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Abstract
Turbulent flows occur in various fields and are a central, yet an extremely complex, topic

in fluid dynamics. Understanding the behaviour of fluids is vital for multiple research ar-

eas including, but not limited to: biological models, weather prediction, and engineering

design models for automobiles and aircraft. In this thesis, we study a number of funda-

mental problems that arise in 2D turbulent flows, using the 2D Navier-Stokes system.

Introducing optimization techniques for systems described by partial differential equa-

tions (PDE), we frame these problems such that they can be solved using computational

methods. We utilize adjoint calculus to build the computational framework to be im-

plemented in an iterative gradient flow procedure, using the “optimize-then-discretize”

approach. Pseudospectral methods are employed for solving PDEs in a numerically

efficient manner. The use of optimization methods together with computational math-

ematics in this work provides an illuminating perspective on fluid mechanics.

We first apply these techniques to better understand enstrophy dissipation in 2D

Navier-Stokes flows, in the limit of vanishing viscosity. By defining an optimization

problem to determine optimal initial conditions, multiple branches of local maximizers

were obtained each corresponding to a different mechanism producing maximum enstro-

phy dissipation. Viewing this quantity as a function of viscosity revealed quantitative

agreement with an analytic bound, demonstrating the sharpness of this bound. We also

introduce an extension of this problem, where enstrophy dissipation is maximized in the

context of kinetic theory using the Boltzmann equation.

Secondly, these PDE-constrained optimization techniques were used to probe the fun-

damental limitations on the performance of the Leith eddy-viscosity closure model for

2D Large-Eddy Simulations of the Navier-Stokes system. Obtained by solving an opti-

mization problem with a non-standard structure, the results demonstrate the optimal
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eddy viscosities do not converge to a well-defined limit as regularization and discretiza-

tion parameters are refined, hence the problem of determining an optimal eddy viscosity

is ill-posed.

Further extending the problem of finding optimal eddy-viscosity closures, we consider

imposing an additional nonlinear constraint on the control variable in the problem, in the

form of requiring the time-averaged enstrophy be preserved. To address this problem

in a novel way, we employ adjoint calculus to characterize a subspace tangent to the

constraint manifold, which allows one to approximately enforce the constraint. Not only

do we demonstrate that this produces better results when compared to the case without

constraints, but this also provides a flexible computational framework for approximate

enforcement of general nonlinear constraints. Lastly in this thesis, we introduce an

optimization problem to study the Kolmogorov-Richardson energy cascade, where a

pathway towards solutions is outlined.
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Chapter 1

Introduction

1.1 Turbulence and the Navier-Stokes System

It is often stated that “turbulence is the last unsolved problem of classical physics”

(Davidson 2015), while also a vital area of research with several challenges for scientists

studying fundamental properties of turbulent flows, as well as engineers that utilize these

flows. There are various open problems concerning turbulent flows, from understanding

their fundamental behaviour such as the rate of dissipation of energy, to methods of

accurately and efficiently computing them, which justifies referring to the problem of

turbulence as “unsolved”. Even defining “turbulent behaviour” is a difficult task, how-

ever it is often agreed upon that turbulent flows are chaotic, spatio-temporally complex,

and/or have multiscale features (Davidson 2015). The most common model used to

describe the motion of viscous incompressible fluids is the Navier-Stokes system which

has been one of the most influential partial differential equations (PDE) in mathemat-

ical physics (Darrigol 2005). Derived from basic principles of conservation of mass and

momentum of Newtonian fluids, the Navier-Stokes equations govern the motion of flu-

ids from the macroscopic scale and are the main mathematical model used to describe

flows and their complex properties. Here we consider a flow varying in time and space,

1
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(t,x) ∈ (0, T ]×Ω, and although solid boundaries are a very important topic, for simplic-

ity we will focus on periodic spatial domains Ω, as is quite common. The Navier-Stokes

system for an incompressible Newtonian fluid with density ρ = 1 and kinematic viscosity

ν, on a periodic domain Ω = Td (d = 2 or 3) can be written as (Davidson 2015)

∂u

∂t
+ u ·∇u + ∇p− ν∆u = f in (0, T ]× Ω, (1.1a)

∇ · u = 0 in (0, T ]× Ω, (1.1b)

u(t = 0) = u0 in Ω, (1.1c)

where u(t,x) is the velocity field, p is the pressure which ensures the fluid is incompress-

ible, along with the incompressibility condition ∇ · u = 0, f are external forces, and

u0 denotes an initial condition. From weather behaviour to engineering design models

for flows around objects, the Navier-Stokes system is central to various research areas.

Known to produce solutions characterized by the utmost spatio-temporal complexity,

the Navier-Stokes system is to describe turbulent behaviour. Consequently, there are

open problems surrounding the Navier-Stokes system beyond questions related to its

fundamental mathematical and physical properties.

The vorticity, which is defined as the curl of the velocity field, w = ∇ × u, can

be viewed as “twice the angular velocity of a fluid” (Davidson 2015). We can write the

governing system of w by taking the curl of (1.1) to obtain the so-called vorticity-velocity

form of Navier-Stokes

∂w

∂t
+ u ·∇w −w ·∇u− ν∆w = ∇× f in (0, T ]× Ω, (1.2a)

∆ · u = −∇×w in (0, T ]× Ω, (1.2b)

w(t = 0) = w0 in Ω, (1.2c)
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where w0 = ∇ × u0. In (1.1a), we notice that the pressure is now eliminated however

there is a new term, w · ∇u, known as “vortex stretching”. This term can produce

vorticity, due to the stretching of vortices and vice-versa for the destruction of vorticity

as a result of compression of vortices. This process is the key mechanism of the energy

cascade, and this vortex stretching results in the transfer of energy down to small scales

(Tennekes and Lumley 1972).

Although the Navier-Stokes system have been known for over a century and is vital

for understanding fluid flows, there are still several open problems for understanding

this seemingly straightforward set of equations. Most famously, the “blow-up problem”

that concerns the question whether smooth (classical) solutions to the 3D Navier-Stokes

system can spontaneously develop singularities in finite time remains one of the unsolved

Millennium Problems recognized by The Clay Mathematics Institute (Fefferman 2006).

There had been systematic attempts to understand turbulence (Taylor 1935; Tay-

lor 1938; Kármán and Howarth 1938), however a conceptual framework to understand

this problem started with the Kolmogorov 1941 theory, now known as K41 (Kolmogorov

1941c; Kolmogorov 1941b; Kolmogorov 1941a; Frisch 1995). This work focused on statis-

tically stationary turbulence invariant with respect to translations and rotations, hence

homogeneous, isotropic turbulence. Using a statistical perspective, K41 theory estab-

lished the four-fifths law for fully developed turbulence using third-order longitudinal

structure functions. This is a key result providing some guidance to turbulence study,

establishing an exact result for turbulent flows. A major consequence of the four-fifths

law is the −5/3 law of the energy spectrum, which is a result of dimensional analysis,

that largely agrees with experimental work. Further refinements were made to K41

theory (Kolmogorov 1962; Parisi and Frisch 1985), which built the standard theoretical

framework for studying statistical properties of turbulent flows.

In turbulent flows, the viscosity ν is responsible for the loss of kinetic energy via
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dissipation. Due to the nonlinearity present in the governing equations, in particular

vortex stretching, in turbulent flow energy is transferred amongst scales and typically in

three-dimensional (3D) turbulence, energy is cascaded down to the small scales where it is

dissipated. In both numerical and physical experiments, as the viscosity ν is lowered with

all other flow parameters fixed, the rate of energy dissipation in the system approaches a

finite positive limit (Frisch 1995). Although this was used as an assumption in K41 theory

and has been observed experimentally, it is still yet to be understood from a physical and

mathematical point of view. This is a singular asymptotic limit, often referred to as the

phenomenon of “anomalous dissipation” or the “zeroth law of turbulence”. Anomalous

dissipation is closely related to the “blow-up problem” and is of particular interest, since

the velocity gradients are required to become unbounded to achieve this finite positive

limit, which is directly related to questions concerning the singularity formation in the

inviscid Euler equations (Constantin 2007). In this work, we make contributions to

understanding the behaviour of turbulent flows in the limit of vanishing viscosity for

two-dimensional (2D) flows.

Not only are there open problems regarding the foundations of turbulence, but also

difficulties that arise when numerically computing solutions in an accurate and effi-

cient manner. The closure problem is arguably one of the most important outstanding

open problems in turbulence research. Given the extreme spatio-temporal complex-

ity of turbulent flows, accurate numerical solutions of equations that govern turbulent

flows, namely the Navier-Stokes system, requires resolutions exceeding the capability of

commonly accessible computational resources, even at modest Reynolds numbers. As

a result, this equation cannot be efficiently solved in most situations of practical in-

terest and one must rely on its various simplifications. One such approach which has

gained widespread popularity in engineering practice is Large Eddy Simulation (LES),

a computationally efficient substitute for the “brute-force” Direct Numerical Simula-

tion (DNS). LES depends on the solution of a suitably filtered version of the governing
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system which only accounts for the large-scale motions. Accounting for the effect of

the small-scale motions on the resolved scales is the essence of the notorious “closure

problem”. Mathematically, the closure problem consists of there being more unknowns

than equations in the LES equations, in the form of a quantity known as the Reynolds

stresses, which describes the interactions between motions at large resolved scales and

unresolved small-scale motions. To address this, a representation for the unresolved

expression is introduced as a suitable model for turbulent motions occurring at small

unresolved scales, which is typically called the closure model. The eddy viscosity model,

arguably the most popular type of closure model, assumes a functional dependence of

the eddy viscosity on the resolved solution, typically proportional to the magnitude of

the resolved velocity gradient in the form of the resolved rate of strain tensor, and has

been utilized in several engineering applications. In particular, the Smagorinsky model

(Smagorinsky 1963) and many of its modifications are widely used as closure models

to compute LES. These Smagorinsky models have common drawbacks, including being

too dissipative near walls (Davidson 2015) and assuming the closure term to be strictly

dissipative (Rodi et al. 2013). It is important to realize that, despite their popularity,

the development of Smagorinsky models and their various improvements has been tradi-

tionally dominated by empiricism. This work provides a new perspective on determining

an optimal closure model and some fundamental performance limitations for LES in 2D

flows.

1.2 2D Turbulence

Two-dimensional turbulence has been the main focus of several studies and understand-

ing its complex behaviour has been the key for various research applications, e.g., geo-

physical flows (Boffetta and Musacchio 2010; Boffetta and Ecke 2012). In addition to the

importance of 2D turbulence in several fields, 2D turbulence is also sometimes studied
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due to its similarities with turbulence in 3D, but is simpler from both the mathemat-

ical and computational perspective. Notwithstanding, 2D turbulence possesses some

properties that are intrinsically different than 3D turbulence.

Let us consider a 2D velocity field u(t,x) = (u1, u2)T , i.e. d = 2 for (1.1), governed by

the incompressible Navier-Stokes equation with uniform unit density, ρ = 1, and periodic

boundary conditions, where Ω is a 2D torus. Then, the vorticity field w = [0, 0, w]T

has only one nonzero component perpendicular to the plane of motion, and can be

represented by the scalar field w = −∇⊥ ·u with ∇⊥ = (∂x2 ,−∂x1)T . Now when taking

the curl of (1.1a), we write the 2D Navier-Stokes equation for the scalar vorticity field,

and obtain the vorticity equation ∂tw + u ·∇w − ν∆w = fω in Ω where fω = ∇ × f ,

noting the absence of the vortex stretching term when compared to (1.2a). Defining

the stream function ψ by u = ∇⊥ψ, we obtain the relation between vorticity and

streamfunction in the form of the following Poisson equation ∆ψ = −w, as a consequence

of the Helmholtz decomposition. Using these two equations, along with a suitable initial

condition w0, we define the PDE governing the time evolution of w = w(t,x) in the

vorticity-streamfunction formulation

∂w

∂t
+ ∇⊥ψ ·∇w − ν∆w = fω in (0, T ]× Ω, (1.3a)

∆ψ = −w in (0, T ]× Ω, (1.3b)

w(t = 0) = w0 in Ω, (1.3c)

where we require
´

Ωw0(x)dx = 0, to ensure that the Laplacian in (1.3b) can be inverted

on the periodic domain Ω. The PDE system (1.3) is known to produce regular solutions

and is globally well-posed in the classical sense (Kreiss and Lorenz 2004). One key

physical effect described by the 3D Navier-Stokes system but absent in 2D is vortex

stretching, w ·∇u in (1.2), which is crucial for energy transfer, as mentioned before. The

Batchelor-Kraichnan theory (Kraichnan 1967; Batchelor 1969) also provides the heuristic
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principles behind the different mechanisms of energy transfer in 2D turbulence. Unlike

3D turbulence, 2D turbulence is characterized by the phenomenon of inverse energy

cascade, in addition to a forward enstrophy cascade. As a result, energy accumulates

at the large scales which fill the domain (Davidson 2015). This occurs after vortex

filaments are formed and vortex sheets appear in the fully developed turbulent state,

where eddies grow in size. With the fascinating behaviour of an inverse energy and

forward enstrophy cascade, the dynamics of 2D turbulence has been investigated in

both the strictly decaying and forced setting (Farazmand et al. 2011; Lindborg and

Vallgren 2010; Vallgren and Lindborg 2011; Bracco and McWilliams 2010; Boffetta and

Musacchio 2010). The Kraichnan-Batchelor-Leith (Kraichnan 1967; Batchelor 1969;

Leith 1968) theory provides a heuristic, albeit well-founded, theoretical framework for

studying 2D statistically stationary turbulence.

1.3 PDE optimization

PDE optimization has versatile applications, and can be applied to various problems to

gain insight beyond what standard analytic methods provide. Let us consider a general

PDE-constrained optimization problem of the form


min
(u,Γ)

Λ(u,Γ),

subject to: G(u,Γ) = 0,
(1.4)

where u and Γ are the state and control variables, respectively, and G is the constraint

typically a PDE with appropriate initial and boundary conditions. We can introduce

Lagrange multipliers λ to handle the constraint using a standard approach, which leads

to a min-max saddle problem

min
(u,Γ)

max
λ

[Λ(u,Γ)− λG(u,Γ)].
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This problem is often difficult to solve numerically when G represents a complicated

PDE. If the constraint G(u,Γ) = 0 can be solved for u = u(Γ), with the help of,

e.g., the implicit function theorem, then we can define a “reduced” objective functional

Φ := Λ(u(Γ),Γ). The constrained problem (1.4) is then equivalent to the unconstrained

optimization problem

min
Γ

Φ(Γ).

Now, a local minimizer Γ can be found using a (discrete) gradient flow.

Adjoint calculus has had a long history in PDE-constrained optimization (Lions 1968),

including problems in fluid mechanics (Gunzburger 2003). Defining suitable cost func-

tionals, dependent on a control parameter and constrained by a PDE, we can determine

minimizers or maximizers of this objective function via adjoint-based gradients. When

dealing with non-convex optimization problems, the optimal solution for the control pa-

rameter cannot guarantee to be a global minimizer of the objective functional and is only

a local minimizer or maximizer of the objective functional, which becomes particularly

pertinent when dealing with solving these problems computationally. This introduces

two approaches that can be implemented when using adjoint calculus to solve these

problems computationally: optimize-then-discretize or discretize-then-optimize. These

approaches lead to different approximations because the optimization and discretiza-

tion procedures do not commute in general (Gunzburger 2003), however there are some

special cases where they do indeed commute.

In this we work, we focus on the optimize-then-discretize approach, where optimality

conditions, constraints, and gradient expressions are all formulated at the continuous

PDE level, and then discretized to be numerically solved. This allows us to study

the mathematical properties and analytical structure of the optimal solutions, while

utilizing computationally flexible methods. These methods have been used in various
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applications, including but not limited to: transfer of heat in steel production (Yang

et al. 2021), aeroelastic optimization of wings (Maute et al. 2003), and optimal design

of open and closed loop controls for nonlinear mechanical systems (Pappalardo and

Guida 2018). In terms of applications, the novelty of the work presented here is to use

optimization methods to shed light on the inner workings of the Navier-Stokes system.

1.4 Summary of the Main Results

The main focus of this work concerns three problems, two of which are closely related,

which provide insight about some fundamental theoretical and computational problems

in 2D turbulence. The main approach we utilize is suitably selected optimization prob-

lems, and solving them using an optimize-then-discretize approach. Using this approach

allows us to formulate the optimization techniques in the continuous setting and then

numerically solve the optimization problems via an iterative gradient descent/ascent

method. Several novel methods were developed in order to solve these problems as

they possess non-standard structure, and we introduce new techniques now available for

future work. The contributions in each chapter is described below.

In Chapter 2, we consider enstrophy dissipation in 2D Navier-Stokes flows and focus

on how this quantity behaves in the limit of vanishing viscosity. After recalling a number

of a priori estimates providing lower and upper bounds on this quantity, we state an

optimization problem aimed at probing the sharpness of these estimates as functions

of viscosity. More precisely, solutions of this problem are the initial conditions with

fixed palinstrophy and possessing the property that the resulting 2D Navier-Stokes flows

locally maximize the enstrophy dissipation over a given time window. This problem is

solved numerically with an adjoint-based gradient ascent method and solutions obtained

for a broad range of viscosities and lengths of the time window reveal the presence of

multiple branches of local maximizers, each associated with a distinct mechanism for the
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amplification of palinstrophy. The dependence of the maximum enstrophy dissipation

on viscosity is shown to be in quantitative agreement with the estimate due to (Ciampa

et al. 2021), demonstrating the sharpness of this bound.

In Chapter 3, we consider the question of fundamental limitations on the perfor-

mance of eddy-viscosity closure models for turbulent flows, focusing on the Leith model

for 2D Large-Eddy Simulation. Optimal eddy viscosities depending on the magnitude

of the vorticity gradient are determined subject to minimum assumptions by solving

PDE-constrained optimization problems defined such that the corresponding optimal

Large-Eddy Simulation best matches the filtered Direct Numerical Simulation. The

framework for determining optimal closure models was developed in Matharu and Pro-

tas (2020), where we used a simple one-dimensional model problem. Here, we first

consider pointwise match in the physical space and the main finding is that with a fixed

cutoff wavenumber kc, the performance of the Large-Eddy Simulation systematically

improves as the regularization in the solution of the optimization problem is reduced

and this is achieved with the optimal eddy viscosities exhibiting increasingly irregular

behaviour with rapid oscillations. Since the optimal eddy viscosities do not converge

to a well-defined limit as the regularization vanishes, we conclude that in this case the

problem of finding an optimal eddy viscosity does not in fact have a solution and is

thus ill-posed. We argue that this observation is consistent with the physical intuition

concerning closure problems. The second problem we consider involves matching time-

averaged vorticity spectra over small wavenumbers. It is shown to be better behaved and

to produce physically reasonable optimal eddy viscosities. We conclude that while better

behaved and hence practically more useful eddy viscosities can be obtained with stronger

regularization or by matching quantities defined in a statistical sense, the corresponding

Large-Eddy Simulations will not achieve their theoretical performance limits.

The optimization problems considered in Matharu and Protas (2020) and in Chapter 3
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rely on pointwise observations to match a target solution and the flow field predicted by

the Navier-Stokes system. Unless all observations were matched exactly, this does not

ensure that certain key quantities, e.g., enstrophy, is preserved. Due to the complexity

of these nonstandard optimization problems, enforcing a complicated constraint in a

computationally efficient and accurate manner is not straightforward. In Chapter 4,

we develop a novel method for approximately enforcing nonlinear constraints defined

on complex manifolds with low codimension. Using adjoint calculus and a judiciously

defined adjoint system, we characterize a subspace tangent to the constraint manifold.

This is done by describing the tangent subspace with a suitable “normal vector”, which

then allows one to define a projected gradient flow, to approximately satisfy the nonlinear

constraint. This method is used to enforce a time-averaged enstrophy constraint, while

solving an optimization problem to determine an optimal eddy viscosity, as was described

in Chapter 3.

The results described in Chapter 4 shed some light on the optimal form of eddy

viscosities needed in order for the flow to maintain energy-type quantities, such as en-

strophy. Interestingly, the tools developed in this research introduce a new point of

view for utilizing adjoint calculus in optimization problems. Adjoint calculus has a long

history in being used to compute gradient directions (Gunzburger 2003), however previ-

ously it had not been utilized for enforcing complicated nonlinear constraints. Instead,

techniques such as Newton’s method were used to enforce such constraints, as done in

Farazmand and Sapsis (2017). As a computationally efficient alternative, the present

work demonstrates adjoint calculus can be generalized to approximately enforce the con-

trol variable onto the constraint manifold. Employing this method now makes a class of

previously intractable optimization problems possible to solve, and also opens avenues

to use adjoint analysis in a less traditional manner to solve novel problems.

In Chapter 5, certain extensions of some of the problems considered in the thesis
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are discussed together with an outline of possible solutions approaches. An extension of

the problem in Chapter 2 is considered from the perspective of kinetic theory using the

Boltzmann equation. The idea behind this problem is to study enstrophy dissipation

in 2D Navier-Stokes using the Boltzmann equation, while utilizing the framework of

Chapter 2. We also consider self-similar flow structures arising in the Kolmogorov-

Richardson energy cascade, by studying the energy transfer in 1D Burgers flow with an

optimally determined initial condition.
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Chapter 2

On Maximum Enstrophy

Dissipation in 2D Navier-Stokes

Flows in the Limit of Vanishing

Viscosity

2.1 Introduction

The physical phenomenon of “anomalous dissipation”, also referred to as the “zeroth law

of turbulence”, is one of the oldest problems in turbulence (Frisch 1995). This empirical

law states that the energy dissipation in either forced or decaying three-dimensional

(3D) turbulent flows approaches a nonzero limit as the fluid viscosity ν > 0 vanishes,

all other flow parameters remaining fixed. There is a lot of evidence coming from both

experiments and numerical simulations supporting this anomalous behavior of the energy

dissipation (Sreenivasan 1998; Yeung et al. 2015), but we are still far from being able to

understand this problem from the mathematical point of view. The main consequence of

the dissipation anomaly is an unbounded increase of velocity gradients which would in

13
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turn imply finite-time singularities in solutions of the inviscid Euler equations (Dascaliuc

and Grujić 2012). Similar dissipation anomalies are also known to occur in the behavior

of passive scalars (Sreenivasan 2019; Mazzucato 2022).

The dissipation anomaly arises in solutions of the one-dimensional (1D) Burgers equa-

tion (Eyink and Drivas 2015). As regards 2D flows, the relevant question is about the

behavior of the enstrophy dissipation in the limit of vanishing viscosity. The assumption

that enstrophy dissipation tends to a finite (nonzero) limit as ν → 0 underlaid Batche-

lor’s theory of 2D turbulence (Batchelor 1969). However, in Tran and Dritschel (2006)

it was argued that this quantity in fact vanishes in the inviscid limit such that Navier-

Stokes flows in 2D are not subject to dissipation anomaly. This result was confirmed by

rigorous analysis of the inviscid limit of 2D Navier-Stokes flows (Filho et al. 2006).

While there is no dissipation anomaly in 2D flows, it is interesting to know the

worst-case (slowest) rate at which the enstrophy dissipation vanishes in the limit ν → 0.

A number of theoretical results, in the form of both lower and upper bounds on the

dependence of the enstrophy dissipation on ν, have been established and are reviewed

below. The goal of the present study is to address this question computationally by

finding flows with the largest possible enstrophy dissipation as the viscosity vanishes.

Such “extreme” flows will be found by solving suitably defined optimization problems

with constraints in the form of partial differential equations (PDEs). This will provide

insights about the sharpness of various rigorous bounds on the enstrophy dissipation

in the inviscid limit. While methods of PDE optimization have had a long history in

various applied areas (Gunzburger 2003), they have recently been employed to study

certain fundamental problems concerning extreme behavior in fluid mechanics (Protas

2022). In particular, problems somewhat related to the subject of the present study

were investigated using such techniques in Ayala and Protas (2014a), Ayala and Protas

(2014b), and Ayala et al. (2018).
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We consider the incompressible Navier-Stokes system on a 2D periodic domain Ω :=

T2 = [0, 1]2 (“:=” means “equal to by definition”) which can be written in the vorticity

form as

∂wν
∂t

+ ∇⊥ψν ·∇wν = ν∆wν in (0, T ]× Ω, (2.1a)

−∆ψν = wν in (0, T ]× Ω, (2.1b)

wν(t = 0) = φ in Ω, (2.1c)

where wν and ψν are the vorticity component perpendicular to the plane of motion

and the corresponding streamfunction, both assumed to satisfy the periodic boundary

conditions in the space variable x, whereas T > 0 is the length of the time window

considered. The symbol φ denotes the initial condition which without loss of generality

is assumed to have zero mean, i.e.,

ˆ
Ω
φ(x) dx = 0. (2.2)

Problem (2.1) is known to be globally well-posed in the classical sense (Kreiss and

Lorenz 2004). Its solutions are characterized by the enstrophy and palinstrophy defined,

respectively, as1

E(wν(t, ·)) := 1
2

ˆ
Ω
|wν(t,x)|2 dx, (2.3)

P(wν(t, ·)) := 1
2

ˆ
Ω
|∇wν(t,x)|2 dx, (2.4)

which satisfy the relation
dE(t)
dt

= −2νP(t). (2.5)

1For consistency with the convention used in our earlier studies, cf. Protas (2022), both these quanti-
ties are defined with a factor of 1/2. Without the risk of confusion we will sometimes use the simplified
notation E(t) = E(wν(t, ·)) and P(t) = P(wν(t, ·)).
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We then define our main quantity of interest as

χν(φ) := 2ν
T

ˆ T

0
P(t) dt = ν

T

ˆ T

0

ˆ
Ω
|∇wν(t,x;φ)|2 dxdt = E(0)− E(T )

T
, (2.6)

which represents the enstrophy dissipation per unit of time and will be viewed here as a

function of the initial data φ.

The enstrophy dissipation (2.6) has been the subject of numerous estimates. For

technical reasons we will hereafter assume that 0 < ν < 1. We refer to the following

result as a “conjecture” since it relies on some assumptions, albeit well justified, about

the form of the spectrum of the solutions of (2.1).

Conjecture 1 (Tran & Dritschel (Tran and Dritschel 2006)). The enstrophy dissipation

in solutions of system (2.1) is bounded above by

χν ≤ C [− ln(ν)]−
1
2 , (2.7)

for some constant C > 0 depending on the initial condition φ and the length T of the

time window.

Hereafter C = C(T ) will denote a generic positive constant depending on the length

T of the considered time window with numerical values differing from one instant to

another.

Bounds on enstrophy dissipation are closely related to another problem which has

recently received considerable attention, namely, the question of the convergence as ν →

0 of Navier-Stokes flows to solutions of the inviscid Euler equations obtained by setting

ν = 0 in (2.1a) and corresponding to the same initial condition φ. More specifically,

noting (2.5), the fact that solutions of the inviscid Euler system conserve the enstrophy
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and using the reverse triangle inequality, we have

χν(φ) = ν

T

ˆ T

0
‖∇wν(t,x;φ)‖2L2(Ω) dt = 2ν

T

ˆ T

0
P(t) dt

= 1
T

[E(0)− E(T )] = 1
T

[
‖φ‖2L2(Ω) − ‖wν(T,x;φ)‖2L2(Ω)

]
= 1
T

[
‖w(T,x;φ)‖2L2(Ω) − ‖wν(T,x;φ)‖2L2(Ω)

]
≤ 1
T

[
‖w(T,x;φ)‖L2(Ω) + ‖wν(T,x;φ)‖L2(Ω)

]
‖w(T,x;φ)− wν(T,x;φ)‖L2(Ω)

≤ 2
T
‖φ‖L2(Ω) ‖w(T,x;φ)− wν(T,x;φ)‖L2(Ω) , (2.8)

where w(t,x) := w0(t,x) denotes the vorticity in the inviscid Euler flow. The above

relation shows that the enstrophy dissipation over the time window [0, T ] can be bounded

from above in terms of the difference of the vorticity fields in the viscous and inviscid

flows obtained with the same initial data φ at time t = T . Quantifying this difference in

terms of viscosity as ν → 0 has been the subject of some recent studies. In Constantin

et al. (2022) the authors showed the strong convergence of wν to w as ν → 0 when

φ ∈ L∞(Ω), implying the vanishing of the right-hand side (RHS) in (2.8). Moreover,

the following estimate was established in the case when φ ∈ L∞(Ω) ∩Bs
2,∞(Ω) for some

s > 0, where Lp and Bs
p,q are the usual Lebesgue and Besov spaces,

sup
t∈[0,T ]

‖w(t, ·)− wν(t, ·)‖Lp(Ω) ≤ C(νT )
s e−2CTM∞

p(1+s e−CTM∞ ) , (2.9)

where M∞ := ‖φ‖L∞(Ω). This problem was revisited in Ciampa et al. (2021) where it

was proved that

sup
t∈[0,T ]

‖w(t, ·)− wν(t, ·)‖Lp(Ω) ≤ CM
1− 1

p
∞ max

γφ,p,M∞(C ν
e−CT

2 ),
(
C ν

e−CT
2

) e−CT
2p

 ,
(2.10)

where now C = C(T,M∞) and γφ,p,M∞ : R+ → R+ is a continuous function such that

γφ,p,M∞(0) = 0. Additional results were also obtained recently in Lopes et al. (2021)
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and Seis (2021). In particular, the following bound was produced in Seis (2021), which

improves the rate of the weak convergence of wν to w as ν → 0,

sup
t∈[0,T ]

‖w(t, ·)− wν(t, ·)‖Ḣ−1(Ω) ≤ C
[

ν

| ln(ν)|

] e−CT
2

. (2.11)

We reiterate that, in the light of relation (2.8), inequalities (2.9)–(2.10) imply viscosity-

dependent upper bounds on the enstrophy dissipation (2.6). This is not the case for

estimate (2.11) as it involves a weaker norm than in (2.8). We will nonetheless refer to

this estimate when we discuss our results in Section 2.4 with the hope that our findings

may inspire further work on refining this estimate. On the other hand, as is evident

from the following theorem, a lower bound on the maximum enstrophy dissipation is

also available.

Theorem 1 (Jeong & Yoneda (Jeong and Yoneda 2021)). Let wν be the unique solution

to (2.1). Then, there exists initial data φ such that the enstrophy dissipation is bounded

below by

χν ≥ Cν [− ln(ν)]
1
2 . (2.12)

Upper bounds on the energy and enstrophy dissipation in 2D Navier-Stokes flows in

the presence of external forcing were obtained in Alexakis and Doering (2006).

In the present study we construct families of 2D Navier-Stokes flows which at fixed

values of the viscosity ν locally maximize the enstrophy dissipation χν over the prescribed

time window [0, T ]. These flows are found using methods of numerical optimization to

solve PDE-constrained optimization problems in which the enstrophy dissipation (2.6) is

maximized with respect to the initial condition φ in (2.1) subject to certain constraints.

This is a nonconvex optimization problem and we demonstrate that for every pair ν and

T it admits several branches of locally maximizing solutions, each corresponding to a

distinct dynamic mechanism for amplification of palinstrophy (which, as is evident from
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(2.5), drives the dissipation of enstrophy). Finally, by assessing the dependence of the

maximum enstrophy dissipation determined in this way for fixed T on the viscosity for

decreasing values of ν, we arrive at interesting new insights about the sharpness of the

different a priori estimates discussed above.

The structure of the chapter is as follows: in the next section we introduce the opti-

mization problem formulated to maximize the enstrophy dissipation whereas in Section

2.3 we outline our gradient-based approach to finding families of local maximizers of

that problem; computational results are presented in Section 2.4 whereas discussion and

final conclusions are deferred to the last section.

2.2 Optimization Problem

Given a fixed viscosity ν and length T of the time window, we aim to construct flows

maximizing the enstrophy dissipation χν which will be accomplished by finding suitable

optimal initial conditions qφTν in system (2.1). Since the enstrophy dissipation is given

in terms of a time integral of the palinstrophy, cf. (2.6), we will restrict our attention

to initial data with bounded palinstrophy P0 := P(φ), even though system (2.1) admits

classical solutions for a much broader class of initial data (Kreiss and Lorenz 2004). We

thus have the following optimization problem.

Problem 1. Given P0, ν, T > 0 in system (2.1) and the objective functional (2.6), find

qφTν = arg max
φ∈S

χν(φ), where S :=
{
φ ∈ H1(Ω) :

ˆ
Ω
φ(x) dx = 0, P(φ) = P0

}
.

The Sobolev space H1(Ω) is endowed with the inner product

∀ p1, p2 ∈ H1(Ω) 〈p1, p2〉H1(Ω) =
ˆ

Ω
p1p2 + `2 ∇p1 ·∇p2 dx, (2.13)
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where ` ∈ R+ is a parameter. We note that the inner products in (2.13) corresponding

to different values of ` are equivalent as long as 0 < ` <∞. However, as will be shown in

the next section, the choice of the parameter ` plays an important role in the numerical

solution of Problem 1, cf. (2.22). With the initial palinstrophy P0 fixed, we will find

families of locally maximizing solutions of Problem 1 parameterized by T for a range of

viscosities ν. Our approach to finding such local maximizers is described next.

2.3 Solution Approach

2.3.1 Gradient-Based Optimization

Since Problem 1 is designed to test certain subtle mathematical properties of system

(2.1), we choose to formulate the solution approach in the continuous (“optimize-then-

discretize”) setting, where the optimality conditions, constraints and gradient expres-

sions are derived based on the original PDE before being discretized for the purpose of

numerical evaluation, instead of the alternative “discretize-then-optimize” approach of-

ten used in applications (Gunzburger 2003). We first describe the discrete gradient flow

focusing on computation of the gradient of the objective functional χν(φ) with respect to

the initial condition φ and then provide some details about numerical approximations.

For given values of P0, ν and T , a local maximizer qφTν of Problem 1 can be found as
qφTν = limn→∞ φ

(n) using the following iterative procedure representing a discretization

of a gradient flow projected on S

φ(n+1) = PS
(
φ(n) + τn∇χν

(
φ(n)

) )
,

φ(1) = φ0,

(2.14)

where φ(n) is an approximation of the maximizer obtained at the n-th iteration, φ0 is the

initial guess assumed to have zero mean and τn is the length of the step in the direction

of the gradient ∇χν(φ(n)). The palinstrophy constraint is enforced by application of a
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projection operator PS : H1(Ω) → S to be defined below. We defer discussion of the

choice of the initial guess ϕ0 to the end of this subsection.

A key step in procedure (2.14) is evaluation of the gradient ∇χν(φ) of the objective

functional χν(φ), cf. (2.6), representing its (infinite-dimensional) sensitivity to perturba-

tions of the initial condition φ, and it is essential that the gradient be characterized by the

required regularity, namely, ∇χν(φ) ∈ H1(Ω). This is, in fact, guaranteed by the Riesz

representation theorem (Luenberger 1969) applicable because the Gâteaux (directional)

differential χ′ν(φ; ·) : H1(Ω)→ R, defined as χ′ν(φ;φ′) := limε→0 ε
−1 [χν(φ+ εφ′)− χν(φ)]

for some perturbation φ′ ∈ H1(Ω), is a bounded linear functional on H1(Ω). The

Gâteaux differential can be computed directly to give

χ′ν(φ;φ′) =2ν
T

ˆ T

0

ˆ
Ω

∇wν(t,x;φ) ·∇w′ν(t,x;φ, φ′) dxdt,

=− 2ν
T

ˆ T

0

ˆ
Ω

∆wν(t,x;φ)w′ν(t,x;φ, φ′) dxdt, (2.15)

where the last equality follows from integration by parts and the perturbation field

w′ν = w′ν(t,x;φ, φ′) is a solution of the Navier-Stokes (2.1) system linearized around the

trajectory corresponding to the initial data φ (Gunzburger 2003), i.e.,

K


w′ν

ψ′ν

 :=


∂w′ν
∂t + ∇⊥ψ′ν ·∇wν + ∇⊥ψν ·∇w′ν − ν∆w′ν

∆ψ′ν + w′ν

 =


0

0

 , (2.16a)

w′ν(t = 0) = φ′, (2.16b)

which is subject to the periodic boundary conditions and where ψ′ν is the perturbation

of the stream function ψν . The Riesz representation theorem then allows us to write

χ′ν(φ;φ′) =
〈
∇χν(φ), φ′

〉
H1(Ω)

=
〈
∇L2

χν(φ), φ′
〉
L2(Ω)

, (2.17)

21

http://www.mcmaster.ca/
https://math.mcmaster.ca/


Doctor of Philosophy– Pritpal Matharu; McMaster University– Mathematics

where the L2 inner product is obtained by setting ` = 0 in (2.13) and the Riesz represen-

ters ∇χν(φ) and ∇L2
χν(φ) are the gradients of the objective functional computed with

respect to the H1 and L2 topology, respectively. We remark that, while the H1 gradient

is used exclusively in the actual computations, cf. (2.14), the L2 gradient is computed

first as an intermediate step.

However, we note that expression (2.15) for the Gâteaux differential is not yet con-

sistent with the Riesz form (2.17), because the perturbation φ′ of the initial data (2.1c)

does not appear in it explicitly as a factor, but is instead hidden as the initial condition

in the linearized problem, cf. (2.16b). In order to transform (2.15) to the Riesz form, we

introduce the adjoint states w∗ν , ψ∗ν : [0, T ] × Ω → R and the following duality-pairing

relation K

w′ν

ψ′ν

 ,

w∗ν

ψ∗ν



 :=
ˆ T

0

ˆ
Ω
K


w′ν

ψ′ν

 ·

w∗ν

ψ∗ν

 dx dt = 0. (2.18)

Performing integration by parts with respect to both space and time in (2.18) and judi-

ciously defining the adjoint system as (also subject to the period boundary conditions)

K∗


w∗ν

ψ∗ν

 :=


−∂w∗ν

∂t −∇⊥ψν ·∇w∗ν + ψ∗ν − ν∆w∗ν

∆ψ∗ν −∇⊥ · (w∗ν ∇wν)

 =


−2ν

T ∆wν

0

 , (2.19a)

w∗ν(t = T ) = 0, (2.19b)
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we arrive at
K


w′ν

ψ′ν

 ,

w∗ν

ψ∗ν



 =




w′ν

ψ′ν

 ,K∗

w∗ν

ψ∗ν



−
ˆ

Ω
φ′(x)w∗ν(0,x) dx

= −2ν
T

ˆ T

0

ˆ
Ω
w′ν∆wν dxdt︸ ︷︷ ︸

χ′ν(φ;φ′)

−
ˆ

Ω
φ′(x)w∗ν(0,x) dx = 0,

(2.20)

where all boundary terms resulting from integration by parts with respect to the space

variable vanish due to periodicity and one of the terms resulting from integration by

parts with respect to time vanishes as well due to the terminal condition (2.19b). Identity

(2.20) then implies χ′ν(φ;φ′) =
´

Ω φ′(x)w∗ν(0,x) dx, from which we deduce the following

expression for the L2 gradient, cf. (2.17),

∇L2
χν(x) = w∗ν(0,x). (2.21)

We note that the L2 gradient does not possess the regularity required to solve Problem

1. Identifying the Gâteaux differential (2.15) with the H1 inner product, cf. (2.13),

integrating by parts and using (2.21), we obtain the required H1 gradient ∇χ as a

solution of the elliptic boundary-value problem

[
Id − `2 ∆

]
∇χν = ∇L2

χν in Ω (2.22)

subject to the periodic boundary conditions. As shown in Protas et al. (2004), extraction

of gradients in spaces of smoother functions such as H1(Ω) can be interpreted as low-

pass filtering of the L2 gradients with parameter ` acting as the cut-off length-scale.

The value of ` can significantly affect the rate of convergence of the iterative procedure

(2.14).
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We define the inverse Laplacian on Ω such that it returns a zero-mean function.

This ensures that the solution w∗ν of the adjoint system (2.19) preserves the zero-mean

property which is then also inherited by the L2 and H1 gradients, cf. (2.21)–(2.22). The

projection operator in (2.14) is then defined in terms of the normalization (retraction)

PS(φ) =
√
P0
P (φ) φ. (2.23)

An optimal step size τn can be determined by solving the minimization problem

τn = arg max
τ>0

{
χν
(
PS
(
φ(n) + τ ∇χν(φ(n))

))}
, (2.24)

which can be interpreted as a modification of a standard line search problem with op-

timization performed following an arc (a geodesic) lying on the constraint manifold S,

rather than a straight line.

To summarize, a single iteration of the gradient algorithm (2.14) requires solution

of the Navier-Stokes system (2.1) followed by the solution of the adjoint system (2.19),

which is a terminal-value problem and hence needs to be integrated backward in time,

whereas its coefficients are determined by the solution of the Navier-Stokes system ob-

tained before. These two solves allow one to evaluate the L2 gradient via (2.21) which

is then “lifted” to the space H1 by solving (2.22). Finally, the approximation of the

optimal initial condition qφTν is updated using (2.14) with the step size τn determined

in (2.24). As a first initial guess φ0 in (2.14) we use the initial condition constructed

in Jeong and Yoneda (2021) and then, to ensure the maximizers qφTν obtained for the

same viscosity ν but different lengths T of the time window lie on the same maximizing

branch, we use a continuation approach where the maximizer qφTν is employed as the

initial guess φ0 to compute qφT+∆T
ν for some sufficiently small ∆T . In the same spirit,

when searching for branches corresponding to different values of ν, the maximizer qφTν is

employed as the initial guess ϕ0 to find qϕTν+∆ν for some sufficiently small ∆ν. We refer
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the reader to (Ayala and Protas 2017) for further details of the continuation approach.

2.3.2 Computational Approach

Both the Navier-Stokes (2.1) and the corresponding adjoint system (2.19) are discretized

in space using a standard Fourier pseudo-spectral method. Evaluation of nonlinear prod-

ucts and terms with nonconstant coefficients is performed using the 2/3 rule combined

with a Gaussian filter defined by ρ(k) = e−36
(
|k|
K

)36

, where k is the wavenumber, K = 2N
3

and N is the number of Fourier modes used in each direction (Hou 2009). Time integra-

tion is carried out using a four-step, globally third-order accurate mixed implicit/explicit

Runge-Kutta scheme with low truncation error (Alimo et al. 2021). The results presented

in the next section were obtained using the spatial resolutions N = 512, 1024 in each

direction and the time-steps ∆t ≈ 4.4721 × 10−5, 2.2361 × 10−5, 8.9443 × 10−6, with

finer resolutions employed for problems with smaller values of the viscosity ν. In system

(2.22) defining the Sobolev gradients we set ` = 1 and a spectral method is used to

solve this system. The line-search problem (2.24) is solved with Brent’s derivative-free

algorithm (Press et al. 2007). Due to its large computational cost, a massively par-

allel implementation of the approach presented has been developed in FORTRAN 90

using the Message Passing Interface (MPI). Validation of the discretization techniques

is discussed in Appendices A and B.

2.4 Results

In this section we present the results obtained by solving Problem 1 with P0 = 1 fixed

and both ν and T varying over a broad range of values. In addition to understanding the

structure of the flows maximizing the enstrophy dissipation and how it changes when

the parameters are varied, our goal is also to provide insights which of the estimates

(2.7)–(2.11) best describe the behavior of the maximum enstrophy dissipation χν(qφTν ) in

the limit of vanishing viscosity.
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Problem 1 is nonconvex and as such admits multiple local maximizers at least for

some values of ν and T . The results are organized in terms of “branches” defined as

families of optimal initial conditions qφTν obtained with fixed values of ν and varying T

such that the maximum enstrophy dissipation χν(qφTν ) is a smooth function of the length

T of the time window. For each value of ν and each branch, the time windows considered

are then chosen to capture the local maximum of χν(qφTν ) and its neighbourhood. Infor-

mation about the local maximizers found for ν = 2.2361× 10−6 and T = 0.1789 on six

distinct branches is collected in Table 2.1 where we show the corresponding palinstrophy

evolutions P(t), optimal initial conditions qφTν (x) and the vorticity fields realizing the

maximum palinstrophy wν(x, arg max0<t≤T P(t)). These branches were determined for

the given value of ν using the continuation approach described in Section 2.3.1 where χν

is regarded as a smooth function of T . When searching for branches corresponding to

different viscosity values, continuation with respect to ν with T fixed was also used. The

time evolution of the vorticity fields corresponding to all six branches is visualized in

Video 1. This video offers insights about the different physical mechanisms involving the

stretching of thin vorticity filaments which are responsible for the growth of palinstrophy

and hence also increased enstrophy dissipation. It is noteworthy that all these flow evo-

lutions feature very thin filaments which however do not undergo the Kelvin-Helmholtz

instability as they are stabilized by the shear induced by the large vortices also present

in the flow field. This effect is well understood in the idealized setting of inviscid flows

with straight vortex sheets (Kiya and Arie 1979), see also (Sakajo and Okamoto 1996),

and was observed in 2D turbulence (Kevlahan and Farge 1997). Flows on branches 3

and 4, which feature multiple palinstrophy maxima, employ a mechanism similar to the

continuous baker’s map to amplify the palinstrophy. Moreover, we see that, interest-

ingly, in some cases seemingly very similar optimal initial conditions qφTν give rise to quite

different flow evolutions featuring different numbers of local palinstrophy maxima (one

or two) in the considered time window [0, T ], see, e.g., the maximizers from Branches
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2 and 3 in Table 2.1. This makes classifying local optimizers into branches a rather

difficult task and the classification presented in Table 2.1 is tentative only, which will

however not affect the main findings of our study. Video 2 and Video 3 show the flow

evolutions and representative palinstrophy histories corresponding to the locally optimal

initial conditions qφTν obtained, respectively, on Branch 1 with T = 0.1207 and on Branch

5 with T = 0.2683 for five different values of the viscosity ν. In both cases we see that

even though the optimal initial conditions qφTν obtained for different values of ν are quite

similar, qualitative changes occur in the flows evolutions as the viscosity is reduced. We

attribute these changes to either possible bifurcations of the branches (understood as

functions of ν) or to the possibility that the flow evolutions corresponding to smaller vis-

cosity values belong to some unclassified branch, underpinning the difficulty mentioned

above.
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Table 2.1: Summary information about the local maximizers obtained by solving Problem 1 with ν = 2.2361×10−6

and T = 0.1789. The time evolution of the vorticity fields is visualized in Video 1. “N/A” indicates that palinstrophy
attains a single maximum only during the time evolution corresponding to the given branch.
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Next, in Figure 2.1a we show the dependence of the maximum enstrophy dissipation

χν(qφTν ) on the length T of the time window for five values of viscosity spanning more than

one order of magnitude. We carefully distinguish branches of distinct local maximizers,

where by a “branch” we mean a family of optimal initial data qφTν parametrized by T

and such that the enstrophy dissipation χν(qφTν ) changes smoothly as T is varied while

ν remains fixed. We remark that for certain combinations of ν and T only a subset of

the local maximizers described in Table 2.1 could be found. In Figure 2.1a we observe

that along each branch the maximum enstrophy dissipation χν(qφTν ) admits a well-defined

maximum with respect to T . We add that the values of χν(qφTν ) shown in Figure 2.1a are

for each value of ν at least an order of magnitude larger than the enstrophy dissipation

corresponding to the initial conditions constructed in Jeong and Yoneda (2021), which

realize the behavior given in (2.12).

As these are the quantities needed to make quantitative comparisons with estimates

(2.7)–(2.11), in Figure 2.1b we plot the “envelopes”, defined as qχTν := maxbranches χν(qφTν ),

of the branches obtained at fixed values of ν. “Singularities” evident in these curves

correspond to values of T where different branches become dominant as T varies.

Next, we move on to identify quantitative connections between the data presented in

Figure 2.1b and estimates (2.7)–(2.11) describing the vanishing of the enstrophy dissi-

pation in the inviscid limit ν → 0. These estimates also depend on the length T of the

time window, but this dependence is in some cases less explicit and we will therefore

consider T as a fixed parameter. We thus introduce the following ansätze

f1(ν) = C [− ln(ν)]−
1
2 , (2.25a)

f2(ν) = C νβ, (2.25b)

f3(ν) = C

[
ν

| ln(ν)|

]β
, (2.25c)

f4(ν) = C ν [− ln(ν)]
1
2 , (2.25d)
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(a)

(b)

Figure 2.1: Dependence of (a) the maximum enstrophy dissipation
χν(qφTν ) for maximizers on the different branches, cf. Table 2.1, and (b) its
envelope qχTν on the length T of the time window for different viscosities
ν. In panel (a) the local maximizers illustrated in Table 2.1 are marked
with larger symbols.
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motivated by the structure of the different estimates. More specifically, (2.25a) is the

expression from Conjecture 1, cf. (2.7), (2.25b) has the general form of the upper bounds

in (2.9)–(2.10), where in the latter case we only consider the second argument of the

function max(·) since the function φφ,p,M∞ appearing in the first argument is not given

explicitly enough to allow for quantitative comparisons, (2.25c) is motivated by the form

of estimate (2.11) whereas (2.25d) is the bound from Theorem 1, cf. (2.12).

We want to find out which of the functions (2.25a)–(2.25d) best describes the depen-

dence of the data shown in Figure 2.1b on ν for different fixed values of T . For each

discrete value of T (marked with solid symbols in Figure 2.1b) we determine the constant

C = C(T ) in each of the ansatz functions (2.25a)–(2.25d) by solving the problem

Ċ(T ) = arg min
C∈R+

µTi (C), i = 1, 2, 3, 4, (2.26)

with the fitting error defined as

µTi (C) := 1
5

5∑
j=1

∣∣∣qχTνj − fi(νj ;C)
∣∣∣ , (2.27)

where νj ∈ {8.9443×10−6, 4.4721×10−6, 2.2361×10−6, 8.9443×10−7, 4.4721×10−7} are

the considered values of the viscosity. The fitting error (2.27) will be used to measure

the accuracy with which the different ansatz functions (2.25a)–(2.25d) represent the

data. In addition, we note that ansatz functions (2.25b)–(2.25c) also involve a priori

undefined exponents α ∈ (0, 1). To determine this additional parameter in f2 and

f3, we embed problem (2.26) in a bracketing procedure which finds the exponent β̇ =

β̇(T ) producing the smallest fitting error (2.27) for a given value of T . This bracketing

procedure is performed by first determining µTi (Ċ(T )), by solving problem (D.4), for a

range of discrete values of β ∈ [0, 1] and then using bisection to iteratively improve the

approximation of β̇ = β̇(T ) which produces the smallest error (2.27). We emphasize that

even though the ansätze (2.25a)–(2.25d) involve different numbers of parameters (one
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or two), they are all fitted to the data in Figure 2.1b in the same way (i.e., by adjusting

C = C(T )), which is done independently for different discrete exponents β in the case

of relations (2.25b)–(2.25c).

In order to assess now well the different ansatz functions (2.25a)–(2.25d) capture the

dependence of the maximum enstrophy dissipation qχTν on ν, cf. Figure 2.1b, we define the

ratios qχTν /fi(ν), i = 1, 2, 3, 4, and plot them as functions of ν for different T in Figures

2.2a–d using the values of Ċ = Ċ(T ) and β̇ = β̇(T ) determined as above. Thus, if

qχTν /fi(ν) is close to unity over the entire range of ν, this signals that the ansatz function

fi(ν) accurately captures the dependence of qχTν on ν for the given value of T . We see that

this is what indeed happens for f2(ν) and f3(ν) for most values of T , cf. Figures 2.2b,c.

On the other hand, we note that relations f1(ν) and f4(ν), respectively, overestimate and

underestimate the actual dependence of qχTν on ν, cf. Figures 2.2a,d. This observation is

consistent with the fact that (2.25a) represents estimate (2.7), which is more conservative

than bounds (2.9)–(2.11), and (2.25d) has the form of the lower bound (2.12).

Hereafter we will focus on the fits given in terms of ansatz functions (2.25b)–(2.25c).

In order to decide which of these relations more accurately represents the dependence of

qχTν on ν, in Figure 2.3 we show the corresponding fitting errors (2.27) as functions of T .

Smaller fitting errors µTi (Ċ(T )) indicate a better fit between the ansatz function f2 or f3

and the data qχTν for the given value of T . We see that relation f2(ν) generally leads to

smaller errors for shorter time windows (with T≤0.147), whereas relation f3(ν) tends to

better predict the dependence of qχTν on ν for longer time windows. Finally, the optimal

exponents β̇ = β̇(T ) determined for ansatz functions (2.25b)–(2.25c) are shown in Figure

2.4 where an overall decreasing trend with T is evident. As regards the “dip” occurring

for 0.0894 / T / 0.1342, we speculate that it may be the result of some branches

not being captured in Figure 2.1a. We note that, remarkably, the dependence of the

exponent β̇ on T reveals an approximately exponential form consistent with the structure
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(a) (b)

(c) (d)

Figure 2.2: Dependence of (a) qχTν /f1(ν), (b) qχTν /f2(ν), (c) qχTν /f3(ν) and
(d) qχTν /f4(ν), with optimal constants Ċ = Ċ(T ) and exponents β̇ = β̇(T ),
on the viscosity ν for different T .
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Figure 2.3: Dependence of the fitting errors µTi (Ċ(T )), i = 2, 3,
cf. (2.27), corresponding to the fits of ansatz functions (red circles) f2(ν)
and (blue dots) f3(ν) to qχTν for different T .

of the upper bounds in (2.10)–(2.11), more specifically, the exponential dependence of

the exponents of ν in these bounds on T . Moreover, the limit limT→0 β̇(T ) is also

quantitatively consistent with predictions of estimate (2.11).

2.5 Summary and Conclusions

In this study we provide a quantitative characterization of the behaviour of the enstrophy

dissipation in 2D Navier-Stokes flows in the limit of vanishing viscosity. Unlike the

case of Burgers flows in 1D and Navier-Stokes flows in 3D, where the energy dissipation

anomaly is well documented, 2D Navier-Stokes flows are known not to exhibit anomalous

behavior of enstrophy dissipation. As discussed in Section 2.1, the vanishing of enstrophy

dissipation in the inviscid limit is subject to various estimates, some ad-hoc and some

rigorous, providing lower and upper bounds on this quantity as viscosity vanishes. In our

investigation we have probed the sharpness of these estimates by constructing families

of Navier-Stokes flows designed to locally maximize the enstrophy dissipation subject to

certain constraints. This was done by solving Problem 1 where locally optimal initial
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Figure 2.4: Dependence of the optimal exponents β̇ = β̇(T ) in the
ansatz functions (red circles) f2(ν) and (blue dots) f3(ν) on the length T
of the time window. The dashed lines represent exponential fits, in the
forms indicated, to the values of β̇ = β̇(T ) for the ansatz function (red)
f2(ν) and (blue) f3(ν).

data qφTν with fixed palinstrophy P0 was found such that the corresponding flow with

the given viscosity ν maximizes the enstrophy dissipation χν over the time window

[0, T ]. Problem 1 was solved numerically using a state-of-the-art adjoint-based gradient

ascent method described in Section 2.3. This optimization problem is nonconvex and

we have found six distinct branches of local maximizers, each associated with a different

mechanism for palinstrophy amplification, cf. Table 2.1. As is evident from Video 1, while

in all cases palinstrophy amplification involves stretching of thin vorticity filaments, there

are multiple ways to design flows maximizing this process on a periodic domain Ω and

which of these different mechanisms produces the largest enstrophy dissipation depends

on the value of viscosity ν and the length T of the time window, cf. Figure 2.1a.

Branches of local maximizers found by solving Problem 1 for different values of ν

and T reveal how the extreme behaviour of the enstrophy dissipation they realize com-

pares with the available estimates on this process discussed in Section 2.1. We conclude

that the dependence of the maximum enstrophy dissipation qχTν in the extreme flows we
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found on ν with fixed T is quantitatively consistent with the upper bound in estimate

(2.10), cf. Figure 2.2b, which is the sharpest estimate available to date. Remarkably,

the exponential dependence of the exponent in this upper bound on T is also quanti-

tatively consistent with our results, cf. Figure 2.4 (we attribute the deviation from the

exponential decrease evident around T ≈ 0.1342 in this figure to the likely possibility

that, despite our efforts, not all branches of maximizing solutions have been found).

As regards estimate (2.10), we note that it depends on the quantity ‖qφTν ‖L∞(Ω) (via

the constant M∞). Since our optimal initial conditions are sought in the space H1(Ω),

we do not have an a priori control over this quantity, however, in our computations we

did not find any evidence for ‖qφTν ‖L∞(Ω) to attain large values. Thus, these caveats

notwithstanding, we conclude that estimate (2.10) is sharp and does not offer any room

for improvement, other than perhaps a logarithmic correction analogous to the one ap-

pearing in (2.11). Relation (2.11) was found to describe the dependence of the maximum

enstrophy dissipation qχTν on viscosity in the limit ν → 0 with similar accuracy to es-

timate (2.10). However, we reiterate that, as discussed in Section 2.1, relation (2.11)

does not represent a rigorous upper bound on the enstrophy dissipation. Improving this

estimate, so that the Ḣ−1(Ω) norm on the left-hand side in (2.11) is strengthened to

L2(Ω), appears to be an open question in mathematical analysis.

Among other open problems, it would be interesting to better understand the bifurca-

tion structure of the different optimal solution branches shown in Figure 2.1a. Another

open question is what new insights about the problem considered here could be deduced

based on the kinetic theory, i.e., by considering an optimization problem analogous to

Problem 1 in the context of the Boltzmann equation or some of its variants. Some efforts

in this direction are already underway, which is briefly discussed in Chapter 5. Finally,

there is the question about what can be said about the energy dissipation anomaly in

3D Navier-Stokes flows using the approach developed in the present study.
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Chapter 3

Optimal Eddy Viscosity in

Closure Models for 2D Turbulent

Flows

3.1 Introduction

The closure problem is arguably one of the most important outstanding open problems

in turbulence research. It touches upon some of the key basic questions concerning tur-

bulent flows and at the same time has far-reaching consequences for many applications,

most importantly, for how we simulate turbulent flows in numerous geophysical, bio-

logical and engineering settings. Given the extreme spatio-temporal complexity of tur-

bulent flows, accurate numerical solutions of the Navier-Stokes system even at modest

Reynolds numbers requires resolutions exceeding the capability of commonly accessible

computational resources. To get around this difficulty, one usually relies on various sim-

plified versions of the Navier-Stokes system obtained through different forms of averaging

and/or filtering, such as the Reynolds-Averaged Navier-Stokes (RANS) system and the

Large-Eddy Simulation (LES). However, such formulations are not closed, because these
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systems involve nonlinear terms representing the effect of unresolved subgrid stresses on

the resolved variables. The “closure problem” thus consists in expressing these quantities

in terms of resolved variables such that the RANS or LES system is closed.

In general, closure models in fluid mechanics are of two main types: algebraic, where

there is an algebraic relationship expressing the subgrid stresses in terms of the re-

solved quantities, and differential, where this relationship involves an additional partial-

differential equation (PDE) which needs to be solved together with the RANS or LES

system. Most classical models are usually formulated based on some ad-hoc, albeit well-

justified, physical assumptions. There exists a vast body of literature concerning the

design, calibration and performance of such models in various settings. Since it is im-

possible to offer an even cursory survey of these studies here, we refer the reader to the

well-known monographs (Lesieur 1993; Pope 2000; Davidson 2015) for an overview of

the subject. Recently, there has been a lot of activity centered on learning new empirical

closure models from data using methods of machine learning (Kutz 2017; Gamahara and

Hattori 2017; Jimenez 2018; Duraisamy et al. 2019; Duraisamy 2021; Pawar and San

2021). It is however fair to say that the field of turbulence modelling has been largely

dominated by empiricism and there is a consensus that the potential and limitations

of even the most common models are still not well understood. Our study tackles this

fundamental question, more specifically, how well certain common closure models can in

principle perform if they are calibrated in a optimal way. We will look for an optimal, in

a mathematically precise sense, form of a certain closure model and will conclude that,

somewhat surprisingly, it does not in fact exist.

On the other hand, from the physical point of view, turbulence closure models are

not meant to capture nonlinear transfer processes with pointwise accuracy, but rather

to represent them in a certain average sense, for example, ensuring the inertial range of

the energy spectrum is well represented, or that a quantity of interest such as drag, is
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correctly captured. The ill-posedness of the problem of optimally calibrating a closure

model signalled above can thus be viewed as a consequence of the inability of the closure

model to match the original solution pointwise in space and in time. More precisely, the

optimal eddy viscosity exhibits unphysical high-frequency oscillations. In the present

study we will use a novel and mathematically systematic approach to illustrate this

physical intuition and demonstrate how the ill-posedness arises. We will also show that

the model calibration problem is in fact well-behaved when the LES with a closure

model is required to match quantities defined in the statistical rather than pointwise

sense (here, we consider the enstrophy spectrum).

We are going to focus on an example from a class of widely used algebraic closure

models, namely, the Smagorinsky-type eddy-viscosity models (Smagorinsky 1963) for

LES. More specifically, we will consider the Leith model (Leith 1968; Leith 1971; Leith

1996) for two-dimensional (2D) turbulent flows. Like all eddy-viscosity closure models,

the Leith model depends on one key parameter which is the eddy viscosity, typically

taken to be a function of some flow variable. Needless to say, performance of such

models critically depends on the form of this function. One specific question we are

interested in is how accurately the LES equipped with such an eddy-viscosity closure

model can at best reproduce solutions of the Navier-Stokes system obtained via Direct

Numerical Simulation (DNS). Another related question we will consider concerns re-

producing certain statistical properties of Navier-Stokes flows in LES. We will address

these questions by formulating them as PDE-constrained optimization problems where

we will seek an optimal functional dependence of the eddy viscosity on the state vari-

able. In the first problem we will require the corresponding LES to match the filtered

DNS pointwise in space over a time window of several eddy turnover times, whereas

in the second problem the LES will be required to match the time-averaged enstrophy

spectrum of the Navier-Stokes flow for small wavenumbers. By framing these questions

in terms of optimization problems we will be able to find the best (in a mathematically
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precise sense) eddy viscosities, and this will in turn allow us to establish ultimate perfor-

mance limitations for this class of closure models. We emphasize that the novelty of our

approach is that by finding an optimal functional form of the eddy viscosity we identify,

subject to minimum assumptions, an optimal structure of the nonlinearity in the closure

model, which is fundamentally different, and arguably more involved, than calibrating

one or more constants in a selected ansatz for the eddy viscosity. This formulation is also

more general than common dynamic closure models and some formulations employing

machine learning to deduce information about local properties of closure models from

the DNS (see, e.g., (Maulik et al. 2020)). Our goal is to understand what form the eddy

viscosity needs to take in order to maximize the performance of the closure model in

achieving a prescribed objective. The emphasis will be on methodology rather than on

specific contributions to subgrid modeling.

The optimization problem in question has a non-standard structure, but an elegant

solution can be obtained using a generalization of the adjoint-based approach developed

by Bukshtynov et al. (2011) and Bukshtynov and Protas (2013). In being based on

methods of the calculus of variations, this approach thus offers a mathematically rigor-

ous alternative to machine-learning methods which have recently become popular (Kutz

2017; Gamahara and Hattori 2017; Jimenez 2018; Duraisamy et al. 2019; Duraisamy

2021; Pawar and San 2021). As a proof of the concept applicable to the problem con-

sidered here, this approach was recently adapted to find optimal closures in a simple

one-dimensional (1D) model problem by Matharu and Protas (2020). Importantly, this

approach involves a regularization parameter controlling the “smoothness” of the ob-

tained eddy viscosity.

In the first problem, which involves matching the filtered DNS solution in the point-

wise sense, we find optimal eddy viscosities for the Leith closure model in the LES

systems with different filter cutoff wavenumbers kc. As this wavenumber increases and
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the filter width vanishes, the optimal eddy viscosity is close to zero and the match be-

tween the predictions of the LES and the filtered DNS is nearly exact, as expected. On

the other hand, for smaller cutoff wavenumbers kc the optimal eddy viscosity becomes

highly irregular whereas the match between the LES and DNS deteriorates, although

it still remains much better than the match involving the LES with the standard Leith

model or with no closure model at all. Interestingly, the optimal eddy viscosity reveals

highly oscillatory behavior with alternating positive and negative values as the state

variable increases. When the regularization in the solution of the optimization problems

is reduced and the numerical resolution is refined at a fixed cutoff wavenumber, the

frequency and amplitude of these oscillations are amplified which results in an improved

match against the DNS. Thus, in this limit the optimal eddy viscosity becomes increas-

ingly oscillatory as a function of the state variable which suggests that in the absence

of regularization the problem of finding an optimal eddy viscosity does not in fact have

a solution as the limiting eddy viscosity is not well defined. On the other hand, an

arbitrarily regular eddy viscosity can be found when sufficient regularization is used in

the solution of the optimization problem, but at the price of reducing the match against

the DNS. While such smooth eddy viscosities may be more useful in practice, the corre-

sponding LES models will not achieve their theoretical performance limits. In addition

to this observation, our results also demonstrate how the best accuracy achievable by

the LES with the considered closure model depends on the cutoff wavenumber of the

filter, which sheds new light on the fundamental performance limitations inherent in this

closure model.

In our second problem, which involves matching the time-averaged vorticity spec-

trum of the filtered DNS, the obtained optimal eddy viscosity is more regular and its

key features remain essentially unchanged as the regularization in the solution of the

optimization problems is reduced and the numerical resolution is refined. This demon-

strates that the problem of optimally calibrating the closure model is better behaved
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when a suitable statistical quantity is used as the target. This is not surprising as such

a formulation is in fact closer to the spirit of turbulence modelling.

The structure of the chapter is as follows: in the next section we formulate our LES

model and state the optimization problem defining the optimal eddy viscosity; in Section

3.3 we introduce an adjoint-based approach to the solution of the optimization problem

and in Section 3.4 discuss computational details; our results are presented in Section 3.5

whereas final conclusions are deferred to Section 3.6 ; some additional technical material

is provided in Appendix C.

3.2 Large-Eddy Simulation and Optimal Eddy Viscosity

We consider 2D flows of viscous incompressible fluids on a periodic domain Ω := [0, 2π]2

over the time interval [0, T ] for some T > 0 (“:=” means “equal to by definition”).

Assuming the fluid is of uniform unit density ρ = 1, its motion is governed by the

Navier-Stokes system written here in the vorticity form

∂tw + ∇⊥ψ ·∇w = νN∆w − αw + fω in (0, T ]× Ω, (3.1a)

∆ψ = −w in (0, T ]× Ω, (3.1b)

w(t = 0) = w0 in Ω, (3.1c)

where w = −∇⊥ · u, with ∇⊥ = [∂x2 ,−∂x1 ]T and u the velocity field, is the vorticity

component perpendicular to the plane of motion, ψ is the streamfunction, νN is the co-

efficient of the kinematic viscosity (for simplicity, we reserve the symbol ν for the eddy

viscosity), and w0 is the initial condition. System (3.1) is subject to two forcing mecha-

nisms: a time-independent forcing fω which ensures that the flow remains in a statistical

equilibrium and the Ekman friction −αw describing large-scale dissipation due to, for

example, interactions with boundary layers arising in geophysical fluid phenomena. The
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forcing term is defined to act on Fourier components of the solution with wavenumbers

in the range [ka, kb] for some 0 < ka < kb <∞, i.e.,

[
f̂ω
]

k
:=


F, ka ≤ |k| ≤ kb,

0, otherwise,
(3.2)

where
[
f̂ω
]

k
is the Fourier component of fω with the wavevector k (hereafter hats “ ·̂ ”

will denote Fourier coefficients) and F > 0 is a constant parameter.

The phenomenology of 2D forced turbulence is described by the Kraichnan-Batchelor-

Leith theory (Kraichnan 1967; Batchelor 1969; Leith 1968) which makes predictions

about various physical characteristics of such flows. Their prominent feature, distinct

from turbulent flows in three dimensions (3D), is the presence of a forward enstrophy

cascade and an inverse energy cascade (Boffetta 2007; Boffetta and Musacchio 2010;

Bracco and McWilliams 2010; Vallgren and Lindborg 2011; Boffetta and Ecke 2012).

Here we will chose ka and kb such that the forcing term (3.2) will act on a narrow

band of Fourier coefficients to produce a well-developed enstrophy cascade towards large

wavenumbers and a rudimentary energy cascade towards small wavenumbers. The pa-

rameters νN , α and F will be adjusted to yield a statistically steady state with enstrophy

E(t) :=
´

Ωw
2(t,x) dΩ fluctuating around a well-defined mean value E0. The initial condi-

tion ω0 in (3.1c) will be chosen such that the evolution begins already in this statistically

steady state at time t = 0.

3.2.1 The Leith Closure Model

The LES is obtained by applying a suitable low-pass filter Gδ, where δ > 0 is its width,

to the Navier-Stokes system (3.1) and defining the filtered variables w̃ = Gδ ∗ w and

ψ̃ = Gδ ∗ ψ (“ ∗ ” denotes the convolution operation and hereafter we will use tilde “ ·̃ ”

to represent filtered variables). For simplicity, we will employ a sharp low-pass spectral
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filter defined in terms of its Fourier-space representation as

[
Ĝδ
]

k
:=


1, |k| ≤ kc,

0, otherwise,
(3.3)

where kc is the largest resolved wavenumber such that the filter width is δ = 2π/kc.

Since we normally have kb < kc, it follows that f̃ω = fω. Application of filter (3.3) to

the vorticity equation (3.1a) yields ∂tw̃ + ∇⊥ψ̃ ·∇w̃˜ = νN∆w̃ − αw̃ + fω + M , where

the term M represents the effect of the unresolved subgrid quantities

M = ∇⊥ψ̃ ·∇w̃˜ −∇⊥ψ ·∇w˜ . (3.4)

Since expression (3.4) depends on the original unfiltered variables w and ψ, to close the

filtered system the term M must be modelled in terms of an expression involving the

filtered variables only. We will do this using the Leith model (Leith 1968; Leith 1971;

Leith 1996), which has a similar structure to the Smagorinsky model (Smagorinsky 1963)

widely used as a closure for 3D flows, but is derived considering the forward enstrophy

cascade as the dominant mechanism in 2D turbulent flows. There is evidence for good

performance of the Leith model in such flows (Graham and Ringler 2013; Maulik and

San 2017). Its preferred form is

M ≈ M̃ = ∇ · (ν̃L∇ω̃), (3.5)

in which ω̃ is the solution to the LES system, cf. (3.8), and the eddy viscosity is assumed

to be a linear function of the magnitude of the vorticity gradient, i.e.,

νL(s) := (CLδ)3√s with s := |∇ω̃|2 ∈ I := [0, smax], (3.6)
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where the Leith constant CL = 1 and smax > 0 is a sufficiently large number to be

specified later. We will refer to I as the “state space” domain.

While in the original formulation of the Leith model the eddy viscosity is taken to be

a linear function of |∇ω̃| as in (3.6) (Graham and Ringler 2013; Maulik and San 2017),

here we consider a general dependence of the eddy viscosity on |∇ω̃| in the form

ν(s) = [νL(s) + ν0]ϕ
(

s

smax

)
, (3.7)

where ν0 > 0 and ϕ : [0, 1]→ R is a dimensionless function subject to some minimum

only assumptions to be specified below. The parameter ν0 is introduced to allow the eddy

viscosity ν(s) to take nonzero values at s = 0, in contrast to Leith’s original model (3.6).

We remark that defining the eddy viscosity in terms of such a function ϕ ensures that

ansatz (3.7) is dimensionally consistent. Making ϕ and ν functions of |∇ω̃|2, rather than

of |∇ω̃|, in (3.7) will simplify subsequent calculations. We add that ansatz (3.7) is used

here to illustrate the approach and in principle one could also consider other formulations

parametrized by nondimensional functions. With the Leith model (3.5)–(3.7), the LES

version of the 2D Navier-Stokes system (3.1) takes the form

∂tω̃ + ∇⊥ψ̃ ·∇ω̃˜ = ∇ · ([νN + ν(s)] ∇ω̃)̃ − αω̃ + fω in (0, T ]× Ω, (3.8a)

∆ψ̃ = −ω̃ in (0, T ]× Ω, (3.8b)

ω̃(t = 0) = ω̃0:=w̃0 in Ω, (3.8c)

where the initial condition is given as the filtered initial condition (3.1c) from the DNS

system.

An equivalent form of equation (3.8a) can be obtained noting that with the form

of the filter given in (3.3), the decomposition of the subgrid stresses (3.4) reduces to

M = ∇⊥ψ̃ ·∇ω̃ −∇⊥ψ ·∇ω˜ (Pope 2000). As discussed in Appendix D, the advection
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term in (3.8a) can be replaced with ∇⊥ψ̃ ·∇ω̃. In addition, in Appendix E we show

both the 2D vorticity equation (3.1) and the corresponding LES equation with the Leith

model (3.8) are Galilean invariant in frames of reference moving with a fixed velocity. The

Galilean invariance indicates that the equations and closure models remain unchanged

from one inertial frame to another and are not sensitive to translations, which allows

these models to be utilized in various physical settings. While our numerical solution will

be based on (3.8a), this second form will facilitate the derivations presented in Section

3.3. We will assume that for all times t ∈ [0, T ] the filtered vorticity field ω̃ is in the

Sobolev space H2
0 (Ω) of zero-mean functions with square-integrable second derivatives

(Adams and Fournier 2003). We stress the distinction between the fields w, w̃, ω̃ which

represent, respectively, the solution of the DNS system (3.1), its filtered version and the

solution of the LES system (3.8).

3.2.2 Optimization Formulation for Eddy Viscosity

We consider two formulations with the DNS field matched pointwise in space and in time,

and in a certain statistical sense. First, the optimal eddy viscosity will be found as a

minimizer of an error functional representing the mean-square error between observations

of the filtered DNS, i.e., of the filtered solution w̃(t,x) of the Navier-Stokes system (3.1),

and observations of the corresponding prediction ω̃(t,x;ϕ) of the LES model (3.8) with

eddy viscosity ν. These observations are acquired at points xi, i = 1, . . . ,M2, forming

a uniform M ×M grid in Ω with operators Hi : H2(Ω) −→ R defined as

(Hiω̃) (t) :=
ˆ

Ω
δ(x− xi)ω̃(t,x) dΩ = ω̃(t,xi), i = 1, . . . ,M2, (3.9)

where δ(·) is the Dirac delta distribution and observations (Hiω̃(ϕ)) (t) of the LES solu-

tion are defined analogously (an integral representation of the observation operators will

be convenient for the derivation of the solution approach for the optimization problem

presented in Section 3.3). The number of the observations points M2 will be chosen
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such that M ' kc, i.e., the observations will resolve all flow features with wavenumbers

slightly higher than the cutoff wavenumber kc in (3.3). The error functional then takes

the form

J1(ϕ) := 1
2

ˆ T

0

M2∑
i=1

[(Hiw̃) (t)− (Hiω̃(ϕ)) (t)]2 dt, (3.10)

and is understood as depending on the function ϕ parametrizing the eddy viscosity

ν = ν(s) via ansatz (3.7).

In the second formulation, the optimal eddy viscosity will be found by minimizing the

error between the time-averaged vorticity spectra in the filtered DNS and predicted by

the LES. For simplicity and with a slight abuse of notation, we will treat the wavenumber

k as a continuous variable, i.e., we will assume that k ∈ R2 rather than k ∈ Z2; in the

actual implementation one needs to account for the discrete nature of the wavevector k.

The vorticity spectrum predicted by the LES is then defined as

Eω̃(t, k) := 1
2

ˆ
C (k)
|̂̃ω(t,k)|2 dS(k), ∀t, k ≥ 0, (3.11)

where ̂̃ω(t,k) is the Fourier transform of ω̃(t,x) and C (k) := {k ∈ R2 : |k| = k} a circle

with radius k in the 2D plane. The vorticity spectrum Ew(t, k) in the (filtered) DNS is

defined analogously. Denoting [f ]T := (1/T )
´ T

0 f(t) dt the time average of a function

f : [0, T ]→ R, the error functional is defined as

J2(ϕ) := 1
4

ˆ kc

k=0

([
Eω̃(·, k;ϕ)

]
T − [Ew(·, k)]T

)2
dk, (3.12)

with matching performed up to the cutoff wavenumber kc.

The form of equation (3.8a) suggests that ν = ν(s), and hence also ϕ = ϕ(s/smax),

must be at least piecewise C1 functions on I and [0, 1], respectively. However, as will

become evident in Section 3.3, our solution approach imposes some additional regularity

requirements, namely, ν = ν(s) needs to be piecewise C2 on I (to satisfy the adjoint
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of the linearization of (3.8), defined below, in a classical sense) with the first and third

derivatives vanishing at s = 0, smax. Moreover, we will require ϕ ∈ C3([0, 1]) in order to

satisfy an elliptic boundary-value problem needed to define the Sobolev gradient, which

is described in Section 3.3. Since gradient-based solution approaches to PDE-constrained

optimization problems are preferably formulated in Hilbert spaces (Protas et al. 2004),

we shall look for an optimal function ϕ parametrizing the optimal eddy viscosity as an

element of the following linear space which is a subspace of the Sobolev space H2(I)

S :=
{
ϕ ∈ C3([0, 1]) : d

dξ
ϕ(ξ) = d3

dξ3ϕ(ξ) = 0 at ξ = 0, 1
}
. (3.13)

Then, we have the following two formulations of the optimization problem defining the

optimal eddy viscosity.

Problem 2. For the system (3.8), and objective functionals (3.10) or (3.12), find

qϕ := arg min
ϕ∈S

Jj(ϕ), j = 1, 2, (3.14)

where the optimal eddy viscosity qν is deduced from qϕ via ansatz (3.7).

Our approach to solving this problem is outlined in the next section.

3.3 Adjoint-based Optimization

To fix attention, we focus here on solution of the optimization problem in the first formu-

lation, i.e., for j = 1 in (3.14), with the error functional given in (3.10). Essentially the

same approach can also be used to solve the second optimization problem with the error

functional (3.12) and required modifications are discussed in Appendix C. We formulate

our approach in the continuous (“optimize-then-discretize”) setting (Gunzburger 2003)

and adopt the strategy developed and validated by Matharu and Protas (2020). Here

we only summarize its key steps and refer the reader to that study for further details. A
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local solution of Problem 2 can be found using an iterative gradient-based minimization

approach as qϕ = lim
n→∞

ϕ(n), where


ϕ(n+1) = ϕ(n) − τ (n)∇ϕJ1(ϕ(n)), n = 0, 1, . . . ,

ϕ(0) = ϕ0,

(3.15)

in which ϕ(n) is the approximation of the optimal function qϕ at the nth iteration (which

can be used to construct the corresponding approximation ν(n) of the optimal eddy

viscosity), ∇ϕJ1(ϕ) is the gradient of the error functional (3.10) with respect to ϕ, τ (n)

is the step length along the descent direction and ϕ0 is an initial guess usually suggested

by some form of the eddy viscosity.

A central element of algorithm (3.15) is the gradient ∇ϕJ1(ϕ). In many problems

of PDE-constrained optimization it can be conveniently expressed using solutions of

suitably-defined adjoint equations (Gunzburger 2003). However, the present optimiza-

tion Problem 2 has a nonstandard structure because the control variable ϕ(s/smax) is

a function of the dependent variable s = |∇ω̃|2 in system (3.8). On the other hand, in

its standard formulation adjoint analysis allows one to obtain expressions for gradients

depending on the independent variables in the problem (here, t and x). This difficulty

was overcome by Bukshtynov et al. (2011) and Bukshtynov and Protas (2013) who gen-

eralized adjoint analysis of PDE systems to problems of the type given in Problem 2 by

introducing a suitable change of variables. For convenience we will denote σ := s/smax.

The Gâteaux (directional) differential of the error functional (3.10) with respect to

ϕ, defined by J1
′(ϕ;ϕ′) := limε→0 ε

−1 [J1(ϕ+ εϕ′)− J1(ϕ)], is defined as

J1
′(ϕ;ϕ′) =

ˆ T

0

ˆ
Ω

M2∑
i=1

H∗i [(Hiω̃(ϕ)) (t)− (Hiw̃) (t)] ω̃′(t,x;ϕ,ϕ′) dx dt, (3.16)
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where ϕ′ ∈ S is an arbitrary perturbation of the control variable ϕ, ω̃′(t,x;ϕ,ϕ′) satisfies

the system

K



ω̃′

ψ̃′


:=



∂tω̃
′ + ∇⊥ψ̃′ ·∇ω̃ + ∇⊥ψ̃ ·∇ω̃′ + αω̃′

−∇ ·
(
2(∇ω̃ ·∇ω̃′)(dνds ϕ∇ω̃ + νL+ν0

smax
dϕ
dσ ∇ω̃) + (νN + ν)∇ω̃′

)
∆ψ̃′ + ω̃′


(3.17a)

=



∇ · ((νL + ν0)ϕ′∇ω̃)

0


, (3.17b)

ω̃′(t = 0,x) = 0, (3.17c)

obtained as linearization of the LES system (3.8) and H∗i : R −→ H−2(Ω), i =

1, . . . ,M2, are the adjoints of the observation operators Hi, cf. (3.9), given by

∀ξ ∈ R, (H∗i ξ) := δ(x− xi)ξ, i = 1, . . . ,M2. (3.18)

In order to extract the gradient ∇ϕJ1 from the Gâteaux differential (3.16), we note that

this derivative is a bounded linear functional when viewed as a function of ϕ′ and invoke

the Riesz representation theorem (Berger 1977) to obtain

J1
′(ϕ;ϕ′) =

〈
∇H2
ϕ J1, ϕ

′
〉
H2([0,1])

=
〈
∇L2
ϕ J1, ϕ

′
〉
L2([0,1])

, (3.19)

where the inner product in the space H2([0, 1]) is defined as

〈
p1, p2

〉
H2([0,1])

=
ˆ 1

0
p1 p2 + `21

dp1
dσ

dp2
dσ

+ `42
d2p1
dσ2

d2p2
dσ2 dσ, (3.20)
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in which `1 and `2 are length-scale parameters. While for all values of `1, `2 ∈ (0,∞)

the inner products (3.20) are equivalent (in the sense of norm equivalence), these two

parameters play a very important role in regularization of solutions to the optimization

Problem 2. In (3.15) we require the gradient in the spaceH2([0, 1]), i.e., ∇ϕJ1 = ∇H2
ϕ J1,

but it is convenient to first derive the gradient with respect to the L2 topology.

Introducing adjoint fields ω̃∗ and ψ̃∗, we can define the following duality-pairing

relation
K


ω̃′

ψ̃′

 ,

ω̃∗

ψ∗



 :=
ˆ T

0

ˆ
Ω
K


ω̃′

ψ̃′

 ·

ω̃∗

ψ̃∗

 dx dt

ˆ T

0

ˆ
Ω


ω̃′

ψ̃′

 · K∗

ω̃∗

ψ̃∗

 dx dt =




ω̃′

ψ̃′

 ,K∗

ω̃∗

ψ∗



 ,
(3.21)

where integration by parts was performed with respect to both space and time (noting the

periodic boundary conditions and the initial condition (3.17c)) and the adjoint system

has the form

K∗



ω̃∗

ψ̃∗


:=



−∂tω̃∗ −∇⊥ψ̃ ·∇ω̃∗ + αω̃∗ + ψ̃∗

−∇ ·
(
2 (∇ω̃ ·∇ω̃∗) (dνds ϕ∇ω̃ + νL+ν0

smax
dϕ
dσ ∇ω̃) + (νN + ν)∇ω̃∗

)
∆ψ̃∗ −∇⊥ · (ω̃∗∇ω̃)


=



W

0


,

(3.22a)

ω̃∗(t = T,x) = 0, (3.22b)
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with the source term W (t,x) := ∑M2
i=1H

∗
i [(Hiω̃(ϕ)) (t)− (Hiw̃) (t)]. Combining (3.17),

(3.21) and (3.22), we then arrive at




ω̃′

ψ̃′

 ,K∗

ω̃∗

ψ̃∗



 =

J1′(ϕ;ϕ′)︷ ︸︸ ︷ˆ T

0

ˆ
Ω
W (t,x) ω̃′ dxdt

= −
ˆ T

0

ˆ
Ω

(νL + ν0) (∇ω̃ ·∇ω̃∗) ϕ′ dx dt,

(3.23)

from which we obtain an expression for the Gâteaux differential

J1
′(ϕ;ϕ′) = −

ˆ T

0

ˆ
Ω

(νL + ν0) (∇ω̃ ·∇ω̃∗) ϕ′ dx dt,

with the perturbation ϕ′ now appearing explicitly as a factor. However, this expression

is still not consistent with the Riesz form (3.19), which requires integration with respect

to s over [0, 1]. In order to perform the required change of variables, we make the

substitution ϕ′(∇ω̃ ·∇ω̃) =
´ 1

0 δ
(

∇ω̃·∇ω̃
smax

− σ
)
ϕ′(σ) dσ. Fubini’s theorem then allows

us to swap the order of integration such that the Gâteaux differential (3.16) is finally

recast in the Riesz form (3.19) as an integral with respect to σ

J1
′(ϕ;ϕ′) =

ˆ 1

0

[
−
ˆ T

0

ˆ
Ω
δ

(∇ω̃ ·∇ω̃

smax
− σ

)
(νL + ν0) ∇ω̃ ·∇ω̃∗ dx dt

]
ϕ′(σ) dσ.

(3.24)

The gradient defined with respect to the L2 topology is then deduced from this expres-

sion as

∇L2
ϕ J1(σ) = −

ˆ T

0

ˆ
Ω
δ

(∇ω̃ ·∇ω̃

smax
− σ

)
(νL + ν0) ∇ω̃ ·∇ω̃∗ dx dt. (3.25)

The L2 gradient given in (3.25) may in principle be discontinuous as a function of s
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and hence will not ensure the regularity required of the optimal eddy viscosity, cf. Section

3.2.2. To circumvent this problem, we define a Sobolev gradient using the Riesz relations

(3.19) to identify the H2 inner product (3.20) with expression (3.24) for the Gâteaux

differential. Integrating by parts with respect to σ and noting that the perturbation

ϕ′ ∈ S is arbitrary, we obtain the Sobolev gradient ∇H2
ϕ J as a solution of the elliptic

boundary-value problem

[
Id−`21

d2

dσ2 + `42
d4

dσ4

]
∇H2
ϕ J1(σ) = ∇L2

ϕ J1(σ), σ ∈ [0, 1], (3.26a)

d(1) (∇H2
ϕ J1)

dσ(1)

∣∣∣
σ=0,1

=
d(3) (∇H2

ϕ J1)
dσ(3)

∣∣∣
σ=0,1

= 0. (3.26b)

The choice of the boundary conditions in (3.26b) ensures the vanishing of all the bound-

ary terms resulting from the integration by parts. There is in fact some freedom in how

to cancel these terms and the choice in (3.26b) is arguably the least restrictive. As ar-

gued in Section 3.2.1, we allow the eddy viscosity ν(s) to take nonzero values at s = 0 so

the corresponding Sobolev gradient should not vanish at σ = 0 such that it can modify

the value of ϕ(0), which turns out to be important in practice, cf. Section 3.5. Thus, the

choice of boundary conditions at σ = 0 provided in (3.26b) is necessary. On the other

hand, the choice of the boundary conditions at σ = 1 has been found to have little effect

on the gradient and on the obtained results provided smax is sufficiently large. Therefore,

the form of these boundary conditions given in (3.26b) is justified by simplicity. The

boundary conditions (3.26b) are the reason for the presence of additional constraints in

the definition of space S in (3.13).

Determination of the Sobolev gradients ∇H2
ϕ J1 based on the L2 gradients ∇L2

ϕ J1 by

solving system (3.26) can be viewed as low-pass filtering of the latter gradient using

a non-sharp filter (as discussed by Protas et al. (2004), this can be seen representing

the operator
[
Id−`21 (d2/dσ2) + `42(d4/dσ4)

]−1 in the Fourier space). The parameters `1

and `2 serve as cutoff length scales representing the wavelengths of the finest features
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retained in the gradients ∇H2
ϕ J1 such that increasing `1 and `2 has the effect of making

the Sobolev gradient “smoother” and vice versa. Thus, `1 and `2 are “knobs” which can

be tuned to control the regularity of the optimal eddy viscosities obtained as solutions

of the Problem 2.

Since by construction ∇H2
ϕ J1 ∈ S, choosing the initial guess in (3.15) such that

ϕ0 ∈ S will ensure that ϕ(0), ϕ(1), . . . , qϕ ∈ S. At each step in (3.15) an optimal step

size τ (n) can be found by solving the following line-minimization problem (Nocedal and

Wright 2006)

τ (n) = arg min
τ>0

J1(ϕ(n) − τ ∇ϕJ1(ϕ(n))). (3.27)

Numerical implementation of the approach outlined above is discussed in the next sec-

tion.

3.4 Computational Approach

The evaluation of the Sobolev gradient ∇H2
ϕ J1 requires the numerical solutions of the

LES system (3.8) and the adjoint system (3.22) followed by the solution of problem

(3.26). For the first two systems we use a standard Fourier pseudo-spectral method

in combination with a CN/RKW3 time-stepping technique introduced by Le and Moin

(1991) which give spectrally accurate results in space and a globally second-order accu-

racy in time; details are provided in Appendix A. The spatial domain is discretized using

Nx = 256 equispaced grid points in each direction. Since the eddy viscosity ν = ν(s)

and the function ϕ(s/smax) are state-dependent, we also need to discretize the state

domain I, cf. (3.7), which is done using Ns Chebyshev points (values of Ns are provided

in Table 3.1). We use Chebyshev differentiation matrices to perform differentiation with

respect to s and the eddy viscosity ν(s) and its derivatives are interpolated from state

space I to the spatial domain Ω using the barycentric formulas (Trefethen 2013). The

54

http://www.mcmaster.ca/
https://math.mcmaster.ca/


Doctor of Philosophy– Pritpal Matharu; McMaster University– Mathematics

boundary-value problem (3.26) is solved using a method based on ultraspherical poly-

nomials available in the chebop feature of Chebfun (Driscoll et al. 2014). Solution of

the 2D Navier-Stokes system (3.1) is dealiased using Gaussian filtering based on the

3/2 rule (Hou 2009), however, this is unnecessary for the LES system (3.8) due to the

aggressive filtering applied. To ensure that aliasing errors resulting from the presence

of an a priori unknown nonlinearity in the state-dependent viscosity are eliminated, the

adjoint system (3.22) is solved using twice as many grid points 2Nx in each direction.

Evaluation of the L2 gradient (3.25) requires non-standard integration over level sets

as described by Bukshtynov and Protas (2013). Due the complexity of the determining

this gradient, its evaluation is thoroughly validated in Appendix A2. While for simplicity

a simple gradient approach was presented in (3.15), in practice we use the Polak-Ribière

variant of the conjugate-gradient method to accelerate convergence. For the line mini-

mization problem (3.27), the standard Brent’s algorithm is used (Press et al. 2007). The

consistency and accuracy of the formulation and of the entire computational approach

was validated using a standard suite of tests as was done by Matharu and Protas (2020).

3.5 Results

The results obtained by solving optimization problem (3.14) with error functionals (3.10)

and (3.12) are presented in Sections 3.5.1 and 3.5.2 below. Our computations are based

on a flow problem defined by the following parameters νN = 1×10−2, α = 1×10−3, F =

5, and ka = kb = 4, which results in a turbulent flow with a fully developed spectrum.

In the first optimization problem we fix M = 32 in (3.10), which is slightly larger

than the largest cutoff wavenumber kc we consider (cf. Table 3.1) and therefore ensures

that the optimal eddy viscosity is determined based on all available flow information,

and T = 20 ≈ 30te, where te :=
[´ T

0 E(t) dt/(8π2T )
]−1/2

is the eddy turnover time

(Bracco and McWilliams 2010). We emphasize that the key insights provided by our
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computations do not depend on the particular choice of T , as long as it remains of

comparable magnitude to the value given above.

3.5.1 Matching the DNS Pointwise in Space and Time — Results for

the Optimization Problem with Error Functional (3.10)

Our first set of results addresses the effect of the cutoff wavenumber kc. They are

obtained by solving problem (3.14) with j = 1 for decreasing values of kc = 30, 25, 20

while retaining fixed values of the regularization parameters `1, `2 and a fixed resolution

Ns in the state space I, cf. cases A, B and C in Table 3.1. In each case the optimization

problem is solved using the initial guess ϕ0(s/smax) ≡ 0 corresponding to no closure

model at all. The dependence of the error functional J1(ν(n)) on iterations n in the

three cases is shown in Figure 3.1a, where we see that the mean-square errors between

the DNS and the optimal LES increase as the cutoff wavenumber kc is decreased and the

largest relative reduction of the error is achieved in case C with the smallest kc. While

minimization in problem (3.14) is performed with respect to the nondimensional function

ϕ, cf. (3.7), we focus here on the corresponding optimal eddy viscosities qν = qν(s) shown

in Figure 3.1b. Since small values of s are attained more frequently in the flow, cf. the

probability density function (PDF) of
√
s embedded in the figure, the horizontal axis is

scaled as
√
s which magnifies the region of small values of s. We see that for the largest

cutoff wavenumber kc = 30 the optimal eddy viscosity is close to zero over the entire

range of s. However, for decreasing kc the optimal eddy viscosity exhibits oscillations of

increasing magnitude. We note that values of s ' 50 occur very rarely in the flow and

hence the gradient (3.25) provides little sensitivity information for s in this range. Thus,

the behavior of qν(s) for s ' 50 is an artifact of the regularization procedure defined in

(3.26) and is not physically relevant.

In order to provide additional insights about the properties of the optimal eddy

viscosity, our second set of results is obtained as solutions of problem (3.14) with j = 1
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Case kc Ns `1 `2 ϕ0 J1(ϕ0) J1(ϕ(∞)) r

A 30 64 104 103 No Closure 4.398× 10−7 1.492× 10−7 8.999× 10−8

B 25 64 104 103 No Closure 1.951× 10−5 2.450× 10−6 1.572× 10−6

C 20 64 104 103 No Closure 3.635× 10−4 6.217× 10−5 4.468× 10−5

D 20 128 103 102 Case C 6.217× 10−5 2.001× 10−5 1.239× 10−5

E 20 256 101 100 Case D 2.333× 10−5 1.450× 10−5 8.723× 10−6

Table 3.1: Summary information about the different cases considered
when solving optimization problem (3.14) with j = 1.

using a fixed kc = 20 and progressively reduced regularization achieved by decreasing

the parameters `1, `2 while simultaneously refining the resolution Ns in the state space

I, cf. cases C, D and E in Table 3.1. Optimization problems with weaker regularization

are solved using the optimal eddy viscosity obtained with stronger regularization as the

initial guess. From the normalized error functionals shown as functions of iterations in

Figure 3.2a, we see that as regularization is reduced, the mean-square errors between

the optimal LES and the DNS become smaller and approach a certain nonzero limit,

cf. Table 3.1. As is evident from Figure 3.2b, this is achieved with the corresponding

optimal eddy viscosities developing oscillations with an ever increasing frequency. More

precisely, each time the regularization parameters `1, `2 are reduced and the resolution

Ns is refined, a new oscillation with a higher frequency appears in the optimal eddy

viscosity qν(s) (in fact, in each case, this is the highest-frequency oscillation which can

be represented on a grid with Ns points).

In order to assess how well the solutions of the LES system (3.8) with the optimal

eddy viscosities qν shown in Figures 3.1b and 3.2b approximate the solution of the Navier-

Stokes system (3.1), in Figures 3.3a and 3.3b we show the time evolution of the quantity
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(a)

(b)

Figure 3.1: (a) Dependence of the functional J1(ϕ(n)) on the iteration
n and (b) dependence of the corresponding optimal eddy viscosity qν on√
s for cases A, B and C, cf. Table 3.1. Panel (b) also shows the PDF of√
s in case C.
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(a)

(b)

Figure 3.2: (a) Dependence of the normalized functional
J1(ϕ(n))/J1(ϕ0), with J1(ϕ0) from case C, on the iteration n and
(b) dependence of the corresponding optimal eddy viscosity qν on

√
s

for cases C, D and E, cf. Table 3.1. The inset in panel (b) shows
magnification of the region

√
s ∈ [0, 25]. Panel (b) also shows the Leith

model with kc = 20 and the eddy viscosity νL(s), cf. (3.6).

59

http://www.mcmaster.ca/
https://math.mcmaster.ca/


Doctor of Philosophy– Pritpal Matharu; McMaster University– Mathematics

(a)

(b)

Figure 3.3: Adjusted normalized correlations (3.28) for the LES with
(a) no closure and the optimal eddy viscosity in cases A, B and C, and
(b) no closure and the optimal eddy viscosity in cases C, D and E. The
correlation is also shown for the Leith model with kc = 20 and the eddy
viscosity νL(s), cf. (3.6), in (a) and for an optimal closure model based
on the stochastic estimator (Langford and Moser 1999) in (b). Thick
and thin lines correspond to, respectively, time in the “training window”
(t ∈ [0, T ]) and beyond this window (t ∈ (T, 2T ]).
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log10 |1− C(t)| where

C(t) := 1
||w̃(t)||L2(Ω) ||ω̃(t)||L2(Ω)

ˆ
Ω
w̃(t,x) ω̃(t,x) dΩ (3.28)

is the normalized correlation between the two flows. For a more comprehensive assess-

ment, these results are shown for t ∈ [0, 2T ], i.e., for times up to twice longer than

the “training window” [0, T ] used in the optimization problem (3.14). In Figure 3.3b

we also present the results obtained for kc = 20 with an optimal closure model based

on the linear stochastic estimator introduced by Langford and Moser (1999). Since at

early times correlation C(t) reveals exponential decay corresponding to the exponential

divergence of the LES flow from the DNS, this effect can be quantified by approximating

the correlation as C(t) ≈ C̄(t) := C0e
−rt, where C0 = 1 follows the fact that ω̃0 ≡ w̃0,

whereas the decay rate r is obtained from a least-squares fit over the time window [0, T ].

The decay rates r obtained in this way are collected in Table 3.1.

Finally, in order to provide insights about how the closure model with the optimal

eddy viscosity acts in the physical space, in Figures 3.4a, 3.4b and 3.4d we show the

vorticity field ω̃(T,x), the corresponding state variable s(T,x) cf. (3.7), and the spatial

distribution qν(s(T,x)) of the optimal eddy viscosity obtained in case E; for comparison,

the spatial distribution of the eddy viscosity νL(s(T,x)) in the Leith model, cf. (3.6)

with δ = 0.02, is shown in Figure 3.4c (the fields are shown in the entire domain, i.e.,

for x ∈ Ω, at the end of the training window). We see that while the vorticity and state-

variable fields vary smoothly, this is also the case for the spatial distribution of the eddy

viscosity νL(s(T,x)) in the Leith model. On the other hand, the spatial distribution

of the optimal eddy viscosity qν(s(T,x)) exhibits rapid variations, which is consistent

with the results presented in Figure 3.2b. In particular, positive and negative values of

qν(s(T,x)), corresponding to localized dissipation and injection of enstrophy, tend to form

concentric bands in some low-vorticity regions of the flow domain. The time evolution
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of the vorticity field in the DNS, LES with no closure model and LES with the optimal

eddy viscosity (case E) are available together with an animated version of Figure 3.3b

in Video 4. An animation representing the time evolution of the fields shown in Figure

3.4 for t ∈ [0, 2T ] is shown in Video 5.
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(a) (b)

(c) (d)

Figure 3.4: For case E we show: (a) the vorticity field ω̃(T,x), x ∈ Ω,
(b) the corresponding state variable s(T,x), cf. (3.7), and the spatial dis-
tribution of (c) the eddy viscosity νL(s(T,x)) in the Leith model, cf. (3.6)
with δ = 0.02, and (d) the optimal eddy viscosity qν(s(T,x)), cf. Figure
3.2b, all shown at the end of the training window for t = T . For better
comparison the same color scale is used in panels (c) and (d).
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3.5.2 Matching the DNS in an Average Sense — Results for the Opti-

mization Problem with Error Functional (3.12)

Now we review the results obtained by solving optimization problem (3.14) for j = 2

with a fixed cutoff wavenumber kc = 20 and with two sets of parameters determining

regularization (`1 and `2) and the resolution in the state space I (Ns), cf. cases F and G

in Table 3.2. We remark that the regularization performed in the present problem is less

aggressive than in the problem discussed in Section 3.5.1. As shown in Figure 3.5a, the

normalized error functional converges to a local minimum in only a few iterations and,

as the regularization is reduced, a larger reduction of the error functional is obtained.

However, as is evident from Figure 3.5b, this is achieved with optimal eddy viscosities

much better behaved than the optimal eddy viscosities found by solving the optimization

problem discussed in Section 3.5.1, even though a weaker regularization is now applied,

cf. Table 3.2 (the obtained optimal eddy viscosity exhibits more small-scale variability

in case G than in case F, but the difference is not significant).

The difference between the time-averaged vorticity spectra (3.11) is the LES with

no closure, LES with the optimal closure qν (cases F and G) and in the filtered DNS is

shown in Figure 3.6 as a function of the wavenumber k (this quantity is related to the

integrand expression in the error functional (3.12)). We see that when the optimal eddy

viscosity qν is used in the LES, this error is reduced, especially at low wavenumbers k.

On the other hand, the evolution of the quantity log10 |1 − C(t)|, cf. (3.28), shown for

the same cases in Figure 3.7 demonstrates that, in contrast to Figure 3.3, in the present

problem the LES flows equipped with the optimal eddy viscosity do not achieve a better

pointwise-in-space accuracy with respect to the DNS than the LES flow with no closure

model.

Finally, we show the vorticity field ω̃(T,x), the corresponding state variable s(T,x),

cf. (3.7), the spatial distribution qν(s(T,x)) of the optimal eddy viscosity obtained in
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Case kc Ns `1 `2 ϕ0 J2(ϕ0) J2(ϕ(∞)) r

F 20 256 101 100 No Closure 6.736× 10−2 8.876× 10−3 2.882× 10−4

G 20 512 10−1 10−2 No Closure 6.736× 10−2 6.286× 10−3 1.685× 10−4

Table 3.2: Summary information about the different cases considered
when solving optimization problem (3.14) with j = 2.

case G, and for comparison, the spatial distribution of the eddy viscosity νL(s(T,x))

in the Leith model, cf. (3.6), in Figures 3.8a, 3.8b, 3.8d, and 3.8c, respectively. We

remark that the spatial distribution of the optimal eddy viscosity in Figure 3.8d is now

significantly smoother than the distribution of the optimal eddy viscosity obtained in

the first formulation by solving optimization problem (3.14) with j = 1, cf. Figure 3.4d.

An animated version of Figure 3.8 illustrating the evolution of the fields for t ∈ [0, 2T ]

is shown in Video 6.
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(a)

(b)

Figure 3.5: (a) Dependence of the normalized functional
J2(ϕ(n))/J2(ϕ0) on the iteration n and (b) dependence of the cor-
responding optimal eddy viscosity qν on

√
s for cases F and G, cf. Table

3.2. Panel (b) also shows the PDF of
√
s in case G.
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Figure 3.6: The difference between time-averaged vorticity spectra
(3.11) in the filtered DNS and in the LES with no closure and with the
optimal eddy viscosity qν obtained in cases F and G, cf. Table 3.2, as
function of the wavenumber k.

Figure 3.7: Adjusted normalized correlations (3.28) for the LES with no
closure and the optimal eddy viscosity in cases F and G. Thick and thin
lines correspond to, respectively, time in the “training window” (t ∈ [0, T ])
and beyond this window (t ∈ (T, 2T ]).
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(a) (b)

(c) (d)

Figure 3.8: For case G we show: (a) the vorticity field ω̃(T,x), x ∈ Ω,
(b) the corresponding state variable s(T,x), cf. (3.7), and the spatial dis-
tribution of (c) the eddy viscosity νL(s(T,x)) in the Leith model, cf. (3.6)
with δ = 0.02, and (d) the optimal eddy viscosity qν(s(T,x)), cf. Figure
3.5b, all shown at the end of the training window for t = T . For better
comparison the same color scale is used in panels (c) and (d).
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3.6 Discussion and Conclusions

In this study we have considered the question of fundamental limitations on the per-

formance of eddy-viscosity closure models for turbulent flows. We focused on the Leith

model for 2D LES for which we sought optimal eddy viscosities that subject to mini-

mum assumptions would result in the least mean-square error between the corresponding

LES and the filtered DNS. Such eddy viscosities were found as minimizers of a PDE-

constrained optimization problem with a nonstandard structure which was solved using

a suitably adapted adjoint-based gradient approach (Matharu and Protas 2020). A key

element of this approach was a regularization strategy involving the length-scale param-

eters `1 and `2 in the Sobolev gradients, cf. (3.26). The approach proposed is admittedly

rather technically involved which may limit its practical applicability to construct new

forms of the eddy viscosity, but its value is in making it possible to systematically char-

acterize the best possible performance of different types of closure models.

Our main finding in Section 3.5.1 is that with a fixed cutoff wavenumber kc the LES

with an optimal eddy viscosity qν matches the DNS increasingly well as the regularization

in the solution of the optimization problem is reduced, cf. Figure 3.2a. This is quantified

by a reduction of the rate of exponential decay of the correlation between the correspond-

ing LES and the DNS, cf. Figure 3.3b and Table 3.1. This optimal performance of the

closure model is achieved with eddy viscosities qν(s) rapidly oscillating with a frequency

increasing as the regularization parameters are reduced. From this we conclude that

in the limit of vanishing regularization parameters and an infinite numerical resolution

the optimal eddy viscosity would be undefined as it would exhibit oscillations with an

unbounded frequency. Thus, from the mathematical point of view, the problem of find-

ing an optimal eddy viscosity in the absence of regularization is ill-posed. In practical

terms, this means that the “best” eddy viscosity for the Leith model does not exist.
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The optimal performance of the LES is realized by a rapid variation of the eddy vis-

cosity qν(s) which oscillates between positive and negative values as s changes, cf. Figure

3.2b, resulting in the dissipation and injection of the enstrophy occurring in the physical

domain in narrow alternating bands, cf. Figure 3.4d. We note that a somewhat simi-

lar behavior was also observed in (Maulik et al. 2020) where the authors used machine

learning methods to determine pointwise estimates of eddy viscosity which exhibited

oscillations between positive and negative values. This behavior can be understood in

physical terms based on relations (3.4)–(3.5) which can be interpreted as defining the

eddy viscosity in terms of the space- and time-dependent DNS field, but the problem

is severely overdetermined. Thus, some form of relaxation is needed to determine ν

and the proposed optimization approach with its inherent regularization strategy is one

possibility.

In addition, the optimal eddy viscosities found here have the property that qν(0) > 0,

in contrast to what is typically assumed in the Leith model where ν(0) = 0 (Maulik and

San 2017). In contrast to the behavior observed in Figure 3.4d, standard eddy viscosity

closure models are usually assumed to be strictly dissipative (Rodi et al. 2013), which

is reflected in the fact that the eddy viscosity is non-negative as in Figure 3.4c. We add

that we have also considered finding optimal eddy viscosities by matching against the

unfiltered DNS field, i.e., using w(t,x) in the error functional (3.10) instead of w̃(t,x),

however, this approach produced results very similar to the ones reported above. As

is evident from Figure 3.3b, the performance of the LES with optimal eddy viscosities

compares favourably to the LES with an optimal closure model proposed by Langford

and Moser (1999) based on a stochastic estimator, which has a less restrictive structure

than the Leith model.

The optimal eddy viscosities constructed in Section 3.5.1 to maximize the pointwise

match against the filtered DNS are unlikely to be useful in practice due to their highly
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irregular behaviour which is difficult to resolve using finite numerical precision. On

the other hand, the second formulation studied in Section 3.5.2 where optimal eddy

viscosities were determined by matching predictions of the LES against the time-averaged

vorticity spectrum of the DNS for small wavenumbers lead to a much better behaved

optimization problem and produced results easier to interpret physically. In particular,

the general form of the optimal eddy viscosity obtained in this case was found to have

little dependence on regularization, cf. Figure 3.5b.

The main question left open by the results reported here is whether the optimal

eddy viscosity for the Smagorinsky model in 3D turbulent flows would exhibit similar

properties. It can be studied by solving an optimization problem analogous to (3.14), a

task we will undertake in the near future. In addition, it is also interesting to analyze

the optimal performance of other closure models using the framework developed here.

Furthermore, extending this work to understand the effect of the filter cutoff on the

optimal eddy viscosities and its placement in the inverse energy cascade or forward

enstrophy cascade ranges for a high resolution, fully developed turbulent simulation

would provide a more complete picture of closure models for 2D turbulence.
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Chapter 4

Enforcing Constraints Via

Adjoint Analysis

4.1 Introduction

Now, we consider an extension of the problem in Chapter 3, cf. (3.14), where we will

include an additional constraint to our nonstandard optimization problem. The opti-

mization problem of determining eddy viscosities has a nonstandard structure due to the

fact that our control variable has a functional dependence on the dependent variable.

The optimization problem becomes further complicated in the presence of additional

nonlinear constraints imposed on the eddy viscosities as considered here.

There are various forms in which constraints arise in optimization, with different ap-

proaches that can be used. Linear constraints typically define linear subspaces, in which

constraints can be enforced via orthogonal projections. When nonlinear constraints are

homogeneous, such as in Problem 1 in Chapter 2, then a simple rescaling or normal-

ization of the control variable can be used to enforce the constraint, cf. (2.23). For

general nonlinear constraints defining complex constraint manifolds, the best one can

do is define a tangent space which can be projected onto. In the present problem, we

72



Doctor of Philosophy– Pritpal Matharu; McMaster University– Mathematics

consider constraining the eddy viscosity such that the corresponding flow preserves an

energy-type quantity in a certain sense, which defines a complex manifold in the space

of eddy viscosities. Since characterization of this manifold through a suitable retrac-

tion operator is not feasible, we will need to resort to defining a tangent space. When

dealing with intricate problems with constraints on energy quantities, methods such as

Newton iterations can be employed (Farazmand and Sapsis 2017). Although this root

finding algorithm can be used, this method is computationally very expensive for en-

forcing constraints on PDE optimization problems. Adjoint calculus has been used to

solve PDE-constrained optimization problems, and has a long history beginning with

(Lions 1968). Despite this, to the best of our knowledge, it has not previously been

utilized for enforcing complicated nonhomogeneous constraints imposed on the control

variable. In Figure 4.1, we illustrate the main idea behind projecting on the tangent

space to approximately enforce constraints on a complex manifold, to be implemented

in this work.

In this work, we thus introduce the use of adjoint calculus to characterize the tangent

space to a constraint manifold, which allows one to approximately enforce constraints.

Using this technique, the constraint can be directly enforced to ensure the optimal con-

trol remains “close” to the constraint manifold for each iteration of a gradient descent

approach. We illustrate this novel technique by considering the problem from Chapter 3,

cf. (3.14), in which the objective functional is modified to consider the time-averaged,

least-squares error of the palinstrophy for a filtered DNS and LES field, with the addi-

tional constraint that the time-averaged enstrophy in the LES and in the filtered DNS

be equal. We demonstrate that this constraint can be effectively enforced, though in an

approximate sense, and also provide insights about the functional form of the optimal

eddy viscosity depending on whether or not the constraint is used.
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∇υJ

Nυ

Tυ

PTυ

PTυ (∇υJ )

M

Figure 4.1: Schematic representation of the projection of the gradient
∇υJ onto the manifold Tυ tangent to a general manifoldM. The gradient
∇υJ is projected onto the tangent space Tυ via the normal components
Nυ, to approximately enforce constraints represented by the general man-
ifoldM, cf. (4.15)

The structure of this chapter is as follows: the next section formulates the gen-

eral optimization problem, whereas Section 4.3 outlines the solution approach and Sec-

tion 4.4 introduces the adjoint-based method to enforcing the additional constraint on

the problem; our results are presented in Section 4.5, and a final discussion is provided

in Section 4.6.

4.2 Optimization Problem

Here we are interested in the long-time average of energy-type quantities, whereas previ-

ously in Chapter 3 we considered pointwise match in space and in time to the DNS field,

as well as in a certain statistical sense. This present problem is of particular importance

in engineering applications, as time averages of an output of certain quantities are often

of interest. We are interested in the palinstrophy

P(t) = 1
2

ˆ
Ω
|∇w̃(t,x)|2 dx, (4.1)
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where here we define the palinstrophy of the filtered DNS field, i.e., the filtered solution

of system (3.1). Using this quantity, we define the new objective functional J in the form

of the least-squares error between the palinstrophy evolution P(t) and the corresponding

palinstrophy evolution in the solution ω̃ of the LES problem (3.8) obtained for the given

eddy viscosity ν = ν(υ) parameterized by the function υ : [0, 1]→ R (hence, υ plays a

role analogous to the function ϕ in Chapter 3), i.e.,

J (υ):= 1
2D

ˆ T

0

[
P(t)− 1

2

ˆ
Ω

(∇ω̃(t,x; υ))2 dx
]2
dt,

= 1
2D

ˆ T

0

[
P(t)− P̃(t; υ)

]2
dt, (4.2)

where for simplicity we denote the palinstrophy in the LES as P̃(t; υ) and

D :=
[ˆ T

0
P(t)2 dt

] 3
2

,

is a normalization factor. From Poincaré’s inequality, we have that enstrophy is bounded

by palinstrophy, thus it is natural to consider enstrophy as another quantity of interest.

Now, suppose we wish to impose a constraint on the problem to ensure that as the eddy

viscosity is updated, the evolution of the LES system (3.8) preserves the enstrophy,

defined as

Ẽ(t, υ) = 1
2

ˆ
Ω
ω̃(t,x; υ)2 dx, (4.3)

in a time-averaged sense. As used in Chapter 3, we denote the time average of a function

as [f ]T := (1/T )
´ T

0 f(t) dt. Thus, we consider eddy viscosities parameterized by the

function υ, such that the time-averaged enstrophy in the corresponding LES flow is

given by E0, i.e.,

[
Ẽ(·; υ)

]
T

= 1
2T

ˆ T

0

ˆ
Ω
ω̃(t,x; υ)2 dx dt = E0. (4.4)
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In this problem we set E0 = 1
2T
´ T

0
´

Ω w̃(t,x)2 dx dt, which is the time averaged enstrophy

of the filtered DNS solution. Relation (4.4) thus defines a manifold in the subspace S,

cf. (3.13), namely,

M :=
{
υ ∈ C3([0, 1]) :

[
Ẽ(·; υ)

]
T

= E0,
d

dξ
υ(ξ) = d3

dξ3υ(ξ) = 0 at ξ = 0, 1
}
. (4.5)

We emphasize that this manifold in the space of eddy viscosities is defined implicitly

through a property of the corresponding LES flows, namely, the requirement that their

time-averaged enstrophy be equal to E0. Thus, we have the following problem for finding

an optimal eddy viscosity.

Problem 3. For the system (3.8) and objective functional (4.2), find

qυ := arg min
υ∈M

J (υ), (4.6)

where the optimal eddy viscosity qν is obtained from the ansatz given in (3.7), with ϕ

replaced with qυ.

4.3 Solution Approach

As before, we iteratively determine a local maximizer of Problem 3 using the discrete

gradient flow (3.15), suitably modified such that qυ = lim
n→∞

υ(n), where


υ(n+1) = υ(n) − τ (n) PTυ

(
∇υJ (υ(n))

)
, n = 0, 1, . . . ,

υ(0) = υ0,

(4.7)

in which υ(n) is the approximation of the optimal function qυ at the nth iteration (which

lies “close” to the constraint manifold M), ∇υJ (υ) is the gradient of the functional

(4.2) with respect to υ, and τ (n) is the step length along the descent direction, and υ0
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is an initial guess that lies on the constraint manifoldM. The projection operator PTυ
projects onto the space tangent to the manifold M at υ, which makes it possible to

approximately enforce the constraint (cf. Figure 4.1). It plays a key role in our approach

and is characterized below. The gradient of the objective functional (4.2) is determined

in an analogous way to what was done in Section 3.3, cf. (3.25). Namely, we first compute

the Gâteaux differential, for which we obtain

J ′(υ; υ′) := lim
ε→0

J (υ + ευ′)− J (υ)
ε

= d

dε
J
(
υ + ευ′

)∣∣∣
ε=0

=−
ˆ T

0
[P(t)− P̃(t; υ)]

ˆ
Ω

∇ω̃(t,x; υ) ·∇ω̃′(t,x; υ, υ′) dx dt,

=−
ˆ T

0

ˆ
Ω

[P(t)− P̃(t; υ)]∇ω̃(t,x; υ) ·∇ω̃′(t,x; υ, υ′) dx dt,

=
ˆ T

0

ˆ
Ω

[P(t)− P̃(t; υ)]∆ω̃(t,x; υ) ω̃′(t,x; υ, υ′) dx dt, (4.8)

where υ′ is an arbitrary perturbation of υ ∈ M, and ω̃′(t,x; υ, υ′) satisfies the corre-

sponding linear perturbation system (3.17). Following the same procedure as in Chap-

ter 3, we combine (3.17), (3.21), (3.22), (4.8), and (3.23) with the source term redefined

as W (t,x) =
(
P(t)− P̃(t)

)
∆ω̃ to obtain an expression for the L2 gradient of the objec-

tive functional. Then, solving (3.26) provides us with a H2 Sobolev gradient in the space

S, which however still needs to be projected onto the space tangent to the manifoldM

at υ, cf. Figure 4.1.

4.4 Enstrophy Constraint

In order to approximately enforce our enstrophy constraint, we need to characterize the

manifold M locally by constructing a tangent subspace Tυ at a given υ ∈ M. Since

both the manifold and its tangent bundle have co-dimension 1, this will be done by

constructing a “normal vector” Nυ, which can be used to project onto the tangent

subspace of the constraint manifold (see Figure 4.1). As we are unable to construct a
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computable retraction RM : Tυ → M from the tangent subspace Tυ to the constraint

manifoldM, at each iteration in (4.7) the constraint will be satisfied only approximately

with errors O(τ (n)). This tangent subspace is constructed utilizing an innovative use of

adjoint calculus, which we will now describe.

Consider the Gâteaux differential of the constraint (4.4) with respect to υ

[
Ẽ ′(·; υ, υ′)

]
T

:= lim
ε→0

[
Ẽ(·; υ + ευ′)− Ẽ(·; υ)

]
T

ε
= d

dε

[
Ẽ(·; υ + ευ′)

]
T

∣∣∣∣∣
ε=0

= 1
T

ˆ T

0

ˆ
Ω
ω̃(t,x; υ) ω̃′(t,x; υ, υ′) dx dt = 0, (4.9)

noting this is equal to zero since the Gateaux differential of E0 vanishes. As before, the

perturbation υ′ does not explicitly appear as a factor in the Gâteaux differential (4.9)

but is hidden in the source term in the linear system governing the evolution of ω̃′. We

note that (4.9) defines a bounded linear functional of υ′ ∈ S and in order to transform

it to the Riesz form with υ′ appearing explicitly as a factor, we introduce new scalar

adjoint fields ω̆∗ and ψ̆∗ which satisfy the judiciously chosen adjoint system

F∗



ω̆∗

ψ̆∗


:=



−∂tω̆∗ −∇⊥ψ̃ ·∇ω̆∗ + αω̆∗ + ψ̆∗

−∇ ·
(
2 (∇ω̃ ·∇ω̆∗) (dνds υ∇ω̃ + νL+ν0

smax
dυ
dσ ∇ω̃) + (νN + ν)∇ω̆∗

)
∆ψ̆∗ −∇⊥ · (ω̆∗∇ω̃)


=



1
T ω̃

0


,

(4.10a)

ω̆∗(t = T ) = 0, (4.10b)
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also subject to periodic boundary conditions. With the new systems introduced here,

we use the following duality-pairing relation

K

ω̃′

ψ̃′

 ,

ω̆∗

ψ̆∗



 :=
ˆ T

0

ˆ
Ω
K


ω̃′

ψ̃′

 ·

ω̆∗

ψ̆∗

 dx dt =
ˆ T

0

ˆ
Ω

∇ ·
(
(νL + ν0)υ′∇ω̃

)
ω̆∗dx dt,

ˆ T

0

ˆ
Ω


ω̃′

ψ̃′

 · F∗

ω̆∗

ψ̆∗

 dx dt =
ˆ T

0

ˆ
Ω

1
T
ω̃ ω̃′ dxdt︸ ︷︷ ︸[

Ẽ ′(·;υ,υ′)
]
T

,

(4.11)

where integration by parts with respect to both space and time was performed with all

the boundary terms vanishing due to periodicity, and the initial and terminal conditions

(3.17c) and (4.10b). Thus, we have obtained an expression for the Gâteaux differential

[
Ẽ ′(·; υ, υ′)

]
T

= −
ˆ T

0

ˆ
Ω

(νL + ν0) (∇ω̃ ·∇ω̆∗) υ′ dx dt, (4.12)

with the perturbation υ′ now appearing as a factor. However this is still not consistent

with the Riesz form since it requires integration with respect to s rather than space and

time. Again, we make an appropriate change of variables by representing our perturba-

tion as υ′(∇ω̃ ·∇ω̃) =
´ 1

0 δ
(

∇ω̃·∇ω̃
smax

− σ
)
υ′(σ) dσ. This, along with Fubini’s theorem,

which justifies swapping the order of integration, allows us to transform the Gâteaux

differential (4.12) into the required Riesz form

[
Ẽ ′(·; υ, υ′)

]
T

=
ˆ 1

0

[
−
ˆ T

0

ˆ
Ω
δ

(∇ω̃ ·∇ω̃

smax
− σ

)
(νL + ν0) ∇ω̃ ·∇ω̆∗ dx dt

]
υ′(σ) dσ,

=
〈
NL2

υ , υ′
〉
L2([0,1])

=
〈
NH2

υ , υ′
〉
H2([0,1])

= 0. (4.13)

Relation (4.13) defines a subspace Tυ tangent to the constraint manifoldM at υ, cf. Fig-

ure 4.1. To determine the normal vector NH2
υ characterizing this subspace, we first
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obtain the normal vector defined with respect to the L2 topology

NL2
υ (σ) = −

ˆ T

0

ˆ
Ω
δ

(∇ω̃ ·∇ω̃

smax
− σ

)
(νL + ν0) ∇ω̃ ·∇ω̆∗ dx dt. (4.14)

Then NH2
υ can be determined by solving system (3.26). Projection on the tangent

subspace Tυ is then achieved using the projection operator PTυ : S → Tυ defined as

PTυ
(
∇H2
υ J

)
= ∇H2

υ J − ζ NH2
υ , (4.15)

where ζ

ζ =

〈
∇H2
υ J ,NH2

υ

〉
H2([0,1])〈

NH2
υ ,NH2

υ

〉
H2([0,1])

, (4.16)

can be interpreted as a Lagrange multiplier. Thus, assuming that the initial guess υ0

satisfies the constraint given in (4.4), the projected gradient flow (4.7) ensures the iterates

υ(n+1) remain close the constraint manifoldM, with an error in the satisfaction of the

constraint of the order O(τ (n)).

4.5 Results

Here we illustrate the solution of Problem 3 using the projected gradient flow (4.7) with

the projection operator defined in (4.15). We emphasize that we only use a standard

gradient approach, with no conjugate-gradient method utilized, as these methods are

harder to implement in the presence of general nonlinear constraints. The numerical

approach is the same as outlined in Section 3.4, except that we use a third-order IMEX

method introduced by Alimo et al. (2021) (described in Appendix A) for time integra-

tion of the LES system (3.8) and the adjoint system (3.22), instead of the CN/RKW3

previously used. As a target we consider solutions of system (3.1) with the following
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parameters: νN = 6× 10−3, α = 5× 10−3, F = 5, and ka = kb = 4. For computational

parameters, use Nx = 256 equispaced points in each direction to discretize the spatial

domain, set the wavenumber cutoff kc = 5, fix the number of discretization points in the

state space Ns = 128, and T = 50 ≈ 30te, where again we define the eddy turnover time

as te :=
[´ T

0 E(t) dt/(8π2T )
]−1/2

(Bracco and McWilliams 2010). We set the regulariza-

tion parameters `1 = 100 and `2 = 10, to be used to determine the gradient ∇H2
υ J and

“normal vector” NH2
υ , for the H2 topology via (3.26). Although we solve our minimiza-

tion problem with respect to the nondimensional function υ, we will focus here on the

corresponding optimal eddy viscosities. In (4.7), we use a standard Leith-type initial

guess for the eddy viscosity

ν0(s) = (Cl kc)3√s+ γ, (4.17)

where the Leith constant Cl = 1.0992× 10−2 was chosen such that the eddy viscosity is

on the constraint manifold M. Due to the complex and nonstandard structure nature

of this problem, we demonstrate the validity our gradient ∇H2
υ J and of the “normal

vector” NH2
υ in Appendix A3.

To illustrate how the constraint is enforced, we solve the minimization problem with

and without the enstrophy constraint. That is, we solve (4.6) with υ ∈ S and υ ∈ M,

defined in (3.13) and (4.5), respectively. The decrease of the error functional J (υ(n)) is

shown in Figure 4.2a, where we notice less of a decrease when the enstrophy constraint

is imposed. As M is a manifold imbedded the subspace S, this restricts the choice of

eddy viscosities so it is expected that the eddy viscosities constrained to the manifold

M produce a smaller decrease of the objective functional. The eddy viscosities obtained

from both optimization problems are shown in Figure 4.2b, where it is clear that the

eddy viscosity constrained to the manifoldM reveals oscillations which are required in

order to enforce the constraint. Interestingly, we note that the qualitative features of the
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optimal eddy viscosity are different when the constraint is imposed. Most notably, for

small values of s the optimal eddy viscosity achieves positive values when the enstrophy

constraint is imposed, and negative values when no constraint is applied. As shown

in Figure 3.1b and Figure 3.5b, small values of s are attained more frequently in the

flow. Thus, this indicates that in order to match the flows palinstrophy accurately, the

eddy viscosity must inject energy into the system for small values of s, while dissipating

energy for small values of s will result in a better match of the time-averaged enstrophy.

To showcase the effectiveness of the method, we consider the time-averaged enstrophy[
Ẽ(·; υ)

]
T
, cf. (4.4), over the “training window” T , and normalized by E0 in Figure 4.3a.

To observe the effectiveness of eddy viscosities beyond the “training window”, we con-

sider the time-averaged enstrophy over twice the “training window”,
[
Ẽ(·; υ)

]
2T

and

normalized by E2T = 1
2 (2T )

´ 2T
0
´

Ω w̃(t,x)2 dx dt as a function of iteration in Figure 4.3b.

It is evident that imposing the enstrophy constraint via the projected gradient flow (4.7)

results in a value of the time-averaged enstrophy over T that remains close to target

value of E0. This approach performs noticeably better than the “no constraint” optimal

eddy viscosity, over both time windows. In addition, we visualize the enstrophy (4.3) and

palinstrophy (4.1) as functions of time in Figure 4.4a and Figure 4.4b, respectively, with

the filtered DNS provided on these plots for comparison to the target field. The optimal

eddy viscosity determined with constraint, on average, maintains a value of enstrophy

closer to the target of E0 compared to when no constraint is used. On the other hand,

the optimal eddy viscosity trained with no constraint provides closer palinstrophy values

to the filtered DNS. These comparisons of the enstrophy and palinstrophy are both as

expected, as the constraint is enforced on the enstrophy, however no constraint achieves

a better decrease of the error functional. Finally, we compare the time evolution of the

normalized correlation C(t) from (3.28), and the adjusted correlation log10 |1 − C(t)| in

Figure 4.5a and Figure 4.5b, respectively, to assess how well the optimal eddy viscosities
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combat the exponential divergence of trajectories for the flow. The divergence of trajec-

tories occur roughly at the same rate for each case over the “training window”. However

beyond this window, the eddy viscosity obtained using the constraint takes longer to

become uncorrelated.
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(a)

(b)

Figure 4.2: (a) Dependence of the normalized functional
J (υ(n))/J (υ0), on the iteration n and (b) dependence of the cor-
responding optimal eddy viscosity qν on

√
s for (blue, dashed-dot line)

υ ∈ S and (red, dashed line) υ ∈ M. Panel (b) also shows the standard
Leith-type initial guess, cf. (4.17).
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(a)

(b)

Figure 4.3: Normalized time-averaged enstrophy (4.4) for (a) the “train-
ing window” (T ) and (b) twice the “training window” (2T ). The time-
averaged enstrophy is shown for (blue, dashed-dot line) υ ∈ S and (red,
dashed line) υ ∈M.
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(a)

(b)

Figure 4.4: (a) Enstrophy (4.3) and (b) palinstrophy (4.1) for (black,
solid line) the filtered DNS, (blue, dashed-dot line) optimal υ ∈ S, and
(red, dashed line) optimal υ ∈ M. Thick and thin lines correspond to,
respectively, time in the “training window” (t ∈ [0, T ]) and twice this
window (t ∈ (T, 2T ]).
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(a)

(b)

Figure 4.5: (a) Normalized correlation (3.28), C(t), and (b) adjusted
correlation log10 |1 − C(t)|, for (black, solid line) the filtered DNS, (blue,
dashed-dot line) optimal υ ∈ S, and (red, dashed line) optimal υ ∈ M.
Thick and thin lines correspond to, respectively, time in the “training
window” (t ∈ [0, T ]) and twice this window (t ∈ (T, 2T ]).
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4.6 Discussion

We introduced a computationally flexible framework for determining optimal eddy-

viscosity closure models subject to nonlinear constraints that define complex manifolds.

Enforcing these complex constraints requires searching for eddy viscosities on a con-

straint manifold, which was implemented utilizing novel tools based on adjoint calculus.

To illustrate these concepts, we consider an error functional that represents the least-

squares error between a target field (palinstrophy P(t) of a filtered DNS field) and

the palinstrophy of the LES with eddy-viscosity closure model, averaged over all time.

Although this is already a nonstandard problem, we add the additional nonlinear con-

straint that requires the eddy viscosities to produce LES flows with the same value of the

time-averaged enstrophy, hence restricting our search of eddy viscosities to a constraint

manifold.

First, we compute the gradient of the error functional, by using an adjoint-based

gradient approach outlined in Chapter 3, suitably modified. As a key innovation, the

constraint on enstrophy, which can only be approximately enforced, requires the in-

troduction of a subspace tangent to the constraint manifold described in terms of a

suitable “normal vector”. It was determined via an adjoint-based method, and allowed

us to define a projected gradient flow (4.7) where each iterate υ(n+1) was constructed in

the subspace tangent to the manifold, thus making it possible to satisfy the nonlinear

constraint approximately.

It was shown in Section 4.5 that approximately enforcing this constraint via projec-

tions onto the tangent subspace does indeed maintain a more consistent value of the

time-averaged enstrophy, compared to when no constraint is used. The eddy-viscosity

determined by approximately enforcing the constraint also clearly provided a better

match to the filtered DNS for the enstrophy over time, but not for the palinstrophy,

as is expected considering that the constraint is defined in terms of enstrophy values.
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Interestingly, a comparison of the eddy viscosities determined with and without the

constraint enforcement also offers insights on the functional form of the optimal eddy

viscosity to better match the palinstrophy or enstrophy, depending on which is a more

crucial quantity in an application.

Although the application in this study is for determining eddy-viscosity closure mod-

els, the main contribution of this work is the implementation of a complex nonlinear con-

straint in a nonstandard optimization problem. The introduction of this novel method

allows one to approximately enforce such constraints using a generalization of the adjoint

approach. We emphasize that the adjoint system (4.10), which needs to be solved in

order to determine the normal vector Nυ and the associated projection operator (4.15),

is defined in terms of the same adjoint operator, but with a different source term, as

the adjoint system (3.22), which has to be solved in order to determine the gradient

of the objective functional. This greatly simplifies the implementation of the proposed

approach.
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Chapter 5

Extensions and Open Problems

In this chapter, we describe some exciting and interesting extensions of the problems

considered in the previous sections. These problems are formulated to probe some out-

standing questions in turbulence, and pathways towards solutions are outlined, as results

for these problems have not been finalized yet.

5.1 Enstrophy Dissipation in 2D from the Perspective of

the Kinetic Theory

5.1.1 Overview

The problem of “anomalous dissipation” has traditionally been addressed from the point

of view of macroscopic fluids, by considering the Navier-Stokes flow in the inviscid limit.

To study fluids at the microscopic level one usually adopts the perspective of the kinetic

theory which relies on classical models such as the Boltzmann equation. In the hydro-

dynamic limit, the solutions of the Boltzmann equation have been shown to converge to

solutions of the Navier-Stokes equations (Bardos et al. 1991), including the case when a

model collisional kinetic equation is considered in place of the Boltzmann equation with a
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general collision kernel (Saint-Raymond 2003). In this work, we aim to study the enstro-

phy dissipation problem considered in Chapter 2 from the perspective of kinetic theory.

Below, we formulate an optimization problem allowing one to study maximum enstrophy

dissipation, at the microscopic level. To do this, we consider a fluid governed by the

Bhatnagar–Gross–Krook (BGK) Boltzmann equation, and set up a problem analogous

to the previous work in Chapter 2, which considered the 2D Navier-Stokes equation.

We then outline a proposed solutions approach for this problem. When completed, this

work will provide a novel and complementary perspective on this problem and the driv-

ing mechanisms to produce the largest enstrophy dissipation. Furthermore, we hope to

further probe the optimality of the initial data discovered in Chapter 2.

5.1.2 Introduction to the BGK Boltzmann Equation

Here, we provide an informal introduction to the simplified BGK collision operator in

the Boltzmann equation, rather than a rigorous introduction to the classical Boltzmann

equation. Although this model is simple compared to the Boltzmann equation with

binary collisions, and is not truly a collisional model (Saint-Raymond 2003), it is still

widely used and is typically considered for numerical simulations. The primary reason

to consider a BGK collision operator is due to its simplification of numerical simulations,

where a D2Q9 scheme can easily be implemented (Krüger et al. 2017). To introduce the

BGK Boltzmann equation we denote the Knudsen number, ε > 0, defined as the ratio of

Mach number over the Reynolds number. This acts as a small parameter in our system

that describes the ratio of the mean free path of a particle before a collision and the

characteristic length scale in the flow. Then a cloud of particles can be described via its

number density fε, which we consider as a function of space over a 2D periodic domain

Ω := T2 = [0, 1]2 and of velocity v ∈ Θ := R2. Thus, the microscopic interactions of fluid

particles with an initial condition f0
ε (x,v) can be described by the Boltzmann equation,
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with the BGK collision operator,

ε∂tfε + v ·∇fε = 1
νε

(
f eq
ε − fε

)
in (0, T ]× Ω×Θ, (5.1a)

fε(t = 0) = f0
ε , in Ω×Θ, (5.1b)

where

f eq
ε (t,x,v) := Rε

2πTε
· e−

∣∣|v|−Uε∣∣2/(2Tε),
ν is the relaxation parameter, and Rε, Tε, Uε satisfy

Rε(t,x) :=
ˆ

Θ
fε(t,x,v) dv,

Rε(t,x)Uε(t,x) :=
ˆ

Θ
vfε(t,x,v) dv,

Rε(t,x)|Uε(t,x)|2 + 2Rε(t,x)Tε(t,x) :=
ˆ

Θ
|v|2fε(t,x,v) dv.

Let M denote the Maxwellian defined as

M(v) := 1
2πe

−|v|2/2, v ∈ Θ.

In Saint-Raymond (2003), it is stated that if we consider the solution to (5.1) in

the form of a fluctuation near the Maxwellian, hence fε = M (1 + εgε), then as ε → 0

the Boltzmann equation that gε satisfies converges to the Navier-Stokes equation in

hydrodynamic limit. More precisely, the Boltzmann equation that the fluctuation gε

satisfies is

ε∂tgε + v ·∇gε = 1
νε

(
Π(gε)− gε

)
+O(ε2) in (0, T ]× Ω×Θ,
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where

Π(gε) := 〈gε〉M + v · 〈gεv〉M +
〈
gε

(
|v|2

2 − 1
)〉

M

(
|v|2

2 − 1
)
,

with 〈·〉M denoting the average over measure M dv, i.e.,

〈Ξ〉M =
ˆ

Θ
Ξ(v)M(v) dv,

for any integrable function Ξ = Ξ(v). As ε→ 0,

〈gεv〉M → u,
〈
gε
(
|v|2 − 4

)〉
M
→ 4θ, (5.2)

where u and θ satisfy the Navier-Stokes-Fourier equations

∂tu + ∇ · (u⊗ u) + ∇Π = ν∆u,

∂tθ + ∇ · (θu) = ν∆θ.

From above, we notice that the approach in Saint-Raymond (2003) is linear as it

relies on truncation at O(ε2). To retain some nonlinearity in our BGK model, we first

simplify f eq
ε by using the Hermite expansion in v up to O(|v|2), i.e.,

f eq
ε ≈M Rε

(
1 + v · Uε + (v · Uε)2−

∣∣∣Uε ∣∣∣2) , (5.3)

assuming the system to be isothermal. Substituting fε = M (1 + εgε) in (5.1) with (5.3)

and truncating terms of order O(ε2), which do not contribute to the hydrodynamic limit

as ε → 0, we obtain that the fluctuation gε satisfies the Boltzmann equation with a
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modified BGK model

ε∂tgε + v ·∇gε = 1
νε

(
geq
ε − gε

)
in (0, T ]× Ω×Θ, (5.4a)

gε(t = 0) = η, in Ω×Θ, (5.4b)

where η is the initial condition and

geq
ε := ρε + v · uε + ε

(
(v · uε)2 − |uε|2

)
, (5.5)

with

ρε := 〈gε〉M , (5.6)

uε := 〈vgε〉M . (5.7)

By following the derivation in Saint-Raymond (2003), it can be shown that as ε → 0,

uε → u in a weak sense where u satisfies the Navier-Stokes equation

∂tu + (u ·∇)u−∆u + ∇Π = 0,

∇ · u = 0.

5.1.3 Optimization Problem

Let S := −v ·∇⊥ = v2∂x1 − v1∂x2 , where v = (v1, v2)T . Our main interest in this work

is maximizing the functional

Jε(η) = ν

T

ˆ T

0

ˆ
Ω

∣∣∣∣∇ˆ
Θ
Sgε(t,x,v; η)M(v) dv

∣∣∣∣2 dx dt. (5.8)

Using (5.7), and that in the limit as ε → 0, uε converges in a weak sense to the ve-

locity field u in the Navier-Stokes equation, then we can conclude that the expression
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´
Θ Sgε(t,x,v; η)M(v) dv, which is a function of time t and space x, is analogous to the

vorticity field of the 2D Navier-Stokes equation, cf. (1.3). Therefore, expression (5.8) can

be considered as the enstrophy dissipation per unit time, which depends on the initial

distribution η in (5.4b).

The goal of this work is to study the connection between optimal initial distributions

η maximizing functional (5.8) and the optimal initial conditions presented in Section 2.4.

Thus, we consider an optimization problem analogous to Problem 1 to study the rate

in which enstrophy dissipation vanishes in the limit as ν → 0, now in the setting of the

kinetic theory. In order to study this problem in the setting of the kinetic theory, we

must impose an additional constraint to ensure conservation of mass, where the initial

mass is equal to a constant, m0. In addition, let L2
M (Θ) be the weighted L2 space defined

as

L2
M (Θ) :=

{(ˆ
Θ
|Ξ(v)|2M(v)dv

) 1
2
<∞

∣∣ Ξ ∈ L1
loc(R2)

}
.

Now we state the optimization problem.

Problem 4. Given P0, ν, ε, T > 0 in system (5.4) and the objective functional (5.8),

find

qην,Tε = arg max
η∈S

Jε(η), where

S :=
{
η ∈ H4(Ω) ∩ L2

M (Θ) :
ˆ

Ω

∣∣∣∣∇ ˆ
Θ
Sη(x,v)M(v) dv

∣∣∣∣2 dx = P0 ,

ˆ
Ω

ˆ
Θ
η(x,v)M(v) dv dx = m0

}
. (5.9)

For Problem 4, we will use previously obtained optimal initial conditions for 2D

Navier-Stokes investigated in Chapter 2. To obtain a velocity field from vorticity one

can invert the Biot-Savart law, however determining η provided the velocity u0 does not
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have a unique solution gε as in (5.7). As a result, a new function must be constructed

to satisfy the equations around the equilibrium f eq
ε (Krüger et al. 2017). As previously

done, the goal is to determine a family of locally maximizing solutions of Problem 4 for

a range of ε and T , while considering a fixed initial palinstrophy P0. Unlike obtaining η

from u0, using (5.6) and (5.7) we can obtain a unique velocity field u0 from η, and thus a

unique vorticity field ω0, which we can use to compare with the optimal initial conditions

found in Chapter 2. The requirement that η ∈ H4(Ω) ∩ L2
M (Θ) ensures that (5.4) admits

unique local solutions gε ∈ L∞(0, T : H4(Ω) ∩ L2
M (Θ)) (Zhongyang 2022). Now we will

suitably adapt the approach used in Chapter 2, to determine local maximizers of (5.8).

5.1.4 Gradient-Based Solution Approach

As we did in Chapter 2, we formulate our solution approach in the continuous setting

for the objective functional Jε(η), using an “optimize-then-discretize” approach (Gun-

zburger 2003). Thus, for fixed values of P0, ν, ε, and T , a local maximizer qην,Tε of

Problem 4 can be determined as qην,Tε = limn→∞ η
(n) using an iterative gradient flow

procedure projected on S (5.9) defined in Problem 4

η(n+1) = PS
(
η(n) + τn∇Jε

(
η(n)

) )
,

η(1) = η0,

(5.10)

where η(n) is the maximizer obtained at the n-th iteration, η0 is the initial guess (from

Chapter 2), and τn is the length of the step in the direction of the gradient ∇Jε(η(n)).

To represent the infinite-dimensional sensitivity of the objective functional (5.8)

to perturbations of the initial condition η, we require an expression for the gradi-

ent ∇Jε(η) in (5.10). We will determine the gradient by using the Riesz represen-

tation theorem (Luenberger 1969) and the fact that Gâteaux (directional) differential

Jε′(η; ·) : H2(Ω,Θ) → R, defined as Jε′(η; η′) := limε→0 ε
−1 [Jε(η + εη′)− Jε(η)] for
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some perturbation η′ ∈ H2(Ω×Θ), is a bounded linear functional on H2(Ω,Θ). The

Gâteaux differential of Jε(η) can be computed as

Jε′(η; η′)

= 2ν
T

ˆ T

0

ˆ
Ω

(
∇
ˆ

Θ
S̀gε(t,x, v̀; η)M(v̀) dv̀

)
·
(

∇
ˆ

Θ
Sg′ε(t,x,v; η, η′)M(v) dv

)
dx dt,

= −2ν
T

ˆ T

0

ˆ
Ω

(
∆
ˆ

Θ
S̀gε(t,x, v̀; η)M(v̀) dv̀

)(ˆ
Θ
Sg′ε(t,x,v; η, η′)M(v) dv

)
dx dt,

= −2ν
T

ˆ T

0

ˆ
Ω

ˆ
Θ

(
∆
ˆ

Θ
S̀gε(t,x, v̀; η)M(v̀) dv̀

)
Sg′ε(t,x,v; η, η′)M(v) dv dx dt,

=
ˆ T

0

ˆ
Ω

ˆ
Θ

(2ν
T
S∆
ˆ

Θ
S̀gε(t,x, v̀; η)M(v̀) dv̀

) (
g′ε(t,x,v; η, η′)

)
M(v) dv dx dt,

(5.11)

where the integration by parts with respect to the x-coordinate was performed twice,

S̀ := −v̀ ·∇⊥, and g′ε(t,x,v; η, η′) satisfies the linearized Boltzmann equation. That is,

perturbing the initial condition η ← η + εη′, for 0 < ε� 1, substituting this into (5.4),

and collecting terms of order O(ε) we obtain

ε∂tg
′
ε + v ·∇g′ε = 1

νε

(
P (g′ε)− g′ε

)
, (5.12a)

g′ε(t = 0) = η′, (5.12b)

which is also subject to periodic boundary conditions in x and where

P (g′ε) := ρ′ε + v · u′ε + 2ε
[
[v · uε]

[
v · u′ε

]
− uε · u′ε

]
,

ρ′ε := 〈g′ε(t,x,v; η, η′)〉M ,

u′ε := 〈vg′ε(t,x,v; η, η′)〉M .

Viewing (5.11) as a bounded linear functional of η′ and using the fact that it is a

directional derivative, the Riesz representation theorem allows us to express (5.11) as
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the inner product

Jε′(η; η′) =
〈
∇Jε(η), η′

〉
H2(Ω×Θ)

=
〈
∇L2Jε(η), η′

〉
L2(Ω,Θ)

, (5.13)

where the Riesz representers ∇Jε(η) and ∇L2Jε(η) are the gradients of the objective

functional computed with respect to theH2 and L2 topology, respectively. We will derive

the L2 gradient here, however in practice, the H2 gradient will be used in computations.

The expression in (5.11) is inconsistent with the Riesz form (5.13) as the pertur-

bation of the initial condition η′ is hidden in the system determining the evolution of

g′ε(t,x,v; η, η′) and must be uncovered. To perform this, we introduce the adjoint field

g∗ε : [0, T ]×Ω×Θ→ R, which satisfies the judiciously defined adjoint system (subject

to periodic boundary conditions in x)

ε∂tg
∗
ε + v ·∇g∗ε + 1

νε
Q(g∗ε)−

1
νε
g∗ε = −2ν

T
S

(
∆
ˆ

Θ
S̀gε(t,x, v̀; η)M(v̀) dv̀

)
, (5.14a)

g∗ε(T, x, v) = 0, (5.14b)

where

Q(g∗ε) := 〈g∗ε〉M + v · 〈vg∗ε〉M + 2ε
[
(uε)T · 〈(v ⊗ v)g∗ε〉M · v − (v · uε)〈g∗ε〉M

]
.

Similar to (5.4), system (5.14) admits local solutions g∗ε ∈ L∞(0, T : H4(Ω) ∩ L2
M (Θ))

(Zhongyang 2022). Now integrating (5.12a) against the adjoint field g∗ε over the time-

space-velocity domain [0, T ]×Ω×Θ with respect to the measure M dv and performing
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integration by parts with respect to both time and space, we obtain

ˆ T

0

ˆ
Ω

ˆ
Θ

[
ε∂tg

′
ε + v ·∇g′ε −

1
νε
P (g′ε) + 1

νε
g′ε

]
g∗εM dv dx dt = 0,

ˆ T

0

ˆ
Ω

ˆ
Θ

[
ε∂tg

∗
ε + v ·∇g∗ε + 1

νε
Q(g∗ε)−

1
νε
g∗ε

]
g′εM dv dx dt =

ˆ
Ω

ˆ
Θ
g∗(0,x,v) η′M(v) dv dx,

ˆ T

0

ˆ
Ω

ˆ
Θ

[
−2ν
T
S

(
∆
ˆ

Θ
S̀gεM(v̀) dv̀

)]
g′εM(v) dv dx dt︸ ︷︷ ︸

Jε′(η;η′)

=
ˆ

Ω

ˆ
Θ
g∗ε(0,x,v) η′M(v) dv dx,

(5.15)

where spatial boundary terms vanish when performing integration by parts due to pe-

riodicity and the terminal condition from integration by parts is zero due to (5.14b).

From (5.15), we obtain that Jε′(η; η′) =
´

Ω
´

Θ g
∗(0,x,v) η′M(v) dv dx, and can extract

the L2 gradient via (5.13), to obtain

∇L2Jε(x,v) = g∗ε(0,x,v). (5.16)

The creation of a numerical scheme and implementation of this optimization procedure

is currently underway and results will be reported in the future.

5.2 Energy Transfer

5.2.1 Introduction

The energy cascade between the hierarchy of scales was described first by Richardson

1922, who provided a statistical description of this cascade for turbulent flows. This

idea further leads to the concept of self-similar flow structures, predicted by Kolmogorov

(1941c). Although this is described from a statistical point of view, it is still yet to be

understood from the mathematical perspective. Of particular interest are the mecha-

nisms and flow structures which sustain the self-similar hierarchy for the energy cascade

dynamics. There has been recent work studying this problem using direct numerical
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simulations (Goto et al. 2017; Yoneda et al. 2022), and in this project we hope to further

explore this work by constructing optimal initial data that realizes this energy transfer

over one eddy-turnover time. This will allow us to understand the flow structures of the

energy cascade.

5.2.2 Burgers Equation and Optimization Approach

As a simple “toy” problem, we are interested in the energy transfer in flows described

by the 1D Burgers equation on a domain Ω = [0, 2π] with periodic boundary conditions

∂u

∂t
+ u

∂u

∂x
− ν ∂

2u

∂x2 = 0 in (0, T ]× Ω, (5.17a)

u(t = 0) = φ in Ω, (5.17b)

where ν > 0 is the viscosity and φ is the initial condition. Similar to the 3D Navier-

Stokes system, (5.17) exhibits a forward energy cascade of kinetic energy where energy

is transferred from large scales to small scales, which is the main focus of this project.

We are interested in studying this energy transfer over a single eddy-turnover time,

T , between scales, which can be viewed as a difference between Fourier modes. To study

the structures driving this energy transfer over T , we can observe the differences over

Fourier modes by defining the functional

Jλ(φ) :=1
2

ˆ ∞
0

[
|φ̂(k)|2 − λ|û(T, λk;φ)|2

]2
dk,

=1
2

ˆ ∞
0

[
|φ̂(k)|2 − λ

ˆ T

0
δ(t− T ) |û(t, λk;φ)|2dt

]2

dk, (5.18)

where φ̂(k) is the Fourier transform of φ(x), δ(·) is the Dirac delta distribution, and

λ ∈ N+ is a parameter to define the energy transfer. As was done in Section 3.2.2, we

will slightly abuse notation and consider k ∈ R for simplicity, however k ∈ Z will need to

be used in actual implementation. Here, we seek to construct optimal initial conditions
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that will sustain a self-similar hierarchy between scales of motion, which can be done by

minimizing the functional (5.18). This leads to the following optimization problem.

Problem 5. For fixed T and λ ∈ N+ for (5.18), find

qφ=arg min
φ∈H1(Ω)

Jλ(φ), subject to ‖φ‖Ḣ1(Ω) = 1. (5.19)

Similar to the procedure described in Section 5.1.4, we utilize the Riesz representation

theorem (Berger 1977), and compute the Gâteaux (directional) differential defined as

Jλ′(φ;φ′) := limε→0 ε
−1 [Jλ(φ+ εφ′)− Jλ(φ)] for some perturbation of the initial φ′ ∈

H1(Ω), which is a bounded linear functional when viewed as a function of the second

argument. Before computing the Gâteaux differential, we use Parseval’s identity and

note that for real-valued functions υ1(x), υ2(x) ∈ L2(Ω),

ˆ ∞
0

υ̂1(k)υ̂2(k) dk = 〈υ̂1(k), υ̂2(k)〉L2(R) ,

= 〈υ1(x), υ2(x)〉L2(Ω) ,

= 〈υ1(x), υ2(x)〉L2(Ω),

= 〈υ̂1(k), υ̂2(k)〉L2(R),

=
ˆ ∞

0
υ̂2(k)υ̂1(k) dk. (5.20)
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Since |φ̂(k)|2 − λ |û(T, λk;φ)|2 are real-valued for all k ∈ R, we use (5.20) to compute

the Gâteaux differential of Jλ(φ) with respect to φ as

Jλ′(φ;φ′) =
ˆ ∞

0

[
|φ̂(k)|2 − λ |û(T, λk;φ)|2

] [
φ̂′(k)φ̂(k) + φ̂(k)φ̂

′
(k)
]
dk

−
ˆ ∞

0
λ
[
|φ̂(k)|2 − λ |û(T, λk;φ)|2

] [
û′(T, λk;φ, φ′)û(T, λk;φ)

]
dk

−
ˆ ∞

0
λ
[
|φ̂(k)|2 − λ |û(T, λk;φ)|2

] [
û(T, λk;φ)û′(T, λk;φ, φ′)

]
dk,

= 2
ˆ ∞

0

[
|φ̂(k)|2 − λ |û(T, λk;φ)|2

]
φ̂(k) φ̂

′
(k) dk

− 2
ˆ ∞

0
λ
[
|φ̂(k)|2 − λ |û(T, λk;φ)|2

] ˆ T

0
δ(t− T )û(t, λk;φ) û′(t, λk;φ, φ′)dt dk,

(5.21)

where u′(t, x;φ, φ′) satisfies

∂u′

∂t
+ u′

∂u

∂x
+ u

∂u′

∂x
− ν ∂

2u′

∂x2 = 0 in (0, T ]× Ω, (5.22a)

u′(t = 0) = φ′ in Ω. (5.22b)

In order to extract the gradient ∇φJλ(φ) from (5.21), we use the use the Riesz repre-

sentation theorem (Berger 1977) to note

Jλ′(φ;φ′) =
〈
∇H1
φ Jλ, φ′

〉
H1(Ω)

=
〈
∇L2
φ Jλ, φ′

〉
L2(Ω)

. (5.23)

The first term in (5.21) is in the appropriate Riesz form (5.23), however the perturbation

φ′ must be uncovered in the second term. To do this, we introduce the adjoint variable

u∗, which satisfies

−∂u
∗

∂t
+ u∗

∂u

∂x
− ∂(uu∗)

∂x
− ν ∂

2u∗

∂x2 = 0, (5.24a)

u∗(t = T, x) = W0(x), (5.24b)
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where W0(x) is the terminal condition defined in Fourier space as

Ŵ0(k) = −2λ
[
|φ̂(k)|2 − λ |û(T, λk;φ)|2

]
û(T, λk;φ). (5.25)

We integrate (5.22) against the adjoint variable u∗ over the time-space domain [0, T ]×Ω

and perform integration by parts with respect to both time and space, to obtain

ˆ T

0

ˆ
Ω

[
∂u′

∂t
+ u′

∂u

∂x
+ u

∂u′

∂x
− ν ∂

2u′

∂x2

]
u∗ dx dt = 0,

ˆ
Ω
u∗(T, x)u′(T, x) +

ˆ T

0

[
−∂u

∗

∂t
+ u∗

∂u

∂x
− ∂(uu∗)

∂x
− ν ∂

2u∗

∂x2

]
φ′ dt dx =

ˆ
Ω
u∗(0, x)φ′ dx,

ˆ
Ω
u∗(T, x)u′(T, x) dx =

ˆ
Ω
u∗(0, x)φ′ dx, (5.26)

where the adjoint equation is equal to zero from (5.24a) and spatial boundary terms

resulting from integration by parts vanish due to periodicity. The expression given in

(5.26) is precisely the second term in (5.21). Thus, invoking the Riesz representation

theorem, we can deduce the L2-gradient of (5.18), ∇L2
φ Jλ, defined in Fourier space to be

∇̂L2
φ Jλ(k) = 2

[
|φ̂(k)|2 − λ |û(T, λk;φ)|2

]
φ̂(k) + û∗(0, k). (5.27)

Results obtained by solving Problem 5 as described above will be reported in the near

future. It is expected that the optimal initial conditions constructed will give us greater

insight to the self-similar structure that leads to Kolmogorov–Richardson energy cascade.

As this is simply a toy problem, the ultimate goal is to extend this work to the 3D

Navier-Stokes system, where the initial conditions are expected to be antiparallel tubular

vortices.
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Chapter 6

Discussion & Conclusions

In this work, we investigate some fundamental theoretical and computational problems

that arise in 2D turbulence. Formulated in the continuous setting as optimization prob-

lems, these problems are solved using an optimize-then-discretize approach, which was

applied numerically via computational methods. Using pseudospectral methods to effi-

ciently compute solutions to PDEs, solutions of the optimization problems were obtained

via iterative gradient descent/ascent methods with gradients conveniently computed by

solving adjoint systems. Furthermore, we introduce the technique of utilizing adjoint

calculus to impose complicated nonhomogeneous constraints on the control variable of

an optimization problem. In this chapter, we briefly discuss research contribution made

in different chapters.

In Chapter 2, we probe the sharpness of the upper bound bounds on enstrophy

dissipation in 2D Navier-Stokes flows in the limit of zero viscosity. Initial conditions that

maximize enstrophy dissipation locally for a given time window and starting with a fixed

palinstrophy are determined numerically as solutions to an optimization problem via an

adjoint-based gradient ascent method. Multiple branches were found, which were noted

to possess distinct features to increase palinstrophy over the prescribed time window.

Ultimately, the sharpness of an estimate due to Ciampa et al. (2021) was shown to be
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in agreement with the behavior of the extremal flows found in this chapter. Estimates

of this bound have historically been approached using mathematical analysis, however

here we have demonstrated the sharpness of this bound, through the use of optimization

methods.

Chapter 3 focuses on the problem of fundamental performance limitations of closure

models of turbulence flows. We construct optimal eddy viscosities as a closure model,

using a generalized Leith model for 2D LES. Using minimum assumptions on eddy vis-

cosities, LES solutions were constructed to best match filtered DNS data. This resulted

in a PDE-optimization problem with a nonstandard structure, which was solved via

adapting the adjoint-based gradient method. The main findings of this work indicate

that the performance of LES improves as the regularization in the eddy viscosities is

reduced. In turn, the eddy viscosities exhibit increasingly rapid oscillations and we con-

clude that the problem of finding optimal eddy viscosities is ill-posed as the optimal

eddy viscosities do not converge to a well-defined limit. To achieve useful eddy viscosi-

ties in practice, which would not reach the theoretical performance limitations, stronger

regularization is required, as demonstrated in this chapter as well.

Extending the work of Chapter 3, Chapter 4 investigates determining optimal eddy

viscosities subject to an additional nonlinear and nonhomogeneous constraint. Modify-

ing our objective functional from Chapter 3 to consider the time-averaged, least-squared

error between palinstrophies in a filtered DNS and LES solutions, we add the constraint

that the time-averaged enstrophy in each solution also be equal. This constraint de-

fines a complex manifold in the space of eddy viscosities serving as the control variable,

which is extremely difficult to enforce in a computationally efficient manner. To address

this problem, we developed a method for approximately enforcing general nonlinear con-

straints defining complex constraint manifolds. Using adjoint calculus, we were able to

define a subspace tangent to the constraint manifold, on which we projected the gradient
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flow to approximately enforce the constraint. Although the constraint is only approxi-

mately enforced, the results demonstrated that this approach did result in a better match

between the enstrophy in the target and optimized flows, when compared to the case

without any constraint. As expected, in the constrained problem a worse decrease in the

objective functional was obtained. However a comparison of the two optimal eddy vis-

cosities, when the enstrophy constraint was and was not imposed, provided insight into

qualitative features of the optimal eddy viscosities. The main contribution of this work

is a general framework of using adjoint calculus in a “nonstandard” manner, namely,

to approximately enforce general nonlinear constraints, in a computationally efficient

method.

Two open problems are explored in Chapter 5, where they are motivated and we also

present pathways for solutions for these problems. First, we outlined a research problem

which extends the work conducted in Chapter 2, from the perspective of kinetic theory

using the Boltzmann equation. The problem was formulated to study enstrophy dissi-

pation in the context of the Boltzmann equation, which will provide a complementary

viewpoint onto to this problem. In addition, we outline a problem to study Kolmogorov-

Richardson energy cascade, by constructing self-similar initial conditions to understand

the energy transfer between scales in 1D Burgers flows on a torus. Both these problems

are likely to produce intriguing results which will be reported upon in the future.

This thesis provides new perspective and insight to the 2D Navier-Stokes system,

using optimization methods. The study of fluid mechanics has been traditionally domi-

nated by determining solutions of a governing equations, to understand flow properties.

In this work, we showcase the use of optimization methods and computational mathe-

matics to construct solutions that possess specific properties. This provides a new avenue

for studying problems in fluid mechanics, which assist in solving some of the open prob-

lems that exist in the field. Moreover, this work acts as a stepping-stone, providing a
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framework to approach these problems in the context of 3D Navier-Stokes flow.
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Appendix A

Numerical Methods for the 2D

Navier-Stokes System

We numerically solve the 2D Navier-Stokes system to obtain solutions for the opti-

mization problems considered in Chapters 2, 3, and 4. Here we describe the numerical

methods employed to solve the 2D Navier-Stokes system (1.3), which are suitable for

both the unforced setting, cf. (2.1), and with the forced setting, cf. (3.1). These sys-

tems are solved forward in time, whereas the corresponding adjoint systems, (2.19) and

(3.22), must be solved backwards in time. However, via the convenient change of the

time variable, t′ = T − t in (2.19) and (3.22), these numerical methods are also used

to solve the systems backwards in time. We implement a pseudospectral method for

spatial discretization of the equations, where differentiation and other linear operators

are computed in Fourier space using the FFT algorithm (based on the FFTW implemen-

tation (Frigo and Johnson 2005)) to evaluate the Fourier transform. Nonlinear terms are

computed in the physical space, using an appropriate dealiasing method based on the

standard 3/2 rule (Hou 2009). Time integration is performed using an implicit/explicit

Runge-Kutta scheme (Alimo et al. 2021) for the problems considered in Chapters 2 and

4, whereas a Crank-Nicolson combined with third-order Runge–Kutta–Wray method was
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used for problems considered in Chapter 3.

A1 Spatial Discretization — Pseudospectral Method

Consider a scalar field w : (0, T ] × Ω → R, and the set of wavevectors K = {k ∈ Z2 :

|k| ≤ K}, whereK is the maximum resolved wavenumber. Without loss of generality, let

Ω = [0, 2π]2. Then, denoting the Fourier coefficient ŵ(t,k), we can define the Galerkin

approximation of w(t,x) as

wK(t,x) =
∑

k∈K

ŵ(t,k) eik·x,

=
∑

k∈K

ŵk1,k2(t) ei(k1x1+k2x2),

where k = (k1, k2) and the sum is over these components such that −K1 ≤ k1 ≤ K1,

−K2 ≤ k2 ≤ K2, with K =
√
K2

1 +K2
2 . Similarly, we define the Galerkin approxima-

tion of the streamfunction ψ(t,x) by denoting the Fourier coefficient ψ̂(t,k), which we

represent as

ψK(t,x) =
∑

k∈K

ψ̂(t,k) eik·x.

With this, we can approximate our 2D vorticity equation (1.3) as a finite-dimensional

system

∂ŵ

∂t
+ N̂ (ψ̂, ŵ)(t,k)− ν |k|2ŵ = f̂ω, ∀ t ∈ (0, T ], ∀ k ∈ K , (A.1a)

−|k|2ψ̂ = −ŵ, ∀ t ∈ (0, T ], ∀ k ∈ K , (A.1b)

ŵ(t = 0) = ŵ0, ∀ k ∈ K , (A.1c)

where ŵ0 is the Fourier transform of the initial condition w0, and N̂ is Fourier transform

of the nonlinear term, denoted N . The Fourier-truncated system (A.1) can also be
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written in the canonical form

dv

dt
= Lv +N (v), (A.2)

where v denotes the vector of the Fourier coefficients ŵ, ψ̂ and L contains the linear

operators on the RHS. The Fourier modes in (A.1) are coupled due to the nonlinear

term N̂ , which can be represented as a convolution in Fourier space

N̂ (ψ̂, ŵ)(t,k) =
ˆ

Ω

 K2−1∑
q=−K2

iqψ̂k1,q(t)

  K1−1∑
p=−K1

ipŵp,k2(t)

−
 K1−1∑
p=−K1

ipψ̂p,k2(t)

  K2−1∑
q=−K2

iqŵk1,q(t)

 e−ik·x dx,

=
ˆ

Ω


K1−1∑
p=−K1

K2−1∑
q=−K2

p2+q2=|k|

− pqψ̂k1,q(t)ŵp,k2(t) + pqψ̂p,k2(t)ŵk1,q(t)

 e−ik·x dx.

Computing a convolution is computationally expensive, with cost proportional toO(N2),

and is impractical to be used in this setting. Instead, nonlinear products are computed

in physical space, by taking the inverse Fourier transform of each term in N after per-

forming differentiation in Fourier space, i.e.,

∂ψK(t,x)
∂x1

=
∑

k∈K

(ik1) ψ̂(t,k) eik·x, (A.3a)

∂ψK(t,x)
∂x2

=
∑

k∈K

(ik2) ψ̂(t,k) eik·x, (A.3b)

∂wK(t,x)
∂x1

=
∑

k∈K

(ik1) ŵ(t,k) eik·x, (A.3c)

∂wK(t,x)
∂x2

=
∑

k∈K

(ik2) ŵ(t,k) eik·x, (A.3d)
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and then computing N in physical space

N (t,x) = ∂ψK(t,x)
∂x2

∂wK(t,x)
∂x1

− ∂ψK(t,x)
∂x1

∂wK(t,x)
∂x2

.

This nonlinear product is significantly less computationally expensive (with cost of order

O(N)), and simply requires a Fourier transform from physical space back to Fourier

space. When transforming the nonlinear products back to Fourier space, dealiasing is

performed using a Gaussian filtering based on the 3/2 rule (Hou 2009)

ρ(k) = e−36
( |k|
K

)36

,

where K = 2N
3 .

Fourier transforms are efficiently computed using the FFT algorithm, more specifi-

cally the FFTW implementation (Frigo and Johnson 2005), which only has a computa-

tional complexity of O(N log(N)). When performing these computation, these methods

are combined with a parallel implementation using the Message Passing Interface (MPI).

A2 Four-Step, Third Order IMEX Method

We describe the four-step, globally third-order accurate mixed implicit/explicit (IMEX)

Runge-Kutta scheme with low truncation error and low-storage requirements, introduced

by Alimo et al. (2021). This time stepping method is preferred over the classic Crank-

Nicolson combined with third-order low-storage Runge–Kutta–Wray (CN/RKW3) scheme

that is typically used for fluids simulations (Le and Moin 1991; Bewley 2009), which is

only A-stable and second-order accurate overall. Discretizing (A.2), the IMEX scheme

incrementally advances the solution un at time tn, using four substeps, to the solution

un+1 at time tn+1, where we denote the step-size as ∆t (hence ∆t = tn+1 − tn). This
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scheme can be represented as follows

u(1) = un + ∆t
[
αI1 Lu(1) + βI1 Lun + βE1 N

(
un
)]
,

u(2) = u(1) + ∆t
[
αI2 Lu(2) + βI2 Lu(1) + βE2 N

(
u(1)

)
+ γE2 N

(
un
)]
,

u(3) = u(2) + ∆t
[
αI3 Lu(3) + βI3 Lu(2) + βE3 N

(
u(2)

)
+ γE3 N

(
u(1)

)]
,

un+1 = u(3) + ∆t
[
αI4 Lun+1 + βI4 Lu(3) + βE4 N

(
u(3)

)
+ γE4 N

(
u(2)

)]
.

(A.4)

Determined by Alimo et al. (2021), the coefficients αIm, βIm, βEm, and γEm in are given in

Table A1.1, where m denotes the substep. To numerically implement the scheme given

in (A.4), we rewrite the substeps as

u(1) =
(
I −∆t αI1 L

)−1 [
(I + ∆t βI1 L) un + ∆t βE1 N

(
un
)

+ γE1

]
,

u(2) =
(
I −∆t αI2 L

)−1 [
(I + ∆t βI2 L) u(1) + ∆t βE2 N

(
u(1)

)
+ ∆t γE2 N

(
un
)]
,

u(3) =
(
I −∆t αI3 L

)−1 [
(I + ∆t βI3 L) u(2) + ∆t βE3 N

(
u(2)

)
+ ∆t γE3 N

(
u(1)

)]
,

un+1 =
(
I −∆t αI4 L

)−1 [
(I + ∆t βI4 L) u(3) + ∆t βE4 N

(
u(3)

)
+ ∆t γE4 N

(
u(2)

)]
,

where I is the identity matrix of suitable dimension. As noted in Alimo et al. (2021), this

is a third-order method that possesses low-storage requirements and provides remarkable

stability. In comparison, the classic CN/RKW3 scheme (Le and Moin 1991) is three-

step, and only second-order accurate overall. Combining a Runge-Kutta and Crank-

Nicolson methods, for the nonlinear (treated explicitly) and linear (treated implicitly)

parts respectively, we can implement this scheme as

u(1) =
(
I −∆t αI1 L

)−1 [
(I + ∆t βI1 L) un + ∆t βE1 N

(
un
)

+ γE1

]
,

u(2) =
(
I −∆t αI2 L

)−1 [
(I + ∆t βI2 L) u(1) + ∆t βE2 N

(
u(1)

)
+ ∆t γE2 N

(
un
)]
,

un+1 =
(
I −∆t αI3 L

)−1 [
(I + ∆t βI3 L) u(2) + ∆t βE3 N

(
u(2)

)
+ ∆t γE3 N

(
u(1)

)]
.

(A.5)
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Substep, m αIm βIm βEm γEm

1 343038331393
1130875731271

35965327958
140127563663

14
25 0

2 288176579239
1140253497719

19632212512
2700543775099

777974228744
1346157007247

−251352885992
790610919619

3 253330171251
677500478386

−173747147147
351772688865

251277807242
1103637129625

−383714262797
1103637129625

4 189462239225
1091147436423

91958533623
727726057489

113091689455
220187950967

−403360439203
1888264787188

Table A1.1: Coefficients defining the IMEX scheme (A.4), from Alimo
et al. (2021).

Substep, m αIm βIm βEm γEm

1 4
15

4
15

8
15 0

2 1
15

1
15

5
12 −17

60

3 1
6

1
6

3
4 − 5

12

Table A1.2: Coefficients defining the CN/RKW3 scheme (A.5), from
Le and Moin (1991).

Using the spatial discretization described in the previous section, Appendix A1, we

compare the four-step IMEX and the three-step methods, given in (A.4) and (A.5),

respectively. Solving (1.3) as a test problem, we use N = Nx = Ny = 16 spatial

discretization points in the x and y directions with a periodic domain Ω := T2 = [0, 1]2

and a terminal time value T = 100. For simplicity of validating the numerical methods,

we use remove forcing from the system, hence fω = 0 in (1.3), and let ν = 2 × 10−4.

In order to test the methods, use an initial condition w0 representing the Taylor-Green

vortex

w0(x, y) = 2 sin(ax) sin(by), (A.6)
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which produces an analytic solution

wTG(t, x, y) = 2e−2(a2+b2)νt sin(ax) sin(ay), (A.7)

where we set a = b = 2π.

To demonstrate the accuracy of the numerical methods and the convergence to (A.7)

as the time discretization is refined, we show the L∞(Ω) norm of the error between

the numerical solution and the exact solution (A.7) in Figure A1.1. To understand

the overall global accuracy of the time stepping methods, we also show the maximum

error over the entire time window [0, T ], as a function the the time step ∆t, for each

of the methods. The numerical solutions converge to the analytic solution (A.7) as ∆t

is refined, down to machine precision. The four-step method converges to the analytic

solution more rapidly, in which we eventually see round-off errors begin to arise.

A key advantage the IMEX method (A.4) provides over the CN/RKW3 method (A.5)

is its remarkable stability. This allows coarser time steps ∆t to be used for more efficient

computational time while maintaining good accuracy, which was a crucial component

for solving Problem 1. To test this, we considered (1.3) using the initial condition

constructed in Jeong and Yoneda (2021), fω = 0, T = 1, N = 4096, and ν = 5 × 10−7,

and noted the differences in stability and timing between (A.4) and (A.5). Using the a

time step ∆t = 1×10−4 both methods remained stable, however the CN/RKW3 method

(A.5) became unstable when using ∆t = 1×10−3, whereas the IMEX method (A.4) was

stable. As a result, using the IMEX method (A.4) with a coarser time step was over

10 times computationally faster than the CN/RKW3 method (A.5) with a time step

∆t = 1× 10−4.
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(a)

(b)

Figure A1.1: (a) Error as a function of time and (b) the maximum error
over all time [0, T ] in the solution of system (1.3) with initial condition
(A.6), comparing (dashed line) the IMEX method (A.4) and (dash-dotted
line) the CN/RKW3 method (A.5). In (a), we show the step sizes ∆t:
(blue) 1 × 10−3, (red) 5 × 10−3, (yellow) 1 × 10−2, (purple) 5 × 10−2,
(green) 1× 10−1, and (cyan) 5× 10−1.

115

http://www.mcmaster.ca/
https://math.mcmaster.ca/


Appendix B

Validation of Gradients

A key element of the discrete gradient flow algorithms employed in this work are gradients

of the objective functionals. Here we demonstrate the validity and accuracy of the

gradients of the objective functionals considered in the optimization problems studied

in Chapters 2, 3, and 4. As Sobolev Hs gradients can be viewed as low-pass filtering

of the L2 gradient (Protas et al. 2004), we only show verification tests for L2 gradients

here. In order to validate the form and discretization of the gradients, which involves

solution of the adjoint system, we determine the accuracy of the cost functional gradient

by comparing the Gâteaux differential by Φ′(Γ; Γ′) := limε→0 ε
−1 [Φ(Γ + εΓ′)− Φ(Γ)]

approximated using a forward finite-difference formula and the corresponding Riesz form

〈∇L2Φ(Γ),Γ′〉L2(Ω), where Φ and Γ are placeholders for the functionals and the control

variables, respectively, appearing in different optimization problems. Thus, we compute

the ratio

κ(ε) := ε−1 [Φ(Γ + εΓ′)− Φ(Γ)]〈
∇L2Φ,Γ′

〉
L2(Ω)

, (B.1)

where Γ is the reference element where the derivative is computed, Γ′ is an arbitrary

perturbation defining the direction in which the directional derivative is computed, and

ε > 0 is the magnitude of the perturbation, which serves as a parameter. For an exact

gradient ∇L2Φ, we expect κ(ε) = 1 since the expressions in the numerator and the
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denominator in (B.1) are equal. However, evaluation of Φ and ∇L2Φ involves numerical

solutions of the governing system and the corresponding adjoint system, such that we

can only have κ(ε) ≈ 1. In addition, there are expected errors to arise in (B.1) for

both large and small values of ε. Large ε values provide a poor approximation due

to truncation error in the finite-difference approximation of the Gâteaux differential,

whereas small values of ε give rise to subtractive cancellation errors due to numerical

round-off. Hence, for intermediate values of ε we expect the value of κ(ε) be close to unity

and this should improve as the numerical parameters N and ∆t used in the solution of

the PDE systems are refined. The numerical methods described in Appendix A utilize a

spectrally accurate discretization in space, thus the more important numerical parameter

in these validations is ∆t.

A1 Maximum Enstrophy Dissipation

We validate the gradient given in (2.21) by using the Riesz form (2.17), meaning that in

(B.1) we set Φ = χν , Γ = φ ∈ H1(Ω), Γ′ = φ′ ∈ H1(Ω), and compute the ratio

κ1(ε) := ε−1 [χν(φ+ εφ′)− χν(φ)]〈
∇L2χν , φ′

〉
L2(Ω)

. (B.2)

Since this Gâteaux differential is defined for arbitrary perturbations φ′ ∈ H1(Ω), we

ensure that the directional derivative is approximated accurately for multiple pertur-

bations. We set φ(x) as the initial condition constructed in Jeong and Yoneda (2021),

which is shown in Figure A2.1a, and test 2 perturbation functions. For the first per-

turbation we let φ′(x) = φ(x), whereas the second perturbation we use a vorticity

field, with randomly determined Fourier modes; this random vorticity field is shown

Figure A2.1b, in physical space. Computing (B.2) for ε ∈ [10−15, 10−1], with the param-

eters ν = 2.2361× 10−8, N = 4096, and T = 0.0894, we show κ1(ε) in Figure A2.2a and

|κ1(ε)−1| in Figure A2.2b, which demonstrates how close κ1 is to unity. To demonstrate
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the convergence to unity as the numerical parameters are refined, we consider two step

sizes: ∆t = 1.1180 × 10−5 and ∆t = 4.4721 × 10−6. As shown in Figure A2.2b, as the

time step size ∆t is refined, the values of κ1 tend closer to unity, which demonstrates

that the gradients ∇L2
χν become more accurate.
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(a)

(b)

Figure A2.1: (a) The initial condition, which also acts as the first per-
turbation, used in (B.2) and (b) the second (random) perturbation, both
shown in physical space.
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(a)

(b)

Figure A2.2: Dependence of (a) κ1(ε) and (b) |1−κ1(ε)| on ε, cf. (B.2),
for two different perturbations φ′: perturbation 1 (blue circles) and per-
turbation 2 (red triangles), using two step sizes: ∆t = 1.1180 × 10−5

(empty symbols) and ∆t = 4.4721× 10−6 (filled symbols).
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A2 Optimal Eddy Viscosity

We validate the gradient given in (3.25) by letting Φ = J1, Γ = ϕ, and Γ′ = ϕ′ in (B.1)

and computing the ratio

κ2(ε) := ε−1 [J1(ϕ+ εϕ′)− J1(ϕ)]〈
∇L2
ϕ J1, ϕ′

〉
L2([0,1])

, (B.3)

for different values of ε. Although in the minimization problem (3.14) we use the function

ϕ as our optimal control parameter, here we will present the results in terms of ν and

ν ′, which are related to ϕ and ϕ′, via (3.7). As the reference eddy viscosity, we use a

standard Leith-type model

ν0(s) = (Cl kc)3√s+ γ, (B.4)

where Cl = 6.7 × 10−4 is the Leith constant and γ = 100 is a regularization term

which ensures that our reference eddy viscosity is bounded away from zero. For the

perturbations ν ′ in (B.3), we test 4 different functions,

ν ′(s) = ν0, (B.5a)

ν ′(s) =
(

4 cos
(

s

750000

))2
, (B.5b)

ν ′(s) =
(

exp
( −s

300000

))2
, (B.5c)

ν ′(s) =
(

s

100000

)2
. (B.5d)

In Figure A2.3 we show the behaviour of (B.3) for ε ∈ [10−15, 10−1]. We note as the

time discretization ∆t is refined, the values of (B.3) for all perturbations become closer

to 1.
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(a)

(b)

Figure A2.3: Dependence of (a) κ2(ε) and (b) |1−κ2(ε)| on ε, cf. (B.3),
for four different perturbations ν′ given in (B.5a) (blue circles), (B.5b)
(red triangles), (B.5c) (yellow squares), and, (B.5d) (purple diamonds).
Results for two different time discretizations ∆t are shown: (empty sym-
bols) ∆t = 1× 10−4 and (filled symbols) ∆t = 0.5× 10−4.
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A3 Enforcing Constraints via Adjoint Analysis

Here we validate the standard gradient in the space S, for the functional provided in

(4.2). Thus, we check the ratio given in (B.1), with Φ = J , Γ = υ, and Γ′ = υ′, hence,

κ3(ε) := ε−1 [J (υ + ευ′)− J (υ)]〈
∇L2
υ J , υ′

〉
L2([0,1])

, (B.6)

for multiple values of ε, with 4 perturbations defined in terms of ν ′(s),

ν ′(s) = ν0, (B.7a)

ν ′(s) =
(

4 cos
(
s

7.5

))2
, (B.7b)

ν ′(s) =
(

exp
(−s

30

))2
, (B.7c)

ν ′(s) =
(
s

150

)2
, (B.7d)

where ν0 is given in (B.4) with Leith constant Cl = 1.215 × 10−2 and γ = 100. In

Figure A2.4, we demonstrate that the value of (B.3) does indeed yield values close to

unity, and they approach unity as the time discretization ∆t is refined.

Furthermore, we must also validate computation of the “normal vector” Nυ, cf. Fig-

ure 4.1, by analyzing the ratio of the Gâteaux differential[
Ẽ ′(·; υ, υ′)

]
T

:= limε→0 ε
−1
[
Ẽ(·; υ + ευ′)− Ẽ(·; υ)

]
T
approximated using a forward finite-

difference formula and the corresponding Riesz form (4.13),

κ4(ε) :=
ε−1

[
Ẽ(·; υ + ευ′)− Ẽ(·; υ)

]
T

〈Nυ, υ′〉L2([0,1])
, (B.8)

which is recovered in (B.1) by setting Φ =
[
Ẽ(·; υ)

]
T
, Γ = υ, and Γ′ = υ′, in (B.1). Again,

we test with respect to ν̆ and ν̆ ′ which is defined in terms of υ and υ′, cf. (3.7). We show

κ4(ε) and |1− κ4(ε)|, testing the “normal vector” given in (4.14), in Figure A2.5. From
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Figure A2.5a and Figure A2.5b, we can see the value that κ4(ε) ≈ 1 for intermediate

values ε. In general, we also notice that as we refine the time discretization, κ4(ε)→ 1.
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(a)

(b)

Figure A2.4: Dependence of (a) κ3(ε) and (b) |1 − κ3(ε)| on ε, for the
perturbation ν′ given in (B.7a) (blue circles), (B.7b) (red triangles), (B.7c)
(yellow squares), and (B.7d) (purple squares). Results for two different
time discretizations ∆t are shown: (empty symbols) ∆t = 1 × 10−2 and
(filled symbols) ∆t = 5× 10−3.
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(a)

(b)

Figure A2.5: Dependence of (a) κ4(ε) and (b) |1 − κ4(ε)| on ε, for the
perturbation ν′ given in (B.7a) (blue circles). Results for two different
time discretizations ∆t are shown: (empty symbols) ∆t = 1 × 10−2 and
(filled symbols) ∆t = 5× 10−3.
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Appendix C

Gradient of the Error Functional

J2

Here we discuss computation of the gradients ∇L2
ϕ J2 and ∇H2

ϕ J2 of the error functional

(3.12). The difference with respect to the formulation used in Section 3.3 is that func-

tional (3.12) is defined in the Fourier space and we adopt with suitable modifications

the approach developed in (Farazmand et al. 2011). Proceeding as in Section 3.3, we

first compute the Gâteaux differential of the error functional (3.12) with respect to ϕ

J ′2(ϕ;ϕ′) = 1
2T

ˆ T

t=0

ˆ kc

k=0

( [
Eω̃(·, k;ϕ)

]
T − [Ew(·, k)]T

) (ˆ
C (k)

̂̃ω ̂̃ω′ + ̂̃ω ̂̃ω′ dS(k)
)
dk dt,

(C.1)

where · denotes the complex conjugate and ̂̃ω′ is the Fourier transform of the solution

ω̃′ to (3.17). We note that the gradients ∇L2
ϕ J2 and ∇H2

ϕ J2 satisfy Riesz identities

analogous to (3.19). Next we introduce new adjoint fields ω̃∗ and ψ̃∗ assumed to satisfy

the same adjoint system (3.22), but with a different source term W whose form is to be

determined. Utilizing Parseval’s identity and the fact that all fields are real-valued in
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physical space, we rewrite the duality relation (3.21) as


ω̃′
ψ̃′

 ,K∗
ω̃∗
ψ̃∗


 = 1

2


̂ω̃′
ψ̃′

,
̂

K∗

ω̃∗
ψ̃∗


+ 1

2


̂ω̃′
ψ̃′

,
̂

K∗

ω̃∗
ψ̃∗


,

= 1
2T

ˆ T

t=0

ˆ kc

k=0

ˆ
C (k)

[̂
ω̃′

ψ̃′

]
· K̂∗

[
ω̃∗

ψ̃∗

]
+
[̂
ω̃′

ψ̃′

]
· K̂∗

[
ω̃∗

ψ̃∗

]
dS(k) dk dt.

(C.2)

Combining (3.17), (3.21), (3.22), (C.1) and (C.2) results in




ω̃′

ψ̃′

 ,K∗

ω̃∗

ψ̃∗



 =

J ′2(ϕ;ϕ′)︷ ︸︸ ︷
1

2T

ˆ T

t=0

ˆ kc

k=0

( [
Eω̃(·, k;ϕ)

]
T − [Ew(·, k)]T

) (ˆ
C (k)

̂̃ω ̂̃ω′ + ̂̃ω ̂̃ω′ dS(k)
)
dk dt,

from which we deduce the form of the source term in the adjoint system as

Ŵ (t,k) =
([
Eω̃(·, k;ϕ)

]
T − [Ew(·, k)]T

) ̂̃ω(t,k). (C.3)

Once the adjoint system (3.22) with the source term (C.3) is solved, the L2 gradient

∇L2
ϕ J2 can be computed using expression (3.25). The Sobolev gradient ∇H2

ϕ J2 is then

obtained as discussed in Section 3.3 by solving system (3.26). In summary, the difference

in the computation of the gradients of the error functionals J1 and J2 is confined to the

form of the source term W in the adjoint system (3.22).
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Appendix D

Decomposition of the Non-linear

Term

Here we shall justify why the decomposition of non-linear term in (3.4) with use of the

sharp spectral filter (3.3) is preferred for this work; further details can be found in (Pope

2000). For the Navier-Stokes system, we typically define the analogous residual-stress

tensor as

MR := u ·∇ω̃ − ũ ·∇ω̃, (D.1)

which is the difference between the filtered product and product of the filtered quanti-

ties. Typically for the 3D incompressible Navier-Stokes system, when substituting in the

nonlinear term to formulate the LES equations, MR is written in terms of the residual

kinetic energy and the anisotropic residual-stress tensor. In Leonard (1975), a three com-

ponent decomposition of MR was proposed, however as pointed out by Speziale (1985),

two of these components are not Galilean invariant. Instead, Germano (1986) proposed

a Galilean-invariant decomposition. The analogous vorticity form of this decomposition
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in 2D is

MR = u ·∇ω̃ − ũ ·∇ω̃,

= (ũ + u′) ·∇(ω̃ + ω′)˜ − (ũ + u′)̃ ·∇(ω̃ + ω′)̃,

= ũ ·∇ω̃̃ +ũ ·∇ω ′̃+u′ ·∇ω̃̃+u′ ·∇ω ′̃− ˜̃u ·∇˜̃ω − ˜̃u ·∇ω̃′ − ũ′ ·∇˜̃ω − ũ′ ·∇ω̃′,

= L+ C +R, (D.2)

where the Leonard stresses are

L := ũ ·∇ω̃̃ − ˜̃u ·∇˜̃ω, (D.3)

the cross stresses are

C := ũ ·∇ω ′̃+u′ ·∇ω̃̃− ˜̃u ·∇ω̃′ − ũ′ ·∇˜̃ω, (D.4)

and the subgrid-scale Reynolds stresses are

R :=u′ ·∇ω ′̃− ũ′ ·∇ω̃′. (D.5)

This decomposition is often used for a general filtering operation ·̃, but in the present

investigation we are using the filter kernel defined in (3.3), which is a sharp spectral

filter. Using the fact that a sharp spectral filter is idempotent (see Appendix E), we
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note

L = ũ ·∇ω̃̃ − ˜̃u ·∇˜̃ω, ← ˜̃ω = ω̃,

= ũ ·∇ω̃̃ − ũ ·∇ω̃,

C = ũ ·∇ω ′̃+u′ ·∇ω̃̃− ˜̃u ·∇ω̃′ − ũ′ ·∇˜̃ω, ← ω̃′ = ũ′ = 0,

= ũ ·∇ω ′̃+u′ ·∇ω̃̃,

R =u′ ·∇ω ′̃− ũ′ ·∇ω̃′, ← ω̃′ = ũ′ = 0,

=u′ ·∇ω ′̃.

Denoting Mω = C + R and using eqs. (D.1) and (D.3) to (D.5), we can rewrite the

nonlinear term as

MR = u ·∇ω̃ − ũ ·∇ω̃,

L+ C +R = u ·∇ω̃ − ũ ·∇ω̃,

ũ ·∇ω̃̃ − ũ ·∇ω̃ + C +R = u ·∇ω̃ − ũ ·∇ω̃,

u ·∇ω̃ = ũ ·∇ω̃̃ + C +R,

= ũ ·∇ω̃̃ +Mω, (D.6)

showing that we obtain the same decomposition as shown in (E.6) (see Appendix E).

Thus, the two decompositions, (D.2) and (D.6), are equivalent when using a sharp spec-

tral filter defined in (3.3). As discussed in Pope (2000), each term in the decomposition

given in (E.6) is a filtered quantity. Thus, they do not have contributions coming from

wavenumbers greater than the maximum resolved wavenumber in Fourier space. Since

using (D.1) and (D.2) for any general filtering operation requires contributions greater

than the maximum resolved (up to twice the maximum resolved wavenumber, due to the
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Leonard stresses), this would be difficult for a residual stress model to compensate for.

Thus, we argue that using a closure model with a sharp spectral filter and decomposition

(D.6), where Mω is modelled, is a preferred approach since the decomposition contains

contributions from wavenumbers up to the maximum resolved wavenumber.
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Appendix E

Galilean Invariance of the 2D

Vorticity Equation

A system of equations and closure model are said to be Galilean invariant if they remain

unchanged in different inertial frames. This is a key aspect when considering fluid flows,

as it ensures that models do not depend on the frame of reference.. In this section,

we establish the Galilean invariance of the 2D vorticity equation (3.1), its filtered form,

cf. (E.7), and the Leith model (3.5), in a general form.

A1 2D Vorticity Equation

We will prove that the 2D vorticity equation and the associated LES system are Galilean

invariant. The transformations we consider between the two coordinate systems are

x∗ = x− v t, (E.1a)

t∗ = t, (E.1b)

where v ∈ R2 is a fixed velocity. An equation is said to be Galilean invariant if upon

applying the transformation (E.1), the equation remains unchanged. We state our first
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result as a theorem, and prove it below.

Theorem 2. The 2D Navier-Stokes system (3.1a) is Galilean invariant.

Proof. First, we write our operators under the coordinate transformations (E.1)

d

dt∗
= d

dt
, (E.2a)

dx∗

dt
= u∗ = dx

dt
− v,

u∗(x∗, t) = u(x, t)− v, (E.2b)

∂

∂t∗
= ∂t

∂t∗
∂

∂t
+ ∂x

∂t∗
∂

∂x
+ ∂y

∂t∗
∂

∂y
+ ∂z

∂t∗
∂

∂z
= ∂

∂t
+ v ·∇, (E.2c)

∂

∂x∗
= ∂t

∂x∗
∂

∂t
+ ∂x

∂x∗
∂

∂x
+ ∂y

∂x∗
∂

∂y
+ ∂z

∂x∗
∂

∂z
= ∂

∂x
, (E.2d)

∂

∂y∗
= ∂t

∂y∗
∂

∂t
+ ∂x

∂y∗
∂

∂x
+ ∂y

∂y∗
∂

∂y
+ ∂z

∂y∗
∂

∂z
= ∂

∂y
, (E.2e)

∂

∂z∗
= ∂t

∂z∗
∂

∂t
+ ∂x

∂z∗
∂

∂x
+ ∂y

∂z∗
∂

∂y
+ ∂z

∂z∗
∂

∂z
= ∂

∂z
, (E.2f)

∇∗ = ∇, (E.2g)

∆∗ = ∆. (E.2h)

We note that v is constant, so ∇v = 0, ∆v = 0, and ∂v
∂t = 0. We also note that the

vorticity is Galilean invariant, since

w∗ = ∇× u∗,

= −∇⊥ · u∗,

= ∇⊥ · (u− v),

= ∇⊥ · u−∇⊥ · v,

= w. (E.3)
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Now, we consider the 2D vorticity equation (3.1a), written with the velocity field u(t,x) =

(u1, u2)T = ∇⊥ψ,

∂tw + u ·∇w = νN∆w − αw + fω, (E.4a)

w = ∇× u. (E.4b)

Since we already showed above (E.4b) is Galilean invariant, we apply transformation

(E.1) to (E.4a), to obtain

∂w∗

∂t∗
+ u∗ ·∇∗w∗ = νN∆∗w∗ − αw∗ + fω,

∂w

∂t∗
+ u∗ ·∇w = νN∆w − αw + fω,

∂w

∂t
+ v ·∇w + (u− v) ·∇w = νN∆w − αw + fω,

∂w

∂t
+ v ·∇w + u ·∇w − v ·∇w = νN∆w − αw + fω,

∂w

∂t
+ u ·∇w = νN∆w − αw + fω.

Therefore, system (E.4) is Galilean invariant. Frisch (1995) notes that adding a

driving force to Navier-Stokes system usually breaks Galilean invariance (except if the

force is delta-correlated in time).

A2 Filtered 2D Vorticity Equation

Now, we consider the filtered version of equation (E.4). Using the sharp spectral filter

defined in (3.3), we denote ũ := Gδ ∗ u. Noting that the operation of filtering and

differentiation commute, we consider the decomposition of filtered variables ω̃ := Gδ∗ω =

∇×ũ, such that ω = ω̃+ω′, where ω̃ is the resolved field and ω′ is the unresolved field. As

stated in Section 3.2.1, the maximum resolved wavenumber kc < kb, such that f̃ω = fω.
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In addition, we note that the sharp spectral filter is a projection operator, thus it is

idempotent, hence

ω̃′ = ω̃ − ω̃ = ω̃ − ˜̃ω = ω̃ − ω̃ = 0.

It should also be noted that the operation of filtering and differentiation commute and

since v is a constant vector, the filtering operation gives us

v ·∇ω̃ = v · ∇̃ω = v ·∇ω̃.

Applying the filter defined in (3.3) to (E.4), we obtain

∂tω̃ + u ·∇ω̃ = νN∆ω̃ − αω̃ + fω, (E.5a)

ω̃ = ∇× ũ. (E.5b)

Considering the nonlinear term in (E.5a)

u ·∇ω̃ = (ũ + u′) ·∇(ω̃ + ω′)˜ ,

= (ũ + u′) ·∇ω̃̃ + (ũ + u′) ·∇ω ′̃ ,

= ũ ·∇ω̃̃ +u′ ·∇ω̃̃+ũ ·∇ω ′̃+u′ ·∇ω ′̃︸ ︷︷ ︸
Mω

,

Mω : = u ·∇ω̃ − ũ ·∇ω̃̃. (E.6)

As stated by Pope (2000), the decomposition of the nonlinear term given in (E.6) is

preferable for a sharp spectral filter and is used in (3.4). This is because each component

can be represented exactly in terms of the resolved modes (see Appendix D for further

discussion on the nonlinear decomposition). Substituting (E.6) into the filtered vorticity
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equation gives

∂tω̃ + ũ ·∇ω̃̃ = νN∆ω̃ − αω̃ + fω −Mω, (E.7a)

ω̃ = ∇× ũ. (E.7b)

Now we consider the Galilean invariance of (E.7), as the following theorem.

Theorem 3. The filtered 2D Navier-Stokes system (E.7) is Galilean invariant.

Proof. It simply follows from (E.3), that ω̃∗ = ∇× ũ∗ = ω̃, so we will focus on proving

(E.7a) is Galilean invariant. Since the v is a constant vector, it is invariant with respect

to the filtering operation, hence ṽ = v. First, we will prove Mω is Galilean invariant,

Mω∗ = u∗ ·∇∗ω∗˜ − ũ∗ ·∇∗ω̃∗˜ ,

= (u− v) ·∇ω̃ − ˜(u− v) ·∇ω̃̃ ,

= u ·∇ω̃ − v ·∇ω̃ − ũ ·∇ω̃̃ + ṽ ·∇ω̃̃ , ←v is constant and ṽ = v

= u ·∇ω̃ − v ·∇ω̃ − ũ ·∇ω̃̃ + v ·∇˜̃ω, ←˜̃ω = ω̃ since (3.3) is a idempotent

= u ·∇ω̃ − v ·∇ω̃ − ũ ·∇ω̃̃ + v ·∇ω̃,

= u ·∇ω̃ − ũ ·∇ω̃̃ = τω.

Using this, we can prove (E.7) is Galilean invariant:

∂ω̃∗

∂t∗
+ ũ∗ ·∇∗ω̃∗˜ = νN∆∗ω̃∗ − αω̃∗ + fω − τω

∗
,

∂ω̃

∂t
+ v ·∇ω̃ + ũ− v ·∇ω̃̃ = νN∆ω̃ − αω̃ + fω − τω,

∂ω̃

∂t
+ v ·∇ω̃ − v ·∇ω̃̃ + ũ ·∇ω̃̃ = νN∆ω̃ − αω̃ + fω − τω, ←v ·∇ω̃̃ = v ·∇ω̃

∂ω̃

∂t
+ v ·∇ω̃ − v ·∇ω̃ + ũ ·∇ω̃̃ = νN∆ω̃ − αω̃ + fω − τω,

∂ω̃

∂t
+ ũ ·∇ω̃̃ = νN∆ω̃ − αω̃ + fω − τω.
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A3 Leith Model

Lastly, for our closure problem, we must show that the considered closure model is also

Galilean invariant. Letting M = −Mω in (E.7), we wish to model this term using an

eddy viscosity closure model given in (3.5),

M ≈ M̃ = ∇ · (ν̃∇ω̃).

Since ω∗ = ω and the Reynolds stresses in the Leith model depend on the vorticity (more

specifically, on ∇ω̃), the Leith model is Galilean invariant. Moreover, the closure term

M̃ is also Galilean invariant.

138

http://www.mcmaster.ca/
https://math.mcmaster.ca/


Bibliography

Adams, R. A. and Fournier, J. F. (2003). Sobolev Spaces. Second. Elsevier.

Alexakis, A. and Doering, C. R. (2006). Energy and enstrophy dissipation in steady state

2d turbulence. Physics Letters A 359(6), 652–657. issn: 0375-9601.

Alimo, R., Cavaglieri, D., Beyhaghi, P., and Bewley, T. R. (2021). Design of IMEXRK

time integration schemes via Delaunay-based derivative-free optimization with non-

convex constraints and grid-based acceleration. J. Glob. Optim. 79(3), 567–591. issn:

1573-2916.

Ayala, D. and Protas, B. (2014a). Maximum Palinstrophy Growth in 2D Incompressible

Flows. Journal of Fluid Mechanics 742, 340–367.

Ayala, D. and Protas, B. (2014b). Vortices, maximum growth and the problem of finite-

time singularity formation. Fluid Dynamics Research 46(3), 031404.

Ayala, D. and Protas, B. (2017). Extreme Vortex States and the Growth of Enstrophy

in 3D Incompressible Flows. Journal of Fluid Mechanics 818, 772–806.

Ayala, D., Doering, C. R., and Simon, T. M. (2018). Maximum palinstrophy amplifi-

cation in the two-dimensional Navier-Stokes equations. Journal of Fluid Mechanics

837, 839–857.

Bardos, C., Golse, F., and Levermore, D. (1991). Fluid dynamic limits of kinetic equa-

tions. I. Formal derivations. Journal of statistical physics 63(1), 323–344.

Batchelor, G. K. (1969). Computation of the Energy Spectrum in Homogeneous Two-

Dimensional Turbulence. Phys. Fluids 12(12), II-233–239.

Berger, M. S. (1977). Nonlinearity and Functional Analysis. Academic Press.

139



Bibliography

Bewley, T. R. (2009). Numerical Renaissance. Renaissance Press.

Boffetta, G. (2007). Energy and enstrophy fluxes in the double cascade of two-dimensional

turbulence. Journal of Fluid Mechanics 589, 253–260.

Boffetta, G. and Ecke, R. E. (2012). Two-Dimensional Turbulence. Annual Review of

Fluid Mechanics 44(1), 427–451.

Boffetta, G. and Musacchio, S. (2010). Evidence for the double cascade scenario in two-

dimensional turbulence. Phys. Rev. E 82 (1), 016307.

Bracco, A. and McWilliams, J. C. (2010). Reynolds-number dependency in homogeneous,

stationary two-dimensional turbulence. Journal of Fluid Mechanics 646, 517–526.

Bukshtynov, V. and Protas, B. (2013). Optimal reconstruction of material properties in

complex multiphysics phenomena. J. Comput. Phys. 242, 889–914. issn: 0021-9991.

Bukshtynov, V., Volkov, O., and Protas, B. (2011). On optimal reconstruction of con-

stitutive relations. Physica D 240(16), 1228–1244. issn: 0167-2789.

Ciampa, G., Crippa, G., and Spirito, S. (2021). Strong convergence of the vorticity for

the 2D Euler equations in the inviscid limit. Arch. Ration. Mech. Anal. 240(1), 295–

326. issn: 0003-9527.

Constantin, P. (2007). On the Euler equations of incompressible fluids. Bulletin of the

American Mathematical Society 44(4), 603–621.

Constantin, P., Drivas, T. D., and Elgindi, T. M. (2022). Inviscid Limit of Vorticity Dis-

tributions in the Yudovich Class. Communications on Pure and Applied Mathematics

75(1), 60–82.

Darrigol, O. (2005). Worlds of flow. A history of hydrodynamics from the Bernoullis to

Prandtl. Oxford University Press, New York, xiv+356. isbn: 0-19-856843-6.

Dascaliuc, R. and Grujić, Z. (2012). Anomalous dissipation and energy cascade in 3D

inviscid flows. Communications in Mathematical Physics 309(3), 757–770.

140



Bibliography

Davidson, P. A. (2015). Turbulence: An introduction for scientists and engineers. Second.

Oxford University Press, Oxford, xvi+630. isbn: 978-0-19-872259-5; 978-0-19-872258-

8.

Driscoll, T. A., Hale, N., and Trefethen, L. N. (2014). Chebfun Guide. Oxford, UK:

Pafnuty Publications.

Duraisamy, K., Iaccarino, G., and Xiao, H. (2019). Turbulence Modeling in the Age of

Data. Annu. Rev. Fluid Mech. 51(1), 357–377.

Duraisamy, K. (2021). Perspectives on machine learning-augmented Reynolds-averaged

and large eddy simulation models of turbulence. Phys. Rev. Fluids 6 (5), 050504.

Eyink, G. L. and Drivas, T. D. (2015). Spontaneous Stochasticity and Anomalous Dis-

sipation for Burgers Equation. Journal of Statistical Physics 158(2), 386–432. issn:

1572-9613.

Farazmand, M. and Sapsis, T. P. (2017). A variational approach to probing extreme

events in turbulent dynamical systems. Science Advances 3(9), e1701533.

Farazmand, M. M., Kevlahan, N. K.-R., and Protas, B. (2011). Controlling the dual

cascade of two-dimensional turbulence. Journal of Fluid Mechanics 668, 202–222.

Fefferman, C. L. (2006). Existence and smoothness of the Navier-Stokes equation. In:

The millennium prize problems. Clay Math. Inst., Cambridge, MA, 57–67.

Filho, M., Mazzucato, A., and Nussenzveig Lopes, H. (2006). Weak Solutions, Renor-

malized Solutions and Enstrophy Defects in 2D Turbulence. English (US). Archive

for Rational Mechanics and Analysis 179(3), 353–387. issn: 0003-9527.

Frigo, M. and Johnson, S. G. (2005). The Design and Implementation of FFTW3. Pro-

ceedings of the IEEE 93(2). Special issue on “Program Generation, Optimization,

and Platform Adaptation”, 216–231.

Frisch, U. (1995). Turbulence. The legacy of A. N. Kolmogorov. Cambridge University

Press, Cambridge, xiv+296. isbn: 0-521-45103-5.

141



Bibliography

Gamahara, M. and Hattori, Y. (2017). Searching for turbulence models by artificial

neural network. Phys. Rev. Fluids 2 (5), 054604.

Germano, M. (1986). A proposal for a redefinition of the turbulent stresses in the filtered

Navier–Stokes equations. The Physics of fluids 29(7), 2323–2324.

Goto, S., Saito, Y., and Kawahara, G. (2017). Hierarchy of antiparallel vortex tubes

in spatially periodic turbulence at high Reynolds numbers. Phys. Rev. Fluids 2

(6), 064603.

Graham, J. P. and Ringler, T. (2013). A framework for the evaluation of turbulence

closures used in mesoscale ocean large-eddy simulations. Ocean Modelling 65, 25–39.

issn: 1463-5003.

Gunzburger, M. D. (2003). Perspectives in Flow Control and Optimization. SIAM.

Hou, T. Y. (2009). Blow-up or no blow-up? A unified computational and analytic

approach to 3D incompressible Euler and Navier–Stokes equations. Acta Numer.

18, 277–346. issn: 0962-4929.

Jeong, I.-J. and Yoneda, T. (2021). Enstrophy dissipation and vortex thinning for the

incompressible 2D Navier–Stokes equations. Nonlinearity 34(4), 1837–1853.

Jimenez, J. (2018). Machine-aided turbulence theory. J. Fluid Mech. 854, R1.

Kármán, T. H. von and Howarth, L. (1938). On the Statistical Theory of Isotropic

Turbulence. Proc. Roy. Soc. London A 164, 192–215.

Kevlahan, N. K.-R. and Farge, M. (1997). Vorticity filaments in two-dimensional turbu-

lence: creation, stability and effect. J. Fluid Mech. 346, 49–76.

Kiya, M. and Arie, M. (1979). Helmholtz instability of a vortex sheet in uniform shear

flow. The Physics of Fluids 22(2), 378–379.

Kolmogorov, A. N. (1962). A refinement of previous hypotheses concerning the local

structure of turbulence in a viscous incompressible fluid at high Reynolds number.

Journal of Fluid Mechanics 13(1), 82–85.

142



Bibliography

Kolmogorov, A. (1941a). Dissipation of energy in locally isotropic turbulence. Dokl.

Akad. Nauk SSSR 32. (translated and reprinted 1991 in Proc. R. Soc. Lond. A 434,

15–17), 16–18.

Kolmogorov, A. (1941b). On degeneration (decay) of isotropic turbulence in an incom-

pressible viscous liquid. Dokl. Akad. Nauk SSSR 31, 538–540.

Kolmogorov, A. (1941c). The local structure of turbulence in incompressible viscous

fluid for very large Reynolds number. Dokl. Akad. Nauk SSSR 30. (translated and

reprinted 1991 in Proc. R. Soc. Lond. A 434, 9–13), 9–13.

Kraichnan, R. H. (1967). Inertial Ranges in Two-Dimensional Turbulence. The Physics

of Fluids 10(7), 1417–1423.

Kreiss, H. and Lorenz, J. (2004). Initial-Boundary Value Problems and the Navier-Stokes

Equations. Vol. 47. Classics in Applied Mathematics. SIAM.

Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., and Viggen, E. M.

(2017). The Lattice Boltzmann Method. 1st ed. Springer Cham. isbn: 978-3-319-

44649-3.

Kutz, J. N. (2017). Deep learning in fluid dynamics. J. Fluid Mech. 814, 1–4.

Langford, J. A. and Moser, R. D. (1999). Optimal LES formulations for isotropic turbu-

lence. J. Fluid Mech. 398, 321–346. issn: 0022-1120.

Le, H. and Moin, P. (1991). An improvement of fractional step methods for the incom-

pressible Navier-Stokes equations. J. Comput. Phys. 92(2), 369–379. issn: 0021-9991.

Leith, C. E. (1968). Diffusion Approximation for Two-Dimensional Turbulence. The

Physics of Fluids 11(3), 671–672.

Leith, C. E. (1971). Atmospheric Predictability and Two-Dimensional Turbulence. Jour-

nal of the Atmospheric Sciences 28(2), 145–161.

Leith, C. (1996). Stochastic models of chaotic systems. Physica D: Nonlinear Phenomena

98(2). Nonlinear Phenomena in Ocean Dynamics, 481–491. issn: 0167-2789.

143



Bibliography

Leonard, A. (1975). Energy Cascade in Large-Eddy Simulations of Turbulent Fluid

Flows. In: Turbulent Diffusion in Environmental Pollution. Ed. by F. N. Frenkiel

and R. E. Munn. Vol. 18. Advances in Geophysics. Elsevier, 237–248.

Lesieur, M. (1993). Turbulence in Fluids. 2nd. Dordrecht, Boston, London: Kluwer Aca-

demic Publishers.

Lindborg, E. and Vallgren, A. (2010). Testing Batchelor’s similarity hypotheses for de-

caying two-dimensional turbulence. Physics of Fluids 22(9), 091704.

Lions, J. (1968). Contrôle Optimal de Systèmes Gouvernés par des Équations aux Dérivées

Partielles. (English translation, Springer-Verlag, New-York (1971)). Paris: Dunod.

Lopes, H. J. N., Seis, C., and Wiedemann, E. (2021). On the vanishing viscosity limit for

2D incompressible flows with unbounded vorticity. Nonlinearity 34(5), 3112–3121.

Luenberger, D. (1969). Optimization by Vector Space Methods. John Wiley and Sons.

Matharu, P. and Protas, B. (2020). Optimal Closures in a Simple Model for Turbulent

Flows. SIAM J. Sci. Comput. 42(1), B250–B272.

Matharu, P. and Protas, B. (2022). Optimal eddy viscosity in closure models for two-

dimensional turbulent flows. Phys. Rev. Fluids 7 (4), 044605.

Maulik, R. and San, O. (2017). A dynamic framework for functional parameterisations

of the eddy viscosity coefficient in two-dimensional turbulence. International Journal

of Computational Fluid Dynamics 31(2), 69–92.

Maulik, R., San, O., and Jacob, J. D. (2020). Spatiotemporally dynamic implicit large

eddy simulation using machine learning classifiers. Physica D 406, 132409. issn: 0167-

2789.

Maute, K., Nikbay, M., and Farhat, C. (2003). Sensitivity analysis and design opti-

mization of three-dimensional non-linear aeroelastic systems by the adjoint method.

International Journal for Numerical Methods in Engineering 56(6), 911–933.

144



Bibliography

Mazzucato, A. (2022). Remarks on anomalous dissipation for passive scalars. Philosoph-

ical Transactions of the Royal Society A: Mathematical, Physical and Engineering

Sciences 380(2218), 20210099.

Nocedal, J. and Wright, S. (2006). Numerical Optimization. Second. Springer Series in

Operations Research and Financial Engineering. Springer, New York, xxii+664. isbn:

978-0387-30303-1.

Pappalardo, C. M. and Guida, D. (2018). Use of the Adjoint Method for Controlling the

Mechanical Vibrations of Nonlinear Systems. Machines 6(2). issn: 2075-1702.

Parisi, G. and Frisch, U. (Jan. 1985). On the singularity structure of fully developed

turbulence in Turbulence and predictability in geophysical fluid dynamics and cli-

mate dynamics. NTurbulence and Predictability of Geophysical Flows and Climate

Dynamics 88.

Pawar, S. and San, O. (2021). Data assimilation empowered neural network parametriza-

tions for subgrid processes in geophysical flows. Phys. Rev. Fluids 6 (5), 050501.

Pope, S. B. (2000). Turbulent flows. Cambridge: Cambridge University Press, xxxiv+771.

isbn: 0-521-59886-9.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2007). Numeri-

cal Recipes 3rd Edition: The Art of Scientific Computations. Cambridge University

Press, xxii+1235. isbn: 978-0-521-88068-8.

Protas, B., Bewley, T. R., and Hagen, G. (2004). A computational framework for the reg-

ularization of adjoint analysis in multiscale PDE systems. J. Comp. Phys. 195(1), 49–

89. issn: 0021-9991.

Protas, B. (2022). Systematic search for extreme and singular behaviour in some fun-

damental models of fluid mechanics. Philosophical Transactions of the Royal Society

A: Mathematical, Physical and Engineering Sciences 380(2225), 20210035.

Richardson, L. F. (1922). Weather prediction by numerical process. Cambridge, UK:

Cambridge University Press.

145



Bibliography

Rodi, W., Constantinescu, G., and Stoesser, T. (2013). Large-Eddy Simulation in Hy-

draulics. CRC Press.

Saint-Raymond, L. (2003). From the BGK model to the Navier–Stokes equations. An-

nales Scientifiques de l’École Normale Supérieure 36(2), 271–317. issn: 0012-9593.

Sakajo, T. and Okamoto, H. (1996). Numerical computation of vortex sheet roll-up in

the background shear flow. Fluid Dyn. Res. 17, 195–212.

Seis, C. (2021). A note on the vanishing viscosity limit in the Yudovich class. Canad.

Math. Bull. 64(1), 112–122. issn: 0008-4395.

Smagorinsky, J. (1963). General circulation experiments with the primitive equations: I.

The basic experiment. Mon. Weather Rev. 91(3), 99–164.

Speziale, C. G. (1985). Galilean invariance of subgrid-scale stress models in the large-

eddy simulation of turbulence. Journal of fluid mechanics 156, 55–62.

Sreenivasan, K. R. (1998). An update on the energy dissipation rate in isotropic turbu-

lence. Physics of Fluids 10(2), 528–529.

Sreenivasan, K. R. (2019). Turbulent mixing: A perspective. Proceedings of the National

Academy of Sciences 116(37), 18175–18183.

Taylor, G. I. (1935). Statistical theory of turbulenc. Proc. Roy. Soc. London A 151, 421–

444.

Taylor, G. I. (1938). The spectrum of turbulence. Proc. Roy. Soc. London A 164(919), 476–

490.

Tennekes, H. and Lumley, J. L. (1972). A First Course in Turbulence. MIT press.

Tran, C. V. and Dritschel, D. G. (2006). Vanishing enstrophy dissipation in two-dimensional

Navier-Stokes turbulence in the inviscid limit. Journal of Fluid Mechanics 559, 107–

116.

Trefethen, L. N. (2013). Approximation Theory and Approximation Practice. Philadel-

phia: SIAM, viii+305 pp.+back matter. isbn: 978-1-611972-39-9.

146



Bibliography

Vallgren, A. and Lindborg, E. (2011). The enstrophy cascade in forced two-dimensional

turbulence. Journal of Fluid Mechanics 671, 168–183.

Yang, Z., Liu, M., and Luo, X. (2021). First-Optimize-Then-Discretize Strategy for the

Parabolic PDE Constrained Optimization Problem With Application to the Reheat-

ing Furnace. IEEE Access 9, 90283–90294.

Yeung, P. K., Zhai, X. M., and Sreenivasan, K. R. (2015). Extreme events in computa-

tional turbulence. Proceedings of the National Academy of Sciences 112(41), 12633–

12638.

Yoneda, T., Goto, S., and Tsuruhashi, T. (2022). Mathematical reformulation of the

Kolmogorov–Richardson energy cascade in terms of vortex stretching. Nonlinearity

35(3), 1380–1401.

Zhongyang, G. (2022). Solvability of the modified BGK model. personal communication.

147


	Abstract
	Acknowledgements
	Declaration of Authorship
	Introduction
	Turbulence and the Navier-Stokes System
	2D Turbulence
	PDE optimization
	Summary of the Main Results

	On Maximum Enstrophy Dissipation in 2D Navier-Stokes Flows in the Limit of Vanishing Viscosity
	Introduction
	Optimization Problem
	Solution Approach
	Gradient-Based Optimization
	Computational Approach

	Results
	Summary and Conclusions

	Optimal Eddy Viscosity in Closure Models for 2D Turbulent Flows
	Introduction
	Large-Eddy Simulation and Optimal Eddy Viscosity
	The Leith Closure Model
	Optimization Formulation for Eddy Viscosity

	Adjoint-based Optimization
	Computational Approach 
	Results 
	Matching the DNS Pointwise in Space and Time — Results for the Optimization Problem with Error Functional (3.10) 
	Matching the DNS in an Average Sense — Results for the Optimization Problem with Error Functional (3.12) 

	Discussion and Conclusions 

	Enforcing Constraints Via Adjoint Analysis
	Introduction
	Optimization Problem
	Solution Approach
	Enstrophy Constraint
	Results 
	Discussion 

	Extensions and Open Problems
	Enstrophy Dissipation in 2D from the Perspective of the Kinetic Theory 
	Overview
	Introduction to the BGK Boltzmann Equation
	Optimization Problem
	Gradient-Based Solution Approach 

	Energy Transfer 
	Introduction
	Burgers Equation and Optimization Approach


	Discussion & Conclusions
	Numerical Methods for the 2D Navier-Stokes System
	Spatial Discretization — Pseudospectral Method 
	Four-Step, Third Order IMEX Method 

	Validation of Gradients
	Maximum Enstrophy Dissipation 
	Optimal Eddy Viscosity 
	Enforcing Constraints via Adjoint Analysis 

	Gradient of the Error Functional J2
	Decomposition of the Non-linear Term
	Galilean Invariance of the 2D Vorticity Equation
	2D Vorticity Equation
	Filtered 2D Vorticity Equation
	Leith Model

	Bibliography

