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Abstract

Deep learning techniques enable the automatic analysis and interpretation of hu-

man motion from wearable sensor. However, despite extensive research efforts, the

absence of vast cleanly labeled human motion sensor data in free-living setting still

hindered the applications of deep models in the real world. Human motion data is

known to have a large variance among subjects and devices. As the result, there is

a significant performance gap between models trained with and without part of test

subjects’ data. In addition, due to the difficulty in labeling wearable sensor data post

hoc, existing public datasets are either collected from scripted activities under con-

trolled settings or contain severe label noises when collected through crowdsourcing.

Moreover, since collecting motion data from frail populations such as older adults

with impaired mobility can be physically demanding or even cause safety concerns,

the data scarcity problem becomes more severe. In this dissertation, we aim to address

these challenges through a multi-pronged approach.

First, we investigate domain adaptation techniques to handle the subject variance

and device diversity in wearable sensor-based human activity recognition (HAR). We

propose an invariant feature learning framework (IFLF) that extracts common infor-

mation shared across subjects and devices. It incorporates two learning paradigms:

1) meta-learning to capture robust features across multiple source domains and adapt

trained model to a target domain with similarity-based data selection; and 2) multi-

task learning to deal with data shortage and enhance overall performance via knowl-

edge sharing among different domains. Experimental results demonstrate that IFLF is

effective in handling both subject and device variations across popular open datasets

and an in-house dataset from older adults.
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Inertial measurement units (IMU) datasets collected in naturalistic settings are

often fraught with labeling noise due to misaligned onsets, the presence of concurrent

activities, unpredictable terrains or human errors. However, state-of-the-art learning

with label noise (LNL) approaches fail to converge due to the presence of subject

variations. As a second contribution, we propose VALERIAN, an invariant feature

learning for in-the-wild domain adaptation method for wearable sensor-based HAR. It

consists of three components: self-supervised pre-training, invariant feature learning

with noisy labels, and fast adaptation to new subjects. By training a multi-task

model with separate task-specific layers for each subject, VALERIAN allows noisy

labels to be dealt with individually for each subject while benefiting from shared

feature representation across subjects. Experimental results show that VALERIAN

significantly outperforms baseline approaches.

Simulating IMU data from other input modalities offers an alternative way to mit-

igate the wearable data scarcity problem. As a third contribution, we design CRO-

MOSim, a cross-modality sensor simulator that synthesizes high fidelity virtual IMU

data from data collected with motion capture systems or monocular RGB cameras.

It utilizes a skinned multi-person linear model for 3D body pose and shape repre-

sentations to enable simulating motions from arbitrary on-body positions. A deep

learning model is used to learn the functional mapping from imperfect trajectory es-

timations in a 3D body tri-mesh representation to IMU data. Extensive empirical

evidence demonstrates the high fidelity and utility of CROMOSim simulated data in

downstream human motion analysis tasks include HAR and human pose estimation.
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Introduction
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1.1 Motivation

Human motion analysis has been widely studied and employed in numerous real-

world applications with wearable sensors. There are two categories of research ques-

tions in human motion analysis. The first category of problems, called human activity

recognition (HAR), are discriminative in spirit and aim at detecting events associated

with one or more types of sensor inputs. The second category of problems are more

challenging and require the reconstruction or tracking of poses for a full body or a

single body part, known as human pose estimation (HPE). The wide availability of

wearable devices and significant advances machine learning technologies paves the

way for automatic yet accurate human motion analysis in daily life.

Training supervised deep learning models generally require a large amount of

well-curated labeled sensory data [2]. Existing public inertial measurement unit

(IMU) sensor datasets are typically collected under controlled settings where sub-

jects are asked to perform scripted activities in a lab environment. Such datasets

tend to have a small collection of subjects and activities, and exhibit very different

characteristics from those collected in the wild [3]. Collecting wearable sensor data

for human motion analysis in the wild faces its own set of challenges. One main diffi-

culty is to label such data accurately [4]. Recalls from one’s memory are known to be

notoriously unreliable [5] while labeling wearable data by observing signal patterns

requires extensive domain knowledge and is error prone. Yet another issue arises in

collecting data for certain activities (e.g., falls) from specific population groups, such

as frail older adults with declined physical abilities. With the total number of older

adults projected to reach 1.2 billion by 2025 and 2 billion by 2050 [6], the importance

of mobility data form older adults cannot be under-estimated by anyone who designs
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health and fitness applications using wearable devices. But the decrease in mobility

leads to less physical activity. Strenuous activities like walking upstairs or jogging are

difficult for older people to perform, resulting in under-representation of older adult

population in public HAR and HPE datasets. In addition, diversity in sensor data

distributions is more pronounced among older adults due to their diverse mobility

statuses. Such subject diversity hurts the performance of deep learning methods as

neural networks generally have poor generalization ability when the distribution of

test data (target domain) differs from that of training data (source domain).

Existing solutions to data scarcity in wearable sensor human motion analysis

mainly fall into two categories: 1) reducing the amount of data required from a

target domain, and 2) generating more IMU data for model training. This dissertation

explores both directions.

In reducing the amount of data required from the target domain, we further con-

sider two problem setups: data from source domains are collected under controlled

environments with clean labels and in the wild with noisy labels. Source domains

may differ from the target domain due to subject differences, device diversity and

different sensor placements. Such domain gaps hinder the direct application of a ma-

chine learning model trained on the source domain to the target domain. Various

unsupervised domain adaptation (UDA) methods are proposed to tackle IMU-based

HAR [7, 8], which requires abundant unlabeled data from the target domain. Existing

UDA methods are usually limited to transferring knowledge between a single pair of

source and target domains. Meta-learning (a.k.a learning to learn [9, 10]) achieves

invariant feature learning across the source and target domains. It assumes the ex-

istence of common features despite domain gaps, and requires all domains to share

3
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the same activity set [11, 12, 13]. But in practice, missing classes are common in sen-

sory motion datasets (see Table 2.1 for details). In addition, it requires updating the

whole model with data from the target domain, which is inefficient. To address the

limitations of meta-learning, we propose to separate invariant features across domains

from domain-specific ones with a multi-task learning strategy. Target domain data is

only used to update domain specific part of the resulting model making our approach

more data efficient and able to handle varying number of classes across domains.

Learning from crowdsourced IMU data or data collected in the wild is more

challenging. Besides the aforementioned domain shifts, labeling errors are abundant

in such data. Learning with noisy labels (LNL) has long been studied in the machine

learning community for computer vision tasks [14], but received little attention in

body-worn HAR. We find that state-of-the-art LNL methods [15, 16] fail to handle

labeling noise in HAR datasets due to inherent domain gaps and the violation of their

fundamental assumption that a neural network tends to fit simpler and thus clean

data in early training epochs. To address this issue, we present a one-step solution

to jointly tackle noisy labels and domain shift.

Among approaches in the second category, various transformations are proposed

to augment either raw sensor readings [17, 18, 19] or the extracted features [20]. For

example, the works in [21, 22] generate IMU data with a data-driven approach such as

generative adversarial networks (GAN). However, these approaches either require the

availability of sufficiently real sensor data as their source or fail to generate meaningful

IMU data. Instead, we consider another line of solution: transforming action data

from other modalities to IMU data, a process called cross-modality simulation. This

approach is motivated by the scarcity of IMU data for human motion analysis in

4
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contrast to the richness of other data sources. PAMAP2 [23], a benchmark dataset

for HAR, consists of 8 subjects with only 59.671 minutes of samples per person. In

contrast, AMASS [24], a motion capture (MoCap) dataset, includes 2420.86 minutes

data and is still growing; not to mention online video repositories such as YouTube,

Tiktok, which offer a practically infinite amount of action data.

1.2 Contributions

The overachy goal of this dissertation is to tackle the data scarcity problem

in wearable sensor-based human motion analysis. Towards this goal, we make the

following contributions as summarized in Fig. 1.1.

Figure 1.1: Main Contributions and Highlights.

We propose IFLF, an invariant feature learning framework for HAR. It handles

various sources of domain shifts by extracting common features across multiple source

1This number will further shrink to 31.71 if we consider locomotion related activities only
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domains. IFLF alleviates data shortage through shared feature learning from multiple

source domains, and introduces a similarity metric to further reduce the amount of

labeled data required from a target domain in model adaptation. The proposed

method has its superior performance over multiple datasets when compared to a

state-of-the-art meta-learning approach in sensor-based HAR tasks.

We develop VALERIAN, an invariant feature learning for in-the-wild domain

adaptation method for wearable sensor-based HAR. To take advantage of existing in-

the-wild IMU datasets with noisy labels, VALERIAN tackles label noises and learns

the shared feature representation among multiple subjects in a one-step fashion. It

uses self-supervised pretraining to learn good representations from abundant unla-

beled data. Then IFLF is employed to extract common features among multiple

training subjects. To combat noisy labels, early-learning regularization is introduced

as a loss term reflecting the temporal ensemble of past inference results. We demon-

strate that VALERIAN can significantly improve the performance of HAR tasks on

synthetic and real-world noisy sensor datasets.

We design CROMOSIM, a multi-modality sensor simulator that synthesizes high

fidelity virtual IMU sensor data using data from motion capture systems or monoc-

ular RGB cameras. It is the first work that utilizes the SMPL full-body tri-mesh

as an intermediate representation for 3D human modelling, and thus enables IMU

data simulation at arbitrary on-body positions. CROMOSim mitigates imperfection

in intermediate body pose and shape estimations through a supervised learning ap-

proach, and achieves higher fidelity and superior performance in HAR tasks compared

to SOTA IMU simulators. In addition, we are the first to empirically show the utility

of simulated IMU data in HPE tasks using deep learning models.
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In summary, IFLF addresses the problem when a body-worn HAR model is

trained with a clean labelled and relatively small training set, and new unseen subjects

or devices may be frequently added during inference. VALERIAN further considers

the problem when the training set is noisy labelled. CROMOSim tackles the data

scarcity more directly by taking advantage of MoCap or full-body video motion data.

1.3 Organization

This dissertation is organized into six chapters:

• Chapter 1: An overview of the motivation and key research problem is pre-

sented, followed by a brief introduction to the contributions and the thesis

organization.

• Chapter 2: It introduces the background materials necessary for the under-

standing and reproduction of the dissertation. We discuss the principle of the

inertial sensors and two important categories of applications in human motion

analysis.

• Chapter 3: In this chapter, the learning of invariant features in wearable

sensor-based HAR is proposed and evaluated using open and in-house datasets.

• Chapter 4: Technique on learning with noisy crowdsourcing datasets in HAR

is presented and evaluated using controlled and crowdsourced datasets.

• Chapter 5: A deep learning-based cross-modality sensor simulator is proposed.

Specifically, it is capable of simulating IMU data from either motion capture or

video data.

7
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• Chapter 6: The conclusion and future work, are provided in this final chapter.

8
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Before presenting our solutions to address the data scarcity problem in wearable

sensor-based human motion analysis, background and preliminaries will be introduced

in this chapter. Specifically, we will explain how IMU sensors work and their data

characteristics, the real-world applications of sensor-based human motion analysis,

and popular public datasets in this area.

2.1 Inertial Measurement Units

2.1.1 Operational Principles

A modern micro-electro-mechanical system (MEMS) IMU is usually composed

of three components with 9-DOF: an accelerometer to measure 3-axis acceleration,

a gyroscope to measure 3-axis angular velocity, and a magnetometer to determine

global orientations by measuring the 3D earth magnetic field [25]. An accelerometer

has a mass attached to a spring which is confined to move along one direction and

fixed outer plates. When an acceleration along the particular axis happens, the

mass will move and the capacitance between the plates and the mass will change.

This change in capacitance will in turn be measured, processed, and translated into

a particular acceleration value. A gyroscope measures angular rates based on the

Coriolis Effect [26]. The Coriolis acceleration, proportional to the angular velocity, is

an apparent acceleration that is observed in a rotating frame of reference. Similar to

the accelerometer, the displacement introduced by the Coriolis acceleration causes a

change in capacitance which is measured, processed and translated into a particular

angular velocity. Most MEMS magnetometers work with the Hall Effect [27]. If

we have a conductive plate and set current to flow through it, the electrons would

10
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flow straight from one side to another. But the existence of a magnetic field will

disturb the straight flow and thus the electrons would deflect to one side of the

plate while the positive poles to the other side. Therefore, the voltage between these

two sides depends on the magnetic field strength and its direction. Magnetometers

are sensitive to magnetic fields generated by the appliances and metal objects in an

indoor environment [28], which make them unsuitable for most HAR and HPE tasks.

In this dissertation, an IMU sensor refers to accelerometer and gyroscope sensor unless

specified otherwise.

2.1.2 Characteristics of IMU data

Generally speaking, inertial sensors can provide information on the pose of any

object that they are rigidly attached to. It is also possible to combine multiple IMUs

to obtain information about the poses of separate connected objects (as in HPE).

However, low-cost MEMS sensors available of commercial-off-the-shelf devices are

known for their noisy readings. When calculating positions by taking the double

integration of accelerations, or orientations by integrating angular velocities, errors

will be amplified and accumulated over time [29]. To handle noisy IMU measure-

ments, existing solutions utilize handcrafted features in time and frequency domains,

optimization-based smoothing and filtering, sensor fusion with other data modalities,

or more recently deep learning-based data-driven models in human motion analysis.

Before being input to a neural network model, multi-channel IMU data typically need

to be temporally aligned, up or down-sampled, filtered and segmented.

11



Ph.D. Thesis – Y. Hao McMaster University – Computer Science

2.2 Human Activity Recognition

Human activity recognition has been widely studied to enable health and fitness

applications, such as mobility assessment, sports performance evaluation, rehabilita-

tion monitoring and so forth. Activity or gesture recognition is also a crucial com-

ponent of human-computer interaction interfaces to enhance user experiences [30].

One application scenario we consider in this dissertation is the assessment of older

adult mobility. It is widely recognized that the life quality of older adults is closely

related to their functional mobility status [31]. The fear of falls, and declined mental

or physical health, together with visual or hearing impairments, are common causes

that lead to degraded mobility. To facilitate continuous mobility monitoring of older

adults, IMU sensor can be placed on one’s torso or limbs. Through the recognition

of locomotion-related activities and statistical analysis of their duration and tim-

ing, a healthcare provider can gain insights into the trajectory of mobility declines

and determine suitable forms of intervention. A case study on mobility analysis for

in-hospital patients is provided in Section 3.6.

From the technical point of view, HAR is a multi-class classification problem.

From IMU data, statistical features calculated in individual data windows in the

time domain exhibit distinct patterns for different human activities. Examples of

such features as mean, standard deviation, variance, interquartile ranges, mean ab-

solute deviation, correlation between axes, entropy, and kurtosis [32, 33]. Frequency

domain features such as Fourier Transform and discrete cosine transform are also

meaningful in distinguishing different human activities [34]. These handcrafted fea-

tures in time and frequency domains combined with a shallow classifier were the

mainstream strategies in HAR before the deep learning era [30]. The performance of

12
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such machine learning models relies heavily on the quality of extracted feature sets.

Thus, the main drawback of such solutions is the need of domain expertise in design-

ing feature sets for a specific HAR problem. In recent years, main stream approaches

to HAR has gradually shifted to deep learning models due to their ability to extract

semantic features from raw sensor signals and the impressive results achieved [35].

However, these (supervised) deep models require a large quantity of clean labeled

data to generalize well in presence of subject, device and placement diversity in IMU

data.

2.3 Human Pose Estimation

HPE provides geometric and motion information of the human body. It has

found a wide range of applications in sports performance evaluation, motion analysis,

augmented reality, virtual reality, entertainment and healthcare, etc. A pose is usually

defined as body joint coordinates or joint angles between connected limbs. According

to [36], HPE problems can be divided into two categories based on the representation

of poses: 2D HPE and 3D HPE. The gold standard for 3D HPE is through MoCap

systems. In recent years, markless 2D and 3D HPE have gained significant progress

from images, video sequence and wearable sensor data [37, 38, 39].

HPE can be formulated as a regression problem, which learns a mapping from the

input sensor data to joint angles or parameters of human body models. Early works

for sensor-based HPE mainly focus on the signal processing aspects of position and

orientation estimation, which usually involves a complementary filter or a variant of

the Kalman filter to fuse kinematic constraints with the estimations from individual

sensors [40, 41]. Similar to HAR, in recent years, neural networks were extensively
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used in HPE tasks. Researchers have succeeded in using a small number of IMUs to

accurately estimate full-body poses. TransPose [42] achieves a ∼ 50 mm mean per

joint position error (MPJPE) on TotalCapture dataset [43]. To achieve a MoCap level

estimation accuracy on HPE tasks, IMU data is also fused with other data modalities

such as single or multi-view camera videos and images [44, 45, 46]. But there is no free

lunch indeed. Beside the large amount of data needed by deep learning, HPE tasks

require accurate ground-truth pose information, which is typically attained through

MoCap systems in lab environments. It is a laborious process to set up the data

acquisition system, instrumenting human subjects, and synchronizing different data

streams. Collecting data for HPE tasks in-the-wild with accurate ground truth data

remains a research challenge.

2.4 Datasets

In this section, we summarize the characteristics of existing datasets for HAR

and HPE tasks.

2.4.1 HAR Datasets

Based on how the data was collected, there are two types of IMU-based HAR

datasets: The pre-scripted activity data collected under a controlled environment,

and the freestyle motion data collected in real-world environments during activities

of daily living. A brief summary of locomotion-related HAR datasets is in Table

2.1, with controlled datasets in the top rows and in the wild data at the bottom.

In particular, MobilityAI datasets were collected from in-patient older adults from
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the Juravinski hospital. Its Phase I data were collected under the instructions of

a physiotherapist while the Phase II data were mostly collected overnights during

patients’ hospital stay.

From Table 2.1, it is clear that there is no uniform data collection protocol in

IMU-based HAR. The activity set, sensor placement and test subjects differ from

one dataset to another. A noticeable trend is that in-the-wild HAR datasets have

more subjects and longer average trial length in comparison to those controlled ones.

In addition, the type and amount of data of different activities tend to be highly

imbalanced in those in-the-wild datasets. This is in part because activities are not

pre-scripted by researchers during data collection. Despite the relatively larger volume

of in-the-wild datasets, controlled datasets are predominately utilized in evaluating

HAR models in the research community as they provide more reliable ground-truth

labels.

2.4.2 HPE Datasets

A brief summary of HPE benchmark datasets with IMU data is in Table 2.2.

With the exception of 3DPW, all datasets are collected in indoor environments.

In Table 2.2, it is clear that the data scarcity problem is prevalent in IMU-based

HPE as well. In addition, the data collection protocols are even more diverse in 3D

HPE tasks, as sensor placement, activity types, and the availability of other sensing

modalities differed from dataset to dataset.
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Chapter 3

Invariant Feature Learning

Framework for Sensor-based

Human Activity Recognition
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3.1 Introduction

Human activity recognition (HAR) is the foundation to realize remote health

services and in-home mobility monitoring. Although deep learning has seen many

successes in this field, training deep models often requires a large amount of sensory

data that is not always available [1]. For research ethics compliance, it often takes

months to design study protocols, recruit volunteers and collect customized sensory

datasets. At the same time, public inertial measurement unit (IMU) sensor datasets

on HAR are typically collected by different groups of researchers following different

experiment protocols, making them difficult to be used by others. The significant

variability among human subjects and device types in data collection limits the direct

reuse of data as well. Deep learning methods have poor generalization ability when

testing data (target domain) differs from training data (source domain) due to device

and subject heterogeneities (generally known as the domain shift problem). Fig.

3.1 shows the effects of cross-domain data variability. Fig. 1(a) visualizes features

from subjects that are seen to the deep model for HAR (left) and as held-out data

to the model (right), respectively. The features are well clustered when subjects

are seen to the model and are inseparable for the unseen subject even though she

performs the same group of activities wearing the same sensor at the same location.

Fig. 1(b) demonstrates the effect of device diversity. The data is collected when a

person performs several activities with devices A and B attached to the same on-body

locations. A deep learning model is trained with device A’s data. We find that despite

its high inference accuracy on the testing data from the same device, the accuracy

drops drastically on device B’s data.

In addressing the aforementioned domain shift problems, a pooling task model
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(a) (b)

Figure 3.1: Typical data variance problem caused by subject difference and device
diversity. (a) depicts the impact of subject difference, where different colors in the
t-SNE plots denote different activities. (b) shows the impact of device diversity.
Left confusion matrix shows predictions on device seen to the model while right
confusion matrix from a new unseen one. The prediction on unseen device’s data is
totally confused except for the ‘lying’ activity.

(PTM) that mixes data from different domains (e.g., subjects, devices) will have low

discriminative power as it ignores the dissimilarity among the domains. On the other

hand, a model trained solely on data from a specific domain requires a lot of training

data as it fails to take the advantage of the similarity among different sources. Since

collecting and labeling sensory data with sufficient diversity is time-consuming, it is

impractical to train a task-specific model for each new subject or device encountered

from scratch. A few previous works have investigated domain shifts caused by device

and subject diversity in HAR. In [7] and [58], the problem is formulated as domain

adaptation between a pair of participants or devices. However, in practice, HAR is

rarely limited to transferring knowledge between a pair of domains, rather from a

group of source domains (e.g., subjects, placements, or devices) to a target domain.

Furthermore, unsupervised domain adaptation approaches trade-off their performance

with data labeling efforts. For example, in [7], the authors report an F1-score ≤ 0.8

in testing compared to 0.92 from [59] with supervised learning on the Opportunity

dataset[60].
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It is expected that despite their differences, sensory data of the same activity

from different subjects or devices intrinsically share common characteristics. A com-

mon assumption is the existence of shared representations among source and target

domains. When tasks sampled from source domains can ‘cover’ the representation

space, linear predictors built upon feature extractor for each task is sufficient for good

prediction[61, 62]. Based on this assumption, we formulate the domain shift problem

as a meta-learning problem with the aim to learn invariant features. By extracting

features shared across domains and build task-specific layers for different source do-

mains, the trained meta-model has better generalizability and can be adapted to a

new target domain with few labeled data (a.k.a fast adaptation). To further reduce

the amount of labeled data, we devise a metric to qualify the similarity of activities

from different domains. Such a metric allows us to selectively collect new labeled data

for activities exhibit high domain shifts. We have evaluated IFLF using multiple pub-

lic HAR datasets and one in-house datasets collected from older adults. Extensive

experiments demonstrate that a test accuracy ≥ 90% can be achieved when only 10

seconds of sensory data per activity class is available from a target domain.

The main contributions of this work are:

• We present a deep learning framework that can handle various sources of domain

shifts by extracting domain invariant features across multiple source domains.

• IFLF alleviates data shortage through feature sharing from multiple source

domains.

• The proposed method achieves superior performance in extensive experiments

over multiple datasets than the state-of-the-art meta-learning approach.
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• A similarity metric is proposed to further reduce the amount of labeled data

needed from a target domain for model adaptation.

The rest of this chapter is organized as follows. In Section 3.2 we discuss related

work. Section 3.3 introduces an overview of the proposed invariant feature learning

framework for HAR and a detailed description of methodology is in Section 3.4. We

present the evaluation results on publicly available datasets and our own dataset in

Section 3.5. A case study on the mobility assessment of real in-patient older adults

is presented in Section 3.6. Finally, section 3.7 concludes the chapter and lists future

directions of study.

3.2 Related work

In this section, we first give an overview of HAR models. Next, we discuss two

categories of approaches that address variations among different domains, namely, 1)

domain adaptation and 2) domain-invariant feature learning.

3.2.1 Human Activity Recognition Models

Before the tide of deep learning, one popular approach to solve HAR problems

is extracting a set of handcrafted features based on domain knowledge and training

a shallow machine learning model[63, 64, 65]. In [65], two types of features are uti-

lized, namely, time domain features (Mean, variance or standard deviation, energy,

entropy, correlation between axes, signal magnitude area, tilt angle, and autoregres-

sive coefficients) and frequency domain features (fast Fourier transform and discrete

cosine transform coefficients). Accuracy of 99% and 92% is reported with a support
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vector machine model and a one-layer neural network model, respectively, built upon

the features when classifying 16 activities. However, the effectiveness of handcrafted

features can be highly activity specific.

With deep learning, features can be learned from data automatically. A con-

volutional neural network is usually incorporated as part of the feature extractor.

Deep models are reported to achieve state-of-the-art results on many popular open

datasets [59, 66, 67, 68]. However, deep learning has its own limitations. It requires

a large amount of data to train and is sensitive to domain shifts. For example, the

t-distributed stochastic neighbor embedding (t-SNE) visualization [69] of 2D features,

a form of non-linear embedding for high-dimension data, in Fig.1(a) was originally

128 dimensions extracted by DeepConvLSTM [59]. Its predictive accuracy drops dra-

matically when applied to unseen subjects and devices. DeepSense[68] is a neural

network architecture that is robust to domain shifts by merging local interactions of

different sensory modalities into global interactions. However, it requires multi-sensor

modalities, long data windows to achieve good performance, and is sensitive to class

imbalance, making it unsuitable for transient or highly dynamic activities.

It should be noted that the proposed framework is model agnostic. In other

words, we can incorporate any state-of-the-art deep learning architecture for HAR

including DeepSense as the invariant feature extractor.
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3.2.2 Domain Adaptation

As a sub-category of transfer learning approaches, domain adaptation mitigates

the problem when the training data used to learn a model has a different distri-

bution from the data on which the model is applied[70]. Differed by the informa-

tion available for the target task, domain adaptation approaches can be further

divided into supervised[71, 72, 73], semi-supervised[74] and unsupervised domain

adaptation[7, 75, 8, 76].

Previous work on sensor-based HAR mostly falls in the category of unsupervised

domain adaptation. Three types of domain shifts have been considered, namely,

subject difference, device diversity and sensor location divergence. In [7], Soleimani

and Nazerfard focus on mitigating subject differences when abundant unlabeled data

is available in the target domain. A generative adversarial neural network (GAN)

based solution is proposed to generate shared feature representation across a pair of

source and target domains. Though not targeting HAR, the work [75] is relevant to

mitigate domain shifts due to device diversity. It utilizes a cycle-consistent generative

adversarial network (CycleGAN) to transform target domain data to a source domain,

and then apply a classifier trained on the source domain. In [8], Akbari and Jafari

propose a deep generative model to transfer knowledge between a labeled source

sensor and an unlabeled target. A mechanism to annotate pseudo labels for a target

sensor was proposed by majority voting and intra-class correlation in [76]. It is based

on handcrafted features and a SVM model. Despite the popularity of unsupervised

approaches, they trade-off the ability of learning invariant features that are robust to

new domain with data labeling efforts. Thus, the performance tends to be noticeably

inferior to supervised approaches. Also, the problem setup is limited to transfer
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knowledge between a pair of source and target domains which is limiting in practice.

3.2.3 Domain-Invariant Feature Learning

Learning invariant features across different domains can facilitate a better gener-

alization of a deep learning model. Specifically, meta-learning (a.k.a learning to learn

[9, 10]) is one approach to achieve this goal. Model-agnostic meta-learning (MAML)

[77] introduces an episodic training paradigm with gradient-based parameter updat-

ing. It inspired meta-learning based HAR approaches in [11, 12, 13]. The first two

target computer vision tasks, while MetaSense[13] is designed for sensor-based HAR

and thus is the most relevant to our work. In MetaSense, Gong et al. proposed to

sample tasks both randomly within each source domain and across source domains. It

achieves good performance with few-shot learning tests, but one limitation is the task

sampling method requires each source domain to have the same number of classes.

This assumption does not always hold especially when the activity set involves diffi-

cult or intensive motions. Both IFLF and MetaSense are meta-learning approaches

but operate under distinctive assumptions. IFLF assumes that the source domains

and the target domain share invariant features. In contrast, MAML and its variants

such as MetaSense assume the existence of weights that are only a few gradient steps

away from the optimal ones in every domain. These assumptions lead to different

ways of updating models with data from the target domain: MAML and its vari-

ants update parameters of the whole model while IFLF only updates the task-specific

layers.
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Multi-task learning also helps to extract invariant features by learning the knowl-

edge shared by different tasks (or domains). In [78], the authors propose a person-

alized shallow model for HAR, with a test accuracy between 63.9% and 72.8% on

different experiment settings. It also considers a subject-level similarity as transfer

factor that controls model parameter update in a gradient step. The work in [67, 79]

adopt deep learning methods. In [67], Peng et al. handle simple and complex ac-

tivities with different task-specific layers on top of invariant features across them;

whereas self-supervised learning is utilized through training an invariant feature ex-

tractor that is capable of extracting features behind various signal distortions in [79].

There are 8 types of manually added signal distortions (random noise, scaled, rotated,

negated, horizontally flipped, permuted, time-warped, and channel-shuffled) involved,

but limited by the types of predefined signal distortions, it reaches an overall accuracy

between 75.55% and 88.55% on 6 open datasets.

To the best of our knowledge, ours is the first work to comprehensively deal with

the domain shifts arising from multiple sources and data shortage problem. It differs

from previous meta-learning approaches in that instead of updating all parameters of a

meta-model in a gradient step, it trains a model in an alternating optimization manner

[80] to separate the task-specific and domain-invariant knowledge. In IFLF, a small

amount of labeled data is required in meta-test step. Comparing to unsupervised

domain adaptation approaches, doing so results in better classification accuracy at

low costs and the ability to handle missing classes in source or target domains.
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3.3 Overview

Let the input and label spaces be X and Y , respectively. The target domain

and the set of source domains are Dtgt = {(xn, yn)}Mn=1 and Dsrc = {D1, D2, ..., DK},

respectively. Dtgt and Dsrc follow different distributions on the joint space X × Y .

A domain Dk = {(x(k)
n , y

(k)
n )}Nk

n=1 corresponds to a source of variation, e.g., a subject

or a device, where Nk is the number of labeled data samples. In HAR, each task is

a multi-class classification problem that predicts the activity being performed from

data sampled from the respective domain. The problem of meta-learning aims to

learn well-generalized features from multiple source domains, and adapts the trained

model to the target domain with small amount of labeled data. Since we assume the

existence of domain-invariant features across the source and target domains, only the

domain specific layers of the model need to be updated when applying to the target

domain.

The intuition behind IFLF is to learn two types of knowledge from multiple source

domains: the shared features that can boost the generalization of a machine learn-

ing model, and the task-specific knowledge that provides the discriminative power

within a specific domain. This is intrinsically reasonable for HAR problems: the task

variations caused by different subjects or devices can be captured by task-specific

parameters of IFLF. On the other hand, the signals of the same activity also have

commonality, which can be embedded in an invariant feature representation that is

shared across tasks. More importantly, such invariant features can also be transferred

to a new HAR task to build a reliable model with very few data. To model the domain

invariant features and task-specific ones respectively, IFLF is built upon a multi-task

learning strategy where a task is associated with one of the source domains.
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There are two key components in the proposed learning framework: 1) a feature

extractor Lθ : X → Z, where Z is the feature space and θ denotes the parameters of L,

and 2) a group of task-specific networks: Sϕk : Z → RC , where k denotes the k-th task

or domain, ϕk are the parameters of k-th task-specific layer Sk, and C is the number

of classes in Y . Accordingly, the loss function is also composed of a feature extraction

objective ℓL and a task-specific objective ℓSk , which will be detailed in Section 3.4.

The output of a task-specific network is given by ŷ = softmax(Sϕk(Lθ(x))), where

softmax(z)j = ezj/
∑C

k=1 e
zk , for j = 1, ..., C. IFLF is model-agnostic as Lθ and Sϕk

can be any reasonable neural network. An example neural network architecture of

IFLF is shown in Fig.3.2.

Figure 3.2: An example of IFLF model which employs 4 convolutional neural
network (CNN) layers and 2 long short-term memory (LSTM) layers as Lθ, and K
softmax layers as Sϕk each corresponding to a domain in Dsrc.

In the training step, an IFLF model is meta-trained on Dsrc to obtain parameters

θ and ϕ. During testing in a target domain, the trained feature extractor network

Lθ will be directly reused, while a new task-specific network need to be trained with

task-specific data from Dtgt. Algorithm 1 depicts the overall training process of IFLF,

with learning rates hyperparameters α, β. The algorithm optimizes θ and ϕ in an
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Algorithm 1 Invariant feature learning for domain adaptation

Require: Source domains Dsrc = {Dk}Kk=1, hyperparameters α, β
Ensure: IFLF model with parameter θ and ϕ
1: Random initialize θ, ϕ = {ϕ1, ϕ2, ..., ϕK}
2: repeat
3: Sample tasks T = {T1, T2, ..., TK} over Dsrc;
4: //Update ϕk with fixed θ:
5: for k is 1 to K do
6: Freeze parameters of ϕ except ϕk;
7: ϕk ← ϕk − β∇ϕkℓSk(Tk, θ;ϕ

k);
8: end for
9: //Update θ with fixed ϕ;
10: θ ← θ − α∇θℓL(T, ϕ; θ);
11: until convergence

alternating way.

3.4 Invariant Feature Learning Framework for Do-

main Adaptation

3.4.1 Invariant Feature Learning

To learn invariant features across source domains, one needs to consider three

key factors: training strategy, feature extractor objective, and task-specific objective.

Alternating Training If an IFLF model is trained by simply iterating among

tasks sampled from D1 to DK , catastrophic forgetting may occur[81], namely, a model

forgets previously learned tasks, and can only works properly on newly learned tasks.

To avoid catastrophic forgetting, we adopt the alternating training strategy from [80],

to update Lθ and Sϕk separately. In each training epoch, we first freeze the parameters
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of the feature extractor layers, and update parameters of each task-specific layer with

its respective data; then, we freeze parameters of the task-specific layers, and update

the invariant feature extractor using all data from the previous step.

Feature Extractor By the merit of multi-task learning, Lθ is designed to generalize

well across domains through the sharing of representations between related tasks

[82]. Despite its model-agnostic nature, we adopt a simple architecture described

in [59] that is shown to be effective for HAR (See Fig. 3.2). The network includes

four convolutional neural network (CNN) layers and two long short-term memory

(LSTM) layers. Because the application of convolution operator depends on the input

dimension, we use a 1D kernel to convolve with one-dimensional temporal sequence

(a.k.a the sensor signal) [83]. 1D temporal CNNs are widely used in the area of sensor-

based HAR (see [35] for a detailed survey), the combination of CNN and LSTM is

beneficial for acquiring contextural knowledge and extracting meaningful features for

time series data.

The objective function ℓL works on multiple source domains to learn a domain

invariant feature representation that clusters the features by their labels. It is defined

as follows:

ℓL =
K∑
k=1

lossL(Tk, ϕ; θ), (3.4.1)

where lossL is a loss function calculated on each Tk with given θ and ϕ. Two types

of loss functions are employed in this work. The first one is simply a categorical

cross-entropy loss, defined as lossL = −
∑C

i=1 yilog(ŷi) on data from each task k. An

IFLF model that uses cross-entropy in the loss term in equation (3.4.1) is called a
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basic multi-task learning model (BMTL).

In light of encouraging features to be locally clustered according to class re-

gardless of the domain, we introduce the second type of loss function which utilizes

triplet loss [84]. To calculate the triplet loss, one needs to sample m triplets from

raw data in Tk, and a triplet is t = (xa, xp, xn). The corresponding output of a triplet

in the feature space Z is Lθ(t) = (za, zp, zn), where xa denotes the anchor sample,

xp is the positive sample from the same class as xa, and xn is a negative sample

from class other than xa. Here, the objective is to maximize the distance between

(za, zn) and minimize the distance between (za, zp). Since it is difficult to determine

a fixed threshold in a high dimensional space that separate data points into groups

that are sufficiently close (and thus belong to the same class), a triplet loss is suitable

for learning features that maximizes inter-class distances while minimizing intra-class

distances. We compute the triplet loss as:

lossL(Tk, ϕ; θ) =
m∑
i=1

max{0,
∥∥zia − zip

∥∥ 2 −
∥∥zia − zin

∥∥ 2
+ ϵ}, (3.4.2)

where ϵ is a margin enforced between positive and negative pairs [85]. An IFLF

model with a triplet loss is called triplet multi-task learning model (TMTL). Similar

to BMTL, the loss function of TMTL is also calculated on each individual task.

We then take the summation of losses over all source domains as the final objective

function (3.4.1).

Task-specific Networks Under the assumption that if the shared feature gener-

alizes well across all source domains, it will work on the target domain as well, Lθ
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should be capable of exploring the entire latent space Z and extracting domain in-

variant feature. At the same time, a task-specific network Sk
ϕ should be simple to save

the labor for fast adaptation, and be sparse to take only a subset (selected feature

columns) from Z as its inputs. A lightweight architecture of a task-specific layer Sϕk

includes a fully connected layer with a softmax activation function. The task-specific

objective function is defined as the sum of a categorical cross-entropy loss and an

ℓ1-norm regularization term as follows,

ℓSk = −
C∑
i=1

y
(k)
i log(ŷ

(k)
i ) + µ|ϕk|1, (3.4.3)

where µ is a hyperparameter to control the sparsity. The regularization term imposes

sparsity on the task-specific layers and helps mitigate overfitting. During meta-test,

we can adapt the trained model to Dtgt by either initiating a new task-specific layer

from scratch or updating the parameters of a selected Sϕk . An observation is that

when features extracted by Lθ are well-clustered, we can randomly select one ϕk to

conduct fast adaptation without much variance on the performance.

3.4.2 Similarity-based Fast Adaptation

Aiming at further reducing the amount of labeled data required from the target

domain for fast adaptation, a metric helps to identify the similarity or dissimilarity

of motion patterns is required. We assume that if similar patterns are observed on

an activity among all source domains, it is highly likely that the same activity in the

target domain follows the same pattern as well. To quantify the similarity of two

sensor signals, we propose a similarity metric in equation (3.4.4), which is calculated
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between data from the same activity across all source domains.

similarityci,j =
K∑
i=1

K∑
j=1

cov(pi, pj)

σpiσpj
, (3.4.4)

where σ is standard deviation, (pi, pj) =DTW(xi, xj) is the pair of warped signals

from sensor readings xi and xj from subject i and j, c is the activity class and

cov(·, ·) is the covariance. Dynamic time warping (DTW) [86] calculates the best

match between two temporal sequences, which may vary in speed. Here we use it to

align raw sensory readings to mitigate time shifts and speed divergence. The Pearson

correlation coefficient calculated on a pair of warped signals in equation (3.4.4) pro-

vides a normalized similarity score that measures if activity c is performed similarly

between a pair of participants. Data needs to be pre-processed (e.g., interpolated,

noise filtered and normalized) before feeding to DTW. To eliminate the impact of

misaligned sensor axis, we use the magnitude per sensor (e.g., an accelerometer or a

gyroscope) as input to the similarity calculation.

Consider measurements from two sensors attached to two subjects (Subject 1

and Subject 2) performing the same activity. If the warped distance of the resulting

measurements is small, this implies that the movement patterns are similar between

the two subjects for the activity (despite possible differences in pace). Therefore, we

can safely substitute Subject 1’s data with that of Subject 2 and vice versa. After an

IFLF model is trained, we no longer need to obtain labeled data from every class in

Dtgt. For activities that are considered similar across all source domains, we simply

sample from the corresponding activity data in the source domains. These samples

together with labeled data for remaining classes from the target domain are then

used in updating the parameters in the task-specific layers while keeping the feature
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extraction layers unchanged during gradient descent. In the experiments, we find

that a threshold ≥ 0.8 is suitable for distinguishing whether an activity is performed

similarly among different subjects using the similarity measure defined in equation

(3.4.4).

3.5 Evaluation and Results

As our research mainly focuses on assessing the mobility status of older adults

with IMU sensory data, we choose to conduct the experiments on open datasets and

our own dataset on locomotion or lower limb exercises. During data collection, sensors

are mainly attached to the trunk or lower limbs of participants. Nevertheless, the

method proposed in this work is generic and can be applied to other types of activities

and sensor placements.

3.5.1 Datasets

We consider three publicly available datasets to cover a wide variety of device

types, data collection protocols, and activity classes to be recognized, and one in-

house dataset that contains measurement data from multiple IMU sensors of different

vendors on older patients. Important aspects of the datasets are summarized in Table

2.1 with brief descriptions listed below.

(i) PAMAP2. The Physical Activity Monitoring version 2 (PAMAP2) [23] is a

dataset collected from one dominant ankle sensor (accelerometer and gyroscope)

for 8 different activities, i.e., lying, sitting, walking, running, cycling, nordic

walking, ascending stairs and descending stairs. Eight participants performed
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these activities freely without time constraints and have the option to skip some

activities. Thus, there exist missing classes in some participants’ data as well

as unbalanced data samples across the classes. During data collection, sensors

of the same model are instrumented on different subjects running at a sampling

rate of 100Hz.

(ii) USCHAD. This dataset [47] is collected from 14 participants performing 10

types of locomotions (i.e., walking forward, walking left, walking right, walking

upstairs, walking downstair, running forward, jumping up, sitting, standing

and sleeping). All activities are performed by each subject in a controlled

environment. A sensor (acclerometer and gyroscope) with a sampling rate of

100Hz is attached to the right hip of each participant. 5 data trials per activity

were collected per participant, and the duration of each data trial varies.

(iii) WISDM. This dataset [48] contains a large number of subjects. Raw ac-

celerometer and gyroscope data have been collected from a smartphone in each

participant’s pant pocket at a rate of 20Hz. There are a total of 51 test sub-

jects performing 7 locomotion activities (i.e., walking, jogging, stairs, sitting,

standing, kicking soccer ball, playing tennis) for 3 minutes apiece to get equal

class distribution.

(iv) MobilityAI-PhaseI. The mobility analysis by artificial intelligence (Mobil-

ityAI) dataset phase one dataset is collected from 25 in-hospital patients whose

ages are ≥ 65. The objective of collecting such a dataset is to monitor patients’

mobility status during their hospital stay, and to quantify the effectiveness of an
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early mobilization protocol. To identify the most suitable device, four IMU sen-

sors from different vendors are attached to patients’ waists using elastic bands

as shown in Fig. 3.3. Each subject performs four activities (lying for 5 min-

utes, sitting for 5 minutes, standing for 5 minutes and 20 meters walking) for

mobility status assessment. The four devices utilized are MetaMotionR [87],

Fitbit Versa [88], Mox One [89] and Actigraph [90]. All sensors are set to have

a 50Hz sampling rate, and only accelerometer readings are captured. Due to

data outage and the limited functional mobility of some participants, there exist

missing classes in the dataset.

Figure 3.3: The sensors and their placement when collecting data for the
MobilityAI-PhaseI dataset.
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3.5.2 Implementation and Evaluation Process

In addition to BMTL and TMTL discussed in the previous section, we have also

implemented four baseline models: a single-task learning model (STL), a pooling task

model (PTM) and MetaSense [13]. STL is trained solely on the target domain for

comparison with domain adaptation, whereas PTM is trained with mixed training

data from all source domains, to highlight the domain shift problem.

Data Preparation Although deep neural networks can directly learn useful fea-

tures from raw data [66], data preprocessing such as interpolation, noise filtering,

normalization, and the division of sliding windows are still needed. A Butterworth

low-pass filter [91] with a cut-off frequency of 10Hz is employed to remove high fre-

quency noise from interpolated data. After low-pass filtering, we normalize the data,

calculate similarity metrics, and then segment it into sliding windows with a fixed

length of 2 seconds with 80% overlapping for all datasets. To eliminate the impact

of different orientations of sensors in MobilityAI-PhaseI, we rotate the orientations

of Actigraph, Mox one and Fitbit 3-axis accelerometers to be aligned with that of

MetaMotionR.

Implementation The implementation of feature extractor follows DeepConvLSTM

[59] for IFLF, STL and PTM models. It includes four layers of 1D CNN and two

LSTM layers with 128 hidden units and a drop-out rate of 0.25 to prevent overfitting

[92]. The CNN layers have 64 channels with kernel size 5 and stride 1. For a fair com-

parison with MetaSense, we also implement TMTL use the same network architecture

as in [13] based on an open source implementation of MAML [93]. The feature extrac-

tor network has five CNN layers and two fully-connected layers, including 128 and 64
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hidden units respectively. The reason for not including LSTM layers to MetaSense is

two-fold: 1) MAML based approaches require a 2-steps update on layer parameters,

keeping intermediate variable for calculated gradients without actual updating. But

existing deep learning libraries combines gradient calculation with backpropogation

for recurrent neural network parameters, leaving no API for gradient calculation only,

and 2) as a model agnostic approach, it is interesting to investigate the performance

of IFLF without LSTM as well. Tasks in MetaSense are sampled both within and

cross different source domains, keeping activity labels consistent across all tasks.

For STL and PTM, the output layer corresponds to a fully-connected layer with a

softmax activation function. Both models are trained with a RMSProp optimizor[94]

at a learning rate of 10−3 and a decay factor of p = 0.9. The maximum iteration

number is set to be 100. IFLF models utilize the aforementioned network structure

as Lθ, the number of Sϕk branches is determined by the number of source domains,

and each Sϕk may have a different output shape depending on the number of classes.

IFLF models are trained with an Adam[95] optimizer at a learning rate of 10−4, β1 =

0.9, β2 = 0.999, and hyper-parameters µ = 0.8. The batch size is set to 100 and

the maximum number of training epochs is 30 with early-stopping. In each epoch,

TMTL samples m pairs of (xa, xp) and m pairs of (xa, xn) to form m2 (xa, xp, xn)

triplets from each source domain as task Tk. Similarly, n pairs of (xa, xp) and n

pairs of (xa, xn) are sampled to form n2 (xa, xp, xn) triplets as validation set(m > n).

In most experiments, we set m = 100, n = 10 and hyperparameter ϵ = 0.4. The

hyper-parameters and optimizer of each model are the same across all datasets.
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Evaluation Process Leave-one-domain-out evaluations are conducted on all datasets.

Under different problem settings, a domain can be a subject, a sensor device or a com-

bination of subject and device. In each experiment, a target domain was randomly

selected. Similarity calculation and model meta-training utilize data from source

domains only.

After the IFLF model is trained, we randomly sample a fixed test set from Dtgt,

and randomly select i data windows (of 2s length) per class from the remaining data

as the training set to update a trained MetaSense model and an arbitrary Sϕk layer

of the IFLF model. This process is also called i-shot learning. An STL model is also

trained on this training set and test accuracy is recorded for each model by gradually

increasing i from 1 to 100. Each evaluation is repeated 5 times and the performance

is reported with its mean and standard error if not specified.

3.5.3 Results

Evaluate with various domain shifts

In order to evaluate IFLF’s capability to handle domain shifts, three types of ex-

periments are conducted on subject difference, device diversity and their combination

(with both unseen participant and device).

Subject Difference Fig. 3.4 shows the averaged test accuracy with standard errors

across all datasets. The average is computed over all subjects of each dataset. As

demonstrated in Fig. 3.4, in terms of the overall test accuracy among the four models

follows, BMTL is better than STL, and TMTL is better than BMTL when few data

samples are available from Dtgt. However, since STL is solely trained on the target
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Figure 3.4: Evaluation on subject difference across all datasets when gradually
increase the number of data windows per activity class from Dtgt. The test accuracy
and standard error are averaged across different subjects in leave-one-out
experiments.

domain, when i is sufficiently large, its accuracy approaches 100% and tends to be

better than both IFLF models. We also observe that with different subjects as the

target domain, the converging rate of STL is dramatically different, an indication of

subject differences.

To visualize the features produced by the methods, Fig. 3.5 shows the t-SNE

of unseen subject’s features produced by each model [69]. When generating these

plots, we randomly pick a set of subjects as source domains (e.g., subject 1630 to

1646) and one subject as the target domain. The comparison is made among a

PTM model, leaving this subject out in the BMTL model and TMTL model. To

demonstrate the generality of the results, plots from two PTM models are presented

with different random splits of the training set for each source domain. Although the

figures are generated from the WISDM dataset, similar observations can be made for
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(a) PTM models

(b) BMTL and TMTL model

(c) Features extracted by TMTL model

Figure 3.5: t-SNE visualization of the learned representations. We visualize the
features from each model with the output of Lθ by projection them on 2D space.
This example is generated by different models with subject 1630 to 1646 as source
domains. (a) are PTM models; (b) left is BMTL and (b) right is TMTL; (c) are
from randomly selected subjects as target domains other than the one in (a) and (b).
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other datasets. Also, we examine the existence of invariant features across domains

by extracting features from unseen target domains.

From Fig. 3.5(a) and (b), it is clear that the features for different activities

generated by PTMs are entangled regardless of the splits between training and vali-

dation set. BMTL improves the separation among activities to some extent, whereas

TMTL generates a set of features with clear clustered structures and large margins.

Fig. 3.5(c) further demonstrates the existence of invariant features across domains

as features extracted from unseen target domains are well-clustered and linearly sep-

arable. Due to space limit, only 3 subjects are shown in Fig. 3.5, but other subjects

exhibit similar characteristics. This observation also explained why the fast adapta-

tion can be made on any trained Sϕk layer of BMTL and TMTL. As the features are

well separated, different choices of the task-specific layer for parameter update have

little impact on the performance. However, as the amount of data is quite limited

in the fast adaptation step, initializing Lθ randomly will impair the performance of

IFLF. But even in this case, we find the IFLF models still work better than STL. To

(a) (b) (c)

Figure 3.6: Comparison of the parameter ϕ’s distribution for different models. From
(a) to (c) are: STL, BMTL, TMTL. X-axis is the value of parameter, y-axis is the
normalized occurrence.

further illustrate the advantage of TMTL over the other two models, the sparsity of
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the parameters (ϕ) of the learned task-specific layer is compared. In Fig. 3.6, we plot

the distribution of ϕ in the three models trained on WISDM dataset.

As shown in Fig. 3.6, the parameters in STL are roughly a uniformly distributed

between -0.4 and 0.4. In comparison, the parameters of BMTL follow a zero mean

Gaussian distribution but with a large variance. Lastly, the majority of TMTL param-

eters are centered around 0 with a noticeably smaller variance (than that of BMTL).

The sparsity of task-specific layer’s parameters indicates the easiness of separating

the generated feature representations.

Device Diversity Similar to subject difference experiment, IFLF can also tackle

domain shift problems caused by device diversity. To understand the behavior of

STL, BMTL, and TMTL to handle device diversity, we consider data from different

sensor devices attached to the same subject at the same on-body position. Since only

the MobilityAI-PhaseI dataset has such characteristics, it is utilized in the subsequent

experiments.

In following experiments, data from Actigraph, Fitbit, Mox One constitute the

source domains, while MMR device’s data is selected as Dtgt. One data window per

activity sampled from Dtgt is utilized. To demonstrate the presence of domain shifts

between different devices, besides the STL, BMTL and TMTL models, we further

present the confusion matrix from PTM trained with data from Actigraph, Fitbit

and Mox one but tested on MMR.

From the confusion matrices in Table 3.1, it is clear that BMTL benefiting from

invariant feature learning outperformed STL, while TMTL rarely misclassifies any

activity in the dataset. Table 3.1(d) shows that PTM is incapable of learning robust

features that generalize well to the target domain.
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Fig. 3.7 visualizes features extracted by PTM (the two plots in Fig. 3.7(a)

are generated from different random splits of the training data), BMTL and TMTL

models. Similar to the case of subject differences, we observe that the PTM models

(a) PTM models

(b) BMTL and TMTL model

Figure 3.7: t-SNE visualization of the learned representations. This example is
generated by different models on MobilityAI-PhaseI dataset. (a) are PTM models;
(b) left is BMTL and (b) right is TMTL.

fail to extract separable features from MetaMotionR data while BMTL does a better

job, but the resulting features are still not well-clustered. In contrast, TMTL gives

rise to features with clear boundaries in the feature space and clustered structures.
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Table 3.1: The experiment on sensor diversity. Confusion matrices are generated
with only 1 data window per activity involved.

(a) The confusion matrix of the single task model trained on MetaMotionR sensor data.

Lying Sitting Standing Walking
Lying 0.98 0.02 0 0
Sitting 0.02 0.98 0 0
Standing 0 0.35 0.65 0
Walking 0 0 1 0

(b) The confusion matrix of the BMTL model fast adapted with MetaMotionR data.

Lying Sitting Standing Walking
Lying 0.98 0.02 0 0
Sitting 0.02 0.98 0 0
Standing 0 0.42 0.58 0
Walking 0 0 0 1

(c) The confusion matrix of the TMTL model fast adapted with MetaMotionR data.

Lying Sitting Standing Walking
Lying 0.98 0.02 0 0
Sitting 0.08 0.90 0.02 0
Standing 0 0.04 0.96 0
Walking 0 0 0 1

(d) The confusion matrix of the PTM model trained without MetaMotionR and tested on
MetaMotionR data directly.

Lying Sitting Standing Walking
Lying 1 0.02 0 0
Sitting 0 0.99 0.01 0
Standing 0.01 0.94 0.05 0
Walking 0 0.48 0.52 0
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Fig. 3.8 depicts the distribution of parameters ϕ in the task specific layers of each

model. Similar to Fig. 3.6, we observe that TMTL has the most sparsity, followed by

BMTL, whereas STL leads to the least sparsity. The evaluation on device diversity

further demonstrates the IFLF models’ capability of learning invariant features across

domains.

(a) (b) (c)

Figure 3.8: Comparison of the parameter ϕ’s distribution for different models. From
(a) to (c) are: STL, BMTL, TMTL.

Both subject and device are unseen Encouraged by the promising results on

the subject difference and device diversity experiments, we further evaluate situations

where both device and subject are unseen to the model. We randomly selected a

subset from the MobilityAI-PhaseI dataset, which includes 8 subjects with waist

attached sensors. As each subject has 4 sensor devices attached, the total combination

of subject and sensor is 32. A pair of BMTL and TMTL models are trained on data

from 5 participants each with 3 sensors attached, and evaluated on the 4th device

data collected from participants other than the five in the training data. We conduct

leave-one-out experiment on both subject and device. To keep brief, we only present

results from one division of subjects as the other cases are quite similar. Specifically,

the meta-training set includes data from Subject 1 to 5. The test data is from
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Subject 6, 7 and 8. Fig. 3.9 compares the performance when both the subject

Figure 3.9: Combinations of different sources of diversity (Both the test subject and
the test device are not included in the training data for IFLF models). The test
accuracy and standard error are averaged across 5 experiments by randomly
sampling data windows from the target domain.

and device are unseen to IFLF models. In this case, both BMTL and TMTL have

better performance than STL, especially when the amount of labeled data from the

target domain is small. Compared to Fig. 3.4, we observe large gaps between TMTL

and STL test accuracy. This can be attributed to the significant diversity among

different devices. Furthermore, by comparing the results for Subject 6 and 8 for the

same device (e.g., Mox One or MMR), we find that Subject 8 appears to have larger
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differences from subjects in the training set than Subject 6. Despite such differences,

TMTL consistently outperforms BMTL and STL. Meanwhile, large standard errors

are observed with STL as it is heavily dependent on the training set.

In summary, IFLF is a general method to capture invariant features, and works

well regardless of the cause of domain shifts.

Comparison with MetaSense

To this end, we conclude TMTL outperforms STL, BMTL in handling domain

shifts caused by subject and device diversity. Next, we present the comparison be-

tween TMTL without LSTM and the state-of-the-art meta-learning model for HAR,

MetaSense. With PAMAP2, WISDM and USCHAD which only contain data from a

single sensor, we compare the performance of these two models on mitigating domain

shifts caused by subject differences. With MobilityAI-PhaseI dataset that include

data from multiple subjects and devices, the performances of the two models when

both subject and device are unseen are compared.

From Fig. 3.10, it is clear that in 19 out of 20 cases tested, TMTL performs better

than or comparably as MetaSense. The advantage of TMTL is more prominent when

few data samples are available from the target domain. The superior performance of

TMTL over MetaSense for very few shot learning is due to the fact that MetaSense

needs to update the entire model whereas TMTL only updates a task-specific layer.

The latter approach is more data efficient and less likely to over-fit. However, as the

number of available data samples from the target domain grows, the performance of

MetaSense is comparable to or even slightly better than TMTL with sufficient labeled
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Figure 3.10: Comparison between TMTL and MetaSense on different domain
adaptation tasks. Results are reported for 1, 2, 5, 10, 20-shots (data windows) per
activity class from Dtgt with average test accuracy and standard error.

data from the target domain.

Compared to the TMTL with LSTM in Section 3.5.3, the performance of TMTL

with LSTM drops by an average 2.35% for 1-shot learning across all datasets. How-

ever, as the number of shots increases to more than 10, the performance gap is

negligible (< 0.5%). This fact further demonstrates that IFLF is a model agnostic

method and can be used in conjunction with any suitable network architecture for

feature extraction.

Similarity Metric and Fast Adaptation

Using the similarity metric defined in Section 3.4.2, in this section, we first com-

pare inter-subject and intra-activity similarity. The purpose of this study is to under-

stand whether there exist subjects with similar movement patterns in all activities,

and whether there exists an activity with little inter-subject variation. Secondly, we
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(a) PAMAP2 dataset

(b) USCHAD dataset

(c) WISDM dataset

(d) MobilityAI dataset

Figure 3.11: The evaluated similarity measure on each datasets. Plots on the left
are similarity of activities, while plots on the right are similarity of subjects.
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evaluate the use of intra-activity similarity in further improving data efficiency in

fast adaptation. For activity similarity (left column in Fig. 3.11), we compute the

averages and standard deviations of similarities of the same activity across different

subjects. The right column in Fig. 3.11 shows the similarity scores between one

subject and the others averaged over matching activities.

From Fig. 3.11, it is clear that some activities have higher similarity scores

than the others. For example, in the PAMAP2 dataset, ‘sitting’ appears to be similar

across different subjects, while ‘walking’ has the least similarity. This indicates diverse

postures during walking but less variation during sitting in this dataset. On the other

hand, when examining subject similarities, we find that some degree of similarity

exists across almost all subjects (e.g., with a similarity score > 0.5). However, no

two subjects perform activities the same way (e.g., the maximum similarity score

is below 0.8). An exception is observed in the MobilityAI dataset, Subject 4 and

5 have noticeably lower similarity from others and larger standard deviations. It

is because these two people have mobility issues and have to stand or walk with a

rollator. It is expected that larger diversity exists among older adults with different

underlying physical conditions. Homogeneity is more pronounced among younger

populations as evident from the first three datasets. Another interesting observation is

that depending on sensor placements, participants and the protocol of data collection,

the same activity may have different cross-subject similarity in different datasets. For

example, ‘lying on bed’, ‘sitting’ and ‘standing’ have noticeably different similarity

scores across the four datasets.

Next, we investigate whether target domain data can be safely replaced by data

from source domains for certain activities in fast adaptation. We first sample 10
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labeled data windows from each activity from Dtgt to perform fast adaptation on a

trained TMTL with the procedure described earlier. Then, the ten data windows

of activities with top 3 similarity scores are replaced with data randomly sampled

from Dsrc to update the TMTL model. The performance metric used is recall =

tp

tp+ fn
, as it reveals whether a single activity is wrongly classified. A non-decreasing

recall as more and more sampled data from the target domain is replaced by source

domain data implies that doing so has little impact on the performance with less data

collection efforts. The results for different datasets are shown in Fig. 3.12.

Figure 3.12: The evaluation of applying similarity metric in the fast adaptation
step. Activities with top 3 similarity scores are replaced in each dataset.

As evident from Fig. 3.12, ‘sitting’ from PAMAP2, ‘lying’ and ‘jump up’ from
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USCHAD can be safely replaced with marginal impacts on the recall. This result

is in accordance with the similarity scores presented in Fig. 3.11 as all these three

activities have similarity score ≥ 0.8. Although ‘lying’ appears in three datasets, it

can only be safely replaced in the USCHAD. In other words, by sampling activities

with high similarity scores and small inter-subject variance from source domains,

we can improve data efficiency by 12% to 20% on top of the reduction from fast

adaptation.

3.6 A Case Study on Older Adult Mobility

Apart from the evaluations on public datasets collected under controlled settings,

we also conduct a case study on in-patient HAR dataset (MobilityAI-Phase I and

Phase II) to gain more insights on IMU-based human motion analysis. Part of the

work on Phase I is in Section 3.5 and a portion of work on Phase II is reported in

[96].

3.6.1 Dataset

A high level summary of the dataset is given in Table 2.1 in Chapter 2. More

specifically,

1. Phase I: A detailed description is in Section 3.5.1. The objective of collecting

this dataset is a feasibility study as well as picking the best sensor device for

motion analysis on older adults.

2. Phase II: Actigraph sensor [90] with a 30 Hz sampling rate accelerometer was

utilized. MobilyAI-Phase II includes 30 subjects, 24 were female (80%) and the
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average age was 81.4. From each test subject, two mobility assessment data

trials were collected under the supervision of a physiotherapist, including five

activities: lying, sitting and standing for 5 minutes, a 30-meter walk and time-

up and go. Three IMUs were attached to the dominant side thigh, wrist and

ankle, and the two trials were separated by a 24 hours time interval. A 24-hour

freestyle data trial was also collected from the subjects, they were asked to wear

either a combination of wrist+thigh sensors or wrist+ankle sensors during the

collection. There is no 3rd party observation or self-reported activity labels for

the freestyle trials.

3.6.2 Models and Evaluation Process

As there are no ground-truth labels for the freestyle data trials, quantitative

study is mainly conducted on data trials collected in a controlled environment. PTM

models were trained on different sensor placements to find the best device combination

and investigate the gap between controlled trials and in-the-wild trials.

3.6.3 Results

Evaluation on Phase I dataset

In this evaluation, we compared the model performance on data collected at

different placements with Actigraph and MetaMotionR, for picking the best sensor

placement and sensor device. The result of MetaMotionR is in Fig. 3.13 and that of

Actigraph is in Table 3.2.

The observations from Fig. 3.13 and Table 3.2 are consistent. No apparent

performance gap is observed between Actigraph and MetaMotionR devices. Also,
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Figure 3.13: Mean error of the MetaMotionR posture detection across all sensor
placement

Table 3.2: Test accuracy of each sensor placement.

Ankle Thigh Wrist
Test Accuracy 77.95% 85.71% 72.80%

Ankle+Wrist Ankle+Thigh Wrist+Thigh
Test Accuracy 86.14% 87.93% 87.89%

Ankle+Thigh+Wrist
Test Accuracy 91.11%

they follow the fact that the wrist is one of the most active parts of the human body

and its motion can be largely irrelevant to body posture. Sensor readings from the

wrist sensor are expected to be noisy. But the labeled data trials were collected under

a controlled environment, thus make it possible to achieve > 70% accuracy on posture

detection task. However, it is presumably not the case for freestyle data collection.

Like the wrist, people may have more free motions at the ankle than that at the thigh.

Hence the thigh sensor provides the best accuracy when there is only a single sensor

as the data source. The observation from a single sensor that thigh > ankle > wrist

still holds for a combination of two sensors. So when we combine wrist and thigh
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sensors, the accuracy is better than that of wrist and ankle, whereas ankle and thigh

accuracy is the best among them. When using all three Actigraph sensors, the best

accuracy was achieved, as 91.11%.

Evaluation on Phase II dataset

As the 24-hour data trials have no activity labels, we cannot directly evaluate

the trained neural network model on them. But based on an assumption that people

are asleep at night and more active in the day, we can obtain some qualitative re-

sults of the model performance selected time spans. e.g., 2:00 am to 2:30 am versus

5:00 pm to 5:30 pm. Here we show the results from two subjects JHCC02 33 and

JHCC02 31 who have different level of mobility–JHCC02 33 can walk independently

with walker while JHCC02 31 requires assistance to walk by one person and a walker.

Also included are the results due to sensor placement (wrist+thigh vs.wrist+ankle)

during 24-hour data collection. It is expected that JHCC02 31 should be less active

than JHCC02 33 during non-sleeping time. The results are shown in Fig. 3.14.

From Fig. 3.14, it is clear that the predicted activities are inaccurate using the

wrist sensor only, as there is no lying activity in prediction. Upon a close inspection at

the data, we find the IMU data from the wrist sensor is very noisy and do not exhibit

clear pattern even during periods when the subject was meant to be still. This can

be in part explained by many interfering activities that hands can perform during

locomotion. Recall that the model was trained using labeled data trials collected

under the supervision of a physiotherapist, and thus a participant was asked to lying

or sitting, it is more likely to keep his/her hands still. Interfering activities are one

55



Ph.D. Thesis – Y. Hao McMaster University – Computer Science

(a) Estimated poses from ActiGraph sensors between 17:00 and 17:30 for JHCC02 31.
Left: wrist, right: ankle. JHCC02 31 is more active than JHCC02 33.

(b) Estimated poses from ActiGraph sensors between 02:00 and 02:30 for JHCC02 31.
Left: wrist, right: ankle. Predictions from the wrist are totally wrong with no ‘Lying’ pose
detected.

source of domain gap between controlled and in-the-wild datasets that hinders the

generalization of the model trained on one dataset.

3.7 Conclusion

In this chapter, we presented an invariant feature learning framework based on

meta-training and multi-task learning paradigm to effectively address domain shifts
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(c) Estimated poses from ActiGraph sensors between 17:00 and 17:30 for JHCC02 33.
Left: wrist, right: thigh. JHCC02 31 is more active than JHCC02 33.

(d) Estimated poses from ActiGraph sensors between 02:00 and 02:30 for JHCC02 33.
Left: wrist, right: thigh. Predictions from the wrist are totally wrong with no ‘Lying’ pose
detected. The thigh sensor detected ‘Lying’ pose but cannot distinguish it from ‘Sitting’.

Figure 3.14: ActiGraph predicted postures for unlabeled data during selected time.

and data shortage in HAR. As demonstrated in Section 3.5.3, IFLF has been shown

to work efficiently in few-shot learning, especially when the number of shots are few

(1 or 2 shots). A > 10% performance margin has been observed when compared to

MetaSense under such condition. Also, the proposed TMTL model implicitly handles

class imbalance and class missing problems as well. A similarity measure was proposed

to further reduce the amount of data required in fast adaptation step. A case study
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is conducted to better understand the IMU-based human motion analysis on older

people.
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Chapter 4

Sensor-based HAR with Noisy

Crowd-sourced Dataset
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4.1 Introduction

Wearable sensor-based human activity recognition (HAR) has gained a lot of in-

terests recently due to the pervasiveness of wearable sensors such as inertial measure-

ment units (IMUs) in smartphone and smartwatch devices and its many applications

in fitness and health monitoring [68, 97, 35, 98]. With the increasing adoption of deep

neural network models in HAR tasks, there is a need to acquire a large amount of

well-curated and labeled sensory data to train such models. Unfortunately, the ma-

jority of public HAR datasets are from controlled settings where subjects are asked

to perform prescribed activities in lab environments. They typically contain a small

collection of subjects and activity types over limited periods of time. For example,

PAMAP2 [23], a popular dataset for HAR, only includes eight subjects with 59.67

minutes of measurements per subject. Furthermore, data collected from controlled

settings often have very different characteristics from those of freestyle motions in

naturalistic environments [3].

Collecting wearable sensor data in the wild faces its own set of challenges. Ar-

guably, the biggest difficulty is to label such data accurately [4]. Recalls from one’s

memory are known to be notoriously unreliable [5]. Labelling wearable data by ob-

serving signal patterns requires extensive domain knowledge and experience since

sensor readings are impacted by not only activity types but also subject character-

istics, on-body positions and sensor orientations. A mainstream method to label

such data is to resort to another human-interpretable modality such as visual or au-

dio recordings and determine the labels manually post hoc. Unfortunately, labels

obtained this way are still error-prone due to mis-synchronization across different

modalities, human errors or missing data (e.g, occlusion in vision data). As the first
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contribution of the work, we examine two datasets collected in naturalistic settings to

understand the extent and characteristics of noisy labels.

Learning with noisy labels (LNL) has long been investigated in the machine

learning community with many effective methods being proposed for computer vision

tasks [14]. However, through an empirical study, we find that one mainstream LNL

method fails to achieve good accuracy and sometimes cannot converge at all. In-depth

analysis reveals that the root cause is the violation of a fundamental assumption in

this and similar methods that a model trained from noisy data in early training epochs

tends to have much higher confidence in correctly labeled data than wrongly labeled

data. The reason that the assumption does not hold is in part due to the existence

of subject diversity, which makes it difficult to distinguish wrongly labeled data from

correct ones from a different subject whose data follows a different distribution (also

known as domain gaps). Therefore, the second contribution of the work is to unravel

the interplay between subject domain gaps and LNL for HAR tasks.

The insights from the empirical study motivate our third contribution, namely, to

design VALERIAN, an invariant feature learning for In-the-wild domain adaptation

method for wearable sensor-based HAR.

Its core component is a one-step domain invariant feature learner that tackles

label noises and learns the shared feature representation among multiple subjects.

VALERIAN uses self-supervised pretraining to learn good representations to take

advantage of abundant unlabeled data (including those mislabeled). The pretrained

parameters are used to initialize the shared feature encoder of a multi-task learning

model, where each subject in the training data is considered a separate task. The
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network consists of shared feature representation layers and subject-dependent task-

specific layers that are trained iteratively. To combat noisy labels, early-learning

regularization (ELR) [16] is adopted by introducing a loss term reflecting the temporal

ensemble of past predictions. At inference time, we assume a small number of clean

labeled data is available from unseen subjects. The data is used to update the task

specific layer to allow fast adaption of the trained model to the target user.

We have evaluated the performance of VALERIAN using two controlled datasets

with different degrees and distributions of noisy labels injected and one in-the-wild

dataset. We find that VALERIAN consistently outperform baseline approaches al-

most in all settings. Even with 40% label noise in training data, it achieves ∼ 83%

test accuracy with only 10 seconds of clean labeled data per class from a new target

subject in the controlled datasets. A similar evaluation on a true in-the-wild dataset

with auto-corrected labels achieves an over 20% improvement in the F1-Score.

The rest of the chapter is organized as follows. Section 4.2 describes the moti-

vation of this work. In Section 4.4, we introduce the VALERIAN method and the

details of each component. In Section 4.5, we present the implementation details and

performance evaluation of VALERIAN. Section 4.3 describes the related work and

how they differ from ours. Finally, we conclude the chapter in Section 4.6 with a

summary and a list of future work.

4.2 Motivation

To understand the characteristics of in-the-wild HAR datasets and to gain in-

sights on why mainstream learning with noisy label (LNL) methods tend to fail on

such tasks, we inspect two datasets and the behavior of a state-of-the-art (SOTA)
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LNL algorithm in this section.

4.2.1 In-the-wild HAR datasets

In this work, an HAR dataset is considered to be in the wild (or collected in

naturalistic settings) if the activities of subjects are not precisely scripted. As a re-

sult, experimenters do not know exactly what activities shall be performed at what

time. The ExtraSensory dataset is one such example [53], where sensor data were

collected from users’ smartphone devices as they went about their daily activities.

Activity labels were initially self-reported. Further curation was done by researchers

who utilized information from other sensing modalities to automatically correct some

data labels. For example, if GPS sensor readings indicate a subject is outside, the

location label “indoor” submitted by the subject is erroneous and is corrected. A de-

tailed description of the curation procedure used in ExtraSensory can be found in [3].

As another example, the Realworld dataset [52] contains data collected from fifteen

subjects performing activities such as climbing stairs down and up, jumping, lying,

standing, sitting, running/jogging and walking. Although in most cases, subjects

were asked to perform a certain activity, during walking or jogging outside trials, the

variations of terrains are not controlled by the experimenters and thus un-prescribed

activities may occur.

Fig. 4.1 illustrates the percentage of clean and mislabeled data in both datasets.

For RealWorld, we manually inspect the video recording of data trials for climbing up

or climbing down activities, and note down the start and end time, and the type of

activities. We find that there are periods that the subjects walk on a flat ground (7%

of the time) or stand still (3% of the time) during the trials, which were mislabeled
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as climbing up or down in the dataset. For ExtraSensory, when comparing the self-

reported and curated labels, we find that 34.5% are unchanged, 39.2% are corrected

in the curation process and 26.3% are marked as invalid since the phones were not

on subjects’ body at the time. Moreover, upon closer inspection of curated data in

ExtraSensory, we find the data labels are still noisy. For example, in Fig. 4.2, the left

plot corresponds to accelerometer measurements labeled as standing while the right

one is labeled as walking. However, one can easily observe the “signature” periodical

pattern associated with walk cycles in the left plot but not in the right plot – an

indication of mislabeling even after curation.

From Fig. 4.1, we conclude ExtraSensory is much noisier than RealWorld since

the former is crowdsourced data. What also distinguishes the two datasets is the

distribution of noisy labels. Specifically, for RealWorld, most mislabeling happens in

the climbing up/down trials when the ground labels are “walk on a flat ground” or

standing. In contrast, in ExtraSensory, mislabeling exists almost between any two

activities. To characterize the distribution of noisy labels, a noise transition matrix

T is often used, where element Tij corresponds to the probability of mislabeling a

data sample with ground truth label i to label j [99]. When mislabels occur equally

likely for all classes other than the true class, the associate noise pattern is called

symmetric noise. Otherwise, if there is a dominant off-diagonal element in each row

in T , the associate noise pattern is called asymmetric noise.

Table 4.1 shows the noise transition matrix of data in three locomotion classes and

one location class in ExtraSensory by comparing their curated labels (row headings)

and the original ones (column headings). As ExtraSensory is a multi-label dataset

with many classes, only top-5 mutually exclusive labels are included in the table.
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Table 4.1: The noise transition matrix of ExtraSensory, based on its curated labels.
For walking and standing, we only show their top-4 mislabeling sources due to space
limits.

walking strolling cleaning cooking eating
walking 75.28% 3.46% 3.46% 2.35% 1.67%

running exercise go upstairs go downstairs
running 79.92% 19.66% 0.21% 0.21%

standing cooking cleaning shower dressing
standing 56.79% 8.47% 7.51% 5.35% 5.34%

at home at school at work at party at gym
at home 96.71% 1.49% 1.27% 0.27% 0.26%

Figure 4.1: The statistics of two in-the-wild IMU-based HAR datasets. Left:
Realworld dataset, Right: ExtraSensory dataset. A noticeable portion of the data
labels in both datasets are noisy.

We observe that with the exception of “running”, noise transition probabilities of all

classes are best modeled as symmetric noise.

4.2.2 Failures of mainstream LNL methods

Learning with noisy labels has long attracted attention in the machine learning

community with published work on this topic dated as early as 1988 [100]. Recently,

many deep learning-based methods have been proposed for LNL that primarily target

computer vision tasks. Next, we discuss one SOTA LNL method and investigate its
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Figure 4.2: Accelerometer measurements from ExtraSensory dataset with curated
labels. Left: standing (subject id: FDAA70A1-42A3-4E3F-9AE3-3FDA4 12E03BF,
row id: 4339), Right: walking (subject id:
2C32C23E-E30C-498A-8DD2-0EFB9150A02E, row id: 5454).

performance when applied directly to HAR with noisy labels.

DivideMix [15] is a representative co-training based method. The basic idea of

DivideMix is to first train a model with all training data for a few epochs (called

warm-up phase). A Gaussian mixture with two modes is fitted to divide data sam-

ples based on their normalized losses into two partitions – those with lower losses

(higher confidence) are considered clean labeled data, and those with high losses are

treated as unlabeled data. Semi-supervised learning is then applied to the mixed

data. Subsequently, co-refinement of labeled data and co-guessing of the labels of

unlabeled data is performed by two neural networks working together iteratively, to

reduce biases.

To study the behavior of DivideMix for HAR, we utilize the USCHAD dataset [47].

This dataset contains accelerometer and gyroscope measurements collected from four-

teen participants performing ten types of locomotions in a controlled environment

(i.e., walking forward, walking left, walking right, walking upstairs, walking down-

stairs, running forward, jumping up, sitting, standing and sleeping). USCHAD is
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chosen here because the dataset is carefully curated with ground truth labels. To

simulate label noise, we consider both symmetric and asymmetric noises as illustrated

in Fig. 4.3, where τ is a configurable parameter controlling noise levels.
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(a) Symmetric noise
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Figure 4.3: Noise transition matrix T for symmetric and asymmetric noise
distributions

We adopt the DeepConvLSTM model architecture proposed in [97] for HAR

tasks and train on the USCHAD dataset. The model contains 4 convolutional neural

network (CNN) layers and 2 long short-term memory (LSTM) layers totalling ∼296k

trainable parameters.

Fig. 4.4 shows the behavior of DivideMix over training epochs using the Deep-

ConvLSTM model in presence of 0.2 asymmetric labelling noise. In the experiments,

13 of 14 subjects are included in the training data and the remaining subject is used

in testing. The warm-up phase ends at 30 epochs. As shown in Fig. 4.4a, test ac-

curacy increases quickly during the warm-up phase indicating that the model can

learn despite label noises. However, after the warm-up phase, the test accuracy drops

drastically and fluctuates between 45% and 60% after 60 epochs. A closer look at

the division between labeled and unlabeled data in the training set by DivideMix in

Fig. 4.4b reveals that despite only 20% of the data samples are labeled incorrectly,

DivideMix gradually converges to split the data approximately 81-19 or 61-39. As

a result, some clean labeled data is classified as unlabeled and fail to contribute as
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much to the training process.

(a) Test accuracy
(b) Division of clean and noisy labeled
data

Figure 4.4: The performance of DivideMix on USCHAD in leave-one-subject-out
experiments.

To shed the light on why DivideMix fails in these experiments, further analysis

is in order. First, we inspect the effect of memorization. Deep neural network models

are known to have the propensity for fitting training data including outliers or misla-

beled data. However, it has been empirically demonstrated that such a memorization

phenomenon tends to happen at a late stage of training [101, 16]. In early training

epochs, the model prioritizes learning simple patterns. Based on such observations,

many LNL approaches take advantage of early stopping to learn a base model from

all data. Since noisy labels are in the minority and tend to be “irregular”, smaller

losses and higher prediction confidence are associated with clean labels in the early

training epochs. To test if this hypothesis is true for HAR tasks, we show in Fig. 4.5

the breakdown of training samples among five categories. Specifically, a data sample

that is correctly labeled can be either correctly or wrongly predicted by the trained

model up to the associated epoch. For a data sample that is wrongly labeled, three

situations may arise: i) its prediction is the same as the ground truth label (correct),
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ii) its prediction is the same as the wrong label (memorized) or iii) otherwise, i.e., its

prediction is neither the ground truth label nor the wrong label. From Fig. 4.5, even

after a few epochs, memorization is non-negligible especially in the case of asymmetric

noise. When a noisy label is memorized, the model has high confidence in its wrong

prediction.

Figure 4.5: Results of the DivideMix model on USCHAD with 0.2 symmetric noise
and asymmetric noise. Left: the fraction of clean labeled samples that are predicted
correctly (green) and incorrectly (blue). Right: the fraction of samples with wrong
labels that are predicted correctly (green), memorized (red), and incorrectly as
neither the true nor the labeled class (blue).

We believe the root cause of early memorization and the consequent failure of
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(a) Distribution of
normalized losses

(b) Partition of the data
predicted as clean by
DivideMix

(c) Partition of the data
predicted as noisy by
DivideMix

Figure 4.6: Effects of subject diversity on early learning. Plots are generated on a
model trained on Subject 2 – 14 in USCHAD with 0.2 symmetric noise and after 30
epochs of warm-up training.

(a) Distribution of
normalized losses

(b) Partition of the data
predicted as clean by
DivideMix

(c) Partition of the data
predicted as noisy by
DivideMix

Figure 4.7: Effects of subject diversity on early learning. Plots are generated on a
model trained on Subject 2 – 14 in USCHAD with 0.2 asymmetric noise and after
30 epochs of warm-up training.

DivideMix in HAR tasks is due to the large variability across subjects when perform-

ing the same activity. Subject diversity is a well-recognized problem in HAR [102].

However, the problem is exacerbated when noisy labels are present. In Fig. 4.6 and

4.7, we show the normalized cross-entropy losses for Subject 2 – 14 in the training

data and the division of clean and noisy labels for each subject in DivideMix after

a 30-epoch warm-up period. Clearly, the normalized losses (Fig. 4.6(a) and 4.7(a))

no longer follow a two-component GMM. Instead, they are better modelled by a
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mixture of three or more components. Moreover, the first and second components

in Fig. 4.6(a) and all components in Fig. 4.7(a) have close mean values. Inspecting

the division of labelled and unlabeled data for each subject by DivideMix, we find

that some presumably clean data is in fact noisy (false clean in Fig. 4.6(b)) while

a portion of presumably noisy data is in fact clean for each subject (false noisy in

Fig. 4.6(c)). Some subject (e.g., Subject 14) appears to be penalized with a higher

percentage of clean data being mislabeled as unlabeled by DivideMix. The wrong

division is even more prominent with asymmetric noise in Fig. 4.7(b) and (c), where

more than 10% of Subject 14’s clean data is wrongly classified as wrong labels (due

to high normalized losses).

Figure 4.8: Distribution of normalized losses on USCHAD with one subject (subject
id: 2). left: 0.2 symmetric (false clean: 5.25%; false noisy: 0%); right: 0.2
asymmetric (false clean: 2.47%; false noisy: 5.58%).

Fig. 4.8 shows the distribution of normalized losses at the end of the warm-

up phase when training DivideMix on data from one subject with 0.2 symmetric

and asymmetric labeling noise. To avoid overfitting, we reduce the network size of

DeepConvLSTM and retain only two CNN layers and one LSTM layer with a total

of 56k trainable parameters. The distributions in Fig. 4.8can indeed be modeled
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as 2-component GMM following the basic assumption of DivideMix and thus can be

correctly handled by the method (results omitted for brevity). Comparing the results

with Fig.4.6(a) and 4.7(a), it is reasonable to conclude that the discrepancy is due to

domain gaps in multi-subject data in the former cases.

Though our analysis focuses on DivideMix, other LNL methods such as ELR [16]

make the same assumptions that high-confidence labels in early training stages are

more trustworthy. Unfortunately, as evident from the empirical analysis in this sec-

tion, such assumptions no longer holds in presence of diverse subject data in HAR

tasks.

4.3 Related Work

Learning with noisy labels LNL has been investigated in computer vision and

audio signal processing for over a decade [100, 14]. Existing methods can be catego-

rized into three groups. First, contrastive learning-based LNL methods [103, 104] add

regularization terms to the loss function to obtain a well-clustered feature structure.

Second, curriculum learning [105, 106] or teacher-student networks such as Mentor-

Net [107] trains a neural network to guide a student network by assigning weights to

samples. Since the pioneer co-teaching work [99], the use of two networks together

gains popularity in LNL and has been adopted in several recent papers including

DivideMix [15], ELR+ [16], co-regularization [108]). Instead of training a model that

works on the noisy labeled samples, another line of work aims to select clean labeled

samples out of noisy ones [109, 110]. Despite all the advancements in LNL, none of

the afore-mentioned work considers domain gaps between source and target domains

(also known as domain shifts).
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Weakly-supervised learning in sensor-based HAR There are some works in

mobile computing that deal with weakly-supervised learning problems related to

sensor-based HAR [111, 112, 113]. Wang et al. in [112, 113] define weakly-supervised

learning as detecting the start and end of an activity of interest in a given time-series

data sequence, similar to the sound event detection problem[114, 115, 116]. Unlikely

our problem, the goal is to crop the data of interest from a noisy sequence for training

so that a machine learning model can gain a better discriminative power. For instance,

consider a collected climbing up IMU data trial with two activities: climbing upstairs

and walking on the flat ground. Wang et al. treat walking as a background activity

and try to detect the onset and offset timestamps of climbing upstairs events. In con-

trast, in this work, we treat the data within such a trial as a mixture of climbing up

and noisy labeled walking activities. Apart from the different ways of treating label

noises, existing works still require further steps to handle subject diversity within the

training process to generalize well to new unseen subjects.

Joint LNL and domain adaptation A few works consider LNL together with

domain shifts. Shu et al. in [117] considered noise either in data or label of a single

source domain and perform weakly-supervised model training to adapt to a target

domain. In [118, 119] researchers propose one-step solutions to LNL and unsupervised

domain adaptation. However, these methods have been applied to image classification

tasks, where there is only a single source domain. Thus, the authors only consider the

domain shift between one source domain and one target domain. In contrast, in our

work, we need to take into account domain shifts amongst multiple source domains,

namely, different human subjects. As discussed in Section 4.2, subject diversity in

training data prevents conventional LNL methods from working effectively since early
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learning can inadvertently memorize noisy data.

4.4 Invariant Feature Learning for IMU-based HAR

in the Wild

Let the input and label spaces be X and Y , respectively. Due to high subject

diversity in HAR tasks, each subject in the training set is treated as a separate source

domain in the joint space X × Y . In the rest of the chapter, we use “domain” and

“subject” interchangeably. Let Dk = {(xk
n, ỹ

k
n)}

Nk
n=1, where Nk is the number of data

samples from subject k and ỹ denotes noisy labels. The source domains are denoted

by Ds = {D1,D2, ...,DK}, where K is the number of subjects. We further assume

that a small collection of clean labeled samples can be obtained for an unseen subject

t denoted by Dt = {(xn, yn)}Mn=1. The goal of HAR from data in-the-wild is to learn

a model from Ds that can be easily adapted to a new target domain given Dt.

A naive solution to this problem is to first apply an existing LNL method to

data from individual subjects separately to acquire more accurate pseudo labels

based on the predictions of the respective subject-dependent model (Step 1). The

pseudo-labelled data from multiple subjects are then aggregated to train a subject-

independent model (Step 2), which can later be adapted to unseen subjects with

clean data. There are two problems with such a two-step approach. First, a subject-

dependent model of suitable capacity has to be chosen in Step 1 according to the size of

data from each subject. Small-capacity models generally under-fit data while large-

capacity models can easily overfit and memorize noisy labels1. More importantly,

1This is precisely the reason we had to manually prune the DeepConvLSTM model architecture
to make DivideMix works for single subject’s data in Fig. 4.8.
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since LNL and learning domain invariant feature (to train a subject-independent

model) is done in two steps, mislabeled data after LNL cannot be corrected in do-

main adaptation; and LNL cannot benefit from any shared pattern across different

subjects.

Motivated by the observations from Section 4.2, we propose VALERIAN, a one-

step method that handles noisy labels and distribution gaps across multiple source

domains simultaneously. Our solution is based on two key insights: i) unsupervised

learning that aims to learn representations invariant to instance-level variations is

not affected by noisy labels; and ii) within each source domain, clean data tends to

exhibit simpler patterns (than wrongly labelled data), which can be learned in early

training epochs. Moreover, we assume that in absence of noisy labels, there exist

domain-invariant features across subjects in HAR tasks. This assumption has been

empirically verified in prior work [120].

As a one-step solution to tackle noisy labels and domain shift issues, VALERIAN

differs from Butterfly [118] in a way that we also consider the variance among source

domains, which is crucial for HAR tasks. Empirical results on public datasets show

that our approach is superior to Butterfly. (see Section 4.5.4 for details)

4.4.1 Solution overview

VALERIAN takes advantage of known techniques in machine learning but com-

bines them in innovative ways. It has three key building blocks: i) self-supervised

pre-training, ii) invariant feature learning from noisy labelled data, and iii) fast adap-

tion to unseen subjects.
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Self-supervised pre-training takes unlabeled data and performs data augmenta-

tion to pre-train feature extractors that capture structures of underlying distributions.

Invariant feature learning in VALERIAN has two objectives: 1) to learn shared feature

representations across domains and 2) to combat the memorization effect introduced

by noisy labels. To do so, we adopt a multi-task learning model for domain invariant

feature learning first proposed in [120] that consists of shared features across multiple

source domains and a task-specific output layer.

To counter the effect of noisy labels, we introduce a regularization term similar

to ELR in the loss function during training. Finally, for a new subject with a small

amount of clean data, fast adaption is performed on the task-specific layers of the

multi-task model only.

Algorithm 2 summarizes the training procedure of VALERIAN. Next, we will

provide the details of each building block.

4.4.2 Self-supervised pre-training

In [121], the authors find that a ResNet pre-trained on ImageNet datasets ap-

pears to work consistently better than random initialized ones as a feature extraction

network for LNL image classification tasks. Inspired by this, here, we pre-train a

feature extractor network by removing the labels in HAR datasets. In such cases,

it is natural to consider feature learners that require no label information, such as

contrastive learning [122] or self-supervised learning. Self-supervised learning is a

machine learning method that learns semantic features from unlabeled data with

customized tasks [123]. As there is no ground truth label, to take advantage of this

technique, data augmentation and auxiliary tasks need to be introduced. In [79],
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Algorithm 2 Invariant feature learning for in-the-wild domain adaptation

Require: Source domains Ds = {Dk}Kk=1, learning rate γ, hyperparameters α, β, λ, µ
Ensure: VALERIAN model with parameter θ and ϕ
1: Initialize θ with self-supervised pretrain
2: Random initialize ϕ = {ϕ1, ϕ2, ..., ϕK}
3: Initialize ensemble predictions t← 0[n×C]

4: repeat
5: Sample tasks T = {T1, T2, ..., TK} over Ds

6: //Update ϕk with fixed θ
7: for k is 1 to K do
8: Freeze parameters of ϕ except ϕk

9: for each minibatch B in Tk do
10: for (xi, ỹi) in B do
11: pi ← Sϕk(Lθ(xi))
12: ti ← βti + (1− β)pi
13: end for
14: end for
15: Loss← LCE(Tk, θ;ϕ

k) + µ|ϕk|1 + λ
|B|

∑
log(1− ⟨pi, ti⟩)

16: ϕk ← ϕk − γ∇ϕkLoss(Tk, θ;ϕ
k)

17: end for
18: //Update θ with fixed ϕ
19: for each minibatch B in T do
20: B′ = Mixup(B,α)
21: for (xi, ỹi) in B’ do
22: pi ← Sϕ(Lθ(xi))
23: ti ← βti + (1− β)pi
24: end for
25: end for
26: Loss← LCE(T, ϕ; θ) + µ|ϕ|1 + λ

|B|
∑

log(1− ⟨pi, ti⟩)
27: θ ← θ − γ∇θLoss(T, ϕ; θ)
28: until convergence

Saeed et al. introduce several transformations to input data and train a multi-task

model to classify the type of transformation applied. We adopt the same idea and

apply the following transformations:

1. Noised: it adds random Gaussian noise to the original data samples.

77



Ph.D. Thesis – Y. Hao McMaster University – Computer Science

2. Scaled: this transformation changes the magnitude of data samples within a

sliding window by multiplying with a random scalar.

3. Rotated: this transformation mimics different sensor orientations by multiplying

the original data with a rotation matrix of randomly generated axis-angle.

4. Negated: this transformation negates samples within a time window, resulting

in a vertical or a horizontal flip of the original input signal.

5. Reversed: it reverses the data along the time dimension, resulting in a complete

mirror image of the original input.

6. Permuted: sensor signals are randomly sliced and swapped within a data win-

dow.

7. Time-Warped: it mimics the change of motion frequency by locally stretching

or warping a time series through a smooth distortion of time intervals.

8. Channel-Shuffled: this transformation randomly shuffles the sensor signals in

axial dimensions.

One or several of these transformations (called pretext tasks) are applied to each data

window to each sensor separately (accelerometer and gyroscope). Each head of the

multitask learning model corresponds to a binary classifier. By learning whether

a certain type of transformation has been applied to the original data samples, the

feature extractor portion of the network captures high-level semantic information that

is invariant to these transformations and thus beneficial to downstream tasks.
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4.4.3 Domain invariant feature learning

Self-supervised learning alone is insufficient to handle domain gaps among sub-

jects. Moreover, data labels are necessary to fine tune model parameters for down-

stream tasks. To generalize well to unseen subjects, we utilize the invariant feature

learning framework (IFLF) from Chapter 3. It consists of three components:

Alternating training An IFLF model is a multi-task model trained with tasks

sampled from all source domains. In each training epoch, we first freeze the parame-

ters of the feature extractor network, and update the parameters of each task-specific

layer with its respective data; then, we freeze the parameters of all task-specific layers

and update the invariant feature extractor using all data from the previous step.

Feature extractor By the merit of multi-task learning, Lθ generalizes well across

domains through the shared representations among related tasks [82]. For HAR tasks,

we use DeepConvLSTM [97] as the backbone network. It includes four CNN layers

and two LSTM layers. The objective function ℓL works on multiple source domains

to learn a domain invariant feature representation that clusters the features by their

labels. It is defined as follows:

ℓL =
K∑
k=1

LCE(Tk, ϕ
k; θ), (4.4.1)

where LCE is the categorical cross-entropy loss function calculated on each Tk with

given θ and ϕ, defined as LCE = −
∑C

i=1 ỹilog(pi) on data from each task k. We

call such a multi-task model basic multi-task learning model (BMTL). To further

boost the quality of extracted features, we use self-supervised pre-train as described
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in Section 4.4.2 to initialize the model parameter θ.

Task-specific networks Generally, if the shared feature generalizes well across all

source domains, it also works well on the target domain. Lθ needs to have sufficient

capacity to explore the entire latent space Z and extract domain invariant features.

In contrast, a task-specific network Sk
ϕ should be as simple as possible with fewer

learnable parameters to allow fast adaptation with target domain data. In the imple-

mentation, a lightweight task-specific layer Sϕk includes a fully connected layer with

a softmax activation function. The task-specific objective function is defined as the

sum of a categorical cross-entropy loss and an ℓ1-norm regularization term as follows,

ℓSk = LCE(Tk, θ;ϕ
k) + µ|ϕk|1, k = 1, 2, . . . , K, (4.4.2)

where µ is a hyper-parameter to control the sparsity of Sk
ϕ. The regularization term

imposes sparsity on the task-specific layers and helps mitigate overfitting.

4.4.4 Learning with noisy labels

With the multitask learning model introduced previously, we can get the best of

both worlds: shared network parameters for feature extraction for all subjects and

subject-dependent output layers. As a result, the underlying assumption of dominant

LNL methods is that in early training epochs, each subject-dependent model tends

to incur low losses (higher confidence) on clean data and large losses on mislabeled

data are likely to hold. To handle noisy labels, in principle, we can incorporate any

existing LNL method in the invariant feature learning framework. However, we find

that DivideMix has high training costs due to its use of two networks in co-teaching
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and co-refinement. When combined with invariant feature learning, its complexity

grows linearly with the number of source domains. Therefore, in VALERIAN, we

employ ELR to counter memorization effects by forcing model predictions to be close

to their temporal ensemble. An ELR loss is defined as :

Lelr =
1

|B|

|B|∑
i=1

log (1− ⟨pi, ti⟩) , (4.4.3)

where pi is the model output of input sample xi, and ti = βti+(1−β)pi is the temporal

ensemble controlled by hsyper-parameter β. (4.4.3) maximizes the inner product of

pi and ti, and the logarithm in Lelr inverts the exponential function implicit in the

softmax function in pi.

MixUP [124] is a simple yet effective data augmentation technique in boosting

model generalization capabilities [125]. In HAR tasks, we can mix up data samples

from the same activity class but different subjects. To apply Mixup data augmenta-

tion, each data sample of a mini-batch is interpolated with another sample randomly

chosen from a different source domain but belongs to the same class. Specifically,

for a pair of samples (x1, ỹ) ∈ Di and (x2, ỹ) ∈ Dj, the mixed data sample (x′, ỹ) is

computed by:

a ∼ Beta(α, α), (4.4.4)

a′ = max(a, 1− a), (4.4.5)

x′ = a′x1 + (1− a′)x2 (4.4.6)
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where a is the MixUp factor sampled from a Beta distribution controlled by hyper-

parameter α. Finally, the total losses in (4.4.1) and (4.4.2) are updated as:

LossL = ℓL + µ|ϕ|1 + λLelr, (4.4.7)

LossSk = ℓSk + λLelr, k = 1, 2, . . . , K, (4.4.8)

where λ is a hyper-parameter to control the importance of ELR. It is worth noting

that the loss is calculated differently in the alternating training procedure as Lθ

includes all source domains while ϕk only concerns the data of the kth subject. MixUp

augmentation is only used in updating the feature extraction layers (Lθ).

4.4.5 Fast adaptation to new subjects

Since the network parameters in task-specific layers are already sparse, for a new

subject, one can either initiate a new task-specific layer from scratch or randomly

select a Sϕk to update its trained parameters. A small amount of clean data is taken

from Dt to train the task-specific layer.

4.5 Experimental Evaluation

In this section, we evaluate the performance of VALERIAN in IMU-based HAR

tasks under different scenarios.
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4.5.1 Datasets

We consider three public datasets to cover a wide variety of device types, data

collection protocols, and activity classes to be recognized. Because the evaluation of

machine learning models requires the availability of clean ground truth labels, the first

two datasets, USCHAD and WISDM [48] were collected under controlled laboratory

environments. To simulate labelling errors, symmetric or asymmetric noise is injected

into the labels with different noise transition matrices. WISDM contains a large

number of subjects. Raw accelerometer and gyroscope data have been collected from

a smartphone in each participant’s pant pocket at a rate of 20Hz. There are a total of

51 test subjects performing seven locomotion activities (i.e., walking, jogging, stairs,

sitting, standing, kicking a soccer ball, playing tennis) for three minutes per trial to

get equal class distribution.

The third dataset, ExtraSensory, allows us to gauge VALERIAN’s ability to

handle real in-the-wild data. In ExtraSensory, crowdsourced mobile phone data are

collected from 60 subjects during daily living activities. In the evaluation, we only

consider six locomotion-related activities, namely, walking, running, cycling, sitting,

standing and lying down. In the absence of ground truth labels, we take instead the

curated labels as ground truth. However, as discussed in Section 4.2, the curated

data remains to be noisy. Moreover, ExtraSensory also suffers from severe class

imbalancing and missing class issues (only nine out of 60 subjects have data from all

six classes in the dataset).

4.5.2 Baseline methods

We have implemented five baseline models for comparison purposes.
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• Single-task learning model (STL): STL is trained from scratch solely on the

clean data from a target domain (a new subject). As the amount of clean data

increases, it is expected that STL’s performance improves since there is no label

noise.

• Basic multi-task learning model (BMTL): Similar to VALERIAN, BMTL is a

meta-learning method trained with noisy source domains and adapted to a tar-

get domain with a small amount of clean labels. However, unlike VALERIAN,

BMTL does not perform self-supervised pre-training, and treats all training

data as clean.

• Subject-independent model with cross-entropy losses (SI): This method pools all

but test subjects’ data to train a single subject-independent model and treats

all training data as clean.

• Subject-independent model with ELR (SI-ELR): It is a subject-independent

model trained by pooling all but test subjects’ data together. Unlike SI, it

utilizes ELR to combat noisy labels.

• Butterfly [118]: It is a joint LNL and domain adaptation method, which treats

all but test subjects’ data as a single source domain and takes all unlabeled

data samples from a target domain to train a model. Butterfly maintains four

deep networks simultaneously, two of which perform adaptations (i.e., noisy-to-

clean, labeled-to-unlabeled, and source-to-target domains) and the remaining

two perform classification in the target domain.

BMTL and VALERIAN are meta-learning methods, while STL is their natural con-

trast in that they utilize some clean data from the target domain. From the discussion,
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it can be seen that SI and SI-ELR do not require any target domain data. However,

for a fair comparison, we perform transfer learning to update the parameters of both

models using a few samples per class from a target domain. Butterfly on the other

hand includes unlabeled target domain data during training and thus no transfer

learning using clean target domain data is done at inference time.

4.5.3 Implementation and evaluation procedure

Data preparation A standard IMU data pre-processing procedure is implemented

for the experiments, including interpolation, low-pass filtering, normalization, and

data segmentation. A Butterworth low-pass filter [91] with a cut-off frequency of

10Hz is employed to remove high-frequency noise from interpolated data. After low-

pass filtering, we normalize the data and then segment it into sliding windows with

a fixed length of 2 seconds with 80% overlapping between adjacent windows.

Implementation The implementation of the feature extractor follows DeepCon-

vLSTM in all models. It includes four layers of 1D CNN and two LSTM layers with

128 hidden units and a drop-out rate of 0.25 to prevent over-fitting [92]. The CNN

layers have 64 channels with kernel size 5 and stride 1.

For STL, the models are trained with a RMSProp optimizer [94] at a learning

rate of 10−3 and a decay factor of p = 0.9. The maximum iteration number is set

to be 500. The SI models are trained with 200 epochs only, as the memorization

effect will gradually degrade the model performance in latter training epochs. But-

terfly and ELR are trained using hyper-parameters as specified in the original papers.

VALERIAN utilizes DeepConvLSTM in Lθ while the number of Sϕk branches is deter-

mined by the number of subjects in the training data. Each Sϕk may have a different
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output shape depending on the number of classes in the dataset for the respective

subject. VALERIAN is trained with an Adam [95] optimizer at a learning rate of

10−4, β1 = 0.9, β2 = 0.999, with hyper-parameters µ = 0.4, α = 0.2, β = 0.7, and

λ = 3. The batch size is set to 64 and the number of training epochs is 300 with-

out early stopping. The hyper-parameters and the optimizer used in each model are

consistent across all datasets.

Evaluation process Since the noise levels in in-the-wild data are unknown, we

evaluate the robustness of the proposed approach by introducing different levels of

noise to clean datasets. Two noise patterns with four levels each are considered,

namely, symmetric noise with τ = {0.1, 0.2, 0.4, 0.6} and asymmetric noise with

τ = {0.1, 0.2, 0.3, 0.4}. The noise transition matrices are then defined according

to Fig. 4.3. From Section 4.2, we have seen that LNL with asymmetric noises is gen-

erally harder than that with symmetric noises. For example, when τ = 0.4 and the

number of classes C = 10, under asymmetric noise, roughly 60% of data in each class

is correctly labeled while the remaining 40% is labeled to another class. As a result,

the percentage difference between correctly and wrongly labeled data is only 20%. In

contrast, in symmetric noise cases, the percentage gap is 60− 40
9
≈ 55.6% (since the

percentage of the wrongly labeled class is 40
9
). Therefore, for asymmetric noise, the

maximum τ is set to 0.4 but in the case of symmetric noise, the maximum τ is set

to to 0.6. In the experiments, to better simulate real-world noise patterns, the noise

transition matrices of asymmetric noise are defined by setting the probability of the

most similar class of each activity to τ , as shown in Fig. 4.92.

2The most similar class is determined by the confusion matrix of a model trained on clean data.
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Figure 4.9: Noise transition matrix T with asymmetric noise for USCHAD (Left)
and WISDM (Right), τ = 0.1.

Leave-one-subject-out evaluation is conducted on all datasets. In the experi-

ments, we randomly select one subject as the target domain at a time, until all

subjects are chosen. In Butterfly, we evaluate it in a way as described in its origi-

nal paper [118]. For SI-ELR and SI, we update the trained models with five clean

data windows per class from the target domain in transfer learning. For VALERIAN

and BMTL, we randomly sample a fixed test set from the target domain Dt, and

then select n data windows (of length 2s) per class from the remaining data in Dt

to update an arbitrary Sϕk layer. This process is also called n-shot learning. Here

n = {1, 2, 5, 10, 20}. An STL model is also trained with the n data windows and test

accuracy is recorded for each n. Experiments are repeated five times for each param-

eter setting, and the mean test accuracy and its standard deviation are reported.
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4.5.4 Results

Controlled Datasets

First, we present the evaluation results on controlled datasets with meta-learning

methods (e.g., STL, BMTL and VALERIAN). Fig. 4.10 and 4.11 show the results on

USCHAD with asymmetric and symmetric noise of different levels respectively. The

results on WISDM are given in Fig. 4.12 and 4.13.

Figure 4.10: Evaluation on USCHAD with different levels of asymmetric noise and
different numbers of data windows per activity class from Dt. The test accuracy and
standard deviation are averaged across all subjects in leave-one-out experiment.

Overall performance From these figures, we observe that VALERIAN works well

and its performance is quite stable across different noise levels and types of noise in
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Figure 4.11: Evaluation on USCHAD with different level of symmetric noise and
different numbers of data windows per activity class from Dt. The test accuracy and
standard deviation are averaged across all subjects in leave-one-out experiment.

both datasets. It almost always outperforms BMTL, which confirms the necessity

to handle noise in meta-training. As STL is trained entirely on clean data from Dt,

its performance is not impacted by noise patterns and levels. As more clean data

become available, the performance of STL serves as an upper bound of LNL models.

From the figures, we see that with 20 shots, VALERIAN has comparable or slightly

worse performance than STL. However, with a smaller number of target domain data,

VALERIAN learns more efficiently. For example, with five shots, the average accuracy

of VALERIAN for UHSCHAD and WISDM across all noise levels and patterns are

84.35 and 83.87, respectively, which are superior than BMTL (78.71 and 78.46) and
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Figure 4.12: Evaluation on WISDM with different level of asymmetric noise and
different numbers of data windows per activity class from Dt. The test accuracy and
standard deviation are averaged across all subjects in leave-one-out experiment.

STL (75.26 and 77.20).

Effect of noise levels and noise pattern From Fig. 4.10 – 4.13, as expected,

as the noise level increases, the accuracy of VALERIAN degrades slightly. However,

even with 60% symmetric noise, it can achieve an average accuracy of 81.99% for

USCHAD for 5-shot learning, amounting to less than 3% reduction compared to the

case with 10% symmetric noise. Similar observations can be made for asymmetric

noise and WISDM.

When comparing the accuracy of VALERIAN in symmetric and asymmetric noise

cases, interestingly, not much difference can be observed even for 1-shot case. This is
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Figure 4.13: Evaluation on WISDM with different level of symmetric noise and
different numbers of data windows per activity class from Dt. The test accuracy and
standard deviation are averaged across all subjects in leave-one-out experiment.

in contrast to the more pronounced degradation of BMTL in 1 or 5-shot learning with

asymmetric noise. Our observation is consistent with what the authors reported in

[16] in that ELR handles asymmetric noise well in image classification tasks and even

better than scenarios with the symmetric noise in some cases. Recall that asymmetric

noise in our experiments is from similar classes. These scenarios represent realistic

and hard cases for LNL.

Results of non-meta-learning methods Table 4.2 compares the results of SI,

SI-ELR and Butterfly against VALERIAN with 5-shot learning for the two datasets.

From Table 4.2, it is clear that none of the three methods performs well in
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Table 4.2: Results of non-meta learning methods on UHCHAD and WISDM, when
5 clean labeled samples per class are available from the target domain. Report with
mean test accuracy in (%) with standard deviation.

(a) Results on USCHAD dataset with artificially added 8 types of noise patterns in data
labels.

Dataset USCHAD
Noise type Sym. Asym
Method/Noise ratio 10% 20% 40% 60% 10% 20% 30% 40%
SI 74.6± 14.9 72.1± 16.1 69.6± 15.9 65.1± 15.1 74.3± 16.1 73.4± 13.6 68.7± 13.6 65.3± 14.3
SI-ELR-last 30.8± 11.9 26.5± 9.6 23.5± 13.2 15.1± 2.9 59.1± 30.4 48.0± 22.5 27.0± 10.5 18.0± 4.5
SI-ELR-best 76.3± 15.1 71.1± 12.4 65.2± 8.8 58.3± 13.1 77.8± 15.4 70.5± 17.4 69.7± 20.4 58.5± 13.2
Butterfly 67.2± 22.5 66.3± 21.7 67.1± 22.1 21.3± 6.3 65.1± 15.2 52.4± 25.5 42.0± 28.1 37.9± 15.1

VALERIAN 84.8± 7.3 85.3± 8.4 83.6± 9.4 82.0± 7.6 85.7± 6.6 84.9± 8.1 84.8± 8.8 83.7± 8.2

(b) Results on WISDM dataset with artificially added 8 types of noise patterns in data
labels.

Dataset WISDM
Noise type Sym. Asym
Method/Noise ratio 10% 20% 40% 60% 10% 20% 30% 40%
SI 61.1± 14.4 59.9± 13.8 56.8± 12.1 50.9± 12.1 58.7± 17.4 56.8± 15.3 53.1± 13.7 48.4± 11.4
SI-ELR-last 29.1± 11.4 27.0± 10.5 16.7± 4.4 16.8± 4.2 36.8± 17.2 24.5± 10.4 17.1± 3.1 16.9± 4.4
SI-ELR-best 68.2± 12.8 60.1± 12.8 52.5± 10.7 46.0± 13.2 66.1± 11.5 65.2± 8.8 58.6± 11.9 55.1± 9.7
Butterfly 58.4± 21.4 46.0± 13.2 42.3± 12.7 39.1± 9.7 58.0± 14.7 36.7± 13.2 24.5± 15.4 14.3± 1.4

VALERIAN 84.1± 8.3 86.8± 7.0 83.3± 8.0 81.3± 8.3 84.8± 8.7 84.4± 6.5 83.7± 8.0 82.6± 8.0

HAR with noisy labels. The vanilla SI model does not explicitly handle subject

divergence nor label noises. Its performance degrades as the noise ratio τ increases.

In comparison, SI-ELR ignores subject divergence and deals with noisy labels using a

regularization term. In the table, we consider the results of two variants: SI-ELR-best

and SI-ELR-last, where after the training epochs, the best performing model (based

on clean validation data) or the model in the last epoch are saved, respectively. Note,

in practice, we cannot decide when to stop training to obtain SI-ELR-best, and thus

its results are presented for reference only.

We observe significant differences between results from SI-ELR-best and SI-ELR-

last. This is because the high variance of SI-ELR over training epochs. Though

designed to handle label noise, SI-ELR-best has worse performance than SI when

the symmetric noise level is greater than 10%. The results are consistent with our
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observations with DivideMix in Section 4.2 and reveal that subject diversity harms

ELR’s ability to combat label noises. SI-ELR fares somewhat better for asymmetric

noise. However, with 40% noise, SI-ELR-best is 7% worse than SI and 25% worse

than VALERIAN in USCHAD. On the other hand, at the 40% noise level, ELR-last

achieves an average accuracy of 17.97 (16.91) on USCHAD (WISDM), which is only

slightly better than random guess with 10% (14.28%) for USCHAD (WISDM) since

the number of classes in USCHAD (WISDM) is 10 (7).

Butterfly on average has worse accuracy than SI and SI-ELR-best and performs

poorly as the noise level increases in both datasets. This is in part due to the fact that

Butterfly uses unlabeled target domain data at training time while SI and SI-ELR-

best benefit from transfer learning with a few shots of clean labeled data at inference

time. However, the difference in accessing target domain lables does not justify the

large variance in Bufferfly’s test accuracy on USCHAD as shown in Table 4.2. As

an example, with 0.4 symmetric noise, its highest test accuracy is 91.69% when data

from subject 5 is in the test set, whereas its lowest accuracy is 17.77% when leaving

subject 10 out. We believe that the poor performance of Butterfly is because it treats

different subjects in the training set as a single domain.

In-the-wild Dataset

Next, we compare the performance of VALERIAN, BMTL and STL on Ex-

traSensory, which is a pure crowdsourcing dataset. Considering the data imbalance

and class missing issue, we take F1-Score rather than test accuracy as metrics to

evaluate model performance here. Note that since the ground truth labels from cu-

rated data are noisy, the results need to be taken with a grain of salt. Fig. 4.14(a)
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shows the F1-Score of the three models with gradually increasing the number of data

windows. Compared to results with the two controlled datasets, all methods have

their worst accuracy. This can be attributed to the noisy target domain labels in

fast adaption or learning STL model. The large standard deviation in STL results

at even 20-shots indicates either label noise in target domain data or noise in ground

truth or both. In fact, for many subjects, the training and validation set is not i.i.d

due to data noise, resulting in a validation accuracy jumping back and forth between

training epochs. However, VALERIAN still outperforms the other two methods in

all cases. To see if VALERIAN can indeed learn good features from noisy data, we

show in Fig. 4.14(c) the t-distributed stochastic neighbor embedding (t-SNE) plot of

the outputs of its feature extraction network. Clearly, the classes are well separated.

This is in contrast with overlapping among classes in 4.14(b), which shows the t-SNE

plot of the outputs from the feature extraction network in BMTL.

(a) F1-Score. (b) t-SNE plot of features
in BMTL.

(c) t-SNE plot of features
in VALERIAN.

Figure 4.14: Evaluation on ExtraSensory with different the number of data windows
per activity class from Dt. The mean and standard deviation F1-Scores are averages
across all subjects in leave-one-out experiment. t-SNE are generated on a random
subject (id:4FC32141-E888-4BFF-8804-12559A491D8C) with data from all six
classes.
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Table 4.3: Ablation study of VALERIAN on USCHAD with 0.4 asymmetric noise.

(a) Taking 1 data window per class from the target domain.

Method Test Accuracy
VALERIAN 72.29± 12.42
VALERIAN w/o ELR 62.21± 11.09
VALERIAN w/o self-supervised pre-train 63.58± 5.25
VALERIAN w/o MixUp 63.35± 3.29
VALERIAN w/o IFLF 50.74± 10.85

(b) Taking 5 data windows per class from the target domain.

Method Test Accuracy
VALERIAN 83.68± 8.18
VALERIAN w/o ELR 76.55± 6.69
VALERIAN w/o self-supervised pre-train 79.28± 7.37
VALERIAN w/o MixUp 77.69± 2.34
VALERIAN w/o IFLF 60.18± 10.35

Ablation Study

To see how each component contributes to the final performance of VALERIAN,

an ablation study is conducted on the USCHAD dataset with 1-shot and 5-shot

learning respectively, with 0.4 asymmetric noise. Similar results can be expected for

other noise settings or datasets.

As shown in Table 4.3(a) and (b), the performance gap of VALERIAN and

its variant by removing one of its components becomes more prominent. But the

overall contribution of each component to VALERIAN almost remain unchanged.

In both cases, the domain invariant feature learner plays the most important role

in VALERIAN. Without IFLF, VALERIAN degrades to an ELR model and fails

to deal with subject divergence. Moreover, in absence of a dedicated meta-learning

strategy, it is insufficient to update parameters of the whole model by only a few

clean labeled data samples. As a result, a large standard deviation in test accuracy
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is observed. MixUp contributes a ∼ 9% and ∼ 6% accuracy to the overall solution

in Table 4.3(a) and (b), empirically demonstrating its usefulness in improving model

generalization in HAR tasks with noisy labels. Inclusion of ELR in VALERIAN leads

to a ∼ 10% improvement in 1-shot learning and ∼ 7% in 5-shot ones. Recall the poor

performance of ELR alone in Table 4.2. The results speak unequivocally for the need

to combine LNL and meta learning to handle subject diversity. Lastly, we find that

self-supervised pre-train contributes ∼ 9% and ∼ 4% test accuracy respectively.

4.6 Conclusion

In this chapter, we proposed VALERIAN, a domain invariant feature learning

approach for sensor-based HAR in the wild. An extensive experimental study demon-

strated its superior performance over baseline methods for different levels of noise and

noise patterns. The key takeaway from this work is two-fold: 1) the effects of subject

diversity and label noises intertwine in the learning behaviour of LNL models and

can lead to catastrophic memorization of wrongly labelled data, and 2) it is impor-

tant to design domain adaptation strategies to explicitly handle subject diversity in

conjunction with LNL for better generalization in HAR.
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Chapter 5

A Deep Learning-based

Cross-modality Inertial

Measurement Unit Simulator
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5.1 Introduction

Nowadays, inertial measurement units (IMUs) have become ubiquitously avail-

able in wearable and mobile devices. An important category of IMU-enabled applica-

tions is monitoring and assessing human mobility, which aims to continuously track

people’s daily activities, analyze motion patterns and extract digital mobility bio-

markers such as gait parameters in the wild. Increasingly, data-driven deep learning

models have been developed for human activity recognition (HAR) [35, 126] and hu-

man pose estimation (HPE) [36]. Despite their impressive performances, these models

generally require a large amount of sensory data for model training. Unfortunately, it

is challenging to collect high-quality IMU data in the wild. Moreover, data collected

from controlled settings where subjects are asked to perform certain activities often

have very different characteristics from those in freestyle motions [3]. On the other

hand, annotating IMU data post hoc is challenging as raw IMU signals are hard to

interpret even by domain experts.

The scarcity of IMU data for human mobility assessment is evident when com-

pared with the richness of other data sources. PAMAP2 [23], a benchmark dataset

for HAR, consists of 8 subjects with only 59.67 minutes of samples per person. In

contrast, AMASS [24], a motion capture (MoCap) dataset, includes 2420.86 minutes

of data and is still growing; not to mention YouTube videos, which offer a practically

infinite amount of action data. Therefore, to mitigate the “small data” problem, one

possible solution is to convert data from other modalities to IMU, a process called

cross-modality simulation.

Though several previous works explored the feasibility of simulating IMU sen-

sor data from other data modalities (see Section 5.2), two fundamental challenges
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remain. First, sensors are attached to human skin rather than directly to bone joints

during data collection. Skeleton models are inadequate in representing human poses

and shapes. Second, even with state-of-the-art (SOTA) solutions in computer vision,

the extracted 3D human motion trajectories from monocular video clips remain in-

accurate. Analytically compute IMU readings on such imperfect input sequences will

result in large errors. However, if a deep learning model is adopted to learn the map-

ping between noisy motion trajectories and measured sensor readings, it is unclear

how well such models generalize to arbitrary unseen on-body positions.

To tackle the aforementioned challenges, we design and implement CROMOSim,

a cross-modality IMU sensor simulator that simulates high fidelity virtual IMU sensor

data from motion capture systems and monocular RGB cameras. It differs from exist-

ing work in two important aspects. First, it is based on the 3D skinned multi-person

linear (SMPL) model [127], which serves as an intermediate representation of motion

sequences and entitles our CROMOSim for an arbitrary on-body simulation. SMPL

has been widely used in HPE tasks [128, 39, 129, 130], which is capable of modelling

muscle and soft tissue artifacts. In contrast, the 2D or 3D skeleton representations

adopted by other works are segment models without volumetric information. Sec-

ond, we empirically demonstrated that the direct computation of IMU readings from

motion trajectories extracted from videos is unreliable (in Section 5.4), even with

filtering and interpolation techniques as the case of IMUSim [131]. We instead design

and train a neural network to learn the relationship between measured IMU read-

ings and the noisy motion trajectories. Special cares have to be given to ensure the

trajectories are represented in a consistent global coordinate frame even if the videos

are captured by moving cameras. Compared to existing IMU simulators, experiments
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show that CROMOSim achieves higher fidelity and superior performance in various

HAR tasks. HPE tasks are also evaluated to demonstrate the utility of simulated

data in downstream applications.

In summary, we make the following contributions in this chapter:

1. CROMOSim is the first work that utilizes SMPL full-body tri-mesh as an in-

termediate representation for IMU data simulation.

2. CROMOSim offers a generic pipeline for generating IMU readings at arbitrary

on-body locations from either MoCap or monocular RGB data. It is readily

extensible to other input modalities and configurations.

3. CROMOSim mitigates imperfection in intermediate body pose and shape esti-

mations through a supervised learning approach.

4. Compared to SOTA IMU simulators, CROMOSim achieves higher fidelity and

superior performance in HAR tasks.

5. We are the first to empirically show the utility of simulated IMU data in HPE

tasks under a deep learning context.

The rest of the chapter is organized as follows. Section 5.2 describes related

work. In Chapter 5.3, we introduce the CROMOSim pipeline and details of each

component. In Section 5.4, we present the implementation details and performance

evaluation of CROMOSim standalone and in downstream tasks, respectively. Finally,

we conclude the chapter in Section 5.5 with discussion and future work.
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5.2 Related Work

The proposed cross-modality simulation framework is a type of data augmen-

tation technique, which is broadly used in machine learning to compensate for data

scarcity, to improve data diversity, and boost the generalization of a trained model.

In the context of augmenting IMU data, we categorize existing methods into three

groups: transforming real IMU recordings, generative models for IMU data, and

cross-modality simulators.

IMU transformations Simple operations such as flipping, rotation, scaling and

changes in brightness can be applied to augment image data. Similar ideas are appli-

cable to IMU data as well. In [17, 18], random relative rotations between a sensor and

human body were added within a predefined range, to make the trained model robust

to subject divergence. In [19], the authors proposed a systematic way to augment the

IMU data via rotation, permutation, time-warping, scaling, magnitude-warping and

jittering. Eyobu et al. went even further in [20] to transform handcrafted features

rather than the raw recordings of wearable sensors. Though easy to implement, IMU

transformation methods require the availability of sufficient real sensor data as their

source.

Generative models for IMU data Generative adversarial networks (GAN) use

two neural networks, pitting one against the other in order to generate new, synthetic

instances of data that is indistinguishable from real ones [132]. Researchers designed

GANs to generate IMU data in [21, 22, 133]. SensoryGANs [21] adopt adversar-

ial learning in generating diverse yet realistic IMU sensor readings for locomotion.

However, this method is highly complex: a different neural network architecture is
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devised for each activity. Moreover, due to large variances in the generated data, it

is only suitable for relatively simple HAR tasks with easily separable patterns–both

SensoryGANs and ActivityGANs [133] simulate only stay still, walk, jog activities in

their HAR evaluation.

Cross-modality IMU simulation Given motion trajectories in a global frame,

acceleration can be calculated by taking the second derivatives of positions over time.

Researchers may take advantage of this simple computation strategy to simulate ac-

celerometer data from MoCap sequences. The resulting data has been used in recent

works to pre-train human pose estimation (HPE) [134] and HAR models [135, 136].

One drawback of this method is that none of these researches targets to simulate real-

istic IMU sensor readings, and gyroscope data is omitted. For a more systematic IMU

simulation, IMUSim [131] is among the first open-source tool to simulate IMU data

from either MoCap data in the Biovision Hierarchy (BVH) format or a user-provided

3D position and orientation sequence. Though employs data smooth and filtering

techniques to tackle outliers, this method is built upon analytically calculation with

low data fidelity (see Section 5.4.2).

After that, simulating IMU readings from monocular RGB videos for data aug-

mentation has attracted some attention in recent years. ZeroNet [137] extracted

finger motion data from videos, then transformed them into acceleration and orien-

tation information measured by IMU sensors. The authors of [138] and its follow-up

work [139, 140] simulated acceleration norms and/or angular velocity norms from

human 2D poses for a HAR purpose. In their latest work [140], Rey et al. skipped

the video processing steps and directly mapped vision data to IMU readings with

placement specific neural networks. These works avoid the video-based global motion
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tracking by limiting human subjects‘ movement to a fixed camera scene (in-place

motion), and thus cannot be applied to handle in-wild video data with moving cam-

eras. Closest to our work are IMUTube [1] and its extension in [141], which aim at

simulating full-body IMU data from moving camera videos captured in the wild. But

limited by the skeleton body representation adopted, neither work can simulate real-

istic sensor readings from arbitrary on-body locations. Moreover, in IMUTube, the

estimation of view depth and camera ego-motion is in two independent steps though

the two are intrinsically coupled [142, 143]. A wrongly predicted camera pose can

lead to inaccurate view depth estimation and vice versa [144]. In addition, the lifting

of 2D postures to 3D module in IMUTube pipeline is more compute-intensive and

error-prone, as it is a simple combination of existing technologies.

5.3 Deep Learning-based Cross-modality IMU Sim-

ulator

Before introducing the proposed method, the notations used in this chapter are

defined as follows. There are four different coordinate frames involved in this work:

FG for the global tracking frame, which is a fixed coordinate system for representing

objects in the world. FB for a bone coordinate frame defined as originate at its distal

joint and take the direction along the bone is x positive while z positive orthogonal

to its upper surface and points outside. F S is the sensor frame that is fixed on the

sensor and is determined by its manufacturer. FC for the camera frame that takes

the center of the camera’s image plane as its origin and the optic axis as the Z-axis

(Fig. 5.1). Rotation matrix RS
B denotes the rotation from bone frame to sensor frame.
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For simplicity, amongst camera intrinsic parameters , we assume the optical centers

of the camera in pixels on the x and y axis cx = cy = 0, and only estimate the focus

length in the x and y axis f x and f y. Camera extrinsic parameters include rotation

matrix R and translation vector t, respectively. R and t are fixed for fixed cameras

and need to be updated for moving cameras. During movements, both FB and F S

changes relative to FG and are placement or device specific. Therefore, it is necessary

to transform representations of motions into a unified global coordinate first.

Figure 5.1: An example of different coordinate frames involved in this work.

5.3.1 Overview

CROMOSim is designed with several requirements in mind: i) allowing arbitrary

user-specified placement and orientation of target sensors, ii) extensibility to different

input data modalities and configurations, iii) flexibility to incorporate SOTA models

to extract motion trajectories, and iv) high fidelity. To meet these requirements,

the CROMOSim pipeline consists of three function modules as shown in Fig. 5.2 :

an input data processing module that extracts global human motion sequences from
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Figure 5.2: The proposed CROMOSim pipeline. It takes either MoCap or
monocular camera video data as input and converts them into SMPL represented
global motion and body shape. The simulator then takes the SMPL model, specified
sensor placement and orientation as input; predicts simulated IMU readings and
transforms them back to the sensor coordinates frame.

source data, a human body model that fully represent the extracted sequences and

can be sampled from any on-body location, and a simulator module that transforms

noisy motion sequences into high-fidelity 3-axis accelerometer and gyroscope readings.

Though the pipeline is extensible to other possible input data modalities such as

millimetre wave radar and depth camera, we will focus on MoCap and monocular

camera video here. Each component will be discussed in detail in the remaining

Chapter.

5.3.2 SMPL Model

An SMPL model represents 3D human body poses and shapes with a fine-grained

full-body tri-mesh. Unlike skeleton or cylinder models that only capture joint poses,

this parametric 3D representation provides a widely applicable and differentiable way

to visualize a realistic 3D human body. There are three reasons to choose SMPL over
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other body models in CROMOSim. First, instead of measuring the movements of

bones, IMU readings reflect the soft tissue dynamics at the location to where a sensor

is attached. Second, SMPL provides a pose and shape-dependent full-body tri-mesh

that can be sampled at any on-body location. Third, since it is widely used in HPE

research, many off-the-shelf models are available to extract SMPL representations

from different data sources.

To see the difference between movements of joints in a skeleton model and SMPL

skin mesh, we compare accelerations computed by taking second-order derivatives of

the corresponding motion trajectories and ground-truth accelerometer readings over

time. In Fig. 5.3, red curves denote the calculated 3-axis accelerations while the

black ones are accelerometer ground truth. Figures in the left column compare the

accelerations at the pelvis joint in a skeleton model while figures in the right column

compare those at SMPL lower back skin mesh vertices. Clearly, the use of the SMPL

skin mesh provides better agreements with the ground truth (e.g., in the interval

[100,300]). Simulated data from the pelvic joint, on the other hand, fails to capture

high-frequency acceleration components, which are most likely due to muscle and

soft issue movements. SMPL enables users to sample from any on-body position on

the skin surface while the skeleton model represents the motion of bones only. In

most cases, IMUs are attached to body surfaces rather than directly to bones or

anatomical landmarks. This observation indicates that SMPL is a good candidate for

an intermediate data representation of the CROMOSim pipeline.
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Figure 5.3: Comparison between analytically computed 3-axis accelerations from a
skeleton representation and an SMPL model. Left: taking the motion sequence of
pelvis joint positions as input, right: taking the motion sequence of SMPL lower
back skin mesh positions as input.

5.3.3 Input Data Processing

From MoCap Data to SMPL Models

MoCap data consists of raw marker sequences collected by an optical motion

capture system of high precision (usually with a position error < 1 mm). With

commercial Mocap systems like OptiTrack [145] and Vicon [146], both body shape

and pose data can be captured. Such data has been widely used in gaming and movie

industries [147]. MoCap data is commonly used as ground truth labels in markerless

human pose estimation with cameras or wearable sensors [36]. MoSH++ [24] allows

the fit of an SMPL model to MoCap data from a set of sparse markers. Prior to

motion capture, a global tracking coordinate system needs to be established during

the calibration phase. As a result, the collected motion trajectories are expressed

in the defined global frame. Under the assumption that the global frame is aligned
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with the inertial frame1 , the SMPL mesh model can be used directly in subsequent

processing.

From Video Clips to SMPL Models

Extracting 3D human poses and shapes from monocular RGB videos is not trivial,

especially when they are captured from moving cameras with unknown parameters,

which is common in a locomotion-related video recorded in the wild. We propose to

decompose such a problem into two sub-problems: a reconstruction of human global

displacement and rotation; and an estimation of 3D in-place human motion and body

shape.

Estimating root joint global trajectory A precise calculation of global displace-

ment for the human subject is essential for a high-fidelity simulation of IMU data from

RGB videos. This requirement can be achieved by reconstructing the 3D motion tra-

jectory of a fixed body position (a.k.a, the root joint), which can be inferred from the

per frame depth map of the human subject and known camera parameters [148].

In CROMOSim, we adopt robust consistent video depth estimation (Robust

CVD) method [142], a SOTA model to estimate consistent dense depth maps and

camera poses from a monocular video. Robust CVD jointly estimates both outputs by

solving an optimization problem over the entire video sequence. It is advantageous as

the two outputs are intrinsically coupled and thus lead to higher accuracy (compared

to the pipeline adopted by IMUTube). In the implementation, we locate the 2D

torso joint positions in video frames using OpenPose [149], and designate the pelvis

1Such an assumption is not restrictive as a random rotation can be applied in further data
augmentation to obtain data if the global and inertial frames differ.
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as our root joint. With the detected 2D joint position and depth map per video

frame, we can calculate the global 3D torso coordinates as follow. Denote the 3D

coordinates of the root joint in the camera frame and the global frame at time k

by PC(k) = [XC(k), Y C(k), ZC(k)] and PG(k) = [XG(k), Y G(k), ZG(k)] respectively.

Let its corresponding 2D pixel coordinates in the camera image be [x(k), y(k)]. Given

the camera intrinsic parameters fx and fy from robust CVD, we have

XC(k) =
(x(k)− W

2
)× ZC(k)

fx

Y C(k) =
(y(k)− H

2
)× ZC(k)

fy

ZC(k) = d(x(k), y(k)),

(5.3.1)

where d(x, y) is a depth retrieving function with a 2D pixel coordinates x, y, and W

and H are the width and height of the pixel image. Next, using the camera extrinsic

parameters Rk and tk, we transform the root joint position from the camera frame

FC to global frame FG at time k follows:

PG(k) = RT
k × (PC(k)− tk) (5.3.2)

In addition, depth reconstructed by robust CVD is reasonably accurate up to

scale. To resolve scale ambiguity, an object of known size (its real height hr or real

width wr) in the scene is needed, as real depth at time k can be calculated with

dr(k) = (fy × hr)/hp(k), where hp(k) is the object height in pixels. The scale factor

can be estimated with s = dr(k)/d(x(k), y(k)), and it is a constant value per video clip

processed by Robust CVD. Prior knowledge regarding heights of subjects in the video,

or dimensions of fixtures (e.g., street lamps, road lanes) can be utilized. Subsequently,
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the predicted depth of the pelvis joint is re-scaled by the estimated scale factor to

recover the real global root joint trajectory.

Since in some frames, the root joint is not visible or cannot be located accu-

rately due to occlusion or poor lighting, we only extract root joint coordinates from

the frames with high confident scores by OpenPose. Root joint coordinates in the

remaining frames are then interpolated from the estimated ones, and a Kalman filter

is applied to further smooth the resulting trajectory.

Body pose and shape estimation in camera frames We adopt VIBE [39], a

SOTA method to directly estimate realistic 3D human poses and shapes from monoc-

ular videos. In the implementation, we make two extensions to VIBE. First, VIBE

assumes a fixed camera configuration and in-place human motion only, losing track

of human subjects’ global motion trajectory. Fig. 5.4 shows the difference between

motion trajectories of a lower back SMPL mesh vertex near a subject’s pelvis. The

figures are extracted by VIBE only, and by our proposed pipeline, respectively, when

the straight-line running subject was captured by a handheld camera. Clearly, the

trajectory in the left figure fails to reflect the actual motion. As elaborated in the

previous paragraph, robust CVD is adopted to complete the missing information.

It helps to estimate the 3D global translation of the subject’s root joint per video

frame even if there is relative motion between the camera and the human subject.

We acquire a full 3D human pose representation by adding the global translation

to the translation parameters of the SMPL model from the VIBE output. Second,

VIBE estimates body shapes for every video frame and a frequent re-scaling of the

human subjects can be observed when there are drastic motions or the camera is

moving fast. This is unnecessary since people’s body shapes are unlikely to change
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x

Figure 5.4: Extracted motion trajectories of a subject’s low back from a 4-seconds
running outdoor video clip captured with a handheld camera. The subject in the
video runs along a straight line. Left: results from VIBE only, right: results from
the proposed pipeline. Each plot was generated by projecting 3D trajectory on the
ground plane.

in a short period and is prone to errors. Instead, we assume that the estimated body

shape estimation can be modeled as the ground truth shape plus zero-mean random

noise. Thus, shape estimation errors can be mitigated by averaging the estimated

body shapes for the same subject in each frame in a 10-second video sequence.

Finally, by combining the aforementioned steps, we can extract 3D body poses

in a global frame and shape parameters from monocular RGB video, which can serve

as input to generate SMPL body meshes.

5.3.4 From SMPL Models to IMU Data

Given the 3D human pose and shape represented by SMPL tri-mesh over time,

accelerations and angular velocities in a global frame can be computed analytically.

In particular, accelerations can be calculated by taking second derivatives of positions

over time; angular velocities can be determined from the changes in the normal vector
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of a plane associated with three non-collinear mesh points (e.g., the vertices of a mesh

triangle). However, SMPL tri-meshes generated by the models in Chapter 5.3.3 tend

to be noisy, erroneous and incomplete. Furthermore, accelerations and angular veloc-

ities measured by IMUs are subject to hardware imperfection such as noises, biases,

and non-orthogonal axes, which are not easily replicated by analytical calculation.

To address the aforementioned issues, we design two neural network models, an

accelerometer and a gyroscope network, to learn the mapping between motion trajec-

tories of SMPL tri-mesh points and actual acceleration or angular velocity measured

by IMUs in a global frame, respectively. The neural networks are capable of gener-

ating data from any arbitrary unseen region over the human body by training with

real data from some selected on-body positions of various motion ranges (such as the

head, chest, one side of the wrist, and ankle). Both models take the same design, with

three convolutional and two bidirectional long-short term memory (LSTM) layers as

the feature extractor, and a following linear layer for regression output. The model is

fed a user-specified skin area, with three mesh triangles chosen near the area’s center

as input. In each triangle, the vertices are traversed counter-clockwise to ensure the

norm direction always points outside of the human body.

The collected IMU data are usually in the local sensor frame while the predictions

of CROMOSim are in the global frame. Therefore, a coordinates transformation step

is required. A user needs to select the skin region a virtual sensor affixes to and define

its alignment represented as a rotation matrix (RB
S ). With the rotation matrix from

the bone frame to the sensor frame (RB
S )

−1, we can transform IMU data into the

sensor frame from the accelerations aG and angular velocities ωG in the global frame
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as follows:

aS = (RB
S )

−1 × (RG
B)

−1 × (aG + g), (5.3.3)

and

ωS = (RB
S )

−1 × (RG
B)

−1 × ωG, (5.3.4)

where g is the gravity acceleration and RG
B is obtained from the SMPL model for the

corresponding skin region.

Due to noisy data sources and modelling errors, domain gaps exist between sim-

ulated and real data. Such gaps are more pronounced in the simulated data from

videos. To mitigate these gaps, we adopt the same distribution mapping technique

[150] as IMUTube. Let G(X ≤ xr) and F (X ≤ xs) be the cumulative density

functions (CDF) for real IMU xr and simulated data xs, respectively. Under the as-

sumption that G(·) is invertible, it can be proven that x′
s = G−1(F (X ≤ xs) follows

the same distribution as xr.

To apply distribution mapping, we need to estimate the CDF of simulated and

real data along each axis, then apply the mapping separately. Empirical results

from IMUTube show that a small number of real data (∼ 1000 samples per class or

equivalently 33-second long with a sampling rate of 30 Hz) are sufficient to give a

good estimation of G(·).

5.4 Evaluation

In this Chapter, we will evaluate CROMOSim in two sets of experiments. Firstly,

we evaluate the fidelity of simulated sensor data both qualitatively and quantitatively.

Then, we evaluate the utility of CROMOSim in data augmentation for downstream
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HAR and HPE tasks.

5.4.1 Experimental Setup

Datasets

To train the simulator network and evaluate the fidelity of simulated data, we use

the TotalCapture dataset, a benchmark for 3D HPE from marker-less multi-camera

capture [43] which has all three data modalities (MoCap, IMU and video). For HAR

evaluation, Realworld [151], the Physical Activity Monitoring version 2 (PAMAP2)

[23] and Opportunity [60] datasets are used in task model training and testing. For

knee angle estimation tasks, we also take Totalcapture in our experiments. A detailed

description of each dataset is listed below:

1. TotalCapture [43]: It is the first dataset to have fully synchronized multi-

view video collected from eight RGB cameras at a frame rate of 60Hz, 12 IMU

sensors (affixed to a subject’s head, right and left upper arms, right and left

wrists, right and left upper legs, right and left lower legs, right and left feet

and pelvis) sampled at 60Hz and Vicon labels for a large number of frames

(∼1.9M). It contains 5 subjects performing acting, walking, rolling arms, and

freestyle motions indoor.

2. Realworld [151]: It has 8 activities including climbing stairs down and up,

jumping, lying, standing, sitting, running/jogging, and walking performed by 15

subjects. Each subject wore mobile devices on 7 body positions (chest, forearm,

head, shin, thigh, upper arm and waist). Videos were recorded by a moving

handheld camera followed the subjects. Each activity lasted 10 minutes, except

114



Ph.D. Thesis – Y. Hao McMaster University – Computer Science

for jumping, which was around 2-minute long. Data was collected naturally. In

some indoor trials, the light conditions were poor. In some outdoor trials, the

videos contain passers-by not part of the subject pool.

3. PAMAP2 [23]: The Physical Activity Monitoring version 2 (PAMAP2) con-

sists of data collected from IMU sensors (accelerometer and gyroscope) on

subject’s chest, dominant ankle and wrist during 8 activities, i.e., lying, sit-

ting, walking, running, standing, rope jumping, ascending stairs and descending

stairs. Eight subjects performed these activities freely without time constraints

and had the option to skip some activities. There exist missing classes in some

subjects’ data and the data samples are unbalanced across the classes. Dur-

ing data collection, IMU sensors are instrumented on different subjects at a

sampling rate of 100Hz.

4. Opportunity [60]: The Opportunity dataset contains IMU measurements

from 4 subjects during 5 mobility-related activities. The activities are sitting,

standing, lying, walking and null, where ‘null’ include any activity outside the

first four. Data was collected from 7 body-mounted sensors (left and right

forearms, left and right arms, back, left and right feet) at a sampling rate of

30Hz.

Data Preprocessing

In the fidelity evaluation, we divide data from TotalCapture with all modalities

into 2-seconds sliding windows with 80% overlapping for model training and without

overlapping for prediction. For HAR, to make the results directly comparable to

baseline approaches, we follow the same procedure described in IMUTube, where
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simulated and real IMU data are low-pass filtered, normalized and divided into sliding

windows with 1-second length and 50% overlapping. In the case of HPE, the real

and simulated IMU data are standardized, and then divided into 1-second windows

without overlapping.

Evaluation Metrics

To evaluate the fidelity of CROMOSim, we compute the root mean square error

(RMSE) between simulated IMU data and ground truth. In HAR tasks, as the

classes in datasets are imbalanced, we use mean F1 score and its standard deviation

to evaluate the random single-subject-out experiments. In multi-class classification,

the F1 score is computed as the weighted average of the F1 score of each class. In 3D

HPE tasks, we measure the RMSE between predicted knee angles against the ground

truth in the unit of degrees.

Baseline Methods

We consider IMUSim and an analytical method as baselines to compare the

fidelity of our simulated data because IMUTube also utilizes IMUSim to generate

IMU data from 3D global motion trajectories. The analytical method we adopt to

compute linear acceleration is Richardson’s extrapolation [152, 153]. Compared to

taking second-order derivatives, Eq. (5.4.1) gives a more accurate estimation with a

4th order error term (as opposed to 2nd order).

acc =
−p(t− 2) + 16p(t− 1)− 30p(t) + 16p(t+ 1)− p(t+ 2)

12∆t2
(5.4.1)
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The angular velocity of a selected skin region on an SMPL body mesh is calcu-

lated by tracking the rotation of its norm vector. The tri-mesh of SMPL model follows

the right hand rule, which ensures that the norm vectors of the triangles always point

out of the corresponding subject’s body. Rotations between consecutive frames are

expressed in unit quaternions. Angular velocities in rad/s are computed by multiply-

ing the rotation vector of each frame with the sampling rate. To reduce jitters, we

take the average angular velocities of three nearby triangles on the tri-mesh centred in

the designated skin region. Lastly, a 4th order ButterWorth low-pass filter is applied

to both simulated accelerometer and gyroscope readings for noise reduction [91].

For HAR tasks, we take IMUTube as the baseline, but due to the lack of open

source implementations, we include the reported performance on PAMAP2 and Op-

portunity datasets from [1].

5.4.2 Fidelity of CROMOSim

In this Chapter, we first provide qualitative and quantitative comparisons be-

tween CROMOSim and two baseline methods, namely, the analytical method (IMU-

Cal) and IMUSim in terms of fidelity. We use TotalCapture in this experiment since

it contains data from all three required modalities. Two sets of CROMOSim models

are trained using MoCap and video data from Subjects 1 – 3 with sensor positions at

their right wrist, right foot and pelvis. The models are used to predict accelerometer

and gyroscope data on both left and right wrists of Subject 5 from the respective

data sources. Next, we analyze the sources of errors in video-based simulations.

Figures 5.5 and 5.6 show the simulated IMU readings from different methods with

MoCap and RGB video data, respectively. In these cases, the sensor placement is
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(a) IMUSim

(b) IMUCal

(c) CROMOSim

Figure 5.5: Simulated IMU readings on the right wrist of Subject 5 from the MoCap
data in TotalCapture. Left: accelerometer data. Right: gyroscope data.
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(a) IMUSim

(b) IMUCal

(c) CROMOSim

Figure 5.6: Simulated IMU readings on the right wrist of Subject 5 from monocular
RGB camera video in TotalCapture. Left: accelerometer data. Right: gyroscope
data.
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Table 5.1: RMSEs of simulated IMU readings on Subject 5’s left wrist across all
data trials.

Acceleration (m/s2) Angular velocity (rad/s)
IMUSim IMUCal CROMOSim IMUSim IMUCal CROMOSim

MoCap
extracted
SMPL

4.606 1.785 1.602 1.500 1.272 0.801

Video
extracted
SMPL

6.158 11.824 3.342 1.848 2.578 1.104

known but the subject is unseen to the simulator model. From the figures, we ob-

serve that the fidelity of IMUSim is low across the board. It is because the default

setting of IMUSim filters out too much high-frequency components. IMUCal works

well for simulating accelerometer and gyroscope data with MoCap inputs. However,

its performance significantly degrades when monocular RGB videos are taken as the

source modality. This can be attributed to large noise and relative low accuracy of

extracted SMPL body tri-mesh. In contrast, CROMOSim consistently outperforms

baseline methods for both data modalities.

Qualitative and quantitative results

Table 5.1 reports the case where both subject and sensor position are unseen to

the simulator networks. The quantitative results are consistent with those in qualita-

tive ones shown in Fig. 5.5 and 5.6. With MoCap data, the accuracy of CROMOSim

is 187.5% and 11% higher than that of IMUSim and IMUCal for accelerations, re-

spectively, and 87% and 58% for angular velocities. The advantage of CROMOSim is

more pronounced with monocular RGB videos, outperforming the next best method

(IMUSim) by 84% and 67% for accelerometer and gyroscope data.
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Table 5.2: The analysis of error sources with monucular camera video data.

VIBE only
Robust
CVD

GT
global
motion

MPJE PVE PVE PVE
(rad) (m) (m) (m)

RMSE MAE RMSE MAE RMSE RMSE
ROM 0.2203 8.3634 0.8099 1.7451 / /
walking 0.1972 7.9263 1.3741 1.9215 1.1679 0.5046
freestyle 0.2087 8.3627 1.1930 2.1327 0.9607 0.5015

Error Analysis

From Table 5.1, we see that simulated IMU readings from video extracted SMPL

have larger errors than those from MoCap. To understand the sources of errors, we

conduct further empirical study. Specifically, we analyze the effectiveness of the global

trajectory estimation module for root joint, and present the results here. Table 5.2

summarizes the quality of extracted human pose data on TotalCapture dataset by

three approaches, namely, VIBE indicates when the estimation of global trajectory

is unavailable, Robust CVD denotes a global motion estimate by the CVD method,

while GT global motion refers to align the root node position per video frame with

MoCap ground truth. We take the mean per joint error (MPJE, in rad) and per vertex

error (PVE, in meters) between the estimated SMPL body mesh from videos and

from MoCap data as metrics here. Three types of activities are analyzed: the range

of motion sequence (ROM) contains in-place motions with human subjects standing

at the center of a laboratory field; the walking sequence involves a person walking

around the laboratory; the freestyle sequence corresponds to a freestyle acting and

roaming around the room. Clearly, ROM is not affected by global motion trajectory

estimations, while the other two are. As the joint angles are extracted by VIBE only,

they remain the same with Robust CVD or GT global motion.
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(a) VIBE only (b) Robust CVD (c) Ground truth

Figure 5.7: Simulated accelerometer readings on the left foot of Subject 5 from
monocular RGB camera video in TotalCapture.

From Table 5.2, there exists a clear gap between the PVE calculated with VIBE

only and GT global motion for walking and freestyle, indicating the need to accurately

estimate global motion trajectories when motions are not in-place. PVE dropped

∼20% when the Robust CVD is used in video data pre-processing. Fig. 5.7 shows

the probability density function of 3-axis accelerations in a global frame from the

two methods in comparison to ground truth. The plots further demonstrate that

simulated data are more similar in distribution to the ground truth when global

trajectories of the root node are incorporated.

The differences between the estimated global trajectory from Robust CVD and

the ground truth can be attributed to two factors. First, we use OpenPose to detect

the root node of human subjects in each video frame. OpenPose fails when the

resolution is low and the background is complex. Two examples are shown in Fig.

5.8, where in the left figure a person is running on a trail and in the right figure he

is climbing downstairs. Both fail cases are captured from Realworld dataset. The

wrongly detected root node will lead to errors in extracted global motion trajectories.

Second, calculation of the scale factor is another potential source of errors. To recover

real world global motion trajectories from the output of robust CVD, a scale factor is

122



Ph.D. Thesis – Y. Hao McMaster University – Computer Science

Figure 5.8: Typical fail cases of OpenPose in our video data preprocessing, with
downscaled video frames, background objects are wrongly recognized as human.

required. In our experiments, it is calculated for 10-seconds video clips. If the human

subject in the first video frame is not standing up straight, the scale factor computed

using the method in Chapter 5.3.3 will be larger than the actual values.

5.4.3 Applications of CROMOSim in downstream Tasks

HAR Tasks

In this Chapter, we evaluate the utility of CROMOSim in data augmentation

for training HAR models. Here we consider three settings: i) R2R, where models are

both trained and tested with real IMU data; ii) V2R, where models are trained with

simulated data but tested with real data; iii) Mix2R, where models are trained using

a mixture of real and simulated data while tested with real data.

We adopt the DeepConvLSTM network proposed in [97] as the task model,

while the same simulator neural network trained on the TotalCapture dataset is used

here to simulate sensor readings from videos. Evaluations are made on the Realworld,

PAMAP2 and Opportunity datasets respectively, with data simulated from the same

video source (Realworld dataset). An ablation study was conducted by removing

robust CVD from the proposed pipeline, and the resulting approach is called CRO-

MOSim Lite. To make the result directly comparable, we followed the experiment
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Table 5.3: Average F1 scores of random single-subject-hold out experiments on the
RealWorld dataset. IMUTube⋆ corresponds the scores reported in [1].

R2R V2R Mix2R
IMUTube⋆ 0.730±0.007 0.546±0.008 0.778±0.007
IMUTube 0.729±0.007 0.552±0.005 0.781±0.011
CROMOSim Lite 0.729±0.007 0.580±0.047 0.802 ±0.013
CROMOSim 0.729±0.007 0.593±0.012 0.821±0.003

Table 5.4: Random single subject hold out evaluation on PAMAP2 dataset with
mean F1-score. IMUTube⋆ corresponds to the scores reported in [1].

R2R V2R Mix2R
IMUTube⋆ 0.700±0.016 0.552±0.017 0.702±0.016
CROMOSim Lite 0.702±0.021 0.638±0.009 0.726±0.014
CROMOSim 0.702±0.021 0.689±0.012 0.769±0.009

Table 5.5: Random single subject hold out evaluation on Opportunity dataset with
mean F1-score. IMUTube⋆ corresponds to the scores reported in [1].

R2R V2R Mix2R
IMUTube* 0.887±0.007 0.788±0.010 0.884±0.007
CROMOSim Lite 0.862±0.008 0.778±0.013 0.870±0.008
CROMOSim 0.862±0.008 0.803±0.011 0.879±0.008

protocol in IMUTube [1].

Table 5.3 reports the average F1 scores of five single-subject-hold out experiments

on the RealWorld dataset. Since the authors of IMUTube provide their simulated data

on this dataset, we directly replicated their experiments and the results are in the

second row. For comparison purposes, we also include the scores reported in [1] as the

first row. It can be seen the two are quite similar to one another. Even CROMOSim

Lite outperforms IMUTube in V2R and Mix2R experiments, while CROMOSim works

the best. Moreover, Mix2R achieves much higher F1 scores compared to R2R and

V2R, demonstrating the utility of data augmentation with simulated data.

Table 5.4 and 5.5 summarize the results from CROMOSim and those reported
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in [1]. Due to the different sensor placements in the PAMAP2 and the Opportunity

datasets, the simulated data provided by the authors of IMUTube cannot be used,

so we take their reported performance here. Similar to the RealWorld dataset, CRO-

MOSim outperforms IMUTube for the PAMAP2 datasets but with a more prominent

margin; the HAR model trained from Mix2R is still superior to those from R2R and

V2R. With the Opportunity data, however, the improvement of Mix2R over R2R is

marginal while IMUTube⋆ reports negative results for Mix2R. Although the Mix2R

results are lower than those of IMUTube⋆, the difference is consistent with that for

R2R. Therefore, one may consider the two perform comparably for this dataset. The

reason for the small benefit of Mix2R in CROMOSim can be attributed to the small

number of subjects in Opportunity. With a small number of training subjects, the

DeepConvLSTM model does not generalize well to unseen subjects. Despite of the

higher level of subject diversity in RealWorld, distribution mapping in IMUTube and

CROMOSim in fact forces the distribution of simulated data to be close to the two

subjects in the training set. Therefore, the benefit of data augmentation is dimin-

ished. As part of our future work, we will investigate domain adaptation approaches

that retain diversity of subjects in simulated data while reducing the domain gap

between simulated and real data. A possible solution is to train GAN models per

pair of source and target subjects for unsupervised domain adaptation [154, 155].

HPE Tasks

Unlike HAR tasks that are essentially pattern recognition on sensory data, HPE

aims to estimate the joint angles of a human body, and requires accurate IMU sensor

readings. Therefore, in this Chapter, only MoCap simulated data is utilized.
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Table 5.6: Knee angle estimation. Average RMSE and standard deviation are
measured per each axis in degrees.

X Y Z
R2R 15.4550±0.6217 8.3279±0.4751 3.1384±0.0403
V2R 20.8303±1.2644 7.7459±0.3409 3.4441±0.1727
Mix2R 13.9236±0.5875 8.2440±0.6053 3.0355±0.2971

We have previously designed a DeepBiLSTM network for knee joint estimation.

It takes accelerometer and gyroscope readings from sensors on one’s thigh and shank

to predict 3D knee joint angles. In this set of experiments, We use Subject 1 – 3 in

the TotalCapture dataset for HPE model training, and Subject 4’s data for validation

and real IMU data from Subject 5 for testing. Two sensors (virtual or real) are placed

on proximal thigh (ProxTh) and right tibial (RTib) (see Fig 5.9). Similar to the HAR

tasks, three DeepBiLSTM networks are trained using real data only, virtual data only

and a mixture of virtual and real data. The size of real data samples from the three

training subjects is around 143k, which is 39 minutes long. MoCap simulated data

is on the same scale. In R2R and V2R we have 143k real or simulated data for model

training, while in Mix2R the training data doubled by mixing the two.

Table 5.6 summarizes the average RMSEs and standard deviations of 3D knee

joint angles in different settings. Note that the RMSEs should be put in the context

of range of motions in the TotalCapture dataset, which are [−11.5220, 152.4866],

[−44.3173, 41.3192] and [−17.9953, 30.6022] around the x-, y- and z-axes.

From Table 5.6, we observe that in general Mix2R gives the most accurate es-

timations followed by R2R. Though the model trained on V2R has lower accuracy

in the x-axis, its predictions are comparable to that from R2R in y-axis and z-axis.

This phenomenon implies that MoCap generated virtual data using CROMOSim can
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Figure 5.9: The sensor placement of knee angle estimation task. Real sensor
readings are only available at ProxTh and RTib positions.

produce reasonable good HPE models. The observation is consistent with the high

fidelity of MoCap simulated data in Chapter 5.4.2.

5.5 Conclusion

In this chapter, we implemented CROMOSim, a pipeline that simulates ac-

celerometer and gyroscope readings at arbitrary user-designated on-body positions

from MoCap and monocular RGB camera videos. A pair of DNN models are trained

to learn the functional mapping between imperfect trajectory estimations in a 3D

body tri-mesh to IMU data. Experiments showed that CROMOSim can generate

higher fidelity data than baseline methods and is useful for downstream HAR and

HPE tasks.
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Concluding Remarks
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6.1 Conclusion

In this dissertation, to mitigate data scarcity in human motion analysis, we

developed three solutions to tackle the problem from different aspects, namely, a

data-efficient model that requires a small amount of labeled data from a target user,

a new LNL method that can take advanrtage of a noisy crowdsourced data for model

training and a cross-modality sensor simulator to synthesize IMU sensor data from

other sensing modalities.

For adapting a deep learning model trained on multiple human subjects to an

unseen one, we proposed a domain invariant feature learning framework based on a

multi-task learning strategy and introduced a similarity metric to further reduce the

amount of data required from the target domain. Experiments on three public and

one in-house dataset demonstrated the superior performance of IFLF in a few-shot

learning scenario, especially when the number of shots is 1 or 2.

Next, to address the unique challenges posed by learning with crowdsourced

data, a novel invariant feature learning for wearable sensor-based HAR in the wild,

VALERIAN is proposed. It consists of three components: self-supervised pre-training,

invariant feature learning with noisy labels, and fast adaptation to new subjects.

By training a multi-task model with separate task-specific layers for each subject,

VALERIAN allows noisy labels to be dealt with individually for each subject while

benefiting from shared feature representation across subjects. Experimental results

show that VALERIAN significantly outperforms baseline approaches.

Finally, to take advantage of more abundant sources of human motion data, we

designed CROMOSim and simulated IMU data from either MoCap or monocular

RGB video data. It utilizes SMPL for 3D body pose and shape representations to
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enable simulation from arbitrary on-body positions. A DNN model is then trained

to learn the functional mapping from imperfect trajectory estimations in a 3D SMPL

body tri-mesh due to measurement noise, calibration errors, occlusion and other mod-

elling artifacts, to IMU data. We evaluated the fidelity of CROMOSim simulated data

and its utility in data augmentation on various HAR and HPE datasets.

6.2 Future Work

As part of our future work, we will continue to improve the usability and perfor-

mance of the proposed frameworks, including IFLF, VALERIAN and CROMOSim.

Specifically, we will work on the following aspects.

First, for the domain invariant feature learning, though only domain shifts due to

human and device variations have been considered in this work, we believe it can also

be applied to handle sensor placement diversity, which will be investigated as part

of our future work. Another research topic is to explore the application of domain

generalization (DG) in sensor-based HAR. With the knowledge acquired from source

domains, a model with DG can be directly utilized on the target domain without any

data from it.

Second, as part of future work, we are interested in developing a theoretical

understanding of the aforementioned behaviour of LNL. Another venue of further

efforts will be to build in-the-wild HAR datasets that can benefit research on this

topic at large.

Lastly, in CROMOSim, as part of the future work, we are implementing a graphi-

cal user interface and wrapping up CROMOSim as an easy-to-use tool now. Hopefully,
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it will be open-sourced to the public by this summer. Other directions of further im-

provements include accelerating the video data processing, proposing a better domain

adaption solution to bridge the gap between the distribution of simulated and real

data, and experimenting CROMOSim with other data modalities as input such as

millimetre wave radar.
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