
INTEGRATING SOFTWARE ISSUE TRACKING

AND TRACEABILITY MODELS

INTEGRATING SOFTWARE ISSUE TRACKING AND

TRACEABILITY MODELS

BY

NAVEEN GANESH MURALIDHARAN, B.Tech

a thesis

submitted to the department of Computing and Software

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Master of Applied Science

© Copyright by Naveen Ganesh Muralidharan, September 2022

All Rights Reserved

Master of Applied Science (2022) McMaster University

(Computing and Software) Hamilton, Ontario, Canada

TITLE: Integrating Software Issue Tracking and Traceability

Models

AUTHOR: Naveen Ganesh Muralidharan

B.Tech. (Electronics & Communication Engineering),

SASTRA University, Thanjavur, India

SUPERVISOR: Dr. Vera Pantelic & Dr. Richard Paige

NUMBER OF PAGES: xii, 82

ii

Abstract

Awareness of the importance of systems and software traceability and tool support for

traceability have improved over the years. However, an effective traceability solution

must align with an organization’s engineering processes. Specifically, the phases of

the traceability process model (traceability strategy, creation, use and maintenance of

traceability) must be aligned with the organization’s engineering processes. Previous

research has discussed the benefits of integrating traceability into the configuration

management process. This research proposes a process based on Model-Driven En-

gineering (MDE) where traceability is integrated into Change Request (CR) man-

agement. In this process, traceability is managed with the status of the CR; for

example, traceability is used to report the progress of the implementation of a CR.

The proof of concept of the integrated process is demonstrated with a tool, Trace-

ability Centric Issue Tracking System (TraceITS), based on Eclipse Modelling Tools

and Epsilon model management framework. A preliminary evaluation of TraceITS

indicates several advantages over regular ITS.

iii

Acknowledgements

I sincerely thank Dr. Vera Pantelic, Dr. Victor Bandur and Dr. Richard Paige for

their valuable guidance and support in creating this thesis.

I thank the McMaster Centre for Software Certification (McSCert) for providing

me with an opportunity to assist with their research that allowed for the inception of

the idea presented in this thesis.

Last but not least, I thank all the faculty and staff in the department of

Computing and Software at McMaster University for all their support and guid-

ance, especially for students like me who began their Master’s degrees during the

COVID-19 pandemic.

iv

Contents

Abstract iii

Acknowledgements iv

Definitions, and Abbreviations ix

1 Introduction 1

1.1 Approach . 6

1.2 Contributions . 7

1.3 Thesis Outline . 8

2 Background and Literature Review 9

2.1 Background . 9

2.2 Literature Review . 15

3 Integrated Change Request Management and Traceability Process 22

3.1 Process Fundamentals . 22

3.2 Integrated Process . 25

3.3 Process Summary . 31

v

4 Traceability-centric Issue Tracking System (TraceITS) 35

4.1 TraceITS Architecture . 35

4.2 Conformance to the Integrated Process 44

4.3 Limitations . 47

5 Evaluation 52

5.1 Discussion . 52

6 Conclusions and Future Work 59

6.1 Future Work . 60

A Abstract Syntax of TraceITS Models 62

vi

List of Figures

1.1 Example traceability matrix . 2

2.1 Gotel et al.’s Generic Process Model 10

2.2 Mader et al.’s example TIM . 14

2.3 Mohan et al.’s integrated SCM and traceability process 16

2.4 TracIMO Process Model . 18

3.1 CR query and summary . 24

3.2 Graphical syntax example . 30

3.3 Change Impact Analysis view . 31

3.4 Build Tracking view . 32

3.5 Summary of the Integrated Process 34

4.1 TraceITS Architecture . 36

4.2 Customized CRs Fields in Trac . 37

4.3 Simplified TIM of the Simulink Cruise Control example 39

4.4 Example traceability model in TraceITS 41

4.5 TraceITS strategy recommendation 44

4.6 LTM to GTM merge example in TraceITS 46

4.7 TIM for the Simulink Cruise Control example 51

vii

List of Tables

4.1 Customized CRs Fields in Trac . 38

4.2 EVL Constraints and Critiques . 43

5.1 TraceITS comparision with regular ITS 53

5.2 TraceITS traceability data comparision 54

A.1 TraceITS models’ abstract syntax . 63

viii

Definitions, and Abbreviations

Definitions

Artifact Any item relevant to the project, such as template, document, out-

put, result or project deliverable. (Project Management Institute,

2021)

Baseline “Approved version of a work product or plan” (Project Management

Institute, 2021)

Configuration Item

Any item, atomic or aggregate (treated as a single entity) in the

project subjected to configuration management process (IEE, 2017)

Change Request

“A formal proposal to modify a document, deliverable, or base-

line” (Project Management Institute, 2021)

Traceability “The degree to which a relationship can be established between two

or more products of the development process, especially products

having a predecessor-successor or master-subordinate relationship to

ix

one another; for example, the degree to which the requirements and

design of a given software component match” (IEE, 1990).

Traceability Data

Refers to the traceability information of a project. It can be repre-

sented as graphs, hyperlinks and matrices.

Trace Granularity

The level of detail of the artifacts in traceability data. For exam-

ple, traceability to a Java source could be to a package or a class

itself. (Gotel et al., 2012a)

Traceability Information Model

A Traceability Information Model (TIM) is a schema for the trace-

ability data; it describes the structure of the project’s traceability

data (Mader et al., 2009).

Traceability Process Model

A set of activities that govern the lifecycle of traceability data.

Traceability Recovery

The process of creating traceability links after the artifacts are cre-

ated. (Gotel et al., 2012a)

Abbreviations

ALM Application Lifecycle Management

CASE Computer Aided Software Engineering

x

CI Configuration Item

CIA Change Impact Analysis

CMMI Capability Maturity Model Integration

CR Change Request

DSL Domain Specific Language

ECL Epsilon Comparison Language

EGL Epsilon Generator Language

EMC Epsilon Model Connectivity

EMF Eclipse Modeling Framework

EML Epsilon Merging Language

EOL Epsilon Object Language

ETL Epsilon Transformation Language

GMF Graphical Modeling Framework

GTM Global Traceability Model

GUI Graphical User Interface

IEEE Institute of Electrical and Electronics Engineers

IR Information Retrieval

ITS Issue Tracking Systems

xi

LTM Local Traceability Model

LOE Level Of Effort

MDE Model-Driven Engineering

ML Machine Learning

PMI Project Management Institute

PoC Proof of Concept

RTM Requirement Traceability Matrix

RUP Rational Unified Process

SCM Software Configuration Management

TIM Traceability Information Model

UID Unique Identifier

VCS Version Control System

XMI XML Metadata Interchange

xii

Chapter 1

Introduction

The IEEE Standard Glossary of Software Engineering Terminology defines trace-

ability as “the degree to which a relationship can be established between two or

more products of the development process, especially products having a predecessor-

successor or master-subordinate relationship to one another; for example, the degree

to which the requirements and design of a given software component match” (IEE,

1990). Traceability data can be represented in various ways, namely, matrices, graphs

and hyperlinks (Li and Maalej, 2012). The Requirements Traceability Matrix (RTM)

is the most common representation form. An example RTM is depicted in Figure 1.1.

The rows contain the IDs of test cases, and the columns contain the requirement IDs.

The X in cells denote that that test case verifies the corresponding requirement.

There are numerous benefits of implementing traceability. Studies have indi-

cated that software projects with well-defined traceability are of better quality than

projects with insufficient/poor quality traceability (Rempel and Mäder, 2017; Mäder

and Egyed, 2015). Particularly, projects with well-defined traceability have lesser

defects (Rempel and Mäder, 2017) and are easier to maintain (Mäder and Egyed,

1

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

Figure 1.1: An example traceability matrix (Wikipedia contributors, 2022)

2015). The specific benefits of traceability that leads to high-quality software are

summarized by Berczuk et al. (Berczuk et al., 2005) (also see (Cleland-Huang, 2012))

as follows.

• Change Impact Analysis: Traceability is used to assess the impact of an in-

coming change to the software as the traceability establishes all the necessary

relationships among artifacts, such as the dependencies of an artifact.

• Product Conformance: From traceability, it can be confirmed that all the cus-

tomer requirements are implemented in the software.

2

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

• Process Compliance: From traceability, it can be confirmed that all the pro-

cesses specified by the organization or an appropriate safety-critical standard

are followed.

• Project accountability: From traceability, it can be ensured that only the re-

quested functionality has been implemented, and there are no “extra features”

or “gold plating”.

• Baseline reproducibility: Traceability helps with recreating a previous version

(baseline) of a software.

• Organizational learning: Traceability can be used as a means of knowledge

transfer to new engineers.

Consequently, software engineering standards recognize and, in some instances,

mandate traceability. For instance, the Capability Maturity Model Integration (CMMI)

(CMMI Institute, 2022) uses a process model to recognize an organization’s engineer-

ing process on a scale of Initial (Level 1) to Optimizing (Level 5). In the CMMI

process model, bi-directional traceability (from all the requirements) is one of the

requirements for a Level 2 (Managed) recognition of the process. Likewise, in safety-

critical standards such as the DO-178C (RTCA, 2011), traceability data is one of the

output deliverables, and therefore there are specific requirements for traceability in

DO-178C.

Despite the benefits and the recognition of traceability, there are several challenges

in implementing traceability. Studies (Mäder et al., 2013; Cleland-Huang et al., 2014;

Maro et al., 2020) have indicated a wide variety of challenges ranging from organiza-

tions not recognizing the benefits of traceability (Cleland-Huang et al., 2014; Mäder

3

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

et al., 2013) to the nuanced complexities faced by organizations implementing trace-

ability (Maro et al., 2020). An example of the latter is the interoperability of the

traceability data among subteams in an organization working on different function-

alities for the same product.

Among the challenges with traceability is an efficient implementation of the trace-

ability process in an organization. For several reasons, such as a tight project schedule,

traceability, including its use, is neglected by an organization’s stakeholders. For ex-

ample, Mäder et al. (Mäder et al., 2013) studied ten deliverable artifacts submitted

by various organizations to the US Food and Drug Administration for approval of

their respective products. In their study, Mäder et al. found several cases where

the traceability in deliverable artifacts appeared to have been created in an ad-hoc

manner, likely right before submitting for approval. Likewise, in a recently published

study on introducing a traceability process alongside an existing engineering pro-

cess (Maro et al., 2020), Maro et al. suggest that based on their observations, it could

be challenging for organizations to adopt a new traceability process alongside their

existing engineering process. Therefore, it is logical to conclude that the traceabil-

ity process should co-exist with the organization’s established engineering processes

for an efficient adaptation. This conclusion fits well with the vision of “Ubiquitous

Traceability” proposed by Gotel et al. (Gotel et al., 2012b), where traceability is an

outcome of an organization’s engineering process. In other words, traceability should

not be an additional activity in the software engineering process; instead, traceability

should result from the process.

Traceability is already integral to the Software Configuration Management (SCM)

process. For example, Section 9.2.5.1 in IEEE-828-2012 states that the traceability

4

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

data is also an artifact that should be verified as part of the software verification

process. Therefore the question is, despite this, why is not traceability a mainstream

SCM process like version control? One answer is that there is more to traceability

than just creating and using the traceability data. A traceability process model

(also known as methodology) is a set of activities that govern the lifecycle of the

traceability data. For example, the generic traceability process model (Gotel et al.,

2012a) involves strategizing, creating, using and maintaining traceability data. All

the activities in the traceability process model must be integrated with the software

engineering process to implement traceability efficiently.

The COVID-19 pandemic is an additional motivation for this research. COVID-19

led to a change in the organizational work culture; organizations allow their person-

nel to work remotely. However, organizations are observing an increased amount of

personnel leaving their positions (Microsoft, 2021). This phenomenon is popularly

known as the “Great Resignation” or the “Big Quit” (Curtis, 2021). The adverse

impact on the project cost and schedules due to the rapid change in personnel is

evident.

One of the mitigating mechanisms in episodes such as the “Great Resignation”

is traceability. Cleland-Huang et al. summarized a relevant use case in a previ-

ous study (Cleland-Huang et al., 2014). They describe how preexisting traceability

data would help a new developer in an Agile team implement a user story. The

traceability data will help the developer with necessary information like the up-

stream/downstream artifacts of the user story and the information about a developer

who has previously worked on the user story. Therefore, this research would provide

a renewed interest for organizations to improve their traceability process.

5

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

Last but not least, portions of this thesis are verbatim from the paper, Integrating

Software Issue Tracking and Traceability Models (Muralidharan et al., 2022). The

idea presented in this thesis was submitted to the 38th IEEE International Confer-

ence on Software Maintenance and Evolution (ICSME)1, and has been accepted for

presentation and publication.

1.1 Approach

The goal of this research is to integrate all the activities of a traceability process

model into the software engineering process so that traceability can no longer be seen

as an additional task by an organization. This approach to attain this goal has three

elements: the traceability process model, the engineering process and tool support &

automation.

• Traceability process model: This research uses the generic traceability process

model (Gotel et al., 2012a) as it is simple yet comprehensive to integrate with

an engineering process.

• Engineering process: With which engineering process the traceability process

can be smoothly integrated? This research proposes a specific aspect of SCM:

Change Request (CR) management. Specifically, this research proposes inte-

grating the traceability process model with the lifecycle of CRs. The reason is

that CRs are relevant to all the stakeholders in a project, and CRs are typically

the starting point for any change (for example, new development or bug fix).

• Tool support and automation: What tool support should be provided to the

1https://cyprusconferences.org/icsme2022/new-ideas-and-emerging-results-accepted-papers/

6

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

organizations to successfully implement the integrated process? This research

proposes a Model-Driven Engineering (MDE) tool suite. The reason is the

availability of integrated visualization and automation in MDE. It was previ-

ously mentioned that traceability data could be represented as matrices, graphs

or hyperlinks. Each representation has its benefits (Li and Maalej, 2012).

An added benefit of representing traceability as models is that visualization,

storage and management are augmented by the appropriate MDE tool suite.

For example, when Eclipse modelling tools such as Eclipse Modelling Frame-

work (EMF) (Eclipse Foundation, 2022a) and Graphical Modelling Framework

(GMF) (Eclipse Foundation, 2022b) are chosen to represent traceability, trace-

ability can be created and visualized using the graphical syntax editor pro-

vided by GMF and the traceability models are stored in XML Metadata In-

terchange (XMI) standard files. The model management (therefore traceability

management) can be automated with a model management framework such

as Epsilon (Epsilon Development Team, 2022b). Augmentation with an MDE

suite would significantly reduce the organization’s traceability development and

maintenance efforts.

1.2 Contributions

The following are the contributions of this research.

7

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

1. A process based on Model-Driven Engineering (MDE) is proposed where trace-

ability strategizing, creation, use and maintenance are integrated with the life-

cycle of CRs. Developers on a project are encouraged to use and update trace-

ability data, but rigid guidelines usually don’t exist on when to use or update

them and how. As a result, the developers may neglect traceability until the

last moment when they are ready to close their CRs. Integrating traceability

management with the state of a CR positions traceability at the forefront of

the change management process. Augmented with MDE, the proposed process

ensures the appropriate visualization and automation to engage the develop-

ers throughout the process. Currently, no process combines CRs and MDE for

traceability management.

2. A tool, Traceability-centric Issue Tracking System (TraceITS), is developed

to demonstrate the integrated traceability and CR process. TraceITS demon-

strates that it is practical to implement the integrated process in practice and

that it can be scaled and customized to an organization’s needs. With Tra-

ceITS, the benefits of an MDE-based ITS over a regular ITS are discernible and

pave the way for discussions on future ITS.

1.3 Thesis Outline

Chapter 2 of this thesis outlines the necessary background and related work; Chapter 3

explains the integrated process; Chapter 4 explains a Proof of Concept (POC) tool,

TraceITS; Chapter 5 presents a discussion of the process and the tool, and finally

Chapter 6 concludes the thesis.

8

Chapter 2

Background and Literature Review

This chapter explains the necessary background and related work regarding the in-

tegrated traceability and CR management process presented in this thesis. The in-

tegrated CR and traceability management process proposed in this thesis will be

referred to as the integrated process throughout this chapter.

2.1 Background

This section provides the necessary background for the integrated process. Subsec-

tion 2.1.1 explains the generic traceability process model, Subsection 2.1.2 explains

the CR management and lifecycle, and Subsection 2.1.3 explains Traceability Infor-

mation Model (TIM).

2.1.1 Generic Traceability Process Model

The generic traceability process model proposed by Gotel et al. (Gotel et al., 2012a)

is depicted in Figure 2.1.

9

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

Figure 2.1: Generic Traceability Process Model (Gotel et al., 2012a)

The first phase in Gotel et al.’s traceability process model is Traceability Strategy.

Traceability Strategy involves the following steps. The first step is establishing the

need for traceability that caters to the needs of all project stakeholders. For instance,

a project manager or other lead would use traceability for resource allocation, whereas

the developer would primarily use traceability to understand the technical scope of the

proposed changes. In addition, there may be pre-requisite traceability requirements

for safety-critical software prescribed by the standards such as DO-178C (RTCA,

2011). Accordingly, the relevant artifacts to be traced and the appropriate level of

trace granularity must be chosen to satisfy the stakeholders’ needs. The second step

is project management, budgeting the costs for traceability, allocating resources, etc.

10

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

The third step is planning the traceability data, which involves designing the trace-

ability using a Traceability Information Model (TIM) (Mader et al., 2009), establish-

ing a traceability process, and determining the appropriate tool support to augment

the traceability process. The last steps in traceability strategy are implementing and

continuously monitoring and evaluating traceability through user feedback.

Traceability Strategy is followed by Traceability Creation. As the name suggests,

traceability creation involves creating and validating traceability data. There are

two methods of creating traceability. Traceability can be created during the develop-

ment of the artifacts or after development. The latter is called Traceability recovery

(Section 2.2.3).

The next phase is Traceability Maintenance. Traceability Maintenance is the pro-

cess of maintaining the established traceability data: specifically, managing changes

to traceability during the system’s evolution. For instance, if a new artifact is added

to the TIM, the traceability data should be updated to conform to the new TIM.

The final phase in the generic traceability process model is Traceability Use.

As mentioned previously, the usage of traceability data differs among stakehold-

ers. Therefore, factors to consider during Traceability use are the presentation of

the traceability data to users and the traceability queries posed by users. As men-

tioned in the Traceability Strategy, the usefulness of the traceability data should be

continually evaluated and improved based on user feedback. Although not part of

the process model, another step to consider is Traceability Visualization: presenting

the traceability data to all the stakeholders in a dashboard. Studies (Mäder et al.,

2013; Cleland-Huang et al., 2014) have indicated that traceability dashboards aid

with traceability creation, maintenance and planning by eliciting user engagement

11

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

through use and feedback. Also, the visualization instills trust in the traceability

data.

2.1.2 Change Request Forms

Change Request (CR) forms are essential to the Software Configuration Management

(SCM) process. IEEE 828-2012 (IEEE, 2012) configuration management standard

contains specific requirements for CRs (section 9.2.3) in its low-level change control

process (section 9.2). IEEE-828-2012 states that a CR form, at a minimum, contains

the following information:

• Description of the change, including the rationale for the request

• Status of the CR (for example, Open, Approved, Rejected, Closed)

• Affected software version (baseline)

• Impact on the product

• Resolution notes

• CCB (Change Control Board) approval notes

Among all the artifacts in a project, one salient characteristic of CRs is that all

the stakeholders access them. For example, take the case where a customer creates a

CR for a new feature. First, the appropriate lead (e.g. a product owner) performs a

Change Impact Analysis on the CR. The CR is then forwarded to the Change Control

Board (CCB) for approval. The CR is then assigned to a developer for implementation

and verification upon approval. During the implementation, all the stakeholders track

12

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

the progress of the CR. Finally, the closed CR may also be subjected to audit by

the quality assurance team per the low-level configuration audit process specified by

IEEE-828-2012, Section 11. During the CR’s lifecycle, the status field in the CR is

updated to indicate the activity on the CR, for example, Open or Closed.

Although traceability is an essential part of IEEE-828-2012, the status of CRs is

not directly related to traceability. Summarily, there are two types of traceability

requirements in IEEE-828-2012. The first is to inspect the traceability among the

Configuration Items (CI), for example, traceability from requirements to design and

requirements to tests (IEEE-828-2012 Section 11.2.1.1). The second is to inspect the

traceability between any change to a baseline and the driving CR (IEEE-828-2012

Section 8.2.5.7). Note that the word inspect is taken verbatim from IEEE-828-2012;

however, inspect does not imply verification of requirements through inspection, but

to inspect if a requirement is appropriately verified by examining the traceability

data.

As a reminder to the reader, the integrated process integrates the generic trace-

ability process model with the lifecycle of a CR. However, a few noteworthy points

on CRs need to be clarified before explaining the integrated process. First, the type

of CR that stakeholders have access to varies. For instance, the customer may use an

IT service desk management suite to report a bug or request a new feature. Internal

to an organization may be Issue Tracking Systems (ITS) to track the bug’s status.

Additionally, ITS may support different types of CRs, for instance, a bug versus a

new feature (Atlassian Inc., 2022c). The scope of the integrated process is limited to

ITS and CR types that are internal to the organization.

Next, the low-level change control requirements specified in IEEE-828-2012 apply

13

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

to CIs that are already baselined. IEEE-828-2012 explicitly states that a low-level

change control requirement “does not apply to items which have not yet been submit-

ted to a CM repository for the first time and are still under development.” (IEEE,

2012). Therefore, the process for new development may vary across organizations;

that is, organizations may or may not create tickets for creating new artifacts (i.e.

not baselined), typically at the beginning of their software development process.

2.1.3 Traceability Information Model (TIM)

A Traceability Information Model (TIM) is a schema for the traceability data; it

describes the structure of the project’s traceability data (Mader et al., 2009). A TIM

contains artifacts and traceability links between artifacts. An example TIM by Mader

et al. is depicted in Figure 2.2.

Figure 2.2: Example TIM (Mader et al., 2009)

When the traceability data is represented as graph models, the TIM is the corre-

sponding metamodel.

14

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

2.2 Literature Review

The outline of this section is as follows. First, Subsection 2.2.1 discusses related work

on integrated configuration management and traceability processes. Next, Subsec-

tion 2.2.2 discusses related work traceability methodologies/strategies. Third, Sub-

section 2.2.3 discusses related work on automated traceability recovery techniques.

Finally, Subsection 2.2.4 discusses related work on the traceability processes in spe-

cific ALM suites.

2.2.1 Traceability Integrated with SCM Process

Mohan et al. (Mohan et al., 2008b,a) integrated Traceability management into the

Software Configuration Management (SCM) process specified in the Rational Uni-

fied Process (RUP). The integrated process from their work is depicted in detail in

Figure 2.3.

The summary of the process is as follows,

• Integrate SCM and traceability plans

• Integrate SCM and traceability tools

• Integrate SCM versioning (artifact Version Control and CR) with traceability

data to help manage product baseline and obtain information specific to CRs,

like the rationale behind the change and the approvals.

• Monitor and report status corresponding to specific product versions; design

decisions and other rationales can now be discerned to specific versions of arti-

facts.

15

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

Figure 2.3: SCM process outlined by RUP integrated with traceability (Mohan
et al., 2008b)

There are a few similarities between the work of Mohan et al. and the integrated

process proposed in this thesis. The similarities are linking CRs with artifacts and in-

tegrating the SCM and traceability work environments. However, the main difference

between the two processes is the usage of CRs. The specific role of CRs in Mohan et

al.’s work appears to be for baseline control and change rationale; neither CRs’ state

nor CRs’ fields relate directly to the traceability data.

In this proposed process, the traceability data is managed with the CR’s lifecycle;

the state of the CR is tied to strategizing, creating, maintaining and using traceability.

Specifically, the CR ticket is extended to hold a portion of traceability specific to that

16

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

change and is managed with the lifecycle of the CR.

Appleton et al. (Appleton et al., 2007) (also see (Cleland-Huang, 2012)) propose

the idea of “Lean Traceability”. They claim that integration of software develop-

ment processes, namely, Task-Based Development (TBD), Behavior-Driven Develop-

ment (BDD), Test-Driven Development (TDD), along with an integration of the ITS,

VCS, and the Wikis, would result in Event-Based Traceability (EBT) (Cleland-Huang

et al., 2003). In EBT, traceability is automatically captured from event notifications.

Example event notifications include commits to a file or changes to requirements. In

the context of Agile software development, a user story, including its development

and verification, is assigned to one ticket in an ITS. Traceability for that user story

is then automatically captured from the event notifications. The similarity between

Appleton et al.’s process and the proposed integrated process is the relation between

the CR and traceability; the traceability data specific to a CR is captured during

the progression of the CR using EBT. However, Appleton et al. do not discuss the

traceability process model and do not customize CRs for their process.

The advantage of the approach proposed in this thesis over the two aforementioned

approaches is in adapting all the phases of the traceability process model into change

request management so that traceability is managed along the status of the CR and

using CRs for feedback.

2.2.2 Traceability Processes

Traceability process models are step-by-step guidelines for organizations to implement

traceability in their projects. The generic traceability process model proposed by

Gotel et al. (Gotel et al., 2012a) is already discussed in Section 2.1.1. Elaborate

17

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

process models have been developed for a fine-grained implementation of traceability.

The steps in a recently published process, TracIMO (Maro et al., 2022), are depicted

in Figure 2.4. TracIMO is more detailed than the Generic Process model and contains

additional steps for traceability tool support and traceability evaluation.

Figure 2.4: Traceability process model proposed by TracIMO (Maro et al., 2022)

The difference between the integrated process and the traceability process models

is that the integrated process is specific to a part of the SCM process, whereas the

traceability process models do not advocate integrating traceability into any partic-

ular part of the software engineering process. The evaluation of the software engi-

neering process to derive the traceability process and choosing the appropriate tool

18

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

support come at a later stage in the traceability process models. However, when

the process model is applied to an existing engineering process, the outcome may

be similar to the integrated process. For instance, in the case study where TracIMO

was applied, the resultant traceability process and the Traceability Information Model

(TIM) are CR-centric. Other than the similarity that the traceability is initiated from

a CR, the traceability process in the case study and the integrated process is different.

The most notable difference is the creation of traceability data. In TracIMO’s case

study, the traceability links are created by the lead developer in a third-party tool

which is then converted into a traceability graph diagram and uploaded to the CR for

the developer to understand the change. The integrated process proposes the exten-

sion of a CR into a graphical syntax editor to hold the traceability called the Local

Traceability Model (LTM). The LTMs traceability models are not only constructed

by the developer implementing the CR but are also used to report the status of the

CR.

In a way, the research in this thesis proposes reverse engineering the traceability

process model from the traceability process.

2.2.3 Automated Traceability Recovery Techniques

Automated Traceability Recovery (Lucia et al., 2012; Aung et al., 2020) is the process

of creating traceability from existing artifacts through Information Retrieval (IR) or

Machine Learning (ML). Automated Traceability Recovery is expected to be among

the major research topic of traceability in the next ten years (Antoniol et al., 2017).

Automated Traceability Recovery targetted for Change Impact Analysis attempts

19

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

to mine the traceability based on the incoming Change Request. Canfora and Cerulo (Can-

fora and Cerulo, 2005) use Information Retrieval (IR) techniques to mine artifacts

affected by a new CR from the commits made for the previously closed CRs. Like-

wise, Shahid and Ibrahim’s (Shahid and Ibrahim, 2016) approach seem to start from

a CR, although it is unclear if their artifact set also includes CR tickets. This poses

the question of whether automated traceability recovery from ITSs can be considered

as traceability well integrated into the configuration management process. The an-

swer is affirmative, but automated traceability recovery is still a work in progress and

may require a manual process to plan and validate the recovered traceability data.

The integrated process includes automated traceability recovery, supported only by

manual validation by developers.

2.2.4 Traceability Process in ALM Tools

Application Lifecycle Management (ALM) suites are typically developed with an in-

tegrated issue tracker. The tickets in the issue trackers of these suites can be linked

to artifacts in the development system and visualized on demand. A few ALM suites

support phases of the traceability processes model as well. From Steghofer’s survey

of traceability tools (Steghöfer, 2017), System Weaver (System Weaver Inc., 2022a),

Polarion ALM (Siemens Inc, 2022) and PTC Integrity/Windchill (PTC Inc., 2022)

offer partial to full support for planning traceability through Traceability Information

Models (TIMs).

System Weaver (System Weaver Inc., 2022a,b) is an ALM suite that offers a vari-

ety of features, including support for requirements management, system architecture,

change management, project management and integration with external tools. In

20

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

particular to Change Management, Systems Weaver offers a built-in issue tracking

mechanism; however, there is also a provision for integration with external suites like

Atlassian JIRA and Git. An issue in System Weaver can be linked to any items, in-

cluding other issues, requirements, or test cases. System Weaver also supports Model-

Driven Software Engineering by allowing users to define metamodels for requirements

and processes (workflow). Traceability is established in the model instances by linking

the System Weaver ID of the metamodel elements. Issues do not seem to be directly

part of the metamodels or the models. However, issues can be linked to one of the

model’s items (such as requirements).

Tuleap (Enlean Inc., 2022b,a), Siemens Polarion ALM (Enlean Inc., 2022b,a) and

Atlassian JIRA (Atlassian Inc., 2022a,b) support full traceability among artifacts but

offer none to limited built-in support for Model-Driven Engineering (MDE). Tuleap

does not seem to provide any provision for MDE, while Polarion allows product line

management by enabling the definition of feature models. JIRA does not directly

support MDSE, but there are extensions (excentia, 2022; Optimizory Technologies

Pvt. Ltd., 2022; Köstebek Teknoloji, 2022) in the Atlassian Marketplace that allow

the visualization of traceability as model blocks.

In conclusion, it appears that the change management processes of the ITSs found

in these suites do not directly depend on traceability data. Additionally, the goal

integrated process proposed in this thesis is that it be applicable to all types of ITSs,

standalone or ALM.

21

Chapter 3

Integrated Change Request

Management and Traceability

Process

This chapter explains the integrated change-request management and traceability pro-

cess. Section 3.1 describes key elements of the process, while Section 3.2 describes the

integrated CR-traceability strategy, creation, maintenance, use and

visualization processes. Finally, Section 3.3 summarizes the integrated process with

an example.

3.1 Process Fundamentals

This section explains the fundamental elements of the integrated process. Subsec-

tion 3.1.1 explains the specialized use of CRs and Subsection 3.1.2 explains the trace-

ability models in the process.

22

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

3.1.1 Change Request Ticket

The background about CRs and the IEEE-828-2012’s recommendation for the fields

in a CR was discussed in Section 2.1.2. This research proposes adding the following

fields to a CR:

• Feedback about the TIM and the other fields in the CR itself, e.g., a simple

Yes/No question such as “Was the traceability model helpful in making this

change? Y/N”, or ”Do you find this CR too tedious to fill? Y/N”.

• General Retrospectives: Lessons learned from implementing the ticket.

• Documentation that is not a deliverable artifact but is useful to understand the

system. Examples include internal training slides or specific sections in a large

document.

• Any miscellaneous information that helps with Change Impact Analysis: for

example, any risks and opportunities when modifying an artifact affected by

that change.

• Rationale in the case of merge conflicts between LTMs and GTMs (explained

in Section 3.2.3).

These additional fields in a CR can be mined, aggregated and presented to the

user to help them with change impact analysis, among other use cases.

This proposal can be accomplished using Model-Driven Engineering by linking

every artifact in the traceability model with the relevant CRs, and, using model

querying to mine and summarize the added fields in CRs. The process is depicted in

23

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

Figure 3.1, where it can be observed that the CRs are analogous to “flash cards” for

an artifact.

Figure 3.1: Information in CRs is queried and summarized for a Stakeholder

3.1.2 Traceability Models

This research proposes two types of traceability models: Global Traceability Model

(GTM) and Local Traceability Model (LTM).

The GTM is a megamodel (Bézivin et al., 2004) representing the traceability of

the entire project. GTM can be used for Change Impact Analysis (CIA), storing

traceability, detecting changes to the traceability, and auditing the traceability.

The LTM is a copy of a subgraph of the GTM, representing the traceability data

specific to a CR. The purpose of the LTM is for a developer to understand the scope

of the change using traceability, validate the traceability, and report progress on the

change using traceability.

24

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

3.2 Integrated Process

This section proceeds to explain the integrated process. Each subheading represents

an amalgamation of CR and traceability processes.

3.2.1 Strategizing (Planning the CRs and Traceability for

the New Software Baseline)

The CRs intended to be implemented for a new software baseline are typically planned

in a software engineering project. For example, during sprint planning in Agile soft-

ware development. Section 3.1.1 discussed adding additional fields to a CR. This

research proposes that the TIM and the fields in a CR ticket be reviewed before each

baseline to best suit the needs and characteristics of an organization and a baseline.

One of the additional fields in Section 3.1.1 is the Feedback about the TIM and the

CR; This field can be used to decide if the TIM needs to be modified. This field can be

aggregated from the closed CRs of the latest delivered software baseline and reviewed

by the stakeholders. If the structure of the TIM is updated, then the GTM should

also be updated for the current and subsequent software baselines. Model propagation

operations (for example, using Epsilon Folk (Epsilon Development Team, 2022b)) can

help automate the GTM update.

3.2.2 Creating (Creating and Validating Traceability During

CR Implementation)

A change requested by a CR could result in new artifacts and modification of existing

artifacts. If the CR is for new development, then LTM in the CR should be created

25

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

from scratch. LTM creation can be automated in several ways. For instance, auto-

mated traceability recovery (Lucia et al., 2012; Aung et al., 2020), or if traceability

links already exist in other tools, they can be mined to the LTM (for example, using

drivers provided by frameworks such as Epsilon (Epsilon Development Team, 2022b)),

or EBT (Cleland-Huang et al., 2003) (already explained in Section 2.2.1). If the CR

is for the modification of artifacts, then this research proposes creating the LTM for

that CR from the GTM. Portions of the GTM corresponding to that change can be

selected and copied to the CR as LTM.

The traceability links are invalidated when the CR is assigned to a developer

for implementation. The developer reports the artifact’s progress (see Subsection

Visualizing) and re-validates the traceability links while implementing the changes.

3.2.3 Maintaining (Traceability Maintenance as CR is Closed)

After the change is implemented and the CR is ready to be closed, the developer will

complete the fields in the CR and close the CR. When the CR is closed, the LTM in

the CR is merged back to the GTM. Automated traceability maintenance algorithms

(e.g. (Mäder et al., 2009)) can be used to merge the LTMs back to the GTM; however,

this research proposes an automated merging only if there is no inconsistency between

LTM and GTM. Any inconsistency during the merge should be resolved manually,

accompanied by a rationale. The reason for the manual resolution is that the incon-

sistency could be a traceability error; for instance, a developer removing a traceability

link in the LTM. Overlapping changes can also be identified during this process, that

is, multiple CRs affecting the same artifact resulting in conflicting traceability links.

26

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

3.2.4 Using (Using Traceability models for Change Impact

Analysis and Status Reporting)

This subsection describes the various uses of the GTM and the LTM.

Since the GTM represents the traceability of the project, the Change Impact

Analysis for a new CR can be performed by the relevant stakeholder using the GTM.

The CIA process can be semi-automated by comparing the fields in a new CR against

the fields of the closed CRs of the previous baseline. Then the artifacts affected by the

relevant CRs can be automatically selected. Alternatively, the user can select a list of

the known artifact affected by the CR in the GTM. The artifacts connected through

traceability links are then chosen automatically. The artifacts (and the corresponding

traceability links) affected by the new CR in the GTM are now copied to the CR as

the CR’s Local Traceability Models (LTM). The additional fields in a CR proposed

in Subsection Change Request Forms may be helpful for the stakeholder during the

impact analysis. For instance, the actual work hours in a CR can be aggregated and

summarized from the previously closed CR and displayed to the user as “On average,

the last three changes involving this artifact took 300 work hours.”

After completing the CIA, the CR is forwarded to the Change Control Board

(CCB) for approval. If the CCB rejects the CR, the artifact-CR link in the GTM

is preserved for subsequent CIAs. Otherwise, the CR is assigned to a developer for

implementation.

The LTM in a CR can be used for a couple of purposes. First, the LTM helps

a developer understand the scope of the CR. Second, this research proposes using

the LTM to report the implementation status in a scrum or other team meetings.

Reporting the status of the implementation of a CR using the LTM not only enables

27

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

a precise and “quantified” status update but is also another opportunity for the

developer to engage with traceability models. The specifics of status reporting are

explained in the following section.

3.2.5 Visualizing (Traceability Visualization During CR Life-

cycle)

This subsection describes the presentation of the traceability models to the user. The

subsection first describes the syntax of the traceability models and then discusses the

presentation of the traceability models in a dashboard.

Syntax of the Traceability Models

Abstract Syntax of the Traceability Models

TIM (see Section 2.1.3) is the metamodel for the GTM and LTMs. Although the

TIM varies according to the traceability requirements of an organization, at the core

of a TIM is an artifact and a traceability link. In addition to standard attributes like

the artifact ID, this research proposes the following to the Artifact class.

• Section 3.2.4 described using the LTM to report the progress of implementation.

Therefore a new attribute, progress, should be added to indicate the progress

of the implementation of the artifact by the developer. This attribute could be

an enum or a numerical value. Every artifact in the LTM would have a progress

attribute, and the progress of the CR is a function of the progress of all the

artifacts in the LTM. For instance, the progress of the CR could be the weighted

average of the progress of all the artifacts, where the weight of the artifact could

28

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

be proportional to the granularity of the artifact. To explain the attribute in

detail, the LTM in Figure 3.2 is taken as an example. In this figure, REQ-1234

denotes the requirement ID, Module-34 denotes the ID of the design module,

and Class Driver-1 denotes the code. The progress of the requirement and the

design is 100%, and the progress of the code is 0%.

This means that the developer has completed writing the requirement and the

UML design of the requirement; however, they have not yet begun writing

the code for the requirement. Assuming every artifact is weighed equally, the

progress of the CR, in this case, would be,

ProgressCR =
∑

artifact WeightArtifact·ProgressArtifact∑
artifact WeightArtifact

=⇒ (Weightrequirement·Progressrequirement)+(Weightdesign·Progressdesign)+(Weightcode·Progresscode)

Weightrequirement+Weightdesign+Weightcode

=⇒ (1·100)+(1·100)+(1·0)
1+1+1

=⇒ 66.6%

• Since the LTMs are local to a CR, every artifact in the LTM must reference

the CR. In the LTM and GTMs, the CRs are not artifacts and therefore do

not have traceability links to other CRs. The traceability among the CRs is

implemented in the Issue Tracking Systems (ITS), and this research proposes

separating the two types of traceability to simplify the TIM.

Concrete Syntax of Traceability Models

The concrete syntax of GTMs and LTMs is depicted in Figure 3.2. The traceability

model’s goals are to clearly and concisely represent traceability and to effectively

use the model to report on the status of a ticket. This research proposes that the

artifact be coloured to denote the ticket’s status. For example, 0% progress on the

29

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

ticket would be indicated by a white-coloured artifact and 100% by a dark shade of

a colour, as in Figure 3.2. Also, in Figure 3.2, the artifacts are represented as solid

circles with the artifact ID and the artifact progress as the labels. The traceability

is indicated with a solid green line (valid link) or a red dotted line (invalid link).

The link label indicates the type of traceability link. For example, when a test case

verifies a requirement, “verifies” could be the type of traceability link between the

requirement and the test case.

Figure 3.2: An example of the graphical syntax of the traceability models

Traceability Dashboard

In a software engineering project, the CRs planned for the current software deliv-

ery are typically reviewed in scrum/status meetings with the help of dashboards.

Since the CR also holds the LTM, the CR dashboard can also be used to visualize

traceability.

The integrated CR-traceability dashboard has two types of views: one to aid

with CIA, called the Change Impact Analysis (CIA) view, and another to track the

progression of the software delivery called the Build Tracking view. A mock-up of

the two dashboard views is depicted in Figure 3.3 and Figure 3.4, respectively. In

these figures, REQ-1234 denotes the requirement ID, Modules-34 denotes the ID of

the design module, and TC-7832 denotes the test case ID.

30

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

Figure 3.3: A mock-up of the Change Impact Analysis View

The CIA view helps with the activities described in Subsection Using. The Build

Tracking view helps with a CR’s status update and ad-hoc review of the LTM. This

view displays all the CRs assigned for a software delivery version and the correspond-

ing LTM in every CR. Reviewing the LTMs could allow other developers to provide

ad-hoc feedback on traceability data. For example, during status meetings, senior

developers reviewing the LTM assigned to a junior developer can use the opportunity

to point out any inconsistencies in traceability.

3.3 Process Summary

Figure 3.5 depicts this process’s summary when applied to Agile (Scrum) software

development.

3.3.1 Sprint Planning

First, in the sprint planning meeting, all the stakeholders review the aggregated trace-

ability feedback from the CRs of the previous sprint. Based on the feedback, the TIM

can be revised, and the GTM updates can be automated using model propagation

31

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

Figure 3.4: A mock-up of the Build Tracking View

operations.

Also, during the sprint planning, the scrum masters and the team can do a cursory

review of the LTM and CR feedback (of other fields) of every CR in the sprint backlog

and ensure that they aid with implementing the change.

3.3.2 The Sprint

During the sprint, the developer reviews the LTM and the feedback aggregates in

the CRs to understand the change and proceeds to implement the change. During

the implementation, the developer also validates the traceability links in the CR and

updates the progress attribute for every artifact.

The Build Tracking View can be used in the scrum meetings to review the progress

of the CRs. After the developer has completed the changes, they change the state

of the CR to trigger the automated LTM to GTM merge. If there are any merge

conflicts, the developer reviews the reason for the conflict and proceeds to address or

32

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

force the merge with a merge rationale.

3.3.3 Sprint Retrospectives

During the sprint retrospective meetings, among other activities, the developers fill

the feedback fields of the CRs and close them. Note that the process of closing the

tickets varies among organizations. For instance, a CR could be closed during the

sprint’s progression or moved to an intermediate state, such as ”Dispositioned,” and

closed later.

Finally, in parallel, the Product Owner or the appropriate stakeholder uses the

Change Impact Analysis (CIA) view to perform an impact analysis of new tickets.

33

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

Figure 3.5: Summary of the integrated process when applied to Agile software
development

34

Chapter 4

Traceability-centric Issue Tracking

System (TraceITS)

This chapter presents a tool, Traceability-centric Issue Tracking System (TraceITS)1,

that demostrates the integrated process from Chapter 3. Section 4.1 explains the

architecture of TraceITS, Section 4.2 explains the conformance of TraceITS to the

integrated process, and Section 4.3 explains the limitations of TraceITS.

4.1 TraceITS Architecture

The high-level architecture of TraceITS is depicted in Figure 4.1. The following is a

summary of the components of TraceITS.

• Edgewall Trac (Egdewall Inc., 2022) – Trac is used for CR management. Trac

is configured according to the specifications of the integrated process and is

1https://github.com/muralidn/TraceITS

35

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

connected to Eclipse using a Java application. Section 4.1.1 explains Trac and

its configuration in detail.

• Eclipse Modeling Tools – The Eclipse Modeling Framework (EMF) (Eclipse

Foundation, 2022a) is used for metamodelling and Eclipse Graphical Modeling

Framework (GMF) (Eclipse Foundation, 2022b) is used for defining the concrete

syntax of the models and the graphical syntax editor for the models.

• Epsilon Model Management Framework (Epsilon Development Team, 2022b)

– Epsilon is used for a variety of operations, such as automated generation

of the graphical syntax editor, automated model querying, automated model

validation, automated model-to-model transformation, and automated mining

of traceability links from an example Computer Aided Software Engineering

(CASE) tool (explained in Section 4.1.2).

Figure 4.1: Architecture of TraceITS

The following subsections explain the components of TraceITS in detail. Subsec-

tion 4.1.1 explains the configuration of Trac, Subsection 4.1.2 explains an example

36

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

project using a CASE tool used to demonstrate TraceITS, and Subsection 4.1.3 ex-

plains the design of the traceability models and the model management operations.

4.1.1 Trac Configuration

Per the integrated process, additional fields are added to a CR in Trac. The additional

fields are depicted in Figure 4.2, and explained in Table 4.1.

Figure 4.2: Customized CRs fields in Trac

Trac is executed in standalone mode (localhost), and Trac’s SQLite database is

the interface to Eclipse. A Java application in Eclipse is the bridge between Trac

and Epsilon. The application queries from and stores the CRs into Trac’s SQLite

database and uses Epsilon’s Java API to manage the traceability models.

37

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

Table 4.1: Customized CR fields in Trac

Field Type Description
Marker
in
Fig. 4.2

Feedback about
Traceability

Radio Button
(Yes/No)

Field for the developer to
indicate if the traceability
models and the queried data
from CRs were useful

1

Merge Rationale Multi line text Field for the developer to
explain the merge conflict (if
any) when the LTM is merged
to the GTM

2

Planned LOE Single line text An example field to aid with
CIA. This field indicates the
man-hours planned for the CR

3

Actual LOE Single line text An example field to aid with
CIA. This field indicates the
actual man-hours it took to
implement the CR

4

4.1.2 CASE Tool Example

To demonstrate TraceITS, an example project from Mathworks

Simulink-Requirements (Mathworks Inc., 2022b) is used. The project, Requirements

Definition for a Cruise Control Model (Mathworks Inc., 2022a), demonstrates a

requirements-driven Model-Based Design (MBD).

In this example, the systems and functional requirements are defined in Simulink

Requirements; The models are in designed in Simulink, and the test cases are defined

in Simulink-Test (Mathworks Inc., 2022c).

A simplified TIM of the example is depicted in Figure 4.3. A functional require-

ment could derive(s) from one or more system requirements, a model implements,

and a test verifies one or more functional requirements. Another traceability link,

38

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

relates to is ommitted from the proof of concept for simplification.

Also, there are no unit tests in Simulink Test; therefore, there is no direct trace-

ability link between the models and the test cases.

Figure 4.3: Simplified TIM of the Simulink Cruise Control example

4.1.3 Traceability Models

This section explains the syntax of TraceITS’s traceability models’ and the model

management operations.

Abstract Syntax

The TIM of TraceITS is designed according to the TIM of Simulink Cruise Control

project from Section 4.1.2 and the specifications in Section 3.1.2.

An abstract class, Artifact is defined and the classes System Requirements, Func-

tional Requirements, Models and Tests are derived from Artifact. The traceability

39

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

links between these artifacts are strongly typed: Derive, Implement and Verify. De-

rive traces functional to system requirements, Implement traces models to functional

requirements and Verify traces tests to functional requirements. Additionally, the

CR ticket is modelled, and the attributes of the CR models match the fields of the

CR tickets in Trac. The Java application described in Section 4.1.1 mines Trac and

synchronizes the CR models in Eclipse with its equivalent in Trac. There are also

bidirectional references between artifacts and CRs; every artifact references the cor-

responding CR driving the change, and every CR references a list of artifacts affected

by the change. The complete metamodel in TraceITS is depicted in Figure 4.7. Ta-

ble A.1 in Appendix A, explains the metamodel in detail.

Eclipse Modeling Framework (EMF), Ecore, is used to design the metamodel, and

Emfatic (Epsilon Development Team, 2022a) (a meta-metamodel) is used to generate

the ECore model.

Concrete Syntax

The Graphical Syntax and the editor are designed using Eclipse GMF. The GMF

editor is autogenerated from the Emfatic source file using Epsilon Eugenia (Epsilon

Development Team, 2022c). An example traceability model from the tool is depicted

in Figure 4.4.

The artifacts are solid ellipses, and the traceability links are bi-directional arrows

with the type of traceability link as the label. The artifacts have the artifact ID

and the progress as the labels. The artifact ID is the name of the Simulink file,

followed by the Unique ID (UID) of that element. The UID of the requirements is

the corresponding requirement ID in Simulink Requirements. The CRs are white

40

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

Figure 4.4: An example traceability model in TraceITS depicting the graphical
syntax

rectangular boxes with the label in the format, CR-#ID, where ID is the CR ID

from Trac. Invalid traceability links and artifacts are annotated with a red cross, as

shown in Figure 4.4.

However, there are deviations between the syntax of the models in TraceITS and

the specifications in Section 3.1. These are dicussed in Section 4.3.

Model Management Operations

This section explains the automated model management operations in TraceITS.

Automated Traceability Mining explains the automated creation of the LTM by mining

traceability links from Simulink; Model Validation explains the automated validation

rules for the LTM; Other Model Management Operations explains the model-to-model

transformation and model merging operations, for the GTM to LTM transformation

and vice versa respectively.

Automated Traceability Mining

In TraceITS, the traceability links are mined from Simulink Requirements using Ep-

silon. Epsilon offers integration with heterogeneous models, such as a Simulink model,

41

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

through the Epsilon Model Connectivity (EMC) layer. The EMC interfaces with

MATLAB’s Java API and provides an interface to mine various types of Simulink

traceability links. Using the Epsilon Object Language (EOL), these links are queried,

filtered, and modelled in EMF.

User input is used to filter the artifacts relevant to the LTM; The user is prompted

with a dialogue to input the IDs of the functional requirements that they would like to

mine to the LTM. After the input, the functional requirement and the artifacts traced

to the functional requirement are mined to the LTM. For example, from Figure 4.4,

if the user selects crs req func spec.slreqx-7 (functional requirement), crs req.slreqx-

11 (system requirement), crs controller.slx-:254, crs controller.slx-:249 (models) and

DriverSwRequest Tests.mldatx-ec133a6e (test case) are mined to the LTM. Addition-

ally, if any of the mined artifacts trace to other artifacts, all the traced artifacts are

mined as well.

Model Validation

Model validation is implemented using the Epsilon Validation Language (EVL). The

validation applies only to the LTMs. The goal of the validation is to ensure that

the LTM is ready to be merged into the GTM. Therefore the constraints shown in

Table 4.2 are implemented.

Other Model Management Operations

LTMs can also be created by copying artifacts from the GTM. Model-to-Model trans-

formation can be used for creating LTM from the GTM. For the GTM to LTM trans-

formation, the user can use the select attribute to select one or more artifacts in the

42

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

Table 4.2: EVL Constraints and Critiques for the LTMs

Context Type Name Description
Traceability Constraint Validity Ensure that all the

traceability links in the
LTM are valid.

Artifact Constraint Progress Ensure that the progress
on every artifact in the
LTM is a hundred
percent or a no-change.

Change Request Ticket

Constraint PlannedLOE Ensure the CR field,
Planned LoE, is filled by
the corresponding
stakeholder

Constraint ActualLOE Ensure the CR field,
Actual LoE, is filled by
the corresponding
stakeholder

Critique TIM This Critique is meant to
be a reminder to the
stakeholder that they had
indicated that
traceability was not
useful to them

Critique MergeRationale This Critique is meant to
be a reminder to the
stakeholder that they
have not filled the merge
rationale for the CR

GTM. The selected artifact and all the traced artifacts are copied to the LTM. Post

copy operations include invalidating the trace links in the LTM, resetting the progress

of the artifacts to ZERO, and referencing the (LTM’s) CR to every artifact.

Model-Merging is used for merging an LTM to the GTM after a change is com-

plete. However, before merging, the LTM must be compared with the GTM; Model-

Comparision is used for this purpose. In TraceITS, every artifact in the LTM is

43

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

compared with the corresponding copy (if present) in GTM, and if there are mis-

matches, the user is notified. The user can choose to overwrite the artifact in the

GTM with the copy in the LTM.

EOL is used for all three model management operations. The reason is explained

in Section 4.3.

4.2 Conformance to the Integrated Process

This section explains TraceITS’s conformance to the integrated process.

Strategizing (Planning the CRs and Traceability for the New

Software Baseline)

Traceability is strategized based on the user feedback from the Feedback about Trace-

ability field in the CR (see Table 4.1). The Java application in Eclipse mines the

closed CRs from Trac and aggregates the feedback field in every CR. The user is then

recommended to either review or not review the traceability model or the queried

data. A screenshot of the recommendation from TraceITS is shown in Figure 4.5. In

this example, the value of the Feedback field in about 3/4th of the closed CRs was

Yes, signifying that about 75% of the developers found the traceability models and

the support information helpful.

Figure 4.5: An example of TraceITS strategy recommendation to the user

44

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

Automated Model-Migration for GTM update is not implemented in this version

of TraceITS. The reason is discussed in Section 4.3.5.

Creating (Creating and Validating Traceability During CR

Implementation)

In TraceITS, the LTMs can be created in one of the following ways,

• Mining traceability links from Simulink Requirements – Explained in Section 4.1.3,

Automated Traceability Mining .

• Copy from GTM – Explained in Section 4.1.3, Other Model Management Op-

erations .

• Manual – Although it is not recommended, the user may create the LTM man-

ually since the CR has been extended into a graphical syntax editor.

In all of these cases, the traceability links are invalidated, and the progress on

every artifact is reset to “ZERO”.

Maintaining (Traceability Maintenance as CR is Closed)

Upon the closure of the CR, the artifacts in the LTM and GTM are compared. If

the artifacts and the traceability match, the LTM’s CR is copied to the GTM. The

artifacts now reference the new CR. An example is shown in Figure 4.6. Assume CR-

#7 modified crs req.slreqx-10 (and all its downstream artifacts), and CR-#5 (closed)

initiated the developement of crs req.slreqx-10. After CR-#7 is implemented and

45

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

Figure 4.6: The artifacts reference additional CR after the merge

merged with the GTM, CR-#7 is added to the list of CRs referenced by crs req.slreqx-

10, and other artifacts modified with CR-#7.

If there are conflicts between the LTM and the GTM, the user is expected to

update the merge rationale, forcing the merge or manually merging the LTM with

the GTM. In the former case, the artifact LTM replaces the corresponding copy in

the GTM, and the trace links are modified accordingly.

Using (Using Traceability models for Change Impact Analysis

and Status Reporting)

The LTMs and GTMs in TraceITS can be used in the following ways,

• Reviewing Traceability - Developers can validate the mined traceability link

by toggling the validity attribute in Traceability instances to True.

• Reporting Progress - Developers can update every artifact’s progress at-

tribute to precisely report the progress of the CR in meetings or otherwise.

46

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

• Change Impact Analysis - In TraceITS, the user can select one more artifact

from the GTM if it is known that artifact is affected by the change. Then

the chosen artifacts and the traced artifacts are selected automatically. The

attributes Planned LoE and Actual LoE are mined from the referenced CRs.

The probability of risk associated with the artifacts is presented to the user to

aid with CIA.

4.3 Limitations

4.3.1 CIA and Build-Tracking Views

The CIA and the Build-Tracking views are not implemented in this version of

TraceITS. The views aid stakeholders when the integrated process is deployed in a

team setting and does not add value for a PoC. The graphical syntax editors for the

GTM and LTM serve as the views for the PoC.

Moreover, implementing the views is a straightforward process. Creating the

Build-Tracking view involves filtering the CRs using the version attribute and high-

lighting the progress and the assignee attributes in the LTM and CR respectively. This

can be accomplished using the Epsilon Generator Language (EGL) and Picto (Kolovos

et al., 2020). Creating the CIA view is also straightforward; the GTM must be sup-

plemented with the appropriate GUI to filter the CRs and the artifacts.

47

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

4.3.2 Limitations in GMF

Eugenia recommends using Eclipse Sirius (Eclipse Development Team, 2022) or Picto

(read-only models) instead of GMF because GMF tooling is not actively maintained (Ep-

silon Development Team, 2022c). As a result, there are a few limitations in TraceITS

due to GMF, as summarized in the following bullet points,

• Artifacts are represented as ellipses instead of circles - Section 3.1.2

specifies the artifacts are solid circles, but they are solid ellipses in TraceITS.

The labels of the artifact models are the artifact ID and the progress, with

progress in a new line. However, in GMF, the formatting characters in a string

are ignored, resulting in the ID and progress in the same line. Therefore ellipses

were chosen for readability.

• Varying the graphical syntax of the models in the runtime - This

affects two aspects of the integrated process. The first is the inability to adjust

the colour of the Artifact class when the progress attribute is varied. Second,

varying the colour of the trace link based on the validity of the link.

• The redundant select attribute - Ideally, the editor should handle a model

selection, where the user could select multiple artifacts by clicking on them.

Implementing this requires creating an event handler on top of the Eugenia-

generated Java code. Currently the selection is handled with the help of an

attribute select in the Artifact class.

• Updating the common attributes simultaneously - Since the progress

attribute is unique for every artifact, it may be tedious for the user to update it

48

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

individually for every model. It is unclear if this is a limitation of GMF itself,

but it can be implemented using EOL.

4.3.3 Using Epsilon Object Language (EOL) for Everything

Although Epsilon provides specialized Domain Specific Languages (DSLs) such as

ETL, EGL, and ECL, TraceITS uses only EOL for all the model management op-

erations except validation. The reason is that EOL it was used when LTMs were

created from mining Simulink; ETL did not work for mining. As a result, many func-

tions (operation in EOL) written for mining were reused for other model management

operations.

4.3.4 Software Version

The EMC uses MATLAB’s Java API to mine the traceability links. However, MAT-

LAB is compatible only with Java 82. The current releases of Eclipse are compatible

only with Java 11 and later 3. Therefore in TraceITS, Eclipse 2020-06 and Epsilon 2.2

are used. The latest version of Eclipse and Epsilon are 2022-03 and 2.4, respectively.

Using Epsilon 2.3 or 2.4 with Eclipse 2020-06 seemed to cause unexpected issues, such

as an unusually long Eclipse Runtime application startup time.

4.3.5 Other Limitations

Other limitations of TraceITS are as follows,

1. Automated Model-Migration is not implemented in this version of TraceITS.

2https://www.mathworks.com/support/requirements/language-interfaces.html
3https://wiki.eclipse.org/Eclipse/Installation

49

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

The reason is that it does not add any value to a proof of concept. There

are adequate instructions for Automated Model-Migration using Epsilon Folk,

which can be implemented when TraceITS is deployed in a team setting.

2. In practice, the creation of the GTM should be an iterative process. That is,

GTM should be created by merging the LTMs in subsequent software builds.

In this version of TraceITS, since a preexisting project is taken as an example,

the GTM is also automatically mined from Simulink Requirements.

3. The UIDs of the models and tests from Simulink and Simulink Test are long

strings instead of numerical values. This makes the identification of the cor-

responding model or test blocks a difficult task. For the PoC, the Simulink

Cruise-Control project is used as an example. Therefore, this limitation is not

addressed. However, if Simulink is part of the CASE tools when TraceITS is

deployed in practice, then there must be a lookup table that translates the UID

into identifiable keys for the models.

4. The Trac-Eclipse connection is currently not event-driven but has to be manu-

ally triggered from Eclipse. This is due to the current architecture of TraceITS

where the CRs are directly queried from Trac’s database. When TraceITS is

deployed in a team setting, direct access to Trac’s database is no longer possi-

ble. Trac would be hosted on the server, and client Eclipse applications would

be on the developer’s PC. In this case, Trac should be extended with plugins to

communicate changes to the Java application in Eclipse and can be completely

event-driven.

50

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

Figure 4.7: TIM for the Simulink Cruise Control example

51

Chapter 5

Evaluation

This chapter presents an evaluation of the integrated process and TraceITS. Sec-

tion 5.1 presents a discussion about the benefits and limitations of the integrated

process and TraceITS.

5.1 Discussion

This section discusses the benefits and limitations of the integrated process and Tra-

ceITS. Subsection 5.1.1 compares TraceITS with a regular ITS; Subsection 5.1.2 com-

pares the traceability data in TraceITS with generic traceability data; Subsection 5.1.3

discusses the long-term benefits of the integrated process; Finally, Subsection 5.1.4

discusses the limitations and challenges of the integrated process.

5.1.1 Comparision with a regular ITS

There are several benefits with TraceITS when compared with a regular ITS such as

Trac (without extensions). Table 5.1 explains these benefits in detail.

52

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

Table 5.1: Comparision of TraceITS with a regular ITS

Regular ITS TraceITS
The lifecycle of the CR is not related to
traceability data.

Traceability data is managed with the
lifecycle of the CR.

CR tickets hold information about the
change only; After the closure of a CR,
they are “stowed away” for future
audits.

In addition to information about the
change, TraceITS also uses the CR as a
mechanism for feedback. As a result, in
TraceITS, the CR is often mined and
reviewed by the user.

Unless part of an ALM suite, the user
cannot directly see the artifact affected
by the CR.

Every CR has LTM through which the
user can review the affected artifacts.

The progress of the CR is deduced
from the state of the CR and any
comments added by the user.

The progress of the CR is a function of
the progress attribute of all the
artifacts in the LTM. This allows for an
accurate status reporting of the CR.

May not directly aid with CIA; The
user may have to manually look up
previous CRs and the traceability data
of the project.

Allows for a semi-automated CIA; The
previously worked CR are referenced by
every artifact in the GTM.

5.1.2 Comparison with Generic Traceability Data

The traceability models used in the integrated process provide certain benefits over

generic traceability data (e.g. traceability matrix). Table 5.2 explains these benefits

in detail.

5.1.3 Long-term Benefits of the Integrated Process

Implementing the integrated traceability-CR management process provides several

long-term benefits to organizations. These benefits are summarized in the subsequent

subsections.

53

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

Table 5.2: Comparision of the traceability data in integrated process with generic
traceability data

Generic Traceability Data Traceability Data of TraceITS
Represented as graphs/matrices/links.
Possible overhead in developing the
infrastructure for storage, access and
visualization

Represented as graph models only.
Storage, access and visualization are
abstracted by the graphical syntax
editor and model management
framework. Transformation to other
forms of representation using model to
text transformation.

Provides information about the
relationship between the various types
of artifacts only.

Additional information, such as the
names of the previous developers, is
provided since every artifact is linked
with CR.

Passive; Provides information only. Active; Allows the developers to
validate the trace links and update the
progress.

Continuous Feedback and Improvement

The stakeholders’ feedback on traceability would enable organizations to understand

the stakeholder’s needs clearly. For example, in the Cruise Control Example from

Chapter 4, the TIM covers all the deliverable artifacts of the project. However, if the

feedback from the CRs indicates that the traceability was not helpful, organizations

could take measures to improve the traceability quality, such as:

• Supplementing the TIM or the fields of the CRs with other formal artifacts such

as release documentation or informal artifacts such as an internal Wiki page.

• Improving the quality of existing artifacts to be useful for the stakeholders. For

example, switching to formal specifications for requirements instead of natural

language.

• Improving the engineering/management process; for example, reducing the scope

54

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

of a CR so that the developer is not overburdened.

Over time, the feedback may help the organization develop a mature and efficient

engineering process.

Traceability Models for Communication among Multicultural Teams

Software developers would use the traceability models to understand the scope of

the CR and report its progress. If organizations have a fully remote or hybrid work

environment, or in the case of the Global Software Development (Herbsleb and Moitra,

2001), communication among teams could be a challenge. The traceability models

could alleviate some of the communication gaps by acting as a DSL to communicate

the scope of the CR, or report the progress of the CR. This can also be an added

motivation for the developers to create and maintain traceability data.

Scope for Automated Root Cause Analysis

The root cause analysis can be automated using model management operations, op-

tionally supplemented by Machine Learning (ML). For example, as with the case of

the CIA, keywords from a bug report can be compared with previously closed CRs,

and relevant artifacts can be mined and analyzed. The LTMs leave a trail for Quality

Analysts or other Stakeholders to identify the root causes of product defects. For

instance, if a defect was introduced in a specific product version, it is easy to query

and analyze the corresponding portions of the traceability data. In other words, the

LTMs corresponding to that software build version can be analyzed automatically.

Automated analysis of the LTMs of a released software build can help identify root

causes such as the following (but not limited to):

55

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

• Process Compliance – From the LTMs, it can be identified if a requirement was

verified and validated in the first place.

• Inadequate tracing – From the LTMs, the dependencies across artifacts, i.e.

missed dependencies across requirements, can be identified and addressed for

the ongoing development.

• Improper planning – If a requirement was not adequately verified, the LTMs

could help identify if the tester was given enough time for the verification. For

instance, TraceITS could be extended to log the progress of an artifact which

can then be graphed. A steep progress curve could indicate that the artifact

was either easy to verify or that it was rushed.

Return on Investment

Initial investment and training are required to set up a system like TraceITS. However,

in the long run, when a system like TraceITS is fully operational, the organization

can realize the benefits of traceability. For example, realizing the full benefits of

traceability would result in engineers understanding their work faster and better,

which among other factors, contributes to fewer defects in the product. This would

ensure a return on investment for the organization.

Organizational Collaboration

The ITS infrastructure is typically common to all the teams in an organization. There-

fore, interfaces could be written so that the TIM or parts of the TIM are shared among

teams in an organization. This ensures that the traceability data from one team is

compatible with another.

56

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

5.1.4 Limitations of Integrated Process

There are several limitations and challenges to the integrated process. The following

subsections summarize the limitations in detail.

Tool Integration and Trace Granularity

The creation of LTMs relies on automated traceability techniques such as automatic

traceability recovery, mining pre-existing traceability links or EBTs. Without the

means to mine traceability links, the developer may have to create traceability links

manually, which may be inefficient. Further, even if plugins exist, it is unclear whether

the granularity desired in the TIM is obtainable through these plugins without mod-

ification.

Automated traceability is a significant effort to set up and maintain and there-

fore is a separate research topic. For instance, if the development effort is spread

across multiple CASE tools, plugins must be written and maintained to mine the

traceability data from every device. However, since manual validation is involved in

this process, the desired precision and recall metrics of IR or ML traceability recovery

techniques are unknown. The precision and recall metrics will be determined after

the experimental validation of the integrated process explained in Section 6.1.

Adopting the Process during Product Development

As mentioned in the benefits, implementing the process in an organization requires

significant initial effort and investment. For instance, a new ITS such as TraceITS

should be developed with appropriate plugins for automated traceability, an initial

version of TIM should be planned, and the developers should be trained to use the

57

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

new process and the ITS. Querying feedback from CRs is also an incremental task;

the previously closed CRs, without customized fields, may not be helpful. Therefore,

though plausible, adapting this process in the middle of product development may

be a significant effort.

Tickets for All Activities

Every task involving traceability must be driven by a ticket for the integrated process

to succeed. This includes tickets for CIA, traceability audits etc. It is unclear if this

practice in organizations may be met with resistance from stakeholders.

Scalability of the Process

Large organizations developing a complicated product would have multiple teams

working on different parts of the product. It is not usual to find that the engineering

process among the teams differs. However, the traceability data of multiple teams

should be compatible with each other if they are working on the same (overall) prod-

uct. Whether the process caters to the needs of all the teams and produces uniform

traceability across the projects will be determined only during phase 3 of the valida-

tion explained in Subsection 6.1.

58

Chapter 6

Conclusions and Future Work

This thesis presented a process in which traceability management is integrated with

the lifecycle of a Change Request (CR) ticket. The two main elements of this inte-

grated process are CRs and traceability data, represented as models in the process.

In the integrated process, CRs, in addition to communicating a change, are also

used as a medium of feedback. Additional fields are recommended to be added to

CRs, which can be queried and summarized to users in the future. Examples of the

additional fields include feedback on traceability or any information (such as sections

of documentation) that could help subsequent developers.

The second element of the process, the traceability model, can be a Global Trace-

ability Model (GTM) or a Local Traceability Model (LTM). The GTM holds all the

traceability models of the project. The LTM of a CR is a copy of the subgraph of the

GTM and holds the traceability models specific to the CR. The lifecycle of the LTM

is tied to the lifecycle of the CR. When CRs are planned for a new software build, the

structure of the LTM is reviewed. When the CR is in progress, the developers use the

LTM to understand the change and report the progress of the implementation using

59

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

the LTM. Before the CR is closed, the developers fill the customized fields in the CR,

and the LTM is automatically merged with the GTM. The fields in the closed CRs are

then queried and aggregated in the GTM to help with activities such as traceability

strategizing or Change Impact Analysis.

A proof-of-concept of the integrated process was demonstrated using the Traceability-

centric Issue Tracking System (TraceITS) tool. TraceITS integrates the ITS Trac with

Eclipse Modeling Framework (EMF) and Epsilon Model Management Framework. An

open source Simulink project, Requirements for Cruise Control Model, is used as the

test project for traceability management.

Compared to a regular ITS, TraceITS and the integrated process offer several

short- and long-term benefits to organizations since traceability is at the forefront of

change management. The benefits include faster learning for developers, the possi-

bility of automated or semi-automated CIA support, or the possibility of automatic

root cause identification for product defects.

6.1 Future Work

The next step of the integrated process is to validate the process. The validation of

the process is a three-phase approach. First, use TraceITS to conduct a small-scale

experiment in a university setting, for example, in an existing research project with

student developers, over a span of at least two software deliveries. After this, tailor

the process according to the lessons learned from this experiment.

The second phase is to experiment with this process in an industrial setting.

Implement the process in an organization (preferably a startup) with no traceability

requirements and implement the integrated process. Here the process should be

60

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

experimented with over a longer time, at least for 5-6 software deliveries. If the

validation is successful, update the process with the lessons learned.

Finally, implement the (updated) process in a medium-large scale organization

with established traceability requirements. If the validation is successful, update the

process with the lessons learned, which will be the final version of the process.

Last but not least, if all three validation phases prove successful, calling for an

update to IEEE-828-2012 with this process may be worthwhile.

61

Appendix A

Abstract Syntax of TraceITS

Models

This appendix contains a detailed explanation of the TIM of TraceITS explained in

Section 4.1.3, and Figure 4.7.

62

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

Table A.1: A detailed explanation of the abstract syntax of the models in TraceITS

Class Constraints Description Attributes Type Description

GlobalTrace-

Model
Singleton

The system

boundary of the

traceability models.

This class contains

instances of all

other types in the

metamodel.

GTMController Singleton
GTMController

applies to the GTM

only. It is used to

create new CRs

from the GTM or

copy traceability

models from GTM

to LTM.

createNewCR Boolean

The flag indicates

that a new CR must

be created from the

selected traceability

models.

ltmCR String

The ID of the CR if

the traceability

models are to be

copied to a CR.

This attribute is

ignored if the

createNewCR

attribute is set.

Continued on the next page

63

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

Continued from previous page

Class Constraints Description Attributes Type Description

GTMVersion Singleton

Indicates the

software baseline

version that this

GTM is applicable

for.

version String Example: v1.0.

Continued on the next page

64

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

Continued from previous page

Class Constraints Description Attributes Type Description

Change Request Ticket

0 or more
Model of the

Change Request

form or ticket. The

attributes of this

class should match

all the fields in the

CR.

crID int CR ticket ID.

summary String
Summary (title) of

the CR.

description String

A detailed

description of the

CR.

version String

The software

baseline version for

which this CR is

implemented.

chHelpful String

A Yes/No feedback

that indicates if the

CR and the

traceability data

were helpful for the

developer to

implement the CR.

Continued on the next page

65

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

Continued from previous page

Class Constraints Description Attributes Type Description

mergeRa-

tionale
String

Field explains the

conflict between the

LTM and the GTM

after implementing

a CR.

plannedLOE Float

Field to hold the

man-hours planned

for the CR. This

field is an example

explicitly created

for the PoC.

actualLOE Float

Field to hold the

actual man-hours

for implementing

the CR. This field is

an example

explicitly created

for the PoC.

status String

The state of the

CR, e.g. Open,

Closed etc.

Continued on the next page

66

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

Continued from previous page

Class Constraints Description Attributes Type Description

affectedArti-

facts

Reference to

Artifact

The list of artifacts

affected by this CR.

Progress Enum
Enumeration

This enumeration

indicates the

percentage of the

progress made on an

artifact. The

attributes are 0, 25,

50, 75 and 100

percent,

respectively.

Artifact Abstract

Abstract type to

hold attributes that

are common to all

the artifact types.

artifactID String
Unique ID of the

artifact.

progress
Progress Enum

The implementation

progress of the

artifact.

changeRequests Reference to

Change Request Ticket

A list of previous

and current CRs

related to this

artifact.

Continued on the next page

67

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

Continued from previous page

Class Constraints Description Attributes Type Description

select Boolean

A flag for the user

to select this

artifact.

Traceability Abstract Abstract type to hold

attributes that are

common to all the

traceability links.

traceUID int
A unique ID for the

trace link.

valid Boolean

Flag to indicate the

validity of the trace

link.

Continued on the next page

68

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

Continued from previous page

Class Constraints Description Attributes Type Description

Derive 0 or more

The Derive

traceability link

between the system

and functional

requirements. This

class is extended

from the

Traceability class.

type String

Read-only attribute

to indicate the type

of trace link in the

Graphical Syntax.

In this case, the

value of the

attribute is

”DERIVE.”

source

Reference to

SystemRe-

quirement

Singleton reference

to the system

requirement from

which the functional

requirement is

derived.

destination

Reference to

Functional-

Requirement

Singleton reference

to the derived

functional

requirement from

the system

requirement.

Continued on the next page

69

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

Continued from previous page

Class Constraints Description Attributes Type Description

Implement 0 or more

The Implement

traceability link

between the

functional

requirement and

model block. This

class is extended

from the

Traceability class.

type String

Read-only attribute

to indicate the type

of trace link in the

Graphical Syntax.

In this case, the

value of the

attribute is

”IMPLEMENT.”

source

Reference to

Functional-

Requirement

Singleton reference

to the functional

requirement that

the model

implements.

destination
Reference to

Model

Singleton reference

to the model that

implements a

functional

requirement.

Continued on the next page

70

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

Continued from previous page

Class Constraints Description Attributes Type Description

Verify 0 or more

The Verify

traceability link

between the

functional

requirement and

test case. This class

is extended from the

Traceability class.

type String

Read-only attribute

to indicate the type

of trace link in the

Graphical Syntax.

In this case, the

value of the

attribute is

”VERIFY.”

source

Reference to

Functional-

Requirement

Singleton reference

to the functional

requirement

corresponding to

the test case.

destination
Reference to

Test

Singleton reference

to the test case that

tests the functional

requirement.

Continued on the next page

71

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

Continued from previous page

Class Constraints Description Attributes Type Description

SystemRe-

quirement
0 or more

Node for the system

requirements. This

class is extended

from the Artifact

class.

downstream-

TraceLinks

Reference to

Derive

All the Derive trace

links that are

connected to this

system requirement.

Continued on the next page

72

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

Continued from previous page

Class Constraints Description Attributes Type Description

FunctionalRequirement

0 or more

Node for the

functional

requirements. This

class is extended

from the Artifact

class.

downstream-

TraceLinks

Reference to

Traceability

All the Implement

or Verify trace links

that are connected

to this functional

requirement.

upstream-

TraceLinks

Reference to

Derive

All the Derive trace

links that are

connected to this

functional

requirement from

the system

requirements.

Model 0 or more

Node for the

Simulink Models.

This class is

extended from the

Artifact class.

upstream-

TraceLinks

Reference to

Implement

All the Implement

trace links that are

connected to this

model from the

functional

requirements.

Continued on the next page

73

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

Continued from previous page

Class Constraints Description Attributes Type Description

Test 0 or more

Node for the

Simulink Tests.

This class is

extended from the

Artifact class.

upstream-

TraceLinks

Reference to

Verify

All the Verify trace

links that are

connected to this

test from the

functional

requirements.

74

Bibliography

(1990). IEEE standard glossary of software engineering terminology. IEEE Std

610.12-1990, pages 1–84.

(2017). ISO/IEC/IEEE international standard - systems and software engineering–

vocabulary. ISO/IEC/IEEE 24765:2017(E), pages 1–541.

Antoniol, G., Cleland-Huang, J., Hayes, J. H., and Vierhauser, M. (2017). Grand

challenges of traceability: The next ten years. arXiv preprint arXiv:1710.03129.

Appleton, B., Berczuk, S., and Cowham, R. (2007). Lean-Agile traceabil-

ity: Strategies and solutions. https://www.cmcrossroads.com/article/

lean-agile-traceability-strategies-and-solutions. Online, accessed -

2020-06-15.

Atlassian Inc. (2022a). Jira documentation. https://support.atlassian.com/

jira-software-cloud/. Accessed: 2022-05-25.

Atlassian Inc. (2022b). Jira software. https://www.atlassian.com/software/jira.

Accessed: 2022-05-25.

Atlassian Inc. (2022c). What are issue types? https://support.atlassian.com/

75

https://www.cmcrossroads.com/article/lean-agile-traceability-strategies-and-solutions
https://www.cmcrossroads.com/article/lean-agile-traceability-strategies-and-solutions
https://support.atlassian.com/jira-software-cloud/
https://support.atlassian.com/jira-software-cloud/
https://www.atlassian.com/software/jira
https://support.atlassian.com/jira-cloud-administration/docs/what-are-issue-types/
https://support.atlassian.com/jira-cloud-administration/docs/what-are-issue-types/

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

jira-cloud-administration/docs/what-are-issue-types/. Online. Accessed-

2022-07-10.

Aung, T. W. W., Huo, H., and Sui, Y. (2020). A literature review of automatic

traceability links recoveryfor software change impact analysis. In Proceedings of

the 28th International Conference on Program Comprehension, pages 14–24.

Berczuk, S., Appleton, B., and Cowham, R. (2005). The trouble with

tracing: Traceability dissected. https://www.cmcrossroads.com/article/

trouble-tracing-traceability-dissected. Accessed: 2022-05-06.

Bézivin, J., Jouault, F., and Valduriez, P. (2004). On the need for megamodels.

In Proceedings of the OOPSLA/GPCE: Best Practices for Model-Driven Software

Development workshop, 19th Annual ACM Conference on Object-Oriented Pro-

gramming, Systems, Languages, and Applications, pages 1–9. Citeseer.

Canfora, G. and Cerulo, L. (2005). Impact analysis by mining software and change re-

quest repositories. In 11th IEEE International Software Metrics Symposium (MET-

RICS’05), pages 9–pp. IEEE.

Cleland-Huang, J. (2012). Traceability in Agile projects. In Software and Systems

Traceability, pages 265–275. Springer.

Cleland-Huang, J., Chang, C., and Christensen, M. (2003). Event-based traceability

for managing evolutionary change. IEEE Transactions on Software Engineering,

29(9), 796–810.

Cleland-Huang, J., Gotel, O. C., Huffman Hayes, J., Mäder, P., and Zisman, A.

76

https://support.atlassian.com/jira-cloud-administration/docs/what-are-issue-types/
https://support.atlassian.com/jira-cloud-administration/docs/what-are-issue-types/
https://www.cmcrossroads.com/article/trouble-tracing-traceability-dissected
https://www.cmcrossroads.com/article/trouble-tracing-traceability-dissected

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

(2014). Software traceability: trends and future directions. In Future of software

engineering proceedings, pages 55–69.

CMMI Institute (2022). Capability Maturity Model Integration. https://

cmmiinstitute.com/. Accessed:2022-06-15.

Curtis, L. (2021). Why the big quit is happening and why every boss should

embrace it. https://www.forbes.com/sites/lisacurtis/2021/06/30/

why-the-big-quit-is-happening-and-why-every-boss-should-embrace-it/

?sh=4c1ae2db601c. Accessed: 2022-05-06.

Eclipse Development Team (2022). Sirius. https://www.eclipse.org/sirius/.

Online. Accessed 2022-08-10.

Eclipse Foundation (2022a). Eclipse Modeling Framework EMF. https://www.

eclipse.org/modeling/emf/. Accessed: 2022-06-20.

Eclipse Foundation (2022b). GMF tooling. https://www.eclipse.org/

gmf-tooling/. Online, accessed: 2022-08-07.

Egdewall Inc. (2022). Trac. https://trac.edgewall.org/. Online Accessed: 2022-

06-20.

Enlean Inc. (2022a). Tuleap. https://www.tuleap.org/. Accessed: 2022-05-23.

Enlean Inc. (2022b). Tuleap documentation. https://docs.tuleap.org/. Accessed:

2022-05-23.

Epsilon Development Team (2022a). Eclipse Emfatic. https://www.eclipse.org/

emfatic/. Online, accessed - 2022-08-08.

77

https://cmmiinstitute.com/
https://cmmiinstitute.com/
https://www.forbes.com/sites/lisacurtis/2021/06/30/why-the-big-quit-is-happening-and-why-every-boss-should-embrace-it/?sh=4c1ae2db601c
https://www.forbes.com/sites/lisacurtis/2021/06/30/why-the-big-quit-is-happening-and-why-every-boss-should-embrace-it/?sh=4c1ae2db601c
https://www.forbes.com/sites/lisacurtis/2021/06/30/why-the-big-quit-is-happening-and-why-every-boss-should-embrace-it/?sh=4c1ae2db601c
https://www.eclipse.org/sirius/
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/gmf-tooling/
https://www.eclipse.org/gmf-tooling/
https://trac.edgewall.org/
https://www.tuleap.org/
https://docs.tuleap.org/
https://www.eclipse.org/emfatic/
https://www.eclipse.org/emfatic/

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

Epsilon Development Team (2022b). Eclipse Epsilon™. https://www.eclipse.org/

epsilon/. Online Accessed: 2022-06-20.

Epsilon Development Team (2022c). Eugenia. https://www.eclipse.org/epsilon/

doc/eugenia/#eugenia-and-gmf-tooling. Online. Accessed-2022-08-10.

excentia (2022). TraceabilityX for Jira. https://marketplace.atlassian.com/

apps/1211138/traceabilityx-for-jira?hosting=datacenter&tab=overview.

Atlassian Marketplace, Accessed: 2022-05-25.

Gotel, O., Cleland-Huang, J., Hayes, J. H., Zisman, A., Egyed, A., Grünbacher, P.,

Dekhtyar, A., Antoniol, G., Maletic, J., and Mäder, P. (2012a). Software and

Systems Traceability, chapter Traceability Fundamentals, pages 3–22. Springer.

Gotel, O., Cleland-Huang, J., Hayes, J. H., Zisman, A., Egyed, A., Grünbacher,

P., Dekhtyar, A., Antoniol, G., and Maletic, J. (2012b). Software and Systems

Traceability, chapter The Grand Challenge of Traceability v1.0, pages 343–429.

Springer, first edition.

Herbsleb, J. D. and Moitra, D. (2001). Global software development. IEEE Software,

18(2), 16–20.

IEEE (2012). IEEE standard for configuration management in systems and software

engineering. Standard. IEEE std 828-2012.

Kolovos, D., De La Vega, A., and Cooper, J. (2020). Efficient generation of graphical

model views via lazy model-to-text transformation. In Proceedings of the 23rd

ACM/IEEE International Conference on Model Driven Engineering Languages and

Systems, pages 12–23.

78

https://www.eclipse.org/epsilon/
https://www.eclipse.org/epsilon/
https://www.eclipse.org/epsilon/doc/eugenia/#eugenia-and-gmf-tooling
https://www.eclipse.org/epsilon/doc/eugenia/#eugenia-and-gmf-tooling
https://marketplace.atlassian.com/apps/1211138/traceabilityx-for-jira?hosting=datacenter&tab=overview
https://marketplace.atlassian.com/apps/1211138/traceabilityx-for-jira?hosting=datacenter&tab=overview

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

Köstebek Teknoloji (2022). Traceability matrix and link

graph. https://marketplace.atlassian.com/apps/1211580/

traceability-matrix-and-link-graph?hosting=server&tab=overview.

Atlassian Marketplace, Accessed: 2022-05-25.

Li, Y. and Maalej, W. (2012). Which traceability visualization is suitable in this con-

text? a comparative study. In International Working Conference on Requirements

Engineering: Foundation for Software Quality, pages 194–210. Springer.

Lucia, A. D., Marcus, A., Oliveto, R., and Poshyvanyk, D. (2012). Information

retrieval methods for automated traceability recovery. In Software and systems

traceability, pages 71–98. Springer.

Mäder, P. and Egyed, A. (2015). Do developers benefit from requirements traceability

when evolving and maintaining a software system? Empirical Software Engineering,

20(2), 413–441.

Mäder, P., Gotel, O., and Philippow, I. (2009). Enabling automated traceability

maintenance through the upkeep of traceability relations. In European conference

on model driven architecture-foundations and applications, pages 174–189. Springer.

Mader, P., Gotel, O., and Philippow, I. (2009). Getting back to basics: Promoting

the use of a traceability information model in practice. In 2009 ICSE Workshop

on Traceability in Emerging Forms of Software Engineering, pages 21–25. IEEE.

Mäder, P., Jones, P. L., Zhang, Y., and Cleland-Huang, J. (2013). Strategic trace-

ability for safety-critical projects. IEEE software, 30(3), 58–66.

79

https://marketplace.atlassian.com/apps/1211580/traceability-matrix-and-link-graph?hosting=server&tab=overview
https://marketplace.atlassian.com/apps/1211580/traceability-matrix-and-link-graph?hosting=server&tab=overview

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

Maro, S., Steghofer, J.-P., Knauss, E., Horkoff, J., Kasauli, R., Wohlrab, R., Kors-

gaard, J. L., Wartenberg, F., Strøm, N. J., and Alexandersson, R. (2020). Managing

traceability information models: Not such a simple task after all? IEEE Software,

38(5), 101–109.

Maro, S., Steghöfer, J.-P., Bozzelli, P., and Muccini, H. (2022). TracIMo: a trace-

ability introduction methodology and its evaluation in an Agile development team.

Requirements Engineering, 27(1), 53–81.

Mathworks Inc. (2022a). Requirements definition for a cruise con-

trol model. https://www.mathworks.com/help/slrequirements/gs/

requirements-definition-for-a-cruise-control-model.html. Online,

accessed - 2022-08-07.

Mathworks Inc. (2022b). Requirements toolbox. https://www.mathworks.com/

products/requirements-toolbox.html. Online, accessed 2022-08-07.

Mathworks Inc. (2022c). Simulink Test. https://www.mathworks.com/products/

simulink-test.html. Online. Accessed: 2022-08-15.

Microsoft (2021). The next great disruption is hybrid work—are we ready? https:

//www.microsoft.com/en-us/worklab/work-trend-index/hybrid-work. Ac-

cessed: 2022-05-06.

Mohan, K., Xu, P., Cao, L., and Ramesh, B. (2008a). Improving change manage-

ment in software development: Integrating traceability and software configuration

management. Decision Support Systems, 45(4), 922–936.

80

https://www.mathworks.com/help/slrequirements/gs/requirements-definition-for-a-cruise-control-model.html
https://www.mathworks.com/help/slrequirements/gs/requirements-definition-for-a-cruise-control-model.html
https://www.mathworks.com/products/requirements-toolbox.html
https://www.mathworks.com/products/requirements-toolbox.html
https://www.mathworks.com/products/simulink-test.html
https://www.mathworks.com/products/simulink-test.html
https://www.microsoft.com/en-us/worklab/work-trend-index/hybrid-work
https://www.microsoft.com/en-us/worklab/work-trend-index/hybrid-work

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

Mohan, K., Xu, P., and Ramesh, B. (2008b). Improving the change-management

process. Communications of the ACM, 51(5), 59–64.

Muralidharan, N. G., Pantelic, V., Bandur, V., and Paige, R. (2022). Integrating

software issue tracking and traceability models. Accepted for presentation and

publication in the proceedings of the 38th IEEE International Conference on Soft-

ware Maintenance and Evolution (ICSME).

Optimizory Technologies Pvt. Ltd. (2022). Links Explorer Traceabil-

ity & Hierarchy. https://marketplace.atlassian.com/apps/1211120/

links-explorer-traceability-hierarchy?hosting=cloud&tab=overview.

Atlassian Marketplace, Accessed: 2022-05-25.

Project Management Institute (2021). The standard for project management and a

guide to the project management body of knowledge (PMBOK guide), chapter II.4

Models, Methods, and Artifacts. Seventh edition.

PTC Inc. (2022). Windchill PLM software. https://www.ptc.com/en/products/

windchill. Online. Accessed: 2022-06-15.

Rempel, P. and Mäder, P. (2017). Preventing defects: The impact of requirements

traceability completeness on software quality. IEEE Transactions on Software En-

gineering, 43, 777–797.

RTCA (2011). Software considerations in airborne systems and equipment certifica-

tion. Standard. DO-178C.

81

https://marketplace.atlassian.com/apps/1211120/links-explorer-traceability-hierarchy?hosting=cloud&tab=overview
https://marketplace.atlassian.com/apps/1211120/links-explorer-traceability-hierarchy?hosting=cloud&tab=overview
https://www.ptc.com/en/products/windchill
https://www.ptc.com/en/products/windchill

M.A.Sc. Thesis – N. G. Muralidharan McMaster University – Software Engineering

Shahid, M. and Ibrahim, S. (2016). Change impact analysis with a software traceabil-

ity approach to support software maintenance. In 2016 13th International Bhurban

conference on applied sciences and technology (IBCAST), pages 391–396. IEEE.

Siemens Inc (2022). Polarion ALM. https://polarion.plm.automation.siemens.

com/products/polarion-alm. Accessed: 2022-05-24.

Steghöfer, J.-P. (2017). Software traceability tools: Overview and categorisation. Re-

port of the GI working group “traceability/evolution”. German Informatics Society

(GI), pages 2–7.

System Weaver Inc. (2022a). System Weaver. https://systemweaver.com/. Ac-

cessed: 2022-05-23.

System Weaver Inc. (2022b). System Weaver knowledge base. https://support.

systemweaver.se/en/support/solutions. Accessed: 2022-05-23.

Wikipedia contributors (2022). Traceability matrix. https://en.wikipedia.org/

wiki/Traceability_matrix. Online; accessed: 2022-06-23.

82

https://polarion.plm.automation.siemens.com/products/polarion-alm
https://polarion.plm.automation.siemens.com/products/polarion-alm
https://systemweaver.com/
https://support.systemweaver.se/en/support/solutions
https://support.systemweaver.se/en/support/solutions
https://en.wikipedia.org/wiki/Traceability_matrix
https://en.wikipedia.org/wiki/Traceability_matrix

	Abstract
	Acknowledgements
	Definitions, and Abbreviations
	Introduction
	Approach
	Contributions
	Thesis Outline

	Background and Literature Review
	Background
	Literature Review

	Integrated Change Request Management and Traceability Process
	Process Fundamentals
	Integrated Process
	Process Summary

	Traceability-centric Issue Tracking System (TraceITS)
	TraceITS Architecture
	Conformance to the Integrated Process
	Limitations

	Evaluation
	Discussion

	Conclusions and Future Work
	Future Work

	Abstract Syntax of TraceITS Models

