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Abstract

The present dissertation expands the utility of EEG-based tools for the clinical assess-
ment of coma. First, auditory mismatch negativity (MMN) responses were recorded
in healthy controls and in a case series of comatose patients (over 12 and 24 hours,
respectively). The results (Chapter 2) showed that the MMN elicited by deviant sounds,
particularly for duration stimuli, is extremely robust in full conscious state over the
course of several hours at both the group and single-subject levels. However, prelim-
inary results in three comatose patients provide further evidence that the MMN is
present but fluctuates in detectability in coma. These findings highlight that repeated
assessments and proper stimuli selection are essential when assessing this ERP com-
ponent as neurophysiological predictor of coma emergence. Then, a follow-up study
(Chapter 3) demonstrated the feasibility of multivariate pattern analysis in our sample
as an automatic tool able to discriminate accurately between single-trials responses at
single-subject level, providing further evidence of changes in auditory discrimination
over time in coma patients. Additionally, a phase-based measure of functional con-
nectivity in response to auditory stimuli and resting state was computed for the first
time at both the sensor (electrode) and source levels in a dying comatose patient. This
report provided a ML procedure able to discriminate (with perfomance accuracies above
90%) single-trial functional connectivity elicited by deviant sounds between a comatose
patient and healthy controls; and showed at least a period of increased synchronized
activity during resting state before the end of life in the coma patient. Taken together,
our findings showed that the EEG/ERP responses here studied, are highly transient
in acute coma over hours and days, suggesting that repeated assessments are crucial
for their objective detection and the methods of analyses should be sensitive enough
to capture such changes. Overall, this work illustrates the utility of EEG along with
machine learning to individualized neurophysiological assessment of comatose patients.
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Chapter 1

Introduction and Background

Acquired brain injury (ABI) is a serious public health concern and one of the leading
causes of death and disability worldwide. This term includes a variety of acute brain
lesions of traumatic (i.e., caused by an external force or trauma) and non-traumatic
origin (anoxia, stroke, tumors, infections, toxic-metabolic encephalopathy and so forth).
According to the Centers for Disease Control and Prevention (CDC), about 150 Ameri-
cans die from traumatic brain injuries each day, and more than five million children and
adults are currently living with long-term disabilities as result of an ABI (Peterson et al.,
2019).

A subset of those who survive, are usually encountered in emergency departments
and intensive care units (ICUs), remaining either in coma state or transitioning to
other disorders of consciousness (DOC), such as minimally conscious state (MCS) or
unresponsive wakefulness syndrome (UWS, formerly known as vegetative state). In
addition to represent a huge burden for patients and families, the economical cost of
long-term clinical management of DOC patients is disproportionately large. The global
annual cost of traumatic brain injury is estimated at US $400 billion (Maas et al., 2017).

Despite comatose patients remain unresponsive to their environment, in a persistent
sleep-like state of immobility from which they cannot be aroused (Koch et al., 2016),
their clinical assessment mostly relies on bedside observations of behavioral signs of
consciousness, such as verbal, motor responses and command following. The inability of
comatose and DOC patients in general to show unequivocally such behavioral signs, has
led to alarming rates of misdiagnosis and thus potentially more serious consequences,
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including inefficient allocation of rehabilitation resources and removing individuals
with potential for recovery from life support. This explains the important role that
current neurophysiological techniques, in particular the electroencephalogram (EEG)
and the event-related potentials (ERPs), play in accurately assessing brain function in
comatose patients and predicting their outcomes.

The present dissertation constitutes an investigation of coma as the most severe
and acute disruption within the spectrum of DOC, building on a substantial body
of research that demonstrates the utility of EEG/ERP techniques for diagnosis and
prognosis of coma. The following sections from this introductory chapter, will briefly
describe the state of the science in coma, including definition, clinical evaluation and a
set of diagnostic tools to detect several EEG/ERP markers, known as reliable predictors
of coma emergence.

1.1 Defining coma state

According to a traditional but still useful definition, coma is considered an acute and
temporary state characterized by the lack of both "wakefulness" (i.e., arousal or vigilance)
and "awareness" (i.e., subjective experiences of self and the environment) (Young, 2009).
These are multifaceted dimensions of consciousness that have been widely accepted
to distinguish coma from other DOC patients, who are awake, but their subjective
awareness is supposed to be absent (UWS) or severely disturbed (MCS) (Kotchoubey,
2017).

Clinicians have outlined the features of a comatose patient, including loss of sponta-
neous or stimulus-induced arousal, absence of sleep-wake cycles on EEG, there is no
verbal output, purposeful motor activity (e.g., no localization or reflexive movements)
or following commands (Giacino et al., 2014; Wijdicks, 2020). Since the pioneering
definition of Plum and Posner, it is commonly accepted in the literature that coma is
an eyes-closed state of unresponsiveness (Johnson and Kaplan, 2019). The return of
spontaneous eye opening is believed to indicate recovery of consciousness or progres-
sion to UWS. However, a recent report showed that some comatose patients can exhibit
prolonged eyes-opening and still being in coma (Kondziella and Frontera, 2021). Unlike
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UWS, these patients do not regain sleep wake cycles and tend to lose progressively their
brainstem reflexes. These recent observations reveal that the classical definition of coma
is likely to be updated and modified in the future.

In 2019, the Neurocritical Care Society (NCS) launched the Curing Coma Campaign,
bringing together DOC experts from all over the world to identify the current challenges
and gaps in definition, diagnosis and management of DOC patients. As part of this
campaign, an anonymous, worldwide survey was completed by a total of 258 health care
professionals (from 41 countries) caring for patients with coma and DOC (Helbok et al.,
2022). Initially, respondents were asked to select cardinal features from a predefined
list of 8 items that must be present to define coma. The features were: absence of
wakefulness, Glasgow Coma Scale (GCS) score ≤ 8, failure to respond purposefully to
visual, verbal or tactile stimuli based on clinical exam, inability to follow commands
(excluding aphasic patients), no eye-opening, no visual pursuit of objects, fixation or
saccade to stimuli, no evidence of cognitive motor dissociation (i.e., the covert ability to
follow commands) based on exam, neurophysiological studies or functional imaging
and no intelligible speech or recognizable gesture. Surprisingly, only 15% of respondents
selected all these 8 features of coma, revealing the substantial discrepancies in opinions
that exist nowadays regarding the clinical definition of coma. Considering some features
separately, the eye-opening component was suggested as misleading in coma, since
73% of survey respondents acknowledged treating at least one patient with eye open
coma per month. Additionally, while 64% of respondents felt that a GCS ≤ 8 may be
necessary for diagnosis, it is possible to have a score less than 8 in patients who are able
to localize pain or follow verbal commands. Although a consensual definition of coma
was ultimately proposed by an expert panel, the overall level of agreement was 64%.
As stated by the authors, these results highlight the need for more education even in
academic centers with experienced specialists in the care of comatose patients.

Coma must also be distinguished from brain death, which in addition to the absence
of wakefulness and awareness (coma state) encompasses the complete loss of brainstem
functions, including respiratory drive (Young et al., 2021). The current tests to confirm
brain death are mainly used to document absent intracranial blood flow (e.g, transcranial
doppler, CT-angriography, positron emission tomography, etc) or lack of electrical brain
activity (e.g., evoked potentials) (Kondziella, 2020).
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1.2 Clinical evaluation of coma and other DOC

While clinical examinations are extremely valuable to assess consciousness and deter-
mine coma prognosis, they are poorly standardized in critical care and highly reliant
on "good" judgments of clinicians (Claassen, 2020). The most used clinical scales for
evaluating comatose patients are the GCS and the Full Outline of UnResponsiveness
(FOUR) score, with this latter including the assessment of brainstem reflexes and respi-
ratory patters in comparison to the former, and showing potential advantages for the
prediction of in-hospital mortality and poor functional outcome (Foo et al., 2019). In
addition, the Coma Recovery Scale-Revised (CRS-R)(Giacino et al., 2004) allows the
classification of patients emerging from coma into other DOC different states, including
UWS, MCS with/without inconsistent command following (MCS-/MCS+), and those
who emerge from MCS (EMCS) who usually evidence functional object use and/or
functional communication. However, the CRS-R is not widely used in clinical settings.
In the recent Curing Coma Campaing survey, only 12% of health care professionals
reported using it in the accute setting (Helbok et al., 2022).

As alluded above, the downside of all these scales is ironically their reliance on behav-
ioral responses, which may be essentially biased when it comes to unresponsive patients
(Harrison and Connolly, 2013). About 37-40% of clinical assessments of levels of con-
sciousness are inaccurate, that is, a high number of patients with demonstrable evidence
of consciousness are diagnosed as post-comatose patients with UWS (Schnakers et al.,
2009; Wade, 2018; Schnakers, 2020). As a result, many medical decisions are made on the
basis of a high degree of uncertainty or incorrect prognosis, yielding to inappropriate
medical decisions (e.g., inadequate pain treatment) and frequent premature withdrawal
of life supporting interventions (Giacino et al., 2014). This latter was demonstrated by a
Canadian study, which reported that 70% of deaths in six level-one trauma centres were
associated to withdrawal of life-sustaining therapies, with half occurring within the first
three days of care (Turgeon et al., 2011).

Complementary to clinical evaluation, funtional neuroimaging and EEG techniques
have allowed to detect conscious awareness even when rigorous behavioral assessment
have suggested absent or low-level responsiveness. A recent meta-analysis suggested
that about 15% of patients who were classified as being in chronic UWS were able
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to respond to commands (Kondziella et al., 2016), by modifying their brain activity
during task-based fMRI or EEG. This clinical syndrome of cover cognition, coined
as cognitive motor dissociation (CMD) (Schiff, 2015), is characterized by behavioral
unresponsiveness (as seen in patients with coma, UWS or MCS-), along with covert
consciousness or volitional brain activity (Luppi et al., 2021). One of the largest study
conducted in ICU with 104 DOC patients from diverse traumatic and non-traumatic
etiologies (Claassen et al., 2019) revealed similar proportion of CMD detection (15%)
reported by the above-mentioned meta-analysis (Kondziella et al., 2016), whose patients
were in sub-acute or chronic state. Moreover, Claassen and colleagues, using non-
invasive EEG and machine learning algorithms, also demonstrated that the identified
CMD patients in ICU had a higher likelihood of functional recovery at 1 year post-injury.

These studies demonstrate that functional brain diagnostic tools should not longer
be considered as complimentary, but essential in the clinical evaluation and diagnosis
of coma patients. The fact that "absence of CMD", which is typically diagnosed with
either fMRI or EEG techniques, was proposed by a global panel of experts as part of an
updated definition of coma (Helbok et al., 2022), demonstrates that the access to these
technologies in clinical settings is crucial.

1.3 Event-related potentials

For comatose and DOC patients, EEG turns to be the most suitable functional technique
among various neuroimaging techniques, since it is less expensive and can be easily set
up along the bedside of the patients. Most of the EEG studies related to the assessment
of consciousness are based either on resting state and sensory stimulation tasks, which
have a huge potential in predicting the recovery of coma patients. EEG at resting state
does not require the subject to perform any specific task, providing valuable information
about the spontaneous brain activity of patients; while EEG during sensory stimulation
entails to evaluate the electrical brain responses elicited by external stimuli or events
from different modalities (auditory, visual, olfactory, tactile). ERPs are the most typical
and studied time-locked EEG responses to these stimuli.
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In the clinical setting, short latency evoked potentials, such as somatosensory evoked
responses usually occurring in the 30 ms range, and brainstem auditory potentials
(BAEPs) typically observed within 10 ms after stimulus onset, have been useful in
confirming the integrity of ascending sensory pathways, showing high prognostic value
of poor outcome in comatose patients (Logi et al., 2003)}. Longer-latency ERP responses,
are better suited to evaluate cognitive function and conscious awareness in unresponsive
patients, since they are mainly associated with higher-order processing and positive
coma outcome. In coma research, the most extensively studied ERP components are
mismatch negativity (MMN), P300 and N400.

The mismatch negativity (MMN), originally described by Näätänen in 1978, is con-
sidered an automatic deviance-specific response linked to a predictive coding process
(Garrido et al., 2009). In the auditory domain, it is elicited after the presentation of
oddball paradigms, in which a deviant stimulus interrupts a constant sequence of
sounds. The MMN is a frontocentral negative response peaking at around 100-250 ms
after stimulus onset, and is a extreme popular tool for investigating a wide range of
clinical populations. A large body of work have shown that the MMN is one of the
most reliable predictors of emergence from coma, probably surpassing other current
ERP components (Fischer et al., 1999; Daltrozzo et al., 2007; Morlet and Fischer, 2014).
Furthermore, the fact that MMN can be elicited in passive conditions, regardless of
whether the subjects are paying attention to the sequence of sounds, makes it ideal
for the assessment of comatose patients and other DOC, whose cognitive function are
otherwise difficult to access. Therefore, its inclusion in clinical assessments is beneficial,
as indicates the patient’s ability to process regularities and discriminate changes in the
auditory environment.

The P300 is a later positive component (typically >250ms) that can also be elicited
by using variants of oddball paradigms, and has been related with several cognitive
functions involved in orientation of attention, novelty detection, memory, decision
making and so on (Polich, 2007; Duncan et al., 2009). The P300 is considered to include
two overlapping subcomponents: P3a and P3b. The P3a has a fronto-central distribution
and emerges at about 200-300 ms by novel unpredictable stimuli (e.g., deviant tones,
environmental sounds, subject’s own name), and is considered to index the reorienting
of automatic attention to the deviant or novel stimuli, having been triggered by the
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MMN generation (Chennu and Bekinschtein, 2012; Näätänen et al., 2019). In contrast,
the later and centro-posterior P3b (peaking after 300 ms) is thought to reflect selective
attention to stimuli, working memory and conscious access (Bekinschtein et al., 2009;
Dehaene and Changeux, 2011). Like the MMN, the P300 has been reported as a reliable
marker of coma emergence (Daltrozzo et al., 2007; Fischer et al., 2008; Morlet and Fischer,
2014).

The N400 component, is an ERP index of semantic and language processing that
has also been reported in coma (Kotchoubey and Daltrozzo, 2005; Daltrozzo et al.,
2009; Rämä et al., 2010). Although this component was not evaluated in the present
dissertation, its potential to determine the recovery of language ability upon emergence
from coma is indisputable.

1.3.1 MMN as predictor of coma emergence

From all mentioned ERP components, MMN is probably the one that has received more
sustained interest from researchers, as it can be easily targeted in severe-brain injured
patient without requiring their cooperation.

The prognostic power of a component, as stated by Morlet and Fischer (2014), is
evaluated mainly through sensitivity, specificity, and positive predictive values. Sen-
sitivity for good coma outcome refers to the proportion of patients who exhibit the
component and return to consciousness; specificity includes the proportion of patients
who do not show the component among the patients with poor outcome or considered
as "non-awake" (death or UWS); while the proportion of patients showing good outcome
among those exhibiting the component is the positive predictive value (PPV). While the
MMN is reported to predict a return to consciousness with good specificity, ranging
from 90 to 100% (Kane, 1996; Fischer et al., 1999; Naccache et al., 2005), and a PPV close
to 91% (Fischer et al., 1999, 2004); its sensitivity is still low (approximately between 30
and 52%) (Luauté et al., 2005; Naccache et al., 2005), which indicates that a relatively high
proportion of coma patients may emerge without having exhibited before the MMN
(Connolly, 2020).
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Several factors could explain the low sensitivity of MMN found in previous studies,
such as the reliance on single assessments and the exclusive use of visual inspection
methods to determine the presence of the MMN. The subsequent chapter (2) will deeply
investigate the instability of this component in coma as another plausible explanation.
As suggested in a pioneer meta-analysis of ERPs in comatose patients (Daltrozzo et al.,
2007), MMN should be considered a positive and not a negative early predictor of coma
emergence. This means that its presence may reliable reflect a good change of improving
or emerging from coma, while its absence does not necessarily predict a poor outcome.

In contrast to seminal studies that investigated the prognostic value of MMN in
non-sedated comatose patients (Kane, 1996; Naccache et al., 2005; Fischer et al., 2004), a
recent study focused on a cohort of deeply sedated critically ill patients (Azabou et al.,
2018). The authors found that the amplitude of MMN elicited by a conventional oddball
paradigm was significantly greater in patients who awakened (i.e., eye opening and
visual contact occurred within 28 days) compared with those who had not. The authors,
however, concluded that traditional visual analysis alone is unreliable to assess MMN
in the the ICU environment, and should be systematically completed with individual
level statistics.

1.4 Advanced approaches: machine learning for signal

decoding and functional connectivity

Advancements in signal processing and machine learning techniques have allowed to
recognize and classify EEG/ERP neural responses in comatose and DOC patients that
can be difficult to identify even by EEG specialists. Machine learning (ML), essentially is
a field of artificial intelligence related with the development of algorithms that allows
computer programs to learn from data and make predictions from it.

Multivariate pattern classification analyses, driven by ML algorithms, have consider-
ably improved the sensitivity in extracting brain signals of interest at the single-subject
level, by estimating the most discriminative patterns within trials or classes (King et al.,
2014; Noirhomme et al., 2017). It has been reported that multivariate analyses of MMN
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responses recorded in comatose patients is able to predict their chances of survival (Tzo-
vara et al., 2013), and it is feasible for tracking MMN responses in real-time (Brandmeyer
et al., 2013). Using a more sophisticated ML approach, Armanfard and colleagues pro-
vided preliminary evidence of waxing and waning cycles of MMN in coma patients over
24 hours. The authors hypothesized that the presence of even short waxing intervals is a
salient indicator for coma emergence (Armanfard et al., 2019).

On the other hand, different connectivity methods have also been crucial to distin-
guish levels of consciousness and evaluate the integration of brain networks in comatose
and DOC patients (Höller et al., 2014; Sitt et al., 2014; Chennu et al., 2017). Brain connec-
tivity refers to patterns of anatomical links such as synapses or fiber pathways (known
as "structural connectivity"), of statistical dependencies ("functional connectivity") or
of causal interactions measured as information flow ("effective connectivity") between
distinct units/regions within a nervous system (Friston, 2011). Neuroimaging tech-
niques, such as positron emission tomography (PET) and fMRI, have proven that a set of
brain regions or nodes within the fronto-parietal network (FPN) and the default mode
network (DMN) are disrupted in DOC, depending of their level of consciousness. For
example, Achard and colleagues (Achard et al., 2012), examined functional networks in
comatose patients shortly after brain injury and demonstrated a radical reorganization
of central hubs in comparison to healthy controls, including the medial parietal cortex
(precuneus), which is a key region within the DMN that has been associated with the
recovery of consciousness (Laureys et al., 2006). Recent studies have also demonstrated
the utility of EEG-based functional connectivity features in the outcome prediction of
coma patients, particularly after cardiac arrest (Zubler et al., 2017; Kustermann et al.,
2020; Carrasco-Gómez et al., 2021). All these studies have the peculiarity of using ML
classifiers to distinguish between different outcome categories.

1.5 Dissertation Overview

This dissertation is developed within the framework of an ongoing large study in which
EEG/ERP data in comatose patients are recorded across multiple time points to develop
a point of care system for automated coma prognosis. We have conducted several studies,
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three of which are included as separated chapters here. Each chapter targets specific
hypothesis and questions, but all share two main objectives: one, to determine through
different methods and algorithms, whether electrophysiological markers of auditory
cortical processing such as the MMN or other neural correlates associated with return
of consciousness can be objectively detected in coma over time; and two, demonstrate
the transient and dynamic characteristic of such markers in coma at single-subject level.
The specific questions along with a brief overview of each chapter is presented below.

1) Does the MMN and subsequent ERP components fluctuate in detectability over
time in healthy, fully-conscious state of awareness, or is this a specific feature of
coma?

This question is addressed in Chapter 2, which details the first study to continuously
track the detectability of auditory MMN responses over an extended period of time
(around 12 hours) in healthy controls at both group and single-subject levels. Data
from a case series of comatose patients, recorded over the course of 24 hours, provide
preliminary evidence that the MMN is present in coma but can be transient (i.e., waxes
and wanes) to greater or lesser extent. This chapter highlights the fact that regular and re-
peated assessments are extremely important when using MMN as a neurophysiological
predictor of coma emergence.

2) Can multivariate decoding approaches accurately discriminate between differ-
ent auditory neural responses, and be feasible to track changes underlying auditory
deviance detection in coma?

Chapter 3 constitutes a follow-up analysis to the previous chapter, implementing a
multivariate decoding approach to discriminate automatically between auditory neural
responses at single-subject level. Methodological aspects that may affect the classifica-
tion performance, such as the signal amplitude and a reduced number of electrodes,
were considered in order to evaluate whether this approach is feasible for the assessment
of critically ill patients with severe DOC. Results reveal fluctuations in auditory discrim-
ination over time in coma patients; however a slight improvement in the performance
was observed, especially during the second day of recording. Based on our findings,
ERP-based decoding performance could be included as part of a neurophysiological
monitoring of parameters to follow-up the clinical evolution of these patients.
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3) How is the functional connectivity in response to auditory stimuli and resting
state during last hours of life in coma after severe brain damage?

This question emerged during the assessment of an acute comatose patient with poor
outcome prognosis, who died after a cardiac arrest during our EEG recording session.
Chapter 4 is a case report study in which a machine learning procedure is proposed
to characterize, for the first time, sensor-and source-level functional connectivity in
response to auditory stimuli and resting state in a comatose patient during his last hours
of life. Our findings showed high classification performance (>90% accuracy) across all
frequency bands when discriminating single-trial FC in response to auditory stimuli
between the coma patient and healthy controls, indicating a significant reduction of
functional connectivity in coma. On the other hand, when assessing resting state across
different time periods in the coma patient at single-subject level, we identified at least
one period of hyperconnectivity before death. This latter finding, provides somehow
evidence of fluctuating and transient brain activity in coma even within hours before
death.
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Chapter 2

Tracking auditory MMN responses
during full conscious state and coma

Abstract

The mismatch negativity (MMN) is considered the electrophysiological change-detection
response of the brain, and therefore a valuable clinical tool for monitoring functional
changes associated with return to consciousness after severe brain injury. Using an
auditory multi-deviant oddball paradigm, we tracked auditory MMN responses in sev-
enteen healthy controls over a 12-hour period, and in three comatose patients assessed
over 24 hours at two time points. We investigated whether the MMN responses show
fluctuations in detectability over time in full conscious awareness, or whether such
fluctuations are rather a feature of coma. Three methods of analysis were utilized to
determine whether the MMN and subsequent event-related potential (ERP) components
could be identified: traditional visual analysis, permutation t-test and Bayesian analysis.
The results showed that the MMN responses elicited to the duration deviant-stimuli
are elicited and reliably detected over the course of several hours in healthy controls, at
both the group and single-subject levels. Preliminary findings in three comatose patients
provide further evidence that the MMN is often present in coma, varying within a single
patient from easily detectable to undetectable at different times. This highlights the fact
that regular and repeated assessments are extremely important when using MMN as a
neurophysiological predictor of coma emergence.
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2.1 Introduction

Coma represents the most severe disruption in wakefulness and awareness, which
arises when cortical and brainstem pathways are damaged as a result of a catastrophic
brain injury due to traumatic or non-traumatic causes (Johnson and Kaplan, 2019). In
comparison to other neurological conditions with impaired consciousness, the coma
state usually resolves within days or a few weeks, and eventually evolves towards
other states along the spectrum from full recovery to minimally conscious state (MCS),
unresponsive wakefulness syndrome (UWS), or death (Giacino et al., 2014). Since there is
no assessment technique that can reliably detect any sign of inner awareness in comatose
patients, the clinical evaluation typically focuses on detecting the level of functional
impairment by using scores from traditional behavioral scales.

Recent guidelines provided by the the American Academy of Neurology (AAN)
and the European Academy of Neurology (EAN) recommend that patients in coma or
other disorder of consciousness (DOC) should be diagnosed by using a multimodal
approach including a comprehensive behavioral assessment along with advanced elec-
troencephalography or functional neuroimaging, particularly in patients without com-
mand following abilities (Giacino et al., 2018; Kondziella et al., 2020). Although not
available in all hospitals, these techniques seem promising for increasing diagnostic
accuracy and refining the current model of assessing consciousness and cognitive func-
tion. These neurofunctional tests might therefore help to reduce the approximately 40%
misdiagnosis rate found in patients who emerge from coma into other states including
MCS or locked-in that are often classified as UWS despite a rigorous clinical assessment
(Wannez et al., 2017; Schnakers, 2020).

It is even more challenging to predict how one will progress while still in a coma state.
In the acute stage post-injury, the decisions made in intensive care have a major impact
on patient survival and outcome (Turgeon et al., 2011, 2013). Critically ill comatose
patients may be too unstable clinically to be transferred from the intensive care unit (ICU)
for functional neuroimaging assessments (Wijdicks, 2020). The point-of-care aspect of
the electroencephalogram (EEG) makes it a suitable tool for bedside assessment. One of
the most commonly used approaches when investigating cognitive function and coma
outcome are event-related potentials (ERPs), which are electrophysiological time-locked
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brain responses elicited typically by auditory, visual or tactile stimuli. Particularly, the
mismatch negativity (MMN) has been considered a useful predictor of emergence from
coma (Kane et al., 2000; Daltrozzo et al., 2009; Morlet and Fischer, 2014; Armanfard et al.,
2019), and a key early biomarker in the information processing hierarchy leading up to
conscious perception (Chennu and Bekinschtein, 2012).

The auditory MMN (Näätänen et al., 2019) is a neural response to any discriminable
change in a repetitive sequence of otherwise identical sounds. The MMN occurs within
the time span of sensory memory and is considered independent of volitional attention
and task performance. It is usually recorded within the "auditory oddball paradigm" in
which repeated “standard” stimuli are interspersed with infrequent or “deviant” stimuli.
The MMN has long been considered as an automatic preattentive ERP component, since
it can be elicited in coma, during particular sleep stages and in the absence of behavioral
discrimination ability (Fitzgerald and Todd, 2020). This claim has been refuted, however,
due to a growing body of research showing systematic modulation of MMN amplitude
with attention to the stimuli (see Sussman et al. (2014) for a review). The frontal contribu-
tion to the attentional network, of which the MMN is part, results in further processing
focused on the deviant stimulus. Accordingly, the MMN is often followed by the P3a
component that indexes involuntary attention switch or reorientation to the deviants
initiated by the MMN generation (Escera et al., 1998; Atkinson et al., 2017; Näätänen
et al., 2019).

A different neurophysiological interpretation has been proposed that raises the ques-
tion of whether the MMN is an indicator of “partial awareness” in the absence of overt
behavior (Dykstra and Gutschalk, 2015; Dykstra et al., 2017). Using a masking experi-
mental task, Dykstra and Gutschalk (2015) demonstrated that the MMN is observed only
when listeners were aware of the standard stream prior to the onset of the deviant. This
approach better explains the presence of MMNs during states of behavioral unconscious-
ness such as sleep, coma and other DOC (i.e., MCS and UWS), where a certain level of
awareness of sensory stimuli is more likely than the ability to “attend" them. Moreover,
the MMN appears to be abolished during deep sedation-induced unconsciousness but
returns as patients recover from anesthesia (Heinke et al., 2004; Blain-Moraes et al., 2016).
Although dissociating attention from consciousness is extremely difficult, a large body
of evidence demonstrates that the MMN is highly correlated with emergence from coma
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and recovery of consciousness; and this evidence suggests that the MMN may be one of
the earliest indicators of partial awareness in such patients.

A pioneering study found that over 91% of comatose patients exhibiting the MMN
returned to consciousness (i.e., indicating a high positive predictive value), and over
90% of those who did not show MMN were considered as non-awake patients a (i.e.,
reflecting high specificity). However, only about 30% of patients who emerged from
coma showed a MMN, suggesting poor sensitivity (Fischer et al., 1999). Subsequent
studies confirmed the strong specificity and positive predictive value of MMN (Fischer
et al., 2004), but the sensitivity rate continued to be low, reaching values of about 56%
when functional outcome was assessed one month after MMN recordings (Naccache
et al., 2005) and 32% when it was evaluated 12 months after coma onset (Luauté et al.,
2005). This low sensitivity constitutes a problem for prognosis; while it is possible to
state with some confidence that emergence from coma is highly likely once MMN is
present, patients who do not show the response can also emerge. Nevertheless, failure
to detect the MMN should be interpreted with caution and not be taken as a definitive
“absence of response". It is possible that different analysis methods may be better at
detecting the MMN. A recent study using machine learning showed that the MMN
waxes and wanes in comatose patients when assessed across 24 hours (Armanfard et al.,
2019). This cycling pattern of presence/absence was postulated to be the predominant
explanation for the low sensitivity rates reported in previous studies. These findings
suggest that the MMN should no longer be sought in single-block recording sessions as
has been done traditionally for decades. A testing session should be repeated several
times, over the course of hours or longitudinally across different days to increase the
chances of detecting the MMN and thus improving its sensitivity and relevance to
patient care.

This approach of repeated or extended testing must also apply when evaluating
healthy control subjects for comparisons, since there is evidence -albeit to a lesser extent-
that not all healthy individuals exhibit the MMN in a single first assessment (Bishop and
Hardiman, 2010). Single-subject analyses can indeed provide useful information that is
obscured or simply not available in the average responses observed across a group of

aNon-awake was operationally defined using Glasgow Outcome Scale (GOS) criteria, with GOS levels
of 1 or 2 (death or vegetative state)
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control participants. This is particularly important for DOC research, since to interpret
patient data accurately in clinical settings, it is crucial to identify reliable ERPs at a single
subject-level, but also to design experimental paradigms able to elicit such responses.

In the present study, as part of an ongoing longitudinal study (Connolly et al., 2019),
we investigate the auditory MMN responses in healthy controls recorded over a 12-hour
period that were then analyzed at both the group and single-subject levels. We also
report the results of three cases of coma patients whose MMNs were assessed repeatedly
over a 24-hour period at two different time points. We sought to investigate if the MMN
exhibits fluctuations over time in healthy, fully-conscious states of awareness, or whether
such waxing/waning is a specific feature of coma.

2.2 Materials and Methods

2.2.1 Healthy controls and comatose patients

In order to characterize typical ERP responses across a period of up to 12 hours during
full conscious awareness and to obtain a baseline for the experimental paradigm, 17
healthy control participants (14 females) were recruited. Participants were aged between
19 to 56 years old (mean = 29.64, SD = 11.73) and had no history of neuropsychiatric
disorders, alcohol/drug abuse, head trauma or known hearing impairment. Participants
were paid $15/hour up to a maximum of $180 at the end of the study period.The
study was approved by the Hamilton Integrated Research Ethics Board (HiREB; project
number 4840).

Continuous EEG/ERP data were collected over the course of 24 hours from three
female comatose patients. All were assessed over the course of two days in either the
ICU or the neurological Step-Down Unit at the Hamilton General Hospital, and were
classified as being in a comatose state with Glasgow Coma Scale (GCS) scores less
than 8 at the first day of recording. Patients 1 and 2 had neurosurgical complications
as their coma etiology, while Patient 3 had a traumatic brain injury following a road
traffic accident (see Table 2.1). Patients were off sedative medications during the EEG
recordings. Exclusion criteria included seizure or epileptiform activity, known hearing
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impairment, medically induced coma, severe liver and renal failure. The presence of N1
components over continuous testing was also taken into account to discard hearing loss.

2.2.2 Behavioral coma assessments

Diagnosis of coma and outcome were assessed by the GCS and the Glasgow Outcome
Scale (GOS) (Jennett and Bond, 1975), respectively. In general, the GCS is usually applied
to determine severity of coma and includes 3 aspects of behavioral responsiveness: eye
opening, verbal and motor responses. The GOS globally rates the functional outcome
for patient states into one of five categories: dead, vegetative state (VS; currently known
as UWS), severe disability, moderate disability or good recovery.

In addition, we used the Full Outline of UnResponsiveness score (FOUR). The FOUR
includes assessment of eye movements and brainstem reflexes, which are unavailable
with the GCS. It reduces misdiagnosis of locked-in syndrome and MCS by including
assessment of eye movement, and helps to distinguish between comatose and recovering
patients (Kondziella et al., 2020).

2.2.3 Stimuli and Procedure

The MMN was recorded in an auditory 3-deviant oddball paradigm (Todd et al., 2008), as
part of a modified implementation of an ongoing study (Connolly et al., 2019). 2400 tones
at a regular 450-ms stimulus onset asynchrony (SOA) were recorded. The sequence
comprised 82% standard tones (50 ms, 1000 Hz, 80 dB sound pressure level (SPL)
and three types of deviant tones (6% each): a duration deviant (125 ms), a frequency
deviant (1200 Hz) and an intensity deviant (90 dB SPL). Auditory stimuli were delivered
through noise-canceling insert earphones (Etymotic ER-1) using Presentation software
(Neurobehavioral Systems, Inc.). This was a passive task that lasted approximately 25
min, with no behavioral responses required.

Healthy control subjects participated in several EEG/ERP tasks, that were repeated
for a test day of up to 12 hours. This schedule produced between three and five MMN
recording blocks. Sufficient breaks were provided to the control subjects during the day
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to minimize movement artifacts and fatigue. Patients were tested in two recording ses-
sions conducted 3 days apart, denoted as day 0 and day 3, respectively. Each recording
session lasted up to 24 hours with all testing done at the patient’s bedside. Each test day
comprised the same EEG/ERP protocol used in controls, including the MMN paradigm
with resting state periods (10 minutes each) between each task. Behavioral scales were
applied at the beginning of each testing day, before the EEG/ERP recordings. According
to our protocol (Connolly et al., 2019), if patients were emerging (i.e., awakening, eyes
opening) from coma, only two blocks of the oddball paradigm were recorded.

2.2.4 EEG recording and Preprocessing

EEG was recorded online with a bandpass of 0.01-100Hz and sampled at 512 Hz using
the ActiveTwo Biosemi system. For healthy controls and one comatose patient, the
electrodes were placed on the scalp according to the extended 10/20 system using a
64-electrode cap. A reduced number of 11 electrodes (F3, Fz, F4, C3, Cz, C4, P3, Pz, P4,
T7, T8) were used following the same 10/20 system in two patients (Patient 1 and 2) due
to surgical incisions and external ventricular drains (EVD). For all controls and patients,
vertical and horizontal electrooculogram (EOG) signals were monitored by electrodes
placed above and over the outer canthus of the left eye, and reference electrodes were
located bilaterally at the mastoids. Identifying markers were automatically placed in the
EEG signal at the onset of each stimulus presentation.

Data pre-processing was conducted offline (Brain Products Inc.). All recordings
were filtered with a bandpass of 0.1–30 Hz. Epochs containing non-ocular artifacts (e.g.,
muscle activity, movements) were removed. Ocular artifacts were corrected using the
Independent Component Analysis (ICA) transformation (Makeig et al., 1995). EEG trials
were separated and segmented by stimulus type from 100 ms pre-stimulus to 600ms
post-stimulus and baseline corrected (-100 to 0ms). These segments were averaged
together per condition (i.e., stimulus type) for each block and subject or patient.
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2.2.5 Statistical Analysis

In addition to visual identification of the averaged ERP components, two main statistical
methods were used to detect the presence of these components for each recorded MMN
block at both the group level and the single-subject level in healthy controls.

2.2.5.1 Permutation t-test

Permutation testing comes from a classical inference approach that relies on the use of
null hypothesis significance testing, featuring the p-value as an indication of whether this
hypothesis is probably true or false. The p-value could be derived from comparison to a
Monte Carlo estimate of a permutation distribution, generated by randomly exchanging
the trials from different conditions. In comparison to other conventional statistical tests,
the permutation test seems to be preferred because its greater statistical power, reliability
for small samples and independence of any assumptions related to normal distribution
of data and homogeneity of variances that are required when using parametric tests
such as t-tests and analysis of variance (ANOVA) (Collingridge, 2013).

Here, one-tailed serial permutation t-tests were performed over a mean of 6 fronto-
central electrodes (F3, Fz, F4, C3, Cz, C4) at each time point to find the intervals where
the deviant condition was significantly more negative (e.g., a MMN component) or
positive (e.g., a P3a component) compared to the standard condition. For group-level
analyses, dependent samples permutation-t testing was performed across individual-
averaged ERPs for the entire epoch (-100 to 600 ms). Maximum effect sizes (Cohen’s
d) were calculated over 50 and 100 ms periods surrounding the peak latency, which
was automatically detected as the most negative or positive peak within each com-
ponent window of interest respectively (MMN: 80-230ms and P3a: 250-350ms). For
single-subject analyses, independent samples permutation t-tests were conducted across
trials/epochs from each subject. For both analyses, the number of permutations was set
to 1000, the p-values were corrected using the Tmax statistic for multiple comparisons.
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2.2.5.2 Bayesian analysis

Bayesian hypothesis testing presents an attractive alternative to p-values, which have
been criticized extensively in the literature (Sullivan and Feinn, 2012; Wellek, 2017;
Kraemer, 2019). This analysis is powerful as it provides weights of evidence for or
against both the alternative and null hypotheses. Here, the strength of the evidence in
favor of the alternative hypothesis H1 (difference between standard and deviants) over
null hypothesis H0 (no difference), was quantified by Bayes factors (BF10). Maximum
Bayes factors were calculated over the previous time periods surrounding the peak
latency for each component of interest. Traditional interpretations of cut-offs (Jeffreys,
1961) were modified by (Lee and Wagenmakers, 2013), resulting in the following ranges:
1 to 3 - anecdotal evidence, 3 to 10 - moderate; 10 to 30 - strong ; 30 to 100 - very strong
and > 100 - extreme. Analyses were done in Matlab, version R2020a (MathWorks Inc.,
USA), using a function from the FieldTrip toolbox for electrophysiological data analysis,
which supports both unpaired and paired designs and assumes flat priors (Oostenveld
et al., 2011).

Additionally, in order to compare the MMN responses elicited by each deviant
and determine whether there were habituation effects over time in the control group,
we conducted a repeated measures analysis of variance (ANOVA) with deviant type
(duration, frequency and intensity) and block (1 to 5 blocks recorded over time) as
within-subject factors at a cluster of 6 frontocentral electrodes (described above) with
amplitude as the dependent variable. Mean amplitudes were exported in a ±50 ms
window surrounding the group average peak: 180-230 ms for duration MMN and 80-130
ms for frequency and intensity MMN. When statistically significant differences were
found, a Bonferroni post-hoc test was conducted for multiple comparisons. A Geisser
and Greenhouse test for sphericity correction was used when appropriate. This analysis
was conducted using JASP software (version 0.14.1).

For the comatose patients, a similar procedure as outlined above (visual inspection,
serial permutation t-test and Bayesian analysis) was performed at the single-subject
level for every recorded MMN block.



28C
hapter

2.
Tracking

auditory
M

M
N

responses
during

fullconscious
state

and
com

a

Table 2.1: Demographic and clinical information of patients
.
Patient Sex Age Etiology Testing

Day
State Days since

coma onset
GCS
(E,V,M)

FOUR
(E,M,B,R)

Blocks
recorded

Outcome

1 F 41 Neurosurgery 0 Coma 20 5 (1,1,3) 6 (0,1,4,1) 8 Death
3 Coma/UWS 23 6 (4,1,1) 8 (3,0,4,1) 10

2 F 51 Neurosurgery 0 Coma 8 5 (1,1,3) 5 (0,1,4,0) 10 Good recovery
3 Awakening 11 9 (4,1,4) 9 (3,1,4,1) 2

3 F 43 Trauma 0 Coma 13 4 (1,1,2) 5 (0,1,4,0) 10 UWS
3 Coma 16 7 (2,1,4) 5 (0,1,4,0) 6

GCS: Glasgow Coma Scale, which is the sum of E (Eye opening) + V (Verbal response)+ M (Motor response) scores.
FOUR: Full Outline of UnResponsiveness score that has four components - E (Eye response), M (Motor response), B
(Brainstem reflexes) and R (Respiration). UWS: Unresponsive wakefulness syndrome.
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2.3 Results

2.3.1 MMN in controls: from group-level to single-subject analysis

Figure 2.1 (panel A) shows the grand-average ERPs over a mean of 6 frontocentral
electrodes (F3, Fz, F3, C3, Cz, C4), corresponding to standard and deviant stimuli
(duration, frequency and intensity) for each block recorded over a 12 hour-period. As
can be observed, the waveforms from all blocks were extremely similar. Figure 2.1
(B) displays the ERP waveforms from Block 1 as an example, and its corresponding
topographical maps averaged over 80-130 ms, 180-230ms and 250-350 time intervals.
Frequency and intensity deviants elicited a negative component peaking between 80
to 130 ms, which represents a spatial-temporal summation of both N1 and MMN
components, often called deviant-related negativity(DRN) (Tavakoli et al., 2019). This
was followed by a frontocentral positivity (P3a), which peaked later between 180-230
ms. The duration deviant elicited 3 dissociated components: the N1 peaking at 150ms,
a MMN with maximum amplitude between 180-230 ms and a P3a component with
maximum amplitude between 250 and 350ms.

Figure 2.2 (panel B) summarizes the statistical findings at the group level in healthy
controls. As can be observed, both the MMN and the P3a components were observed in
all blocks, and reliably detected by using permutations t-test (p < 0.05) and Bayes factor
analysis.

For the MMN component, the Cohen’s d computed from the permutation t-tests
were averaged across all five blocks, reaching values of 1.28 for the duration deviant,
0.79 for frequency and 1.15 for intensity, indicating a very large, a medium and a large
effect size, respectively, according to Sawilowsky (2009). For the P3a, the averaged
Cohen’s d indicated a huge effect size for duration (2.25), and a very large effect size for
both frequency (1.39) and intensity (1.51). Maximum Bayes factors computed at the time
window of interest for each component mostly revealed very strong to extreme evidence
for our hypothesis of significant difference between the deviant and standard stimuli in
all blocks (see Cohen’s d and Bayes factors for each recorded block in Supplementary
information I (Table S1).
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Figure 2.1: Grand-average ERPs and topography in healthy controls. (A) Grand-average ERP for each stimuli (standard,
duration, frequency and intensity) across blocks. (B) Example of ERP waveforms and scalp topographical maps of Block 1
averaged over 80-130 ms, 180-230 ms and 250-350 time intervals.
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Figure 2.2: Grand-average ERPs and statistical findings in healthy controls. (A) Grand-average ERPs across blocks. (B) Time
course of the difference between deviants and standard stimuli expressed in units of t-values. Significant intervals for negative
components are denoted by a light gray area, and positive components are denoted by a dark gray area. Black arrows show
the latency of maximum bayes factors and the strength of evidence for H1: + anecdotal; ++ moderate; +++ strong and ++++
very strong to extreme.
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When differences between deviants and habituation effects were evaluated within
the group, the repeated-measures ANOVA analysis showed a main effect for deviant
type (F(2, 24) = 7.13, p < 0.05, η2

p = 0.37). A Bonferroni post-hoc test averaged over
the levels of blocks revealed differences between duration and frequency deviants with
a mean difference of -1.27µV (p < 0.05), and between intensity and frequency with a
mean difference of 1.33 µV (p < 0.01). No significant main effect was found for block
(F(4, 48) = 0.71, p = 0.52, η2

p = 0.05), and the deviant type x block interaction also failed
to reach significance (F(8, 96) = 0.84, p = 0.47, η2

p = 0.06). (See Figure 2.3)

Figure 2.3: Mean amplitude and standard errors (SE) of each deviant type for each block
recorded over a 12-hour period in the healthy control group. While there was main effect of
deviant type, no reliable main effect of block or interaction was found. Points represent mean
amplitude from each deviant type. Vertical extended lines indicate the standard error intervals.

Single-subject analysis showed that both MMN and P3a components elicited by the
duration deviant were significantly detected across all blocks in all subjects by using
both permutation t-test and Bayesian analysis. The serial permutation t-test showed that
3 out of 17 subjects did not exhibit significant MMNs to the frequency deviant in any of
the recorded blocks, and one subject to the intensity deviant. Bayesian analysis showed
evidence in favor of the presence of MMN responses to frequency and intensity deviants
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in all subjects in at least one block, confirming the visual inspection. Tables 2.2 and
2.3 summarize the proportion of control subjects exhibiting MMN and P3a responses
respectively for each recorded block using the three methods adopted in the present
study. Notice (in N column) that not all subjects performed all blocks, but regardless the
sample size, the duration deviant still elicited the most reliable responses, as can also be
observed in Figure 2.2.

Table 2.2: Proportion of healthy controls showing evidence of MMN in each block.

DURATION FREQUENCY INTENSITY

Block N Visual Perm. test Bayes Visual Perm. test Bayes Visual Perm. test Bayes
1 17 1.00 1.00 1.00 0.88 0.47 0.65 1.00 0.71 0.82
2 17 1.00 1.00 1.00 0.82 0.53 0.82 0.94 0.76 0.94
3 17 1.00 1.00 1.00 0.88 0.47 0.88 0.88 0.53 0.82
4 14 1.00 1.00 1.00 0.86 0.50 0.71 0.93 0.57 0.93
5 13 1.00 1.00 1.00 0.84 0.31 0.71 1.00 0.46 1.00

Table 2.3: Proportion of healthy controls showing evidence of P3a in each block

DURATION FREQUENCY INTENSITY

Block N Visual Perm. test Bayes Visual Perm. test Bayes Visual Perm. test Bayes
1 17 1.00 0.82 0.94 0.82 0.47 0.71 0.88 0.71 0.82
2 17 1.00 0.88 1.00 0.53 0.41 0.47 0.88 0.76 0.82
3 17 1.00 0.88 1.00 0.53 0.18 0.53 0.82 0.71 0.76
4 14 1.00 0.79 0.93 0.57 0.21 0.50 0.71 0.71 0.64
5 13 1.00 0.85 1.00 0.54 0.38 0.38 0.69 0.46 0.54

Figures 2.4 and 2.5 display the results from two representative control subjects,
showing the highest and lowest ERP detection rates, respectively. As shown in these
examples, the first control subject (see Figure 2.4) had the highest ERP detection rate,
exhibiting significant MMN intervals for each deviant sound in all recorded blocks when
performing all methods of analysis. A reliable P3a response was also found in most of
the blocks and deviant conditions, except in the fifth block for the intensity deviant. The
second control subject, who had the lowest ERP detection rate (see Figure 2.5) exhibited
a significant duration MMN in all recorded blocks with all methods, but the permutation
t-test failed to capture a significant MMN in all blocks for the frequency deviant and
in fourth blocks for the intensity deviant. The Bayesian analysis confirmed the visual
inspection method by showing anecdotal or moderate evidence for the presence of a
MMN in 3 blocks for frequency and intensity deviants.
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Figure 2.4: Individual ERPs and statistical findings of a representative control subject with the highest MMN detection rate.
(A) Individual ERPs across blocks. (B) Time course of the difference between deviants and standard stimuli expressed in units
of t-values. Significant intervals for negative components are denoted by a light gray area, and those for positive components
are denoted by a dark gray area. Black arrows show the latency of maximum bayes factors and the strength of evidence for
H1: + anecdotal; ++ moderate; +++ strong and ++++ very strong to extreme.
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Figure 2.5: Individual ERPs and statistical findings of a representative control subject with the lowest MMN detection rate. (A)
Individual ERPs across blocks. (B) Time course of the difference between deviants and standard stimuli expressed in units of
t-values. Significant intervals for negative components are denoted by a light gray area, and those for positive components are
denoted by a dark gray area. Black arrows show the latency of maximum bayes factors and the strength of evidence for H1: +
anecdotal; ++ moderate; +++ strong and ++++ very strong to extreme.
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2.3.2 MMN in coma: case reports

2.3.2.1 Patient 1: from step-down unit to palliative care

Patient 1 was a 41-year-old woman who was admitted to the step-down unit 20 days
prior to our assessment. The patient had a history of multiple re-resections of a left
frontotemporal oligodendroglioma. She was admitted to the neurosurgery operating
room for surgical repair of cerebrospinal fluid (CSF) leak, which required reopening of
left frontal subdural craniotomy for a lumbar drain and a subsequent right ventricu-
loperitoneal (VP) shunt. A right frontal EVD was inserted after a shunt infection and
an intracranial abscess resection was performed at the previous surgical site. At the
time of the first assessment (day 0), the patient had a GCS score of 5. A summary of the
MMN results for this patient are given in Table 2.4. Out of 8 recorded blocks collected
on the first day (day 0), a reliable MMN to all deviants was detected in one block (block
4) by using all methods of analysis, and in an additional block (block 6) for the intensity
deviant. Also, a significant P3a component was detected in two blocks (blocks 4 and 6)
for the intensity deviant (See Table S2) in Supplementary information I for the summary
of the P3a results).

On day 3, the patient had spontaneously opened her right eye, which remained
persistently halfway open requiring artificial tears or eye pads to prevent corneal abra-
sions. The patient, however, did not fixate to stimuli or track (see FOUR score in Table
2.1). Confirmed by the three selected analysis methods, the patient had a reliable MMN
response in 4 out 10 recorded blocks for the duration deviant (blocks 2,3,8 and 10), in
block 8 for frequency and in block 2 for intensity. A P3a component, was also detected
in 6 blocks for the intensity deviant (blocks 2, 3, 6, 8, 9 and 10), in 4 blocks for duration
(blocks 2, 6, 9 and 10) and in two blocks for the frequency deviant (blocks 6 and 9) (see
Table S2 in Supplementary information I).

After a few days of the EEG assessment, the patient’s clinical condition worsened. Ac-
tive care was withdrawn while maintaining comfort measures. The patient subsequently
died.
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2.3.2.2 Patient 2: from coma to awakening in intensive care

Patient 2 was a 53-year-old woman admitted to the ICU, deeply unconscious after a
cystoperitoneal shunt malfunctioning that required neurosurgery. She had a history of
meningioma resection from the right posterior cranial fossa, complicated by meningitis,
CSF leak and debridement surgeries.

A summary of results for this patient are given in Table 2.5. On day 0, the patient
showed a significant MMN in 2 out of 10 recorded blocks (blocks 9 and 10) for the
duration deviant according to all selected methods, and in block 10 for the frequency
deviant. A significant P3a component was detected in 2 blocks for the intensity deviant.

The second recording, denoted as day 3, included only two blocks of the MMN
paradigm, since the patient exhibited behavioral signals of emerging from coma state
as shown in GCS and FOUR scales in Table 2.1. The three methods confirmed the
presence of a MMN only for the duration deviant in one of the recorded blocks and a P3a
response in both blocks. (See summary of the P3a results in Table S3 in Supplementary
information I)

This patient was subsequently transferred to the neurosurgery inpatient unit where
she was awake, oriented and talking. After a year, the patient had resumed her normal
life with minor neurological deficits, which is congruent with a good recovery outcome.

2.3.2.3 Patient 3: coma following multisystem trauma

This was a 43-year-old patient included in the study 13 days post hospital admission for
severe multisystem trauma after being involved in a road vehicle accident. On arrival to
the ICU, she was intubated and sedated with a GCS of 3. Computed tomography scans
revealed bilateral subarachnoid hemorrhage, with no herniation as well as diffuse axonal
injury. Her GCS was 4 and 7 during the first and second EEG recordings, respectively
(see Table 2.1).

On day 0, the patient showed a MMN confirmed by the three methods in block 8
for the duration deviant and in block 10 for the frequency deviant (block 10). A P3a
component was reliably detected for the frequency deviant in block 8 and for the intensity
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deviant in the blocks 7 and 8 with all the methods. The presence of this component was
confirmed in other blocks by two methods (visual inspection and Bayesian analysis).

On day 3, only a duration MMN was confirmed by visual and Bayesian analysis in 3
blocks (see Table 2.6). A P3a response to duration and frequency deviants was confirmed
by all methods in one block (block 2) (see summary of the P3a results in Table S4 in
Supplementary information I).

This patient was transferred to another hospital. Based on her records, the patient
remained dependent on the ventilator and the tracheotomy by the time of discharge.
She was withdrawing and flexing to pain, and would occasionally open her left eye
spontaneously, but not to voice or pain and would not track. She then was transferred
to chronic care, after being diagnosed as a VS/UWS patient.

All individual ERPs and statistical findings from all comatose patients are displayed
in Figures S1 to S10 in Supplementary information I.
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Table 2.4: Summary of the MMN results in Patient 1.

DAY 0 DURATION FREQUENCY INTENSITY

Block Time Visual Perm. test Bayes Visual Perm.test Bayes Visual Perm.test Bayes

1 18:35 PM + - + + - - - - -
2 21:10 PM + - + + - + + - +
3 22:49 PM - - - - - - - - -
4 12:47 AM + + ++++ + + +++ + + ++++
5 06:26 AM + - + - - - + - ++
6 07:58 AM - - - - - - + + ++++
7 10:08 AM + - - + - - + - -
8 11:26 AM + - ++ + - - + - ++

DAY 3 DURATION FREQUENCY INTENSITY

Block Time Visual Perm.test Bayes Visual Perm.test Bayes Visual Perm.test Bayes

1 18:20 PM - - - + - - + - -
2 20:29 PM + + ++++ + - +++ + + ++++
3 21:15 PM + + +++ - - - - - -
4 23:14 PM + - - - - - - - -
5 01:05 AM + - + + - + - - -
6 03:13 AM + - - - - - - - -
7 05:22 AM - - - - - - - - -
8 06:09 AM + + +++ + + ++ + - -
9 07:56 AM - - - + - - + - +
10 10:11 AM + + ++ - - - + - +

+ indicates a positive result, - a negative result. For Bayes column, + anecdotal evidence; ++ moderate evidence;
+++ strong evidence and ++++ very strong to extreme evidence.
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Table 2.5: Summary of the MMN results in Patient 2.

DAY 0 DURATION FREQUENCY INTENSITY

Block Time Visual Perm. test Bayes Visual Perm. test Bayes Visual Perm. test Bayes

1 21:15 PM + - - + - - - - -
2 12:14 AM - - - + - + + - -
3 02:24 AM - - - - - - - - -
4 04:51 AM + - + - - - - - -
5 06:50 AM + - - + - ++ + - +
6 08:00 AM - - - - - - + - -
7 10:09 AM - - - + - - - - -
8 11:48 AM - - - - - - - - -
9 12:28 AM + + ++ - - - + - +
10 02:37 PM + + +++ + + ++ - - -

DAY 3 DURATION FREQUENCY INTENSITY

Block Time Visual Perm. test Bayes Visual Perm. test Bayes Visual Perm. test Bayes

1 18:34 PM + + ++++ + - ++ + - -
2 20:48 PM + - - + - ++ + - -

+ indicates a positive result, - a negative result. For Bayes column, + anecdotal evidence; ++ moderate evidence;
+++ strong evidence and ++++ very strong to extreme evidence.
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Table 2.6: Summary of the MMN results in Patient 3.

DAY 0 DURATION FREQUENCY INTENSITY

Block Time Visual Perm. test Bayes Visual Perm. test Bayes Visual Perm. test Bayes

1 14:52 PM + - - - - - - - -
2 16:44 PM - - - - - - - - -
3 18:46 PM - - - - - - - - -
4 20:55 PM + - + + - +++ - - -
5 21:36 PM - - - + - + + - +
6 23:25 PM + - + - - - + - -
7 01:34 AM + - + + - + + - +
8 02:50 AM + + ++ - - - + - +
9 05:24 AM - - - + - - + - -
10 07:09 AM + - - + + +++ + - +

DAY 3 DURATION FREQUENCY INTENSITY

Block Time Visual Perm. test Bayes Visual Perm. test Bayes Visual Perm. test Bayes

1 20:46 PM - - - - - - + - -
2 21:45 PM - - - - - - - - -
3 23:29 PM - - - - - - - - -
4 01:38 AM + - + - - - + - +
5 04:33 AM + - + + - - - - -
6 06:21 AM + - + + - - - - -

+ indicates a positive result, - a negative result. For Bayes column, + anecdotal evidence; ++ moderate evidence;
+++ strong evidence and ++++ very strong to extreme evidence.
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Figure 2.6: Individual ERPs and statistical findings of a coma patient (Patient 1) in the first five blocks on day 0. (B) Time
course of the difference between deviants and standard stimuli expressed in units of t-values. Significant intervals for negative
components are denoted by a light gray area, and those for positive components are denoted by a dark gray area. Black
arrows show the latency of maximum bayes factors and the strength of evidence for H1: + anecdotal; ++ moderate; +++ strong
and ++++ very strong to extreme.
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2.4 Discussion

This is the first study to continuously track MMN responses in healthy controls over
an extended period of time. In this study we tested controls for a maximum period
of 12 hours as part of our ongoing EEG/ERP project to predict coma emergence and
eventual functional outcome. The detection rate of the MMN was assessed over time
at both the group and single-subject levels using three different methods: traditional
visual inspection of the averaged ERPs, permutation t-test and Bayesian analysis. We
also provided preliminary evidence of the utility of monitoring auditory deviance
detection in three comatose patients over a 24 hour-period at two time points to predict
coma outcome. We addressed the question of whether short-term fluctuations in MMN
detectability may occur during full conscious awareness or is rather a feature of coma
state (Armanfard et al., 2019); a finding that would have implications for prognostics of
the timing of coma emergence and the clinical state at emergence. In turn, knowledge of
the clinical state (i.e., UWS/VS, MCS, Locked-in) would encourage extended assessment
of the cognitive state at emergence relevant to future rehabilitation efforts.

2.4.1 Tracking MMN in full conscious awareness

Our results showed that the MMN can be elicited and reliably detected over the course of
12 hours in healthy control subjects at the group level. Serial permutation-t tests applied
on a within-group design were able to capture significant differences between the three
types of deviants (duration, frequency, intensity) and standard stimuli in both MMN and
P3a components in all recorded blocks. Bayesian analysis confirmed these findings, by
showing "very strong to extreme" evidence. Consistent with the present results, several
studies have shown that reliable MMNs can be recorded from session to session in a
group of subjects (Pekkonen et al., 1995; Lew et al., 2007; Recasens and Uhlhaas, 2017).
In these studies of test-retest reliability, the MMN responses are usually obtained from
different sessions or blocks separated by longer time-intervals (i.e., approximately 1
month or more). Using different methods, we found that the MMN can be consistently
replicated and detected over intervals of hours in a continuous testing session.
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Additionally, while differences in MMN mean amplitude were observed between
deviant types within the group, showing smaller MMN responses to frequency deviants,
no main effects of blocks recorded over time or interaction were found. In line with
prior findings, where this multi-deviant oddball paradigm was first implemented, the
duration and intensity MMNs from a group of controls were slightly larger in amplitude
than those produced to the frequency deviant tone (Todd et al., 2008). Furthermore,
the fact that no habituation effects of the MMN amplitude were found over time (see
Figure 2.2), suggests that the detectability of this component is not compromised by
the repetition of the oddball paradigm. Its replicability in such short periods of time at
group-level highlights the use of appropriate stimuli, and the application of efficient
recording procedures as a way to reduce the variability of the recorded responses
(Duncan et al., 2009).

On the other hand, the single-subject analysis in this study revealed that fluctuations
in MMN detectability may be observed in some control subjects, depending on the
deviant type, and the statistical method performed to confirm the presence of the
component. As we have demonstrated and as illustrated in Table 2.2, the three methods
showed a 100% detection rate of the MMN component for the duration deviant in
all recorded blocks. However, the detection rate of subjects showing a reliable MMN
response to frequency and intensity deviants at each recorded block was 65-71% and
82-100% respectively with Bayesian analysis, and 31-47% and 46-71% with permutations.
This latter test was more conservative, showing that 3 out of 17 subjects did not exhibit
significant MMNs to the frequency deviant in any of the recorded blocks, and one subject
failed to show any response to the intensity deviant in any block.

Consistent with our findings, another Bayesian approach was recently reported as
the most liberal in comparison to other five statistical methods on its ability to detect
ERP effects (Kallionpää et al., 2019). This confirmation of neural responses through
different statistical methods is especially important for coma research, as the ERPs from
patients with brain injury at single-patient level exhibit notable differences in amplitude,
latency and scalp distribution in comparison to healthy controls, which makes the visual
identification of ERP components extremely challenging. Visual inspection of ERPs
remains fairly common practice (Morlet and Fischer, 2014), but as discussed extensively
in the literature (Luck and Gaspelin, 2017; Gabriel et al., 2016), it can introduce significant
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bias. Besides, reliable visual inspection requires expertise that is not commonly available
in the clinical setting (Connolly et al., 2019). Also, the wide availability of statistical
methods, revealing large discrepancies among them is a problem for clinicians. Gabriel
and colleagues compared six different methods previously used in coma studies to
identify the MMN responses, and showed that all six methods confirmed an MMN
response in only 4 out of 27 subjects, but at least the combination of two methods
confirmed the presence of MMN in all control subjects (Gabriel et al., 2016). One may
argue that these methods greatly differ in their mathematical algorithms and answer
fundamentally different questions, and therefore should not be expected to provide the
same results.

As stated by Naccache et al. (2016), it is an essential prerequisite of any functional
brain test to show high sensitivity, especially to evaluate patients with brain injury and
determine whether they will regain consciousness. The chosen methods should be able
to detect the associated neural responses at the individual level in the vast majority of
conscious controls. Otherwise, their use in patient populations could complicate the
interpretation of the results. That is, if frequency stimuli elicit robust MMN responses
at the group level in all recorded blocks, but such findings are not powerful at the
single-subject level, then their use for clinical practice will be limited. Duration deviants,
however, have been consistently reported throughout the clinical literature to be more
sensitive than frequency deviants to measure neurological changes in various medical
conditions (Michie et al., 2000; Chen et al., 2020; O’Reilly and O’Reilly, 2021) and as a
consequence promise greater clinical utility.

2.4.2 Tracking MMN in coma

Data from three comatose patients revealed that the MMN component was present in
at least one block per recording session by using the three methods of analysis, but
fluctuated in detectability over the course of 24 hours. This fluctuation was not observed
in healthy controls for the duration deviant, which supports the hypothesis that the
MMN responses may be present only transiently in the coma state (Armanfard et al.,
2019). As expected, most of the blocks where the MMN was confirmed to be present,
corresponded to the duration-deviant condition in two comatose patients (Patient 1 and
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2). Multivariate analysis has demonstrated a better discrimination between standard
and duration deviants than other types of deviant-stimuli in comatose patients (Tzovara
et al., 2015), which is in line with the choice of using duration deviants in previous coma
studies (Fischer et al., 1999; Daltrozzo et al., 2009).

Similar to controls, the Bayesian analysis was more sensitive in capturing more
blocks with reliable MMN and P3a responses than the permutation t-test in the comatose
patients in both testing days. As displayed in the example in Figure 2.6, only one block
(block 4) out of the first five recorded blocks showed significant MMN responses with
all methods. In most cases where the ERP components were significantly detected
by permutations, the Bayesian analysis served as a confirmatory test by indicating
"moderate", "strong" or "very strong to extreme" evidence of the response. In the
opposite direction, where the MMN was not significant by using permutations, but
could be judged to be present through visual inspection, the Bayesian test would indicate
in most cases weak or "anecdotal" evidence of response.

While the MMN has been reported to be a strong predictor of coma emergence
and good functional outcome (Fischer et al., 2004; Luauté et al., 2005; Daltrozzo et al.,
2007), we are fully aware that multiple factors might affect the patients’ final outcome.
For instance, multiple systemic complications mostly associated with infections are
very likely to occur in critically ill patients, leading to further deterioration of their
clinical status. Patient 1, for example, who showed more reliable MMN responses over
time in comparison to the other patients, had the worst clinical outcome (i.e., death)
after withdrawal of life support. In one of the first studies of Fischer and colleagues,
three patients who had exhibited a MMN response failed to regain consciousness: one
developed complications of neurosurgery, the second had organ failure complications
and the third died of cardiac failure (Fischer et al., 1999). Using a a different MMN
paradigm and a multivariate decoding algorithm, Tzovara’s work also demonstrated
intact auditory discrimination in comatose patients who eventually died (Tzovara et al.,
2013). Consistent with these results, the robust presence of the MMN in Patient 1 is
not surprising and could have indicated the patient’s chance of emergence prior to
unexpected complications.

One could argue that the "spontaneous" opening of the right eye in Patient 1 (with-
out tracking or saccadic eye movements to stimuli) during the second recording (see
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Table 2.1), suggests that this patient was probably emerging and transitioning to UWS.
Although we cannot rule out this possibility, it was recently claimed that some comatose
patients, particularly those with supratentorial, infratentorial or global brain insults,
may defy the classical definition of coma (i.e., unarousable unresponsiveness with ab-
sent sleep cycles and closed eyes) by showing eye-opening. (Kondziella and Frontera,
2021). Coma with eye opening, according to these authors, differs from the UWS in
its clinical trajectory (tendency to worsening rather than stabilization) and absence of
sleep-wake cycles. The authors also stated that behavioral scales, such as the Glasgow
Coma Scale and the FOUR score, can yield misleading results and overly optimistic
outcome estimations for comatose patients with eye opening. Unfortunately, we did
not use other more sensitive diagnostic tools (e.g., Coma Recovery Scale-Revised) to
confirm whether the patient was in UWS after day 3.

The other two patients in the present study emerged from coma, but exhibited
different functional outcomes. Patient 2 emerged three days following the first EEG
assessment and after a year showed a positive functional outcome (good recovery).
Patient 3, however, was transferred to a different hospital and then to a chronic care
facility, with a diagnosis of VS/UWS. Regardless of the functional outcome, the MMN
was present in at least a single recording occasion for each patient, which highlights the
MMN as a biomarker to predict coma emergence and outcome.

In general, the variability in the presence of the MMN component in these patients
may be explained by their brain injuries and fluctuations in responsiveness inherent
to DOC. Severe brain damage may alter ERP amplitude and topography, and cause
temporal delays and inter-trial variability in comatose patients as result of white matter
impairments and cortical dysfunction (Piarulli et al., 2015). Perhaps physiological
artifacts (e.g., increased slow wave activity) and the inherent environmental artifacts
of the intensive care settings may have added extra noise to the signal for the MMN to
be objectively detected across all blocks. More extensive data collection is necessary to
clarify the mechanisms behind these fluctuations.
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2.4.3 Limitations and ethical implications

Our small sample-size limits the generalization of our findings and requires further
replication in future work. Nevertheless, we consider these results relevant and very
promising as they can serve as a foundation upon which to develop monitoring tech-
niques for detecting transient periods associated with partial consciousness in patients
with severe brain injury. Although it is challenging to run extended EEG studies without
frequent interruptions in ICU environments, the recording of multiple blocks of data
per day in a larger population would be ideal for tracking the trajectory of patients and
identify those with potential for recovery.

Our different analysis methods used non-identical information about the waveforms,
such as the selection of the time points. For instance, the permutation t-test was applied
to the whole ERP time window in order to identify the significant latency windows of
the MMN and P3a components, whereas the Bayesian analysis was applied to narrower
time windows of interest. This approach of doing Bayesian test post-hoc after convincing
results are obtained with permutations seems methodologically unnecessary. However,
given that permutation t- tests are fairly conservative and showed more evidence in favor
of null effects in comatose patients, the Bayesian evidence, even "weak or anecdotal"
may still be valuable for this clinical population.

Importantly, the medical team responsible for patient care were blind to our results,
which were never used to influence any clinical decision for treatment or the mainte-
nance/withdrawal of life-sustaining therapies. The presence or absence of MMN alone
did not impact such decisions. However, in the not too distant future it is apparent that
the MMN, in combination with other potential biomarkers, could help critical care teams
improve coma prognosis by relying on objective evidence rather than "perceptions of
unfavourable prognosis for meaningful neurologic recovery" (Turgeon et al., 2011, p. 01)
in making decisions about withdrawal of life-support within days of admission (see
also, (Mayer and Kossoff, 1999; Becker et al., 2001; Naidech et al., 2009; Turgeon et al.,
2013)).
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2.5 Conclusions

The results of the present study demonstrate that the MMN responses elicited by du-
ration deviant stimuli are consistently detected over time in healthy controls, at both
the group and single-subject levels. This finding supports the use of the MMN elicited
by duration deviants as a promising clinical tool for monitoring functional changes
associated with coma awakening and potential return to consciousness. Preliminary
findings in three acute coma patients, recorded over 24 hours, provide further evidence
that the MMN is present in coma, but can be transient (i.e., waxes and wanes) across
hours. This highlights that regular and repeated assessments are extremely important
for clinically-appropriate usage of the MMN as a neurophysiological predictor of coma
emergence.
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Chapter 3

Decoding auditory ERPs for
neurophysiological monitoring in coma

Preface: This chapter includes a follow-up analysis to the previous study, detailing
a machine learning technique known as multivariate pattern analysis to investigate
whether single subjects showed differential electrophysiological responses elicited by
standard versus deviant sounds. This approach is not focused on detecting specific
ERP components, but rather on an automatic way to predict auditory discrimination
at single-subject level. We then evaluated whether this methodology is feasible for
neurophysiological assessment underlying auditory deviance detection in comatose
patients.

Abstract

Multivariate decoding approaches applied to ERP data, and particularly using mismatch
negativity paradigms, have been shown to provide valuable information about patient’s
chances to survive and emerge from coma. Using a 3-deviant oddball paradigm, this
study implements multivariate pattern analysis to automatically quantify the neural
discrimination between duration deviant and standard sounds at the single-subject level
in healthy controls and in three comatose patients. One EEG recording, containing up to
five blocks of an oddball paradigm, was performed in control subjects over a 12 hour
period. For patients, two EEG recordings were conducted 3 days apart for up to 24 hours,
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denoted as day 0 and day 3, respectively. All trials of up to five recording blocks of
the oddball paradigm were concatenated in superblocks and analyzed as single subject
datasets. Results showed that healthy controls exhibited a classification performance
above-chance level (50%) after stimulus onset, during the latency intervals associated
with the MMN and the P3 components. While none of the comatose patients exhibited
significant decoding results at the first superblock on day 0, two patients showed some
intervals with significantly above-chance performance at about the second half of this
day, and all of them reflected significant results on day 3. These preliminary findings
showed that the implemented multivariate analysis can accurately classify auditory
neural responses at single subject level, and provide evidence of a slight improvement
in auditory discrimination over time in coma patients. Further research is needed, using
a greater number of patients to determine whether these improvements can predict
emergence from coma and recovery of consciousness.

3.1 Introduction

Brain decoding approaches that incorporate machine learning tools on EEG/ERP data
have been increasingly embraced by cognitive neuroscience, and are potentially valuable
in determining how the representation of information differs between clinical and non
clinical populations. The recent advances of these methods have enabled researchers to
conduct data-driven investigation where complex neural patterns in large datasets can
be identified automatically, without relying on specialist expertise.

Multivariate pattern analysis (MVPA), also referred as multivariate decoding, is a
technique mainly used to distinguish between experimental conditions based on the
observed patterns of brain responses. It derives from the fields of pattern recognition
and supervised machine learning and is useful to track the temporal sequence of various
levels of information processing, from sensory to high-level cognitive processes (Fahren-
fort et al., 2018; Carlson et al., 2019). The ERP research, which also seeks differences
between conditions, uses traditional statistical methods such as t-test and analysis of
variance (ANOVA) that follow a univariate approach (i.e., taking information from
single-recording channels separately or from averaged signals across multiple channels).
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In contrast, MVPA allows the exploitation of the multivariate and high-dimensional
nature of EEG by taking into account the distribution of activity from multiple channels
simultaneously.

In the context of brain-injured patients with disorders of consciousness, various
auditory ERP components such as the MMN and P300, which are considered useful
predictors of emergence from coma (Daltrozzo et al., 2009; Morlet and Fischer, 2014;
Rodriguez et al., 2014), are often absent or challenging to detect at their classical scalp
locations and time intervals (Piarulli et al., 2015). Also, the recognition of the presence
or absence of these components is particularly difficult in intensive care patients due to
the many sources of artifacts (e.g., the array of equipment at each ICU bed) and/or the
drastic reduction in the amplitude of brain signals, make them difficult to isolate. This
has encouraged the use of MVPA to provide a global measure of the information present
in the signal rather than assessing for specific brain areas. It has been reported that
multivariate decoding analysis can predict survival rates in comatose patients (Tzovara
et al., 2013, 2015; Pfeiffer et al., 2018), and automatically classify the patients’ level of
consciousness (Sitt et al., 2014).

One of the major advantages of MVPA is its sensitivity in detecting subtle changes
in the patterns of neural activity that may not be picked up by more traditional ERP
analysis. The use of some classifiers trained to identify specific features in the data
(e.g., EEG samples at specific channels and time points) can deal better with noise and
artifacts in data. For example, a malfunctioning or very low impedance electrode would
be removed or interpolated during a typical ERP preprocessing to assure data quality.
Given that the classifiers in MVPA assign weights to each sensor, if the noisy electrode
is not informative for the prediction, they can assign it a low weight and cancel its
effect (Carlson et al., 2019). (Carlson et al., 2019). This methodology provides a single-
time curve of classification, which helps to overcome the inherent issues of statistical
correction for multiple comparisons across channels, and therefore provides scientists
with a rapid interpretable signal at the whole-brain level with high temporal precision.

Another interesting metric derived from MVPA was introduced by King and Dehaene
(2014) to characterize the temporal stability of the neural representations underlying
different cognitive processes. Under this procedure, a classifier trained at a given time
point of the trial, can also be tested at all available time points to determine whether
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specific activation patterns (e.g., associated with the generation of the MMN and P300
components) persist or reoccur across time. The authors discussed in a comprehensive
study the results of this so-called "temporal generalization method", and described
different generalization patterns that can be distinguished across time (e.g., isolated,
sustained, chain, reactivated patterns, and so on).

Here, we proposed the use of multivariate pattern analyses to discriminate the neural
representations encoded in single-trial ERPs associated with auditory deviance detection
in healthy controls, and showed evidence of its applicability in three comatose patients.
Using the MMN dataset described in Chapter 2, we focused on a binary classification
problem in order to predict whether a specific single-trial ERP measurement represents
a standard or deviant trial. Methodological aspects that influence classification perfor-
mance, such as the signal amplitude and the number of electrodes, were also considered
in order to evaluate the feasibility of this decoding approach for the assessment of brain
activity underlying auditory deviance detection in comatose patients.

3.2 Data collection and decoding analysis

EEG/ERP data were collected from 17 healthy controls (one 12-hour recording each)
and 3 comatose patients (up to 24-hour recording each) as part of an ongoing coma
study (Connolly et al., 2019). For patients, two recordings were conducted 3 days apart,
denoted as day 0 and day 3, respectively. For the purposes of this study, only the
recording blocks of an auditory oddball paradigm outlined in Chapter 2 (section 2.2.3)
were analyzed. Demographic and information of controls and patients are available in
section 2.2).

MVPA was implemented to quantify the differences in neural responses to standard
vs duration deviants in control subjects and comatose patients. The analyses that are
presented here were performed using custom written-MATLAB scripts (MathWorks
Inc., USA) based on functions from the MVPA-Light toolbox (Treder, 2020) integrated in
Fieldtrip (Oostenveld et al., 2011).
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Given the large amount of data, all trials of up to five recording blocks of the odd-
ball paradigm were concatenated to form a "superblock" per subject, which was then
analyzed as a single subject dataset. Every healthy control had one superblock, while
the comatose patients had two superblocks on day 0 and at least one superblock on
day 3. In case of Patient 3, the resulting superblock on day 3 contained six recording
blocks in total. This approach of concatenating a large number of trials was carried out
to reduce trial-to-trial variability within subjects, and provide a global characterization
of individual differences between the auditory responses within a long period of time.

3.2.1 Classification across time

Since oddball tasks designs are often unbalanced, we first re-balanced the model’s design
by applying undersampling correction (i.e., removing trials belonging to the standard
condition as the overrepresented class). The methods of under or oversampling has been
shown to prevent bias in classification, and improve the area under the curve (AUC),
which is a widely-used quantitative measure of classification performance, calculated
from the receiver operating characteristic (ROC) (Xue and Hall, 2015)

MVPA was then performed to discriminate between standard and deviant responses
on 11 electrodes (F3, Fz, F4, C3, Cz, C4, P3, Pz, P4, T7, T8) as features for every time
point separately, using a support-vector machine (SVM) classifier and the area under the
curve (AUC) as a performance metric. These 11 electrodes were the minimum number
of channels shared in common for all controls and patients. The input to the model was
a 3-D [trials x features x time points] matrix, and a vector of class labels (i.e., standard
and deviants).

Preprocessing included a "z-scoring" followed by a "sample-averaging" procedure as
nested operations within a cross-validation analysis. A nested preprocessing essentially
applies operations to the training and test sets separately. For instance, a nested z-scoring
operation, as described in Treder (2020), implies that on the training data the means and
standard deviations are computed, and therefore the train data are z-scored (normalized)
accordingly. For the test data, the same mean and standard deviation are used to center
and scale the data. As result of a "sample-averaging" operation, trials from the same
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class are split into multiple groups and subsequently the dataset is replaced by the
group means as a way to create new observations. Groups of 5 averaged trials were
implemented for consistency across all subjects and patients, as increasing the number
of trials improved slightly the classification performance, but led to a larger variability.
A 5-fold cross-validation with 10 repetitions was implemented to get a more realistic
estimate of the classification performance in discriminating the two classes of auditory
responses.

Lastly, a non-parametric permutation test was computed to assess whether the
classifier performance (AUC) was significantly above-chance level (50%). An AUC of
50% is uninformative and implies random guessing whereas a score of 100% amounts
to perfect classification. The permutation test creates a null distribution by shuffling
the class labels (i.e., standard and deviants) and repeating the multivariate decoding
analysis multiple times. This permutation test was based on 100 random permutations,
using the Tmax statistic to correct for multiple comparisons.

3.2.2 Generalization across time

An extension of the MVPA called "temporal generalization" was performed to explore
whether the classifier performance can be generalized to time periods with shared
representations. (Cichy et al., 2014; King and Dehaene, 2014). That is, instead of training
and testing the SVM classifier on data at each time point t, as described above, this one
is tested across all possible time points t’. For example, if the classifier is trained to
discriminate two activation patterns (e.g., standard versus duration deviants trials) at
200 ms, and is able to successfully classify such patterns at 250 ms, one may infer that
there is similar underlying neural representation (or cognitive processing) at those time
periods. This analysis yields a 2-D temporal generalization matrix of cross-validated
metrics. Conventionally, these matrices are depicted with the y-axis denoting training
time, and the x-axis denoting testing time or generalization. In each cell of the matrix, the
AUC scores are summarized. Classifier trained and tested at the same time corresponds
to the diagonal of the matrix, which is referred to as "diagonal decoding" and closely
corresponds to the outcome computed in the previous analysis (subsection 3.2.1). In
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contrast, if a matrix shows an off-diagonal pattern, it may indicate that the representation
is stable (similar) over time or becomes reactivated at different times.

Additionally, a classification analysis across time (outlined above in section 3.2.1)
was run on each single recording block collected for each patient in order to identify
fluctuations in decoding performance during the day. Since the number of trials is
more reduced in the single recording blocks compared to the superblocks, the sample
averaging operation included a group of two averaged trials in the preprocessing.

3.2.3 Effects of data features on decoding performance

To evaluate whether the MVPA procedure is actually feasible to be used in coma patients,
we investigated the effects of the signal amplitude, as well as the selected number of the
electrodes on classification performance in the control group.

Firstly, the mean amplitudes of each individual superblock were computed over
50 and 100 ms periods surrounding the peak latency of each component of interest
respectively (MMN: 80-230ms and P300: 250-350ms), and correlated with the maximum
AUC scores found within those latency intervals.

Secondly, in order to assess whether the implemented decoding procedure (using
11 electrodes) preserved its predictive value for clinical purposes, we computed the
proposed multivariate procedure using 64 electrodes, and compared the maximum AUC
scores when reducing the number of electrodes from 64 to 11 using a paired-samples
t-test.

Finally, a "searchlight" approach with 5-k fold cross-validation as detailed in (Treder,
2020), using a maximum of five ERPs (averaged responses) from each control subject,
was carried out to identify which electrodes discriminated better between conditions
across subjects. We hypothesized that the selected 11 electrodes contained sufficient
discriminative information for the classification. This approach was implemented at the
baseline (ranging from -100 to 0 ms), and in 50-ms intervals after stimulus onset (from
50 to 550 ms).
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3.3 Results

3.3.1 Single-trial decoding in control subjects

All control subjects exhibited significantly above-chance performance after stimulus
onset, peaking within the latency intervals associated with the MMN (150-230 ms) and
the P3a components (250-350 ms). Maximum AUC scores when discriminating duration
deviants versus standard tones ranged from 80% to 94%. A summary of the individual
results is shown in Table 3.1. Notice that seven subjects exhibited maximum scores
within the P3a interval.

Table 3.1: Summary of maximum AUC scores for each individual control subject, including the
standard deviation (SD), latency and the associated ERP components.

Subjects AUC (%) SD (%) Latency (s) ERP

1 0.94 0.03 0.294 P3a
2 0.82 0.04 0.156 MMN
3 0.81 0.06 0.154 MMN
4 0.86 0.05 0.162 MMN
5 0.90 0.03 0.269 P3a
6 0.89 0.05 0.255 P3a
7 0.88 0.04 0.271 P3a
8 0.80 0.06 0.212 MMN
9 0.85 0.85 0.267 P3a

10 0.87 0.05 0.222 MMN
11 0.89 0.03 0.195 MMN
12 0.91 0.05 0.212 MMN
13 0.89 0.06 0.208 MMN
14 0.80 0.07 0.199 MMN
15 0.92 0.06 0.267 P3a
16 0.85 0.06 0.271 P3a
17 0.81 0.11 0.201 MMN

The multivariate decoding results from a representative control subject are displayed
in Figure 3.1. Classification performance was significant after stimulus onset at the
latency intervals associated with the MMN, the P3a, and to lesser extent at time intervals
preceding and following these components (see panel A). The diagonal of the temporal
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generalization matrix (in panel B) indicated a succession of processing stages, analogous
to the classification performance curve (shown in panel A).

Given the variability across trials within each subject, transient generalization pat-
terns off-diagonal (yellow patches) were observed, but two of them were consistently
present in most of the subjects. As illustrated in the example (see Figure 3.1B), the SVM
classifier trained from 100 to 250 ms (corresponding to the time window of the MMN)
generalized data at a later time, between 400 and 600 ms. Similarly, the training time
points from 0 to 100 ms generalized around 250-300 ms.

Figure 3.1: Multivariate decoding results of a representative control subject for duration deviant
versus standard comparison. (A) Classification performance across time. The shaded area is the
standard deviation across trials. The thick line indicates the time points where decoding is
significantly higher than chance level. (B) Temporal generalization plot of decoding
performance. Color bar indicates AUC scores.
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3.3.2 Effects of amplitude and electrodes on decoding performance

Using a Pearson correlation test, the classification performance was found to be strongly
correlated with the amplitude of both MMN (r(15) = -0.668, p < 0.01) and P3a components
(r(15) = 0.843, p < 0.01) (see Figure 3.2).

Figure 3.2: Correlation analysis of the individual classification performance with the ERP
component amplitude were significant for both the MMN and P3a components.

The effect of reducing the number of electrodes from 64 to 11 on the classification
performance is shown in Figure 3.3. After confirming assumptions of normality were
met (Shapiro-Wilk test = 0.908, p > 0.05), the paired-sample t-test (panel A) showed no
significant differences (t(16)=1.49, p > 0.05), which suggests that the selected electrodes
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used in the present study were sufficient to provide discriminative information between
conditions.

Figure 3.3 (panel B) showed the results of applying a searchlight MVPA across sub-
jects. Topographic maps showed high decoding performance during the time intervals
associated with the MMN/P3a complex (150-250 ms; 250-350 ms), with maximum values
at frontocentral electrodes. Notice that the selected 11 electrodes are spatially distributed
on the regions showing the highest AUC scores.
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Figure 3.3: Effect of reduced number of electrodes on classification performance and searchlight analysis across subjects. (A)
Paired-sample t-test revealed no significant differences in classification performance using 64 electrodes in comparison to 11
electrodes. (B) Searchlight MVPA computed over the baseline and 50 ms-time intervals after stimulus onset showed the
electrodes that better discriminate between conditions.
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3.3.3 Single-trial decoding in coma

The decoding results of the three comatose patients on each recording day are displayed
in Figures 3.4 to 3.6. While none of the comatose patients exhibited significant results
at the first superblock on day 0, the patients 2 and 3 displayed some intervals with
significantly above-chance performance after stimulus onset at about the second half
of day 0 (second superblock). Despite being reduced in comparison to controls, the
classification performance was significantly above-chance on day 3 in all patients.

Patient 1 displayed significant decoding results in the two superblocks on day 3
(Figure 3.4). The first superblock showed maximum AUC scores around 65%, peaking
at 205 ms, within the time window of the MMN component. The second superblock
showed two consecutive intervals with above-chance performance (AUC scores around
59% and 62% respectively), suggesting the presence of the MMN/P3a complex. The
temporal generalization matrices (on the right) displayed consistently these dynamical
patterns of decoding performance on the diagonal.

Patient 2 who had shown reduced performance, but slightly higher than chance
in the first recording session on day 0 (AUC scores∼56%), increased the classification
performance on day 3 up to 68 and 70% in intervals associated with the MMN and
P3a components respectively (see Figure 3.5). A later AUC peak at 71% was also
observed around 460 ms. During that day, this patient had showed behavioral signals of
emergence from coma state: spontaneous eyes opening and withdrawal from pain as
reflected in a GCS score of 9. Based on the study protocol, only a superblock consisting of
two recording sessions were performed in patients emerging from coma. The temporal
decoding matrix corresponding to the day 3 showed several activation patterns on
the diagonal, suggesting the presence of the MMN/P3a complex followed by a late
pattern of discrimination between 400 and 600 ms. Transient generalization patterns
(off-diagonal yellow patches), were also observed at time points above and below the
diagonal, suggesting that brain generators might be reactivated at a later time.

Patient 3 displayed maximum AUC of 63% around 120 ms at the second superblock
on day 0, and AUC of 60% at an early time interval, close to 100 ms on day 3 (see Figure
3.6). The time generalization decoding matrices revealed early decoding, limited to the
diagonal either associated with the latency of the MMN or the DRN component (i.e., a
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deviant-related negativity, which represents a spatial-temporal summation of both N1
and MMN components) as described in Tavakoli et al. (2019).
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Figure 3.4: Multivariate decoding results of Patient 1 on day 0 and day 3. Color bar in the temporal generalization matrices
(second and fourth column) indicates AUC scores.
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Figure 3.5: Multivariate decoding results of Patient 2 on day 0 and day 3. Color bar in the temporal generalization matrices
(second and fourth column) indicates AUC scores.



74
C

hapter
3.

D
ecoding

auditory
ER

Ps
for

neurophysiologicalm
onitoring

in
com

a

Figure 3.6: Multivariate decoding results of Patient 3 on day 0 and day 3. Color bar in the temporal generalization matrices
(second and fourth column) indicates AUC scores.
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3.3.4 Tracking decoding performance at each single block in coma

For patients, the classification analysis across time was also computed at each single
recording block to track decoding fluctuations over time, and explore which single
blocks contributed more to the global responses observed at each superblock.

As displayed in the figures 3.7 to 3.9, all patients showed significantly above-chance
performance (with AUC scores ranging from 62 to 65%) only in one block (block 4) out
of the five single blocks that were used to form the first superblock on day 0.

Patient 1 had the highest number of single blocks with significantly above-chance
performance on day 3, particularly in the last five blocks (blocks 6 to 10), which explains
why the second superblock on day 3 showed higher AUC scores.

Patient 2 exhibited significant results in four single blocks at about the second half of
day 0 (included in the second superblock). This patient showed signals of awakening
from coma on day 3, and therefore only two single recording blocks were collected.
Interestingly, these single recordings exhibited the highest AUC scores of 80 and 70%
respectively in latency intervals associated with the P3a component (see Figure 3.8).

In Patient 3, three blocks (7, 8 and 10) with significant results on day 0, and three
blocks (2, 4 and 6) on day 3 were observed. Considering the proportion of blocks per
patient, the classification performance on discriminating duration deviants vs standard
sounds was fluctuating across blocks in all patients, particularly in Patient 3 (see Figure
3.9).

3.3.5 Patient outcomes

The three patients showed a slight behavioral improvement on Day 3 as reflected by the
clinical scales (see clinical scales in Chapter 2, Table 2.1). Despite the improvement in
behavioral scales and decoding performance, Patient 1 passed away after withdrawal
of life support. Patient 2, who awakened from coma on day 3, had good recovery after
a year. Patient 3 was discharged to a different hospital, remaining dependent on the
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ventilator, and subsequently transferred to a chronic care facility where was diagnosed
as UWS.
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Figure 3.7: Classification performance of Patient 1 at each single block on day 0 and day 3. Black arrows indicate the blocks
with above-chance performance.
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Figure 3.8: Classification performance of Patient 2 at each single block on day 0 and day 3. Black arrows indicate the blocks
with above-chance performance.
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Figure 3.9: Classification performance of Patient 2 at each single block on day 0 and day 3. Black arrows indicate the blocks
with above-chance performance.
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3.4 Discussion

This study demonstrates that multivariate approaches are well suited to decode single-
trial ERP responses that have been typically associated with coma emergence and
positive functional outcome. Our results showed high decoding performance in all
control subjects, with maximum AUC scores ranging from 80 to 94% corresponding to
the MMN and P3a intervals. In some subjects (7/17), the AUC peaks were observed in
the associated P3a intervals, a finding that has been previously reported and associated
with an automatic attentional shift towards the deviant sounds (Brandmeyer et al., 2013).

Here, we followed a similar approach to that used by Tzovara and collaborators, who
applied a multivariate procedure in postanoxic coma patients to decode the differences
between deviant and standard trials elicited during a classic oddball paradigm (Tzovara
et al., 2013). In contrast to these authors, who modeled the distribution of single-trial
ERP responses using a mixture of Gaussian assumptions, we used a linear support vector
machine (SVM) classifier, and included nested operations, such as averaging trials within
a cross-validation analysis. This latter seeks to reduce data dimensionality and increase
the signal-to-noise ratio (SNR), which is known to improve the decoding performance
(Grootswagers et al., 2017; Treder, 2020). Taken together, these methodological differ-
ences may explain why our approach achieved greater classification scores in healthy
controls (mean AUC= 86%) in comparison to Tzovara’s findings (mean AUC=72%)
when decoding EEG responses to standard versus duration deviants.

In a different context and using other active experimental tasks that required suffi-
cient engagement and attention from the participants, King and colleagues found that
single-trial classification with SVM leads to AUCs between 73% and 90% depending on
the type of recording (EEG, intracranial EEG or magnetoelectroencephalography(MEEG),
reaching mean AUC scores of 77.8% when recorded with high-density EEG (King et al.,
2013). Our findings confirm that the implemented decoding algorithm is robust and
can automatically distinguish single-trial neural responses, but in passive listening
conditions. While active paradigms are supported in the literature for their obvious
benefits, they can also underrate the degree of consciousness in DOC patients. As
reported in a meta-analysis, passive paradigms using fMRI or EEG suggested preserved
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consciousness more often than active paradigms in patients who emerged from coma as
VS/UWS or MCS (Kondziella et al., 2016)

Additionally, the exploratory analysis of the temporal generalization matrices con-
firmed the presence of a serial chain of activation patterns associated with the presence
of the MMN and the following P3a component that arises automatically shortly after
the MMN. The authors of this method (King and Dehaene, 2014), used MEG recordings
while conducting an elegant variant of the classic oddball task, the so-called local-global
paradigm (Bekinschtein et al., 2009). In this paradigm two levels of regularity can be
violated: one local that implies a change of sound within each single trial, which is
postulated to elicit the MMN/P3a complex, and one global (i.e., a change of sound
sequence across trials) that generates the P3b component, which is thought to depend
on working memory and conscious access. The activation patterns found in our sample,
plotted in Figure 3.1B, are equivalent to the local effects found in previous research
(King and Dehaene, 2014; King et al., 2014), in which the decoding of local-standard
versus local-deviants led to the mismatch and the sequential recruitment of patterns
of brain activity, as reflected in a diagonally shaped pattern of temporal generaliza-
tion. Although there was considerable variability across trials within subjects, short
off-diagonal patterns were also observed, but there were two of them consistently seen
in healthy controls. The classifier trained around 100-250 ms (the same time window
of the MMN component) generalized data between 400 to 600 ms, and the training
time points corresponding to 0-100 ms generalized over the latency related with the P3a
component. Based on the main types of dynamics postulated by King and Dehaene,
this phenomenon may indicate that similar generators associated with early processing
stages could be reactivated at a later time, sharing common neural representations (King
and Dehaene, 2014). Future research, using source localization methods, could help
to identify the brain generators of these ERP responses and confirm whether they are
reactivated.

3.4.1 Clinical value for coma research

Decoding auditory ERP responses at the single-subject level promises to be of great
value in clinical applications for coma patients. Consistent with previous evidence
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(Brandmeyer et al., 2013), the classification performance in our study was found to be
strongly related to both the MMN and P3a amplitudes (Figure 3.8), suggesting that the
analyses successfully capture relevant single-trial features in the data. In this regard,
ERP-based decoding performance (AUC) could also be used as a neurophysiological
tool for tracking amplitude fluctuations of brain activity.

Another important aspect to take into account when implementing automatic de-
coding procedures, is to determine the optimal number of electrodes to achieve high
classification performance. Previous studies conducted in patients with acute coma
state and other disorders of consciousness, have implemented similar approaches using
different EEG configurations, from 19 (Tzovara et al., 2013, 2015; Cossy et al., 2014;
Rossetti et al., 2014) to 128 electrodes (King et al., 2013). While a high number of EEG
electrodes raises computational and experimental costs, and might deteriorate the de-
coding performance because of the larger number of features involved, it has been found
that reducing the number of EEG channels decreases the classification performance
(Brandmeyer et al., 2013). However, an important study conducted by Engemann and
his team demonstrated that multivariate analysis utilized to discriminate between levels
of consciousness is robust across different EEG configurations (Engemann et al., 2018).
The authors found that discrimination performance increased with the number of elec-
trodes and epochs, but was already strong with 16 electrodes from a 10-20 montage. In
the current study, reducing all available 64 electrodes to 11 had no effect on the classifi-
cation performance (Figure 3.3), which suggests that a few electrodes, located over the
central-middle line and temporal regions, captures sufficient discriminative information
of the auditory responses. Providing a robust decoding performance with such reduced
number of EEG channels is extremely useful for clinical applications in intensive care,
since severe brain injuries and neurosurgical procedures in some comatose patients may
limit the placement of a high-density EEG montage on the scalp.

3.4.2 Decoding single-trial ERP responses in comatose patients

Having demonstrated the feasibility of the decoding procedure to distinguish between
single-trial ERP responses in healthy controls, we applied it in three coma patients.
The results revealed that while none of the patients exhibited significant results at
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the first superblock on day 0, two patients (Patients 2 and 3) showed some intervals
with significantly above-chance performance at about the second half on this day (i.e.,
second superblock). All of them exhibited maximum AUC scores of 65%, 70% and
60% in time windows associated with either the MMN or the P3a component on day 3.
These findings are in line with previous work (Tzovara et al., 2013, 2016; Rossetti et al.,
2014), which demonstrated intact auditory discrimination in acute coma state, as well as
important improvements in classification performance over time.

In contrast to these studies, none of the patients here underwent any therapeutic
hypothermia treatment that could explain their improvement in auditory discrimination
on day 3. We believe that the patients might have reflected positive neurophysiological
changes after three days of intensive care, as illustrated in the slight increase of their
behavioral scores (GCS and FOUR scores, in Table 2.1). This indicates that decoding
performance may predict the patient’s clinical course. In fact, the patient with the
highest decoding performance (Patient 2; AUC=70%) showed behavioral signals related
with coma awakening on day 3, and a positive outcome after a year of rehabilitation
(i.e., good recovery). Similar to controls, the temporal dynamical activation patterns in
this patient were observed in chain (although slightly isolated) on the diagonal of the
temporal matrix, with transient generalization patterns (off-diagonal). Additionally, the
multivariate analysis applied to the single-recording blocks showed a maximum AUC
score of 80% on day 3 (Figure 3.8). Such increase of decoding performance in a brain-
injured patient in comparison to other single blocks, provides further evidence of the
waxing-waning pattern underlying conscious state (not necessarily awareness) in coma
(Armanfard et al., 2019). It also highlights the potential use of this decoding technique
to track progression of auditory discrimination and complement other available tests
and behavioral assement to predict coma emergence. As stated by Morlet and Fischer in
a comprehensive review (see Morlet and Fischer (2014)), multivariate algorithms like
those implemented in Tzovara and King’s studies (Tzovara et al., 2013; King et al., 2013)
can provide assessment of sensory and mismatch processes without traditional ERP
recognition. Such methods provide each patient’s decoding accuracy/performance with
no a priori hypothesis about MMN or other responses.

The other two patients have different outcomes: one passed away after withdrawal of
life support (Patient 1), and the other (Patient 3) survived in the ICU, but was eventually
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declared to be in VS/UWS and transferred to a chronic care facility. These results are
also coherent with Tzovara’s findings that showed evidence that both survivors and
non-survivors patients exhibited accurate auditory discrimination during acute coma
state, and only their positive or negative progression of sound discrimination over time
was the major predictor of their chance of survival and outcomes (Tzovara et al., 2013,
2015). Based on this scenario, we cannot discard the possibility that Patient 1 would have
survived and had a different outcome if the critical care was not withdrawn, especially
after showing consistent improvement of auditory discrimination on day 3. In Canada,
withdrawal of life supporting interventions is a common cause of death in 70% patients
with DOC, and some decisions are made too early for accurate prognostication (Turgeon
et al., 2011). Those family and medical decisions are based, to some extent, on the
recognition that many survivors of severe brain injuries, who emerge from coma, never
recover consciousness (Edlow et al., 2021), remaining in a persistent VS/UWS or MCS
with physical and cognitive disabilities for decades or the rest of their lives. However,
our preliminary results could encourage the use of neurophysiological measures to
support the provision of life-sustaining therapies, particularly when there is clinical
uncertainty of coma emergence.

3.5 Conclusions

A multivariate decoding approach revealed that the neurophysiological responses
elicited by duration deviants and standard sounds during an oddball paradigm can
be robustly discriminated in healthy controls. The same approach applied to a small
sample of comatose patients showed lower decoding performance in comparison to
controls, but still above-chance level mainly during the second recording day. If as-
sessed in larger patient cohorts, our findings may have potentially important clinical
implications, because they could provide clinicians with an automatic tool to monitor
neurophysiological changes over time and improve prediction of coma outcome.
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Chapter 4

Functional connectivity in the dying
brain: a case study

Preface: In this chapter, we propose a machine learning procedure to characterize EEG
functional connectivity in response to auditory stimuli and resting state in a single-
comatose patient during his last hours of life. This report, is to our knowledge, the first
to compute EEG functional connectivity at both the sensor and source levels in a dying
coma patient. We believe that our procedure could be used to gain better understanding
of the neurophysiological mechanisms that may occur in coma and other unresponsive
patients at the end of life.

Abstract

Functional connectivity (FC) applied to electroencephalogram/event-related potential
(EEG/ERP) data has gained considerable traction in the clinical field, as it can be
used as a valuable tool to make outcome predictions in coma and other disorders of
consciousness (DOC). Here, we computed FC in response to auditory stimuli and during
resting state in a coma patient, who unexpectedly died during an EEG recording session.
Using a machine learning approach, we found high classification performance (>90%)
across all frequency bands when discriminating single-trial FC in response to auditory
stimuli between the coma patient and five healthy controls. This translates to decrease
FC in response to auditory stimulation in coma. Paradoxically, we observed FC changes
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in resting state over time, with periods of hyperconnectivity close to the point of death.
If these preliminary findings are replicated in a larger sample, the proposed approach
could potentially be translated into a clinical care setting for the EEG monitoring and
outcome prediction in coma and other unresponsive patients.

4.1 Introduction

Electroencephalography (EEG) has proven to be a powerful tool for the clinical diagnosis
and prognoses of several clinical populations. Among the main advantages of EEG
technology is its ability to measure neural activity directly instead of indirect blood
flow or metabolic signals, its non-invasiveness, ease of use and accessibility. In general,
applications in severe brain injured patients have focused on the spectral analysis
of EEG-resting state and event-related potentials (ERP) for the classification of the
patient’s clinical state. More recently, the study of the neural bases of consciousness and
their disorders has greatly benefited from the application of modern and sophisticated
connectivity analyses. Indeed, several theoretical proposals of how consciousness arises
often refer to aspects of brain activity as a network of interacting brain regions that
requires synchronized communication of information (Dehaene and Changeux, 2011;
Tononi et al., 2016).

In particular, FC is defined as the non-directed statistical interdependence among
spatially distant neurophysiological regions (Friston, 2011), and it is usually quantified
by cross-correlation, coherence, phase synchronization, information theory-based met-
rics and so on. During EEG-resting state, FC seems to be drastically altered in coma
and other disorders of consciousness (DOC), showing potential to distinguish different
levels of consciousness and predict clinical outcomes (Höller et al., 2014; Sitt et al., 2014;
Chennu et al., 2014, 2017; Zubler et al., 2017; Carrasco-Gómez et al., 2021). However,
what still remains under-investigated are the disturbed connectivity features in response
to deviant or environmental stimuli during cognitive experimental tasks. Only a few
studies have so far investigated FC under auditory neural processing, revealing that
phase synchronization-based measures such as phase locking value (PLV) could be an
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additional neurophysiological tool to measure levels of dysfunction in DOC (Binder
et al., 2017) and predict coma awakening (Lechinger et al., 2016; Alnes et al., 2021).

Another element to consider, is that most of the EEG connectivity studies in coma
research have been performed at the sensor or electrode level, which may not exactly
reflect the true neural linkages among brain areas. That is, the biological interpretations
of the identified networks are not straightforward, since EEG signals from scalp can
be strongly corrupted by the volume conduction effects as a result of the electrical
conduction properties of the head, and that multiple scalp electrodes may pick up the
activity arising from the same electrical sources in the brain (Schoffelen and Gross,
2009; Brunner et al., 2016; Hassan and Wendling, 2018). Several studies have reported
the limitations of computing connectivity analyses at the sensor level (Schoffelen and
Gross, 2009; Hassan and Wendling, 2018; Van de Steen et al., 2019; He et al., 2019). A
potential solution, still under development and not without its pitfalls, is using EEG
source connectivity methods. These methods seem to reduce the volume conduction
problem and permit the identification of meaningful connectivity patterns at the cortical
level with a high time-space resolution (Hassan et al., 2014, 2015).

Very recent studies have integrated EEG source localization methods to study FC
networks in DOC (Rizkallah et al., 2019) and palliative patients at the end of life (Blundon
et al., 2022). The investigation conducted by Blundon and colleagues showed that some
hospice patients, who became unresponsive during the last hours of life, evidenced
activation of a well-characterized network (DMN: default mode network) that includes
medial fronto-parietal regions, and it is usually activated when no explicit task is
performed (Blundon et al., 2022).

For this report, we studied an acute coma patient who unexpectedly died during
an EEG recording protocol. First, a phase-based measure of FC to auditory stimuli
and resting state (RS) was quantified at both the sensor and source levels. Then, we
used a machine learning (ML) approach following two main objectives: 1) identify the
main single-trial FC features to auditory deviant stimuli that better discriminate a dying
coma patient from healthy controls, and 2) determine whether there are RS connectivity
changes across time in coma at the single-subject level during the last hours of life.
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4.2 Methods

4.2.1 Case study and healthy controls

A 19-year-old man was found comatose (GCS=3) after sustaining an electrocution
injury at the workplace. Upon emergency medical services arrival, the patient received
cardiopulmonary resuscitation (CPR) and was transported to the Hamilton General
Hospital, where he had three episodes of cardiac arrest in the emergency room. Once
stabilized, the patient was taken to the ICU. A computed tomography (CT) raised the
possibility for an early anoxic brain injury, and a repeated CT done 3 days later showed
diffuse hypoxic ischemic injury. Glasgow Coma Scale (GCS) remained 3 throughout his
stay in the ICU, and the EEG revealed generalized suppressed activity. The medical team
declared a poor outcome prognosis for this patient, and organ donation after cardiac
death was discussed and consented by the family. Informed consent for the EEG study
was obtained from the substitute decision maker.

Five healthy subjects (mean age: 23 ± 5 years; 3 males) were recruited from the
local community and had no reported medical history related to central nervous system
(CNS) function or known hearing impairment. The study was approved by the Hamilton
Integrated Research Ethics Board (HiREB).

The flow chart of our procedure is summarized in Figure 4.1 depicting the following
steps:

a) EEG recording and preprocessing of auditory ERP and resting state paradigms;

b) Computation of FC connectivity at both the sensor and source levels;

c) Implementation of a ML procedure to accomplish two main objectives: identify
discriminating FC features in response to deviant stimuli between the coma patient and
healthy controls; and explore whether there are RS connectivity changes in the coma
patient before death.

Details of each step is explained in the following sections.
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4.2.2 EEG recording and preprocessing

EEG/ERP data were acquired from an original study protocol, in which 10 min-RS
periods interspersed within several ERP tasks, including the MMN paradigm described
above (Chapter 2, section 2.2.3). The EEG recording lasted approximately 2 hours, and
was terminated when the patient died as result of a cardiac arrest. For the purposes of
this study, we analyzed two datasets: one containing a single-recording block of the
MMN paradigm, and the second one, which included three RS-time periods recorded in
the comatose patient and healthy controls. The first RS period in the coma patient (de-
noted as RS01) was recorded approximately 1 hour and 50 min before death declaration,
while the second (RS02) and third (RS03) periods were recorded 1 hour and 35 minutes
respectively before death.

For healthy controls and the comatose patient, EEG data were recorded with a sample
rate of 512 Hz (bandpass between 0.01 and 100Hz) using a 64-channel Biosemi ActiveTwo
system (Amsterdam, The Netherlands). Electrodes were placed on the scalp according to
the extended 10/20 system using a 64-electrode cap. Data preprocessing was conducted
offline (Brain Products Inc.), with bandpass filters of 1-30 Hz. Electroculogram (EOC)
signals were monitored by electrodes placed above and over the outer canthus of the
left eye and reference electrodes were recorded from mastoids. Ocular artifacts were
corrected by using ICA transformation. All EEG trials from the MMN paradigm were
segmented from 100 ms pre-stimulus to 600 ms post-stimulus and baseline corrected
(-100 to 0 ms), while the RS recordings were segmented in epochs of 3 seconds. All EEG
trials and RS epochs were free of eye-movements, blinks, excessive muscle activity, signs
of drowsiness (in controls) and electrocardigram (EKG) artifacts.

4.2.3 Functional connectivity to auditory stimuli and resting state

After preprocessing, 70 single-trial ERP responses corresponding to the duration deviant
(0-600 ms), and 136 epochs (3 sec each) for each RS time period were the inputs to
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compute the FC analysesa. These two datasets (auditory ERP responses and resting state
conditions) were analyzed separately.

Once the time series were bandpass filtered at the following frequency bands: delta
(1-4 Hz), theta (5-7.5 Hz), alpha (8-12 Hz) and beta (13-29 Hz), the phase locking value
(PLV) was computed as a FC measure between each electrode pair (i.e., sensor level) and
each source-reconstructed region (i.e., source level). The assumption underlying PLV
is that if two brain regions are functionally connected, then the difference between the
instantaneous phase of the signals from these regions should be more or less constant
(Lachaux et al., 1999). Instantaneous phases of each EEG channel were extracted via
Hilbert transform, a standard way to transform the real signals into a complex represen-
tation. The PLV ranges from 0 (indicating non-phase synchronization) to 1 (implying
high synchronization or minimal phase variability over the trials or epochs). All the
analyses were done in Matlab, version R2021b (MathWorks Inc., USA), by using the
Brainstorm software (Tadel et al., 2011) in combination with custom-written Matlab
scripts.

Sensor-level connectivity: A symmetric FC matrix (M) of Ne x Ne (64 x 64)- where
Ne is the sensor number- is obtained for each ERP trial or RS epoch and frequency band.
Each element Mij of M matrix contains the PLV values between EEG sensors ‘i’ and ‘j’.
Given the matrix M is symmetric, the self-connections Mii were excluded, implying ze-
ros in the diagonal of the M matrix. This results in Ne × (Ne − 1)/2 = 64× 63/2 = 2016
PLV pairs of sensors for each frequency band.

Source-level connectivity: The FC between source brain regions was computed
following two main steps as previously suggested by Hassan and colleagues (Hassan
et al., 2015): 1) the reconstruction of temporal dynamics of the cortical sources, and 2)
the measurement of FC (i.e., PLV) between the reconstructed time series.

aThe rationale for selecting only the single-trials responses elicited by duration deviants is based on
previous findings (see Chapter 2) that showed high detectability of MMN responses to duration deviant
types at both the group and single-subject levels
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First, a head model, based on the anatomy derived from the ICBM 152 brain tem-
plateb, was created using a symmetric boundary element method (BEM) by using the
Open-MEEG package, available in Brainstorm software. The BEM includes realistic-
shaped shells that represent the brain, scalp and skull, and it is known to integrate
correctly their conductivity and anisotropic properties (Gramfort et al., 2010). With
regard to physical constraints, a cortical mesh of 15,000 vertices (in which the position of
each source is a vertex on the cortical mesh) was used to compute the lead field matrix,
which determines how the electrical activity at a certain electrode is related to the activity
of the different sources in the brain. The orientation of each source was set up normal
(perpendicular) to the cortical surface for each vertex, given the main contributors of
EEG signal are the postsynaptic currents from the pyramidal cells, which are organized
in macro-assemblies with their dendrites normally oriented to the local cortical surface
(Baillet et al., 2001). Then, using an identity matrix as noise covariance, we applied
the method Weighted Minimum Norm Estimator (wMNE), which is a mathematical
constraint to reconstruct the cortical sources. The source (S) estimated by wMNE is
expressed as:

Ŝ(wMNE) = (LTWEL + λC)−1LWEE (4.1)

where WE is the weighted matrix that is classically a diagonal matrix built from the
lead field matrix L. Here, λ denotes a regularization parameter (set at 0.1) and C is the
noise covariance matrix. The weighted matrix algorithm compensates for the tendency
of the classical MNE methods to favour weak and surface sources (Michel et al., 2004).
In order to reduce the number of estimates, the source-reconstructed-time series were
projected onto 68 parcelled regions of interest (ROIs), extracted from the MRI template
and defined by the Desikan-Killiany atlas. The time series for voxels within each ROI
were averaged. Once the PLV values are computed, an adjacency connectivity matrix is
generated for each ERP trial or RS epoch across subjects, in which each element Sij of
the connectivity matrix (S) contains the PLV values between each ROI. This results in
Ne × (Ne − 1)/2 = 68 × 67/2 = 2278 PLV pairs of ROIs for each frequency band.

bThe ICBM 152 template is an unbiased non-linear average of MRIs of 152 adult human subjects.
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4.2.4 Machine learning procedure

The ML procedure contains the following steps: feature extraction, feature selection,
classifier training and validation.

Feature extraction and selection: For the auditory ERP task, we extracted a set of
most relevant FC features to discriminate single-trials responses of coma versus healthy
controls for each separated frequency band. The candidate features are the number of
FC pairs (2016 pairs of sensors or 2178 pairs of ROI sources) for each single trial with
their corresponding class labels (0 for the 70 deviant single-trials in the coma patient,
and 1 for 100 single-trialsc in healthy controls. These features were then passed tfrough a
minimum redundancy maximum relevance (mRMR) feature selection algorithm, which
uses a mutual information criterion to quantify statistical dependence (redundancy)
and simultaneously maximum statistical dependence (relevance) to yield a set of most
salient features that maximize the difference between the classes. The mRMR, developed
by Peng et al. (2005), is a popular method that yields better performance, and has been
used in several studies for characterization of schizophrenia, (Masychev et al., 2021),
mild traumatic brain injury (Cao et al., 2008) and coma (Armanfard et al., 2016). We
observed that the best number of salient features for each separated frequency band was
10. (See an example of the mRMR output for alpha frequency band in Supplementary
information II, Figure S1).

For the RS condition, the mRMR method and subsequent ML steps were conducted
to determine differences among 3 classes (RS01, RS02 and RS03) within each subject
and patient. Here, the number of best candidate features varied between 5 and 10 per
subject, so we used 10 features to be consistent across the entire study.

Classifier training and validation: For the ERP dataset, we performed a binary
classification to determinate differences between duration deviant responses of the
comatose patient and those from each individual healthy control. For each comparison
(e.g., coma vs. control 1, coma vs. control 2 and so on), we made sure to use a balanced

cThis number (100) was obtained by extracting 20 trials of each individual healthy control
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design, with matrices of dimensionality T x F, where T is the number of single trials (70
for coma and 70 for each individual control), and F is the number of the most salient FC
features (i.e., 10 PLV pairs) with their corresponding class labels. For the RS dataset, a
multiclass classification was run within the coma patient and each healthy control at the
single-subject level to determine differences across time (RS01 vs RS02 vs RS02), where T
in the constructed matrices represents the number of RS epochs (136 for each RS period).

We used five widely known classifiers: support vector machine(SVM), linear dis-
criminant analysis (LDA), K-nearest neighbor (KNN), Naive Bayes (NB) and decision
trees (Trees). A 5-fold cross-validation was implemented to get a more realistic estimate
of the classification performance. This latter involves splitting the data into k mutually
exclusive folds. Then K-1 folds are used as the training set, with the remaining fold
as the testing set. These methods were implemented using the Statistics and Machine
Learning Toolbox in Matlab, version R2021b (MathWorks Inc., USA).

Statistical analysis: Finally, we averaged the PLV over the subset of FC features (i.e.,
10 pair of sensors or ROIs), resulting in a single measure of mean FC per single trial
within each subject. Then, differences of FC values between the comatose patient and
each individual control were assessed with an independent-sample t-test. This analysis
was done over single trials or epochs, as multiple observations/samples are required
to make statistical inferences about the means. Similarly, for each RS period, a single
measure of FC was obtained per epoch within each subject. Here, a one-way analysis
of variance (ANOVA) at single-subject level was run to determine whether there were
mean differences in FC across RS periods in the coma patient. These latter statistical
analyses were conducted using JASP software (version 0.14.1).
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Figure 4.1: Steps to compute FC at both the sensor and source levels, and ML procedure.
A) EEG data during an auditory ERP paradigm and three resting-state time periods were recorded in a
dying coma patient and five healthy controls. After EEG preprocessing, the single-trial ERP responses to
duration deviants (0-600ms) and the resting state epochs (3 sec each) from each period were the inputs to
the source reconstruction method. B) Functional connectivity (FC), quantified by phase locking value
(PLV) is computed directly from sensors/electrodes or from estimated brain sources using a source
localization procedure. This procedure requires a head model (volume conductor) and the position of
electrodes. Using a segmented MRI template (e.g., ICBM152), the source distribution is constrained to a
field of current dipoles homogeneously distributed over the cortex and normal to the cortical surface.
Then, an inverse solution method is computed (wMNE) to estimate the source time series. A source space
with defined 68 regions of interest (ROIs), extracted from the Desikan-Killiany atlas was used. C) A ML
procedure, following the steps of feature extraction and selection, classification and validation, was
performed to discriminate single-trial FC to auditory deviants from the coma patient and healthy controls,
and determinate changes across RS periods in coma at single-subject level. Finally, some statistical
analyses were conducted to corroborate the ML results.
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4.3 Results

4.3.1 Functional connectivity to auditory deviant stimuli

Table 4.1 summarizes the classification performance of five classifiers discriminating
single-trial FC to auditory deviant stimuli in a coma patient vs. five healthy controls,
and mean FC differences at both sensor and source levels for each frequency band.
High classification performance was found across all frequency bands, with maximum
accuracies in alpha and beta bands at both the sensor and source levels (acuracies ≥ 90%
are displayed in bold). The SVM classifier seems to perform better than other classifiers,
showing the highest accuracies for each individual comparison. Notice a slight increase
of classification performance as the frequency increases, reaching up to 100% in beta
frequency when comparing with most of the controls.

The independent-sample t-tests confirmed these results, by showing significant
differences of mean FC values between the coma patient and each individual control
in all frequency bands. Cohen’s d according to Sawilowsky (2009) indicated a small or
medium effect size (d = 0.2 and 0.5, respectively) in the delta band; and either a large,
very large or huge effect size (d = 0.8, 1.2 and 2.0 respectively) in the other frequency
bands.

Figure 4.2 summarizes the results of computing FC in beta band at both the sensor
and source levels. Panel A shows the most discriminative FC features between the
comatose patient and controls for the beta frequency band, while panel B displays a
scatter plot projecting the first two main FC features for a linear SVM model prediction,
indicating a perfect and almost perfect separation of classes (coma vs controls) for
connectivity at the sensor and source levels, respectively. Notice the mean FC differences
between the comatose patient and each healthy control (in panel C).

The main FC features that better discriminate single-trial responses to deviant stimuli
in coma and controls, varied for each frequency band. Overall, the sensor-level FC
features (i.e., electrode pairs) were mainly located in frontocentral and frontoparietal
regions. The source-level FC features included a large variety of brain regions connect-
ing prefrontal, frontal, centrotemporal, limbic and posterior regions. Rostral anterior,
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caudalanterior and posterior cingulate, postcentral gyrus, insula, cuneus, precuneus,
superiotemporal and parahippocampal cortex were involved in all frequency bands.
(See the full list of both sensor and source-FC features in Supplementary information II,
Tables S1 and S2).
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Table 4.1: Classification performance of several classifiers discriminating single-trial FC of a coma patient from five healthy
subjects, and mean differences at both the sensor and source levels for each frequency band.

Patient vs Control 1 Patient vs Control 2 Patient vs Control 3 Patient vs Control 4 Patient vs Control 5

Classifiers Delta Theta Alpha Beta Delta Theta Alpha Beta Delta Theta Alpha Beta Delta Theta Alpha Beta Delta Theta Alpha Beta

SE
N

SO
R

SVM 92.3 95.8 97.2 100 91.5 96.8 97.3 100 92.3 95.1 95.8 100 93.0 94.4 97.9 100 90.0 90.1 97.2 99.3
LDA 86.0 90.1 95.8 99.3 88.0 90.1 97.2 100 89.4 92.3 94.4 100 90.8 91.5 94.4 99.3 83.8 87.3 96.5 98.6
NB 88.0 92.3 95.1 98.6 89.4 90.1 97.9 99.3 88.7 93.0 95.8 100 85.9 91.5 93.0 100 87.3 88.0 95.1 98.6
KNN 88.7 90.1 93.3 99.3 89.4 90.8 95.8 95.8 86.6 95.1 93.0 99.3 84.5 93.7 95.1 97.2 85.9 88.7 94.4 97.3
Tree 83.8 90.8 94.4 97.9 85.9 91.5 90.1 96.5 80.3 85.2 89.4 98.6 86.6 92.3 94.4 97.2 83.3 84.5 87.3 96.5

Patient mean 0.74 0.69 0.60 0.39 0.74 0.69 0.60 0.39 0.74 0.69 0.60 0.39 0.74 0.69 0.60 0.39 0.74 0.69 0.60 0.39
Control mean 0.78 0.83 0.71 0.48 0.79 0.85 0.73 0.48 0.78 0.84 0.71 0.48 0.77 0.83 0.70 0.49 0.79 0.82 0.73 0.48
t-value -3.08 -10.2 -7.9 -9.31 -3.45 -12.1 -9.28 -9.64 -2.55 -11.5 -7.62 -9.60 -2.13 -10.8 -7.93 -10.1 -3.42 -8.55 -8.40 -9.31
p-value < .05 < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .05 < .001 < .001 < .001 < .05 < .001 < .001 < .001 < .001 < .001 < .001 < .001
Cohen’s d 0.52 1.71 1.32 1.56 0.58 2.03 1.56 1.62 0.43 1.93 1.28 1.61 0.36 1.81 1.33 1.70 0.57 1.42 1.41 1.56
Effect size Med Vlarge Vlarge VLarge Med Huge Vlarge VLarge Small Vlarge Vlarge Vlarge Small Vlarge VLarge Vlarge Med Vlarge Vlarge Vlarge

SO
U

R
C

E

SVM 89.4 92.8 96.0 96.6 85.6 89.8 95.8 98.0 90.8 89.4 96.5 98.6 88.7 86.6 94.3 98.6 88.0 89.2 95.8 98.6
LDA 81.7 83.1 93.0 98.6 84.9 78.2 93.7 95.8 90.1 78.2 94.4 98.6 85.9 83.8 90.8 98.6 87.3 81.7 91.5 97.9
NB 78.9 88.7 92.3 98.6 84.5 81.0 95.1 97.2 89.5 89.4 96.5 98.6 85.9 82.4 91.5 98.0 88.0 83.1 90.8 98.6
KNN 81.0 80.3 91.5 98.6 83.8 73.9 95.8 95.8 88.6 68.3 95.8 97.3 86.6 83.8 90.8 97.2 86.6 83.1 90.8 98.6
Tree 73.9 83.8 81.7 88.0 73.9 76.8 85.2 93.7 76.1 86.6 81.0 90.8 81.7 73.2 88.0 93.7 78.2 81.0 77.5 93.0

Patient mean 0.63 0.70 0.49 0.40 0.63 0.70 0.49 0.40 0.63 0.70 0.49 0.40 0.63 0.70 0.49 0.40 0.63 0.70 0.49 0.40
Control mean 0.69 0.78 0.66 0.48 0.66 0.76 0.68 0.46 0.66 0.78 0.67 0.47 0.67 0.78 0.67 0.46 0.66 0.76 0.64 0.46
t-value -3.71 -6.58 -15.3 -8.05 -2.14 -5.06 -16.7 -6.61 -2.21 -6.66 -14.8 -6.68 -3.05 -6.78 -14.3 -6.48 -2.31 -5.03 -12.2 -5.90
p-value < .001 < .001 < .001 < .001 < .05 < .001 < .001 < .001 < .05 < .001 < .001 < .001 < .05 < .001 < .001 < .001 < .05 < .001 < .001 < .001
Cohen’s d 0.62 1.04 2.57 1.35 0.36 0.85 2.81 1.11 0.37 1.12 2.48 1.12 0.51 1.14 2.40 1.09 0.39 0.84 2.05 0.99
Effect size Med Large Huge Vlarge Small Large Huge Large Small Large Vlarge Large Med Large Huge Large Small Large Huge Large

SVM: Support Vector Machine; LDA: Linear discriminant analysis; NB: Naive Bayes; KNN: K-nearest neighbors;
Tree: Decision trees; Med: Medium effect size, Vlarge: Very large effect size. Accuracies ≥ 90% are displayed in
bold.
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Figure 4.2: Functional connectivity between coma and controls in beta band at both the sensor and source levels.
A) Most common discriminative FC features between coma and controls; B) Scatter plot projecting the first two main FC
features for a linear SVM model prediction; C) Mean FC differences between the coma patient and each individual control.
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4.3.2 Functional connectivity in resting state

Before conducting the ML procedure for discriminating changes in FC over time in
resting state, we observed visual differences in the averaged FC matrices over time in
the coma patient for all frequency bands, particularly in the theta band.

Figures 4.3 and 4.4 (panel A) display the averaged FC matrices across the RS periods
in the comatose patient, a representative single control and the control group at sensor
and source levels, respectively in theta band. Percentile thresholding was performed on
the matrices by selecting the top 10% of the strongest connections (highest PLVs), while
the remaining connections were set to zero. A circular graph (in panel B) displays an
example of the top 10% FC connections in RS02.

As it can be observed at sensor level, FC seems to increase over time in the comatose
patient, and the strongest connections are left lateralized in comparison to the controls,
who showed both local (i.e., close electrodes are highly connected) and inter-hemispheric
connections. Visual differences were not as obvious at the source level, but still a FC
increase, especially in theta band, was observed during RS02 in the coma patient (see
Figure 4.4). Here, the strongest connections (top 10%) were observed within frontotem-
poral, parietotemporal and frontolimbic regions, predominately in the left hemisphere.
The rest of FC matrices corresponding to other frequency bands in the comatose patient
are shown in Supplementary information II (Figures S2 and S3).

Our ML procedure achieved high classification when discriminating FC across the
three RS periods within the coma patient. Figure 4.5 (panel A) shows the 10 discrimi-
nating FC in the theta band at both the sensor and source levels. As it can be observed
in the scatter plot (panel B), two main features used as predictors were able to separate
the three classes (RS01, RS02 and RS03), achieving 93.4% and 92.0% accuracies at the
sensor and source levels, respectively when using a linear SVM classifier. Mean FC
differences across the RS periods are displayed in panel C. See a summary of the classifi-
cation performance for each classifier, and mean FC differences (one-way ANOVA at
single-subject level) for the comatose patient in Table 4.2. Post-hoc comparison using a
Bonferroni test revealed significant differences of mean FC among RS periods. At sensor
level, greater mean FC was found during RS02 and RS03 in comparison to RS01; while
at source level there was greater mean FC at RS02, which slightly decreased during RS03.
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See the full list of the most discriminative FC features for both sensor and source levels
in Supplementary information II (Tables S3 and S4).
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Figure 4.3: Sensor-level FC matrices across RS periods in the coma patient, a single control and the control group for the theta
band, and top 10% of the strongest connections in RS02.
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Figure 4.4: Source-level FC matrices across RS periods in the coma patient, a single control and the control group for the theta
band, and top 10% of the strongest connections in RS02.
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Table 4.2: Classification performance of several classifiers discriminating RS epochs within the
coma patient, and mean differences at both the sensor and source levels for each frequency band.

Classifiers One-way ANOVA Post-hoc comparisons

SVM LDA NB KNN Tree Condition Mean SD F p Comparison Mean diff. t-value pbonf

SE
N

SO
R

S

Delta 90.0 83.3 84.0 84.1 78.9 RS01 0.629 0.05 22.4 < .001 RS01-RS02 -0.04 -5.70 < .001
RS02 0.669 0.06 RS01-RS03 -0.04 -5.90 < .001
RS03 0.671 0.07 RS02-RS03 0.00 -0.20 0.978

Theta 93.4 93.4 91.7 90.4 89.0 RS01 0.477 0.06 90.95 < .001 RS01-RS02 -0.09 -10.63 < .001
RS02 0.568 0.07 RS01-RS03 -0.11 -12.50 < .001
RS03 0.584 0.08 RS02-RS03 -0.02 -1.87 0.186

Alpha 90.3 89.0.1.1 82.6 79.2 73.3 RS01 0.481 0.066 7.397 < .001 RS01-RS02 -0.03 -3.83 < .001
RS02 0.511 0.059 RS01-RS03 -0.01 -1.63 0.315
RS03 0.493 0.068 RS02-RS03 -0.02 2.21 0.084

Beta 92.6 92.2 90.2 89.0 84.1 RS01 0.457 0.05 4.68 < .05 RS01-RS02 -0.02 -0.28 1.00
RS02 0.459 0.04 RS01-RS03 -0.02 -2.28 < .05
RS03 0.472 0.05 RS02-RS03 -0.01 -2.50 < .05

SO
U

R
C

ES

Delta 91.7 90.7 91.7 90.2 81.4 RS01 0.478 0.05 4.494 < .05 RS01-RS02 -0.01 -1.20 0.69
RS02 0.486 0.05 RS01-RS03 0.01 1.78 0.23
RS03 0.467 0.05 RS02-RS03 0.02 2.98 < .01

Theta 92.0 91.2 91.2 86.8 82.6 RS01 0.418 0.05 14.44 < .001 RS01-RS02 -0.03 -5.32 < .001
RS02 0.452 0.06 RS01-RS03 -0.01 -1.97 0.15
RS03 0.431 0.05 RS02-RS03 0.02 3.35 < .05

Alpha 89.8 85.8 87.0 85.3 76.3 RS01 0.344 0.05 4.69 < .05 RS01-RS02 -0.02 -2.98 < .01
RS02 0.360 0.04 RS01-RS03 -0.01 -0.86 1.00
RS03 0.348 0.05 RS02-RS03 0.01 2.12 0.105

Beta 90.3 90.0 89.6 89.6 88.7 RS01 0.252 0.042 3.895 < .05 RS01-RS02 -0.011 -2.791 < .05
RS02 0.263 0.027 RS01-RS03 -0.006 -1.426 0.464
RS03 0.257 0.028 RS02-RS03 0..005 1.365 0.519

SVM: Support Vector Machine; LDA: Linear discriminant analysis; NB: Naive Bayes;
KNN: K-nearest neighbors; Tree: Decision trees; Mean diff: Mean difference; pbonf:
p-value from Bonferroni post-hoc test. Accuracies ≥ 90% are displayed in bold.
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Figure 4.5: Functional connectivity in coma across RS periodos in theta band at both the sensor and source levels.
A) Most discriminative FC features among RS periods in the coma patient; B) Scatter plot projecting the first two main FC
features for a linear SVM model prediction; C) Mean FC differences among RS periods at single-subject level.
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4.4 Discussion

This report makes a modest but important contribution at analyzing a phase-based
measure of FC in response to auditory stimuli and resting state at both the sensor
and source levels in a coma patient near death. Using a ML procedure, we sought to
distinguish auditory responses from the dying coma patient vs. individual healthy
controls, and track changes over time during resting state in coma.

4.4.1 Functional connectivity in response to auditory stimuli

Our ML procedure showed high classification performance when discriminating single-
trial FC in response to auditory duration deviants between a comatose patient and
healthy controls. Accuracies were above 90% across all frequency bands, with maximum
scores in alpha and beta bands for both sensor and source-level analyses.

Marked connectivity differences have been reported between DOC patients and
healthy controls in several studies, in which FC disruption tends to be more significant
and proportional to the level of impairment in consciousness (Boly et al., 2009; Vanhau-
denhuyse et al., 2010; Binder et al., 2017; Bodien et al., 2017). The specific hypothesis that
neural synchronization in response to auditory sounds would reflect coma severity was
recently evaluated by Alnes and colleagues in the alpha frequency band (Alnes et al.,
2021). The authors found that FC, quantified by PLV between electrodes during the first
day of acute coma, was significantly lower in non-survivor patients of cardiac arrest
compared to both conscious controls and survivors. Interestingly, the PLV was also
predictive of patients’ outcome at 3 months, suggesting that preserved phase synchro-
nization between EEG signals could be a necessary condition for the presence or return
of consciousness. Similar alterations have been previously reported in sleep, showing
decreased PLV to auditory stimuli in alpha and beta bands when subjects become un-
conscious (Lee et al., 2019). Changes in high-frequency connectivity, as suggested by Lee
and colleagues, are an indicator of the disintegration of dynamic connectivity during
the loss of consciousness (Lee et al., 2019). In the present study, the decreased FC in
response to auditory deviant stimuli would be then an expected finding for a patient
with a severe diffuse hypoxic-ischemic injury, who was particularly assessed in his last
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hours of life in comparison to healthy controls. The fact that classification performance
was found greater in the high-frequency bands, achieving perfect discrimination (100%)
in beta band when compared to most controls, is consistent with previous work.

Furthermore, the main discriminative single-FC features or connections in relation to
the controls were mainly distributed in frontocentral and frontoparietal regions. The
discriminating source-level features varied across different frequency bands. Several
brain structures within the frontal and posterior cingulate cortices, and others like insula,
cuneus, precuneus, superiotemporal and parahippocampal cortices, which are believed
to be important hubs for conscious information processing (Dehaene and Changeux,
2011; Laureys and Schiff, 2012; Holeckova et al., 2008; Boly et al., 2009), were commonly
identified.

Since our coma patient died during the EEG session, only a single block of the
auditory oddball paradigm was recorded. It remains to investigate the dynamics of FC
trough different blocks over time at single-subject level as we did when analyzing RS
periods.

4.4.2 Functional connectivity in resting state before the end of life

Single-subject analysis revealed RS connectivity changes over time in the coma patient
before the end of life. Using discriminating FC features between the three RS periods,
our ML framework was able to classify the epochs corresponding to each RS period,
achieving accuracies up to 93.4% and 92.0% at sensor and source levels respectively.
These findings provide evidence of increased FC in at least one of the last two RS periods
closest to death. One may argue that the reduced FC observed in the first RS period
(RS01) in our comatose patient, could be to the fact that this period was not preceded by
any auditory task as the other periods (RS02 and RS03), which perhaps were affected
as a result of previous auditory stimulation. In such a case, we should have observed
similar results in healthy controls, who rather displayed stable patterns of connectivity
across time.

Although a hypoactive brain with loss of anatomical and functional connections is
generally assumed in brain-injured patients, hyperconnectivity is not rare in neurological
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disorders. In fact, both hyper-and hypoconnectivity may coexist across different brain
regions as fundamental responses to neurological disruption (see Hillary et al. (2015) for
review). In a resting state-fMRI study, DiPerri and collegues found hyperconnectivity
in limbic structures, including the orbitofrontal cortex, insula, hypothalamus, and
the ventral tegmental area; with greater effects in UWS compared to MCS (Di Perri
et al., 2013; Perri, 2014). The authors concluded that hyperconnectivity could be an
indicator of persistent engagement of residual self-reinforcing neural loops, which
could disrupt normal patterns of connectivity, included synchronized activity. While
compensatory mechanisms (i.e., allocation of extra neural resources to compensate for
injury/damage) have been the most common explanation for the hyperconnectivity
responses documented in several brain insults like traumatic brain injury, multiple
sclerosis, Alzheimer’s disease and epilepsy (Hillary et al., 2014, 2015; Bharath et al.,
2015), much additional work is needed to determine their functional role and underlying
mechanisms.

There is also evidence demonstrating enhanced EEG brain activity and connectivity
in the dying brain. For instance, Chawla and colleagues reported transient electrical
spikes in critically ill patients immediately before cardiac arrest (Chawla et al., 2009,
2017). The exact cause of such responses, called end-of-life electrical surges (ELES), still
remain unknown (Chawla et al., 2017). Moreover, an electrophysiological study showed
a transient and global surge of synchronized gamma oscillations, exhibiting increased
interregional connectivity, during cardiac arrests in rats (Borjigin et al., 2013). This latter
study has been disseminated through mass media as establishing a hypothetical neuro-
logical explanation for the mental events known as "near-death experiences", which are
considered conscious perceptual experiences (e.g., out-of-body experiences, deep feeling
of peacefulness, entering a tunnel of bright light, etc), occurring in individuals during
resuscitation after cardiac arrest or in other non-life threatening situations (Martial et al.,
2020; Kondziella, 2020). However, more empirical evidence is still needed to explain
such intriguing phenomenon, documented worldwide in multiple cultures.

Additionally, we also found left-lateralized FC in the comatose patient, a finding that
was not observed in controls. These results are somehow consistent with previous fMRI
and EEG studies that identified decreased interhemispheric FC in DOC patients (Ovadia-
Caro et al., 2012; Demertzi et al., 2015; Cacciola et al., 2019). Very recently, Rizkallah and
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colleagues demonstrated decreased EEG phase-based FC in brain network integration
(i.e., communication between distant brain modules, reflecting global information)
and increase in brain network segregation (i.e., communication within the same brain
module) in DOC patients as compared to healthy controls (Rizkallah et al., 2019). In our
patient, the increased FC across time, particularly during RS02 with a left-hemisphere
preponderance, could perhaps be the result of a compensatory brain plastic mechanism,
given the limited inter-hemispheric connections. However, this hypothetical explanation
should be tested in further research.

4.4.3 Clinical significance and methodological considerations

This report, is to our knowledge, the first to assess EEG functional connectivity in a
dying coma patient at both the sensor and source levels. Although spurious estimates
of FC can still ocurr in source space as result of signal leakaged, the inclusion of FC
measures from source EEG signals is a step forward in reducing volume conduction
effects. It could also serve as a first step for encouraging researchers to look for consistent
information between sensor-and-source space analyses in the context of coma and DOC.

While further research with a greater number of comatose patients is ideal, our ML
procedure can be easily applied in small sample sizes, as it distinguishes single-trial
FC elicited by auditory stimuli of one patient with those of individual controls, and
allows to determine FC changes under RS conditions at single-subject level. All this
together has valuable clinical applications, since one of the most common questions from
healthcare specialists and family members is whether a particular patient is actually
responding to external stimuli and how the patient and her/his responses are evolving
across time. With the advances in EEG technology, our procedure could be relatively
easy to integrate in real time-EEG monitoring in DOC patients.

We acknowledge, however, certain limitations and methodological considerations.
First, our analysis should be interpreted in the light of a single comatose patient with
anoxic brain injury, suppressed EEG activity and poor outcome prognosis. Further
research is necessary, since other etiologies and levels of consciousness are likely to

dSignal leakage refers to neighboring sources sharing some activity due to low spatial resolution of the
data (Bruña et al., 2018)
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reflect different connectivity features. Second, other phase synchronization measures,
such as the weighted phase lag index (PLI) and the corrected imaginary PLV (ciPLV)
Bruña et al. (2018) could be implemented, since they seem to be insensitive to zero-lag
synchronization and therefore less prone to volume conduction and source leakage
effects in comparison to PLV. Nevertheless, it is important to highlight that each con-
nectivity measure has its own advantages and disadvantages, and similar to the source
localization methods, there is no consensus on whether one outperforms the other. Also,
there has been a growing interest in determining what is the best combination of inverse-
source solution and connectivity method. In this regard, our choice was supported
by two studies: one conducted by Hassan and colleagues (Hassan et al., 2017), which
reported that wMNE/PLV performed better than other combinations of five inverse
solution algorithms and four widely used connectivity measures; and the second study
that recently used similar combination of wMNE/PLV in the context of DOC (Rizkallah
et al., 2019).

Some may also argue that using a source template constructed from standard MRI
images, instead of a subject-specific one, might be problematic when interpreting the re-
sults from a severely-injured patient. However, given that our results showed a relatively
good match between sensor and source-based FC, we believe that the effects observed at
the source level here, may more reliably reflect underlying neurophysiological changes
in coma.

4.5 Conclusions

In conclusion, we found decreased single-trial FC in response to auditory stimuli in a
comatose patient in comparison to controls, and identified FC changes over time during
resting state in this patient before death. This case study is a further contribution to the
neuroscience research focused on the neurophysiological mechanisms that may occur
during the transition to death following severe brain damage.
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Chapter 5

Summary and Conclusions

The present dissertation presented a series of studies in which several statistical methods
(Chapter 2) and machine learning procedures (Chapter 3 and 4) were evaluated to
determine whether auditory electrophysiological responses or states that are typically
associated with coma emergence are transient over time, and can be objectively detected
at single-subject level. Overall, our results replicate a number of findings and expand the
utility of automated frameworks applied to EEG/ERP data to assess and track functional
level in coma patients and potentially predict their outcomes.

Drawing reliable inferences at the individual level is challenging and cannot be
made with similar confidence as at the group level. However, findings obtained from
group level usually rely on some subjects exhibiting a strong effect, while others could
exhibit little or even the opposite pattern of activity. In this dissertation, significant steps
has been made in the identification of neurophysiological effects on a single-subject
basis, which is essential for clinical applications that are likely to impact the diagnosis
and prognosis in coma. This final chapter (5) will summarize our main findings, their
contributions, limitations, as well as future research directions.
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5.1 Summary of findings and contribution

5.1.1 Fluctuations in MMN detectability as a feature of coma

The MMN is a change-detection brain response, reflecting a predictive coding process
that while automatic and independent of a person’s conscious awareness, indicates
the presence of a certain conscious state (Blain-Moraes et al., 2016; Dykstra et al., 2017;
Tavakoli et al., 2019) that is necessary for other levels of consciousness to emerge. In
Chapter 2, we have hypothesized, that the MMN’s low sensitivity observed in previous
work (Fischer et al., 1999, 2004; Naccache et al., 2005; Luauté et al., 2005) is attributable to
its instability over time making it easily missed during a single assessment. Our results
demonstrate for the first time the robust stability of the MMN over hours of continuous
testing of healthy people; a result that contrasts with its waxing-and-waning cycling
characteristic demonstrated recently in coma patients (Armanfard et al., 2018). Our
results support the use of the MMN as a clinical tool for monitoring functional changes
associated with coma awakening and potential return to consciousness. Findings in
three coma patients, recorded over 24 hours provided further evidence that the MMN is
present but transient in coma across hours.

Taken together, the results in Chapter 2 provide several guidelines for using the
MMN as a neurophysiological predictor of coma emergence.

1.) First, it highlights that repeated assessments are extremely important to confirm
the presence or absence of the MMN and related ERP components, given their
occurrence rate is likely to vary over the course of hours within a day.

2.) Stimulus selection is crucial for accurate evaluation of the MMN during full con-
scious state and coma. Auditory duration deviants as in the multi-feature paradigm
here used, are more suitable to elicit reliable MMNs over the course of several
hours in comparison to other deviants. These results support the evidence that
MMN to unexpected duration changes is highly reproducible and robustly identi-
fied in individual participants with high SNR (Michie et al., 2000; Recasens and
Uhlhaas, 2017; O’Reilly and O’Reilly, 2021), promising greater clinical utility.
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3.) Despite yielding significant differences on group level, if one selected method fails
to distinguish significant effects at the single subject level, then their application
for diagnostic purposes may be limited. Our findings revealed that Bayesian t-test
analyses in contrast to other classic inference approaches (i.e., the permutation t-
test), seem to be more sensitive in detecting reliable ERP responses and confirming
visual inspection judgments on the presence of the MMN component.

It has been claimed for years that the MMN is not present in every healthy subjects
(Lehembre, 2012); however, this statement could be somehow arguably. Perhaps a single
assessment was acquired or other variables related with the design of the experimental
paradigm, the stimuli selection, the number of trials collected, the placement of elec-
trodes and signal quality, the statistical analysis and so on, could have prevented the
confirmation of the MMN presence in such individuals. Our results revealed that some
fluctuations in MMN detectability are certainly observed in some healthy subjects at
single-subject level over an extended period of time, but depending on the deviant type
within the multi-feature paradigm, and the statistical method performed. One possible
explanation for the robust MMN responses to duration deviants across all the recording
blocks, is that apparently duration changes in stimuli may also lead to a change in
perceived intensity, suggesting that duration deviants in oddball paradigms might work
in fact as double deviants (Michie et al., 2000; Jacobsen and Schröger, 2003).

5.1.2 Multivariate decoding is a feasible automatic tool for monitor-

ing auditory discrimination in coma

In Chapter 3, it was demonstrated the feasibility of multivariate pattern analyses (MVPA)
to track the temporal sequence of various levels of auditory information processing.
Using the same dataset presented in Chapter 2, we found that single-trials responses
elicited by duration deviants and standard sounds are robustly discriminated in healthy
controls, with high decoding performance (maximum AUC scores ranging from 80 to
94%) during the latency intervals associated with either the MMN and the P3a com-
ponents. We also showed preliminary evidence of the utility of MVPA for monitoring
the functional level of some coma patients over time and predicting their chances to
emerge from coma, either returning to conscious awareness or transitioning to other



5.1. Summary of findings and contribution 123

post-comatose states. As expected, the decoding performance in the coma patients
was lower in comparison to the healthy controls, but there were instances in which the
patients, regardless of their final outcome, showed periods of classification performance
above-chance level (50%) after stimulus onset, particularly during the second day of
recording. The major contributions of this chapter are outlined below.

1.) Our results support the use of MVPA as a cost-efficient and automated technique
for discriminating auditory neural responses that might be even difficult to de-
tect by ERP/EEG experts at the single-subject level. This approach would allow
clinicians to quantify the performance of individual patients in detecting audi-
tory changes without no priori information about MMN or other related ERP
components (Morlet and Fischer, 2014).

2.) Robust decoding performance was found with as few as 11 electrodes as with 64
electrodes. These sites are F3, Fz, F4, C3, Cz, C4, P3, Pz, P4, T7, T8 following the
same 10/20 system. Achieving sufficient discriminative information of auditory
responses with such reduced number of electrodes is extremely useful in intensive
care, since a high-density EEG montage placed on severe-injured patients is not
always feasible.

3.) The comatose patients reported in our study showed a slight increment in both
classification performance (AUC) and behavioral scores (GCS and FOUR) during
the second day of recording, suggesting that MVPA may predict the patient’s
clinical course. In fact, the patient who reached the highest decoding performance
(AUC=80% in a single recording block), showed behavioral signals related with
coma awakening that same day and a positive outcome after a year of rehabilita-
tion. These findings provide further evidence of intact auditory discrimination in
acute coma, as well as improvements in classification performance over time as
predictors of coma outcome (Tzovara et al., 2013, 2016; Rossetti et al., 2014).

4.) MVPA is also able to capture automatically fluctuations of auditory discrimination
in coma. Such instances of increases and decreases in decoding performance from
a single block to another can help clinicians determine which time periods within
a day are most suitable for conducting neurological evaluations that require the
involvement of the patient’s auditory system.
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In summary, the multivariate decoding approach as here implemented could reveal
how full conscious subjects and comatose patients differs in terms of information content
they represent at each time point following the onset of a stimulus, and potentially serve
as a method for online tracking of electrical brain activity associated with auditory
deviance detection in DOC.

5.1.3 Functional connectivity in acute coma on the verge of death

Chapter 4 is a case study, in which a phase-based measure of FC in response to auditory
stimuli and resting state was computed for the first time at both sensor and source levels
in a comatose patient, who suddenly died during an EEG recording protocol. Using
a machine learning procedure, the single-trials FC in response to auditory duration
deviants between the patient and healthy controls were discriminated with accuracies
above 90%, especially in alpha and beta bands for both sensor and source-level analyses.
Interestingly, the coma patient showed at least a resting-state period of hyperconnectivity
before dying, which seems to be a fundamental response to neurological disruption
in traumatic brain injury and other disorders (Bharath et al., 2015; Hillary et al., 2015).
Similar neurophysiological phenomenon of high activity and connectivity have been
previously observed in dying brains of humans (Chawla et al., 2009, 2017) and mammals
(Borjigin et al., 2013). The main contributions of this report are summarized below.

1.) First, our findings provide a machine learning approach that can be easily applied
to evaluate comatose and other unresponsive patients in general, allowing to
distinguish FC elicited by auditory sounds from those of healthy controls. This
approach could be used in further research as a tool to distinguish among different
levels of consciousness. For example, a comatose patient could be compared with
other DOC patients rather than healthy subjects, helping clinicians to determine
whether the patients have transitioned to either UWS or MCS.

2.) Changes in FC during resting state are identified in the coma patient even minutes
before death; a finding that was not observed in healthy controls, who rather
displayed stable patterns of connectivity across time. Although more evidence
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is required, these findings suggest that FC during resting state, similarly to the
MMN component, is also dynamic and fluctuating in acute coma.

3.) This report essentially supports the role of phase synchronization as a measure
of FC that can reflect coma severity, and be used as reliable predictor of poor
neurological outcome in coma patients after cardiac arrest (Zubler et al., 2017;
Carrasco-Gómez et al., 2021; Alnes et al., 2021). It also constitutes an important
effort to advance towards source-level connectivity analyses in coma research,
since neighboring sensors on the scalp will always be correlated to a large extent
due to EEG volume conduction.

5.2 Limitations and further directions

The present dissertation has several limitations that must be considered along with their
contributions. The first and major shortcoming is the small sample size employed. Case
series of comatose patients, rather than groups, were reported here. Our experience
has shown that it is difficult to gather sufficient patients in acute coma from a single
facility, since coma is a temporary state in which patients are likely to transition rapidly
to other post-comatose states. Recruitment was essentially limited by high levels of
sedation, family resistance to enrollment and rapid progression to other DOC or death.
The COVID-19 pandemic also magnified these difficulties, by limiting clinical research
in ICU for a prolonged time period during the development of this thesis. Future studies
should recruit a sufficiently large number of patients to improve the generalizability of
the results. This will be critical to deeply investigate whether the rate of waxing-waning
cycles from either the MMN or other neural markers can better predict coma outcome
than the simple presence of such markers.

It is important to highlight, however, that each independent study here followed
single-subject designs to build towards a clinical tool for diagnosis and other assess-
ments, accounting for the individual variability that has been extensively criticized in
traditional group-level analyses. Accordingly, all the statistical methods and automated
ML procedures were implemented to capture EEG/ERP effects on single-trials. Despite
the reduced number of subjects in general, the amount of EEG data collected per each
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healthy control and patient is relatively acceptable (a total of 78 EEG recordings collected
from healthy subjects, and 48 EEG recordings from comatose patients only for evaluating
the MMN component).

This large amount of data was the rationale, for example, behind the creation of
superblocks (i.e., a set of single-recording blocks within a day that were concatenated)
in Chapter 3. While analyzing superblocks as single subject datasets was convenient to
compact information and reduce trial-to-trial variability, we must acknowledge that this
step may not be necessary to evaluate comatose patients, given the MVPA was sensitive
enough to provide significant above-chance performance in some single-recording
blocks. Also, while the MMN was reliably detected by using a single oddball paradigm
(Chapter 2), other MMN experimental tasks could be included in further research. For
instance, it would be valuable to assess whether the MMN detectability vary with
shorter stimuli durations or with other more complex sounds from real-life situations
(e.g., speech, music and emotional stimuli). Additionally, other late ERP components,
such as the P3b or the N400 were run and collected from the patients reported in this
thesis, but they were not examined. The inclusion of these components could have
provided other measures of higher-level processing and therefore a full picture of the
brain cognitive function of the patients. Likewise, different etiologies, injury severity,
age and other variables must be further investigated to identify their potential role in
the neurophysiological fluctuations observed in coma.

5.3 Conclusion

In conclusion, we have demonstrated through different statistical and automated ML
procedures that ERPs elicited by auditory deviant stimuli (particularly the MMN compo-
nent), can fluctuate within hours in acute coma; and other EEG biomarkers of recovery
of consciousness (FC) are also transient and dynamic even minutes before death. While
the presence of such biomarkers in critically ill patients does not necessarily guarantee
coma emergence with a positive functional outcome (return of conscious awareness), its
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objective detection through repeated measurements shows promises to identify func-
tional changes associated with cognitive function that could potentially impact diagnosis
and medical decisions in the near future.
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Table S1: Effect size of permutation t-test (Cohen’s d) and Bayes factors (BF10) from the healthy
control group across blocks.

MMN P3a

Deviant Block Cohen’s d BF10 Cohen’s d BF10

Duration 1 1.29 > 100 2.02 > 100
2 1.59 > 100 2.49 > 100
3 1.43 > 100 2.48 > 100
4 1.05 > 100 1.66 > 100
5 1.04 > 100 2.62 > 100

Frequency 1 1.08 > 100 1.37 > 100
2 0.70 > 100 1.58 > 100
3 0.72 > 100 1.06 72.9
4 0.76 > 100 1.51 > 100
5 0.73 > 100 1.45 > 100

Intensity 1 1.12 > 100 1.42 > 100
2 1.04 > 100 2.15 > 100
3 1.26 > 100 1.38 > 100
4 1.19 > 100 1.37 > 100
5 1.13 > 100 1.24 50.41
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Figure S1: Individual ERPs and statistical findings of Patient 1 on day 0. (B) Time course of the difference between deviants
and standard stimuli expressed in units of t-values. Significant intervals for negative components are denoted by a light gray
area, and those for positive components are denoted by a dark gray area. Black arrows show the latency of maximum bayes
factors and the strength of evidence for H1: + anecdotal; ++ moderate; +++ strong and ++++ very strong to extreme.
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Figure S2: Individual ERPs and statistical findings of Patient 1 on day 0 (continuation). (B) Time course of the difference
between deviants and standard stimuli expressed in units of t-values. Significant intervals for negative components are
denoted by a light gray area, and those for positive components are denoted by a dark gray area. Black arrows show the
latency of maximum bayes factors and the strength of evidence for H1: + anecdotal; ++ moderate; +++ strong and ++++ very
strong to extreme.
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Figure S3: Individual ERPs and statistical findings of Patient 1 on day 3. (B) Time course of the difference between deviants
and standard stimuli expressed in units of t-values. Significant intervals for negative components are denoted by a light gray
area, and those for positive components are denoted by a dark gray area. Black arrows show the latency of maximum bayes
factors and the strength of evidence for H1: + anecdotal; ++ moderate; +++ strong and ++++ very strong to extreme.
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Figure S4: Individual ERPs and statistical findings of Patient 1 on day 3 (continuation). (B) Time course of the difference
between deviants and standard stimuli expressed in units of t-values. Significant intervals for negative components are
denoted by a light gray area, and those for positive components are denoted by a dark gray area. Black arrows show the
latency of maximum bayes factors and the strength of evidence for H1: + anecdotal; ++ moderate; +++ strong and ++++ very
strong to extreme.
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Figure S5: Individual ERPs and statistical findings of Patient 2 on day 0. (B) Time course of the difference between deviants
and standard stimuli expressed in units of t-values. Significant intervals for negative components are denoted by a light gray
area, and those for positive components are denoted by a dark gray area. Black arrows show the latency of maximum bayes
factors and the strength of evidence for H1: + anecdotal; ++ moderate; +++ strong and ++++ very strong to extreme.
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Figure S6: Individual ERPs and statistical findings of Patient 2 on day 0 (continuation). (B) Time course of the difference
between deviants and standard stimuli expressed in units of t-values. Significant intervals for negative components are
denoted by a light gray area, and those for positive components are denoted by a dark gray area. Black arrows show the
latency of maximum bayes factors and the strength of evidence for H1: + anecdotal; ++ moderate; +++ strong and ++++ very
strong to extreme.
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Figure S7: Individual ERPs and statistical findings of Patient 2 on day 3. (B) Time course of the difference between deviants
and standard stimuli expressed in units of t-values. Significant intervals for negative components are denoted by a light gray
area, and those for positive components are denoted by a dark gray area. Black arrows show the latency of maximum bayes
factors and the strength of evidence for H1: + anecdotal; ++ moderate; +++ strong and ++++ very strong to extreme.
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Figure S8: Individual ERPs and statistical findings of Patient 3 on day 0. (B) Time course of the difference between deviants
and standard stimuli expressed in units of t-values. Significant intervals for negative components are denoted by a light gray
area, and those for positive components are denoted by a dark gray area. Black arrows show the latency of maximum bayes
factors and the strength of evidence for H1: + anecdotal; ++ moderate; +++ strong and ++++ very strong to extreme.
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Figure S9: Individual ERPs and statistical findings of Patient 3 on day 0 (continuation). (B) Time course of the difference
between deviants and standard stimuli expressed in units of t-values. Significant intervals for negative components are
denoted by a light gray area, and those for positive components are denoted by a dark gray area. Black arrows show the
latency of maximum bayes factors and the strength of evidence for H1: + anecdotal; ++ moderate; +++ strong and ++++ very
strong to extreme.
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Figure S10: Individual ERPs and statistical findings of Patient 3 on day 3. (B) Time course of the difference between deviants
and standard stimuli expressed in units of t-values. Significant intervals for negative components are denoted by a light gray
area, and those for positive components are denoted by a dark gray area. Black arrows show the latency of maximum bayes
factors and the strength of evidence for H1: + anecdotal; ++ moderate; +++ strong and ++++ very strong to extreme.
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Table S2: Summary of the P3a results in Patient 1.

DAY 0 DURATION FREQUENCY INTENSITY

Block Time Visual Perm. test Bayes Visual Perm.test Bayes Visual Perm.test Bayes

1 18:35 PM - - - - - - + + ++++
2 21:10 PM + - - - - - + - +
3 22:49 PM - - - - - - - - -
4 12:47 AM - - - + - +++ + + ++++
5 06:26 AM + - - - - - - - -
6 07:58 AM + - + - - - + - -
7 10:08 AM - - - - - - - - -
8 11:26 AM + - ++ + - - - - -

DAY 3 DURATION FREQUENCY INTENSITY

Block Time Visual Perm.test Bayes Visual Perm.test Bayes Visual Perm.test Bayes

1 18:20 PM - - + - - - + - +
2 20:29 PM + + ++ + - - + + ++++
3 21:15 PM + - - + - - + + ++++
4 23:14 PM - - - + - - - - -
5 01:05 AM + - - - - - - - -
6 03:13 AM + + ++++ + + +++ + + ++++
7 05:22 AM + - ++ + - - + - -
8 06:09 AM - - - - - - + + +++
9 07:56 AM + + ++++ + + ++ + + ++
10 10:11 AM + + +++ + - + + + ++++

+ indicates a positive result, - a negative result. For Bayes column, + anecdotal evidence;
++ moderate evidence; +++ strong evidence and ++++ very strong to extreme evidence.
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Table S3: Summary of the P3a results in Patient 2.

DAY 0 DURATION FREQUENCY INTENSITY

Block Time Visual Perm. test Bayes Visual Perm. test Bayes Visual Perm. test Bayes

1 21:15 PM - - - - - - - - -
2 12:14 AM - - - + - - - - -
3 02:24 AM + - - + - - + + ++++
4 04:51 AM - - - + - - + - +
5 07:00 AM - - - - - - - - -
6 08:00 AM + - - + - - - - -
7 10:09 AM - - - - - - + + +++
8 11:48 AM - - - + - - - - -
9 12:28 AM + - - + - - - - -

10 02:37 PM - - - - - - - - -

DAY 3 DURATION FREQUENCY INTENSITY

Block Time Visual Perm. test Bayes Visual Perm. test Bayes Visual Perm. test Bayes

1 18:34 PM + + +++ - - - - - -
2 20:48 PM + + ++ - - - + - -

+ indicates a positive result, - a negative result. For Bayes column, + anecdotal evidence;
++ moderate evidence; +++ strong evidence and ++++ very strong to extreme evidence.

Table S4: Summary of the P3a results in Patient 3.

DAY 0 DURATION FREQUENCY INTENSITY

Block Time Visual Perm. test Bayes Visual Perm. test Bayes Visual Perm. test Bayes

1 14:52 PM + - + - - - + - ++
2 16:44 PM - - - + - - + - -
3 18:46 PM - - - + - - - - -
4 20:55 PM - - - - - - + - -
5 21:36 PM + - - - - - + - -
6 23:25 PM + - - - - - - - -
7 01:34 AM - - - + - - + + ++
8 02:10 AM - - - + + ++ + + ++
9 05:24 AM - - - - - - - - -

10 07:09 AM - - - - - - - - -

DAY 3 DURATION FREQUENCY INTENSITY

Block Time Visual Perm. test Bayes Visual Perm. test Bayes Visual Perm. test Bayes

1 20:46 PM - - - + - - + - ++
2 21:45 PM + + ++++ + + ++++ - - -
3 23:29 PM - - - + - - - - -
4 01:38 AM - - - - - - - - -
5 04:33 AM - - - - - - + - +
6 06:21 AM - - - - - - - - -

+ indicates a positive result, - a negative result. For Bayes column, + anecdotal evidence;
++ moderate evidence; +++ strong evidence and ++++ very strong to extreme evidence.
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Figure S1: Example of the mRMR output for alpha frequency band at sensor level.



Appendix II. Supplementary information: Chapter 4 145

Table S1: Sensor-FC features to duration deviants that better distinguish coma vs. healthy
controls for each frequency band.

Delta Theta

# Features Regions Hemisphere Features Regions Hemisphere

1 F5-FC2 Frontocentral Left C3-PO4 Centroparietal Both
2 TP7-Pz Temporoparietal Left O1-O2 Occipital Both
3 C3-O2 Centroccipital Both F1-Iz Frontoccipital Left
4 F1-CP2 Frontocentral Both CP3-O1 Centroparietoccipital Left
5 Cz-P2 Centroparietal Right F3-FT8 Frontotemporal Both
6 Fp1-C6 Frontocentral Both C1-FC6 Frontocentral Both
7 F3-P2 Frontoparietal Both Cz-P4 Centroparietal Left
8 FC5-AF4 Frontocentral Both Fp1-FC5 Frontocentral Left
9 F5-P3 Frontoparietal Left AF8-C4 Frontocentral Right
10 FC1-CP4 Frontocentroparietal Both FC1-CP4 Frontocentroparietal Both

Alpha Beta

# Features Regions Hemisphere Features Regions Hemisphere

1 C3-O2 Centroccipital Both C3-O2 Centroccipital Both
2 Cz-P2 Centroparietal Left F3-CP1 Frontocentroparietal Left
3 F7-Oz Frontooccipital Left F1-P3 Frontoparietal Left
4 F3-P6 Frontoparietal Both F7-P9 Frontoparietal Left
5 F1-Iz Frontoccipital Left Fp1-C3 Frontocentral Left
6 O1-F4 Occitofrontal Both T8-PO4 Temporoparietal Right
7 FC1-CP4 Frontocentroparietal Both C4-CP4 Centroparietal Right
8 F2-CP4 Frontocentroparietal Right F5-C4 Frontocentral Both
9 P7-FC6 Frontocentroparietal Both POz-CPz Parietocentral Both
10 CP1-Iz Centroparietal Left TP7-CP4 Temporacentral Both
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Table S2: Source-FC features to duration deviants that better distinguish coma vs. healthy controls for each frequency band.

Delta Theta

# Features Regions Hemisphere Features Regions Hemisphere

1 insulaR-postcentralR Centrotemporal Right banksstsL-cuneusL Temporoccipital Left
2 paracentralL-superiortemporalL Centrotemporal Left parahippocampalR-posteriorcingulateR Temporolimbic Both
3 inferiorparietalR-parsopercularisL Frontoparietal Both caudalanteriorcingulateR-entorhinalL Temporolimbic Both
4 lateralorbitofrontalR-parahippocampalR Frontotemporal Right middletemporalR-precentralL Temporocentral Both
5 lateralorbitofrontalL-posteriorcingulateR Frontolimbic Both banksstsR-lingualL Temporoccipital Both
6 banksstsL-cuneusL Temporoccipital Left lateralorbitofrontalR-rostralanteriorcingulateR Frontolimbic Right
7 entorhinalR- parahippocampalL Temporal Both frontalpoleR-rostralmiddlefrontalR Frontal Right
8 caudalanteriorcingulateR-inferiorparietalL Parietolimbic Both lateralorbitofrontalL-precentralL Frontocentral Left
9 lingualR-precuneusL Parietoccipital Both postcentralR-rostralmiddlefrontalR Frontal Right
10 pericalcarineL-superiorparietalL Occipitoparietal Left inferiorparietalR-superiortemporalR Parietotemporal Right

Alpha Beta

# Features Regions Hemisphere Features Regions Hemisphere

1 insulaR-postcentralR Temporocentral Right pericalcarineL-superiorparietalL Occipitoparietal Left
2 entorhinalL-supramarginalL Paretotemporal Left parahippocampalR-precentralL Temporocentral Both
3 cuneusL-postcentralR Occipitocentral Both cuneusL-supramarginalR Occipitoparietal Both
4 rostralanteriorcingulateL-superiortemporalR Temporolimbic Both inferiortemporalR-pericalcarineL Temporoccipital Both
5 cuneusL-entorhinalL Occipitotemporal Left caudalanteriorcingulateR-entorhinalL Temporolimbic Both
6 superiorparietalL-supramarginalR Parietal Both RostralmiddlefrontalL-superiorfrontalR Frontal Both
7 entorhinalL-parsopercularisL Frontotemporal Left caudalanteriorcingulateL-precuneusL Parietolimbic Left
8 isthmuscingulateL-isthmuscingulateR Limbic Both parstriangularisR-transversetemporalL Frontotemporal Both
9 parstriangularisL-precuneusL Frontoparietal Left paracentralR-rostralmiddlefrontalL Frontocentral Both
10 lateraloccipitalR-superiortemporalL Temporoccipital Both inferiortemporalR-rostralanteriorcingulateL Temporolimbic Both
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Table S3: Sensor-FC features that better distinguish three resting-state periods in coma for each
frequency band.

Delta Theta

# Features Regions Hemisphere Features Regions Hemisphere

1 FT7-P1 Frontoparietal Left F3-Iz Frontoccipital Left
2 FT7-P7 Frontotemporoparietal Left FC5-TP8 Frontocentrotemporal Both
3 CP5-PO8 Centroparietoccipital Both P3-O2 Parietoccipital Both
4 FC3-FC4 Frontocentral Both O1-C2 Centroccipital Both
5 Fpz-FC2 Frontocentral Right TP7-CP5 Temporocentroparietal Left
6 AF7-Afz Frontocentral Left FC1-CP2 Frontocentroparietal Both
7 FT8-C2 Frontocentral Both Afz-F2 Frontal Right
8 FC5-CPz Frontocentroparietal Left FC6-PO8 Frontocentroparietal Right
9 CP3-P3 Centroparietal Left CP1-O2 Centroccipital Both
10 C5-O2 Centrooccipital Both FC6-C6 Frontocentral Right

Alpha Beta

# Features Regions Hemisphere Features Regions Hemisphere

1 C4-CP6 Centroparietal Right P5-Fp2 Frontoparietal Both
2 P7-F4 Frontoparietal Both FC5-TP8 Frontocentrotemporal Both
3 P3-TP8 Temporoparietal Both F7-CP1 Frontocentroparietal Left
4 TP7-TP8 Temporoparietal Both P3-Oz Parietoccipital Left
5 P3-Fpz Frontoparietal Left P5-AF8 Frontoparietal Both
6 C5-CP4 Centroparietal Both T7-F6 Frontotemporal Both
7 FC1-T7 Frontotemporal Left F5-FCz Frontocentral Left
8 Fp2-PO8 Frontoparietal Right FC6-O2 Frontocentrooccipital Right
9 FC6-FC2 Frontocentral Right P7-Pz Parietal Left
10 Fpz-FCz Frontocetroparietal Central FC6-T8 Frontocentrotemporal Right
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Table S4: Source-FC features that better distinguish three resting-state periods in coma for each frequency band.

Delta Theta

# Features Regions Hemisphere Features Regions Hemisphere

1 caudalanteriorcingulateL-precuneusL Parietolimbic Left banksstsL-rostralmiddlefrontalR Frontotemporal Both
2 caudalanteriorcingulateLparsopercularisR Frontolimbic Both inferiorparietalR-superiortemporalR Parietotemporal Right
3 caudalmiddlefrontalL-parsorbitalisR Frontal Both medialorbitofrontalR-rostralanteriorcingulateR Frontolimbic Right
4 medialorbitofrontalR-transversetemporalR Frontotemporal Right frontalpoleR-superiorfrontalR Frontal Right
5 caudalanteriorcingulateR-superiorparietalL Parietolimbic Both precuneusR-superiortemporalR Parietotemporal Right
6 insulaL-superiorfrontalR Frontotemporal Both insulaR-parsopercularisL Frontotemporal Both
7 fusiformL-parahippocampalR Temporal Both paracentralL-precuneusL Centroparietal Left
8 superiorfrontalR-superiorparietal R Frontoparietal Right isthmuscingulateR-supramarginalR Parietolimbic Right
9 cuneusL-parsorbitalisR Frontoccipital Both precentralL-transversetemporalR Centrotemporal Both
10 postcentralL-temporalpoleR Centrotemporal Both fusiformR-medialorbitofrontalL Frontotemporal Both

Alpha Beta

# Features Regions Hemisphere Features Regions Hemisphere

1 superiorparietalR-transversetemporalL Parietotemporal Both superiorparietalR-transversetemporalL Parietotemporal Both
2 rostralanteriorcingulateL-superiortemporalR Temporolimbic Both caudalanteriorcingulateR-paracentralL Centrolimbic Both
3 medialorbitofrontalR-postcentralR Frontocentral Right paracentralL-parsorbitalisL Frontocentral Left
4 caudalmiddlefrontalL-middletemporalL Frontotemporal Left caudalmiddlefrontalL-lingualR Frontooccipital Both
5 caudalanteriorcingulateR-caudalmiddlefrontalL Frontolimbic Both superiortemporalL-supramarginalR Temporal Both
6 rostralanteriorcingulateL-superiorfrontalR Frontolimbic Both parahippocampalR-temporalpoleR Temporal Right
7 banksstsR-insulaR Temporal Right lateralorbitofrontalL-postcentralL Frontocentral Left
8 banksstsR-transversetemporalL Temporal Both insulaL-medialorbitofrontalL Frontotemporal Left
9 caudalmiddlefrontalL-inferiortemporalL Frontotemporal Left lingualL-precuneusL Parietoccipital Left
10 insulaL-superiorparietalR Parietotemporal Both lingualL-middletemporalR Parietotemporal Both
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Figure S2: Sensor-level FC matrices across RS periods in the coma patient for each frequency
band.
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Figure S3: Source-level FC matrices across RS periods in the coma patient for each frequency
band.
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