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Lay abstract 

Antimicrobial resistance is a growing crisis worldwide, reducing the antibiotics at 

our disposal to treat bacterial infections. Resistance genes provide bacteria the ability to 

avoid the effectiveness of these antibiotics. Biomedical research publications contain 

information regarding these genes, informing researchers about the environmental, 

geographical, food, bacterial, and infection sources of these genes. Extracting this 

knowledge from text is an important task, typically laborious, and requires manual 

intervention. Using a series of machine learning techniques, I extracted this knowledge by 

first identifying relevant papers, selecting the associated sources and genes found in the 

text, and finally extracting the relationships where a gene was found in a particular 

source. With this information, we can summarize knowledge about resistance genes and 

better understand how genes move between different sources.  
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Abstract 

Bacterial outbreak publications outline the key factors involved in uncontrolled 

spread of infection. Such factors include the environments, pathogens, hosts, and 

antimicrobial resistance genes involved. Individually, each paper published in this area 

gives a glimpse into the devastating impact drug resistant infections have on healthcare, 

agriculture, and livestock. When examined together, these papers reveal a story across 

time, from the discovery of new resistance genes to their dissemination to different 

pathogens, hosts, and environments. 

My work aims to extract this information from publications by using the 

biomedical deep-learning language model, BioBERT. BioBERT is pre-trained on all 

abstracts found in PubMed and has state-of-the-art performance with language tasks using 

biomedical literature. I trained BioBERT on two tasks: entity recognition to identify 

AMR-relevant terms (i.e., AMR genes, taxonomy, environments, geographical locations, 

etc.) and relation extraction to determine which terms identified through entity 

recognition contextualize AMR genes. Datasets were generated semi-automatically to 

train BioBERT for these tasks. My work currently collates results from 204,094 

antimicrobial resistance publications worldwide and generates interpretable results about 

the sources where genes are commonly found. Overall, my work takes a large-scale 

approach to collect antimicrobial resistance data from a commonly overlooked resource, 

i.e., the systematic examination of the large body of AMR literature.  
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1. Chapter 1: Introduction 

1.0 Antimicrobial resistance databases 

Antimicrobial resistance (AMR) is a growing crisis that threatens the use of life-

saving therapeutics for bacterial infections and prophylactic treatment of surgical patients. 

AMR occurs when medicines commonly used to treat microbial infections are no longer 

effective due to drug-resistance. In Canada, it is estimated that ~250,000 infections were 

resistant to first-line antibiotics in 2018, with 5,400 deaths directly caused by AMR1. By 

2050, if the rate of AMR remains the same at 26% or increases to 40%, it is estimated that 

AMR would cost the Canadian economy between $13 to $21 billion each year and take 

7,000-13,700 Canadian lives1. Worldwide, the 2050 outlook on AMR is more grim; an 

estimated 10 million deaths from AMR and $100 trillion in economic losses if action is 

not taken to control the spread of AMR2. Worldwide in 2019, 1.27 million deaths were 

caused by AMR3. A significant contributor to the dissemination of resistance is bacteria’s 

ability to transfer and acquire antimicrobial resistance genes (ARGs) via horizontal gene 

transfer4. Novel determinants of resistance can be selected for and transferred to other 

bacteria through this process. Yet, with improvements in DNA sequencing technologies5, 

surveying and identifying novel resistance determinants contributing to AMR has 

improved6. 

Genomics tools have been developed to identify resistance genes and mutations 

found in bacterial pathogens7. Such tools rely on antimicrobial resistance databases to 
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provide reliable reference information, i.e., to know how similar a putative resistance 

gene found in an infection is to known ARGs at the nucleotide or protein sequence level. 

Antimicrobial resistance databases are resources that store information about 

antimicrobial resistance determinants, such as beta-lactamases or point mutations in 

gyrases found in bacteria. Many resources are available, but most notable are CARD8,9 

(the Comprehensive Antibiotic Resistance Database), ResFinder10, ARG-ANNOT11, and 

the National Center for Biotechnology Information (NCBI) reference gene catalogue12. 

The basic information in these databases is the genomic sequences of resistance 

determinants and the impacted drug classes. The pathogens that contain these 

determinants are also reported by CARD and NCBI. By having a unifying set of reference 

resistance determinant sequences in these databases, we can reliably annotate the ARGs 

within bacterial isolate genomes or more complex metagenomes. Both CARD and NCBI 

contain pathogen-tracking resources that assess the ARGs of pathogenic bacteria. NCBI 

goes beyond CARD by including the geographical location, upload date, host, 

environment type, and strain; however, they do not analyze or summarize these data and 

leave them in a simple table format. Overall, these tools minimally examine the 

contextual background of resistance determinants, yet understanding the epidemiology of 

resistance determinants can be informative in making clinical and public health decisions. 

1.1 Context for understanding antimicrobial resistance 

The spread of AMR is due to a complex intertwining of environmental, animal, 

food, human, and industrial sources contributing to the dissemination of resistance13. 



MSc. Thesis – A. Edalatmand; McMaster University – Health Sciences 

3 

 

Understanding the sources of resistance determinants is essential when assessing and 

managing risk14. However, this epidemiological information about resistance 

determinants and the bacteria that contain them goes beyond the data reported in the 

databases. Although resistance databases do not report such contextual information, work 

has been done to gather these data on a broader scale. Previous work has used genome 

sequencing and associated metadata to analyze the geographical distribution and mobility 

of resistant pathogens and resistance determinants15–18. These studies examined small 

samples of resistance and did not capture the totality of resistance determinants found in 

CARD. However, one central resource that analyzes global AMR alongside its 

epidemiology is Resistome Tracker19. Using sequencing data from NCBI, they created 

visualization summaries of four bacterial groups based upon their geographical locations, 

the host type (i.e., food, animal), and environment (i.e., farm, wastewater, clinical). Using 

AMRFinderPlus20, they annotate the resistance genes in these samples and generate 

visualizations showing the genes' distribution across different environments, hosts, and 

countries. This gives users an idea of the prevalence of resistance across different 

environments and hosts. The main drawback with their resource is that it is limited to 

isolates for only four groups of bacteria: Escherichia coli, Non-typhoidal Salmonella, 

Enterococcus, and Campylobacter. A similar platform that reports the geographical 

location of isolates along with their resistome and epidemiological metadata is 

Pathogenwatch21. With this platform they analyzed thousands of Neisseria gonorrhoeae 

isolates, their resistance distribution around the world and their susceptibility patterns22. 

Unlike Resistome Tracker, there is no gene-level analysis of resistance and only a broad 
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pathogen-to-geographical location analysis; aside from geographical representation, no 

other metadata in Pathogenwatch is examined.  More recently, a study examining 

~214,000 metagenomic samples explored the relative abundance of ARGs across 

different years, geographical locations, and hosts23. Currently, this data has only briefly 

been used to examine resistance on a broad scale. In the future, this data can be used to 

explore the distribution of individual ARGs. 

Except for a subsection of Resistance Tracker and the metagenomic dataset, all 

the tools, resources, and papers mentioned previously consider AMR through a pathogen-

centric view; they take genomic sequences, identify the resistance genes, and examine 

where isolates are located geographically and environmentally. This allows for high-

resolution identification of pathogen transmission across populations. However, this does 

not reveal much about the long-term transmission patterns of individual ARGs, especially 

in the context of horizontal gene transmission. Thus, a more gene-centric view must be 

taken to understand how individual genes disseminate throughout the world. 

An alternative to sequencing metadata is the publications associated with 

resistance determinants. Contained in peer-reviewed, published papers describing 

resistance determinants are details revealing the epidemiological background these 

determinants are found within. The pathogen source, geographical location, 

environmental source, food source, and infection sites are all details commonly 

mentioned in publications when describing where a resistance determinant was located. 

This includes publications reporting the discovery of a novel determinant, outbreak 

studies examining the dissemination of resistance, and review articles. This information is 
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waiting to be collated so that we can gain a holistic understanding of the epidemiological 

background of resistance determinants. In addition to the epidemiological information 

provided by papers, there is also a temporal aspect to papers. A paper’s publication date 

reveals when a resistance determinant is discovered. This means we can begin to analyze 

trends in the dissemination of resistance solely through publications. However, we must 

employ several biomedical text mining approaches outlined below to extract important 

epidemiological information about ARGs.  

1.2 Biomedical text classification 

As of 2022, over 33M publications are stored across PubMed databases 

corresponding to over 120 gigabytes of data24. Compared to previous years, the number 

of publications added to PubMed each year has grown rapidly (Figure 1A). Compared to 

2000, 3.3 times more articles were added to PubMed in 2021. Importantly, the number of 

AMR papers added each year has grown 3.9 times since 2000 and is growing faster than 

the PubMed baseline (Figure 1B). Manually reviewing every publication to extract new 

data is a time-consuming and expensive process25. We can reduce the human effort 

needed and off-load work to computer models using automated text mining methods. 

However, we must first identify the relevant sources before extracting knowledge from 

the literature. When dealing with millions of papers, filtering out irrelevant papers is 

essential to improve the speed of downstream processes. The method of identifying sets 

of similar papers is considered classification or clustering depending on whether the 

approach is supervised or unsupervised, respectively. Unsupervised methods of clustering 
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are exploratory approaches to understanding structure across biomedical text26. Although 

useful for cases where no desired set of similar publications is required, we will primarily 

focus on supervised classification methods. As the name implies, supervised classification 

requires human supervision by providing a set of known publications to identify similar 

publications using the text within those publications. Several publicly available web 

applications can perform text classification on PubMed articles given a set of PubMed 

IDs (PMIDs)27–29. However, neither LitSuggest nor MedlineRanker open-sources their 

code for reproduction. Applications of text classification in the biomedical field range 

from triaging publications for database curation30–32, compiling publications for review33–

35, or general user querying. 

1.3 Natural language via artificial neural networks 

There are several levels of information we can retrieve from text. In this work, I 

use named entity recognition (NER) and relationship extraction (RE) to accurately extract 

epidemiological information associated with ARGs from published papers in PubMed. 

NER aims to extract terms that fall under the same label, e.g., extracting all gene names 

from a text. This has commonly been a challenging task because we must consider term 

synonyms and semantics; a term may reference different concepts based on context. NER 

has been performed on tasks of gene36–38, chemical39, and protein40 name extraction from 

biomedical literature. Once NER is complete, RE takes terms within a piece of text and 

examines if they are related to one another. This method has commonly been used to 

identify protein-protein41–43 and drug-drug44,45 interactions within the published literature. 
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In this work, I will perform NER and RE upon the antimicrobial resistance literature via 

natural language deep learning methods. 

Artificial neural networks are a method of predictive modelling by mimicking 

biological neurons46. Like neurons, each node in a network receives a set of inputs. Each 

input is assigned a weight and the total of all weights are fed into an activation function 

that calculates the node’s output46. The goal is to find a set of weights that provide an 

output close to the desired output through model training. Back-propagation acts as a way 

of updating weights based on the error found in the network. Neural networks have been 

applied to various fields, from science and engineering to policy and insurance47. The 

general type of artificial neural network that takes sentences and converts them into 

another sequence of words is called Seq2Seq. Seq2seq models consist of 2 parts: an 

encoder and a decoder. The encoder takes a sentence input and tries to learn its context, 

and the decoder takes the context output of the encoder and returns its predicted output. 

For example, an encoder could take the sentence “Charlie was hungry, so he ate food,” 

and give the context to the decoder that the pronoun “he” refers to “Charlie”.  

A new and robust player in the field of artificial neural networks is the transformer 

model. Prior models like recurrent neural networks followed a sequential understanding 

of language. This meant, given a sentence, the further away words are from each other, 

the less context they gain from each other. In transformer models, a self-attention 

mechanism is added that takes a word and examines which parts of the sentence are 

important for that word48. This is done through the following formula: 
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𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘

)𝑉 

The main components of this formula are Q, the query vector you give the 

network; K, the key vector, which contains all the words in a sentence; and V, the values 

associated with those keys. The attention formula calculates a score between the query 

word and each key by taking the dot-product between the two (QKT), scaling it down by 

the shape of the key vector (√𝑑𝑘) and normalizing the value via softmax. Finally, the 

resulting softmax result is multiplied by the value vector (V) of each key. A weighted 

output sum is taken to obtain each word's relative importance on another in a sentence.  

The original problem transformer models aimed to solve was machine translation 

of human language48, and it worked well because the context of the entire sentence is 

provided through encoding. However, different training methods are needed if you want 

to perform NER and RE tasks. The creation of BERT49 (Bidirectional Encoder 

Representations from Transformers) solves these tasks through a creative method of 

training. Training involves a combination of “masked” word prediction alongside next 

sentence predictions to handle multiple NLP tasks. Masked word predictions take 15% of 

the words in a sentence and (1) hides, or “masks” it 80% of the time; (2) replaces the 

word with a random word 10% of the time; or (3) does not change the word 10% of the 

time. At the same time, BERT is trained to predict if sentence A is followed by sentence 

B. In the training data, 50% of the time B follows A, and in the remaining 50% B is a 

random sentence. BERT then predicts each masked term and whether the sentences are 

real pairs. BERT then backpropagates to optimize the weights using an algorithm called 
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Adam50. Backpropagation optimizes weights by minimizing the error in a model’s 

predictions, also known as a model’s “loss”. Loss is calculated every training iteration 

until the maximum number of iterations is reached or when additional training does not 

reduce a model’s loss, otherwise known as model convergence. Although a model may 

have reached convergence, indicating that it cannot improve loss via additional 

backpropagation, this does not mean that the model has converged on the global 

minimum loss possible, but may instead be algorithmically stuck at a local minimum.  

The result of training BERT is a model that understands the context in sentences 

and that can be fine-tuned for specific tasks like NER and RE. The original BERT model 

was trained on Wikipedia and books, yielding a model with 110 million parameters. 

BERT can be further trained on subsequent data to make domain-specific models. In this 

project, I use BioBERT, a biomedically trained version of BERT51 that takes the trained 

BERT model and further trains it on PubMed abstracts and full-text articles from PubMed 

Central. My goal will be to have a trained version of BioBERT that can accurately extract 

epidemiological and resistance determinant terms and relationships from biomedical 

publications, e.g., aph(6)-Id is associated with food-borne pathogens. 
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1.4 Summary of intent 

This work seeks to test two hypotheses: 

1. Publication mentions of ARGs and their epidemiological background accurately 

reflect surveillance data. 

2. Gene, environment, and transmission risks can be accurately predicted using 

publication text. 

If the null hypotheses of this project can be rejected with statistical significance, then 

CARD would gain an additional resource that would accurately reflect the 

epidemiological landscape of resistance beyond what can currently be known through 

sequencing metadata reports. Additionally, reporting of high-risk genes, the risk they pose 

to environments, and the transmission risks associated with these genes between 

environments would be valuable when trying to identify priority hotspots. 

The main Aims of my thesis are to: 

1. Use BioBERT natural language processing to annotate epidemiological and AMR 

terms and extract their contextual relationships based upon the published scientific 

literature; 

2. Create a metric to assess the strength of these relationships over publication 

history; 

3. Predict the risk associated with genes, their environments, and their risk of 

mobilizing to another environment.  
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Figure 1.1 Distribution of publications added to PubMed each year. (A) Total number 

of publications added to PubMed since 1962, (B) subset of PubMed articles under the 

PubMed query “antimicrobial resistance”. 
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2. Chapter 2: Identifying relevant publications using paper 

classification 

2.1 Introduction 

Paper classification is not only an important tool for assisting researchers in 

identifying relevant publications in their field of work, but for biomedical databases that 

rely on triaging thousands of papers to identify relevant publications. Individuals may try 

to generate queries using keywords related to a particular topic, but on large scales where 

thousands of publications are added to PubMed daily, automated classification methods 

are needed30,52.  

Supervised labelling techniques involve using prelabeled data to generate a model 

that predicts labels on new data. Several models that have seen good performance in 

paper labelling include logistic regression, naive Bayes, random forest, boosting methods, 

and support vector machines53,54. Logistic regression is arguably the simplest model, 

using a logistic function to make predictions on a binary set of labelled data, i.e., relevant 

versus not relevant. The parameters provided to the logistic function are the words, called 

features, in a paper’s abstract. Naïve Bayes text classifiers create predictions relative to 

the probability distribution of terms found across different labels, assuming that terms are 

independent of one another. Random forest models average several decision trees 

together; a decision tree model generates a flowchart of binary choices based on features 

and associated labels. Boosting methods are like random forest in that they combine 
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several weak models to generate a more robust model. Unlike random forest, however, 

boosting models are generated by using sequential training of weak learners where the 

output of one model is reweighted and passed to another. The boosting method examined 

in my thesis was extreme gradient boosting55, which optimized the boosting algorithm’s 

efficiency. Finally, support vector machines create a decision boundary to maximize the 

distance between two groups of data56. 

This chapter aims to explore the use of classification algorithms to accurately and 

reliably identify AMR-epidemiological papers in PubMed. If successful, the set of papers 

the classifier identifies is hypothesized to contain relevant named-entity and relationship 

data for ARGs from which we can begin to train NER and RE models (Chapter 3).  

2.2 Methods 

2.2.1 Paper retrieval 

A visual flowchart of all methods (sections 2.2.1 to 2.2.7) can be found in Figure 

2.1. First, to extract knowledge from papers, we must have a source of publications from 

which to extract and a set of terms representing the information we want to extract. 

Scholarly papers are available at publisher websites along with databases that compile 

publications from several journals. With a focus on the biomedical realm, PubMed is one 

of the most extensive publication databases worldwide, with over 33 million papers 

across >5,200 journals57. The two major components making up PubMed include 

MEDLINE and PubMed Central. MEDLINE accounts for the largest proportion of 

PubMed’s database and involves 27 million publications. When accessing MEDLINE 
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papers, only their title, abstract, and publication information are available. To access full-

text papers, the second-largest portion of PubMed, PubMed Central, is freely available.  

PubMed allows users to access data through a web view or an application 

programming interface (API). APIs allow for high-throughput programmatic 

communication between a service and end-users. The API provided by PubMed allows 

for the rapid downloading of publications. Information retrievable from the PubMed API 

includes the publication date, journal name, abstract, and, for publications found in 

PubMed Central, the body of a paper. Using custom Python scripts and the Entrez library 

to communicate with PubMed, I downloaded over 5 million publications from PubMed 

between 2017 to 2020 to build my classifier. 

2.2.2 Paper preprocessing 

Biomedical text is unstructured and heterogeneous, requiring preprocessing to 

standardize input data for machine-learning applications. Text preprocessing helps 

normalize and reduce redundancy within the text. Preprocessing is an important step in 

improving model performance by removing non-essential terms and digits from the text, 

removing punctuation, and converting terms to their base form by removing suffixes. My 

custom preprocessing pipeline, written in Python, for all papers includes: 

1. Converting sentences to lowercase; 

2. Removing punctuation using regular expressions; 

3. Converting words into their base form using a Porter stemmer; 

4. Removing stop words; 
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5. Removing digits from abstracts 

The Natural Language Toolkit (NLTK)58, regular expressions, and Python’s built-

in string library allow for this preprocessing to occur. The NLTK provides access to the 

Porter stemmer59, which converts words to their root form. For example, the word 

“relational” would be converted to “relate.” Additionally, NLTK provides a list of stop 

words that can filter overly common and uninformative words in sentences, e.g., “the”. 

Removing digits and lowercase conversion is easily performed using Python’s built-in 

string function string.lower() and string.isdigit(). Regular expressions, which are standard 

computer science tools to find matches to search terms in text, were used to remove 

punctuation characters. 

2.2.3 Feature extraction 

Once preprocessed, the procedure of converting data into usable vectors is called 

feature extraction. Feature extraction aims to reduce the dimensionality of data for 

algorithmic use. Two major types of dimensionality reduction applied to text include bag-

of-words (BOW) and term frequency-inverse document frequency (TF-IDF). BOW 

methods count the total number of term occurrences across all papers, e.g., the CTX-M-15 

gene name is found 208 times in 10,783 downloaded PubMed abstracts. The TF-IDF 

method scales BOW counts based on how uncommon a word is across all documents, 

with the TF-IDF formula for a word (t) in document (d) found below. 

TF-IDF = 𝑇𝐹 ∗ 𝐼𝐷𝐹 
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𝐼𝐷𝐹 = log (
1 + 𝑛

1 + 𝑑𝑓(𝑡)
) + 1 

 The term-frequency (TF) is a simple BOW count of all term occurrences. The 

inverse document frequency (IDF) takes the total number of documents (n) and the 

number of documents the term appears in (df(t)). A value of 1 in the numerator and 

denominator of the formula prevents zero divisions from occurring. The 1 addition 

outside the logarithm allows terms that appear in all documents to have a weight of one. 

From the formula, very common terms are scaled less than uncommon terms. In my 

work, two types of TF-IDF were performed: TF-IDF on unigrams (i.e., individual words) 

and TF-IDF on bi- and tri-grams (i.e., pairs and triplets of words). For example, in the 

sentence "Charlie is a cat," the possible bigrams are ("Charlie", "is"), ("is", "a"), and ("a", 

"cat").  

2.2.4 Model cross-validation 

To avoid examining non-informative papers for extraction of AMR gene 

epidemiological information, I explored five different machine learning models to see 

which could best predict which papers had the highest value in terms of AMR gene 

epidemiological information. Every combination of machine learning model and feature 

extraction method was explored. To train a machine learning model to identify papers that 

contain epidemiological information, I used all papers found under the “‘Drug Resistance, 

Bacterial/genetics’ [Mesh]” query in PubMed and filtered them down to contain papers 

with a country mention. This set would serve as our positive set for model 

training/testing. My assumption is that papers that mention drug resistance and a country 



MSc. Thesis – A. Edalatmand; McMaster University – Health Sciences 

17 

 

name will contain additional epidemiological information. For the negative set, I 

randomly generated PubMed paper IDs and downloaded those papers. This yielded 

10,532 negative and 3,843 positive papers (Table 1.1) for training and testing. 75% of 

these papers were used for cross-validation, training, and tuning, as outlined below. The 

remaining 25% were held out for a final evaluation of the models’ performance on data 

they did not use during training. 

To test the various machine learning models against each other, stratified 5-fold 

cross-validation was performed. The purpose of cross-validation is to reduce the 

probability that a model will overfit on a dataset. Overfitting occurs when a model is 

trained for too long on a dataset and cannot generalize well to unseen data because the 

model learned the “noise” associated with the training dataset, i.e., it can only be accurate 

on the data upon it was trained. By splitting a dataset into 5 ‘folds’, we reduce the innate 

bias an entire dataset contains with a potential increase in variance, i.e., each fold contains 

1/5th of the papers in the training set. For each split, four parts of the data are used in 

generating features via feature extraction - these features are then used for model training. 

The remaining one part is used as testing, i.e., does the model trained on the other 4 folds 

accurately classify the papers in the 5th fold. This process is repeated for the number of k-

folds. Through stratified cross-validation, we ensure that the data is represented equally 

by selecting a portion of each label based on its relative proportion. For example, given 

100 green apples and 10 red apples, 5-fold stratified cross-validation would select 20 

green apples and 2 red apples for each fold of validation. This prevents sampling 22 green 

apples and 0 red apples if simply choosing at random. 
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2.2.5 Curator validation 

The above model development was based on a comparison of random papers 

against papers tagged with AMR MeSH terms. With these models in place, we would like 

to evaluate model performance using unbiased real-world data, as model validation is an 

important step to verify the performance of a model against data it has never seen. After 

cross-validation, models were used to make predictions on papers published in September 

and November 2019, while a 430-paper subset from September and November 2019 were 

additionally and independently examined by human curators in the McArthur lab. For the 

human curators, 100 papers were randomly selected from logistic regression model 

predictions of September papers, with an even proportion of positive to negative 

predictions (i.e., 50 positive predictions and 50 negative predictions), with the remaining 

330 papers selected from November predictions. Half the November papers were selected 

based on naïve Bayes predictions and half from random forest model predictions (both 

with an even 50/50 split between positive and negative predictions). These three models 

used for paper sub-setting had been trained on TF-IDF unigram features of preprocessed 

abstracts. The human curators were given three true/false questions on whether: (1) the 

paper contained an AMR gene reference, (2) if a geographical location was mentioned in 

the abstract, and (3) if any other epidemiological information was mentioned. Each paper 

was assigned two curators; if curator results disagreed, the paper was ignored. These 

results were compared against computational model predictions for an independent real-

world evaluation. 
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2.2.6 Hyperparameter tuning through grid-search cross-validation 

Once a final model has been confirmed to perform well through curator 

validation, the model’s hyperparameters must be tuned. Hyperparameters are options that 

can be changed to fine-tune the performance of a model. The model was tuned based on 

hyperparameters found in Table 2.5. Grid-search cross-validation performs 3-fold cross-

validation across every hyperparameter combination to identify the best-performing 

combination. Once the best hyperparameter set has been found, it then refits the model on 

the entire dataset.  

2.2.7 Holdout validation 

Once a final model and feature extractor pair was obtained and optimal 

hyperparameters determined, the model was then tested against the holdout set of 3,594 

papers not used for model training, cross-validation, or tuning.  

2.3 Results 

Five models were tested through cross-validation to identify which one can 

reliably identify papers containing AMR and epidemiological information. Cross-

validation resulted in a high receiver operator characteristic (ROC) curve area under the 

curve of >97% (Figure 2.2, 2.3). ROC curves measure a model’s ability to distinguish 

between positive and negative papers. The larger the ROC area under the curve, the better 

a model can distinguish between negative and positive papers. These curves typically 

over-predict performance in unbalanced datasets (i.e., datasets with a large difference 

between positive and negative items). Thus, a better indication of performance would be 
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precision, recall, and F1 scores. Precision represents a model’s ability to reliably identify 

positive papers without mistake, i.e., few false positives, while recall reveals a model’s 

ability to identify all positive papers correctly, i.e., not miss any relevant papers. 

Optimally, we would desire a model with both high recall and high precision and the F1 

score is a combined measure of precision and recall reflective of a model’s overall 

accuracy. When examining these metrics, the models still perform quite well (>90% F1 

score) except for the support vector machine (Table 2.2). Overall, there seemed to be no 

significant difference between models generated on preprocessed text compared to non-

preprocessed text (i.e., removing punctuation, converting words to their base, etc.). When 

making predictions on papers from September and November 2019, you can see the 

impact low precision has on the number of positively predicted papers (Table 2.3). The 

lower the precision value, the more papers a model will believe are positive, opening the 

possibility of false predictions and noise in downstream steps. 

Since all models performed well, we wanted to tease apart the difference between 

each model. Thus, we created an external validation set to assess model performance 

using volunteer human curators. The performance of the machine learning models varied 

much more in this validation. Yet again, the performance difference between models 

provided by preprocessed text compared to non-preprocessed text is minor (Table 2.4). Of 

all the models, logistic regression and naïve Bayes with the TF-IDF bi and tri-gram 

feature extraction method performed the best with an F1 score of 56% and 60%, 

respectively (Table 2.4). However, when looking back at Table 2.2, the recall value of 

both these models was low at 87% and 88%. Low recall values are undesirable as we 
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would like to capture as many true positives as possible. The best-performing model from 

validation with a high recall value in Table 2.2 is logistic regression using TF-IDF 

unigram features. Performance-wise, there is no major difference between this model’s 

preprocessed and non-preprocessed versions (Tables 2.2 and 2.4). The only difference lay 

in the number of positive predictions made on the September and November 2019 papers 

as the preprocessed version selected 142 more positive papers (Table 2.3). As such, the 

logistic regression model using TF-IDF unigram on preprocessed features was selected as 

the final model for the possibility of identifying papers missed by the non-preprocessed 

version.  

The logistic regression hyperparameters were fine-tuned using the parameters in 

Table 2.5. This generated 2,880 combinations across 3-fold cross-validation for a total of 

8,640 iterations. When testing the final model on the remaining 25% holdout validation 

set, this model performed exceptionally well with precision, recall, and F1 values of 99%.  

2.4 Discussion 

The goal of paper classification was to create a model that can identify as many 

publications containing AMR gene epidemiology information as possible, without 

concern for false positives. Overall, the evidence suggests that the logistic regression 

model trained on preprocessed abstracts with TF-IDF unigram features will flag nearly all 

papers with AMR gene epidemiological content in PubMed.  These false positives will be 

removed during subsequent labelling steps if they are found to not contain relevant 

information. 



MSc. Thesis – A. Edalatmand; McMaster University – Health Sciences 

22 

 

With this classifier complete and deemed reliable, the next task is to train BioBert 

models to perform NER and RE on PubMed. As outlined in the next chapter, I selected all 

AMR papers from 2019 as the BioBert training set. To prepare this training set, the 

logistic regression classifier was used to make predictions on all 1,079,050 million papers 

added to PubMed for 2019. This yielded 10,784 papers the model believed to contain 

epidemiological information about AMR. Using this set of papers, in the next chapter I 

create datasets to train and test NER and RE models in the task of identifying ARGs and 

epidemiology terms and extracting the relationships that exist between these terms. 

  



MSc. Thesis – A. Edalatmand; McMaster University – Health Sciences 

23 

 

Table 2.1: Paper dataset used for text classification training/testing. The PubMed 

query “‘Drug Resistance, Bacterial/genetics’[Mesh]” was used to extract 16,198 positive 

papers. The negative paper set was obtained by randomly generating PubMed Ids and 

querying them. Positive papers were filtered out if they did not contain a country name 

from the international standard for country names and codes (ISO 3116). 

 All papers Filtered papers 

Negative 10,531 / 

Positive 16,198 3,843 

  



MSc. Thesis – A. Edalatmand; McMaster University – Health Sciences 

24 

 

Table 2.2: Precision, recall, and F1 performance of classification models during 

cross-validation. Highlighted in yellow is the final model selected for future use. 

Model Feature extraction method Processed text Precision Recall F1 

Extreme gradient 

boosting 

TF-IDF Bi/tri-gram 
F 0.97 0.89 0.93 

T 0.98 0.85 0.91 

TF-IDF Word 
F 0.97 0.98 0.97 

T 0.97 0.97 0.97 

Word count 
F 0.97 0.97 0.97 

T 0.97 0.97 0.97 

Logistic regression 

TF-IDF Bi/tri-gram 
F 0.99 0.88 0.93 

T 0.99 0.87 0.92 

TF-IDF Word 
F 0.98 0.96 0.97 

T 0.98 0.96 0.97 

Word count 
F 0.98 0.97 0.97 

T 0.98 0.97 0.97 

Naive Bayes 

TF-IDF Bi/tri-gram 
F 0.99 0.88 0.93 

T 0.98 0.96 0.97 

TF-IDF Word 
F 0.98 0.95 0.97 

T 0.98 0.96 0.97 

Word count 
F 0.95 0.99 0.97 

T 0.95 0.99 0.97 

Random forest 

TF-IDF Bi/tri-gram 
F 0.96 0.93 0.94 

T 0.97 0.93 0.95 

TF-IDF Word 
F 0.97 0.96 0.96 

T 0.97 0.95 0.96 

Word count 
F 0.97 0.95 0.96 

T 0.97 0.95 0.96 

Support vector 

machine 

TF-IDF Bi/tri-gram 
F NaN 0.00 0.00 

T NaN 0.00 0.00 

TF-IDF Word 
F NaN 0.00 0.00 

T NaN 0.00 0.00 

Word count 
F 0.98 0.75 0.85 

T 0.98 0.82 0.89 
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Table 2.3: Positive and negative predictions of models for September and November 

2019 papers. 

 

Model Feature extraction method 
Processed text Negative Positive 

Extreme gradient 

boosting 

TF-IDF Bi/tri-gram 
F 239,250 2,555 

T 239,508 2,297 

TF-IDF Word 
F 238,494 3,311 

T 238,818 2,987 

Word count 
F 238,747 3,058 

T 238,905 2,900 

Logistic regression 

TF-IDF Bi/tri-gram 
F 240,376 1,429 

T 240,381 1,424 

TF-IDF Word 
F 240,035 1,770 

T 239,893 1,912 

Word count 
F 239,379 2,426 

T 239,309 2,496 

Naive Bayes 

TF-IDF Bi/tri-gram 
F 240,723 1,082 

T 239,896 1,909 

TF-IDF Word 
F 240,156 1,649 

T 240,053 1,752 

Word count 
F 237,198 4,607 

T 237,252 4,553 

Random forest 

TF-IDF Bi/tri-gram 
F 238,020 3,785 

T 238,470 3,335 

TF-IDF Word 
F 238,347 3,458 

T 238,850 2,955 

Word count 
F 238,330 3,475 

T 239,035 2,770 

Support vector 

machine 

TF-IDF Bi/tri-gram 
F 241,805 0 

T 241,805 0 

TF-IDF Word 
F 241,805 0 

T 241,805 0 

Word count 
F 240,510 1,295 

T 239,920 1,885 
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Table 2.4: September and November validation performance of classification 

models. Predictive performance for each model against a set of 381 human-curated 

papers. Highlighted in yellow is the final model selected for future use chosen based on 

recall performance during cross-validation seen in Table 2.2 and overall performance 

during curator validation. 

Model 
Feature extraction 

method 

Processed 

text 
FN FP TN TP Precision Recall F1 

Extreme gradient 

boosting 

TF-IDF Bi/tri-gram 
F 1 66 289 25 0.27 0.96 0.43 

T 2 53 302 24 0.31 0.92 0.47 

TF-IDF Word 
F 0 86 269 26 0.23 1.00 0.38 

T 0 79 276 26 0.25 1.00 0.40 

Word count 
F 0 79 276 26 0.25 1.00 0.40 

T 0 71 284 26 0.27 1.00 0.42 

Logistic regression 

TF-IDF Bi/tri-gram 
F 1 49 306 25 0.34 0.96 0.50 

T 1 38 317 25 0.40 0.96 0.56 

TF-IDF Word 
F 0 58 297 26 0.31 1.00 0.47 

T 0 59 296 26 0.31 1.00 0.47 

Word count 
F 1 70 285 25 0.26 0.96 0.41 

T 1 73 282 25 0.26 0.96 0.40 

Naive Bayes 

TF-IDF Bi/tri-gram 
F 1 33 322 25 0.43 0.96 0.60 

T 1 59 296 25 0.30 0.96 0.45 

TF-IDF Word 
F 1 58 297 25 0.30 0.96 0.46 

T 0 64 291 26 0.29 1.00 0.45 

Word count 
F 0 122 233 26 0.18 1.00 0.30 

T 0 124 231 26 0.17 1.00 0.30 

Random forest 

TF-IDF Bi/tri-gram 
F 0 84 271 26 0.24 1.00 0.38 

T 0 82 273 26 0.24 1.00 0.39 

TF-IDF Word 
F 0 81 274 26 0.24 1.00 0.39 

T 1 73 282 25 0.26 0.96 0.40 

Word count 
F 0 86 269 26 0.23 1.00 0.38 

T 0 81 274 26 0.24 1.00 0.39 

Support vector machine 

TF-IDF Bi/tri-gram 
F 26 0 355 0 NA 0.00 0.00 

T 26 0 355 0 NA 0.00 0.00 

TF-IDF Word 
F 26 0 355 0 NA 0.00 0.00 

T 26 0 355 0 NA 0.00 0.00 

Word count 
F 2 45 310 24 0.35 0.92 0.51 

T 2 61 294 24 0.28 0.92 0.43 
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Table 2.5: Hyperparameters tuned for logistic regression. To identify the best 

hyperparameter values, all combinations of the values column were tested through 3-fold 

cross-validation. The best-performing parameters are listed under the “Final parameter” 

column. 

 Parameter Values Final parameter 

Logistic regression 

Penalty L1, L2 L1 

Solver 
liblinear, saga, newton-cg, 

lbfgs, sag 
Liblinear 

C 0, 0.001, 0.006, 0.046, 

0.359,2.783, 21.544, 

166.810, 1,291.55, 10000 

10000 

max_iter 10,50,100,150 50 

random_state 100 100 

Count vectorizer 
max_df 0.5,0.75,1 0.75 

max_features None, 5000, 10000, 50000 None 
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Figure 2.1: Flowchart of generating a paper classification model. Papers are first obtained 

via PubMed queries for the purpose of training machine learning models. A positive set 

of papers is obtained using the “‘Drug Resistance, Bacterial/genetics’[Mesh]” query and 

filtered down to contain only papers mentioning a country name. Negative papers are 
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obtained by randomly generating PubMed IDs. These papers were preprocessed and split 

75:25 between a training set and a final evaluation set. All combinations of five models 

and three feature extraction methods were examined through cross-validation. For each 

cross-validation split, four folds of the data, shown in blue, are processed via a feature 

extraction method to generate a series of vectors on which the model is trained. The 

remaining fold, shown in yellow, is tested upon by the model. This continues for the 

remaining four splits to gain an idea of model performance. Each model-feature 

extraction pair was also trained on the original 75% of the data, which a feature extraction 

method converts to features. These models were used to predict papers published in 

September and November 2019.  A group of curators validated a 430-paper subset of the 

240 thousand predicted papers to generate additional performance metrics. Based on the 

performance metrics provided by cross-validation and curator validation, logistic 

regression trained on TF-IDF unigram features was chosen as the final model. The 

parameters of this model were tuned and used to create predictions on the 25% holdout 

set for a final performance evaluation. The models shown here are support vector 

machine (SVM), extreme gradient boosting (XGB), random forest (RF), logistic 

regression (LR), and naïve Bayes (NB). The three feature extraction methods used were 

BOW, TF-IDF unigram, and TF-IDF bi/trigram. 
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Figure 2.2: Receiver operator characteristic curve from 5-fold cross-validation of 

classification models trained on preprocessed abstracts using three feature 

extraction methods. Results from all five cross-validation tests were averaged to produce 

a single curve. Shadows around each line are +/- 1 standard deviation from the mean. 

Models were trained on abstracts that had been preprocessed. 
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Figure 2.3: Receiver operator characteristic curve from 5-fold cross-validation of 

classification models trained on non-preprocessed abstracts using three feature 

extraction methods. Results from all five cross-validation tests were averaged to produce 

a single curve. Shadows around each line are +/- 1 standard deviation from the mean. 

Models were trained on abstracts that had not been preprocessed. 
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3. Chapter 3: Generating gold-standard entity recognition and 

relationship extraction training datasets 

3.1 Introduction 

 Datasets are arguably the most important aspect of machine learning applications; 

while algorithms in the machine learning space improve with time, high-quality datasets 

are required to consistently train, evaluate, and benchmark models. Datasets that have 

been manually reviewed and verified by humans are considered “gold standard”. 

However, with the advent of crowdsourcing methods like those provided by Amazon’s 

mechanical Turk60, researchers have found that not all crowdsourcing communities create 

concordant datasets61. Dataset labels created by subject matter experts differed greatly 

from those made by mechanical Turk workers, resulting in different algorithmic 

performances61. 

 As the biomedical field is so diverse, many datasets are available for different 

NER and RE tasks. Broadly, biomedical concepts extracted via NER include identifying 

diseases62,63, chemicals64, genes65,66, and taxonomy67,68, while RE datasets have focused 

primarily on identifying protein-protein69, gene-disease70,71, or protein-chemical72 

relationships. To orient text mining researchers towards creating the best machine 

learning models to complete a common task, the BioCreative workshop has held seven 

challenges that provide reference datasets for various biomedical natural language 

tasks32,62,65,73,74. 
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To generate NER and subsequently RE training datasets, we need standard sets of 

terms that represent concepts that can be identified within biomedical literature. This is 

necessary when normalizing predictions from NER models back to a standard set of 

terms. There are two major types of these lexicons: dictionaries and taxonomies. 

Dictionaries contain terms and their definitions, while taxonomies create hierarchies of 

these terms. The most well-known taxonomy is the Linnaean taxonomy which classifies 

organisms into parent-child relationships, i.e., each child term is a sub-class of their 

respective parent, e.g., Homo sapiens is a child term of Homo. In biomedical research, 

“ontologies” are frequently used taxonomies that allow for multiple relationship types and 

more complex hierarchies. Also known as “controlled vocabularies”, the major benefit of 

ontologies is their ability to interoperate with each other and reference terms outside their 

domain without duplicating data unnecessarily. For example, the food ontology 

(FOODON) contains structured information about food products including mammalian 

species names75. Instead of recreating a mammalian taxonomy within FOODON, they 

cross-reference the National Center for Biotechnology Information taxonomy (NCBI 

TAXON) to integrate this information76. This allows FOODON to build upon NCBI 

TAXON’s knowledge network for terms. For example, in NCBI TAXON, the term “Bos 

taurus” has no child terms and is not described in a food context. This is reasonable since 

NCBI TAXON strives only to understand the nomenclature of organisms. But within 

FOODON, we learn that “Bos taurus” has the child terms “cattle bull”, “ox”, and “dairy 

cow”. Thus, by using FOODON, we can identify and classify cattle into more nuanced 

levels than what was possible with only NCBI TAXON.  
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This chapter outlines how I use eight existing ontologies to generate 15 gold-

standard datasets based on 10,784 AMR-epidemiological papers from 2019 (Chapter 2). I 

subsequently use these datasets to train and evaluate 8 NER and 7 RE BioBert models, 

with the best performing models used to mine all of PubMed to make predictions about 

the risk and transmission of antimicrobial resistance genes (Chapter 4).  

3.2 Methods 

3.2.1 Lexicons and Ontologies 

The resource used to gather, find, and download ontologies was the Open 

Biological and Biomedical Ontology (OBO) Foundry77. The OBO Foundry stores 

hundreds of biologically and clinically relevant ontologies that are interoperable, non-

redundant, and well-maintained. Seven ontologies obtained from the OBO Foundry for 

my work include the sequence ontology (SO)78, uber anatomy ontology (UBERON)79, 

infectious disease ontology (IDO)80, antibiotic resistance ontology (ARO)8,9, 

environmental ontology (ENVO)81, gazetteer ontology (GAZ)82, and the food ontology 

(FOODON)75. Terms were converted from obo to json format through ROBOT83. The 

eighth and final lexicon, National Center for Biotechnology Information taxonomy 

(NCBI TAXON), was generated using the taxonomy database available at the National 

Center for Biotechnology Information file-transfer protocol server84.  

Many of the ontologies contained terms that were irrelevant to the entity type we 

would like to identify. For example, our goal for the use of ARO was to identify ARG 

terms in the literature, which can be found under the “determinant of antibiotic 
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resistance” (ARO:3000000) branch of the ontology, e.g., APH(4)-Ib (ARO:3002656). 

But, for the ARO to describe the antibiotics that these determinants resist or the 

mechanisms they utilize, other branches are included within the ARO, adding irrelevant 

terms to our lexicon, e.g., clarithromycin (ARO: 0000065). Thus, to generate NER 

training/testing datasets that only contain relevant concepts, the ontologies were filtered 

using parent terms that captured the concepts I wanted to identify in the literature. Since 

ontologies are hierarchical, all child terms to the parent term were retained while all other 

terms were discarded. A detailed breakdown of the lexicons used, the concepts they 

represent, and the parent term used as the primary filter can be found in Table 3.1 below. 

 

3.2.2 Generation of a named entity recognition (NER) training and testing set 

Given an ontology of terms and a computation model that can reliably identify 

papers believed to be rich in AMR gene epidemiological information (section 2.2.1-

2.2.7), my goal was then to download all papers added to PubMed in 2019 and filter them 

based upon the Chapter 2 classifier’s predictions (section 2.3) to build a BioBert training 

set. With these 2019 AMR papers in hand and as a step towards NER and RE, I 

determined which terms from the lexicons above were present in the abstract of these 

papers. To this end, I used regular expression algorithms for text matching such that each 

mention of a term found in the lexicons outlined above would be identified in a paper. 

I created a pipeline that goes through a series of steps to resolve the major 

problems faced when generating annotations. The pipeline has two main sections: a 
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method that automatically filters annotations based on rules and a series of steps that 

require manual review. 

Automatic filtering criteria: 

● Remove terms fewer than 4 characters in length;  

● Remove any “stop words” or terms that are extremely common in the English 

language (i.e., “and”, “a”, “the”, etc.); 

● Remove terms that nest inside another larger term (i.e. “Escherichia” would be 

removed if located inside “Escherichia coli”); 

● Remove duplicate annotations with the same term ID (i.e., both IDO and 

UBERON have the UBERON term “blood” and it is thus double counted; in 

another case, “hot dog” has two synonyms, “wiener” and “Wiener” that match the 

same positions during annotation); 

● Remove duplicate terms from the same lexicon (i.e., the two terms “bone 

element” and “bone tissue” both have the synonym “bone” in UBERON); 

● Remove duplicate terms from different lexicons (i.e., “kidney” appears in both 

FOODON and UBERON, but most commonly refers to the anatomy term and not 

the food product) 

Every term used in the annotation of the 2019 papers (6,839 in total across lexicons) was 

manually reviewed by me and given a label of “keep”, “remove”, or “review” based on if 

I thought they were appropriate for their lexicon and their likelihood to mismatch. So, 

terms with only one meaning (i.e., bacterial taxonomy, genes, food products) were given 

the label of “keep”; terms that were almost always going to mismatch because their 
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ontology meaning would rarely be used in biomedical text (i.e., the abbreviation “as” for 

“American Samoa”) were labelled “remove”; and terms that fell into neither category 

were labelled “review”. Any terms labelled “review” and unresolved terms resulting from 

the automatic section went through a series of manual filters: 

● Filter all annotations for a term after reviewing a randomly drawn sample set of 

five sentences; 

● Terms unresolved after viewing a sample set of sentences were examined on a 

sentence-to-sentence basis 

After the combination of automated annotation of terms and manual curation, the NER 

training/testing dataset was then generated, and one final review was performed to add 

and remove any annotations.  

3.2.3 Generation of a relationship extraction (RE) training and testing set 

Using the set of filtered annotations, the RE training/testing dataset was generated 

by taking all ARO:other lexicon pair combinations found in a sentence. These pairings 

were manually examined by me and my volunteers and given a label of 0/1 if the two 

terms were describing each other (1) or not (0). BioBert requires a sampling of both to 

suppress false positive and false negative predictions of relationships. For example, 

consider the following sentence: 

This study provides the first report of bla NDM-1-positve K. pneumoniae along 

with ST268 as well as the spread of nosocomial infections with six different STs 
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harboring bla NDM-1 and other resistance genes in hospital settings especially 

neonatal intensive care unit.44 

The second mention of “NDM-1”, highlighted in bold, is not related to “K. pneumoniae” 

but is described as found in a “hospital”. Thus the NDM-1:K. pneumoniae pair is labelled 

0, and the NDM-1:hospital pair is labelled 1.  

3.3 Results 

3.3.1 NER training/testing datasets 

From regular expression matching of exact terms and synonyms to 10,784 

biomedical abstracts from 2019 (Chapter 2), 730,538 annotations and 6,839 unique terms 

were identified (Table 3.2). Since pattern-matching algorithms do not consider that a term 

may have multiple meanings, many annotations result in a mismatch between the 

annotated term and the corresponding lexicon term’s meaning. For example, the GAZ 

term “American Samoa” has the synonym “as”, referring to the geographical location. 

However, this annotation process erroneously labelled 10,437 instances of the term.  

Filtering methods limited these mismatches by reducing the total number of 

annotations from ~730,000 to ~148,000 (Table 3.3). Despite removing so many 

annotations, the number of unique terms did not decrease dramatically, only reducing to 

4,903 from a pre-filtered level of 6,839 (Table 3.4). The ontologies contributing the most 

erroneous annotations were GAZ, followed by SO, and UBERON. These lexicons tended 

to have very short abbreviations that would consistently mismatch with common English 
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words. This is revealed by their dramatic drop in the number of annotations during the 

length filtering step (Table 3.5). 

While some lexicons mismatched extensively, others did not match enough. 

During the final manual labelling step, many terms that conceptually belonged to a 

lexicon had to be identified and manually added. During this process, 64 ENVO, 116 

FOODON, and 311 NCBI TAXON terms were manually identified (Table 3.4). These 

new terms corresponded with manually adding 2,154, 5,421, and 17,349 annotations to 

ENVO, FOODON, and NCBI TAXON, respectively (Table 3.3). These terms were not 

identified from the initial annotation process because they were not found in the original 

ontology, e.g., manual review flagged the term “pork” even though it did not exist in 

FOODON.  

This work created eight gold-standard datasets for training BioBERT models to 

identify terms for ARGs, environments, food products, geographical locations, infectious 

disease terms, bacterial taxonomy, sequencing terms, and anatomy terms. 

3.3.2 RE training/testing datasets 

 Using the annotations generated from the NER training/testing datasets, 12,588 

relationships were extracted based on ARG-epidemiology terms that appear within the 

same sentence (Table 3.5). Of these ~12,000 relationships, 10,329 were labelled as 

genuine relationships (1), while the remaining 2,254 found no relationship (0) between 

the ARG and epidemiology term. The greatest number of relationships to ARO terms 

were found among IDO, NCBI TAXON, and SO terms.   
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This work created seven gold-standard datasets for training BioBERT models to 

identify relationships between ARGs and environments, food products, geographical 

locations, infectious disease terms, bacterial taxonomy, sequencing terms, and anatomy 

terms. 
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Table 3.1 Breakdown of ontologies used, concepts they represent, and parent term 

used as primary filter.  

Lexicon 
Main concept Parent filter 

ARO ARG names Determinant of antibiotic resistance (ARO:3000000) 

FOODON Food products Food product (FOODON:00001002) 

UBERON Anatomy parts Anatomical entity (UBERON:0001062) 

ENVO Environments Construction (ENVO:01001813) 

NCBI TAXON Bacterial taxonomy Bacteria (0) 

GAZ Geographical locations No filter 

SO Genomic terms No filter 

IDO Infectious disease terms Continuant (BFO:0000002) 

 

Table 3.2: Term, annotation, and paper counts of lexicons. The term count is the total 

number of words in a lexicon, not including synonyms. Annotation count is the total 

number of matches found across all abstracts. The paper count is the number of unique 

papers in which lexicon terms appear. The number of unique papers with annotations is 

10,782 prior to filtering. 

Lexicon Term count Annotation count Paper count 

ARO 3,850 10,118 2,689 

FOODON 10,815 15,529 6,682 

UBERON 13,847 113,456 10,646 

ENVO 217 4,866 2,633 

NCBI TAXON 466,787 43,566 8,597 

GAZ 565,454 361,759 10,780 

SO 2,597 146,299 10,719 

IDO 274 34,945 8,793 
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Table 3.3: Automatic and manual filtering initial annotation results on an annotation level. All terms were reviewed and 

assigned a label of “review”, “keep”, or “remove”. When generating the final NER dataset, the terms labelled “remove” were 

taken out. All terms/annotations went through the following filtering steps: (1) length filter removing terms fewer than four 

characters in length; (2) remove any stop words or common English words; (3) remove terms that nest inside another term; (4) 

remove duplicate terms with the same term ID; (5) remove annotation duplicates under the same lexicon; (6) remove 

annotation duplicates under different lexicons; (7) manual filtering by examining 5 sample sentences on terms unresolved from 

steps 1-6; (8) manual filtering by examining 5 sample sentences on terms labelled “review”; (9) sentence-level filtering of 

annotations of terms unresolved from step 7 and 8; (10) final manual review of generated NER dataset. Values under steps 1-

10 represent the number of annotations removed after each filter. Negative values indicate that annotations were added. 
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Lexicon Label 
No 

filter 

(1) 

Length 

(2)      

Stop 

word 

(3) 

Nested 

(4)      

Dup. 

(5)    

Same 

lexicon 

(6)       

Diff. 

lexicon 

(7)             

5 sen. 

(8)             

5 sen. 

"review" 

(9)          

All 

sen. 

(10)     

NER 

dataset 

Results 
% 

Change 

ARO 
Review 1398 156   6     709 1 512 2   12 -99% 

Keep 8720 632   184   65 1 15     2 7821 -10% 

ENVO 

Review 805 24  38 31 10 60 144 340   158 -80% 

Remove 4             -100% 

Keep 4057   69 2 8  22   -2154 6110 51% 

FOODON 

Review 10441 6623   94     22   3463 59 -2 182 -98% 

Remove 107 1   1  96       -100% 

Keep 4981 79   268   392 825 31     -5421 8807 77% 

GAZ 

Review 38765 27270 7599 277  26 19 188 3156 24 10 196 -99% 

Remove 303960 275903 5748 1066  1029 38 1803      -100% 

Keep 19034 557  1581  484 5 205   196 16006 -16% 

IDO 
Remove 2475     46                 -100% 

Keep 32470     770             4 31696 -2% 

NCBI 

TAXON 

Review 204 17  123   13     51 -75% 

Remove 4170   152   2380 43      -100% 

Keep 39192   12933  126  4199   -17349 39283 0% 

SO 

Review 10723 4194   267   38 1016 163 2431 87   2527 -76% 

Remove 109500 103682  416  976 383 146      -100% 

Keep 26076     2421   30 2 31     -549 24141 -7% 

UBERON 

Review 4102 838  310  164 239 330 2023 9  189 -95% 

Remove 92593 85619  1062  13 1549 332      -100% 

Keep 16761 1624  989 959 918 495 1130   -620 11266 -33% 
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Table 3.4: Automatic and manual filtering initial annotation results on a term level. The methods used to generate the 

table are the same as in Table 3.3 but on a term basis. 

 

Lexicon Label 
No 

filter 

(1) 

Length 

(2)      

Stop 

word 

(3) 

Nested 

(4)      

Dup. 

(5)    

Same 

lexicon 

(6)       

Diff. 

lexicon 

(7)             

5 sen. 

(8)             

5 sen. 

"review" 

(9)          

All 

sen. 

(10)     

NER 

dataset 

Results 
% 

Change 

ARO 
Review 10 2         2 1 3     2 -80% 

Keep 676 25   1   8 1 4       637 -6% 

ENVO 

Review 28 2    1 4 3 11   7 -75% 

Remove 1             -100% 

Keep 51     2  4   -64 109 114% 

FOODON 

Review 41 4         4   15 3 1 14 -66% 

Remove 7 1     1       -100% 

Keep 250 5   3   6 9 8     -116 335 34% 

GAZ 

Review 742 131 3 19  9 3 19 476  6 76 -90% 

Remove 547 261 6 14  11 2 10      -100% 

Keep 1231 4  42  35 1 5   2 1142 -7% 

IDO 
Remove 8                       -100% 

Keep 72                    72 0% 

NCBI 

TAXON 

Review 18 1  2   3     12 -33% 

Remove 5      2 1      -100% 

Keep 1542   102  8  9   -311 1734 12% 

SO 

Review 191 63   1   1 5 6 43     72 -62% 

Remove 69 39    1 1 2      -100% 

Keep 212     1   1 1 3     -1 207 -2% 

UBERON 

Review 188 32  9  15 7 22 71   32 -83% 

Remove 380 327  4  4 5 6      -100% 

Keep 570 19  23  56 3 21   -4 452 -21% 
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Table 3.5: Relationship counts within the RE dataset. ARO to lexicon relationships 

were generated using sentences that contain at least one ARO term and another term from 

a different lexicon. The total number of ARO:lexicon relationships available can be seen 

in the “All” column. Relationships were manually labelled and given a 0/1 depending on 

whether the ARO:lexicon terms contextualize one another (1) or not (0). The subset of 

labeled relationships (1) were used to train the RE models. 

 

Lexicon All Labelled 0 Labelled 1 Unique Papers 

ENVO 386 25 361 153 

FOODON 438 49 389 142 

GAZ 791 62 729 339 

IDO 1,460 273 1,187 549 

NCBI TAXON 3,347 583 2,763 968 

SO 5,766 1,204 4,558 1,149 

UBERON 400 58 342 203 

Total 12,588 2,254 10,329 1,664 
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3.4 Discussion 

3.4.1 Ontologies vary in their text-mining usefulness 

To generate NER datasets, we use ontologies with terms we can normalize back to 

after making predictions. General dictionaries work but lack hierarchy which reveals how 

terms are related. Additionally, simple dictionaries do not contain descriptions of a 

particular term, reducing their usefulness for others trying to interpret complicated 

relationships. Another benefit of ontologies is that they are largely continuously 

maintained and updated, i.e., new genes and species will be added to ontologies while 

dictionaries are static. Overall, ontologies are vital resources for providing terms that 

represent concepts we would like to extract for NER tasks. However, from my time 

filtering the initial annotations, I found that two major factors impacted how functional 

these ontologies are for text-mining purposes: (i) how polysemantic the ontology terms 

are, and (ii) how comprehensive the ontology is and the depth/nuance of terms within. 

Inherently, the ontologies most impacted by filtering were those that mismatched 

the most. This includes GAZ, UBERON, and SO, which had hundreds of terms removed 

after filtering (Table 3.4). The primary cause of these mismatches was because these 

terms have multiple meanings but the most common meaning used in biomedical text 

does not correspond to the one used in the ontology. For example, the term “an” in 

FOODON refers to a sweet bean paste, but this is not the most common meaning for the 

term in biomedical text. As a result, this term mismatches thousands of times. Ontologies 

with terms that have only one definition mismatched much less often. This can be seen 
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with ARO, NCBI TAXON, and IDO, which lost very few annotations/terms to filtering 

and whose terms have one meaning.  

While polysemantic terms frequently caused mismatches, the inability to identify 

relevant terms within a text is another area of concern. There are three reasons we cannot 

identify terms within a text: (i) the ontology is not comprehensive enough and lacks 

relevant terms, (ii) the ontology terms are too verbose, and (iii) the ontology does not 

capture enough nuance within the terms. From the manual step of filtering, many terms 

were added to ENVO, FOODON, and NCBI TAXON, indicating that the ontologies 

alone could not capture the extent of terms belonging to their overall concept. For NCBI 

TAXON, the ontology was not comprehensive and lacked species abbreviations. These 

abbreviations were added retroactively to capture all bacterial taxonomy. While 

comprehensive, FOODON had verbose terms and went into too much detail to be helpful 

for a text-mining application. For example, the term “poultry” is not in FOODON, but the 

terms “poultry product”, “poultry (frozen)”, “poultry (raw)” and many other verbose 

terms for poultry food items can be found in the ontology. While these terms are 

necessary to understand the nuances between food items, none of these terms were 

identified in the literature because of their verbosity and specificity. ENVO perhaps takes 

the opposite direction as FOODON and has too few details. For example, they have the 

term “intensive care unit” but do not have “neonatal intensive care unit”. As of writing, 

ENVO had updated their ontology to include “neonatal intensive care unit facility” in 

their development branch of the ontology seven months ago85. However, they have yet to 

release a new stable version of the ontology including these new terms. Despite adding 



MSc. Thesis – A. Edalatmand; McMaster University – Health Sciences 

48 

 

this new term, it is now too verbose as most mentions of such an environment are 

typically “neonatal intensive care unit”, not “facility”. Additionally, although they are 

rapidly expanding the ontology, they do not release stable versions very often, as the last 

stable release was on May 14, 202186. 

Both mismatches and the lack of matches stem from an ontology’s structure and 

the terms contained within. Thankfully, these annotation problems were corrected via 

manual filtering steps aimed at improving the resulting NER training/testing datasets. 

However, manual review is time-consuming, requiring attention to detail and patience. 

Although a large initial effort was required to generate these gold-standard datasets, 

minimal human intervention is needed to maintain their long-term value. With constant 

improvements in natural language model performance and generalization, gaps in datasets 

are largely overcome. Areas lacking generalization can be improved by creating and 

incorporating small, targeted datasets into the training process. These targeted datasets 

will be small in scale (i.e., tens of labelled examples) and will improve the performance 

of identifying specific terms or relationships. 

3.4.2 NER training/testing datasets 

 The 8 NER training and testing datasets I have created provide a resource of 

annotations in biomedical literature identifying ARGs, environments, food products, 

geographical regions, infectious disease terms, bacterial taxonomy, sequencing terms, and 

anatomy. While other NER datasets have been created using biomedical literature, they 

primarily focus on identifying genes65,66, chemicals62,64, diseases62,63, and species67,68. 

Additionally, NER datasets with geographical terms, food terms, or environment terms 
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use news articles, recipes, or encyclopedia pages rather than biomedical text to extract 

their terms87–89. While datasets are available for food, environments, geographies, and 

other terms, no ARO-epidemiology relationship datasets are available. To generate these 

datasets, I would still need to go through the process of generating NER and subsequently 

RE datasets to capture entities in a biomedical context. Thus, generating the data myself 

was the simplest and most effective method.  

3.4.3 RE training/testing datasets 

 The 7 RE training and testing datasets my volunteers and I have created are 

foundational for training BioBERT models to identify ARO-epidemiology relationships 

more broadly across biomedical literature. Of the ~12,000 relationships labelled, most 

were positive (1) relationships, indicating that when two terms are co-mentioned in the 

same sentence, they are most likely related to each other. This intuitively makes sense, as 

abstracts commonly report positive associations (i.e., an ARG was found in a particular 

environment) rather than negative associations. Most negative associations came from 

cases where multiple ARGs are described alongside multiple epidemiology terms yet only 

specific pairs of terms are related. 

 While SO and IDO contain many biomedically-relevant terms, these terms are 

uninformative for creating relationships with ARGs. Except for the term “plasmid” which 

is essential for understanding which genes are plasmid-borne, SO contains redundant 

terms like “gene”, “polypeptide”, or “amino acid” which are uninformative in 

understanding more about ARG epidemiology. Similarly, for IDO, the most common 

relationships are “bacteria”, “infectivity”, “antimicrobial”, “virulence”, “host”, and “cell”. 
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In future iterations of these datasets, aside from plasmid-associated relationships, I would 

remove SO and IDO from RE tasks. Except for SO and IDO, relationships were highly 

informative for understanding the sources in which genes are found. 

3.4.4 Challenges associated with creating gold-standard training and testing datasets 

 Creating gold-standard datasets is a manual process involving the removal or 

addition of terms. Removing terms is relatively easy, as most terms and annotations were 

removed from automated filtering steps like filtering by length, removing stopwords, 

dropping duplicated terms, and removing nested terms (Table 3.3 and 3.4). However, 

removing the remainder of those mismatched terms requires one to review annotations 

sentence-by-sentence, to identify all irrelevant terms and remove them. To speed the 

process up, I selected all unique terms annotated across the ~10,000 papers and labelled 

them as “review”, “keep”, or “remove” based on their likelihood to mismatch and how 

appropriate they were for their ontology. This sped up the process considerably by 

allowing me to review only 1,218 of the 6,839 lexicon terms, which corresponded with 

reviewing 66,438 of the 730,538 annotations. However, the process was anything but fast 

and took several weeks to complete. After filtering, I identified terms that were missing 

but were associated with the concept we would like to extract. This process was more 

laborious than filtering as I had to go through the raw sentences, not just the annotations, 

to identify terms that were not picked up during annotations or were mistakenly removed 

during filtering. This is extremely important when generating gold-standard NER 

datasets, as it is important that we capture all relevant terms associated with a concept. 

The ontologies that required the most additional labelling were NCBI TAXON, ENVO, 
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and FOODON due to the complications discussed in Section 3.4.1. Overall, the process of 

filtering and identifying missing annotations took months.  

The process of labelling relationships was similarly time-consuming but 

straightforward as no filtering was needed. The main difficulty associated with labelling 

relationships was that we had to read most of a sentence to identify if a relationship 

existed between an ARG and epidemiology terms. Across ~12,000 relationships, 3,410 

sentences were reviewed to identify if associations existed.  

To generate high-quality relationship training/testing data, manual curation is 

ideal. A highly-cited database for gene-disease relationships called Genetic Association 

Database (GAD)70 has recently come under scrutiny. Their semi-automatic method of 

labelling relationships led to the generation of questionable labels90,91. Without expert 

manual curation to verify your data, you can never truly trust the results you generate. 

Overall, the efforts taken by myself and my volunteers have generated gold-

standard datasets that identify epidemiology concepts alongside ARGs and the 

relationships between them. Other NLP researchers can use these data to train new 

models and benchmark current models for understanding how these terms interact in 

biomedical literature, among many other applications. For my work, these datasets are 

used to train and evaluate BioBERT models for the task of NER and RE to develop a 

better understanding of ARGs transmission and risk (Chapter 4). 
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4. Chapter 4: Understanding risk and transmission of 

antimicrobial resistance genes 

4.1 Introduction 

Deploying effective public health interventions to control the spread of AMR 

requires an understanding of where ARGs or pathogen transmission is most likely to 

occur and how much risk is associated with that transmission event14,92. To monitor the 

spread of AMR across various environments, surveillance programs are in place that 

monitor resistant pathogens in high-risk environments as well as rates of treatment 

failure. Canada has two major national surveillance programs: the Canadian Nosocomial 

Infection Surveillance Program surveys healthcare-associated infections and the Canadian 

Integrated Program for Antimicrobial Resistance surveys food-borne, environmental, and 

zoonotic infections93,94. Smaller but more specific surveillance initiatives in Canada focus 

on tuberculosis, gonococcal, or streptococcal infections95–97. Like Canada, many countries 

conduct their own surveillance monitoring and participate in a global surveillance effort 

organized by the World Health Organization to understand AMR's drivers better, called 

the Global Antimicrobial Resistance and Use Surveillance System (GLASS)98. Ideally, 

with these surveillance programs in place, we can generate up-to-date estimates of the 

prevalence of AMR in different environments and monitor the performance of mitigation 

strategies. Unfortunately, we cannot currently estimate this92. Additionally, Canada lacks 

surveillance data for community settings, domestic animals, wildlife, soil, and water 

samples1,92. In addition, most surveillance is phenotypic and lacks information on 
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individual ARGs. Challenges stemming from the lack of wholistic surveillance make 

understanding AMR transmission at a national level difficult and limits our ability to 

conduct risk assessments14. 

Text mining processes can complement phenotypic and genotypic surveillance 

programs and help overcome challenges faced by current surveillance programs by 

collecting information from publications worldwide, from sources beyond sentinel-based 

surveillance efforts, thus helping researchers and public health officials better understand 

the large-scale dynamics of resistance. By collecting epidemiological NER and RE 

information related to ARGs, we can begin to analyze resistance trends and understand 

how likely transmission is to occur based on environment similarity metrics.  

4.2 Methods 

4.2.1 Training BioBERT 

As a step toward the prediction of transmission and risk, a BioBERT model was 

trained on the 2019 training datasets (section 3.2.1-3.2.3) for the task of NER (8 training 

datasets) and RE (7 training datasets) for all of PubMed. During this process, 25% of data 

was held out for final evaluation, with the remaining 75% used for training (80% of the 

75%) and hyperparameter tuning (20% of the 75%). Combinations of two 

hyperparameters, batch size and learning rate, were adjusted to identify the best-

performing model. Batch size adjusts the number of sentence examples a model is trained 

upon for each iteration, and learning rate impacts the size of the weight adjustment made 

each time back propagation occurs. A larger learning rate results in a more significant 
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adjustment of the weight parameters in the model and can help avoid local minima loss 

values. However, they may result in an unstable training process and a failure to converge 

on a minimum loss. A lower learning rate will have a better chance of converging but 

may get stuck in a local minimum. The other main hyperparameter, epochs, remained at a 

value of four as recommended by the BERT paper49. Epochs adjust the times the dataset 

is passed through the model during training. Table 4.1 shows the hyperparameter values 

examined. 

4.2.2 Term normalization 

To generate interpretable results, annotations gathered from BioBERT NER must 

be mapped to a set of standardized terms. For example, UBERON has multiple terms 

describing stool, including: “stool”, “feces”, “fecal”, and “faeces”. Matches for these term 

variants must be mapped back to the standard “stool” term. Using the ontological lexicons 

as a source of standard terms, I mapped all of BioBERT’s NER annotations using 

Boolean logic or fuzzy string searching. First, all annotations were standardized by 

removing punctuation, lowercasing, and stemming. Afterward, annotations were checked 

via Boolean logic to see if the term is an extract match to any terms within the lexicons. If 

there was no perfect match, a fuzzy search was conducted by calculating the Levenshtein 

distance between the annotation and every lexicon term and synonym. Levenshtein 

distance measures the number of character changes needed to convert one word into 

another. An arbitrary cut-off of 95% was used when assigning annotations to lexicon 

terms. Terms with no perfect match that fell below the 95% cut-off were passed on to one 

final fuzzy-matching algorithm called token_set_ratio, which calculates three Levenshtein 
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distances using the sorted intersection and difference of token sets between two terms. 

For example, given two terms, “Minnesota” and “State of Minnesota”, we tokenize them 

first into sorted sets (i.e., “Minnesota” becomes [“Minnesota”] and “State of Minnesota” 

becomes [“Minnesota”, “of”, “State”]). Then three datasets are generated based on the 

following. 

- Set 1: 𝐴 ∩ 𝐵 (intersection) = [“Minnesota”] 

- Set 2: 𝐴 − 𝐵 = [“Minnesota”] – [“State”, “of”, “Minnesota”] = empty set 

- Set 3: 𝐵 − 𝐴 = [“State”, “of”, “Minnesota”] – [“Minnesota”] = [“State”, “of”] 

From these sets, three strings are created for comparison: 

- String 1: Set 1 alone = “Minnesota” 

- String 2: Set 1 + Set 2 = “Minnesota” 

- String 3: Set 1 + Set 3 = “Minnesota of State” 

Levenshtein distances are then calculated between strings 1 and 2, 1 and 3, and 2 and 3, 

taking the maximum of the three scores. In the case of “Minnesota”, the score would be 

100%. I selected the first ontology term for these annotations that yielded a 100% score 

through token_set_ratio. Any terms that were unsuccessful in being normalized were 

considered “non-normalized” but still included in downstream analyses. For example, the 

term “broiler houses” was annotated across 56 papers but did not normalize to any term in 

ENVO. 
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4.2.3 Similarity scores 

To assess the similarity between epidemiology terms, similarity metrics were 

calculated using RE prediction results for all AMR-epidemiology papers. For calculating 

similarity, each epidemiology term was represented by the set of ARGs related to that 

term. For example, the term “chicken” was related to 110 ARG terms from the ARO, 

including MCR-1.1, CMY-2, vanA, and CTX-M-1, among others. Metrics were then based 

on the overlap in ARGs between terms, e.g., the ARG terms shared or not shared by 

“chicken” and “farm”. 

The first similarity metric calculated was Jaccard similarity, which relies on the 

presence/absence of ARGs. We thus represent A and B as sets of ARGs related to two 

epidemiology terms: 

 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 =
|𝐴∩𝐵|

|𝐴∪𝐵|
 

Jaccard similarity is measured as the shared number of ARGs between two epidemiology 

terms divided by the total number of unique ARGs related to both terms. In contrast, 

Bray-Curtis is a more quantitative method that considers the number of papers each 

epidemiology term and ARG are found to have a relationship in:  

𝐵𝑟𝑎𝑦 − 𝐶𝑢𝑟𝑡𝑖𝑠 =
2𝑆𝐴𝐵

𝑃𝐴 + 𝑃𝐵
 

For this metric, SAB takes the shared ARGs between two terms and sums the minimum 

papers associated with each ARG-epidemiology relationship. PA and PB are the total 
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numbers of papers associated with epidemiology terms A and B. For example, given the 

following terms: 

-  “chicken” with relationships with NDM-1 found across 10 papers, MCR-5 across 

5 papers, and CTX-M-15 across 3 papers;  

- “Bos taurus” with relationships with NDM-1 found across 4 papers, MCR-5 across 

8 papers, and vanA across 4 papers 

SAB is calculated by taking NDM-1 and MCR-5 since they are shared between both terms, 

and then taking the sum of the minimum number of papers (i.e., 4 for NDM-1 and 5 for 

MCR-5). PA and PB is the sum of papers associated with “chicken” and “Bos taurus”, 

respectively (i.e., 10+5+3 for “chicken”, and 4+8+4 for “Bos taurus”). The resulting score 

would be (4+5)/(18+16) = 0.26. 

 The final similarity metric examined, co-occurrence affinity, is insensitive to the 

prevalence of ARGs associated with one epidemiology term compared to another99. Co-

occurrence affinity is measured based on the probability that for each ARG, term A is 

associated with the ARG with a probability of p1 if term B is present but with p2 if term B 

is absent. Using these probabilities, we calculate the log odds ratio: 

𝛼 = log (
𝑝1

1 − 𝑝1
/ 

𝑝2

1 − 𝑝2
) 

For a particular ARG, α reflects the similarity between two epidemiology terms. The 

affinity metric is estimated across all possible ARGs using maximum likelihood to 

calculate a similarity metric. 
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4.3 Results 

4.3.1 Performance and generalizability of models for named entity recognition (NER) 

A generalized NER model can identify terms belonging to a lexicon while having 

never previously seen those terms during training. To assess how well a model 

generalizes, I set aside 15% of all terms in each lexicon within the NER dataset for 

testing. This method of splitting resulted in roughly half the annotations in the testing sets 

measuring memorization, i.e., recognizing terms included in the training, and the other 

half testing generalizability (Table 4.2). Only recall was measured for memorization and 

generalizability as there were an unknown number of false positives, ruling out the 

calculation of precision. For lexicons with very few unique terms like ENVO, IDO, SO, 

and UBERON, generalization performance fell below 60% (Table 4.2); as the number of 

unique terms in lexicons increased, the better the models generalized (Figure 4.1). As a 

result, ARO, FOODON, GAZ, and NCBI TAXON had recall values greater than 70% 

(Table 4.2).  For downstream predictions, the best NER model was selected for each 

lexicon based on the highest generalization recall value.  

4.3.2 Model performance for relation extraction (RE) 

 Fine-tuning models for RE took half a day to complete as the dataset was much 

smaller than the NER dataset. Models were evaluated based on loss, accuracy, and F1 

values (Table 4.3). Loss measures the difference between raw predictions and the label. A 

loss closer to 0 results in a better-performing model. Accuracy is calculated as the total 

true positive predictions divided by the total number of predictions, while F1 is the 
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weighted average between precision and recall. As the evaluation datasets were relatively 

small for some lexicons (i.e., the smallest dataset, ENVO, only contains 97 examples), 

accuracy and F1 values across different learning rates and batch size combinations stayed 

relatively similar. Additionally, there was a disproportionately more significant number of 

positive relationship labels than negative relationships found in the training/testing dataset 

(Table 3.5). This unbalanced dataset could lead to bias in the trained models. To better 

understand the impact of this potential bias, these models must be evaluated relative to a 

naïve approach of relationship prediction that assumes any two terms appearing in an 

abstract are related. Nevertheless, for now, the best-performing models were selected 

based on the highest accuracy and F1, followed by the lowest loss score if there was a tie.   

4.3.3 NER and RE results on 204k papers 

 Using the logistic regression paper classification model described in Chapter 2, 

204k papers were identified to bear AMR-relevant information from the entirety of 

PubMed. The NER models then annotated these papers, generating over 2.2 million 

annotations (Table 4.4). Terms from these annotations were normalized using the 

Boolean and fuzzy logic described in Section 4.2.2, yielding 20,055 unique terms. Of 

these terms, 6,002 could not be normalized and were labelled “non-normalized”. Under 

ARO, most non-normalized terms turned out to be other bacterial genes misannotated as 

ARGs.  

 The annotations generated from NER model predictions are largely promising. 

The NER models identified thousands of gene, environment, food, taxonomy, and 

geographical mentions over years of published research (Figure 4.2). However, the 



MSc. Thesis – A. Edalatmand; McMaster University – Health Sciences 

60 

 

ENVO annotations were severely skewed towards the term “hospital”. Out of the 78,298 

ENVO annotations identified across 40,654 papers, 42,114 are the term “hospital”, with 

the second most common term, “farm”, annotated only 14,261 times. This skewed data 

reflects the level of importance the scientific community has given to each environment. 

What is also interesting to note, it seems that only since the year 2000 has research picked 

up in examining wastewater treatment plants (Figure 4.2). 

The distribution of annotated terms across papers can be seen in Figure 4.3. Only 

five ARO terms (CTX-M-15, TEM-1, beta-lactamase, mecA, and vanA) were found in at 

least 1,000 papers. Additionally, no ARO, FOODON, or GAZ terms were found in more 

than 10,000 papers (Figure 4.3). The relative proportion of NCBI TAXON terms 

compared to other lexicons across papers stayed relatively the same, while the proportion 

of GAZ and ARO terms decreased (Figure 4.3B). In contrast, the proportion of SO, 

UBERON, IDO, and ENVO terms increased, indicating they are more common in 

thousands and tens of thousands of papers relative to all lexicons. Overall, most annotated 

terms are found in only one paper, while a small group of terms are found across 

thousands of papers.   

 To generate RE data, all ARO:other lexicon annotations found in the same 

sentence were masked and given to the RE models for prediction, generating 110,369 

positive relationships across 33,580 relationship pairs (Table 4.5). Most terms found in 

these relationship pairs were successfully normalized (Table 4.6). Of the 110,369 

relationships, nearly 100,000 relationships existed between two normalized terms, while 

only 91 annotations were between non-normalized terms. Thus, despite one-quarter of the 
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NER terms being non-normalized, very few of them formed relationships with ARO 

terms. This might mean that many non-normalized terms are unrelated to ARO terms and 

are false positives generated by the NER models, or the RE models are biased against 

previously unseen terms and cannot generalize. A combination of these two is most 

likely.  

4.3.4 Affinity co-occurrence should be used to compare similarity between two 

epidemiology terms 

Besides exploring the relationships between ARO terms and epidemiology terms, 

the relationship data I generated can be used to compare different epidemiology terms to 

explore their genetic similarity. We can see which genes are shared between different 

terms by taking the ARO relationships associated with 1,341 epidemiology terms. Of the 

1,341 terms, 33 are ENVO, 65 FOODON, 380 GAZ, 37 IDO, 512 NCBI TAXON, 202 

SO, and 112 UBERON. The four similarity metrics compared are outlined in Section 

4.2.4 and include Jaccard, Bray-Curtis, co-occurrence affinity, and gene overlap. 

Although the magnitude of these similarity metrics varies, they share similar hotspots 

where terms are highly related (Figure 4.4). Notably, Jaccard and Bray-Curtis share the 

same hotspots, with the primary difference being that Bray-Curtis resulted in higher 

similarity scores for these hotspot regions (Figure 4.4A and 4.4B). Gene overlap scores 

show that most term pairs share zero genes (499,848, or 55.6% of the 898,470 total term 

pairs), and the most prominent hotspots occur where more than four terms are shared 

between term pairs (Figure 4.4D). The most notable metric is affinity co-occurrence, 
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which combines all hotspots across the other three similarity metrics and dramatically 

increases the magnitude of similar terms relative to other metrics (Figure 4.4C). 

Exploring the top 10 lexicon-lexicon term similarities based on their genetic 

overlap, we can identify term pairs that share the most ARGs and explore the nuances 

between the similarity metrics (Table 4.7). For example, while the top GAZ-GAZ term 

similarity score based on gene overlap is between “Japan” and “China” with 57 genes 

shared between them, all similarity metrics agree that the most similar GAZ-GAZ terms 

within the top 10 is between “Spain” and “Europe” despite only sharing 37 genes. 

Important to note is the magnitude difference between affinity co-occurrence values and 

the other similarity score values.  

Of term pairs with at least one gene shared between them, affinity co-occurrence 

has a median score of 0.71. In contrast, Jaccard similarity and Bray-Curtis have median 

scores of 0.053 and 0.096, respectively (Figure 4.5). Exploring the distributions of the 

similarity scores, we can see that Jaccard appears not to follow any distribution, Bray-

Curtis follows a lognormal distribution, and affinity co-occurrence follows a normal 

distribution (Figure 4.5). Out of the 398,622 term pairs with at least one gene overlap, a 

perfect similarity score (i.e., a score of 1) occurred 195, 17, and 31,266 times for Jaccard 

similarity, Bray-Curtis, and affinity co-occurrence, respectively. By examining the top 10 

similarity scores sorted based on the gene overlap, you can see that perfect similarity 

scores with Jaccard similarity and Bray-Curtis result in terms with very few gene overlaps 

(Table 4.7). Affinity co-occurrence, however, ranks terms with more gene overlap higher 

in comparison. 
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For this work, since affinity co-occurrence can capture the strengths of Jaccard, 

Bray-Curtis, and gene overlap, while maintaining a normal distribution of scores that are 

not skewed towards zero, it was used as the primary metric when exploring similarity 

scores between America and Canada described in Section 4.3.5 below. 

4.3.5 Exploring transmission between Canada and America 

 By selecting all ARO-epidemiology relationships that appeared in the same 

abstract as terms associated with America and/or Canada (i.e., all child terms to “United 

States of America” and “Canada”), I calculated the co-occurrence affinity between the 

American- and Canadian-associated epidemiology terms, i.e., for the term “chicken” I 

selected all relationships between ARO and “chicken” for abstracts where American 

and/or Canadian geographical terms were mentioned and calculated the similarity 

between American- and Canadian-associated “chicken”. A total of 3,140 papers contained 

Canadian geographical annotations, while 8,556 contained American annotations. From 

the selection process, 2,417 American-associated relationships were found in 815 papers 

compared to 1,253 Canadian-associated relationships found across 353 papers. Stratifying 

these results by lexicon type, GAZ, NCBI TAXON, and SO contribute the greatest 

number of papers, relationships, and terms towards these country-associated relationships 

(Figure 4.6).  

  Calculating the similarity scores on a year-over-year basis, we can potentially see 

how transmission may take place. However, there was not enough information for many 

years and epidemiology terms to calculate a similarity score (Figure 4.7). The terms with 

the most similar information were bacterial taxonomy terms, geographical terms, and the 
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environment term “hospital” (Figure 4.7). Although, even with terms discussed very often 

like “hospital”, only 14 ARGs were Canadian-associated and 46 American-associated. 

Year over year, this information becomes sparser, making it difficult to assess the 

similarity between even one of the most common terms like “hospital”.  
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Table 4.1: Hyperparameters tuned for NER and RE. All value combinations were 

evaluated to identify the best epoch, learning rate, and batch size combination for NER 

and RE tasks.  

 

Parameter Value(s) 

Epoch 4 

Learning rate 1e-5, 3e-5, 5e-5 

Batch size 8, 16, 32, 64 
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Table 4.2: NER model performance and generalization ability. Precision (P), recall 

(R), and F1 scores were calculated on the testing NER dataset for the respective lexicon. 

Additionally, recall was measured on two subsets of the training data: memory (MEM) 

and generalization (GEN). MEM counts were generated based on terms in both the 

training and testing set. GEN counts were generated when neither the term nor their 

synonym appeared in the training set but appeared in the testing set. NER models were 

trained on a combination of three learning rates (1e-5, 3e-5, and 5e-5) and four batch 

sizes (8, 16, 32, 64). All models were trained using an epoch of 4. Boxed in red are the 

best-performing models based on generalizability and overall performance used for 

downstream NER annotations of PubMed. Green color scales were applied column-wise 

within lexicon boundaries to indicate the best-performing metric. 

 

      MEM GEN 

        

Lexicon 
Learning 

rate 

Batch 

size 
P R F1 R Count R Count 

ARO 

1.00E-05 

8 0.984 0.851 0.913 0.966 879 0.749 963 

16 0.969 0.840 0.900 0.972 879 0.723 963 

32 0.964 0.852 0.905 0.958 879 0.758 963 

64 0.961 0.848 0.901 0.948 879 0.760 963 

3.00E-05 

8 0.980 0.802 0.882 0.961 879 0.659 963 

16 0.975 0.803 0.881 0.974 879 0.649 963 

32 0.952 0.818 0.880 0.975 879 0.676 963 

64 0.963 0.850 0.903 0.966 879 0.746 963 

5.00E-05 

8 0.974 0.810 0.884 0.952 879 0.682 963 

16 0.959 0.818 0.883 0.966 879 0.685 963 

32 0.979 0.807 0.885 0.969 879 0.661 963 

64 0.973 0.853 0.909 0.976 879 0.744 963 

ENVO 1.00E-05 
8 0.984 0.512 0.674 0.989 88 0.362 279 

16 0.969 0.512 0.670 0.977 88 0.366 279 
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32 0.949 0.512 0.665 0.989 88 0.362 279 

64 0.959 0.512 0.668 0.977 88 0.366 279 

3.00E-05 

8 0.974 0.510 0.669 0.989 88 0.358 279 

16 1.000 0.512 0.677 0.989 88 0.362 279 

32 0.995 0.512 0.676 0.977 88 0.366 279 

64 0.979 0.507 0.668 0.977 88 0.358 279 

5.00E-05 

8 0.995 0.510 0.674 0.966 88 0.366 279 

16 0.974 0.512 0.671 0.989 88 0.362 279 

32 0.979 0.518 0.677 0.966 88 0.376 279 

64 0.979 0.501 0.663 0.966 88 0.355 279 

FOODON 

1.00E-05 

8 1.000 0.832 0.908 0.964 664 0.643 465 

16 0.999 0.843 0.915 0.973 664 0.658 465 

32 0.999 0.826 0.904 0.946 664 0.654 465 

64 0.998 0.756 0.860 0.956 664 0.471 465 

3.00E-05 

8 0.999 0.761 0.864 0.967 664 0.467 465 

16 0.999 0.863 0.926 0.979 664 0.697 465 

32 0.998 0.788 0.881 0.970 664 0.529 465 

64 1.000 0.834 0.910 0.968 664 0.643 465 

5.00E-05 

8 0.997 0.801 0.888 0.925 664 0.624 465 

16 1.000 0.859 0.924 0.955 664 0.723 465 

32 0.998 0.843 0.914 0.965 664 0.669 465 

64 0.993 0.764 0.864 0.980 664 0.456 465 

GAZ 

1.00E-05 

8 0.987 0.892 0.937 0.988 1353 0.813 1645 

16 0.984 0.897 0.938 0.987 1353 0.824 1645 

32 0.983 0.907 0.943 0.984 1353 0.843 1645 

64 0.980 0.902 0.939 0.978 1353 0.840 1645 

3.00E-05 

8 0.992 0.877 0.931 0.982 1353 0.793 1645 

16 0.994 0.881 0.934 0.984 1353 0.796 1645 

32 0.993 0.886 0.936 0.987 1353 0.804 1645 

64 0.986 0.891 0.936 0.982 1353 0.816 1645 

5.00E-05 

8 0.992 0.880 0.932 0.987 1353 0.793 1645 

16 0.988 0.868 0.924 0.990 1353 0.768 1645 

32 0.988 0.905 0.945 0.992 1353 0.835 1645 

64 0.990 0.872 0.927 0.983 1353 0.781 1645 

IDO 
1.00E-05 

8 0.998 0.344 0.512 1.000 2164 0.000 4118 

16 0.997 0.345 0.513 1.000 2164 0.001 4118 

32 0.997 0.345 0.513 1.000 2164 0.001 4118 

64 0.993 0.345 0.512 1.000 2164 0.001 4118 

3.00E-05 8 0.999 0.344 0.512 1.000 2164 0.000 4118 
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16 1.000 0.344 0.512 1.000 2164 0.000 4118 

32 0.996 0.344 0.512 1.000 2164 0.000 4118 

64 0.999 0.345 0.513 1.000 2164 0.001 4118 

5.00E-05 

8 0.991 0.344 0.511 1.000 2164 0.000 4118 

16 0.992 0.345 0.512 1.000 2164 0.000 4118 

32 0.986 0.344 0.510 1.000 2164 0.000 4118 

64 1.000 0.345 0.513 1.000 2164 0.000 4118 

NCBI 

TAXON 

1.00E-05 

8 0.991 0.803 0.887 0.983 3197 0.628 3287 

16 0.986 0.867 0.922 0.982 3197 0.755 3287 

32 0.981 0.772 0.864 0.978 3197 0.572 3287 

64 0.980 0.761 0.857 0.977 3197 0.551 3287 

3.00E-05 

8 0.994 0.889 0.939 0.982 3197 0.800 3287 

16 0.985 0.821 0.896 0.986 3197 0.662 3287 

32 0.989 0.881 0.932 0.985 3197 0.780 3287 

64 0.983 0.738 0.843 0.981 3197 0.503 3287 

5.00E-05 

8 0.995 0.872 0.929 0.984 3197 0.764 3287 

16 0.993 0.866 0.926 0.981 3197 0.756 3287 

32 0.991 0.864 0.923 0.985 3197 0.747 3287 

64 0.983 0.871 0.924 0.982 3197 0.765 3287 

SO 

1.00E-05 

8 0.976 0.546 0.700 0.979 1609 0.275 2570 

16 0.965 0.663 0.786 0.976 1609 0.468 2570 

32 0.969 0.557 0.708 0.985 1609 0.290 2570 

64 0.978 0.572 0.722 0.979 1609 0.318 2570 

3.00E-05 

8 0.980 0.659 0.788 0.976 1609 0.460 2570 

16 0.960 0.636 0.765 0.961 1609 0.435 2570 

32 0.973 0.539 0.694 0.973 1609 0.268 2570 

64 0.984 0.570 0.722 0.975 1609 0.317 2570 

5.00E-05 

8 0.911 0.519 0.661 0.976 1609 0.233 2570 

16 0.932 0.555 0.696 0.990 1609 0.284 2570 

32 0.981 0.546 0.702 0.971 1609 0.281 2570 

64 0.979 0.548 0.703 0.977 1609 0.281 2570 

UBERON 

1.00E-05 

8 0.977 0.682 0.803 0.962 396 0.540 798 

16 0.974 0.717 0.826 0.960 396 0.589 798 

32 0.966 0.683 0.801 0.949 396 0.543 798 

64 0.956 0.670 0.788 0.955 396 0.519 798 

3.00E-05 

8 0.990 0.663 0.795 0.944 396 0.531 798 

16 0.989 0.627 0.767 0.957 396 0.472 798 

32 0.991 0.707 0.826 0.955 396 0.576 798 

64 0.977 0.697 0.813 0.967 396 0.551 798 
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5.00E-05 

8 0.988 0.615 0.758 0.947 396 0.457 798 

16 0.995 0.682 0.809 0.962 396 0.548 798 

32 0.985 0.667 0.796 0.960 396 0.518 798 

64 0.991 0.672 0.801 0.962 396 0.525 798 
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Table 4.3: RE model performance. Loss, accuracy, and F1 values were calculated based 

on predictions made on the evaluation dataset. The number of relationships found in each 

lexicon’s RE evaluation dataset is shown. RE models were trained on a combination of 

three learning rates (1e-5, 3e-5, and 5e-5) and four batch sizes (8, 16, 32, 64). All models 

were trained using an epoch of 4. Boxed in red are the best-performing models based on 

the lowest loss and overall performance used for downstream RE predictions. Green color 

scales were applied column-wise within lexicon boundaries to indicate the best-

performing metric. 

Lexicon 
Learning 

rate 

Batch 

size 

# 

Examples 
Loss Accuracy F1 

Accuracy 

and F1 

ENVO 

1.00E-05 

8 

97 

0.289 0.897 0.945 0.921 

16 0.345 0.897 0.945 0.921 

32 0.347 0.897 0.945 0.921 

64 0.403 0.897 0.945 0.921 

3.00E-05 

8 0.339 0.897 0.943 0.920 

16 0.334 0.897 0.945 0.921 

32 0.368 0.897 0.945 0.921 

64 0.335 0.897 0.945 0.921 

5.00E-05 

8 0.475 0.914 0.952 0.933 

16 0.334 0.897 0.943 0.920 

32 0.338 0.897 0.945 0.921 

64 0.353 0.897 0.945 0.921 

FOODON 

1.00E-05 

8 

110 

0.284 0.909 0.952 0.930 

16 0.275 0.909 0.952 0.930 

32 0.295 0.909 0.952 0.931 

64 0.336 0.909 0.952 0.931 

3.00E-05 

8 0.342 0.894 0.942 0.918 

16 0.284 0.864 0.926 0.895 

32 0.220 0.909 0.952 0.931 

64 0.198 0.909 0.952 0.931 

5.00E-05 

8 0.421 0.894 0.942 0.918 

16 0.295 0.879 0.932 0.905 

32 0.256 0.864 0.926 0.895 

64 0.188 0.909 0.952 0.931 

GAZ 1.00E-05 8 198 0.538 0.866 0.928 0.897 
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16 0.408 0.874 0.933 0.903 

32 0.392 0.874 0.933 0.903 

64 0.369 0.874 0.933 0.903 

3.00E-05 

8 0.546 0.874 0.932 0.903 

16 0.452 0.866 0.927 0.896 

32 0.388 0.866 0.928 0.897 

64 0.393 0.874 0.933 0.903 

5.00E-05 

8 0.554 0.874 0.932 0.903 

16 0.479 0.874 0.932 0.903 

32 0.384 0.891 0.940 0.915 

64 0.390 0.866 0.928 0.897 

IDO 

1.00E-05 

8 

365 

0.408 0.872 0.926 0.899 

16 0.415 0.845 0.912 0.878 

32 0.434 0.831 0.906 0.868 

64 0.497 0.817 0.899 0.858 

3.00E-05 

8 0.520 0.904 0.943 0.924 

16 0.398 0.904 0.943 0.924 

32 0.329 0.881 0.930 0.906 

64 0.459 0.845 0.911 0.878 

5.00E-05 

8 0.449 0.900 0.940 0.920 

16 0.545 0.881 0.931 0.906 

32 0.405 0.872 0.924 0.898 

64 0.432 0.845 0.912 0.879 

NCBI 

TAXON 

1.00E-05 

8 

837 

0.326 0.912 0.947 0.930 

16 0.262 0.914 0.948 0.931 

32 0.298 0.896 0.939 0.918 

64 0.327 0.875 0.928 0.901 

3.00E-05 

8 0.274 0.936 0.961 0.949 

16 0.231 0.940 0.964 0.952 

32 0.271 0.912 0.947 0.930 

64 0.293 0.886 0.932 0.909 

5.00E-05 

8 0.275 0.946 0.967 0.957 

16 0.213 0.944 0.966 0.955 

32 0.282 0.924 0.955 0.940 

64 0.230 0.920 0.952 0.936 

SO 

1.00E-05 

8 

1,441 

0.305 0.921 0.950 0.936 

16 0.253 0.919 0.949 0.934 

32 0.242 0.906 0.942 0.924 

64 0.265 0.908 0.942 0.925 

3.00E-05 

8 0.350 0.927 0.954 0.940 

16 0.297 0.925 0.952 0.938 

32 0.220 0.929 0.955 0.942 

64 0.217 0.926 0.953 0.939 

5.00E-05 8 0.331 0.933 0.957 0.945 
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16 0.334 0.921 0.950 0.936 

32 0.239 0.935 0.959 0.947 

64 0.247 0.928 0.954 0.941 

UBERON 

1.00E-05 

8 

100 

0.322 0.850 0.919 0.884 

16 0.330 0.883 0.938 0.911 

32 0.354 0.883 0.938 0.911 

64 0.403 0.883 0.938 0.911 

3.00E-05 

8 0.487 0.833 0.902 0.868 

16 0.330 0.833 0.907 0.870 

32 0.335 0.867 0.929 0.898 

64 0.346 0.883 0.938 0.911 

5.00E-05 

8 0.509 0.850 0.911 0.880 

16 0.456 0.817 0.893 0.855 

32 0.305 0.833 0.907 0.870 

64 0.339 0.883 0.938 0.911 
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Table 4.4: NER predictions on 204k PubMed paper abstracts. The total number of 

annotations, unique number of terms, non-normalized terms, and papers associated with 

each lexicon. Non-normalized terms could not be mapped back to standardized terms 

found in a lexicon. Each lexicon’s best-performing NER model generated annotations on 

204k PubMed abstracts. Prior to normalization, annotations resulted in 28,438 unique 

terms. After normalization, there were 2,253,704 annotations and 20,055 unique terms 

from 201,791 unique papers. Of the 20,055 unique terms, 6,002 terms could not be 

normalized back to an ontology. Non-normalized terms accounted for 37,865 annotations 

while normalized terms account for 2,215,839 annotations. 

 

 Annotations Total terms Non-normalized terms Papers 

ARO 112,059 4,194 2,433 29,151 

ENVO 78,298 188 140 40,654 

FOODON 111,696 587 191 32,673 

GAZ 223,487 5,672 996 80,475 

IDO 400,711 197 129 133,420 

NCBI TAXON 681,153 6,847 1,443 163,418 

SO 461,144 678 313 105,236 

UBERON 185,156 1,692 357 78,257 

Total unique 2,253,704 20,055 6,002 201,791 
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Table 4.5: Number of ARO-lexicon relationships generated from 204k papers. The 

number of unique relationship term pairs, ARO terms, total relationships, and papers 

associated with each lexicon is shown. Each lexicon’s best-performing RE model 

generated relationships on 204k PubMed abstracts. In total, there are 33,580 unique pairs 

of ARO:lexicon terms and 110,369 relationships from 24,235 unique papers. 

Relationships that appeared multiple times in a single paper were counted as one 

relationship. 

 

Lexicon Relationship pairs Relationships Papers Unique epi terms Unique ARO terms 

ENVO 793 2,768 1,819 48 390 

FOODON 1,185 2,742 1,255 93 373 

GAZ 4,233 7,706 4,000 650 775 

IDO 2,829 9,931 5,620 45 1,148 

NCBI TAXON 8,454 32,833 15,090 883 2,232 

SO 14,240 50,338 16,171 253 2,960 

UBERON 1,846 4,051 2,583 175 692 

Total 33,580 110,369 24,235 2,147 3,528 
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Table 4.6: Relationships containing normalized and non-normalized terms from 204k 

papers. If both the ARO and the other lexicon terms are non-normalized, they fall under 

(False, False). If the ARO term is non-normalized but the other lexicon term is 

normalized, they fall under (False, True). If the ARO term is normalized but the other is 

not, they fall under (True, False). If both terms in the relationship are normalized, they 

fall under (True, True). Relationships that appeared multiple times in a single paper were 

counted as one relationship. 

 Relationships (ARO, OTHER) 

Lexicon (False, False) (False, True) (True, False) (True, True) 

ENVO 13 61 430 2,264 

FOODON 4 153 11 2,574 

GAZ 2 380 40 7,284 

IDO 25 933 84 8,889 

NCBI TAXON 34 2,814 237 29,748 

SO 10 5,653 49 44,626 

UBERON 3 475 8 3,565 

Total 91 10,469 859 98,950 
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Table 4.7: Top 10 lexicon-lexicon term combinations based on genetic overlap. Term 

combinations are sorted in descending order based on the gene overlap between two 

epidemiology terms. Green color scales were applied column-wise within lexicon 

boundaries to indicate each metric's most similar term pair. 

Lexicon-Lexicon Term 1 Term 2 
Jaccard 

similarity 
Bray-
Curtis 

Affinity Co-
occurrence 

Gene 
overlap 
count 

GAZ-GAZ 

Japan China 0.214 0.313 0.648 57 
[Former] State of Korea China 0.229 0.349 0.674 54 
Europe China 0.205 0.339 0.659 50 
Italy China 0.186 0.293 0.650 46 
Kingdom of Spain China 0.182 0.291 0.664 42 
[Former] State of Korea Japan 0.240 0.413 0.676 42 
India China 0.190 0.361 0.683 42 
China Brazil 0.172 0.384 0.658 40 
Iran China 0.177 0.254 0.670 40 
Kingdom of Spain Europe 0.276 0.541 0.701 37 

GAZ-ENVO 

China hospital 0.276 0.340 0.649 100 
Japan hospital 0.201 0.485 0.643 65 
Europe hospital 0.212 0.582 0.671 63 
China farm 0.244 0.405 0.669 60 
[Former] State of Korea hospital 0.195 0.417 0.664 58 
Italy hospital 0.185 0.522 0.655 56 
Kingdom of Spain hospital 0.185 0.553 0.680 53 
India hospital 0.179 0.481 0.696 50 
Iran hospital 0.173 0.439 0.683 49 
China reservoir 0.192 0.290 0.658 46 

ENVO-ENVO 

reservoir hospital 0.193 0.465 0.668 57 
hospital farm 0.174 0.313 0.638 55 
intensive care unit hospital 0.156 0.648 0.698 43 
reservoir farm 0.225 0.443 0.674 36 
large river delta biome hospital 0.099 0.239 0.650 28 
large river delta biome farm 0.202 0.375 0.697 26 
waste treatment plant hospital 0.089 0.250 0.699 24 
reservoir large river delta biome 0.205 0.352 0.696 23 
large river delta biome landlocked sea 0.415 0.635 0.810 22 
reservoir intensive care unit 0.182 0.389 0.677 22 

FOODON-ENVO 

swine farm 0.380 0.674 0.719 70 
swine hospital 0.188 0.267 0.627 65 
water food product hospital 0.191 0.325 0.637 63 
chicken hospital 0.195 0.315 0.649 61 
chicken farm 0.337 0.568 0.707 55 
water food product farm 0.297 0.467 0.690 54 
poultry drumstick farm 0.378 0.579 0.736 51 
poultry drumstick hospital 0.171 0.310 0.665 50 
Bos taurus farm 0.313 0.493 0.710 45 
Bos taurus hospital 0.150 0.265 0.645 45 

FOODON-FOODON 

water food product swine 0.280 0.485 0.676 60 
swine chicken 0.293 0.564 0.687 58 
swine poultry drumstick 0.310 0.536 0.716 53 
poultry drumstick chicken 0.372 0.631 0.734 51 
swine Bos taurus 0.290 0.451 0.704 51 
water food product Bos taurus 0.267 0.405 0.693 44 
water food product poultry drumstick 0.256 0.402 0.691 42 
meat (skinless) chicken 0.289 0.564 0.707 41 
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poultry drumstick meat (skinless) 0.373 0.607 0.738 41 
swine meat (skinless) 0.217 0.446 0.679 39 

UBERON-FOODON 

feces swine 0.361 0.549 0.704 73 
animal hemisphere swine 0.327 0.538 0.691 69 
feces water food product 0.311 0.464 0.690 61 
animal hemisphere poultry drumstick 0.377 0.588 0.742 58 
animal hemisphere chicken 0.305 0.556 0.692 57 
animal hemisphere water food product 0.266 0.422 0.672 55 
feces poultry drumstick 0.353 0.575 0.730 54 
feces chicken 0.285 0.517 0.685 53 
membrane organ swine 0.136 0.178 0.600 51 
animal hemisphere Bos taurus 0.295 0.472 0.705 49 

UBERON-UBERON 

feces animal hemisphere 0.322 0.555 0.692 64 
proliferative region membrane organ 0.184 0.265 0.647 60 
membrane organ feces 0.133 0.261 0.604 48 
membrane organ animal hemisphere 0.122 0.199 0.596 45 
membrane organ manus 0.133 0.189 0.630 43 
renal system animal hemisphere 0.235 0.332 0.684 40 
urine feces 0.236 0.428 0.685 39 
blood animal hemisphere 0.203 0.389 0.661 38 
renal system feces 0.220 0.404 0.677 37 
feces blood 0.189 0.446 0.655 35 

NCBI TAXON-ENVO 

Escherichia coli hospital 0.169 0.130 0.591 169 
Klebsiella pneumoniae hospital 0.254 0.140 0.623 139 
Pseudomonas aeruginosa hospital 0.222 0.177 0.610 116 
Enterobacteriaceae hospital 0.254 0.235 0.637 97 
Enterobacter cloacae hospital 0.244 0.277 0.638 89 
Acinetobacter baumannii hospital 0.196 0.179 0.611 81 
Escherichia coli farm 0.086 0.157 0.610 80 
Salmonella hospital 0.184 0.198 0.604 79 
Citrobacter freundii hospital 0.198 0.404 0.642 64 
Escherichia coli reservoir 0.068 0.084 0.603 63 

GAZ-FOODON 

China swine 0.288 0.401 0.670 77 
China chicken 0.273 0.376 0.681 66 
China water food product 0.212 0.270 0.646 57 
China poultry drumstick 0.255 0.324 0.704 56 
[Former] State of Korea swine 0.259 0.351 0.683 49 
China Bos taurus 0.192 0.245 0.664 45 
China meat (skinless) 0.183 0.292 0.667 42 
Europe swine 0.204 0.327 0.658 41 
[Former] State of Korea poultry drumstick 0.308 0.435 0.711 40 
Europe water food product 0.211 0.346 0.662 39 

NCBI TAXON-
FOODON 

Escherichia coli swine 0.112 0.153 0.607 106 
Escherichia coli water food product 0.091 0.143 0.593 86 
Escherichia coli chicken 0.092 0.130 0.619 85 
Salmonella swine 0.230 0.290 0.646 73 
Klebsiella pneumoniae swine 0.136 0.130 0.600 68 
Enterobacteriaceae swine 0.220 0.210 0.642 65 
Escherichia coli Bos taurus 0.068 0.083 0.619 63 
Escherichia coli poultry drumstick 0.064 0.110 0.613 59 
Escherichia coli meat (skinless) 0.063 0.093 0.624 58 
Salmonella chicken 0.195 0.264 0.648 58 

NCBI TAXON-GAZ 

Escherichia coli China 0.142 0.273 0.601 137 
Klebsiella pneumoniae China 0.218 0.265 0.626 111 
Enterobacteriaceae China 0.275 0.406 0.651 89 
Salmonella China 0.207 0.265 0.623 76 
Escherichia coli Japan 0.080 0.144 0.579 76 
Enterobacter cloacae China 0.240 0.331 0.642 75 
Escherichia coli Europe 0.081 0.139 0.621 75 
Escherichia coli [Former] State of Korea 0.080 0.133 0.628 74 
Pseudomonas aeruginosa China 0.144 0.169 0.587 72 
Acinetobacter baumannii China 0.196 0.192 0.619 70 
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NCBI TAXON-NCBI 
TAXON 

Klebsiella pneumoniae Escherichia coli 0.262 0.587 0.600 275 
Pseudomonas aeruginosa Escherichia coli 0.180 0.332 0.566 195 
Salmonella Escherichia coli 0.187 0.410 0.615 181 
Escherichia coli Enterobacteriaceae 0.163 0.530 0.611 157 
Escherichia coli Enterobacter cloacae 0.155 0.389 0.623 147 
Klebsiella pneumoniae Enterobacteriaceae 0.297 0.620 0.657 146 
Klebsiella pneumoniae Enterobacter cloacae 0.283 0.454 0.663 135 
Pseudomonas aeruginosa Klebsiella pneumoniae 0.195 0.348 0.582 130 
Escherichia coli Acinetobacter baumannii 0.122 0.206 0.565 123 
Salmonella Klebsiella pneumoniae 0.208 0.301 0.607 115 

UBERON-NCBI TAXON 

membrane organ Escherichia coli 0.135 0.206 0.560 141 
membrane organ Pseudomonas aeruginosa 0.200 0.255 0.598 109 
animal hemisphere Escherichia coli 0.102 0.143 0.604 96 
feces Escherichia coli 0.101 0.176 0.609 95 
membrane organ Klebsiella pneumoniae 0.138 0.150 0.566 85 
membrane organ Salmonella 0.159 0.290 0.591 72 
renal system Escherichia coli 0.078 0.138 0.690 71 
proliferative region Escherichia coli 0.076 0.082 0.592 71 
animal hemisphere Klebsiella pneumoniae 0.142 0.130 0.610 69 
membrane organ Acinetobacter baumannii 0.156 0.222 0.592 69 
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Figure 4.1: Strength of generalizability linked with dataset size. Maxiumim (max) 

generalizability refers to the recall value associated with each of the best-performing 

models outlined in Table 4.2. Unique terms refer to the number of unique terms contained 

in each lexicon dataset outlined in Table 3.4. The positively correlated trendline indicates 

that a larger dataset can achieve better recall. 
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Figure 4.2: Top 15 terms in each lexicon annotated from 204k papers. A boxplot and 

heatmap represent the number of papers each term appears in per year, sorted in 

descending order by the total number of annotations. 
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Figure 4.3: Distribution of lexicon annotations across 204k papers.  

 

A B 
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Figure 4.4: Genetic similarity between epidemiology terms. Heatmaps were generated 

by taking the ARO relationships with each epidemiology term and calculating a similarity 

metric between all epidemiology term combinations. Out of 2,147 epidemiology terms, 

806 terms with only one gene relationship were not included. A) Jaccard similarity, B) 

Bray-Curtis, C) co-occurrence affinity, D) gene overlap. Calculations for all similarity 

metrics can be found in section 4.3.4. In total, there are 1,341 rows and columns, 

representing 1,341 different epidemiology terms for a total of 1,798,281 total term-term 

scores. Of the 1,341 epidemiology terms, 33 are ENVO, 65 FOODON, 380 GAZ, 37 

IDO, 512 NCBI TAXON, 202 SO, and 112 UBERON. 

A B 

C D 
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Figure 4.5: Distribution of similarity scores. Excluding duplicate term pairs or pairs 

between the same term, there are 398,622 pairs with at least one gene shared out of 

898,470 pairs. For Jaccard, Bray-Curtis, and affinity co-occurrence, 195, 17, and 31,266 

term pairs have perfect similarity scores (i.e., score of 1), respectively. 

A B 

D C 



MSc. Thesis – A. Edalatmand; McMaster University – Health Sciences 

86 

 

  

 

 

Figure 4.6: Epidemiology relationships associated with Canada and America. Papers 

mentioning Canada/America and all their child terms found in GAZ were selected, and 

the epidemiology-ARG relationships across these papers were extracted.  
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Figure 4.7: Canada-America epidemiology similarity across time. All papers 

mentioning “Canada” (GAZ:00002560) and/or “United States of America” 

(GAZ:00002459) or their child terms were selected. From these papers, all associated 

ARO-epidemiology terms were selected. Using these relationships, co-occurrence affinity 

scores were calculated between the Canadian- and American-associated epidemiology 
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terms. Similarity scores were calculated year-over-year, and the similarity score across all 

years is shown in the final column. Regions with no color indicate insufficient data to 

calculate a similarity score. The top ten epidemiology terms were selected for each 

lexicon based on the years a similarity score could be calculated. Relationships with IDO 

and SO terms were excluded. Only five ENVO terms were found to have enough data to 

calculate similarity scores. 

  



MSc. Thesis – A. Edalatmand; McMaster University – Health Sciences 

89 

 

4.4 Discussion 

4.4.1 Named entity recognition (NER) models generalize well 

 Generalization in NER reveals a model’s ability to identify terms it has never seen 

before as belonging to the same entity. Generalization is one of the most important 

aspects of a model’s performance, ensuring long term value of a model based on a one-

time training set. As ontologies are updated and changed, we must capture terms that 

previously did not exist in the ontology. As shown in Table 4.2, I have created 8 different 

BioBERT models that can identify different entity types corresponding to 8 ontologies. 

Memorization across all models was extremely high; however, generalization 

performance scaled with the number of unique terms in the underlying training dataset 

(Figure 4.1). For the three smallest ontologies with the fewest unique terms in the training 

datasets (IDO, ENVO, and SO), the recall values for generalization fell below 0.5 (Figure 

4.1). However, as the number of unique terms increased, so did generalization 

performance. Generalization performance is crucial for ARO and NCBI TAXON as new 

ARGs are added to ARO monthly and bacterial taxonomy changes often. The ARO 

model was perhaps too good at generalizing as it could capture not just ARGs but 2,433 

other genes that could not be normalized back to the ARO. This generalization is most 

likely caused since genes (ARG or other) are mentioned in similar contexts, making it 

challenging to create a model that can differentiate between ARGs or other genes. 

However, one ontology that suffers from poor generalizability is ENVO. Although the 

last stable release of ENVO was quite a while ago, on May 14, 2021, the ontology is 

under active development100. Thus, generalization must improve for this model until the 
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development of the ontology slows down and the number of new terms lessens. Once the 

addition of new terms to an ontology slows down dramatically, like that of GAZ, IDO, 

and SO, memorization metrics are enough to evaluate model performance. However, until 

ENVO makes a new release, the current ENVO model identifies environment terms in 

biomedical text well. The other ontology that generalizes poorly is UBERON. Despite 

having more unique terms than FOODON, the model generalizes much worse. This might 

be because the terms within UBERON are used in many different contexts. In biomedical 

text, anatomy parts are used to describe diseases (e.g., acute kidney injury) and sites of 

infection. Interestingly, despite generalizing worse than FOODON, the number of unique 

terms identified when applying the model on ~204,000 papers were more than FOODON. 

The FOODON model identified 587 unique terms where 191 could not be normalized. In 

comparison, UBERON identified 1,692 unique terms, and only 357 could not be 

normalized despite only being trained on 484 unique terms (Table 4.6). This indicates that 

perhaps the UBERON performed poorly at generalizing on the testing dataset because of 

some peculiarities within the testing dataset. 

4.4.2 Imbalance of relationship training/testing data did not negatively impact relationship 

extraction (RE) performance 

  Annotating entities within biomedical text using NER models provides the 

foundation for understanding the dynamics between terms. To understand these 

dynamics, we must identify the relationships between terms by training RE models. Using 

the 7 RE training and testing datasets outlined in Chapter 3, 7 different models were 

trained and evaluated on their ability to identify whether relationships exist between 
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epidemiology and ARO terms. An area of concern with these datasets is the imbalanced 

number of positive relationships compared to negative ones. Positive relationships are 

significantly overrepresented in the RE training and testing datasets, with 82% of 

relationships being positive labels. While in biomedical literature, this makes sense as 

negative results are unlikely to be reported in an abstract, there is the potential that 

models trained on such data will overfit and overpredict positive relationships, impacting 

their performance. However, when evaluating model performance on previously unseen 

relationships, all models perform exceptionally well with high F1 and accuracy scores 

(Table 4.3). Thus, it is unlikely that the models are overfitting on the training data. Even 

if the models were to overpredict, since many relationships are indeed positive 

relationships, the impact on interpreting predictions will be negligible on a broad analysis 

of the data as the noise will be outweighed by correct data. However, noise generated by 

improper labelling of relationships will have the most impact on a gene-by-gene basis, 

where we would examine an individual ARG to understand the related epidemiology. 

Overpredicting in these situations would result in interpreting ARG-epidemiology 

relationships inaccurately as the number of relationships is now reduced significantly. 

Consequently, the impact of a single mislabel is more impactful. Overall, however, the 

models perform extremely well at identifying relationships between ARGs and 

epidemiology terms. 

4.4.3 Ontologies are necessary to organize biomedical knowledge  

 To correctly interpret the results produced by models that annotate biomedical 

papers and identify relationships between these annotations, the terms identified must be 



MSc. Thesis – A. Edalatmand; McMaster University – Health Sciences 

92 

 

normalized back to a standard set of terms. Normalization is arguably the most important 

step before analyzing NER and RE results as it provides the foundation for examining the 

underlying data using known resources as references. Additionally, by normalizing 

annotations back to a standard set, terms unable to be normalized indicate that either the 

model is capturing terms that do not belong to the ontology or that the ontology is missing 

terms that should be added. For this work, the ontologies used to generate NER and RE 

training and testing data are the same used for normalization. 

 Normalization successfully limited the number of unique terms generated via the 

annotation process. Out of 28,438 unique terms identified by NER models, 20,055 unique 

terms remained after normalization (Table 4.4). Of these terms, roughly one-quarter could 

not be normalized. While one-quarter appears to be a lot, these terms account for only 

37,865 annotations of a total of 2,215,839 total annotations or ~2% of all annotations.  

 While the normalization process did well in reducing the number of unique terms 

annotated, certain aspects can improve. Looking at the top annotations generated by the 

NER models, a few annotations seem out of place for the number of times they are 

discussed in the literature (Figure 4.2). For example, “poultry drumstick” is the fifth most 

discussed food term each year. The underlying annotation normalizing to “poultry 

drumstick” was “poultry”. However, since the word “poultry” does not appear within 

FOODON, the method of partial matching was used. This matching method is helpful 

when dealing with verbose ontology terms while the predicted annotation is short, but this 

is not without its drawbacks. In cases where the query is one word long, any ontology 

term containing that word will yield a 100% score. For example, by using this method, 
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the term “poultry” has a perfect 100% score with over 60 FOODON terms, including 

“poultry meat (dried, cooked)”, “poultry by-product”, and “poultry drumstick”. Since the 

method selects the first 100% match, the resulting normalized annotation is now “poultry 

drumstick”. While this method is vital for adequately normalizing thousands of terms, 

there is leniency built into it that can allow improper normalization to occur. Since 

normalization is such an integral part of the analysis, a manual review must be conducted 

to ensure that the correct terms are referenced to the correct ontology term. NER and RE 

validation should also be integrated during this process to update and train models 

continuously. 

4.4.4 Similarity scores have the potential to contribute to understanding transmission but 

are hindered by data sparsity and differential publishing rates 

 Using the relationship predictions made by BioBERT NER and RE models, I 

wanted to see if it was possible to better understand transmission between epidemiology 

terms using similarity metrics as a surrogate measure. The assumption is that the more 

similar the two environments are based on their shared ARGs, the more likely 

transmission has occurred. Similarity metrics have been used extensively in ecology, 

computer science, and genomics to compare sets of data101–104. Comparing Jaccard 

similarity, Bray-Curtis, affinity co-occurrence, and raw gene overlap measures, I found 

that co-occurrence affinity could capture the strengths of all the metrics. For one, the 

distribution of scores for Jaccard similarity, Bray-Curtis, and gene overlap scores are 

skewed towards zero, which makes it difficult to compare scores across different 

epidemiology term pairs (Figure 4.5). In comparison, with a normal distribution, affinity 



MSc. Thesis – A. Edalatmand; McMaster University – Health Sciences 

94 

 

co-occurrence is more interpretable and captures regions of high similarity found in 

Jaccard similarity, Bray-Curtis, and gene overlap. 

 However, there are limitations when calculating similarity scores with 

epidemiology terms. A major factor influencing the strength of these similarity metrics is 

the number of ARGs related to each epidemiology term. This is influenced by the number 

of papers in which the term appears. For example, suppose we were comparing a highly 

mentioned term like “China”, which has 198 gene relationships, to “Province of Ontario”, 

which only has 13 ARG relationships. In that case, the similarity score will be low for 

both Jaccard similarity and Bray-Curtis, even if all 13 ARGs were shared. In this case, 

where 7 genes are shared, the Jaccard similarity and Bray-Curtis scores are 0.034 and 

0.061, respectively. For affinity co-occurrence, the score is 0.65. Affinity co-occurrence 

overcomes this limitation by not being influenced by the prevalence of ARGs99. However, 

future metrics should consider the number of papers epidemiology terms and ARGs 

appear in when calculating similarity scores. 

Additionally, the level of analysis based on ontology parentage is important to 

consider. While the specific term “Canada” may only have relationships with 35 unique 

ARGs, by selecting all ARG relationships associated with child terms to “Canada” in 

GAZ, we now have a set of 218 unique ARGs related to the country. By collating this 

information, the sparsity in these data decreases dramatically. While ontologies like GAZ 

are hindered by sparseness in relationship data, ontologies like ENVO are hindered due to 

their structure and inability to capture nuance. As mentioned in Section 3.4.1, ENVO 

does not contain enough terms to capture the nuance of existing environments. As a 
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result, there are only 33 ENVO terms with similarity scores. Consequently, these terms 

are very broad (i.e., “farm”, “hospital”, “intensive care unit”, “reservoir”, “large river 

delta biome”), and extracting meaningful similarity scores is problematic. One way to 

capture meaningful relationships between broad terms is to take a subset of relationships 

associated with a particular epidemiology term. For example, in this work, I take subsets 

of ARO-epidemiology relationships found in the same abstract as Canadian and 

American GAZ terms. With these sets of terms, we can calculate similarity scores within 

sets (i.e., similarity scores between Canadian-associated epidemiology terms) or between 

sets (i.e., similarity scores between Canadian- and American-associated epidemiology 

terms).  

Similarity results between American- and Canadian-associated terms indicate that 

there is not enough information gathered through this process to assess the transmission 

dynamics between countries accurately. Limitations in how relationships are only 

predicted for terms that appear in the same sentence contribute to this lack of information. 

Additionally, the publication output between countries and their level of surveillance 

impacts these results. Countries that conduct deep surveillance would identify more 

ARGs in various epidemiological sources relative to countries that lack the surveillance 

capacity to do the same depth of analysis. For example, in Canada, we conduct limited 

environmental surveillance of soil and water105. Thus, environmental sources related to 

Canada are much less common in the literature, making it difficult to compare results 

with other countries that conduct more rigorous surveillance in these environments. The 

number of ARGs subsequently identified would impact similarity metrics. With this 
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sparse and heterogeneous data, similarity analysis should be conducted on a country-by-

country basis or on a country-agnostic scale. 

Overall, many aspects of the generated NER and RE predictions influence the 

similarity scores between epidemiology terms that should be considered when conducting 

future examinations of the data. The quantity of ARO relationships, number of 

publications, lexicon category, and depth of ontology parentage should be considered 

when calculating and evaluating similarity scores. 
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5. Chapter 5: Discussion and future directions  

 Biomedical publications contain an untapped wealth of knowledge that is 

impossible to extract through slow and laborious manual curation efforts. To extract this 

knowledge accurately and reliably, manually reviewed gold-standard datasets must be 

created to train and evaluate machine learning models. Throughout this work, I show the 

process of identifying relevant publications (Chapter 2), creating 15 gold-standard 

datasets to train NER and RE models (Chapter 3), and the creation, evaluation, and 

application of such models on ~204,000 papers (Chapter 4). With this work, we can better 

understand the epidemiology associated with ARGs, the similarity between epidemiology 

terms, and in the future, use these data to assess the risk associated with ARGs. 

 Understanding the risk and transmission of AMR is a challenging task. Recently, 

gene-level risk assessment has been explored using selection criteria depending on if the 

ARG is found in a human environment, if a gene is mobile, whether it is found on a 

human pathogen, and, in one study, how many antibiotics the ARG confers resistance 

towards106,107. While one method aimed to assess risk qualitatively106, the other 

quantitatively measured gene risk107. While these studies do not evaluate the risk posed 

by AMR or the risk associated with transmission, they provide important frameworks for 

assessing the risk of individual ARGs. Future work should apply these frameworks to 

assess how publication data compares to metagenomics data. 

The “Confusogram” is a graph that provides a One Health perspective on the 

spread of bacteria by examining transmission between humans, animals, and the 
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environment (Figure 5.1)108. While one of the main aims of this project was to assign 

metrics to the transmission events that take place on this graph, I could not complete this 

aim in time because of the challenges faced by exploring similarity metrics. I believe a 

variant of the Confusogram is possible that includes similarity scores between 

epidemiology terms at different ontology levels to capture the differences between macro- 

and micro-associated relationships. Additionally, to avoid the noise generated by the 

thousands of relationships and to simplify the analysis, relationships associated with a 

single country should be considered. Since transmission events are dynamic and can 

change with time, it is important to consider the temporal aspect of relationships and the 

publications in which they are found. Preferably, temporal dynamics should be 

considered on large time scales of years rather than months because of the reporting delay 

between data collection, data analysis, and publication. Some programs report data 

quicker than others, so comparisons between results should be taken on longer time scales 

to account for the variability in reporting speed. By zooming out on a timeline, the timing 

variability becomes less influential.  

Aside from risk assessment and Confusogram metrics, there are many future 

directions for this project, including: 

I) Open-sourcing the 15 gold-standard datasets and BioBERT models that 

were trained and evaluated. I am open to dataset name suggestions. 

II) Incorporating human-in-the-loop intervention to evaluate model 

performance continuously. Having human evaluators examine a subset of 

model predictions to evaluate if the model is performing well has the 
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simultaneous benefit of expanding the training/testing datasets for future 

training. As new stable releases of ontologies are made public, datasets 

should be updated to accommodate the new terms and BioBERT models 

retrained and evaluated. 

III) Applying BioBERT models against full-text articles and the entirety of 

PubMed to capture any overlooked publications. 

IV) Since most relationships in the RE testing/training datasets can be guessed 

correctly based on whether they appear in the same sentence, we can use 

distant supervision techniques for training RE models109. Distant 

supervision uses thousands of abstracts that are weakly labelled using 

rules-based methods without care for the false positives or negatives 

produced. Since the number of correct relationships will overwhelmingly 

outweigh the number of false positives/negatives, models can accurately 

identify relationships109. Since this is a less laborious annotation task, its 

performance should be evaluated compared to gold-standard datasets. This 

would inform us if there were a need to manually label relationship 

datasets when ontologies are updated. 

Overall, I have created a text classification algorithm from this work that can 

identify publications containing AMR-epidemiology information. With this classifier, I 

selected ~10,000 papers to create 15 gold-standard training and testing datasets: 8 NER 

datasets that contain manually filtered ontology labels, and 7 RE datasets that identify 

ARO-epidemiology relationships. With these datasets, I trained and evaluated 8 NER 
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BioBERT models for identifying ARO and epidemiology terms and 7 RE BioBERT 

models to identify relationships between identified ARO-epidemiology terms. I applied 

these models on a set of ~200,000 papers identified by the text classification algorithm to 

generate thousands of annotations and relationships. By exploring the similarity metrics 

between these epidemiology terms, I identified limitations and aspects to consider when 

conducting future similarity analyses. 
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Figure 5.1: “Confusogram” revealing the pathways bacteria can spread between 

human, animal, and environmental sources. Adapted from Canadian Food Inspection 

Agency, Genome Canada. 2016. Workshop Report - Forum on Genomics and 

Antimicrobial Resistance108. 
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