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Lay Abstract

Multi-level programming has been suggested as a suitable methodology for modelling

the interaction between the different levels of decisions in organizations that follow

a hierarchical structure. It has been used in practical contexts such as in deter-

mining pricing strategies, and energy management. Due to the rise of decentralized

decision-making and the need for efficient algorithms, the overarching motivation

of this thesis is to develop algorithms suitable for solving multi-level programming

problems. We develop solution strategies for solving different classes of multi-level

problems including novel heuristics, general-purpose solvers, and exact algorithms.

We address different classes of multi-level problems and apply the proposed solution

approach(es) on relevant applications. Although the developed techniques are in-

spired by specific practical applications, they can be applied in many other domains.

We show numerically that our proposed solution approaches lead to better solution

quality and are computationally more efficient. Furthermore, our proposals form a

cornerstone for interesting theoretical and algorithmic developments in this area of

research.
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Abstract

Multi-level programming has been suggested as a suitable methodology for modelling

the interactions between the different levels of decisions in organizations that follow

a hierarchical structure. It has been applied in different fields such as revenue and

energy management. Due to the rise of decentralized decision-making and the need

for efficient algorithms, the overarching motivation of this thesis is to develop algo-

rithms suitable for solving multi-level programming problems and testing them on

practical applications. First, we conduct a bibliometric analysis of the literature to

categorize the major topics of study and solution methodologies. In addition, we

identify research gaps and future research directions. Second, we direct our focus to

developing efficient algorithms for solving specific classes of linear tri-level programs.

In Chapter 3, we propose three heuristic-based approaches; each heuristic type of-

fers a trade-off between solution quality and computational time. To illustrate our

solution approaches, we present an application for defending critical infrastructure

to improve its resilience against intentional attacks. In Chapter 4 we study bi-level

mixed-integer linear problems and a general class of tri-level programs by proposing

v



a general-purpose algorithm capable of handling mixed-integer variables in both lev-

els of a bi-level linear program and solving a general class of tri-level mixed-integer

programs with a convex optimization problem being at the most lower-level. In chap-

ter 5, we examine a three-level non-cooperative game with perfect information that

can have a min-max-min or a max-min-max structure. We propose a heuristically-

enhanced exact algorithm. We demonstrate the proposed algorithm on two applica-

tions: defending critical infrastructure and the capacitated lot-sizing problem with

the capability of interdiction and fortification.

vi



Acknowledgements

First and foremost, I am indebted to my supervisor, Professor Elkafi Hassini, for

his trust, support, thoughtful suggestions, fruitful discussions, and his willingness to

share his time, wisdom, and expertise despite all other academic and professional

commitments. I am grateful for all that I learned from him. He continues to set an

exemplary role model of a scholar.

To my co-supervisor, Dr. Wael El-Dakhakhni, thanks for your guidance and sup-

port during those productive years. I would like to express my sincere gratitude

and appreciation to my supervisory committee members, Professor Mahmut Parlar,

Professor Yasser Haddara, and my external examiner Professor Joe Naoum-Sawaya

for their enthusiastic engagement in the discussions and insightful comments that

made this work better than it otherwise would have been. My appreciation goes

to the professors from whom I have learned a lot throughout the graduate courses

required for the completion of my doctoral degree. I am grateful for the financial

support from the Ontario Trillium Doctoral scholarship, Dr. Elkafi Hassini, and Dr.

Wael El-Dakhakhni.

I cannot begin to express my thanks to my parents, and brother for supporting my

vii



education for as long as I can remember. Without their love and guidance I would

not have been where I am today. I will forever remember the countless hours they

have spent listening to me on the phone, while being thousands of miles away, to

ease and relieve my stress. I am extremely grateful to my partner in life, Yosra, for

her constant love and support during the past two years of this program. It was

most comforting and encouraging to be able to count on her presence and patience

during all the challenges of this program. My sincere appreciation further goes to

my brother- and parents-in-law whose support during this program was invaluable

and most uplifting.

Last but not least, I would like to take this opportunity to thank all my friends and

colleagues, past and present, and members of the McMaster community.

viii



Abbreviations

NP non-deterministic polynomial time

BLPs Bi-level programmes

TLPs Tri-level programmes

RTLP Reduced tri-level programme

ORMS Operations research & management sciences

BMILP Bi-level mixed-integer linear problem

B&B branch-and-bound

Karush-Kuhn-Tucker KKT

B&C branch-and-cut

BILPs Bi-level integer linear problems

ISI International scientific indexing

WoS Web of Science

SCP Single country publications

MCP Multiple country publications

ix



LF Leader-Follower relation

SL Secondary-Leadership relation

PF Primary-Followership relation

SF Secondary-Followership relation

DOI Digital object identifier

MLP Multi-level programming

BOT Build-operate-transfer

MBLP Mixed-binary linear programmme

AD Attacker-defender

DAD Defender-attacker-defender

DAO Defender-attacker-operator

MEA Modified enumeration algorithm

C&C Column-and-Cnstraint

HPP High point problem

LLP Lower-level problem

CSV Comma-separated values

IG Interdiction Game

FG Fortification Game

OAR Optimal attack-recourse

C&CG Column-and-constraint generation

CLSIPF Capacitated lot-sizing interdiction problem with fortification

x



Contents

Lay Abstract iv

Abstract v

Acknowledgements vii

Abbreviations ix

1 Introduction 1

1.1 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Description of Thesis Contributions to Publications . . . . . . . . . . 10

1.3 Author’s Statement of Contribution . . . . . . . . . . . . . . . . . . . 10

2 Tri-Level Programming Problems: Taxonomy and Bibliometric Anal-

ysis 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Review and Research Methodology . . . . . . . . . . . . . . . . . . . 29

xi



2.4 Bibliometric Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.1 Citation analysis . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.2 Co-citation and Collaboration Analysis . . . . . . . . . . . . . 39

2.5 Taxonomy of Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.1 Interactions between Decision-Levels . . . . . . . . . . . . . . 42

2.5.2 Degeneracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.6 Algorithms and Solution Approaches . . . . . . . . . . . . . . . . . . 59

2.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.8 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . 72

2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3 Heuristic-Based Approaches for Solving Mixed-Binary Tri-Level Pro-

grams 104

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.2 Class of TLP Being Studied . . . . . . . . . . . . . . . . . . . . . . . 114

3.2.1 Generic TLP Model and Assumptions . . . . . . . . . . . . . . 115

3.2.2 Generic Application Examples . . . . . . . . . . . . . . . . . . 116

3.2.3 General Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.3 Solution Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.3.1 LPRank Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . 124

3.3.2 HybridRank Heuristic . . . . . . . . . . . . . . . . . . . . . . 129

3.3.3 MBLPRank Heuristic . . . . . . . . . . . . . . . . . . . . . . . 132

3.3.4 Multi-dimensional Knapsack Constraints . . . . . . . . . . . . 133

xii



3.4 Defending Critical Infrastructure: Application on Electrical Power

Transmission Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 134

3.4.1 Defender-Attacker-Defender Model for Electric Power Grid Se-

curity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

3.4.2 Equivalence between TLP and RTLP . . . . . . . . . . . . . . 142

3.4.3 Single-Level Attacker-Defender Model . . . . . . . . . . . . . . 145

3.4.4 Modified Enumeration Algorithm . . . . . . . . . . . . . . . . 149

3.4.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 156

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

4 A Branch-and-Bound Algorithm for Solving Bi- and Tri-Level pro-

grammes 173

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

4.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

4.3.1 Bi-Level programmes . . . . . . . . . . . . . . . . . . . . . . . 183

4.3.2 A Class of Tri-Level programmes . . . . . . . . . . . . . . . . 188

4.3.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

4.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

4.4.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

4.4.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

4.4.3 Algorithm Main Procedures . . . . . . . . . . . . . . . . . . . 194

4.4.4 Checking Nodes Procedure . . . . . . . . . . . . . . . . . . . . 196

4.4.5 High Point Problem Procedure . . . . . . . . . . . . . . . . . 198

xiii



4.4.6 LLP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 201

4.4.7 Branching Rules . . . . . . . . . . . . . . . . . . . . . . . . . . 202

4.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

4.5.1 Randomly Generated Instances . . . . . . . . . . . . . . . . . 204

4.5.2 Matlab Live Editor . . . . . . . . . . . . . . . . . . . . . . . . 205

4.5.3 Five-Bus System . . . . . . . . . . . . . . . . . . . . . . . . . 205

4.5.4 Six-Bus System . . . . . . . . . . . . . . . . . . . . . . . . . . 209

4.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . 211

5 On Solving Fortification Games: A Heuristically-Enhanced Decomposition-

Based Exact Algorithm 221

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

5.1.1 Bi-Level Programmes . . . . . . . . . . . . . . . . . . . . . . . 223

5.1.2 Tri-Level Programmes . . . . . . . . . . . . . . . . . . . . . . 226

5.2 Algorithm Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

5.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

5.2.2 Optimal Attack-Recourse Procedure . . . . . . . . . . . . . . 233

5.2.3 Optimal defence-Attack-Recourse Procedure . . . . . . . . . . 239

5.3 Applications and Numerical Results . . . . . . . . . . . . . . . . . . . 244

5.3.1 Protecting Critical Infrastructure . . . . . . . . . . . . . . . . 244

5.3.2 Capacitated Lot-Sizing Interdiction Problem with Fortification 260

5.4 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . 266

6 Conclusion 275

xiv



6.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

6.2 General Discussion and Directions for Future Research Endeavours . 279

A Equivalence between RTLP-Dual and RTLP-KKT in Chapter 3 283

A.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

B Heuristics Flowcharts 285

C Multi-dimensional Knapsack Constraints 289

D Additional Numerical Results for Chapter. 3 292

xv



List of Tables

2.1 Top Authors of the Reviewed Publications. . . . . . . . . . . . . . . . 35

2.2 Research Areas of the Reviewed Publications. . . . . . . . . . . . . . 36

2.3 Journal Titles of the Reviewed Publications. . . . . . . . . . . . . . . 36

2.4 Top 20 Highly-Cited Research Articles of the Reviewed Publications. 38

2.5 Top 25 Highly-Cited Reviewed Research Articles in Operations Re-

search & Management Science Journals. . . . . . . . . . . . . . . . . 38

2.6 Classification of Solution Approaches and Algorithms. . . . . . . . . . 60

2.7 Classification According to Tri-level Structure. . . . . . . . . . . . . . 61

2.8 Classification According to Applications. . . . . . . . . . . . . . . . . 68

2.9 Categories for Future Research. . . . . . . . . . . . . . . . . . . . . . 72

3.1 Mathematical Notations for DAD model . . . . . . . . . . . . . . . . 138

3.2 Mathematical Notations for the Dual of the Operator model . . . . . 141

3.3 Comparing MEA with Warm-starting Solutions against Classical Enu-

meration Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

3.4 Comparing MEA with and without Warm-starting Solutions . . . . . 155

3.5 Load Shed for Five-Bus System with Six Lines. . . . . . . . . . . . . 157

xvi



3.6 Load Shed for Six-Bus System (8 Lines) Under Different Attack and

Defence Budgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

3.7 LPRank Priority for 57-Bus System (80 Lines) . . . . . . . . . . . . . 162

3.8 HybridRank Repository for 57-Bus System (80 Lines) . . . . . . . . . 163

3.9 MBLPRank Repository for 57-Bus System (80 Lines) . . . . . . . . . 163

4.1 Contributions from an Application Perspective. . . . . . . . . . . . . 190

4.2 Five-Bus System Instances using Branch and Bound Algorithm. . . . 208

4.3 Six-Bus System Instances using Branch and Bound Algorithm. . . . . 209

5.1 Mathematical Notations for Electric Transmission Networks Fortifica-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

5.2 Five-Bus System Instances using Algorithm 5.2. . . . . . . . . . . . . 257

5.3 Five-Bus System Instances using LPRank Approach proposed in (Fakhry

et al. 2022). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

5.4 Six-Bus System Instances using Algorithm 5.2. . . . . . . . . . . . . . 258

5.5 Six-Bus System Instances using HybridRank Approach proposed in

(Fakhry et al. 2022). . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

5.6 IEEE 57-Bus System Instances using Algorithm 5.2. . . . . . . . . . . 259

5.7 Disrupted Periods for Capacitated Lot-Sizing Interdiction Problem

Instances with |T |= 10. Results using Algorithm 5.1. . . . . . . . . . 266

5.8 Costs and Iterations till Convergence for Capacitated Lot-Sizing In-

terdiction Problem Instances with |T |= 10. Results using Algorithm

5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

D.1 Five-Bus System Instances using LPRank Approach. . . . . . . . . . 292

xvii



D.2 Six-Bus System Instances using HybridRank Approach. . . . . . . . . 293

D.3 Proposed Heuristic Approaches Applied on 57-Bus System . . . . . . 293

D.4 Proposed Heuristic Approaches Applied on 6-Bus System . . . . . . . 294

xviii



List of Figures

2.1 Number of Article Publications by Year. . . . . . . . . . . . . . . . . 32

2.2 Top-Authors’ Production over the Time. . . . . . . . . . . . . . . . . 34

2.3 Most Productive Countries. . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Author’s Collaboration . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 Author’s Co-citation in the Reviewed Publications. . . . . . . . . . . 41

2.6 Co-citation References Network in the Operation Research & Man-

agement Science Reviewed Publications. . . . . . . . . . . . . . . . . 41

2.7 Definitions for Direct Interactions between Decision Entities in a TLP. 43

2.8 Degeneracy in Tri-Level Programs. . . . . . . . . . . . . . . . . . . . 54

3.1 Decision Variables shared across levels. . . . . . . . . . . . . . . . . . 116

3.2 Five-Bus electrical transmission network. . . . . . . . . . . . . . . . . 150

3.3 Scaparra & Church (2008) enumeration algorithm (D=2, K=2) for

network in Figure 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . 150

3.4 Non-binary search tree with minimum upper bound exploration (D=2,

K=2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

3.5 MEA Algorithm with (D=2, K=2). . . . . . . . . . . . . . . . . . . . 153

xix



4.1 B&B Algorithm Chart. . . . . . . . . . . . . . . . . . . . . . . . . . . 196

4.2 Checking and Updating Nodes in Repository. . . . . . . . . . . . . . . 197

4.3 High Point Problem Procedure in B&B Algorithm. . . . . . . . . . . 199

4.4 Node Labelling in B&B Algorithm. . . . . . . . . . . . . . . . . . . . 200

4.5 Lower Level Problem Procedure in B&B Algorithm. . . . . . . . . . . 202

4.6 Branching Rules in B&B Algorithm. . . . . . . . . . . . . . . . . . . 203

4.7 Flowchart for Formation of CSV File as Input for MATLAB Live Editor.206

4.8 Five-Bus electrical transmission network. . . . . . . . . . . . . . . . . 207

5.1 Five-Bus System Structure. . . . . . . . . . . . . . . . . . . . . . . . 253

B.1 Flowchart for LPRank Heuristic. . . . . . . . . . . . . . . . . . . . . 286

B.2 Flowchart for HybridRank Heuristic. . . . . . . . . . . . . . . . . . . 287

B.3 Flowchart for MBLPRank Heuristic. . . . . . . . . . . . . . . . . . . 288

C.1 LP Ranking with multi-dimensional Budget Constraints . . . . . . . . 291

xx



Chapter 1

Introduction

The increase in the digital transformation of organizational processes has facilitated

more decentralized decision making. Distributed asymmetric coordination mecha-

nisms is suggested as an approach to model the nonlinear and intractable nature

of decisions in such environments (Lu et al. 2012). Mathematical programming has

played an important role in devising coordination solutions since the early works on

decomposition (Dantzig & Wolfe 1960, Benders 1962). In distributed optimization

(Yang et al. 2019), agents cooperate to minimize a global function, which is a sum

of local objective functions. Each agent performs local computation based on the

information received, so that the optimization problem can be solved in a distributed

manner, where all agents have the same control/power over the decision. This thesis

discusses a different concept, which is decentralized decision-making where there is

a hierarchy of power between decision entities and uses multi-level programming to

model the decentralized decision-making process. Each decision entity has a place
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in the hierarchical structure and control over a set of decision variables that are not

shared with other entities.

In order to model the interactions between different levels of decisions, multi-level

programming has been suggested as a suitable methodology for capturing those in-

teractions. Multi-level programming is concerned with nested optimization problem

where the decision variables are controlled at different levels (usually by different

decision makers) and they can impact all constraints and objectives functions at all

levels (Avraamidou & Pistikopoulos 2022). Despite their complexity due to the in-

herent hierarchical structure of decentralized decision making processes, multi-level

mathematical programs have been applied to model a wide range of decision prob-

lems in different fields, such as forestry (Parkatti et al. 2019), transportation and

road planning (Gu et al. 2019), disaster management (Irohara et al. 2013), genera-

tion and transmission expansion planning (Hong et al. 2017), supply chain and waste

management (Fathollahi-Fard et al. 2018), as well as defence, security and reliability

assessment (Mahmoodjanloo et al. (2016), Lin & Bie (2018)). As we will show in

Chapter 2, the majority of the literature in the area of multi-level programming is

focused largely on bi-level programming, with some studies on tri-level programmes

(TLPs) and a few on generalized multi-level programmes.

In this thesis, our goal is to push the research frontier in the area of multi-

level programming from an algorithmic and applications perspectives. To do so, we

target the tri-level programming area and at the same time make use and contribute

to the area of bi-level programming. Moreover, we offer a unifying perspective on

the research developments in tri-level programming.

2
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The thesis is written in the form of a “sandwich” thesis. Thus, each chapter is

written as a standing-alone research article, and as such each chapter has its own

literature review section. Hence, it is expected that some chapters may share refer-

ences. In particular, Chapter 2 and Chapter 4 share a detailed background on bi-level

programs. It is used in Chapter 2 to pave the discussion towards tri-level programs,

while in Chapter 4, this background is necessary for understanding the previously

proposed general-purpose solvers and how it differs from our proposed implementa-

tion. Additionally, Chapter 2 and Chapter 3 share a discussion on resolving multiple

optimal solutions and selection approaches in tri-level programs. The discussion in

Chapter 2 is more generalized as it offers an overall view of the possible resolution

strategies, while in Chapter 3, the discussion is directed toward the special class of

tri-level programs under study. Lastly, each of the modelling chapters shares a com-

mon application, which is defending critical infrastructure, and as such the notations

and definitions are included accordingly for the sake of the readers’ convenience.

Furthermore, all chapters fall under the umbrella of tri-level programs. In par-

ticular, in Chapter 2 we provide a bibliometric analysis of the literature on tri-level

programs and introduces definitions and taxonomy of the tri-level linear program

structure, while Chapter 3 proposes three heuristic-based solution algorithms gener-

alized to work on a class of tri-level programs. In Chapter 4, we develop a general-

purpose branch-and-bound solver suitable for solving bi-level mixed-integer linear

programs and a more generalized class of tri-level problems than that of Chapter 3.

Furthermore, in Chapter 5, we propose an exact decomposition-based approach that

3
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relies on penalty terms to tackle a special class of tri-level problems known as fortifi-

cation games. Finally, in Chapter 6 we summarize our findings from this dissertation

and provide directions for future research endeavours. In the next section, we will

outline the organizational structure of this thesis and elaborate on the contributions

of each chapter.

1.1 Thesis Organization

Chapter 2

The aim of Chapter 2 is to provide a summary for essential bi-level programming

knowledge that is a prerequisite for conducting research in the area of tri-level pro-

gramming. Additionally, the motivation behind Chapter 2 is to clarify common

misconceptions by introducing definitions and classifying highly cited and co-cited

research works pertaining to tri-level programs. Ultimately, the aim is to offer a

synthesis of the literature and uncover the conceptual structure needed to further

push the frontiers of multi-level programming in terms of theory, solution methods

and applications. We achieve this goal by conducting a bibliometric analysis of the

literature on multi-level programs. Furthermore, a meta-analysis is done using the R

bibliometrix package (Aria & Cuccurullo 2017) to extract insights from the reviewed

publications and their citations. Additionally, we attempt to clear some common

misconceptions, provide some unifying definitions, and a taxonomy of TLPs.

4
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Chapter 3

Multi-level programming, even for the simplest case of bi-levels, are strongly NP-

hard (Jeroslow 1985). Given the increasing number of practical applications that

would benefit from modelling the decentralized decision-making process, there is a

need for developing efficient solution algorithms in this area, and in particular for

TLPs (Scaparra & Church 2008). To address this computational challenge, we de-

velop three different heuristic-based approaches for solving a specific class of TLPs,

in which the leader has direct control over some of the follower’s decisions, with

a common objective function shared at all levels. Each solution approach offers a

trade-off between solution quality and computational time. To illustrate our solution

approaches, we present an application for defending critical electric grid infrastruc-

ture to improve its resilience against intentional attacks. We also propose a mod-

ified implementation of a widely-adopted enumeration algorithm in this area, with

a warm-starting solution technique that significantly enhanced the computational

performance of the enumeration algorithm. We test our algorithms on three electri-

cal transmission networks that vary in size and present the results of our numerical

computations as well as some insights.

Chapter 4

Despite the need for general-purpose solvers for multi-level programs, there have not

been enough efforts dedicated to the algorithm development of such solvers (Fischetti

et al. 2017). This is mainly due to the challenging nature of multi-level programs

that are proven to be NP-hard even in their most simplest case of continuous bi-level
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linear programs. Recently, researchers have started to gain interest in developing bi-

level general-purpose solvers to address the diverse applications that require flexible

solvers that can be accustomed to customers’ needs. This research work proposes a

general-purpose algorithm capable of handling mixed-integer variables in both levels

of a bi-level linear program. Moreover, it also solves a general class of tri-level mixed-

integer programs with a convex optimization problem being at the most lower-level.

In this Chapter, we generalize the class of tri-level programs that we discussed in

Chapter 3. In particular, we allow the presence of mixed-integer variables in the

first- and second- levels, in addition to having different objective functions across all

levels. The class of tri-level programs handled by our branch-and-bound algorithm

has been motivated by defending critical infrastructure applications (Brown et al.

2006), which has been found to the most impactful in tri-level programming by our

literature review in Chapter 2. Protecting critical infrastructure ((Arroyo & Galiana

2005), (Arroyo 2010), (Akbari-Jafarabadi et al. 2017), Alvarez (2004)) has been

extensively studied in the literature. In particular, we direct our focus to defending

electrical power grids due to the interdependence of all other critical infrastructures

on the reliable operation of the electrical transmission networks. The motivation for

using a branch-and-bound approach for defending electrical power grids is three-folds:

• Finding alternative solutions that would enhance the set of options available

for the leader (i.e., first decision-maker) which would protect the transmission

network against worst-case scenarios in case of operational hidden constraints,

that might impede the original fortification plan.

• Most recent research work ((Yuan et al. 2014),(Davarikia & Barati 2018),
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(Davarikia et al. 2020)) done on protecting critical infrastructure, especially on

electrical transmission networks, used the column and constraint (C&C) gen-

eration algorithm or a variation of the Bender’s algorithm (Wu & Conejo 2017)

with no guarantee of reaching optimal solutions; these algorithms are known

to require fine tuning of some parameters (e.g., gap between lower-bound and

upper-bound, and penalty values) to converge; this tuning might differ from

an electrical network to another. Tackling the problem of protecting electri-

cal transmission networks with a reliable general-purpose branch-and-bound

(B&B) algorithm would provide a benchmarking tool that can determine all

optimal fortification strategies.

• The B&B algorithm would pave the way for efficient and exact solutions meth-

ods for protecting electrical transmission networks by offering insights on nodes’

characteristics that contain optimal solutions.

Furthermore, in addition to the aforementioned contributions from the application

perspective, we have the following contributions in the area of algorithmic develop-

ments for tri-level programming:

• We present a branch-and-bound algorithm with a new branching rule which

can be used as a general-purpose bi-level mixed-integer linear program solver.

• We test our algorithm on a test-bed of randomly generated instances that have

been previously presented in the literature (Xu & Wang 2014) for validation.

We report on computational efficiency in addition to the numbers and types of

relaxation problems solved to reach the optimal solution(s).
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• We test our algorithm on a specific class of tri-level problems which can be

reduced to a mixed-integer bi-level program; where we focus on the application

of defending electrical transmission networks.

• Furthermore, in order to enrich the test bed of bi-level mixed-integer linear

problems, we provide a Matlab live editor that converts any electrical trans-

mission network to a bi-level mixed-integer program instance, in the context of

enhancing the resilience of the electrical network under consideration.

It is important to note that, although, protecting critical infrastructure, and in par-

ticular electrical power grids is a special class of tri-level programs, the branch-and-

bound algorithm can handle more general versions of tri-level programs. Further-

more, we use our Matlab-based tool to generate instances for two electrical trans-

mission networks and report on their numerical results.

Chapter 5

This chapter examines a special class of tri-level optimization problems, which are

also known as Stackelberg sequential games. In general terms, the three-level non-

cooperative game, with perfect information, can either have min-max-min or max-

min-max structure, where each level represents a player sharing a set of items with

the next player, and optimizing a common objective function in opposite direction.

These problems are notoriously difficult to optimize, because of the inherent tri-level

structure which is crucial for modelling the players’ interactions. The three-stage

problem structure cannot be evaded, if the most lower-level problem is NP-hard.
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Nevertheless, even for the simplest case where the lower-level problem is a convex

problem, and the tri-level problem can be reduced to a bi-level structure using KKT

conditions or duality theory, the mathematical program is known to be strongly

NP-hard (Bard 1991). It should be noted that the solution approaches developed in

Chapter 3 and Chapter 4 can only handle tri-level programs with convex lower-level

problems. In this chapter, we propose a heuristically-enhanced exact algorithm for

solving the aforementioned class of tri-level problems, where the most lower-level

problem can be NP-hard. The main idea of the algorithm relies on forming a single-

level equivalent of the tri-level problem, where the feasible region is constructed in

an iterative manner. Moreover, we rely on heuristics gained from the structural

domain-knowledge of the application to enhance the formation of the feasible re-

gion. This idea can be implemented on various applications, and we demonstrate

the effectiveness of our proposed solution on two applications. In particular, the

first one is, the widely studied, application of defending critical infrastructure to

improve its resilience against intentional attacks. In this context, we use a defender-

attacker-operator model and apply it to electrical transmission networks, where the

most lower-level is a convex optimization problem. The second application is the

capacitated lot-sizing problem with the capability of interdiction and fortification;

this modified version of the ubiquitous lot-sizing problem is characterized by having

its most lower-level a mixed-binary program rendering the overall tri-level problem

inherently very difficult to solve. We test our solution approaches on three electrical

networks that varies in size, and randomly generated instances of lot-sizing problems.

Furthermore, we present the results of our numerical computations as well as some
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insights.

Chapter 6

This Chapter includes our concluding remarks. We also propose research directions

to expand on the research questions presented in this thesis.

1.2 Description of Thesis Contributions to Publi-

cations

This thesis has been written in the form of a “sandwich thesis.” Chapter 3 of this the-

sis has already appeared in European Journal of Operational Research, while Chap-

ter 2, 4, and 5 are currently being revised by co-authors, and will be submitted

afterwards.

1.3 Author’s Statement of Contribution

I am the author of this thesis and the first author of all works under revision/review,

submitted or accepted for publication that are included in this thesis.
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Abstract

There have been several reviews on bi-level programming problems, and their rele-

vant applications and solution algorithms; however, there have not been considerable

effort on reviewing and synthesizing the tri-level programming literature. This re-

view distinguishes itself by focusing on those specific multi-level programs research

problems that have appeared in the Web of Science. First, we start by discussing our

research methodology and proceed with a bibliometric analysis of research articles to

gain a birds-eye view of the available literature. From which we identify, and extract

the most influential research work. We then proceed with a systematic review, and

breakdown of the articles. Moreover, we introduce some definitions that will help

in categorizing tri-level programs. Furthermore, we discuss the taxonomy of papers,

solution approaches and applications related to tri-level Programs. In the end, we

provide some recommendations for future research directions.
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2.1 Introduction

Industrial multicriteria decisions and business management problems require com-

promising objectives of different interacting hierarchical decision entities. Multi-level

decision-making techniques, inspired from the Stackelberg game theory (von Stack-

elberg 2011), have been established to tackle those compromises arising among de-

centralized decision-making entities through multi-level mathematical programming.

The basic concept of multi-level programming is that, the first-level decision-maker

(i.e., leader) sets her/his objective(s) and/or decision(s), or strategy set, and then

each subordinate-level (i.e., follower(s)) chooses the decisions that best serve their

interests. Those decisions are submitted and modified by the first-level decision-

maker in consideration of the overall benefit of the hierarchical organization. It is

important to note that multi-level mathematical programming operates under the

assumption of perfect information from a game-theoretic framework; that is, each

player when making any decision, is perfectly informed of all the events that have

previously occurred, including the initial state of the game (e.g., the starting hands

in a card game) (Mycielski 1992). It is also important to note the difference between

perfect information and complete information; as the latter implies knowledge of each

decision entity’s utility functions, pay-offs and strategies, but players may not see all

of the moves made by other players. Hence, a game with perfect information may

or may not have complete information. Finally, we note that bi-level programming

offers a more general modelling framework than the classic Stackelberg game, in that

in the latter co-operation is prohibited.
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In general, multi-level mathematical programs consider a class of optimization

problems characterized by constraints, which contain optimization problems. The

first appearance dates back to 1973, in a paper co-authored by Bracken & McGill

(1973) discussing properties of functions that lead to convex programming problems.

Since the 1980s, a vast amount of research has been devoted to address optimality

conditions (Bard 1984, 1991, Dempe et al. 2006) and solution algorithms for solving

linear (Hansen et al. 1992, Wen & Hsu 1992), non-linear (Edmunds & Bard 1991,

Wang et al. 2005), and discrete problems (Bard & Moore 1990, Vicente et al. 1996)

of a special case of multi-level programs consisting of two levels namely: leader and

follower, which is also referred to as bi-level programming (Dempe 2002). Bi-level

programmes (BLPs) are considered to be the simplest case of multi-level problems

in general; nevertheless, even in their simplest forms, where decision variables are

continuous, objective functions and constraints are linear, have been proved to be

NP-hard by Jeroslow (1985), Ben-Ayed & Blair (1990), and Bard (1991). Different

solution algorithms have been developed to address bi-level programs such as descent

algorithms, extreme points algorithms, complementary pivot algorithms, penalty al-

gorithms, bundle algorithms, trust region, and smoothing methods (Dempe (2002),

Bard (2013)).

Applications have been a crucial factor for the development of bi-level program-

ming, as decentralized decision-making is becoming more ubiquitous. For instance,

some intriguing applications involve the determination of optimal tariffs/prices for

road tolls (Yin 2000), electricity prices (Carrión et al. 2009), optimal penalization
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of deviations for transported gas amounts (Berry et al. 1999), and cross-dock truck

scheduling (Konur & Golias 2013).

Tri-level programmes (TLPs) inherit all the properties of BLPs, but also add

to the hierarchical structure one upper-level along with its associated set of decision

variables, constraints and objective function. In most studies on tri-level program-

ming, it is implicitly assumed that an optimal solution of lower-levels’ objectives for

each decision made at the upper-levels is unique (Sarhadi et al. (2017), Yao et al.

(2007), Alguacil et al. (2014), Schweitzer & Medal (2019)). This is generally not al-

ways true, as any non-strictly convex (concave) minimization (maximization) might

have multiple optimal solutions. In a tri-level problem, the selection of alternative

optima (i.e., degenerate solutions) at a particular level yields the same results for

that level. However, each of the alternatives has a different impact on the over-

all problem Florensa et al. (2017). That is why it is important to determine the

selection criteria for the upper-level decision-maker(s) among the different solution

alternatives in the lower-levels, otherwise the tri-level model would be ill-posed. The

aim of this study is to clarify similar misconceptions by introducing definitions and

classifying highly cited and co-cited research work pertaining to TLPs. Our report

can help researchers in understanding the conceptual structure needed to further

push the frontiers of multi-level programming in terms of theories, solution methods

and applications. To so we start by identifying articles that have been influential in

shaping the literature on tri-level programs. The main contributions of this research

can be summarized as follows:
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• We provide a bibliometric analysis for multi-level programs with a focus on

TLPs, by searching for possible keywords to pull relevant literature from the

Web of Science core collection.

• A meta-analysis is done using the R bibliometrix package (Aria & Cuccurullo

2017) to extract useful knowledge from the data, and depict it through intuitive

visualizations.

• We direct our attention to Operations Research & Management Science (ORMS)

area for a systematic review.

• In an effort to clear some common misconceptions, and disseminate the litera-

ture, we provide some definitions to structure the taxonomy of TLPs.

• We provide a list of influential and necessary core knowledge as well as direc-

tions for future research.

2.2 Background

The BLP problem is a special case of multi-level programs, when there are only two

decision-makers. A generic BLP can be formulated as

‘ max
x

’ f1(x,y)

s.t. g1(x,y) ≥ 0

y ∈ arg min
y′

f2(x,y
′)

s.t. g2(x,y
′) ≥ 0

(2.1)
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The above BLP is often referred to as a leader-follower model, where the leader takes

the first move by controlling a set of decision variables x to maximize their objective

function. The follower reacts to the leader’s move by adjusting their own set of de-

cision variables y to optimize the objective value. It is worth mentioning that y
′ is

just a dummy variable to replace y in the lower-level problem. The quotation marks

in 2.1 are used to indicate the ambiguity in the formulation of the leader’s problem.

The ambiguity arises when the follower has to choose between more than one optimal

reaction (i.e., the follower’s problem is a non-strictly convex minimization problem

that might have several alternative global optima, in which case, a problem is said

to be “degenerate”). In order for the model to be well defined, the follower has to

choose between alternative optima, which leads to two approaches; the optimistic

approach (Dempe 2002) and the pessimistic approach (Aussel & Svensson 2019).

Motivated by the need for modelling decentralized planning in many practical appli-

cations such as cross-dock truck scheduling (Konur & Golias 2013), facility location

(Cao & Chen 2006), bi-level knapsack and capacitated lot-sizing (Lozano & Smith

2017), taxation and highway pricing (Labbé et al. 1998), interdiction games (Fis-

chetti et al. 2019), defending critical infrastructure (Alvarez (2004), Alguacil et al.

(2014), Fakhry et al. (2022)), and natural gas planning (Dempe et al. 2011), the work

done by Bialas & Karwan (1984) was the first to call for the need of efficient and

tractable algorithms for solving the bi-level mixed-integer linear problem (BMILP).

Moore & Bard (1990) established that it is not possible to obtain tight upper-bounds

from the natural relaxation of the bi-level problem. By providing examples and toy

problems, they established that two of the three well known fathoming rules used
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in branch-and-bound (B&B) in single-level mixed-integer programming cannot be

used in BMILP. In their influential work, Moore & Bard (1990) provided an implicit

enumeration technique for finding bi-level feasible solutions, and a series of heuris-

tics that offer a trade-off between quality and efficiency. In (Bard & Moore 1990),

a B&B approach was suggested that makes use of exploiting the follower’s Karush-

Kuhn-Tucker (KKT) conditions; the algorithm enforces the underlying complemen-

tary slackness conditions suggested by Fortuny-Amat & McCarl (1981). Zeng & An

(2014) also presented a computing scheme based on a decomposition strategy; by

converting BMILP into a single-level reformulation and using an algorithm akin to

the column-and-constraint generation algorithm. Xu & Wang (2014) presented an

exact B&B algorithm with three simplifying assumptions for tractability. Kleniati

& Adjiman (2014) presented an algorithm called branch-and-sandwich, in which two

solution spaces corresponding to the first- and second-levels, are explored using a

single B&B tree. In particular, two pairs of upper- and lower- bounds are computed:

one for the objective function of the leader, and the other pair is for the follower’s

objective value. Motivated by recent efforts at that time, Fischetti et al. (2017) sug-

gested a new branch-and-cut B&C algorithm for BMILP, in which they provided

specific pre-processing strategies, valid linear inequalities, along with separation pro-

cedures. Recently, Tahernejad et al. (2020) presented a generalized B&C algorithmic

framework for solving BMILPs; in which features from single-level and bi-level al-

gorithms are combined. The aim was to produce a flexible and robust framework

for solving a variety of different BMILPs. Furthermore, based on the fact that B&C
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has proven to be more powerful than B&B in single-level mixed-integer optimiza-

tion problems, Kleinert, Labbé, Plein & Schmidt (2021) were motivated to review

existing cuts for linear bi-level problems, and introduced a new valid inequality that

examines the strong duality constraint of the follower’s level, and strengthened vari-

ants of the inequality derived from McCormick envelopes. Most recently, Liu et al.

(2021) presented an enhanced branching rule based on the algorithm developed by

Xu & Wang (2014); however, the new branching rule might discard bi-level feasible

solutions if the lower-level problem possesses alternative optima, which may in-turn

lead to bi-level feasibility (i.e., sub-optimality in BMILP).

From the perspective of bi-level integer linear programs BILPs, Bard (2013)

presented an algorithm for the binary case for both leader and follower decision vari-

ables; this is done by converting the leader’s objective function into a parametrized

constraint and solving the re-formulated problem which produces a bi-level feasible

solution. After which, improvements are gradually sought that eventually lead to

the global optimum. DeNegre & Ralphs (2009) proposed a B&C approach for BILP,

which improves on the B&B approach proposed by Bard & Moore (1990), by adding

cutting planes that provide tighter bounds. It is worth mentioning that this approach

does not require special branching strategies, and was implemented through publicly

available linear solvers. Furthermore, using almost the same branching rules stated in

(Xu & Wang 2014), but taking advantage of the integer requirements in BILP, Wang

& Xu (2017) proposed the watermelon algorithm, in which a polyhedron is formed to

encapsulate bi-level infeasible solutions. The complement of this polyhedron is then
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taken as disjunction hyperplanes in a B&B framework. Indeed, the area of including

cuts or valid inequalities to bi-level programs is a fertile area for research, influential

papers that discuss the use of valid inequalities and cuts include, but not limited to

the work done by Fischetti et al. (2016), and Fischetti et al. (2018), which is based

on relatively old developments in convexity cuts (Balas (1971), Glover (1973, 1974)).

Parametric programming approaches have also been used to solve bi-level quadratic

and BMILPs such as the work done by Fáısca et al. (2007), through inserting the

rational reaction sets of the follower in the leader’s problem, and transforming the

bi-level problem into a set of independent quadratic, linear or mixed-integer linear

problem that can be solved to optimality. Moreover, Mitsos (2010) proposed an

algorithm for the global optimization of non-linear bi-level mixed-integer programs

where it relies on a lower-bound obtained by solving mixed-integer non-linear pro-

grams, and generating a parametric upper-bound to the optimal solution function of

the lower-level program.

The majority of the research done on bi-level programming deals with the opti-

mistic case; that is, in case of a non-unique rational response (i.e., maximizes/minimizes

payoffs) for the follower, the strategy that is in favour of the leader would be cho-

sen. From a game-theory perspective, this is known as a strong Stackelberg game

(Breton et al. 1988). On the other hand, if the follower picks a strategy that is

against the leader’s payoffs; this is considered a weak Stackelberg game (Loridan &

Morgan 1996); which corresponds to a pessimistic two-level optimization problem
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((Dempe 2002), (Liu et al. 2018)). It should be noted that Leitmann (1978) in-

troduced the concept of a generalized Stackelberg game, accounting for non-unique

followers’ responses, after which Breton et al. (1988) introduced a formal definition

for the strong-weak Stackelberg games. Furthermore, obtaining the optimality con-

ditions for bi-level linear programming problem has been discussed in the literature

under the assumption of uniqueness (Bard 1984), optimistic ((Dempe et al. 2006),

(Gadhi & Dempe 2012), and pessimistic (Dempe et al. 2014) approaches. Since,

bi-level programs are often re-formulated using KKT conditions for the lower-level

problem– if it is a parametric convex optimization problem, resulting in a single-

level mathematical program with complementary slackness conditions, the question

of equivalence of both programs has been discussed in (Dempe & Dutta 2012) which

turned out to depend on Slater’s constraint qualification for the lower-level problem

for the optimistic approach. The work done by Aussel & Svensson (2019) discusses

the equivalence in the pessimistic situation.

For a comprehensive review of bi-level programming, solution approaches and

practical applications, the interested reader may refer to the following reviews:

• Wen & Hsu (1991) recaps basic models, applications, solution approaches for

the linear bi-level programming problems.

• Ben-Ayed (1993) gives a review of the features of linear bi-level programs,

applications, algorithms and clarifies some confusing representations in the

literature.
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• Dempe (2003) provides some main directions of research highlighting re-formulated

bi-level programs with complementary slackness conditions, difficulties arising

from non-uniqueness of followers’ optimal solutions, and on optimality condi-

tions.

• The work done in (Colson et al. (2005, 2007)) gives an introductory survey of

bi-level programs motivated by simple applications, main properties of different

cases (e.g., linear-quadratic), and an overview of solution approaches.

• Lu et al. (2016) reviews multi-level decision-making with a focus on bi-level,

however it discusses multi-objective and multi-follower situations.

• Liu et al. (2018) reviews the definitions, properties of the pessimistic bi-level op-

timization approach, and a follow-up with a discussion on solution approaches

and some practical applications.

• Kleinert, Labbé, Ljubić & Schmidt (2021) reviews bi-level algorithmic ap-

proaches that make use of mixed-integer programming techniques with a focus

on linear lower-level problems, followed-up by a review on solution approaches

that solve mixed-integer bi-level problems with integer constraints in the fol-

lower’s level, and end with a brief discussion on specific applications such as

pricing and interdiction games. Future research questions pertaining to algo-

rithmic development for bi-level optimization is provided.

Problems requiring a sequence of decisions in reaction to uncertainty realizations

have been studied intensely over the past decades (Bakker et al. 2020). Multi-level
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optimization problems that deal with uncertainty have been often referred to as

multi-stage problems in the literature. Since real world optimization problems of-

ten appear in a temporal context, the interplay between uncertainty and time is

inherently important to any related decision-making process. The problem referred

to requires a sequence of decisions which react to outcomes that evolve over time,

and information on these outcomes is disclosed after the realization of a subset of

probabilistic parameters (Birge & Louveaux 2011). Thus, multi-stage programmes

differ from the classical Stackelberg multi-level programmes (von Stackelberg 2011)

in the assumption of perfect and complete information. Since the information on the

uncertain outcomes are being disclosed gradually, multi-stage optimization problems

have incomplete information. Several reviews exist on optimization under uncer-

tainty (Sahinidis 2004, Powell 2019), and application specific approaches such as

project scheduling under uncertainty (Saharidis & Ierapetritou 2009), and supply

chain network design (Govindan et al. 2017). Recently, Bakker et al. (2020) review

the different methods for solving multi-stage optimization problems under uncer-

tainty to pave the way for a holistic picture of sequential decision-making under

uncertainty. In particular, Bakker et al. (2020) review the theoretical underpinnings

of the different concepts for solving multi-stage optimization problems under uncer-

tainty in the areas of mathematical programming and computer science. Indeed a

large number of applications has been treated with more than one theoretical con-

cept, e.g., robust optimization and stochastic dynamic programming. Yet few papers

implement more than one concept at the same time (Bakker et al. 2020). It is worth

mentioning multi-level programs, which is the focus of this study, have deterministic
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parameters and the underlying assumption is that players have perfect and complete

information.

Now, we present a generic form of a TLP as follows:

‘ min
x

’ f1(x,y, z)

s.t. g1(x,y, z) ≥ 0

y ∈ ‘ arg max
y′

’ f2(x,y
′
, z)

s.t. g2(x,y
′
, z) ≥ 0

z ∈ arg min
z′

f3(x,y
′
, z

′)

s.t. g3(x,y
′
, z

′) ≥ 0

(2.2)

The quotation marks in the first- and second- levels reflect the need to select a

solution approach at the particular level where the marks are put. In particular,

there is a need to resolve the solution approach at the first- and second- levels in

case of multiple optima at the respective lower-levels, otherwise the TLP would be

ill-posed. One of the contributions of this research is to provide a guideline on how

a TLP can be classified, categorized, and most importantly how a solution approach

or a strategy can be determined for a specific TLP. The rest of this research work is

presented as follows: Section 2.3 presents the review and research methodology. Next,

we present bibliometric analysis in Section 2.4. In Section 2.5 we introduce important

definitions for TLPs. In Section 2.6 we discuss the most common algorithms used in

TLP. Applications are presented in Section 2.7. Finally, future research directions

and Conclusions are discussed in Sections 2.9 and 2.8.
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2.3 Review and Research Methodology

In this section, we outline how we conducted our literature search in addition to the

procedure used to filter the pool of research articles. We have classified the studied

literature and present several summary statistics. Finally, inspired by Fahimnia et al.

(2015), Mishra et al. (2018) and Ben-Daya et al. (2019), we include a bibliometric

and network analysis of the reviewed pool of papers.

We have chosen the methodology of bibliometric analysis as it provides a quan-

titative and objective approach to analyze the literature by studying the citations

and co-citations networks (Pilkington & Meredith 2009). To examine the current

structure of research on TLPs, we performed citations analysis; this is a quantita-

tive technique that provides a measure of the magnitude of influence of a research

article in a specific field, which enables researchers to understand and identify the

influential and major articles in a field. This is crucial to develop an understanding

of how relevant an article is to the current research and how its popularity evolved

through time. Co-citation analysis reveals the major research clusters within a field

by tracing the connection between authors and their areas of research. It is worth

mentioning that bibliometric analysis has been followed in fields that are related to

ORMS such as information systems (Culnan 1986), strategic management (Nerur

et al. 2008) and innovation (Cottrill et al. 1989). Furthermore, citation and co-

citation analysis has been used to spot research trends and identify research gaps

within ORMS (Pilkington & Fitzgerald 2006, Pilkington & Meredith 2009). Even

for systematic literature review studies, citation and co-citation analysis have been

used for pursuing an objective approach with the goal of narrowing down research
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domain classifications (Colicchia & Strozzi 2012, Fahimnia et al. 2015). In this re-

search work, we adopt the same argument as of Pilkington & Meredith (2009) and

Mishra et al. (2018) to identify highly cited research articles, in addition to revealing

the structure of inter-relationships among articles which is the result of references’

co-citations (i.e., articles that are usually cited together).

In order to focus on TLPs, we have chosen a combination of the words “tri-level

optimization” (e.g., tri-level programming) or synonymous words such as “three-

level optimization.” In particular, we used in our search query a variation of the

word “tri-level” with and without the hyphen. In addition to the word “three-level”

with and without the hyphen. It is worth mentioning that using keywords to con-

duct a literature review has been used before in the work done by Eksoz et al.

(2014) and Gunasekaran et al. (2015). We used Web of Science core collection to

conduct our search and bibliometric analysis, since it includes only international

scientific indexed (ISI) journals, that is generally accepted as a signal of journal

quality (Garfield 1995, Chavarro et al. 2018). Using the following search query on

Web of Science on June 9th, 2022 : tri-level optimization OR trilevel optimization

OR “three-level optimization” OR tri-level programming OR trilevel programming

OR “three-level programming” ; we ended up with 364 articles, book chapters and

proceeding papers. We restricted our list to publications that appeared in ISI jour-

nals as the latter are considered as certified knowledge (Ramos-Rodŕıguez & Rúız-

Navarro 2004). After including only journal articles, we had 310 articles in the

search database. We then refined our search and studied meticulously each paper to

select the most relevant papers to TLPs. Mainly, we excluded papers that have the
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same keywords in the search query but not relevant to TLPs; we ended up with 277

articles in our literature database. In particular, articles related to neuroimaging,

nanoscience nanotechnology, meteorology atmospheric sciences, metallurgy metallur-

gical engineering, materials science coatings films, linguistics, evolutionary biology,

geosciences multidisciplinary, imaging science photographic technology, limnology,

optics, physics condensed matter, physics fluids plasmas, political science, psychol-

ogy, psychology biological, psychology clinical, regional urban planning, sociology,

urban studies, ergonomics, engineering biomedical, education scientific disciplines,

chemistry physical, radiology nuclear medicine medical imaging, materials science

multidisciplinary, construction building technology, education educational research,

environmental studies, instruments and instrumentation categories were excluded.

In the next section, we provide a bibliometric analysis for the 277 articles. Fur-

thermore, in order to focus on papers published in ORMS journals, we carefully

studied each paper to figure out whether it was published in an ORMS journal and

we filtered out 53 papers that appeared in ORMS journals. We did so to offer a state

of the art developments in the ORMS field and scope out relevant future research

directions in that area. Additionally, we performed citation and co-citation analysis

on those particular papers.
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2.4 Bibliometric Analysis

We conducted a bibliometric analysis using the R programming (Tippmann 2015)

language in R Studio, which is an integrated development environment for R (Al-

laire 2012). In particular, we used the bibliometrix package developed by Aria &

Cuccurullo (2017) to conduct citation and co-citation analysis.

4.7%

2.5 %

5.8%

9.4%

12.3%

14.1%

15.2%

18.8%

7.9%

- up to June

Figure 2.1: Number of Article Publications by Year.

Figure 2.1 shows the number of journal articles produced yearly in the core col-

lection of Web of Science (WoS). Note that the year 2022 data is only up to the

month of June. It can be clearly seen that the research work on TLPs is steadily

increasing over the years, indicating the growing interest in the field.
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Figure 2.2 is a time chart reflecting top-authors’ productivity over time. The red

line indicates the time span between the author’s first published article and the last

one pertaining to the topic of TLP. Furthermore, the number of articles published

by a particular author in a year is proportional to the size of the ball depicted in

that year; the largest ball size corresponds to 3 or more articles in a particular year.

The total citation per year is also represented in the blue shade of the ball; we have

three shade levels: light, medium, and heavy corresponding to 0, 10, and 20 total

citations per year. In other words, if the ball representing an author is lightly shaded

and small in size, then that particular author has 0 to 10 total citation per year and

one article in that year.

In Table 2.1, we show the list of top authors that published three or more articles.

Arroyo J.M. is the most productive with 10 articles, the majority of which pertain to

electrical power networks such as electric power grid defence (Alguacil et al. 2014),

transmission expansion planning (Moreira et al. 2014), energy reserve scheduling

(Street et al. 2013, Moreira et al. 2015, Cobos et al. 2016, Cobos, Arroyo, Alguacil &

Wang 2018), network expansion planning (Roldán et al. 2018, Munoz-Delgado et al.

2019) and the unit commitment problem (Cobos, Arroyo, Alguacil & Street 2018). It

is worth mentioning that Arroyo co-authored six articles with Street A. who has seven

articles in total, the second highest productive author in the collection. Moreover, the

top five highest productive authors published mostly in electrical engineering journals

with applications related to electrical power grid optimization. This highlights the

interdisciplinary nature of TLP research. This review work aims to provide a unifying

synthesis across these fields.
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Figure 2.2: Top-Authors’ Production over the Time.

Furthermore, a breakdown of the authors’ countries is depicted in Figure 2.3.

It can be clearly seen that China is the highest productive country in the field of

TLPs, followed up by USA and Iran. In Figure 2.3, each country is represented by

a bar depicting the overall publications, which are subsequently divided into single

country publications (SCP) and multiple country publication (MCP). It is worth

mentioning that China’s SCP has surpassed USA’s SCP and MCP combined; this is

an indicator of the intensity by which China is trying to outperform USA in research.

In addition, the fact that many Chinese and Iranian universities have instituted the
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Author’s Name Record Count % of 277
Arroyo JM 10 3.610
Amjady N 7 2.527
Street A 7 2.527
Conejo AJ 6 2.166
Li ZY 6 2.166
Lu J 5 1.805
Wang JH 5 1.805
Zhang GQ 5 1.805
Alguacil N 4 1.444
Catalao JPS 4 1.444
Cobos NG 4 1.444
Dehghan S 4 1.444
Liu Y 4 1.444
Attarha A 3 1.083
Chen BK 3 1.083
Ding T 3 1.083
Han JL 3 1.083
Hu YG 3 1.083
Kang Z 3 1.083
Lai KX 3 1.083
Li GX 3 1.083
Sadeghi H 3 1.083
Shafie-khah M 3 1.083
Shahidehpour M 3 1.083
Shivaie M 3 1.083
Tavakkoli-moghaddam R 3 1.083
Vidyarthi N 3 1.083
Wan ZP 3 1.083
Wang DZW 3 1.083
Wang FS 3 1.083
Wang LZ 3 1.083
Wu WH 3 1.083

Table 2.1: Top Authors of the Reviewed Publications.

requirement of journal publications as a prerequisite of the completion of graduate

degrees may explain their research productivity.

Figure 2.3: Most Productive Countries.
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In Table 2.2, we show a breakdown of the reviewed publications according to re-

search areas. Engineering, which includes mostly electrical engineering, is the highest

research area followed up by computer science and ORMS, respectively. These areas

are known to utilize TLPs in their applications. This is also backed up by the journal

titles of the selected articles shown in Table 2.3.

Table 2.3 lists the journals with the highest record counts of published articles in

our search query; all journals are related to electrical engineering except for the Eu-

ropean Journal of Operational Research, which is categorized as an ORMS journal.

IEEE Transactions on Power Systems is the highest journal publishing peer-reviewed

articles in the field of TLPs with a record count of 26 articles.

Research Area Record Count % of 277
Engineering 182 65.704
Computer Science 60 21.661
Operations Research Management Science 52 18.773
Energy Fuels 47 16.968
Business Economics 24 8.664
Mathematics 23 8.303
Science Technology Other Topics 18 6.498
Telecommunications 13 4.693
Transportation 12 4.332
Automation Control Systems 6 2.166
Environmental Sciences Ecology 5 1.805
Physics 5 1.805
Thermodynamics 5 1.805

Table 2.2: Research Areas of the Reviewed Publications.

Publication Titles Record Count % of 277
IEEE Transactions on Power Systems 26 9.386
Applied Energy 17 6.137
International Journal of Electrical Power Energy Systems 13 4.693
IEEE Transaction on Smart Grid 12 4.332
European Journal of Operational Research 10 3.610
IET Generation Transmission Distribution 9 3.249
IEEE Access 8 2.888
Reliability Engineering System Safety 8 2.888
IEEE Transaction on Sustainable Energy 7 2.527

Table 2.3: Journal Titles of the Reviewed Publications.
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2.4.1 Citation analysis

In this section, we report on the influential works as well as the state of collaboration

in the field of TLPs.

Influential Works

In an effort to identify influential research articles that shaped TLPs, we have com-

piled a list of the top 20 highly-cited research articles in our search pool as shown in

Table 2.4. It is worth mentioning that we only included citations that are counted

by WoS; these citations tend to be lower in count than that of Google Scholar. This

is mainly due to two reasons: the first being a tendency for Google Scholar to inflate

citation counts due to inclusion of non-scholarly resources (e.g., promotional pages,

course reading lists, etc.), and the second is the tendency of WoS to have errors in

citations provided by authors, and different citation styles used by journals; which

might subsequently lead to poor indexing.

The most highly-cited research article by far in TLPs is the influential article by

Brown et al. (2006) collecting 415 citation counts. This particular article was pub-

lished in Interfaces, which is a known ORMS journal for practical applications of

operations research. This study discusses defending critical infrastructure and was

the first of its kind studying the defender-attacker and defender-attacker-defender

models as a bi-level and tri-level mathematical programs, respectively. A list of the

top 25 highly-cited reviewed research articles in ORMS journals is shown in Ta-

ble 2.5. In the coming sections, we will discuss how those articles influenced and

shaped TLPs in terms of applications and solution approaches.
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Publication Author(s)- Year Citation Counts Research Area
(Brown et al. 2006) 415 Operations Research & Management Science
(Mendes et al. 2011) 158 Energy & Fuels
(Ma et al. 2016) 143 Engineering
(Koltsaklis & Dagoumas 2018) 128 Energy & Fuels-Engineering
(Liberatore et al. 2012) 128 Operations Research & Management Science
(Ruiz & Conejo 2015) 124 Operations Research & Management Science
(Roghanian et al. 2007) 111 Mathematics
(Yuan et al. 2014) 105 Engineering-Operations Research & Management Science
(Lin & Bie 2018) 101 Energy & Fuels-Engineering
(Alguacil et al. 2014) 100 Operations Research & Management Science-Engineering
(Chen et al. 2014) 95 Engineering
(Lu et al. 2016) 88 Computer Science- Operations Research & Management Science
(Moreira et al. 2014) 87 Engineering, Electrical & Electronic
(Street et al. 2013) 84 Engineering
(Yao et al. 2007) 79 Computer Science- Engineering
(Liu & Wang 2017) 77 Engineering- Operations Research & Management Science
(Wang et al. 2016) 75 Engineering
(Fang & Sansavini 2017) 75 Engineering- Operations Research & Management Science
(Dehghan et al. 2015) 73 Engineering
(Yan et al. 2018) 72 Energy & Fuels-Engineering

Table 2.4: Top 20 Highly-Cited Research Articles of the Reviewed Publications.

Publication Author(s)- Year Citation Counts Application Area
(Brown et al. 2006) 415 Defense Multi-Disciplinary
(Liberatore et al. 2012) 128 Defense Multi-Disciplinary
(Ruiz & Conejo 2015) 124 Electric Grid Applications
(Yuan et al. 2014) 105 Defending Electrical Systems
(Alguacil et al. 2014) 100 Defending Electrical Systems
(Lu et al. 2016) 88 Review Article
(Liu & Wang 2017) 77 Transportation
(Fang & Sansavini 2017) 75 Defending Electrical Systems
(Ouyang et al. 2017) 35 Defending Electrical Systems
(White 1997) 27 Theory Development
(Ghorbani-Renani et al. 2020) 26 Defending Electrical Systems
(Jin et al. 2015) 25 Transportation
(Sarhadi et al. 2017) 22 Transportation
(Fanzeres et al. 2019) 16 Auction Markets
(Han et al. 2016) 16 Defense Multi-Disciplinary
(Aussel et al. 2020) 15 Electric Grid Applications
(Ramamoorthy et al. 2018) 15 Defense Multi-Disciplinary
(Ke & Bookbinder 2018) 14 Discount Policies
(Florensa et al. 2017) 14 Capacity Planning
(Ding et al. 2018) 13 Defending Electrical Syste,s
(Wu et al. 2011) 13 Transportation
(Lei et al. 2018) 12 Defense Multi-Disciplinary
(Rahdar et al. 2018) 10 Inventory Planning
(Parajuli et al. 2017) 10 Defense Multi-Disciplinary
(Avraamidou & Pistikopoulos 2019) 8 Theory Development

Table 2.5: Top 25 Highly-Cited Reviewed Research Articles in Operations Research
& Management Science Journals.
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2.4.2 Co-citation and Collaboration Analysis

In order to identify research groups who are active in TLPs, we performed a collab-

oration analysis between authors as shown in Figure 2.4. This is beneficial in terms

of understanding how research groups interact and add to the growing field of TLPs.

Authors' Collaboration

street alexandre

alguacil natalia

lai kexing

li zhiyi
shahidehpour mohammad

arroyo josem

chen yicunchen zhilong

dvorkin yury

gu wei

liu feng

pan guangsheng

qiu haifeng

wang yishen

wei wei

cobos noemig

wang jianhui

amjady nima

conejo antonioj

attarha ahmad

dehghan shahab

Figure 2.4: Author’s Collaboration

Figure 2.4 shows that the largest research groups are the red and blue clusters. An

edge between two nodes resembles a collaboration in a research article between two

authors. Each node is accompanied with an author’s name in lower case. The number

of collaborations is directly proportional with author’s name font size. In particular,

the red research cluster representing Arroyo J.M. and Street A.’s research groups

collaborating with Wang J.H.’s research group on applications related to electrical

power networks. It is worth mentioning that Arroyo J.M. and Street A. are among

the three highest productive authors in the collection, which explains the authors’

names font size. Furthermore, the blue research cluster representing Conejo A.J.,
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Amjady N., Deghan S. and Attarha A. are forming a research group collaborating

on applications related to the optimization of micro-grids and electric power grids.

Figure 2.5 depicts the co-citation between authors in all reviewed articles re-

sulting in three main clusters. The thickness of the edge between two cited authors

indicates how frequently they are cited together, where the size of the sphere carrying

the authors’ name indicates how frequently the corresponding author is cited. Con-

sequently, an author with many thick edges has to have a big sphere. The red cluster

includes references that are usually cited in electrical engineering applications such as

Fortuny-Amat & McCarl (1981), who introduced systematic linearization techniques

for the reduction of TLPs. It is worth mentioning that “anonymous,” which is highly

cited in the red cluster, refers to the electrical power grid data used by authors to

validate their proposed modelling and solution approaches on standard electrical net-

works. From Figure 2.5, we see that data is heavily cited by all three clusters. This

also establishes the dominance of electrical engineering applications over the field of

TLPs. The blue cluster in Figure 2.5 reflects the defender-attacker-defender theme.

In particular, authors such as Arroyo J.M., Alguacil N., Scaparra M.P., Wood K.,

Brown G., Salmeron J. and Wu X. have discussed the defender-attacker-defender

model in at least one article; this is why they are cited together, however they might

have applied the model in different applications. Moreover, since Dempe (2002) and

Bard (2013) are two of the most influential authors in bi-level programming, they

are co-cited frequently in that cluster, as bi-level programming is a corner stone

of TLPs. Lastly, the green cluster reflects methodological contributions needed for

solving TLPs such as column-and-constraint generation and Benders decomposition.
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Figure 2.5: Author’s Co-citation in the Reviewed Publications.

Figure 2.6: Co-citation References Network in the Operation Research & Manage-
ment Science Reviewed Publications.

Figure 2.6 reflects co-citations between the most co-cited 20 references in the

ORMS journal articles; this figure helps in understanding the references that are

cited together in ORMS journal articles. Consequently, it forms the core knowledge

contributing to the field of TLPs. In particular, Scaparra M.P. has co-authored 5

articles (Church & Scaparra 2007, Scaparra & Church 2008, Cappanera & Scaparra
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2011, Scaparra & Church 2012, Liberatore et al. 2012) forming the core of the red

cluster in Figure 2.6; these articles discuss bi-level and tri-level interdiction prob-

lems. This explains the association with the article done by Israeli & Wood (2002)

that discusses shortest-path network interdiction, along with the research done by

Moore & Bard (1990) proposing an algorithm for solving mixed-integer bi-level lin-

ear problems. At the core of the blue cluster, the article by Brown et al. (2006),

that proposes bi-level and tri-level mathematical formulations for defending critical

infrastructure, is co-cited with references (Salmeron et al. 2004a, Yao et al. 2007, Al-

guacil et al. 2014) which propose analysis for defending electric power grids. Lastly,

the article by Zeng & An (2014) is co-cited with attacker-defender (Salmeron et al.

2004b) or defender-attacker-defender models (Yao et al. 2007, Alguacil et al. 2014)

as it proposes a decomposition approach for solving bi-level mixed-integer problems.

2.5 Taxonomy of Papers

2.5.1 Interactions between Decision-Levels

This section introduces new definitions for identifying relationships among decision-

makers in a TLP through direct interaction of decision variables of each entity/level

with other levels. For the sake of clarity, we will be referring to the three levels in a

TLP as the first-, second-, and third-levels, respectively. Figure 2.7 summarizes the

definitions for direct interactions between decision levels in a TLP. An interaction

between two levels means the presence of decision variables of a level in the objec-

tive function or constraints of the other level. Each interaction has been given an
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acronym, which is introduced in the definitions.

Figure 2.7: Definitions for Direct Interactions between Decision Entities in a TLP.

Definition 2.5.1 (Leader-Follower, LF). If the decision variables of an entity ap-

pear in the objective function and/or constraints of the immediate upper-level (i.e.,

hierarchically-higher) decision-maker, then that entity/level is said to have a LF re-

lationship.

In a TLP, the first-level (second-level) entity is said to have a LF relationship,

if the second-level (third-level) decision variables appear in the objective function

and/or constraints of the first-level (second-level). Figure 2.7 can be visualized as

a 3 × 3 matrix, where the rows and columns are the decision vectors of each level.

Decision vectors x, y, and z correspond to the first-, second-, and third-levels re-

spectively. Hence, a LF relationship, which is marked by blue in Figure 2.7, can

occur in a TLP if y is present in the first-level, or if z is present in the second-level.
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Definition 2.5.2 (Secondary-Leadership, SL). If the decision variables of the third-

level entity (i.e., z) in a TLP appear in the objective function and/or constraints of

the first-level entity, then the first-level is said to have a SL relationship.

Definition 2.5.3 (Primary-Follwership, PF). If the decision variables of an entity

appears in the objective function and/or constraints of the immediate lower-level

(i.e., hierarchically-lower decision-maker, then that entity/level is said to have a PF

relationship .

In a TLP, the second-level (third-level) entity is said to have a PF relationship,

if the first-level (second-level) decision variables appear in the objective function

and/or constraints of the second-level (third-level). Hence, a PF relationship, which

is marked by brown in Figure 2.7, can occur in a TLP if x is present in the second-

level, or if y is present in the third-level.

Definition 2.5.4 (Secondary-Followership, SF). If the decision variables of the top-

level entity (i.e., x) in a tri-level program appears in the objective and/or constraints

of the third-level entity, then the third-level is said to have a SF relationship.

These definitions can be used to formally describe the interactions between decision-

makers in a TLP through abbreviating each level. For instance, if y, and z are present

in the first-level, then the interactions in the first level can be abbreviated with LF-

SL. Furthermore, these definitions can also be used for describing the interactions

in a bi-level program, in which case we can imagine a 2× 2 matrix by omitting the

last column and row in Figure 2.7. For example, the attacker-defender model can

be described as “-/PF”, since there are no direct interactions with the first-level a
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“-” has been used to describe the interactions with the first-level, the “/” means

the abbreviations that are coming next belong to the second-level decision-maker,

and finally “PF” which indicates that the second-level has a primary-followership.

Consequently, we can abbreviate the interactions in any TLP through mentioning

the abbreviations separated by “/” indicating the next level’s interaction in a man-

ner similar to describing queuing models. This notation can also be extended to

multi-level programming.

2.5.2 Degeneracy

Degeneracy in Bi-Level Programming Problems

It is widely known that a non-strictly convex minimization problem might have

several alternative global optima, in which case, a problem is said to be degenerate.

Bi-level programs belong to problems of hierarchical optimization of the form:

‘ min
x

’ {f1(x,y)| x ∈ X , y ∈ S(x)}, (2.3)

where the first-level player (i.e., leader) aims to minimize their cost function f1 with

respect to the variable x, taking into consideration the reaction y of the follower

(i.e., second-level decision-maker). Here S : X ⊂ Rn ⇒ Rm is a set-valued mapping

defined by:

S(x) := arg min
y
{f2(x,y)| y ∈ K (x)}, (2.4)
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which describes sets of optimal solutions of the lower-level parametric problem:

min
y
{f2(x,y)| y ∈ K (x)}, (2.5)

for any given choice x ∈ X of the leader. The sets X and K (x) are called first-

level and second-level feasibility sets, respectively. For the sake of clarity, we restrict

ourselves to the case where first- and second-level constraint sets are given explicitly

as:

X := {x ∈ Rn|g1(x) ≤ 0} and K (x) := {y ∈ Rm|g2(x,y) ≤ 0}, (2.6)

respectively, with g1 : Rn → Rk and g2 : Rn×Rm → Rp. Moreover, f1 : Rn×Rm → R

and f2 : Rn × Rm → R are single-valued first- and second-levels objective functions,

respectively. The general bi-level program presented in 2.3 can be recast as a set-

valued optimization problem:

min
x∈X

f1(x, S(x)) :=
⋃

y∈S(x)
{f1(x,y)}, (2.7)

where the minimization is considered with respect to some ordering cone (Dempe

et al. 2006). From the perspective of scalar optimization, problem 2.3 becomes a

regular optimization problem:

min{f1(x, S(x))|x ∈ X}, (2.8)
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provided that S(x) is single-valued ∀ x ∈ X . In other words, for every x ∈ X ,

solution of problem 2.5 can be uniquely determined (i.e., global optimum). The sin-

gle quotation marks in problem 2.3 is used to indicate the ambiguity in determining

the follower’s solution in-case of non-uniqueness, which makes the bi-level program

defined by 2.3 and 2.4, ill-posed (Dempe 2002). In order to reflect real-world prob-

lems, the follower should have the freedom of choice that reflects their best interest,

whether it suits the first-level decision maker or not; this gives the rise to two so-

lution approaches commonly know as: optimistic and pessimistic approaches. The

optimistic approach that deals with ill-posed bi-level problems can be modeled as

follows:

(Po)

min
x

φo(x) (2.9)

s.t. x ∈ X (2.10)

φo(x) = min
y

f1(x,y) (2.11)

s.t. y ∈ S(x) (2.12)

It is worth noting that both approaches (i.e., optimistic and pessimistic ) yield a

TLP, since S(x) is defined in 2.4 with possible multiple solutions for some x ∈ X .

Problem (Po) simulates a situation where a cooperation between upper-and lower-

levels is allowed. An interesting variation of problem (Po) is:

(P′

o)
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min
x,y

f1(x,y) (2.13)

s.t. x ∈ X (2.14)

y ∈ S(x). (2.15)

Problem (P′

o) can be seen as a regularization of (Po), where well-posedness is im-

plicitly assumed, given that the difficulty in objective function of (Po) is essentially

moved to the constraint set in (P′

o) , where the upper-level player has full control

over both upper- (x) and lower-levels’ (y) decision variables (Zemkoho 2016). It is

paramount to mention that a local optimum solution of (Po) implies a local opti-

mum solution of (P′

o), however the converse is not necessarily true (Dempe 2002).

Nevertheless, problem (Po) and (P′

o) are globally equivalent.

For the pessimistic approach, the bi-level program can represented as:

(Pp)

min
x

φp(x) (2.16)

s.t. x ∈ X (2.17)

φp(x) = max
y

f1(x,y) (2.18)

s.t. y ∈ S(x). (2.19)

Problem (Pp) reflects the fact that leader and follower can be adversaries. Hence,

it is necessary for the first-level decision-maker to withstand damages resulting from

undesirable actions of the second-level decision-maker. In general, pessimistic and

optimistic solution approaches have been defined to determine which lower optima
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will be selected that could be against or in favour-of the leader (Wiesemann et al.

(2013);Zemkoho (2016);Dempe et al. (2014)). Moreover, some algorithms have been

designed to find one type of solution or the other (Zemkoho (2016);Kleniati & Ad-

jiman (2014)). Furthermore, some algorithms have been tuned to analyze differ-

ent approaches with regards to specific applications. For example, Konur & Golias

(2013) have used genetic algorithms to solve a bi-level program for cross-dock truck

scheduling with truck arrival time uncertainty with three different strategies: (1)

deterministic approach which assumes mid-arrival time windows as expected truck

arrival times, (2) pessimistic approach which assumes worst truck arrival times, and

(3) optimistic approach which assumes best truck arrival times. For small-scale nu-

merical examples illustrating the differences between (Pp) and (Po), the interested

reader can refer to (Zemkoho 2016).

Degeneracy in Tri-Level Programs

In most studies on TLP, it is implicitly assumed that the optimal solutions of the

lower-levels’ objectives for each decision made at the upper-levels are unique (Yao

et al. (2007), Alguacil et al. (2014), Sarhadi et al. (2017), Schweitzer & Medal (2019)).

This is generally not always true, as any non-strictly convex (concave) minimization

(maximization) might have multiple optimal solutions. In a tri-level problem, the

selection of alternative optima (i.e., degenerate solutions) at a particular level yields

the same results for that level. However, each of the alternatives has a different

impact on the overall problem (Florensa et al. 2017). This is why it is important

to determine the selection criteria for the upper-level decision-maker(s) among the
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different solution alternatives in the lower-levels, otherwise the tri-level model would

be ill-posed. A tri-level program without selecting an appropriate selection approach

(i.e., ill-posed) can be modelled as follows:

‘ min
x

’ f1(x,y, z) (2.20)

s.t. g1(x,y, z) ≥ 0 (2.21)

y ∈ ‘ arg max
y′

’ f2(x,y
′
, z) (2.22)

s.t. g2(x,y
′
, z) ≥ 0 (2.23)

z ∈ arg min
z′

f3(x,y
′
, z

′) (2.24)

s.t. g3(x,y
′
, z

′) ≥ 0 (2.25)

Similar to the representation of problem 2.3, single quotation marks on the ‘ min ’

and ‘ arg max ’ are to indicate ill-posedness of the model (Zemkoho 2016). As each

player is in-charge of its own decision variables, A strategy needs to be set-up for

the first-level and second-level decision-makers in case of multiple global optimal

solutions. In general, research work discussing degeneracy in tri-level programs is

very scarce. Florensa et al. (2017) have introduced new definitions that are re-

quired for the analysis of degeneracy of tri-level programs. The authors proposed

a tri-level mixed-integer linear program to model capacity planning decisions in a

duopoly considering the conflicting interests of three rational decision-makers. The

definitions proposed by Florensa et al. (2017) cleared a part of the ambiguity in the

characterization of optimal solutions in tri-level programs; by providing extensions
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of optimistic bi-level programs and application-specific algorithms tailored to finding

the corresponding optimistic optimal solutions.

Recently, Aussel et al. (2020) devised a tri-level single-leader-multi-follower model

for demand-side management. First, the authors took advantage of the special struc-

ture of their model by converting the tri-level model into a bi-level problem using

explicit formulas for the third-level and plugging them into the second-level prob-

lem. They established equivalence between the resulting bi-level program and the

the original tri-level program by proving the uniqueness of the third-level solution

in addition to validation of the Slater’s constraint qualification according to (Dempe

& Dutta 2012). Second, the resulting bi-level program was converted into a single-

level using the classical transformation of replacing the followers’ problems by their

KKT conditions in the leader’s problem. Indeed, another equivalence should be es-

tablished in order to assure the equivalence between the original bi-level and the

resulting single-level problem, even if the lower-level problems of the leader problem

are convex, as proved by Dempe & Dutta (2012) for the optimistic case and Aussel

& Svensson (2019) for the pessimistic case. Furthermore, since uniqueness of the

most lower-level solution was proved, the authors classified their solution approaches

for the tri-level demand side management model into three categories: (1) optimistic

approach which is the same as the classical optimistic approach, where the solution

that best serves the upper-level’s objective function is selected, (2) revisited optimistic

where the leader gets to maintain the optimal value of their objective function based

on certain application-specific assumptions (i.e, no interactions/energy exchanges

within the intermediary level), and (3) semi-optimistic approach, which is also based
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on certain application-specific assumptions, where the solution is characterized to be

in the middle spectrum of the optimistic and pessimistic approaches.

To set a framework for a decision criteria under degeneracy, selection approaches

must be defined at hierarchically-higher decision-making levels (i.e., first- and second-

levels) in TLPs. For that purpose, given the tri-level program presented in (2.20)-

(2.25), a group of definitions have to be introduced building on the notations intro-

duced in (Florensa et al. 2017). Figure 2.8 summarizes the definitions that are later

introduced in this section. As explained earlier, degeneracy is resolved if multiple

optimal solutions exist for the second- and third-levels. A resolution for the third-

level’s degeneracy is marked by a solid arrow, while a resolution for the second-level’s

degeneracy is marked by a dashed arrow in Figure 2.8. The double-lined arrow de-

notes a strategic resolution; this means that both second- and third-levels co-operate

in-favour-of/against the first-level. The arrow in all cases points to the level in which

the degeneracy is resolved whether it is in favour or against the decision-maker in

that level. The black and red colours refer to optimistic and pessimistic resolu-

tions, respectively. The first row in Figure 2.8 depicts the variation of optimistic ap-

proaches that occur in TLP. For example, a sequentially optimistic approach means

a resolution of the third-level’s degeneracy is in favour-of the second-level, while the

second-level’s degeneracy is resolved in favour-of the first-level. Thus, a solid black

arrow is pointing to the second-level from the third-level, and a dashed black arrow

is pointing to first-level from the second-level in Figure 2.8. Thus, arrows are black

in the purely optimistic approaches (i.e., first row in Figure 2.8), red in the purely

pessimistic approaches (i.e., second row in Figure 2.8), black and red in the mixed
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approaches (i.e., third row in Figure 2.8). The last row depicts mixed optimistic and

pessimistic approaches. In particular, an approach that is textitsequential implies

that degeneracy of the third-level is resolved in-favour-of/against the second-level,

and degeneracy of the second-level is resolved in-favour-of/against the first-level.

For instance, sequentially optimistic-pessimistic approach means degeneracy of the

third-level is resolved in favour-of the second-level (i.e., solid black arrow), while

degeneracy of the second-level is resolved against the first-level (i.e., red dashed ar-

row). Lastly, an approach that is hierarchical implies that degeneracy in second- and

third-levels are resolved in favour-of/against the first-level; this is different from the

strategic approach, as there is no cooperation between the second- and third-levels’

decision-makers.

The rest of this section is dedicated for introducing the mathematical represen-

tations and definitions for each resolution approach in Figure 2.8, given the TLP

presented in (2.20)-(2.25).

Definition 2.5.5 (Tri-Level Constraint Region, Ω). let Ω be the tri-level constraint

region:

Ω = {(x,y, z) ∈ X × Y × Z : g1(x,y, z) ≥ 0, g2(x,y, z) ≥ 0, g3(x,y, z) ≥ 0}

(2.26)

Definition 2.5.6 (Third-Level Constraint Region, Ωz(x,y)). Let Ωz(x,y) be the

third-level constraint region for fixed (x,y) ∈ X × Y :

Ωz(x,y) = {z ∈ Z : g3(x,y, z) ≥ 0} (2.27)

53



Ph.D. Thesis - Ramy Abdallah McMaster University - DeGroote School of Business

xx  Level 2  

Level 1  

Level 3  

Level 1  

Level 2  

Level 3  

Level 1  

Level 2  

Level 3  

Sequentially 

Optimistic 

Hierarchically 

Optimistic 

Strategically 

Optimistic 

Level 1  

Level 2  

Level 3  

Level 1  

Level 2  

Level 3  

Level 1  

Level 2  

Level 3  

Sequentially 

Pessimistic 

Hierarchically 

Pessimistic 

Strategically 

Pessimistic 

Level 1  

Level 2  

Level 3  

Sequentially 

Pessimistic- 

Optimistic 

Level 1  

Level 2  

Level 3  

Hierarchically 

Pessimistic- 

Optimistic 

Level 1  

Level 2  

Level 3  

Sequentially 

Optimistic- 

Pessimistic 

Level 1  

Level 2  

Level 3  

Hierarchically 

Optimistic- 

Pessimistic 

Resolution of Second-Level Degeneracy 

Resolution of Third-Level Degeneracy 

Strategic Resolution 

Optimistic Resolution 

Pessimistic Resolution 

Figure 2.8: Degeneracy in Tri-Level Programs.

Definition 2.5.7 (Basic Rational Reaction Set of the Third-Level, Ψz(x,y)). Let

Ψz(x,y) be the basic rational reaction set of the third-level for fixed (x,y) ∈ X ×Y :

Ψz(x,y) = arg min
z∈Z

{f3(x,y, z) : g3(x,y, z) ≥ 0} (2.28)
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or in a more compact form:

Ψz(x,y) = arg min
z∈Ωz(x,y)

{f3(x,y, z)} (2.29)

Definition 2.5.8 (Union of Second- and Third-Levels’ Constraints Region, Ωy,z(x)).

Let Ωy,z(x) be the union of second- and third-level constraints region for fixed x ∈ X:

Ωy,z(x) = {(y, z) ∈ Y × Z : g2(x,y, z) ≥ 0, g3(x,y, z) ≥ 0} (2.30)

Definition 2.5.9 (Basic Rational Reaction Set of the Second-Level, Ψy(x)). Let

Ψy(x) be the basic rational reaction set of the second-level for fixed x ∈ X:

Ψy(x) = ‘ arg max
y∈Ωy,z(x)

’{f2(x,y, z) : z ∈ Ψz(x,y)} (2.31)

The single quotes for the basic rational reaction set of the second-level indicate its

ill-definition since a selection approach needs to be defined in the case of degenerate

solutions of the third-level. Nevertheless, it is necessary for representing the next

definitions in a compact form, making the aforementioned definition well-defined.

Definition 2.5.10 (Sequentially Optimistic Reaction Sets, ΨSo
II,z(x,y), ΨSo

I,y(x)). The

optimal solution to a tri-level program is said to be sequentially optimistic, if degener-

ate solutions in the third-level are resolved in favour-of the second-level, and multiple

optima in the second-level are resolved in favour-of the first-level.

• The sequentially optimistic reaction set of the third-level (i.e., ΨSo
II,z(x,y)) for

55



Ph.D. Thesis - Ramy Abdallah McMaster University - DeGroote School of Business

fixed (x,y) ∈ X × Y can be represented as:

ΨSo
II,z(x,y) = arg max

z∈Ψz(x,y)
{f2(x,y, z)}. (2.32)

• The sequentially optimistic reaction set of the second-level for fixed x ∈ X:

ΨSo
I,y(x) = arg min

y∈Ψy(x)
{f1(x,y, z) : z ∈ ΨSo

II,z}. (2.33)

It is worth noting that the sub-script Roman number in ΨSo
II,z(x,y) indicates the

level to which degeneracy is resolved for/against, and the superscript So indicates

that it is a part of the sequentially optimistic approach (i.e., resolved in favour-of

the second-level).

In an analogous way, we can represent the sequentially pessimistic reactions sets

for the third- and second-levels.

• The sequentially pessimistic reaction set of the third-level for fixed (x,y) ∈

X × Y can be represented as:

ΨSp
II,z(x,y) = arg min

z∈Ψz(x,y)
{f2(x,y, z)} (2.34)

• The sequentially pessimistic reaction set of the second-level for fixed x ∈ X:

ΨSp
I,y(x) = arg max

y∈Ψy(x)
{f1(x,y, z) : z ∈ ΨSp

II,z} (2.35)

Definition 2.5.11 (Hierarchically Optimistic Reaction Sets, ΨHo
I,z (x,y),ΨHo

I,y(x)).
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The optimal solution to a tri-level program is said to be hierarchically optimistic,

if degenerate solutions in the third-level are resolved in favour-of the first-level, and

multiple optima in the second-level are resolved in favour-of the first-level.

• The hierarchically optimistic reaction set of the third-level for fixed (x,y) ∈

X × Y can be represented as:

ΨHo
I,z (x,y) = arg min

z∈Ψz(x,y)
{f1(x,y, z)}. (2.36)

• The hierarchically optimistic reaction set of the second-level for fixed x ∈ X:

ΨHo
I,y(x) = arg min

y∈Ψy(x)
{f1(x,y, z) : z ∈ ΨHo

I,z}. (2.37)

Similarly, the hierarchically pessimistic reaction sets can be defined as follows:

• The hierarchically pessimistic reaction set of the third-level for fixed (x,y) ∈

X × Y can be represented as:

ΨHp
I,z (x,y) = arg max

z∈Ψz(x,y)
{f1(x,y, z)}. (2.38)

• The hierarchically pessimistic reaction set of the second-level for fixed x ∈ X:

ΨHp
I,y(x) = arg max

y∈Ψy(x)
{f1(x,y, z) : z ∈ ΨHp

I,z}. (2.39)

Definition 2.5.12 (Strategically Optimistic Reaction Set, ΨStro
I,(y,z)(x)).
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The optimal solution to a TLP is said to be strategically optimistic, if degeneracy

in the second- and third-levels are resolved such that the best first-level solution is

obtained. The strategically optimistic reaction set of the second- and third-levels for

fixed x ∈ X can be represented as:

ΨStro
I,(y,z)(x) = {(y, z) ∈ Ψy(x)×Ψz(x,y) :

∀ ỹ ∈ Ψy(x),∃ z̃ ∈ Ψz(x,y) : f1(x,y, z) ≤ f1(x, ỹ, z̃)}. (2.40)

We can represent the pessimistic counter-part definition as follows:

ΨStrp
I,(y,z)(x) = {(y, z) ∈ Ψy(x)×Ψz(x,y) :

∀ ỹ ∈ Ψy(x),∃ z̃ ∈ Ψz(x,y) : f1(x,y, z) ≥ f1(x, ỹ, z̃)}. (2.41)

Definition 2.5.13 (Sequentially Pessimistic Reaction Sets, ΨSpo
II,z(x,y), ΨSpo

I,y (x)).

The optimal solution to a tri-level program is said to be sequentially pessimistic-

optimistic (i.e., Spo), if degenerate solutions in the third-level are resolved against

the second-level decision-maker (i.e., pessimistic), and multiple optima in the second-

level are resolved in favour-of the first-level decision-maker (i.e., optimistic).

• The sequentially pessimistic-optimistic reaction set of the third-level for fixed

(x,y) ∈ X × Y can be represented as:

ΨSpo
II,z(x,y) ≡ ΨSp

II,z(x,y) = arg min
z∈Ψz(x,y)

{f2(x,y, z)}. (2.42)
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• The sequentially pessimistic-optimistic reaction set of the second-level for fixed

x ∈ X:

ΨSpo
I,y (x) = arg min

y∈Ψy(x)
{f1(x,y, z) : z ∈ ΨSpo

II,z}. (2.43)

Mathematical representations for the rest of the selection approaches in Figure 2.8

can be easily deducted in a similar manner to the definitions above. These definitions

would help in clearing any ambiguity encountered when defining feasible regions and

reaction sets of a TLP.

2.6 Algorithms and Solution Approaches

In this section we classify the algorithms and solution approaches that were used in

the reviewed works into seven main categories with a special focus on articles that

appeared in ORMS journals as shown in Table 2.6.

It is worth noting that some articles can be classified twice if they employed more

than one approach. For instance, Fakhry et al. (2022) designed an enumeration ap-

proach, and three heuristic approaches. Additionally, we classify articles according

to their reduction of the tri-level structure before implementing their respective so-

lution algorithm in Table 2.7. First, we start with the classical and decomposition

techniques as they are the most widely used to tackle TLPs. This is followed by

a discussion on using enumeration, and equilibrium constraints techniques; those

techniques often complement a heuristic or a special designed algorithm to provide

a solution for the TLP. After which, we discuss machine learning, heuristic, and

meta-heuristic methodologies.
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Solution Approach References No. of Articles/ (Percentages)

Decomposition Techniques

Hasanzad & Rastegar (2022), Feng et al. (2021),
Baggio et al. (2021), Ghorbani-Renani et al. (2020), Lazzaro & Carlyle (2019),
Fanzeres et al. (2019), Fang & Zio (2019), Ramamoorthy et al. (2018),
Rahdar et al. (2018), Ding et al. (2018), Sarhadi et al. (2017),
Ouyang et al. (2017), Ouyang (2017), Florensa et al. (2017),
Fang & Sansavini (2017), Ruiz & Conejo (2015), Yuan et al. (2014)

17 / (32.1%)

Enumeration
Wu et al. (2022), Fakhry et al. (2022), Parajuli et al. (2021)
Sadati et al. (2020), Schweitzer & Medal (2019), Dey & Jenamani (2019),
Sariddichainunta & Inuiguchi (2017), Parajuli et al. (2017), Han et al. (2016),
Alguacil et al. (2014), Liberatore et al. (2012)

11 / (20.8%)

Equilibrium Constraints
Li (2021), Tian et al. (2021), Coniglio et al. (2021), Li et al. (2020),
Aussel et al. (2020), Gu et al. (2019), Fanzeres et al. (2019),
Lei et al. (2018), Ruiz & Conejo (2015), Wu et al. (2011)

10 / (18.9%)

Heuristics
Wu et al. (2022), Fakhry et al. (2022), Wu et al. (2021),
Lazzaro & Carlyle (2019), Gu et al. (2019), Ke & Bookbinder (2018),
Ashraf & Yuen (2017), Liu & Wang (2017), Han et al. (2016),
Jin et al. (2015), Wu et al. (2011)

11 / (20.8%)

Meta-heuristics Caçador et al. (2021), Sadati et al. (2020), Parvasi et al. (2019) 3 / (5.7%)

Machine Learning Techniques Kaviani et al. (2018) 1 / (1.9%)

Table 2.6: Classification of Solution Approaches and Algorithms.

Classical and Decomposition Techniques

Decomposition techniques that divide the tri-level problem structure into a master-

problem and a sub-problem are the most prevalent in solving tri-level programs;

especially if integer decision variables exist in the most lower-level rendering the tri-

level structure irreducible. These algorithms are always tailored to the special struc-

ture of the tri-level program, and resemble Benders decomposition or the column-

and-constraint generation algorithms. For example, Hasanzad & Rastegar (2022)

formulated a tri-level mixed-integer linear program that has binary variables in the

lower-level, which prompted the use of a nested column-and-constraint generation

algorithm to solve the model. The tri-level structure was decomposed into two prob-

lems: a single-level master-problem, and a two-level sub-problem transformed into
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Structure References No. of Articles/ (Percentages)

Defender-Attacker-Defender Structure
Wu et al. (2022), Fakhry et al. (2022), Sadati et al. (2020), Parvasi et al. (2019),
Ghorbani-Renani et al. (2020), Ouyang (2017), Fang & Sansavini (2017), Han et al. (2016),
Jin et al. (2015), Yuan et al. (2014), Alguacil et al. (2014)

11/ (20.1%)

Reduced to Single-level Structure Tian et al. (2021), Coniglio et al. (2021), Fanzeres et al. (2019), Lei et al. (2018) 4 / (7.5%)

Reduced to Bi-level Structure

Hasanzad & Rastegar (2022), Wu et al. (2022), Fakhry et al. (2022), Wu et al. (2021), Li (2021),
Caçador et al. (2021), Li et al. (2020), Aussel et al. (2020), Schweitzer & Medal (2019),
Fang & Zio (2019), Dey & Jenamani (2019), Ramamoorthy et al. (2018), Ouyang et al. (2017),
Florensa et al. (2017), Han et al. (2016), Alguacil et al. (2014), Liberatore et al. (2012),
Wu et al. (2011)

18 / (33.9%)

Maintained Tri-level Structure

Feng et al. (2021), Baggio et al. (2021), Sadati et al. (2020),
Parvasi et al. (2019), Ghorbani-Renani et al. (2020), Lazzaro & Carlyle (2019), Gu et al. (2019),
Rahdar et al. (2018), Ke & Bookbinder (2018), Ding et al. (2018), Ashraf & Yuen (2017),
Parajuli et al. (2017), Liu & Wang (2017), Fang & Zio (2019), Han et al. (2016),
Jin et al. (2015), Yuan et al. (2014)

17/ (32.1%)

Table 2.7: Classification According to Tri-level Structure.

a single-level using the duality theory approach. Feng et al. (2021) implemented a

decomposition approach that reduces the tri-level structure into a bi-level main prob-

lem (min−min) and a bi-level sub-problem (max−min). The main problem was

then relaxed into a single-level (min) problem, since the two levels shared the same

objective function. Baggio et al. (2021) designed a row-and-column generation algo-

rithm to solve the multi-level critical node problem. Ghorbani-Renani et al. (2020)

implemented a decomposition approach that extends the standard covering decom-

position approach initially proposed by Israeli & Wood (2002). Lazzaro & Carlyle

(2019) implemented a procedure akin to Benders decomposition, except they intro-

duced elimination constraints to prevent cycling solutions. A column-and-constraint

generation algorithm was used in Ding et al. (2019), after converting the most two

lower-levels into a single-level by taking the dual of the most lower-level problem.

In Davarikia & Barati (2018), the tri-level problem was decomposed into a master-

problem and sub-problem. The master-problem included the first- and third-levels;

this is due to the special structure of the problem, as both levels were minimizing
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the same objective function. For the sub-problem, the authors used duality theory

to cast the two lower levels into a single level; this is due to the linearity of the

third-level. A column and constraint generation algorithm was then used to iterate

between the master problem and sub-problem, till the solution converges. Primal

cutting plane methods and Benders decomposition were both used in Ebrahimi &

Amjady (2019). The rest of the references mentioned in Table 2.6 have proposed

similar decomposition algorithms as the aforementioned research articles, with slight

differences depending on the application under study.

Enumeration Techniques

The majority of the defender-attacker-defender models, grouped in Table 2.7, rely

on the implicit enumeration idea proposed by Church & Scaparra (2007), which is

the core of the red cluster in our co-citation analysis in Figure 2.6 (e.g., Parajuli

et al. (2021), Schweitzer & Medal (2019), Dey & Jenamani (2019), Parajuli et al.

(2017), Sarhadi et al. (2017), Alguacil et al. (2014), Liberatore et al. (2012)), if an

enumeration methodology is used in the search for an exact solution. The enumera-

tion algorithm relies on an observation stating that in order to prevent the worst-case

scenario, at least one of the assets causing that scenario must be protected/defended.

Wu et al. (2022) used a greedy algorithm for both the attacker and defender to enu-

merate possible defence and attack strategies. The quality of the solution is then

determined by a variable neighbourhood search. Fakhry et al. (2022) designed a

modified non-binary tree search with a warm-starting solution technique that sig-

nificantly enhanced the run-time compared to the binary tree search proposed by

62



Ph.D. Thesis - Ramy Abdallah McMaster University - DeGroote School of Business

Church & Scaparra (2007). Sadati et al. (2020) proposed an exhaustive enumera-

tion scheme where some patterns are excluded and only distinctive combinations are

to be considered depending on the attack and defense budget. Sariddichainunta &

Inuiguchi (2017) proposed a global optimality test based on an inner approximation

method, and compared its computational efficiency to other test methods based on

vertex enumeration. They show that an optimal solution exists at a vertex of a feasi-

ble region upon solving a special three-level programming problem. Han et al. (2016)

enumerated all possible strategies for the defender and the attacker. However, they

were constrained with small instances due to the large number of combinations.

Equilibrium Constraints Technique

Equilibrium constraints is a terminology used extensively in transportation (e.g.,

Tian et al. (2021)) and is synonymous to complementarity conditions. Simply put,

these are conditions that guarantee that the party (e.g., passenger) under considera-

tion will have no incentive deviating from the solution if it satisfies the complemen-

tarity constraint, hence equilibrium is achieved. Tian et al. (2021) reformulated the

tri-level program into a mathematical program with equilibrium constraints. Two

approaches were proposed to solve the model: 1) transforming the model into a single-

level mixed-integer program, and 2) a surrogate optimization approach was suggested

to tackle large problem instances. Li (2021) decomposed the tri-level structure into

bi-level by replacing the most third-level with its complementarity constraints and

used a game-theoretic framework by introducing constraints ensuring individual,

group, and subgroup rationality are satisfied. Furthermore, a synchronous iterative
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method was used to solve the tri-level problem in Gu et al. (2019), where the second

and third levels are equilibrium problems with equilibrium constraints. The second

and third levels represent equilibrium between private firms (Cournot-Nash equilib-

rium) and users (user-equilibrium traffic problem), respectively. The authors used a

synchronous iterative method that loops on toll-capacity adjustment for private firms

and user equilibrium traffic assignment in a synchronous manner, in the sense that

corresponding iterations are executed as a group. Moreover, the updating procedure

is done using a successive average method. In Nemati et al. (2019), each transmission

line is regarded as a virtual attacker. A co-operative game approach is formulated

by including the KKT conditions for each virtual attacker that maximizes the net-

work damages. The pareto equilibria conditions are then formulated and added to

the equilibrium constraints. Thus, converting the bi-level problem into a single-level

mixed-integer linear problem. It is worth mentioning that the authors were inspired

by the exact solution method developed by Huppmann & Siddiqui (2018) for solv-

ing binary equilibrium problems. Aussel et al. (2020) used the classical method to

decompose the tri-level structure into a bi-level problem by replacing the followers’

problems by their KKT conditions in the second-level yielding a bi-level mathemati-

cal program with complementarity constraints. Lastly, Wu et al. (2011) formulated a

tri-level leader-follower game with certain assumptions into a mixed-integer program

with equilibrium constraints. They applied it to the build-operate-transfer projects

in transportation, The authors showed that the optimal solution can be determined

from the problem structure leading to an efficient heuristic algorithm. Other research

articles that show under “Equilibrium Constraints” in Table 2.6 have implemented
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similar ideas to the above mentioned research work.

Heuristics Techniques

Heuristic techniques are widely used in solving tri-level programs because of their

ability to provide near-optimal/optimal solutions with minimal computational effort.

Wu et al. (2022) implemented a heuristic procedure that is similar in spirit to the

active-set algorithm previously proposed by Zhang et al. (2009). The heuristic oper-

ates in a greedy manner by evaluating the marginal benefit of changing/mutating a

candidate solution, and then solves a knapsack problem to update the solution. The

candidate solution with the most decrease in system cost will be selected. Further-

more, Fakhry et al. (2022) proposed three different heuristic approaches that offer

a trade-off between solution quality and computational time.The proposed heuris-

tics are used to rank the binary variables in a pre-planning stage providing fast

optimal/near-optimal solutions with much less computational effort. In particular,

the LPRank heuristic solves a series of linear programs instead of having to solve a

bi-level mixed-binary program. In contrast, the HybridRank heuristic triggers both

linear and mixed-binary linear program solvers, depending on the change of objec-

tive function values through iterations, while the MILPRank heuristic only invokes

a mixed-binary program solver, thereby yielding a better quality and taking rela-

tively more time per instance. Additionally, Wu et al. (2021) implemented a variable

neighbourhood search procedure that initializes a solution using a greedy algorithm,

explores the neighbourhood searching for a better solution, and then repeats the

cycle till all neighbourhoods are searched. A similar approach, was implemented in
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defending software-defined networks in (Ashraf & Yuen 2017), urban rail transit net-

works in (Jin et al. 2015), and build-operate-transfer project schemes in (Wu et al.

2011).

Lazzaro & Carlyle (2019) investigated heuristic and parametric programming ap-

proaches to identify the set of nested defences; which is a monotonic sequence of sets,

where the set of defences for a particular budget scenario contains the set of defences

for all smaller budget scenarios. Gu et al. (2019) proposed a heuristic algorithm to

solve a tri-level mathematical program with equilibrium constraints in the second-

(i.e., Cournot- Nash Equilibrium) and third- levels (traffic user equilibrium). Diago-

nalization and synchronous iterative methods were used to solve the programs with

equilibrium constraints separately and sequentially while holding the decision vari-

ables of other players fixed in-turn, till the sequence converges. A similar idea, but

in a different context, was proposed by Ke & Bookbinder (2018), where a heuristic

algorithm was designed to start from the initial market equilibrium and then update

each party/member’s with its preferred decision till convergence. Liu & Wang (2017)

formulated a tri-level model, that was first treated as black-box optimization, and

then solved by an efficient surface-response-approximation model-based algorithm.

Meta-Heuristics Techniques

Meta-heuristic techniques have been used in solving TLPs such as genetic algorithms

in Caçador et al. (2021) which allowed the reduction of a three-level optimization

problem to a two-level problem. In general, evolutionary algorithms allow researchers

to solver more complex and combinatorial problems with non-linear or non-convex
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objective functions. Some authors have opted for hybrid method. (Sadati et al.

2020) designed a meta-heuristic that is an amalgamation of a variable neighbourhood

descent and tabu search techniques to solve the lower-level problem. The algorithm

requires an initial solution which is generated using a greedy heuristic. Parvasi

et al. (2019) proposed a combination of a genetic algorithm, simulated annealing.

The genetic algorithm was used to form a population of candidate solutions and the

simulated annealing was used as a neighbourhood search algorithm. In each iteration,

the fitness function of the proposed chromosome was evaluated by substituting in

the first level’s objective function.

Machine Learning Techniques

Machine learning techniques have not been applied extensively, as researchers fo-

cused mainly on efficient decomposition techniques, heuristics, and combining both

with enumeration methodologies. A disadvantage of machine learning algorithms

that they require data for training which might need further processing. Recently,

Kaviani et al. (2018) explored four different machine learning algorithms, which are

logistic regression, support vector machine, random forest and lastly artificial neu-

ral networks. Based on the preliminary results, artificial neural networks had the

highest accuracy among the different implemented algorithms. Principle component

analysis was also used to reduce the dimensionality of the data that is fed to each

machine learning algorithm before training. The overall technique provides accept-

able solutions, and not necessarily optimal. It also provides a new lens to examine

the interdiction problem.
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2.7 Applications

Applications on tri-level programs span a wide range of spectrum due to the need

of incorporating decentralized decision-making processes in different areas. In this

discussion, we categorize research articles that have appeared in ORMS journals in

Table 2.8, as we want to induce more research contributions in this area.

Application References No. of Articles/ (Percentages)

Defending Electrical Systems
Wu et al. (2022), Hasanzad & Rastegar (2022), Fakhry et al. (2022), Zhu et al. (2021) ,
Ding et al. (2018), Ouyang et al. (2017), Fang & Sansavini (2017), Yuan et al. (2014),
Alguacil et al. (2014)

9/ (17%)

Defense Multi-disciplinary

Wu et al. (2021), Parajuli et al. (2021), Baggio et al. (2021), Sadati et al. (2020),
Parvasi et al. (2019), Ghorbani-Renani et al. (2020), Schweitzer & Medal (2019), Lazzaro & Carlyle (2019)
Fang & Zio (2019), Dey & Jenamani (2019), Ramamoorthy et al. (2018), Lei et al. (2018),
Ashraf & Yuen (2017), Parajuli et al. (2017), Ouyang (2017), Han et al. (2016)
Liberatore et al. (2012), Brown et al. (2006)

18/ (34%)

Transportation
Tian et al. (2021), Feng et al. (2021), Coniglio et al. (2021), Sadati et al. (2020),
Gu et al. (2019), Ke & Bookbinder (2018), Sarhadi et al. (2017), Liu & Wang (2017),
Jin et al. (2015), Wu et al. (2011)

10 / (18.9%)

Electric Grid Applications Li (2021), Aussel et al. (2020), Ruiz & Conejo (2015) 3/ (5.7%)

Theory Development Gabriel et al. (2021), Li et al. (2020), Avraamidou & Pistikopoulos (2019), Li & Wan (2018),
Inuiguchi & Sariddichainunta (2016), White (1997), Sariddichainunta & Inuiguchi (2017)

7/ (13.2%)

Miscellaneous Wang et al. (2022), Caçador et al. (2021), Fanzeres et al. (2019), Rahdar et al. (2018), Florensa et al. (2017) 5/ (9.4%)

Table 2.8: Classification According to Applications.

Papers that studied defending critical infrastructure applications were a major

driving force for researchers’ interest in TLPs. Consequently, this in-turn sparked

theory and algorithm design to tackle the inherent difficulty that arises from even

the simplest tri-level programs. Defending electrical networks has attracted many

researcher; this is mainly due to the interdependence of other critical infrastructure

on electricity such as transportation and health care systems, which might cause a

chain effect of cascading failures. Many researcher have studied defending electri-

cal networks against physical, and cyber attacks, and natural disasters (Wu et al.

2022, Hasanzad & Rastegar 2022, Fakhry et al. 2022, Zhu et al. 2021, Fang & Zio
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2019, Ding et al. 2018, Ouyang et al. 2017, Alguacil et al. 2014, Yuan et al. 2014).

Other critical infrastructure networks have also been investigated such as urban wa-

ter distribution networks (Wu et al. 2021), facilities and supply networks (Parajuli

et al. 2021, Dey & Jenamani 2019, Ramamoorthy et al. 2018, Parajuli et al. 2017,

Liberatore et al. 2012), vehicle routing with depot protection (Sadati et al. 2020),

service facility protection with a time horizon (Parvasi et al. 2019), a system of

interdependent networks (Ghorbani-Renani et al. 2020, Fang & Zio 2019, Ouyang

2017), wireless local area network transmitters (Schweitzer & Medal 2019), general

critical node problems (Baggio et al. 2021, Lazzaro & Carlyle 2019, Brown et al.

2006), software-defined networks (Ashraf & Yuen 2017), and air defence (Han et al.

2016). Furthermore, electric grid related applications such as transmission expansion

Ruiz & Conejo (2015), demand side management, and coordination between smart

distribution networks and multi-micro-grids(Li 2021) have attracted the attention

of many researchers. For instance, Ebrahimi & Amjady (2019) discuss micro grid

scheduling subject to uncertainties such as wind and solar generation, load demand

and electricity price. The study suggests an adaptive robust micro grid scheduling

model with recourse as a two-stage tri-level problem. KKT conditions of the third-

level were added to the second-level. The authors then apply a primal cutting plane

algorithm to solve the resulting bi-level problem. The authors defined two problems:

AdptRob, and ConvAc, where the latter is solved by a primal cutting plane algorithm

to determine the worst uncertainty case parameters. The former is then solved using

Benders decomposition to obtain Micro Grid scheduling. Nemati et al. (2019) discuss

a transmission expansion problem under physical intentional attacks. The network
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planner determines the optimal transmission expansion plan that minimizes the sys-

tem load shed or operating costs in the first-level. In the second-level, the attacker

tries to maximize the damages done to the network, while the network operator

minimizes the effect done by maintaining the operational constraints of the electric

network. Since the third-level is a linear programme, the second- and third-levels

are converted into a single-level resulting in an overall bi-level optimization problem.

A co-operative game-theoretic approach between multiple virtual attackers is then

used to cast the bi-level structure into a single-level. This is done by enforcing Nash

and Pareto equilibria conditions in the single-level model. Ding et al. (2019) stud-

ied long-term transmission system hardening, in which risk assessment is taken into

consideration in the second-level objective function. Duality theory was applied to

the third-level to convert the tri-level problem into a bi-level problem. The resulting

non-linear objective function in the inner model was linearized using piecewise func-

tions and a logarithmic transformation. The authors used a column-and-constraint

generation algorithm to solve the linearized bi-level problem.

Koltsaklis & Dagoumas (2018) reviews generation expansion planning from dif-

ferent points of view, and its relation to tri-level programs comes from the fact

that generation is coupled with transmission expansion. Misaghian et al. (2018)

presented a novel framework for optimal scheduling of industrial micro-grids as a

tri-level problem. In the first-level, the industrial micro-grid operator maximizes its

revenue through minimizing the cost while taking into account the stochastic nature

of the distributed energy resources. The main output from the first-level is the bids,

which can be either to sell/buy electricity to/from the market. These bids are then
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fitted to a quadratic function to be used in the second-level, which are linearized us-

ing piecewise linear functions. The grid operator has an objective of minimizing the

total expected cost of grid operation, while maintaining its operational constraints,

and analysing (i.e., deciding to accept or reject) the received bids from the industrial

micro-grid operator. In the third-level, based on the accepted bids, the micro-grid

operator optimizes the operation cost and maintain operational constraints.

Transportation applications that involve decentralized decision-making have been

discussed in the literature (Tian et al. 2021, Feng et al. 2021, Coniglio et al. 2021,

Sadati et al. 2020, Gu et al. 2019). For instance, Gu et al. (2019) studied the road

competition problem, where the first-level represents the government’s perspective to

maximize the social welfare of the transportation system. The second-level represents

an oligopolistic competition problem, where each private firm seeks to compete in

order to maximize its profits.The third-level models the road users problem as they

seek to pay the least amount for travelling from the origin to the destination and

maximize their benefits. Sarhadi et al. (2017) applied the defender-attacker-defender

model to improve the resilience of railroad intermodal networks.

Researchers have directed their attention towards theory development in an ef-

fort to cope with the need for efficient algorithms to solve tri-level mathematical

programs. For example, Li et al. (2020) studied the optimality conditions for a class

of tri-level optimization problems, of which all levels are non-linear. Avraamidou

& Pistikopoulos (2019) presented an algorithm for the global solution of tri-level

mixed-integer linear problems based on multi-parametric theory. The need for more
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efficient algorithms is growing, as practical applications that are in need of decen-

tralized decision-making continue to appear. This will in-turn call for algorithms

to solve non-linear mixed-integer programs, an area that still needs more attention

when compared to linear mixed-integer programs.

2.8 Future Research Directions

In this section we report on future research directions based on what we found from

the literature review and our own work in this area. Based on our literature review

we grouped future research directions into four categories as shown in Table 2.9.
Category References No. of Articles/ (Percentages)

Modelling and Applications

Wu et al. (2022), Wang et al. (2022), Hasanzad & Rastegar (2022), Zhu et al. (2021)
Wu et al. (2021), Tian et al. (2021), Parajuli et al. (2021), Feng et al. (2021)
Coniglio et al. (2021), Caçador et al. (2021), Baggio et al. (2021), Sadati et al. (2020)
Parvasi et al. (2019), Ghorbani-Renani et al. (2020), Aussel et al. (2020), Schweitzer & Medal (2019)
Lazzaro & Carlyle (2019), Gu et al. (2019), Fanzeres et al. (2019), Dey & Jenamani (2019)
Ramamoorthy et al. (2018), Rahdar et al. (2018), Lei et al. (2018), Ashraf & Yuen (2017)
Sarhadi et al. (2017), Ouyang et al. (2017), Ouyang (2017), Florensa et al. (2017)
Han et al. (2016), Jin et al. (2015), Yuan et al. (2014), Liberatore et al. (2012)
Wu et al. (2011)

33/ (62.26%)

Algorithm Development

Wu et al. (2022), Wang et al. (2022), Fakhry et al. (2022), Wu et al. (2021)
Coniglio et al. (2021), Baggio et al. (2021), Sadati et al. (2020), Parvasi et al. (2019), Inuiguchi & Sariddichainunta (2016)
Ghorbani-Renani et al. (2020), Aussel et al. (2020), Lazzaro & Carlyle (2019), Gu et al. (2019)
Dey & Jenamani (2019), Ramamoorthy et al. (2018), Lei et al. (2018), Sadeghi et al. (2017)
Parajuli et al. (2017), Ouyang (2017), Florensa et al. (2017), Han et al. (2016)
Alguacil et al. (2014)

22/ (41.5%)

Optimization Under Uncertainty

Zhu et al. (2021), Tian et al. (2021), Parvasi et al. (2019), Avraamidou & Pistikopoulos (2019)
Schweitzer & Medal (2019), Lazzaro & Carlyle (2019), Fanzeres et al. (2019), Ramamoorthy et al. (2018)
Ramamoorthy et al. (2018), Rahdar et al. (2018), Ke & Bookbinder (2018), Parajuli et al. (2017)
Ouyang et al. (2017), Ouyang (2017), Florensa et al. (2017), Han et al. (2016)
Liberatore et al. (2012), Wu et al. (2011)

18/ (34%)

Theory Development
Coniglio et al. (2021), Li et al. (2020), Avraamidou & Pistikopoulos (2020), Gu et al. (2019)
Fanzeres et al. (2019), Avraamidou & Pistikopoulos (2019), Li & Wan (2018), Sariddichainunta & Inuiguchi (2017)

8/(15.1%)

Table 2.9: Categories for Future Research.

Below we provide a detailed list of future research directions grouped by the

categories in Table 2.9.

1. Modelling and applications: TLP is a discipline that largely grew out of

specific applications. It is therefore not surprising that the majority of works
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have called for more research on modelling and applications. We grouped these

into four classes:

(a) Competition: Often, a modeller will resort to using TLP to capture con-

flicts between decision makers. In many instances there will also be com-

petition between the decision makers. In such cases it is desired to reflect

such interactions in the TLP. One challenge is how to reflect the compe-

tition in a TLP. Some effiorts have already been made in this area, but

they are application-specific. For example, Florensa et al. (2017) mod-

elled capacity competition between two producers in a market. They

present a three-level Stackelberg game that resulted in a TLP with inte-

ger variables controlled by the two upper levels that represent the firms.

Gu et al. (2019) studied road competition where the government leads in

building toll roads (level one), with a social welfare objective, and com-

petes with private developers (level two) to serve road users (level three).

The resulting TLP has a continuous optimization problem in level one,

a Cournot–Nash Equilibrium in level two, and a Wardrop traffic equilib-

rium in level three. Wang et al. (2022) suggested modeling extensions

for its tri-level model (Government-Port-Ship) by including competitions

between ports in the re-fueling markets (i.e., second-level), as well as the

traditional marine fuel bunkering market. At the third-level, the ships

operators are assumed to work independently, but in reality they will

compete for cargoes in the transportation market. Hence, considering the
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competition between ships at the third-level would be an interesting ex-

tension. An interesting avenue of future research is to develop general

frameworks for incorporating competitions in TLP.

(b) Complex Systems: Most applications of TLP focus on one sector or one

system. Given the interdependence nature of systems, there is a need

to incorporate such effects in TLPs. Examples include modelling fail-

ure propagation and their cascading effects (Wu et al. 2022), power and

gas lines (Hasanzad & Rastegar 2022), different modes of transportation

(Feng et al. 2021), and infrastructure interdependence (Ouyang 2017).

Liberatore et al. (2012) suggested extending the model to capture com-

plex features arising from the necessities of agencies and organizations

that work in humanitarian logistics, probability of interdiction or failure,

protection strategies that only mitigates the effects of disruption, and does

not completely prevent it. Ashraf & Yuen (2017) suggested exploring hy-

brid strategies comprising of backups and recovery solutions to protect

software-defined networks.

(c) Dynamic Systems: TLPs have generally grown as a generalization of BLPs

that are in turn a generalization of Stackelberg games. While the latter

capture the sequential nature of decisions, such as a leader and follower,

they do not readily handle dynamic decision making, such as when the

players are involved in bargaining. Thus, there is a need to develop models

that can take into account situations where the decision makers iteratively

resolve their conflicts (Aussel et al. 2020). Another extension involves
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adding the time dimension in TLPs, such as to represent the timing of

the effect of an attack propagation in a network (Baggio et al. 2021).

(d) Incomplete Information: Most of the extant literature on TLPs has as-

sumed all information about the three levels is known and shared between

the decision makers, i.e., perfect and complete information. In many real-

istic situations, some of the information may not be available or is strate-

gically hidden by one decision-maker. For example, Zhu et al. (2021)

suggested incorporating the case of strategically misleading the adversary

as an area of future interest. Wu et al. (2021) suggested modelling ir-

rational attackers and incomplete information situations. Parajuli et al.

(2021) called for modelling partial capacities loss and partial protection.

Others called for focusing on modeling asymmetric information (Ouyang

2017, Lei et al. 2018).

2. Algorithm development: There are several streams of research on algo-

rithms for TLPs. We grouped them into four categories:

(a) Decision diagrams: Fakhry et al. (2022) suggested the use of decision

diagrams, which are based on recursive modelling, similar to that used

in deterministic dynamic programming. This allows the formulation of a

wide range of problems, in which linearity or convexity is no longer an

issue (Hooker 2013). Applying decision diagrams to solve TLPs could be

useful, even if it is applied on a single-level where convexity is a hurdle.

(b) Decomposition: As the need for more efficient solution approaches rises
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with the complexity of the models (Florensa et al. 2017), several re-

searchers called for efficient and exact decomposition algorithms that

are capable of handling large-sized problem instances (Wu et al. 2022,

Fakhry et al. 2022, Wu et al. 2021, Ghorbani-Renani et al. 2020, Par-

vasi et al. 2019, Dey & Jenamani 2019), For instance, Ghorbani-Renani

et al. (2020) suggested enhancing decomposition algorithm through adding

valid inequalities. Fakhry et al. (2022) suggested developing generalized

decomposition algorithms that are independent of electrical transmission

networks’ parameters in the context of DAD models.

(c) Meta-heuristics: Due to the computational complexity of TLPs, researchers

have called for using meta-heuristics such as genetic algorithms (Wu et al.

2022, 2021, Sadati et al. 2020, Sarhadi et al. 2017, Parajuli et al. 2017).

For instance, Sarhadi et al. (2017) and Parajuli et al. (2017) suggested de-

veloping meta-heuristic based tree search as warm-start solution technique

instead of using implicit or explicit enumeration techniques.

(d) Machine learning: With the availability of more test cases, such as the

ones proposed in Chapter 4, it is possible to generate enough solution

data analytics, such as intermediate solution search data, to aid in perfor-

mance machine learning, a field that is often called learning to optimize.

Developing such methodologies can aid in solving larger classes of TLPs.

3. Optimization under uncertainty: Many environments where TLPs have

been applied have inherent uncertainty in their parameters. It is thus not sur-

prising that this is a promising area for future research from both the modelling
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ad algorithmic development perspectives.

(a) Modelling: The uncertainty can stem from different sources such as de-

mand (Wu et al. 2011), capacity (Ouyang 2017) or supply (Rahdar et al.

2018). In the event of availability of data, Fanzeres et al. (2019) suggested

the development of data-driven methodologies to construct uncertainty

sets directly from data. Schweitzer & Medal (2019) suggested stochastic

programming interpretation of the transmitter jamming attacks in addi-

tion to extension of the attacker capabilities in the TLP. Lazzaro & Car-

lyle (2019) proposed modelling different defence strategies associated with

different costs, including uncertainty in the attack and defence budgets,

and defining a measurement index between optimal and nested defence

strategies. Zhu et al. (2021) and Ouyang et al. (2017) suggested mod-

elling uncertainties in the system (e.g., restoration time, and the amount

of attack resources). Tian et al. (2021) suggested modelling uncertainties

in the transit service operation problem, such as transit demand and time.

Parvasi et al. (2019) suggested applying demand uncertainty to the model

service facility protection, and modelling different degrees of protection to

defend facilities with different costs. Ke & Bookbinder (2018) suggest in-

corporating demand uncertainty in the coordination of discount schemes

for multiple supply chain members. Florensa et al. (2017) suggested ex-

tending their model to include stochastic parameters like demand forecasts

and costs For the capacity expansion model. Inuiguchi & Sariddichain-

unta (2016) studied bi-level linear optimization problem with ambiguous
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follower’s objective function coefficient vector, which can be reformulated

as a TLP. For future research, they suggest modeling the follower’s coef-

ficient vector by a fuzzy set.

(b) Algorithms: Several ideas have been suggested for developing algorithms

for TLPs. For example, Han et al. (2016) suggested improving the pro-

posed heuristics using a neighbourhood search, applying a randomized em-

placement strategy. Avraamidou & Pistikopoulos (2019) proposed using

multi-parametric optimization for TLPs under uncertainty and quadratic

mixed-integer adaptive robust optimization problems.

4. Theory development: With the multitude of applications of TLPs comes the

urge to develop TLP-specific solution methodologies, rather than repackaging

of BLP or MILP approaches. We see two main lines of research in this area:

(a) Multi-level Programming: Li et al. (2020) studied optimality conditions

for a specific class of tri-level programs in which all levels are non-linear.

They suggested obtaining sufficient optimality conditions via auxiliary

bi-level optimization problem for the same class of TLPs. Lei et al.

(2018) suggested working on discovering special network structures where

polynomial-time exact or approximate algorithms could be developed,

(b) Type of Equilibrium: Coniglio et al. (2021) suggested investigating un-

der which conditions the game that is played in the second level always

admits a generalized Nash equilibrium. It would also be of interest to
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assess the impact on the whole tri-level problem of adopting, in the gen-

eralized Nash equilibrium problem, different equilibrium-selection strate-

gies besides the optimistic one where a welfare-maximizing equilibrium

is selected. Sariddichainunta & Inuiguchi (2017) suggested studying the

equilibrium structure in multi-player in the lower-level problem of a TLP.

(c) Structure of Tri-Level Program: Most of the applications discussed in the

literature deal with a linear tri-level program structure with a convex

linear problem in the third-level. Additionally, having a mixed-integer

problem in the third-level renders the tri-level problem not convertable to

a bi-level programme. Researchers opted for using decomposition-based

approaches for solving these problems, e.g., (Wu & Conejo 2017). These

approaches are know to require fine tuning depending on the applica-

tion under study. One could argue for a unified general framework for

solving mixed-integer linear tri-level problems with a non-convex third-

level problem. Furthermore, the non-linearity in the constraints (if exists)

were dealt with using standard linearization techniques (Alguacil et al.

2014, Fakhry et al. 2022) or using meta-heuristic techniques. Moreover,

using piecewise functions to approximate non-linear functions (Geißler

et al. 2012) is a known approach for approximating non-linear functions.

Nevertheless, solving tri-level optimally with inherent non-linear objective

functions and/or constraints that cannot be linearized remains an open

problem.
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2.9 Conclusion

This article provides an essential and unifying background for multi-level program-

ming with a focus on tri-level programmes. A bibliometric analysis has been con-

ducted by searching for possible keywords to pull the relevant literature from the

Web of Science core collection. The analysis of the results indicates the number of

articles on TLPs is increasing at its fastest pace in the past few years soliciting the

need for a review article. Furthermore, the study identified some of the most influ-

ential articles that defined the core knowledge for multi-level programming, through

a meta-analysis extracting useful knowledge from the data, and depicting it through

intuitive visualizations. In an effort to clear common misconceptions, we provide

definitions to structure the interactions between decision-levels in TLPs, and resolve

degeneracy. Additionally, we have provided a systemic review on articles that have

appeared in the operations research and management science journals.
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Fischetti, M., Ljubić, I., Monaci, M. & Sinnl, M. (2018), ‘On the use of intersection

cuts for bilevel optimization’, Mathematical Programming 172(1), 77–103.
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Abstract

Decentralized decision-making is becoming more ubiquitous in different organizations

that often follow a hierarchical structure. To model these problems, multi-level pro-

gramming has been suggested as a suitable methodology for modelling the interaction

between the different levels of decisions. However, multi-level programming, even for

the case of bi-levels, is known to be strongly NP-hard. To address this computa-

tional challenge, we develop three different heuristic-based approaches for solving a

specific class of tri-level programming problems, in which the leader has direct control

over the follower’s decisions to a certain extent, with a common objective function

shared at all levels. As expected, each heuristic type offers a trade-off between solu-

tion quality and computational time. To illustrate our solution approach, we present

an application for defending critical infrastructure to improve its resilience against

intentional attacks. In this context we use a defender-attacker-defender model and

apply it to electrical power grids. We also propose a modified implementation of a

widely adopted enumeration algorithm in this area, with a warm-starting solution

technique that significantly enhanced the computational performance of the enumer-

ation algorithm. We test our solution approaches on three electrical transmission

networks and present the results of our numerical computations as well as some

insights.
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3.1 Introduction

Multi-level programming (MLP) problems, first introduced by Candler & Norton

(1977), have been used to model decentralized planning problems that involve several

decision-makers. This class of optimization problems has been recently receiving sig-

nificant attention from researchers in different fields. The interest has grown mainly

due to the applicability of MLP to a wide range of problems and the nature of

decision-making process that often takes a hierarchical structure. MLP results in

nested mathematical programs (lower-levels) having a subset of their decision vari-

ables affecting the optimal solution of other mathematical programs (upper-levels),

which have their own set of decision variables influencing their objective function

and higher-level programs. Bi-level programming (BLP) problem is a special case of

MLPs, when there are only two decision-makers. A generic (BLP) can be formulated

as
‘ max

x
’ f1(x,y)

s.t. g1(x,y) ≥ 0

y ∈ arg min f2(x,y)

s.t. g2(x,y) ≥ 0

(3.1)

The above BLP is often referred to as a leader-follower model, where the leader takes

the first move by controlling a set of decision variables x to maximize their objec-

tive function. The follower reacts to the leader’s move by adjusting their own set

of decision variables y to optimize the objective value. The quotation marks in 3.1

are used to indicate the ambiguity in the formulation of the leader’s problem. The
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ambiguity arises when the follower has to choose between more than one optimal

reaction (i.e., the follower’s problem is a non-strictly convex minimization problem

that might have several alternative global optima, in which case, a problem is said to

be “degenerate”). In order for the model to be well defined, the follower has to choose

between alternative optima, which leads to two approaches, namely: optimistic ap-

proach (Dempe 2002) and pessimistic approach (Aussel & Svensson 2019). For more

information on the foundations of BLP, the interested reader can refer to (Dempe

2002) and (Bard 2013). In this manner, BLP mimics a sequential two-person game,

in which both players have perfect information, known as the static Stackelberg game

in the field of game theory (von Stackelberg 2011). The interest in solving BLP as

optimization problems has started mainly in the 1980s (Vicente & Calamai 1994). It

was later established that BLP, even in their simplest forms, where decision variables

are continuous and functions and constraints are linear, are NP-hard and that the

feasible region is non-convex (Bard 1991).

Several solution approaches for BLP have been proposed in the literature. Moore

& Bard (1990) provided an algorithm that relies on a branch and bound method to

solve mixed-integer linear BLP, in which decision variables of both levels are mixed-

integer. Bard & Moore (1992) provided an algorithm that solves linear BLP where

decision variables in both levels are binary. Their idea relied on including the leader’s

objective function as a “parameterized constraint”, and use the resultant problem to

produce a solution, which in turn is used to obtain a feasible solution to the original

BLP. Recently, an exact algorithm has been developed to solve the mixed-integer

linear BLP, with fewer restrictions and assumptions (Xu & Wang 2014). Colson
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et al. (2005) and Colson et al. (2007) provide more comprehensive reviews on solu-

tion algorithms and applications of BLP.

Tri-level programming (TLP) problems not only inherits all the properties of BLP,

but also add to the hierarchical structure one upper-level along with its associated set

of decision variables, constraints and objective function. In most studies on tri-level

programming, it is implicitly assumed that an optimal solution of lower-levels’ objec-

tives for each decision made at the upper-levels is unique (Sarhadi et al. (2017);Yao

et al. (2007); Alguacil et al. (2014);Schweitzer & Medal (2019)). This is generally

not always true, as any non-strictly convex (concave) minimization (maximization)

might have multiple optimal solutions. In a tri-level problem, the selection of alter-

native optima (i.e., degenerate solutions) at a particular level yields the same results

for that level. However, each of the alternatives has a different impact on the over-

all problem Florensa et al. (2017). That is why it is important to determine the

selection criteria for the upper-level decision-maker(s) among the different solution

alternatives in the lower-levels, otherwise the tri-level model would be ill-posed. A

TLP without selecting an appropriate selection approach represented by quotation

marks in a manner similar to BLP, can be modeled as follows:
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‘ min
x

’ f1(x,y, z)

s.t. g1(x,y, z) ≥ 0

y ∈ ‘ arg max ’ f2(x,y, z)

s.t. g2(x,y, z) ≥ 0

z ∈ arg min f3(x,y, z)

s.t. g3(x,y, z) ≥ 0

(3.2)

The most complex and general form is when each decision-maker has mixed-integer

decision variables. Below we state several definitions which we will make use of in

our subsequent analysis given the TLP presented in 3.2.

Definition 3.1.1. S be the tri-level constraint region:

S = {(x,y, z) ∈ X×Y ×Z : g1(x,y, z) ≥ 0, g2(x,y, z) ≥ 0, g3(x,y, z) ≥ 0} (3.3)

Definition 3.1.2. Sz(x,y) be the third-level constraint region for fixed (x,y) ∈

X × Y :

Sz(x,y) = {z ∈ Z : g3(x,y, z) ≥ 0} (3.4)

Definition 3.1.3. Mz(x,y) be the basic rational reaction set of the third-level

for fixed (x,y) ∈ X × Y :

Mz(x,y) = arg min
z∈Z

{f3(x,y, z) : g3(x,y, z) ≥ 0} (3.5)
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or in a more compact form:

Mz(x,y) = arg min
z∈Sz(x,y)

{f3(x,y, z)} (3.6)

Definition 3.1.4. Sy,z(x) be the union of second- and third-level constraints

region for fixed x ∈ X:

Sy,z(x) = {(y, z) ∈ Y × Z : g2(x,y, z) ≥ 0, g3(x,y, z) ≥ 0} (3.7)

Definition 3.1.5. My(x) be the “basic rational reaction set of the second-

level” for fixed x ∈ X:

My(x) = ‘ arg max
y∈Sy,z(x)

’{f2(x,y, z) : z ∈Mz(x,y)} (3.8)

The quotation marks for the basic rational reaction set of the second-level is to

indicate its ill-definition, in-case of degenerate solutions of the third-level. Neverthe-

less, to represent the next definitions in a compact form, we take the aforementioned

definitions to be well-defined.

Definition 3.1.6. The optimal solution to a tri-level program is said to be se-

quentially pessimistic (Sp), if degenerate solutions in the third-level are resolved

against the second-level decision-maker, and multiple optima in the second-level are

resolved against the first-level decision-maker.

• The sequentially pessimistic reaction set of the third-level for fixed (x,y) ∈
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X × Y can be represented as:

MSp
II,z(x,y) = arg min

z∈Mz(x,y)
{f2(x,y, z)} (3.9)

The subscript II is used to indicate that degeneracy is resolved with respect to the

second level of TLP, while the superscript Sp represents that the resolution is

determined in a pessimistic way (i.e., against the second-level decision-maker).

• The sequentially pessimistic reaction set of the second-level for fixed x ∈ X:

MSp
I,y(x) = arg max

y∈My(x)
{f1(x,y, z) : z ∈MSp

II,z} (3.10)

Definition 3.1.7. The Inducible Region of a sequentially pessimistic TLP is

IR = {(x,y, z) ∈ X × Y × Z : (x,y, z) ∈ S, (y, z) ∈MSp
I,y(x)}. (3.11)

Definition 3.1.8. Optimal solution set of a sequentially pessimistic TLP is

OP = {(x,y, z) : x ∈ arg min{f1(x,y, z) : (x,y, z) ∈ IR}}. (3.12)

The computational complexity of MLPs increases significantly, if the hierarchical

structure consists of more than two levels (Blair 1992). From a game-theoretic per-

spective, a TLP can be regarded as a leader-follower-leader game. In such a game,

the leader gets to pick two sets of actions: one before the follower reveals their move,

and another after the revelation of follower’s move. The game can also be generalized
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where all players are different.

There have also been several approaches for solving TLP. Bard (1984) provided an

algorithm to solve the linear and continuous case of TLP. White (1997) modified the

aforementioned algorithm by introducing penalty functions Anandalingam (1988)

and Sinha (2001) have used Karush-Khun-Tucker (KKT)transformations to find

local optimal solutions for linear TLP. Recently, Han et al. (2016) devised a particle

swarm optimization algorithm for solving BLP and TLP when the decision variables

are continuous for all decision-makers, and a specific set of assumptions has to be

satisfied for the objective functions of the leader and followers. In general, TLP

are strongly NP-hard and the existing traditional solution approaches either do

not guarantee optimality, or are computationally expensive. Subsequently, as per

Scaparra & Church (2008), there is still a lack of efficient algorithms for solving

three-stage problems.

To address this need, in this paper we present three main contributions:

• We propose three different heuristic-based approaches for solving a specific class

of mixed-binary linear TLPs. Each has a trade-off between solution quality and

computational time.

• We propose a modified exact enumeration algorithm for a specific class of TLP

and present our related numerical computations.

• The solution approaches are implemented to solve a TLP to enhance the re-

silience of critical infrastructure. In particular, we test our algorithms on three

electrical transmission networks, that vary in size, to improve the robustness
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and reliability of power grids.

The rest of the paper is organized as follows. In Section 3.2 we introduce the details

of our class of TLP, practical applications that fall within that class, and provide two

approaches to reduce the TLP. Our three solution approaches are discussed in Section

3.3. In Section 3.4 we present an application of TLP as a defender-attacker-defender

model for electric power grid security and a modified exact enumeration algorithm,

along with our numerical results. Finally, conclusions are presented Section 3.5.

3.2 Class of TLP Being Studied

In this section we define and analyze the class of TLP problems that will be studied.

We will also outline some general application areas.
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3.2.1 Generic TLP Model and Assumptions

In this paper we present and study the following class of sequentially pessimistic

mixed-binary linear TLP:

min
x

f1(x,y, z) = f(z)

s.t. g1(x) ≥ 0

x ∈ {0, 1}

y ∈ arg max f2(x,y, z) = f(z)

s.t. g2(x,y) ≥ 0

y ∈ {0, 1}

z ∈ arg min f3(x,y, z) = f(z)

s.t. g3(y, z) ≥ 0

(3.13)

In TLP (3.13), we make the following assumptions to simplify degeneracy resolution

as explained in detail in Section 3.4.2.

Assumption 3.2.1. The hierarchical structure has one-way input decisions with

binary variables x and y that are shared with the next lower-level constraints as

shown in Figure 3.1.

Assumption 3.2.2. All three decision-makers have the same objective; that is a

function of the third-level continuous decision variables z.

Assumption 3.2.3. First-level decision-maker can enforce a specific value (i.e.,

zero or one) on the second-level decision-maker w.r.t. to a budget (or knapsack)
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Figure 3.1: Decision Variables shared across levels.

constraint; this, in-turn, implies that the first-level decision variables have the same

cardinality as the second-level decision variables.

Assumption 3.2.4. The third level has a convex objective function defined over a

convex set of constraints with continuous decision variables.

3.2.2 Generic Application Examples

Despite the complexity of MLPs, they are used in many practical applications, due

to the inherent hierarchical structure of most decision-making processes, such as

forestry (Parkatti et al. 2019), transportation and road planning (Gu et al. 2019),

disaster management (Irohara et al. 2013), generation and transmission expansion

planning (Hong et al. 2017), supply chain and waste management (Fathollahi-Fard

et al. 2018), as well as defence, security and reliability assessment [Mahmoodjanloo

et al. (2016), Lin & Bie (2018)]. More specifically, TLP (3.13) can be used in different

applications. One of the prominent applications, that we will focus on to demonstrate
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our solution approaches, is defending critical infrastructure, which is also known as

Defender-Attacker-Defender model (Brown et al. 2006). Specific details regarding

the application’s literature review, modelling and solution algorithms are provided

in Section 3.4.

Another application is the utilization of governmental resources; consider a set of

new infrastructure projects that needs to be constructed as a part of a government’s

provincial plan to improve social welfare. The government has complete control over

these projects, whether to fully/partly fund, or outsource them to private agencies. If

the government chose to use public funds to construct a particular project, the private

agencies would only have other ones to bid on; thus the government (leader) has

direct control over the private agencies’ (follower) choice(s). The government would

seek to minimize the overall cost of using that infrastructure on the people/users (or

maximize the social welfare) subject to a certain budget of public funds (Level 1),

while the private agencies would seek to maximize their profits (Level 2) subject to

certain (market/regulatory) constraints, which is reflected as a cost from the users’

perspective. The lower-level problem represents the users, as they seek to minimize

the incurred costs from using infrastructure to satisfy their needs (Level 3). This

application can be viewed as a modified version of what is known in the literature as

Build-Operate-Transfer (BOT) model Gu et al. (2019). A third generic application is

in budgeting or asset management such as maintaining or renovating a specific set of

existing infrastructure. The leader has full control of allocating the budget to certain

infrastructure (Level 1) to improve the overall utility and decrease operational and

maintenance costs, while followers compete to maximize their profits from renovating
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the selected infrastructure (Level 2). The operator of each basic facility (Level 3)

would seek to maximize its utility by minimizing its operational and maintenance

cost. A similar hierarchical structure can be applied when universities allocate a

budget to fund existing or new research programs to improve its brand and overall

rank.

3.2.3 General Analysis

The generic form defined in (3.13), can be reformulated in a matrix form as follows:

(TLP)

(TLP-L1)

min
x

cT z∗

s.t. A1x ≤ b1

x ∈ {0, 1}n1

(TLP-L2)

cT z∗ = max
y

cT z′

s.t. A2(x,y)T ≤ b2

y ∈ {0, 1}n2

(TLP-L3)

cT z′ = min
z

cT z

s.t. A3(y, z)T ≤ b3

z ∈ Rn3

(3.14)
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where A1 ∈ Rm1×n1 , A2 ∈ Rm2×(n1+n2), A3 ∈ Rm3×(n2+n3),b1 ∈ Rm1 ,b2 ∈ Rm2 ,b3 ∈

Rm3 , c ∈ Rn3 , z is a vector of continuous decision variables of size n3, x and y

are both binary decision vectors of size n1 and n2, respectively. Since the lower-level

problem (TLP-L3) is linear and the decision variables are continuous, it is customary

to reduce the two levels into a single-level problem. This can be done using two

approaches: duality theory and KKT conditions (Arroyo 2010). Depending on how

the constraints are formulated and the nature of the objective function, one approach

may be computationally superior to the other (Arroyo 2010). Nevertheless, even in

BLP, replacing the lower-level problem by its KKT optimality conditions does not

necessarily yield a solution for the initial BLP; an equivalence needs to be established

even if the lower-level problem is convex. Recent research, by Aussel & Svensson

(2019) for the pessimistic case and Dempe & Dutta (2012) for the optimistic case,

has discussed the conditions under which an equivalence can be established. It is

worth noting that replacing the most lower-level in Problem TLP with either the

KKT or duality approaches is dependent on satisfying the aforementioned conditions

in BLP.

The duality theory approach adds the primal constraints, dual constraints and

strong duality constraint of the lower-level problem in the upper-level problem; thus

converting it into a single-level. This approach may introduce non-convex bilinear

terms; which can be linearized depending on the nature of the terms. The KKT

approach involves including the KKT conditions as constraints in the upper-level

problem; however this increases the computational burden since the complementary
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slackness conditions introduce non-linear constraints. Nevertheless, there is a sys-

tematic way of linearizing those constraints by introducing binary variables (propor-

tional to the number of primal constraints) by applying the reformulation mentioned

in (Fortuny-Amat & McCarl 1981). One must be cautious when applying that refor-

mulation, specifically, in choosing the Big-M value that represents an upper bound

for the lower-level dual variables. This value has to be chosen relative to the values

that dual variables can hold, in order not to eliminate any feasible solutions which

can consequently affect the overall result. The two above mentioned approaches will

be used to show that the TLP in (3.14) can be reduced to a BLP without loss of

generality.

Dual Reformulation

The form defined in (3.14) can be reduced to a BLP using the duality theory approach

(Alguacil et al. 2014) as follows:

(RTLP-Dual)

(RTLP-Dual-L1)

min
x

cT z∗ (3.15)

s.t. A1x ≤ b1 (3.16)

x ∈ {0, 1}n1 (3.17)

(RTLP-Dual-L2)

cT z∗ = max
y,z,u

cT z (3.18)
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s.t. A2(x,y)T ≤ b2 (3.19)

A3(y, z)T ≤ b3 (3.20)

− AT
3zu = cT (3.21)

(A3yy− b3)T u = cT z (3.22)

y ∈ {0, 1}n2 , z ∈ Rn3 , u ∈ R+
m3 (3.23)

where u is the vector of dual variables associated with the third level constraints,

A3y and A3z are sub-matrices of A3 consisting of the first n2 and last n3 columns,

respectively.

KKT Reformulation

By including the KKT conditions of the third level into the second level, the resulting

reduced TLP is RTLP-KKT. For more information on mathematical programs with

complementarity constraints, the interested reader can refer to (Dempe 2002) and

(Bard 2013).

(RTLP-KKT)

(RTLP-KKT-L1)

min
x

cT z∗ (3.24)

s.t. A1x ≤ b1 (3.25)

x ∈ {0, 1}n1 (3.26)

(RTLP-KKT-L2)
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cT z∗ = max
y,z,u

cT z (3.27)

s.t. A2(x,y)T ≤ b2 (3.28)

A3(y, z)T ≤ b3 (3.29)

cT + uTA3z = 0 (3.30)

uT (A3(y, z)T − b3) = 0 (3.31)

y ∈ {0, 1}n2 , z ∈ Rn3 , u ∈ R+
m3 (3.32)

It is worth mentioning that constraints (3.22) and (3.31)can be linearized using

traditional methods (e.g., see (Fortuny-Amat & McCarl 1981),(Floudas 1995)). By

examining the two reformulations: RTLP-Dual and RTLP-KKT, the following

optimality and feasibility results can be obtained. Details on how these results were

obtained are provided in Appendix A.

• Problems RTLP-Dual and RTLP-KKT are equivalent, consequently if (x∗,y∗, z∗,u∗)

is optimal for RTLP-Dual, then it has to be optimal for RTLP-KKT.

• If (x∗,y∗, z∗,u∗) is optimal for RTLP-Dual or RTLP-KKT, then (x∗,y∗, z∗) ∈

OP is also optimal solution for Problem TLP.

• If (x,y, z,u) is feasible for RTLP-Dual or RTLP-KKT, then (x,y, z) ∈ S,

(y, z) ∈ Sy,z(x) and z ∈Mz(x,y) for Problem TLP.
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3.3 Solution Approach

In this section, we present the three different heuristic approaches to solve problem

TLP. It should be noted that we are going to refer to problems RTLP-Dual and

RTLP-KKT as RTLP, since both must yield the same solutions. Without loss

of generality, and for the sake of simplicity and presentation, we will assume that

m1 = 1, n1 = n2 and m2 = n1 + 1, where the set of constraints (3.28) can be

represented as follows:

y ≤ x (3.33)

A
′

2y ≤ b2 (3.34)

where A′
2 ∈ R1×n2 . In Section 3.3.4 we discuss how the proposed heuristics can be

extended to handle multi-dimensional budget constraints (i.e., m1 > 1 and m2 >

n1 + 1).

The proposed heuristics are used to rank the binary variables in a pre-planning

stage in a TLP (i.e., not just for a particular instance); this should provide fast

optimal/near-optimal solutions with less computational effort. Additionally, they

offer a trade-off between solution quality and computational effort, depending on the

application. In particular, the LPRank heuristic achieves computational efficiency by

solving a series of linear programs instead of having to solve a bi-level mixed-binary

linear program, thereby reducing the time required to solve a particular instance. In

contrast, HybridRank triggers both linear and mixed-binary linear program solvers,

depending on the change of objective function value through iterations. MBLPRank
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only invokes a mixed-binary linear program solver, thereby yielding a better qual-

ity and taking relatively more time per instance. Moreover, the heuristics can be

customized to provide a tie-breaking rule between binary decision variables, depend-

ing on the application under consideration. This criterion can be used to resolve

degenerate solutions that occur in multi-level programs.

3.3.1 LPRank Heuristic

The pseudo-code for this approach is provided in Heuristic.3.1. We begin by reading

the problem’s parameters for each level. Step 3 initializes an upper bound for TLP.

Steps 4 to 5 develop an upper bound for TLP by solving RTLP-L2 as a mixed-

binary linear program (MBLP) without constraint (3.33), i.e., removing all of the

first-level decision variables, and relaxing the right hand side of (3.34), thus obtaining

an upper bound for TLP. It should be noted that solving RTLP-L2 as MBLP

could be costly depending on the number of decision variables and how the binary

variables are integrated in the constraints. However, this computationally expensive

operation can be avoided by exploiting the specific problem structure; this will be

further explained and demonstrated in the next sections.

The main objective of Steps 7 to 21 is to rank the impact of each binary variable

(yi ∈ y) through measuring its effect on the objevtive value of RTLP, obj.val., by

incrementing the allowable Budget b2 in the right hand side of constraint (3.34)).

First, a stopping criteria is established to break out of the for loop, whenever the

objective value hits the stored upper bound. Second, for each additional unit of

Budget, the model RTLP-L2 is solved as a linear program (LP) by activating (setting
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it to 0 or 1) one binary variable (yi) at a time and storing the value of obj.val. and

the corresponding index i. These indices will be then arranged in a descending

order according to their effect on obj.val.. The binary variable with the highest

effect will be fixed for the next iteration. In the next iteration, Budget will be

incremented by one unit, a check if the objective has hit the upper bound will be

done, and then RTLP-L2 will be solved as an LP for each binary variable that is

not activated/fixed. Each binary variable will be then ranked according to its effect

on obj.val.. This continues until we reach Desired Budget. In other words, each time

the Budget is incremented by one unit, the number of times we solve RTLP-L2 as

an LP is decreased by one. For example, if we have one unit of Budget available and

the number of binary variables is n1, RTLP-L2 will be solved n1 times as LP. After

ranking each binary variable, one will be chosen and fixed/activated. In the next

iteration, after incrementing the Budget, RTLP-L2 will be solved n1 − 1 times.

If two or more binary variables have the same effect on obj.val. for a certain

Budget value, we break the tie by decrementing the Budget by one unit and solve

RTLP-L2 as an LP. We then sort the binary variables with the highest effect on

obj.val. with respect to an operational preference that has a direct effect on obj.val..

This operational preference is application-specific and will be further demonstrated

in the next sections. The binary variable with the highest effect on both obj.val. and

the operational preference will be activated for the next iteration.

The upper-level decision variables (xi ∈ x) will be chosen to be activated accord-

ing to two factors: first, the allocated budget for the first level (i.e., b1 in constraint

(3.16)), which controls how many binary variables can be activated by the first level
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Algorithm 3.1 LP Ranking
1: procedure LPRank
2: Read problem data: A1, b1, c, A2, b2, A3, b3
3: UB←∞.
4: Solve RTLP-L2 model as MBLP without any control from upper-level (i.e.,

remove constraint (3.33)) and relaxed Budget (b2 = n1).
5: UB← obj. val..
6: Initialize Repository.
7: for j = 1 : Desired Budget do
8: if obj. val.(j) = UB then
9: Break.

10: end if
11: for i = 1 : n1 do
12: if yi /∈ Repository then
13: Set yi ∈ y← 0.
14: Solve RTLP-L2 model without constraint 3.33 as an LP by setting

b2 ← j.
15: Store obj.val. and the corresponding yi’s index.
16: end if
17: end for
18: Sort yi’s indices in a descending order according to obj.val.
19: if Two or more binary variables (yi) have the same highest obj.val. then
20: b2 ← j − 1.
21: Solve RTLP-L2 model as LP without constraint 3.33.
22: Sort yi indices in a descending order w.r.t an operational preference

(application-oriented).
23: Set yi ← 0 for i (index) with the highest obj.val. and operational

effect.
24: else Set yi ← 0 for i (index) with the highest obj.val..
25: end if
26: Store yi index, j (Budget value), obj.val. in Repository.
27: end for
28: Set xi ∈ x w.r.t sorted list and available budget.
29: Repeat steps 7 to 21 while enforcing constraint 3.33 after x has been revealed

to determine y.
30: end procedure
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decision-maker. Second, in order to suppress the effect of the second level decision-

maker, the leader would choose to activate/control the binary variables with the

highest effect on obj.val., which are stored in the repository for each incremental

budget unit.

In order to determine the second level decision variables, steps 7 to 21 are repeated

while enforcing constraint (3.33). In other words, repeating those steps would de-

termine the binary variables with the highest effect on obj.val. after the first level

decision variables have been revealed. A detailed flowchart for LPRank is depicted in

Figure B.1 in Appendix B. In Proposition 3.3.1 we show that the LPRank heuristic

finds feasible solutions to TLP (3.14) as long as the input instance for TLP has

feasible solutions.

Proposition 3.3.1. Assuming that TLP admits feasible solutions and an equiva-

lence exists between TLP and RTLP, the LPRank heuristic will yield a solution for

TLP that is feasible for the tri-level constraint region S.

Proof. Applying LPRank heuristic first solves RTLP-L2 as an LP with successive

increments of Budget value through systematically activating binary variables of the

second-level decision-maker (i.e., enforcing a zero/one value), until the desired value

is reached. Thus constraint (3.34) is satisfied. Moreover, the obtained solution

satisfies RTLP-L2 except for constraint set (3.33). Step 22 ensures that the first

level decision variables (i.e., xi ∈ x) satisfy constraint (3.16) by activating first-level

decision variables (i.e., enforcing a zero/one value) w.r.t. the sorted list. Finally,

Step 23 enforces constraint (3.33) and resolves RTLP-L2 as an LP with successive

increments of Budget value, thus ensuring that the obtained solution satisfies the
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constraint region of RTLP. Since TLP is equivalent to RTLP, we conclude that

the same solution should also be feasible for the tri-level constraint region S of

TLP.

It is worth mentioning that TLP-L3 has no direct interaction with first-level

decision variables, x, hence finding a solution z∗ that belongs to the basic rational

reaction set of the third-level, Mz(x,y), is guaranteed for fixed (x,y) ∈ X ×

Y . Additionally, the last two steps in the heuristic guarantee the feasibility of the

first-level budget constraint (3.16) and leader-follower constraints (3.33), obtaining a

solution that is feasible for the second-level decision-maker and the tri-level constraint

region S.

The LPRank heuristic enables us to solve RTLP as an LP and find feasible near-

optimal/optimal solutions in an efficient manner rather than solving it as a bi-level

MBLP for each budget value b1 and b2 in constraints (3.16) and (3.34), respectively.

However, LPRank is limited by its inability to consider the simultaneous effect of ac-

tivating several decision variables, which is the case if solved as an MBLP. Moreover,

in applications where obj.val. has a monotonic decreasing (or increasing) pattern,

LPRank can get stuck with the same obj.val. for several iterations despite incre-

menting the Budget value. This is due to the following factors: (1) In each iteration,

LPRank chooses to activate the binary variable with the highest effect on obj.val.

(or highest effect on obj.val.RTLP and an operational preference). Consequently,

for the next iterations (i.e., upon incrementing the Budget value), the previously

activated binary variables are fixed. Hence, LPRank might get anchored due to its

inability to quantify the effect of activating several binary variables at the same time.
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(2) LPRank can yield the same obj.val. due to the monotonic pattern established

by the nature of the application under consideration. This means that even if we

solved RTLP-L2 as an MBLP, it will yield the same obj.val. despite the incremental

increase of the Budget value.

3.3.2 HybridRank Heuristic

The pseudo-code for this approach is given in Heuristic 3.2. This version is specifically

designed to remedy the problems mentioned in LPRank by solving RTLP-L2 as an

LP in the exact same way previously explained except for a certain condition. If

obj.val. is the same for two successive iterations, it signals that LP ranking could

be anchored (might be due to the nature of the application) after the incremental

budget increase. Thus RTLP-L2 is solved as MBLP to consider the simultaneous

effect of activating several binary variables at the same time. Binary variables in

this approach are ranked based on solving RTLP-L2 as LP or MBLP, making it a

HybridRank heuristic.

After reaching the desired Budget value, Step 25 determines the unique binary

variables indices for each value. A list is made determining the count of each index,

which are subsequently sorted in a descending order in Steps 26 and 27. This list

quantifies the frequency by which each binary variable is activated for different bud-

get values. Step 28 then sets/activates the upper-level decision variables (xi ∈ x)

depending on the available budget in constraint (3.16) and to suppress the effect of

the second level decision-maker by controlling the binary variables with the high-

est number of counts in the sorted list. Step 29 repeats steps 7 to 24 by enforcing
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constraint (3.33) to determine the binary variables with highest effect (yi ∈ y) on

obj.val. after the first-level decision variables have been revealed.

HybridRank heuristic overcomes the drawback of LPRank by its ability to con-

sider the effect of activating several binary variables simultaneously through solving

RTLP-L2 as a MBLP. Hence, if obj.val. is the same after incrementing the Budget

value, then this is due to the nature of the application under consideration. This

comes at a computational cost of possibly solving several MBLPs, depending on the

application and the effect of activating the binary decision variables in RTLP-L2.

It is important to note that LPRank might yield the same solution quality with

less computational effort as HybridRank, if obj.val. varies with activating different

binary variables, making the advantage of HybridRank over LPRank is application-

specific; this will be evident in the numerical results detailed in Subsection 3.4.5.

A detailed flowchart outlining different procedures of the HybridRank heuristic is

depicted in Figure B.2 in Appendix B.

Proposition 3.3.2 compares the running times between LPRank and HybridRank.

Proposition 3.3.2. The running time of HybridRank is bounded below by the run-

ning time of LPRank.

Proof. Consider the best running time situation in HybridRank. This occurs when

solving RTLP-L2 yields different obj.val.RTLP values for every incremental unit

increase in the Budget value. Hence, the HybridRank heuristic will have the same

running time as that of LPRank. Otherwise, if the obj.val.RTLP is the same for

two successive iterations, RTLP-L2 will be solved as MBLP and so increasing the

computational burden for HybridRank.
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Algorithm 3.2 LP-MBLP Ranking
1: procedure HybridRank
2: Read problem data: A1, b1, c, A2, b2, A3, b3
3: Set UB←∞.
4: Solve RTLP-L2 model as MBLP without any control from upper-level (i.e

remove constraint 3.33) and relaxed budget (b2 = n1).
5: UB← obj. val..
6: Initialize Repository.
7: for j = 1 : Desired Budget do
8: if obj.val.(j) = UB then
9: Break.

10: end if
11: for i = 1 : n1 do
12: if yi /∈ Repository then
13: Set yi ∈ y← 0.
14: Solve RTLP-L2 model without constraint 3.33 as LP by setting

b2 ← j.
15: Store obj.val. and the corresponding yi’s index.
16: end if
17: end for
18: Sort yi’s indices in a descending order according to obj.val.
19: if Two or more binary variables (yi) have the same highest obj.val. then
20: b2 ← j − 1.
21: Solve RTLP-L2 model as LP without constraint 3.33.
22: Sort yi’s index in a descending order w.r.t an operational preference

(application-oriented).
23: Set yi ← 0 for i (index) with the highest obj.val. and operational

effect.
24: else Set yi ← 0 for i (index) with the highest obj.val..
25: end if
26: Store yi index, Problem type: LP, j (Budget value), obj.val. in Repository.
27: if obj.val.(j) = obj.val.(j − 1) then
28: Solve RTLP-L2 model without constraint 3.33 as MBLP.
29: end if
30: Update yi indices, Problem type: MBLP, j (Budget value), obj.val. in

Repository.
31: end for
32: Determine unique yi indices in Repository for all values of j (i.e., from j =

1 : Budget ).
33: Count each unique index in Repository.
34: Sort indices according to their count in a descending order.
35: Set xi ∈ x w.r.t sorted list and available budget.
36: Repeat steps 7 to 24 with enforcing constraint 3.33 after x has been revealed

to determine y.
37: end procedure
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3.3.3 MBLPRank Heuristic

Algorithm 3.3 MBLP Ranking
1: procedure MBLPRank
2: Read problem data: A1, b1, c, A2, b2, A3, b3
3: UB←∞.
4: Solve RTLP-L2 model as an MBLP without any control from the upper-level

(i.e., remove constraint 3.33) and relaxed budget (b2 = n1).
5: UB← obj. val..
6: Initialize Repository.
7: for j = 1 : Desired Budget do
8: if obj.val.(j) = UB then
9: Break.

10: end if
11: Solve RTLP-L2 model without constraint 3.33 as MBLP by setting b2
← j.

12: Store yi indices, j, obj.val. in Repository.
13: end for
14: Determine unique yi indices in Repository for all values of j (i.e., from j =

1 : Budget ).
15: Count each unique index in Repository.
16: Sort indices according to their count in a descending order.
17: Set xi ∈ x w.r.t. sorted list and available budget.
18: Solve RTLP-L2 model with enforcing constraint 3.33 as an MBLP after x

has been revealed to determine y.
19: end procedure

The pseudo-code for this approach is provided in Heuristic 3.3. MBLPRank

focuses more on solution quality rather than computational time. It is designed for

MBLPs with a modest number of integer variables, or if the computational burden

of an MBLP can be reduced. First, MBLPRank starts by reading the problem

parameters and finding an upper bound in Steps from 1 to 5. The repository is then

initialized in Step 6. Steps 7 to 11, solve RTLP-L2 as MBLP for each Budget value,
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with a specific condition to break out of the loop if the upper bound is hit.

Steps 12 to 14 determine the unique binary variables indices for each Budget value,

after which a list is made with the count of each index. The indices are then sorted

in a descending order. Step 15 then sets/activates the upper-level decision variables

(xi ∈ x) to suppress the effect of the second level decision-maker by controlling the

binary variables with the highest number of counts in the sorted list, depending on

the available budget in constraint (3.16). Step 16 solves RTLP-L2 as MBLP by

enforcing constraint (3.33) to determine the second level decision variables (yi ∈ y).

Flowchart for MBLPRank is provided in Figure B.3 in Appendix B.

3.3.4 Multi-dimensional Knapsack Constraints

While it is true that most applications of TLPs involve a single budget constraint

(e.g., see (Sarhadi et al. 2015), (Alvarez 2004), and (Scaparra & Church 2008)), there

may be occasions where a need arises for multiple budget constraints. Here we extend

the proposed heuristics to handle multi-dimensional knapsack constraints. One way

of dealing with multi-dimensionality in the second-level is to solve for each budget

constraint and rank the binary variables according to their effect on the objective

value, obj.val., where each budget constraint would have a Repository holding the

count of unique index yi sorted in a descending order. It is worth mentioning that

the first and second levels should have the same number of budget constraints (i.e.,

size(b1)= size(b2). Repositories for all budget constraints are combined and sorted

in a descending order. The binary variable with the highest rank is activated and

then a feasibility check is done on all budget constraints. If it is feasible, we activate
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the next binary variable in the Repository list until we reach infeasibility for the

budget constraints in the second-level. In other words, the binary variables for the

second-level are activated in a greedy manner w.r.t. all budget constraints. According

to the sorted list of the second-level, the first-level decision-maker would activate

the first-level decision variables, x), in a greedy manner w.r.t. the first-level budget

constraints until infeasibility is achieved. A pseudo code (Heuristic C.1) and a flow

chart (Figure C.1) are included in Appendix B. The aforementioned approach can

be applied, in a similar way, to the rest of the proposed heuristics in this paper.

3.4 Defending Critical Infrastructure: Application

on Electrical Power Transmission Networks

BLP and TLP have been used extensively in determining critical infrastructure

links/element for various types of networks such as electrical transmission, trans-

portation and supply chain networks [Brown et al. (2006), Babick (2009), Arroyo

(2010)]. Specifically, BLP and TLP are used for modelling attacker-defender (AD)

problems and defender-attacker-defender models (DAD) or, in some literature, defender-

attacker-operator (DAO). Network flow problems are a typical application of DAD

models such as minimum cost flow (Babick 2009), constrained shortest path prob-

lems (Lazzaro 2016) or minimizing the cost of load shedding in an electric power

transmission network (Wu & Conejo 2017).

The DAD model is a form of a three-player sequential Stackelberg game. First, the

defender plans on fortifying the system by hardening the critical infrastructure, or

134



Ph.D. Thesis - Ramy Abdallah McMaster University - DeGroote School of Business

in some other cases designing new additions to improve the latter’s overall resilience.

Second, an attacker seeks to inflict as much damage as possible to degrade infras-

tructure’s functionality despite the employed protective plans. Third (and final stage

of the model) includes the system operator (or can be seen as the defender who is

taking another sequential move after the attacker) minimizing the inflicted damage

done by the attacker through maintaining the operational constraints of the attacked

infrastructure.

Electric grid security has been recently becoming a major concern for govern-

ments, network planners and operators, due to the dependency/interdependency of

other critical infrastructures such as communications, transportation, water systems,

healthcare and public health sectors that pose a grave risk. A blow to the electric

grid network could cause cascading effects on other sectors, leading to a massive

catastrophe that spirals out of control. Specifically, targeted attacks on the power

system components highly jeopardize the overall stability of the power grids. The

transmission system of the power grid represents a weak-unprotected part, allowing

it to be easily targeted by those malicious attacks. In April 2013, an attack on a

substation, in California, resulted in the damage of 17 transformers. The cost of the

load shed was substantial, as it took 27 days to repair them and bring them back to

service (Smith 2014). In March 2019, a “first-of-its-kind” power grid attack occurred

in the western united states (Sussman 2019), where internet-facing firewalls were

rebooting. Consequently, each reboot cut-off communication between generation

sites and control centre. The power grid cyberattack continued for approximately

10 hours. This prompted the U.S. government to announce a surprising move by
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introducing the Securing Energy Infrastructure Act (SEIA), to secure power grids

by using “retro” technologies (O’Flaherty 2019). The main objective of this bill is

to thwart cyber-adversaries, by replacing automated systems with low-tech redun-

dancies, like manual procedures controlled by human operators making cyberattacks

much more strenuous. Attacking the critical components of the power grid may cause

cascading outages and possibly a complete blackout. Consequently, identifying the

critical components of the grid which represents a high potential target for terrorist

physical/cyber attacks, is crucial for its safe operation and of equal importance to

following adequate protection plans.

TLP in the context of defending electrical power grids has received lots of atten-

tion from researchers in the past few years. The DAD model within the context of

defending electrical power grids has the same generic structure in 3.13. The first

level represents the defender/planner who is trying to minimize load shedding in the

network, and the decision variables are binary subject to linear budgetary constraint

representing the defence resources. The second level is the attacker who is in turn

trying to inflict the maximum possible damage to the network by attacking the most

critical lines. The decision variables in this level are also binary, while the constraints

are linear and involve the decision variables of both the first and second levels. The

third level represents the operator model, who is trying to maintain the operational

constraints of the network and to minimize the inflicted damage. The decision vari-

ables in this level are continuous, while the objective function and constraints are

linear. However, the constraints are a function of the second level and third level

decision variables.
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As previously mentioned, the generic form stated in 3.13 can be reduced to two

levels using either the duality theory approach 3.15 or KKT conditions 3.24. The

resulting problem is BLP, where the first level represents the planner’s decisions,

while the second level now represents AD model fused into a single-level.

The following sections will be dedicated to present the DAD model in the con-

text of electric power grid security, propose a modified enumeration algorithm that

provides optimal solutions and compare it to our proposed solution approaches on

three electrical transmission networks of different sizes.

3.4.1 Defender-Attacker-Defender Model for Electric Power

Grid Security
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Table 3.1: Mathematical Notations for DAD model

Indices and Sets
Symbol Description
J Set of generators.
Jn Set of generators connected to bus n.
L Set of transmission lines.
N Set of buses.
j Generator index.
l Transmission line index.
n Bus index.
Paramters
Anl Element of the incidence matrix equals 1 if bus n is the sending end

of line l, -1 if bus n is the receiving end of line l, and 0 otherwise.
Bl Imaginary part of admittance of line l.
K Attack Budget (Number of Lines).
D Defence Budget (Number of Lines).
P d

n Demand at bus n.
P̄ f

l Maximum power flow in line l.
P̄ g

j Maximum power a generator can produce.

¯
P g

j Minimum power a generator can produce.
δ̄ Maximum power angle for a bus.

¯
δ Minimum power angle for a bus.
Decision Variables
vl Binary variable set to 0 if line l is attacked and 1 otherwise.
zl Binary variable set to 1 if line l is defended and 0 otherwise.
P g

j Output power from generator j.
P f

l Power flow in line l.
δn Power angle for bus n.
Φn Load shed at bus n.

We will use the notation in Table 3.1 to model the DAD problem for electric grid

security. We have opted for using the common notation in this field so that it will

be easier for the reader to compare our model with existing studies in this area.
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The DAD model can be formulated as follows:

(DAD)

(DAD-L1)

min
z

∑
n∈N

Φ∗
n (3.35)

s.t.
∑
l∈L

zl ≤ D (3.36)

zl ∈ {0, 1}, ∀ l ∈ L (3.37)

(DAD-L2)

max
v

∑
n∈N

Φ′

n =
∑
n∈N

Φ∗
n (3.38)

s.t.
∑
l∈L

(1− vl) ≤ K (3.39)

zl ≤ vl, ∀ l ∈ L (3.40)

vl ∈ {0, 1} , ∀ l ∈ L (3.41)

(DAD-L3)

∑
n∈N

Φ′

n ∈
{

arg min
δ,Pg,Pf ,Φ

∑
n∈N

Φn

}
(3.42)
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s.t. P f
l = Blvl

∑
n∈N

Anlδn, ∀ l ∈ L : (µl) (3.43)

∑
j∈Jn

P g
j −

∑
l∈L

AnlP
f
l + Φn = P d

n , ∀ n ∈ N : (λn) (3.44)

− P̄ f
l ≤ P f

l ≤ P̄ f
l , ∀ l ∈ L : (

¯
ωl, ω̄l) (3.45)

− δ̄ ≤ δn ≤ δ̄, ∀ n ∈ N
(
¯
γn, γ̄n

)
(3.46)

¯
P g

j ≤ P g
j ≤ P̄ g

j , ∀ j ∈ J :
(
¯
θj, θ̄j

)
(3.47)

0 ≤ Φn ≤ P d
n , ∀ n ∈ N : (

¯
αn, ᾱn) (3.48)

The variables in parenthesis from (3.43) to (3.48) are the dual variables; each

defined with respect to the corresponding constraint and grouped in Table 3.2.

The upper-level is associated with planner/defender, middle-level pertains to the

attacker’s move, and the lower-level is concerned with the reaction of network op-

erator to minimize load shedding based on the attacker’s decision. The planner’s

objective is to minimize the load shed represented by (3.35), or in other words in-

crease the robustness of the overall network. Constraint (3.36) is the defence budget

in terms of transmission lines that can be protected, where zl is a binary variable set

to 1 if line l is defended and 0 otherwise. Constraints (3.37) enforce the binary na-

ture of zl. Equation (3.38) maximizes the total load shed that results from attacking

line l, where vl is a binary variable set to 0 if line l is interdicted and 1 otherwise.

The budgetary constraint for the attacker is modeled by (3.39), where K represents

the total resources available (in terms of transmission lines), while constraints (3.41)

are the binary constraints for the middle-level decision variables. Constraints (3.40)

enforces the assumption that if a line l is defended, then it cannot be attacked. In
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other words, if zl is 1 then vl is must also be 1. The lower-level problem models

the network operator’s reaction to minimize the load shed based on the attack sce-

nario represented in (3.42). The dc-power flow for each line is modeled in (3.43),

whereas the power balance equations in each bus is represented by (3.44) (or node

balance equations in other contexts). Constraints (3.45)-(3.48) are the upper and

lower bounds for the lower-level decision variables. Constraints (3.48) ensure that

the load shed in each consumer sector does not exceed the load at that electric bus.

Table 3.2: Mathematical Notations for the Dual of the Operator model

λn Variable associated with power balance constraint at bus
n.

µl Variable associated with the power flow constraint at
line l.

¯
ωl Variable associated with lower bound of power flow at

line l.
ω̄l Variable associated with upper bound of power flow at

line l.

¯
γn Variable associated with lower bound of power angle at

bus n.
γ̄n Variable associated with upper bound of power angle at

bus n.
ω̄l Variable associated with upper bound of power flow at

line l.

¯
θj Variable associated with lower bound of generator j.
θ̄j Variable associated with upper bound of generator j.

¯
αn Variable associated with lower bound of load shed at bus

n.
ᾱn Variable associated with upper bound of load shed at

bus n.
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3.4.2 Equivalence between TLP and RTLP

In order to be able to reduce the original TLP, we need to establish equivalence to

the reduced version of the problem (i.e., RTLP). We will direct our analysis to the

Defender-Attacker-Defender (DAD) model, as equivalence can differ from an appli-

cation to another. First, we will establish the conditions under which the solution of

lower-level problem of DAD is unique. Hence, applying KKT or duality approaches

is necessary and sufficient to guarantee the optimality of the lower-level problem

(i.e., defender or operator problem), provided that it has a convex objective function

defined over a convex set of constraints. Second, we make use of two assumptions of

the class of TLP being studied; first, we have a common objective functions shared

across all levels with continuous decision variables z, and second the first-level de-

cision maker has a direct control over the second-level decision variables through a

budget/limit, which implies both levels have the same number of decision variables.

Consider the third-level of Problem DAD, then for a given vector of attack variables

(v), the defender’s/operator’s problem becomes:

(DAD-L3)

min
δ,Pg,Pf ,Φ

∑
n∈N

Φn

s.t. P f
l = Blv

∗
l

∑
n∈N

Anlδn, ∀ l ∈ L : (µl) (3.49)

∑
j∈Jn

P g
j −

∑
l∈L

AnlP
f
l + Φn = P d

n , ∀ n ∈ N : (λn) (3.50)

− P̄ f
l ≤ P f

l ≤ P̄ f
l , ∀ l ∈ L : (

¯
ωl, ω̄l) (3.51)
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− δ̄ ≤ δn ≤ δ̄, ∀ n ∈ N
(
¯
γn, γ̄n

)
(3.52)

0 ≤ P g
j ≤ P̄ g

j , ∀ j ∈ J :
(
θ̄j

)
(3.53)

0 ≤ Φn ≤ P d
n , ∀ n ∈ N : (

¯
αn, ᾱn) (3.54)

Using the work of Ŕıos-Mercado et al. (2002) on gas networks, and Krebs et al. (2018)

on DC power flow networks, we show the uniqueness of solution problem (DAD-L3),

based on the following assumption for a given attack vector (v).

Assumption 3.4.1. Generator productions (Pg) and load sheds (Φ) satisfy (3.53),(3.54)

and∑
n∈N

(∑
j∈Jn

P g
j + Φn − P d

n

)
= 0. Moreover, the phase angle δr at an arbitrary node

r ∈ N is fixed.

It is worth mentioning that these assumptions do not add any extra constraints

to (DAD-L3) except for setting a reference node angle. By summing (3.50) for

all nodes, we obtain ∑
n∈N

(∑
j∈Jn

P g
j + Φn − P d

n

)
= 0. Hence using Theorem 2 of

Ŕıos-Mercado et al. (2002), the following result can be directly applied.

Theorem 3.4.1. Let r ∈ N be a reference node with a constant voltage angle δr,

and Assumption 3.4.1 holds, then if a solution (Pf , δ) of system (3.49)-(3.52) exists,

it is unique for a given attack vector (v).

Furthermore, we can restrict ourselves to study the conditions under which the

uniqueness of the entire solution of Problem (DAD-L3) for a given attack vector

(v) through the following Theorem.
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Theorem 3.4.2. Let generator productions (Pg) and load sheds (Φ) in Problem

(DAD-L3) be unique for a given attack vector (v) and r ∈ N be a reference node

with a constant voltage angle δr. Then, the entire solution of Problem (DAD-L3)

is unique.

Proof. Assumption 3.4.1 holds as generator productions (Pg) and load sheds (Φ)

are unique for Problem (DAD-L3). The solution (Pf , δ) of system (3.49)-(3.52)

corresponds to the unique generator production (Pg) and load shed (Φ) vectors, such

that (Pg,Φ,Pf , δ) is a solution of of Problem (DAD-L3). Moreover, the existence

of a solution is trivial because load sheds Φ can account for disrupted demand for

any given attack vector (v), and the problem is bounded. Hence, applying Theorem

3.4.1 yields unique flows (Pf ) and phase angles (δ) with respect to node r. Thus,

the solution of Problem (DAD-L3) is unique.

We have proved partial uniqueness of solution for Problem (DAD-L3) using The-

orem 3.4.1 and conditions under which the entire solution of Problem (DAD-L3)

using Theorem 3.4.2 is unique. Consequently, applying KKT approach to reduce

the TLP (DAD) will yield an equivalent bi-level model, as a direct result of Theo-

rem 3.4.1 and Theorem 3.4.2 on Problem (DAD-L3), which has a convex objective

function defined over a convex set of constraints. Hence, applying KKT approach or

equivalently the duality approach will result in a unique set of continuous decision

variables. Thus, no selection approach (i.e. pessimistic or optimistic) is required for

the second-level.

Furthermore, the class of TLP under study has two main assumptions:
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• A common objective function shared across all levels with continuous decision

variables z.

• The first-level decision maker has a direct control over the second-level binary

decision variables through a budget/limit. This implies that both levels have

the same number of binary decision variables.

In case of multiple optima in the second-level (i.e., the attacker problem), selecting

any of the degenerate solutions will not affect the objective function, either from

the attacker’s or the defender’s perspective, as objective function is shared across all

levels. Furthermore, any of the attackers’ choices will not cause infeasibility to the

defender’s problem (i.e., first level) for two reasons: first, second-level decision vari-

ables have no direct interaction with first-level objective function and constraints,

and second, first-level decision maker has a direct control over second-level decision

variables. Hence, even if a selection approach is determined (e.g., pessimistic), it will

not affect the first-level problem.

3.4.3 Single-Level Attacker-Defender Model

In this section our goal is to reduce the AD model to a single level problem.

Dual of the Operator Model

First we convert the primal lower-level problem representing the operator’s/defender’s

model to its dual counterpart, in order to merge the AD model into a single-level.
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The dual problem of the lower-level DAD model is formulated as follows:

max
µl,λn,

¯
γn,γ̄n,

¯
θj ,θ̄j ,

¯
ωl,ω̄l,¯

αn,ᾱn

∑
n∈N

(λn − ᾱn)P d
n −

∑
n∈N

(
¯
γn + γ̄n

)
δ̄

−
∑
l∈L

(
¯
ωl + ω̄l) P̄ f

l +
∑
j∈J ¯

θn¯
P g

j −
∑
j∈J

θ̄nP̄
g
j

(3.55)

s.t.
∑
l∈L

vlBlµlAnl −
¯
γn + γ̄n = 0, ∀ n ∈ N : (δn) (3.56)

λn|j∈Jn +
¯
θj − θ̄j ≤ 0, ∀ j ∈ J : (P g

j ) (3.57)

µl −
∑
n∈N

Anlλn +
¯
ωl − ω̄l = 0, ∀ l ∈ L : (P f

l ) (3.58)

− λn − ¯
αn + ᾱn ≤ 1, ∀ n ∈ N : (Φn) (3.59)

¯
θj, θ̄j, ¯

ωl, ω̄l, ¯
αn, ᾱn,

¯
γn, γ̄n ≥ 0, ∀ l ∈ L, ∀ n ∈ N, ∀ j ∈ J (3.60)

The variables written in parenthesis are the primal variables corresponding to the

dual constraints. As mentioned earlier, using the duality theory approach results in

bilinear terms in the dual constraints (3.56) that can be linearized using traditional

methods (Floudas 1995).

Single Level Model

In order to convert the middle and lower levels in the DAD model into a single-level

program, the duality theory approach will be used. The primal constraints of the

lower-level problem will be included, along with the dual constraints, and an equal-

ity between the objective function’s value of the primal and dual problems to satisfy

the strong duality condition. The following equations summarize the single-level AD

model.
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(AD)

max
vl,δ,P g ,P f ,Φ,zs

l ,zr
l ,rs

l ,rr
l ,

µl,tl,bl,λn,
¯
θj ,θ̄j ,

¯
ωl,ω̄l,¯

αn,ᾱn

∑
n∈N

Φn (3.61)

s.t.
∑
l∈L

(1− vl) ≤ K (3.62)

zl ≤ vl, ∀ l ∈ L (3.63)

vl ∈ {0, 1} , ∀ l ∈ L (3.64)

P f
l = Bl(zs

l − zr
l ), ∀ l ∈ L (3.65)

zs
l = δs(l) − rs

l , ∀ l ∈ L (3.66)

zr
l = δr(l) − rr

l , ∀ l ∈ L (3.67)

¯
δvl ≤ zs

l ≤ δ̄vl, ∀ l ∈ L (3.68)

¯
δvl ≤ zr

l ≤ δ̄vl, ∀ l ∈ L (3.69)

¯
δ (1− vl) ≤ rs

l ≤ δ̄ (1− vl) , ∀ l ∈ L (3.70)

¯
δ (1− vl) ≤ rr

l ≤ δ̄ (1− vl) , ∀ l ∈ L (3.71)∑
j∈Jn

P g
j −

∑
l∈L

AnlP
f
l + Φn = P d

n , ∀ n ∈ N (3.72)

− P̄ f
l ≤ P f

l ≤ P̄ f
l , ∀ l ∈ L (3.73)

¯
P g

j ≤ P g
j ≤ P̄ g

j , ∀ j ∈ J (3.74)

0 ≤ Φn ≤ P d
n , ∀ n ∈ N (3.75)∑

l∈L

BltlAnl = 0, ∀ n ∈ N (3.76)

tl = µl − bl, ∀ l ∈ L (3.77)
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¯
µlvl ≤ tl ≤ µ̄lvl, ∀ l ∈ L (3.78)

¯
µl (1− vl) ≤ bl ≤ µ̄l (1− vl) , ∀ l ∈ L (3.79)

λn|j∈Jn +
¯
θj − θ̄j ≥ 0, ∀ j ∈ J (3.80)

µl −
∑
n∈N

Anlλn +
¯
ωl − ω̄l = 0, ∀ l ∈ L (3.81)

1− λn − ¯
αn + ᾱn ≥ 0, ∀ n ∈ N (3.82)∑

n∈N

(λn − ᾱn)P d
n −

∑
l∈L

(
¯
ωl + ω̄l) P̄ f

l +
∑
j∈J ¯

θj¯
P g

j −
∑
j∈J

θ̄jP̄
g
j =

∑
n∈N

Φn

(3.83)

¯
θj, θ̄j, ¯

ωl, ω̄l, ¯
αn, ᾱn ≥ 0, ∀ j ∈ J, l ∈ L, n ∈ N (3.84)

Equations(3.61) to (3.64) represent the middle-level objective function and con-

straints. Constraints (3.65) to (3.75) represent the primal feasibility constraints of

the lower-level operator model. Specifically, (3.65) to (3.71) represent the power flow

constraint in each line, and its linearizing constraints. Equations (3.72) represent

the power balance equation in each bus. Equations (3.73) to (3.75) represent the

upper and lower bounds for the power flow in each line, power output from the gen-

erator and the load shed in each bus, respectively. Starting from (3.76) until the

end represent the constraints associated with the dual of the lower-level problem.

Specifically, (3.76) represents the dual constraint associated with the power angle at

each bus (δn), whereas (3.77) to (3.79) represent its linearizing constraints. Further-

more, (3.80) to (3.82) represent the dual constraints corresponding to P g
j , P

f
l and

Φn, respectively. The strong duality constraint
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that equates the primal objective function of the lower-level problem to its dual

objective is represented in (3.83). Lastly, constraints(3.84) represent the non-negativity

conditions on the dual variables.

3.4.4 Modified Enumeration Algorithm

In order to compare the quality of the results from our proposed solution approaches,

an exact method for solving the DAD model is needed. Enumeration algorithms in

TLP basically decompose the tri-level problem into bi-level sub-problems arranged in

a tree-like structure. Although they are computationally expensive, they can be used

to find multiple optimal solutions, if they exist, for small-sized problems. We propose

a modified enumeration algorithm (MEA) that is inspired from (Scaparra & Church

2008), where they provide an implicit enumeration algorithm based on an observa-

tion made through investigating optimal solutions of a facility interdiction problem

with fortification. Simply put, the observation states that the defender/planner (i.e.,

first level decision-maker) has to protect at least one of the elements that are going

to be attacked to maximize the inflicted damage in case there was no protection at

all.

Scaparra & Church (2008) implemented a binary tree search based on that observa-

tion on a BLP. Implementation of their enumeration algorithm on a TLP is basically

the same except that each node in the tree represents a BLP instead of a single level

problem. Figure 3.3 demonstrates the binary tree search enumeration algorithm for

solving a DAD model of an electrical transmission network shown in Figure 3.2.
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Figure 3.2: Five-Bus electrical transmission network.

Figure 3.3: Scaparra & Church (2008) enumeration algorithm (D=2, K=2) for net-
work in Figure 3.2.

Consider the instance of having equal defence and attack budgets of 2 transmis-

sion lines (D = 2, K = 2) in the electrical transmission network 3.2. Nodes are
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numbered from 1 to 11; each represents solving an instance of the AD model with

different fortification strategies. Node 1 represents the parent node, which involves

solving with no protection at all. This resulted in attacking Lines 5 and 6, which

are the lines that cause maximum damage with a load shed of 1.5× 102 MW if there

was no fortification. We choose one of the lines randomly (Line 5) and branch on

two nodes: one representing the AD model for protecting Line 5 (Z5 = 1), and the

other proceeds with no protection on the same line (Z5 = 0). Yellow and black nodes

represent a solved AD model. The white and hashed nodes are not solved for, as

they inherit the same characteristics of the parent node, except for the candidate

lines for protection. For instance, Node 3 inherited the same characteristics of Node

1 except that the candidate line for protection is line 6, since Z5 = 0.

There are two fathoming rules. First, if the set of candidate lines for protection

is empty such as Nodes 7, 9 and 11 (hashed nodes). Second, if the defence budget

for the planner is reached (D = 2) which is the case for Nodes 4, 8 and 10 (black

nodes). In order to know the defence strategy for a specific node, the path is traced

from that node to parent node 1. For example, the defence strategy for Node 8 is

Z5 = 1 and Z6 = 1.

Our MEA is based on a non-binary tree search implementation of the same prob-

lem, where nodes are branched according to the number of attacked lines (K=2)

as demonstrated in Figure 3.4. Node 1 is the parent node, where the AD model is

solved without any fortification. Nodes 2 and 3 are branched from the candidate set

of lines resulting from solving Node 1. Branching is done in the same way until the

defence budget (D=2) is exhausted as shown in Nodes 4, 5, 6 and 7. Numbers in the
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Figure 3.4: Non-binary search tree with minimum upper bound exploration (D=2,
K=2).

red boxes represent the sequence by which each node is solved. Since each parent

node represents an upper bound for the children nodes, the algorithm is programmed

to explore (solve the AD model) nodes with the minimum upper bound first, then

continues until the list of waiting nodes (not solved) is empty. For example, after

Node 1 is solved, Nodes 2 and 3 have an equal upper bound of 1.5× 102 MW. Thus,

the algorithm solves the first node in the list (Node 2), which has an objective value

of 0.5× 102 MW. Nodes 4 and 5 are branched from Node 2, and both of them have

an upper bound of 0.5 × 102 MW. Hence Nodes 4 and 5 are solved before Node 3,

which has an upper-bound of 1.5 × 102 MW. However, in this version of the algo-

rithm, protection patterns may be repeated. For instance Nodes 5 and 7 have similar

protection strategies Z5 = 1 and Z6 = 1, which means that the same instance of the

AD problem is being solved twice as both nodes have same properties.

In order to avoid redundant solutions, a record is kept with the solved nodes and
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their respective protection strategies. Before the solver attempts to solve any new

node, protection strategies of the new node are compared with the records of solved

nodes strategies. If they are the same, the node is fathomed and the solver does not

attempt to solve that instance. This is demonstrated in Figure 3.5. Since Nodes 5

Figure 3.5: MEA Algorithm with (D=2, K=2).

and 7 have the same protection strategy, and the algorithm explores nodes by the

pattern indicated by the red boxes, Node 5 is solved before Node 7. Thus when the

algorithm tries to explore Node 7, a comparison of protection strategies of the solved

nodes is done before the solver attempts to solve. Hence, a similarity between Node

5 (solved) and Node 7 (still to be solved) in terms of protection strategy is found

and Node 7 is fathomed without solving for that instance.
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Modified Enumeration Algorithm with Warm-Starting Solutions1

In order to accelerate the MEA algorithm, children nodes can be initialized using

some information from the parent node, given the similarity between the two prob-

lems solved at each node. At first, we have experimented by initializing children

nodes with the optimal solution of the parent node; however this yields an infeasible

Mixed-binary Program (MBP) start and makes the optimization solver (CPLEX)

takes more time trying to fix the infeasible solution. The infeasibility stems from

the assumption that a defended transmission line can not be attacked, and children

nodes are created by defending an attacked line from parent node, as depicted in Fig-

ure 3.5. To avoid an infeasible MIP start, a set is formed with the difference between

attacked lines resulting from solving parent node and defended lines of the current

node; the cardinality of this set should be equal to (Attack Budget − 1). Hence, an

additional line needs to be added to the initial solution; this line is chosen randomly

from the difference of two sets. The first is the set of all lines, and the second is

the union of lines that are defended and lines that are already chosen as initial so-

lutions from the parent node. An analysis has been done to compare the running

time of MEA algorithm with and without warm-starting solutions. We have noticed

that warm-starting solutions save time for large instances, while it is slightly slower

in small instances. We have summarized performance measures such as created

nodes, solved nodes and average run-time for the enumeration algorithm Scaparra

& Church (2008), MEA and MEA with warm-starting solutions in Table 3.3. We
1We would like to thank an anonymous reviewer for suggesting the warm-starting idea.
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observed that MEA with warm starting solutions can save time up-to 56.25% com-

pared to the classical enumeration algorithm, when the nodes being solved passes 10.

For small instances, classical enumeration algorithm is slightly superior than MEA

with warm-starting solutions. Moreover, we have provided a comparison between

the performance of MEA with and without warm-starting solutions in Table 3.4. We

noticed that MEA without warm-starting solutions can save time in small instances

with small difference compared to initialized MEA. However, when it comes to large

instances, MEA with warm-starting solutions can save time up to 15%.
Instance Def. Att. MEA with Warm-starting Sol. Classical Enumeration Alg. Percentage of

Num. Budget Budget Created Nodes Solved Nodes Avg. Run-time Created Nodes Solved Nodes Avg. Run-time Saved Time
1 1 3 4 4 0.64 7 4 0.52 -
2 1 4 5 5 0.71 9 5 0.65 -
3 2 2 7 6 0.90 11 6 0.59 -
4 2 3 13 10 1.03 19 10 1.34 23.14
5 2 4 21 11 1.29 29 15 2.05 36.98
6 2 5 31 23 1.49 45 21 2.06 27.54
7 2 6 43 29 1.54 55 28 2.18 29.17
8 3 2 13 11 1.06 23 12 1.82 41.47
9 3 3 31 20 1.52 45 23 3.58 55.47
10 3 4 61 37 2.77 79 40 4.73 41.32
11 3 5 116 66 3.48 137 69 6.01 42.02
12 4 1 5 5 0.70 8 5 0.89 20.9
13 4 2 23 17 1.34 41 21 2.86 52.9
14 4 3 61 38 2.56 103 52 5.85 56.25
15 4 4 161 87 5.01 199 100 9.73 48.5

Table 3.3: Comparing MEA with Warm-starting Solutions against Classical Enu-
meration Algorithm

Instance Def. Att. MEA with Warm-starting Sol. MEA Percentage of
Num. Budget Budget Avg. Run-time Avg. Run-time Saved Time

1 1 3 0.64 0.60 5.7
2 1 4 0.71 0.67 -
3 2 2 0.90 0.83 -
4 2 3 1.03 1.00 -
5 2 4 1.29 1.33 3.2
6 2 5 1.49 1.60 6.75
7 2 6 1.54 1.58 2.4
8 3 2 1.06 1.05 -
9 3 3 3.58 1.71 -
10 3 4 2.77 2.67 -
11 3 5 3.48 3.72 6.4
12 4 1 0.70 0.64 -
13 4 2 1.34 1.44 -
14 4 3 2.56 2.81 8.45
15 4 4 5.01 5.95 15.9

Table 3.4: Comparing MEA with and without Warm-starting Solutions
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3.4.5 Numerical Results

Our proposed solution approaches are tested on three different electrical transmission

networks and compared to exact solutions obtained with MEA. The heuristic-based

algorithms have been programmed in MATLAB R2018b, and optimized by connect-

ing the MATLAB toolbox function to the IBM ILOG CPLEX V 12.7.1 optimization

software Manual (1987). Moreover, MEA has been implemented using GAMS Studio

V 27.1.0, while using CPLEX as a solver. Numerical results have been carried out

on an Intel Core I7 CPU (7th generation) at 2.7 GHZ with 8 GB of RAM and 64-bit

operating system.

Five-Bus System

The first electrical transmission network is shown in Figure 3.2 and was used before in

Arroyo & Galiana (2005). It consists of 6 transmission lines, 5 generators and 5 buses.

The loads are specified on each bus, as well as the per unit reactance of each line.

It is worth mentioning that the BMVA (Base-Mega-Volt-Ampere) and BkV (Base-

kilo-Volt) are taken as 100 MVA and 138 kV, respectively. The maximum power

flow (P̄ f
l ) in each transmission line has been set to 100 MW, while the maximum

and minimum power (P̄ g
j , ¯

P g
j ,) that a generator can produce is set to 150 and zero

MW, respectively. Moreover, transmission lines are numbered (squared boxes) as

per Figure 3.2.

The heuristic-based solution approaches and MEA algorithm have been tested

on all possible defence and attack budgets’ scenarios for the Five-Bus system. The

results are summarized in Table 3.5, where we report the attacked line(s), objective
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value and defended line(s), if relevant. We note that since we have six transmission

lines in total, (i.e. K + D ≤ 6), there are no feasible combinations in the lower

diagonal part for each solution approach.

Table 3.5: Load Shed for Five-Bus System with Six Lines.
Defence Budget

A
tt

ac
k

B
u

d
g

et

D=0 D=1 D=2 D=3 D=4 D=5

L
P

R
an

k

K=0 0 0, L6 0, L5, L6 0, L3, L5, L6 0, L3, L4, L5, L6 0, L1, L3, L4, L5, L6
K=1 L6, 50 L5, 50, L6 L4, 0, L5, L6 L4, 0, L3, L5, L6 L1, 0, L3, L4, L5, L6 —"—
K=2 L5, L6, 150 L4, L5, 50, L6 L1, L4, 20, L5, L6 L1, L4, 20, L3, L5, L6 L1, L2, 10, L3, L4, L5, L6
K=3 L3, L5, L6, 150 L1, L4, L5, 70, L6 —"— —"—
K=4 L3, L4, L5, L6, 150 —"— —"—
K=5 L1, L3, L4, L5, L6, 170 —"—
K=6 —"—

H
yb

ri
dR

an
k

K=0 0 0, L6 0, L5, L6 0, L4, L5, L6 0, L1, L4, L5, L6 0, L1, L3, L4, L5, L6
K=1 L6, 50 L5, 50, L6 L4, 0, L5, L6 L1, 0, L4, L5, L6 —"— —"—
K=2 L5, L6, 150 L4, L5, 50, L6 L1, L4, 20, L5, L6 L1, L2, 10, L4, L5, L6 —"—
K=3 L4, L5, L6, 150 L1, L4, L5, 70, L6 —"— —"—
K=4 L1, L4, L5, L6, 170 —"— —"—
K=5 —"— —"—
K=6 —"—

M
B

L
P

R
an

k

K=0 0 0, L6 0, L5, L6 0, L4, L5, L6 0, L1, L4, L5, L6 0, L1, L3, L4, L5, L6
K=1 L6, 50 L5, 50, L6 L4, 0, L5, L6 L1, 0, L4, L5, L6 —"— —"—
K=2 L5, L6, 150 L4, L5, 50, L6 L1, L4, 20, L5, L6 L1, L2, 10, L4, L5, L6 —"—
K=3 L4, L5, L6, 150 L1, L4, L5, 70, L6 —"— —"—
K=4 L1, L4, L5, L6, 170 —"— —"—
K=5 —"— —"—
K=6 —"—

M
E

A

K=0 0 0, L6 0, L5, L6 0, L4, L5, L6 0, L1, L3, L5, L6 0, L2, L3, L4, L5, L6
K=1 L6, 50 L5, 50, L6 L3, 0, L5, L6 L1, 0, L4, L5, L6 L4, 0, L1, L3, L5, L6 L1, 0, L2, L3, L4, L5, L6
K=2 L5, L6, 150 L1, L5, 50, L6 L1, L4, 20, L5, L6 L3, L4, 0, L1, L5, L6 L3, L4, 0, L1, L5, L6
K=3 L1, L5, L6, 150 L1, L4, L5, 70, L6 —"— —"—
K=4 L1, L4, L5, L6, 170 —"— —"—
K=5 —"— —"—
K=6 —"—

The results obtained by the MEA algorithm have been validated with those ob-

tained by (Arroyo & Galiana 2005) with an AD model where the defence budget is

zero as in the first column (D = 0) of Table 3.5. It is worth mentioning that increas-

ing the attack budget does not necessarily increase the load shed. For example, if

the number of destroyed lines is increased from 2 to 3, this increase in attack budget

will result in the same load shed of 150 MW. This is due to the fact that the system

has a high robustness or low vulnerability to attacks due the presence of generators

at each bus. We also note that the maximum load shed that can be achieved is 170
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MW. This an upper bound that can be calculated without solving a MBLP using

the following formula:

UB =
∑
n∈N

P d
n − min(P d

n , P̄
g
j(n)

) (3.85)

The UB is system specific. Looking at the system structure in Figure 3.2 and

imagining that each node is isolated, the portion of load that can and will always be

satisfied is that which is connected to the node less than or equal to the generator

maximum power connected to the same node. We use the UB values as a stopping

criteria for the proposed heuristics, as it is more computationally efficient than solving

a MBLP.

As for the LPRank we notice that it found an optimal solution in about 86% of the

instances (24 out of 28 instances). According to LPRank, the highest priority lines

are ranked as follows: L6, L5, L3, L4, L1, L2, as can be seen from the first column

(D = 0) of Table 3.5. HybridRank and MBLPRank both yielded same solutions,

however the computational burden of MBLPRank is higher than that of HybridRank

as illustrated later for the larger bus problem in Subsection 3.4.5. Both heuristics

have the same solution quality solving about 93% of the instances to optimality

(26 out of 28 instances). LPRank also failed to obtain optimal solutions for the

same two instances. However, the solution quality of HybridRank or MBLPRank is

better than that of LPRank (half the value) in those two instances. According to

both HybridRank and MBLPRank, the highest priority lines are ranked as follows:

L6, L5, L4, L1, L3, L2.

In Table D.1, in Appendix D, we include further computational results from

158



Ph.D. Thesis - Ramy Abdallah McMaster University - DeGroote School of Business

LPRank such as average run time and number of LPs solved.

Six-Bus System

The second electrical transmission network has been studied previously by Jiang

et al. (2019). The system consists of eight transmission lines, two generators and six

buses. The input parameters for the system’s generator, load, branch data and line

numbering have been taken from (Jiang et al. (2019)) for validation purposes.

Table 3.6: Load Shed for Six-Bus System (8 Lines) Under Different Attack and
Defence Budgets

Defence Budget

A
tt

ac
k

B
u

d
g

et

D=0 D=1 D=2 D=3 D=4

L
P

R
an

k

K=1 L5,43.6 L2,31.1, L5 L4, 25, L2, L5 L4,25,L2, L3, L5 L7,0, L2, L3, L4, L5
K=2 L2, L5,130 L2, L3,110.8, L5 L4, L6,70, L2, L5 L4, L6,70, L2, L3, L5 —"—
K=3 L2, L3, L5,210 L2, L3, L4,170, L5 L3, L4, L6,90, L2, L5 L4, L6, L8,70, L2, L3, L5 —"—
K=4 L2, L3, L4, L5,290 L2, L3, L4, L7,170, L5 L3, L4, L6, L8,150, L2, L5 —"— —"—
K=5 —"— L2, L3, L4, L6, L7,220, L5 —"— —"—
K=6 —"— —"— —"—
K=7 —"— —"—
K=8 —"—

H
yb

ri
dR

an
k

K=1 L5,43.6 L2,31.1, L5 L4,25, L2, L5 L4,25, L2, L3, L5 L7,0, L2, L3, L4, L5
K=2 L2, L5,130 L2, L3,110.8, L5 L4, L6,70, L2, L5 L4, L6,70, L2, L3, L5 —"—
K=3 L2, L3, L5,210 L2, L3, L4,170, L5 L3, L4, L6,90, L2, L5 L4, L6, L8,70, L2, L3, L5 —"—
K=4 L2, L3, L4, L5,290 L2, L3, L4, L7,170, L5 L3, L4, L6, L8,150, L2, L5 —"— —"—
K=5 —"— L2, L3, L4, L6, L7,220, L5 —"— —"—
K=6 —"— —"— —"—
K=7 —"— —"—
K=8 —"—

M
B

L
P

R
an

k

K=1 L5,43.6 L2,31.1, L5 L4,25, L2, L5 L4,25, L2, L3, L5 L7,0, L2, L3, L4, L5
K=2 L2, L5, 130 L2, L3, 110.8, L5 L3, L8, 80, L2, L5 L4, L6, 70, L2, L3, L5 —"—
K=3 L2, L3, L5, 210 L2, L3, L4, 170, L5 L3, L4, L8, 90, L2, L5 L4, L6, L8, 70, L2, L3, L5 —"—
K=4 L2, L3, L4, L5, 290 L1, L2, L3, L4,170, L5 L3, L4, L6, L8, 150, L2, L5 —"— —"—
K=5 —"— L2, L3, L4, L6, L7, 220, L5 —"— —"—
K=6 —"— —"— —"—
K=7 —"— —"—
K=8 —"—

M
E

A

K=1 L5,43.6 L2,31.1, L5 L4,25, L2, L5 L3,20, L2, L4, L5 L7,0, L2, L3, L4, L5
K=2 L2, L5,130 L4, L5,95, L2 L3, L8,80, L2, L5 L5, L7,60, L2, L3, L4 —"—
K=3 L2, L4, L5,210 L2, L3, L4,170, L5 L2, L4,90, L3, L5 L5, L6, L7,70, L2, L3, L4 —"—
K=4 L2, L3, L4, L5,290 L2, L3, L4, L7,170, L5 L4, L5, L6, L7,140, L2, L3 —"— —"—
K=5 —"— L1, L2, L4, L5, L6,210, L3 —"— —"—
K=6 —"— —"— —"—
K=7 —"— —"—
K=8 —"—

Results from the proposed solution algorithms have been grouped and summa-

rized in Table 3.6. MEA algorithm confirmed the results obtained via the protection
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strategy by Jiang et al. (2019), where two instances are listed: one when the attack

and defence budgets are both equal to 2 (i.e K = 2, D = 2) yielding 80 MW, and the

other when K = 2 and D = 3 resulting in 60 MW total load shed. In total, there are

45 possible instances satisfying the inequality K + D ≤ 6. Nevertheless, Table 3.6

shows only 30 of them as all proposed algorithms yielded optimal solutions in those

15 instances with zero MW load shed. Regarding the heuristic-based approaches,

LPRank and HybridRank had the same solution quality for all instances. Both of

them obtained optimal solutions for 35 instances (about 78% of the instances), while

near-optimal results were obtained for the remaining 10 instances Moreover, MBL-

PRank obtained optimal solutions for 36 instances (about 80% of instances). It is

worth mentioning that MBLPRank failed to obtain optimal results for the same in-

stances as those of HybridRank and LPRank except for one, when K = 2, D = 2.

All heuristic-based approaches gave the same priority to the transmission lines as:

L5, L2, L3, L4. The ranking of the rest of the transmission lines does not make a

difference as the system becomes robust (with zero MW load shed) after protecting

the previously mentioned lines.

In Tables D.2 and D.4, in Appendix D, we include additional computational

results. Table D.2 shows several performance measures such as average running

time, number of LPs and MBLPs solved. We note that the number of MBLPs solved

is minimal and we did not need to solve any MBLPs in several instances. Table

D.4 shows average running time for each proposed heuristic; this is compared to

the running time taken by MEA with warm-starting solutions to obtain the global

optimal solution. As expected, LPRank heuristic took the least time compared
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to HybridRank and MBLPRank. The difference between the average running time

of HybridRank and MBLPRank is minimal. In some instances HybridRank took

more time than MBLPRank; this is mainly because some instances require invoking

both the linear program and mixed-binary linear program solvers. For LPRank, the

number of linear programs solved for each instance is reported; while for HybridRank,

the number of linear programs and mixed-binary linear programs is recorded in Table

D.4. Additionally, the time taken by MBLPRank and number of mixed-binary linear

programs to reach the solution is added to Table D.4. Instances that are highlighted

in bold are those which achieved global optimality as obtained by MEA.

IEEE 57-BUS System

The third electrical transmission network consists of 57 buses, 80 transmission lines

and 7 generators. The single line diagram and dataset used for the 57-Bus system is

available in the Appendix of (Jiang et al. 2019).

It should be noted that for this system the DAD problem consists of 160 bi-

nary variables. Solving a single node (AD model) for the 57-Bus system using the

MEA algorithm takes on average 432 seconds. As an example of the computational

burden, consider one instance of the DAD problem, when K = 5, D = 4, which

results in the creation of 781 nodes (AD problems). In the worst-case scenario, if

the solver attempts to solve all nodes with an average of 432 seconds per node, the

total computational time will be 93.28 hours. Using the heuristic-based approaches

in such relatively large problems becomes very useful, where near-optimal solutions

are widely accepted in most practical applications.
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In Table 3.7, we list LPRank priority for up to 20 lines, as the maximum load shed

occurs at K = 20, when LPRank is used. The computational time that was taken

for LPRank was exactly 33.67 seconds.

Table 3.7: LPRank Priority for 57-Bus System (80 Lines)

(MW) obj. val. Lines obj. val. Lines

LP
Ra

nk

K=1 75.6 L18 K=11 376.6 L7
K=2 131.2 L41 K=12 391.8 L22
K=3 197 L8 K=13 391.8 L2
K=4 246.7 L17 K=14 391.8 L65
K=5 292 L16 K=15 391.8 L25
K=6 304.6 L29 K=16 391.8 L27
K=7 376.6 L15 K=17 391.8 L23
K=8 376.6 L3 K=18 424.8 L11
K=9 376.6 L1 K=19 424.8 L21
K=10 376.6 L26 K=20 449.8 L5

Table 3.8 lists the repository of HybridRank algorithm along with the high pri-

ority lines resulting from that repository. Line numbers mentioned on the same line

have equal priority. The second column of Table 3.8 explains the progression of im-

plementing HybridRank algorithm until the maximum load shed is achieved (449.8

MW). As previously mentioned, if the objective value is the same for two successive

iterations, HybridRank triggers the MBLP solver. In total, there were 7 MBLPs

solved until the maximum load shed was achieved. The most critical lines found

were L18 and L8, as they had the highest number of counts. The computational

time for applying HybridRank was 13.5 minutes.

Table 3.9 lists the repository for MBLPRank. It has the same format as Table
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Table 3.8: HybridRank Repository for 57-Bus System (80 Lines)
(MW) Type obj. val. Lines High Priority Lines

H
yb

ri
dR

an
k

K=1 LP 75.6 L18 L18
K=2 LP 131.2 L18, L41 L8
K=3 LP 197 L8, L18, L41 L41, L17
K=4 LP 246.7 L8, L17, L18, L41 L16
K=5 LP 292 L8, L16, L17, L18, L41 L15
K=6 LP 304.6 L8, L16, L17, L18, L29, L41 L3
K=7 LP 376.6 L8, L15, L16, L17, L18, L29, L41 L26, L21, L5
K=8 LP 376.6 L3, L8, L15, L16, L17, L18, L29, L41 L20, L19
K=8 MBLP 403.8 L8, L15, L16, L17, L18, L19, L20, L41 L29, L27, L25, L23, L11, L1
K=9 LP 403.8 L3, L8, L15, L16, L17, L18, L19, L20, L41 L65, L30, L22, L6, L7
K=9 MBLP 416.8 L3, L5, L8, L15, L16, L17, L18, L21, L41

K=10 LP 416.8 L1, L3, L5, L8, L15, L16, L17, L18, L21, L41
K=10 MBLP 416.8 L3, L5, L8, L15, L16, L17, L18, L21, L26, L41
K=11 LP 416.8 L1, L3, L5, L8, L15, L16, L17, L18, L21, L26, L41
K=11 MBLP 416.8 L3, L5, L6, L8, L15, L16, L17, L18, L21, L22, L26
K=12 LP 416.8 L3, L5, L6, L7, L8, L15, L16, L17, L18, L21, L22, L26
K=12 MBLP 416.8 L3, L5, L8, L15, L16, L17, L18, L21, L26, L30, L41, L65
K=13 LP 416.8 L1, L3, L5, L8, L15, L16, L17, L18, L21, L26, L30, L41, L65
K=13 MBLP 436.8 L8, L11, L15, L16, L17, L18, L19, L20, L23, L25, L26, L27, L41
K=14 LP 436.8 L3, L8, L11, L15, L16, L17, L18, L19, L20, L23, L25, L26, L27, L41
K=14 MBLP 449.8 L3, L5, L8, L11, L15, L16, L17, L18, L21, L23, L25, L26, L27, L41

3.8 without the problem type, as MBLPRank solves all problems as MBLPs and

determines the priority of lines based on the count of lines in the repository. The

elapsed time for MBLPRank was 37.3 minutes.

Table 3.9: MBLPRank Repository for 57-Bus System (80 Lines)
(MW) obj. val. Lines High Priority Lines

M
B

L
P

R
an

k

K=1 75.6 L18 L18
K=2 131.2 L18, L41 L41, L8
K=3 197 L8, L18, L41 L17
K=4 246.7 L8, L17, L18, L41 L16, L15
K=5 297.6 L8, L15, L16, L17, L41 L26, L21, L5, L3
K=6 367.3 L8, L15, L16, L17, L18, L41 L27, L25, L23, L20, L19, L11
K=7 376.6 L8, L15, L16, L17, L18, L29, L41 L65, L30, L29, L22, L6
K=8 403.8 L8, L15, L16, L17, L18, L19, L20, L41
K=9 416.8 L3, L5, L8, L15, L16, L17, L18, L21, L41

K=10 416.8 L3, L5, L8, L15, L16, L17, L18, L21, L26, L41
K=11 416.8 L3, L5, L6, L8, L15, L16, L17, L18, L21, L422, L26
K=12 416.8 L3, L5, L8, L15, L16, L17, L18, L21, L26, L41, L65
K=13 436.8 L8, L11, L15, L16, L17, L18, L19, L20, L23, L25, L26, L27
K=14 449.8 L3, L5, L8, L11, L15, L16, L17, L18, L21, L23, L25, L26

Table D.3, in Appendix D, shows randomly chosen 37 instances of the 57-Bus

system. Running time for each of the proposed heuristics is shown along with the de-

viation from the global optimal solution. LPRank’s performance was the best among

the proposed heuristics, as it obtained global optimality in 6 instances. Moreover, the
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maximum absolute deviation for LPRank was 24% from the global optimal solution

with significant time savings compared to the enumeration technique. HybridRank

obtained global optimality in 3 instances with maximum deviation of 52.76%, while

MBLPRank obtained global optimality in 11 instances with maximum deviation of

247%. It is worth mentioning that the computational time difference between the

heuristics and accelerated enumeration algorithm might not be significant for small

instances as can be seen in Tables D.1 and D.2. Nevertheless, it becomes much more

significant for large instances as evident in Table D.3.

3.5 Conclusions

In this paper we present a new class of tri-level mixed integer linear programming.

We discuss both its dual and KKT reformulations and present some structural anal-

ysis properties. Given the complexity of the problem, we present three solution

approaches as well as an exact enumeration method, for benchmarking purposes.

As an illustration, the solutions approaches were applied to improve the resilience

of three different electrical transmission networks that varied in size. Our proposed

algorithms provided optimal solutions in most of the test instances. Moreover, they

proved to offer a good substitute when obtaining exact solutions is more computa-

tionally expensive for large problems instances.

The use of multi-level programming is becoming more prominent due to the in-

crease of decentralized decision-making applications, which raises the need for future
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research works in this area pertaining to modelling and algorithm development. De-

pending on the application under study, meticulous modelling of the problem can

pave the way to solving it efficiently and precisely. Nevertheless, this is not always

applicable which raises the need to design different algorithms. Developing algo-

rithms for solving tri-level programming problems is still in its infancy, and it comes

with many challenges. One of the possible future extensions is to consider designing

decomposition methods. Wu & Conejo (2017) used a variation of Benders decompo-

sition, however it deviates from the classical Benders implementation and does not

guarantee optimality. We have performed preliminary tests using that approach on

our systems and found that it is not competitive both in terms of solution quality

and time. Therefore, there is a potential for developing efficient decomposition ap-

proaches that guarantee optimality. The authors are currently pursuing this line of

research. Another possible direction for future research is considering mixed-integer

decision variables in all levels, where strong duality theory fails and we have to rely

on weak duality for providing bounds. Using multi-parametric programming theo-

ries can be explored to develop algorithms, either in the general sense or suited to

specific multi-level programming applications such as dealing with multi-dimensional

knapsack constraints in more than one level. Furthermore, decision diagrams have

been used recently to solve optimization problems and can be further investigated

to be applied on discrete multi-level programming problems.
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Abstract

Bi-level and tri-level mathematical programmes have been used in a variety of im-

portant applications such as critical infrastructure defence, machine learning (e.g.,

hyper-parameter optimization, and reinforcement learning), pricing and revenue man-

agement, and energy. Despite the need for general-purpose solvers for multi-level

programmes, there has not been enough effort dedicated for algorithm develop-

ment of such solvers. This is mainly due to the challenging nature of multi-level

programmes that are proven to be NP-hard even in their most simplest case of

continuous bi-level linear programmes. Recently, there is an increasing interest in

developing general-purpose solvers for bi-level programmes to cope with the diverse

practical applications that are changing dynamically. This research work proposes

a general-purpose branch-and-bound algorithm capable of handling mixed-integer

variables in both levels of a bi-level linear programme. Moreover, it also solves a

general class of tri-level mixed-integer programmes with a convex optimization prob-

lem being at the most lower-level. The class of tri-level programmes handled by

our algorithm has been motivated by the important application of defending critical

electrical power transmission networks. Although, this is a special class of tri-level

programmes, the proposed algorithm can handle more general versions of tri-level

programmes. Furthermore, in an effort to enrich the bi-level mixed-integer library of

test problems and encourage knowledge transfer between different fields of research,

we provide a Matlab live editor to convert any electrical transmission network into
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a bi-level mixed-integer instance for algorithm testing purposes. We validate our

algorithm with 100 randomly-generated instances from the literature and use our

Matlab-based testing tool to generate instances for two electrical transmission net-

works.

175



Ph.D. Thesis - Ramy Abdallah McMaster University - DeGroote School of Business

4.1 Introduction

Multi-level decision-making, first introduced by Candler & Norton (1977), has been

regarded as an important planning phase as it organizes multiple decision-makers’

conflicting interactions in a hierarchical structure (Bard 2013). There are many

applications that deal with multiple decision-makers acting in a competitive envi-

ronment, and often with conflicting goals. Multi-level programmes allow us to model

hierarchical optimization problems where decisions are made in a sequential fashion.

Each decision-maker at a specific level affects the decisions made at the subsequent

lower-levels in addition to the utility/payoffs at the upper-levels.

In this research work, we deal with bi-level linear optimization problems; which

are proven to be NP-hard by Jeroslow (1985), and a special class of tri-level prob-

lems that can be reduced to a bi-level mixed-integer linear programme (BMILP).

Consequently, we mainly deal with two decision-makers: a leader who takes the first

decision, and then the follower, affected by the leader’s decisions, optimizes its cor-

responding objective function. Hence, the optimization problem from the leader’s

perspective can be viewed as a nested optimization programme, having the follower’s

problem as an inner-problem. As such, these multi-level problems can be viewed as

sequential Stackelberg games von Stackelberg (2011) with perfect information, as

both objective functions, upper-level, and lower-level constraints are known to both

players; thus the leader can anticipate the follower’s decisions and vice versa.

Multi-level optimization has been used to model practical applications such as

cross-dock truck scheduling (Konur & Golias 2013), facility location (Cao & Chen

2006), bi-level knapsack and capacitated lot-sizing (Lozano & Smith 2017), taxation
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and highway pricing (Labbé et al. 1998), interdiction games (Fischetti et al. 2019),

defending critical infrastructure (Alvarez (2004), Alguacil et al. (2014), Fakhry et al.

(2022)), and natural gas planning (Dempe et al. 2011). Nevertheless, despite this

increasing interest, and growing number of applications, there is a paucity of algo-

rithms for general-purpose bi-level optimization solvers. Motivated by the work of

(Bard & Moore 1990, Wen & Yang 1990, Xu & Wang 2014, Fischetti et al. 2017,

Kleinert, Labbé, Plein & Schmidt 2021), we propose a general-purpose branch and

bound algorithm for solving BMILPs. The driving application for our algorithm is

that of protecting critical infrastructure (Brown et al. 2006, Arroyo & Galiana 2005,

Arroyo 2010, Akbari-Jafarabadi et al. 2017, Alvarez 2004) with a focus on defend-

ing electrical power grids. Operations of other critical infrastructure, such as water

and roads networks, are interdependent on electrical transmission networks, Thus,

ensuring a reliable operation of electrical power grids is often given high priority for

governments.

The motivation for using a branch-and-bound (B&B) approach for defending

electrical power grids is three-folds:

• Finding alternative solutions that would enhance the set of options available

for the leader (i.e., first decision-maker) which would protect the transmission

network against worst-case scenarios in case of operational hidden constraints,

that might impede the original fortification plan.

• Most recent research work done on protecting critical infrastructure (e.g., Yuan

et al. (2014), Davarikia & Barati (2018), Davarikia et al. (2020)), especially

that on electrical transmission networks, used a column-and-constraint (C&C)
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generation algorithm or a variation of the Benders algorithm (Wu & Conejo

2017) with no guarantee of reaching optimal solutions. These algorithms are

known to require fine tuning of some parameters (e.g., gap between lower-

bound and upper-bound, and penalty values) to converge. Such tuning might

differ from one electrical network to another, making the available algorithms

dependent on the specific networks they were developed for. There is a need

for a general-purpose algorithm for protecting electrical transmission networks

that can determine all optimal strategies.

• The B&B algorithm would pave the way for efficient and exact solutions meth-

ods for protecting electrical transmission networks by offering insights on nodes’

characteristics that contain optimal solutions.

Furthermore, in addition to the aforementioned contributions from an application

perspective, we make the following contributions from a computational and algorith-

mic perspective:

• We present a branch-and-bound algorithm with a new branching rule which can

be used as a general-purpose bi-level mixed-integer linear programme solver.

• We test our algorithm on a test-bed of randomly generated instances from the

literature. We report on computational efficiency in addition to the numbers

and types of relaxation problems solved to reach the optimal solution(s).

• We test our algorithm on a specific class of tri-level problems which can be

reduced to a mixed-integer bi-level programme.
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• To enrich the test bed of bi-level mixed-integer linear problems, we provide

a Matlab live editor that converts any electrical transmission network to a

bi-level mixed-integer programme instance in the context of defending that

network against attacks/disruptions.

In the sequel, we provide necessary background and definitions in Section 4.2.

Section 4.3 includes a detailed review of the relevant literature. We introduce def-

initions, assumptions and algorithmic details of the proposed B&B in Section 4.4.

Numerical results are presented in Section 4.5. Finally, we draw conclusions and

provide directions for future research in Section 4.6.

4.2 Background

First, let us a consider a generic BMILP which can be defined as follows

max
x,y

cT
x x + cT

y y (4.1)

s. t. GT
x x +GT

y y ≤ q, (4.2)

xj integer ∀ j ∈ Jx, (4.3)

y ∈ arg max
y′ ∈Rn2

{dT y
′ : A x +B y

′ ≤ b, 0 ≤ y
′ ≤ U, y

′

j integer ∀ j ∈ Jy},

(4.4)
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where x ∈ Rn1 , y ∈ Rn2 , while cx, cy, Gx, Gy, q, d, A,B, b, and U are given matrices of

appropriate sizes. Furthermore, Jx and Jy contain the indices of the integer variables

in x and y, respectively. In case of degeneracy in the follower’s sub-problem (i.e.,

multiple optimal solutions), we resolve the degeneracy in favour of the leader, i.e.,

we adopt an optimistic approach, (Loridan & Morgan 1996), rather than adopting a

pessimistic approach, where we resolve degeneracy against the leader’s payoffs (Liu

et al. 2018).

To aid us in the presentation of our algorithm and relate it to the extant liter-

ature, we make the following formal definitions. We start by the feasible regions in

Definition 4.2.1.

Definition 4.2.1 (Constraint Regions). A BMILP has three constraint regions:

• The first-level constraint region:

X = {x ∈ Rn1 : GT
x x +GT

y y ≤ q, xj integer ∀ j ∈ Jx}. (4.5)

• The second-level constraint region:

Y = {y ∈ Rn2 : A x +B y ≤ b, 0 ≤ y ≤ U, yj integer ∀ j ∈ Jy}. (4.6)

• The bi-level constraint region:

S = {(x,y) : x ∈ X ,y ∈ Y}. (4.7)
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Given a feasible leader’s decision vector x, we are interested in the corresponding

bi-level constraint region. Hence, we define the projection of the S space onto that

of the leader in Definition 4.2.2.

Definition 4.2.2 (Projection of bi-level constraint region). The projection of S

onto the leader’s decision space is

S(X ) = {x ∈ X : ∃ y such that (x,y) ∈ S}. (4.8)

For a leader decision vector x ∈ S(X ), we are interested in finding an optimal

follower’s response vector. We define the set of such responses in Definition 4.2.3.

Definition 4.2.3 (Rational reaction set). The rational reaction set of the fol-

lower for a fixed leader decision vector x ∈ S(X ) is

L(x) = {y ∈ Y : y ∈ arg max
y′ ∈Rn2

{dT y
′}. (4.9)

Using Definitions 4.2.1–4.2.3, in Definition 4.2.4 we define the set of possibilities

for the leader if given control on all decision variables.

Definition 4.2.4 (Inducible region). The inducible region is

I(x,y) = {(x,y) ∈ S, y ∈ L(x)}. (4.10)
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Using the terms in Definitions 4.2.1–4.2.4, the generic BMILP 4.1 can be ex-

pressed in a compact form as:

max
x,y

cT
x x + cT

y y s. t. x,y ∈ I(x,y). (4.11)

Next, we define the concepts of BMILP feasibility and optimality in Definitions

4.2.5 and 4.2.6.

Definition 4.2.5 (BMILP feasibilities (Moore & Bard 1990)). A pair of decision

vectors (x̂, ŷ) is bi-level feasible if (x̂, ŷ) ∈ I(x̂, ŷ).

Note that (x̂, ŷ) is bi-level feasible implies that ŷ ∈ L(x̂) and x̂ ∈ S(X ).

Definition 4.2.6 (BMILP Optimality (Moore & Bard 1990)). A pair of decision

vectors (x∗,y∗) is bi-level optimal if (x∗,y∗) is bi-level feasible and for all feasible

pairs (x̂i, ŷi) ∈ I(x̂i, ŷi),

cT
x x∗ + cT

y y∗ ≥ cT
x x̂i + cT

y ŷi

.

Finally, we state BMILP 4.1 in its marginal-function formulation (Outrata

1990), also known as the value-function formulation (VF-BMILP) (Dempe

2002, Dempe et al. 2012):

max
x,y

cT
x x + cT

y y (4.12)
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s. t. GT
x x +GT

y y ≤ q, (4.13)

A x +B y ≤ b, (4.14)

0 ≤ y ≤ U (4.15)

xj integer ∀ j ∈ Jx, (4.16)

yj integer ∀ j ∈ Jy, (4.17)

dT y ≥ ϕ(x), (4.18)

where for a given feasible leader’s decision vector, x ∈ S(X ), the value-function

for the follower’s problem can be calculated as ϕ(x) = max
y∈L(x)

dT y. Dropping the

constraint 4.18 in VF-BMILP will lead to the high-point problem (HPP) relaxation

as first defined by Bialas & Karwan (1984), and then used by Moore & Bard (1990).

There has been different versions of the HPP which might differ depending on the

algorithm developed. For instance, (Bialas & Karwan (1984), Moore & Bard (1990),

Fischetti et al. (2017)) used the same version of the HPP, while (Xu & Wang (2014),

Liu et al. (2021)) used a different version. In the next section we will clearly state

our version for the HPP, and its relaxations.

4.3 Literature Review

We briefly review the relevant literature to bi-level programming, and the special

class of tri-level programming that is under consideration.
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4.3.1 Bi-Level programmes

Motivated by the need for modelling decentralized planning, the work done by Bialas

& Karwan (1984) motivated the need for efficient and tractable algorithms for solv-

ing the bi-level problem. Moore & Bard (1990) established that it is not possible to

obtain tight upper-bounds from the natural relaxation. By providing examples and

toy problems, they established that two of the three well known fathoming rules used

in B&B in single-level mixed-integer programming cannot be used in BMILP. In their

influential work, Moore & Bard (1990) provided an implicit enumeration technique

for finding bi-level feasible solutions, and a series of heuristics that offer a trade-

off between quality and efficiency. In (Bard & Moore 1990), a B&B approach was

suggested that makes use of exploiting the follower’s Karush-Kuhn-Tucker (KKT)

conditions; the algorithm enforces the underlying complementary slackness condi-

tions suggested by Fortuny-Amat & McCarl (1981). A special algorithm developed

for binary decision variables for the leader that affects real-valued decision variables

for the follower has been proposed by Wen & Yang (1990) where exact and heuristic

solutions were provided for a special class of linear bi-level programmes. Moreover,

Saharidis & Ierapetritou (2009) presented a decomposition approach for BMILP in

which they used a variation of Benders decomposition approach. The master- and

sub-problems are designed as a relaxation and restriction of BMILP, where they in-

teract by adding cuts using Lagrangian information from the current sub-problem.

Zeng & An (2014) also presented a computing scheme based on a decomposition

strategy by converting BMILP into a single-level reformulation and using a column-

and-constraint generation algorithm. Xu & Wang (2014) presented an exact B&B
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algorithm with three simplifying assumptions for tractability: 1) all variables in the

decision vector are required to be integral, 2) variables are bounded from below and

above, and 3) the coefficient matrix A in BMILP 4.4 is integral. Kleniati & Adjiman

(2014) presented an algorithm called branch-and-sandwich, in which two solution

spaces corresponding to the first- and second-levels, are explored using a single B&B

tree. In particular, two pairs of upper- and lower- bounds are computed: one for

the objective function of the leader, and the other pair is for the follower’s objective

value. Motivated by recent efforts at that time, Fischetti et al. (2017) suggested a

new branch-and-cut (B&C) algorithm for BMILP, in which they provided specific

pre-processing strategies, valid linear inequalities, along with separation procedures.

Recently, Tahernejad et al. (2020) presented a generalized B&C algorithmic frame-

work for solving BMILPs; in which features from single-level and bi-level algorithms

are combined. The aim was to produce a flexible and robust framework for solving

a variety of different BMILPs. Furthermore, based on the fact that B&C has proven

to be more powerful than B&B in single-level mixed-integer optimization problems,

Kleinert, Labbé, Plein & Schmidt (2021) were motivated to review existing cuts for

linear bi-level problems and introduced a new valid inequality that examines the

strong duality constraint of the follower’s level, and strengthened variants of the

inequality derived from McCormick envelopes. Most recently, Liu et al. (2021) pre-

sented an enhanced branching rule based on the algorithm developed by Xu & Wang

(2014). However, the new branching rule might discard bi-level feasible solutions

if the lower-level problem possesses alternative optima, which may in-turn lead to

bi-level feasibility (i.e., sub-optimality in BMILP).
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From the perspective of bi-level integer linear programmes (BILPs), Bard (2013)

presented an algorithm for the binary case for both leader and follower decision

variables. This was achieved by converting the leader’s objective function to a

parametrized constraint and solving the re-formulated problem to produce a bi-level

feasible solution. After which, improvements are gradually sought leading to the

global optimum. DeNegre & Ralphs (2009) proposed a B&C approach for BILP,

which improves on the B&B approach proposed by Bard & Moore (1990) by adding

cutting planes to provide tighter bounds. It is worth mentioning that this approach

does not require special branching strategies and was implemented through publicly

available linear solvers. Furthermore, using almost the same branching rules stated

in (Xu & Wang 2014), but taking advantage of the integer requirements in BILP,

Wang & Xu (2017) proposed the watermelon algorithm, in which a polyhedron is

formed to encapsulate bi-level infeasible solutions. The complement of this polyhe-

dron is then taken as disjunction hyperplanes in a B&B framework. Indeed, the area

of including cuts or valid inequalities to bi-level programmes is a fertile area for re-

search. Influential papers that discuss the application of including valid inequalities

and cuts include (Fischetti et al. 2016) and (Fischetti et al. 2018) that are based on

the idea of convexity cuts (Balas (1971), Glover (1973, 1974)).

Other approaches relying on parametric programming algorithms to solve bi-level

quadratic and BMILPs have been proposed in the literature. Fáısca et al. (2007) sub-

stituted the rational reaction sets, L(x), in the leader’s problem and transformed the

bi-level problem into a set of independent quadratic, linear or mixed-integer linear

problems that can be solved to optimality. Mitsos (2010) proposed an algorithm
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for the global optimization of non-linear bi-level mixed-integer programmes where

it relies on a lower-bound obtained by solving mixed-integer non-linear programmes

and a parametric upper-bound to the optimal solution function of the lower-level

programme.

The majority of the research done on bi-level programming deals with the opti-

mistic case, i.e., in case of a non-unique rational response (e.g., maximizes/minimizes

payoffs) for the follower, the strategy that is in favour of the leader would be cho-

sen. From a game-theory perspective, this is known as a strong Stackelberg game

(Breton et al. 1988). On the other hand, if the follower picks a strategy that is

against the leader’s payoffs, this is considered a weak Stackelberg game (Loridan

& Morgan 1996) which corresponds to a pessimistic two-level optimization problem

(Dempe 2002, Liu et al. 2018). It should be noted that Leitmann (1978) introduced

the concept of a generalized Stackelberg game, accounting for non-unique followers’

responses, after which Breton et al. (1988) introduced a formal definition for the

strong-weak Stackelberg games. Furthermore, obtaining the optimality conditions

for bi-level linear programming problem has been discussed in the literature under

the assumption of uniqueness (Bard 1984), optimistic (Dempe et al. 2006, Gadhi &

Dempe 2012), and pessimistic (Dempe et al. 2014) approaches. Bi-level programmes

are often re-formulated using KKT conditions for the lower-level problem, if it is

a parametric convex optimization problem, resulting in a single-level mathematical

programme with complementary slackness conditions. The question of equivalence

of both programmes has been discussed in (Dempe & Dutta 2012) and showed that

186



Ph.D. Thesis - Ramy Abdallah McMaster University - DeGroote School of Business

it depends on the existence of Slater’s constraint qualification for the lower-level

problem for the optimistic approach. The work done by Aussel & Svensson (2019)

discusses the equivalence in the pessimistic approach.

For a comprehensive review of bi-level programming, solution approaches and

practical applications, the interested reader may refer to the following reviews:

• Wen & Hsu (1991) recaps basic models, applications, solution approaches for

the linear bi-level programming problems.

• Ben-Ayed (1993) gives a review of the features of linear bi-level programmes,

applications, algorithms and clarifies some confusing representations in the

literature.

• Dempe (2003) provides some main direction of research highlighting re-formulated

bi-level programmes with complementary slackness conditions, difficulties aris-

ing from non-uniqueness of followers’ optimal solutions, and on optimality con-

ditions.

• The work done in (Colson et al. 2005, 2007) gives an introductory survey of bi-

level programmes motivated by simple applications, main properties of different

cases (e.g., linear-quadratic), and an overview of solution approaches.

• Lu et al. (2016) review multi-level decision-making with a focus on bi-level

programming.

• Liu et al. (2018) review the definitions, properties of the pessimistic bi-level

optimization approach and follows up with a discussion on solution approaches
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and some practical applications.

• Kleinert, Labbé, Ljubić & Schmidt (2021) review bi-level algorithmic approaches

that make use of mixed-integer programming techniques with a focus on lin-

ear lower-level problems. They provide a review on solution approaches for

mixed-integer bi-level problems with integer constraints in the follower’s level.

4.3.2 A Class of Tri-Level programmes

Our proposed B&B approach can solve a class of tri-level linear programmes (TLPs);

those that can be reduced to an equivalent BMILPs. Such TLPs have a convex linear

problem in their third-level that satisfies Slater’s constraint qualification (Dempe &

Dutta 2012). The re-formulation of TLPs into an equivalent BMILP can be done

using two approaches: 1) the duality approach that adds primal and dual constraints,

and a strong duality constraint of the third-level problem to the second-level; and

2) the KKT approach that involves adding the KKT conditions as constraints in

the second-level problem. It is worth mentioning that the former approach might

be computationally superior over the latter; due to the systematically introduced bi-

linear terms from the complementary slackness conditions. A proof of the equivalence

of both approaches for TLPs can be found in the Appendix of (Fakhry et al. 2022).

4.3.3 Contributions

The class of tri-level programmes discussed in (Fakhry et al. 2022) is only a sub-

class of the TLPs that our proposed B&B approach can handle. In particular, our
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algorithm can handle mixed-integer variables with linear constraints in both first- and

second- levels, as long as the third-level has continuous decision variables with linear

constraints. Furthermore, each decision-level can have its own objective function

(i.e., different agendas), unlike (Fakhry et al. 2022) where the proposed heuristics

can handle only shared objectives that are a function of the third-level decision

variables. Nevertheless, since the application of defending electrical transmission

networks (i.e., the defender-attacker-defender model) is a sub-class of TLPs that our

proposed approach can tackle, we validate the results obtained in (Fakhry et al.

2022). Moreover, with a focus on the defender-attacker-defender (DAD) model, we

outline how our proposed approach differs from other recently developed algorithms

in Table 4.1. In particular, we capitalize on the nature of the B&B structure in terms

of providing a guarantee of bi-level feasibility, and optimality according to Definitions

4.2.5, and 4.2.6. It is worth mentioning that all research works mentioned in the first

column of Table 4.1 handle a TLP that can be reduced to BMILP through the

aforementioned methods, thus we call the reduced TLP as a bi-level programme.

All research works in Table 4.1 provide optimal/sub-optimal (i.e., bi-level feasible)

solutions very efficiently with no guarantee or proof of bi-level optimality. This is

due to the fact that they rely on efficient decomposition approaches that resembles

Benders decomposition (Wu & Conejo 2017), or C&C generation (Davarikia et al.

2020, Xiang et al. 2020, Davarikia & Barati 2018, Yuan et al. 2014). These approaches

are known to require fine tuning that might differ from an electric transmission

network to another.

Not only, does our proposed approach provide a guarantee of bi-level optimality,
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Research Work Bi-level Feasibility Bi-level Optimality Alternative Optima General Solver
Yuan et al. (2014) ✓ ✗ ✗ ✗

Wu & Conejo (2017) ✓ ✗ ✗ ✗
Davarikia & Barati (2018) ✓ ✗ ✗ ✗

Xiang et al. (2020) ✓ ✗ ✗ ✗
Davarikia et al. (2020) ✓ ✗ ✗ ✗
Fakhry et al. (2022) ✓ ✗ ✗ ✗
Proposed Approach ✓ ✓ ✓ ✓

Table 4.1: Contributions from an Application Perspective.

it outlines alternative optimal strategies (if they exist) that the defender can utilize in

case there are hidden operational constraints impeding the fortification of a specific

hardening strategy. Moreover, our proposed approach is generalized to solve TLPs

that are reducible to BMILPs. Thus, it can be easily tuned to accommodate differ-

ent objective functions for the leader and follower in addition to constraints having

follower decision variables in the first-level problem. Furthermore, we develop a Mat-

lab live editor in which the user can simply input a comma-separated values (CSV)

file, with the attributes of an electrical transmission network, to obtain as output

the DAD model in a BMILP format ready to be fed to any general-purpose BMILP

solver. More details on the publicly available Matlab live editor are mentioned in

Section 4.5.

4.4 Algorithm

In this section we provide details on the algorithm including assumptions, definitions

and sub-procedures.
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4.4.1 Assumptions

We make the following assumptions about the generic BMILP 4.1:

Assumption 4.4.1 (Boundedness). The leader decision vector, x, is bounded and

can have continuous variables as long as they do not have a direct effect on the

follower’s optimal reaction set, L(x).

The boundedness assumption 4.4.1 ensures finite termination of the algorithm.

The existence of the leader’s continuous variables would interfere with the branching

rule, which potentially might lead to discarding bi-level feasible solutions. For a sim-

ilar reason, in Assumption 4.4.2, we enforce the integrality of the followers constraint

matrix coefficients.

Assumption 4.4.2 (Integrality). Matrix A in the follower’s problem 4.4 consists of

integer inputs.

Having non-integer inputs for matrix A will affect the branching rule, potentially

leading to having open sets, missing bi-level feasible, and possibly optimal solutions.

4.4.2 Definitions

We introduce definitions for the B&B algorithm to facilitate the presentation of the

main procedures in the algorithm.

Definition 4.4.1 (B&B sub-problem, B(l, u, w)). Each node in the B&B algorithm

represents a sub-problem, B(l, u, w), that is a parametric BMILP with specific bounds
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(l, u, w) and can be defined as follows:

max
x,y

cT
x x + cT

y y (4.19)

s. t. GT
x x +GT

y y ≤ q, (4.20)

A x +B y ≤ b, (4.21)

l ≤ A x ≤ u, (4.22)

dT y ≥ w, (4.23)

xj integer ∀ j ∈ Jx, (4.24)

y ∈ L(x). (4.25)

It is worth mentioning that B(l, u, w) is equivalent to the generic BMILP 4.1

for (l = −∞, u = ∞, w = −∞). Moreover, note that problem B(l, u, w) resembles

VF-BMILP 4.12 except for constraints 4.22, and 4.23. These two constraints, that

have the parameters (l, u, w), will be later used for branching children nodes from

the parent node.

Next, we introduce our definition for the HPP, which is a combination of the

VF-BMILP 4.12 and the HPP version used by (Moore & Bard 1990).

Definition 4.4.2 (High-point problem, HPP). The HPP, H(l, u, w), is a relaxation

of the parametric BMILP node problem B(l, u, w). In particular, the follower’s deci-

sion vector, y), belongs to the second-level constraint region, Y, instead of the optimal

reaction set, L(x), as follows:

max
x,y

cT
x x + cT

y y (4.26)
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s. t. GT
x x +GT

y y ≤ q, (4.27)

A x +B y ≤ b, (4.28)

l ≤ A x ≤ u, (4.29)

dT y ≥ w, (4.30)

xj integer ∀ j ∈ Jx, (4.31)

y ∈ Y . (4.32)

It should be noted that our Definitions 4.4.1 and 4.4.2 were inspired by the work

done by Xu & Wang (2014). However, we allow for the presence of continuous

variables in the leader’s decision vector x, as long as it satisfies Assumption 4.4.1.

According to Lemmas 5–8 in Xu & Wang (2014), if the parametric HPP relaxation

H(l, u, w) is unbounded, then the corresponding parametric node problem B(l, u, w)

can be infeasible, unbounded, or have a finite optimal solution based on the solution

of a mixed-integer linear programme (MILP) to find the cause of the unboundedness,

as defined in 4.4.3.

Definition 4.4.3 (Unboundedness MILP-U). The unboundedness MILP-U must

have a feasible solution, if the parametric HPP H(l, u, w) is unbounded and can be

defined as follows:

max
∆y

dT ∆y (4.33)

s. t. GT
y ∆y ≤ 0, (4.34)

B ∆y ≤ 0, (4.35)
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∆y ≥ 0, (4.36)

∆yj integer ∀ j ∈ Jy. (4.37)

It is clear from the definition of MILP-U that it searches to find the optimum value

of an extreme ray ∆y, hence MILP-U would have a feasible solution if and only if the

parametric HPP H(l, u, w) is unbounded. Moreover, since MILP-U is independent

of the node parameters (l, u, w) and is a function of the generic BMILP instance

parameters, we do not need to do this check more than once for each instance. If

MILP-U has a feasible solution, then the resolution of the unboundedness of the

parametric HPP, H(l, u, w), stems from the lower-level problem (LLP) 4.4, due to

Assumption 4.4.1. In particular, depending on the objective value direction of MILP-

U , the generic BMILP 4.1 can be unbounded if dT ∆y = 0, have a finite optimal

solution if dT ∆y < 0, or infeasible if dT ∆y > 0 because LLP is unbounded.

4.4.3 Algorithm Main Procedures

We provide a general overview of the B&B algorithm by introducing its four main

procedures:

• Initialization procedure: we start by loading the parameters of the BMILP

instances (i.e., matrices for the generic BMILP 4.1), followed by creating the

root node and initializing bounds, (l, u, w). Furthermore, we initialize reposito-

ries for reporting on the types and numbers of nodes explored, number and type

of relaxation problems solved, and finally the overall bi-level instance type,i.e.,

optimal, infeasible, or unbounded.
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• Checking nodes procedure: this function evaluates waiting nodes to be

explored, eliminates nodes if certain conditions are met, and reports the final

bi-level instance type.

• HPP procedure: this procedure invokes a mixed-integer linear programme

solver for solving a parametric HPP, H(l, u, w), and then evaluates the output

to determine the next steps depending on the solution status of the solver.

• LLP procedure: this function invokes a mixed-integer linear programme

solver for solving LLP 4.4, the follower’s problem. Consequently, determin-

ing an optimal reaction response for the follower, y ∈ L(x), and proceed to

the branching rule if specific conditions are met.

The algorithm overview is presented in the flowchart in Figure 4.1. In the re-

mainder of this section, we provide more details on each of the procedures and the

flow between them.

For each BMILP instance, we have the input matrices in 4.1- 4.4. We denote

ψ∗ as the bi-level optimal objective value 4.1 and (x∗,y∗) as the corresponding bi-

level optimal pair. For each BMILP instance, we report the triplet (x∗,y∗, ψ∗). We

denote the number of nodes waiting in the repository N and the flag for unbound-

edness F . This flag is set to 1 if the unboundedness MILP-U is solved, and zero

otherwise. For each BMILP instance, the B&B algorithm creates nodes through the

branching rule to search for feasible/optimal solutions (if they exist) resulting in

(lk, uk, wk) for each node problem k ∈ {1, . . . , N}. Additionally, for each parametric

node problem B(l, u, w), we store the following data: parent node number, node ID,

195



Ph.D. Thesis - Ramy Abdallah McMaster University - DeGroote School of Business

In
it

ia
li
za

ti
o

n
In

it
ia

li
za

ti
o

n
C

h
e

c
k

in
g
 N

o
d

e
s

C
h

e
c
k

in
g
 N

o
d

e
s

H
ig

h
t 

P
o

in
t 

P
ro

b
le

m
 

H
ig

h
t 

P
o

in
t 

P
ro

b
le

m
 

L
o

w
e

r 
L
e

v
e

l 

P
ro

b
le

m

L
o

w
e

r 
L
e

v
e

l 

P
ro

b
le

m

Start
Create Root Node

Initialize Upper Bounds

Initialize Decision 

Variables and 

Repositories

Check Existing 

Node Repository

Remove Nodes with Inconsistent Bounds

Remove Nodes with less obj. val. than Incumbent

Update Remaining Number of Nodes

Is Repository of 

Nodes Empty?

Do we have 

a Solution

Report Optimal 

Solution to BMILP

Report Infeasible 

BMILP
Solve MILP for 

Unboundedness

Check Unboundedness 

Flag

Report Unbounded 

BMILP

Obj. val. 

of MILP =0

Set Unboundedness 

Flag to FALSE

Select Node From Repository

Remove Node 

Update Remaining Nodes

Yes Yes

No

No

No

Yes

No

Yes

Solve HPP Is HPP unbounded Is HPP Infeasible

Solve LLP 

L(xH)

No

Get Feasible 

Solution
Yes

Yes

Is LLP unbounded

Yes

Let yL denote 

optimal solution 

to L(xH)

 dT yL  = dT yHNo
Update optimal 

solution
Yes Is HPP unbounded

Branch new 

m2+1 Nodes 

according to

 branch rules

Update 

Repository
Yes

No

(xH,yL) satisfy 

leader constraints & 

better than incumbent

No

No

Let (xH
,y

H
) denote an 

optimal solution to HPP

Solution Less than 

Value of Incumbent

Yes

No

No

Update optimal 

solutionYes

End

End

Figure 4.1: B&B Algorithm Chart.

node status, parent node objective value pobj, the bounds for each node (lk, uk, wk),

output from the parametric HPP problem (xH ,yH , zH) (if it exists), output from

solving LLP(xH) 4.4:(yL, zL) and LLP problem status (if applicable).

4.4.4 Checking Nodes Procedure

The flow chart for this procedure is depicted in Figure 4.2. It is a critical part of

the algorithm where we assign parametric node problem B(lk, uk, wk) to the HPP

procedure. Depending on the output of the HPP procedure, the node problem might

be discarded or sent to the LLP procedure for further branching. This can be seen
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Figure 4.2: Checking and Updating Nodes in Repository.

at the bottom-left of Figure 4.2. For any BMILP instance, the process starts with

root node B(l1, u1, w1) and initialized bounds, l1 = −∞ and u1 = w1 =∞, that are

then fed into the HPP and LLP procedures for branching. The process continues

with checking nodes in the repository. Each node k is characterized with three

parameters (lk, uk, wk) obtained from branching. Checking nodes procedure removes

nodes with inconsistent bounds (i.e., lkj > uk
j ) for any constraint j in the constraint

set 4.22. Another check occurs on the parent node objective value pobj to see if

any nodes can be discarded depending on the incumbent solution (i.e., best solution

found so far). This is followed up with updating the number of remaining nodes in

the repository. If the number of remaining nodes N = 0 and we have a solution

(i.e., (x∗,y∗, ψ∗)), we report the optimal solution to the current BMILP instance.

Otherwise, we report infeasibility. However, if the repository of nodes is not empty,

we check the unboundedness of the BMILP instance by solving the unboundedness
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MILP-U and set the unboundedness flag to 1 for that BMILP instance. Thus, no

computational time is wasted on resolving problems. If the objective value of MILP-

U is equal to zero, i.e., dT ∆y = 0, then we report the unboundedness of the

BMILP instance and set the unboundedness flag to true. Otherwise, we set the

unboundedness flag to false and proceed to select a node from the repository, remove

the node from the waiting list, and update the number of remaining nodes N . The

selected node with its corresponding parameters (lk, uk, wk) is passed to the HPP

procedure.

4.4.5 High Point Problem Procedure

We proceed by presenting a crucial proposition for the HPP procedure.

Proposition 4.4.1. Assuming an optimal solution (xH ,yH , zH) has been found

for the parametric HPP H(l, u, w), then B(l, u, w) will have an optimal solution

(xB,yB, zB) such that zH ≥ zB, i.e., zH is an upper-bound for B(l, u, w).

Proof. The definition of parametric node problem B(l, u, w) includes constraint 4.25

which necessitates that y has to be in the rational reaction set, i.e., y ∈ L(x)),

while the corresponding parametric HPP H(l, u, w) has exactly the same definition

except for constraint 4.32, which is a relaxation of 4.25 since y ∈ Y , the second-level

constraint region. Since both are maximization problems, H(l, u, w) has an optimal

solution, call it (xB,yB, zB), and since it is a relaxation of B(l, u, w) it follows that

zH ≥ zB.

Figure 4.3 shows the steps in the HPP procedure. It is invoked from the checking
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nodes procedure, where one of the waiting nodes in the repository is picked. Since

each node is represented by parametric node problem B(l, u, w), the parameters are

passed to H(l, u, w)) where a mixed-integer linear programme is solved.
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Figure 4.3: High Point Problem Procedure in B&B Algorithm.

Depending on the outcome from the solver’s solution status, the next steps are

determined:

• If H(l, u, w) is unbounded, then further examination is required by passing xH

to the LLP procedure. This particular node problem is marked as “Explored.”

• If H(l, u, w) is infeasible, then this particular node problem is marked as “Ex-

plored” and “Infeasible.”

• Otherwise, an optimal solution is found for HPP. The output is stored and

compared to the best solution found so far (if applicable). If zH ≥ ψ∗, then

there is a room for improvement or finding alternative optima and we proceed

with branching by passing xH to the LLP procedure. This node is marked

as “Explored” and “Integer Optimal.” Otherwise, if zH < ψ∗, then there is no
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room for improvement from this node and it is marked as “Better obj. Value

Found.”

Created 

Node

Better

Obj.

Value

Found

Inconsistent 

Bounds

Check 

Bounds

Explored 

Node

Infeasible

To Hight Point 

Problem Solver

Integer 

Optimal

No

Yes

From 

Branching

Figure 4.4: Node Labelling in B&B Algorithm.

Figure 4.4 shows the different labelling for nodes in the B&B algorithm. First the

node is created from branching, unless it is the root node, in the LLP procedure

and assigned a triplet of bounds (lk, uk, wk), depending on the branching rule. The

checking nodes procedure verifies the consistency of the bounds. In particular, if

lk > uk then the node is marked as “Inconsistent Bounds,” and the solver is not

invoked, which means that the node is removed from repository and not passed to

the HPP procedure. Otherwise, if the bounds are consistent, the node problem is

passed to the HPP procedure where the solver is invoked. The node is then marked
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as either “Explored,” with an additional tag of being “Infeasible,” “Integer Optimal”,

or the incumbent solution was better marking it as “Better Obj. Value Found.”

4.4.6 LLP Procedure

Figure 4.5 depicts the LLP procedure. It is invoked from the HPP procedure block

in two cases: 1) if the HPP problem is found unbounded, there might be a possibility

that the corresponding node problem might have a finite optimal solution, and 2) if

an integer optimal solution was found from HPP and there is a room for improvement

and so we proceed to branching Balas (1971) in search for a better objective value.

In Proposition 4.4.2, we present an important result for finding feasible and op-

timal bi-level solutions.

Proposition 4.4.2. Given an optimal solution, (xH ,yH , zH), from the HPP proce-

dure H(l, u, w), the LLP procedure admits bi-level feasible solutions.

Proof. From the definition of HPP, the leader’s objective value and constraints are

met optimally. We solve LLP(xH) 4.4 to get the follower’s decision vector yL which

belongs to the optimal reaction set for the follower, L(xH). We end up with three

options depending on yL:

• if dT yL = dT yH , we have a bi-level feasible solution and possibly optimal

depending on the value of the incumbent.

• Otherwise, we check if yL satisfies the leader constraints, and if so, we have

a bi-level feasible solution and possibly optimal depending on the value of the

incumbent.
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• If yL does not satisfy the leader constraints, then we proceed with branching

in search of a better objective value.
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Figure 4.5: Lower Level Problem Procedure in B&B Algorithm.

4.4.7 Branching Rules

Branching is included in the LLP procedure. When the LLP procedure is invoked

after solving the HPP we obtain a feasible solution (xH ,yH), if the HPP was found

to be unbounded, or an optimal solution to HPP (xH ,yH) that has a value better

than the incumbent.

Figure 4.6 depicts the interactions between HPP, LLP, and Branching rules. First,

a solution (xH ,yH) is obtained from the HPP procedure. The vector xH is then

passed to the LLP to obtain yL ∈ L(xH). It is worth mentioning that solving the
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Partitions: 

Partition: 

Fixing feasibilityFixing feasibility

OptimalityOptimality

HPP: 

,

LLP: 

}

Partition: 

}

Partitions: 

Figure 4.6: Branching Rules in B&B Algorithm.

LLP can only bear two results: either the LLP is unbounded yielding the BMILP

instance as infeasible or has an optimal solution (xH ,yL). The LLP cannot be infea-

sible because this would have resulted in an infeasible HPP and the node would have

been discarded at the HPP procedure stage. The branching rules implemented here

are needed to fix either feasibility or optimality of the bi-level solution by branching

in the follower’s feasible space (Balas (1971), Glover (1973)). Infeasibility is fixed

by reversing the inequalities of hyperplanes creating a node for each reversed hyper-

plane. In other words, if we have m2 constraints for the follower, the feasible region
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is divided in m2 partitions (i.e., k = 1, . . . ,m2) to fix infeasibility as follows:

Pk = {(x,y) : (Ax +ByL)i ≤ bi, ∀i ̸= k, (Ax +ByL)k > bk}.

Optimality from the follower’s perspective is handled by creating one last partition

(i.e., k = m2 + 1) as follows:

Pk = {(x,y) : Ax +ByL ≤ b, dT y ≥ dT yL}.

Hence each parametric node problem B(l, u, w) is divided into m2 + 1 nodes. Most

importantly, the branching is applied in a way guaranteeing the enumeration of all

possible feasible bi-level solutions and consequently the optimality of the incumbent.

4.5 Numerical Results

4.5.1 Randomly Generated Instances

Our proposed B&B algorithm was tested on randomly generated instances that were

first published in Xu & Wang (2014). The algorithm was able to solve all instances to

optimality. These randomly generated instances had the number of leader’s, n1, and

follower’s, n2, decision variables equal and incremented by a value of 50 from 10 to 460

variables. The constraint dimensions m1 and m2 were set to be 40% of n1. Since the

leader’s decision vector x is bounded, an upper-bound was chosen to be 10. Elements

of all matrices and vectors have been chosen to follow a uniform distribution where

Gx, Gy, A, and B are within [0, 10]; cx, cy, and d are within [−50, 50]; q is within
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[30, 130]; and b is within [10, 110]. Each element in the set Jy, which contains the

indices of integer decision variables for the follower, has been chosen independently

and randomly with a 50% chance. Furthermore, for each level of n1, ten random

instances were generated.

4.5.2 Matlab Live Editor

The Matlab Live Editor is a tool that can be used online and in Matlab for combining

code, output, and formatted text in an executable code notebook. In order to enrich

the BMILP instance library, we are making this notebook publicly available, which

can be used in Matlab and Matlab online. This notebook simply takes a CSV file that

contains the attributes of the electrical network needed for building the mathematical

programme for the defender-attacker-defender model. The output is a MAT file that

contains the matrices for a generic BMILP 4.1.

Figure 4.7 include the format of the CSV file, together with Matlab live editor file

should have sufficient information for users to generate BMILP instances for different

electrical networks. Next, we generate BMILP instances for two electrical networks

that have been used in the literature, and we validate our B&B algorithm results

with other methodologies used in the literature.

4.5.3 Five-Bus System

The first electrical transmission network is shown in Figure 4.8 and was used before

in Arroyo & Galiana (2005). It consists of 6 transmission lines, 5 generators and

5 buses. The loads are specified on each bus as well as the per unit reactance
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Figure 4.7: Flowchart for Formation of CSV File as Input for MATLAB Live Editor.

of each line. The BMVA (Base-Mega-Volt-Ampere) and BkV (Base-kilo-Volt) are

taken as 100 MVA and 138 kV, respectively. The maximum power flow (P̄ f
l ) in each

transmission line has been set to 100 MW, while the maximum and minimum power

(P̄ g
j , ¯

P g
j ) that a generator can produce is set to 150 and zero MW, respectively.

Moreover, transmission lines are numbered (squared boxes) as per Figure 4.8. The

number of Leader decision variables are 6, and the number of leader constraints is

1. The number of follower decision variables is 174, while the number of follower

constraints is 209. Table 4.2 summarizes the results for the B&B in comparison with
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Figure 4.8: Five-Bus electrical transmission network.

the modified enumeration algorithm (i.e., MEA) proposed in Fakhry et al. (2022).

The running time for MEA is significantly better than the B&B as seen in columns

4 and 5. This is due to three main reasons:

• The MEA algorithm is designed based on the structure of the attacker-defender

models with a warm-start solution technique that significantly reduces the non-

binary tree nodes visited, and as such it cannot be generalized beyond the scope

of those models.

• The B&B algorithm is able to find alternative optimal solutions (if they exist),

and consequently spending more time finishing the search tree.

• The branching rule used in the B&B algorithm grows exponentially with the

size of the follower’s constraints. In case of defending electrical power grids, all

constraints belong to the follower’s level making a huge search tree even in the

most simplest cases.
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Finding alternative optimal solutions can be useful in protecting critical infrastruc-

ture. It gives the planner the edge of having possibilities/alternatives of reducing

the worst case scenario. In the context of protecting electrical power grids, there

be might some hidden operational constraints that might impede implementing the

optimal defence strategy. Deeply buried underground cables are an example of such

difficulties, or cables that span long distances making it costly to defend or patrol.

Instance
Num.

Defense
Budget

Attack
Budget

Avg. Run-time
Node
(sec)

Avg. Run-time
Node

Enum. Alg. (sec)
Obj. Val.

(MW)
Def.

Ln. Num.
Att.

Ln. Num.
Num.

Created Nodes
Num.

HPP Solved
Num.

LLP Solved
Num.

Alt. Optima

1 0 1 0.04 0.1506 50 - 6 211 212 2 0
2 0 2 0.09 0.0488 150 - 5, 6 211 212 2 0
3 0 3 0.13 0.0454 150 - 4, 5, 6 211 212 2 0
4 0 4 0.17 0.0390 170 - 3, 4, 5, 6 211 212 1 0
5 0 5 0.21 0.0372 170 - 1, 3, 4, 5, 6 211 212 1 0
6 0 6 0.26 0.0350 170 - 1, 2, 3, 4, 5, 6 211 212 2 0
7 1 1 0.17 0.1614 50 6 5 421 417 3 2
8 1 2 0.16 0.0523 50 5 2, 6 631 623 4 2
9 1 3 0.16 0.0454 70 6 1, 4, 5 841 831 4 0
10 1 4 0.18 0.0481 70 6 1, 2, 4, 5 1051 1041 5 0
11 1 5 0.22 0.0355 70 6 1, 2, 3, 4, 5 1051 1046 6 0
12 2 1 0.6 0.0638 0 5, 6 - 421 417 14 0
13 2 2 0.24 0.0693 20 5, 6 1, 4 1261 1240 7 0
14 2 3 0.18 0.0415 20 5, 6 1, 2, 4 2311 2270 12 0
15 2 4 0.17 0.0279 20 5, 6 1, 2, 3, 4 3571 3509 18 0
16 3 1 1.48 0.0616 0 5, 6 - 421 417 4 0
17 3 2 0.41 0.0357 0 1, 5, 6 3, 4 1681 1651 9 0
18 3 3 0.22 0.0282 0 1, 5, 6 2, 3, 4 3991 3913 20 0
19 4 1 2.1 0.0724 0 5, 6 - 421 417 4 0
20 4 2 0.57 0.0227 0 1, 4, 5, 6 2, 3 1681 1651 9 3
21 5 1 2.31 0.0546 0 5, 6 - 421 417 4 0

Table 4.2: Five-Bus System Instances using Branch and Bound Algorithm.

In addition to comparing run-times, Table 4.2 lists the objective value, defence

and attack strategies for each allocated defense and attack budgets. Moreover, we list

the number of created nodes, HPPs, LLPs traversed/solved by the B&B algorithm in

each instance as shown in columns 8, 9 and 10 in Table 4.2. The number of alternative

optimal solutions is listed in the lasted column. For example, in instance number 8

(i.e., defence budget=1, attack budget=2), the defender can choose line number 5 to

defend, and in retaliation the attacker would choose line numbers 2 and 6 causing a

load shed of 50 MW. As an alternative defence strategy, the planner/defender can

defend line number 6, and then attacker would chose line numbers 4 and 5 causing

the same load shed of 50 MW. In case of any hidden operational constraints, the

208



Ph.D. Thesis - Ramy Abdallah McMaster University - DeGroote School of Business

planner can benefit from the knowledge that defending either line 5 or line 6 would

prevent the worst damage to the electrical system.

4.5.4 Six-Bus System

The second electrical transmission network has been studied previously by Jiang

et al. (2019). The system consists of eight transmission lines, two generators and

six buses. The input parameters for the system’s generator, load, branch data and

line numbering have been taken from (Jiang et al. (2019)) for validation purposes.

Results from the proposed solution algorithm have been grouped and summarized in

Table 4.3.

Instance
Num.

Defense
Budget

Attack
Budget

Avg. Run-time
Node
(sec)

Avg. Run-time
Node

Enum. Alg. (sec)
Obj. Val.

(MW)
Def.

Ln. Num.
Att.

Ln. Num.
Num.

Created Nodes
Num.

HPP Solved
Num.

LLP Solved
Num.

Alt. Optima

1 0 1 0.08 0.4785 43.63 - 5 265 266 1 0
2 0 2 0.15 0.5624 130 - 2, 5 265 266 1 0
3 0 3 0.24 0.1075 210 - 2, 3, 5 265 266 1 0
4 0 4 0.29 0.1906 290 - 2, 3, 4, 5 265 266 2 0
5 0 5 0.38 0.0549 290 - 2, 3, 4, 5 265 266 2 0
6 0 6 0.46 0.0917 290 - 2, 3, 4, 5 265 266 2 0
7 0 7 0.54 0.0455 290 - 2, 3, 4, 5, 6, 7, 8 265 266 2 0
8 0 8 0.63 0.0511 290 - 1, 2, 3, 4, 5, 6, 7, 8 265 266 2 0
9 1 1 0.44 0.153 31.08 5 2 529 526 2 0
10 1 2 0.39 0.1938 95 2 4, 5 793 788 3 0
11 1 3 0.38 0.1592 170 2 3, 4, 5 1057 1049 4 2
12 1 4 0.40 0.11092 170 2 3, 4, 5 1321 1310 5 2
13 1 5 0.39 0.0627 210 3 2, 4, 5, 8 1585 1571 6 1
14 1 6 0.39 0.0419 210 3 2, 4, 5, 6, 7, 8 1849 1829 7 1
15 1 7 0.40 0.0393 210 3 1, 2, 4, 5, 6, 7, 8 2113 2086 8 1
16 2 1 1.12 0.0578 25 2, 5 4 793 786 3 0
17 2 2 0.61 0.048 80 2, 5 3, 8 1585 1569 6 0
18 2 3 0.41 0.058 90 3, 5 2, 4, 7 2641 2607 10 2
19 2 4 0.37 0.0413 140 3, 4 2, 5, 6, 8 3961 3908 15 4
20 2 5 0.35 0.0315 140 3, 4 2, 5, 6, 7, 8 6073 5974 23 3
21 2 6 0.37 0.0278 140 2, 3 1, 4, 5, 6, 7, 8 8449 8284 32 3
22 3 1 3.06 0.053175 20 2, 4, 5 3 1057 1046 4 0
23 3 2 1.21 0.0614 60 2, 3, 4 5, 7 2905 2863 11 0
24 3 3 0.81 0.0454 70 3, 4, 5 2, 7, 8 5017 4933 19 3
25 3 4 0.52 0.0282 70 2, 3, 4 5, 6, 7, 8 10033 9849 38 3
26 3 5 0.46 0.0173 70 2, 3, 4 1, 5, 6, 7, 8 18217 17818 69 3
27 4 1 7.9 0.0017 0 2, 3, 4, 5 - 1057 1046 5 0
28 4 2 2.68 0.034 0 2, 3, 4, 5 - 3169 3121 14 0
29 4 3 1.95 0.0163 0 2, 3, 4, 5 - 4489 4417 18 0
30 4 4 0.77 0.0121 0 2, 3, 4, 5 1, 6, 7, 8 12409 12171 48 0
31 5 1 9.05 0.0553 0 2, 3, 4, 5 - 1057 1046 5 0
32 5 2 2.83 0.0251 0 2, 3, 4, 5 - 3433 3378 14 0
33 5 3 2.35 0.01 0 2, 3, 4, 5, 8 1, 6, 7 4489 4149 18 0
34 6 1 9.43 0.0623 0 2, 3, 4, 5 - 1057 1046 5 0
35 6 2 0.29 0.0143 0 2, 3, 4, 5, 6, 8 1, 7 3433 3378 14 0
36 7 1 0.96 0.046 0 2, 3, 4, 5 - 1057 1046 5 0

Table 4.3: Six-Bus System Instances using Branch and Bound Algorithm.

Following the same presentation of the previous electrical transmission network,

Table 4.3 lists all possible instances for the Six-Bus system, in addition to run-

time comparison between the B&B and MEA algorithm. For each instance, we list
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objective value (i.e., load-shed), defence and attack strategies. It is worth mentioning

that the B&B algorithm produces heavy analytics regarding each created node, as

depicted in Figure 4.4, in addition to the total number of nodes created, HPPs and

LLPs solved, and number of alternative optimal solution available to the planner.

The alternative solutions can be very critical in case of a limited defence budget such

as instance 19 (i.e., defence budget=2, attack budget=4) in Table 4.3, where the

planner can have four alternative strategies; all of which prevent the worst damage

that can occur in the network.
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4.6 Conclusions and Future Work

This paper has proposed a B&B approach for solving bi-level mixed-integer linear

programmes and a general class of tri-level mixed-integer programmes with a convex

optimization problem in their most lower-level. Furthermore, we provided a detailed

literature review on the most recent efforts on developing general-purpose bi-level

mixed-integer programmes. We have tested our algorithm on randomly generated

instances from the literature. We report on computational efficiency in addition to

rich data analytics on the solution of any BMILP instance. The reporting on the

solution is done on the instance level and within the instance. The instance level

reports on the numbers and types of relaxation problems solved to reach the optimal

solution(s), and we report the number of alternative optima if applicable. Within the

instance level reports on data specific to how the solution(s) was reached; these data

include but not limited to the branching tree, number of nodes created, explored, and

how it was fathomed. Furthermore, we test our algorithm on a specific class of tri-

level problems which can be reduced to a mixed-integer bi-level programme; where

we focus on the application of defending electrical transmission networks. Our note-

worthy contributions include guaranteeing bi-level optimality, providing alternative

optimal solution, and creating a general-purpose tool that can be tuned to account

for different constraint or objectives. Additionally, in order to enrich the test bed of

bi-level mixed-integer linear problems, we provide a Matlab live editor that converts

any electrical transmission network to bi-level mixed-integer programme instance, in

the context of enhancing the resilience of the electrical network under consideration.
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For future research, we are planning to capitalize on the rich data that can be pro-

duced from the B&B algorithm, assess existing machine learning strategies that can

aid the process of reaching the optimal solution, and extract insights that can help

in developing theoretical results. Another future area of research is using the B&B

algorithm in addition to specialized cuts tailored for specific practical applications.
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Fischetti, M., Ljubić, I., Monaci, M. & Sinnl, M. (2019), ‘Interdiction games and

monotonicity, with application to knapsack problems’, INFORMS Journal on

Computing 31(2), 390–410.

Fortuny-Amat, J. & McCarl, B. (1981), ‘A representation and economic interpre-

tation of a two-level programming problem’, Journal of the operational Research

Society 32(9), 783–792.

Gadhi, N. & Dempe, S. (2012), ‘Necessary optimality conditions and a new approach

to multiobjective bilevel optimization problems’, Journal of Optimization Theory

and Applications 155(1), 100–114.

216



Ph.D. Thesis - Ramy Abdallah McMaster University - DeGroote School of Business

Glover, F. (1973), ‘Convexity cuts and cut search’, Operations Research 21(1), 123–

134.

Glover, F. (1974), ‘Polyhedral convexity cuts and negative edge extensions’,

Zeitschrift für Operations Research 18(5), 181–186.

Jeroslow, R. G. (1985), ‘The polynomial hierarchy and a simple model for competitive

analysis’, Mathematical programming 32(2), 146–164.

Jiang, P., Huang, S. & Zhang, T. (2019), ‘Optimal deception strategies in power

system fortification against deliberate attacks’, Energies 12(3), 342.
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Kleinert, T., Labbé, M., Plein, F. & Schmidt, M. (2021), ‘Closing the gap in linear

bilevel optimization: a new valid primal-dual inequality’, Optimization Letters

15(4), 1027–1040.

Kleniati, P.-M. & Adjiman, C. S. (2014), ‘Branch-and-sandwich: a deterministic

global optimization algorithm for optimistic bilevel programming problems. part

i: Theoretical development’, Journal of Global Optimization 60(3), 425–458.

Konur, D. & Golias, M. M. (2013), ‘Analysis of different approaches to cross-dock

truck scheduling with truck arrival time uncertainty’, Computers & Industrial En-

gineering 65(4), 663–672.

217



Ph.D. Thesis - Ramy Abdallah McMaster University - DeGroote School of Business
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Abstract

This chapter examines a special class of tri-level optimization problems known as

Stackelberg sequential games. In general terms, the three-level non-cooperative

game, with perfect information, can either have min-max-min or max-min-max struc-

ture, where each level represents a player sharing a set of items with the next player,

and optimizing a common objective function in opposite direction. These problems

are notoriously difficult to optimize, because of the inherent tri-level structure which

is crucial for modelling the players’ interactions. The three-stage problem structure

cannot be evaded, if the most lower-level problem is NP-hard. Nevertheless, even

for the simplest case where the lower-level problem is a convex problem, and the

tri-level problem can be reduced to a bi-level structure using Karush-Khun-Tucker

(KKT) conditions or duality theory, the mathematical programme is known to be

strongly NP-hard. In this chapter, we propose a heuristically-enhanced exact al-

gorithm for solving the aforementioned class of tri-level problems, where the most

lower-level problem can be NP-hard. The main idea of the algorithm relies on

forming a single-level equivalent of the tri-level problem, where the feasible region

is constructed incrementally in each iteration of the algorithm. Moreover, we rely

on heuristics gained from structural domain-knowledge of the application to enhance

the formation of the feasible region. This idea can be implemented on various ap-

plications, and we demonstrate the effectiveness of our proposed solution on two
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applications. The first is the widely-studied application of defending critical infras-

tructure to improve its resilience against intentional attacks. In this context, we use

a defender-attacker-operator model and apply it to electrical transmission networks,

where the most lower-level is a convex optimization problem. The second application

is the capacitated lot-sizing problem with the capability of interdiction and fortifica-

tion. This modified version of the ubiquitous lot-sizing problem is characterized by

having its most lower-level problem a mixed-binary programme rendering the overall

tri-level problem inherently very difficult to solve. We test our solution approaches

on three electrical networks that vary in size, and randomly generated instances of

lot-sizing problems.We present the results of our numerical computations as well as

some insights.
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5.1 Introduction

Decentralized planning was the main drive-force behind multi-level programmes

(MLPs). Since the late 20th century, and first introduced by Candler & Norton

(1977), MLPs have been used to model decentralized problems that require plan-

ning and involve several decision-makers. In many practical optimization scenarios,

a decision-maker has to factor other parties into account resulting in nested mathe-

matical programmes, where the lower-levels have a subset of their decision variables

affecting the upper-level programmes.

5.1.1 Bi-Level Programmes

In the most elementary and simplest form of MLPs, a bi-level programme (BLP) is

considered a special case, where there are only two decision-makers, and is shown

to be NP-hard (Bard 1991). Such bi-level structures were introduced in the game

theory field by von Stackelberg (2011) where two non-cooperative players interact

in a sequential manner, also denoted as leader-follower game. In that particular

situation, the leader gets to take the first move, and then the follower reacts to it.

Hence, the follower’s reaction is influenced by the first decision-maker, the leader,

who has full knowledge of the follower’s objective function and constraints, i.e., a
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game with perfect information. A generic BLP can be formulated as follows:

‘ max
x

’ f1(x,y)

s.t. g1(x,y) ≥ 0

z ∈ arg min
y

f2(x,y)

s.t. g2(x,y) ≥ 0

(5.1)

Problem 5.1 can be seen as a leader-follower game, where the leader controls decision

variables x and the follower reacts to the leader’s move through its own decision vari-

ables y. The quotation marks in Problem 5.1 are used to indicate the ill-positioning

of that particular BLP, as no solution approach, or strategy, has been selected. In

particular, the ill-positioning stems from the possibility of the follower’s problem be-

ing non-strictly convex and possibly resulting in multiple alternative global optima.

Thus, an approach needs to be selected for the aforementioned problem to be well-

posed: an optimistic approach (Dempe 2002) where one of the alternative optima

is selected in favour of the leader’s objective function, f1(x,y), or a pessimistic ap-

proach (Aussel & Svensson 2019) where a solution is picked to be against the leader’s

objective function.

BLPs have gained an increasing attention from researchers over the past years

as discussed in Chapter 4. With that came the need for developing efficient general-

purpose solvers. For instance, Bard & Moore (1990) proposed a branch-and-bound

method to solve mixed-integer linear BLPs. Their ideas and definitions paved the

way for subsequent refinement trials proposed by Xu & Wang (2014), Fischetti et al.
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(2017), and most recently Liu et al. (2021).

Interdiction Games

The closest related class of BLPs that relates to the tri-level programme that we

examine in this chapter is known in the literature as interdiction games (Fischetti

et al. 2019). In this class of problems, the leader and the follower share a set of deci-

sion variables and an objective function. The leader gets to make the first move by

interdicting (i.e., choosing a subset of the shared variables), then with an adversarial

counter-act manner the follower tries to push the objective function in an opposite

direction subject to their own set of constraints. This is why interdiction games

(IGs) either have a min-max or a max-min structure. In mathematical terms, an IG

problem I can be structured as follows:

I : DI = max
x∈X

min
y∈Y(x)

f(y) (5.2)

Generally, IGs can be divided into two problems: the upper-level, or the outer-

level, in which we would formally call an attack problem A and the lower-level, or

the inner-level, denoted as a recourse problem R. IGs, at an abstract level, can be

modeled over problems with a well-studied network structure such as shortest path

problems (Cappanera & Scaparra (2011), Israeli & Wood (2002), Held & Woodruff

(2005)), optimal load flow problems in electrical power grids (Salmeron et al. (2004),

Delgadillo et al. (2009)), and maximum flow networks (Akgün et al. 2011). Most

often, the link between the attack and recourse problems is through binary decision

variables that when selected, or interdicted, by the first decision-maker implies that
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a set of actions that can be taken by the second decision-maker are inhibited. This

implies a 1-1 mapping between the interdicted, a subset of the follower’s decision

variables, and interdiction variables. It is worth mentioning that Problem 5.2 is not

ill-posed. This is so because of the facts that both players share the same objective

function f(z) and the adversarial nature of IGs. For a comprehensive review on

interdiction games, the reader can refer to Smith & Lim (2008) and Smith (2010).

5.1.2 Tri-Level Programmes

A tri-level programme (TLP) acquires the complexity of a BLP and appends an

extra layer to the hierarchical structure. For example, having two inner-problems

raises the need to resolve degenerate solutions at two levels- instead of just the lower-

level in case of BLP. However, each of the alternatives might have a different impact

on the overall problem. For a brief discussion on resolving degenerate solutions for

TLPs, the interested reader might refer to the work done by Florensa et al. (2017),

and Fakhry et al. (2022).

Fortification Games

The class of tri-level programmes that we focus on in this chapter is known in the

literature as interdiction games with fortifications (Lozano & Smith 2017) or in-

short fortification games (FGs). Formally, let x, y, and z denote the vectors of

decision variables for the first-, second-, and third-levels in a FG, respectively. We
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can formulate a general FG problem F as follows:

F : D∗ = min
x∈X

max
y∈Y(x)

min
z∈Z(y)

f(z). (5.3)

Where X =
{
x ∈ {0, 1}nx : AT

f x ≤ Bf

}
is the set of constraints for the leader, i.e.,

defender in FG, nx is the number of assets that can be protected, AT
f ∈ R1×nx

+ denotes

the cost of fortifying each asset, and Bf ∈ R+ is the fortification budget. It is clear

that a FG can be reduced to an IG, i.e., the two inner-problems, if a feasible defence

vector x̂ ∈ X is passed as a parameter to the interdiction game. On that regard, let

the IG problem for a given defence strategy x̂ be defined as follows:

I(x̂) : DI(x̂) = max
y∈Y(x̂)

min
z∈Z(y)

f(z). (5.4)

Where Y(x̂) =
{
y ∈ {0, 1}ny : AT

d y ≤ Bd, yi ≤ 1− x̂i ∀ i ∈ nxy

}
is the set of con-

straints for the follower (i.e., attacker in FG), ny is the number of assets that can

be disrupted, AT
d ∈ R1×ny

+ is the cost damage vector incurred by the attacker for

choosing to attack assets, and Bd ∈ R+ is the damage budget. Lastly, the linking

constraint in the feasible region Y , implies that if the defender chose to fortify a

certain asset (i.e., x̂i = 1) in the shared set of variables nxy between the two players,

it cannot be interdicted by the attacker (i.e., yi = 0). This singles out the last inner-

problem, which can be seen as another sequential move by the defender rendering

the whole FG problem as defender-attacker-defender (DAD), or a move by an oper-

ator trying to minimize the damage caused by the attacker through taking recourse

decisions. Let the recourse problem R for a given defence and attack strategies x̂,
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ŷ, respectively, be denoted R(x̂, ŷ) and defined as follows:

R(x̂, ŷ) : DR(ŷ) = min
z∈Z(ŷ)

f(z) (5.5)

As is the case of Problem 5.2, the FG Problem 5.3 is not ill-posed, as each sequential

player is trying to optimize the same objective function f(z) in an opposite direction.

Hence, FGs can either have a min-max-min or max-min-max structure, with the

latter being less prevalent. Furthermore, as an extension of IGs, FGs can arise in

models whose network models are well studied such as shorted-path FG (Sadeghi

et al. (2017), Lozano & Smith (2017)), protecting rail-road intermodal networks

(Sarhadi et al. 2017), facility location problems (Church & Scaparra (2007), Akbari-

Jafarabadi et al. (2017)) and protecting electrical power grids (Wu & Conejo (2017),

Alguacil et al. (2014), Fakhry et al. (2022)).

The solution approaches for FGs can be divided into three main categories: enu-

meration techniques, heuristic approaches, and lastly decomposition methodologies.

However, more than one methodology can be combined to form a hybrid solution

approach.

Explicit (Mahmoodjanloo et al. 2016) or implicit (Church & Scaparra (2007),

Scaparra & Church (2012)) enumeration are being used as solution techniques, es-

pecially when the total number of possible attack plans is not too large. Explicit

enumeration starts by enumerating feasible solutions at the most two outer-problems,

the fortification and attack problems, then uses an exact approach for the recourse

problem. Implicit enumeration starts by feeding the worst-case scenario to the re-

course problem, where it starts the root of the search tree, and then advances forward

228



Ph.D. Thesis - Ramy Abdallah McMaster University - DeGroote School of Business

by enumerating the possible combinations. Enumeration techniques have been re-

fined, where a heuristic is used to aid the search tree, and provide warm-starting

solutions from the parent node to child nodes. This method was particularly reward-

ing for mid- to large-sized networks (Fakhry et al. 2022).

Heuristic techniques, including meta-heuristics such as genetic algorithms (Mah-

moodjanloo et al. 2016), tabu search, rain-fall optimization, and random greedy

search (Akbari-Jafarabadi et al. 2017), are used either in combination with enumer-

ation techniques or to guide the search. However, most of the meta-heuristics are

tailored to the structure of the recourse problem. Recently, Fakhry et al. (2022)

proposed three generic heuristics, that differ in terms of quality and time needed

to reach to optimal/near-optimal solutions, that can be tailored according to the

structure of FG.

Decomposition or reformulation techniques in FGs have started with the work of

Brown et al. (2006), where the attack and recourse problems, the most two lower-

levels, are decomposed into one-level problem, converting a tri-level FG having, for

e.g., a min-max-min structure, into a min-max BLP. This is done by taking the dual

of the most lower-level, or the recourse problem, and appending dual, primal, and

strong duality constraints into the second-level, the attack problem, resulting into a

min-max BLP Alguacil et al. (2014). Branch-and-bound general-purpose algorithms,

heuristics, and enumeration techniques can be used to tackle the reformulated prob-

lem. An equivalent approach for dualizing a TLP FG, and converting it into a

BLP is using the KKT conditions of the recourse problem and appending it to the

second-level. A proof of this equivalence is provided in (Fakhry et al. 2022) for FGs.
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However depending on how the constraints are formulated and the nature of the ob-

jective function, one approach might be computationally superior over the other. It is

worth mentioning that both transformation techniques require the recourse problem

to be convex. In addition, replacing the lower-level by its KKT optimality condi-

tions does not necessarily yield a solution for the initial problem. Recent research

on BLPs, discuss these cases and the conditions for equivalence for the pessimistic

(Aussel & Svensson 2019), and optimistic Dempe & Dutta (2012) approaches.

There are relatively few studies of FGs that consider NP-hard recourse prob-

lems in IGs (Tang et al. 2016), and expectedly, even fewer in FGs (Prince et al.

(2013), Sarhadi et al. (2017)). In Prince et al. (2013), the authors transformed

the non-convexity of the recourse problem into an equivalent linear programme us-

ing a shortest-path formulation that is pseudo-polynomial in size, while in Sarhadi

et al. (2017) a decomposition-based heuristic solution was implemented that does

not guarantee an optimal solution. A similar study by Wu & Conejo (2017) in the

context of protecting electric grids FG, used a decomposition-based approach, where

the recourse problem was convex. Information is passed from a sub-problem to a

master-problem. However, this method provides only approximate solutions in some

cases based on their numerical results.

Our work is inspired by two studies. First is the research done by Fischetti

et al. (2019) in IGs, where a decomposition-based solution scheme that introduces

cutting planes is applied. Furthermore, the authors used some heuristic procedures

to lift and tighten those cuts. Our solution approach extends those cutting planes to

FGs. Second, the framework by Lozano & Smith (2017) for solving FGs where the
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recourse problem is non-convex, by restricting the most lower-level to a set of feasible

solutions. Those solutions are called “samples,” and they are collected through a

perturbation/sampling procedure of the recourse problem depending on the FG under

consideration. Moreover, if the sample size is too large, the IG may be potentially

too difficult to solve. On the other hand, if it is too small, it will lead to poor bounds.

Our proposed solution approach does not require a set of feasible solutions for the

recourse problem.

The contributions of this research work can be summarized as follows:

1. We provide a decomposition-based approach for solving FGs with convex and

non-convex recourse problems.

2. Our proposed approach terminates finitely with the exact optimal solution.

3. We provide and apply ideas on enhancing and accelerating the algorithm based

on structural knowledge of the FG.

4. We provide numerical results on two types of FGs: protecting electrical power

grids characterized with convex recourse problem, and capacitated lot-sizing

problem with fortification associated with non-convex recourse problems.

The rest of this chapter is outlined as follows: Section 5.2 provides the algorithmic

details and the theoretical argument behind our proposed approach. Section 5.3

provides the background and results for implementing our algorithm on two FGs

with different contexts. Lastly Section 5.4 concludes this research and provides

directions for possible extensions.
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5.2 Algorithm Details

In this section we provide the background as well as the procedures used in our

algorithm.

5.2.1 Background

Our proposed approach can be divided into two main procedures:

1. A procedure for getting the optimal attack vector y∗ ∈ Y(x̂) and inflicted

damage DI(x̂) solution for the IG problem I(x̂) for a given defence vector x̂,

which we previously defined as follows:

I(x̂) : DI(x̂) = max
y∈Y(x̂)

min
z∈Z(y)

f(z), (5.6)

where Y(x̂) =
{
y ∈ {0, 1}ny : AT

d y ≤ Bd, yi ≤ 1− x̂i ∀ i ∈ nxy

}
is the set of

constraints for the attacker in IG.

2. A procedure for obtaining the optimal defence vector x∗ solution for the overall

FG F previously defined in 5.3 as follows:

F : D∗ = min
x∈X

max
y∈Y(x)

min
z∈Z(y)

f(z), (5.7)

where x∗ ∈ X =
{
x ∈ {0, 1}nx : AT

f x ≤ Bf

}
.
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The general idea of the algorithm relies on decomposing the IG problem into two

parts: the first part is the recourse problem R and the second, a restricted master-

problem, for a given defence and attack vectors x̂, ŷ, respectively, let DR(ŷ) be the

value of recourse inflicted damage for a given attack vector ŷ and defined as follows:

R(x̂, ŷ) : DR(ŷ) = min
z∈Z(ŷ)

f(z) (5.8)

In Proposition 5.2.1 we show that a solution to 5.8 yields a lower bound for IG

problem I(x̂).

Proposition 5.2.1. For any feasible attack vector ŷ ∈ Y(x̂), the recourse problem

R(x̂, ŷ) yields a lower-bound LB = DR(ŷ) for the overall IG problem I(x̂).

Proof. Let ẑ∗ be the optimal solution to problem R(x̂, ŷ) and yields an objective

valueDR(ŷ), thereby providing a solution to the inner problem of the IG, I(x̂). From

an attacker’s perspective, the value DR(ŷ) is just a feasible solution, as ŷ ∈ Y(x̂).

The proof is completed by the fact that any feasible solution to a maximization

problem (i.e., I(x̂)) provides a lower bound.

Proposition 5.2.1 will aid in defining feasible region by providing a lower-bound

in each iteration of our proposed algorithm and obtaining the optimal solution, ẑ∗

to problem R(x̂, ŷ).

5.2.2 Optimal Attack-Recourse Procedure

To get the optimal attack response for an IG, whether the recourse problem is convex

or non-convex, a restricted master-problem (RMPI) is built based on the response
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(i.e., solution) from the recourse problem. In other words, the RMPI is built from

the attacker’s perspective and based on the knowledge of a defence vector x̂ (i.e.,

RMPI(x̂)). It can be defined as follows:

RMPI(x̂)

max
y,DI

DI (5.9)

s. t. DI ≤ f(zk) +
∑

i ∈ ny

MI
i (zk) yi ∀ zk ∈ Z(ŷ), ŷ ∈ Y(x̂) (5.10)

y ∈ Y(x̂) (5.11)

The objective of the restricted master-problem (5.9) is coupled with inequality

constraints defined in (5.10). The attacker’s objective is to raise the inflicted damage

DI . For a given defence vector x̂, DI would be the objective value from the attacker’s

perspective, which is the maximum damage that could be inflected. However, this is

linked with the recourse solution zk, and the shared objective value f(zk) for each

response attack vector ŷ. It is worth mentioning that each ŷ will be feasible for the

attack problem because of constraint (5.11). The choice of the MI
i (zk) values that

are defined in constraint (5.10) is pivotal for the convergence and effectiveness of

the proposed algorithm. It depends on the structure of the recourse problem R 5.5.

In particular, the linking constraint(s) between the attack vector ŷ and the recourse

decision variables z determine how the MI
i (zk) are set. This will be explained further

in the coming sections, when we address two different applications with relatively

complicated recourse problems.
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Using penalty terms in IGs has been explored before by Wood (2010) and it was

found to be problem-dependent. Moreover, Caprara et al. (2016) found that for

the knapsack interdiction problem, the MI
i values should be set to di, where di is

the benefit of having item i in the follower’s knapsack. A few years later, Fischetti

et al. (2019) provided a proof for the validity of those cuts under the condition that

the IG satisfies the downward monotonicity property. The two applications we will

study in this chapter, protecting electrical power grids and capacitated lot-sizing

with fortification, do not satisfy the property mentioned in (Fischetti et al. 2019).

Furthermore, the structure provided in (Caprara et al. 2016, Fischetti et al. 2019)

implies the existence of every element of the recourse decision vector z in the shared

objective function (i.e., di > 0 ), which is not always applicable in IGs. We provide a

practical and straight-forward way for assigning the Mi values based on the problem

structure that is a function of the optimal recourse vector ẑ∗ and we extend those

cuts to the overall FG. In Proposition 5.2.4 we provide conditions when the restricted

mater-problem leads to an upper bound for the overall IG problem I(x̂).

Proposition 5.2.2. For a sufficiently large and non-negative MI
i (zk) values and

a given defence vector x̂, the restricted master-problem (RMPI) (5.9) provides an

upper-bound, UB, for the overall IG problem I(x̂).

Proof. Let DI be the optimal value from the restricted master-problem (RMPI)

(5.9). We note that the set of constraints (5.10) is applied for optimal recourse

decision vector(s) zk, which consequently set the right hand side of constraint (5.10)

to the common objective function of value f(zk). Since we have non-negative MI
i (zk)

values, this implies DI ≥ f(zk) providing an UB for the IG problem I(x̂).
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We now have the necessary ingredients to present the optimal attack-recourse

algorithm, which we will denote the (OAR) algorithm. The pseudocode is presented

in Algorithm 5.1. The main idea of the algorithm starts with breaking down the

structure of IG I(x̂) into two problems, namely: the restricted master-problem from

the attacker’s perspective (i.e., RMPI(x̂)) and the recourse problem R(x̂, ŷ), which

is used to iteratively supply cuts to the restricted master-problem. These cuts are

forming the feasible region from the attacker’s perspective. From a game-theory

perspective, the attacker is learning how the defender/operator would behave for a

given attack vector ŷ. This learning behaviour is done through two elements that

change with the recourse response vector ẑ∗ forming the right hand side of constraint

(5.10). The first element is the shared objective function f(ẑ∗) and most importantly

the MI(z∗) values; those two terms change each iteration. The iterative structure

of the OAR algorithm works as long as the recourse problem R(x̂, ŷ) can be solved

to optimality given an attack vector ŷ. Thereby, if we have a convex recourse such

as the shortest-path problem, we can solve it using Dijkstra’s algorithm (Dijkstra

et al. 1959). Moreover, if we have a non-convex recourse such as the capacitated

lot-sizing problem, which is known to be NP-hard (Bitran & Yanasse 1982), we can

attempt to solve it using dynamic programming or as a mixed-integer programme

using state-of-the-art branch-and-bound commercial solvers.

Lines 1-4 in Algorithm 5.1, initialize the iteration counter, upper-bound (UB),

lower-bound (LB), a feasible initial attack vector ŷ0, and a corresponding recourse

problem R(x̂, ŷ0). Line 5 initiates the repository for storing the cuts’ parameters;

which are obtained in each iteration by solving the recourse problem. Lines 6 to 19
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Algorithm 5.1 Optimal Attack-Recourse Framework
Input: Problem I(x̂)
Output: An optimal solution to I(x̂)

1: Set iteration count i = 0
2: Set UBi =∞ and LBi = −∞
3: Initialize a feasible attack vector ŷ ∈ Y(x̂)
4: Populate recourse problem R(x̂, ŷ0)
5: Initialize Cuts (5.10) repository
6: while UBi − LBi > ϵ do
7: Set i = i+ 1
8: Solve LBi = min

z∈Z(ŷ)
f(z) and obtain an optimal solution ẑ∗

9: Update MI
i (ẑ∗) values for cuti

10: Store cuti(5.10) in Cuts repository
11: for each cuti in Cuts repository do
12: Add cuti(5.10) to RMPI

i (x̂) (5.9)
13: end for
14: Solve UBi = RMPI

i (x̂) and obtain an attack vector ŷi

15: Re-populate linking constraints in recourse problem R(x̂, ŷi)
16: if UBi = LBi then
17: Terminate with solution (ŷ∗, ẑ∗)
18: end if
19: end while

form a while loop that terminates when the UB and LB converge. In each iteration,

line 7 updates the iteration count i. Line 8 obtains a LBi by solving the recourse

problem; this is considered the main learning tool for constructing the feasible region

of the whole IG I(x̂). Thereby, after solving the recourse problem, and obtaining

the optimal solution ẑ∗, Lines 9 and 10 use this vector to calculate the penalty

values MI
i (ẑ∗) from the attacker’s perspective, and form the parameters needed to

construct the cut for this iteration. As the iterations advance, the attacker uses

the collective knowledge from trying different attack scenarios and observing how

the defender/operator reacts to each attack. This collective knowledge is stored
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in the cuts repository. Lines 11 to 13 add those cuts to the RMPI
i (x̂). At any

given iteration, solving the latter problem reflects the attacker’s learned knowledge

so far. Analogous to realistic learning, not all knowledge content is useful; this can

be reflected in redundant cuts which do not improve the UB. It is worth mentioning

that choosing a suitable MI
i (ẑ∗) values will lead to tighter bounds in each iteration.

Line 14 updates the UB in each iteration i by solving RMPI
i (x̂) that includes all

the cuts stored in the repository and obtains an optimal attack vector ŷi, which is

used afterwards to update linking constraints (i.e., recourse decisions affected by ŷi)

in the recourse problem. Finally, lines 16 to 18 compare the UB and LB in each

iteration and terminate if the equality condition, which is rounded to an appropriate

precision, is true. In Proposition 5.2.3, we establish the finiteness of Algorithm 5.1.

Proposition 5.2.3. For a given defence vector x̂, solving problem RMPI
i (x̂) 5.9

yields a non-increasing UB.

Proof. Consider a feasible defence vector x̂ upon which an initialized attack decision

vector ŷ0 is chosen. According to the OAR procedure outlined in Algorithm 5.1,

an optimal recourse solution ẑ∗ is used to evaluate the penalty values MI
i (ẑ∗) to

be implemented in the constraint set (5.10). Using the result from Proposition5.2.2,

associated with the fact that in each iteration in Algorithm 5.1, a cut in the form

of constraint (5.10) is added to the previous set of existing cuts in the repository

(i.e., lines 11 to 13), and the non-negative penalty values MI
i (ẑ∗), then RMPI

i (x̂)

is bounded to two options based on the added cut: (1) If the cut yields a tighter

bound than previously existing cuts, then DI = UBi < UBi−1; and (2) the added

cut did not improve the UB (i.e., redundant constraint), then DI = UBi = UBi−1
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because of the existing cuts in the repository (i.e., collective knowledge). Hence,

DI = UBi ≤ UBi−1.

5.2.3 Optimal defence-Attack-Recourse Procedure

This subsection proposes an overall solution approach for FGs 5.3. The main idea

is very similar to the attack-recourse procedure detailed in Algorithm 5.1.The main

difference stems from the complexity resulting from adding the fortification layer as

an extra hierarchical decision layer on top of the IG. Conceptually, the decomposition

approach is intrinsically the same. In particular, the FG is decomposed into a relaxed

master-problem RMPF and a sub-problem comprised of an IG defined on a feasible

defence strategy x̂. The relaxed master-problem RMPF can be defined as follows:

RMPF

min
x,DF

DF (5.12)

s. t. DF ≥ f(ẑ∗
k)−

∑
i ∈ nxy

MF
i (ẑ∗

k)ŷ∗
i xi, ∀ (ŷ∗

k, ẑ
∗
k) ∈ I(x̂k), x̂k ∈ X (5.13)

x ∈ X (5.14)

The direction of the objective function 5.12 for problem RMPF reflects the defender’s

perspective to minimize the inflicted damage DF through fortification. Specifically,

the defender learns about the inflicted damage induced by the attacker for each feasi-

ble defence strategy through constraint 5.13. These constraints are enriched in each

iteration, as the defender learns the optimal attacker observed moves, ŷ∗
k ∈ Y(x̂),
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for each feasible defence strategy enforced by constraint 5.14 and the corresponding

damage on the system through non-negative penalty terms MF
i (ẑ∗

k). As it was the

case with Algorithm 5.1, the convergence of the optimal defence- attack- recourse pro-

cedure outlined in Algorithm 5.2 is dependent on defining the penalty terms MF
i (ẑ∗

k)

in a way that reflects the defender’s perspective and depends on the recourse prob-

lem structure. This will be thoroughly explained in the numerical results in Section

5.3. In Algorithm 5.2, Lines 1-5 initialize iteration count i, UBi, LBi, repository of

cuts in form of constraint 5.13 and a feasible fortification vector x̂1, a defenceless

strategy. Consequently, x̂1 will be used to populate IG problem I(x̂1). Moreover,

Lines 6-19 repeat till UBi and LBi converge to pre-specified limit ϵ. Incrementing the

iteration counter i is done in line 7, followed by solving IG problem I(x̂i), updating

UBi which need not to be monotone (i.e., fluctuating depending on defence vector

x̂i)), and storing the corresponding optimal attack and recourse response (ŷ∗
i , ẑ

∗
i ) in

line 8. Penalty values MF
i (ẑ∗) are then updated to store cuti 5.13 in the repository.

Lines 11-13 prepare problem RMPF
i (x̂) by adding all the Cuts in the repository from

previous iterations. Line 14 solves problem RMPF
i (x̂) = LBi and obtains the corre-

sponding defence vector x̂i which subsequently updates the IG problem in line 15.

The procedure repeats till the LBi and UBi converge, or if the equality condition,

which is rounded to an appropriate precision, is true.

Remark 5.2.1. IG problem I(x̂i) can be solved using Algorithm 5.1 regardless of

the convexity of problem R(x̂i, ŷi). Nevertheless, if problem R(x̂i, ŷi) is convex and

satisfies the complementarity constraints qualifications (Dempe & Dutta 2012), the

IG problem I(x̂i) can be reduced to a single-level mixed-integer problem using either
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Algorithm 5.2 Optimal defence- Attack- Recourse Framework
Input: Problem F
Output: An optimal solution to F

1: Set iteration count i = 0
2: Set UBi =∞ and LBi = −∞
3: Initialize a feasible defence vector x̂1 ∈ X
4: Populate IG problem I(x̂1)
5: Initialize Cuts (5.13) repository
6: while UBi − LBi > ϵ do
7: Set i = i+ 1
8: Solve I(x̂i) (use OAR Algorithm 5.1 for non-convex recourse problems), ob-

tain (ŷ∗
i , ẑ

∗
i ) and store UBi = f(ẑ∗),

9: Update MF
i (ẑ∗) values for cuti

10: Store cuti(5.13) in Cuts repository, and corresponding defence vector x̂i

11: for each cuti in Cuts repository do
12: Add cuti(5.13) to RMPF

i (x̂) (5.12)
13: end for
14: Solve LBi = RMPF

i (x̂) and obtain a defence vector x̂i

15: Re-populate linking constraints in IG problem I(x̂i)
16: if UBi = LBi then
17: Terminate with solution (x̂∗

i , ŷ
∗
i , ẑ

∗
i )

18: end if
19: end while

KKT or duality approaches (Fakhry et al. 2022) and solved using state-of-the-art

commercial solvers.

We now state and proof Propositions 5.2.4 and 5.2.5to establish the theoretical

rationale of Algorithm 5.2.

Proposition 5.2.4. For a sufficiently large and non-negative MF
i (ẑ∗

k) values, the

restricted master-problem (RMPF) (5.12) provides a LB for the overall FG problem

F .

Proof. Similar to Proposition 5.2.2, let DF be the optimal value from solving the
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restricted master-problem (RMPF) (5.12). Moreover, notice that the set of con-

straints (5.13) is applied for optimal recourse and attack decision vectors (ẑ∗
k, ŷ

∗
k)

evaluated at each feasible defence vector x̂. This consequently sets the right hand

side of constraint (5.13) to the common objective function of value f(ẑ∗
k). Since we

have non-negative MF
i (ẑ∗

k) values, this implies DF ≤ f(ẑ∗
k) providing a LB to the

FG problem F .

Proposition 5.2.5. Each iteration of Algorithm 5.2 yields a non-decreasing LB for

problem RMPF
i 5.12.

Proof. Consider a feasible defence vector x̂ (e.g., a defenceless strategy), upon which

an IG I(x̂) is solved to optimality using OAR procedure outlined in Algorithm 5.1,

an optimal recourse solution ẑ∗
k is used to evaluate the penalty values MF

i (ẑ∗
k) to

be implemented in the constraint set (5.13). Similar to Proposition5.2.2, associated

with the fact that each iteration in Algorithm 5.2, a cut in the form of constraint

(5.13) is added to the previous set of existing cuts in the repository, and the non-

negative penalty values MF
i (ẑ∗

k). RMPF
i is bounded to two options based on the

added cut: (1) If the cut yields a tighter bound than previously existing cuts, then

DF = LBi > LBi−1; and (2) the added cut did not improve the LB (i.e., redundant

constraint), then DF = LBi = LBi−1 because of the existing cuts in the repository

(i.e., collective knowledge). Hence, DF = LBi ≥ LBi−1.

Next we present three accelerating procedures that can enhance the performance

of Algorithm 5.2:

• Adding Worst Case Cut: Upon initializing Algorithm 5.2 with a defenceless

242



Ph.D. Thesis - Ramy Abdallah McMaster University - DeGroote School of Business

strategy, a cut is added to prevent the worst case scenario. In other words, at

least one of the attacked assets must be defended. This cut will be added to

RMPF in the form of:

wT x ≥ 1. (5.15)

• Adding Worst Case Load Shed Cut: In order to avoid the worst load shed,

in case there are multiple attack scenarios causing the worst load shed, this cut

will enable the leader to make defence strategies avoiding the worst case load

shed. This cut will be added to problem RMPF in the form of:

DF ≤ f(z∗
wrst)− ϵ, (5.16)

where z∗
wrst is the worst case recourse decision vector.

• Heuristics outlined in (Fakhry et al. 2022) which rank the critical assets in the

network can be used to add cuts depending on the rank of the binary variables.

These cuts should fasten the convergence of Algorithm 5.2.

Next, we present two applications on fortification games in which we explain how

Algorithms 5.1 and 5.2 can be applied to solve FGs with convex and non-convex

recourse problems.
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5.3 Applications and Numerical Results

Bi-level programming (BLP) and tri-level programming (TLP) have been used ex-

tensively in determining critical infrastructure links/element for various types of

networks such as electrical transmission, transportation and supply chain networks

Brown et al. (2006), Babick (2009), Arroyo (2010). Specifically, BLP and TLP

are used for modelling attacker-defender problems, i.e., IGs, and defender-attacker-

defender models (DAD), i.e., FGs. Network flow problems are a typical application

of DAD models such as minimum cost flow (Babick 2009), constrained shortest path

problems (Lazzaro 2016) or minimizing the cost of load shedding in an electric power

transmission network (Fakhry et al. 2022).

5.3.1 Protecting Critical Infrastructure

Electric grid security has been recently becoming a major concern for governments

due to the interdependency of other critical infrastructures such as communications,

transportation, water systems, and healthcare. A failure of the electric transmission

network could cause cascading effects on other sectors leading to disruption that

could spiral out of control. Attacking the critical components of the power grid may

cause cascading outages and possibly a complete blackout. Consequently, identifying

the critical components of the grid which may represent a high potential target for

attacks, be it human-made or natural, is crucial for its safe operation and of equal

importance to following adequate protection plans.

Defending electrical power grids has received significant attention from researchers
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in the past few years. Alguacil et al. (2014) implemented the implicit enumeration

algorithm developed by Scaparra & Church (2008) in solving the DAD model for

defence planning of electrical grids. First, they decomposed the TLP into BLP

by taking advantage of the continuous decision variables in the lower-level using

duality theory. The resultant bi-level programme was then solved by the enumer-

ation algorithm. Wu & Conejo (2017) decomposed the DAD model into a master-

problem and a sub-problem. The authors used a column and constraint generation

method (C&CG) to iterate between master problem, providing a lower-bound, and

a sub-problem, providing an upper-bound, till a predetermined convergence limit is

reached. It is important to note that the algorithm they provided does not guarantee

optimality. In their test cases, they found near optimal solutions to less than 3% of of

the tested problems. The authors also made a comparison in terms of computational

time and quality of solution between C&CG and implicit enumeration algorithms.

Xiang & Wang (2018) introduced uncertainties in terms of the attacker budget to

the traditional DAD model, in which the defender minimizes the expected load shed

considering multiple attack scenarios. They have also implemented a C&CG algo-

rithm to solve the DAD model. Recently, Fakhry et al. (2022) proposed three generic

heuristic approaches that vary in terms of time and solution quality. These heuristics

can be used to tackle a general class of tri-level programming problems that include

the DAD model. The general idea behind these heuristics is to rank the impact of

decision variables through successively solving a combination of relaxed linear and

mixed-integer linear programmes.
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Game theoretic approaches have also been used to tackle the DAD model. Holm-

gren et al. (2007) have paved the way in terms of how to model and conceptualize the

IG models from a game theoretic perspective through a simple game model. Chen

et al. (2011) have provided a generalized game framework that allows for several in-

teractions between defenders and attackers under static and dynamic environments.

They implemented two different algorithms for the defence budget. The first one

deals with the allocation of a limited defence budget to critical infrastructure, while

the second deals with the amount of budget needed to achieve a certain limit of

expected loss. All of the previous literature had the implicit assumption of perfect

information between the attacker and the defender. Ma et al. (2013) used Marko-

vian game analysis to model the interactions between the defender and the attacker.

The authors solved for the mixed strategies of both players in a state of equilibrium

with perfect information and information asymmetry. Information asymmetry in

this context means that the attacker is being fed false information about the cost

of load shed in different areas. This might lead to targeting less-critical assets in

the network. Nemati et al. (2018) succeeded in decomposing the DAD model into

a single-level model. First, they used duality theory to combine the middle and

lower-level resulting in a bi-level problem. Second, they visualized the attack on

transmission lines as if there were virtual attackers, one for each transmission line.

Each virtual attacker is trying to maximize the total inflicted damage by interdicting

the corresponding transmission line. The model also incorporates Nash and Pareto

equilibria conditions as linear constraints. In the end, the DAD model is solved as a

single-level mixed-integer linear program.
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The DAD model within the context of defending electrical power grids has the

following tri-level structure: 1) the first-level represents the defender/planner who

is trying to minimize load shedding in the network, and the decision variables are

binary subject to a linear budgetary constraint representing the defence resources;

2) the second-level is the attacker who is in turn trying to inflict the maximum

possible damage to the network by attacking the most critical lines. The decision

variables in this level are also binary, while the constraints are linear and involve

the decision variables of both the first- and second-levels; and 3) the third-level

represents the operator model, who is trying to maintain the operational constraints

of the network and to minimize the inflicted damage. The decision variables in this

level are continuous, while the objective function and constraints are linear. However,

the constraints are a function of the second level and third level decision variables.

This renders the recourse problem in the context of protecting electrical transmission

networks a linear convex problem. We will use the notation in Table 5.1 to model

the DAD problem for electric grid security. We have opted for using the common

notation in this field so that it will be easier for the reader to compare our model

with existing studies in this area.

Hence the FG can be modelled as follows:

F : D∗ = min
x∈X

max
y∈Y(x)

min
z∈Z(y)

f(z) =
∑
n∈N

ϕn, (5.17)

where x ∈ X =
{
x ∈ {0, 1}L,

∑
l∈L xl ≤ Bf

}
is the set of constraints for the leader

reflecting the binary requirement, and the allowed fortification budget. The set
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y ∈ Y(x̂) =
{
y ∈ {0, 1}L : ∑

l∈L yl ≤ BA, yl ≤ 1− x̂l ∀ l ∈ L
}

includes constraints

for the attacker for a feasible defence vector x̂ reflecting the binary requirement for

the attacker’s decision variables, allowed attack budget, and a constraint reflecting

the assumption that the attacker cannot interdict an already defended asset. Lastly,

for a corresponding attack vector ŷ ∈ Y(x̂), the recourse problem R(x̂, ŷ) for the

defender, i.e., operator, can be defined as follows:

R(x̂, ŷ) : DR(ŷ) = min
δ,Pg,Pf ,ϕϕϕ

∑
n∈N

ϕn (5.18)

s. t. P f
l −Blŷl

∑
n∈N

Anlδn = 0, ∀ l ∈ L (5.19)

∑
j∈Jn

P g
j −

∑
l∈L

AnlP
f
l + ϕn = P d

n , ∀ n ∈ N (5.20)

− P̄l
f ≤ P f

l ≤ P f
l , ∀ l ∈ L (5.21)

− δ̄ ≤ δn ≤ δ̄, ∀ n ∈ N (5.22)

0 ≤ P g
j ≤ P̄j

g, ∀ l ∈ L (5.23)

0 ≤ ϕn ≤ P d
n , ∀ n ∈ N (5.24)

The recourse problem R(x̂, ŷ) models the network operator’s reaction to minimize

the load shed based on the attack scenario represented in (5.18). The DC-power flow

for each line is modeled in (5.19), whereas the power balance equations in each bus

is represented by (5.20) (or node balance equations in other contexts). Constraints

(5.21)-(5.24) are the upper and lower bounds for the lower-level decision variables.

Constraints (5.24) ensure that the load shed in each consumer sector does not exceed

the load at that electric bus. Given the convexity of problem R(x̂, ŷ), we have two
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methods for solving problem F :

• Method 1: applying Algorithm 5.1 in solving IG problem I(x̂) iteratively

within the context of Algorithm 5.2, hence getting the optimal solution for the

overall FG Problem F 5.17.

• Method 2: applying Algorithm 5.2 directly on FG Problem F 5.17 after re-

ducing IG problem I(x̂) into a single-level problem using either the duality or

KKT approach. In particular, the recourse problem 5.18 satisfies the comple-

mentarity slackness conditions (Dempe et al. 2014) which makes the single-level

reduction of IG problem I(x̂) equivalent to the original problem.

Both proposed methods yield an optimal solution to the FG problem F . However,

Method 2 tends to be computationally superior over Method 1. This is mainly

due to the fact that Method 2 takes advantage of state-of-the-art branch-and-bound

techniques existing in modern commercial solvers for solving the reduced single-level

equivalent of the IG problem I(x̂), while Method 1 might produce redundant cuts

delaying the convergence of the lower- and upper- bounds when applying Algorithm

5.1 to solve the IG problem I(x̂) in each iteration of Algorithm 5.2.

Method 1

We outline how Algorithm 5.1 can be used to tackle the IG problem I(x̂) that is

needed for implementing Step 8 of Algorithm 5.2. In particular, we will explain how

the penalty terms MI
i (zk) are designed for fast convergence of the LB and UB in IG

problem I(x̂).
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In the context of defending electrical transmission networks, the recourse problem

R(x̂, ŷ) 5.18 will provide a LBi in each iteration i. This will act as a learning tool till

the convergence of LBi and UBi. It is important to note that in order to achieve the

tightest bounds each iteration, problem R(x̂, ŷ) should be tackled from an attacker’s

perspective and thus maximizing the inflicted damage on the transmission network.

In each iteration i, the attacker obtains two important pieces of information: 1) the

objective function value for a corresponding attack vector, DR(ŷ); and 2) The vector

of power flows P f indicating the power transmitted through the electrical transmis-

sion lines into the buses. Hence, the restricted master-problem, which reflects the

attacker’s perspective on maximizing the inflicted damage on the electrical network,

can be presented as follows:

RMPI(x̂)

max
y,DI

DI (5.25)

s. t. DI ≤ (
∑
n∈N

ϕ̂∗
n)i +

∑
l ∈ L

abs((P̂ f
l

∗)i) (yl)i

∀ (ϕ̂∗
i , P̂

f ∗
i ) ∈ Z(ŷ), ŷ ∈ Y(x̂) (5.26)

y ∈ Y(x̂) (5.27)

The restricted master-problem RMPI(x̂) will give an UBi in each iteration i.

The attacker will learn the recourse moves to lessen the inflicted damage through

the common objective value (ϕ̂∗
n)i while penalizing the interdiction decision variables

through the absolute value of the power flowing in each line, abs((P̂ f
l

∗)i), through
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the added cut 5.26 in each iteration i. Lastly, constraint 5.27 reflects the feasibility of

the interdiction decision vector with respect to the defence strategy x̂. By knowing

the structure of recourse problem 5.18 and examining constraints 5.19–5.20, it can be

seen that the attacker’s decision vector y is linked to the power flow in the electrical

transmission lines P f . Thus, by associating the interdiction decision variable (yl)i

with the absolute value of the power flow in each line, abs((P̂ f
l

∗)i), the attacker would

be able to learn how to inflict the maximum possible damage by taking into account

all recourse cuts from the previous iterations.

Method 2

In a manner similar to Method 1, RMPF can be formed to provide an optimal solution

to the FG problem F . Nevertheless, the penalizing terms has to be adjusted to match

the defender’s perspective. The defender will now learn from the optimal solution

of the IG problem I(x̂). This can be obtained by applying Algorithm 5.1 or by

using the duality theory approach to reduce the bi-level structure of the IG problem

into a single-level that can be solved by a commercial solver. The main difference

arises from constraint (5.29) since the defender learns from the overall solution of the

IG problem I(x̂). In particular, the shared objective function’s value (∑
n∈N ϕ̂

∗
n)i,

in addition to penalizing the defence vector using the power flow in the electrical

transmission lines, abs(P̄ f
l − (P̂ f

l

∗)i), and the corresponding attack vector ŷ∗
i for each

iteration i.

RMPF
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min
x,DF

DF (5.28)

s. t. DF ≥ (
∑
n∈N

ϕ̂∗
n)i −

∑
l ∈ L

abs(P̄ f
l − (P̂ f

l

∗)i)ŷ∗
i xi,

∀ (ŷ∗
i , ẑ

∗
i ) ∈ I(x̂i), x̂i ∈ X (5.29)

x ∈ X (5.30)

Numerical Results

Our proposed solution approaches are tested on three electrical transmission networks

and compared to exact solutions obtained with an enhanced enumeration algorithm

previously proposed in (Fakhry et al. 2022). Algorithms 5.1 and 5.2 have been

programmed in C++ and connected with the IBM ILOG CPLEX 12.10 optimization

software (Prasad et al. n.d.). All test results have been verified using an enhanced

enumeration algorithm previously proposed in (Fakhry et al. 2022) and implemented

using CPLEX with MATLAB R2018b. Numerical results have been carried out on

an Intel Core I7 CPU (10th generation) at 2.6 GHZ with 16 GB of RAM and 64-bit

operating system.

Five-Bus System

The first electrical transmission network is shown in Figure 5.1 and was used before in

Arroyo & Galiana (2005). It consists of 6 transmission lines, 5 generators and 5 buses.

The loads are specified on each bus, as well as the per unit reactance of each line.

It is worth mentioning that the BMVA (Base-Mega-Volt-Ampere) and BkV (Base-

kilo-Volt) are taken as 100 MVA and 138 kV, respectively. The maximum power
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Figure 5.1: Five-Bus System Structure.

flow (P̄ f
l ) in each transmission line has been set to 100 MW, while the maximum

and minimum power (P̄ g
j , ¯

P g
j ,) that a generator can produce is set to 150 and zero

MW, respectively. Moreover, transmission lines are numbered (squared boxes) as

per Figure 5.1.

The results summarized in Table 5.2 show the attacked line(s), objective value,

and defended line(s), if relevant. We note that since we have six transmission lines

in total, implying that BA + BD ≤ 6, there are no feasible combinations if the

aforementioned inequality is not satisfied. Furthermore, we compare the average

running time of Algorithm 5.2 with the modified enumeration algorithm previously

proposed in (Fakhry et al. 2022). It is worth mentioning that the enumeration

algorithm has an accelerating warm-start solution technique to reach the optimal

solution efficiently. In most instances, Algorithm 5.2 was able to reach to the optimal

solution faster than the enumeration algorithm, where all instances took less than 1

second. We include the defended and attacked line numbers for each instance, as per
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figure 5.1, for validation and reproducibility. The last column in Table 5.2 indicates

the number of iterations taken by Algorithm 5.2 till the lower- and upper-bounds

converge.

In Table 5.3, include the LPRank heuristic (Fakhry et al. 2022) results for com-

parison purposes. It should be noted that Algorithm 5.2 performs better in terms of

solution quality and run-time.

Six-Bus System

The second electrical transmission network consists of eight transmission lines, two

generators and six buses (Jiang et al. 2019). The input parameters for the system’s

generator, load, branch data and line numbering have been taken from (Jiang et al.

(2019)) for validation purposes. Table 5.4 outlines all available instances for the Six-

bus system. Each instance is described in terms of the defence budget BD, attack

budget BA, average run-time in seconds taken by Algorithm 5.2, and the average run-

time taken by the enhanced enumeration algorithm. The performance of Algorithm

5.2 outperforms that of the enumeration algorithm in all instances with substantial

savings in instances number 25 and 33. The last three columns in Table 5.4 indicate

the defended, and attacked line numbers in the electrical transmission network for

each instance, in addition to the number of iterations taken by Algorithm 5.2 to

converge to the optimal solution.

Regarding the heuristic-based approaches previously proposed in Fakhry et al.

(2022), LPRank and HybridRank had the same solution quality for all instances.
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Both of them obtained optimal solutions for 35 instances (about 78% of the in-

stances), while near-optimal results were obtained for the remaining 10 instances.

Table 5.5 summarizes the results obtained by the HybridRank approach including

the average run-time, which is also outperformed by Algorithm 5.2 in terms of solu-

tion quality and efficiency in all instances. Furthermore, the superiority of Algorithm

5.2 over the HybridRank approach in terms of run-time goes back to the number of

linear and mixed-binary programmes solved by the heuristic approach. A breakdown

of the run-time, objective value, defended line numbers, attacked line numbers, num-

ber of linear programmes and mixed-binary linear programmes, and solution quality

for each instance are indicated in Table 5.5.
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Table 5.1: Mathematical Notations for Electric Transmission Networks Fortification.

Symbol Description
Indices and Sets
J Set of generators.
Jn Set of generators connected to bus n.
L Set of transmission lines.
N Set of buses.
j Generator index.
l Transmission line index.
n Bus index.
Paramters
Anl Element of the incidence matrix equals 1 if bus n is the sending end

of line l, -1 if bus n is the receiving end of line l, and 0 otherwise.
Bl Imaginary part of admittance of line l.
BA Attack Budget (Number of lines to be attacked).
Bf Fortification Budget (Number of lines to be defended).
P d

n Demand at bus n.
P̄ f

l Maximum power flow in line l.
P̄ g

j Maximum power a generator can produce.

¯
P g

j Minimum power a generator can produce.
δ̄ Maximum power angle for a bus.

¯
δ Minimum power angle for a bus.
Decision Variables
yl Binary variable set to 0 if line l is attacked and 1 otherwise.
xl Binary variable set to 1 if line l is defended and 0 otherwise.
P g

j Output power from generator j.
P f

l Power flow in line l.
δn Power angle for bus n.
Φn Load shed at bus n.
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Instance
Num. Def. Budget Att. Budget Avg. Run-time

(sec)
Avg. Run-time

Enum. Alg.
Obj. Val.

(MW)
Def.

Ln. Num.
Att.

Ln. Num.
Num.
Iter.

1 0 1 0.075 0.1506 50 - 6 1
2 0 2 0.110 0.0488 150 - 5, 6 1
3 0 3 0.070 0.0454 150 - 4, 5, 6 1
4 0 4 0.066 0.0390 170 - 3, 4, 5, 6 1
5 0 5 0.136 0.0372 170 - 1, 3, 4, 5, 6 1
6 0 6 0.030 0.0350 170 - 1, 2, 3, 4, 5, 6 1
7 1 1 0.072 0.3228 50 6 5 2
8 1 2 0.131 0.1577 50 5 2, 6 2
9 1 3 0.273 0.1816 70 6 1, 4, 5 4
10 1 4 0.215 0.2406 70 6 1, 2, 4, 5 5
11 1 5 0.312 0.2131 70 6 1, 2, 3, 4, 5 6
12 2 1 0.137 0.1913 0 5, 6 - 3
13 2 2 0.147 0.3841 20 5, 6 1, 4 2
14 2 3 0.288 0.5400 20 5, 6 1, 2, 4 4
15 2 4 0.130 0.5850 20 5, 6 1, 2, 3, 4 3
16 3 1 0.197 0.2465 0 5, 6 - 3
17 3 2 0.104 0.4997 0 1, 5, 6 3, 4 3
18 3 3 0.571 1.098 0 1, 5, 6 2, 3, 4 9
19 4 1 0.140 0.3619 0 5, 6 - 3
20 4 2 0.095 0.6819 0 1, 4, 5, 6 2, 3 3
21 5 1 0.149 0.3277 10 5, 6 - 3

Table 5.2: Five-Bus System Instances using Algorithm 5.2.

Instance
Num. Def. Budget Att. Budget Avg. Run-time

(sec)
Avg. Run-time

Enum. Alg.
Obj. Val.

(MW)
Def.

Ln. Num.
Att.

Ln. Num.
Num.

LP Solved
Optimal or

Near-Optimal
Diff. to

Optimal (MW)
1 0 1 0.2654 0.1506 50 - 6 8 Optimal -
2 0 2 0.324 0.0488 150 - 5, 6 15 Optimal -
3 0 3 0.3757 0.0454 150 - 3, 5, 6 21 Optimal -
4 0 4 0.4261 0.0390 150 - 3, 4, 5, 6 26 Near-Optimal 20
5 0 5 0.4720 0.0372 170 - 1, 3, 4, 5, 6 30 Optimal -
6 0 6 0.5027 0.0350 170 - 1, 2, 3, 4, 5, 6 33 Optimal -
7 1 1 0.3371 0.3228 50 6 5 15 Optimal -
8 1 2 0.3898 0.1577 50 6 4, 5 21 Optimal -
9 1 3 0.4490 0.1816 70 6 1, 4, 5 26 Optimal -
10 1 4 0.5180 0.2406 70 6 1, 2, 4, 5 30 Optimal -
11 1 5 0.5019 0.2131 70 6 1, 2, 3, 4, 5 33 Optimal -
12 2 1 0.3715 0.1913 0 5, 6 4 21 Optimal -
13 2 2 0.4191 0.3841 20 5, 6 1, 4 36 Optimal -
14 2 3 0.4526 0.5400 20 5, 6 1, 3, 4 30 Optimal -
15 2 4 0.4798 0.5850 20 5, 6 1, 2, 3, 4 33 Optimal -
16 3 1 0.4334 0.2465 0 3, 5, 6 4 26 Optimal -
17 3 2 0.4586 0.4997 20 3, 5, 6 1, 4 30 Near-Optimal 20
18 3 3 0.4740 1.098 20 3, 5, 6 1, 2, 4 33 Near-Optimal 20
19 4 1 0.4584 0.3619 0 3, 4, 5, 6 1 30 Optimal -
20 4 2 0.4971 0.6819 10 3, 4, 5, 6 1, 2 33 Near-Optimal 10
21 5 1 0.5290 0.3277 10 1, 3, 4, 5, 6 2 33 Optimal -

Table 5.3: Five-Bus System Instances using LPRank Approach proposed in (Fakhry
et al. 2022).
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Instance
Num. Def. Budget Att. Budget Avg. Run-time

(sec)
Avg. Run-time

Enum. Alg.
Obj. Val.

(MW)
Def.

Ln. Num.
Att.

Ln. Num.
Num.
Iter.

1 0 1 0.04 0.4785 43.63 - 5 1
2 0 2 0.146 0.5624 130 - 2, 5 1
3 0 3 0.084 0.1075 210 - 2, 3, 5 1
4 0 4 0.018 0.1906 290 - 2, 3, 4, 5 1
5 0 5 0.017 0.0549 290 - 2, 3, 4, 5 1
6 0 6 0.017 0.0917 290 - 2, 3, 4, 5 1
7 0 7 0.017 0.0455 290 - 2, 3, 4, 5, 6, 7, 8 1
8 0 8 0.015 0.0511 290 - 1, 2, 3, 4, 5, 6, 7, 8 1
9 1 1 0.071 0.3062 31.08 5 2 2
10 1 2 0.252 0.5813 95 2 4, 5 4
11 1 3 0.409 0.6368 170 2 3, 4, 5 5
12 1 4 0.052 0.5546 170 2 3, 4, 5 2
13 1 5 0.124 0.4391 210 3 2, 4, 5, 8 4
14 1 6 0.117 0.2932 210 3 2, 4, 5, 6, 7, 8 4
15 1 7 0.107 0.3143 210 3 1, 2, 4, 5, 6, 7, 8 4
16 2 1 0.09 0.1733 25 2, 5 4 3
17 2 2 0.487 0.3357 80 2, 5 3, 8 7
18 2 3 0.29 0.7541 90 3, 5 2, 4, 7 4
19 2 4 0.451 0.8664 140 3, 4 2, 5, 6, 8 7
20 2 5 0.406 0.9754 140 3, 4 2, 5, 6, 7, 8 7
21 2 6 0.435 1.1947 140 2, 3 1, 4, 5, 6, 7, 8 7
22 3 1 0.213 0.2127 20 2, 4, 5 3 4
23 3 2 0.409 0.8593 60 2, 3, 4 5, 7 6
24 3 3 0.728 1.7721 70 3, 4, 5 2, 7, 8 10
25 3 4 0.734 2.3662 70 2, 3, 4 5, 6, 7, 8 8
26 3 5 0.519 2.687 70 2, 3, 4 1, 5, 6, 7, 8 7
27 4 1 0.225 0.2558 0 2, 3, 4, 5 - 5
28 4 2 0.214 1.0196 0 2, 3, 4, 5 - 5
29 4 3 0.263 1.9554 0 2, 3, 4, 5 - 4
30 4 4 0.051 4.1178 0 2, 3, 4, 5 1, 6, 7, 8 2
31 5 1 0.182 0.3319 0 2, 3, 4, 5 - 5
32 5 2 0.414 1.5541 0 2, 3, 4, 5 - 5
33 5 3 0.208 3.5982 0 2, 3, 4, 5, 8 1, 6, 7 5
34 6 1 0.197 0.4359 0 2, 3, 4, 5 - 5
35 6 2 0.196 1.7971 0 2, 3, 4, 5, 6, 8 1, 7 4
36 7 1 0.154 0.3681 0 2, 3, 4, 5 - 5

Table 5.4: Six-Bus System Instances using Algorithm 5.2.
Instance

Num. Def. Budget Att. Budget Avg. Run-time
(sec)

Obj. Val.
(MW)

Def.
Ln. Num.

Att.
Ln. Num.

Num.
LP Solved

Num.
MBLP Solved

Optimal or
Near-Optimal

Diff. to
Optimal (MW)

1 0 1 0.3206 43.63 - 5 10 0 Optimal -
2 0 2 0.4213 130 - 2, 5 19 0 Optimal -
3 0 3 0.5162 210 - 2, 3, 5 27 0 Optimal -
4 0 4 0.6048 290 - 2, 3, 4, 5 34 0 Optimal -
5 0 5 0.8306 290 - 1, 2, 3, 4, 5 40 1 Optimal -
6 0 6 0.8862 290 - 1, 2, 3, 4, 5, 6 45 1 Optimal -
7 0 7 1.0266 290 - 2, 3, 4, 5, 6, 7, 8 49 2 Optimal -
8 0 8 1.0688 290 - 1, 2, 3, 4, 5, 6, 7, 8 52 2 Optimal -
9 1 1 0.4459 31.08 5 2 19 0 Optimal -
10 1 2 0.6504 90 5 2, 4 27 0 Near-Optimal 5
11 1 3 0.9733 170 5 2, 3, 4 34 0 Optimal -
12 1 4 1.4011 170 5 1, 2, 3, 4, 7 40 1 Optimal -
13 1 5 1.8878 170 5 1, 2, 3, 4, 7 45 1 Near-Optimal 40
14 1 6 2.3447 220 5 1, 2, 3, 4, 6, 7 49 1 Near-Optimal 10
15 1 7 2.9098 220 5 1, 2, 3, 4, 6, 7, 8 52 2 Near-Optimal 10
16 2 1 0.4859 25 2, 5 4 27 0 Optimal -
17 2 2 0.6193 58.89 2, 5 34 0 0 Near-Optimal 21.11
18 2 3 0.8111 50 2, 5 1,3,4 40 0 Near-Optimal 50
19 2 4 1.0423 90 2, 5 1,3,4,6 45 0 Near-Optimal 50
20 2 5 1.2998 150 2, 5 1,3,4,6,8 49 0 Near-Optimal 10
21 2 6 1.6758 150 2, 5 1,3,4,6,7,8 52 1 Near-Optimal 10
22 3 1 0.5776 25 2, 3, 5 4 34 0 Near-Optimal 5
23 3 2 0.7013 70 2, 3, 5 4,6 40 0 Near-Optimal 10
24 3 3 0.9721 70 2, 3, 5 1,4,6 45 1 Optimal -
25 3 4 1.3301 70 2, 3, 5 1,4,6,7 49 1 Optimal -
26 3 5 1.8242 70 2, 3, 5 1,4,6,7,8 52 2 Optimal -
27 4 1 0.6784 0 2, 3, 4, 5 7 40 0 Optimal -
28 4 2 0.8819 0 2, 3, 4, 5 7,8 45 1 Optimal -
29 4 3 1.1431 0 2, 3, 4, 5 6,7,8 49 1 Optimal -
30 4 4 1.5092 0 2, 3, 4, 5 1,6,7,8 52 2 Optimal -
31 5 1 0.8826 0 1, 2, 3, 4, 5 7 45 1 Optimal -
32 5 2 1.0586 0 1, 2, 3, 4, 5 7,8 49 2 Optimal -
33 5 3 1.2944 0 1, 2, 3, 4, 5 6,7,8 52 2 Optimal -
34 6 1 0.9245 0 1, 2, 3, 4, 5, 6 7 49 1 Optimal -
35 6 2 1.0564 0 1, 2, 3, 4, 5, 6 7,8 52 2 Optimal -
36 7 1 1.0555 0 1, 2, 3, 4, 5, 6, 7 8 52 2 Optimal -

Table 5.5: Six-Bus System Instances using HybridRank Approach proposed in
(Fakhry et al. 2022).
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Instance
Num. Def. Budget Att. Budget Avg. Run-time

(sec)
Avg. Run-time

Enum. Alg.
Obj. Val.

(MW)
Def.

Ln. Num.
Att.

Ln. Num.
Num.
Iter.

1 0 1 2 2.70 75.63 - 18 1
2 1 1 3.5 1.61 53.21 18 15 2
3 2 1 5.1 2.25 49.45 15, 18 41 3
4 3 1 5.4 2.75 44.15 15, 18, 41 8 4
5 4 1 6.8 3.2 44.02 8, 15, 18, 41 17 5
6 5 1 10.1 4.28 31.77 8, 15, 17, 18, 41 16 6
7 6 1 11.3 5.09 17.67 8, 15, 16, 17, 18, 41 40 7
8 7 1 12 5.48 14.23 8, 15, 16, 17, 18, 40, 41 39 8
9 8 1 13.5 6.1 11.3 8, 15, 16, 17, 18, 39, 40, 41 67 9
10 9 1 14.6 6.82 10.61 8, 15, 16, 17, 18, 39, 40, 41, 67 2 10
11 10 1 15.8 7.47 9.44 2, 8, 15, 16, 17, 18, 39, 40, 41, 67 25 11
12 0 2 6.7 3.62 131.23 - 18, 41 1
13 1 2 19.3 9.22 114.72 18 8, 41 3
14 2 2 30.7 17.02 109.67 18, 41 15, 17 5
15 3 2 64.3 35.40 95.99 15, 18, 41 8, 17 10
16 4 2 76 66.82 83.93 15, 17, 18, 41 8, 16 13
17 5 2 81 79.73 51.99 8, 15, 17, 18, 41 16, 40 12
18 6 2 106 96.77 49.34 8, 15, 16, 17, 18, 41 6, 22 17
19 7 2 89 149.63 39 6, 8, 15, 16, 17, 18, 41 63, 65 14
20 8 2 100 215.53 35.8 6, 8, 15, 16, 17, 18, 41, 63 67, 80 15
21 9 2 92 336 30.9 8, 15, 16, 17, 18, 22, 41, 63, 67 68, 80 13
22 10 2 93 100 29.7 8, 15, 16, 17, 18, 22, 41, 63, 67, 68 59, 61 15
23 0 3 45.8 19.45 197.05 - 8, 18, 41 1
24 1 3 251.5 83.02 172.07 41 8, 17, 18 5
25 2 3 5450 167.84 159.86 17, 41 8, 16, 18 9
26 3 3 827 403.79 136.49 16, 17, 41 8, 18, 40 19
27 4 3 705 727.43 108.59 8, 15, 16, 18 17, 26, 41 15
28 5 3 972 1210.35 85.13 8, 15, 16, 17, 18 14, 41, 72 19
29 6 3 1008 2261.37 70.83 8, 15, 16, 17, 18, 41 3, 7, 22 20
30 7 3 1132 4135.44 56.46 8, 15, 16, 17, 18, 22, 41 14, 28, 58 21
31 8 3 967 8310.31 50.15 8, 14, 15, 16, 17, 18, 22, 41 19, 20, 40 19
32 0 4 181 50.64 246.7 - 8, 17, 18, 41 1
33 1 4 775 249.28 224.09 8 15, 16, 17, 41 4
34 2 4 3239 1135.37 205.58 16, 41 8, 15, 17, 18 15
35 3 4 4513 2389.81 158.6 8, 15, 18 16, 17, 29, 41 18
36 4 4 5314 5627.45 128.01 8, 15, 17, 18 14, 16, 41, 58 21
37 0 5 365 85.5016 297.64 - 8, 15, 16, 17, 41 1
38 1 5 2384 488.43 276.8 16 8, 15, 17, 18, 41 7
39 2 5 15321 3368.99 229.6 8, 15 16, 17, 18, 29, 41 16
40 0 6 898 149.22 305.6 - 8, 15, 16, 17, 29, 41 1

Table 5.6: IEEE 57-Bus System Instances using Algorithm 5.2.

IEEE 57-BUS System

The third electrical transmission network consists of 57 buses, 80 transmission lines

and 7 generators. The single line diagram and dataset used for the 57-Bus system is

available in the Appendix of Jiang et al. (2019). For this system the DAD problem

consists of 160 binary variables as we have 80 transmission lines and both defender

and attacker have the ability to defend/attack any of the transmission lines. Table

5.6 outlines the details of 40 instances to contrast Algorithm 5.2 results with that

of the enhanced enumeration technique. Both algorithms yield the same solution

quality. However, the efficiency of algorithm 5.2 in terms of run-time fell short in 30

instances as detailed in Table 5.6.
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5.3.2 Capacitated Lot-Sizing Interdiction Problem with For-

tification

The capacitated lot-sizing problem is considered a classic NP-hard problem (Bitran

& Yanasse 1982) that has been studied extensively in the literature. For instance,

Karmarkar et al. (1987) proposed a dynamic mixed-integer programme with start-

up and reservation costs that has been extended by Eppen & Martin (1987) using

variable re-definition. Belvaux & Wolsey (2000) proposed a branch-and-bound sys-

tem including lot-sizing specific preprocessing, cutting planes for different aspects

of lot-sizing problems, in addition to cutting planes, and a lot-sizing-specific primal

heuristic for models with set-up and start-up costs. The interested reader may re-

fer to the work done by Brahimi et al. (2006) for a literature review on lot-sizing

problems with a single item.

The capacitated lot-sizing problem with fortification (CLSIPF) does not neces-

sarily have the adversarial nature as the previous application. However, fortification

can be seen as a protective maintenance to avoid any disruptions that might occur

in the planning horizon. In a manner similar to fortification, disruptions in this con-

text might be an unexpected failure that might lead to capacity loss, thus affecting

production planning. Hence, CLSIPF can be defined as the problem of optimally

allocating preventive maintenance resources to a subset of time periods over the

planning horizon, such that the total cost incurred from the worst-case disruptions

is minimized. In this context, we are operating under the assumption that a time

period cannot be disrupted if maintenance resources have been pre-allocated to it.

Hence, the FG can be modelled by defining the following: 1) let x ∈ X be the
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fortification decision variables, where x ∈ X =
{
x ∈ {0, 1}|T |,wT x ≤ Bf

}
is the set

of constraints for the leader reflecting binary requirements and allowed maintenance

budget; 2) let y ∈ Y(x̂) =
{
y ∈ {0, 1}|T | : eT y ≤ BA, yt ≤ 1− x̂t, ∀ t ∈ T

}
be the

virtual attacker decision variables to model the worst-case scenario of unexpected

disruptions, where Y(x̂) is the set of constraints for the virtual attacker given a

feasible maintenance schedule x̂ reflecting the binary requirement for the attacker’s

decision variables, allowed attack budget, and a constraint reflecting the assump-

tion that a time period cannot be disrupted, as long as, maintenance resources have

been allocated to it; 3) the recourse decision vector z, which is comprised of B,v, I,

and s denoting vectors of production units, set-up decisions, end of period inventory

units, and shortage units in period t, respectively. Similarly, ct, Ct, ft, ht, qt are the

production cost per unit, production capacity, setup cost, holding cost per unit, and

shortage cost per unit in period t, respectively. The CLSIPF problem can be formally

presented as:

F : D∗ = min
x∈X

max
y∈Y(x)

min
z∈Z(y)

∑
t∈T

ctBt + ftvt + htIt + qtst (5.31)

Lastly, for a corresponding attack vector ŷ ∈ Y(x̂), the recourse problem R(x̂, ŷ)

can be defined as

R(x̂, ŷ) : DR(ŷ) = min
B,v,I,s

∑
t∈T

ctBt + ftvt + htIt + qtst (5.32)

s. t. It = It−1 +Bt + st − dt, ∀ t ∈ T (5.33)

Bt ≤ Ctvt, ∀ t ∈ T (5.34)
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vt ≤ 1− ŷt, ∀ t ∈ T (5.35)

Bt, It, st ≥ 0, ∀ t ∈ T (5.36)

vt ∈ {0, 1}. ∀ t ∈ T (5.37)

The main objective (5.32) is to minimize the total cost after disruption(s). Con-

straints 5.33 are for inventory balancing, while (5.34) dictate production capacity.

Most importantly, constraints (5.35) prohibit production in an interdicted time pe-

riod t. Lastly, constraints (5.36), and (5.37) enforce bounds and binary requirements

on the recourse decision variables.

The recourse problem R(x̂, ŷ) (5.32) is non-convex due to the presence of binary

variables vt, which means reducing the most two lower-levels (i.e., IG I(x̂)) into a

one-level cannot be accomplished. Consequently, we are proposing to solve using

Method 1; where we apply Algorithm 5.1 at the core of Algorithm 5.2.

Method 1

Applying Algorithm 5.1 to CLSIPF does not require solving the recourse problem

using a specific methodology. Hence, problem 5.32 can be solved using state-of-

the-art commercial solvers as a mixed-integer problem, which what we adopt in

this chapter, or using dynamic programming where the time period t is the state

variable. Recalling that Algorithm 5.1 iterates between a restricted master-problem

and a sub-problem to solve the most two lower-levels, IG problem I(x̂), for a given

feasible maintenance schedule, much of the computational effort is spent on obtaining

penalty terms MI
t (ẑ∗

i ) as a function of the observed optimal recourse decision vector.,
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ẑ∗
i , in each iteration i for period t. The penalty terms reflect the virtual attacker’s

interest in disrupting a specific time period t. For that purpose, we introduced

two linear constraints in the recourse problem R(x̂, ŷ) to measure the cost incurred

upon targeting a specific time period. These costs are added as penalty terms to the

restricted master problem RMPI(x̂).

In order to determine the cost incurred upon disrupting a time period t, the

following linear constraints are added to extract the needed information from the

recourse problem R(x̂, ŷ):

• The production quantity at period t, Bt, is decomposed into amounts as follows:

btt, . . . , bt|T |,∀ t ∈ T , where btj is the amount produced at period t that satisfies

demand at period j, for j ≥ t. Hence, the following constraint is added, while

solving problem R(x̂, ŷ) in each iteration:

Bt =
∑

j ∈ T :j ≥ t

btj ∀ t ∈ T . (5.38)

• In order to correctly reflect the end of period inventory, It, which is comple-

mentary to the aforementioned constraint, the following equation is added to

the recourse problem R(x̂, ŷ) in each iteration:

It =
∑

j ∈ T :j > t

btj ∀ t ∈ T . (5.39)

Now, consider an attack occurring at period t, the cost incurred based on the

solution from the recourse problem R(x̂, ŷ) can be calculated as follows:
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• The produced quantity at period t will be set to zero: Bt = 0.

• There will be savings from eliminating the production at period t in two forms:

– Savings due to eliminating fixed and variable costs: ft + ct Bt.

– Savings due to eliminating any holding costs that would have been in-

curred if in fact Bt was produced: ∑
j ∈ T :j > t

∑j−1
l=t hl btj.

• Shortage costs: ∑
j ∈ T :j ≥ t qjbtj.

Hence, the restricted master-problem RMPI(x̂) can now be defined from the at-

tacker’s perspective as follows:

RMPI(x̂)

max
y,DI

DI (5.40)

s. t. DI ≤ f(ẑ∗
i ) +

∑
t ∈ T

MI
t (ẑ∗

i ) (yt)i ∀ ẑ∗
i ∈ Z(ŷ), ŷ ∈ Y(x̂), (5.41)

y ∈ Y(x̂), (5.42)

where f(ẑ∗
i ) is the observed optimal cost 5.32 at iteration i, and MI

t (ẑ∗
i ) is the

penalty incurred from disrupting period t in iteration i, and defined as follows:

MI
t (ẑ∗

i ) =
∑

j ∈ T :j ≥ t

qj(b∗
tj)i − ft − ct (B∗

t )i −
∑

j ∈ T :j > t

j−1∑
l=t

hl (b∗
tj)i. (5.43)

Thus, the attacker is trying to maximize the inflicted damage from disruption (5.40).

In each iteration, constraint (5.41) is added to the cuts repository, which repre-

sents the collective knowledge of the virtual attacker of the possible recourse moves.
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Constraint (5.42) guarantees a feasible disruption vector, based on the fortifica-

tion/maintenance decision strategy. Next, we present our numericals results from

applying Algorithm 5.1 on a set of classical inventory problems previously discussed

in Silver & Peterson (1985).

Instances Generation and Results

We take |T |= 10 and randomly generate integers dt, Ct, ct, ft, and qt from uniform

distribution between [10, 210], [150, 200], [5, 10], [44, 64], and [2ct, 3ct], respectively.

The holding cost, ht, is randomly selected in the interval [0.3, 0.5]. These intervals

follow the same parameter structure introduced by Lozano & Smith (2017). As a

preliminary study, 10 random instances have been generated based on the aforemen-

tioned structure, where we solve them using Method 1. We apply Algorithm 5.1 on

each of the ten instance and show the cost increase, inflicted damage, by incrementing

the attacking budget. We have validated our results using brute force enumeration

and dynamic programming. Our major goal from the numerical results is to show

the applicability of Algorithms 5.1 and 5.2 on FGs with a convex and non-convex

recourse problems. Table 5.7 shows the disrupted periods for the randomly generated

ten instances. These periods have been validated using a dynamic program. Addi-

tionally, for each instance, Algorithm 5.1 was used to determine the periods with the

most drastic effect on cost, under different attack/disruption budget resources, BA .

Furthermore, in order to gauge the disruption significance on cost, Table 5.8 shows

the cost incurred for each instance and the corresponding disruption resource, BA.

The first column with BA = 0 provides the cost incurred to meet the demand and
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Instance
Num. BA = 0 BA = 1 BA = 2 BA = 3 BA = 4 BA = 5 BA = 6 BA = 7 BA = 8 BA = 9 BA = 10

1 - 1 1,4 4,5,8 4,5,6,8 4,5,6,7,8 3,4,5,6,7,8 1,3,4,5,6,7,8 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8,9 All
2 - 1 1,2 1,2,3 1,2,3,4 1,2,3,4,5 1,2,3,4,5,7 1,2,3,4,5,7,9 1,2,3,4,5,7,8,9 1,2,3,4,5,7,8,9,10 All
3 - 1 2,3 2,3,4 2,3,4,5 1,2,3,4,5 1,2,3,4,5,6 1,2,3,4,5,6,7 2,3,4,5,6,7,8,9 1,2,3,4,5,6,7,8,9 All
4 - 1 1,2 1,2,3 1,2,3,4 1,2,3,4,6 1,2,3,4,6, 1,2,3,4,5,6,7 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8,10 All
5 - 7 1,2 1,2,7 7,8,9,10 6,7,8,9,10 1,6,7,8,9,10 1,5,6,7,8,9,10 3,4,5,6,7,8,9,10 2,3,4,5,6,7,8,9,10 All
6 - 2 1,2 1,2,3 1,2,3,4 1,2,3,4,6 1,2,3,4,6,7 1,2,3,4,6,7,8 1,2,3,4,6,7,8 1,2,3,4,6,7,8,10 All
7 - 1 1,2 1,2,3 1,2,3,4 1,2,3,5,10 1,2,3,4,5,7 1,2,3,5,7,8 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8,10 All
8 - 2 2,4 1,2,4 1,2,4,5 1,2,4,6,7 1,2,4,5,6,7 1,2,4,5,6,7,8 1,2,4,5,6,7,8,9 1,2,3,4,5,6,7,8,10 All
9 - 1 1,7 1,2,3 2,3,4,5 1,2,3,4,5 1,2,3,4,5,6 1,2,3,4,5,6,8 1,2,3,4,5,6,7,9 1,2,3,4,5,6,7,8,9 All
10 - 1 1,2 1,2,3 5,6,7,8 4,5,6,7,8 3,4,5,6,7,8 2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8,10 All

Table 5.7: Disrupted Periods for Capacitated Lot-Sizing Interdiction Problem In-
stances with |T |= 10. Results using Algorithm 5.1.

shortages without any disruptions. For any instance in Table 5.8, as the disruption

budget increases, i.e., moving along the right side of the table, the cost incurred

by the planner increases because of the disruption in production and inability to

meet the demand and shortage costs. The entries in Table 5.8 are of the form

(Cost-Iterations), where the number after the hyphen indicates how many iterations

Algorithm 5.1 took to converge to the optimal solution.

Instance
Num. BA = 0 BA = 1 BA = 2 BA = 3 BA = 4 BA = 5 BA = 6 BA = 7 BA = 8 BA = 9 BA = 10

1 11499.8-1 12788.8-11 13508.2-47 15166.8-122 17578.7-208 19970.7-254 22326.8-207 23929.9-123 25646-50 26924-3 28111-3
2 8036.9-1 9154.94-10 10254.1-25 11435.6-48 12259.8-11 14139.8-68 14629-73 16104.4-61 16298-24 16733.1-3 6733.1-3
3 11427.6-1 12609.3-2 13992.2-13 16091.6-93 18399.6-109 20230.4-105 21111.2-116 22405.2-78 23481.2-39 25312-9 26130-3
4 7471.5-1 8416.96-9 9439.67-27 12413.7-48 13368.8-66 14239.5-65 15295.1-61 16245-50 17663-27 18270-21 18781-3
5 10718.5-1 11539.7-11 12368.8-38 1320.5-117 14415.9-178 15870.1-179 17040.3-153 18544.7-92 20431.5-51 22436.5-12 24512-3
6 9636.7-1 10385.3-10 12300.8-34 13571.8-93 14898.8-149 15899.9-189 17187.9-145 19180.2-67 20893-28 22427-12 22655-3
7 7372.8-1 8655.01-9 11319-24 12144.9-56 13955.7-81 16619.7-64 17641.8-58 17914.3 19182-41 20949-16 21011-3
8 10417.8-1 11160.8-12 12672.1-47 14493.8-106 15999.8-169 17581.4-175 19245.5-129 21045.4-70 22730.8 24717-3 26280-2
9 9038-1 10723.3-10 11457-33 12404.6- 82 137864.7-104 15820.8-84 17388.6- 72 18431.5-54 19973-31 21216-12 21561-3
10 10363.8-1 12035.9-10 12743.3-40 13704.2- 106 15818-184 18198.1-222 20273.6-194 22329.9-116 24166-49 25220-12 26250-3

Table 5.8: Costs and Iterations till Convergence for Capacitated Lot-Sizing Interdic-
tion Problem Instances with |T |= 10. Results using Algorithm 5.1.

5.4 Conclusions and Future Work

This research work proposed a decomposition-based approach for solving a special

class of tri-level programmes known as fortification games. Depending on the convex-

ity of the recourse problem, we propose an algorithm that is guaranteed to terminate
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finitely with the optimal solution for the tri-level problem. We propose two method-

ologies for solving fortification games with convex recourse problems. The first one

depends on reducing the most two lower-levels into a single-level and then uses a de-

composition approach. The second method, while computationally expensive, uses

a nested-decomposition approach to obtain the overall optimal solution. For tri-

level programmes with non-convex recourse problem we use the nested-decomposition

where we deploy problem-specific methodologies, such as dynamic programming, or

state-of-the-art commercial solvers to tackle the recourse problem and feed the re-

sults to the proposed approach. We test our algorithm on two types of fortification

games: protecting critical infrastructure of electrical transmission networks charac-

terized with a convex recourse problem and a capacitated lot-sizing problem with

fortification associated with a non-convex recourse problem.

There are several avenues for future research. Machine learning and artificial in-

telligence techniques can be used to extract features from the operator problem and

can then be used as weights for penalizing the decision variables used in the added

cuts of the decomposition approach. Combining heuristics based on the problem do-

main with decomposition-based approaches is a fertile area of research. Additionally,

revisiting traditional branch-and-cut procedures that were applied for single-level op-

timization problems and combining them with the proposed decomposition approach

is worth investigating.
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Chapter 6

Conclusion

This chapter summarizes our major findings from the main thesis Chapters. This is

followed by a general discussion of how the Chapters link to each other, discussing

the implications of this research and its limitation that in turn lead to future research

endeavours.

6.1 Main Results

Chapter 2

Chapter 2 provided a summary for bi-level programming, which is an important

building stone for solving tri-level programmes. We also attempted to clarify com-

mon misconceptions by introducing definitions and classifying highly cited and co-

cited research works pertaining to tri-level programmes. This was followed up with

a taxonomy of tri-level solution methodologies and applications. By systematically
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reviewing articles that have been influential in shaping tri-level programmes and pro-

viding a bibliometric analysis for multi-level programmes with a focus on tri-level

programmes, a list of the most impactful research has been compiled. This was done

through searching for possible keywords to pull relevant literature from the Web of

Science core collection. A meta-analysis was done using the R bibliometrix package

to extract useful knowledge from the data and depict it through intuitive visual-

izations. We found that the majority of developments are happening in the fields

of electrical engineering. In an effort to cross the disciplines, we directed our focus

to the Operations Research & Management Science (ORMS) area for a systematic

review. This allowed us to clear some common misconceptions, disseminate the TLP

literature to the ORMS community, and provide some definitions to structure the

taxonomy of TLPs.

Chapter 3

In Chapter 3 we presented a new class of tri-level mixed integer linear programming.

We discussed both its dual and KKT reformulations and presented some structural

analysis properties. Given the complexity of the problem, we presented three so-

lution approaches as well as an exact enumeration method with a warm-start for

benchmarking purposes. As a case study, the solutions approaches were applied to

improve the resilience of three different electrical transmission networks that varied

in size. Our proposed algorithms provided optimal solutions in most of the test in-

stances. They proved to offer a good substitute when obtaining exact solutions for
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large problems instances.

Chapter 4

In Chapter 4 we proposed a branch-and-bound approach for solving general prob-

lems of bi-level mixed-integer linear programmes with two assumptions and a general

class of tri-level mixed-integer programmes with a convex optimization problem in

their most lower-level. Furthermore, we provided a detailed literature review on the

most recent efforts on developing general-purpose bi-level mixed-integer linear pro-

grammes. We have tested our algorithm on randomly generated instances that have

been previously from the literature for validation. We reported on computational ef-

ficiency and provided a rich data of analytics on the solution of any BMILP instance.

The reporting on the solution for BMILP instances was done on the instance level

and within the instance. The instance level reported on the numbers and types of

relaxation problems solved to reach the optimal solution(s). We reported the number

of alternative optima if applicable. Within the instance level we reported on data

specific to how the solution(s) was reached. These data include but not limited to

the branching tree, number of nodes created, explored, and how it was fathomed.

Furthermore, we tested our algorithm on a specific class of tri-level problems which

can be reduced to a mixed-integer bi-level linear program. We focused on the ap-

plication of defending electrical transmission networks. Our main contribution was

to guarantee bi-level optimality, provide alternative optimal solutions if they exist,

and develop a general-purpose tool that can be tuned to account for different TLP
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constraints or objectives. Additionally, in order to enrich the test bed of bi-level

mixed-integer linear problems, we provided a Matlab live editor that converts any

electrical transmission network to bi-level mixed-integer programmeinstance that can

be used for enhancing the resilience of the electrical network under consideration.

Chapter 5

In Chapter 5 we proposed a decomposition-based approach for solving a special class

of tri-level programmes knows as fortification games. Depending on the convexity

of the recourse problem, we proposed an algorithm that is guaranteed to terminate

finitely with the optimal solution for the tri-level problem. In other words, the al-

gorithm terminates with a solution that belongs to the optimal reaction set of each

decision-maker in the tri-level hierarchical structure. We also proposed two method-

ologies for solving fortification games with convex recourse problems. The first one

depended on reducing the most two lower-levels into a single-level and then used a

decomposition approach. The second method, while computationally expensive, used

a nested-decomposition approach to obtain the overall optimal solution. For tri-level

programmes with a non-convex recourse problem, we used the nested-decomposition

where we deployed problem-specific methodologies, such as dynamic programming,

or commercial solvers to tackle the recourse problem. The results were then fed to

the proposed approach. We tested our algorithm on two types of fortification games:

protecting critical infrastructure of electrical transmission networks characterized

with a convex recourse problem and capacitated lot-sizing problem with fortification
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associated with a non-convex recourse problem.

6.2 General Discussion and Directions for Future

Research Endeavours

In this thesis, we focused on bi-level and tri-level programming problems in terms

of two main aspects: solution algorithms and applications. All Chapters have a

general theme which is proposing a solution approach(es) suited for a class of tri-

level programme and then applies that approach to a relevant application. The main

aim of this discussion is to help the reader understand the progression of the Chapters

followed by the limitation of each study, and how this might guide future research.

Chapter 2, while it is placed at the beginning of the thesis; this was last Chapter to

be written. The reason being is that we wanted to have a complete birds-eye view

of multi-level programmes before embarking on writing this literature review paper.

Chapter 3 provides efficient and very fast heuristic-based solutions, and as such,

finding the optimal solution is not always guaranteed. Nevertheless, our numerical

results proved the efficiency of those algorithms.The heuristic-based approaches can

only be applied on a special class of tri-level programmes where we make use of

the problem’s special structure to provide near-optimal/optimal solutions. These

heuristics are presented in a generalized way to so as to increase their applicability.

The limitations of the aforementioned study motivated us to find exact solutions

and generalize the class of tri-level problems that we can solve. This led to the con-

tributions in Chapter 4. We started working on a general class of tri-level problem
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by discarding the assumptions we made in Chapter 3. We proposed a branch-and-

bound approach that can be used for solving tri-level mixed-integer linear problems

as long as it has a convex optimization problem in its most lower-level. The pro-

posed branch-and-bound algorithm can also be used to solve bi-level mixed-integer

problems. While providing exact solutions, and alternative optima if they exist, the

algorithm suffers from the curse of dimensionality. The proposed branch-and-bound

algorithm is affected significantly by the number of constraints in the followers prob-

lem. We are certain that the branching rule can be significantly enhanced. We can

also make use of the rich data analytics provided by our algorithm to gain insights

about the problem’s structure and how to solve it efficiently to optimality. This

paved the way for Chapter 5. The motivation behind this Chapter was to provide an

exact approach for solving tri-level programmes in an efficient way. We needed an

exact algorithm to solve a tri-level programme with a non-convex recourse problem

at the most lower-level. This added complexity was very challenging because the

tri-level problem becomes irreducible. The only way was to design a decomposition-

based approach that adds problem-specific cuts to form the feasible region. However

we can only apply this algorithm on a special class of tri-level programmes to gain

advantage of the problem-specific knowledge. The main advantage of that algorithm

is providing an optimal solution in a computationally-efficient manner. However the

penalty terms must be tuned to model the problem-specific structure. In order to

tackle that, we provided a framework on how those penalty terms can be designed

so the algorithm can be used in different applications.

Developing algorithms for solving tri-level programming problems is still in its
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infancy, and it comes with many challenges and opportunities. The use of multi-

level programming is becoming more prominent due to the increase of decentralized

decision-making applications. This raises the need for future research in this area

pertaining to four major categories as identified in Chapter 2. Modelling is the

first of those categories. As tri-level programming is a discipline that flourished be-

cause of specific applications, the majority of research works call for extensions on

modelling and applications. This category was further classified into four classes:

1) competition, where it is desired to capture and model the interactions between

the decision-makers at the same level, 2) complex systems, where the need arises

to capture the interdependence between systems of systems, 3) dynamic systems,

such as bargaining, to take into account situations where decision-makers iteratively

resolve their conflict, and modelling the time dimension in TLPs, and lastly 4) in-

complete information to reflect real situations where some of the information may

not be available or is strategically hidden by one decision-maker.

The second category is algorithm development. Several research works call for

efficient and exact algorithms capable of handling large-sized instances and com-

plex models. It is clear that modelling realistic decision-making goes hand-in-hand

with algorithm development. Parametric programming, decision diagrams, decom-

position methods, meta-heuristic techniques and machine learning are interesting

venues of research for solving TLPs. Using multi-parametric programming theory

can be explored to develop algorithms either in the general sense or suited to spe-

cific multi-level programming applications such as dealing with multi-dimensional
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knapsack constraints in more than one level. Decision diagrams have been used re-

cently to solve optimization problems and can be further investigated to be applied

on discrete multi-level programming problems.

The third category is concerned with TLPs with uncertainty. Many environ-

ments where TLPs have been applied have inherent uncertainty in their parameters

such as attack and defence resources, supply and demand quantities, and capacity.

Optimizing TLPs with stochastic parameters is still in its early stages and further

research advancements in terms of modelling and algorithms are required in this area.

The last category is theory development where the type of equilibrium between

decision-makers can be investigated (e.g., generalized Nash equilibrium). Addition-

ally, different equilibrium selection strategies can be studied similar to those proposed

in Chapter 2 (e.g., sequentially optimistic). Sufficient and necessary optimality con-

ditions for TLPs are promising areas of research. Since most TLPs are currently

implemented on special network structures, it is desirable to design exact or approx-

imate algorithms that can lead to more generic theoretical results.
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Appendix A

Equivalence between RTLP-Dual

and RTLP-KKT in Chapter 3

A.1 Results

In Result A.1.1 we show the two reformulations: RTLP-Dual and RTLP-KKT

are equivalent.

Result A.1.1. If (x∗,y∗, z∗,u∗) is optimal for RTLP-Dual, then it has to be op-

timal for RTLP-KKT.

Proof. Except for constraint (3.31), which represents the complementary slackness,

and (3.22), which represents strong duality, it is easy to see that all other constraints

are the same in RTLP-KKT and RTLP-Dual. Thus to show their equivalence

we only need to show that (3.31) and (3.22) are equivalent. To do so note that

uT (A3yy− b3) = −uTA3zz = cT z =⇒ (A3yy− b3)T u = cT z
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In Result A.1.2 we show the optimality conditions for the two reformulations.

Result A.1.2. If (x∗,y∗, z∗,u∗) is optimal for RTLP-Dual or RTLP-KKT, then

(x∗,y∗, z∗) ∈ OP is also optimal solution TLP.

Proof. Since TLP-L3 is a linear program defined on a convex set of constraints

(primal problem), then at optimality it has to satisfy the strong duality conditions,

implying that the duality gap between the primal and dual problems is zero. This

condition is satisfied by including strong duality as constraint (3.22) in RTLP-Dual,

thus by satisfying that constraint we ensure that z∗ ∈M(x,y), the rational reaction

set of the third level. Hence if (x∗,y∗, z∗,u∗) is optimal for RTLP-Dual, then

(x∗,y∗, z∗) has to be in OP for TLP. The same result applies for RTLP-KKT due

to the equivalence established in Theorem A.1.1.

In Result A.1.3 we establish feasibility relationships for the two reformulations.

Result A.1.3. If (x,y, z,u) is feasible for RTLP-Dual or RTLP-KKT, then

(x,y, z) ∈ S, (y, z) ∈ S(x) and z ∈M(x,y) for TLP.

Proof. If (z,u) is feasible for RTLP-Dual, it means that strong duality constraint

(3.22) is satisfied, and optimality conditions are met for TLP-L3. This implies

that z ∈ M(x,y), the rational reaction set of the third level for TLP. Moreover,

since y is feasible for RTLP-Dual, and z is optimal for TLP-L3, this implies that

(y, z) ∈ S(x) for TLP. Finally, if x is feasible to RTLP-Dual and (y, z) ∈ S(x) for

TLP then (x,y, z) ∈ S for TLP.
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Heuristics Flowcharts
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Figure B.1: Flowchart for LPRank Heuristic.
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Figure B.2: Flowchart for HybridRank Heuristic.
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Algorithm C.1 LP Ranking with multi-dimensional Budget Constraints
1: procedure LPRank
2: Read problem data: A1,b1, c, A2,b2, A3, b3
3: UB←∞.
4: Solve RTLP-L2 model as MBLP without any control from upper-level (i.e.,

remove constraint (3.33)) and relaxed Budget b2 = n1 × ones(size(b2)).
5: UB← obj. val. .
6: for k=1: size(b1) do
7: Initialize Repository(k).
8: Add Budget Constraint k to RTLP-L2 and remove all other Budget Con-

straints
9: for j = 1 : (b1)k do

10: if obj. val.(j) = UB then
11: Break.
12: end if
13: for i = 1 : n1 do
14: if yi /∈ Repository(k) then
15: Set yi ∈ y← 0.
16: Solve RTLP-L2 model without constraint 3.33 as an LP by

setting (b2)k ← j.
17: Store obj.val. and the corresponding yi’s index.
18: end if
19: Sort yi’s indices in a descending order according to obj.val.
20: if Two or more binary variables (yi) have the same highest obj.val.

then
21: (b2)k ← j − 1.
22: Solve RTLP-L2 model as LP without constraint 3.33.
23: Sort yi indices in a descending order w.r.t an operational pref-

erence.
24: Set yi ← 0 for i (index) with the highest obj.val. and opera-

tional effect.
25: else Set yi ← 0 for i (index) with the highest obj.val..
26: end if
27: Store yi index, j (Budget value), obj.val. in Repository(k).
28: end for
29: end for
30: end for
31: Determine unique yi in all Repositories (i.e., from k = 1 : size(b1)) ∀j
32: Count each unique index in all Repositories.
33: Sort indices according to their count in a descending order.
34: Sort indices in a greedy manner w.r.t. sorted list and Budget constraints till

in-feasibility is achieved.
35: Set xi ∈ x in a greedy manner w.r.t sorted list and available budget b1.
36: Repeat steps 7 to 27 while enforcing constraint 3.33 and available budget b2

after revealing x to get y.
37: end procedure
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Figure C.1: LP Ranking with multi-dimensional Budget Constraints

291



Appendix D

Additional Numerical Results for

Chapter. 3

Instance
Num. Def. Budget Att. Budget Avg. Run-time

(sec)
Obj. Val.

(MW)
Def.

Ln. Num.
Att.

Ln. Num.
Num.

LP Solved
Optimal or

Near-Optimal
Diff. to

Optimal (MW)
1 0 1 0.2654 50 - 6 8 Optimal -
2 0 2 0.324 150 - 5, 6 15 Optimal -
3 0 3 0.3757 150 - 3, 5, 6 21 Optimal -
4 0 4 0.4261 150 - 3, 4, 5, 6 26 Near-Optimal 20
5 0 5 0.4720 170 - 1, 3, 4, 5, 6 30 Optimal -
6 0 6 0.5027 170 - 1, 2, 3, 4, 5, 6 33 Optimal -
7 1 1 0.3371 50 6 5 15 Optimal -
8 1 2 0.3898 50 6 4, 5 21 Optimal -
9 1 3 0.4490 70 6 1, 4, 5 26 Optimal -
10 1 4 0.5180 70 6 1, 2, 4, 5 30 Optimal -
11 1 5 0.5019 70 6 1, 2, 3, 4, 5 33 Optimal -
12 2 1 0.3715 0 5, 6 4 21 Optimal -
13 2 2 0.4191 20 5, 6 1, 4 36 Optimal -
14 2 3 0.4526 20 5, 6 1, 3, 4 30 Optimal -
15 2 4 0.4798 20 5, 6 1, 2, 3, 4 33 Optimal -
16 3 1 0.4334 0 3, 5, 6 4 26 Optimal -
17 3 2 0.4586 20 3, 5, 6 1, 4 30 Near-Optimal 20
18 3 3 0.4740 20 3, 5, 6 1, 2, 4 33 Near-Optimal 20
19 4 1 0.4584 0 3, 4, 5, 6 1 30 Optimal -
20 4 2 0.4971 10 3, 4, 5, 6 1, 2 33 Near-Optimal 10
21 5 1 0.5290 10 1, 3, 4, 5, 6 2 33 Optimal -

Table D.1: Five-Bus System Instances using LPRank Approach.
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Instance
Num. Def. Budget Att. Budget Avg. Run-time

(sec)
Obj. Val.

(MW)
Def.

Ln. Num.
Att.

Ln. Num.
Num.

LP Solved
Num.

MBLP Solved
Optimal or

Near-Optimal
Diff. to

Optimal (MW)
1 0 1 0.3206 43.63 - 5 10 0 Optimal -
2 0 2 0.4213 130 - 2, 5 19 0 Optimal -
3 0 3 0.5162 210 - 2, 3, 5 27 0 Optimal -
4 0 4 0.6048 290 - 2, 3, 4, 5 34 0 Optimal -
5 0 5 0.8306 290 - 1, 2, 3, 4, 5 40 1 Optimal -
6 0 6 0.8862 290 - 1, 2, 3, 4, 5, 6 45 1 Optimal -
7 0 7 1.0266 290 - 2, 3, 4, 5, 6, 7, 8 49 2 Optimal -
8 0 8 1.0688 290 - 1, 2, 3, 4, 5, 6, 7, 8 52 2 Optimal -
9 1 1 0.4459 31.08 5 2 19 0 Optimal -
10 1 2 0.6504 90 5 2, 4 27 0 Near-Optimal 5
11 1 3 0.9733 170 5 2, 3, 4 34 0 Optimal -
12 1 4 1.4011 170 5 1, 2, 3, 4, 7 40 1 Optimal -
13 1 5 1.8878 170 5 1, 2, 3, 4, 7 45 1 Near-Optimal 40
14 1 6 2.3447 220 5 1, 2, 3, 4, 6, 7 49 1 Near-Optimal 10
15 1 7 2.9098 220 5 1, 2, 3, 4, 6, 7, 8 52 2 Near-Optimal 10
16 2 1 0.4859 25 2, 5 4 27 0 Optimal -
17 2 2 0.6193 58.89 2, 5 34 0 0 Near-Optimal 21.11
18 2 3 0.8111 50 2, 5 1,3,4 40 0 Near-Optimal 8.89
19 2 4 1.0423 90 2, 5 1,3,4,6 45 0 Near-Optimal 50
20 2 5 1.2998 150 2, 5 1,3,4,6,8 49 0 Near-Optimal 10
21 2 6 1.6758 150 2, 5 1,3,4,6,7,8 52 1 Near-Optimal 10
22 3 1 0.5776 25 2, 3, 5 4 34 0 Near-Optimal 5
23 3 2 0.7013 70 2, 3, 5 4,6 40 0 Near-Optimal 10
24 3 3 0.9721 70 2, 3, 5 1,4,6 45 1 Optimal -
25 3 4 1.3301 70 2, 3, 5 1,4,6,7 49 1 Optimal -
26 3 5 1.8242 70 2, 3, 5 1,4,6,7,8 52 2 Optimal -
27 4 1 0.6784 0 2, 3, 4, 5 7 40 0 Optimal -
28 4 2 0.8819 0 2, 3, 4, 5 7,8 45 1 Optimal -
29 4 3 1.1431 0 2, 3, 4, 5 6,7,8 49 1 Optimal -
30 4 4 1.5092 0 2, 3, 4, 5 1,6,7,8 52 2 Optimal -
31 5 1 0.8826 0 1, 2, 3, 4, 5 7 45 1 Optimal -
32 5 2 1.0586 0 1, 2, 3, 4, 5 7,8 49 2 Optimal -
33 5 3 1.2944 0 1, 2, 3, 4, 5 6,7,8 52 2 Optimal -
34 6 1 0.9245 0 1, 2, 3, 4, 5, 6 7 49 1 Optimal -
35 6 2 1.0564 0 1, 2, 3, 4, 5, 6 7,8 52 2 Optimal -
36 7 1 1.0555 0 1, 2, 3, 4, 5, 6, 7 8 52 2 Optimal -

Table D.2: Six-Bus System Instances using HybridRank Approach.

Instance Def. Att. MEA with Warm-starting Sol. LPRank Heuristic HybridRank Heuristic MBLPRank Heuristic
Num. Budget Budget Run-time (s) Obj. Val. (MW) Avg. Run-time (s) Obj. Val. (MW) Percentage of

Abs. Dev. Avg. Run-time (s) Obj. Val. (MW) Percentage of
Abs. Dev. Avg. Run-time (s) Obj. Val. (MW) Percentage of

Abs. Dev.
1 0 4 50.6 246.7 9.3 246.7 0 9.78 203.7 15.5 729 246.7 0
2 1 4 294.28 224.09 12.3 237.1 5.08 567.02 237.11 5.8 4792 224.09 0
3 2 4 1135.4 205.58 15.01 224.2 9.06 610 224.69 9.2 1129 224.09 0.06
4 3 4 2389.8 158.6 16.6 188.22 18.6 647.78 151.69 4.3 2875 182.09 14.8
5 4 4 5627.4 128.01 19.26 146.22 14.2 3334 86.98 32.05 4842 128.01 0
6 0 5 85.5 297.64 11.53 292 1.8 12.1636 276.8 7 1148 297.64 0
7 1 5 488.43 276.8 15.49 297.64 7.5 587.3 297.64 7.5 5975 288.86 4.35
8 2 5 3369 229.6 16.43 244.85 6.6 623.37 225.04 1.9 17267 230.6 0.44
9 3 5 13918 189.87 18.78 207.13 9.07 659.3 151.9 19.9 34213 189.87 0
10 4 5 47820 169.86 20.92 165.17 2.7 3345.7 87.88 43.17 53217 189.87 11.8
11 0 6 149.211 305.6 13.86 304.6 0.32 14.56 303.6 0.65 2639.8 305.6 0
12 1 6 1730.3 297.6 16.76 305.6 2.68 600.78 297.89 0.097 10709 301.6 1.3
13 2 6 10401 257.6 18.83 280.89 9.04 638 225.23 12.5 27951 265.85 3.1
14 3 6 52252 222.87 20.85 213.6 4.15 3325 265.87 19.2 47084 223.87 0.45
15 0 1 2.7 75.63 2.9 75.63 0 2.5 75.63 0 3.12 75.63 0
16 1 1 1.611 53.21 5.49 53.21 0 7.72 53.21 0 13.1 75.63 42.13
17 2 1 2.25 49.45 7.8 53.21 7.6 10.76 49.45 0 34 53.21 7.6
18 3 1 2.75 44.15 10.05 53.21 20.5 14.1 49.45 12 145.7 53.21 20.5
19 4 1 3.2 44.02 12.23 53.21 20.8 17.4 49.45 24.9 460.1 49.45 12.3
20 7 1 5.48 14.23 19.24 17.67 24.1 27.5 17.67 24.1 4049 49.45 247.5
21 0 2 3.62 131.23 5.237 131.23 0 4.9 82.85 36.8 20.6 131.23 0
22 1 2 9.22 114.72 8.06 109.67 4.4 14 107.37 6.4 38.1 131.23 14.4
23 2 2 17.02 109.67 10.148 109.67 0 16.77 114.72 4.5 58.1 109.67 0
24 3 2 35.4 95.99 12.35 109.67 14.25 20 99.42 3.45 173 107.37 11.9
25 4 2 66.82 83.93 14.43 97.3 15.92 23.23 87.26 4 483.5 87.26 3.96
26 7 2 149.63 39 21.38 34.02 12.7 33.12 18.42 52.76 4073 63.35 62.4
27 8 2 215.53 35.8 23.76 34.02 4.9 35.9 18.42 44.5 4195 63.35 76.9
28 9 2 336 5.01 25.87 34.02 0.03 97.74 18.42 40.4 4267 63.35 105
29 10 2 512 29.7 27.56 34.02 14.5 100.6 18.42 38 4356 58.52 49.2
30 0 3 19.4 197.05 7.5 197.05 0 7.3 141.74 28.1 228.7 197.05 0
31 1 3 83 172.07 10.28 165.11 4 23.07 175.52 2 184 177.4 3.1
32 2 3 167.8 159.86 12.56 163.84 2.48 25.7 169.4 6 186.54 165.11 3.28
33 3 3 403.8 136.49 14.4 163.84 20.03 28.84 151.53 11 294.16 152.83 12
34 4 3 727 108.59 16.75 121.84 12.2 31.9 86.93 19.9 655.42 109.59 0.92
35 5 3 1210 85.13 19.63 94.24 10.7 35.48 52.08 38.8 1211.2 85.13 0
36 7 3 4135 56.46 24 47.09 16.5 41.48 34.27 39.93 4049 49.45 12.42
37 8 3 8310 50.15 26 47.09 6.1 44.12 34.27 31.6 4389 85.13 69.7
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Instance Def. Att. MEA with Warm-starting Sol. LPRank Heuristic HybridRank Heuristic MBLPRank Heuristic
Num. Budget Budget Avg.

Run-time (s)
Obj.

Val. (MW)
Avg.

Run-time (s)
Obj.

Val. (MW)
Num. of

LP Solved
Avg.

Run-time (s)
Obj.

Val. (MW)
Num. of

LP Solved
Num. of

MBLP Solved
Avg.

Run-time (s)
Obj.

Val. (MW)
Num. of

MBLP Solved
1 0 1 0.3 43.63 0.3 43.63 10 0.32 43.63 10 0 0.24 43.6 1
2 0 2 0.17 130 0.39 130 19 0.42 130 19 0 0.34 130 2
3 0 3 0.09 210 0.45 210 27 0.52 210 27 0 0.47 210 3
4 0 4 0.16 290 0.64 290 34 0.6 290 34 0 0.56 290 4
5 0 5 0.08 290 0.57 290 40 0.83 290 40 1 0.65 290 5
6 0 6 0.09 290 0.61 290 45 0.89 290 45 1 0.71 290 6
7 0 7 0.04 290 0.65 290 49 1.03 290 49 2 0.75 290 7
8 0 8 0.05 290 0.67 290 52 1.07 290 52 2 0.79 290 8
9 1 1 0.14 31.08 0.39 31.08 19 0.45 31.08 19 0 0.32 31.08 2
10 1 2 0.19 95 0.45 110.78 27 0.65 90 27 0 0.47 110.78 3
11 1 3 0.30 170 0.55 170 34 0.97 170 34 0 0.72 170 4
12 1 4 0.31 170 0.64 170 40 1.4 170 40 1 1.01 170 5
13 1 5 0.27 170 0.6 220 45 1.89 170 45 1 1.41 220 6
14 1 6 0.29 210 0.64 220 49 2.34 220 49 1 1.82 220 7
15 1 7 0.29 210 0.64 220 52 2.91 220 52 2 2.35 220 8
16 2 1 0.27 25 0.46 25 27 0.49 25 27 0 0.42 25 3
17 2 2 0.33 80 0.51 70 34 0.62 58.89 34 0 0.55 80 4
18 2 3 0.54 90 0.56 90 40 0.81 50 40 0 0.79 90 5
19 2 4 0.81 140 0.62 150 45 1.04 90 45 0 1.1 150 6
20 2 5 0.93 140 0.64 150 49 1.3 150 49 0 1.4 150 7
21 2 6 1.22 140 0.67 150 52 1.68 150 52 1 1.75 150 8
22 3 1 0.22 20 0.5 25 34 0.58 25 34 0 0.54 25 4
23 3 2 1.05 60 0.56 70 40 0.7 70 40 0 0.69 70 5
24 3 3 1.05 70 0.61 70 45 0.97 70 45 1 0.93 70 6
25 3 4 2.58 70 0.64 70 49 1.33 70 49 1 1.28 70 7
26 3 5 3.05 70 0.67 70 52 1.82 70 52 2 1.61 70 8
27 4 1 0.46 0 0.57 0 40 0.68 0 40 0 0.66 0 5
28 4 2 1.17 0 0.65 0 45 0.88 0 45 1 0.83 0 6
29 4 3 2.69 0 0.64 0 49 1.14 0 49 1 1.06 0 7
30 4 4 4.23 0 0.71 0 52 1.51 0 40 0 1.34 0 8
31 5 1 0.43 0 0.64 0 45 0.88 0 45 1 0.74 0 6
32 5 2 1.77 0 0.67 0 49 1.06 0 49 2 0.89 0 7
33 5 3 3.55 0 0.71 0 52 1.29 0 52 2 1.07 0 8
34 6 1 0.36 0 0.66 0 49 0.92 0 49 1 0.77 0 7
35 6 2 1.99 0 0.69 0 52 1.06 0 52 2 0.87 0 8
36 7 1 0.4 0 0.71 0 52 1.06 0 52 2 0.79 0 8

Table D.4: Proposed Heuristic Approaches Applied on 6-Bus System
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