICEVs. Therefore, HEVs are considered

a more advantageous platform to implement TEGs, which benefit from higher tem-

peratures [142]. However, it is pointed out that not all types of HEVs are suitable

for TEGs implementation. Mild HEVs with more engine operating time and higher

exhaust energy are likely to be a better platform than full HEVs [143]. Wang R et

al. proposed a novel TEG for a mild HEV [144], and results indicated 3.64% and

2.17% fuel savings in UDDS and HWFET, respectively, with slight emission reduc-

tions. Apart from mild HEV, TEG-WHR has also been integrated on series [141],

parallel [145], power-split [146], and REEV [147] architectures.

The efficiency and power output of TEGs are influenced by engine speed, engine

load, and other factors such as fabrication methods of TEMs [148]. Higher engine

speeds and loads lead to higher exhaust temperature and mass flow rate, thus higher

conversion efficiency and power output due to more significant temperature differences

across TEG. It was found that the efficiency of a TEG system for a power-split HEV

was around 6% at 2000 rpm, and a maximum power of 1015 W was achieved at

5200 rpm [148]. In another study [149], a compact TEG system targeting a sedan-

type HEV showed a maximum power and efficiency of 118 W and 2.1%, respectively,

under the highest engine speed-load condition.

The biggest concern about TEG-HEVs is the intermittent engine operations and less

energy in the exhaust gas due to higher engine efficiency [145]. However, it is shown

that the exergy in the exhaust gas of HEVs might be even higher than conventional
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vehicles due to the higher temperature, thus higher potential for TEG-HEV applica-

tions [146]. Another concern about TEG systems is the effect of additional weight

on vehicle fuel economy, which may increase the burden of vehicle power sources and

result in lower mileage or higher fuel use. However, most studies on TEG-HEVs have

reported positive benefits when considering the weight of TEG devices [140,145,150].

It was claimed that the additional weight of TEG systems had negligible effects on

vehicle fuel economy [150].

It is not hard to find from the literature that the efficiency of TEG systems is relatively

low, which results from the poor conversion performance of current thermoelectric

materials and the slight temperature difference across TEMs. However, as suggested

in [151], the TEG system efficiency will be allowed to achieve 15% or higher in the

future, along with the progress in material science and nanotechnology.

3.4.2 Thermodynamic Bottoming Cycle

Thermodynamic bottoming cycles are another solution to recover and convert the

waste heat of engines into usable work. Organic Rankine cycle (ORC) [152], Kalina

cycle [153], and Brayton cycle [154] as ICE-WHR systems have been extensively in-

vestigated by scholars and original equipment manufacturers (OEMs). Among them,

ORC has the advantages of simple structure, suitable size, high reliability, and capa-

bility of recovery from both low- and moderate-grade waste heat sources, i.e., engine

coolant and exhaust gas, respectively, thus preferred in ICE-WHR applications [155].

Manufacturers and research groups, such as Cummins [156], Bosch [157], Eaton [158],

AVL [159], BMW [160], and Oak Ridge National Laboratory (ORNL) [161], have all
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studied ORC-WHR systems for automotive applications.

Organic Rankine Cycle

Generally, an ORC system includes a pump, an evaporator, an expander, and a

condenser. The organic working fluid is first pumped to the evaporator and heated

by exhaust gas and coolant until evaporated. The high-pressure vapor then arrives

at the expander, where the thermal energy is converted into mechanical work and

drives the generator. In such a way, the waste heat contained in engine exhaust gas

and coolant is recovered. After expansion, the working fluid is cooled by air or water

in the condenser, and a new cycle starts afterward. Fig. 3.14 illustrates a typical

ORC-WHR system for both engine exhaust gas and coolant.

Over the years, lots of studies have been published on engine ORC-WHR in respect

to system configuration [162,163], component design, e.g., heat exchanger [164, 165],

expander [166,167], and pump [168,169], as well as working fluid selection [170,171].

The existing ORC-WHR system configurations can be classified into basic Rankine

cycle (B-RC) and B-RC-based modifications, including regeneration-based Rankine

cycle (R-RC) and multi-loop Rankine cycle (RC), i.e., cascade-based Rankine cycle

(C-RC) and duel-pressure-cycle-based Rankine cycle (D-RC). The modified config-

urations have a better thermodynamic performance due to the improved thermal

matching in both high- and low-temperature cycles [172].

Heat exchangers in ORC-WHR systems include evaporators, condensers, and regen-

erators in R-RC configurations. Shell-tube [173] and plate [174] heat exchangers
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Figure 3.14: Working principle of engine ORC-WHR system.
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are the two most common types in ORC-WHR applications. Shell-tube heat ex-

changers are recommended for evaporators, and plate heat exchangers are preferred

in condensers and regenerators [172]. Measures such as inserting fins [173, 174] and

metal-foam structures [175,176] are expected to further enhance heat transfer perfor-

mance. However, trade-offs exist between performance and practical concerns such

as increased pressure drop, clogging issues, larger weight, and higher cost.

As the most crucial component of RC systems, expanders significantly influence WHR

system efficiency. Generally, expanders in RC systems can be categorized as velocity

type (e.g., axial turbine, radial turbine) and volume type (e.g., scroll expander, screw

expander) [177]. Among them, turbines are considered the most promising for auto-

motive applications due to the higher efficiency and power output [172]. Pumps in

RC systems can be placed in one of these two categories: volumetric pumps [178] or

centrifugal pumps [179]. They are usually coupled with expanders to save space and

reduce weight [172].

Working fluid selection requires special attention when designing RC systems. Safety

issues, environmental impacts, thermo-economic properties, compatibility with vehi-

cles, etc., must be carefully evaluated before applying to vehicles [152]. However, it

is a consensus that a single fluid can hardly meet all the requirements [180]. There-

fore, trade-offs must be made for a specific case. In ORC systems, organic fluids

are adopted as working fluids, most of which are either dry fluids, e.g., R245fa and

R245ca, or isentropic fluids, e.g., R123 and R134a [152]. Although traditional refrig-

erants have been widely researched, there are challenges such as thermal instability

and environmental impact. As a result, other working fluids, i.e., CxHyOz, CO2, and
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unconventional working fluids such as nanofluids, have been recently explored, which

exhibit promising potentials in the above aspects [172].

ORC in HEVs

Past efforts in ORC-WHR technology have primarily focused on conventional ICEVs,

while it is necessary to understand its benefits and limitations in electrified power-

trains. Fig. 3.15 presents a typical HEV-ORC-WHR system. Series hybrid [181],

parallel hybrid [182–184], and plug-in hybrid [185] architectures have been studied,

and aspects of system layout, working fluid selection, and effects of driving conditions

and control strategies have been discussed.

System layouts of HEV-ORC-WHR can be different. The recovered mechanical energy

after the expander can be converted into electrical energy through a generator, as

shown in Fig. 3.15, and then stored in a battery pack to charge the battery, power

auxiliaries, or function as a range extender. Alternatively, the mechanical energy can

be directly transferred to the engine crankshaft [186]. However, such a method may

deteriorate the benefits of ORC-WHR systems for the following reasons. First, with

the help of WHR systems, less fuel has to burn to satisfy the power demand for the

engine, leading to a lower exhaust temperature and mass flow rate, thus reducing the

potential of WHR. In addition, the expander speed is imposed by engine speed due

to the mechanical connection, thus not controllable.

In contrast, in the first method, the expander speed can be varied to adjust and

optimize working fluid pressure at the expander inlet. Besides, such configurations
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Figure 3.15: System layout of ORC-WHR in HEVs.
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can produce and store energy when there is no power demand for the engine, taking

advantage of the thermal inertia of evaporators and ATS [187]. Therefore, the first

method is more applicable in performance and control feasibility, even though an

additional energy conversion from mechanical to electrical will cause extra energy

loss.

Based on this configuration, two different layouts regarding the pump are proposed

[186]. The pump is directly connected to and powered by the expander through a

gearbox in one layout. In the other layout, the pump is powered by an additional

EM whose power is provided by the battery. The second layout claims to have higher

instantaneous power but lower total stored energy due to the long energy conversion

chain.

In order to maximize the HEV-ORC-WHR system efficiency, working fluid must be

selected properly. Five working fluids, including dry types, i.e., R134a, R245fa, and

R1234yf, and wet types, i.e., water and ethanol, were evaluated for a CNG engine

based HEV [181]. Considering system efficiency and practical operating limitations,

R245fa was suggested the optimal working fluid with the best overall performance

[188]. Apart from R245fa, R1234yf [189], toluene [183, 190], and ethanol [187] have

also been found in HEV-ORC-WHR systems.

A major challenge for ORC-WHR in automotive applications is its response to tran-

sients since it takes a finite amount of time to reach a certain temperature and pressure

for the system to work [191]. Frequent shifting of engine operating points will cause

dramatic variations in the exhaust gas, making system control challenging. Electrified

powertrains enable engines to be less dependent on road loads, thus more adaptable
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to fast-varying driving conditions.

Kruijt K et al. implemented ORC-WHR on a hybrid heavy-duty truck, which de-

clared 2.5% fuel reduction under UDDS [182]. Mansour C et al. examined a mild

HEV equipped with ORC-WHR for engine coolant [184]. Results showed a slight

improvement in engine and powertrain efficiency, with 2% and 2.4% fuel reduction,

respectively, under NEDC and Worldwide Harmonized Light Vehicles Test Proce-

dure (WLTP). Andwari AM et al. studied an ORC-WHR system for a lightweight

HEV [188]. Results indicated 10%, 8%, and 7% improvement under FTP-75, NEDC,

and US06, respectively. It is revealed from the literature that HEV-ORC-WHR sys-

tems are more beneficial for medium- and high-duty trucks, which primarily run on

suburban and highway conditions. Therefore, even though HEVs offer the exclusive

advantage of independent engine operations, it is still encouraged to apply ORC-WHR

systems to HEVs with steadier engine operations such as hybrid trucks.

Brayton Cycle in HEVs

Apart from ORC, Brayton cycle has also been studied to integrate into HEV-WHR.

Compared to ORC, the Brayton cycle avoids the need for a condenser since it runs as

an open system with air as the working fluid, making it easier to integrate into vehi-

cles. Nader WB et al. conducted a comprehensive assessment on a simple Brayton-

WHR system for a series HEV [192]. Considering the added weight by the WHR

system, six different Brayton layouts were modeled and compared in terms of fuel

consumption. Results indicated that the Brayton cycle with an intercooler offered
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the best trade-off between efficiency and complexity, achieving 5.5-7.0% fuel improve-

ment.

3.5 Challenges and Recommendations

As reviewed thus far, advanced hybrid engine technologies present great potential

for further fuel economy and emission improvement. Advantages and disadvantages

of each reviewed technology are summarized in Table 3.4. Although great progress

has been made, significant issues remain to be resolved. This section discusses the

major challenges of each reviewed technology, based on which recommendations are

provided subsequently.

3.5.1 Over-expansion Cycle

Challenges : The primary challenge for over-expansion engines is the reduced power

density due to the charge backflow in Atkinson engines and the reduced valve period

in Miller engines. Although electric motors can compensate for the peak power de-

ficiency at high loads in hybrid powertrains, a higher power density is still desired

since it enables engine downsizing, which benefits fuel economy.

Recommendations : One recommendation is to use the Otto cycle with the Atkinson

cycle in one engine, which operates on the Otto cycle at high loads and the Atkinson

cycle at low/medium loads. At higher loads, the Otto cycle intends to increase the

power density. Technical measures such as VCR can mitigate the possible knock
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Table 3.4: Summary of the reviewed engine technologies.

Technologies Advantages Disadvantages

Atkinson
cycle

• Higher fuel efficiency
• Lower emissions
• Compensated power deficiency

by electric motors in HEVs

• Reduced peak power &
power density

• Increased system complexity

LTC

• Higher fuel efficiency
• Lower emissions
• Simpler & cheaper

aftertreatment systems
• Fewer transients and easier

combustion control due to
steadier engine operations
in HEVs

• Narrow operating range
• Complex combustion control

Alternative
fuels

• Significant emission reduction
• Better fuel economy
• Simpler & cheaper

aftertreatment systems

• New fuel infrastructure
• Additional fuel injection

system
• Safety concern
• High cost

WHR

• Fuel-saving potentials
• Full utilization of generated

electric energy for HEV
propelling or battery charging

• Easier system control due to
steadier engine operations
enabled by HEVs

• Cost ineffective
• Low efficiency
• Safety concern
• Complex system structure
• Complex control design
• Increased engine backpressure
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issues. At lower loads, the Atkinson cycle is implemented by retarding the valve

timing upon the Otto cycle to improve fuel efficiency. Another solution is to use a

turbocharged Miller cycle, so the boosted intake pressure can even out the charge loss

caused by backflow.

3.5.2 LTC

Challenges : The main obstacles facing LTC engines in hybrid applications are the

narrow operating range and complex combustion control.

Recommendations : One recommendation is to increase the in-cylinder fuel stratifica-

tion to shift from kinetic-driven combustion to injection-driven combustion to improve

controllability and operable range. Another suggestion is to investigate suitable fuels.

For example, low-octane gasoline is a promising fuel type for LTC engines since its

autoignition process is proven sensitive to changes in the equivalence ratio, which can

be an indicator for combustion control.

3.5.3 Alternative Fuels

Challenges : The most challenging task of developing alternative-fueled engines for

hybrid applications is to find a high-performance, cost-effective fuel solution.

Recommendations : Engineering always involves making trade-offs. The economic

performance of alternative-fueled engines is the primary interest of the automotive
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industry. Therefore, a comparative analysis of fossil fuels and alternative fuels ad-

dressing the economic performance of each fuel type is recommended. Factors in-

cluding the initial research and development cost, the fueling infrastructure cost, the

carbon tax reductions, possible fuel-savings income, etc., should be considered while

conducting the research. In the meantime, more research efforts should be put into

investigating new alternative fuels and fuel blends such as biodiesel, dimethyl ether

(DME), etc.

3.5.4 WHR

TEG

Challenges : The biggest limitation of HEV-TEG applications is the relatively low

efficiency. Besides, although hybrid powertrains enable steadier engine operations,

the transient nature of the exhaust gas is still a major concern.

Recommendations : The maximum TEG efficiency can be expressed as:

ηTEG,max =
Th − Tc
Th

√
1 + zT − 1√
1 + zT + Tc

Th

(3.5.1)

where T is the operating temperature, which is the mean value of the hot side tem-

perature Th and cold side temperature Tc. z and zT are the figure of merit and

dimensionless figure of merit of the thermoelectric material. Equation (3.5.1) reveals
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that a rise in zT value contributes to an increase in TEG efficiency. Therefore, intro-

ducing more efficient thermoelectric materials with higher zT values is beneficial.

To translate the benefits from the material level to the component level and further

to the device level, bonding techniques and integrated designs are also highly recom-

mended [11]. On the other hand, previous studies have mainly focused on steady-state

behaviors, while transient state analysis should be addressed to bridge the gap [193].

Thermodynamic Bottoming Cycle

Challenges : Although thermodynamic bottoming cycles generally exhibit higher effi-

ciency than TEGs, major challenges must be addressed to advance toward commer-

cialization. Working fluid selection and system control are two critical issues.

Recommendations : Working fluids in bottoming cycles must be safe and efficient with

specific thermodynamic properties. However, it is hardly possible and time-consuming

to find such a one that meets all the requirements. Therefore, one recommendation is

to design new working fluids as per requirement instead of choosing from the existing

ones, which can be achieved by adjusting the mixture compositions and ratios [172].

For system control, coordinated control schemes integrating HEV controllers with

WHR control modules are required to adapt to the varying engine operations.
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3.6 Opportunities for Simplification

Engine designs always involve making trade-offs. Previously discussed engine tech-

nologies improve the engine performance but also pose extra challenges such as addi-

tional complexity and cost. Therefore, the most efficient and powerful engine might

not be the best hybrid engine in real practice. Engine designs for hybrid applications

should depend on the mission of an engine in a hybrid platform, which also varies

with hybrid architectures.

More specifically, as one of the two/multiple power sources in HEVs, hybrid engines

are offered the advantage of being assisted by the battery and electric motors. As a

result, hybrid-optimized engines can break the paradigm of pursuing power and effi-

ciency as in traditional ICE-only vehicles and create the opportunity to be simplified

and downsized.

For example, in conventional ICEVs, engines should be efficient over the entire speed-

load map. However, in HEVs, engines can operate in high-efficiency regions only.

Therefore, engine optimization can only aim at high-efficiency regions, and technology

elements targeting low-efficiency regions can be removed. Another example is vehicle

accessories. All traditionally engine-drive accessories, e.g., alternator, water pump,

power steering, air conditioning, can be electrified in HEVs. Therefore, the engine

accessory drive can be eliminated.
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3.7 Summary

As one of the power sources in electrified powertrains, the engine is a crucial compo-

nent that significantly impacts the performance of HEVs. Recent years have witnessed

tremendous effort toward energy-efficient engine technologies for hybrid applications.

Over-expansion cycle, LTC concept, alternative fuels, and WHR techniques provide

the most promising technology pathways to clean and efficient hybrid powertrain

specific engines. This chapter provides a comprehensive review of each technology,

including their working principles, influencing factors, benefit potentials, advantages,

and disadvantages. A summary specifying the challenges of each technology path-

way is provided, followed by respective recommendations. Finally, opportunities for

simplification from a hybrid-optimized engine standpoint are identified.
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Chapter 3 presents a thorough analysis of technology pathways to energy-efficient

hybrid engines, and the rest of the thesis intends to improve HEV system efficiency

through the pursuit of improved energy management strategies.

According to the literature review, most disclosed studies on HEV EMS are based on

steady-state assumptions where real-world powertrain dynamics are neglected for the

sake of simplicity. However, when such strategies are used in real-world driving tasks

with dynamic vehicle operations, the lack of consideration of powertrain dynamics for

vehicle control strategies will lead to infeasible control solutions and deviations from

the predicted fuel economy. Therefore, incorporating powertrain dynamics presents

an effective way to improve HEV EMS.

Inertial dynamics of rotational powertrain components such as the engine, electric

motors, and the transmission output shaft are important dynamic features of HEVs,

especially during mode transition operations. However, they are usually overlooked in

previous HEV EMS designs. For example, Chen et al. proposed an intelligent ECMS

for a power-split PHEV [194]. It was mentioned that the dynamic characteristics of

the hybrid system were neglected in the powertrain modeling to simplify the EMS

design. Zhang et al. introduced an ECMS where battery aging was considered, but

dynamics of powertrain rotating components were still ignored [39]. Sun et al. de-

signed an adaptive ECMS for a power-split HEV based on a control-oriented vehicle

model without inertial dynamics [195]. Atriya et al. investigated the effects of coor-

dinated control on ECMS for a multi-mode hybrid electric powertrain [26]. Although

the control strategy was tested on a dynamic powertrain model, the inertial dynamics

were not built into the HEV EMS.
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To the author’s knowledge, the impacts of powertrain inertial dynamics on HEV

EMS have not yet been addressed in the literature. In this context, this chapter

contributes to filling the research gap by proposing a real-time HEV control strategy

considering the inertial dynamics of the powertrain. First, a control-oriented HEV

model of a power-split configuration is built in MATLAB® and Simulink®, based

on which a real-time ECMS accounting for the rotational inertia of major powertrain

components is designed. Then, a comparative study is performed between the pro-

posed dynamic ECMS and a baseline steady-state ECMS without considering inertial

dynamics. Simulation results are compared in terms of battery SOC, vehicle mode

shifts, powertrain dynamics, engine operation, and fuel consumption.

4.1 Hybrid Powertrain System and Modeling

This section introduces the second-generation Toyota hybrid system (HSD), used in

the 2010 third-generation Prius. A schematic of the hybrid powertrain system is

illustrated in Fig. 4.1. Details of the vehicle specifications and modeling approaches

are explained in the following text.

4.1.1 Hybrid Synergy Drive

The third-generation Prius is equipped with a 1.8-liter Atkinson-cycle gasoline engine

and a 1.3-kWh nickel-metal hydride (NiMH) battery, achieving a total power of 100

kW [196]. Detailed parameters of the vehicle are specified in Table 4.1.

71



Ph.D. Thesis – Yue Wang McMaster University – ME

Table 4.1: Vehicle specifications of the power-split HEV.

Component Parameter Value

Vehicle

Equivalent mass 1531 kg

Wheel radius 0.3173 m

Road load coefficient µ1 82.2921 N

Road load coefficient µ2 0.2224 N/(m/s)

Road load coefficient µ3 0.4031 N/(m/s)2

Transmission

PG1 ratio (Ring/Sun) 78/30

PG2 ratio (Ring/Sun) 58/22

Final drive ratio 3.268

Mass moment of inertia 0.1 kg ·m2

Engine

Displacement 1.8 L

Idle speed 600 rpm

Maximum power 73 kW

Maximum torque 142 Nm

Maximum speed 5500 rpm

Mass moment of inertia 0.128 kg ·m2

MG2

Maximum power 60 kW

Maximum torque 200 Nm

Maximum speed 13000 rpm

Mass moment of inertia 0.0226 kg ·m2

MG1

Maximum power 42 kW

Maximum torque 40.8 Nm

Maximum speed 13500 rpm

Mass moment of inertia 0.01 kg ·m2

Battery

Capacity 6.5 Ah

Nominal voltage 201.6 V

Maximum voltage 252 V

Minimum voltage 168 V

Maximum power 27 kW
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Figure 4.1: Schematic diagram of powertrain configuration in 2010 Toyota Prius.

The hybrid electric powertrain is integrated with two planetary gear (PG) systems, a

power-split PG and a motor speed reduction PG. They coordinate powertrain com-

ponents during driving and allow various power flow schemes from the engine and

battery to the driving wheels. The primary electric motor (MG2), coupled to the

output shaft through a gear reduction ratio, can provide traction power to assist

propulsion or work as a generator during regenerative braking to recharge the bat-

tery. A secondary electric motor (MG1) and the ICE are connected to the sun (S1)

and carrier gear (C1), respectively, of the power-split PG, which splits the engine

power into two paths.

On one path, engine power directly flows from the carrier gear through the ring

gear to the driving wheels. On the other path, MG1 performs as a generator to

transfer engine power to the battery, where the charged electrical energy supplies

MG2 to propel the vehicle eventually. The transmission system, referred to as an

electronically controlled continuously variable transmission (ECVT), relies on the

electric motors to continuously vary the gear ratios between the engine and the wheels
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so that engine speed and torque can be optimized to maximize the entire hybrid

system efficiency [197].

The hybrid system enables two driving modes, i.e., all-electric and hybrid-electric.

In all-electric mode, the engine is shut down, the propelling torque is provided by

MG2 only, and MG1 spins without delivering any torque. In hybrid electric mode,

the vehicle is propelled by the engine and MG2, and MG1 applies reaction torque on

the PG.

4.1.2 Control-Oriented Vehicle Model

Engine

Since the energy management problem in this chapter aims at fuel economy opti-

mization, only fuel consumption is concerned in engine modeling. The BSFC map,

as shown in Fig. 4.2, is employed to calculate the fuel mass flow rate of the engine.

Furthermore, the actual outputs of engine speed and torque are constrained by phys-

ical limits, as expressed in Eq. (4.1.1), where ωICE and TICE are engine rotational

speed and torque, respectively.


ωICE,min ≤ ωICE ≤ ωICE,max

TICE,min ≤ TICE ≤ TICE,max

(4.1.1)
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Figure 4.2: Engine BSFC map.

Motor

The two electric motors are modeled based on combined efficiency maps that specify

the conversion between mechanical power and electrical power. The motor torque

output is bounded by its upper and lower limits, as shown in Eq. (4.1.2) and (4.1.3):

Pelec,m =


Tmωm/ηm(Tm, ωm), Tm ≥ 0

Tmωmηm(Tm, ωm), Tm < 0

(4.1.2)

Tm,min(ωm) ≤ Tm ≤ Tm,max(ωm) (4.1.3)
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where Pelec,m, Tm, and ωm are motor power, torque, and speed, respectively. ηm is

the motor efficiency, which is a function of motor torque and speed. Fig. 4.3 and 4.4

present the efficiency maps of MG1 and MG2, respectively.
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Figure 4.3: MG1 efficiency map.

Battery

The battery pack is modeled by the equivalent circuit approach. The battery current

can be calculated from Ohm’s law, as given in Eq. (4.1.4):

Ibatt(t) =
Voc(SOC)−

√
Voc(SOC)2 − 4R(SOC)Pbatt

2R(SOC)
(4.1.4)

where Voc and R are battery open circuit voltage and internal resistance, which both
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Figure 4.4: MG2 efficiency map.

depend on battery SOC. Pbatt denotes the battery power. The battery terminal voltage

and SOC can be then obtained from current, as shown in Eq. (4.1.5) and (4.1.6),

where SOC(t0), η, and Qbatt are the initial SOC, coulombic efficiency, and battery

capacity, respectively.

Vt = Voc(SOC)−R(SOC)Ibatt(t) (4.1.5)

SOC(t) = SOC(t0)−
η

Qbatt

∫ t

t0

Ibatt(t)dt (4.1.6)
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Planetary Gear System

For HEV control strategies considering powertrain inertial dynamics, the PG dy-

namics are a matter of concern. Considering the rotational inertia of MG1, MG2,

engine, and the transmission output shaft while neglecting the inertia of gears in PG

sets, the dynamics of the power-split system can be illustrated by the lever diagram

shown in Fig. 4.5. The rotational acceleration and torque relations of the powertrain

components are described by Eq. (4.1.7):



1 0
1

1 + β1
0

0 β2
β1

1 + β1
1

0 0 0 0

0 0 0 0





TMG1

TMG2

TICE

TOUT


=



JMG1 0
1

1 + β1
JICE 0

0 β2JMG2

β1

1 + β1
JICE JOUT

1 0 −(1 + β1) β1

0 −1 0 β2





θ̈MG1

θ̈MG2

θ̈ICE

θ̈OUT


(4.1.7)

where TMG1, TMG2, TICE, and TOUT represent the torque of MG1, MG2, engine, and

the transmission output shaft, respectively. JMG1, JMG2, JICE, and JOUT represent

the mass moment of inertia of MG1, MG2, engine, and transmission output shaft,

respectively. θ̈MG1, θ̈MG2, θ̈ICE, and θ̈OUT represent the rotational acceleration of

MG1, MG2, engine, and transmission output shaft, respectively. β1 and β2 are gear

ratios of PG1 and PG2, respectively. Rearranging Eq. (4.1.7) derives the rotational

acceleration and torque relations of the powertrain components as given in Eq. (4.1.8)
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Figure 4.5: Lever diagram of the PG system.
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and (4.1.9):


θ̈MG1 = (1 + β1)θ̈ICE − β1θ̈OUT

θ̈MG2 = β2θ̈OUT

(4.1.8)


(TOUT − JOUT θ̈OUT ) = β1(TMG1 − JMG1θ̈MG1)− β2(TMG2 − JMG2θ̈MG2)

(TICE − JICE θ̈ICE) = −(1 + β1)(TMG1 − JMG1θ̈MG1)

(4.1.9)

Since θ̈OUT can be known from the vehicle acceleration profile, there is one DOF when

θ̈ICE is non-zero in the hybrid electric mode and zero DOF when θ̈ICE is zero in the

all-electric mode. In terms of torque equations, TOUT can be known from the vehicle

power demand. If the rotational acceleration of each powertrain component is solved

first, there is one DOF when TICE is non-zero in the hybrid electric mode and zero

DOF when TICE is zero in the all-electric mode. Combining Eq. (4.1.8) and (4.1.9),

there are totally two DOF in the hybrid electric mode and zero DOF in the all-electric

mode.

Vehicle Longitudinal Dynamics

Vehicle speed can be calculated from longitudinal dynamics, which consist of rolling

resistance, aerodynamic resistance, and road grade resistance, as illustrated in Eq.
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(4.1.10):

vveh =
1

mequiv

∫  Twh

Rwh

− µ1 − µ2vveh − µ3v
2
veh

 dt (4.1.10)

where mequiv is the equivalent mass of the vehicle with inertia, Twh is the torque at

the wheels, Rwh is the wheel radius, and µ1, µ2, and µ3 are the road load coefficients.

4.1.3 Model Validation

Before introducing the vehicle control strategy, the HEV model is validated on both

UDDS and HWFET drive cycles. Firstly, the simulated vehicle speed is compared

with the drive cycle speed. As shown in Fig. 4.6, the simulated speed follows the

reference speed perfectly under both cycles, indicating the vehicle power demand is

fully fulfilled. Secondly, the simulated vehicle tractive effort is compared with the

test data disclosed by Argonne National Laboratory (ANL) [198]. As depicted in Fig.

4.7, the simulated profile follows closely with the test data under both drive cycles,

which proves the model validity.

Finally, an energy balance analysis is conducted as further validation of the simulation

model. Energy balance analysis is based on energy conservation, requiring the total

energy losses of each powertrain component equal the total energy supplied by the

engine and battery [26]. The total energy losses in the built model are composed

of MG1 loss, MG2 loss, auxiliary loss, friction brake loss, road load loss, primary

transmission loss, battery loss, and inertial loss. Table 4.2 summarizes the simulation
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Figure 4.6: Comparison of vehicle speed under (a) UDDS and (b) HWFET.
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Figure 4.7: Comparison of vehicle tractive effort under (a) UDDS and (b) HWFET.
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statistics with a time step of 0.1 seconds. Since the energy is perfectly balanced under

both drive cycles, the simulation model is deemed credible.

Table 4.2: Energy balance analysis under (a) UDDS and (b) HWFET.

Energy Balance UDDS HWFET

Energy loss MG1 loss (kJ) 344.01 438.54

MG2 loss (kJ) 1276.41 632.84

Auxiliary loss (kJ) 616.10 344.30

Friction brake loss (kJ) 0.00 0.00

Road load loss (kJ) 2041.12 4878.13

Primary transmission loss (kJ) 0.00 0.00

Battery loss (kJ) 813.26 283.42

Inertial loss (kJ) 12.35 4.41

Total energy loss (kJ) 5103.24 6581.65

Engine statistics Total fuel consumption (g) 348.55 410.26

Total mechanical energy (kJ) 5103.09 6583.59

Battery statistics SOC at the start (%) 40.00 40.00

SOC at the end (%) 40.00 40.04

Total electrical energy (kJ) 0.15 -1.94

Unbalanced energy 0.00 0.00

4.2 Optimal Control Problem

The objectives of the vehicle control strategy in this chapter are identified as follows:

(1) Providing driver’s power demand.

(2) Maintaining battery SOC at desired level.
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(3) Minimizing total fuel consumption and thus CO2 emissions.

Based on the drive cycle information, the total driver’s power demand can be calcu-

lated backward to trace the power sources. Since there are two power sources, i.e.,

engine and battery, optimally distributing the power between the two with minimal

fuel consumption is the key problem of the energy management strategy. Therefore,

the optimal control problem is defined to minimize the total fuel consumption over a

certain drive cycle from starting time t0 to ending time tf , which can be formulated

as:

u∗ = arg min
u

{∫ tf

t0

ṁfuel(x, u)dt

}
(4.2.1)

where ṁfuel denotes the fuel mass flow rate. In this problem, battery SOC is chosen

as the state variable x. Since there are two DOF in the hybrid electric mode, engine

torque and rotational speed are chosen as the two control variables u1 and u2, as

shown in Eq. (4.2.2).


x(t) = SOC(t)

u1(t) = TICE(t)

u2(t) = ωICE(t)

(4.2.2)

HEVs require a charge sustaining (CS) operation where battery SOC at the end

of a drive cycle is approximately the same as it is at the beginning. Besides, the

powertrain components should also be restrained within their physical limits. Thus,
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the optimal control problem is subject to the following constraints, where the max

and min indexes denote the upper and lower limits.



SOCmin ≤ SOC(t) ≤ SOCmax

SOC(tf ) ≈ SOC(t0)

Pbatt,min ≤ Pbatt(t) ≤ Pbatt,max

Ibatt,min ≤ Ibatt(t) ≤ Ibatt,max

TICE,min ≤ TICE(t) ≤ TICE,max

ωICE,min ≤ ωICE(t) ≤ ωICE,max

TMG1,min ≤ TMG1(t) ≤ TMG1,max

ωMG1,min ≤ ωMG1(t) ≤ ωMG1,max

TMG2,min ≤ TMG2(t) ≤ TMG2,max

ωMG2,min ≤ ωMG2(t) ≤ ωMG2,max

(4.2.3)

4.3 Implementation of Equivalent Consumption Min-

imization Strategy

4.3.1 Baseline ECMS

In HEVs with CS operation, all the consumed energy essentially comes from the engine

through fuel combustion. However, during the trip, the battery is either discharged

to alleviate engine loads with fuel savings or charged by the engine causing extra fuel
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use. To quantify these additional fuel savings or consumption, an equivalence factor

(EF) reflects the battery electrical energy as an equivalent amount of fuel. In such a

way, the instantaneous equivalent fuel consumption can be minimized at each instant,

thus enabling the real-time optimization [199].

EF serves as a critical tuning parameter that supervises the CS condition and the

optimal solution in ECMS. For each drive cycle, an optimal EF exists and is usually

found through a trial-and-error approach [200]. The EF tuning process is illustrated

in Fig. 4.8.
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Figure 4.8: Illustration of EF tuning.

The upper and lower limits of the SOC variation are fixed for a certain vehicle model

and drive cycle. If the battery SOC is higher than the reference value, it indicates a

larger penalty has been attributed to the electrical energy consumption. Therefore,

a smaller EF would make battery discharging more likely. Contrarily, a lower SOC

indicates the overuse of the battery energy, and a larger EF would suppress too
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much battery discharging. Moreover, as can be seen from Fig. 4.8, SOC variation is

extremely sensitive when approaching the optimal EF.

With the objectives of fuel minimization, the cost function of ECMS can be formulated

as:

J = ṁfuel(x(t), u(t)) · LHVfuel + λ · Pbatt(x(t), u(t)) (4.3.1)

where LHVfuel denotes the lower heating value of the fuel, and λ denotes the EF.

However, such a cost function has no sufficient controls over powertrain mode shifts or

engine activation/deactivation events, which may cause infeasible solutions for pow-

ertrain operation when such events are excessively frequent. Accordingly, a penalty

term is added in the cost function to ensure the vehicle drivability, as shown in Eq.

(4.3.2). Γ denotes a large weighting factor, and the infeasible mode shifts are defined

as engine activation/deactivation events that last less than 10 seconds.

J = ṁfuel(x(t), u(t)) · LHVfuel + λ · Pbatt(x(t), u(t)) + Γ · {infeasible mode shifts}

(4.3.2)
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4.3.2 Dynamic ECMS Considering Powertrain Inertial Dy-

namics

In the baseline ECMS without considering rotational inertial dynamics of powertrain

components, the desired torque for MG1 and MG2 can be expressed as:

TMG1,des = −
1

1 + β1
TICE (4.3.3)

TMG2,des = −
1

β2

β1

1 + β1
TICE −

1

β2
TOUT (4.3.4)

While in dynamic ECMS considering the rotational inertia, the desired torque for

MG1 and MG2 can be derived from Eq. (4.1.7) as:

TMG1,des = −
1

1 + β1
TICE +

 1

1 + β1
JICE + (1 + β1)JMG1

 θ̈ICE − JMG1β1θ̈OUT

(4.3.5)

TMG2,des = −
1

β2

β1

1 + β1
TICE−

1

β2
TOUT+

1

β2

β1

1 + β1
JICE θ̈ICE+

 1

β2
JOUT + β2JMG2

 θ̈OUT

(4.3.6)
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The additional battery power demand due to the inertial dynamics can be obtained

from Eq. (4.3.3)-(4.3.6) as follows:

∆PMG1,mech =


 1

1 + β1
JICE + (1 + β1)JMG1

 θ̈ICE − JMG1β1θ̈OUT

 θ̇MG1 (4.3.7)

∆PMG2,mech =

 1

β2

β1

1 + β1
JICE θ̈ICE +

 1

β2
JOUT + β2JMG2

 θ̈OUT

 θ̇MG2 (4.3.8)

∆PMG1,elec =


∆PMG1,mech/ηMG1, PMG1,mech ≥ 0

∆PMG1,mechηMG1, PMG1,mech < 0

(4.3.9)

∆PMG2,elec =


∆PMG2,mech/ηMG2, PMG2,mech ≥ 0

∆PMG2,mechηMG2, PMG2,mech < 0

(4.3.10)

∆Pbatt = ∆PMG1,elec + ∆PMG2,elec (4.3.11)

Comparing Eq. (4.3.2) and (4.3.11), it is obvious that the cost function under evalua-

tion at each time step would be different if taking the rotational inertia into account.

From the energy conservation perspective, the inertial loss will result in an increase
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in fuel consumption, thus affecting the control strategy performance.

Compared to the baseline ECMS without inertial impacts, the dynamic ECMS con-

sidering rotational inertia will provide a more accurate prediction of fuel economy

and thus yield a more convincing and effective optimal solution for real-world driving

tasks.

4.4 Results and Discussions

In this section, a simulation model integrating the vehicle plant model explained in

Section 4.1 and the dynamic ECMS introduced in Section 4.3.2 is constructed in

MATLAB® and Simulink® to test the performance of the proposed control strategy.

The entire HEV model is built based on a forward-looking approach. To better

evaluate the performance, a comparative study is performed between the proposed

dynamic ECMS and the baseline ECMS. Simulation is conducted on both UDDS and

HWFET with a time step of 0.1 seconds.

4.4.1 Battery SOC and Mode Shifts

Fig. 4.9 compares the battery SOC and mode shift profiles of the two strategies. An

initial battery SOC of 40% is defined based on several considerations including the

battery safety limits, the vehicle characteristics, and the drive cycles under evaluation.

The vehicle is controlled to comply with a CS criterion where only ±0.1% deviation

is allowed for the terminal SOC.
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Figure 4.9: Comparison of battery SOC and mode shift profiles under (a) UDDS
and (b) HWFET.
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Simulation results present a largest SOC deviation of 0.048%, so the CS operation

is considered satisfied. Although the two strategies present different SOC trajecto-

ries, they are both capable of maintaining SOC within the battery operating range.

As reflected in the figures, the SOC trajectory of the dynamic ECMS is more dra-

matic than the baseline ECMS due to the additional instantaneous inertial power.

This behavior indicates the complexity of battery SOC scheduling in practical vehicle

control, where powertrain inertial dynamics cannot be neglected, and the upper and

lower SOC limits must be carefully defined to protect the battery.

Owing to the penalty imposed for mode transitions, there are no excessive mode shifts

in both ECMS. Comparing the two strategies, mode shifts are more significantly re-

duced by the dynamic ECMS on both drive cycles. This is because, when the engine

tends to make a mode shift, the resulting inertial dynamics will cause a higher in-

stantaneous cost, as given in Eq. (4.3.2), which makes the vehicle reluctant to change

modes and thus suppressing the mode shifts. Such effects are equivalent to adding

a mode shift penalty term in the cost function, which benefits the vehicle drivability

and riding comfort. Compared to UDDS, HWFET is more power-demanding, so the

vehicle mostly runs in hybrid electric mode with the engine on to deliver the power

continuously.

4.4.2 Powertrain Dynamics

Engine, MG2, and MG1 operating profiles reflect the vehicle dynamic response to

a certain driving task. To better emulate real-world engine operations and ensure

vehicle drivability, a constraint of a maximum rotational acceleration of 120 rad/s2
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and deceleration of 600 rad/s2 is imposed on the engine in the dynamic ECMS.

Fig. 4.10 compares the engine speed profiles between the two ECMS. Since the base-

line ECMS is constructed on a steady-state HEV model, the engine will immediately

reach the target speed without delay. In the dynamic ECMS, however, engine acti-

vation/deactivation events are followed by speed climbing/dropping with constrained

acceleration/deceleration. It can be observed that engine speed in the dynamic ECMS

is much steadier than the baseline ECMS. At some moments, the engine prefers to

idle rather than shut down to zero speed and then rev up again when required. This

is because, with the underlying penalty for inertial dynamics, the engine is unlikely

to frequently and dramatically vary its speed.

Fig. 4.11 and 4.12 illustrate the torque profiles of the engine, MG2, and MG1 under

both drive cycles. Comparing Eq. (4.3.3)-(4.3.4) with Eq. (4.3.5)-(4.3.6), additional

torque is required from MG2 and MG1 in the dynamic ECMS to coordinate the

powertrain when there is a change in engine and vehicle speed. For instance, when

engine is activated, MG1 directly exhibits negative torque reversely proportional to

the engine torque output in the baseline ECMS, given by Eq. (4.3.3). However, in the

dynamic ECMS, MG1 will first deliver positive torque to assist in engine accelerating

then apply negative reaction torque when engine reaches steady state, as implied in

Eq. (4.3.5).

It can also be observed that the engine torque varies in a steadier manner with fewer

fluctuations in the dynamic ECMS, while MG2 presents a wider torque swing due to

the additional torque caused by inertial dynamics.
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Figure 4.10: Comparison of engine speed in (a) UDDS and (b) HWFET.
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Figure 4.11: Torque profiles of engine, MG2, and MG1 in (a) baseline ECMS and
(b) dynamic ECMS under UDDS.
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Figure 4.12: Torque profiles of engine, MG2, and MG1 in (a) baseline ECMS and
(b) dynamic ECMS under HWFET.
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4.4.3 Engine Operation

Fig. 4.13 and 4.14 present the engine operation performance of the two control

strategies. For both ECMS, engine operating points are constrained by the peak

torque curve and appear to stay within feasible limits all the time.

Generally, each engine has a peak efficiency line, also known as the optimal operation

line (OOL), that depicts a series of torque values corresponding to each speed where

the engine efficiency presents a maximum. Mostly, the engine is designed to operate

along this line whenever possible. However, as reflected in the figures, the actual

operating points may deviate from this line since engine operation in HEVs is also

restrained by other powertrain components.

Comparing the two ECMS, the dynamic ECMS exhibits a narrower engine operating

range, which can also be observed in Fig. 4.10. This is favorable in engine control

since it causes fewer transients and losses. However, a drawback is that the engine

operating points locate further from the most efficient region, which will inevitably

deteriorate the overall fuel economy. Besides, the engine tends to operate at lower

speed points since climbing to higher speeds will lead to undesired dynamics.

Table 4.3 demonstrates the engine operation statistics of the two ECMS. It can be

observed that engine activations are effectively mitigated in the dynamic ECMS due

to the effects of additional inertial penalty. However, the engine tends to stay on

for longer since the additional inertial dynamics require the engine to provide more

power. Compared to the baseline ECMS, the dynamic ECMS reduces the number

of engine activations by 58.14% in UDDS and 95.24% in HWFET while extends the
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Figure 4.13: Engine operation in (a) baseline ECMS and (b) dynamic ECMS under
UDDS.
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Figure 4.14: Engine operation in (a) baseline ECMS and (b) dynamic ECMS under
HWFET.
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engine operation time by 92.57% in UDDS and 61.51% in HWFET.

Table 4.3: Engine operation statistics of the dynamic ECMS vs. baseline ECMS.

Drive cycle ECMS Engine on/offs Engine-on time

UDDS Dynamic 18 71.25%

Baseline 43 37.00%

HWFET Dynamic 1 98.65%

Baseline 21 61.08%

4.4.4 Fuel Consumption

For a fairer comparison of fuel consumption between the two ECMS, powertrain iner-

tial dynamics are penalized in the plant model for the baseline ECMS. The resulting

extra battery electrical power is added as an equivalent amount of fuel to the base fuel

consumption. Fig. 4.15 illustrates the total fuel consumption given by the baseline

ECMS under both drive cycles, where the area colored blue denotes the penalized

fuel consumption.

Fig. 4.16 demonstrates the fuel consumption statistics of both the baseline and dy-

namic ECMS. As shown in the figure, the dynamic ECMS presents higher fuel con-

sumption than the baseline ECMS, around 13.34% and 4.50% increase on UDDS and

HWFET, respectively. According to previous analyses, one reason is that the inertial

loss and other losses caused by inertia dynamics, such as the battery losses, essen-

tially require more fuel. Another reason is that engine operating points are shifted to

less-efficient regions. Due to the additional inertial dynamics, powertrain operations

are affected. Powertrain components, which are constrained by their physical limits,
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Figure 4.15: Cumulative fuel consumption in baseline ECMS under UDDS and
HWFET.
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have to compromise some fuel efficiency for feasible operating solutions.
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Figure 4.16: Comparison of fuel consumption between dynamic and baseline ECMS
under UDDS and HWFET.

Actually, the higher fuel consumption is fully expected and only because the control-

oriented model for developing the dynamic ECMS is closer to reality by incorporat-

ing powertrain inertial dynamics. Therefore, if the dynamic ECMS is considered the

benchmark, the baseline ECMS is actually overestimating the fuel economy. When

adopting the baseline ECMS as the tool to evaluate new hybrid powertrain archi-

tecture, the prediction of fuel economy would be inaccurate. On the contrary, the

dynamic ECMS considering powertrain inertial dynamics will provide a more accu-

rate prediction of fuel economy and thus yield a more convincing and effective optimal

solution for real-world driving tasks.
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Another advantage of the dynamic ECMS is that the vehicle drivability can be im-

proved. In real-world driving tasks, vehicles are always running with dynamics. Ap-

plying baseline ECMS which is built based on steady-state HEV models will cause a

mismatch between the desired and actual vehicle speed and thus damage the vehicle

drivability. Fig. 4.17 illustrates the vehicle speed trajectory of using the baseline

ECMS on an inertia-based dynamic vehicle model. It can be observed that the ve-

hicle failed to follow the desired speed at several locations. On the contrary, since

vehicle drivability participates in the decision-making of the control solutions in the

dynamic ECMS, a better vehicle control which ensures the vehicle drivability can be

achieved. Therefore, even though some fuel economy is compromised in the dynamic

ECMS, it improves the vehicle drivability and provides more accurate predictions on

fuel economy, presenting improvement in practicality for real-world driving tasks and

fuel economy assessment.

Figure 4.17: Vehicle speed trajectory of using baseline ECMS on an inertia-based
dynamic HEV model.
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4.5 Summary

This chapter aims to improve the practicality of HEV EMS by incorporating power-

train inertial dynamics. First, an inertial-based dynamic vehicle model of a power-

split HEV is built systematically. The HEV model is numerically verified through

an energy balance analysis and experimentally validated through comparison with

disclosed testing results. Results indicate sufficient accuracy for the current research

purpose. Then, a real-time ECMS incorporating powertrain inertial dynamics is for-

mulated and compared with a baseline steady-state ECMS.

Simulation results indicate that the dynamic ECMS leads to a more dramatic varia-

tion in battery SOC but contributes to drivability improvement by reducing driving

mode shifts. Additionally, the dynamic ECMS is more beneficial for engine control by

enabling a steadier engine operating pattern and a narrower operating range. Com-

pared to the baseline ECMS, the dynamic ECMS improves the vehicle drivability and

provides a more accurate prediction of fuel economy. Therefore, as an improvement

of the baseline ECMS, the dynamic ECMS offers a more practical optimal solution

for HEV control.

With the proposed dynamic ECMS, novel hybrid powertrain configurations can be

evaluated more realistically and critically. Another contribution of this work lies in the

extension capability of the proposed methodology to other optimal control strategies,

such as DP, and the developed tool to other electrified powertrain configurations,

such as PHEVs.
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As emphasized in Chapter 4, EF is an important parameter that has substantial

impacts on vehicle CS performance and fuel economy since it directly controls the

power distribution between the engine and battery in ECMS based control strategies

[201]. In basic non-adaptive ECMS, the EF is constant throughout each drive cycle

but varies from one drive cycle to another. As can be seen in Fig. 5.1, a certain EF

that achieves CS in WLTP cannot maintain battery SOC in either UDDS or HWFET.

Therefore, for different driving tasks, the EF must be designed specifically. Moreover,

a fine tuning of the EF to achieve CS requires a prior knowledge of the entire drive

cycle and is usually done off-line through trial and error, making it difficult to use

basic non-adaptive ECMS in real-time [202]. As a result, ECMS with the capability

of adaptation and real-time EF tuning is introduced, referred to as A-ECMS.
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Figure 5.1: Responses of three different drive cycles to a certain EF.

Based on different adaptation methods, the existing A-ECMS can be categorized into

rule-based A-ECMS [203], PID-based A-ECMS [204], and predictive A-ECMS [200].
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Rule-based A-ECMS determines the EF through searching maps that are constructed

off-line for certain drive cycles. Therefore, it is suitable for HEVs with daily routine,

such as city buses. PID-based A-ECMS uses PID control to regulate battery SOC

but it theoretically guarantees no optimality. Predictive A-ECMS is A-ECMS with

prediction capabilities. It updates the EF periodically through predicting the future

driving conditions and has become one of the most promising control strategies in

real-time HEV energy management [205].

In this context, this chapter proposes a predictive A-ECMS for a multi-mode hybrid

powertrain architecture. First, a control-oriented HEV model is constructed with

primary powertrain component modeling. Second, the optimal control problem of

HEV energy management is described, and the formulation of the proposed A-ECMS

is explained thoroughly. Then, a basic non-adaptive ECMS is also implemented, and

simulation results of the two ECMS are compared and discussed in detail.

5.1 Hybrid Powertrain System and Modeling

This section introduces a multi-mode HEV. A schematic of the powertrain archi-

tecture and main components is shown in Fig. 5.2. Details regarding the vehicle

specifications, operation modes, and modeling approaches are described below.
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Figure 5.2: Schematic of a multi-mode hybrid powertrain architecture and main
components.

109



Ph.D. Thesis – Yue Wang McMaster University – ME

5.1.1 Hybrid Powertrain Architecture

The studied hybrid powertrain system incorporates an engine, two electric motors,

and a high-voltage battery. Both electric motors (EMA and EMB) can provide trac-

tion power and work as generators thanks to the presence of a one-way clutch (OWC).

A planetary gear is equipped to coordinate powertrain components so that engine

torque and speed can be varied for fuel-efficiency optimization. Specifications of the

studied HEV are given in Table 5.1.

The hybrid powertrain system has three operation modes, including one hybrid elec-

tric mode and two all-electric modes: single-motor EV mode and dual-motor EV

mode. In the hybrid electric mode, both the engine and EMB deliver traction torque

to wheels, while EMA reacts on the transaxle without any torque output. Since there

are two DOF in the transmission kinematics, engine torque and speed can be con-

trolled to optimize fuel efficiency. In all-electric modes, EMB is the primary traction

motor, and EMA can share part of the power demand through the ring gear of the PG

if the OWC is engaged. When the OWC is disengaged, only EMB delivers tractive

power. In addition, both EMB and EMA can work as generators, specifically, when

EMB charges the battery during regenerative braking, and the engine charges the

battery through EMA.
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Table 5.1: Vehicle specifications of the multi-mode HEV.

Component Parameter Value

Vehicle

Equivalent mass 2260 kg

Wheel radius 0.345 m

Road coefficient µ1 145.2261 N

Road coefficient µ2 3.3872 N/(m/s)

Road coefficient µ3 0.4831 N/(m/s)2

Transmission

PG ratio β1 (Ring/Sun) 68/22

EMB speed reducer ratio β2 78/30

Final drive ratio 3.52

Engine

Displacement 3.0 L

Maximum power 154 kW

Maximum torque 302 Nm

Maximum speed 6500 rpm

EMB

Maximum power 80 kW

Maximum torque 300 Nm

Maximum speed 13000 rpm

EMA

Maximum power 60 kW

Maximum torque 120 Nm

Maximum speed 13000 rpm

Battery
Capacity 48 Ah

Nominal voltage 388 V
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5.1.2 Control-Oriented Vehicle Model

Engine

Since the control strategy in this chapter aims at fuel optimization, only fuel con-

sumption is concerned in engine modeling. Therefore, the engine is modeled by a

2-D quasi-static fuel flow rate map. The actual outputs of engine speed and torque

are constrained by its upper and lower physical limits, as given in Eq. (5.1.1), where

ωICE and TICE are engine rotational speed and torque, respectively.


ωICE,min ≤ ωICE ≤ ωICE,max

TICE,min ≤ TICE ≤ TICE,max

(5.1.1)

Motor

Both electric motors are modeled by combined efficiency maps, with the torque output

bounded by their upper and lower limits, as expressed in Eq. (5.1.2) and (5.1.3), where

Pelec,m, Tm, ωm, and ηm denote motor power, torque, rotational speed, and efficiency,

respectively.

Pelec,m =


Tmωm/ηm(Tm, ωm), Tm ≥ 0

Tmωmηm(Tm, ωm), Tm < 0

(5.1.2)

Tm,min(ωm) ≤ Tm ≤ Tm,max(ωm) (5.1.3)
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Battery

The battery is modeled as a pack using the equivalent circuit model approach, where

the current is obtained from Ohm’s law, as shown in Eq. (5.1.4):

Ibatt(t) =
Voc(SOC)−

√
Voc(SOC)2 − 4R(SOC)Pbatt

2R(SOC)
(5.1.4)

where Voc and R are battery open circuit voltage and internal resistance, respectively,

which are both dependent on battery SOC. Pbatt is the battery power. Battery SOC

can be then calculated using current, as given in Eq. (5.1.5), where Qbatt and η are

battery capacity and coulombic efficiency, respectively.

SOC(t) = SOC(t0)−
η

Qbatt

∫ t

t0

Ibatt(t)dt (5.1.5)

Planetary Gear System

The gear ratio between the counter-drive gear and the counter-driven gear is assumed

to be 1:1. Based on the kinematic relations of the planetary gear system, the rota-

tional speed of the engine and motors can be represented as follows:

ωEMA = (1 + β1) · ωICE − β1 · ωout

ωEMB = β2 · ωout
(5.1.6)
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where ωEMA, ωEMB, ωICE, and ωout are the rotational speed of EMA, EMB, engine,

and transmission output shaft, respectively. Since ωout can be known from the vehicle

speed, there is one DOF in Eq. (5.1.6) when ωICE is non-zero in hybrid electric mode

and zero DOF when ωICE is zero in all-electric modes.

The torque relations of the powertrain components in dual-motor EV mode are given

in Eq. (5.1.7), where TEMA, TEMB, and Tout are the torque of EMA, EMB, and

transmission output shaft, respectively. Since Tout can be known from the vehicle

speed and driver’s power demand, there is one DOF.

−β1 · TEMA + β1 · TEMB = Tout (5.1.7)

For HEV mode and the single-motor EV mode, there is another constraint given by

Eq. (5.1.8). In HEV mode where the engine torque TICE is non-zero, combining Eq.

(5.1.7) and (5.1.8) gives a total of one DOF. However, since engine torque TICE is

zero in EV operation, there is zero DOF in the single-motor EV mode.

−(1 + β1) · TEMA = TICE (5.1.8)

Combining Eq. (5.1.6)-(5.1.8), in total there are two DOF in HEV mode, one DOF

in dual-motor EV mode, and zero DOF in single-motor EV mode.
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Vehicle Longitudinal Dynamics

Instantaneous vehicle speed can be derived from longitudinal vehicle dynamics, as

given in Eq. (5.1.9):

vveh =
1

mequiv

∫  Twh

Rwh

− µ1 − µ2vveh − µ3v
2
veh

 dt (5.1.9)

where mequiv is the equivalent mass of the vehicle with inertia, Twh is the torque at

the wheels, Rwh is the wheel radius, and µ1, µ2, and µ3 are the road load coefficients.

5.2 Optimal Control Problem

Section 5.1 describes the control-oriented HEV model, and the formulation of the

HEV optimal control problem is given in this section. Since fuel consumption is

taken as the only optimization target, the optimal control problem is formulated as:

u∗ = arg min
u

{∫ tf

t0

ṁfuel(x, u)dt

}
(5.2.1)

where ṁfuel denotes the fuel mass flow rate. Battery SOC is chosen as the state

variable x. Since there are two DOF in HEV operation, engine torque TICE and

speed ωICE are chosen as the two control variables u1 and u2. Since there is one

DOF in dual-motor EV operation, EMB torque TEMB is chosen as the only control
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variable. The state and control variables are listed in Eq. (5.2.2).

x(t) = SOC(t)
u1(t) = TICE(t)

u2(t) = ωICE(t)

, for HEV mode

u(t) = TEMB(t), for dual−motor EV mode

(5.2.2)

The optimal control problem is subject to the following constraints to ensure the main

powertrain components remain within their operating limits:



SOCmin ≤ SOC(t) ≤ SOCmax

SOC(tf ) ≈ SOC(t0)

Pbatt,min ≤ Pbatt(t) ≤ Pbatt,max

Ibatt,min ≤ Ibatt(t) ≤ Ibatt,max

TICE,min ≤ TICE(t) ≤ TICE,max

ωICE,min ≤ ωICE(t) ≤ ωICE,max

TEMA,min ≤ TEMA(t) ≤ TEMA,max

ωEMA,min ≤ ωEMA(t) ≤ ωEMA,max

TEMB,min ≤ TEMB(t) ≤ TEMB,max

ωEMB,min ≤ ωEMB(t) ≤ ωEMB,max

(5.2.3)

To suppress frequent mode shifts, mode shift penalties are implemented in the cost

function to improve drivability and riding comfort. The overall cost function is given
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as follows:

J = ṁfuel(x(t), u(t)) · LHVfuel + λ · Pbatt(x(t), u(t)) + αEV HEV + αHEV EV (5.2.4)

where αEV HEV and αHEV EV represent the penalty cost from EV to HEV mode and

HEV to EV mode, respectively. LHVfuel denotes the lower heating value of the fuel.

5.3 Adaptive Equivalent Consumption Minimiza-

tion Strategy

In the proposed A-ECMS, the EF is calculated in real-time. Instead of requiring the

entire drive cycle information, only a short period ahead in the future time domain is

required. Therefore, a particular drive cycle can be considered a series of consecutive

shorter drive cycles segmented based on the availability of future driving conditions.

Then, an optimal EF is predicted at the beginning of each drive cycle segment and up-

dated with the drive cycle segment until the end of the trip. To sum up, the proposed

A-ECMS takes advantage of a prior knowledge of the future driving conditions and

uses a series of “local” optimal/suboptimal EF to approach the “global” optimality.
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5.3.1 Searching Bounds of the EF

In HEVs, the engine is controlled on and off along the drive cycle. The vehicle power

demand is provided by the engine and battery together following the optimal power

split strategy, which is reflected as the EF in ECMS, as shown in Eq. (5.3.1). A

higher EF will lead to a higher battery SOC since it indicates battery power is more

expensive than fuel use, and therefore more engine operation is encouraged.

However, an upper bound of the EF exists beyond which battery SOC will no longer

increase. When the EF reaches this threshold, the vehicle will run with the engine

on all the time as long as the required engine operation, which is constrained by

powertrain coordination, is within its physical limits. The engine will be asked to

provide the vehicle power demand alone as much as possible since battery power is

too expensive. In such a driving scenario, the cost of battery power is higher than

the cost of engine power, giving Eq. (5.3.2). For a given vehicle power demand

Pdemand, Eq. (5.3.2) can be rewritten as Eq. (5.3.3) by incorporating powertrain

component efficiency. The upper bound of the EF can be therefore obtained, as given

in Eq. (5.3.4), where ηbatt, ηmot, and ηICE are battery, motor, and engine efficiency,

respectively.

PICE + λ · Pbatt = Pdemand (5.3.1)

λ · Pbatt > PICE (5.3.2)
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λ ·
Pdemand

ηbatt · ηmot
>
Pdemand

ηICE
(5.3.3)

λ >
ηbatt · ηmot
ηICE

(5.3.4)

The situation is different when defining the lower bound of the EF. In conventional

ECMS, the EF is designed on a full drive cycle mixed with acceleration, deceleration,

cruising, start/stop, etc., where the net vehicle power demand is positive. For such

drive cycles, it is possible to find an EF to achieve CS by strategically splitting the

vehicle power demand between the engine and the battery.

However, in A-ECMS, SOC balancing is enforced on each short drive cycle segment.

There might be some driving segments where the vehicle is mostly braking or de-

celerating, presenting negative net power demand. For these driving segments, it is

impossible to achieve strict CS since the terminal SOC will inevitably increase even

if the engine is always off during. Nonetheless, engine activation should be highly

discouraged to avoid redundant battery charging. On this account, an infinitesimal

number is adopted as the lower bound of the EF to discourage engine activation as

much as possible for these occasions.

5.3.2 Biesection Method for EF Searching

In the proposed A-ECMS, the optimal EF for each drive cycle segment is determined

by enforcing battery SOC back to its reference value as much as possible, as given in
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Eq. (5.3.5), where ε represents a small tolerance.

|SOCend of cycle segment − SOCreference| ≤ ε (5.3.5)

To find the optimal EF that meets Eq. (5.3.5), the bisection method [206], which

is a common root-finding method based on Bolzano’s theorem, is adopted. Fig. 5.3

illustrates the workflow of the bisection algorithm.

Step 1. The input of the algorithm f(x) is defined as the deviation of the battery

SOC at the end of each drive cycle segment SOCend of cycle segment from the reference

value SOCreference, i.e., f(x) = SOCend of cycle segment − SOCreference. The endpoints

a and b stand for the lower and upper bound of the EF, which are 4 and 1e-7,

respectively. The tolerance tol, also denoted as the ε in Eq. (5.3.5), is set to 1e-3. A

maximum number of iterations imax is imposed on the algorithm to save computing

resources, which is set as 20.

Step 2. In the first iteration, calculate the midpoint c, its value f(c), as well as the

values of the endpoints f(a) and f(b). If |f(c)| > tol, check the sign of f(c). If f(c)

presents the same sign as f(a), replace a with c and keep b unchanged. Otherwise,

replace b with c and keep a unchanged. If |f(c)| ≤ tol, c is the root that satisfies Eq.

(5.3.5).

Step 3. Repeat Step 2 until the root c is found or the maximum number of iterations

is exceeded.
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Figure 5.3: Flowchart of the bisection method.
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5.3.3 A-ECMS

As discussed at the beginning of this section, A-ECMS requires the current and

upcoming driving conditions to define the instantaneous power requirement so that

the optimal EF prediction for the upcoming drive cycle segment can be found. This

information can be obtained from modern road recognition techniques such as the

Global Positioning System (GPS) [200], geographic information system (GIS) [207],

support vector machine (SVM) [208], etc.

With the knowledge of the upcoming driving conditions, the optimal EF is searched

at the beginning of each drive cycle segment using the bisection method and then

implemented for real-time power distributing as a basic ECMS. The EF updating

repeats periodically until the end of the entire drive cycle. Since battery operation

is constrained by SOC safety range and charge sustainability, instantaneous battery

SOC feedback is also required to determine the EF in real-time. The overall system

diagram of the A-ECMS is depicted in Fig. 5.4.

5.4 Results and Discussions

To test the control performance of the proposed A-ECMS, simulation is conducted

in MATLAB® and Simulink® under three drive cycles, i.e., UDDS, HWFET, and

WLTP, with a time step of 0.1 seconds. The initial battery SOC is assumed to be

40%, and the prediction horizon of future driving conditions is set to 60 seconds.

Simulation statistics are reported in Fig. 5.5. To better prove the effectiveness of
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Driving condition prediction

GPS + GIS + SVM

A-ECMS

EF search for next period 

using bisection method
Instantaneous power

requirement

Update EF periodically

Basic ECMS

Real-time power distribution

Powertrain

SOC feedback

Figure 5.4: System diagram of A-ECMS for the multi-mode HEV.
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the proposed A-ECMS, a basic non-adaptive ECMS is implemented on the same

simulation platform under the same drive cycles for a fair comparison. Simulation

results are discussed in detail as follows.
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Figure 5.5: Simulation statistics of the hybrid electric powertrain with A-ECMS.

5.4.1 Battery SOC

Fig. 5.6 compares the battery SOC trajectories of the two ECMS. It can be ob-

served that, for the proposed A-ECMS, battery SOC starts from 40% and ends up

at approximately 40% with 0.289%, 0.9918%, and 0.1158% deviation under UDDS,

HWFET, and WLTP, respectively. Therefore, it is reasonable to consider the pro-

posed A-ECMS is capable of maintaining battery SOC and achieving CS operation.

The small deviation is due to the shorter prediction horizon of the A-ECMS compared

to the basic non-adaptive ECMS. Although the A-ECMS aims to enforce the ending
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Figure 5.6: Comparison of battery SOC trajectories under three drive cycles.
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SOC of each updating period back to its initial or reference value, it is impossible for

some updating periods where the vehicle decelerates or stops most of the time. Since

regenerative braking events dominate in these periods, the net vehicle power demand

is negative, and thus the battery will be charged to a higher SOC inevitably. This

is especially true for the last updating period of the drive cycle, where the vehicle

mainly decelerates. However, as the updating period extends, the deviation can be

mitigated.

In addition, compared to the basic non-adaptive ECMS, the A-ECMS shows a nar-

rower SOC window since the SOC constraints are imposed on a shorter period, allow-

ing fewer opportunities for deep charging or discharging. Although this might slightly

sacrifice the global optimality, it is beneficial for battery longevity since excess deple-

tion is prevented.

Different from the basic non-adaptive ECMS with a constant EF throughout the drive

cycle, the proposed A-ECMS maintains battery SOC through the real-time update

of the EF. Fig. 5.7 depicts the EF updating profiles of the A-ECMS. It can be seen

that the EF stays within the defined searching bounds (1e-7 to 4) all the time and

is updated every 60 seconds. Results indicate that the EF will increase/decrease

accordingly to prevent battery SOC from constant drop/rise. When SOC tends to

drop, it enables a larger EF to discourage battery using, and a smaller EF will be

enabled to encourage battery using when SOC tends to rise.
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Figure 5.7: Comparison of EF trajectories under three drive cycles.
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5.4.2 Engine Operation

Fig. 5.8 illustrates the power split between the battery and engine enabled by the

A-ECMS. It can be observed that the battery provides the propelling power most of

the time. When activated, the engine will operate at the most efficient point selected

by the A-ECMS.

Figure 5.8: Power split between battery and engine in A-ECMS.

Fig. 5.9 and 5.10 compares the engine speed and torque profiles between the two

ECMS. Thanks to the mode shift penalty imposed on the control strategies, there

are no excessive mode shifts along the drive cycles for both ECMS. However, the

mode shifts in A-ECMS are a few more than the basic ECMS since SOC balancing
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is enforced on each short updating period rather than the entire long drive cycle. In

addition, the A-ECMS also enables a slight longer engine-on time under HWFET and

WLTP, as summarized in Table 5.2.

Figure 5.9: Comparison of engine speed under three drive cycles.

5.4.3 Fuel Consumption

As shown in Fig. 5.6, the terminal SOC is not exactly the same as the initial SOC

in both ECMS, albeit the differences are small. To make a fair comparison, the

change of electrical energy stored in the battery due to SOC difference should still be

accounted for to correct the total fuel consumption. Fig. 5.11 presents the total fuel
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Figure 5.10: Comparison of engine torque under three drive cycles.

Table 5.2: Engine operation statistics of the A-ECMS.

Drive cycle Control strategies Engine on/offs Engine-on time

UDDS A-ECMS 3 11.21%

Basic ECMS 2 11.21%

HWFET A-ECMS 6 43.78%

Basic ECMS 3 39.02%

WLTP A-ECMS 5 22.28%

Basic ECMS 3 20.11%
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consumption of the two ECMS after SOC correction. As can be seen from the figure,

the proposed A-ECMS shows slightly higher fuel consumption of 2.36%, 4.13%, and

1.09% on UDDS, HWFET, and WLTP, respectively.
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Figure 5.11: Comparison of fuel consumption under three drive cycles.

As mentioned earlier, the A-ECMS uses a series of “local” optimal/suboptimal EF

to approach the “global” optimality. However, the exact “global” optimality can

hardly be reached unless the prediction horizon is as long as the entire drive cycle.

Consequently, the A-ECMS with a shorter prediction horizon will inevitably increase

the overall fuel consumption as the control solutions are globally suboptimal.

Even though, the proposed A-ECMS reduces the dependency on the prior knowledge

of the drive cycle, eliminates the need for manual tuning of the EF, and presents an

online self-updating control scheme. With the help of road recognition techniques,

the “real” real-time application can be realized.
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5.5 Summary

This chapter aims to improve the real-time applicability of HEV EMS by proposing an

A-ECMS with online EF calculation and real-time power splitting. First, a control-

oriented model of a multi-mode HEV is presented, based on which the A-ECMS is

proposed. Formulation of the proposed A-ECMS is described in detail. Simulation

is then conducted on three drive cycles, and results are compared with a basic non-

adaptive ECMS.

The proposed A-ECMS proves its real-time performance by exhibiting great CS ca-

pabilities on all studied drive cycles, with only slight increases in fuel consumption

compared to the basic non-adaptive ECMS. Besides, the proposed A-ECMS enables

a narrower SOC window which benefits the battery longevity. Moreover, with a real-

time self-updating EF profile, dependency on the drive cycle information and manual

tuning of the EF is also reduced. Therefore, the proposed A-ECMS achieves great

improvement over the basic non-adaptive ECMS in real-time applicability.

The proposed A-ECMS can also be implemented on other powertrain architectures.

Future work can be done on exploring other improved methods for EF searching, such

as Brent’s method and the Aberth method, to improve the computational efficiency

of the A-ECMS.
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The predictive A-ECMS proposed in Chapter 5 presents the capability of online EF

tuning and real-time implementation. However, the success of EF tuning to achieve

CS for a driving task still more or less relies on the knowledge of future driving

conditions. Even though the proposed A-ECMS achieves improvements in real-time

performance compared to the basic non-adaptive ECMS, there is still room for further

improvements.

The past few decades have witnessed the great rise of artificial intelligence and ma-

chine learning (ML) technologies, which have played indispensable roles in many fields

including transportation [209]. Among them, reinforcement learning (RL) is a popu-

lar ML paradigm to solve sequential decision-making problems and has thus attracted

significant research interest in real-time optimization tasks [56]. Deep reinforcement

learning (DRL), by combining the power of RL and DL, has shown promising po-

tentials in HEV energy management problems [210]. With the recent progress in

computer science, more and more research activities can be expected.

On this account, this chapter aims to investigate the DRL-based HEV energy man-

agement on a series HEV platform. First, the fundamentals of RL are reviewed,

including key concepts and algorithms. Then, a control-oriented HEV model is de-

scribed, based on which the optimal control problem is identified. Following that, a

DRL-based energy management strategy featuring the state-of-the-art A3C algorithm

is formulated and explained comprehensively. The training process and results are

provided in the following section.
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6.1 Fundamentals of Reinforcement Learning

6.1.1 Reinforcement Learning

RL is one of the three broad categories of ML techniques, together with supervised

learning and unsupervised learning. RL learns its experience from repeated inter-

actions with the environment where the agent observes the state and sends the

action. The environment, which can be described as a Markov Decision Process

(MDP), receives the action, changes to the next state, and tells the goodness of that

action in the form of a reward. Based on that reward, the agent updates its control

scheme and sends the action for the next state. This observation-action-reward cycle

continues until the end of learning. Therefore, RL learns the optimal control scheme

on a trial-and-error basis [211]. Fig. 6.1 depicts the agent-environment interactions

in RL.

Environment RL Agent

Figure 6.1: Illustration of agent-environment interactions in RL.

In many real-world decision-making tasks, the state space of the MDP is large. Solving

such problems with traditional RL algorithms is challenging. As a result, the DL

algorithm is incorporated, using neural networks to represent the policy, which is a

mapping from state to action [212]. Such a combination of RL and DL is called DRL.

DRL can solve various complex decision-making problems and has become the most
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trending machine learning technique [213].

6.1.2 Key Concepts in Reinforcement Learning

Return

In RL, there are generally two kinds of tasks, i.e., episodic tasks and continuing

tasks. In episodic tasks, the agent-environment interactions can be broken into

subsequences, known as episodes. Each episode ends in a terminal state, after which

a new episode starts independently of the previous episode by resetting to the initial

state. In contrast, continuing tasks run continually with neither terminal states nor

identifiable episodes.

Return is defined as the cumulative future rewards. However, the return would be

infinity in continuing tasks since the time goes to infinity. To this end, it is beneficial

to introduce a discount factor, γ ∈ [0, 1], which determines the present value of

future rewards. For instance, a reward received k steps ahead in the future rt+k is

equivalent to a discounted value of γk−1rt+k at present. γ = 0 leads to a short-sighted

agent which only focuses on the immediate reward. γ = 1 encourages the agent to

look infinitely far into the future, indicating that future rewards are equally important

as the immediate reward. Return R can be expressed as Eq. (6.1.1), where r denotes

the immediate reward, and t denotes the current time step.

Rt = rt+1 + γrt+2 + · · · =
∞∑

k=t+1

γk−t−1rk (6.1.1)
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Policy

Policy and value function are two important elements in RL algorithms. There are

mainly two types of policies, i.e., target policy and behavior policy. Target policy

or update policy is the policy that the agent tries to learn and improve, while behavior

policy is the policy that the agent uses to choose actions. Generally, behavior policy

is a mapping from states to actions, and more specifically, a probability distribution

over actions in a certain state, as shown in Eq. (6.1.2).

π(a|s) = Pπ {at = a|st = s} (6.1.2)

Depending on whether the target policy and the behavior policy are the same one, RL

algorithms can be divided into on-policy RL and off-policy RL. In on-policy RL,

the target policy and behavior policy are the same, so the agent attempts to improve

the same policy that is used for selecting actions [214]. Examples of on-policy algo-

rithms are Proximal Policy Optimization (PPO), Trust Region Policy Optimization

(TRPO), and asynchronous advantage actor-critic (A3C). In off-policy RL, by con-

trast, the target policy is different from the behavior policy. The agent uses the target

policy to learn and the behavior policy to behave [215]. The most famous represen-

tatives of off-policy RL include Q-learning and Deep Q-Network (DQN). Compared

to off-policy algorithms, on-policy algorithms are more beneficial for tasks where the

agent explores significantly.
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Value Function

As the RL agent aims to find the optimal policy that maximizes the expected return,

value functions are employed to evaluate the policy by a prediction of the return.

State value function V π(s) specifies the expected return in state s following policy

π, as shown in Eq. (6.1.3). It quantifies how advantageous it is to be in a particular

state.

V π(s) = Eπ {Rt|st = s} = Eπ

{
∞∑

k=t+1

γk−t−1rk|st = s

}
(6.1.3)

Action value function Qπ(s, a) specifies the expected return for taking action a in

state s according to policy π, as given in Eq. (6.1.4). The action value, also called Q

value, quantifies how rewarding an action is for a certain state. Therefore, the state-

value function V π(s) and the action value function Qπ(s, a) are correlated through

the policy π(a|s), as given in Eq. (6.1.5).

Qπ(s, a) = Eπ {Rt|st = s, at = a} = Eπ

{
∞∑

k=t+1

γk−t−1rk|st = s, at = a

}
(6.1.4)

V π(s) =
∑

Qπ(s, a)π(a|s) (6.1.5)
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6.1.3 Asynchronous Advantage Actor-Critic Algorithm

Actor-Critic Algorithm

The policy structure and algorithm are closely intertwined in RL. Based on different

policy structures, there are three main types of RL algorithms, i.e., policy function-

based algorithms, value function-based algorithms, and actor-critic algorithms [211].

Policy structures of these three algorithms are illustrated in Fig. 6.2.

In policy function-based algorithms, a neural network receives the state observa-

tions and gives the learning agent’s best actions for that state. The neural network,

called the actor, directly represents the optimal policy.

In value function-based algorithms, a neural network receives the state obser-

vations and one possible action in that state. The neural network, called the critic,

calculates the value of taking that action. The optimal policy is then defined by

checking all possible actions and choosing the one with the highest value.

However, both algorithms have downsides. Policy function-based algorithms may

converge slowly or on local optima rather than global optima. Value function-based

algorithms cannot deal with continuous action spaces since an exhaustive search in

infinite or large action spaces is impossible or computationally expensive. As a result,

combining the two algorithms by keeping the benefits and eliminating the drawbacks

gives the actor-critic (AC) method [216].

AC algorithms take advantage of two complementing models, i.e., an actor and a

critic. The actor chooses an action for the environment as in policy function-based
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Figure 6.2: Policy structures in (a) policy function-based algorithms; (b) value
function-based algorithms; (c) actor-critic algorithms.
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algorithms. The critic predicts the value of that action and calculates the error with

the reward received from the environment. The error is then used to update the critic

and actor so that the policy ascends toward the direction the critic suggests.

Advantage Actor-Critic Algorithm

Advantage function Aπ(s, a) specifies the difference between the action value func-

tion and the state value function, as shown in Eq. (6.1.6). The advantage value, also

called A value, describes how much better the reward is than its expectation.

Aπ(s, a) = Qπ(s, a)− V π(s) (6.1.6)

In advantage actor-critic (A2C) algorithm, the critic learns the advantage function (A

function) instead of the action value function (Q function). In such a way, the action

is evaluated based on not only how good the action is but also how better the action

is. As indicated in Eq. (6.1.6), advantage function A(s, a) can be calculated from Q

value function Q(s, a) and state value function V (s). However, the Q value function

is difficult to be directly calculated, and therefore an n-step estimate is formulated, as

shown in Eq. (6.1.7). The advantage function can be then estimated by Eq. (6.1.8).

Q(s, a) =
n−1∑
i=0

γirt+i + γnV (st+n) (6.1.7)
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A(s, a) =
n−1∑
i=0

γirt+i + γnV (st+n)− V (st) (6.1.8)

Unlike most algorithms with only one learning agent, the A2C algorithm can employ

multiple learning agents, called workers, each of which has its own set of network

parameters and a copy of the environment. These workers are trained in parallel and

synced with the global network periodically and synchronously. The global network

merges the gradients from each worker, updates the global parameters, and then sends

the new global parameters to each worker again [217].

However, a problem is that the workers likely complete their tasks at different times.

Due to the synchronization requirement, some workers have to wait until all of them

are done, resulting in a waste of computational resources.

Asynchronous Advantage Actor-Critic Algorithm

The asynchronous advantage actor-critic (A3C) algorithm is introduced to address

this drawback [218]. As an extension of A2C, A3C breaks the synchronization barrier

and allows for an asynchronous updating of the global network. The workers inter-

act with their respective environments independently and update the global network

asynchronously. This enables the agent to explore a larger part of the state-action

space within a shorter time, improving the learning speed. Fig. 6.3 provides an

illustration of the A3C algorithm.
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Figure 6.3: Illustration of A3C algorithm.
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6.2 Powertrain Modeling and Problem Formula-

tion

The hybrid powertrain investigated in this chapter is a series configuration. A

schematic diagram of the powertrain system is depicted in Fig. 6.4. Details of the

vehicle specifications and modeling approaches are presented as follows.

Figure 6.4: Schematic diagram of the series HEV configuration.

6.2.1 Hybrid Powertrain Architecture

The studied hybrid powertrain system incorporates an ICE, a generator, a traction

motor, and a battery. The battery constantly supplies electrical power to drive the

traction motor for vehicle propulsion, while the engine-generator set, i.e., the auxiliary

power unit (APU), charges the battery when necessary. Therefore, the hybrid system

enables two operating modes, i.e., EV mode if the engine is off and HEV mode if the

engine is on. The traction motor is directly coupled to the transmission output shaft

through a final drive ratio. Vehicle specifications are listed in Table 6.1.
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Table 6.1: Vehicle specifications of the series HEV.

Component Parameter Value

Vehicle

Equivalent mass 3500 kg

Wheel radius 0.375 m

Road coefficient µ1 208.9664 N

Road coefficient µ2 6.9720 N/(m/s)

Road coefficient µ3 0.5841 N/(m/s)2

Final drive ratio 9.8

Engine

Displacement 3.0 L

Maximum power 200 kW

Maximum torque 330 Nm

Maximum speed 6000 rpm

Motor

Maximum power 388 kW

Maximum torque 780 Nm

Maximum speed 15000 rpm

Generator

Maximum power 196 kW

Maximum torque 320 Nm

Maximum speed 6400 rpm

Battery
Capacity 302.6 Ah

Nominal voltage 320.8 V
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6.2.2 Control-Oriented Vehicle Model

Auxiliary Power Unit

In the series HEV, the engine and generator are coaxially coupled together as an

APU, and thus share the same speed and torque, as expressed in Eq. (6.2.1). The

operation of the APU should be simultaneously constrained by the physical limits of

the engine and generator, as illustrated in Eq. (6.2.2).

ωAPU = ωICE = ωgen

TAPU = TICE = Tgen

(6.2.1)

max (ωICE,min, ωgen,min) ≤ ωAPU ≤ min (ωICE,max, ωgen,max)

max (TICE,min, Tgen,min) ≤ TAPU ≤ min (TICE,max, Tgen,max)

(6.2.2)

The power output of the APU is the engine power multiplied by a factor of generator

efficiency, which is a function of generator torque and speed, as shown in Eq. (6.2.3).

The fuel flow rate of the engine ṁfuel can be calculated from engine efficiency ηICE,

as given in Eq. (6.2.4), where LHVfuel denotes the lower heating value of the fuel.

With Eq. (6.2.4), Eq. (6.2.3) can be then reformulated as Eq. (6.2.5), which indicates

that for a given power demand, fuel consumption can be optimized by maximizing

the combined efficiency of the engine and generator.

PAPU = PICE · ηgen(Tgen, ωgen) = TICE · ωICE · ηgen(Tgen, ωgen) (6.2.3)
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ṁfuel =
PICE

ηICE(TICE, ωICE) · LHVfuel

=
TICE · ωICE

ηICE(TICE, ωICE) · LHVfuel

(6.2.4)

PAPU = ṁfuel · LHVfuel · ηICE(TICE, ωICE) · ηgen(Tgen, ωgen) (6.2.5)

Motor

The electric motor is modeled by a 3-D combined efficiency map which is dependent

on motor torque, speed, and voltage. The motor power is given by Eq. (6.2.6),

where Pmot,elec, Tmot, ωmot, ηmot, and Vmot denote motor electrical power, torque,

rotational speed, efficiency, and voltage, respectively. Since the electric motor is

directly connected to the transmission shaft, its torque and speed can be derived

from vehicle longitudinal dynamics, as given in Eq. (6.2.7) and (6.2.8), where fd

denotes the final drive ratio. Twh and ωwh denote the torque and rotational speed at

wheels, respectively.

Pmot,elec =


Tmot · ωmot/ηmot(Tmot, ωmot, Vmot), Tmot ≥ 0

Tmot · ωmot · ηmot(Tmot, ωmot, Vmot), Tmot < 0

(6.2.6)

Tmot =
1

fd
· Twh (6.2.7)
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ωmot = fd · ωwh (6.2.8)

Battery

The equivalent circuit approach is adopted to model the battery pack. The battery

current Ibatt can be derived from Ohm’s law, which can be rearranged into Eq. (6.2.9).

Voc and R denote the battery open-circuit voltage and internal resistance, respectively,

both of which are a function of battery SOC. Pbatt denotes the battery power, which

is provided to the traction motor together with the APU power, as expressed in Eq.

(6.2.10).

Ibatt(t) =
Voc(SOC)−

√
Voc(SOC)2 − 4 ·R(SOC) · Pbatt

2 ·R(SOC)
(6.2.9)

Pbatt = Pmot,elec − PAPU (6.2.10)

Battery SOC can be calculated based on Eq. (6.2.11), where Qbatt and η denote the

battery capacity and coulombic efficiency, respectively.

SOC(t) = SOC(t0)−
η

Qbatt

∫ t

t0

Ibatt(t)dt (6.2.11)
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Vehicle Longitudinal Dynamics

The vehicle speed can be derived from longitudinal vehicle dynamics, as given in Eq.

(6.2.12):

vveh =
1

mequiv

∫  Twh

Rwh

− µ1 − µ2 · vveh − µ3 · v2veh

 dt (6.2.12)

where mequiv is the equivalent mass of the vehicle, Twh is the torque at wheels, Rwh

is the wheel radius, and µ1, µ2, and µ3 are the road load coefficients.

6.2.3 Optimal Control Problem

Based on the control-oriented HEV model described above, the optimal control prob-

lem is formulated aiming at fuel minimization while maintaining battery SOC over a

drive cycle, as given in Eq. (6.2.13), where ζ is a large weighting factor.

u∗ = arg min
u

{∫ tf

t0

ṁfuel(x, u)dt+ ζ · [SOC(tf )− SOC(t0)]

}
(6.2.13)

Moreover, the following constraints are imposed to limit the powertrain components
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within their physical limits:



SOCmin ≤ SOC(t) ≤ SOCmax

Pbatt,min ≤ Pbatt(t) ≤ Pbatt,max

Ibatt,min ≤ Ibatt(t) ≤ Ibatt,max

TICE,min ≤ TICE(t) ≤ TICE,max

ωICE,min ≤ ωICE(t) ≤ ωICE,max

TEMA,min ≤ TEMA(t) ≤ TEMA,max

ωEMA,min ≤ ωEMA(t) ≤ ωEMA,max

TEMB,min ≤ TEMB(t) ≤ TEMB,max

ωEMB,min ≤ ωEMB(t) ≤ ωEMB,max

(6.2.14)

6.3 Deep Reinforcement Learning-based Energy Man-

agement Strategy

This section proposes a DRL-based energy management strategy for the series HEV

introduced in Section 6.2. The system diagram of the proposed strategy is illustrated

in Fig. 6.5. As shown in the diagram, the development and implementation of the

proposed strategy include three stages:

Stage 1 : DRL in simulation. At this stage, the HEV EMS, which is represented by an

RL agent, is trained off-line. In this work, the A3C algorithm is adopted to update

control parameters in simulation based on state, action, and reward data through
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interacting with the environment, i.e., the HEV model plus the drive cycle. It should

be noted that, since the RL agent only requires feedback from the vehicle, training

with a prior knowledge of the drive cycle is not conflicted with its capability of online

application without the prior knowledge.

Stage 2 : EMS downloading. Once the training gets converged, the trained RL agent

is downloaded and saved as the HEV EMS.

Stage 3 : Strategy online application. The derived EMS can be implemented in the

HEV hybrid control program and then applied online. Vehicle control solutions can

be obtained by mapping states to actions.

The research focus of this work lies in the first and third stages. In the following

context, developing the DRL-based EMS as Stage 1 is thoroughly explained first.

Then testing the trained EMS for online application as Stage 3 is provided.

6.3.1 State, Action, and Reward

State : In RL, the state variables should be able to fully represent the environment,

which is the vehicle plant in HEV energy management problems. Since the A3C algo-

rithm is free from the curse of dimensionality, more state variables are allowed, which

helps the agent understand the environment. However, too many state variables may

deteriorate the convergence performance or trap the optimal control into local optima.

As a result, a five-dimensional continuous state space consisting of vehicle speed vveh,

vehicle acceleration accveh, APU power PAPU , battery SOC, and its deviation from
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Drive cycle + HEV model Energy management strategy

I. Deep Reinforcement Learning in Simulation 

Drive cycle

State

III. Strategy Online Application 

II. Strategy Downloading 

Figure 6.5: System diagram of DRL-based energy management for HEVs.
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the reference value ∆SOC is defined as follows:

S = {vveh, accveh, PAPU , SOC,∆SOC} (6.3.1)

Action : According to Eq. (6.2.10), the APU and the battery together provide

the requested power to the traction power to propel the vehicle. Therefore, given

a vehicle power demand, the energy management problem is to optimally split the

power between the APU and the battery.

Due to the randomness of RL, directly using PAPU as the action will lead to undesired

abrupt changes in APU power. Instead, using power increment/decrement ∆PAPU

will prevent the APU power from being arbitrary, ensuring better continuity. Fur-

thermore, to alleviate the computational burden, a discrete action space is defined

to enforce finite numbers of actions, as shown in Eq. (6.3.2), where there are 14

options: decrease 5 kW; decrease 2 kW; decrease 1 kW; stay unchanged; increase 1

kW; increase 2 kW; increase 3 kW; increase 4 kW; increase 5 kW; increase 6 kW;

increase 7 kW; increase 8 kW; increase 9 kW; increase 10 kW.

A = ∆PAPU = {−5,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} (6.3.2)

Reward : The reward function must be carefully designed since it directly affects

the control performance. The HEV energy management in this work is to minimize

the total fuel consumption over a drive cycle while achieving battery CS. Therefore,

there are two indicators in the reward function: one is the instantaneous fuel mass
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flow rate, and the other is the deviation of battery SOC from its reference value, which

is the SOC at the beginning of the trip. Since the RL agent aims to maximize its

return during the learning, a negative sign is assigned in the equation. The immediate

reward function is formulated as Eq. (6.3.3), where α and β are two weighting factors.

Through repeated tuning of these two parameters, a balance between fuel economy

and battery CS performance can be achieved.

R = −tanh[α · ṁfuel + β · |SOC(t)− SOCref |] (6.3.3)

6.3.2 Design of Neural Networks

In DRL, neural networks are used as the universal function approximators. A neural

work is a network of artificial neurons or nodes that are connected in some way to

represent an input-to-output relationship. There is an input and an output layer,

between which hidden layers transfer the information from input to output. The

value of each node can be represented as a linear equation with weights and bias,

and an activation function is applied after the linear operation to capture the non-

linear features. In such a way, the neural network can represent any linear/nonlinear

function.

There is no general way to determine the structure of a neural network. On the

one hand, the structure should be complex enough to be able to approximate the

function. On the other hand, it should not be too complex to make the training

process extremely slow or even impossible. Based on the author’s prior experience
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and the reference from literature, the neural networks for the critic and actor in this

work are designed as follows.

The critic network takes the state observations as the input and the state value

function as the output. The input layer is a feature input layer with five neurons,

one for each state variable. The output layer is a fully-connected layer with only

one neuron representing a scalar value V (s). Between the input and output layers

are three fully-connected hidden layers with 100 neurons each. Each hidden layer is

followed by a rectified linear unit (ReLU) activation function, which returns zero for

negative values and keeps positive values unchanged, as given in Eq. (6.3.4):

f(x) =


0, x < 0

x, x ≥ 0

(6.3.4)

The actor network receives the state observations and outputs a stochastic policy,

which is a probability distribution of the action space. The input and hidden layers

have the same structure and activation functions as in the critic network. The output

layer is a fully-connected layer with 14 neurons corresponding to each possible action.

It is processed by a softmax activation function that calculates the probability of

each action and ensures that all probabilities sum to 1, as given in Eq. (6.3.5). The

softmax layer shares the same number of neurons as the output layer.

softmax(zi) =
ezi∑K
j=1 e

zj
for i = 1, ..., K (6.3.5)
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The architecture of the AC networks is illustrated in Fig. 6.6.

6.3.3 Data Normalization

One of the best practices in neural network training is to normalize the input to the

neural networks. When the input variables are of the same scale, several benefits are

enabled, such as speeding up the learning and convergence, preventing divergence,

facilitating hyperparameter tuning, etc.

As stated in Section 6.3.2, the input to the critic and actor networks is the state

observations. Therefore, the state variables defined in Section 6.3.1 are preprocessed

as follows: vehicle speed vveh and acceleration accveh are normalized by the z-score

method, as illustrated in Eq. (6.3.6), where µ and σ are the mean and standard

deviation of each data set, which are calculated based on the training driving cycle.

PAPU is rescaled into [0, 1] by dividing the maximum value of APU power. Battery

SOC belongs to [0, 1] inherently, and therefore ∆SOC falls between [-1, 1], both of

which can be directly fed into the neural networks without further normalization.

Z =
x− µ
σ

(6.3.6)

On the other side, since the action space is discrete, each possible action is assigned

a value of probability, so further normalization is unnecessary.
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Figure 6.6: Illustration of the actor-critic networks.
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6.3.4 Hyperparameters

Appropriate hyperparameters are essential to get desired results in DRL. In this

section, the primary hyperparameters in the A3C algorithm are configured and sum-

marized in Table 6.2.

Table 6.2: Hyperparameters in A3C.

Parameters Symbol Value

Learning rate for actor network αθ 1e− 4

Learning rate for critic network αµ 1e− 4

Optimizer - Adam

Discount factor γ 0.95

Gradient threshold - 1

Gradient threshold method - L2norm

Entropy loss weight β 0.2

Sample time Ts 0.5s

Step size of asynchronous update N 100

Step size of each training episode T Length of training cycle/sample time

Number of training episodes P 5000

Number of threads in CPU n 4

Learning rate is considered the most critical hyperparameter in a neural network

configuration. It controls how to nudge the old estimated value in the direction of the

new estimation each time the network weights are updated. Choosing an appropriate

learning rate is challenging since a low rate may result in a long training process,

whereas a high rate may lead to suboptimal results or unstable learning. Through

trial and error, a learning rate of 1e-4 is chosen for both actor and critic networks,

i.e., αθ = 1e− 4 and αµ = 1e− 4. The Adam optimizer is adopted to train the neural
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networks.

Without the prior knowledge of the future drive cycle, the A3C based optimal control

can be seen as a continuing task since the terminal state is unknown. Therefore, a

discount factor γ = 0.95 is defined to trade off the immediate and future rewards.

During the training, there might be a significant increase in the gradient, called ex-

ploding gradient, that may cause a significant update to the network parameters and

thus leading to unstable learning. As a result, a gradient threshold is defined, beyond

which the gradient will be clipped to prevent gradient explosion, called gradient clip-

ping. This work defines a gradient threshold of 1 and adopts a norm-based gradient

clipping method, “L2norm”. If the L2 norm of a gradient is larger than the defined

gradient threshold, the gradient will be scaled so that the L2 norm equals the defined

gradient threshold.

In RL, entropy is used to encourage exploration to avoid being stuck in local optima.

A higher entropy loss weight β will promote exploration by applying a penalty for

taking an action that the agent already knows about, called exploitation. A balance

between exploration and exploitation of the environment can be achieved by defining

a proper entropy loss weight, which is set to 0.2 in this work.

In A3C, the independent local workers perform simulations against their own copies of

the environment and send their data asynchronously to the host to update the global

neural network after a certain amount of steps. Here, the step size of the asynchronous

update N is set as 100, after which the local workers receive the updated parameters

from the host and resume learning. The step size of each training episode T is given
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by the length of the training cycle divided by the sample time.

6.3.5 A3C-based EMS Framework

Pseudo-code of the A3C algorithm is described in Algorithm 1, and the framework

of the proposed A3C-based EMS is depicted in Fig. 6.7.

6.4 Results and Discussions

The proposed A3C-based EMS, including the hybrid powertrain model and RL con-

figuration, is programmed in MATLAB® and Simulink®, where the Reinforcement

Learning ToolboxTM is employed to construct the RL agent and deep neural networks.

Simulation is conducted on a computer with the Intel® CoreTM i7-6700 Processor with

four cores @ 3.40 GHz and 32 GB of RAM.

6.4.1 Training Setup

In this section, the proposed A3C-based EMS is trained on HWFET, whose speed

and acceleration profiles are shown in Fig. 6.8.

Based on the normalization methods introduced in Section 6.3.3, the training cycle

is normalized as shown in Fig. 6.9.

The maximum number of training episodes in this work is set to 5000. Initial battery
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Algorithm 1: Pseudo-code for A3C algorithm

Hyperparameters: Define hyperparameters αθ, αµ, β, γ, N , T , and P
Initialization: Initialize global shared actor and critic networks with

weights θ and µ; thread-specific actor and critic networks
with weights θ′ and µ′; thread-specific time step t← 1

/* For each of the n-threads, perform the following tasks */;
for episode = 1, 2, ..., P do

Reset environment;
Reset thread-specific time step: t← 1;
repeat

Reset gradients: dθ ← 0 and dµ← 0;
Synchronize thread-specific parameters with global shared parameters:
θ′ = θ and µ′ = µ;

Reset starting time step of the N-step experiences: tstart ← t;
Observe state st = {vveh, accveh, PAPU , SOC,∆SOC}t;
/* Generate the N-step experiences */;
repeat

Choose action at according to policy π(at|st; θ′);
Perform action at, receive reward rt, and change to state st+1;
Update time step t← t+ 1;

until t− tstart == N or st == sT ;

Initialize return estimation: R =

{
V (st;µ

′), st 6= sT

0, st = sT
;

for i = t− 1, ..., tstart do
Compute return through backward iterations: R← ri + γR;
Compute advantage: A(ai|si; θ′, µ′) = R− V (si;µ

′);
Compute entropy: H(π(ai|si; θ′)) = −

∫
π(ai|si; θ′) log π(ai|si; θ′);

Accumulate gradients w.r.t. θ′:
dθ ← dθ +∇θ′ log π(ai|si; θ′)A(ai|si; θ′, µ′) + β∇θ′H(π(ai|si; θ′));
Accumulate gradients w.r.t. µ′:
dµ← dµ+ ∂(A(ai|si; θ′, µ′))2/∂µ′;

Perform asynchronous update of θ using dθ: θ ← θ + αθdθ;
Perform asynchronous update of µ using dµ: µ← µ+ αµdµ;

until t == T ;
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�� �� 

Figure 6.7: Schematic of A3C-based EMS for HEVs.
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Figure 6.8: Vehicle speed and acceleration of the training drive cycle.
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Figure 6.9: Normalized vehicle speed and acceleration of the training drive cycle.
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SOC is set as 7%, and other state variables are initialized as 0.

6.4.2 Convergence

The main objective of RL algorithms is to train the agent toward higher rewards.

Fig. 6.10 presents the trajectory of episodic reward during training, from where a

gradually increasing trend can be observed, demonstrating the learning ability of the

proposed strategy. After around 3500 episodes, the average episodic reward starts to

stabilize, which indicates the convergence of the training.
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Figure 6.10: Trajectory of episodic reward during training.
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6.4.3 Training Performance

To better evaluate the training performance of the proposed A3C-based strategy, a

deterministic DP-based EMS is adopted as the benchmark, and an A-ECMS is also

implemented for comparison.

Fig. 6.11 compares the battery SOC trajectories of the three control strategies. It

can be observed that the three strategies follow different trajectories, but they are all

capable of achieving CS under the training drive cycle. The largest ∆SOC is given

by the A-ECMS, and the A3C-based strategy shows only 0.0246% ∆SOC. Moreover,

although the trajectories are not identical, the A3C-based strategy exhibits similar

trends to the DP-based EMS along the drive cycle. Compared to DP, the A3C-based

EMS seems to discharge the battery more drastically. However, this can be mitigated

by adding battery life consideration into the reward function.

Engine operating profiles of the three control strategies are depicted and compared

in Fig. 6.12 to 6.14. Firstly, engine operating points in all three strategies always

remain within engine speed and torque limits owing to the imposed constraints. In

A3C-based strategy, all the operating points reside in the OOL since engine speed and

torque are designed to be searched along this line for a given engine power. While

in DP-based strategy, engine operating points locate mostly outside this line since

engine speed and torque are controlled independently. Interestingly, operating points

of the A-ECMS also fall on the OOL, as shown in Fig. 6.14.

Secondly, the engine tends to operate at medium speed and load points in both A3C-

based and DP-based strategies, and lower-efficiency regions such as low speed/torque
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Figure 6.11: Comparison of SOC trajectories among A3C-based EMS, DP-based
EMS, and A-ECMS under the training cycle.

points are discouraged, especially in DP, as reflected in the histograms. By contrast,

the A-ECMS prefers to either run the engine at high loads or shut it down, which

is the result of instantaneous optimization. Besides, engine operation distribution of

the A3C-based EMS is more uniform than the DP-based EMS and the A-ECMS, and

engine-off time is also much shorter.

Finally, the total fuel consumption of the three control strategies is corrected for SOC

difference and then benchmarked by DP. A quantification of fuel optimality is given

in Table 6.3. As can be seen, the proposed A3C-based EMS can achieve almost 89%

fuel optimality with better fuel economy over the A-ECMS. Since DP-based strategies

can only be used off-line, the superiority of the proposed A3C-based control strategy

for online implementation has been demonstrated.
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Figure 6.12: (a) Engine operating points; (b) Engine operation distribution in A3C
under the training cycle.
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Figure 6.13: (a) Engine operating points; (b) Engine operation distribution in DP
under the training cycle.
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Figure 6.14: (a) Engine operating points; (b) Engine operation distribution in
A-ECMS under the training cycle.
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Table 6.3: Performance of DP, A3C, and A-ECMS under the training cycle.

Control strategy Final SOC (%) Fuel consumption (g) Fuel optimality (%)

DP 7.0000 955.8208 100.0000

A3C 6.9754 1062.6188 88.8266

A-ECMS 7.1533 1082.4792 86.7487

6.4.4 Generalization Verification for Online Implementation

The generalization of the trained EMS to new drive cycles is extremely important

for its online implementation. As a result, a long drive cycle mixed with the training

cycle and several other new cycles is constructed to test the model’s adaptability.

The testing cycle, as shown in Fig. 6.15, is composed of four consecutive drive cycles.

Sequentially, they are US06, which is a high-acceleration aggressive cycle, HWFET,

which is the training cycle, WLTP, which is a more representative cycle of real driving

conditions covering urban, suburban, rural, and highway scenarios, and another US06

cycle. The normalized testing cycle is shown in Fig. 6.16.

Fig. 6.17 compares the SOC trajectories of the A3C-based EMS and the A-ECMS

under the testing cycle. It can be seen that both strategies are capable of maintaining

battery SOC with no dramatic deviations. Although the A3C-based strategy presents

a larger SOC window, the overall SOC deviation is smaller, indicating better charge

sustaining performance. Therefore, the proposed A3C-based EMS proves good ability

of maintaining battery SOC for online implementation.
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Figure 6.15: Vehicle speed and acceleration of the test driving cycle.
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Figure 6.16: Normalized vehicle speed and acceleration of the test driving cycle.
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Figure 6.17: Comparison of SOC trajectories between A3C-based EMS and
A-ECMS under the testing cycle.

Table 6.4 reports the fuel statistics of the two strategies with SOC correction. Com-

pared to the A-ECMS, the A3C-based strategy presents better fuel economy, with ap-

proximately 11.62 % improvement. Therefore, the proposed A3C-based EMS demon-

strates its fuel-efficiency-wise adaptability for online implementation.

Table 6.4: Performance of A3C-based EMS and A-ECMS under the testing cycle.

Control strategy Final SOC (%) Fuel consumption (g)

A3C 7.4411 5009.9272

A-ECMS 7.5211 5591.8703

As a summary, with excellent learning ability and good generalization performance,

the proposed A3C-based EMS proves its great potential in real-time HEV control.
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6.5 Summary

This chapter aims to improve the intelligence of HEV EMS by proposing a DRL-

based control strategy with A3C algorithm. After reviewing the fundamentals of RL,

a control-oriented model of a series HEV is introduced, based on which the A3C-based

EMS is formulated. The proposed A3C-based strategy is then trained on HWFET,

and training results are compared with DP benchmark and an A-ECMS constructed

based on Chapter 5.

Training results indicate the great learning ability of the proposed A3C-based EMS

with successful convergence, excellent charge sustenance, and good fuel optimality.

Although a gap of fuel optimality still exists between the A3C-based EMS and DP,

it shows better fuel economy and charge sustaining performance than the A-ECMS.

Thus, its overall real-time performance can be demonstrated.

The trained EMS is then tested on a different long drive cycle to verify its generaliza-

tion and adaptability. Results indicate that the proposed A3C-based EMS can achieve

better fuel economy than the A-ECMS with a reasonable SOC deviation. Overall,

the proposed A3C-based EMS exhibits great potential in real-time HEV control due

to its good learning ability and adaptability.

Future research work can focus on improving the adaptability of the proposed strategy.

One possible approach is to train the agent on more drive cycles with a variety of

driving scenarios.
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Conclusions and Future Work
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7.1 Conclusions

Hybrid electric vehicles (HEVs) offer a more renewable and efficient solution for trans-

portation with higher fuel efficiency and reduced emissions. Aiming at narrowing the

gap between HEVs and pure electric vehicles, further improvement in HEVs is de-

manded. Energy-efficient powertrain components and improved energy management

strategies (EMSs) are two compelling methods to promote the potential of HEV sys-

tems.

As guidance for future explorations of energy-efficient powertrain components, a com-

prehensive review of hybrid electric vehicle specific engines is provided in Chapter 3.

Discussed technologies include the over-expansion cycle, low temperature combustion

mode, alternative fuels, and waste heat recovery techniques. Based on the benefits

and challenges identified for each technological solution, specific recommendations

are made for future research. Moreover, opportunities to simplify hybrid-optimized

engines based on cost-effective trade-offs are also investigated.

As the main research focus of this thesis, Chapters 4 to 6 propose three improved

HEV energy management strategies from a basic non-adaptive real-time approach to

a state-of-the-art learning-based intelligent approach.

In real-world driving tasks where vehicles always run with dynamics, vehicle control

strategies without considering powertrain inertial dynamics will lead to infeasible con-

trol solutions that deteriorate the vehicle drivability. Moreover, without accounting

for the dynamics, fuel economy will be overestimated, causing a discrepancy between

the predicted and actual fuel economy. To address these concerns and improve the
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practicality of HEV EMS, a real-time equivalent consumption minimization strat-

egy (ECMS) incorporating powertrain inertial dynamics is proposed in Chapter 4.

Compared to the baseline ECMS, the proposed control strategy ensures the vehicle

drivability and provides a more accurate prediction of fuel economy. It is concluded

that the proposed dynamic ECMS offers a more convincing and better optimal solu-

tion for practical HEV control.

Although ECMS is an online strategy theoretically, the equivalence factor (EF) that

maintains HEV charge sustainability relies on trial-and-error-based off-line tuning,

which requires a prior knowledge of the drive cycle. To improve the real-time ap-

plicability of HEV EMS, a predictive adaptive ECMS (A-ECMS) with online EF

calculation and instantaneous power distribution is proposed in Chapter 5. The pro-

posed A-ECMS exhibits great charge sustaining capabilities under all studied drive

cycles. With a real-time self-updating EF profile, control dependency on the drive

cycle is reduced, and the need for manual tuning of the EF is also eliminated. It

is concluded that the proposed A-ECMS overcomes the drawback of non-adaptive

ECMS and becomes “real” real-time implementable with only slight sacrifice in fuel

economy.

The A-ECMS in Chapter 5 achieves great improvement over the non-adaptive ECMS

in real-time performance and shows intelligence by presenting a self-updating EF

profile. It is pointed out in Chapter 6 that the employment of machine learning

techniques offers the opportunity for further improvement of HEV EMS. As a result,

a deep reinforcement learning (DRL)-based intelligent control strategy featuring the

state-of-the-art asynchronous advantage actor-critic (A3C) algorithm is proposed in
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Chapter 6. The proposed strategy exhibits great learning ability with successful con-

vergence, excellent charge sustenance, and good fuel optimality. A generalization test

is also conducted to evaluate its adaptability, where the A3C-based strategy presents

better charge sustainability and fuel economy than the A-ECMS with a reasonable

SOC deviation. It is concluded that the proposed A3C-based intelligent EMS has

good real-time capabilities and thus great potential in real-time HEV control.

As a summary of the above conclusions, the control strategies proposed in this thesis

achieve significant improvements in practicality, real-time applicability, adaptability,

and intelligence of HEV EMS. These improved energy management strategies, to-

gether with the energy-efficient hybrid powertrain specific engines, will promote the

development of hybrid electric vehicles.

7.2 Future Work

The following research topics are suggested for future work:

Powertrain inertial dynamics proposed in Chapter 4 could be incorporated into the

A-ECMS presented in Chapter 5 and the DRL-based EMS presented in Chapter 6.

High-fidelity control-oriented HEV models are expected to integrate with EMS de-

signs to fill the reality gap. Models of key powertrain components such as the internal

combustion engine, battery, and electric motors, could be developed with more real-

istic considerations.

For the A-ECMS presented in Chapter 5, other enhanced algorithms for EF searching
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that can improve computational accuracy and efficiency deserve further investigation.

Examples of such algorithms are Brent’s method and the Aberth method.

The control strategies developed in this thesis are based on model-in-the-loop (MIL)

simulations. Software-in-the-loop (SIL), processor-in-the-loop (PIL), and hardware-

in-the-loop (HIL) testings are desired to further validate the developed control strate-

gies step by step.
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