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Abstract

This thesis focuses on the creation of new parallel hybrid model designs for prediction and control in

batch and fed-batch reactors within Model Predictive Control (MPC) frameworks. In the hybrid model,

the first principle (FP) explains the dynamics and the residual Subspace Identification (SID) model

explains the error between the FP and the process. Modifications to the structure of the hybrid model

are motivated by limitations of MPC frameworks. MPCs need accurate models to explain the system

dynamics to make informed control decisions, and mechanistic models can be difficult to implement due

to challenges of solving the optimization problem in real time. Two tools are demonstrated to help solve

these problems. The first tool, Residual First Principle 0 Hybrid (RFP0H) model, helps to deal with

the intractability of a mechanistic model in a hybrid modelling framework. The input for the FP model

is kept constant and the SID predicts the error between the first principle and the process. Allowing for

the desired output to be subtracted by the predicted FP to create a desired error value. Thus, MPC

control only needs to be solved using the linear SID model in a linear or quadratic framework. Making

a potentially intractable problem, tractable in MPC. This is demonstrated using a simulated fed-batch

crystallization process. The second tool, Scaling Factor First Principle 0 Hybrid (SFFP0H) model,

modifies the hybrid model structure to multiple the sub-models’ outputs together. The SID data driven

model predicts a factor to scale the FP output for the process prediction. The results demonstrate that

the SFFP0H model has increased predictive ability and has smaller variability in control compared to the

RFP0H model. Helping to solve the problem of needing accurate models within an MPC formulation.

This is demonstrated by using a laboratory scale batch polymerization process.
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Chapter 1

Introduction

1.1 Perspective

Can’t see the forest for the trees - English Idiom

Point of View: A particular attitude or way of seeing a matter

To be a researcher is to be busy wondering through the trees trying to understand an aspect of the

forest better. To see the forest requires understanding what all other people are doing in the forests, the

phenomena of the forest, and how the forest evolves over time.

1.1.1 Abstraction

Abstraction: The process of forming a concept to identify common features among a group of individuals

and ignoring unique/outlying aspects [37].

To abstract is look at the conditions of reality and understand conditions, patterns, and relationships

that exist between unique elements .

1.1.2 Reality

Reality is the aggregate of all the interactions and actions of mass and energy that exist in the universe

[80].

What actually goes on between things.

1.1.3 Observation

The active acquisition of knowledge from direct sources. This occurs through sensory devices either

biological or technological [14].
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1.1.4 Framework

A web of connected concepts that together provide a comprehensive understanding of phenomena [62].

Question: How do humans understand the world?

Answer: People abstract and internalize from their observations of reality and put them together to

posit new ideas.

1.2 System

A set of axion/items/things/people working together as part of a network to achieve a goal, or to create

an output, or a comprehensive whole [50].

A framework of elements constructed within reality to achieve a goal or a directive or to understand the

interaction of elements.

1.2.1 System Engineering

Using Engineering Principles for the creation, modification, and maintenance of systems [5].

1.3 Society

The aggregation of people together into groups that are organized by larger social structures and systems

[19].

A system of people working together within their environments to achieve common goals held collectively

consciously or unconsciously as a collective.

1.3.1 Agrarian Society

A society constructed around the maintenance and cultivating of arable land for the production and

consumption of food [11].

1.3.2 Industrialized Society

A society that uses technology and machinery for the mass production of goods and services [43].

1.3.3 Industrial Revolution

Industrialization is the process of an economy going from an agrarian one to an industrialized one. There

exist four distinct phases of industrialization that has occurred and are occurring on earth [43].
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Industry 1.0

Industry 1.0 was the first stage of industrialization that occurred from around 1760 to 1840 predominately

in Great Britain, mainland Europe, and the United States. This saw the rise of hand production

techniques to machine ones, new chemical and iron production methods, and increased steam and water

power. Many people working in agriculture in the countryside went to work in factories as labourers

[43].

Industry 2.0

Industry 2.0 was the second stage of industrialization that occurred around 1870 to 1914. This stage

was characterized by the mass production, standardization of manufacturing facilities, and the increased

production of energies to power these systems. This stage of industrialization brought industry to many

new areas of the world, and saw a great enough production of resources that industry could affect and

change the lives of large swaths of the world [43].

Industry 3.0

Industry 3.0 otherwise known as the Digital Revolution was the third stage of industrialization that

occurred from around 1950 to 2000. This saw the advent of the computer and their ascension to

a seminal role in society and industrialized functions. Increases in computer technology allowed for

increased data acquisition and information to improve systems, thanks to the computation efficiency

of computers. Digitization allows for an acceleration of productive gains and news ways of improving

manufacturing systems [23].

Industry 4.0

Industry 4.0 is the ongoing fourth stage of industrialization and is meant to represent the rapid transition

of our society and industry in the 21st century to one that is deeply interconnected with the use of smart

automation. Advances in industry come from synergizing different domains of knowledge which include

artificial intelligence, advanced robotics, and gene editing [58].

1.4 Science and Engineering

How do people make sense of a world of noise and how do people force their will on their environments?
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1.4.1 Science

Science is a complex and multifaceted approach to understand the natural phenomena that occur in the

universe. Scientific understanding relies on testing of ideas (hypotheses) to create observations that help

determine the validity of the idea. Science is a pathway to understand and a way to learn about the

natural work, the systems within it, and the evolution of the universe [59].

The foundations of science is found in the ancient works through ancient philosophy, astronomy, and

medicine [54]. These fields of knowledge shaped Greek natural philosophy that thought after explanation

of events of the physical world by natural phenomena [54]. These ideas were held and contained in the

Easter Roman Empire and the Muslim world until the advent of the Renaissance and the Scientific

Revolution in Western Europe. This brought out renewed interest in the ancient world of thought, and

created the conditions for the emergence of mathematics, physics, astronomy, and biology [54]. Science

brought out an evidence based rational for understanding the world, and its affects shape humanity to

this day, as humans use the foundations of previous knowledge to refine ideas and frameworks. People

see that much further due to what has come before.

1.4.2 Engineering

Engineering uses scientific principles to design and build things. At the heart of engineering are problems

that needs to be solved, and an engineer who needs to use their domain of knowledge to solve it. Engineers

take the ideas and foundations of mathematics and sciences and use them in practical applied ways for

desirable applications [52].

The foundations of engineering comes from civil and military engineering, where devices were needed

to be created for the functioning of society and the mechanism of war between and within societies

[52]. As the knowledge of science and engineering has increased over the centuries, along with the

complexity of modern society, engineering has splintered into many different disciplines of knowledge.

Now in modern society, it is hard to find an application or device that has not been shaped by scientific

and engineering principles.

1.5 Chemical Engineering

Chemical Engineering is the ability to create, manipulate, and maintain chemical processing systems

by using scientific principles to understand, explain, and control the movements of mass and energy

[26]. Processing plants are a cornerstone of modern industry and society with oil and gas representing

approximately 50% of all energy consumed globally in a year [48]. Some important processes in chemical

engineering include, crystallization, food processing, polymer manufacturing, energy production, and
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waste water [26]. The advances and luxuries of modern society would not be fully realized without the

advances that Chemical Engineers have contributed.

1.5.1 Foundations of Chemical Engineering

Modern chemical engineering found its insemination during the second half of the nineteenth century.

Originally most chemical processes were produced in modest craft operations, but due to increase demand

from industrialization, safety concerns from the public, and competition from various companies created

the incentives for greater efficiencies within processes. Large scaled chemical manufacturing operations

occurred and these facilities hired more industrial chemists and chemical technologies. People who had

dual domain knowledge of both chemistry and manufacturing [4].

These advances in industry brought about engineering as a profession. George E Davis considered

by some as the father of chemical engineering first published Handbook of Chemical Engineering in 1901

[18]. In it, Davis talks in length of various systems and processes found within chemical plants. Much of

it is descriptions of the mechanics of different process, reactions, and operations in chemical engineering.

Interestingly, the first section of the book goes into details about the increased use of coal for the use as

an energy source in Britain in the nineteenth century. Showing that at the heart of chemical engineering

is the principle to understand how energy and mass are fundamental to processes.

More advances were made from the observations of earlier engineers, include from Arthur D Little.

In 1915, Little proposed the concept of unit operations for chemical operations where chemical processes

are divided into their component parts that create physical changes in chemical systems [41]. This is a

fundamental component of chemical engineering today, and it would be difficult to discuss the subject

without talk of heat transfers, reactor, separators, distillation columns, mixers, and more. Additionally,

there was a division of chemical reactions into different classifications including polymerization, ester-

ification, nitrations, etc. These advanced allowed for a more segmented view of chemical engineering,

allowing for chemicals engineers to specialized into more specific fields of study.

Since these advancements of chemical engineering, there has been increased study into better under-

standing the fundamental operations of basic laws of mass transfer, heat transfer, and fluid flow [77].

Often the literature of many papers is to understand the mechanics of unit operations and to create

mechanistic models of how these mechanics operate [6, 79, 25]. Digital computers allowed for labourious

calculations to be done rapidly and for collecting mass amounts of data, allowing for these trends to ac-

celerate in the industry and even finding new models using techniques like latent variables and Machine

Learning [23].
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1.5.2 Batch Reactors

Batch reactors are a unit operation found within chemical processes. Batch reactors work in distinct

stages of operation, a transient state [67]. This is unlike many reactor operations liked Continuous Stirred

Tank Reactors or Packed Bed Reactors which are attempted to be run in a condition of steady state.

The steps of a batch reactor are three fold. Firstly, the reactor is fed with the necessary components

needed for the reaction. Secondly, the reactor will undergo necessary temperature and pressure changes

needed for the reaction to occur. Often the temperature of the reactor is manipulated throughout the

process to ensure desirable products at the end of the process. Once the reaction has gone through to

completion, the product will be emptied by the reactor for further processing and refinement elsewhere

in the process plant [86].

Semi-batch Reactors

Similar to batches, semi-batch/fed-batch are reactors which operate with the same procedures of a batch

reactor, but are open systems in which fed is added to the system through out the course of the reaction.

Said fed often contains a component of the reaction necessary for the process to go to completion [86].

The fed along with removal or adding of heat to the system are inputs into the reactor system.

1.5.3 Control in Chemical Processes

Process Control uses industrial control systems to achieve a level of consistency, economy, and safety

that would not be possible by a human alone. This is done in a control hierarchy that helps to control

process functions from the smallest unit operation to the planning and scheduling of the entire operation

[70]. The bed rock of most process control operations is the three factor Proportional Integral Derivative

(PID) controller which was constructed on intelligent control [4]. A heuristic control which came from

observation of human operators, specifically naval helmsmen. It was noticed how during control and

operation of a ship, that helmsman would look at the proportionality of the error, the anticipation of

a buildup or reduction of error, and the compensation for persistence error [4] to navigate towards the

desired path. From initial mechanical limitations, PID controllers have been refined and digitized to

make up over 80% of automated feedback control by the 1960’s. While, PID can provide quality control

of small unit operations, they do have setbacks including difficulty in operating Multi Input Multi Output

(MIMO) systems and difficulty in dealing with dead time [46]. To make up for these limitations a more

elegant solution would be necessary.

In the 1960’, advanced control was any control algorithm that deviated from classical PID control.

Examples include minimum variance, smith prediction, Generalized minimized variance, and pole place-

ment [7]. With good tuning these control mechanisms could provide excellent control, but had limited
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use in industry. It took several modifications of GMV to truly change the control industry. In 1978,

Richalet et al proposed a control technique known as Model Predictive Heuristic Control [76]. The tech-

nique uses a dynamics plant model to predict the effects of future process output and uses a cost function

to determine input values. This technique had many positives over PID including better performance,

handling of constraints, non-minimum phase processes, robust control, and straightforward applicability

to MIMO systems, and this technique eventually morphed into Model Predictive Control (MPC).

The popularity of MPCs have exploded in industry and academia since it’s insemination. The ability

to use dynamic plant models has extreme versatility due in part to the diversity of models that can be

constructed of processes. The ability of an MPC to perform its job satisfactorily is highly dependent

on the accuracy of the model embedded within the MPC. Different modelling domains have their own

positive and negatives in terms of MPC implementation.

Mechanistic Models

Mechanistic models or First Principle Models are models constructed with an understanding of the

underlying physics of a system [65]. In chemical processes, these are usually constructed by mass

and energy balances which attempt to explain the movement and changes of the energy and mass

overtime within a system. Typically, a mechanistic model will take the structure of a System of Ordinary

Differential Equations (ODE). Equations 1.1 and 1.2 show the typical structure of a mechanistic model.

Where x represents the state of the system, u represents the inputs to the system, and y represents the

outputs of the system. f(x, u) represents the system of equations that explain the rate of change of

states, and g(x, u) represents the system of equations that explain the outputs of the system.

ẋ = f(x, u) (1.1)

y = g(x, u) (1.2)

A mechanistic model is an excellent candidate for the MPC model if the model is well constructed.

As mechanistic models are mathematically approximations of systems based on physical and observable

concepts. Thus with enough information and expertise of the physics of a system, a mechanistic model

will closely approximate that physical reality [78, 10]. If a mechanistic model has excellent prediction

control, it should be used for MPC, and has been used in a number of MPC applications in industry.

While powerful, there are a number of limitations to mechanistic models. To fully understanding the

dynamics and physics of a system can be a challenging task that is not trivial for large and complex

systems [2, 74]. Often creation of mechanistic models requires simplifying assumptions to be able to fully
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conceptualize the physics. Additionally, the parameters values need to be approximated which requires

data and experimentation to determine accurately, things that are both time consuming and costly.

Finally, due to the non-linear structure of mechanistic models, tractability issues, and uncertainty, it

can be difficult to formulate and to compute optimization problems in real time [2, 74]. Meaning that

MPC with a mechanistic model of a process will either provide sub-optimal input suggestions or simpler

controllers options such as PID (with their own problems) have to be used to control the process. Due

to all these difficulties of mechanistic models making simpler model structures is attractive.

Data Driven Models

Data driven models are models constructed with a predetermine structure between the input and output

data. Data from the system is used to perform algorithms and regressions using the model structure

to determine model parameters [55]. The simplest data drive models are linear, and include Partial

Least Squares Regression (PLS) and Subspace Identification (SID) [28, 33, 28, 75]. These linear model

structures mean that it is trivial to solve and resolve for the parameters of these models. These type

of models have been used to great affect in MPC control for a number of systems. Although the linear

structure of these models can limited the impact their usefulness.

Neural Networks (NN) are another Data Driven modelling technique. They consist of layers of nodes

that summed inputs together and use linear or non-linear activation functions to simulate the dynamics of

a system. Neural Networks take advantage of a computer’s processing power to compute large networks

of nodes to eventually determine one that approximates the system dynamics [42]. Neural Networks are

an extremely popular modelling technique and have also been used in a number of MPC applications

[1, 57, 15]. There are limitations with the technique though as NNs have large number of parameters

which means over-fitting of the model for data of limited amount or of poor quality.

Hybrid Models

Hybrid models are a modelling structure where multiple models from different modelling domains are

combined together to provide a more informative model [84]. There are two modelling structures common

in hybrid modelling, parallel and series. In the series technique the output of one sub-model is an input

to the other sub-model which predicts the system outputs. In the parallel technique, the outputs of both

sub-models are combined together for a more informed prediction of the process output. Hybrid models

have been growing in popularity due to the different domains of knowledge that can be used between the

different sub-models, including data driven, mechanistic, and heuristic [84, 81, 47, 73]. This combining

of information helps realize the full information known about process systems, but provides both the

positives and negatives of either sub model. Overall, hybrid models are a popular technique for MPC

16



due to these reasons, and they have been successfully implemented in a number of systems.

1.6 Tool

An object meant to improve a person’s ability to modify components of systems. Often meant for

improvement, creation, or maintenance of a system [72].

1.7 Putting it All Together

Since the insemination of humanity, people have had to deal with the material reality that surrounds

them. People are both observers and participants of the places that they find themselves. To deal with

the conditions that people find themselves, they need to provide frameworks from their observations and

interactions to create an understanding of them. Once an understanding of the systems occurs after

time and discussion, people can start to contend with the limitations and problems that has arisen in

their environments and their social structures. Once people have both an understanding of systems and

the problems that they create, they can start to process how changes to these systems can occur; how

to get around the limitations. Often these changes to systems are most easily manipulated by tools

that extend a person’s ability to modify the world around them. These occurred in the earliest stages

of human society, during hunter gather days. Using tools like flint for the creation of fire and poles for

extra reach. The uses of tools allowed humans to create more complex social structures and increased

the complexity of human systems [72]. This continued and snowballed and continues on to this day.

Human society is much more complex now, then during pre-agricutural society, but humans still need to

understand and interrupt their surroundings. To do that people still create frameworks to understand

reality and how it can be manipulated. Their is still plenty of problems today and people continue to

look for solutions to them.

Over the millennia, new tools have been created to solve for problems and modify people’s sur-

roundings. The scientific method and engineering principles have given rise to new ways to interpret,

understand, and interact with reality. Now people have empirical ways of interpreting and testing their

realities, and people also have ways of more reliably creating things that work within reality. This has

allowed for the advent of new technologies that are capable of changing not just human systems but

environmental systems. Steam and water engines are tools for the manipulation of energy to power

process at a rate that an individual labourer is incapable of achieving [20]. The advent of these tool

during the start of the industrial revolution helped to solve problems of the limitation of human labour

capacity and the increase demand of goods.

The creation of a manufacturing society created their own problem including problems with safety,
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operability, and reliability. These were new mechanical systems that were just being realized, and there

was a need for new engineers who understood these processes for the maintenance and expansion of

them [18, 41, 77, 44]. This need for technical expertise included the knowledge of chemical and fluid

systems. Steam and water engines required the manipulation of fluids. The need for more obscure/refined

chemicals required the knowledge of how to process these materials on an industrial scale. The need for

knowledge of the movement of mass and energy was more important than ever. All of which provided

the conditions for chemical engineers to become a part of the engineering profession at the start of the

twentieth century. Chemical engineers have helped created many chemical processes from the Haber-

Bosch process to refinery plants [44].

Chemical processes are highly complex and interconnected systems that are almost always in flux

[78, 10, 29]. People need to maintain these systems at all times to ensure that conditions are met for

a safe and effective processes that produce on-spec products. The maintenance of chemical process can

be time consuming due to the many unit operations that operate under various conditions and range of

processing conditions, and this becomes even more strenuous, the more complex the system is [10]. The

operation of processes were limited by the need of operators to manually control processes. The number

of personal who understand and could control processes were insufficient for the demands of chemical

processes [9]. With these problems came the need to automate the control of processes. The first tool

for automation included binary switches that would turn on or off depending on operating conditions

[4]. While binary switches help for certain processing and safety situations, they are insufficient to deal

with the range of conditions that processes needed to operate under.

The second big advent for control of chemical processes comes from the PID controller which has

been used extensively within the chemical engineering discipline since the 1920’s [4]. The PID controller

provides simple control of processes. By providing direct fed-back of a process output and comparing

said value to a desired value, PID controllers determine values of inputs that could be automatically

manipulated that would likely reduce the error between the values. This was done by the creation of

gains that would understand the relation of error within the system. This changed allowed for many

simple components of processes to be automated, reducing the need for operators to manually control

the processes [4]. Although, PID controllers comes with their own shortcomings. PID controllers explain

gains of processes but not the underlying mechanics of systems, making it difficult for PID to be scaled

to entire processes due to interconnected relationships of variables, impossible for PIDs to realize system

constraints, and it handles dead-time poorly [4, 76, 7]. For these problems to be overcome, a more

elaborate control method would be necessary.

Since the advent of the PID controller, more elaborate control techniques have became sought after in

the field [45]. The advent of the Model Predictive Control was a monumental shift in process and control
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engineering and allowed for greater control and relational understanding of processes. The reason for this

is that embedded within an MPC is a dynamical model that explains the relationship between inputs and

outputs of a process [45, 4]. Similarly to PID, measurements of process outputs are fed into the controller

along with an output set-point, where the controller will calculated input values to attempt to achieve

the set-point output by manipulating an input value. By using dynamical models within an MPC, it is

possible for the controller to have a more complete understanding of the relationships within the process.

Meaning that MPC could be used in Multi-Input Multi-Output systems, could handle constraints, deal

with dead-time, and provide control for more complicated control objectives [45]. Like PID, MPCs do

have their problems. Namely the need for a dynamical model. PID controller gains required a couple of

simple experiments to determine their gains for the controller to function [45, 31, 69]. MPC requires a

dynamical model which is not always easy to obtain and may not be consistent with the process reality.

Failure to obtain an accurate dynamical model of the process can cause irregularities and failure of the

MPC to achieve its objectives [45, 31, 69]. Thus, it is imperative to determine a good dynamical model

before use of an MPC.

There are two common model structures that are used within an MPC framework. Mechanistic

models and Data Driven models, each with their own benefits and drawbacks. Mechanistic models

consist of physical relationship that are based on the fundamental laws of nature [65, 78, 10]. Often

in chemical processes, they consist of energy and mass balances that explain how these concepts are

manipulated and change over time. The benefit of mechanistic models is that as the model is based

on the physical reality of a system, a well constructed model will provide excellent results in achieving

process output [17, 56]. The problem with mechanistic models is that they are both time and energy

intensive to create and maintain. Plus due to non-linearity, intractability, and uncertainty, it can be

difficult to effectively control in real-time [78, 10, 29, 17, 56]. The benefit of data driven models is their

ease of creation and maintenance. As Data Driven Models have a pre-constructed model formula, all

that needs to be done to create one is to have data, and the model is run through an optimization

problem to formulate the parameters of the model [55]. The drawback of Data Driven model is that

the model structure limits its ability to completely explain the dynamics of the system. Linear Data

Driven models might not fully explain the non-linear dynamics of a system [38, 39, 13]. Non-linear Data

Driven models like Artificial Neural Networks might explain noise instead of the dynamics due to too

many parameters from too little or noisy data [60]. Both of which mean a sub-optimal operation of the

MPC. To solve for these problems, new tools need to be incorporated into the MPC model.

Many engineers, technicians, and scientist are working on solutions to these problems that are ongoing

in MPC. Ideas like Bayesian Statistics may ease the burden of mechanistic model maintenance and

provide more accurate explanations of process dynamics over time by using statistical methods to change
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the parameter values over time [83]. The over fitting problem within Artificial Neural Networks could

be solved by using Physics Informed Neural Networks to ensure that the process explains the dynamics

of the system and not the noise [8]. All of these concepts are potential tools to solve problems, and

collectively, people will determine their true worth. But that is not the focus of this thesis as there is

interest in a different modelling schema.

Hybrid Models are model structures that contain multiple model that combine together in some

constructive method to generally have greater prediction ability than either model either sub-model is

capable of on their own [84]. It takes advantage of multiple sources of information, often both mechanistic

and data driven models [81, 47, 73]. These multiples models generally combine different insights of the

world, varying ways to understand and conceptualize chemical systems. Mechanistic, from insights into

the physics of a system and data driven taking advantage of data and algorithms to explain the variance

between input and output. Parallel hybrid models are one form of hybrid model where the outputs

of the two models are combined together to predict the output of a process [81, 47, 73]. One form of

the parallel hybrid model takes the form of a mechanistic model that explains the overall non-linear

dynamics of a process and a Data Driven Subspace Identification Model that explains the error between

the first principle and process output. Thus, the SID can help explain variance in the process that the

first principle cannot and vice versa. Such a system, makes model maintenance and creation simpler.

As the mechanistic does not need to explain the dynamics perfectly, that can be compensated for by the

SID model. Additionally, maintenance of the model is simpler as deviations in the process can be explain

by re-optimizing the residual SID. A problem that still remains with this hybrid modelling framework is

the real time optimization under MPC control. Due to challenges such as intractability, uncertainty, and

non-linearity that occur with non-linear mechanistic models, it is still difficult to solve the optimization

problem in real time to determine optimum input values. New tools for a hybrid parallel models would

be necessary to overcome these draw-backs.

For the problem of of real time optimization of the parallel hybrid model combining SID and a first

principle, Ghosh et al created their own tool for easier optimization within the MPC framework. This

was done by creating an SID model of the first principle. Thus making the model completely linear in

its predictive ability and easier for control applications [36]. Although, much of the non-linear process

dynamics was lost due to this change of the model structure which hinders the predictive ability of the

model.

People need tools to extend their ability to manipulate systems and surroundings, so as to solve

problems. In this thesis, two new tools are created and discussed in detail in service of better Control

within MPC frameworks. In Chapter 2, titled, A Novel Linear Hybrid Model Predictive Control Design:

Application to a Fed Batch Crystallization Process, the Residual First Principle 0 Hybrid (RFP0H)
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model is shown. A modification to the Residual Hybrid model is made where the first principle is

fed a constant input through the process. This allows for the first principle to be solved once at the

start of the process. This modification means that the desired process output can be subtracted by the

first principle model to create a desired error output. As a desired error exists, the MPC optimization

only needs to be concerned with the linear SID model meaning that control can be computed under

a linear or quadratic formulation. This removes the problem of intractability and non-linearity of the

mechanistic model during optimization. This makes optimization easier providing superior control to

alternative linear models while maintaining the predictive ability of the non-linear model. This new tool

is demonstrated on a simulated system of a fed-batch crystallization reactor. In Chapter 3, titled, A

Multiplicative Structure of a Parallel Hybrid Model for Optimal Temperature Model Predictive Control

in a Laboratory Scale Batch Reactor, the Scaling Factor First Principle 0 Hybrid (SFFP0H) model is

shown. A modification of the output structure of the parallel hybrid model is made where the output

of the two sub-models are multiplied together instead of being summed together. Meaning that instead

of the SID model predicting the residual error of the process, it predicts a factor to scale the first

principle prediction to predict the process output. This structure maintains the first principle model

structure from the RFP0H model where the first principle is fed a consistent input profile. Allowing

for the first principle to be solved once to allow for linear-control. This helps remove the problem of

needing an accurate model for good control within an MPC framework. As the SFFP0H has superior

predictive ability to the RFP0H model and reduced variation in control operations compared to the

RFP0H model. Helping to indicate that multiplicative hybrid structure predicts error more reliably

compared to an additive structure. The SFFP0H model is demonstrated using both a simulated and

actual laboratory scaled polymerization batch reactor.
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Chapter 2

A Novel Linear Hybrid Model

Predictive Control Design:

Application to a Fed Batch

Crystallization Process

Abstract

This paper addresses the problem of enabling the use of complex first principles model information as part

of a linear Model Predictive Control implementation for improved control. This is achieved by building

a hybrid model that uses an approximate implementation of a first principle model and a Subspace

Identification (SID) State Space model to explain the error (the residual) between the first principle

implementation and the process outputs. The key idea is to utilize the first principles model with the

initial conditions consistent with a particular batch, but using a constant value of the control action.

Thus, even though the first principles model may be intractable from an optimization perspective, the

approximate implementation allows the hybrid model to be linear (in the control input), while allowing

the nonlinear dependence on the initial conditions to be captured. The proposed hybrid model based

MPC is compared against a previous hybrid model with 2 SID models and a single SID model on a

fed batch crystallization process. The paper demonstrates the improved performance achievable by the

readily implementable proposed approach.
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2.1 Introduction

The operation and control of processes is a challenging task due to several issues such as non-linearity,

uncertainty, and constraints. One control approach designed to handle such challenges is Model Predic-

tive Control (MPC) and is extensively used though out the process industry. MPCs use models that

capture the dynamic relationship between manipulated inputs and process outputs to formulate and

solve optimization problems to determine inputs values while achieving appropriate closed-loop perfor-

mance. The accuracy of the model used within an MPC directly affects how well the controller is able

to achieve its objectives. There exists many variations of MPCs including linear, non-linear, economic,

robust etc [31]. These controllers cater to a wide range of objectives which typically include set-point

tracking, regulatory problems or economic objectives like maximizing or minimizing quality metrics of

a product, lower energy usage, increased reliability, and can be adequately adapted with regard to the

problem at hand [69].

The model embedded within an MPC has to closely reflect the actual physical reality of the system

in order to make accurate predictions. Choice of an appropriate model is, thus, imperative to ensure

that the controller picks inputs that manipulate the system in a desirable way. The dynamics of many

process systems are generally non-linear and are made up of complex interactions between different

mechanisms. Mechanistic models can describe the dynamics of such systems relatively well, and where

available, can be utilized in MPC formulations [78, 10, 29, 17, 56]. However, in many situations, figuring

out the equations that govern the physical process is a highly arduous task, and often require simplifying

assumptions. Optimization procedures to determine the parameters further involve a lot of complexity.

Finally, the maintenance of such complex models are costly over time, and their real time implementation

in control/optimization schemes impose significant challenges [2, 74] to the practitioners as well, and

in many cases, the first principles models may be simply too complex to be implemented as part of an

optimization algorithm.

Due to the challenges with development, maintenance and deployment of mechanistic dynamic mod-

els, there has been a significant push towards building simpler models, and purely data based model

structures offer an attractive alternative. These data driven models use predetermined model structures

to find correlations between input and output process data [55]. Partial Least Square Regressions (PLS)

and Subspace Identification (SID) are two such linear data based modelling techniques which have shown

great efficacy in capturing the dynamics of several continuous and batch processes [28, 27]. PLS finds

a linear relationship between the input and output data using Singular Value Decomposition (SVD)

or regression based techniques where summary variables are discovered to maximize the relationship

between the input and output data [33, 75]. It is an inherently static model and modifications need to

be introduced to deal with dynamics of a system, examples include dynamic PLS or time-index dynamic
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models [22, 63]. SID is another technique that takes advantage of the numerically efficiency of the SVD

algorithm to find a linear time invariant (LTI) state-space model using historical input output data.

The algorithm first finds a realization of states, and then performs a linear regression step to determine

the parameters of the LTI model [66]. These linear data driven models are considerably easier to build

compared to the physics based mechanistic model, and can be easily implemented in real-time control

strategies. There exists a significant amount of the literature where both PLS and SID have been used

to model complex dynamics, and subsequently implemented into an MPC [38, 39, 13, 32, 68, 51] to

achieve desired objectives. These models have proved useful in a wide variety of processes, but they

remain potentially limited by the linear dynamics of the model structure.

There exists several non-linear data driven approaches, Artificial Neural Networks (ANN), being

one of the most notable and frequently used technique. They assign non-linear functions to build the

relationship between the inputs and outputs [42], and their dynamic adaptations have been used in

a variety of MPC formulations [85, 87, 34]. Unfortunately, these models involve a large number of

parameters and have a tendency of over fitting when data is limited and of low quality. These drawbacks

along with their complex non-linear nature limit their utility within MPC formulations [60].

Hybrid techniques are another class of models which try to synergize mechanistic and data-driven

approaches to obtain more accurate models. Typically, a hybrid model consists of one data driven model,

e.g. PLS, SID, and ANN, and one mechanistic model, although it is possible to have two mechanistic

models or two data driven models [84] in a specific combination. There are two main structures for a

hybrid model: parallel and series, although, other ways of combining knowledge from different sources are

possible. A series model consists of one model running prior to the second model in a series arrangement.

The output of the first model is typically the parameters of the second model and is fed as inputs into

the second model. A parallel model works by each base model running in tandem. The outputs of each

separate model are then combined together to provide the predicted output of the whole architecture

[81, 47, 73, 82].

The parallel hybrid model typically operates in a way where the mechanistic model tries to best

explain the non-linearity in the process, and the data driven model corrects the error between the

mechanistic model and the true process measurements [35]. The use of high fidelity mechanistic models

in such schemes can be difficult to implement in real time monitoring and control strategies as they

are hard to solve and require large computation times [61, 2]. Simpler yet still accurate models are,

therefore, desirable as they can be readily embedded into linear or quadratic programming based MPC

schemes to obtain faster solutions. This was recently accomplished by creating a hybrid model with

two linear subspace based data models running in parallel [36]. While the approach proposed in [36]

works sufficiently well, the MPC formulation does not necessarily utilize the first principles knowledge
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available directly.

Motivated by the above considerations, a new hybrid modelling approach is proposed that enables

the use of potentially intractable first principles model in a way that is tailored for an MPC implementa-

tion. The mechanistic part of the hybrid model uses constant input values, and is simulated using only

the initial conditions. The SID based data driven model is trained on the error between the constant

input first principle predictions and the true process outputs. This allows for the first principle model

to be solved only once, and not as part of the predictive model inside the MPC, while still capturing the

nonlinear dependence on the initial conditions. The proposed approach is demonstrated in a crystalliza-

tion fed batch reactor where the control objective is to reach desired terminal qualities by manipulating

the inlet fed concentration. The rest of the paper is organized as follows: Section 2.2.1 provides a brief

overview of the crystallization fed batch process, Section 2.2.2 provides an overview of Subspace Identi-

fication, Section 2.2.3 goes over hybrid modelling and the recently proposed hybrid modelling approach,

Section 2.2.4 reviews a recently proposed MPC formulation that uses a linear hybrid model. Section 2.3

describes the proposed modelling approach with Section 2.3.1 proposing the novel hybrid model that is

the focus of this paper, Section 2.3.2 provides detail on model identification, Section 2.3.3 provides the

details on model validation, and Section 2.3.4 presents the MPC formulation. Section 2.4 provides the

methodology and results of the best models and MPC control with Section 2.4.1 describing the model

implementation and Section 2.4.2 describing the MPC implementation. Finally, Section 2.5 gives a brief

summary and conclusion to this paper.

2.2 Preliminaries

A fed batch crystallization process is considered as the simulated system and is briefly described in this

section. This is followed by an introduction to Subspace Identification, and the state of the art in Hybrid

Modelling and Model Predictive Control.

2.2.1 Simulated System: Crystallization

A fed batch crystallization reaction between a base and an injected acid solution is used as the simulated

system. The stirred-tank reactor is initially filled with the base solution and the acid solution is fed into

the liquid phase at a constant flow rate. For modelling and control purposes, the input considered is the

inlet concentration of the acid. The base and acid react to form a salt species insoluble in the solvent.

The salt precipitates from the solution through a nucleation and crystallization process. Additional

base and acid units continue to react and the salt product can either grow the existing crystal particles

or form new nuclei. No additional base is added to the reactor throughout the course of the reaction,
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resulting in decreasing base concentration as the reaction proceeds. The fed batch reaction is considered

to be complete when the base concentration goes below a certain threshold value, which can no longer

sustain the supersaturation of the salt product. At that state, the reactor contains crystals of the final

size distribution and excess acid in the solution phase. A visual depiction of this fed batch crystallization

process is shown in Figure 2.1.

Figure 2.1: Steps of the crystallization process in a fed batch reaction. In (a), the reaction hasn’t started,
and the reactor contains the base solution, seen as the red dots. In (b), the acid solution is fed into the
reactor, seen as the orange lines dispersing from the inlet stream. In (c), the base and acid have started
to react together to form solid nuclei, seen as the green spheres in the solution. The amount of base in
the solution has decreased. In (d), the reaction has stopped as there is negligible base in the reactor,
and the nuclei have grown to their final size and number. Note that the particles and nuclei drawn in
the figure are for illustrative purposes only, neither would be resolvable by the naked eye nor would they
be the colours shown.

For the illustration of the proposed framework, a mechanistic model is used as the test bed (referred

to as the process equations). The same set of equations with parametric errors is used as the first

principles model. To describe the dynamics of the process, the method of moments is used [53]. Each of

these moments has a physical significance and indicate a certain property associated with the crystals.

The zeroth moment represents total crystal number per unit volume of the solution, the first moment

represents the total crystal length per unit volume of the solution, the second moment represents the

total crystal surface area per unit volume of the solution, and the third moment represents the total

crystal volume per unit volume of the solution [49]. These properties are highly important to the quality

of crystallization products, and reaching the desired moment values at the end of a batch indicates

successful completion of that batch.

The time evolution of the moments are shown in Equations 2.1 and 2.2. The rate of change of the

zeroth moment (m0,α) is determined by the nucleation rate (Jα) which is shown in Equation 2.1. The

nucleation rate is described by Equation 2.3. The rate of change of successive moments (mk,α α =

1, 2, 3, 4) is determined by the previous moments magnitude and the growth rate (Gα) which is shown

in Equation 2.2. The growth rate is determined by Equation 2.4. Af,α and Bf,α are parameters that

vary depending on the properties of the reactor, where f = 1, 2 for A and f = 1, 2, ..., 6 for B.

δm0,α

δt
= Jα (2.1)
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δmk,α

δt
= KGpmk−1 (2.2)

Jα =


0 if Sα < 1

B1,α(Sα − 1)7/3exp(
−B2,α

ln2Sα−1 ) + B3,α(Sα − 1)B4,α( Mα

Msolu
)B5,αϵB6,α if Sα ≥ 1

(2.3)

Gα =


0 if Sα < 1

A1,α(Sα − 1)6/5exp(
−A2,α

Sα−1 ) if Sα ≥ 1

(2.4)

Both the nucleation and growth rates are highly dependent on the variable concentration product

ratio calculated in Equation 2.5. The concentration product ratio is the square root of the ratio of the

product of the base and the acid concentration over a reaction specific parameter, the square of the

polymorph solubility (Ksp,α). If the concentration product ratio has a value below 1, there is no growth

or nucleation and the reaction stops. Equation 2.6 shows the calculation of the mean specific output,

ϵ is a variable in the nucleation rate, Np is the power number of the motor in the reactor, dimp is the

diameter of the impeller, ns is the stirring rate, and V0 is the initial volume of the reactor. Additionally,

Equations 2.7 and 2.8 show the mass balances of the acid (nacid) and the base (nbase) within the reaction.

Cin and Qin are, respectively, the inlet concentration and inlet flow rate. ρ is the density of fluid in the

reactor, kv,α is a parameter of the crystal shape factor, and Mw,init is the molecular weight of the acid.

As time progresses, the acid and the base react to form nuclei decreasing their concentrations and the

fed batch process stops once the concentration product ratio reaches a value less than one.

Sα = (
CmonCinit

Ksp,α
)1/2 (2.5)

ϵ =
Npd

5
impn

3
s

V0
(2.6)

δnacid

δt
= QinCin − ρkv,α

Mw,init

δm3,α

δt
(2.7)

δnbase

δt
= − ρkv,α

Mw,init

δm3,α

δt
(2.8)

As mentioned earlier, Equations, 2.1-2.8, are used both as an alternative to the process, and as

the first principles model, albeit with parameter differences, see Table 3.1 for the differences. Further,

measurements from the process is assumed (and simulated) to be corrupted by measurement noise. The

27



Parameter Process Value FP Value Percent Change Unit

A1,α 4E-11 3.8E-11 -5% 1/s
A2,α 1.0 0.95 -5% -
B1,α 1.46E12- 1.533E12 +5% 1/s
B2,α 67.3 70.665 +5% -
B3,α 1E13 1.05E13 +5% 1/s

B4,α 0.8 0.84 +5% -
B5,α 50 52.5 +5% -
B6,α 0.1 0105 +5% -

ksp,α 1.63E-5 1.711E-5 +5% mol2/m6

Np 1000 1000 0% -
dimp 2.0 2.0 0% m

ns 10.0 10.0 0% 1/s
ρ 1000 1000 0% kg/m3

Mw,init 142.04 142.04 0% g/mol

Mw,mon 233.38 233.38 0% g/mol

Kv,α 0.5235988 0.54978 +5% mol2/kg2

Table 2.1: Parameters values used to solve the ODE system of the method of moments in the fed batch
crystallization reaction for both the process outputs and the first principle (FP) model, the percent
difference between the two scenarios, and the units of the parameters.

standard deviation value of each process output is first found, and a random value between −5% and 5%

of the standard deviation is added to the process output at every time step (see Figure 2.2 illustrating

(a) the mechanistic model and (b) the process). Euler’s method is used to solve the ODEs with an

integration interval of 0.01 minutes. However, measurements are recorded only every 0.5 minutes. The

initial conditions of all the moments are zero.

Data Base Generation

75 batches are simulated and used to train and validate all the models presented in this paper. To reflect

process variation, initial conditions are varied from batch to batch. Thus, batches have different initial

base fractions, acid fractions, initial masses of the reactor, and initial inlet acid fraction concentrations

into the reactor. Table 2.2 provides the bounds on these initial conditions, and the values for each batch

are determined randomly.

There is a series of step changes for the input, inlet concentration, throughout the batch. Every 12.5

minutes a step change is performed on the inlet concentration, and this change is randomly determined

between 0.8 and 1.2 times the magnitude of the previous concentration value. Measurements are assumed

to be available every 0.5 minutes. The magnitude of inlet concentration is always kept between the

bounds of 0.04285 and 0.4mol/L which is equivalent to an inlet fraction between 0.01 and 0.1.

The length of each batch varies as the initial conditions and input values differ from batch to batch,

which influences the rate at which reactants are consumed. The end of a batch is determined when the
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Variable Low End High End Units

Initial Base Fraction 0.2 0.3 -
Initial Acid Fraction 0.01 0.1 -

Initial Mass 100 250 kg
Inlet Flow Rate 1E-3 2.5E-3 m3/s

Inlet Acid Fraction 0.01 0.1 -

Table 2.2: Range of the initial conditions in the fed batch reaction used to generate the database.

moments values plateau.

To generate the training data, a matrix of input data (U) with dimensions (m×N), the parameter

values, the System of Ordinary Equations, and the initial output conditions are given to the ODE solver.

The variable m represents the number of inputs and N is the total number of time steps of the batch.

The value of m is 1 as the only input is the inlet salt fraction into the reactor. The outputs are the

values of the moments for the entire batch (Y ) with dimensions (l ×N). The variable l represents the

number of outputs, and the value of l is 5 as the outputs are the zeroth to fourth moments.

Figure 2.2: Black Box of how the batch data is generated for both the First Principle and the Process.
(a) shows the first principle data generation, and (b) shows the process data generation.

2.2.2 Subspace Identification

Subspace Identification uses Single Value Decomposition (SVD), QR Decomposition, or other similar

techniques to identify a linear time invariant state space model of the form provided in Equations 2.9

and 2.10. The first step in identification involves determining a state sequence trajectory using SVD by

finding the row space intersection of a Hankel matrix containing input-output data. These theoretical

states of the batches can then be used with the inputs and outputs to determine the matrices A, B, C,

and D through an appropriate linear regression step [66]. The resultant model takes the form:

xsid[k + 1] = Axsid[k] + Busid[k] (2.9)

ysid[k] = Cxsid[k] + Dusid[k] (2.10)

where xsid[k] is an (n×1) vector with n representing the number of states in the system, k indicates the
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sampling instance, and usid[k] and ysid[k] represent the input and output vectors, respectively, and have

the dimensions of (m×1) and (l×1). m and l represent the number of inputs and outputs, respectively.

These states are referred to as theoretical states and do not necessarily directly correlate with the states

of the mechanistic model. A model structure for a process consisting of a single SID model is referred

to as the Process 1-SID Model (P1SID Model) for the remainder of the paper.

2.2.3 Hybrid Modelling

A hybrid modelling strategy uses a combination of models to achieve superior predictions of outputs.

Most hybrid models typically use both a mechanistic model and a data driven model (e.g. PLS, ANN,

SID) It is, however, possible to use two mechanistic models or two data driven models in combination

as well [84]. There are two popular hybrid modelling structures: parallel and series.

In this paper, we focus on the parallel structure. A parallel hybrid model uses two sub-models

running in tandem. The outputs of the two sub-models (Y1 and Y2) are combined together to produce

the predicted output of the process (Y3). The input to the two sub-models (U1 and U2) can be the same

set or a different set of data depending on the individual models [81, 47, 73, 82]. Figure 2.3 shows the

generic structure of a parallel hybrid model.

Figure 2.3: Black Box diagram of a typical Parallel Hybrid Model which is showing the model structure,
inputs, and outputs.

A parallel hybrid modelling approach was recently proposed which integrates a mechanistic model

with a subspace identification model. The first principle explains the overall trend of the evolving

trajectories, and the SID model is built to predict the error that exists between the process and the first

principle output trajectories. These two models together form the parallel hybrid architecture [35]. This

model structure is referred to as the Residual and First Principle Hybrid Model (RFPH Model) for the

rest of the paper.

The first principle calculations are shown in the Equations 2.11 and 2.12 which include the states
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(xfp) of the process, the inputs (u), and the outputs (yfp). Equations 2.13 and 2.14 show the equations

for the error model (esid[k]). The input values are the same for both the first principle and the SID. A,

B, C, and D are the matrices determined from SID. Equation 2.15 shows that the output of the first

principle and the SID error prediction are combined together to calculate the predicted output at any

kth time point (ypred[k]).

ẋfp = f(xfp, u) (2.11)

yfp = g(xfp, u) (2.12)

xsid[k + 1] = Axsid[k] + Bu[k] (2.13)

esid[k] = Cxsid[k] + Du[k] (2.14)

ypred[k] = yfp[k] + esid[k] (2.15)

2.2.4 Linear Hybrid Model for Model Predictive Control

While the first principles model for the simulated system is relatively simple, there are often cases where

high fidelity and complex mechanistic models, such as process simulators are available. The problem

with these first principles models is that it can be exceedingly difficult to implement these models into

control formulations because these models require complex optimization techniques to solve. To address

this challenge, a linear hybrid predictive model was formulated in reference [36] and used in an MPC

framework. The hybrid model consists of two SID models running in parallel, an SID model that predicts

the first principle outputs and an SID model that predicts the error between the process outputs and

the first principles SID outputs. The two outputs are then combined to predict the process outputs.

The model structure for this linear hybrid model is shown in Figure 2.4.

Equations 2.16 and 2.17 show the first principle prediction SID, Equations 2.18 and 2.19 show the

error prediction SID, and 2.20 shows the combining of the two models for process prediction. xfp,sid is

the states of the SID first principle, xe,sid is the states of the error SID, u[k] is the vector of input values

at time k, yfp,sid is the predicted output of the first principle SID output, esid is the predicted error

between the first principle and the process output, and ypred is the predicted process output. This model

structure is refereed to as the Residual and First Principle 2-SID Hybrid Model (RFP2SIDH Model)
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Figure 2.4: Model structure of the RFP2SIDH model.

[36].

xfp,sid[k + 1] = Afpxfp,sid[k] + Bfpu[k] (2.16)

yfp,sid[k] = Cfpxfp,sid[k] + Dfpu[k] (2.17)

xe,sid[k + 1] = Aexe,sid[k] + Beu[k] (2.18)

esid[k] = Cexe,sid[k] + Deu[k] (2.19)

ypred[k] = yfp,sid[k] + esid[k] (2.20)

A schematic of the close loop implementation using the RFP2SIDH Model is shown in Figure 2.5.

While the approach in [36] provides a way to embed the hybrid model within the MPC, it possibly

compromises on the predictive capability of the first principles model. A hybrid modelling and control

structure that could make better use of the first principles model, without increasing the complexity of

the resultant optimization problem in the MPC is therefore valuable, and presented in the next section.

2.3 Proposed Modelling Approach

In the present work, a linear hybrid model approach containing a first principle model and a SID model

is proposed and implemented into an MPC framework. This is compared to a non-linear hybrid model,

a hybrid model with 2 SIDs, and an SID model. The proposed modelling approach is first presented

followed by model identification and validation. The MPC control strategy for the proposed model is
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Figure 2.5: A closed loop schematic of the RFP2SIDH Model used in reference [36].

presented in the final subsection.

2.3.1 Hybrid modelling Strategy

A novel change to the standard RFPH Model is proposed where the inputs for the first principle model

are held constant at their initial values throughout the extent of the batch. The SID model used to

predict the error is modified to predict the error between the first principle outputs (generated using

constant inputs) and the true process outputs. The modified first principle equations are shown in

Equations 2.21 and 2.22 with a constant input variable (u0). xfp0 represents the first principle states

and yfp0 is the first principle output. Equations 2.23 and 2.24 represent the equations of the error SID

model, notice the variable input (u[k]). xsid0 is utilized in computing the residual SID states with esid0

being the residual error prediction. The final equation, Equation 2.25, shows the output of the two

models being added together to produce the predicted process output (ypred). The idea behind this

approach is to enable retaining the quadratic nature of the MPC problem presented in Section 2.3.4,

while still incorporating the nonlinear dependence of the initial conditions on the process evolution. This

model structure is referred to as the Residual and First Principle 0 Hybrid Model (RFP0H Model). The

first principle model with constant inputs on its own is refereed to as the First Principle 0 model (FP0).

ẋfp0 = f(xfp0, u0) (2.21)

yfp0 = g(xfp0, u0) (2.22)

xsid0[k + 1] = Axsid0[k] + Bu[k] (2.23)
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esid0[k] = Cxsid0[k] + Du[k] (2.24)

ypred[k] = yfp0[k] + esid0[k] (2.25)

In any MPC problem, the most accurate model that can be reliably computed and solved in real

time is the model that should be used for control. If a good first principles model exists, and is tractable

for optimization, utilizing it in an optimization formulation is expected to yield the best performance.

The present manuscript’s contribution is not to address such scenarios. The manuscript addresses those

scenarios specifically where a practitioner puts in significant effort to develop a detailed first principles

model that works very well for prediction. The complexity of the resultant model is such that it is

simply intractable to include in an optimization framework. This is especially true for models developed

in simulators like Aspen Dynamics that can be next to impossible to implement into an optimization

equation due to the structure of the software architecture. If one were to completely abandon this

detailed model, one could resort to the other extreme which is a linear data driven model. Such a

model can be reliably and easily implemented into real time optimization, because the optimization

would be linear or quadratic in nature which are guaranteed to converge, and have short computation

times.A hybrid model with a residual SID and a first principle with constant inputs presents a trade off

between the two modelling extremes. In the proposed technique, the first principle can be solved once

at the start to capture the effect of the initial conditions on the process evolution. The effect of the

inputs on deviations of this trajectory are what the data driven model computes, resulting in a tractable

optimization problem and the approach still contains information about the non-linear dynamics of the

system via the first principle model.

2.3.2 Model Identification

The general procedure for building the SID component of the RFP0H Model is described below. To

identify the residual model, subspace identification is utilized. The approach is tailored to accommodate

for multiple batches by using a pseudo Hankel Matrix [12]; unlike a typical Hankel Matrix, a pseudo

Hankel matrix contains data for multiple batches or data with time discontinuities. The first step of SID

is to create Hankel matrices in the form of Equation 2.26 using the output data from the bth batch. The

dimensions of each matrix are (il×j). i and j are parameters that need to be determined before creating

the matrix, and i needs to remain consistent between batches [66]. Note that the outputs in the Hankel

matrix for the RFP0H model is the difference between the process output and the first principle model

output with a constant input, because the output of the SID is the error between the first principle
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output and the process output. The input is the variable input profile.

Y b
H1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

yb[1] yb[2] . . . yb[j]

yb[2] yb[3] . . . yb[j + 1]

...
...

. . .
...

yb[i] yb[i + 1] ... yb[i + j − 1]

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.26)

Y b
H2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

yb[1 + i] yb[2 + i] . . . yb[j + i]

yb[2 + i] yb[3 + i] . . . yb[j + i + 1]

...
...

. . .
...

yb[2i] yb[2i + 1] ... yb[2i + j − 1]

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.27)

i is chosen in such a way that it is greater than the order of the model [66]. Additionally, once i

has been determined the value of j is determined as j is picked so the matrix contains all data points of

the batch. Three other Hankel matrices are created, one where the indexing starts at i + 1 instead of 1,

which is shown in Equation 2.27, and two more matrices that have the same structures of Equations 2.26

and 2.27 but contain inputs instead (U b
H1 and U b

H2). These input Hankel matrices have the dimensions

of (im× j) [66].

Once all Hankel matrices have been created for the bth batch, these are amalgamated into the pseudo

Hankel matrix that contains data for all the batches. The formulation of these concatenated matrices

for the outputs are shown in Equation 2.28 and 2.29. The inputs also have these amalgamated matrices

in the same format and are referred to as UH1 and UH2 [66].

To factor in the variable lengths of each the batches, the number of columns of each batch, j, are

allowed to be different. The number of columns of the concatenated matrices (YH1, YH2, UH1, and UH2)

is given by M which is the sum of all the different j values for all the batches.

YH1 and UH1 are concatenated vertically as are YH2 and UH2, amalgamating the inputs and outputs

together in the form shown in Equations 2.30 and 2.31. There is one final concatenation of H1 and H2

that creates the final matrix H shown in Equation 2.32 [66].

YH1 =

[
Y 1
H1 Y 2

H1 . . . Y Nt

H1

]
(2.28)

YH2 =

[
Y 1
H2 Y 2

H2 . . . Y Nt

H2

]
(2.29)

H1 =

YH1

UH1

 (2.30)
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H2 =

YH2

UH2

 (2.31)

H =

H1

H2

 (2.32)

The identification stage involves finding the theoretical states of the training batches, and the parame-

ter matrices A, B, C, and D. The theoretical states are found by performing Single Value Decomposition

(SVD) on the H matrix of Equation 2.33. There are three resulting matrices from the SVD, namely, U ,

S, and V . The sub matrices within U are U11, U12, U21, U22, and have dimensions of (mi+li)×(2mi+n),

(mi+ li)× (2li−n), (mi+ li)× (2mi+n) and (mi+ li)× (2li−n), respectively. The sub matrix within

S, S11, has the dimensions (2mi + n) × (2mi + n). The transpose of U12, U11, and S11 are multiplied

together and SVD is computed on the resulting matrix shown in Equation 2.34. The Uq sub matrix

within the U2 matrix has dimensions of n× (2li− n). The theoretical states of the SID model are then

found by multiplying the transpose of Uq along with U12 and H1 shown in Equation 2.35 [66].

H = USV t =

U11 U12

U21 U22


S11 0

0 0

V t (2.33)

U t
12U11S11 = U2S2Vt =

[
Uq UT

q

]Sq 0

0 0


 V t

q

V t,T
q

 (2.34)

x̂theoretical = U t
qU12H1 (2.35)

Once the states trajectories of the SID are found, the parameter matrices of the model are determined.

The indices between (1 : l) × (1 : M − 1) contain all the output data for all the batches in YH2, and the

indexes between (1 : m)×(1 : M−1) contain all the input data for all the batches in UH2, Equations 2.36

and 2.37. With the states, inputs, and outputs data, the parameter matrix (Φ) can be determined using

a matrix regression in the form shown in Equation 2.38. The matrices A,B,C and D have dimensions

of n× n, n×m, l× n, and l×m, respectively [66]. Once the matrices parameters have been computed

the identification of the model is complete.

Yj = YH2[1 : l, 1 : M − 1] (2.36)

Uj = UH2[1 : m, 1 : M − 1] (2.37)
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Φ ∗

x̂2[:, 1 : M − 1]

Uj

 =

A B

C D

 ∗

x̂2[:, 1 : M − 1]

Uj

 =

x̂2[:, 2 : M ]

Yj

 (2.38)

2.3.3 Model Validation

The model validation involves evaluating the predictive capability of the model on new batch data

not used in the identification process. There are two phases of model validation for each new batch,

namely, (initial) state estimation and prediction. As stated in Section 2.2.2, subspace identification uses

theoretical states to explain the process. At the start of a new batch the states of the SID are not known

as the states cannot be directly observed. To estimate the states, a state observer is utilized. A state

observer uses the model and the measured output values to correct the state estimates at each time step,

and any state estimation technique like Kalman filter, Luenberger observer, moving Horizon estimator,

etc can be used for this purpose. In this work, a Luenberger observer is used to estimate the states [24].

The form of Luenberger observer is provided in Equation 2.39. L is the observer gain and the poles

are ensured to be within the unit circle, values less than one. This is done using the place function in

Matlab. The initial states estimates are taken to be zero. The Luenberger observer is allowed to run for

a limited number of sampling instances, by which instant the output predictions have converged with

the actual outputs which indicates the possible convergence of the state estimates. In particular, the

Luenberger observer takes the following form:

x̂[k + 1] = Ax̂[k] + Bu[k] + L(ŷ[k] − ypred[k]) (2.39)

The Mean Absolute Scaled Error (MASE) metric is used to evaluate the efficacy of the model pre-

dictions on validation batches. The MASE calculation is shown in Equation 2.40 [30] below:

MASE =

∑tp
t=1 | et |

tp
tp−1

∑tp
t=2 | yt − yt−1 |

(2.40)

yt is the tth process output, et is the error between tth prediction and process output, and tp is the final

time point of the model predictions. The MASE computation scales the error and allows for comparing

outputs that have different magnitudes. Once the observer has run its course in estimating the states,

the prediction phase begins. The model is fed the rest of the input information and uses it to generate

the model predictions. These predictions are then compared with the true output values.

The initial state estimation and validation can be computed for multiple batches to see how the

model performs for various initial conditions. The MASE is found for each batch, and then the average

MASE value is found. The best models are deemed to be the ones with the smallest average MASE,

indicating more accurate predictions throughout the batch, and on average, across multiple batches.
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Figure 2.6: Two phases of the validation, (a) the observer and (b) prediction, for RFP0H

Figure 2.6 shows the two phases of model validation, with (a) showing the model working with the

observer, and (b) showing the modelling working in the prediction phase when the model is fed the input

values and predicts the outputs with no knowledge of the actual outputs.

Figures 2.4 and 2.6 (b) show the model structures of RFP2SIDH Model and the RFP0H Model,

respectively. When comparing the two, the structural differences between them become clear. The

RFP2SIDH Model has the same variable input data that is fed into the two sub-models. The RFP0H

Model has two different input data matrices that are fed into each sub-model, a matrix of constant inputs

for the first principle model and a matrix of variable inputs for the residual SID model; the two inputs

have the same initial values until the variable input performs its first step change. The variable input

matrices is the same across both model structures. The RFP2SIDH has an SID model to calculate the

first principle while the RFP0H model uses a mechanistic model. In both model structures, the outputs

of the two sub-models are then combined together to produce the process output prediction.

2.3.4 Model Predictive Controller Design

At a sampling instance kc, the model predictive controller implementation takes the form:

u[k], k = kc, kc + 1, ..., kf = arg(min J = (es2 − ẽsid0,2[kf ])2)

ulb ≤ u[k] ≤ uub k = (kc, kc + 1, ..., kf )

u[k − 1] − udiff ≤ u[k] ≤ u[k − 1] + udiff when mod(k, v) = 0

u[k] = u[k − 1] when mod(k, v) ̸= 0

x̃sid0[kc] = x̂[kc]

x̃sid0[k + 1] = Ax̃sid0[k] + Bu[k]

ẽsid0[k + 1] = Cx̃sid0[k + 1] + Du[k + 1]

es2 = ys2 − yfp0,2[kf ]

(2.41)

38



where the various components of the MPC are explained below:

The objective function: The aim of the controller is to minimize the square difference between

the output error set-point (es2) and the predicted error from the SID at the end of the batch for the

second moment (ẽsid0,2[kf ]) where kf denotes the final time index and the output error is the difference

between the desired set-point of the second moment at the end of the batch (ys2) and the predicted second

moment output from the first principle with constant input at the end of the batch (yfp0,2[kf ]). The

MPC is implemented in a receding horizon fashion, and the decision variables are all the input values

between the current sampling instance of the batch (kc) and the final time for the batch (kf ). The

MPC implementations have been tested against their ability to achieve different set-points for different

batches.

Constraints: All the inputs (u[k]) are bounded between a lower and an upper value (ulb and uub)

respectively for k = (kc, kc + 1, ..., kf ). These values are the same input bounds used during batch

generation and model creation. Additionally, for each step change the absolute difference between the

new input (u[k + 1]) and the previously implemented input (u[k]) cannot exceed the value of udiff . The

constraints also ensure that between every v sampling instances (when measurements are being collected

but the input values is not changed), the input stays at the previous value. The constraints ensure

that all the step changes have magnitudes that the model was trained and tested on, that such input

changes are physically realizable, and that step changes occur at the same frequency as model training

and testing.

Note that in this application, the initial conditions for the states of the first principle model are also

known. The first principle 0 (FP0) model for that particular batch can therefore be integrated (with

constant input) to determine the second moment (yfp0,2[kf ]) ahead of solving the optimization. This in

turn can be subtracted from the setpoint to yield es2.

Thus, for the MPC, the set point value (es2) represents a desired error value for the SID residual

model to reach at the end of the batch, meaning that only the linear subspace model needs to be dealt

with in the MPC. Due to the linear nature of the SID model, the resultant optimization problem remains

a quadratic program that can readily be solved.

The schematic of the closed loop controller is shown in Figure 2.7. The state estimator is run

throughout the extent of the batch. Once v iterations of the observer has occurred and the observer has

calculated accurate estimates of the states using input and output data, the state estimate (x̂sid0), the

set-point (es2), and the constraints are fed into the MPC. The MPC calculates the input profile for the

system, and the calculated input at the kc iteration is applied to the systems for the next v sampling

instances. During the v instances, the observer keeps updating the state estimates.

For the MPC to make accurate prediction it is important that step changes occur approximately as
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Figure 2.7: Closed loop schematic of the RFP0H model framework.

frequently in the controller as occurred in model training and validation. The sampling time of the model

is every ∆Tm = 0.5 minutes, and this is the rate of iterations in the SID model. In model training and

validation, there is a hold time where step changes occurred every w = 12.5 minute. Thus, in the MPC

design, every w minutes or every v = 25 sampling instances, the objective function is solved and chooses

a new input value for the next v iterations. This step change occurs for every sampling instance k where

the modulus of k/v is equal to 0. Thus the control action is held constant for v sampling instances.

It should also be noted that the FP0 model will vary for each individual batch as the initial conditions

are consistent with the FP model, both the initial states and initial inputs of the process. Thus, for

control applications, it is more complicated than simply adding a bias, but information is provided about

the system dynamics when the desired error is determined.

Reformulating the optimization formulation

The objective function is to minimize the square difference between a predetermined error set-point and

the predicted residual value of the second moment at the end of the batch. The equation of the objective

function is shown in Equation 2.41. To solve this problem the objective function must be rearranged

so that a solver can actively manipulate all the inputs from the current iteration of the batch until

batch termination. To accomplish this, iteration is used on the state space equations to determine the

predicted value at the end of batch that contains the parameter matrices, the current state (x[kc]), and

the current and future inputs for k = (kc, ..., kf ). A pattern emerges from the iteration and the general

objective function is shown in Equation 2.42 below:

J = (es2 −X1 −M1u1 −M2u2 − ...−Mrur)2 (2.42)
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where M1, M2, etc are a summation and product of different combination of the SID parameter

matrices, the general formulation is shown in Equation 2.43, u1, u2, etc are the input and decision

variables of the objective function, and X1 is a constant from the product of the parameter matrices

and x[kc]. Each input is held for v iterations of the SID starting at the current (kc) iteration, and there

are r step-changes to implement which is the floor of the difference of the final iteration and the current

iteration divided by v, see Equation 2.44.

Mq =

qv∑
k=(q−1)v+1

CAkf−kc−kB (2.43)

r = floor(kf − kc/v) (2.44)

Equation 2.42 can be expanded out and reconstructed into a quadratic matrix equation in the form

shown in Equation 2.45, with the quadratic, linear, and scalar components of the equation shown sep-

arately below. These matrices along with the constraints can be inputted into a quadratic optimizer

where the inputs are determined to minimize the value of the objective function well maintaining the

constraints. Once the objective function has been solved, the first input change that the solver deter-

mines is implemented into the batch reaction. The rest of the input suggestions are discarded and not

performed on the system.

J =uTFu + Gu + c

uTFu =

[
uT
M1

uT
M2

... uT
Mz

]


MT
1 M1 MT

1 M2 ... MT
1 Mz

MT
2 M1 MT

2 M2 ... MT
2 Mz

...
...

. . .
...

MT
z M1 MT

z M2 ... MT
z Mz





uM1

uM2

...

uMz
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[
M1 M2 ... Mz

]


uM1

uM2

...

uMz


c = es2 − 2ysX1 + X2

1

(2.45)

The performance of the MPC for the particular batch can then be determined by finding the absolute

difference between the desired (ys2) set-point output and the actual output of the second moment at the

end of the batch (yprocess,2[kf ]), Equation 2.46.
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∥ys2 − yprocess,2[kf ]∥ (2.46)

2.4 Application to the Fed Batch Crystallizer

This section does a comparison of the various modelling approaches using both validation metrics and

closed-loop performance metrics. Recognizing the possible differences in the best selection of the param-

eters for each model structure (e.g., number of states, lags), in this section, 100 instances of models of

each model structure, RFPH, RFP0H, RFP2SID, and P1SID, are trained and validated for prediction

and control of the process outputs of a fed batch crystallization reaction. The instances differ in how

a particular data set is split between training and validation, and different choices for number of states

and rows of the Hankel matrix during SID training. The data sets, however, are kept consistent between

each approach to be able to make a fair comparison. 30 batches of data are used to train each model and

are validated using another 45 batches of data. The model with the smallest average MASE values for

the RFP0H model, the RFP2SID model, and the P1SID model are chosen for the MPC implementation.

The control performance of all the models types are then evaluated.

2.4.1 Model Creations and Comparison

45 batches of data with variable inputs and initial conditions are generated for the first principle and

process using the methods discussed in Section 2.2.1. These 45 batches are meant to represent a database

of historical batches and are divided into 9 groups of 5 with each group shown in Table 2.3.

Group Number Batch Numbers

1 22, 38, 20, 19, 43
2 7, 34, 13, 26, 25
3 18, 3, 8, 16, 45
4 37, 9, 14, 30, 40
5 11, 10, 36, 29, 31
6 17, 35, 21, 27, 39
7 5, 1, 23, 2, 44
8 4, 24, 42, 6, 15
9 33, 12, 28, 41, 32

Table 2.3: The groupings of the individual batch data from the batch database.

For every model creation a number of variables are needed to determine the characteristics of the

model. These include the number of rows in the Hankel matrix (i) the number of states that are used in

the state space model (n) and a seed number. The value ranges of these variables are shown in Table 2.4.

The seed number is used to randomly divide the batches into training and validation, 6 of the groups of
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5 for the training, and 3 of the groups of 5 for validation. The seed value is used in a random number

generator to determine the order of and divide the 9 groups.

Variable Low End High End

Number of Rows, i, in Hankel 5 15
Number of states 1 10

Table 2.4: Range of the model formulation variables; the number of rows in the Hankel matrix and the
number of states determined during model creation.

The three models that had the smallest average MASE for each model structure are then validated on

an additional 30 batches that had different initial conditions and input changes different to the original

45 batches. Thus it can be readily determined which model had the best predictions. The average

MASE and standard deviation of the MASE for each batch is compared for these 3 models of each

model structure. The model with the smallest average MASE for each model structure are considered

the best model for that model structure. The Final model for each model structure are then used within

the closed-loop MPC framework.

The mean and standard deviation of the MASE of the additional 30 batches are shown in Table 2.5

for the best model of each model structure. For each batch, the observer is taken out of the loop to

make predictions from the twenty-fifth sampling instance, i.e., 12.5 minutes into the batch, to the kf

sampling instance /end of the batch. For the first 25 sampling instances the observer is run to estimate

the SID states. This number was chosen based on 25 iterations and is found to be ample time for the

predicted states to converge with the actual states and provide accurate predictions.

What can be seen in the Table 2.5 is that both the RFPH and RFP0H models have the greatest

predictive ability with both having close to the smallest mean and standard deviation MASE. The

RFP0H model performs slightly better than the RFPH model. A point to note is that both means are

well within a standard deviation of each other, and thus it is difficult to state superior performance.

Both hybrid models only use 1 state for the SID. The next best performing model is the RFP2SIDH with

over two times the mean MASE than either of the hybrid model structures. The RFP2SIDH had 2 states

for the residual SID and 7 states for the first principle SID. The worst model structure is the P1SID

having twice the average error of RFP2SID and over four times the average error of either RFPH and

RFP0H. Interestingly, the P1SID model structure performance is worse than the first principle models.

This indicates extremely poor predictive ability from the P1SID model structure. The P1SID model

used 2 states for the SID. Figure 2.8 and 2.9 show a typical model batch with the predictive ability of

the best model for each model structure.

The results demonstrate that adding a first principle model improves the prediction ability of the

model, compared to both the first principle model and compared to an SID of the first principle, as the
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RFP2SIDH, RFPH, and RFP0H all outperform the first principles and P1SID. Additionally, the results

show that using a first principle with constant inputs instead of variable inputs in the present application

doesn’t decrease the predictive ability of the model, as the RFP0H and RFPH models both had similar

MASE averages and standard deviations. This can be explained by looking at the first principle and

constant input first principle outputs in Figure 2.9. It can be seen that both FP and the FP0 follow

the same trend. While there is deviation between the two, that mainly occurs in the later half of the

reaction, and the deviation is a small difference between the relative magnitudes of the two. Thus the

FP0 is still able to provide useful information for the RFP0H model to facilitate robust predictions. The

next section utilizes these best models within an MPC framework to compare closed-loop performance.

Model MASE Average MASE SD

RFPH 24.43 12.31
RFP0H 22.63 10.49
P1SID 109.91 36.84

RFP2SIDH 54.21 31.66
FP 75.00 16.31
FP0 75.06 17.06

Table 2.5: Average and Standard Deviation of the Mean Absolute Square Error of each batch for the
best version of each model structure and the first principle models for the additional 30 batches.

Figure 2.8: The input profile for a typical validation batch for 4 different modelling approach’s best
models, 2 first principles, and the process output.
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Figure 2.9: The model prediction profiles for a typical validation batch for 4 different modelling ap-
proach’s, the best models, 2 first principles, and the process output. The second moment model pre-
dictions start at 12.5 minutes. The process output (black -), the first principle model (black - - -), the
first principle model with constant input (black ..., the RFPH model (black -.-.), the RFP0H model (red
red-black), the P1SID model(red red - - - black), and the RFP2SIDH (red red ... black).

2.4.2 MPC Performance Model Comparison

The best models for RFP0H, RFP2SIDH, and P1SID are used in an MPC framework. Note that the

first principles model itself (the RFPH model) is not used to keep the comparison restricted to linear

model predictive control implementations. Note that if the first principles model is relatively simple and

amenable for online implementation, it could very well be utilized in a nonlinear MPC framework. Each

model structure is tested on 30 batches with different initial conditions and set-points. For each model

structure tested, the initial conditions and set-points of the 30 batches are consistent.

The set-point for each of the 30 batches are determined randomly between 1.1 to 1.5 times the

magnitude of the end of the batch output for the second moment first principle with constant inputs

(yfp0,2). The process output is typically a value between the multiples of 1.3− 1.4 times that of the first

principle. If the initial input value for the inlet concentration exceeds 0.3 mol/L, the range is limited

to 1.1 − 1.35, and if the input value is below 0.14 mol/L, the range is limited to 1.3 to 1.5. The reason

that the range of possible set-points are limited when the initial inlet concentration is high or low is

to prevent a set-point that would require inputs outside the constraints to achieve. For example, if

the initial inlet concentration is 0.4 mol/L and the set-point is a multiple of 1.5 times the final second
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moment first principle with constant inputs, then to achieve that set-point, the inlet concentrations

throughout the batch would need to be greater than the upper bound. The same is true for a small

initial inlet concentration and small factor, but this would violate the lower bound instead. In essence,

it is ensured that the set-points are achievable for the batch in question, and the various factors are

summarized in Table 2.4.2.

Initial Inlet (mol/L) Low End High End

Concentration Multiplier Multiplier
≤ 0.14 1.3 1.5
≥ 0.3 1.1 1.3

≥ 0.14 & ≤ 0.3 1.1 1.5

Table 2.6: The set-point multipliers for determining the set-point values of the second moment at the
end of the batch based on the initial inlet concentration of each batch. Set-points are determined by
randomly choosing a multiplier between the low and high end multiplier and multiplying the value with
the second moment of the first principle with constant input at the end of the batch for the 30 controlled
batches. The low and high end multiplies varies based on the initial inlet concentration.

The performance is quantified as the the absolute difference between the set-point and the actual

output of the second output at the end of the batch. The mean and standard deviation for the 30 batches

are determined for each implementation. The model structure that had the smallest average objective

value is deemed to be the best model.

The mean objective value and standard deviation for each model structure is shown in Table 2.7.

Figure 2.10 and 2.11 show an exemplar batch with the process outputs for the different model structures

and their corresponding inputs. From the table it can be seen that the RFP0H has the best performance

and has both a smaller mean and standard deviation than either of the other models. The RFP2SIDH

model has the middle performance of the three, and it still has readily good results for a number of

batches with its average Mean Performance Value (MPV) being only approximately 25% greater than

the RFP0H model. Thus, the P1SID model has the worse performance of all the model structures.

The results show that using a first principle with constant inputs is a reliable way to improve controller

performance. This is likely because of the information that the ODE first principle provides compared

to the other models; where the RFP2SIDH model has to predict the non-linear first principle using a

linear SID, and the P1SID model has to determine the output with no information pertaining to the first

principles. The superior performance of the RFP2SIDH over P1SID makes sense with regard to earlier

work where a similar performance is shown between the two model structures [36]. Assuming minimal

lose of trend and information from a constant input first principle profile when compared to a varied

input first principle, a RFP0H MPC can provide superior performance in a controller using information

from the non-linear dependence of the initial conditions than the other models that do not have access

to it.
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Figure 2.10: The input closed loop validation results for a typical batch for the three modelling ap-
proaches. The RFP0H model (black -), the RFP2SIDH model (black ...), and the P1SID model (black
- - -).

Model MPV SDPV

RFP0H 192.65 220.94
RFP2SIDH 249.88 247.32

P1SID 474.95 409.72

Table 2.7: Mean (MPV) and Standard Deviation (SDPV) of the Performance Value for the Final models

2.5 Conclusion

In this paper, a novel parallel hybrid modelling approach was proposed which enabled the use of infor-

mation from detailed first principles models that may be intractable if included in an optimization based

control implementation. The hybrid model used the non-linear first principle dynamic model but with

a constant input trajectory, and a second data driven SID model to explain the residual error between

the process output and the first principle. This modelling method was illustrated using a fed batch

crystallization reaction and allows the nonlinear dependence on the initial conditions to be captured

while being tractable from an optimization perspective. This hybrid model’s predictive ability was just

as reliable as the a hybrid modelling technique with first principle with variable inputs, and had superior

predictive performance compared to a parallel data driven hybrid model, a purely data driven model,

and purely the first principle model. This readily implementable proposed approach enabled the im-
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Figure 2.11: The output closed loop validation results for a typical batch for the three modelling ap-
proaches. The RFP0H model (black -), the RFP2SIDH model (black ...), and the P1SID model (black
- - -). The set-point value for the end of the batch is shown as the horizontal line (black -.-.).

plementation of a model predictive controller with improved control performance, having at least 25%

better control outcomes compared to the next best model. Simulation results demonstrate the usefulness

of this technique.
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Chapter 3

A Multiplicative Structure of a

Parallel Hybrid Model for Optimal

Temperature Model Predictive

Control in a Laboratory Scale Batch

Reactor

3.1 Introduction

Control of processes is difficult for a number of reasons including constraints, non-linearity, dead time,

and uncertainty within processes [31, 69]. Model Predictive Control (MPC) over the last half-century has

become one of the most ubiquitous tools in Control Systems within the Chemical Processing Industry

to address these problems. MPC is capable of handling these challenges by providing process systems

with variable input values that are likely to provide desirable outputs for the process. The reason that

MPC is capable of this is that embedded within the MPC structure exist models that explain the system

dynamics, the relationships of the inputs and outputs of a system [31, 69]. The model’s ability to explain

the process dynamics is vital to ensure accurate control of the system to obtain the desired output values

[31, 69]. Thus, it is imperative for any model embedded within an MPC to closely reflect the reality of

the system’s dynamics.

The dynamical reality of most process systems is typically non-linear, consisting of a System of
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Ordinary Differential Equations (ODE) with input, state values, and outputs. In theory, models that

are based on natural laws/physics , mechanistic/first principle models, have the highest accuracy in

explaining the relationship between the inputs and output, and these types of mechanistic models have

been used as part of an MPC for excellent control realization [78, 10, 29]. Although, there are short

comings to mechanistic models,specifically they are difficult to obtain. It can be an arduous task to

completely identify the entirety of the dynamics of a systes. This is because to completely identify the

dynamics, a large amount of experimentation and simplifying assumptions of the processing system are

needed [2, 74]. Both of these things take a large amount of time and money from process engineers,

technicians, and scientists to complete. Additionally, the difficulties of the model do not end once the

model is identified, as active maintenance of the model is necessary throughout the model’s use to ensure

deviations do not occur between the model and the process, as process dynamics and model parameters

are known to evolve over the lifetime of systems [2, 74]. These changes to process dynamics mean even

more time and resources are spent maintaining the model. These challengers provide incentives for

models that are easier to obtain and maintain while still providing accurate relationships of the model

dynamics.

On the other spectrum of mechanistic models in terms of complexity, there exist linear data-driven

models. Data-driven (DD) models use a predetermined model structure to explain the dynamic relation-

ship of systems [55]. The simplest of which explains the system dynamics through a linear relationship.

Two of the most common forms of linear DD models are Partial Least Squares (PLS) and Subspace

Identification (SID). Both models work by using Single Value Decomposition (SVD) to find latent states

that exist between the inputs and outputs [28, 33] . The major difference is that PLS is inherently

static, and SID uses states to find the parameters of a Linear State Space System. A state space system

has dynamics to predict future outputs based on current states and input values. Both of these model

structures have found use within MPC frameworks [38, 39, 13, 32, 68, 51]. These models are much

easier to create and maintain compared to mechanistic models due to their linear predefined structures.

Although powerful, these models are limited due to their linear nature as they will never be able to fully

explain the dynamics of non-linear processes.

A more complex non-linear DD model exists within Artificial Neural Networks (ANNs). Like the

linear DD models, ANNs use a predetermined model structure to explain the dynamic relationships of

the system. The model structure consists of layers of nodes that are summed and multiplied together

with non-linear activation functions. The variations and permutations of layers and nodes within an

ANN allow for a wide range of dynamic processes to be explained [42]. This has been shown in a number

of MPC frameworks [1, 57, 15]. The problem with ANN is that a large number of layers and nodes

require a significant number of parameters, typically in the thousands which is much higher compared
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to mechanistic or linear DD models. This number of parameters mean that the model tends to over-fit

the data and explain noise when there is a small data size or contains data of poor quality [16].

Hybrid models are an alternative modelling technique to either mechanistic or DD models. They

work by synergizing multiple models together to create a more informed model than is possible from

just one modelling domain. Typically a hybrid model will consist of models consisting from different

modelling domains e.g. data driven, mechanistic, heuristic, allowing for information about the dynamics

from these different domains to complement each other and have improved predictive results [84]. For a

hybrid model to function there needs to be a way to combine the sub-model structures together. This

can either occur in series or parallel form. In the series form, the output of one of the models becomes

an input to the second model. One form of a series technique is a DD model predicting parameter values

for a given mechanistic model. In the parallel form, the outputs of the models are summed together to

predict the output of the process [81]. One form of a parallel model is a mechanistic model that explains

the overall dynamics of the system, and a Data Driven technique explaining the error between the first

principle and the process output.

Parallel hybrid models consisting of a mechanistic model and a residual DD model can be a powerful

predictive technique. The mechanistic model can still be difficult to determine and optimize, but the

ease of reformulating the DD model can alleviate these problems. Although, solving the optimization

problem can still be difficult in real time optimization of the hybrid due to uncertainty and time to solve

the non-linear problem [61, 2]. Simpler yet still accurate hybrid techniques are useful as they can be

implemented into linear or quadratic MPC formulations, removing the time and uncertainly of non-linear

optimization. This was accomplished by creating a hybrid model with two linear subspace based data

models running in parallel [36]. This technique was further refined by keeping the non-linear dynamics

of the mechanics with the residual SID, but using a consistent input profile into the mechanistic model.

This modification allowed the First Principle (FP) model to be solved once at the start of the process,

and required only the Linear SID model for MPC optimization. While this new technique provided a

novel way to maintain the information of the dynamics of the mechanistic model while having a simple

control structure, it may still be limited based on the hybrid model structure that combines the outputs

of the two sub-models to predict the process output.

Parallel hybrid models typically consist of the two inputs being summed together to predict the final

output. This can be seen in a wide range of literature where the two outputs are summed together

[47, 73, 82]. There is only one parallel hybrid model within the literature where instead of summing the

two outputs together, they are instead multiplied together [71]. There exists no place in the literature

where parallel hybrid models that are summed together is compared against a parallel hybrid models

where the output is multiplied together, or any work that delves into the hyper or meta heuristic of
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determining a parallel hybrid model structure. This seems foolish, as in many processes, the error of

a process can fluctuate through out the process, changing in many order of magnitudes. The range of

value for a multiplication of error can be a smaller range than a residual. A factor that is multiplied

by the first principle prediction may not need to contend with as much non-linearity and may be more

consistent with how error propagates from one model to another.

Motivated by the previous factors, a new hybrid modelling approach is proposed that uses a multi-

plicative structure within the parallel hybrid model framework. Like the previous Linear hybrid model,

this model uses a potentially intractable first principles model which is tailored for an MPC implemen-

tation. The mechanistic part of the hybrid model uses a first principle profile with a consistent input

profile. The SID based data driven model is trained on the multiplicative factor from the division of the

the true process outputs over the first principle predictions. This allows for the model to make more

accurate predictions of the relationship between the first principle model and the process output. While

also allowing for the first principle model to be solved once, and not be a part of the MPC formula-

tion while still capturing the nonlinear dependence on the initial conditions. The proposed approach is

demonstrated on a lab scale polymerization reactor where the control objective is to track a desirable

temperature profile throughout the process by manipulating the jacket temperature via its inlet flowrate.

The rest of the paper is organized as follows: Section 3.2 provides an overview of the Preliminaries of

the paper, Section 3.2.1 provides a brief overview of the polymerization batch process, Section 3.2.2 pro-

vides an overview of Subspace Identification, Section 3.2.3 goes over hybrid modelling and the recently

proposed hybrid modelling approach, Section 3.2.4 reviews a recently proposed MPC formulation that

uses a linear hybrid model with a consistent input first principle. Section 3.3 describes the proposed

modelling approach with Section 3.3.1 proposing the Multiplicative hybrid model that is the focus of this

paper, Section 3.3.2 provides detail on model identification, Section 3.3.3 provides information on model

validation, and Section 3.3.4 presents the MPC formulation. Section 3.4 provides the methodology and

results of the best models and MPC control with Section 3.4.1 describing the model implementation

and Section 3.4.2 describing the MPC implementation both of which for the simulated system. Section

3.4.3 provides information on the MPC implementation for the physical lab scale batch reactor. Lastly,

Section 3.5 gives a final summary and conclusion to this work.

3.2 Preliminaries

This section provides a basic overview of preliminary information that serve as foundational knowledge

of this paper. The first section discusses the dynamics of the polymerization batch reactor, the next

section discusses the structure of the SID, followed by discussion of hybrid models, and the final section

discusses the state of the art hybrid modelling technique, Residual First Principle 0 Hybrid (RFP0H),
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and MPC control.

3.2.1 System of Interest: Batch Polymerization Reaction

A batch polymerization process is considered as the simulated system and the tested system, which is

described in this section.

System of Interest: Dynamics

The System of Interest for this paper involves a laboratory scale polymerization batch reactor. The

reactor is a closed system which at the insemination of the batch contains a fixed amount of monomer

and initiator in the solution. Said components react together within the reactor to create a polymer

solution. The reaction process is on going until the limiting monomer concentration is negligible within

the reactor at which point the reaction is considered complete. The temperature and concentration of

reactants within the reactor affects the final Molecular Weight and Molecular Number of the polymer.

There exists a desirable temperature profile for the reactor to perform which has shown experimentally

to provide high quality polymer product. Achieving desired outcomes is closely associated with matching

the desired trajectory of the reactor temperature. To control the temperature of the system, a cooling

jacket with cold water is run through the reactor removing heat from the system. The temperature of

the jacket is considered for modelling and control purposes the manipulated input. Figure 3.1 shows the

setup and configuration of the batch system.

Figure 3.1: Schematic of laboratory scale polymerization batch reactor.

An ordinary differential system has been constructed of the system to help explain the dynamics

and to be used as the system’s test bed. There are four states to this system; monomer concentration,

initiator concentration, the jacket temperature, and the reactor temperature. At the start of the reaction,
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the vessel contains 0.7034 mol/L of monomer and 4.5E − 3 mol/L of initiator. Equation 3.1 shows the

rate of dissociation for the initiator, Ri is the rate of change of initiator concentration, −d[I]
dt . Ad

is the initiator reaction coefficient, [I] is the initiator concentration, Ed is the activation energy for

initiator dissociation, R is the ideal gas constant, and Tr is the reactor temperature. Equation 3.2 shows

the rate of polymerization, Rp is the rate of change of the monomer concentration, −d[M ]
dt . Ap is the

polymerization reaction coefficient, ϵ is rate law of the initiator, θ is the rate law of the monomer, [M ] is

the concentration of the monomer, and Ep is the polymerization activation energy. Equation 3.3 is the

energy balance of the reactor which measures the rate of change of the reactor temperature, dTr

dt . mr is

the mass of the reactor, cpr is the heating capacity of the reactor, Rp is the rate of polymerization, V is

the volume of the reactor, ∆Hp is the enthalpy of the reactor, U is the overall heat transfer coefficient,

A is the heat transfer area, Tj is the temperature of the jacket, Qh is the rate of heated added by the

heating element, Qs is the work provided to the system from the stirrer, and Qloss is the heat lost to

the surroundings. Equation 3.4 is the energy balance of the jacket which shows the evolution of the

jacket temperature,
dTj

dt . mj is the mass of the jacket, cpj is the heating capacity of the jacket, Fc is the

flowrate into the jacket, cpa is the heating capacity of the cooling water, and Tc is the inlet temperature

into the jacket.

Ri =
−d[I]

dt
= Ad[I]e

−Ed
RTr (3.1)

Rp =
−d[M ]

dt
= Ap[I]ϵ[M ]θe

−Ep
RTr (3.2)

mrcpr
dTr

dt
= RpV (−∆Hp) − UA(Tr − Tj) + Qh + Qs −Qloss (3.3)

mjcpj
dTj

dt
= UA(Tr − Tj) − Fccpa(Tj − Tc) (3.4)

Equations 3.1 through 3.4 are used in two ways. One as a first principle approximation of the real

physical process, and as an alternative to the process. The first principle approximation is used as part of

the hybrid model for prediction and control Additionally, the equations are used as an alternative to the

real physical system to test the control and prediction capabilities of the model before being implemented

on the real system. There exists parameter mismatch between the first principle model and the physical

process alternative. The parameters for the process alternative are randomly determined deviations

that are between 0 to 81 % difference from the first principle. See table 3.1 for the differences between

the parameters. It is assumed that the measurements are corrupted by noise, and noises are varied
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Parameter Process Value FP Value Percent Change Unit

Ad 4.4E16 4.4E16 0% 1/s
Ed 1.44E5 1.44E5 0% J
R 8.314 1.533E128.314 0% J/(mol C)
Ap 2.833E9 2.833E9 +0% L0.75/s0.75

ϵ 0.9 0.1709 -81.0% -

θ 1.0001 1.0795 +7.93% -
Ep 7.1E4 6.33E4 -10.8% J
mr 700 700 +0% g

cpr 120 120 +0% J/(gC)
V 0.5074 0.6332 0% L

∆Hp -8.1922E4 -8.1922E4 0% J/mol

U 928 926 0% w/(m2C)
A 0.0662 0.0294 -55.6% /m2

Qh 655.37 559.72 -14.6% w

Qs 14.9 14.9 0% w

Qloss 25 25 +0% w
mj 450 450 +0% g
cpj 7 7 +0% J/(g C)
Fc 0 to 0.7 0 to 0.7 +0% L/min
cpa 4.184 4.184 +0% J/gC
Tc 25 25 +5% mol2/kg2C

Table 3.1: Parameters values used to solve the ODE systems of the equations in the batch polymerization
reaction for both the simulated process outputs and the first principle (FP) model, the percent difference
between the two scenarios, and the units of the parameters.

in a random uniform distribution by as much as a half standard deviation of the process data. Euler

method is used to integrate the ODE with a 0.02 second interval. The sampling time of the physical

and simulated systems are 0.5 seconds.

Data Base Generation and Use

15 batches of experimental data have been provided to construct the hybrid model. These batches

contain time series data on the jacket temperature, the reactor temperature, and the control signal to

control the flow rate of the jacket. Eight of which are closed loop and seven of them are open loop. The

closed loop tries to track the desired temperature profile that provides desirable polymer concentration,

molecular distribution, and quality at the end of the batch. Of the 15 batches, 6 batches were determined

to be consistent and close to approximating the desired temperature profile. These six batches are used

in the training and validation of the hybrid model.

There exists a relationship between the control signal to the valve which is measured and the flow

rate into the coolant jacket which is inferred from the signal value. This relationship is linear in nature

and tends to provide decent approximations over small sustained jumps in the profile. Although, this

relationship breaks down with frequent changes in the signal and large deviations between small time
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points, so much so that it can be detrimental to the predictive ability of the system. It is decided to use

the jacket temperature as the input into the system for modelling and control purposes. The measured

jacket temperatures are fed directly into the ODE system to calculate the reactor temperature, monomer

concentration, and the initiator concentration. The monomer and initiator concentration are not directly

measured and assumed to be states of the system. The reactor temperature is measured and assumed

to be the output of the system.

To generate the data meant to be the test bed of our system, a matrix U with the dimension of

mxN , parameter values, a system of ordinary differential equations, and the initial conditions are used.

m is the number of inputs into the system which has a value of 1, the jacket temperature. The jacket

temperature profiles are the same profiles that are measured on the physical batch system. N is the

number of sample iterations/time steps that occur in the batch which vary from batch to batch. The

initial conditions for the reactor temperature is the value of the first temperature measurement of the

physical system, and for the monomer and initiator concentration are 4.5E−3 mol/L and 0.7034 mol/L,

respectively.

3.2.2 Subspace Identification

Subspace Identification is a data driven modelling technique which uses Single Value Decomposition,

QR decomposition, or other similar techniques to create a Linear Time Invarient model in the form of

a state space equations [66]. The form of the equations are shown in Equations 3.5 and 3.6. xsid[k] is

the state vector at the kth sampling instance with the dimensions nx1. n is the number of states of the

SID system, and is determined during modeling identification. u[k] is the input vector at the kth with

the dimensions mx1. m is the number of inputs of the SID system. ypred[k] is the output vector at the

kth sampling instance with the dimensions lx1 l is the number of outputs of the SID system. A, B, C,

and D are the matrix parameters which are identified during model creation.

xsid[k + 1] = Axsid[k] + Bu[k] (3.5)

ypred[k] = Cxsid[k] + Du[k] (3.6)

The creation of the SID model involves two steps. The first being to create a state sequence trajectory

using SVD which finds a row space intersection of the Hankel matrix. This state sequence represents

latent information contained in the input-output data which undergoes SVD using the highly organized

Hankel matrix containing both input and output data. Once the state sequence has been determined, this

along with the input and output data can be used together to perform a linear regression to determine

the parameter matrices, A, B, C, and D [66].
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3.2.3 Hybrid Modelling

Hybrid Models consist of multiple model structures combined together for superior predictions. Often

this will occur in combination of different model structures. Such as mechanistic models used to describe

the system, and data drive models which are used to provide a more informative model. There are two

common hybrid model strategies; parallel and series. Series consists of the output of one model to be

the input of the other. Parallel, which is the focus of this paper, consists of the two sub-models being

run concurrently and independently of each other, each with their own inputs and outputs, of which the

input can be the same or different. The output of the two models are then combined together for the

final prediction of the systems outputs [84].

A parallel hybrid model consisting of both a first principle and a SID model has been studied over

several literature papers. In this form, the first principle is meant to explain the overall non-linear

dynamics of the system. As the first principles are not capable of fully explaining the dynamics of the

system due to parameter error and assumptions used to construct the model, there exists error between

the first principle predictions and the physical system outputs. The SID model is then used explain the

error that exists between the two [35].

The structure of a parallel hybrid model consisting of a first principle and an SID are shown in the

Equations 3.7 to 3.11. Equations 3.7 and 3.8 represent the first principle equations, where xfp represents

the vector of states, u is the system inputs, yfp is the outputs of the system, f(xfp, u) represents the

system of ordinary equations that explain the dynamics of the state, and h(xfp, u) is the equations that

explain the relationship between the state and the system outputs. Equations 3.9 and 3.10 are the SID

component of the hybrid model. xsid[k] is the state vector at the kth iteration, u[k] is the input vector at

the kth iteration, and epred[k] is the prediction of the error at the kth iteration. Equation 3.11 shows the

parallel structure of the model with the error prediction of the SID, epred[k], and the output prediction

from the first principle, yfp[k]. These are summed together to predict the output of the process, ypred[k].

ẋfp = f(xfp, u) (3.7)

yfp = h(xfp, u) (3.8)

xsid[k + 1] = Axsid[k] + Bu[k] (3.9)

epred[k] = Cxsid[k] + Du[k] (3.10)
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ypred[k] = epred[k] + yfp[k] (3.11)

3.2.4 Linear Hybrid 0 Model for MPC

The mechanistic equations of the hybrid model while highly informative about the dynamics of the

system have difficulties when it comes to implementing them into processes for prediction and control.

The reason for this is two fold. Firstly, maintaining first principle models can be expensive and time

consuming. As systems go through use, deviations in process dynamics occur due to entropy in the

system, meaning the predictive ability decreases over time. Thus requiring updates of model parameters

over time which requires optimizing and reviewing experimental data. Additionally, because of the non-

linearity of dynamics systems, it can be difficult to solve the optimization in real time. Such difficulties

can provide sub-optimal input suggestions to the process and may not provide suggested inputs at the

desired frequency.

To address it, a novel modification was made to the hybrid model design in McKay et al that changed

the first principle structure of the system, known as a Residual First Principle 0 Hybrid (RFP0H) model

[64]. In this modified hybrid structure design, a constant input profile is provided to the first principle

(FP) model, where the SID is fed the realized input of the process. The constant input trajectory that

is fed into the FP is consistent with the initial input/0th iteration of the sampled input, hence the

names First Principle 0 (FP0) and RFP0H. This modification to the first principle means that the first

principle will remain consistent through out the process and needs to be solved only once at the start of

the batch process. For MPC, there exists a desired output trajectory or values that an operator wishes

their system to undergo. With the the FP0, the desired output can be subtracted by the output of FP0

model, providing a desired error trajectory. Thus control with the MPC can be completed only using

the Linear SID sub-model. This allows for linear or quadratic optimization of the MPC, which is trivial

to solve compared to the non-linear dynamics that would be included in the mechanistic model, but at

the same time this modification still allows for the first principle to explain majority of the variance of

the system, making the predictive job of the SID easier and more reliable.

Equations 3.12 to 3.16, show the model structure of the RFP0H Model formulation. Equation

3.12 explains the the states of the FP0 model, where xfp0 is the state vector of the system, u0 is the

constant value input vector, and f(xfp0, u0) represents the Ordinary Differential Equation. Equation

3.13 represents the outputs of the first principle of the FP0 model, where yfp0 is the output vector of

the FP0, and g(xfp0, u0) is the system of equations that relate the states and the output. Equations

3.14 and 3.15 represent the residual SID prediction, where xsid0[k] is the states of the SID, esid0[k] is the

predicted residual output vector, u[k] is the input vector which fluctuates, and the parameter matrices
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A, B, C, and D. Note that u0 is the fix input and u[k] is variable, they are not equivalent to each

other except at the start of the process. Equation 3.16 represents the hybrid component of the model

where the first principle output and the SID residual prediction are added together to predict the process

output, ypred[k].

ẋfp0 = f(xfp0, u0) (3.12)

yfp0 = g(xfp0, u0) (3.13)

xsid0[k + 1] = Axsid0[k] + Bu[k] (3.14)

esid0[k] = Cxsid0[k] + Du[k] (3.15)

ypred[k] = yfp0[k] + esid0[k] (3.16)

While the approach in McKay et al provides a way to use a first principle structure at the start of the

process and allows for control actions to be determine exclusively using the linear SID for prediction and

control for a desired error, the structure of the model may not be fully utilizing all information that can

be provided by the two sub-models. Put another way, there maybe better ways of combining knowledge

of the two a hybrid model to obtain a more informative predictive model while still maintaining the

simplified control structure of the RFP0H model. In the context of the RFP0H, a variation of the

process that more accurately relates the relationship of error to the first principle would be valuable in

both prediction and control and is presented in the next section.

3.3 Proposed Modelling and Control Strategy

In the present work, a linear hybrid modelling approach containing a first principle model and a SID

model, where the outputs of the two sub-models are multiplied together is proposed and implemented

into an MPC framework. This is compared to the old linear hybrid modelling framework where a first

principle model and an SID model are summed together to predict the output. The modelling approach

is first presented which is then followed by the identification and validation of the model. The MPC

control strategy is presented in the final subsection.
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3.3.1 Hybrid Modelling Strategy

A novel change to the RFP0H is proposed where instead of the outputs of the two submodels being

summed together to predictive the process output, they are instead multiplied together. This means

that instead of predicting the error of the process, the SID output is predicting a factor to multiple the

first principle output to predict the process output. This factor is refereed to as the Scaling Factor (SF).

Additionally, the first principle structure of the model remains unchanged, except the input into the first

principle is a representative of a typical input for the process instead of constant.

Equation 3.17 to 3.21 show the structure of the Scaling Factor First Principle 0 Hybrid (SFFP0H

Model). Equations 3.17 shows the first principle state prediction with xfp0 representing the states, u0

represents the consistent input, and f(xfp0, u0) represents the ODE system. Equation 3.18 shows the

first principle prediction of the outputs, with yfp0 representing the first principle output predictions,

and g(xfp0, u0) representing the system of equations between the states and the outputs. Equation 3.19

shows the SID state equation, with xsid0[k + 1] the SID state vector, and u[k] the realized process input

vector. Equation 3.20 shows the prediction of the Scaling Factor, SFsid0. Finally, equation 3.21, shows

the structure of the multiplicative nature pf the hybrid model, where the SF and the first principle

process output are multiplied together to predict the process output, ypred[k].

ẋfp0 = f(xfp0, u0) (3.17)

yfp0 = g(xfp0, u0) (3.18)

xsid0[k + 1] = Axsid0[k] + Bu[k] (3.19)

SFsid0[k] = Cxsid0[k] + Du[k] (3.20)

ypred[k] = SFsid0[k]T ∗ yfp0[k] (3.21)

3.3.2 Model Identification

Presented in this section is the general procedure for building the SID component of the SFFP0H model.

To identify the SF component of the model, Subspace Identification is used to construct the State

Space model. There are three main steps of Subspace Identification. The first is to construct a highly

organized matrix of the input and output data known as a Hankel Matrix [66]. To accommodate for
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multiple batches of data, a Pseudo Hankel matrix is used which incorporates discontinuous data [61].

The second step is to create a theoretical state matrix containing state vectors that correspond to the

row intersection of the input output data. The final step of model identification is to perform a linear

regression using the input, output, and found state values to determine the values of the parameter

matrices, A, B, C, and D [66].

Equation 3.22 shows the generic structure of the Pseudo Hankel matrix. The entries of this matrix is

constructed from smaller Hankel matrices which take the form shown in equations 3.23 and 3.24. Where

Y b
H1 is the hankel matrix of the output data for the bth batch starting at the first data instance, and

Y b
H2 is the hankel matrix of the output data for the bth batch starting at the ith plus one data instance.

The instances of the output hankel matrices, yb[1], yb[2], ect are vectors of the output data for the bth

batch with the dimensions (lx1). l is the number of output variables. Nt is the number of batches which

contain data. The Hankel matrix for the inputs are also included in the Pseudo Hankel Matrix and

have the same form as is seen in equations 3.23 and 3.24. The only difference in structure is that the

inputs have the dimensions of (mx1). Where m is the number of inputs into the system. i and j are two

parameters that need to be chosen for the creation of the Hankel matrices, and represent the number

of rows and columns that occur in each Hankel Matrix, respectively. i will remain consistent between

batches, but j is variable from batch to batch depending on the length of the data. The dimensions of

the pesudo Hankel matrix is i(2m + 2l)xM where M is the sum of all the js from all the batch data.

H =



Y 1
H1 Y 2

H1 . . . Y Nt

H1

U1
H1 U2

H1 . . . UNt

H1

Y 1
H2 Y 2

H2 . . . Y Nt

H2

U1
H2 U2

H2 . . . UNt

H2


(3.22)

Y b
H1 =



yb[1] yb[2] . . . yb[j]

yb[2] yb[3] . . . yb[j + 1]

...
...

. . .
...

yb[i] yb[i + 1] . . . yb[i + j − 1]


(3.23)

Y b
H2 =



yb[1 + i] yb[2 + i] . . . yb[j + i]

yb[2 + i] yb[3 + i] . . . yb[j + i + 1]

...
...

. . .
...

yb[2i] yb[2i + 1] . . . yb[j + 2i− 1]


(3.24)

Once the Hankel matrix has been constructed from the batch data, it is necessary to find the states

of the system using Single Value Decomposition (SVD) which occurs twice. Equation 3.25 shows the
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decomposition into three matrices U , S, and V t. U and S are further divided into sub-matrices of which

U11, U12, and S11 are important. U11 has dimensions of (mi + li)x(2mi + n), U12 has the dimensions

of (mi + li)x(2li − n), and S11 has the dimensions of (2mi + n)x(2mi + n). These three sub-matrices

are then multiplied and undergo SVD to create the new matrices U2S2V
t which can be seen in equation

3.26. These matrices are also broken down into sub-matrices of which Uq is important. Uq has the

dimensions of nx(2li− n). Uq, U12, and H1 are multiplied together to find the theoretical states which

is shown in equation 3.27.

H = USV t =

U11 U12

U21 U22


S11 0

0 0

V t (3.25)

U t
12U11S11 = U2S2Vt =

[
Uq UT

q

]Sq 0

0 0


 V t

q

V t,T
q

 (3.26)

x̂theoretical = U t
qU12H1 (3.27)

Once the states of the SID are found, all that remains is to find the parameter matrices of the

State Space Equations. To do that, the input and output data are necessary. The data can be found

within the Hankel Matrix. The output data is found within the Hankel Matrix in the dimensions of

(i(l+m) + 1 : i(l+m) + l)x(1 : M − 1), and the input data is found in the dimensions of Hankel Matrix

in the dimensions of (i(2l + m) + 1 : i(2l + m) + m)x(1 : M − 1). This data is represented by Yj and Uj

and are seen from equations 3.29 and 3.28, respectively. The regression occurs in the form of Equation

3.28. Φ represents the parameters matrices to be calculated, A, B, C, and D. By performing a linear

regression with the corresponding input, output, and state values, the parameter matrices are found.

Uj = H(i(2l + m) + 1 : i(2l + m) + m)x(1 : M − 1) (3.28)

Yj = H(i(2l + m) + 1 : i(2l + m) + m)x(1 : M − 1) (3.29)

Φ ∗

x̂2[:, 1 : M − 1]

Uj

 =

A B

C D

 ∗

x̂2[:, 1 : M − 1]

Uj

 =

x̂2[:, 2 : M ]

Yj

 (3.30)

3.3.3 Model Validation

Model validation evaluates the predictive capability of the model using data not used within the training

portion of the model creation. There are two steps to model validation, the initial state estimation and
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the prediction phase. For a SID model to make accurate predictions, the model needs good value of

the states. As the states are latent values of the process and are not inherently knowable, they need

to be inferred by comparing the measured output against the predicted output to modify the state.

This occurs iteratively through out the process until there is a convergence between the predicted and

measured output. At that point, it is assumed that the states are accurate and the model is ready to

start predicting. The model is fed the input data to predict the output without information from the

measured data. This predicted data is then compared to the output using a Metric to measure the

amount of error.

A Luenberger is used as the observer to correct the states. The form of the state prediction with

the observer is shown in equation 3.31. L is the pole gain matrix which multiplies the error of the

predicted and measured output, ŷ[k] and ymeasured[k], at the kth sample instance. The gain matrix is

determined using the SID parameter matrices to correct the state for the next time instance. The rest

of the equation x̂[k + 1] = Ax̂[k] + Bu[k] is the typical state prediction where the state at the kth + 1

iteration is predicted based on the states and inputs of the previous iteration.

x̂[k + 1] = Ax̂[k] + Bu[k] + L(ŷ[k] − ymeasured[k]) (3.31)

To determine the predictive ability of the matrix, an error metric needs to be used. For this process,

the metric of use is Mean Absolute Scaled Error (MASE). The form of MASE calculation is shown in

3.32 [21]. In the numerator of the equation of the error between the measured and predicted output

is summed from the first prediction instance to the last prediction instance. The denominator sums

the difference of the output from the second sampling instance to the final instance. The numerator

measures the total error from prediction, and the denominator scales the error based on the changes of

the output. This measurement is down for multiple batches and the average MASE is considered.

MASE =

∑tp
t=1 |et|

tp
tp−1

∑tp
t=2 |yt − yt−1|

(3.32)

Figure 3.2 shows the two phase of model validation. The observer phase is the first phase in which

the measured output is compared against the predictive output to correct the state of the SID states.

This is done for v iterations where it has been reliably determined to convergence between the predicted

and measured output. The second phase is the predicted phase, where no information of the measured

output is used. Input is fed into the model and used to make the process predictions for the remainder

of the batch.
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Figure 3.2: Model structure of the SFP0H model in the validation. a) shows the structure with the
observer, b) shows the prediction phase.

3.3.4 Model Predictive Control Design

At the sampling instance kc, the Model Predictive Control Loss function consists of the following form:

u[k], k = kc, kc + 1, . . . , khorz = arg(min J =

kc+horz∑
kc

(SFsp[k] − SFsid[k])2)

ulb ≤ u[k] ≤ uub k = (kc, kc + 1, ..., kc + horz)

u[k − 1] − udiff ≤ u[k] ≤ u[k − 1] + udiff

x̃sid0[kc] = x̂[kc]

x̃sid0[k + 1] = Ax̃sid0[k] + Bu[k]

S̃F sid0[k + 1] = Cx̃sid0[k + 1] + Du[k + 1]

SFsp[k] = ysp[k]/yfp0[k]

(3.33)

The objective function: The aim of the controller is to minimize the squared error between the

predicted SFsid and the desired SFsp between the current iteration of the batch process to horz iterations

in the future, kc to kc + horz. The desired scaling factor comes from the prediction of the FP0 and the

desired output of the process. The desired output is divided by the FP0 for each iteration to determine

the desired scaling factor. The desired SF is calculated using the SID model. The MPC is implemented

in a moving horizon fashion where a fixed horizon of predictions are predicted. This becomes a receding

horizon problem at the end of the batch. The reason for this is that the desired output trajectory has a

limited number of iterations. When the horizon is longer than the remaining trajectory, the horizon is

shrunk to perform accordingly.

The constraints: A number of constraints are added to the function to ensure good control and prevent

large disturbances in the system. All input values determined by the model are bounded between a higher

and lower input value, ulb and uub. These bounds are to ensure that the inputs are physically realizable

64



as constraints from the system make implementing inputs outside these bounds difficult. Additionally,

the model was not trained with inputs outside these bounds which would limit the model’s predictive

ability. Additionally, for each step change that the models computes, the absolute difference between

the inputs needs to smaller than a tolerance of udiff . This is to ensure that the model predicts inputs

that have similar differences and trajectories that the model was trained on and that it is difficult for

the system to realize large step changes over small time ranges. Additionally, the most recent measured

value of the state needs to be used within the state prediction, and all future values of the state need

to have the relationship of the State Space Equation. The same holds for predicting the Scaling Factor,

the prediction of future SF should follow the relationship of the State Space Model. Finally, to calculate

the SF set point at the kth iteration, SFsp[k], the output set point, ysp[k] needs to be divided by the

predicted value of the setpoint from the FP0 model, yfp0[k].

The SF set point, SFsp[k] represents a target for the SID model to try and obtain. Much of the

variance within the system is explained the FP0 model, meaning that the SID can explain more of the

remaining variance of the system. This allows for the model to make more accurate predictions of the

necessary inputs to get the desired outputs.

The MPC is solved iteratively throughout the course of the batch reaction. Initially the observer is

run to ensure accurate state values and to make accurate output predictions. The input, set point, states,

and parameters are fed into the MPC controller where an input values are chosen for every iteration of

the control horizon. The first iteration of determined desirable inputs is implemented onto the system,

the rest are discarded. The system then continues to run until the next output measurement where the

states are updated and the MPC can run the optimization problem again. Figure 3.3 shows the closed

loop structure of the MPC and what needs to be fed into the MPC for accurate predictions.

3.4 Application to Laboratory Scaled Polymerization Batch Re-

actor

This section looks at the performance of the models in both a predictive and closed loop setting. The

SFFP0H and the RFP0H are both tested and compared against each other. 50 instance of each model

structure are tested using various values of the rows of the Hankel matrix and number of states of

the systems. 6 batches of experimental data are used in model creation; four for training and two for

validation. Models with the smallest MASE of each model type are tested on the MPC for comparison.

Multiple batches undergo closed loop control with both model structures to compare performance against

each other. The initial conditions between batches are variable.
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Figure 3.3: Closed Loop Schematic of the SFFP0H model within the MPC framework.

3.4.1 Model Creation and Comparison

From the original 15 batches of experimental data from the polymerization batch reactor; 6 batches have

been determined to fit the profile and modelling technique well enough to use as part of model creation.

4 batches are used for training and two batches are used for validation. Additionally, this data is used

to create simulated data as well, where the input, jacket temperature, is kept consistent between the

experimental and simulated system. The discrepancy is between experimental output and the simulated

output.

To create the model, the model parameters needs to be determined. The parameters that can be

manipulated are the number of rows in the Hankel matrix formulation, i, the number of realized states

in the SID model creation, n, and a seed number that divides the batches into training and validation.

i and n affect the relationship that SID finds between the input and output data, and the best values of

each parameter will vary based on the input output data. The seed will pick four batches for training

and the two batches for validation. The values of these parameters are determined randomly for 50

instances of each model structure. There are bounds of each of the model parameters for each instance

of a model and are shown in Table 3.4.1.

The MASE is found for each validation for the prediction portion of validation. The MASE of

the FP0 model is also computed. The MASE of the first principle is subtracted by the MASE of the

predicted output. This metric, called explained MASE, shows the improved performance of the SID

model. A larger value shows that more error has been explained by the SID model. The averaged
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Parameter Lower Bound Upper Bound
i 5 15
n 1 10

seed 1 1000

Table 3.2: The range of parameters for model construction for each instance of a model structure.

explained MASE of the validation batches is used to determine the overall performance of each instance

of a model structure. The largest average explained MASE for each model structure is determine to have

the best predictive ability of that model structure. The largest removed MASE of each model structure

can then be compared against the values of the other model structures. The largest average MASE can

then be determined to have superior predictive ability.

Mean of the explained MASE of the best performing model structure are shown in Table 3.4.1. What

can be seen from the table is that the predictive ability of the SF is better than compared against the

Residual. That SF has two states in the SID, and the Residual has two states in the SID. Figure 3.4

shows a typical model predictive ability for the best model of each model structure.

Model structure Removed MASE
RFP0H 4.147
SFFP0H 8.21

Table 3.3: The range of parameters for model construction for each instance of a model structure.

The results shows that the model structure of a hybrid model can affect the predictive ability of a

model. A multiplicative factor is capable of removing approximating twice as much error in the first

principle prediction compared to an additive model structure. Reasons for this could included increased

linearity in predicting a scaling factor versus a residual, and that the scaling factor more closely resembles

the nature of error/uncertainty in the model [3, 40]. The best version of each model structure are now

used within the MPC framework.

3.4.2 MPC Performance: Simulation

The best models of the SFFP0H and RFP0H model structures are used within an MPC framework. Each

model is tested on 30 batches. The desired output between the batches are consistent, but the initial

conditions vary between the batches. The initial temperature of the reactor and jacket temperature

are chosen randomly. The reactor temperature is randomly determined between the bounds of 30

and 50 degrees Celsius. The jacket temperature is typically between 1 and 5 degrees cooler than the

reactor temperature. Once the reactor initial temperature is determined, the jacket initial temperature

is determined randomly to be 1 to 5 degrees cooler.

The performance of the control for each batch is quantified by the sum of squared error between the
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Model structure Mean SSE Standard Deviation SSE
RFP0H 3.24E4 1.25E3
SFFP0H 3.16E4 83

Table 3.4: Mean and Standard Deviation of the Sum of Squared Error for 30 batches for each model
structure.

desired reactor temperature and the actual reactor temperature from reaction start to end. The mean

and standard deviation of the sum of error is found for each model structure. The model structure with

the smallest average sum of error is considered the best as that model performs the closest to the desired

temperature profile.

The means and standard deviations of squared error for the 30 batches are shown for each model

structure in Table 3.4.2. Figures 3.5 and 3.6 show an exemplar batch showing the output of the SFFP0H

model. From the table it can be seen that SFFP0H model has slightly smaller average error indicating

that this model had the better performance. The standard deviation of the SFFP0H model is consider-

ably smaller for the SF model compared to the Residual model. The results show that a multiplicative

structure of error can help both in the prediction and control of process. The SID is more capable of

explaining the variation which helps make more informed decisions during control for a multiplicative

structure versus an additive one. Overall, a hybrid model with a first principle with consistent input is

still an informative way to structure a hybrid model. Additionally, a multiplicative model more closely

resembles the structure of a error within this process or captures the relationships better between the

first principle and the process output. Further exploration of the nature and structure of a hybrid model

could continue to provide even more superior predictive and control methods.

3.4.3 MPC Performance: Physical System

The Matlab code for the MPC that uses the SF model within it has been provided to our collaborators

which own, maintain, and operate the scale batch reactor. The obtaining of physical results through

batch experimentation is currently on going. An exemplar run is shown in figures 3.7 and 3.8. It can be

seen that the MPC does not perfectly track the model output and more work needs to be done before

desirable control is faithfully enacted.

3.5 Conclusion

In this paper, The SFFP0H model was used as a novel modelling technique for prediction and control

of lab scale polymerization reaction processes. This model structure uses a modification to the RFP0H

model, which uses a first principle with consistent input to make the control aspect linear. This mod-

ification made it so that the SID model predicted a scaling factor instead residual error of a process
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and allowed for superior predictive and control abilities compared to the older technique. This was

demonstrated using a simulated and experimental simulation of a pilot scale polymerization batch re-

actor. Where the SFFP0H model has a better predictive ability of 98% and minimized control error

by 2.5% compared to the RFP0H model. This demonstrates the usefulness of the model structure, and

brings more light on making informative feature decisions for hybrid models. Future work should go into

analyzing and understanding parallel hybrid design choices for making more informative hybrid models.
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Figure 3.4: Prediction of an exemplar batch. Yellow is the prediction using the SFFP0H model, Purple
is the prediction using the RFP0H model, the blue shows the prediction of the FP0 model, and the
orange shows the simulated process output.
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Figure 3.5: Output prediction (yellow), desired (blue), FP0 (red) and actual output of the reactor
(purple) temperature using the SFFP0H model.
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Figure 3.6: Input choices (red) (Jacket temperature) of the MPC and the consistent input profile for the
FP0 model (blue). Input choices from MPC using the SFFP0H model.
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Figure 3.7: Actual, blue, and desired output, red, of the reactor temperature using the RFP0H model.
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Figure 3.8: Input choices of the MPC, blue, and the consistent input profile for the FP0 model, red. For
the real process system Input choices come from MPC using the RFP0H model.

74



Chapter 4

Conclusions and Recommendations

In this chapter a short summary of findings and recommendations for future research are provided.

4.1 Conclusions

Due to the rapid growth of Model Predictive Control (MPC) within industry due to their versatility and

usability has brought out a flurry of literature to create models that accurately represent process system

dynamics. There are current limitations for the various model structures within an MPC framework.

They also can be intractable making them impossible to optimize. Mechanistic models have high com-

plexity and difficulty to create and optimize, but can provide highly accurate understanding of system

dynamics. Linear Data Driven Models have low complexity with ease of creation and optimization, but

can be limited in their predictive ability due to their linear structure. Hybrid models attempt to use

multiple model structures and have the pluses and minuses of both model structures. Modifications to

hybrid model that are both easy for MPC optimization and explain the dynamics accurately are highly

desirable in industry. Modifications to the parallel hybrid model structure that provides accurate linear

control of the model with an explanation of the non-linear dynamics based on the initial conditions have

been shown in an exemplar batch and an exemplar fed-batch settings, providing tools to help deal with

the limitations of MPC.

4.1.1 Residual 0 First Principle Hybrid Model

A modification to a parallel hybrid model was made where a first principle with constant inputs is used

to explain the overall dynamics of the process system. The residual SID model explains the error that

exists between the first principle and the process model where the inputs in the SID are consistent with

the realized inputs of the process system. This modifications allows the hybrid model to be non-linear
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in prediction but linear in control. As the first principle only needs to be solved once at the start of the

process, any desired output values can be subtracted by the predicted value from the FP0 to provide a

desired error value for the process. A linear MPC can the be computed to find input values to obtain the

desired error of the process. It was shown using a fed-batch crystallization process that the modification

to a constant input first principle did not impact the predictive ability of the model and had superior

control ability compared to other linear modelling control techniques.

4.1.2 Scaling Factor 0 First Principle Hybrid Model

A modification to the residual 0 first principle hybrid model was made where instead of summing the

outputs together, the SID model predicts a scaling factor to multiple by the prediction from the first

principle model to predict the process output. This modification maintains the linear aspects of the

RFP0H model in control. The non-linear dynamics are still explained using the first principle model,

but control only the linear SID model is needed for linear process control. The multiplicative structure

allows for the relationship between the first principle and the process output to be modelled more

accurately. As the multiplicative relationship better explains the variance between the process output

and the first principle model, allowing for better prediction and control of the process system. This was

exemplified in a laboratory scaled polymerization batch reactor where the predictions and control were

improved over the results from the RFP0H model.

4.2 Future Work

A short listing of future work possibilities that can be continued based of the research from the last two

years are listed.

4.2.1 Continued Study of the Lab Scale Polymerization Reactor

The system under study in chapter 3 has provided insightful information into the usefulness of Parallel

Hybrid models, and was used to demonstrate the usefulness of the multiplicative hybrid model. The

realization of an impactful MPC on the system has not been fully realized on the real process. More

model creation and modification, using newly collected process data will be necessary for a fully refined

process model that will provide excellent control in the process output.

4.2.2 Meta Analysis of Parallel Hybrid Model Structures

There exists a wide range of both parallel and series hybrid model structures that exist in literature.

These model structures extract features from the process data to attempt to explain the variance of a
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process system, and are attempted to be used in real time MPC applications. These model structures

vary widely, and explain various amount of variances in process and have various abilities to control the

process to achieve desired outcomes. The structures of these hybrid models should be studied more,

and a greater understanding of why these models function well should also be looked into. Particularly

positives and negatives of different structures should be critiqued and viewed through the different

dynamics that are being attempted to be explained. Such introspection of the field will help make more

informed choices in the proposed model structure formulations for dynamic systems.

4.2.3 Initial State Observer Analysis

There exist the potential of more features within the hybrid model structure to provide more informative

models for prediction and control. One short coming of state space models is there need for observers to

make accurate predictions. As the states of an SID model are not inherently measurable, they need to

be inferred based off the error between model prediction and measured output. The states are modified

proportionally to the error using a Luenberger observer, this takes multiple iterations of measured data

for the states to converge. This takes away time that the MPC could be running, to provide input

suggestions. There is a noticeable relationship between the SID states and the states of the process. A

feature that takes advantage of such a correlation, and uses system states to predict the SID states could

potentially convergence faster and provide more time for control. This is especially important for batch

processes, where a significant portion of the final process characteristics are determined by the initial

properties of the batch.

4.2.4 Computers, Society, and Chemical Engineering

Computers over the last seventy years have increasingly come to dominate numerous aspects of human

life, society, and industry. In the field of chemical engineering, computers are vitally important for au-

tomation of processes, recording of data, and the use of computational power to perform large quantities

of calculations in short periods. It also seems that humanity is on the precipice of a fourth industrial

revolution, where there is a world of inter-connectivity between domains of study. The problems that

chemical engineers now need to solve will increasingly need multiple domains of knowledge to solve.

Requiring knowledge from different expertise. Additionally, the problems of MPC and modelling are

increasingly routed in data analysis and machine learning, their own domains of knowledge. These

domains have much promise in providing information and informative models for better understanding

the dynamics of humanity. For a Process System Engineer, it appears vitally important to have a fully

rounded education to have a domain of knowledge in computer science and other areas.
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[87] Maciej  Lawryńczuk. A family of model predictive control algorithms with artificial neural networks.

International Journal of Applied Mathematics and Computer Science, 17(2):217–232, 2007.

84


