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Abstract

In this thesis, we investigate mathematical models based on adaptive robust optimiza-

tion (ARO) and stochastic programming (SP) for the spare parts inventory management

under various uncertainties for the substitute consumer durable products offered in an

assortment. In the first part of the thesis, we present a comprehensive literature review

of spare parts inventory management and 142 papers are surveyed and classified. In the

second part, we consider a multi-period spare parts inventory system providing spare

parts for the substitute products in an assortment and aim to develop the spare parts

inventory policies when the assortment is given in advance and there are uncertain-

ties in the failure rates of both products and spare parts. We formulate a multi-stage

adaptive mixed-integer robust optimization model and improve the partition-and-bound

method to solve it. In the third part, we consider a multi-period dynamic assortment

planning problem for an original equipment manufacturer (OEM) who launches and

sells the substitute product variants through an online platform. To handle the un-

certainties embedded in the customer preferences estimation, a multi-stage stochastic

programming model is proposed and a branch-and-price (B&P) algorithm is designed

based on the block-angular structure of the model. In the last part of this thesis, we

study an assortment planning problem from the product lifecycle perspective and intend

to simultaneously determine the assortment decisions, spare parts inventory policies, and

returned products remanufacturing decisions when there are uncertainties in the failure

rates of products and spare parts, and the return rates of the used products. The aim

of this study is to explore the impacts on product assortment decisions brought by im-

plementing the last-time buy (LTB) and remanufacturing strategies to supply the spare

parts over the warranty periods.
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Chapter 1

Introduction

1.1 Background and Motivation

Spare parts are stock items used in maintenance activities to keep equipment in operat-

ing conditions (Kennedy et al., 2002). The spare parts inventory management is critical

because the cost of spare parts accounts for a big share of the equipment’s lifecycle

cost: The value of spare parts annually consumed by a machinery, which might have a

lifetime of around 30 years, amounts to near 2.5% of the original purchasing price (Hu

et al., 2018). The non-availability of spare parts may induce great financial losses to

equipment owners when they have failed equipment required for repairs. In some indus-

tries where the manufacturers provide after-sales services, good spare parts inventory

management can improve customer satisfaction by reducing equipment downtime and

increasing equipment reliability (Jin and Tian, 2012). Furthermore, spare parts often

have an obsolescence problem, which usually happens when an equipment enters the

end of its lifecycle. Overstocked spare parts become obsolete when there is no demand

for them so that they must be discarded at a quite low value. To tackle the trade-offs

between overstocking and understocking spare parts, more actions related to the joint op-

timization of the maintenance and inventory operations are required. In summary, spare

parts inventory management plays an important role in achieving the desired equipment
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availability at a minimum economic cost.

As the concept of supply chain sustainability has been growing considerably, spare

part inventory management is also given more consideration with their role in supporting

sustainability. In past decades, the original equipment manufacturers (OEMs) are more

likely to advocate for a culture of planned obsolescence: By designing their products to

be short-lived and hard to repair, they can seize more revenues because customers are

forced to purchase more new products when the old ones are not functioning properly.

However, this culture contributes to wasting more natural resources and energy, gener-

ating more greenhouse gases, and further escalating global warming. For example, the

carbon emissions of producing an iPhone 12 account for nearly 80 percent of the total

emissions during its lifecycle (Apple Inc., 2020). In the United States, a motion known as

“right to repair" has been calling for legislation that requires companies make their parts,

tools, and information available to consumers and repair shops (Rosa-Quino, 2020). The

motivation of this motion is curbing that culture because the longer the product lifecycle

is, the fewer unnecessary product purchases will be, and finally the lower pollution the

production processes will generate. For the OEMs, they may suffer from the decreased

sales of new products from this motion, but they can obtain revenues by expanding their

after-sales services. Moreover, advocating sustainability practice can demonstrate man-

ufacturers embrace corporate social responsibility (CSR) to customers, contribute to a

positive brand image, and reinforce their corporate reputation (Ukko et al., 2019; López-

Pérez et al., 2017; Aguilera-Caracuel and Guerrero-Villegas, 2018). In this context, to

reach the balance between sustainability and profitability, the OEMs need more spare

parts for repairing the faulty products and an efficient spare parts inventory management

system is necessary.

However, the management of spare parts faces several difficulties. Firstly, the inter-

mittent demand patterns are common among spare parts and difficult to predict. This

point is extremely hard to solve for the consumer durable products which are usually

2
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offered in the form of product assortment. Nowadays, OEMs tend to use product seg-

mentation strategy in which multiple substitute products belonging to one category are

provided to customers from different groups. This product category is normally referred

to as the product assortment. Although such a strategy potentially can increase the

total revenue by attracting more customers but it adds more complexity to the spare

parts inventory management. This is because the spare parts are more likely to be si-

multaneously used by two or more products in the assortment. In this case, the demand

for spare parts is hard to predict due to its dependency on the various quantities of

different products in the assortment sold to the customers. Secondly, the number and

variety of spare parts are usually very large. It is difficult to identify an appropriate

strategy for each spare part type. Thirdly, inventory decisions have to reduce both the

penalties of excess stocks and the costs of equipment downtime incurred by the spare

parts shortages. Last but not least, the consumption of spare parts is closely related to

the equipment usage, damage, and maintenance (Hu et al., 2018). To develop the proper

policies for managing spare parts inventory, the OEMs normally borrow the power from

the historical data and statistical techniques to predict the spare parts demand. How-

ever, such estimations usually are coupled with errors/uncertainties and the OEMs have

to take those uncertainties into consideration.

The goal of this thesis is to provide general modelling frameworks for computing

optimal policies for the spare parts inventory management under various uncertainties in

a multi-period planning horizon, especially for the substitute consumer durable products

offered in an assortment. In other words, our main focus is to incorporate the spare parts

inventory management with assortment planning. Specifically, we study this problem

under three different scenarios:

(I) Develop the spare parts inventory policies when the product assortment is given

in advance and there are uncertainties in the failure rates of both the products

and the spare parts.

3
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(II) Develop the dynamic product assortment decisions and spare parts inventory poli-

cies when there are uncertainties in the customer preferences to the products in

the assortment.

(III) Develop the product assortment decisions, spare parts inventory policies, and

returned product remanufacturing decisions when there are uncertainties in the

failure rates of both the products and the spare parts and the return rates of the

used products.

To handle the uncertainties, robust optimization (RO) and stochastic programming

(SP) approaches are commonly used in the literature. RO is usually applied to the situa-

tions where limited distributional information is provided, and focuses on the worst-case

scenario. On the other hand, SP assumes the full distributional knowledge of uncertain

parameters and optimizes the expected performance. We are interested in RO and SP

not only because they are mathematical programming-based modelling approaches that

contribute to the robustness of solutions against data uncertainty, but also because they

have the potential to incorporate multiple sources of uncertainty into model develop-

ment.

1.2 Contributions and Organization of the Thesis

In this thesis, we mainly focus on integrating the spare parts inventory management

with assortment planning under various uncertainties to address the research gaps in

the literature.

In Chapter 2, we review current studies on the spare parts inventory management.

Our review has the following highlights. Firstly, we focus on analyzing the supply chain

structure of different inventory networks for managing spare parts. Secondly, current

literature are classified based on three analytics techniques, i.e., descriptive analytics,

predictive analytics, and prescriptive analytics. Thirdly, several research gaps in this field

4
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are identified and discussed from the perspectives of consumer durable goods, inventory

network structure and policies, reverse logistics, spare parts demand pattern modelling,

and big data analytics.

In Chapter 3, we focus on managing the spare parts inventory of a product assortment

which includes several substitute products over multiple time periods under the uncer-

tainties in the failure rates of both products and spare parts. We develop a multi-stage

adaptive robust optimization model in which the demand is determined by the multino-

mial logit (MNL) model of consumer choice over the substitutes in an assortment. The

main contributions of this chapter are multi-fold. Firstly, we propose a model consider-

ing managing the spare parts inventory of multiple substitute consumer products in an

assortment. The spare parts demand induced by the users of these products is estimated

based on the MNL model. Our purpose is to jointly manage the spare parts for these

products. To our best knowledge, there is no study on this problem so far. This problem

is complicated because some spare parts may be commonly used by several products in

the assortment while some may be uniquely used by one product.

In Chapter 4, we consider an OEM who produces a dynamic assortment of products

and sells them through online platform over a selling season with multiple periods un-

der the uncertainties of customer preferences. The contributions of this chapter are as

follows. First of all, to our best knowledge, this multi-period dynamic assortment plan-

ning problem with a blended setup of uncertain customer preferences and component

stocking was unexplored in the literature. This problem models the situation faced by

many OEMs who produce and sell product assortments through the online platforms

and are able to utilize the historical data to estimate the customer preferences over

the selling season. Secondly, a branch-and-price (B&P) algorithm is designed to solve

the proposed multi-stage stochastic programming model. Through extensive numeri-

cal experiments, the complexity of this problem is illustrated and the performance of

the proposed algorithm is validated. The advantage of dynamic assortment planning,

5
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i.e., dynamically changing the assortment at different periods based on the estimated

customer preferences, is also highlighted in the numerical experiments.

In Chapter 5, we study an assortment planning problem from the perspective of the

product lifecycle and aim to integrate the warranty service operations into the strategic

assortment planning decisions for the OEMs. In this problem, we consider the lifecycle

costs of the products when making strategic product assortment planning decisions. To

be specific, the expected costs related to the warranty services for assortment products

during the end-of-life (EOL) phase are included in the decision-making. Furthermore,

we consider both components last-time buy (LTB) and remanufacturing to be used as

the supply sources of the spare parts inventory during the EOL phase. To the best

of our knowledge, this setting is novel in both the literature of assortment planning

and those of spare parts inventory management for the products in the EOL phase.

Through the numerical experiments, we explore the advantages of joint optimization on

the assortment planning decisions and the spare parts procurement and remanufacturing

decisions compared to the separate optimizations on those decisions. Afterwards, we

discuss the impacts of the uncertainty levels of those two uncertainties on the expected

total profits of the OEM.

Finally, the major contents and contributions of this thesis are summarized in Chapter

6.
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Chapter 2

Literature Review

2.1 Introduction

Spare parts are stock items used in maintenance activities to keep equipment in operat-

ing conditions (Kennedy et al., 2002). The spare parts inventory management is critical

because the cost of spare parts accounts for a big share of the equipment’s lifecycle

cost: The value of spare parts annually consumed by a machinery, which might have

a lifetime around 30 years, amounts to near 2.5% of the original purchasing price (Hu

et al., 2018). The non-availability of spare parts may induce great financial losses to

equipment owners when they have failed equipment required for repairs. In some indus-

tries where the manufacturers provide after-sales services, decent spare parts inventory

management can improve customer satisfaction by reducing equipment downtime and

increasing equipment reliability (Jin and Tian, 2012). Furthermore, spare parts often

have an obsolescence problem, which usually happens when an equipment enters the

end of lifecycle. Overstocking spare parts become obsolete when there is no demand

for them so that they must be discarded at a quite low value. This causes wastes in

resource to equipment owners or original equipment manufacturers (OEMs). To tackle

the trade-offs between overstocking and understocking spare parts, more actions related

7
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to joint optimization in maintenance and inventory operations are required. In over-

all, spare parts inventory management plays an important role in achieving the desired

equipment availability at a minimum economic cost. However, the management of spare

parts faces several difficulties. Firstly, the intermittent demand patterns are common

among spare parts and difficult to predict. Secondly, the number and variety of spare

parts are usually very large. It is difficult to identify an appropriate strategy for each

spare part type. Thirdly, inventory decisions have to reduce both the penalties of excess

stock and the costs of equipment downtime incurred by the shortage of spare parts. Last

but not least, the consumption of spare parts is closely related to the equipment usage,

damage, and maintenance (Hu et al., 2018).

2.1.1 Motivations and Objectives

Over last decade, a significant number of studies on spare parts inventory management

have been published to provide managerial insights to practitioners. Nevertheless, to our

best knowledge, there is no literature review that organizes current literature on spare

parts inventory management from the perspectives of supply chain management and sup-

ply chain analytics, even though such perspectives have been prevalent in contemporary

business world.

There are seven literature reviews on this topic in the last thirty years. Cho and

Parlar (1991) review the publications of optimal maintenance and replacement models

for multi-unit systems and classify the surveyed literature into five categories based on

the maintenance operations topic, but the spare parts inventory management is only

one of the sub-topics discussed in their review. Guide and Srivastava (1997) present a

review on the studies of repairable spare parts inventory management and the reviewed

studies are grouped based on network structure (single versus multi-echelon), solution

methodology, and solution types (exact versus approximate solutions). Kennedy et al.

(2002) present the first review which completely focuses on the literature of spare parts
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inventory management and analyze the relationships between equipment maintenance

and spare parts inventory. They identify the main issues in determining spare parts in-

ventory and discuss future potential research directions. Their classification on literature

is based on the types of implemented maintenance strategies including preventive main-

tenance and corrective maintenance. Paterson et al. (2011) give a review of the literature

on lateral transshipments within an inventory system and point out that the reactive

transshipments are normally used for managing spare parts inventory. The literature

classification is made based on the characteristics of inventory system such as inventory

item number, echelon number, ordering policy, inventory pooling implementation, and

transshipments types. Van Horenbeek et al. (2013) present a literature review on joint

maintenance and inventory optimization and the scope of their surveyed publications

is limited to the models for non-repairable spare parts. Two classification schemes are

proposed. One scheme is based on the following seven criteria, i.e., inventory policy,

maintenance characteristic, delay, multi-echelon network, single-unit versus multi-unit

system, objective function, and optimization technique. Another scheme is made under

the topics of optimization and the studies are split into three groups, i.e., optimization

of parameter, optimization of replenishment quantity, and design of reuse supply chain.

The most recent literature reviews are conducted by Basten and van Houtum (2014)

and Hu et al. (2018) respectively. Basten and van Houtum (2014) focus on the studies

related to managing spare parts inventories of technical systems. The classification in

the review is made based on the characteristics of inventory network including network’s

service provider, number of echelon levels, availability of lateral or emergency transship-

ment, and so on. Hu et al. (2018) present a framework for Operational Research (OR)

area in spare parts inventory management and analyze the literature on four critical as-

pects of OR in spare parts inventory management, i.e., spare parts classification, demand

forecasting, inventory optimization, and supply chain system simulation.
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Past literature reviews clearly show that spare parts inventory management is at-

tracting increasing attentions from academia, especially in Operational Research and

Management Science (OR/MS) area. Spare parts inventory management research ori-

gins as a sub-topic under the equipment maintenance studies and has become an indi-

vidual research topic. The studied spare parts types are not only restricted to the spare

parts used in capital intensive systems which require in-time maintenance and support,

but also include the ones in consumer durable products whose maintenances are more

flexible. In addition, some recent studies begin to study the problem under broader

views in time dimension and network structure dimension, some intend to evaluate the

impacts brought by different inventory operations on the lifecycle cost of product or the

total cost of ownership, and some try to investigate the cooperative operations between

different participants in spare parts supply chain.

The main differences between our literature review and the aforementioned reviews

are as follows. Firstly, we focus on analyzing the supply chain structure of different

inventory networks for managing spare parts. Secondly, current literature are classi-

fied based on three analytics techniques, i.e., descriptive analytics, predictive analytics,

and prescriptive analytics. Thirdly, several research gaps in this field are identified and

discussed from the perspectives of consumer durable goods, inventory network struc-

ture and policies, reverse logistics, spare parts demand pattern modelling, and big data

analytics implementation.

2.1.2 Methodology

The database used for searching publications is ABI/INFORM Collection which is one

of the most comprehensive business databases in OR/MS field. The initial search is

conducted by searching spare and inventory as keywords in the abstracts of papers in

peer reviewed publications during January 1, 2010 and January 1, 2020. After the

initial search, 124 papers are identified in the review pool. To keep the literature review
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scientific and systematic, these papers are searched in Google Scholar and the new papers

citing each paper in the pool are checked. The criterion to enrich the pool is: If one

paper is published by a publication indexed in ABI/INFORM Collection database and

contains the required keywords in the abstract, but cannot be found in the database,

it will be included in the review pool. For example, the database indexes the papers

in European Journal of Operational Research (EJOR) before February of 2017 but does

not index the ones after. If a paper citing one of 124 papers is published in EJOR after

February of 2017 and contains spare and inventory in the abstract, it is included in the

pool. Overall, 142 papers are in the literature pool for reviewing.

In this review, all 142 papers are classified based on two different groups of perspec-

tives. The first group of perspectives includes the characteristics of spare parts, products,

inventory system, and supply chain while the second focuses on the characteristics of

research methodologies and topics in the reviewed studies. These two groups of classifi-

cation perspectives are discussed in Section 2.2 and Section 2.3 respectively. The purpose

of this review is to identify the research gaps in spare parts inventory management field

from the perspective of supply chain management.

2.2 Typology Based on Systematic Characteristics

In this section, the first typology based on systematic characteristics is presented. The

reviewed literature are classified from three perspectives including product and spare

part characteristics, spare parts supply chain characteristics, and spare parts inventory

management characteristics.

2.2.1 Perspective of product and spare part characteristics

Five product and spare part characteristics including product system type, product

lifcycle phase, spare part type, product system complexity, and performance measure

are used to depict the studied product systems and spare parts in the literature. In

11



Ph.D. Dissertation Shuai Zhang McMaster - Management Science

the following contents, these characteristics are presented and discussed in detail. The

corresponding classification results are shown in Table 2.1.

Product types Product lifecycle
phases

Spare part types Product system
complexity

Performance
measures

Capital
goods

109 Initial phase 2 Repairable
parts

41 Single-unit
products

60 LCC mea-
sure

8

Consumer
durable
goods

18 Maturity
phase

80 Non-
repairable
parts

83 Multi-unit
products

76 TCO mea-
sure

2

Non-
specific
goods

15 End-of-life
phase

9 Both 8 SCOR
measure

114

Whole lifecy-
cle

11 Other
measures

4

Table 2.1: Number of studies in different product and spare part characteristics

Product types

In the literature on spare parts inventory management, consumer durable goods and

capital goods are two important products types which have long lifetime and require

after-sales services (Rezapour et al., 2016). Consumer durable goods are referred as

the products purchased by individual customers for consumption and not used for the

production of another good. Examples of consumer durable goods include automobiles,

household appliances, and consumer electronics. Capital goods are high value tangible

assets used by a company as an input for producing other goods or services. In the

literature, capital goods are also referred as capital assets or capital intensive assets.

Examples of capital goods include computer networks, medical and defense systems,

and aircraft.

There are several dissimilarities between consumer durable goods and capital goods.

First, capital goods directly involves producing other goods or providing services to

customers, while the consumer durable goods does not. Secondly, they are supported

by distinct after-sales services. For consumer durable goods, warranties are usually

12



Ph.D. Dissertation Shuai Zhang McMaster - Management Science

provided as after-sales services of consumer durable goods whereas service contracts are

provided by the OEM or third party maintenance company as that of capital goods.

Discussions on both kinds of after-sales services are shown in the “After-sales services

and maintenance strategies” part of Section 2.2.2. Thirdly, these two product have

different spare parts demand patterns. The consumer durable goods are purchased by

a large number of individuals. This leads to a large variation among the demands of

customers because the product usage varies among customers. For capital goods, owners

usually purchase a fleet of identical products in use and these products normally have

same usage levels and work under same environment so that the variation in service

demand of each product does not vary drastically.

The studies on the spare parts of capital goods prevail in this research area. As

illustrated in the first column of Table 2.1, 109 out of 142 studies focus on the spare

parts of capital goods and only 18 papers consider the spare parts of consumer durable

goods. Meanwhile, we cannot identify the types of targeted products in 15 papers.

Product lifecycle phases

The product lifecycle consists of three phases including initial phase, maturity phase, and

end-of-life (EOL) phase (Basten and van Houtum, 2014). The initial phase begins when a

new product is launched onto the market. The product demand increases sharply during

the initial phase and the number of products on market surges as well. In contrast, the

product failure due to deterioration is very low, inducing the spare parts demands are

not significant during this phase. After the initial phase, the maturity phase starts when

the number of products on market gets stable. Such stability is caused not only by the

declining product demands, but also by the increasing product failures which also incur

increasing spare parts demands. The EOL phase usually starts when the manufacture

of products and spare parts stops and ends when the last warranty or service contract

period expires (Pourakbar et al., 2012). During this phase, the product sale ceases and
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the quantity of products on market starts to decrease. However, the products on market

still need spare parts to recover functionality when they fail. Therefore, extra units of

spare parts need to procure and stock at the beginning of this phase.

Glancing at the whole product lifecycle, spare parts demands follow products de-

mands but with a time lag. Such a phenomena is referred as “lifecycle mismatch”

(Solomon et al., 2000) in the literature. Moreover, such a mismatch indicates the spare

parts demands are correlated with the quantity of products on market (Inderfurth and

Mukherjee, 2008). Figure 2.1 illustrates the relationship between the products sales,

spare parts demand, and the products on market over a product lifecycle.

Sales of new products Spare parts demand

Products on the market

Amount

Time0

Initial phase Maturity phase End-of-life-phase

Figure 2.1: New products sales, spare parts demand, and products on market in the
product lifecycle (adapted form Inderfurth and Mukherjee (2008))

As shown in the second column of Table 2.1, most of studies in spare parts inventory

management literature focus on the inventory problems arising during the maturity phase

when the quantity of products on market is stable. There are 9 studies focusing the final

order problem or last-time-buy problem occurring at the EOL phase (Pourakbar et al.,

2012; Inderfurth and Kleber, 2013; Nguyen et al., 2013; Hur et al., 2018; Li et al., 2018;

Behfard et al., 2018; Frenk et al., 2019a,b; Shi, 2019). Moreover, several studies put

their efforts on the spare parts inventory decision-makings over entire product lifecycle

(Sahyouni et al., 2010; Öner et al., 2010; Liu and Tang, 2016; Duran and Afonso, 2019).
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The rest 40 studies cannot be classified because they do not clearly indicate the lifecycle

phases they focus on.

Spare part types

The spare part studied in the reviewed literature mainly include two types, the repairable

spare parts and the non-repairable spare parts.

Different types of spare parts possess dissimilar characteristics. For instance, some

parts are critical such that the malfunctions can lead to product breakdown whilst other

parts are not critical, i.e., the part malfunctions do not hinder product function for

a short time. To avoid product downtime, more critical spare parts are needed to be

stocked to prepare for replacements once failures occur. Therefore, the management

operations need to be decided based on the types of spare parts.

In the literature on spare parts inventory management, the studies normally lack

uniformly defined definition for spare part types. For the spare parts of capital goods,

there is one clear definition given by Arts (2014). Based on maintenance strategies,

they introduce three types of spare parts, i.e., rotables, repairables, and consumables.

However, this classification may not be applicable to consumer durable goods. In the

following part of this subsection, five characteristics of parts including critical level,

specialization level, value, demand pattern, and supply source will be discussed.

Parts criticality The criticality of a part is relevant to the consequences triggered

by its failure in the process if no replacement is available (Huiskonen, 2001). Based on

the critical level, spare parts can be categorized into two types, i.e., critical spare parts

and non-critical spare parts. A spare part is deemed as critical when its failure causes

product breakdown (Öner et al., 2013). On the contrary, it is non-critical if its failure

does not lead to a product failure.
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Parts specificity The specificity of a part refers to the specialization level indicat-

ing that the part is specifically tailored for and used by a particular type of product.

This kind of products is usually customized for certain customers and provides unique

functions to meet customer’s specific demands and requirements. In the review, this

part type is referred as parts with high specificity level. As a contrast, the parts which

are widely used by many products are standard parts and referred as parts with low

specificity level.

The supply chain characteristics of high specificity parts differ from those of low

specificity parts. Due to high demand volumes and economies of scale, low specificity

parts are normally supplied and stocked by many suppliers, who are willing to cooperate

with manufacturers. Therefore, low specificity parts usually have high availability. On

the contrary, high specificity parts possess low demand volumes and have less suppliers.

The suppliers are unwilling to stock spare parts because of high obsolescence risks which

may lead to low spare parts availability. In this case, manufacturer has to make advance

spare parts orders and stock them to meet the demands.

Part specialization level may change during different phases of product lifecycle. For a

single part, one can find supply source more easily at maturity phase than at EOL phase.

This means the specificity level of parts is dynamic rather than static. For instance, some

systems are faced up with the EOL decisions regarding final order placement and spare

parts inventory control because the acquisition of parts is no longer guaranteed at EOL

phase (Pourakbar et al., 2012).

Table 4.1 introduces an example of automobile parts classification based on criticality

and specificity levels. For automobile parts, the specificity level is closely related to the

Criticality

Non-critical Critical

Specificity Low Mufflers Wheels
High Bumpers Engines

Table 2.2: Examples of automobile parts
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features of automobile such as exterior shapes, interior decorates, and engine powers.

These features normally vary among the models of different makes and sometimes even

among the models of the same make. The criticality level of automobile parts is measured

by the consequences of part failures. For instance, the damage in bumpers usually does

not hinder the vehicle functions, therefore bumper is one of non-critical part. On the

other hand, different car models have dissimilar bumpers because their exterior shape

and body dimensions are different. The replacement of a damaged bumper needs to

be fulfilled by the dealer or the OEM who sells or produces that automobile model.

Therefore, bumpers are classified as a non-critical part with high specificity.

Value The value of spare part is another vital factor influencing the structure of spare

parts supply chain. High value spare parts are usually not favoured by neither manufac-

turers nor suppliers to stock, because holding such spare parts requires high investments

in procurement and inventory. Therefore, more collaborative work needs to be done be-

tween suppliers and manufacturers to seek other alternatives rather than holding stock

to satisfy the demands. For low value spare parts, a trade-off between the stocking and

procuring decisions has to be considered by decision makers. If a large procurement

quantity is ordered, the inventory level will be so high that corresponding inventory cost

increases. Otherwise, the administrative cost might increase because more orders are

placed, leading to the increases in ordering and transportation cost. To sum up, replen-

ishment arrangements have to be efficient so that the inventory cost and administrative

cost can reach a balance proportion to the value of spare parts.

Repairable v.s. Non-repairable parts The repairable parts are the items which

are replaced by new ones and then sent to repair when they fail (Arts, 2014). After being

repaired, the items are restocked as ready-for-use units (RFU’s) which can be used to

replace faulty items in the future. The non-repairable parts are the items which cannot

be repaired after replacements and are usually referred as consumables because they are
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discarded after replacements and the inventories are replenished by procurement from

suppliers.

The inventory management of repairable parts are more complex than that of con-

sumables. For repairable parts, supply sources not only are limited to suppliers, but

also include repair workshops. The workshop operations are highly relevant to the spare

parts inventory management because inventory policies are significantly affected by the

factors including repair capacity, repair time, etc. In the literature, the workshop is

considered as an important and unique section in the inventory network. Especially,

the joint repair shop scheduling and spare parts inventory management problem arises

when the capability of repair shop is limited. As shown in the third column of Table 2.1,

41 papers focus on repairable parts only and 3 papers consider both the repairable and

non-repairable parts. More than half of the reviewed literature focus on non-repairable

parts. There are 10 papers cannot be identified because they do not explicitly show the

types of spare parts considered.

Product system complexity

Base on system complexity, the product systems in the literature are specified into two

types including single-unit system and multi-unit system. The single-unit system is the

product system which has or is assumed to have single critical parts. As a contrast, the

multi-unit system has more than one critical parts.

The studies on both kinds of product systems are quite abundant. Among the lit-

erature, 60 papers focus on single-unit systems while 75 papers on multi-unit systems.

One interesting observation is most multi-unit system studies assume that the failures of

dissimilar parts are independent with each other. There are only two studies, Moharana

and Sarmah (2016) and Liu and Tang (2016), adopt the dependent failures assumption.

In the real world, it is common to see that the failure of one part might induce the failure
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of others. Therefore, independent failure assumption is not always reasonable though it

simplifies the studied problems.

The fourth column in Table 2.1 reveals that there are 60 reviewed studies on single-

unit product systems while 70 studies on multi-unit product systems. Note that six

papers cannot be classified because they do no involve this issue in their studies.

Performance measures

In the literature, various performance measures are used to evaluate the outcomes

brought by different inventory policies, maintenance schedules, etc. Theses performance

measures are adopted by inventory network owners to manage the spare parts inventory

of different products. In the following context, three different measures including lifecy-

cle cost, total cost of ownership, and supply chain performance metrics are introduced

and the reviewed literature are classified based on these measures.

Lifecycle cost The general definition of lifecycle cost (LCC) is referred as the summa-

tion of all cost components to manufacturers, users, society during the product lifetime.

The LLC can be decomposed into categories in a cost breakdown structure as shown in

Table 2.3 which is adapted and developed from Asiedu and Gu (1998). Table 2.3 reveals

that OEM, users, and society are faced up with four kinds of cost categories, i.e., design

costs, production costs, usage costs, and disposal or recycling costs. The new element

we add to the cost breakdown structure proposed by Asiedu and Gu (1998) is that OEM

may also have disposal or recycling costs if the reverse logistics (RL) is implemented.

Nowadays, the concept of RL is getting popular in various industries such as electronics,

automotive, and consumer appliances. The RL involves the operations related to the

return of damaged, unsold, end-of-life products along with handling, consolidation, re-

manufacturing and disposal (Diabat et al., 2015). Therefore, the RL operations induce
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OEM cost Users cost Society cost

Design Product development
Market Recognition

Production Materials Wastes
Salaries, wages etc. Pollution
Facilities Health damages
Energy

Usage Inventory Inventory Packaging
Transportation Transportation Wastes
Wastes Energy Pollution
Breakage Materials Health damages
after-sales services Maintenance

Disposal Disposal Disposal Wastes
or Recycling Recycling Disposal
recycling Remanufacturing Pollution

Health damage

Table 2.3: Lifecycle stages and costs

new cost categories which have to be considered when conducting lifecycle cost analy-

sis for the OEM. Detailed discussions on the relationship between RL and spare parts

inventory management will be shown in Section 2.4.2.

When analyzing the LCC of a product, it is important to identify the listed cost

categories based on the analysis subjects. To be specific, the LCC may contain different

cost categories when the LCC analysis is carried for OEM, users, or society respectively,

because they are only interested in the costs categories that they can control. For ex-

ample, Öner et al. (2010) study a problem in which an OEM is providing performance

based contract (PBC) to the customers who purchase a set of equipment. The LCC con-

sidered in their study includes design costs, production costs, and usage costs including

spare parts inventory costs, repair costs, and downtime costs. In general, the LCC is

a widely used economic measure to be considered when making decisions at the design

phase of products and relevant services. When using LCC in the studies, appropriate

cost categories should be included in the LCC analysis based on the analysis subjects

and their interests.
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Total cost of ownership Total cost of ownership (TCO) is a concept which helps

customers to understand the true cost of buying a particular good or service from a

particular supplier (Ellram, 1995). This concept can be applied to any products to

assist purchase decision-makings. Except product price, the TCO normally contains

the costs incurred by product maintenance, downtime, disposal, and other activities

happened during the periods starting from making purchasing decisions until disposing

the products.

It should be highlighted that the maintenance related cost may account for a huge

portion (70% - 80%) of the TCO for some complicated technical products used in indus-

tries such as military, medical, and power generation. In this case, spare parts inventory

management is important due to its critical role in maintenance operations. The studies

adopting TCO as the performance measure for evaluating spare parts inventory system

generally seek to find optimal inventory policy to minimize the TCO.

Supply chain performance metrics Supply chain performance metrics are widely

used to measure supply chain performances in the literature. One of the most popular

supply chain performance metrics is Supply Chain Operations Reference (SCOR) model.

This model advocates measuring the performance of supply chain from four perspectives,

i.e., lead time metrics, cost metrics, service/quality metrics, and assets metrics (Pfohl

and Ester, 1999). In this review, SCOR performance metrics are applied to classify spare

parts inventory literature. The example metrics of the mentioned four kinds of metrics

are shown in Table 2.4.

The number of reviewed studies using different performance measures are listed in the

last column of Table 2.1. It is worth mentioning that multiple performance measures can

be used to evaluate system performance simultaneously. For example, an OEM who pro-

vides performance-based contracts to customers has to not only consider the cost metrics

of maintenance and inventory system, but also ensure the requested service metrics in

contract to be satisfied (e.g. product availability level). In this case, a study may use
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Metrics Example

Lead time metrics Spare part replenishment lead time, repair lead time for repair op-
eration, etc.

Cost metrics Inventory holding cost, repair cost for repairable spare parts, ship-
ment cost, etc.

Service/quality metrics Product’s availability level, inventory system service level, etc.

Assets metrics Spare parts inventory level, repair center capacity, etc.

Table 2.4: Different kinds of supply chain performance metrics

the total cost of managing spare parts as an objective and consider the agreed availabil-

ity level as the constraints when establishing mathematical models. Consequently, we

have to consider the number of usages of different performance measures in the reviewed

literature. From the last column of Table 2.1, it can be easily concluded that supply

chain performance metrics are dominantly used in the literature. In contrast, there are 8

studies using the LCC measure and 2 studies using the TCO measure respectively. This

phenomena reveals that the studies so far lack a product lifecycle view. There are four

studies using other measures such as company profits of selling products and providing

warranty services (Ahiska et al., 2017; Rezapour et al., 2016), profits of using spare parts

inventory pooling among different companies (Zhao et al., 2019), and warranty cost (Li

et al., 2018).

2.2.2 Perspective of spare parts supply chain characteristics

The spare parts supply chain refers to the network of firms and facilities involving in

transforming raw materials to spare parts and distributing these spare parts. The supply

chain characteristics reveal the stakeholders, structure, operation mode, and flow paths

of the spare parts supply chain and they include network ownership, number of echelons,

lead times, lateral transshipments and emergency shipments, and after-sales services and

maintenance strategies. The obtained results are shown in Table 2.5.
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Network owner-
ship

Number of
echelons

Lead time Lateral transship-
ments and emer-
gency shipments

Maintenance
strategies

User net-
work

49 Single-
echelon

90 Zero lead
time

21 Lateral trans-
shipments

5 Preventive
maintenance

31

OEM net-
work

55 Multi-
echelon

32 Deterministic
lead time

59 Emergency
shipments

17 Corrective
maintenance

86

Third party
network

28 Stochastic
lead time

38 Both 2 Both 20

Table 2.5: Number of studies in different spare parts supply chain characteristics

Network ownership

The spare parts supply chain supports the maintenance activities for the products in use.

Based on the ownership, the spare parts supply chain can be identified as three types

including the supply chain network of the OEM or system integrator (the firm bringing

component subsystems into a whole and ensuring those subsystems function together)

who provides after-sales services to the product systems they have sold, the network

of users who maintain the product systems that they use (Basten and van Houtum,

2014), and the network of third-parties who are outsourced by the users for maintaining

the product systems in use. In the following context, these three types of networks are

referred as OEM network, user network, and third-party network respectively.

Different types of networks represent the different patterns of maintenance activities.

User network is a traditional network for maintaining the products in use and still quite

popular in the industries such as military and transportation. In user network, users

take over the maintenance activities, aiming to avoid product downtime. Therefore,

users have to make a trade-off between the spare parts inventory cost, repairman labor

cost, products downtime cost and so on.

As the product structure and maintenance complexity increase, the OEM network

starts to prevail in many industries such as high-tech industries because the OEM gener-

ally owns more knowledge and techniques and thus can handle the complexity of product

23



Ph.D. Dissertation Shuai Zhang McMaster - Management Science

system more easily than users. In addition, the prevalence of lean management programs

is another driver of this trend. The philosophy of lean management requires the users

have smaller buffers for disturbances and also high system availability. In this context,

rather than reserving the teams and resources to maintain the product systems in use,

users prefer outsourcing the maintenance to the OEM or a third-party company.

In OEM network, OEM establishes facilities and resources to provide after-sales ser-

vices to users through service contracts such as warranties and service contracts which

will be further discussed in the part of “After-sales services and maintenance strategies”

in Section 2.2.2. Nowadays, OEM is increasingly willing to provide after-sale services

due to following reasons. Firstly, providing such services induces a competitive advan-

tage to other OEMs since customers increasingly require high quality after-sales services;

secondly, OEM can earn profits by selling such services, which is at least as high as that

by selling products (Oliva and Kallenberg, 2003).

In some cases, a third-party company takes the role of OEM in network to provide

after-sales services to users to earn profits and such network is referred as the third-party

network. In some ways, this network is similar to the OEM network. For example, both

OEM and third-party company own and manage the facilities and resources to support

the after-sales services. However, there are some differences between the OEM network

and the third-party network. First, in the OEM network, the OEM is able to obtain

the feedback from after-sales services to improve products through the designing-for-

maintenance or designing-for-lifecycle-cost approach (Basten and van Houtum, 2014).

On the contrary, third party companies do not benefit from this when they perform such

services. Second, in third-party network, after-sales services usually are provided to a

much bigger user groups who use the products from different OEMs while in the OEM

network, they are only provided to the products from a particular OEM.

In the first column of Table 2.5, the number of studies adopting networks with various
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ownership are summarized. Compared to the studies using user networks or OEM net-

works, the studies using third-party networks are less. In addition, there are 10 papers

whose network types cannot be identified because this information is not provided.

Number of echelons

The number of echelons is one of the most important characteristics in the inventory

management literature, because it reflects the inventory system structure. The single

echelon inventory system contains single stock point in one particular region or several

local stock points in different regions. Each local stock point is responsible for serving

the demand in the region where it locates and there is no interaction between any two

local stock points in different regions. In this context, ordering and replenishing decisions

are made at each stock point independently.

The multi-echelon inventory system have more than one echelon, i.e., national and

regional stock points are utilized. The national warehouse orders from suppliers, stocks

inventories, and replenishes the regional stock points which are responsible for meeting

corresponding demands. Spare parts inventories are located at every stock points in the

inventory system. In this system, systematic ordering and replenishing decisions need

to be made based on inventory and demand information at each stock point.

The second column in Table 2.5 shows that a huge part of reviewed studies focus

on the single-echelon inventory system for managing spare parts. Among 142 reviewed

papers, only 32 consider the spare parts inventory management problems with multi-

echelon inventory systems. There are 20 papers cannot be classified because the struc-

tures of inventory systems are not clearly indicated.

Lead time

Lead time is another important spare parts supply chain characteristic and is usually

referred as the period begins with an order placement and ends with the receipt of
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corresponding order. In the literature, different assumptions regarding order lead time

are made including zero lead time, deterministic lead time, and stochastic lead time.

In addition, the lead time concept varies among different spare part types. For non-

repairable spare parts, the lead time mainly includes the transportation time, while the

repair time of faulty repairable parts is also included in lead time.

Note that different inventory operations may involved different lead times. For ex-

ample, if emergency replenishment is allowed in the studied inventory system, the lead

time of emergency procedure is much shorter than that of normal procedure but the

emergency one usually costs more. Therefore, one has to make a trade-off between plac-

ing normal or emergency orders and reducing cost of product downtime. As shown in

the third column in Table 2.5, 21 studies do not consider lead times, while 97 studies

do: 59 papers with deterministic lead times and 38 with stochastic ones. In addition, 24

studies cannot be identified because they do not show this characteristic.

Lateral transshipments and emergency shipments

Lateral transshipments and emergency shipments are widely used to improve inventory

system performance in practice. The reviewed literature is classified based on if lateral

transshipments or emergency shipments are used.

Lateral transshipments Lateral transshipments are defined as the stock movements

between different stock points within the same echelon in an inventory system (Basten

and van Houtum, 2014). Such stock movements are executed under inventory pooling

strategy, referred as the arrangements in which different stock points share their inven-

tories (Wong et al., 2007). In some studies, inventory pooling and lateral transshipments

are treated as interchangeable strategies (Wong et al., 2006). However, we would like

distinguish inventory pooling from lateral transshipments because the first is a inventory

strategy while the latter is one type of shipping operations. Even though inventory pool-

ing strategy is realized through lateral transshipments to move stocks between different
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stock points, they are not same in concept. In the following context, a brief introduction

to different types of lateral transshipments are presented at first. Afterwards, lateral

transshipment strategy used in the spare parts inventory management literature will be

discussed.

Proactive lateral transshipment v.s. reactive lateral transshipments

In the inventory management literature, one key criterion to classify the studies is

based on the timing when transshipment decisions are made. Specifically, the literature

considering lateral transshipments can be categorized into two main streams, the studies

with proactive transshipments and the studies with reactive transshipments (Paterson

et al., 2011). In proactive transshipments, all lateral transshipments are scheduled in

advance and all stock points are redistributed simultaneously. In contrast, reactive

transshipments refer to the stock movements from one stock point which has sufficient

on-hand stock to another which faces a stock-out situation at anytime.

Partial pooling v.s. complete pooling

Another way to classify the literature regarding lateral transshipments is based on

the extent to which the stock at one point can be used in transshipments to other stock

points. If all inventory at one stock point can be used, then we call such transshipments

as complete pooling. In contrast, if only a part of the inventory at each stock points can

be shared with other points and the rest inventory is reserved for covering future local

demands, then we call such transshipments as partial pooling.

In the literature, reactive transshipments using complete pooling is widely used be-

cause the transshipment costs is usually significantly less than the sum of stock holding

cost and the shortage cost when the demands cannot be fulfilled immediately (Paterson

et al., 2011). In fact, we indeed find that all studies involving lateral transshipments in

spare parts inventory system use reactive transshipments with complete pooling. There-

fore, in this review, we restrict our attentions to the reactive transshipments with com-

plete pooling and will refer it as transshipments for convenience.
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Emergency shipments Except lateral transshipments, emergency shipments are also

widely used when on-hand spare parts stocks are not sufficient to support in-time main-

tenance activities. In this case, a normal order will be too late such that the downtime

of product system will incur a huge cost. Unlike lateral transshipments which redis-

tribute stocks among stock points within the same echelon, emergency transshipments

is referred to the emergency and unplanned stock movements between the stock points

at different echelons, e.g. the stock-out points and the inventory supply source (central

warehouse or suppliers).

As shown in fourth column of Table 2.5, the discussion on implementing lateral trans-

shipments and emergency shipments is a big gap in spare parts inventory management

literature. There are only 5 studies considering lateral transshipments, 17 studies consid-

ering emergency shipments and 2 studies considering both. The rest 118 papers usually

ignore or are irrelevant to this issue.

After-sales services and maintenance strategies

Product after-sales services are highly relevant to spare parts inventory management.

Such services are regulated by the agreed contracts between product owners and main-

tenance providers, and are realized by different maintenance strategies. In the following

content, two types of after-sales services, warranty and service contracts, are discussed

and several maintenance strategies are illustrated.

After-sales service contracts As discussed previously, the after-sales services of

consumer durable goods are provided through the warranty contracts, which request

OEM to fix or replace faulty products under some conditions. Warranty contracts are

important strategic profiles in modern manufacturers because they can improve company

image, generate business and profits, and foster brand (Martinez et al., 2007).
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The after-sales services of capital goods are often provided through service contracts

which includes two main types including Material Based contract (MBC) and Perfor-

mance Based contract (PBC) (Mirzahosseinian et al., 2016). MBC used to be the most

common mechanism to provide maintenance services in the industry. In MBC, each time

a service task is completed, OEM is compensated for the service cost. Lately, PBC has

emerged as a new service mode redefining the acquisition, operation, and maintenance

of capital equipment. Under PBC, service provider is compensated based on the system

performance. Compared to MBC, PBC has advantages in motivating OEM to improve

product quality and reliability during design and manufacturing phase so as to reduced

failures and repair costs of the sold products.

Maintenance strategies Maintenance strategies determine the timing when products

are maintained or parts are replaced. Preventive maintenance and corrective mainte-

nance are two most discussed maintenance strategies in the literature.

Preventive maintenance strategy intends to maintain products or replace parts before

the failure occurs to avoid product breakdowns. One important assumption in preven-

tive maintenance is that the product state which subjects to stochastic failure is always

known with certainty (Cho and Parlar, 1991). Based on the known state, preventive

maintenance activities can be scheduled in the planning periods and induce planned

demands for spare parts. Preventive maintenance strategy can be divided into usage

based maintenance and condition based maintenance. Usage based maintenance is im-

plemented when the usage of parts reaches a target threshold. A good example of usage

based maintenance is the automobiles are usually maintained after a certain mileage.

Condition based maintenance is implemented when the condition of part reaches certain

states. The condition of one part can be either checked periodically via inspections or

monitored continuously via sensors. However, preventive maintenance cannot eliminate

part failures because parts might fail before the replacements or maintenance. In addi-

tion, some types of spare parts, such as electronic parts, do not wear such that states
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of parts cannot be used to decide the maintenance schedule. In this case, corrective

maintenance strategies are used when the uncertain part failures occur, which would

incur unplanned demands for spare parts. For example, the automobile engine may fail

even though scheduled preventive maintenance are implemented.

The last column In Table 2.5 shows the numbers of studies under preventive and

corrective maintenance are summarized. It is clear that a huge number of studies focusing

on corrective maintenance while 31 studies focusing on preventive maintenance. There

are 20 papers consider the spare parts inventory problem under both preventive and

corrective maintenance. Five papers cannot be identified based on this topic.

2.2.3 Perspective of spare parts inventory management characteristics

The characteristics of spare parts inventory management discussed in this review include

inventory policy, number of inventory units, and inventory supply source.

Inventory policy

During different phases of product lifecycle, various policies can be implemented to

control spare parts inventory. In the following context, main types of continuous and

periodic review policies used during the initial and maturity phases, and final order

policy used in the EOL phase are discussed in detail.

Continuous review policy Under continuous review policy, spare parts inventory

level is inspected in a continuous manner. New spare parts are ordered when inventory

level falls below a certain level. Based on how the order quantity is decided, one can

identify two types of continuous review policies including (s, S) policy and (q, r) policy.

In (s, S) policy, a new order is placed to make inventory level reach the order-up-to

level (S) once the level falls below reorder point (s). The ordered quantity is equal to

the difference between the order-up-to level and the inventory level at the ordering time.

(S−1, S) policy (which is also referred as one-for-one replenishment policy or base stock
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policy) is a special case of (s, S) when the reorder point takes the value of order-up-to

level minus 1. (S − 1, S) policy is widely used in the repairable spare parts inventory

management studies because the one-for-one replenishment mode can mimic the repair

process. For example, when a product is under repair, inducing one unit demand for a

repairable spare part, a new spare part is used for replacing the faulty one, which is sent

to repair and will return as one unit of inventory after repair. Unlike (s, S) policy whose

order size is uncertain, (q, r) policy has a fixed order size (q) and the order is placed

when inventory level is no higher than reorder point (r).

Periodic review policy Under periodic review policy, replenish orders are placed at

the beginning of each order cycle. The most widely used periodic review policy in the

literature is (R, S) policy, in which the order is placed at the start of every fixed ordering

cycle (R) to make the inventory level reach the order-up-to level (S), which is decided

based on the predicted demand during next cycle and lead time. The ordering cycle

is usually predetermined by decision makers as a fraction of year, or a certain amount

of weeks or months, based on their experiences and preferences. More important, the

implement of continuous review policy or periodic review policy is mainly decided by the

decision makers based on how they manage spare parts inventory in practice. In addition,

it is possible to adopt both types of inventory policies in an particular inventory network.

For example, in some studies, different inventory policies are used in different echelons

of a multi-echelon inventory network (e.g. Topan and Bayindir, 2012).

Final order policy The final order for spare parts is placed to satisfy the demand

during EOL phase of product lifecycle Pourakbar et al. (2012). In the literature, it

is also referred as EOL inventory problem, end of production problem (EOP), or final

buy problem (FBP). The key to solve this problem is how to decide the optimal final

order quantity. If too many spare parts were ordered, inventory holder would take huge

obsolescence and disposal risks and pay for a high inventory holding cost at EOL phase.
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On the contrary, if the final order quantity was not enough to cover the spare parts

demand, the OEM or maintenance provider would not fulfill the service contracts or

warranty obligations, faced up with fiscal penalties or damages in customer satisfaction

or brand image.

Table 2.6 shows the number of studies on managing spare parts inventory though

different policies. One should note that a study may involve different inventory policies.

The studies of Topan and Bayindir (2012), Bacchetti et al. (2013), Çapar (2013), Inder-

furth and Kleber (2013), Panagiotidou (2014), Hu et al. (2017), and Duran and Afonso

(2019) consider more than one inventory policies to manage spare parts inventory and

these studies are counted in more than one study group in Table 2.6. In addition, 2 pa-

pers adopt other inventory policies and they are not included in the table. Liu and Tang

(2016) propose a base cumulative order size (BCOS) policy and Sahba et al. (2018) pro-

pose a Multilevel rationing (MR) policy for spare parts inventory management. There

are 28 papers which cannot be identified and classified based on the inventory policy.

Initial and maturity phases EOL phase

Continuous review policy Periodic review policy Final order policy
(s, S) (S − 1, S) (q, r) (R, S)

12 51 12 36 7

Table 2.6: The number of studies using different inventory policies

Number of inventory items

From the perspective of inventory item numbers, the reviewed literature can be cate-

gorized into two groups: the studies with single-item inventory and the studies with

multi-item inventory. In the first group of studies, only one type of spare parts is con-

sidered while the second group of studies consider more than one spare part types.

It is worth mentioning that the single-item and multi-item inventory classification

is highly relevant to the approach in which how the target service level of inventory
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system is defined. Basically, there are two approaches including item approach and

system approach. In the item approach, each individual part is defined with a target

service level. As a result, ordering decisions are independently made for each part. In

the system approach, a target service level is defined for the demand weighted average

of all the performance measures over all parts (Topan et al., 2017).

Among the literature, the studies on multi-item spare parts inventory system are

prevalent, with 85 papers focusing on this characteristic. Additionally, there are 44

studies on single-item inventory system. Even though single-item system is not popular

in practice, corresponding studies could still be valuable if more factors affecting spare

parts inventory management are considered. In addition, there are 13 studies cannot be

classified because they do not cover this issue.

Inventory supply sources

The last characteristics regarding inventory system is the supply source. Both con-

sumable and repairable spare parts are normally procured from external suppliers or

manufactured by OEMs. However, it is possible that repairable spare parts are sup-

plied from repair shops through fixing faulty ones. The identification of supply source is

important because different supply modes represent various emergency levels of orders.

For example, when the inventory are depleted and orders cannot be backlogged, ordering

new spare parts from external suppliers are more preferable if lead time is short because

waiting for repairing a faulty part possibly cost more (e.g., penalties on long customer

waiting time beyond the agreed level in the service contracts).

From Table 2.7, it can be concluded that the supply sources in most studies are

suppliers and repair shops.There are only 8 studies have some other interesting supply

modes. In the study of Rezapour et al. (2016), repair shop is responsible for fixing

repairables and suppliers are sending orders of non-repairables. Ahiska et al. (2017)

study a problem in which OEM produces and repairs or remanufactures spare parts to
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support the after-sales services of products sold. Togwe et al. (2019) focus on a case

in which a portion of spare parts inventory comes from additive manufacturing while

the rest is ordered from suppliers. In the study of Song and Yang (2015), spare parts

are supplied from three sources, repair shop, supplier, and cannibalization (an operation

attempting to achieve a maximum number of operative equipment by interchanging

components in failed ones). Dreyfuss et al. (2018) consider both cannibalization and

supplier as inventory supply sources.

Suppliers OEM production Repair shop Others

52 5 72 5

Table 2.7: Number of studies with different supply sources

2.3 Typology Based on Research Methodologies and Top-

ics

In Section 2.2, the reviewed studies are categorized based on the physic characteristics

of the studied products, spare parts, and supply chain networks. These characteristics

are used to help readers understand the backgrounds and contents of the studies. In

this section, another typology is introduced to classify the studies based on research

methodologies and topics. Corresponding analysis is carried out to check current research

status, identify research gaps, and find potential topics. This typology is constructed

based on the supply chain analytics and the research topics in the studies.

2.3.1 Perspective of research analytics

Spare parts supply chain refers to the network of firms and facilities involving in trans-

forming raw materials to spare parts and distributing spare parts to customers. The

studies on spare parts inventory management should be carried out under the big pic-

ture of spare parts supply chain. In this subsection, the studies of spare parts inventory
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management are classified based on their research methodologies. We borrow the con-

cept of supply chain analytics to identify different research methodologies. Supply chain

analytics can be further divided into three different types including descriptive, predic-

tive, and prescriptive analytics. It is worth mentioning that one study may use multiple

analytics.

Descriptive analytics

Descriptive analytics answer the question of what is happening by utilizing and deriving

the information from significant amount of data (Souza, 2014). Spare parts inventory

management studies adopting descriptive analytics mainly focus on particular cases,

conduct simulations, and perform performance analysis based on the collected historical

data. The research issues are typically related to spare parts supply chain network

structure design, spare parts classification, and new technology adoption in a particular

industry. The numbers of research works adopting descriptive analytics in different forms

is shown in Table 4.2.

Case study Simulation Performance analysis

49 19 7

Table 2.8: Number of studies with different descriptive analytics methods

The table shows that 49 studies have real-life cases relevant to spare parts inventory

management problems. There are 19 papers using simulation models to mimic the real-

world spare parts inventory management processes. The purpose of using simulation

models as a descriptive method is to reveal the value of implementing certain policies

when managing spare parts inventory. Using such simulation experiments is preferable

because the cost of testing policies in real-life management operations could be high.

The performance analysis are used in 7 papers for testing or comparing different spare

parts demand classification or forecasting methods.
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Predictive analytics

Predictive analytics answer the question of what will be happening by utilizing historical

data in prediction techniques. In the spare parts inventory management literature,

the studies adopting predictive analytics normally address the issues of how to identify

different spare parts demand patterns and how to correctly forecast the demands.

Demand patterns The spare parts demands are induced by the failures and replace-

ments of parts in use during the product lifecycle and normally in intermittent and lumpy

demand patterns (Boylan and Syntetos, 2010). Such demand patterns cause troubles in

the demand forecasting, thus leading to difficulties in choosing inventory policies.

In the literature, various techniques are used to depict the intermittent and lumpy

spare part demands based on historical data. Traditionally, spare part demands are of-

ten modelled by stochastic processes including stationary and non-stationary processes.

Stationary stochastic process assumes the demand possesses same probability distribu-

tion in different time periods. This assumption holds when the product installed base

is large and constant over planning horizon. The most widely used stochastic demand

pattern is Poisson process which assumes that the duration between any two consecutive

failures are independent random variables with identical exponential distributions. On

the contrary, non-stationary pattern assumes that demand possesses different probability

distributions in distinctive periods. This assumption holds when the number of target

products changes over planning horizon. One typical non-stationary demand pattern is

non-homogeneous Poisson process.

The selection between stationary and non-stationary demand processes is affected

by the product lifecycle phase on which the study focuses. If the study only targets

on the products in maturity phase, stationary demand process is preferred because the

number of products in use remains at a stable level thus leading to a steady demand

rate. However, the demands are not stable neither at the initial phase nor the EOL
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phase. At initial phase, the number of products in use is building up quickly, inducing

an increasing demand rate. On the contrary, the demand has a decreasing rate in the

EOL phase due to the shrinking number of products in use. Therefore, non-stationary

demand process should be adopted to capture the changes in demands over different

phases of product lifecycle.

Another popular approach used for depicting the demand patterns is to assume the

demand follows a general or certain probability distribution which is determined by

the information retrieved from historical data. An advantage of this approach is that

nearly all types of demand patterns can be modelled based on historical observations of

spare parts demands. However, such general probability distributions may bring more

complexities into the optimization problems such that the problem is hard to solve and

structure results may not be guaranteed. Apart from the studies assuming stochastic

demands, a few studies assumes deterministic spare part demands. In these studies, more

efforts are put on determining the optimal inventory policy. However, such deterministic

models could not capture the stochastic nature of part failure process.

The studies using different spare parts demand patterns are listed in Table 2.9. It

is clear that a majority of the reviewed studies adopt stationary demand patterns. The

prevalence of stationary demand pattern reflects that spare parts inventory management

literature is developed from and heavily impacted by the equipment maintenance litera-

ture in which the stationary demand patterns are widely accepted as a basic assumption.

However, in recent years, more and more studies start to focus on non-stationary de-

mand patterns when the spare parts inventory management issues are considered under

different lifecycle phases. In addition, 20 papers assume the spare parts demand patterns

follow general probability distributions. 24 studies cannot be identified based on how

the demand patterns are modelled.

Single demand pattern v.s Multiple demand patterns As mentioned previously,

various demand patterns are used for forecasting spare parts demands and different spare
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Stochastic Deterministic
Stationary Non-stationary General distribution

74 10 20 4

Table 2.9: Number of studies with different demand patterns

parts types may possess different demand patterns. Therefore, based on the number of

spare parts demand patterns used, the reviewed studies using prescriptive analytics can

be classified into two groups, one with single demand pattern and the other with multiple

demand patterns.

The studies with single demand pattern usually consider one type of spare part (could

be multiple identical spare parts). However, in the studies with multiple demand pat-

terns, multiple non-identical spare parts belonging to different types are considered and

each spare part possesses its individual demand pattern. In addition, for the complex

systems with multiple parts, one spare part demand may be affected by the demands

of other spare parts, because such systems are often subject to multiple statistically

dependent failure processes. In this case, dependencies between spare part failures have

to be considered if the failure of one spare part may lead to the failures of others. Only

two papers, Moharana and Sarmah (2016) and Liu and Tang (2016), consider the depen-

dency among different spare parts demand patterns while others assume different spare

parts demands are independent. The number of studies with single demand pattern and

multiple demand patterns are shown in Table 2.10 respectively.

Multiple demand patterns Single demand pattern
Dependency considered Dependency not considered

2 40 66

Table 2.10: The number of studies with single demand pattern and multiple demand
patterns
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Prescriptive analytics

Prescriptive analytics answer the question of what should be happening. Based on de-

scriptive and predictive analytics, prescriptive analytics utilize optimization models to

provide decision makers with recommendations. Many studies adopt prescriptive analyt-

ics to investigate the inventory policies for managing spare parts in different industries

to assist decision makers achieving favourable inventory system performance.

In this section, 86 studies using prescriptive analytic methods are examined. Among

these studies, various optimization models are proposed to solve the problems on spare

parts inventory management. To provide readers a clear and direct view on optimization

models in the studies with prescriptive analytics, we divide the studies from three aspects,

i.e., model settings, optimization model types, and solution methods.

Model settings Based on model settings, the mentioned 86 papers can be classified

into two groups, one with stochastic settings and the other with deterministic settings.

The key characteristic to distinguish studies with stochastic settings from those with

deterministic settings is how the spare parts demands are described. To be specific, if

a model assumes that spare part demand is stochastically distributed or follows certain

stochastic process, then we say that this model uses a stochastic model setting.

The numbers of studies using different model settings are illustrated in Table 2.11. It

is clear that the studies adopting stochastic settings dominate: 81 out of 86 papers use

stochastic settings in their optimization models while only 5 papers use deterministic

settings. From this results, we can see that stochastic settings are widely accepted in

this research field. This phenomena reveals that studies in this filed aim to manage spare

parts inventory under the uncertainties embedded in spare parts demands.

Stochastic setting Deterministic setting

81 5

Table 2.11: Number of studies with different model settings
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Optimization model types Based on the types of optimization models used, the

reviewed studies can be classified into the studies using stochastic models and the studies

using deterministic models. It should be highlighted that a model with stochastic setting

is not necessarily a stochastic optimization model. As mentioned in previous part, the

reviewed studies usually adopt stochastic model settings. However, the studied problems

can be modelled either as deterministic models or stochastic optimization models. In

this section, the classification focuses on optimization models types rather than model

settings. For example, Arts (2017) considers a repairable spare parts inventory problem

with a stochastic setting, i.e., the demand for each part is a Markov modulated Poisson

process. However, he formulates a non-linear non-convex integer programming. In this

case, we classify this paper as a study with a deterministic optimization model under a

stochastic setting.

Main types of stochastic optimization models include stochastic dynamic program-

ming (Markov decision process) models, stochastic programming models, and robust

optimization models. On the other hand, deterministic optimization models consist of

linear programming models, non-liner programming models, and mixed integer (linear

and nonlinear) programming models. Based on this classification scheme, the mentioned

studies are classified into these two streams as shown in Table 2.12. In the table, it is clear

that the studies using deterministic optimization models account for a majority. There

are 22 studies using stochastic optimization models for studying spare parts inventory

management problems. Among them, 19 studies use stochastic dynamic programming

models as modelling technique, 2 studies using stochastic programming models, and

1 study using robust optimization model. The diversity in modelling techniques can

facilitate the development of this research area and bring more new innovative topics.

Therefore, we call on more studies to propose various stochastic optimization models to

enrich this research area.
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Stochastic optimization model
Deterministic Optimization modelStochastic dynamic stochastic Robust

programming programming optimization

19 2 1 64

Table 2.12: Numbers of studies with different types of optimization models

Solution methods Faced up with different optimization problems with various de-

grees of complexity, the reviewed studies propose different methods solve the problems.

The reviewed studies are further divided based on four types of solution methods, i.e.,

exact methods, approximation methods, heuristic methods, and simulation methods.

The exact methods are able to find optimal solutions to optimization problems. An-

alytic methods and large scale optimization methods such as branch-and-bound, La-

grangian relaxation, Benders decomposition and so on are considered as exact methods

because these methods can theoretically find optimal or close-to-optimal solutions with

guaranteed upper and lower bounds. The approximation methods are adopted when

the performance measure in the studied problem is hard to be evaluated. This type of

solution methods is widely used to solve stochastic optimization models. The heuris-

tic methods are used when the problems are high in complexity. Heuristics usually are

simple and easy to be implemented but optimal solutions cannot be guaranteed. Simula-

tion methods are defined as using simulation experiments to find the best input variable

values among all possibilities without explicitly evaluating each possibility (Carson and

Maria, 1997). The simulation optimization methods indicate the impacts of changes in

the interested variables on system performance but its advantages diminish when a large

complex system is considered.

The reviewed studies adopting different solution methods are presented in Table 2.13.

It reveals that exact methods and heuristic methods are two most widely used methods

to obtain solutions in the reviewed literature. Note that more than one solution methods

are proposed in some studies. In this case, the studies with multiple solution methods
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are included in multiple categories.

Exact methods Approximation methods Heuristic methods Simulation methods

46 6 33 4

Table 2.13: Number of studies with different solution methods

2.3.2 Perspective of existing research topics

The state-of-the-art study topics in the reviewed literature are quite abundant because

spare parts inventory management process involves various cooperative business activ-

ities to handle a huge amount of spare parts among different participants in a supply

chain network. In this section, the reviewed studies are further classified based on four

research topics including spare parts inventory system, joint maintenance and inventory

optimization, supply chain network design or supply chain policy performance evalua-

tion, and spare parts classification and demand forecasting.

Spare parts inventory problem

The studies focusing on spare parts inventory problem seek to find optimal policies man-

aging inventories so that certain economic objectives are achieved while service perfor-

mance is guaranteed. This problem is important to solve because the policies governing

final product inventories are not applicable to manage spare parts inventories (Kennedy

et al., 2002). In addition, repairable spare parts inventory problem is more complex than

non-repairable spare parts inventory problem because repair operations and resources

have to be taken into consideration.

Joint maintenance and inventory optimization

Spare parts inventories are held for satisfying the demands which are generated by

the corrective and preventive maintenance. Due to the high interconnections between

maintenance and spare parts inventory management, the companies who are responsible

42



Ph.D. Dissertation Shuai Zhang McMaster - Management Science

for both operations should consider and optimize these two problems simultaneously

(Van Horenbeek et al., 2013). In the studies with this topic, efforts are made to inves-

tigate the performance of different combinations of inventory policies and maintenance

strategies. It is worth mentioning that there are several studies considering the service

contracts design for after-sales services provider (e.g., Mirzahosseinian et al. (2016); Mo

et al. (2016); Li et al. (2018); Zhao et al. (2019)). In this case, inventory and maintenance

decisions are made simultaneously to minimize contract cost.

Supply chain network design or supply chain policy performance evaluation

The studies relevant to network design or policy performance evaluation mainly intro-

duce new operations or technologies to manage spare parts inventory and evaluate the

resulting performance. There are several interesting topics such as reuse spare parts

supply chain design (Abdallah et al., 2012; Diabat et al., 2015), spare parts additive

manufacturing (Togwe et al., 2019; Zhao et al., 2019), repair shop design (Turan et al.,

2018), etc. These studies provide theoretical supports to implement new techniques and

operations in practice.

Spare parts classification and demand forecast

As mentioned previously, spare parts demand is hard to forecast because the demand

pattern is usually intermittent and lumpy. In addition, different types of spare parts may

possess different demand patterns. The purpose of classification and demand forecast

is to identify spare parts classes, which is used in forecasting spare parts demands, and

finally help deciding inventory policies.

In the reviewed literature, the studies considering spare parts classification or demand

forecast to improve spare parts inventory management are abundant. There are 10

papers focusing on developing various multiple-criteria classification schemes for spare

parts inventory control in different industries. It is noticeable that classification schemes
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help implement proper inventory policy to spare parts of different classes. For example,

Bacchetti et al. (2013) propose a hierarchical multiple-criteria classification method to

manage spare parts inventory of household appliances. Different forecasting methods

and inventory policies are used to manage 12 spare parts classes.

There are 18 papers on spare parts demand forecast and many methods includ-

ing Croston’s method, Syntetos–Boylan Approximation, Single Exponential Smoothing

(SES), and bootstrapping methods are proposed. To integrate spare parts demand

forecast and inventory management, forecast methods should be evaluated through in-

ventory management metrics instead of performance metrics which are directly related

to the forecasting results (e.g., mean squared error) (van Wingerden et al., 2014). For

instance, Zhu et al. (2017) use extreme value theory to forecast spare parts demand

and the method are evaluated by inventory performance. In addition, forecast methods

should be able to utilize more information from maintenance activities, which is highly

relevant to spare parts demand. Van der Auweraer and Boute (2019) combine the fail-

ure behaviour of parts and the maintenance plan of equipment to predict spare parts

demand.

Table 2.14 presents the numbers of studies with different topics. It can be concluded

that the mentioned four study topics cover a big portion of related literature. The two

most studied topics are “Joint maintenance and inventory optimization” and “Spare

parts inventory problem”, followed by “Net work design or policy performance evalua-

tion” and “Spare parts classification and demand forecast”. In addition, there are 11

papers cannot be categorized into the mentioned topics. Among them, 7 papers are

review papers and the rest papers focus several topics such as repair kit problem (Bij-

vank et al., 2010), product reliability design problem (Öner et al., 2010), costs/benefits

allocation among companies using cooperative pooling inventory (Karsten and Basten,

2014; Guajardo and Rönnqvist, 2015; Wang and Yue, 2015).

To further reveal the developing trend in study topics, a histogram in which the
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Spare parts Joint maintenance Network design or Spare parts Others
inventory and inventory policy performance classification and
problem optimization evaluation demand forecast

33 2 24 28 11

Table 2.14: The number of studies with different study topics

cumulative numbers of studies on each topic are presented in a chronological order as

shown in Figure 2.2. The figure clearly shows the studies on joint maintenance and

inventory optimization dominate at the beginning several years. Entering the year 2017,

joint maintenance and inventory optimization studies start to loss the dominating status

because the studies on other topics, especially studies on spare parts inventory problems

have been growing rapidly. This trend indicates that the studies on spare parts inventory

management start to grow as an independent research field apart from the equipment

maintenance field. More and more researchers begin to focus on this problem and bring

interesting viewpoints and studies to enrich this filed.
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Figure 2.2: Cumulative number of studies with different topics
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In this section, the reviewed studies are classified based on the perspectives of sup-

ply chain analytics techniques and research topics. The main results of this section

are summarized as follows. First, the reviewed studies are classified based on analytics

techniques. Afterwards, the topics discussed in the research field of spare parts inven-

tory management are identified. In the next section, research gaps and future research

directions are illustrated based on the classification analysis in this review.

2.4 Conclusions and Future Research

In this section, a general view of the developing trend in spare parts inventory man-

agement research is provided at first. The research gaps are then discussed based on

our observations and analysis in previous content, followed by suggested extensions on

current research topics to fill in the gaps. A concluding remark is presented at the end.

2.4.1 Developing trends

To clearly present the developing trend of spare parts inventory management research,

the reviewed studies are grouped according to the publication year. Afterwards, the

number of studies in each year are aggregated and chronically illustrated in Figure 2.3.

From Figure 2.3, we can see that studies on spare parts inventory management experience
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Figure 2.3: Cumulative number of studies in spare parts inventory management
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a steady growth in last decade. This trend indicates that there is an increasing interest

in spare parts inventory management and many questions are explored by researchers.

2.4.2 Research gaps and extensions

Based on the classifications made in previous sections, we identify the research gaps in

the following aspects, i.e., consumer durable goods, supply chain network structure and

policies, reverse logistics, spare parts demand pattern modelling, and big data analytics

implementation. In the rest of this section, these gaps are elaborated one by one in

detail. All the discussed research gaps are summarized in Table 2.15.

Research gaps Current studies Future studies

Spare parts
of consumer
durable goods

• Few studies on the spare parts of
durable consumer goods.
• Lack lifecycle planning perspective.
• Simple warranties are considered.
• Lack integration of product marketing
strategy and spare parts inventory man-
agement.

• Consider lifecycle planning perspective
• Consider advanced warranty types of
durable consumer goods.
• Integrate product marketing strategies
and spare parts inventory management.

Inventory net-
work structure
and policies

•Most of studies consider single-echelon
structure and lack of implementation of
transshipment strategies.

• Investigate and evaluate lateral or
emergency transshipments in the multi-
echelon inventory system.

Reverse logis-
tics

• Reverse logistics has a close relation-
ship with spare parts inventory manage-
ment but few studies considering it.
• Even though some studies incorporate
reverse logistics in their problems, the
considered reverse logistics has simple
settings while the one in practice has
more complicated settings.

• Combine various settings in structure
and more inventory strategies with re-
verse logistics relevant to spare parts in-
ventory management.
• Evaluate the performance of spare
parts reverse logistics through a prod-
uct lifecycle perspective.

Spare parts de-
mand pattern
modelling

• Stationary stochastic process is mainly
used to depict spare parts demand in the
reviewed studies.

• Non-stationary stochastic process or
general probability distribution should
be used.

Big data ana-
lytics

• Few reviewed studies implement big
data analytics (BA).

• Facilitating BA in demand forecasting,
inventory system design, and system op-
timization.

Table 2.15: Summary of research gaps
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Research gaps regarding consumer durable goods

The differences between consumer durable goods and capital goods are identified in

previous contents. Based on these differences, we identify the following research gaps in

managing spare parts of consumer durable goods and propose corresponding extensions.

Spare parts inventory problems of consumer durable goods As mentioned

in Section 2.2.1, most of current literature target on managing spare parts of capital

goods. The reason for this phenomena is two-fold. Firstly, the literature on spare

parts inventory management origin from and are highly impacted by the literature on

capital equipment maintenance scheduling. The capital equipment usually require high

availability level. Therefore, spare parts inventory management plays a critical role

in maintenance activities because sufficient spare parts inventory can effectively reduce

equipment downtime and improve equipment availability. Secondly, spare parts of capital

equipment usually are high value components with high specificity level. Therefore, the

inventory management on such spare parts is able to create significant performance

improvements in both economic and service perspectives.

However, there are very few studies focusing on the inventory problems of consumer

durable goods. Unlike capital goods, consumer durable goods usually have a shorter

lifecycle and a bigger consumer base. Inventory planning period of spare parts in con-

sumer durable goods is shorter and spare parts demand is more variant. The spare parts

inventory of consumer durable goods is normally held by an OEM or third-party service

provider to fulfill the warranty contracts of consumer goods whilst that of capital goods

is held to support maintenance services which are regulated by service contracts. War-

ranty contracts often do not have specific requirements on product performance while

service contracts do. In this sense, the spare parts inventory management of consumer

durable goods are more appropriate to be operated in a cost-minimizing manner. The
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mentioned differences indicate that the existing inventory policies for spare parts of cap-

ital goods are not likely to be optimal for that of consumer durable goods. Based on

these differences, two research gaps are identified as follows.

The first research gap is that the studies on managing spare parts inventory of con-

sumer durable goods lack the perspective of lifecycle planning. Only one study focus

on the lifetime spare parts procurement problem for consumer durable goods (Sahyouni

et al., 2010). Studies on consumer durable goods are more suitable to implement the

perspective of lifecycle planning than those on capital goods due to the following reasons.

First, the consumer durable goods normally have short lifecycles and the OEMs prefer

rapid product development. In some industries such as electronics and telecommuni-

cations, it is common for an OEM to finish the production processes even before the

products are available in retail outlets (Sahyouni et al., 2010). Consequently, the OEMs

almost cannot procure spare parts to support maintenance operations during product

warranty time after observing demand and subsequent return rates of defective prod-

ucts. Second, consumer durable goods usually have fast innovation clockspeed (Li et al.,

2018). The OEMs launch new products quickly to keep the competitive advantages of

their products, leading to multiple product generations are on market simultaneously.

When an OEM switches its production to a new generation or a new model, suppliers

incur high retooling costs to produce new parts. In this case, due to high setup cost,

they are not willing to produce the parts in old generations or models in another pro-

duction after the first production. Therefore, the spare parts of elder products may not

be available when the production of these products ceases. In this case, OEM needs to

develop a specific lifecycle spare parts managing plan for each product generation.

The second research gap is to manage spare parts inventory of consumer durable

goods under warranty contracts. There are several existing studies focusing on this topic

such as Pourakbar et al. (2012), Rezapour et al. (2016), Li et al. (2018), Frenk et al.

(2019b), and Frenk et al. (2019a). However, these studies have various settings, focusing
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on different phases in product lifecycle and considering different types of spare parts

(repairables or non-repairables), while only consider basic warranties. New studies on

exploring the spare part inventory control under advance warranty contracts are needed.

For example, extended warranties are provided by the OEMs for certain prices as value-

added services and they actually generate revenues to the OEMs. Therefore, how to

manage the spare parts inventory system to support such profit-generating contracts

is a critical problem to maximize the profits. In addition, for some consumer durable

goods, warranty periods usually are restricted in two-dimensions like the product age

and usage (Shafiee and Chukova, 2013). A good example of two-dimensional warranty

contracts is the automobile warranty. Studies intending to investigate how to manage

spare parts inventory to support maintenance activities under two-dimensional warranty

contracts will be more attractive.

Multiple substitutable products which share a common spare parts inven-

tory system Nowadays, the OEMs are incline to use product segmentation strategy

in which multiple substitutable models belonging to one product category are provided

to customers from different groups. In the following context, we will refer the product

category contains several models as product assortment. One real life example of prod-

uct assortment is that one automobile manufacture sells several car models at different

prices among various markets while these models may contain similar and different parts.

In this case, the sales quantity of each car model is highly governed by customer prefer-

ences over the car assortment, resulting different market shares captured by different car

models. For the spare parts which are used by different models, inventory management

issues are more complicated because demand patterns of these spare parts are hard to

model. The demands of these spare parts could be induced by car failures or accidents.

The car failures numbers are determined by two factors including the quantity of cars

on market and failure rate of each car model. First, the quantity of cars on market is

different across all car models in the assortment. Second, in general, different car models
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prohibit various failure rates because of the differences in car design, manufacturing, and

usage conditions. Consequently, the aggregated spare part demand should be estimated

based on the mentioned factors. The illustrated example is not limited to the automobile

industry and can be extended to other industries using product segmentation strategy.

Research gaps regarding inventory network structure and policies

Future studies could focus on the following aspects of inventory network structure and

polices: Multi-echelon inventory system and lateral and emergency transshipments.

Multi-echelon inventory system As discussed in the “Number of echelons” part of

Section 2.2.2, compared to the studies focusing on single-echelon inventory system, the

studies considering multi-echelon inventory system are limited in number: There are 31

papers adopting multi-echelon inventory setting while 91 papers adopting single-echelon

inventory system.

The multi-echelon inventory system for managing spare parts represents a more com-

mon scenario in practice, especially for the OEMs or third-party organizations who are

responsible for maintaining the products over different geographic districts. In addition,

other extensions regarding inventory policy are based on the multi-echelon structure.

For example, the inventory pooling strategy can be implemented when considering a

multi-echelon inventory system.

Lateral and emergency transshipment Lateral transshipment and emergency ship-

ments are inventory strategies contributing to performance improvement of inventory

system. Spare parts are held as inventory to support maintenance activities which are

governed by service contracts. These contracts usually have specific requirements on

the availability level of the maintained systems. Hence, lateral and emergency trans-

shipment can be used to support timely maintenance service so as to decrease product
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downtime. However, the discussions in the “Lateral transshipments and emergency ship-

ments” of Section 2.2.2 illustrate that only 24 of the reviewed studies consider lateral or

emergency transshipment. Therefore, more studies can incorporate lateral or emergency

transshipments into their inventory systems.

Research gaps regarding reverse logistics

As environmental concerns have been increasingly growing in recent years, the concept

of supply chain sustainability is widely advocated in the industry and academia. Re-

verse logistics (RL) is one of the most popular topics in the literature on supply chain

sustainability. RL involves operations related to the return of damaged, unsold, end-of-

life products along with handling, consolidation, remanufacturing and disposal (Diabat

et al., 2015). To be specific, RL is a process turning the inputs such as the used prod-

ucts, recycled materials, used parts to the outputs such as remanufactured products

and spare parts (Pokharel and Mutha, 2009). There are four key subprocesses of RL,

i.e., product acquisition, collection, inspection/sorting, and disposition (Agrawal et al.,

2015). Product acquisition is the first step in RL process, referring to the acquisition

of used products, components or materials from end users for further processing. After

acquisition, returned items are collected in three ways: the OEM collects directly from

the users, the OEM buys back the products collected from users by a retailer, and the

OEM collects products through third-party logistics (Kumar and Putnam, 2008). The

collected items are sent for inspection, sorting, and disposition. The inspection and sort-

ing process is necessary because the conditions of returned items have to be inspected

and evaluated and then they are sorted based on conditions. Afterwards, the disposition

decisions for further processing will be made. There are five common disposition alter-

natives including reuse, repair, remanufacturing, recycling, and disposal. For detailed

definitions of these disposition alternatives please refer to the literature review on RL

presented by Agrawal et al. (2015).
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Spare parts inventory management has a close relationship with RL because spare

parts are one of the wanted outcomes of the RL system (Pokharel and Mutha, 2009).

Based on their conditions, some of these spare parts are sent back to market as reused

ones after inspection, cleaning and minor maintenance; some are used for repairing faulty

products; some are sent to remanufacture new products; and some are recycled as raw

materials. From this perspective, it is promising to explore the integration of spare parts

inventory management and RL because how to manage the inventory of different spare

part types in RL process is quite attractive and challenging.

Among the reviewed studies, there are several studies considering the RL. Abdallah

et al. (2012) study an uncapacitated closed-loop location inventory model in which one

type of returned products is collected and salvaged into spare parts which can be reused.

Inderfurth and Kleber (2013) deal with a hybrid manufacturing/remanufacturing system

for providing spare parts to support the after-sales service to the products in the EOL

phase. Diabat et al. (2015) consider a single-echelon reverse supply chain where the

returned products are remanufactured as spare parts and then sent back to retailers.

In their problem, new items are produced either from manufacturing using externally

supplied materials or from remanufacturing using returned items. Ahiska et al. (2017)

propose heuristic inventory policies to control a manufacturing/remanufacturing system

with downward product substitution. In addition, a downward substitution strategy is

used, i.e., when a lower-value item stocks out, a higher-value item is substituted to meet

the demand to reduce the stock-out cost. Shi (2019) introduces a spare parts inventory

control problem for an OEM who remanufactures spare parts from returned products to

meet warranty demand under part obsolescence.

The mentioned existing studies on RL in spare parts inventory management often

have simple settings. More research on this topic can consider the extensions as follows.

First of all, the supply chain structure in the existing studies is quite simple: Only

Abdallah et al. (2012) consider a two-echelon inventory network while the rest studies
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consider single-echelon network. Second, all these studies only focus on one phase of

product lifecycle, i.e., the changes in installed base is not considered as one impacting

factor of returned products quantity. Third, various inventory strategies such as lateral

and emergency transshipments are not considered even though these strategies may im-

prove RL performance. For example, RL are common in the electronics supply chains

such as cell phone, personal computer, etc. In these supply chains, returned products

are disposed to remanufacture new products which can be either sold as new ones or

used as replacements for the returned products. Considering the worldwide retailing

network an OEM may possess, how to collect the returned products from the retailers

over different geographical regions, then dispose collected returns and use spare parts

or materials outcomes to remanufacture new products, and finally allocate the remanu-

factured products to those retailers is a relevant and challenging problem. In addition,

lateral and emergency transshipments can be used to move the remanufactured products

within the retailing network to decrease stock-out cases and customer waiting time. Last,

it is interesting to see how to allocate inventory of different spare parts which are used

in different disposition alternatives. For instance, as mentioned earlier, different spare

parts in RL process may have different disposition alternatives. The optimal inventory

policies need to be made for each type of spare parts so that corresponding costs are

lowered.

Research gaps regarding spare parts demand pattern modelling

From the perspective of modelling spare parts demand patterns, attentions should be

paid to implementation of non-stationary stochastic process and general probability dis-

tributions. As discussed in the “Predictive analytics” part of Section 2.3.1, most of the

studies model the demand pattern of spare parts as stationary stochastic processes such

as Poisson process by assuming that the demand pattern, as an random variable, follows

a exponential probability distribution which is not changing over planning periods. This
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assumption makes sense when the installed base of product is in a steady-state condi-

tion and the product reliability is relatively mature (Jin et al., 2017). In other words,

the stationary stochastic process assumption holds when the studied product is in the

mature phase of its lifecycle. modelling spare parts demand patterns as a stationary

stochastic processes can make the optimization model relatively simpler thus structural

results might be achieved. However, demand pattern cannot be modelled as a stationary

stochastic process when the planning horizon spans over several phases of the lifecyle or

over the entire lifecycle, because product installed base is changing in different phases.

Therefore, non-stationary stochastic processes or general probability distributions should

be used for modelling the demand patterns of spare parts.

As shown in Table 2.9 in Section 2.3.1, there are only 10 papers using non-stationary

stochastic process and 20 papers using general probability distribution to capture the

demand pattern respectively, compared to 74 papers using stationary stochastic process.

Hence, more papers are called on to extend current literature by using non-stationary

stochastic processes and general probability distributions to model spare part demand

patterns.

Research gaps regarding implementing

Big data analytics (BA) is the study of practices, technologies and skills to evaluate oper-

ations and strategies to obtain insights and offer guidance to the business planning of an

organization (Wang et al., 2016). Such evaluation is done toward product development,

strategic management, and customer services, and so on, by utilizing evidence-based

data, statistical and operations analysis, predictive modelling, forecasting, and opti-

mization techniques (Chen et al., 2012). There is a clear gap in the reviewed literature

that BA is barely used and this research area can be further enriched by implementing

BA in several interesting aspects such as demand forecasting, inventory system design,

and inventory system optimization.
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Typical literature in spare parts inventory management mainly focus on managing

at most hundred kinds of spare parts in inventory while it is common to see more

than thousands of spare parts are held in practice. There is only one paper proposing

a smart spare parts inventory management system in a semiconductor company for

obtaining more information which can be used in BA (Zheng and Wu, 2017). The

reason behind this phenomenon is that the computation capacity is limited when a

huge number of spare parts are considered in the demand forecasting or optimization

processes. Therefore, classic statistics or optimization methods are not applicable when

facing up with a large amount of spare parts inventory to manage. In this case, BA will

be useful when massive size of data are available. More research can be made toward to

how to build smart system adopting BA to manage spare parts inventory.

2.4.3 Conclusions

In this review, 142 papers on spare parts inventory management have been surveyed and

classified. Several research gaps have been identified for future research in this field. Our

review has the following distinct features. Firstly, it provides a quick guide to a variety of

classification schemes to the spare parts inventory management literature. Two different

typologies are used for the literature classification. One typology classifies the literature

based on systematic characteristics of spare parts inventory systems while the other

typology classifies the literature based on research methodologies and topics. Secondly,

this review presents a big picture on the spare parts supply chains to discuss the studies

on spare parts inventory management. This big picture links the important aspects

relevant to managing spare parts inventory system, such as product and spare part

types, after-sales services, maintenance operations, inventory management strategies and

policies, supply sources, demand patterns and so on. Thirdly, we classify the research

methodology of each studies from the perspective of supply chain analytics. From this

classification, current studies using descriptive, predictive and prescriptive analytics are
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identified. Finally, various research topics in the spare parts inventory management

literature are summarized and corresponding research gaps and extensions are discussed.

The studies in this research field has been experiencing steady growth in the last

decade. Researchers have put plenty of their interests on managing spare parts of cap-

ital goods, which are concerned with system availability of the capital goods. It is

expected to see more studies on managing spare parts of durable consumer goods, which

are faced up with different groups of consumers. In addition, diverse inventory policies

implemented in the inventory network with different structures need to be considered in

future research. New supply chain concepts such as reverse logistics can contribute to

this field but have to be tested and evaluated through more studies. The most promis-

ing area for future research could be the study which combines supply chain inventory

management problem with big data analytics. Big data analytics could contribute to

many aspects such as spare parts demand forecast, inventory system optimization, and

classification, when a large number of spare parts need to manage.
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Chapter 3

Spare parts inventory management for sub-

stitute consumer products: An adaptive

robust optimization approach

3.1 Introduction

Spare parts are stock items used in maintenance activities to keep equipment in operat-

ing conditions and extend their lifecycle (Kennedy et al., 2002). Spare parts inventory

management is becoming more critical as manufacturers intend to provide after-sales

services to customers as value-added services. Furthermore, spare parts also play an im-

portant role to the societies in the world when pursuing carbon neutral. In past decades,

manufacturers are more likely to advocate for a culture of planned obsolescence: To de-

sign their products to be short-lived and hard to repair, they can seize more revenues

because customers are forced to purchase more new products when their old ones are

not functioning properly. However, this culture contributes to wasting more natural

resources and energy, generating more greenhouse gases, and further escalating global

warming. For example, the carbon emissions of producing an iPhone 12 account for

nearly 80 percent of the total emissions during its lifecycle (Apple Inc., 2020). In the
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United States, a motion known as “right to repair" has been calling for legislation that

requires companies make their parts, tools, and information available to consumers and

repair shops (Rosa-Quino, 2020). The motivation of this motion is that the longer the

product lifecycle is, the fewer unnecessary product purchases are, and finally the lower

pollution will the production processes generate. For the original equipment manufactur-

ers (OEMs), they may suffer from the decreased sales of new products from this motion,

but they can obtain revenues by expanding their after-sales services. Moreover, advo-

cating sustainability practice can demonstrate manufacturers embrace corporate social

responsibility (CSR) to customers, contribute to a positive brand image, and reinforce

their corporate reputation (Ukko et al., 2019; López-Pérez et al., 2017; Aguilera-Caracuel

and Guerrero-Villegas, 2018). In this context, to reach the balance between sustainabil-

ity and profitability, the OEMs need more spare parts for repairing the faulty products

and an efficient spare parts inventory management system is also necessary.

In this chapter, we focus on managing the spare parts inventory of a product assort-

ment which includes several substitute products over multiple time periods. Product

assortment refers to the variety of products and services that a company offers to the

consumers and is an important marketing strategy advocated by practitioners and re-

searchers (Simonson, 1999). In the assortment, products are alternatives to each other

but have differentiation. In other words, these products have similar basic functions but

different product characteristics such as price, quality, colour, and so on, to provide more

choices to consumers with different preferences. Although the substitute products in the

assortment are competing with each other, the availability of more products can lead to

a higher customer utility. To accommodate the product assortments, the manufacturers

may consider different strategies in their production process. For example, they may use

part standardization strategy such that some parts are commonly used in the products

to achieve the same basic product function, while some parts are uniquely used in certain

products to achieve the differentiation.
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Such product assortments with substitute products are quite common in the con-

sumer durable goods market such as personal computer and automobile industries. For

example, it is not rare that one model of an automobile make contain several different

types. All types have same engines and transmission systems but different interior dec-

orations, electronics, etc. In the literature of marketing and revenue management, the

customer choices over the substitutes in an assortment are widely modelled through the

multinomial logit (MNL) model and its variants (Gallego and Wang, 2014; Du et al.,

2016). In this chapter, we develop a multi-stage adaptive robust optimization model

in which the demand is determined by the MNL model of consumer choice over the

substitutes in an assortment. Specifically, the market share of each product is estimated

by the MNL model and then is multiplied by the market size to calculate the market

sales in each planing period. Afterwards, the total on-market quantity of each product is

calculated by aggregating the product sales over all periods. Finally, the product failure

quantity is estimated based on the on-market quantity and failure rate. It should be

noted that we assume the manufacturer does not know the probability distribution of

the part failure rate but knows the rate falls into a certain range. In other words, the

part failure quantity of each product in each period also falls in a range determined by

the estimated product failure quantity and the range the part failure rate may fall in.

The main contributions of this study are multi-fold. Firstly, our proposed model

considers managing the spare parts inventory of multiple substitute consumer products

in an assortment. The spare parts demand induced by the users of these products is

estimated based on the MNL model. Our purpose is to jointly manage the spare parts

for these products. To our best knowledge, there is no study on this problem so far.

This problem is complicated because some spare parts may be commonly used by several

products in the assortment while some may be uniquely used by one product. Secondly,

we manage the uncertainty inherent in this problem by an adaptive robust optimization

model (ARO) with integer variables. In the literature, spare parts inventory management
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is normally studied by the stochastic inventory control (SIC) models (Zipkin, 2000;

Axsäter, 2015). However, when the information on spare parts demand is imperfect, e.g.,

the probability distribution of demand is unknown, the SIC models cannot be used. In

addition, the proposed problem is a complex problem with multiple spare parts managed

over multiple periods, so that the SIC models may face computational challenges even

the demand information is perfect. Therefore, an adaptive robust optimization approach

is proposed in this chapter to deal with these challenges. Thirdly, we investigate the

solution methodology for this ARO model. Our method is developed from the partition-

and-bound method raised by Bertsimas and Dunning (2016). This method suffers from

the “curse of dimension" when solving the large size problems. We improve this method

through eliminating the redundant constraints in the model so that the model size is

significantly decreased. Through extensive numerical analysis, our improved method is

demonstrated to be able to solve the medium and large problem instances. Therefore,

our study adds value to the literature on the multi-stage ARO problems because the

application of the partition-and-bound method to solve the multi-stage ARO problems

is scarce in the literature. The proposed method enriches current studies and may

provoke more studies on this problem. Finally, we provide some managerial insights

from conducting a sensitivity analysis to explore the impacts of spare parts purchase

cost, product popularity, and product backorder cost on the inventory policy and total

cost.

In the following, we first review the literature on spare parts inventory management

and ARO problems respectively in Section 3.2. The model description is presented in

Section 3.3. We present the improved partition-and-bound method to solve the proposed

problem in Section 3.4. Then comprehensive numerical experiments are presented in

Section 3.5. Finally, we conclude this chapter and discuss future research directions in

Section 3.6. For the ease of reading, we will use “spare part/s” uniformly instead of

“part/s” in the rest of this chapter.
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3.2 Literature Review

In this section, the literature reviews on spare parts inventory management and multi-

stage robust optimization are presented respectively.

3.2.1 Spare parts inventory management

In recent decades, spare parts inventory management has received increasing attentions

from the researchers in operations research and management science. Studies on this

topic stem from and are highly impacted by the literature on capital equipment main-

tenance scheduling because spare parts inventory management plays a critical role in

maintenance activities: Sufficient spare parts inventory can effectively reduce equip-

ment downtime and improve equipment availability. In addition, spare parts of capital

equipment usually are high value components with high specificity level. Therefore, the

inventory management on such spare parts is able to create significant performance im-

provements in both economic and service perspectives. In the literature of this field, there

are abundant studies on managing spare parts inventory used for supporting preventive

and corrective maintenance of capital equipment such as aircraft (Mirzahosseinian and

Piplani, 2011; van Jaarsveld et al., 2015), technical systems (Öner et al., 2013; van Wijk

et al., 2019), etc. Among these studies, multiple characteristics of spare parts inven-

tory system are considered. Tiacci and Saetta (2011) examine the effectiveness of two

lateral shipments approaches in reducing the mean supply delay of a non-repairable

item in the capital equipment through the simulation model. Li and Ryan (2011) in-

corporate real-time condition monitoring information on spare parts into the proposed

spare part inventory model for supporting the maintenance of capital machines. Mirza-

hosseinian and Piplani (2011) model a closed-loop spare parts inventory system under

the performance-based contract for the Unmanned Aerial Vehicle (UAV). van Jaarsveld
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et al. (2015) study an multiple spare parts inventory control problem for an aircraft com-

ponent repair shop where spare parts demand arrives as a stationary Poisson process

and formulate an integer programming optimization problem. van Wijk et al. (2019)

incorporate lateral transshipments with spare parts inventory system by proposing a

periodic–review spare parts inventory model in which lateral transshipments are allowed

between the stockpoints when the advanced technical systems break down. These men-

tioned studies clearly show that this research field is well developed.

However, as the marketing strategies adopted by manufacturers evolve rapidly, more

focus is placed on providing after-sales services to enhance customer satisfactions and

generate more profits. In this context, spare parts management is not only considered

by the manufacturers of capital equipment but also those of consumer durable goods.

However, in the literature, the studies on spare parts inventory management of consumer

durable goods are scarce. Pourakbar et al. (2012) consider a spare parts inventory control

problem for consumer electronics manufacturers in the final phase of the service life cycle

when the spare parts production is terminated. The manufacturers have to decide the

spare parts inventory level for supporting the repair operation until the service contract

or warranty period expires. Inderfurth and Kleber (2013) work on a spare parts inventory

system for the consumer durable products entering the end-of-production phase of their

life cycle under after-sales contract. The inventory decisions they consider include spare

parts final order quantity, remanufacturing quantity, and extra production quantity.

To solve the proposed stochastic dynamic programming model, they develop a heuristic

which can be applied to the problem with practical sizes. Frenk et al. (2019a) work on the

spare parts end-of-life inventory problem that happens after the spare parts production of

consumer electronics stops. The novelty of this study is that they consider two different

options for repairing faulty products, one is repairing and the other is swapping the

faulty product with a new one. They found that the second option is favourable when

the older generation products depreciate and the new generation products dominate the
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market.

Another observation is that most studies on spare parts inventory management as-

sume the spare parts demand follows certain probability distributions which are known

to manufacturers. This assumption may be invalid in practical operations. For example,

when planning for spare parts inventory, manufacturers may not possess enough infor-

mation on the corresponding demands and they are more likely to estimate the spare

parts demands based on the historical data. However, when news product are launching,

they may not be able to rely on the historical data because these data is not available.

Consequently, the best they can do is to forecast the range of the demand. In this

context, how to develop an inventory plan under the demand uncertainty is quite impor-

tant to the manufacturers but not well studied in the literature. Our research intends

to fill these gaps in the studies on the spare parts inventory management of substitute

consumer goods.

3.2.2 Adjustable robust optimization

Robust optimization (RO) is a method to solve problems with uncertain parameters

residing in a user-specified set, i.e., the uncertainty set. The basic idea of the RO

approach is to find an optimal solution which is feasible to all the possible data changes

in the uncertainty set. In the literature, the RO models can be classified into two

types, one is static robust optimization and the other is ARO. In the static robust

optimization approach, all decisions have to be made before the uncertain parameters

are realized. However, such a paradigm normally yields overly conservative solutions

especially when the problem is multi-period and periodical decisions are taken after

uncertainty parameters are realized period by period (Yanıkoğlu et al., 2019). To be

specific, the real-life problem is more likely in a dynamic context and involves not only

here-and-now but also wait-and-see decisions. The decision makers determine the values

of here-and-now decisions before the realizations of uncertainty parameters while the
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values of wait-and-see decisions are determined after the realization of those parameters.

The concept of ARO is firstly introduced by Ben-Tal et al. (2004). They extend the

robust optimization methodology to ARO by introducing the adjustable robust counter-

part (ARC). Although the ARC is significantly less conservative than the usual robust

counterpart, it is computationally intractable, i.e., NP-hard. To deal with this issue,

they propose an approximation of the ARC by restricting the adjustable variables to be

affine functions of data. The proposed problem is the so called affinely adjustable robust

counterpart (AARC) and the relationship between variables and data is referred to as

affine decision rules (ADRs). In general, the ADRs yield an upper bound to the ARC

(when it is a minimization problem) because it may be suboptimal or even infeasible for

some problems. But for some specific problems, the ADRs are optimal. Bertsimas et al.

(2010) prove that for the ARO problems which have convex objective functions with re-

spect to adjustable variables and uncertain parameters, the ADRs are optimal. Besides

the ADRs, there are several other forms of decision rules regulating the relationship

between adjustable variables and uncertainty parameters. Bertsimas and Goyal (2012)

show that the ADRs are optimal for a linear ARO problem with a simplex uncertainty

set and only right-hand side uncertainty. Ben-Tal et al. (2020) indicate there exist op-

timal piece-wise linear decision rules for the linear ARO problems with only right-hand

side uncertainty. Ben-Tal and Den Hertog (2014) and Ben-Tal et al. (2015) develop

the separable quadratic decision rules for the ARO problems with quadratic objective

functions and nonlinear uncertain inequality respectively.

Although the continuous decision rules can be used to solve some linear ARO prob-

lems optimally, it generally cannot be applied to the ARO problems with integer ad-

justable variable or the multi-stage adaptive mixed-integer optimization (AMIO) prob-

lems. In the literature, two efforts are made by researchers to solve the AMIO problems.

One is to find the special structure of integer problems which can be solved by ap-

plying certain decision rules. Bertsimas and Georghiou (2015) derive the piece-wise
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linear decision rules as optimal decision rules for the AMIO problems involving con-

tinuous and binary variables. They present a method to construct such decision rules

to solve the multi-stage problems robustly using mixed-integer optimization. Bertsimas

and Georghiou (2018) apply the binary decision rules to solve the class of multi-stage

adaptive mixed-integer optimization problems. Since the resulting optimization problem

grows exponentially in the size of problem data, they develop a systematic methodol-

ogy to conservatively approximate the associated decision rules so as to balance the

optimality and scalability.

The other effort is to design partition-and-bound methods to solve the AMIO prob-

lems. Among these methods, the uncertainty set is divided into partition the uncertainty

set into subsets with different decisions, such as the studies by Postek and Hertog (2016)

and Bertsimas and Dunning (2016). Both studies propose their own partition-and bound

method to solve the AMIO problems, but the main difference is the way to obtain the

optimal solutions in different partitions. The first is trying to directly optimize the de-

cisions in various partitions while the second is approximating the optimal piece-wise

affine policy. They both apply their own methods to solve the same instances of capital

budgeting problems and multi-stage lot sizing problems with one product for numeri-

cal experiments. The experiments results show that the later one is more efficient and

able to obtain better solutions when solving the same problem instances (Bertsimas and

Dunning, 2016).

In Bertsimas and Dunning (2016), although the proposed method is able to solve

small instances in a reasonable time, it is only efficient in the first few iterations. The

reason is the scenario tree will explode as the algorithm iteration number increases. In

the scenario tree, each scenario node represents a subset of the uncertainty set and, in

that subset, a series of corresponding decisions subjecting to corresponding constraints

will be made. In each iteration, each of current subset will be further partitioned into

more subsets in the next iteration. Consequently, more and more decision variables and
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constraints will be added to the model after each iteration, creating more difficulties in

solving it. Therefore, the proposed partition-and-bound method will not be efficient in

solving the large size problems or even the small size problems with multiple inventory

items, because as the iterations increases, the price of improving the solution quality is

quite high in terms of computation time. In this chapter, multiple spare parts inventories

are considered so that the method in Bertsimas and Dunning (2016) cannot solve this

problem efficiently. We will illustrate this point in the first part of numerical experiments

in Section 3.5. To apply the partition-and-bound method for solving our problem, we

improve it by decreasing the scales of optimization models constructed in each iteration

so that they can be solved in a reasonable time even the iteration number is large. In

addition, it should be highlighted that the literature on extending and developing this

method to solve the AMIO problems is scarce. Our study is trying to fill this gap in the

literature.

3.3 Model Description

We focus on managing the spare parts inventory of a product assortment which includes

several types of products over multiple time periods. These products are produced by an

OEM who is responsible for providing after-sales services which could be either preventive

or corrective maintenance. In addition, the products have significant similarities and

can substitute each other, but they are differentiated in some characteristics to cater

the customers’ preferences. Some spare parts are commonly used in these products in

the assortment while some others are uniquely used in certain products. Such substitute

products are common in durable consumer goods industries such as personal computer

and automobile industries. For example, it is not rare to see that one automobile make

may contain several different models which have the same engine and transmission system

but have different interior decorations and electronics systems.
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In our study, each product is assumed to be assembled from several different types of

spare parts, and if one type is included, at most one unit will be used. In each period,

once a product fails, it is sent to the OEM for repairing within a promised delivery due

date. After being inspected, the faulty spare parts will be identified and removed through

complete or partial disassembly. Note that, it is possible that several spare parts failures

can be caused simultaneously in one product failure. In addition, the failures between

different spare parts are assumed to be independent. New spare parts are supplied from

the on-site inventory in the first place. To replenish the inventory, orders are placed to

external suppliers at the beginning of each period. After a certain period of time, i.e.,

the lead time, the placed orders will be received. Finally, the defective spare parts are

replaced by the new ones and all spare parts are re-assembled into the repaired product.

This is the end of the repair process. If the failed products are not repaired within the

promised due date, a penalty cost will be incurred.

The inventory decision faced by the OEM is to determine the order cycle and order

quantity for each type of spare parts so that the total inventory cost related to the

after-sales services of product assortment will be minimized. Such cost includes spare

parts procurement cost, inventory holding cost, and delivery delay penalty. Spare parts

demand is estimated based on the on-market quantity of each product and the failure

rate of each spare part used. For the uncertainty embedded in the spare parts demand,

the OEM is assumed to know only the range into which the demand will fall, i.e., the

demand uncertainty set, but not the exact probability distributions the demand will

follow.

The proposed model for managing spare parts inventory has two parts. The first

part of the proposed model is to utilize the MNL model to reflect customer preferences

over the products in an assortment so that the sales quantity of each product can be

determined in each period. Such sales quantity will be used to project the on-market

quantity at first and to estimate the number of product failures in each period finally.
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The second part of the model is to decide order quantity for each spare parts and products

backorder quantities at each period so that the total cost is minimized. The notation is

listed in Table 3.1.

Table 3.1: Notation

Parameters

t Planning period t ∈ T = {1, . . . , T}
c Spare part c ∈ C = {1, . . . , C}
n Product n ∈ N = {1, . . . , N}
Dnt Demand for repairing failed product n in period t
dt

c Demand of spare part c in period t
dt

cn Demand of spare part c used in product n in period t
Lc Procurement lead time for spare part c
Hc Unit inventory holding cost for spare part c
SSc Safety stock level for spare part c
Bn Unit penalty cost for the late repair of each unit of product
Pc Price of spare part c

Decision variables

qp
ct The order quantity of spare part c in period t

lct The inventory level of spare part c at the beginning of period t
bct The shortage amount of spare part c in period t
θnt The delayed amount of repaired product n in period t

3.3.1 Estimate the on-market quantity of each product

The product assortment contains multiple substitute products, offering more options

to customers for catering their various preferences over the product family so that the

OEM can capture more market share. In the literature, the MNL model is one of the

most widely used model to represent customers’ decision process of selecting a product

from an assortment. In the proposed model, the MNL model is adopted to predict the

on-market quantity of each product in the assortment over the planning horizon.

In the MNL model, a representative customer is faced with a product assortment

which contains N products (N ≥ 2). The customer obtains utility Unt if he or she

purchases product n ∈ N = {1, ..., N} during period t and this utility is determined by
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Unt = αnt +ϵnt, where αnt represents a measure of attractiveness of product n to the cus-

tomers and ϵnt is a random term which represents the unobserved utility. If the random

term ϵnt is assumed to be independent and identically distributed (i.i.d.) with Gum-

bel distribution and each customer only purchases one product, then the MNL model

gives the choice probability (Train, 2009) that the customer selects product n during

period t with probability pnt = eαnt∑N

i=1 eαit
. If we aggregate the customer preferences, the

probability denotes product n’s proportion of the total demand in a given period t. In

other words, it represents each product’s expected share of total sales quantity of the

assortment. This proportion is widely referred to as the market share of product n in

the relevant studies (Li and Huh, 2011). We will follow this convention in the rest of this

chapter. The market share pnt will be used to predict the sales quantity, Qnt, of product

n during period t, by multiplying pnt with Qt which is the estimated sales quantity of

all products in the assortment during period t. Such sales quantity of all products at

each period can be predicted by utilizing historical data of similar product assortments.

Afterwards, the sales quantity of each product in the assortment will be used to track the

total on-market quantity of each products in the assortment from the beginning period

to period t, which is denoted as Mnt. To be specific, the total on-market quantity of

product n can be updated by adding new sales quantity of each product in a forthcoming

period, i.e., Mnt = Mn,t−1 + Qnt. Next, the total on-market quantity of each product is

used to determine the product failure quantity. The uncertainty set of demand for each

spare part type is estimated based on the failure quantity of the products using it.

3.3.2 Inventory system model

In this subsection, a deterministic inventory model is introduced first and a multi-stage

ARO model is then provided to deal with the uncertainties embedded in spare parts

demand.
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Estimating spare parts demand

To model the spare parts inventory system, we need to consider spare parts demand,

inventory policy, spare parts procurement plan, and repair decisions for the failed prod-

ucts simultaneously. Identifying the spare parts demand is a challenging task due to

the following reasons. First of all, different types of products usually have different

failure probabilities. Second, the number of faulty spare parts to be replaced is highly

unpredictable.

To estimate the demand for repairing failed products and the demand for different

spare parts in our proposed model, we use the following procedure. In the first step,

we calculate the expected failure quantity of product n in a planning period t, Dnt, as

Dnt = Mnt × ρnt, where Mnt represents the estimated on-market quantity of product n

and ρnt denotes the failure probability of that product in period t. The estimated on-

market quantity Mnt is obtained as mentioned in Section 3.3.1 and the failure rate ρnt

can be estimated from historical data. In the second step, the demand quantity for each

spare part will be determined. Such quantity is affected by the failure numbers of all

products using this spare part during period t, i.e., the total demand of the spare part c

is equal to the total quantity of failed products whose failures are induced by the failure

of spare part c. In our model, it is assumed that each product in the assortment has a

distinct configuration of spare parts. In addition, some spare parts could be commonly

used in several products. To be specific, let Nc represent the product set which contains

all products using spare part c and dt
cn denote the demand for repairing faulty spare

part c in product n during period t, respectively. Therefore, the demand for spare part

c, dt
c is computed as dt

c =
∑

n∈Nc
dt

cn.

Deterministic inventory management model

As mentioned earlier, our model focuses on assisting the OEM managing the spare parts

inventory of a product assortment to provide after-sales services. We adopt a periodic
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review inventory policy with safety stock which indicates the inventory of spare part c is

replenished at the beginning of each planning period and the inventory level never drops

below the base stock level Sc. The OEM seeks to decide the number of spare parts,

qp
ct , purchased at a unit price Pc from external suppliers at the beginning of period t.

The order lead time is denoted as Lc. During a certain period, the inventory and new

delivered spare parts will be used to meet the spare parts demand for repairing faulty

products. However, when there is insufficient inventory, it will lead to unfixed products.

The delayed repairs of product n will incur a penalty Bn for each time unit. At the

end of each period, when the demand of spare parts c is realized, unused spare parts

will be held as inventory at a unit cost of Hc. When the uncertainty embedded in the

spare parts demand in not considered, i.e., the demand of each spare part is known, the

problem can be formulated as a deterministic mixed integer programming model:

min
∑

t∈T \{T −Lc+1,··· ,T }

∑
c∈C

Pc qp
ct +

∑
t∈T

∑
c∈C

Hc lct +
∑
t∈T

∑
n∈N

Bnθnt (3.1)

s.t. qp
c,t−Lc

+ lc,t =
∑

n∈N
dt

cn + bc,t−1 − bct + lc,t+1, ∀ t ∈ T \ {1, · · · , Lc}, c ∈ C,

(3.2)∑
n∈Nc

θnt ≥ bct, ∀c ∈ C, t ∈ T , (3.3)

lct ≥ SSc, ∀c ∈ C, t ∈ T , (3.4)

qp
ct, lct, bct, θnt ∈ Z+, ∀c ∈ C, t ∈ T , n ∈ N . (3.5)

In this model, the objective (3.1) is to minimize the total cost which includes the

procurement and inventory costs of spare parts and penalty costs incurred by the delayed

product repairs. Constraints (3.2) represent the inventory balance equation for all spare

parts. They indicate that during a certain period the amount of spare parts used for

repairing should be equal to the inventory level at the beginning of that period plus the

amount of received spare parts ordered Lc periods ahead. Constraints (3.3) indicate the
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amount of delayed product repairs is determined by the maximum shortage of all spare

parts used in that product in a certain period. Constrains (3.4) require the inventory

level of each spare part not fall below the safety stock level.

Uncertainty in spare parts inventory management

However, the spare parts demand is uncertain and the realized demand may not be

exactly the same as what is estimated. In other words, the number of parts that need to

be replaced in the products is random, making the spare parts inventory planning more

challenging. As mentioned previously, the demand for a spare part is the aggregation of

all product failures incurred by the failure of that spare part. Unfortunately, it is hard to

estimate the demand in practice, especially when the probability distribution is unknown.

Therefore, in our model, the failure quantity of each spare part (spare parts demand) is

assumed to be a random variable and the OEM only knows the uncertainty set where it

resides based on the estimated product failure quantity, i.e., the spare parts demands fall

in an uncertainty set, d ∈ Ξ, where d = (d1, . . . , dc, . . . , dC)⊺ ( dc = (d1
c , . . . , dt

c, . . . , dT
c ))

and Ξ denotes the uncertainty set. To be specific, given the estimated failure number

of each product, we assume that the realized spare parts demand takes value from a

rectangular uncertainty set [dt
c, d̄t

c], where dt
c and d̄t

c are the lower and upper bounds

of the set. The lower and upper bounds can be calculated as dt
c = σt

c ·
∑

n∈Nc
dt

cn and

d̄t
c = σ̄t

c ·
∑

n∈N dt
cn, respectively, where σt

c and σ̄t
c represents the minimum and maximum

possible portion of products failures caused by spare part c.

In this case, the order quantity at the start of the first period, qp
c1, is a non-adaptive

here-and-now decision which needs to made before the demand is observed, i.e., it is inde-

pendent on d. The adjustable variables in each period depend on realization of demand

in previous periods. To be specific, the adjustable decision variables at period t include

the order quantities qp
ct(d1

c , . . . , dt−1
c ) (for t > 1), the inventory levels lct(d1

c , , . . . , dt−1
c ),
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the shortage amounts of each spare part bct(d1
c . . . , dt

c), and the product backorder quan-

tity θnt(d1
c . . . , dt

c), because these decisions in a period t are made based on the de-

mand realizations preceding time t. For the ease of notation, we will use qp
ct(dc), lct(dc),

bct(dc), and θnt(d) to denote qp
ct(d1

c , . . . , dt−1
c )(for t > 1), lct(d1

c , , . . . , dt−1
c ), bct(d1

c . . . , dt
c),

and θnt(d1
c . . . , dt

c) respectively. Based on the deterministic model, we can obtain the

multi-stage adaptive robust mixed integer optimization model (AMIO) as

min
qp

ct(dc),lct(dc),qd
ct(dc),bct(dc),θnt(d)

max
d∈Ξ

z =
∑

t∈T \{T −Lc+1,··· ,T }

∑
c∈C

Pc qp
ct(dc) (3.6)

+
∑
t∈T

∑
c∈C

Hc lct(dc) +
∑
t∈T

∑
n∈N

Bnθnt(d)

s.t. qp
c,t−Lc

(dc) + lct(dc) = dt
c + bc,t−1(dc)− bct(dc) + lc,t+1(dc),

∀ t ∈ T \ {1, · · · , Lc}, c ∈ C, (3.7)∑
n∈Nc

θnt(d) ≥ bct(dc), ∀c ∈ C, t ∈ T , (3.8)

lct(dc) ≥ SSc, ∀c ∈ C, t ∈ T , (3.9)

qp
ct(dc), lct(dc), bct(dc), θnt(d) ∈ Z+, ∀c ∈ C, t ∈ T . (3.10)

Note that constraints (3.7) can be used to replace lct(dc) in the objective 3.6 and con-

straints (3.9) as shown in Section A1 of Appendix A. In the following contents, we will

use qp
ct, lct, bct, and θnt to replace qp

ct(dc), lct(dc), bct(dc), and θnt(d) respectively. Finally,

the AMIO problem can be reformulated as

min z (3.11)

s.t.
∑
c∈C

[ T −Lc∑
t=1

(
Pc + (T − t)Hc

)
qp

ct + Hc

T∑
t=1

bct + THclc0

−Hc

T∑
t=1

(T − t + 1)dt
c

]
+

N∑
n=1

Bn

T∑
t=1

θnt ≤ z, (3.12)

lct ≥ SSc, ∀c ∈ C, t ∈ T , (3.13)
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∑
n∈Nc

θnt ≥ bct, ∀c ∈ C, t ∈ T , (3.14)

qp
ct, bct, θnt ∈ Z+, ∀c ∈ C, ∀n ∈ N , t ∈ T . (3.15)

where

lc,t+1 =


lc1 −

∑t
k=1 dk

c + bct, ∀ t ∈ {1, · · · , Lc}

lc1 +
∑t−Lc

k=1 qp
ck −

∑t
k=1 dk

c + bct, ∀ t ∈ T \ {1, · · · , Lc}

The model above is a mixed integer linear programming model and the decision variables

include non-adaptive decision variable qp
c1 and the adaptive integer decision variables

include qp
ct (for t > 1), bct, and θnt.

3.4 The Improved Partition-and-bound Method

In the literature, multi-stage AMIO problems can be solved by the partition-and-bound

method in Bertsimas and Dunning (2016). Unfortunately, their partition-and-bound

method can only deal with small scale problems. The reasons are discussed in Section

3.4.1. To solve larger problems, we need to customize this method and the corresponding

procedures are illustrated in Section 3.4.2.

3.4.1 Partition-and-bound method

The partition-and-bound method is proposed by Bertsimas and Dunning (2016) to solve

the multi-stage AMIO problem. In this section, we first give a brief introduction to this

method and then will discuss its advantages and disadvantages. The readers can refer

to Bertsimas and Dunning (2016) for the detailed description of this method.

The partition-and-bound method begins with solving a static policy version of the

AMIO problem to get a set of active uncertain parameters. For each constraint i,

the active uncertain parameters are defined as the uncertain parameters (i.e., spare

parts demand) that make the constraints have zero slack or the lowest slack (note that
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sometimes the lowest slack is not zero). After the static policy is solved, we use these

active uncertain parameters to create a new finitely adaptive version of the studied

problem. Solving this new version, in turn, generates a new set of active uncertain

parameters which can be used to partition further, improving on the previous solution at

each iteration and providing an upper bound. Meanwhile, at the end of each iteration, a

“scenario-based" bound is applied to construct a lower bound: The set of active uncertain

parameters available at the end of each iteration are used to build a deterministic problem

which provides a lower bound.

The general idea of the partition-and-bound method has been described above. Next,

we will discuss how to track those parameters across iterations and how the partitions

are constructed. For the ease of illustration, a tree T of uncertain parameters is used to

describe the partition construction scheme. For the tree T , we define the following sets.

The set of leaves of the tree T is denoted as Leaves(T ). The set of the parent node of

d̂ in the tree T is denoted as Parent(d̂). The set of children nodes of d̂ is represented

as Children(d̂). Finally, the set of children nodes who have the same parent node of d̂

is denoted as Siblings(d̂). In the algorithm, each iteration corresponds to each layer of

the tree T , and the partition related to the leaf d̂i is constructed as an intersection of

partitions as

Ξ(d̂i) ={d | ∥ d̂i − d ∥2≤∥ d̂j − d ∥2 ∀d̂j ∈ Siblings(d̂i)}

∩ {d | ∥ Parent(d̂i)− d ∥2≤∥ d̂j − d ∥2 ∀d̂j ∈ Siblings(Parent(d̂))}
...

∪Ξ, (3.16)

which terminates when the root node is the parent, because it has no siblings. In each

iteration, we create subpartitions of Ξ(d̂i) for the next iteration by simply adding the

active uncertain parameters for partition Ξ(d̂i) in the current iteration as the children
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of d̂i in the tree T . Through making decisions in different partitions, the method can

reduce the overconservativeness embedded in the static robust optimization methods.

Based on the machinery stated above, the steps of the partition-and-bound method for

solving the multi-stage AMIO problems are shown in Appendix A2.

As shown in Appendix A2, the partition-and-bound method generates the partitions

of uncertainty set based on the active uncertain parameters in the first two constraints

which contain uncertain demand. Overall, considering there are C spare part types

managed in T periods, we can find that there are (1 + 2CT ) types of constraints which

will be used for partitioning at each node in each iteration, and for each constraint

type, the constraints quantity will be equal to the possible scenarios embedded in the

corresponding partition. For example, if the demand for spare part c in a partition

has four possible realizations over the planning horizon, then there will be 4 constraints

for the first constraint type of this spare part c, and finally lead to 4 C of first type

constraints in total created by this partition. Meanwhile, in each iteration, each node

will generate 1 + 2T number of children nodes. In this case, the total nodes in the tree

is calculated by
∑I

i=0(1+2T )i = ((1+2T )I −1)/(2T ) (where I is the maximum number

of algorithm iterations set by the user).

For the purpose of illustration, we present a small three-stage problem example with

two products which commonly use two spare parts in Appendix C. In this example, the

lead time is one time period. There are three rounds of demand (one round in each stage)

for repairing the faulty products and the uncertainty sets for each spare part demand

are
(
(3, 6), (7, 10), (13, 16)

)
and

(
(4, 7), (6, 9), (12, 15)

)
respectively.

From this example, we can see that for large scale problem, where the uncertainty

set is big, the partition model in Step 2 of the method can be hard to solve due to large

quantity of constraints. These constraints are induced by the large quantity of possible

scenarios for the uncertainty parameters. From this perspective, this method may not

work well for the large scale problems. In Section 3.5, this point will be illustrated
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through a series of numerical analysis.

3.4.2 Reduce the quantity of constraints in the partition-and-bound

method

From discussion in last subsection, we can conclude that the partition-and-bound method

is highly impacted by the size of uncertainty set. If the uncertain set is big, even the

small size problems will be hard to solve. In the next, we will discuss a way to decrease

the problem size through diminishing the constraints quantity so that the algorithm can

solve the large scale problem.

The key of the partition-and-bound method is to find the active uncertain parameters,

i.e., the demand realizations in the constraints having the lowest slack, and then partition

the uncertainty set based on them. If we can find the active uncertain parameters

without solving the problem and decrease the constraints quantity by eliminating the

ones without the active uncertain parameters, the partition-and-bound method will still

be efficient. Now we consider a general form of multi-stage AMIO problem with adaptive

partitions. Assume the T dimensional uncertain parameters are represented as ξ, and

decision variables vectors are denoted as xt
j . For the objective, the parameters of decision

variables and uncertain parameters are respectively denoted as c
(1)t
i and c

(1)t
i . For each

constraint set i, the constant parameters, the parameters of decision variables, and the

uncertain parameters are denoted as bi(ξ), a
(1)t
i , and a

(2)t
i individually. In each iteration

k of the method, the problems solved for each Leaves(T k) with corresponding partitions

Ξ(ξ̂j) are as follows.

zalg(T k) = min
x∈Z,z

z

s.t.
T∑

t=1
c(1)t(ξ) · xt

j −
T∑

t=1
c(2)t · ξt ≤ z, ∀ ξ ∈ Ξ(ξ̂j), ∀ ξ̂j ∈ Leaves(T k), (3.17)

T∑
t=1

a
(1)t
i (ξ) · xt

j −
T∑

t=1
a

(2)t
i · ξt ≥ bi(ξ),
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∀ ξ ∈ Ξ(ξ̂j), ∀ ξ̂j ∈ Leaves(T k), ∀i ∈ {1, . . . , m}, (3.18)

xt
i = xt

j , ∀ ξ̂i, ξ̂j ∈ Leaves(T k), ∀ t : Ξ(ξ̂i)t−1 ∩Ξ(ξ̂j)t−1 ̸= ∅, (3.19)

where parameter vectors c(2)t and a
(2)t
i only have non-negative elements. We have the

following results.

Theorem 3.1. Given an optimal solution x∗
j and z∗

alg(T k), for constraints (3.17), the

active uncertain parameters are always in the constraints with minimum sum-product of

coefficients c(2)t and corresponding realized spare parts demands ξ̂
t

j
∈ Ξ(ξ̂j):

T∑
t=1

c(1)t(ξ) · x∗t
j −

T∑
t=1

c(2)t · ξ̂t

j
≤ z∗

alg(T k), ∀ ξ̂j ∈ Leaves. (3.20)

For constraints (3.18), the active uncertain parameters are always in the constraints

with maximum sum-product of coefficients ā
(2)t
i and corresponding realized spare parts

demands ¯̂
ξt

j ∈ Ξ(ξ̂j):

T∑
t=1

a
(1)t
i (ξ) · x∗t

j −
T∑

t=1
ā

(2)t
i · ¯̂ξt

j ≥ bi(ξ), ∀ ξ̂j ∈ Leaves(T k), (3.21)

Proof. See Appendix A4.

Remark 3.1. Theorem 3.1 shows a way to identify the constraints with active uncer-

tain parameters: we only need to find the constraints with minimum sum-product of

coefficients c(2)t and corresponding realized spare parts demands ξ̂
t

j
∈ Ξ(ξ̂j). For some

problems having uncertainty set with special structure, these active uncertain parameters

are easy to find.

Corollary 3.1. When the coefficients of realized spare parts demands in (3.20) and

(3.21) are all ones and the uncertainty set is a T -dimensional box:

Ξ(ξj) = Ξ(ξ1
j )×Ξ(ξ2

j )× · · · ×Ξ(ξT
j ),
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where

Ξ(ξt
j) = [ξ̂t

j,min, ξ̂j,max], t = 1, 2, · · · , T,

with ξ̂t
j,min < ξ̂j,max, the active uncertain parameters for (3.20) are (ξ̂1

j,min, ξ̂2
j,min, · · · , ξ̂T

j,min)

and for (3.21) are (ξ̂1
j,max, ξ̂2

j,max, · · · , ξ̂T
j,max).

Corollary 3.1 gives us an easy way to decrease the size of the studied problem: We

only need to consider the constraints with active uncertain parameters. Fortunately, the

studied problem in this chapter satisfy the conditions of Corollary 1.

Corollary 3.2. If we apply the results of Corollary 3.1 to our problem (3.11)-(3.15),

the final model we are dealing with is

min z (3.22)

s.t.
∑
c∈C

[ T −Lc∑
t=1

(
Pc + (T − t)Hc

)
qp

ct + Hc

T∑
t=1

bct + THclc0 −Hc

T∑
t=1

(T − t + 1)dt
c

]

+
N∑

n=1
Bn

T∑
t=1

θnt ≤ z, dt
c = d̂t

c (3.23)

lct ≥ SSc, dt
c =

¯̂
dt

c, ∀c ∈ C, t ∈ T , (3.24)∑
n∈Nc

θnt ≥ bct, ∀c ∈ C, t ∈ T , (3.25)

qp
ct, bct, θt ∈ Z+, ∀c ∈ C, t ∈ T . (3.26)

where

lc,t+1 =


lc1 −

∑t
k=1 dk

c + bct, ∀ t ∈ {1, · · · , Lc}

lc1 +
∑t−Lc

k=1 qp
ck −

∑t
k=1 dk

c + bct, ∀ t ∈ T \ {1, · · · , Lc}.

and d̂t
c and ¯̂

dt
c denote the lower bound and upper bound of the demand realization for

each spare part respectively.

From Corollary 3.2, it is clear that all the possible realizations of spare parts demand

in constraints (3.12) and (3.13) are replaced by some given realizations as constraints
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(3.23) and (3.24) respectively. But one question is if this is valuable, i.e., if the model size

will be decreased significantly? We have the following results on how many constraints

are kept in our problem after applying Corollary 3.1.

Corollary 3.3. Let | d̂t
c |= ( ¯̂

dt
c − d̂t

c + 1), i.e., | d̂t
c | represents the number of possible

realizations of spare part c’s demand during period t. If we apply the results of Corollary

3.1, for constraints (3.12) in the AMIO model, the constraint quantity will be reduced

from (ΠC
c=1ΠT

t−1 | d̂t
c |) to 1 in constraints (3.23). Similarly, for constraints (3.13), the

constraint quantity will be reduced from (
∑C

c=1
∑T

t=1 Πt
k=1 | d̂t

c |) to (C×T ) in constraints

(3.24).

Proof. See Appendix A5.

We will further illustrate this result with the example discussed in Appendix A3

as shown in Appendix A6. From the discussion, we demonstrate Corollary 3.2 can

significantly decrease the constraints quantity in the studied multistage AMIO model.

3.5 Numerical Experiments

In this section, the numerical experiments of applying the improved partition-and-bound

method to the spare parts inventory management problem instances are presented. In

the experiments, we randomly generate the instances of the multi-stage AMIO problem

to compare the performance of the classical partition-and-bound method proposed by

Bertsimas and Dunning (2016) and the improved one proposed in this chapter. These

instances have different combinations of product types (N) and spare parts types (C),

and the same number of planning periods (T ). The parameters in the instances are

randomly chosen using the uniform distribution as follows: Market sizes taken by all

the products in the assortment are chosen from Mt ∈ [40, 100] units for all t = 1, . . . , T ,

respectively. The failure rates of all products in each period are elements of ρnt ∈ [2, 10]

percents for all n = 1, . . . , N , and t = 1, . . . , T . The minimum portion σct and maximum
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possible portion σ̄ct of the products failures caused by spare part c are respectively picked

from σct ∈ [60, 80] and σ̄ct ∈ [90, 110] percents of the estimated product failure quantity

for all c = 1, . . . , C, and t = 1, . . . , T . The unit prices of spare parts ordered from supplier

take values from Pc ∈ [5, 10] dollars and the order lead time is Lc = 1 for all c = 1, . . . , C

. The holding costs of spare parts are elements of Hc ∈ [1, 2] for all c = 1, . . . , C and the

backorder costs of products are chosen from Bn ∈ [15, 20] dollars for all n = 1, . . . , N .

The base stock levels of all spare parts are randomly chosen from SSc ∈ [1, 2] units and

the initial inventory level is 8 units for all c = 1, . . . , C. We also assure that the initial

inventory level is a given value which is greater than the maximum possible demand

realization for each part. The number of planning periods for each instance is set as

T = 3. All the numerical experiments are coded in C++ and carried out through the

IBM ILOG CPLEX 20.1 optimization package on a PC with an Intel Core i7-10750H

2.60 GHz CPU with 16 GB RAM.

In the first subsection, the advantages brought by the improved method will be il-

lustrated. We solve the small problem instances by the classical partition-and-bound

method and the improved one respectively. The complexity of the optimization model

and solution time is compared. Afterwards, the large instances are solved by the im-

proved method in this chapter to explore managerial insights on managing the spare

parts inventory of the products from an assortment.

3.5.1 Small problem instances

We first illustrate the advantages brought by the improved partition-and-bound method

compared to the classical one, i.e., the method in Bertsimas and Dunning (2016). As

shown in Tables 3.2 , there are 9 random generated instances, each with different pairs

of products type number (N = 3, 4, 5) and spare parts type number (C = 3, 4, 5).

Both methods are evaluated from the perspectives of the variable and constraint quan-

tities in the partition model (A.10) and computation time. Only the results in the first
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three iterations of the classical and improved methods are listed respectively because

both methods terminate within three iterations when the instances are solvable. In

the columns of “(Var., Cons.)” and “Time", the corresponding results of the improved

method are listed in the first place, followed by those of the classical one. For example,

in column 3 and row 2, “(25, 19)/(25, 1.62 × 106)" indicates there are 25 variables and

19 constraints in the model of the improved method, while 25 variables and 1.62 × 106

constraints in that of the classical one at the first iteration. In the column 4 and row 4,

“0/16.70" shows the first iteration of our improved method takes less than 0.01 seconds

(we use 0 to denote any value less than 0.01), while that of the classical one takes 16.70

seconds. In addition, we use “−" as placeholder in the results if the instances cannot be

solved.

Table 3.2: Numerical results of small instances

Ins. (N, C)
Iteration 1 Iteration 2 Iteration 3

(Var., Cons.) Time (s) (Var., Cons.) Time (s) (Var., Cons.) Time (s)

1 (3, 3) (25, 19)/(25, 1.62× 106) 0/16.70 (97, 103)/(97, 611887) 0.38/4.80 (385, 769)/(385, 97912) 0.17/0.97
2 (3, 4) (30, 25)/(−,−) 0/− (117, 136)/(−,−) 0/− (465, 1016)/(−,−) 0/−
3 (3, 5) (35, 31)/(−,−) 0.03/− (137, 169)/(−,−) 0/− (545, 1216)/(−,−) 0.05/−
4 (4, 3) (28, 19)/(28, 413613) 0/4.90 (109, 103)/(109, 172063) 0.31/1.81 (433, 744)/(433, 29724) 0.17/0.55
5 (4, 4) (33, 25)/(−,−) 0/− (129, 136)/(−,−) 0/− (513, 1025)/(−,−) 0.17/−
6 (4, 5) (38, 31)/(−,−) 0/− (149, 169)/(−,−) 0.03/− (593, 1276)/(−,−) 0.28/−
7 (5, 3) (31, 19)/(−,−) 0/− (121, 103)/(−,−) 0.16/− (481, 766)/(−,−) 0.14/−
8 (5, 4) (36, 25)/(−,−) 0.02/− (141, 136)/(−,−) 0.97/− (561, 1036)/(−,−) 0.08/−
9 (5, 5) (41, 31)/(−,−) 0.02/− (161, 169)/(−,−) 0/− (641, 1271)/(−,−) 0.03/−

From Table 3.2, we can see the improved method dominates the classical one over

all tested instances. For Instances 1 and 4, both methods can solve them and find the

optimal solutions, but the solution time of the improved one is much less because the

quantity of constraints in the partition model is much smaller. The reduced scale of

the partition model in the improved method not only leads to the increased solution

efficiency, but also makes some unsolvable instances to the classical one solvable. Except

for Instances 1 and 4, the classical method cannot solve the rest instances due to the

large scale of partition model. On the contrary, the improved method is able to solve all

the instances in reasonable time and find optimal solutions in three iterations.
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3.5.2 Medium and large problem instances

To further test the performance of the improved partition-and-bound method, we im-

plement it to solve some medium and large problem instances. In total, we evaluated 16

problem instances which include four instance subsets. Each subset has different number

of product types for N ∈ {5, 10, 15, 20} but the instances within the same subset have

same number of products types. However, the instances in the same subset have various

types of spare parts , i.e., there are four instances in each subset and the number of

spare parts types in each instance are chosen from C ∈ {5, 10, 15, 20}. The improved

method stops when one of the following two termination conditions is met: The algo-

rithm iteration number reaches its limits, which is 10; or the percentage gap between

the upper bound and lower bound reaches the predetermined value, which is 1%. The

corresponding results are illustrated in Table 3.3 and the bound gap of each instance in

each iteration of the method is plotted in Figure 3.1.

Table 3.3: Results of the improved partition-and-bound method on the medium and large
instances

Set Ins. N C UB LB Gap (%) Time (s) Iterations

1 1 5 5 574 572 0.350 6.749 3
2 5 10 608 608 0.000 138.119 4
3 5 15 622 622 0.000 240.475 4
4 5 20 960 960 0.000 5862.420 5

2 5 10 5 716 710 0.845 2.603 3
6 10 10 805 805 0.000 202.937 4
7 10 15 1158 1151 0.608 2831.840 5
8 10 20 1203 1203 0.000 2726.050 5

3 9 15 5 1290 1282 0.624 63.603 4
10 15 10 1396 1394 0.143 120.806 4
11 15 15 1568 1568 0.000 3465.600 5
12 15 20 1710 1705 0.293 61255.400 6

4 13 20 5 1614 1609 0.311 62.944 4
14 20 10 1637 1631 0.368 115.825 4
15 20 15 1773 1772 0.056 2658.300 5
16 20 20 1806 1792 0.781 3042.110 5

As shown in Table 3.3, all 16 instances are solved by the improved method in reason-

able time. Even for the most time consuming instance, i.e., Instance 12 with N = 15 and
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C = 20, the computation time is within one day. It is observed that as the size of the

problem instance increases, the number of iterations needed to obtain optimal solutions

also increases, as well as the computation time. The reason is quite straightforward:

The large size problem usually means the corresponding uncertainty set is big, hence

more partitions are needed to divide the uncertainty set.
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Figure 3.1: Improvements and bound gaps for 16 instances in four subsets with instance
sizes N ∈ {5, 10, 15, 20}
†The four instances in the same subset are in the same colour. They have different types of spare parts
C ∈ {5, 10, 15, 20} and corresponding results are represented by the lines with different shapes in the same
color from bottom to top respectively.

From Figure 3.1, we can see the convergence trend of the bound gap in each tested

instance. The improvement is significant in each iteration and the bound gap decreases

sharply especially in the first three or four iterations, based on the size of the problem

under study. However, the improvement on the solutions is at the expense of computation

time. The computation time explosively grows as the iteration number increases. For

example, to solve Instance 11 with (N = 15, C = 15) in Subset 3, the improved method

terminates at the fifth iteration and takes 3465.600 seconds. However, when the number
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of spare parts types increased to C = 20 in Instance 12 of the same subset, it terminates

at the fifth iteration and solution time raises sharply to 61255.400 seconds. Therefore,

in real-life applications, managers have to make a trade-off between solution quality and

computation time.

3.5.3 Exploring the factors affecting spare parts inventory manage-

ment decisions

In this subsection, we will explore the managerial insights on managing the spare parts

inventory for a product assortment. In general, there are several factors affecting the

spare parts inventory management decisions such as the demand volume, price, backorder

cost, etc.

First of all, as mentioned earlier in Section 3.3.2, the sales quantity of each product

in the assortment is determined by the attractiveness to customers, i.e., the more at-

tractive the product is, the higher sales quantity will be. The sales quantity affects the

spare parts demand in the planning period thus impacting the corresponding inventory

replenishment decisions. Note that some common spare parts are simultaneously used

by several products in the assortment while some dedicated spare parts are only used by

a particular product. Hence, one question is that is there a clear difference in the order

quantity between the common spare parts and the dedicated ones of the popular and

unpopular products? Secondly, the replenishment decisions of spare parts inventory are

also impacted by their prices, inventory and holding costs, and the repair backorder costs

of products using them. The repair backorder costs affecting these decisions are not the

direct costs incurred by spare parts, but the indirect backorder costs of the products

using them. Importantly, in this reassembly repair system, a failed product will not be

repaired until all spare parts are available. In other words, if the inventory of a spare

part is not ready, then all product repairs using it may under the risk of repair delays

with penalty. In this case, another question is if there is any difference in order quantity

86



Ph.D. Dissertation Shuai Zhang McMaster - Management Science

among the spare parts having different prices and used by the products with different

backorder costs?

To address these questions, two tests are conducted. In the first one, we compare the

inventory decisions for four types of spare parts in an assortment with three products.

These products have various sales quantities: A most popular one (product A), a medium

popular one (product B), and a less popular one (product C). Among the four types of

spare parts, spare part 1 is a common one used by all products, and the other three

are dedicated ones used by each of the three products individually, i.e., spare part 2 is

used by product A only, spare part 3 by product B only, and spare part 4 by product C

only. To control the impacts of other factors on inventory decisions, spare parts prices,

holding costs, and other parameters are set as the same across all spare parts. The

products backorder costs are also the same for all products. In the results, the spare parts

inventory and product backorder decisions are different for each partition set because

decisions are made upon observing different demand realizations in different partitions.

Therefore, we take the average value of the same decisions in different partitions and then

round the average value to the nearest integer. The corresponding results are illustrated

in Table 3.4.

Table 3.4: Inventory decisions for managing inventory of four spare parts in three products
with different on-market quantities

qp
ct t = 1 t = 2

1 29 41
2 9 18
3 7 15
4 1 7

θnt t = 1 t = 2 t = 3

A 22 < 1 < 1
B 0 < 1 < 1
C 0 < 1 < 1

From Table 3.4, there are two order decisions made for each spare part type in three

periods. The common spare part 1 is ordered more than the dedicated spare parts 2, 3,

and 4 on average. This observation indicates the common spare parts will be ordered

more than the dedicated ones because the quantity of products using the former is

higher. In addition, among the dedicated spare parts, the order quantity of spare part
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2 is the highest, followed by those of spare parts 3 and 4 respectively. This result shows

the popularity of products affects the order quantities of spare parts used in them. As

for the product backorder quantity, one interesting observation is that, even though all

products have the same backorder cost, product A is the only backordered product at

the first period due to the insufficient spare parts inventory. This phenomenon may be

explained by the following two points. Firstly, the on-market quantity of product A

is the highest so the demands for spare parts used in it is not sufficiently covered by

the initial inventories in the first period, but this is not the case for products B and C.

Secondly, the failures of products B and C caused by the failed common spare part 1

are more likely to be repaired by utilizing the spare part 1 disassembled from the failed

product A’s with the dedicated spare part 2 failed only, especially when product A is the

most popular product which has large on-market quantity. Note that our formulation

(constraints (3.25)) allows using a good commonly used spare part in one product to

replace a faulty one in another product. Therefore, when the failure quantity is relatively

large, product A may have many failures incurred only by the faulty dedicated spare

part 2’s and these failed products have other spare parts in good condition. After the

disassembly, these good spare part 2’s can be used to fix other products so that the total

backorder quantity will be reduced.

In the second test, we carry out a sensitivity analysis to examine the impacts brought

by the prices of spare parts and backorder costs of products on the total costs. We still

consider the same instance discussed in the last test. But we will change one parameter

of one particular product at one time while fixing other parameters and record the

corresponding total inventory costs. The results are summarized as two line charts as

shown in Figure 3.2.

In the left line chart of Figure 2, the horizontal axis represents the change of backorder

cost of a certain product; the vertical axis represents the total cost, i.e., the optimal

objective value. It shows the product backorder cost substantially impacts the total cost.
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Figure 3.2: Effects of product backorder cost and spare part price on the total cost

The most popular product, product A, has more impacts on total cost than the other

two less popular products. In addition, the impacts on total cost are more significant

when decreasing the backorder costs of all three products, compared with the increasing

corresponding costs. This can be explained by the cost savings through backlogging

the repairs of the products with lowered backorder cost as many as possible. However,

when raising the backorder cost of the most popular product, the corresponding impacts

on total costs are trivial. This is can be explained as follows. When the backorder

cost of the popular product is rising, the products with unchanged backorder costs will

be backlogged at first so that the total cost will not be raised up. This indicates the

demands for the spare parts used by the popular products will be satisfied at the first

place. However, the on-hand inventory of dedicated and common spare part for the

popular product A may not be sufficient though the common parts disassembled from

the other two products are utilized. Therefore, the high demand for repairing the faulty

popular products will not be fully met by the on-hand spare parts inventory. As a result,

backlogging some demands for repairing the faulty product A is unavoidable. On the

other hand, we observe that this phenomenon does not exist when lifting the backorder

cost of the other two less popular products. This is because the high failure quantity of
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the most popular product can contribute some disassembled common spare parts in good

condition or simply because the on-hand dedicated spare parts inventory is sufficient. In

other words, the unbroken common spare parts in the popular products waiting to be

repaired play a role of inventory buffer for replacing those faulty common spare parts

in other products. In this case, when the inventory of the dedicated spare parts used in

less popular products is sufficient, most of the faulty products with high backorder cost

caused by the broken common spare parts can be fixed, leading to the unchanged total

cost. A managerial insight from this observation is the managers should be devising the

after-sales policies for both popular and less popular products specifically to achieve cost

minimization.

As shown in right line chart of Figure 3.2, the total cost is also affected by the prices

of both dedicated and common spare parts. The price of dedicated spare parts is less

important, because they have less effect on the total cost than common spare part 1. To

be specific, spare part 1 is the most used one among all spare parts because it is used by

all on-market products. Therefore, lowering the price of spare part 1 can significantly

decrease the purchasing cost of spare parts and finally lead to the reduced total cost.

Among the dedicated spare parts, the impacts on total cost brought by different prices

are also affected by the product popularity. The price of spare part 2, which is used

only in the most popular product, is more important than those of spare parts 3 and

4 which are used in the less popular products. This observation indicates that the

managers should give decreasing the purchasing prices of both the common spare parts

and the dedicated spare parts used in the popular products the highest priority during

the procurement negotiations. This conclusion is intuitive qualitatively, but our method

can provide managers the quantitative order quantities when the prices of spare parts

are changing.
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3.6 Conclusions and Future Research Directions

In this chapter, we consider a multi-period spare parts inventory system providing spare

parts for several products in an assortment. The OEM follows a repair-replacement

policy to fulfill the aftersales services. To handle the uncertainty embedded in the

spare parts demand, we formulate a multi-stage adaptive mixed-integer optimization

model by assuming the probability distributions of product failures are unknown and

the objective is to minimize the total inventory costs including spare parts purchase cost,

holding and product backorder cost by determining proper inventory policy. We improve

the partition-and-bound method to solve the proposed model and conduct extensive

numerical experiments to validate its performance. It is found that the improved method

can solve small instances in a fairly short time and dominates the classical one in the

medium and large instances. Through sensitivity analysis, we explore the impacts of

spare parts purchase cost, product popularity, and product backorder cost on inventory

policy and total cost, and provide some managerial insights regarding how to adjust the

order quantities for both the dedicated and common spare parts used in the popular and

unpopular products and how to adjust the order quantities of those spare parts when

the backorder costs of products using them are changing.

There are several directions for future research. Firstly, in this chapter, we assume

that the probability distribution is unknown. This assumption can be changed when

the OEM has more historical data of products on market. We could use stochastic pro-

gramming (SP) or distributionally robust optimization (DRO) when more information

is available. Secondly, we call for more studies on improving the partition-and-bound

method to solve the AMIO. The proposed method in this chapter did improve the clas-

sical method significantly because the impact brought by the “curse of dimension” is

reduced through refining the constraints in the model. However, it is clear that the
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computation time of each iteration still increase sharply when the iteration number in-

creases. Thirdly, we note that there are very few studies focusing on the spare parts

inventory management on the consumer goods, even though many activities are making

this topic more important than before, such as the “right to repair” motion mentioned

at the beginning of this chapter. In addition, the repair and remanufacturing operations

have already been emphasized by many manufacturers such as Apple, Hyundai, and

Microsoft to fulfill their promises to supply chain sustainability (Hanley et al., 2020).

Since spare parts inventory management plays an important role in those operations, we

call on more researchers to dive into this topic.
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Chapter 4

Dynamic assortment planning with un-

certainty in customer preferences

4.1 Introduction

In the multi-period selling season, an original equipment manufacturer (OEM) is faced

with assortment planning decisions at each period. The customer customer preferences

are changing over the season, indicating the dynamic market nature under a multi-period

context. Note that the customer preferences of product variants are affected by many

factors varying during different periods in the selling seasons, such as seasonality (Caro

et al., 2014), promotion activities (Liao et al., 2009), technology changes in products

(Tripsas, 2008), new products launching (Li and Calantone, 1998), customer reviews

in the online platform (Lim and Lee, 2015), etc. In this case, revising the assortment

offered to market at each period based on the estimated customer preferences is beneficial

because it can bring more economic benefits to the retailers (Kök et al., 2015). However,

it relies on accurate predictions on customer preference trend (Jiang et al., 2019). This is

especially suitable to the OEMs who produce and sell product assortments through online

retailing platforms. In contrast to brick-and-mortar stores, online retailers have access to

tremendous amount of customers’ browsing and purchasing data, thus facilitating them
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to take advantage of data to estimate customer preferences at each period of the selling

season. Therefore, online retailers are more capable and likely to periodically revise

the assortment to catering the customer preferences in each periods so as to increase

their revenue. Such assortment revision can be easily exercised by the online platforms

through selecting a product’s “in-stock” or “out-of-stock” status information displayed

to customers in each period.

In this chapter, we consider an OEM who produces a dynamic assortment of prod-

ucts and sells them through online platform over a selling season with multiple periods.

Prior to the selling season, the OEM determines a product line which includes a set of

substitute products to release to the market, subject to a cardinality constraint. During

each period of the selling season, the OEM picks product variants from the product line

to form the assortment that it carries by, based on the estimated preference of customers

in each period, and then produces the variants in a build-to-order or assemble-to-order

system to fulfill the orders placed by customers. The choice process of customers is mod-

elled through the multinomial logit (MNL) framework and the customers can be offered

with dynamic assortments at different periods. In each period, besides the assortment

planning decisions, the OEM also decides the quantity of components purchased from

suppliers for fulfilling the customers’ demand on the offered assortment and repairing

the failed products sold in previous periods under warranty contract to maximize the

expected revenue. This problem is faced by many manufactures who produce and sell

product assortment through online platforms. At the product design phase before the

selling season, rather than all the product variants, they have to select a limited number

of variants from all potential substitute variants as a product line to produce in the

selling season. This is usually due to limited production capacity or budget. In addi-

tion, from the marketing perspective, a significant amount of literature points out that

too many product variants in an assortment may lead to negative consequences such as

information overload, increased cognitive effort, choice uncertainty, choice difficulty, and
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hence choice avoidance (Sethuraman et al., 2022). Therefore, the manufacturer should

limit the product line size offered to the market. In the proposed model, we will limit

the size of product line through a cardinality constraint.

In addition to the product line and assortment planning decisions, we also intend

to explore the role of component commonality on the aforementioned decisions in a

multi-period context. Based on the orders placed to the product variants in the spe-

cific assortment offered at each period, the OEM fulfills the placed orders through an

assemble-to-order or build-to-order system. In this system, the OEM decides the stock-

ing decisions for the components used in production at each period. Each product variant

is produced based on a bill of materials (BOM) that dictates the components used in

its fabrication. Among the components, there are dedicated ones which are product-

specific, and common ones which are used to a subset (or all) of the product variants.

For example, a motherboard is common to a product line of personal computers (PCs),

a CPU is common to a subset of the PCs, and different touch screens are specific to

different PC variants respectively. It is assumed that the OEM holds zero or very lit-

tle inventory of components on the manufacturing site but orders the components from

the suppliers when the orders of customers are received and productions begin, and the

final production/assembly time is negligible. The reasons for this assumption is that

nowadays the OEMs with strong bargaining power are more like to adopt the strategy

of vendor managed inventory (VMI) under a lean management philosophy so that they

hold very little temporary inventory of components on site for manufacturing. More-

over, the period length in this problem is quite long such that it is not reasonable from

economic perspective to hold components inventory over the periods rather than order

them directly from the suppliers in each period. Finally, in the studied problem the

OEM also has to order more components in each period to repair the returned faulty

products under warranty sold in previous periods.

A good example is Dell’s production of PCs and retailing through their own online
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platform. One PC model has abundant specifications, i.e., different combinations of

CPU, GPU, memories, drives, screen, keyboard, etc., but not all combinations are avail-

able to customers when the new model is released. In addition, at different periods, the

available specifications are further reduced. For example, you probably can only find

fewer amounts of specifications during a promotion period than a regular period, or after

the launch of a new generation of product line than before.To produce the ordered PCs,

Dell implements an assemble-to-order system. It also requires suppliers to maintain the

ownership of components inventory until they are pulled into the assembly line (Dedrick

and Kraemer, 2002).

Even though the OEM with online retailing channel can take advantage of collected

data to estimate customer preferences, such estimation is usually coupled with inherent

uncertainty of the parameters and/or data. To address such inherent uncertainty, we

will formulate the studied problem as a multi-stage stochastic programming model.

The contribution of this study is two-fold. First of all, to our best knowledge, this

multi-period dynamic assortment planning problem with a blended setup of uncertain

customer preferences and component stocking was unexplored in the literature. This

problem models the situation faced by many OEMs who produce and sell product as-

sortments through the online platforms and are able to utilize the historical data to

estimate the customer preferences over the selling season. Secondly, a branch-and-price

(B&P) algorithm is designed to solve the proposed multi-stage programming model.

Through extensive numerical experiments, the complexity of this problem is illustrated

and the performance of the proposed algorithm is validated. The advantage of dynamic

assortment planning, i.e., dynamically changing the assortment at different periods based

on the estimated customer preferences, is also highlighted in the numerical experiments.

The rest of this chapter is organized as follows. In Section 4.2, a brief literature

review is presented. In Section 4.3, a deterministic model is formulated for this problem

at first, followed by an extension to a multi-stage stochastic programming model when
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uncertainty in customer preferences is considered. To solve the multi-stage stochastic

programming model, a B&P algorithm is proposed in Section 4.4. Section 4.5 presents

two sets of numerical experiments. In the first set, the value brought by the dynamic

assortment decisions is explored against the static assortment decisions. In addition, we

examine the influences of parameters, and product and component structures. In the

second set of numerical experiments, the performances of both the B&P algorithm and

the CPLEX solver are compared. Finally, we conclude the chapter and discuss future

research directions in Section 4.6.

4.2 Literature Review

The study in this chapter is closely related to three streams of literature. The first one is

the retail assortment planning literature in which the studies focusing on the assortment

planning decisions under static customer preferences with no forecasting uncertainty. A

detailed literature review is provided by Kök et al. (2015). Ryzin and Mahajan (1999)

study an assortment planning problem for the products in the same category by inte-

grating the newsboy model as inventory model with the MNL model as customer choice

model. They show that the optimal assortment policy is to include a certain number of

most popular products in the assortment. Mahajan and Van Ryzin (2001) consider dy-

namic consumer substitution in the assortment planning problem and develop a stochas-

tic gradient algorithm for solving the problem. Talluri and Van Ryzin (2004) find that

the revenue ordered assortment is optimal when customer choice is modelled through

an MNL model and customer preferences are deterministic and known. Cachon et al.

(2005) develop a stylized model for the assortment planning process incorporated with

consumer search cost and find that it may be optimal to include an unprofitable product

in the assortment when considering consumer search. Honhon et al. (2010) introduce a

locational choice model as consumer choice model to a single-period assortment plan-

ning problem and consider the stockout-based substitution. They design a dynamic
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programming algorithm to determine the optimal assortment decisions and inventory

levels. Wang (2012a) studies the joint pricing and assortment optimization under the

MNL model with cardinality constraints. All the aforementioned literature consider the

single-period assortment planning problem with deterministic customer preferences.

The second stream of literature is the dynamic assortment planning problem. The

dynamic nature of this problem exists in two dimensions: One is the arriving customers

in a single period are heterogeneous, i.e., there are multiple possible realizations (or

so-called segments) of customer preferences , and the other is customer preferences are

changing over a selling season with multiple periods, resulting in two sub-streams of

research. In the first sub-stream, the customer preferences are not deterministic and

the goal is to find the optimal assortment that maximizes the expected revenue from

customer visits. Rusmevichientong et al. (2014) study a single-period assortment plan-

ning problem under the MNL model with random customer preferences and identify

two special cases in which the revenue-ordered assortment is optimal under uncertain

customer preferences. Méndez-Díaz et al. (2014) propose a branch-and-cut algorithm for

the single-period problem with cardinality constraints. Feldman and Topaloglu (2015)

derive a tractable upper bound on the expected revenue for the problem. The upper

bound can be used to identify the optimality gap of heuristics.

In the second sub-stream, the single-period problem is extended to a problem with

a multi-period selling season, thus becoming more complicated. In this problem, the

assortment decisions are revised periodically based on the changing customers prefer-

ences. There are some research working on dynamic assortment problem with demand

learning in which the retailer does not have the information of customer preferences. In

this case, the retailer usually learns about the preferences by experimenting with differ-

ent assortments and observing their sales in different periods. The key trade-off in this

problem is between exploration and exploitation products, i.e., there are two kinds of

products to be included in the assortment at each period: Exploitation products which
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are profitable in the current period and exploration products whose demand information

can be gathered more to see if they will be profitable in the future periods. Caro and

Gallien (2007) first propose the model for this problem by utilizing a stylized multiarmed

bandit model. Rusmevichientong et al. (2010) study a dynamic assortment problem with

demand learning by incorporating the MNL model and capacity constraint. Ulu et al.

(2012) focus on the the dynamic assortment problem with demand learning in which

customers’ taste is modelled through a locational choice model. Sauré and Zeevi (2013)

study a family of stylized dynamic assortment planning problems with demand learn-

ing under a limited assortment size and develop a set of policies which can limit the

assortment experimentation on exploring the profitable products in the future periods.

Aforementioned studies on dynamic assortment planning with demand learning usually

relies on the assumption that retailer only has the detailed information on the customers’

choice towards a sub set of products variants to put into the assortment and can learn

the preferences of the other product variants by putting them in an experimental assort-

ment during the exploration periods. In addition, the customer preferences are updated

through observing the sales quantity of product variants in the experimental assortment.

On critics on this sub-stream of studies is that the customer preference is assumed to

be affected only by the sales of substitute products in the assortments. However, in

real-world, there are many factors that affect the customers’ preferences such as price

changes, customer reviews, seasonality and so on.

The third stream of literature is assortment customization problem which is about

revising the product variants in the assortments provided to different types of customers

after estimating or observing their preferences (Bernstein et al., 2015). The assortment

customization suites well to the online retailers due to their ability of processing and

analyzing the information of customers’ purchasing history to censor the preferences

towards products. Based on the estimated preferences of customers, the online retail-

ers can freely control the product variants exposed to the customers by strategically
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labelling the product variants displayed on the web page as “in-stock” or “out-of-stock”.

Current literature on assortment customization is thriving. Bernstein et al. (2015) first

introduce the dynamic assortment customization problem with consideration of limited

inventories. They consider a stylized model in which the Poisson arrival process is used

to model customer arrivals. After observing their types, the retailer will offer a cus-

tomized assortment to each of arrived customers. The selection of products included

in the customized assortment is made based on the preference of arrived customer and

the product inventory level upon arrival. They find that the optimal policy to include

a product variant in the assortment is a threshold type, i.e., a product variant will be

dropped from the assortment offered to an arriving customer only when its stock level is

lower than a threshold value. El Housni and Topaloglu (2021) study a joint assortment

optimization and customization problem in which the preferences of different customer

types are modelled through a MNL model. They propose a two-stage model, i.e., the firm

selects a certain amount of product variants from a set of candidate variants to form an

assortment carried to the second stage when different types of customers arrive with dif-

ferent arrival probabilities and preferences. The firm will provide each type of customers

with an customized assortment through dropping some variants in the pre-determined

assortment in the first stage.

It should be noted that the model of Bernstein et al. (2015) assumes the preference

of each customer type is unchanged over different periods of the selling season and so are

the probabilities of the arriving customer belonging to different types. This assumption

may be true when the selling season is short or the attractiveness of products to customer

is stable. There are several studies assuming the preferences of customers are changing

over the selling season. Caro et al. (2014) study a multi-period assortment planning

problem for short-lived products. In the proposed model, the market shares of the

product variants in assortment are determined by the MNL model based on customer

preferences. The customer preference for a particular product variant in the assortment
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decays over time because the short-live products usually have a big spike when they are

newly offered to market but then their market share would shrink drastically. Rather

than releasing all products at once in the beginning of selling season, the firm should

revise the product assortment by frequently adding new variants at different periods in

the selling season to maximize the total profits. Ghoniem and Maddah (2015) propose a

deterministic model for jointly optimizing pricing and assortment decisions over a multi-

period selling season under the changing customer preferences to maximize the total

retailer profit. In their model, the customer preferences are reflected by the willingness

to pay of customers and are changing through the selling periods due to seasonality.

Although considering different customer segments (types), they do not customize the

assortment for different types of customers. In addition, their assortment planning

decision is static, i.e., the variants in the assortment are not changing over the season.

In our proposed model, we further extend the problem raised by El Housni and

Topaloglu (2021) to a multi-period context when the distribution of customer prefer-

ences is non-static. In addition, we also intend to explore role of the commonality of

components for fabricating the products in the assortment on the assortment decisions.

A relevant study from this perspective is done by Bernstein et al. (2011). They explore

the effect of component commonality on product line decisions in an assemble-to-order

system. A single period stylized model in which product line decisions and component

procurement decisions are made to maximize the expected is proposed. Their result

indicates in some cases introducing the commonality in the manufacturing may decrease

the product variety in the product line.

Our study distinguishes the aforementioned studies in the following aspects. First,

our problem is under a multi-period context in which customer preferences are changing

over the periods. We assume that the OEM can estimate the distributions of customer

preferences towards the products in any periods of selling season based on historical data.
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Note that there are many statistical methods that can be used to extract customer pref-

erences from historical data on surveys or online reviews such as partial least squares

analysis (Nagamachi, 2008), statistical linear regression (You et al., 2006), artificial neu-

ral networks (Chen et al., 2006), fuzzy inference systems (Jiang et al., 2019), etc. Unlike

the multi-period assortment planning problem in Bernstein et al. (2015), which assumes

the preference distributions of customers in different periods are identical and the pref-

erences of each customer type toward each product are unchanged through the periods

in selling season, we relax this assumption. This relaxation will make the stylized model

in Bernstein et al. (2015) invalid, but can capture the dynamic nature of customer pref-

erences towards the the assortment in a multi-period selling season. Second, we consider

the uncertainty embedded in customer preferences estimations in each period and also

the component demands for repairing the faulty products sold, which are not discussed

in Bernstein et al. (2011). We will develop a multi-stage stochastic programming model

to handle such uncertainties in estimating the non-stationary customer preferences over

the selling season and finally help OEM jointly decide the product line decisions, assort-

ment decisions, and components procurement decisions under the uncertain customer

preferences.

4.3 Problem Formulation

In this section, the formulations of the studied problem will be presented. A determinis-

tic model will be formulated and linearized. Afterwards, we will formulate a multi-stage

stochastic programming model to address the inherent uncertainties in estimating cus-

tomer preferences when making joint product line and assortment planning decisions.
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4.3.1 A deterministic mathematical programming model for assort-

ment planning and component management

At the beginning of a selling season with T periods, an OEM is able to produce a set of

product variants N = {1, . . . , N} and let Pnt denote the price for each product variant

n ∈ N at period t ∈ T = {1, . . . , T}. Meanwhile, the OEM has to select a subset of

at most S product variants to form a product line in a multi-period selling season. We

denote the product line subset as S ⊆ N . At a certain period t of the selling season,

the OEM will select a subset of the product variants in S as an assortment offered to

the customers based on the estimated customers preferences in that period. The set of

product variants included in the assortment at period t is denoted by St ⊆ S.

To model the demand for the product variants in assortment St, we consider a con-

sumer choice model. To be specific, consumers’ choice to a product variant within the

offered assortment is based on the MNL model. In this model, a customer obtains utility

Uit if he or she purchases product variant i ∈ St, given the displayed assortment St in

period t and the utility is determined by Uit = Vit + ϵit, in which Vit represents the ob-

served mean utility of product variant i to the customer and ϵit is a random term which

represents the unobserved utility. For the ease of exposition, we will denote the vector

of mean utilities of the customers for all the products as Vt = (V1t, . . . , V|St|t). If the

random term ϵit is assumed to be independent and identically distributed (i.i.d.) with

Gumbel distribution, the MNL model gives the utility maximization choice probability

that customer selects product variant i as

γSt
it = eVit∑

j∈St
eVjt + eV0t

. (4.1)

where V0t represents the customers’ utility of no purchase option at period t (Train,

2009).
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In the proposed model, a decision variable γnt is used to denote the estimated proba-

bility that a consumer will select product variant n ∈ N . Let ent = eVnt , ∀n ∈ N , ∀t ∈ T ,

represent the consumers’ utility for purchasing product n, then for any n ∈ N , we have

γnt = xnt · ent∑
j∈N xjt · ejt + e0t

(4.2)

where xnt is binary variable and xnt = 1 if and only if the product variant n is included

in the assortment St displayed to customers at period t.

Each product n ∈ N is a multi-indenture system in which the components are non-

identical, i.e., distinct types of components are used in a product. We assume every

type of component has at most one unit contained in a unit of product. To be specific,

the BOM for all product variants’ production consists of a set of components C =

{1, 2, . . . , C} and for a specific product variant n, the corresponding BOM is denote as

Cn, which is a subset of C. In addition, from the BOMs of all product variants, we can

also obtain the information on all product variants using component c and will denote

the set of product variants using component c as Nc.

The notation used in the formulated deterministic mathematical programming model

is listed in Table 4.1. In the model, the profits obtained by the OEM are equal to

the revenue of selling product variants in the assortments minus the costs of obtaining

components used for the fabrication of new products and the repair of faulty products

over the selling season.

The OEM first decides the product line before the selling season and then determines

the products in the assortment offered to the market based on the estimated customer

preferences at each period of the season. The revenue obtained from selling the products

offered in the assortment St during period t is calculated as

Revenue =
∑

n∈N
Pnt · dnt (4.3)
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Table 4.1: Notations used in the deterministic model

Sets and subscripts

N Set of products can be selected in the assortment
n Subscript of product n ∈ N
C Set of components used for product fabrication
c Subscript of component c ∈ C
Nc Set of products using component c, ∀ c ∈ C
Cn Set of components used for fabrication of product n, ∀n ∈ N
T Set of planning periods
t Subscript of planning period t ∈ T
S Set of product variants included in the product line, S ⊆ N
St Set of product variants included in the assortment at period t ∈ T , St ⊆ S
Parameters

Pnt Selling price of product n at period t
Kct Stocking cost of component c at period t
Wt Total market demand for product assortment St at period t
rcnt Average joint failure probability that a faulty product variant n having

component c failure at period t
M A sufficiently large positive integer number
ent ent = eVnt is referred to as the consumers’ utility for product n at period t
S Limit on the number of product variants included in the product line S
T Number of planning periods
Decision variables

xnt Binary variable, xnt = 1 if and only if the product variant n is included in
the assortment St offered to customers at period t for all n ∈ N , t ∈ T

xn0 Binary variable, xn0 = 1 if and only if the product variant n is included in
the assortment S offered to customers over whole selling season

γnt Probability of consumers placing an order on product n in the assortment St

at period t
dnt Fulfilled order amount for product n in period t
dct Demand for component c in period t
qct The order quantity of component c in period t
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in which dnt representing the fulfilled order amounts and satisfies constraints γnt·Wt−1 ≤

dnt ≤ γnt ·Wt (the definition Wt in Table 4.1), which guarantee the order quantity for

product variant n should be the maximum integer no greater than the estimated demand.

In addition, γnt is defined in equation (5.2) and Wt is the total market size faced by the

assortment at that period.

In each period, asides from the revenue obtained from selling products in assortment

St, the OEM has to pay for the costs of procuring the components used for fabricating

products in the displayed assortment and repairing the faulty products under warranty

sold in previous periods. In the model, we assume that at most one unit of each compo-

nent type is used in one unit of each product variant. In addition, stocking one unit of

component c at period t will induce an aggregate cost Kct which covers inventory costs,

handling costs, transportation costs, etc. The total amount of the required component

c should be no less than the sum of two demand streams for components. One stream

is the total assembly demand for the offered product variants whose fabrication requires

component c and the other is the total repairing demand for fixing faulty products hav-

ing component c failures. To be specific, for the first stream, the assembly demand da
ct

for component c at period t is computed as

da
ct =

∑
n∈Nc

dnt. (4.4)

The faulty components creates another stream of demand for components. The failure

of product is caused by the failures of components used in it. When a sold product fails

during warranty periods, it will be returned to the OEM for replacing faulty components.

Let rcnt represent the average joint failure probability that a faulty product variant n

having faulty component c for all c ∈ C, n ∈ N at period t. In this case, the total failure

amount of product variant n caused by the faulty component c at period t is equal to

the product of average joint failure rate and the total quantity of that product variant

sold in all periods before period t, i.e., dr
cnt = rcnt ·

∑t−1
k=1 dnk. In this case, the total
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repairing demand amount for replacing all faulty component c in the faulty products at

period t is

dr
ct =

∑
n∈Nc

rcnt ·
t−1∑
k=1

dnk (4.5)

In real-life, the average joint failure probabilities can be estimated based on the historical

data.

To sum up, the OEM seeks to determine the product line decisions at beginning

of the selling season, the assortment planning decisions at each period t of the season,

i.e., which product variants in the product line should be included in the assortment

St based on the estimated customer preferences, and the stocking level decisions of all

components at each period, to maximize the total profits obtained in the whole season.

The corresponding deterministic mathematical model is formulated as

max
∑
t∈T

∑
n∈N

Pnt · dnt −
∑
t∈T

∑
c∈C

Kctqct (DP1)

s.t. γnt ·Wt − 1 ≤ dnt ≤ γnt ·Wt ∀n ∈ N , ∀ t ∈ T , (DP2)

qct ≥
∑

n∈Nc

(
dnt + rcnt ·

t−1∑
k=1

dnk

)
, ∀ c ∈ C, ∀ t ∈ T , (DP3)

γnt

( ∑
j∈N

xjtejt + e0t

)
= xntent, ∀n ∈ N , ∀ t ∈ T , (DP4)

xn0 − xnt ≥ 0, ∀n ∈ N , ∀ t ∈ T , (DP5)∑
n∈N

xn0 ≤ S, (DP6)

qct ≤M
∑

n∈Nc

xn0, ∀ c ∈ C, ∀ t ∈ T , (DP7)

x0t, xnt ∈ {0, 1}, ∀n ∈ N , ∀ t ∈ T , (DP8)

qct, dnt ∈ Z+, γnt ∈ R+, ∀n ∈ N , ∀c ∈ C, ∀ t ∈ T . (DP9)

In this model, the objective (DP1) is to maximize the total profits of the OEM when

it offers assortment St based on the product line S over a multi-period selling season.
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The profit is represented as the total revenue of selling the product variants in the

assortment minus the total stocking costs for all components required for fabrication

and repair of those products in the season. Constraints (DP2) with (DP9) all together

ensure the fulfilled order quantity should be the maximum integer no greater than the

estimated demand for each product by the MNL model in any periods. Constraints

(DP3) represent the stocking levels of all components should be no less than the required

amounts in each period. These constraints link the demand for product variants to the

stocking level decisions of all components. The stocked components will be used for

both assembly of new product in that period and the repair of sold products in previous

periods. Note that no components inventory will be carried over to the next period.

We assume the OEM follows a lean philosophy and keeps low inventory level. So in

a period, the stocking components will be used to satisfy the demand in this period

and not be kept as inventory for next period. Constraints (DP4) address the choice

probabilities of customers over the product variants in the assortment St at period t.

Constraints (DP5) ensure the product variants displayed in the assortment St at period

t are selected from product line S which is determined at the beginning of selling season.

Constraint (DP6) is the cardinality constraint which limits the maximum number of

product variants included in the product line S. Constraints (DP7) restrict the stocking

level of a component to be zero if it is not used in fabrication of any variants in the

line. Constraints (DP8) and (DP9) regulate the binary variables xn0 and xnt, integer

variables qct and dnt, and non-negative real variables γnt for all n ∈ N , c ∈ C, and t ∈ T ,

respectively. Note that this model is a mixed integer nonlinear programming due to the

nonlinear terms, i.e., γnt
∑

j∈N xjtejt, in constraints (DP4).

4.3.2 Linearization

In this section, the linearization technique is used to adapt the proposed deterministic

model to a linear program. Specifically, the nonlinear term γnt
∑

j∈N xjtejt in constraints
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(DP4), for all n ∈ N , t ∈ T , and j ∈ N . These constraints can be linearized by

introducing auxiliary variables znjt = γnt · xjt, for all n ∈ N , t ∈ T , and j ∈ N . In

addition, to ensure znjt = γnt · xjt holds when xjt = 0 and xjt = 1 for all t ∈ T , and

j ∈ N , we need the following four sets of additional constraints:

znjt ≤ xjt, (L1)

znjt ≤ γnt, (L2)

znjt ≥ γnt + xjt − 1, (L3)

znjt ≥ 0. (L4)

By introducing constraints (L1)-(L4), auxiliary variables znjt will take different values

depending on the values of binary variables xjt as follows.

znjt =


γnt · xjt, when xjt = 1;

0, when xjt = 0.

In this case, the nonlinear model will be reformulated as a mixed integer linear program-

ming (MILP) model as follows.

max
∑
t∈T

∑
n∈N

Pnt · dnt −
∑
t∈T

∑
c∈C

Kcqct (DPL1)

s.t. γnt ·Wt − 1 ≤ dnt ≤ γnt ·Wt, ∀n ∈ N , ∀ t ∈ T , (DPL2)

qct ≥
∑

n∈Nc

(
dnt + rcnt ·

t−1∑
k=1

dnk

)
, ∀ c ∈ C,∀ t ∈ T , (DPL3)

e0tγnt +
∑
j∈N

ejt znjt = xnt ent, ∀n ∈ N , ∀ t ∈ T , (DPL4)

xn0 − xnt ≥ 0, ∀n ∈ N , ∀ t ∈ T (DPL5)

DPL
∑

n∈N
xn0 ≤ S, (DPL6)
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qct ≤M
∑

n∈Nc

xn0, ∀ c ∈ C, ∀ t ∈ T , (DPL7)

znjt ≤ xjt, ∀n ∈ N ,∀ j ∈ N , ∀ t ∈ T , (DPL8)

znjt ≤ γnt, ∀n ∈ N ,∀ j ∈ N , ∀ t ∈ T , (DPL9)

znjt ≥ γnt + xjt − 1, ∀n ∈ N ,∀ j ∈ N , ∀ t ∈ T , (DPL10)

znjt ≥ 0, ∀n ∈ N ,∀ j ∈ N , ∀ t ∈ T , (DPL11)

xnt ∈ {0, 1}, ∀n ∈ N , ∀ t ∈ T , (DPL12)

qct, dnt ∈ Z+, ∀n ∈ N , ∀ c ∈ C, ∀ t ∈ T . (DPL13)

This deterministic model is reasonable when the OEMs prediction on customer prefer-

ences is completely correct. However, this can hardly be the case in real-life. In the

following, we will incorporate the uncertainty into the proposed model.

4.3.3 The multi-stage stochastic programming model

The deterministic model formulated in the previous subsection does not consider the

uncertainty embedded in estimating the choice parameters (customer preferences) of the

MNL model. If the estimated mean utility vector Vt in the MNL model is fixed (the

OEM is 100% sure about the estimation) and known at each period t, we can easily find

the customer choice probability γnt for each product n. Unfortunately, such estimations

are embedded with uncertainty. In this case, the mean utilities that customers attach

to the product variants can be treated as random variables with certain probability

distributions.

Uncertainty in estimating choice parameters in the MNL model

Assume that there are Gt possible realizations of customer preferences with certain prob-

ability distributions at period t, with each realization of customer preferences following

the MNL model. To be specific, the mean utility vector Vt is a discrete random vector,
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which takes Gt different values V̂ 1
t , . . . , V̂ g

t , . . . , V̂ Gt
t , where V̂ g

t = (V̂ g
1t, V̂ g

2t, . . . , V̂ g
Nt) de-

notes the gth realization of the mean utilities of customers at period t. In addition, ϕgt is

the probability that the customer preferences are revealed as gth realization at period t,

where
∑Gt

g=1 ϕgt = 1, ∀ t ∈ T . To sum up, this setup corresponds to the situation where

the vector of mean utilities has Gt possible realizations V̂ 1
t , . . . , V̂ Gt

t and the vector of

mean utilities is realized as V̂ g
t with probability ϕgt. In this setting, the preference weight

ent that customers attach to product variant n at period t is also a random variable.

To establish the stochastic programming model, all realizations of the random variable

vector et = (e1t, . . . , ent, . . . , eNt) are deemed as scenarios. These scenarios all together

create the scenario tree of the demand on product variant n and the corresponding re-

alization êt = {ê1t, . . . , ênt, . . . , êNt} can be determined based on the realizations of the

mean utility of customers V̂t. The probability of each node in the scenario tree is equal

to the probability of the realization of customer mean utility V̂t in that node. If the

total amount of mean utility vector realizations in each period t is Gt, then the total

quantity of nodes in the scenario tree for period T is ΠT
t=1Gt. In the scenario tree, the

node set will be denoted as T = {0, 1, 2, . . . , |T |}, where node 0 represents the root

node. An illustration of the scenario tree T is shown in Figure 4.1. In the figure, there

are three possible realizations of the mean customer utility vector toward all products

during each planning period t, i.e., V̂t = (V̂ 1
t , V̂ 2

t , V̂ 3
t ). Consequently, the scenario tree

has a number of 3t scenarios in each time period t.

A multi-stage stochastic programming model

Considering the aforementioned uncertainty in estimating customer preferences, the de-

terministic model of the studied problem can be extended to a multi-stage stochastic

programming model. Except for the notation provided in Table 4.1, additional notation

used in formulation of the multi-stage stochastic programming model are listed in Table

4.2. The model is formulated as follows.
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Table 4.2: Additional notation used in the multi-stage stochastic programming model

Sets and subscripts

N Set of products can be selected in the assortment
n Subscript of product n ∈ N
C Set of components used for product fabrication
c Subscript of component c ∈ C
Nc Set of products using component c, ∀ c ∈ C
Cn Set of components used for fabrication of product n, ∀n ∈ N
T Set of all nodes in the scenario tree
T0 Set of scenario tree nodes except the root node, i.e., T0 = T \ {0}
m Subscript of node in the scenario tree, ∀m ∈ T
A (m) Set of all predecessors of node m, ∀m ∈ T
S (m) Set of all successors of node m, ∀m ∈ T

Parameters

Pnm Selling price of product n at node m, ∀n ∈ N , ∀m ∈ T
ϕm Probability of node m, ∀m ∈ T
Kcm Stocking cost of component c at node m, ∀ c ∈ C, ∀m ∈ T
Wm Total market size at node m, ∀m ∈ T
M A sufficiently large positive integer number
enm enm = eVnm is referred to as the preference weight that customers

attach to product n at node m, ∀n ∈ N , ∀m ∈ T
e0m Preference weight that customers attach to no-purchase option at node m,

∀m ∈ T
rcnm Average joint failure probability that a faulty product variant n having

faulty component c at node m, ∀ c ∈ C, ∀n ∈ Nc, ∀m ∈ T

Decision variables

xnm Binary variable, xnm = 1 if and only if the product variant n is included in
the assortment Sm offered to the market at node m, ∀m ∈ T

xn0 Binary variable, xn0 = 1 if and only if the product variant n is included in
the assortment S offered to the market over the selling season

γnm Probability of consumers placing an order on product n in the assortment S
at node m, ∀m ∈ T

dnt Fulfilled order quantity for product n at node m, ∀m ∈ T
qcm The order quantity of component c at node m, ∀m ∈ T
znjm znjm = γnm · xjm, auxiliary variables used for linearization, ∀n ∈ N ,

∀ j ∈ N , ∀m ∈ T
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Figure 4.1: An illustration of the scenarios tree

max
∑

m∈T

ϕm

( ∑
n∈N

Pnm · dnm −
∑
c∈C

Kcmqcm

)
(SPR1)

s.t. γnm ·Wm − 1 ≤ dnm ≤ γnm ·Wm, ∀n ∈ N , ∀m ∈ T , (SPR2)

qcm ≥
∑

n∈Nc

(
dnm + rcnm

∑
m′∈A (m)

dnm′

)
, ∀ c ∈ C, ∀m ∈ T , (SPR3)

e0mγnm +
∑
j∈N

ejm znjm = xnm enm, ∀n ∈ N , ∀m ∈ T , (SPR4)

xn0 − xnm ≥ 0, ∀n ∈ N , ∀m ∈ T , (SPR5)

SPR
∑

n∈N
xn0 ≤ S, (SPR6)

qcm ≤M
∑

n∈Nc

xn0, ∀ c ∈ C, ∀m ∈ T , (SPR7)

znjm ≤ xjm, ∀n ∈ N ,∀ j ∈ N , ∀m ∈ T , (SPR8)

znjm ≤ γnm, ∀n ∈ N ,∀ j ∈ N , ∀m ∈ T , (SPR9)

znjm ≥ γnm + xjm − 1, ∀n ∈ N , ∀ j ∈ N , ∀m ∈ T , (SPR10)

znjm ≥ 0, ∀n ∈ N , ∀ j ∈ N , ∀m ∈ T , (SPR11)
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xn0, xnm ∈ {0, 1}, ∀n ∈ N , ∀m ∈ T , (SPR12)

qcm, dnm ∈ Z+, γnm, znjm ∈ R+, ∀n ∈ N , ∀ c ∈ C, ∀m ∈ T . (SPR13)

where A (m) represents the set of all the predecessors of node m ∈ T .

4.4 The Branch-and-Price Algorithm

The multi-stage stochastic programming model is a large-scale mixed integer program-

ming model, making it difficult to solve by commercial solvers such as CPLEX. However,

it is notable that the original model has a coefficient matrix with special structure, i.e.,

block-angular structure. This allows us to use the Dantzig-Wolfe decomposition method

to reduce solution difficulty. In this section, we design a B&P algorithm for solving the

proposed multi-stage stochastic programming model. The B&P algorithm is based on

the branch-and-bound approach, and applies the Dantzig-Wolfe decomposition to each

node of the branch-and-bound tree. The basic idea of Dantzig-Wolfe decomposition is

“divide and conquer”, i.e., to transform a large-scale original problem into many smaller

sub-problems by utilizing the special structure of the original problem to reduce solution

time.

4.4.1 Outline of the B&P algorithm

In the model, constraints (SPR2), (SPR4), (SPR8), (SPR9), and (SPR10) are specific

to each node m ∈ T of the scenario tree and constraints (SPR6) is specific to the root

node. In contrast, constraints (SPR3), (SPR5), and (SPR7) are coupling constraints

in which variables from different scenario tree nodes are involved. According to the

Dantzig-Wolfe decomposition approach, they are the constraints staying in the master

problem while the other constraints are included in the pricing problem for each node

m of the scenario tree.
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For each node m ∈ T , define Xm = {(xm, dm, qm)| ∀m ∈ T }, where xm =

{xnm| ∀n ∈ N} with xnm ∈ {0, 1}, dm = {dnm| ∀n ∈ N}, with dnm ∈ Z+ and qm =

{qcm| ∀ c ∈ C} with qcm ∈ Z+, All xm, dm and qm satisfy the corresponding constraints

(SPR2), (SPR4), (SPR8), (SPR9), and (SPR10). Since the variables are either binary

or bounded integers (it is easy to find the upper bounds for the integer variables), the set

Xm has finite point and can be written as Xm = {(xk
m, qk

m, dk
m)| k = 1, . . . , Km}. Based

on the Minkowski’s Representation Theorem (Wolsey and Nemhauser, 1999), any points

(xm, qm, dm) in Xm can be represented as xm =
∑Km

k=1 λk
mxk

m, qm =
∑Km

k=1 λk
mqk

m, and

dm =
∑Km

k=1 λk
mdk

m, respectively, where
∑Km

k=1 λk
m = 1 and λk

m ∈ {0, 1} , ∀ k = 1, · · · , Km.

Finally, the master problem (MP) can be formulated as

max
∑

m∈T

ϕm

Km∑
k=1

( ∑
n∈N

Pnm · dk
nm −

∑
c∈C

Kcmqk
cm

)
λk

m (MP1)

s.t.
Km∑
k=1

qk
cmλk

m ≥
∑

n∈Nc

( Km∑
k=1

dk
nmλk

m

+ rcnm

∑
m′∈A (m)

Km′∑
k=1

dk
nm′λk

m′

)
, ∀ c ∈ C, ∀m ∈ T , (MP2)

K0∑
k=1

xk
n0λk

0 −
Km∑
k=1

xk
nmλk

m ≥ 0, ∀n ∈ N , ∀m ∈ T , (MP3)

MP
Km∑
k=1

qcm ≤M
∑

n∈Nc

K0∑
k=1

xk
n0, ∀ c ∈ C, ∀m ∈ T , (MP4)

Km∑
k=1

λk
m = 1, ∀m ∈ T , (MP5)

λk
m ∈ {0, 1}, ∀ k = 1, . . . , Km, ∀m ∈ T . (MP6)

By replacing λk
m ∈ {0, 1} by λk

m ≥ 0, we can get a linear relaxation of MP, which

can be optimally solved to obtain the lower bound of the branch-and-bound tree node

in the algorithm. However, the cardinality of Xm might be huge for any nodes m ∈

T , such that finding all the points (a.k.a. columns) for Xm is time-consuming and
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computationally challenging. Therefore, the column generation method is used to solve

the linear relaxation of MP. In this case, instead of the entire set, a subset of Xm will

be used to construct a restricted version of the master problem. Furthermore, using

a subset Km of Xm instead of the entire set, we can obtain a restricted version of the

master problem (RMP) as follows.

max
∑

m∈T

ϕm

∑
k∈Km

( ∑
n∈N

Pnm · dk
nm −

∑
c∈C

Kcmqk
cm

)
λk

m (RMP1)

s.t.
∑

n∈Nc

( ∑
k∈Km

dk
nmλk

m + rcnm

∑
m′∈A (m)

∑
k∈Km′

dk
nm′λk

m′

)

−
∑

k∈Km

qk
cmλk

m ≤ 0, ∀ c ∈ C, ∀m ∈ T , (RMP2)

∑
k∈Km

xk
nmλk

m −
∑

k∈K0

xk
n0λk

0 ≤ 0, ∀n ∈ N , ∀m ∈ T , (RMP3)

∑
k∈Km

qcm −M
∑

n∈Nc

∑
k∈K0

xk
n0 ≤ 0, ∀ c ∈ C, ∀m ∈ T , (RMP4)

∑
k∈Km

λk
m = 1, ∀m ∈ T , (RMP5)

λk
m ≥ 0, ∀ k ∈ Km, ∀m ∈ T . (RMP6)

Let π
(1)
mc, π

(3)
mc be the dual variables associated with constraints (RMP2) and (RMP4),

∀m ∈ T and ∀ c ∈ C, and π
(2)
mn be the dual variables associated with constraints (RMP3),

∀m ∈ T and ∀n ∈ N respectively. The dual variables associated with constraints

(RMP5) for each m ∈ T is denoted as µm. Afterwards, we can construct the corre-

sponding pricing problem (SP (m)) for each node m ∈ T \ {0} in the scenario tree as

follows.

max
∑

n∈N

(
ϕmPnm −

∑
c∈Cn

(
π(1)

mc +
∑

m′∈S (m)
rcnm′π

(1)
m′c

))
dnm
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+
∑
c∈C

(
− ϕmKcm + π(1)

mc − π(3)
mc

)
qcm

−
∑

n∈N
π(2)

mnxnm − µm (SP1)

s.t.γnm ·Wm − 1 ≤ dnm ≤ γnm ·Wm, ∀n ∈ N , ∀m ∈ T ,

(SP2)

e0mγnm +
∑
j∈N

ejm znjm = xn enm, ∀n ∈ N , ∀m ∈ T ,

(SP3)

znjm ≤ xjm, ∀n ∈ N , ∀ j ∈ N , ∀m ∈ T ,

(SP4)

znjm ≤ γnm, ∀n ∈ N , ∀ j ∈ N , ∀m ∈ T ,

(SP5)

znjm ≥ γnm + xjm − 1, ∀n ∈ N , ∀ j ∈ N , ∀m ∈ T ,

(SP6)

znjm ≥ 0, ∀n ∈ N , ∀ j ∈ N , ∀m ∈ T ,

(SP7)

xnm ∈ {0, 1}, ∀n ∈ N , ∀m ∈ T ,

(SP8)

qcm, dnm ∈ Z+, ∀n ∈ N , ∀ c ∈ C, ∀m ∈ T .

(SP9)

Exceptionally, for the root node of the scenario tree, i.e., node 0, the cardinality con-

straints (SPR6) should be added to the corresponding pricing problem and the objective

should be changed as follows.

max ϕ0

[ ∑
n∈N

(
Pn0 −

∑
c∈Cn

(
π

(1)
0,c +

∑
m′∈S (0)

rcnm′π
(1)
m′,c

))
dn0
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+
∑
c∈C

(
−Kc0 + π

(1)
0,c − π

(3)
0,c

)
qc0

]
+

∑
n∈N

(−π
(2)
0,n +

∑
m′∈S (0)

π
(2)
m′,n)xn0 − µ0 (SP10)

In the pricing problem SP (m), the constraints (SP8) and (SP9) which indicate the

integrity of decision variables xnm, dnm, and qcm are kept so that the integer columns

will be generated when solving the SP (m).

Algorithm 1 B&P algorithm for solving multi-stage stochastic programming model

Input: Parameters Pnm, Kcm, Wm, rcnm, enm, ∀ c ∈ C, ∀n ∈ N ,∀m ∈ T , scenario Tree
T with probability ϕm, ∀m ∈ T , UB = 0, and LB = −∞.
Output: zalg, the objective value of multistage stochastic programming model.
Step 1. Reformulate the studied problem in the form of MP. Initialize the feasible

solution to MP and the sub-problem set in the branch-and-bound tree with MP.
Step 2. Choose and remove a sub-problem from the sub-problem set and initialize the
column pool with the a feasible solution.
Step 3. Conduct Dantzig-Wolf decomposition to the selected sub-problem to obtain
the RMP and solve it. If RMP is feasible, obtain the corresponding dual solution{
(π(1)

m,c, π
(2)
m,n, π

(3)
m,c, µm) | ∀n ∈ N , ∀ c ∈ C, ∀m ∈ T

}
and update LB when the so-

lutions are integers and the corresponding objective value is higher than LB; Otherwise,
go to Step 2.
Step 4. For each tree node m ∈ T , formulate and solve the corresponding SP (m)
to generate columns, whose objective is to maximize the reduced cost of any columns
associated with variables for this specific node m. If there is positive reduced cost, add
the corresponding generated columns to column pool and go to Step 3; Otherwise, go to
Step 5.
Step 5. Let the objective value of RMP be the upper bound on this sub-problem, i.e.,
UB = obj(RMP ). If the UB is higher than the LB, move to Step 6; Otherwise, move
to Step 7.
Step 6. Find an xnm variable which is required to be an integer, then do the branching
by defining two sub-problems adding the constraints xnm = 0 or xnm = 1, respectively.
Add the new generated sub-problems to the sub-problem set.
Step 7. If there are no more active nodes in the branch-and-bound tree, then we de-
clare the incumbent solution as the optimal one and stopc. Else, we select an active
node (sub-problem) in the branch-and-bound tree and go to Step 2.

The detailed steps for the B&P algorithm is shown in Algorithm 1. The basic pro-

cedures of B&P algorithm are as follows. Firstly, the algorithm starts with the column

generation process, or the so-called pricing procedure. The RMP is solved to obtain the
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dual solutions
{
(π(1)

m,c, π
(2)
m,n, π

(3)
m,c, µm) | ∀n ∈ N , ∀ c ∈ C, ∀m ∈ T

}
. Afterwards, the

dual solution
{
(π(1)

m,c, π
(2)
m,n, π

(3)
m,c, µm) | ∀n ∈ N , ∀ c ∈ C,

}
will be used to construct the

corresponding SP (m) whose objective is to maximize the reduced cost of any columns

associated with variables for this specific node m. The optimal solutions to all SP (m)’s

are referred to as the generated columns and only the columns with positive reduced

costs will be added to the RMP. This procedure will be repeated till there is no columns

with positive reduced costs generated by solving SP (m) for all m ∈ T , i.e., the current

solution to RMP is optimal and the corresponding objective value of RMP is the upper

bound of this sub-problem in the branch-and-bound tree. Finally, the integrity of the

optimal RMP solution will be checked and the lower bound of the original problem will

be updated if the solutions are integers. After the column generation approach, the algo-

rithm will continue with branching procedure in which some decision variables are fixed

at integer values to create sub-problems in the branch-and-bound tree. Some details of

the B&P algorithm will be discussed in the following subsections.

4.4.2 Initialization

The initialization of the B&P algorithm for this problem is trivial. At the beginning

of the algorithm, the global lower bound can be set to negative infinity. For each sub-

problem in the branch-and-bound tree, we need to formulate the corresponding RMP

based on the column pools Km, ∀m ∈ T , which need to be initialized with initial

columns at the start of the column generation approach. A straightforward way to

initialize the column pools Km, ∀m ∈ T is to construct a feasible solution
(
x1, q1, d1)

={
(x1

m, q1
m, d1

m)| ∀m ∈ T
}

to the sub-problem by finding a product line whose cardinality

is less than the required quantity, then including each variants from the product line

in the assortment at each specific node, and finally determining the demand for each

product and components. To be specific, at the beginning of the column generation

procedure for a sub-problem, we can simply assign 1 to all unfixed xn0 until the total
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number of xn0, ∀n ∈ N taking value of 1 is larger than S and then also assign 1 to

all xnm, ∀n ∈ N , ∀m ∈ T0, if xn0 = 1. Note that S is the maximum number of

product variants included in the product line. The rest variables xnm, ∀n ∈ N , ∀m ∈

T which are not assigned with value 1 will be assigned with 0. Finally, based on

the initialized product line decision xn0, ∀n ∈ N at the root node 0, and assortment

decision xnm, ∀n ∈ N at each node m ∈ T0, we can easily determine the values of

dnm and qcm, ∀ c ∈ C, ∀n ∈ N , m ∈ T based on constraints (SPR2)-(SPR4). Clearly,

this solution
(
x1, q1, d1)

complies with the coupling constraints in the RMP and the

branching schemes so that (x1
m, q1

m, d1
m) is an initial column in the column pool Km for

any node m ∈ T . If there exists initial column (x1
m, q1

m, d1
m) not feasible to the pricing

problem SP (m) for any node m ∈ T , then this sub-problem is infeasible and we should

prune it from the branch-and-bound tree.

4.4.3 Upper bounds on sup-problems

As illustrated in Algorithm 1, each sub-problem in the branch-and-bound tree will be

solved by column generation procedure, i.e., the RMP solution is optimal only when

there exists no pricing problems with positive optimal objective values. In this case,

the optimal objective value of the RMP provides an upper bound to the sub-problems

in the branch-and-bound tree (because RMP is constructed to obtain the optimal value

of the linear programming relaxation of the MP). However, in practice, some optimal

objective values of the pricing problems remain positive because of computation precision

in the solver, thus only checking the positiveness of reduced costs of pricing problems is

inefficient. In addition, instead of solving the linear programming to optimality, it may be

more efficient to prematurely end the column generation process and work with bounds

on the final linear programming value of the MP (Barnhart et al., 1998). In this case, a

new upper bound needs to be constructed to improve the efficiency of column generation

process. In the literature, there are some simple and relatively easy to compute bounds
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on the final linear programming value based on the objective value of RMP and the

reduced costs of pricing problems such as Lasdon (2002), Farley (1990), and Vanderbeck

and Wolsey (1996). In our proposed algorithm, the upper bound is constructed as

follows.

Theorem 4.1. (Farley, 1990) Let ZMP −LP represent the optimal objective value of the

linear relaxation of MP. In each iteration of the column generation, denote the optimal

objective value of RMP as ZRMP and the reduced cost of SP (m) as ξm, ∀m ∈ T , then

ZRMP +
∑

ξm>0
ξm ≥ ZMP −LP . (4.6)

This result is well known so we omit the corresponding proof. The theorem provides

a way to construct the upper bond as ZRMP +
∑

ξm>0 ξm during the column generation

when the reduced costs of some pricing problems are still positive. In addition, the

column generation process can be prematurely ended when this upper bound is good

enough.

4.4.4 Feasible solutions and lower bounds

In the B&P algorithm, the integrity of all variables in the final solution to the MP linear

relaxation of each sub-problem will be checked when the column generation procedure is

done. If the final solution happens to be integral and the corresponding objective value

of the linear relaxation of MP is higher than the current lower bound, then both lower

bound and current best solution will be updated. Nevertheless, feasible solutions can be

captured in each iteration of column generation by checking the integrity of x variables

in optimal RMP solutions. If all x variables in an optimal RMP solution are integers, we

can simply determine the values of γ and z variables based on constraints (SPR4) and

(SPR8) - (SPR11) and then determine the values of d and q based on constraints (SPR2)

and (SPR3). This is because if both the product line and assortment decisions (x) are

given, then product order probability (γ) can be determined through applying the MNL
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model at each node. Finally, product order quantities (d) and component procurement

quantities (q) will be determined by utilizing product order probabilities, market sizes,

and BOM information at each node. In this way, a feasible solution to current sub-

problem is generated based on the RMP optimal solution and corresponding objective

value can be calculated. If the feasible solution is better than the current best solution

and the lower bound of the problem, then both will be updated.

4.4.5 Branching rules

After updating current best solution and the lower bound, the branching procedure in

the B&P algorithm will start. In the literature, two branching rules are usually used.

One rule is that branching on the λ variables in the MP creates two sub-problems along

two branches where a variable is set to either 0 or 1, respectively. However, this rule is not

efficient because there are too many variables to be branched on and most of them will not

take value 0 in the optimal solution. Fortunately, there is a simple remedy to this issue,

which leads to the second branching rule. In this rule, we first branch on the original

variables xnm and then branch on dnm and qcm variables, ∀n ∈ N , ∀ c ∈ C, ∀m ∈ T ,

instead of branching on the λ variables in the MP.

In our proposed B&P algorithm, this branching procedure can be further simplified.

Note that for the studied problem, when xnm’s are fixed, the optimal integer solution

to the problem can be easily obtained by calculating the product choice probability of

each product variant through the MNL model at each node and further calculating the

product variant order quantities and component procurement quantities according to

constraints (SPR2) and (SPR3), and also by the maximization nature of the problem.

Therefore, it is sufficient to branch only on the unfixed xnm variables (which are binary)

to generate sub-problems so that the size of branch-and-bound tree is greatly reduced.

To implement this branching rule in the proposed algorithm with Dantzig-Wolfe

decomposition framework, a constraint
∑

k∈Km
xk

nmλk
m = 0 or

∑
k∈Km

xk
nmλk

m = 1 can
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be simply added to the RMP. However, the RMP model for each sub-problem in the

branch-and-bound tree will change, thus making the algorithm implementation more

complicated. A quick remedy to this procedure is to move the added constraint to the

pricing problem SP (m) as xnm = 0 or xnm = 1, ∀n ∈ N , ∀m ∈ T . Meanwhile, the

initial columns generated at the beginning of the column generation procedure for this

sub-problem need to satisfy the constraints xnm = 0 or xnm = 1, ∀n ∈ N , ∀m ∈ T ,

respectively. In this case, all columns in the column pool for the column generation

procedure of this sub-problem are ensured to satisfy the constraints indicated by the

branching rules while the RMP is kept unchanged during the branching procedure. One

merit of this approach is that the dual solution of the RMP and the objective functions

of the pricing problems remain the same and the coding work is simple and concise.

Another implementation detail on the branching procedure in the B&P algorithm

is to take advantage of the principle that if one product variant does not appear in

the product line, then it will not be selected in any assortments offered in the selling

season. To be specific, once xnm is fixed to 0 at the root node (node 0) in the scenario

tree T , it is reasonable to fix all xnm′ , ∀m′ ∈ S (0) to 0 (note that S (0) represents

the children nodes set of root node 0 in the scenario tree T ). Even though the B&P

algorithm functions without this procedure, the procedure makes it convenient when

constructing the feasible solutions to the sub-problems and has potentials to shrink the

size of branch-and-bound tree by decreasing the number of x variables to be branched.

4.5 Numerical Experiments

In this section, various numerical experiments are performed. Firstly, a set of problem

instances are solved to show the value of dynamic assortment decisions. Afterwards, the

structure of optimal solution will be explored through solving the second instance sets

in Section 4.5.2. Finally, the impacts of component commonality and unit cost on the

total expected profit will be demonstrated in the experiments in Section 4.5.3. Finally,
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24 problem instances are randomly generated to test the performance of the proposed

B&P algorithm compared to the CPLEX solver. All numerical experiments are coded

in C++ and carried out through the IBM ILOG CPLEX 20.1 optimization package on

a PC with an Intel Core i7-10750H 2.60 GHz CPU and 16 GB RAM.

4.5.1 Value of dynamic assortment decisions

We will show the value of dynamic assortment decisions. As discussed in Section 4.1, the

OEM produces and sells the dynamic product assortment through an online platform

and is able to collect and take advantage of the historical data to estimate the customer

preferences. This feature allows the OEM to adjust the assortment decisions based on

the estimated customer preferences in each period of the selling season. In this case,

an interesting question is that how much more profits the OEM obtains by adopting

dynamic assortments. In the following, we denote the value of dynamic assortment as

τ = 100 · zdyn − zstat

zstat
, (4.7)

where zdyn denotes the total expected profits obtained by offering the dynamic assort-

ment which allows changing product variants in the assortment at each period over

the selling season, while zstat represents the total expected profits obtained by offering

the static assortment, i.e., the product line decisions determined at the beginning of the

selling season is treated as the assortment decisions offered over all periods in the season.

There are 8 instances generated in this experiment, i.e., instances DA1-8 (DA repre-

sents “dynamic assortment”.) and they are generated based on the following rules. Each

instance has five product variants and five components. The product prices and compo-

nent costs in all instances are randomly generated. We implement different scenario tree

structures in these instances as follows. The number of periods included in the selling

season is set as T = 2, 3, 4, or 5 in different instances, leading to the scenario trees with

2, 3, 4, or 5 layers respectively. In each non-leaf layer of the tree, one parent node has
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two branches (or children nodes in the next layer), resulting to 7, 15, 31, or 63 nodes in

the whole tree respectively. The corresponding results are shown in Table 4.3 and the

higher profit obtained by either of two strategy is highlighted in boldface.

Table 4.3: The value of dynamic assortment decisions

Inst. No.
Inst. size

zstat zdyn τ

|N | |C| T |T |

DA1 5 5 2 7 29633.4 29739.9 0.36%

DA2 5 5 2 7 29005.4 29261.0 0.88%

DA3 5 5 3 15 29723.8 30336.8 2.06%

DA4 5 5 3 15 24047.1 24945.5 3.83%

DA5 5 5 4 31 21292.6 21964.6 3.16%

DA6 5 5 4 31 29678.9 31233.5 5.24%

DA7 5 5 5 63 37995.6 39483.6 3.91%

DA8 5 5 5 63 21155.8 23000.8 8.72%

From Table 4.3, we can see that dynamic assortment generally performs better than

the static one, and the value of dynamic assortment is increasing as the number of

periods in the selling season rises. Moreover, it reveals the importance of capturing and

utilizing the historical data: If the OEM possesses historical data, they will obtain higher

expected profits by adjusting the assortment decisions based on the estimated customer

preferences in each period of the season. More importantly, this can be easily achieved

in an e-commerce environment.

4.5.2 Impact of product unit profit

Numerical experiments are carried out to explore the structure of optimal solution to the

problem in this subsection. In the literature, the optimal assortment planning decisions

for a single period problem with deterministic customer preferences are usually in the
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form of revenue-ordered assortment when there is no product cost considered (Talluri and

Van Ryzin, 2004). In addition, Rusmevichientong et al. (2014) find the revenue-ordered

assortments perform well even when the uncertainty in customer preferences is considered

in the single period assortment planning problem. In the revenue-ordered assortment, a

product will not be included in the assortment when its unit revenue is lower than those

of products in the assortment. This may not be true when the uncertainties in customer

preferences are considered under a multi-period context. In our problem, each product

has its own cost which is equal to the sum of costs of all components used in it. In

this case, the revenue-ordered assortment with no consideration of cost in the literature

will be equivalent to the profit-ordered assortment in our studied problem. In this series

of experiments, 10 instances are generated to test if the profit-ordered assortment is

optimal to our problem and they are titled as PA1-10 (PA represents “product line and

assortment”). In each instance, there are 5 products and 5 components. The maximum

number of products deployed in the product line is set as S = 4. The number of periods

is set as T = 3 and the corresponding tree structure can be found in Figure B2.1 at

Section B1 of Appendix B. Specifically, the number of nodes in the scenario tree for each

instance is set as |T | = 15. The corresponding product line and assortment decisions in

each instance are shown in Table 4.4. In this table, product indexes are in the order of

unit product profits from high to low, i.e., product 1 has the highest unit profit, product

2 has the second highest unit profit and so on. The unit profit for each product variant

is fixed through the selling season. In the “Product line” column, we count the number

of scenario tree nodes when a particular product variant is included in the dynamic

assortment. Correspondingly, the column of “No. of assort. in” counts the number of

nodes in which a particular product variant is included in the dynamic assortment. The

last column, “No. of assort. out” indicates the number of assortments which do not

have a particular product variant. Note that the maximum number of assortments in

which a variant included or not included is 14, because there are 14 nodes in the scenario
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tree (excluding the root node), and each node will have a specific assortment determined

based on the corresponding customer preferences.

Table 4.4: Product line and assortment decision structures

Inst. No.
Product line No. of assort. in No. of assort. out

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

PA1 1 1 1 0 0 14 14 10 0 0 0 0 4 14 14

PA2 1 1 1 1 0 14 14 14 11 0 0 0 0 3 14

PA3 1 1 1 0 0 14 14 11 0 0 0 0 3 14 14

PA4 1 1 0 1 0 14 13 0 10 0 0 1 14 4 14

PA5 1 1 1 1 0 14 14 12 10 0 0 0 2 4 14

PA6 1 1 1 1 0 14 14 13 11 0 0 0 1 3 14

PA7 1 1 1 0 0 14 10 12 0 0 0 4 2 14 14

PA8 1 1 1 0 0 14 11 12 0 0 0 3 2 14 14

PA9 1 1 0 0 0 14 13 0 0 0 0 1 14 14 14

PA10 1 1 1 1 0 14 14 9 5 0 0 0 5 9 14

From the table, it is clear that the profit-ordered assortments may not always be

optimal in both product line decisions at the beginning of the selling season and assort-

ment decisions in each period of the season. For example, the product line decisions in

the instance PA4 are not in the form of profit-ordered assortment, i.e., product 3 does

not show in the optimal solution while product 4 does. Additionally, in the instances

PA7 azd PA8, product 3 appears in more assortments than product 2 does, indicating

the optimal assortments for some scenario nodes are not profit-ordered.

Another interesting observation is that in the instances when profit-ordered assort-

ments are optimal, the quantity of product variants included in the optimal product line

decisions is not same as the quantity of variants in the assortment at each node. For

example, product variant 3 in instance PA1 appears in the product line decision but is
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not included in the assortment of 4 scenario nodes. This is caused by the flexibility in

changing the assortment decisions based on the estimated customer preferences.

The aforementioned observations illustrate the complexity in the structure of the

optimal solution to the studied problem and show that the heuristic of profit-ordered

assortments may not work well. Even for some instances with optimal solutions in the

structure of profit-ordered assortment, it is hard to construct the optimal assortment

for each node in the scenario tree because the amounts of variants included in the

optimal assortments in various nodes are different. In this case, the experiments results

demonstrate that the proposed B&P algorithm is necessary for solving the problem in

this chapter.

4.5.3 Impacts of component commonality and component unit cost

In this subsection, a series of numerical experiments will be conducted to explore the

impacts of component commonality and component unit cost on the product line and

assortment planning decisions and the total expected profits.

Component commonality

Firstly, we will test if the component commonality will impact the product line and

assortment decisions by using one common component which is shared by all product

variants. There are two settings in this experiments. It is assumed that each product are

assembled from two different components with the same unit cost. In the first setting, a

system referred to as commonality system (denoted as C ) is considered. In this system,

each product uses one unit of dedicated component which is uniquely used by one product

variant, and one unit of common component which is shared by all product variants. In

the second setting, a dedicated system (denoted as D) in which each product variant

is built from two dedicated components is considered. In other words, the common

component in the C system is replaced with a dedicated component with the same cost
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for each product variant, resulting in a D system. We will compare the decisions and

total expected profits in these two systems to find if there are any changes.

Ten problem instances are generated to test the role of component commonality in

impacting the product line and assortment decisions. We use CD1-10 to denote those

instances (CD represents “common and dedicated”). In each instance, the tree structure

is shown in Figure B2.1 at Section B1 of Appendix B. In addition, all product variants

have the same selling price. The number of components used in each product variant

is fixed and the failure rates of components are same. In this way, the unit profit and

failure probability do not vary over different product variants so that their impacts

on both product line and assortment decisions will be controlled. Table 4.5 illustrates

the comparison between the dedicated system and commonality system of the tested

instances. The second and third columns report the corresponding total expected profits

of commonality and dedicated systems respectively. The column, “If decisions change?”,

represents if the product line and assortment decisions in both system are identical or

not. For the same instance, the higher expected profits will be highlighted in boldface

for the ease of comparison.

From the table, the last column indicates there are no changes in product line and

assortment decisions when replacing common components by dedicated components.

However, such replacement will result in the dedicated systems with lower total expected

profits. The reason lies upon the pooling effect of the usage of common component, i.e.,

that usage will decrease the component quantity required in the system such that the

uncertainties embedded in the dedicated component demands in the D system will be

pooled into the uncertainty of one common component demand in the C . For exam-

ple, consider a commonality system with five product variants, each of them using one

dedicated component and one common component. The total number of components

required is six. If the common one is replaced by a dedicated one for each variant, then

four more dedicated components will be handled in the D system. In this case, more
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Table 4.5: The comparison between C and D systems

Inst. No.
C system D system If decisions

expected profits expected profits change?

CD1 75925.4 75908.4 NO

CD2 92465.6 92443.8 NO

CD3 106259.0 106236.0 NO

CD4 96733.9 96718.8 NO

CD5 93959.1 93924.7 NO

CD6 101413.0 101385.0 NO

CD7 86625.3 86600.3 NO

CD8 98952.5 98937.5 NO

CD9 99441.4 99419.2 NO

CD10 91046.3 91032.5 NO

components are exposed to demand uncertainties, leading to more units to be ordered

for manufacturing and repair. This results indicate the commonality of components will

impact the total expected profits and introducing the common components to the system

may potentially increase the expected total profits.

Component unit cost

In this series of numerical experiments, we want to examine if the changes in the costs

of common and dedicated components will affect the expected total profits earned by

the OEM. Instances CD1-10 in Section 4.5.3 will still be used but the unit costs (cc)

of common components in the C system and those (cd) of corresponding dedicated

components in the D system will be changed. Let ∆cc and ∆cd denote the percentage

changes in common component unit cost in C system and corresponding component

unit cost in D system respectively. For each instance, ∆cc and ∆cd are selected from

{−40%, −20%, 20%, 40%}. The results are summarized in Table 4.6.
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Table 4.6: Impacts of price changes in common and dedicated components

Inst.
Percentage change in C system expected profits Percentage change in D system expected profits

No. ∆cc = −40% ∆cc = −20% ∆cc = 20% ∆cc = 40% ∆cd = −40% ∆cd = −20% ∆cd = 20% ∆cd = 40%

CD1 5.519% 2.759% -2.759% -5.519% 5.529% 2.764% -2.764% -5.529%

CD2 5.533% 2.767% -2.767% -5.533% 5.544% 2.772% -2.772% -5.544%

CD3 5.446% 2.723% -2.724% -5.446% 5.456% 2.728% -2.729% -5.457%

CD4 5.548% 2.774% -2.774% -5.548% 5.554% 2.777% -2.777% -5.555%

CD5 5.466% 2.733% -2.733% -5.466% 5.483% 2.741% -2.742% -5.483%

CD6 5.537% 2.769% -2.769% -5.538% 5.549% 3.775% -2.775% 5.550%

CD7 5.449% 2.725% -2.725% -5.449% 5.463% 2.731% -2.731% -5.463%

CD8 5.435% 2.718% -2.718% -5.435% 5.442% 2.721% -2.721% -5.442%

CD9 5.453% 2.727% -2.753% -5.453% 5.464% 2.732% -2.732% -5.463%

CD10 5.465% 2.733% -2.733% -5.465% 5.472% 2.736% -2.736% -5.472%

AVG. 5.485% 2.743% -2.745% -5.485% 5.496% 2.748% -2.748% -5.496%

From the table, it is clear that there is no significant differences between the impacts

of the common component cost on the total expected profits in C system and those of

the dedicated component cost on the total expected profits in D system. The average

changes in both systems are very closed to each other, 2.745% for commonality system

and 2.748% for dedicated system. In this case, one managerial insight may be it is better

to lower the costs of both common and dedicated components and there is no significant

priorities for lowering the cost of a particular component type.

4.5.4 Branch-and-price algorithm performance

In this subsection, a total of 24 instances are randomly generated to compare the efficien-

cies and performances of the proposed B&P algorithm and the CPLEX MIP solver. The

instances are titled as BP1-24 (BP represents “branch-and-price”) respectively. When

generating the instances with random data, we limit the total cost of all components

used in a product to be lower than the unit price of that product to guarantee a positive

unit profit. The number of variables, constraints, and nonzero elements for all tested

instances are shown in Table B2.1 enclosed in Section B2 of Appendix B. As shown
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in the table, each instance has |N | · |T | binary variables xnm. In addition, there are

|N |· |T | integer variables dnm and |C| · |T | integer variables qcm so that the total amount

of integer variables in in each instance is (|N |+ |C|) · |T |. The scenario tree structures

used in the instances are shown in Section B1 of Appendix B.

For each instance, the time limits for running both B&P algorithm and CPLEX MIP

solver are set as 7200 seconds and the optimality gaps are set as 0.5 %. The performances

of both solution methods are compared based on the solution quality and time as shown

in Table 4.7. Within the same instance, if one method performs better than the other,

the corresponding results will be highlighted. For example, in Instance 1, both methods

can obtain the same best objective value, i.e., zMIP = zBP = 30336.8, so both zMIP and

zBP are highlighted in boldface. However, the B&P algorithm can solve the instance in

11 seconds while the solution time of CPLEX solver is 361.77 seconds. To highlight this

difference, we put the solution time of B&P algorithm in boldface to indicate it performs

better than CPLEX solver in computation time.

From Table 4.7, it can be concluded that the B&P algorithm performs better than the

CPLEX solver in general. From the perspective of solution quality, the B&P algorithm

obtains better solutions in 16 out of 24 instances. In the other 8 instances, the solutions

obtained by the B&P algorithm are same as those obtained by the CPLEX solver. From

the perspective of computation time, the B&P algorithm dominates the CPLEX solver:

The CPLEX solver can only solve 7 instances in two hours while the B&P algorithm

can solve all instances in minutes and for these 7 instances, the computation time of the

B&P algorithm is shorter than that of the CPLEX.

4.6 Conclusions and Future Research Directions

In this chapter, we consider a dynamic assortment planning problem for an OEM who

launches and sells the product variants through an online platform under uncertain

customer preferences over a multi-period selling season. The OEM first determines the
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Table 4.7: The efficiency of the B&P algorithm

Inst. Inst. size CPLEX B&P Algorithm

No. |N | |C| |T | zMIP Time (s) Gap zBP Time (s) Gap

BP1 5 5 15 30336.80 361.77 < 0.5% 30336.80 10.21 < 0.5%

BP2 5 5 15 59931.10 46.44 < 0.5% 59933.40 7.60 < 0.5%

BP3 5 10 15 46712.60 40.27 < 0.5% 46712.60 14.02 < 0.5%

BP4 5 10 15 50947.30 181.53 < 0.5% 50947.30 22.14 < 0.5%

BP5 5 15 15 30983.20 > 7200 2.33% 36983.20 27.24 < 0.5%

BP6 5 15 15 59390.10 165.41 < 0.5% 59390.10 28.20 < 0.5%

BP7 10 5 15 49379.70 > 7200 12.97% 49379.70 61.58 < 0.5%

BP8 10 5 15 42259.80 > 7200 16.41% 42259.80 29.72 < 0.5%

BP 9 10 10 15 58382.50 > 7200 2.28% 59756.00 98.22 < 0.5%

BP10 10 10 15 63386.00 > 7200 3.03% 63793.00 100.88 < 0.5%

BP11 10 15 15 66950.70 > 7200 3.87% 67502.60 170.77 < 0.5%

BP12 10 15 15 79031.10 > 7200 4.20% 79257.90 60.55 < 0.5%

BP13 5 5 40 21889.50 356.29 < 0.5% 21889.50 58.50 < 0.5%

BP14 5 5 40 28761.10 314.26 < 0.5% 28761.10 82.30 < 0.5%

BP15 5 10 40 54971.50 > 7200 7.75% 55043.30 62.26 < 0.5%

BP16 5 10 40 35149.10 > 7200 2.14% 35149.10 34.68 < 0.5%

BP17 5 15 40 46169.20 > 7200 3.14% 46173.80 137.27 < 0.5%

BP18 5 15 40 36871.40 > 7200 5.48% 36871.40 92.73 < 0.5%

BP19 10 5 40 61868.90 > 7200 25.59% 61868.90 146.05 < 0.5%

BP20 10 5 40 41104.70 > 7200 18.68% 41104.70 86.47 < 0.5%

BP21 10 10 40 40693.90 > 7200 22.72% 40693.90 244.33 < 0.5%

BP22 10 10 40 69192.65 > 7200 27.70% 69266.10 188.37 < 0.5%

BP23 10 15 40 52761.60 > 7200 26.71% 52761.60 217.59 < 0.5%

BP24 10 15 40 66507.00 > 7200 27.21% 66507.00 333.21 < 0.5%
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variants in the product line at the beginning of the selling season. During each period of

the season, the OEM can adjust the assortment produced based on the predetermined

product line decisions and the estimated customer preferences. Such adjustment can

be easily exercised by the online platform through changing a product’s “in-stock” or

“out-of-stock” status displayed to customers in each period. In addition, we consider

the stocking decisions of components used for both manufacturing the new products and

repairing the sold products under warranty. This problem models the situation faced by

many OEMs who sell product assortments through the online platforms and are able to

utilize the historical data to estimate the customer preferences over the selling season.

To our best knowledge, this multi-period dynamic assortment planning problem with a

blended setup of uncertain customer preferences and multiple component was unexplored

in the literature.

To handle the uncertainty embedded in the estimation of customer preferences over

the selling season, a multi-stage stochastic programming model is proposed for this prob-

lem. The proposed model is becoming hard to solve when its size increases. Therefore,

we propose a B&P algorithm based on the block-angular structure of the stochastic pro-

gramming model. In the numerical experiments, we first study the advantage brought by

the dynamic assortment compared to the static assortment. Afterwards, the structure of

the optimal solution of this problem is investigated. Through some problem instances,

we find the well-known revenue-ordered assortment which is optimal to the static assort-

ment planning problem cannot guarantee the optimality to the studied problem. This

observation also highlights the necessity of using B&P algorithm as a solution method.

In addition, the impacts of component commonality and unit cost on the decisions and

total expected profits are also explored. Finally, through the extensive numerical ex-

periments, the performance of the B&P algorithm is confirmed through comparing with

CPLEX solver. The B&P algorithm can provide a high quality solution and the corre-

sponding computation time is reasonable.
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The future research on this topic can be extended to incorporating more conditions

or constraints in the real-life scenario, such as spare parts or components inventory

control, product recycling and remanufacturing, and so on. As for handling uncertainty

in customer preferences, more techniques such as robust optimization can be applied

when less information on preferences is available to the customer preferences.
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Chapter 5

Integration of assortment planning and

spare parts procurement and remanufac-

turing under warranty service: A product

lifecycle perspective

5.1 Introduction

In this chapter, we study an assortment planning problem from the perspective of the

product lifecycle. In this problem, the product lifecycle consists of two phases: the sell-

ing season and the end-of-life (EOL) phase. In the selling season, the original equipment

manufacturer (OEM) selects the products included in the assortment based on the cus-

tomer preferences and produce them in an assemble-to-order system. After the selling

season, the production stops and the supply of certain parts is permanently discontinued

by suppliers. This is often caused by the fact that those parts cannot be utilized in the

new generation of products. This is popular in the industries of electronic equipment

such as PCs and cell phones. In these products, some key components, like the CPU,

GPU, etc., are developed in a fast manner, which is normally one year. However, the
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demand for those components still exists during the product EOL phase because the

OEM has to provide warranty services to customers when the components fail in the

products sold.

To ensure sufficient component inventory meeting the repair demand during the prod-

uct EOL phase, the two typical countermeasures adopted by the OEM is resorting to

alternative suppliers who are able to provide extra production service of components

or the last-time buy (LTB) operation which requires the OEM place a final order of

components to the suppliers at the beginning of the EOL phase to guarantee the repair

demand in the rest periods of that phase. In practice, these two approaches are not

economical-friendly to a lot of stakeholders, e.g., the OEM, the society, etc. On one

hand, the extra production of components during product EOL phase for a supplier can

take more than doubled costs than regular production during the selling season due to

loss of scale economies (Inderfurth and Kleber, 2013). One the other hand, the LTB

strategy incurs extremely high inventory levels being held over the product EOL phase,

generating a high level of holding costs and putting OEM under the jeopardy of high

component obsolescence risks. In recent years, new solutions such as remanufacturing

components from used products (hereafter referred to as the installed base) which are

returned by customers are implemented in practice as feasible and relatively low-cost al-

ternatives. In the remanufacutring approach, the returned products are usually collected

by OEMs through various trade-in or buyback programs when the customers switch to

next-generation products. The OEM disassembles the returned products to obtain the

recoverable components which will be turned into ready-for-use components through

remanufacturing process as another source of component inventory during the product

EOL phase (Shi, 2019). In this case, one important decision faced by the OEM is to

determine the quantity of the returned products to be disassembled and remanufactured.

Indeed, if too many returns are disassembled, the inventory holding costs of the reman-

ufactured components will be high, even though the repair demand is satisfied. On the
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contrary, if the amount of returns to be disassembled is low, the component inventory

may not be sufficient to cover the repair demand and finally results in the penalty on

backordered repairs.

However, when making the remanufacturing decisions, the OEM is usually faced up

with the uncertainties embedded in both the return rates of products and the failures

rate of components. The former type of uncertainty is brought by the unknown attitudes

of customers towards the trade-in or buyback programs. The latter type is due to the

insufficient historical data on the failures of the components, especially for the newer

implemented ones. Under these two types of uncertainties, the remanufacturing decisions

are more difficult to be made by the OEM.

The study in this chapter is closely related to two strands of literature. The first

strand is the literature on the retail assortment planning and the second is the litera-

ture on the spare parts inventory management during product EOL phase. The retail

assortment planning literature focus on the assortment planning decisions based on the

customer preferences to maximize the gross sales or profits subjected to various con-

straints (Ryzin and Mahajan, 1999; Ryzin, 2001). Among the studies in this field, the

customer preferences are captured by various choice models, such as multinomial logit

(MNL) model (Talluri and Van Ryzin, 2004; Wang, 2012b; Rusmevichientong et al.,

2014), locational choice model (Honhon et al., 2010), etc. A recent literature review on

this filed can be found at Kök et al. (2015). From the perspective of retailers, considering

only the impact of the customer preferences on the assortment decisions is reasonable be-

cause they are not involving any after-sales services over the product lifecycle. However,

this may not be true from the perspective of OEMs, because the assortment decisions

made by them determines the products produced and offered to the market and the

OEM are responsible to provide the after-sales services of the products sold. In this

case, other factors such as the costs of spare parts inventory and supply, and products

repairing costs should be considered when making the product assortment decisions to

138



Ph.D. Dissertation Shuai Zhang McMaster - Management Science

maximize the total profits over the product lifecycle.

The study in the chapter also related to the other strand of the literature on the

spare parts inventory management during the product EOL phase. The literature from

this strand mainly focus on securing the supplies for the spare parts used for the after-

sales services through various strategies particularly the warranty services during the

product EOL phase. This problem is valuable because the suppliers will not continue to

provide the spare parts to the OEM due to no regular demand for the products during

their EOL phase (Shi, 2019). However, during this phase, there is repair demand for

the spare parts from providing warranty services to the sold products by replacing the

failed components. To fulfill such demand, there are many strategies for resupplying

the spare parts discussed in the literature, such as LTB (Behfard et al., 2018; Hur

et al., 2018), remanufacutring recoverable parts collected by disassembling the returned

products (Inderfurth and Mukherjee, 2008; Behfard et al., 2015; Pourakbar et al., 2014)

and so on. A comment to this literature strand is that the product assortments handled

is usually given in advance and no assortment decisions are considered in the studied

problem.

In this chapter, we integrate the warranty service operations into the strategic as-

sortment planning for the OEMs. The contributions of this study are as follows. Firstly,

different from the existing literature on the assortment planning, we consider the lifecycle

costs of the products when making strategic product assortment planning decisions. To

be specific, the expected costs related to the warranty services for assortment products

during the EOL phase are included in the decision-making. Secondly, both components

LTB and remanufacturing strategies are adopted as the supply sources of the compo-

nents inventory during the EOL phase. To the best of our knowledge, this setting is

novel in both the literature of assortment planning and those of spare parts inventory

management for the products in the EOL phase. Finally, through the numerical ex-

periments, we explore the advantages of joint optimization on the assortment planning
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decisions and the spare parts procurement and remanufacturing decisions compared to

the separate optimizations on those decisions. Afterwards, we discuss the impacts of the

uncertainty levels of those two uncertainties on the the expected total profits obtained

by the OEM.

5.2 Problem Formulation

In this section, the formulations of the studied problem will be presented. A deterministic

model will be formulated at first. Afterwards, we will formulate a multistage stochastic

programming model to address the inherent uncertainties in both the return rates of

installed bases and the failure rates of components.

5.2.1 A deterministic mathematical programming model

In the studied problem, the product lifecycle have T periods and can be split into two

phases. Each period can be a season or a year.

The selling season

The lifecycle starts with a selling season, which is the the first phase. In this chapter,

it is assumed that the selling season only contains one period. At the beginning of the

selling season, the OEM is able to produce a set of product variants N = {1, . . . , N}

and has to select a subset of at most S product variants to form an assortment A to be

produced during the season, based on the estimated customer preferences. The selling

price of each product variant n ∈ N is denoted as Pn.

To model the demand for the product variants in the assortment A, we consider a

consumer choice model. To be specific, customers’ choice to a product variant within

the offered assortment is based on the multinomial logit (MNL) model. In this model,

a customer obtains utility Uit if he or she purchases product variant i ∈ A, given the

offered assortment A and the utility is determined by Ui = Vi +ϵi, in which Vi represents
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the mean utility of product variant i to the customer and ϵi is a random term which

represents the unobserved utility. For the ease of notation, we will denote the vector of

mean utilities of the customers towards all the product variants as V = (V1, . . . , VN ). If

the random term ϵi is assumed to be independent and identically distributed (i.i.d.) with

Gumbel distribution, the MNL model gives the utility maximization choice probability

(Train, 2009) that customer selects product variant i from assortment A as

γA
i = eVi∑

j∈A eVj + eV0
, ∀ i ∈ A, (5.1)

where V0 represents the customers’ utility of no purchase option.

In the proposed model, a decision variable γi is used to denote the estimated prob-

ability that a consumer will select product variant n ∈ N . Let en = eVn , ∀n ∈ N

represent the consumers’ utility for purchasing product n, we have

γn = xn · en∑
j∈N xj · ej + e0

, ∀n ∈ N (5.2)

where xn is binary variable and xn = 1 if and only if the product variant n is included

in the assortment A offered to customers.

Each product variant n ∈ N is a multi-indenture system in which the components

are non-identical and has a bill-of-material (BOM) which indicates the components used

in that product. The set of all the components used for the assembly of all products

variants is denoted as C = {1, . . . , C}. In addition, from the BOMs of product variants,

we can also obtain the information on all the variants using component c and will denote

the set of those variants as Nc.

The OEM first decides the assortment offered to the market based on the estimated

customer preferences at the beginning of the selling season. The expected revenue ob-

tained from selling products offered in the assortment A during the selling season (t = 1)
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is calculated as

Revenue =
∑

n∈N
Pn · wn1 (5.3)

where wn1 represents the fulfilled order amount (installed base) during the selling season

and satisfies constraints γnt ·M − 1 ≤ wn1 ≤ γnt ·M . In this constraint, γnt is defined in

equation (5.2) and M is the total market size faced by the assortment A. It guarantees

the ordered quantity for product variant n should be the maximum integer lower than

estimated demand.

During the selling season, asides from the revenue obtained from selling the product

variants in the assortment A, the OEM has to pay for the costs of procuring and holding

the components used for both fabricating those product variants and repairing the faulty

sold products under warranty. In the model, we assume that at most one unit of each

component type is used in one unit of each product variant. In addition, the unit

purchasing cost of component c is denoted as Kc. At the beginning of the selling season,

the OEM has to order components from the suppliers. The order quantity for component

c is denoted as qc1. For a component c, the total required amount dc1 includes two

demand streams for components. One stream is the total assembly demand da
c1 for

the offered product variants whose fabrication requires component c. The other is the

total repairing demand da
c1 for fixing faulty products having component c failures under

warranty, i.e., dc1 = da
c1 + dr

c1. To be specific, for the first stream, the assembly demand

da
c1 for component c at the selling season is computed as

da
c1 =

∑
n∈Nc

wn1. (5.4)

For the second stream, when the failure of product is caused by the failures of com-

ponents used in it. When a sold product fails during warranty periods, it will be sent to

the OEM for replacing faulty components. In this chapter, it is assumed each product
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failure only has one faulty component. Let ρcnt represent the average joint failure prob-

ability that a faulty product variant n having component c failure at period t. In this

case, the failure amount of product n caused by the failure of component c at period t

is equal to the product of ρcnt, the average joint failure rate, and wnt, the installed base

of that product at period t. Therefore, for the selling season, i.e., when t = 1, the total

repair demand of component c is calculated as

dr
c1 =

∑
n∈Nc

ρcn1 · wn1. (5.5)

The average failure rate of each component can be easily estimated based on the historical

data.

Product EOL phase

The selling season is followed by the product EOL phase which contains (T − 1) periods

(i.e., t = {2, . . . , T}). During this phase, the production stops and there is no market

demand for the product variants in the assortment. In this case, there will be no assembly

demand and only repair demand, i.e., dct = dr
ct, ∀ t ∈ T \ {1}. Moreover, the supply of

components is permanently discontinued in this phase. The OEM has to implement two

countermeasures to support the repair operations for faulty products under warranty

during the phase. The first one is final order policy, i.e., the OEM places the final

order for the components at the beginning of this phase (when t = 2) to replenish the

spare parts inventory. Let us denote the final order quantity for component c as qc2.

In addition, it is assumed that the OEM starts the buyback or trade-in programs at

the beginning of the product EOL phase, i.e., t = 2, to collect the returned products

and finally remanufactures those products to the ready-for-use spare parts to replenish

the inventory. Assume that, at period t ∈ T \ {1}, there is rnt fraction of wnt, the

product n installed base, is collected by the OEM as the returned products. All the

collected returns can be either disassembled into components for remanufacturing or
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disposed, because during the product EOL phase, there will be no future demand for

the end product such that there is no need for refurbishing the returned products for

resale. The components disassembled from the returned products can be remanufactured

with unit cost Cr and the OEM has to determine the quantity of returned products to

be remanufactured. However, such return collections and the remanufacturing process

may not be completed immediately. It is more realistic that there is considerable time

lag between when the returned products are collected and when the spare parts are

available to the OEM after the remanufacturing (Inderfurth and Kleber, 2013). In this

study, we restrict that the time lag to be one planning period, i.e., it takes one period to

recollect the returns and remanufacture the spare parts. As a result, the remanufacturing

quantity of the returned products is denoted as fnt ∈ [0, rnt wnt], ∀ t ∈ T \ {1}, and the

corresponding spare parts obtained through the remanufacturing at period t + 1 is equal

to
∑

n∈Nc
fnt, ∀ t ∈ T \ {1}. It is also assumed that the returned products not being

disassembled for remanufacturing will be disposed and not be carried to next period.

In this case, the total repair demand for component c are generated by the remaining

(1− rnt)wnt units of the installed base at period t and can be modelled as follows.

dr
ct =

∑
n∈Nc

ρcn1(1− rnt)wnt, ∀ t ∈ {2, . . . , T}. (5.6)

It should be noted that the product installed bases are changing over the periods.

Specifically, a portion of the installed base will not generate warranty claims and compo-

nent repair demand in the future because they are not in use or their warranty coverage

is terminated. In this case, at period t, we introduce the “remaining ratio” to repre-

sent the percentage of the installed base which will exist in the future and denote it as

δnt ∈ (0, 1). Therefore, the relationship between the installed bases of product n in two

consecutive periods t and t+1 is captured as wn(t+1) = δnt(1−rnt) wnt, ∀ t ∈ {2, . . . , T}.

To ensure the installed base in each period to be a positive integer, such a relationship

will be represented by δnt(1− rnt)− 1 ≤ wn(t+1) ≤ δnt(1− rnt) wnt, ∀ t ∈ {2, . . . , T}. In
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addition, the product returns appear in the period 2 when the OEM starts the buyback

or trade-in programs, and the installed bases in period 1 do not have the percentage

loss brought by the product returns. Therefore, the relationship between the installed

bases is represented as δn1wn1 − 1 ≤ wn2 ≤ δn1wn1. For the ease of exposition, such a

relationship will also be represented by equation (5.6) with rn1 set as 0 when t = 1.

During the product EOL phase, the repair demand of component c is satisfied by

the component inventory hold by the OEM. Let lt, ∀ t ∈ {1, . . . T} denote the number of

component c avaialable in stock in period t. Both overage and underage costs for com-

ponent c are incurred with unit holding and backlogging costs of Hc and Bc respectively.

Note the assumption that each faulty product only has one component failure. Hence,

the backlogging cost of a certain component can be estimated based on the cost related

to the unsatisfied warranty claims of the products using that component.

A deterministic model

In this part, the deterministic model of the studied problem will be formulated. The

deterministic model incorporates the product assortment planning decisions and com-

ponent procurement decisions during the product selling season, the final component

order decisions and remanufacturing decisions during the product EOF phase, and the

component inventory related decisions during the whole planning horizon. With loss of

generality, it is assumed that the product selling season consists one planning period

while the EOL phase consists T − 1 periods. This simplification can be further relaxed

to a multi-period selling season with minor changes in the proposed model.

All the notation used in the deterministic model (DM) is presented in Table 5.1 and

the corresponding model is formulated as follows.

max
∑

n∈N
Pn · wn1 −

( 2∑
t=1

∑
c∈C

Kcqct

+
∑
t∈T

∑
c∈C

(
Hclct + Bcbct

)
+

∑
t∈T \{1}

∑
n∈N

Crfnt

)
(DM1)
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Table 5.1: Notation used in the deterministic model

Sets and subscripts

N Set of products can be selected in the assortment
n Subscript of product n ∈ N
C Set of components used for product fabrication
c Subscript of component c ∈ C
Nc Set of products using component c, ∀ c ∈ C
Cn Set of components used for fabrication of product n, ∀n ∈ N
T Set of planning periods
t Subscript of planning period t ∈ T
A Set of product variants included in the assortment, A ⊆ N
Parameters

M Total market size for product assortment A
Pn Unit selling price of product n during the selling season
Cr Unit remanufacturing cost of returned product during the EOL phase

terminal period T
rnt Return rates of product n at period t, ∀n ∈ N , t ∈ T \ {1}
δnt Percentage of the installed base of product n will exist in the future at period t
Kc Unit purchasing cost of component c at period t ∈ {1, 2}
Hc Unit inventory holding cost per period for spare part c
Bc Backlogging cost of component c
ρcnt Average joint failure probability that a faulty product variant n having

component c failure at period t
en en = eVn is the consumers’ utility for product n during the selling season
S Limit on the number of product variants included in the assortment A
T Number of planning periods
Decision variables

xn Binary variable, xn = 1 if and only if the product variant n is included in
the assortment A offered to customers over the selling season

γn Probability of consumers placing an order on product n in the selling season
dn Fulfilled order amount for product n in the selling season
wnt Installed base of product n at period t
fnt Remanufacturing quantity of returned product n at period t
dct Demand for component c in period t
qct The order quantity of component c in period t ∈ {1, 2}
lct The number of component c available in stock in period t
bct The shortage amount of component c in period t
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s.t. γn

( ∑
j∈N

xjej + e0

)
= xnen, ∀n ∈ N , (DM2)

∑
n∈N

xn ≤ S, (DM3)

γn ·M − 1 ≤ wn1 ≤ γn ·M, ∀n ∈ N , (DM4)

dc1 ≥
∑

n∈Nc

(
1 + ρcn1

)
· wn1, ∀ c ∈ C, (DM5)

DM dct ≥
∑

n∈Nc

ρcnt · (1− rnt) · wnt, ∀ c ∈ C, ∀ t ∈ T \ {1}, (DM6)

δn(t−1)(1− rn(t−1))wn(t−1) − 1 ≤ wnt,

wnt ≤ δn(t−1)(1− rn(t−1))wn(t−1), ∀n ∈ N , ∀ t ∈ T \ {1}, (DM7)

fnt ≤ rnt · wnt, ∀n ∈ N ,∀ t ∈ T \ {1}, (DM8)

qc1 + lc0 = dc1 + lc1, ∀ c ∈ C, (DM9)

qc2 + lc1 = dc2 + lc2 − bc2, ∀ c ∈ C, (DM10)∑
n∈Nc

fn(t−1) + lc(t−1) = dct + bc(t−1) − bct + lct,

∀ c ∈ C, ∀ t ∈ T \ {1, 2}, (DM11)

xn ∈ {0, 1}, ∀n ∈ N , (DM12)

qct ∈ Z+, ∀ c ∈ C, ∀ t ∈ {1, 2}, (DM13)

wnt, fnt ∈ Z+, γn ∈ R+, ∀n ∈ N , ∀ t ∈ T , (DM14)

dct, lct, bct, ∀ c ∈ C, ∀ t ∈ T . (DM15)

In the model, the objective (DM1) represents the total lifecycle profits of offering

product assortment A to the market. It includes the revenue brought by the product

variants in the assortment during the selling season, the procurement cost of components

prior to the EOL phase, the product remanufacturing cost during the EOL phase, and

the inventory holding and backlogging costs of the components over the whole planning

horizon. In constraints (DM2), the choice probability of customers to each product is
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determined based on the MNL model and is ensured to be a non-negative real number in

constraints (DM14). Constraints (DM3) restrict the maximum number of the product

variants in the assortment. Constraints (DM4) with (DM14) together ensure the in-

stalled base of each product variant should be the maximum integer lower than or equal

to the estimated demand for that variant given by the MNL model in the selling season.

The demands for components during the selling season and the EOL phase are given in

constraints (DM5) and (DM6) respectively. Specifically, the component demand involves

both the needs for assembly and repairing faulty products under warranty in the selling

season as shown in constraints (DM5). After the selling season, there is no assembly, so

the component demand during the EOL phase only involves the needs for repairing as

shown in constraints (DM6). Constraints (DM7) dictate the changing patterns of the

installed base for each product variant during the planning horizon. Constraints (DM8)

and (DM14) restrict the quantity of product returns used for remanufacturing to be a

non-negative integer not higher than the total collected returns in a certain period during

the EOL phase. Constraints (DM9)-(DM11) are the component inventory balance con-

straints. Constraints (DM12) guarantee the assortment decision for all product variants

be binary variables. The decision variables regarding to the product variant installed

base, the quantity of the remanufactured product returns, and the order quantity, the

demand level, the inventory level, and the shortage amount of components are defined

as non-negative integers in constraints (DM14) and (DM15).

5.2.2 A multistage stochastic programming model

In the studied problem, when strategically planning an assortment of the product vari-

ants for the new generation of products, the OEM needs to estimate ρcnt, the average

joint failure probability that a faulty product variant n having the component c failure,

and rnt, the return rates of product n’s installed base at each period t of the plan-

ning horizon. Such estimations normally rely on the historical data collected from the
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old product generations. In the literature, the mainstream methods used for such esti-

mations include regression methods, machine learning methods, and so on (Limbourg,

2008). However, such estimations for the new product generation are usually coupled

with errors, especially when new types of components are adopted to upgrade the prod-

ucts to a new generation, and the customers’ willingness to participate in the buyback

or trade-in programs is altering.

Uncertainties in component failures and product returns

In this chapter, we will study a problem where a new type of component c′ is used in the

new product generation. To consider the aforementioned uncertainties embedded in the

estimations, we treat ρc′nt and rnt, n ∈ N , t ∈ T , as random variables. In other words,

the average joint failure probability regarding component c′ which is a new implemented

component is estimated with uncertainty. On contrary, those of component c ∈ C \ {c′}

are estimated with no uncertainty because their failure probabilities are stable when they

are already used in the older product generations. Let Pt be a random vector which has

GP
t different realizations, P̂1

t , . . . , P̂g1
t , . . . , P̂GP

t
t , where P̂g1

t = (ρ̂g1
c′1t, . . . , ρ̂g1

c′nt, . . . , ρ̂g1
c′Nt)

denotes the g1th realization of the average joint failure probability regarding com-

ponent c′ at period t. In the same fashion, we can define a random vector Rt for

the return rates of the product installed bases. It has GR
t different realizations with

R̂g2
t = (r̂1t, . . . , r̂nt, . . . , r̂Nt), ∀ g2 ∈ {1, . . . , GR

t }. To sum up, this setup corresponds

to the situation where the vectors of the average joint failure probability of component

c′ and the return rates of the product installed bases all together have Gt = GP
t · GR

t

possible realizations at each period, i.e., (P̂1
t , R̂1

t ), . . . , (P̂g1
t , R̂g2

t ), . . . , (P̂GP
t

t , R̂GR
t

t ) and

each realization can be deemed as a scenario. In addition, let ϕgt represent the prob-

ability that the joint random vector is revealed as (P̂g1
t , R̂g2

t ) at period t, such that∑Gt
g=1 ϕgt = 1, ∀ t ∈ T . Finally, all those scenarios will create the scenario tree T and

the total amount of scenario nodes in the tree is calculated as ΠT
t=1Gt. For the ease of
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notation, we will index the scenario node of the tree as m ∈ T and denote the cor-

responding probability of that node as ϕm. An illustration of the scenario tree with

two planning periods is presented in Figure 1. As shown in the figure, in the selling

season (note that we index the stages as 0, 1, · · · , T , so the selling season is indexed

as stage 1), there is no returns collected so that only the average joint failure proba-

bility has two realizations, i.e., P1 = (P̂1
1, P̂2

1). In the product EOL phase (the second

period/layer), there are four possible realizations of the joint random vector with two

realizations for the average joint failure probability and two realizations for the return

rate, i.e., (P2, R2) = {(P̂1
2, R̂1

2), (P̂2
2, R̂1

2), (P̂1
2, R̂2

2), (P̂2
2, R̂2

2)}. In this case, the number

of scenario nodes in the tth tree layer is equal to 2 · 4(t−1), ∀ t ∈ T .

Root

P̂1
1

(P̂1
2, R̂1

2)

(P̂1
2, R̂2

2)

(P̂2
2, R̂1

2)

(P̂2
2, R̂2

2)

P̂2
1

(P̂1
2, R̂1

2)

(P̂1
2, R̂1

2)

(P̂2
2, R̂2

2)

(P̂2
2, R̂2

2)

Figure 5.1: An illustration of the scenarios tree

A multistage stochastic programming model

To handle the inherent uncertainties in both the component failure probabilities and

the product return rates in this problem, the deterministic model will be extended to a
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multistage stochastic programming model as follows. Additional notation not listed in

Table 5.1 for the stochastic programming model is shown in Table 5.2. The model is

Table 5.2: Additional notation used in the multistage stochastic programming model

Sets and subscripts

T Set of all nodes in the scenario tree
Tt Set of scenario nodes in the first t layers of the scenario tree
T ′

t Set of scenario nodes excluding the first t layers of the scenario tree,
i.e., T ′

t = T \Tt

m Subscript of node in the scenario tree, ∀m ∈ T
a(m) Direct predecessor of node m, ∀m ∈ T
S (m) Set of direct successors of node m, ∀m ∈ T

Parameters

ϕm Probability of node m, ∀m ∈ T
ρcnm Average joint failure probability that a faulty product variant n having

faulty component c at node m, ∀ c ∈ C, ∀n ∈ Nc, ∀m ∈ T
rnm Return rates of product n at node m, ∀n ∈ N , ∀m ∈ T
δnm Percentage of the installed base of product n will exist in the future at

node m, ∀n ∈ N , ∀m ∈ T

Decision variables

dcm Demand for component c at node m, ∀ c ∈ C, ∀m ∈ T
wnm Installed base of product n at node m, ∀n ∈ N , ∀m ∈ T
qcm The order quantity of component c at node m, ∀m ∈ T
fnm Remanufacturing quantity of the returned product n at node m,

∀n ∈ N , ∀m ∈ T
lcm The number of component c available in stock at node m, ∀ c ∈ C,

∀m ∈ T
bcm The shortage amount of component c at node m, ∀ c ∈ C, ∀m ∈ T
znjm znjm = γnm · xjm, auxiliary variables used for linearization, ∀n ∈ N ,

∀ j ∈ N , ∀m ∈ T

formulated as follows.

max
∑

m∈T1

ϕm

∑
n∈N

Pnwnm −
∑

m∈T2

ϕm

∑
c∈C

Kcqcm−

∑
m∈T

ϕm

∑
c∈C

(
Hclcm + Bcbcm

)
−

∑
m∈T ′

1

ϕm

∑
n∈N

Crfnm (SP1)
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s.t. γn

( ∑
j∈N

xjej + e0

)
= xnen, ∀n ∈ N , (SP2)

∑
n∈N

xn ≤ S, (SP3)

γn ·M − 1 ≤ wnm ≤ γn ·M, ∀n ∈ N , ∀m ∈ T1, (SP4)

dcm ≥
∑

n∈Nc

(
1 + ρcnm

)
· wnm, ∀ c ∈ C, ∀m ∈ T1, (SP5)

SP dcm ≥
∑

n∈Nc

ρcnm · (1− rnm) · wnm, ∀ c ∈ C, ∀m ∈ T ′
1 , (SP6)

δn a(m)(1− rn a(m))wn a(m) − 1 ≤ wnm,

wnm ≤ δn a(m)(1− rn a(m))wn a(m), ∀n ∈ N , ∀m ∈ T ′
1 , (SP7)

fnm ≤ rnm · wnm, ∀n ∈ N , ∀m ∈ T ′
1 , (SP8)

qcm + lc0 = dcm + lcm, ∀ c ∈ C, ∀m ∈ T1, (SP9)

qcm + lc a(m) = dcm + lcm − bcm, ∀ c ∈ C, ∀m ∈ T2 \T1, (SP10)∑
n∈Nc

fn a(m) + lc a(m) = dcm + bc a(m) − bcm + lcm, ∀ c ∈ C, ∀m ∈ T ′
2 , (SP11)

xn ∈ {0, 1}, ∀n ∈ N , (SP12)

qcm ∈ Z+, ∀ c ∈ C, ∀m ∈ T2, (SP13)

wnm, fnm ∈ Z+, γn ∈ R+, ∀n ∈ N , ∀m ∈ T , (SP14)

dcm, lcm, bcm ∈ Z+, ∀ c ∈ C, ∀m ∈ T . (SP15)

Linearization

The proposed multistage stochastic programming model is a mixed integer nonlinear

programming model due to the nonlinear term γn
∑

j∈N xjej in constraints (SP2), for

all n ∈ N . In this section, the reformulation-linearization technique (RLT) (Sherali

and Adams, 2013) will be used to reformulate the model as a mixed integer linear

programming model through introducing auxiliary variables znj = γn · xj , ∀n, j ∈ N .

Furthermore, we need the four more sets of constraints to guarantee znj = γn · xj holds
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when xj = 0 and xj = 1, ∀ j ∈ N . Those additional constraints are

znj ≤ xj , (L1)

znj ≤ γn, (L2)

znj ≥ γn + xj − 1, (L3)

znj ≥ 0. (L4)

Through introducing above constraints, we ensure that auxiliary variables znj , ∀n, j ∈

N , will take different values based on the values of binary variables xj as follows.

znj =


γn · xj , when xj = 1;

0, when xj = 0.

As a result, the mixed integer nonlinear model will be reformulated as a mixed integer

linear model (labelled as SPL model) as follows.

max
∑

m∈T1

ϕm

∑
n∈N

Pnwnm −
∑

m∈T2

ϕm

∑
c∈C

Kcqcm−

∑
m∈T

ϕm

∑
c∈C

(
Hclcm + Bcbcm

)
−

∑
m∈T ′

1

ϕm

∑
n∈N

Crfnm (SPL1)

s.t. e0γn +
∑
j∈N

ejznj = xnen, ∀n ∈ N , (SPL2)

∑
n∈N

xn ≤ S, (SPL3)

γn ·M − 1 ≤ wnm ≤ γn ·M, ∀n ∈ N , ∀m ∈ T1, (SPL4)

dcm ≥
∑

n∈Nc

(
1 + ρcnm

)
· wnm, ∀ c ∈ C, ∀m ∈ T1, (SPL5)

dcm ≥
∑

n∈Nc

ρcnm · (1− rnm) · wnm, ∀ c ∈ C, ∀m ∈ T ′
1 , (SPL6)

δn a(m)(1− rn a(m)) · wn a(m) − 1 ≤ wnm,
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wnm ≤ δn a(m)(1− rn a(m)) · wn a(m), ∀n ∈ N , ∀m ∈ T ′
1 , (SPL7)

fnm ≤ rnm · wnm, ∀n ∈ N ,∀m ∈ T ′
1 , (SPL8)

qcm + lc0 = dcm + lcm, ∀ c ∈ C, ∀m ∈ T1, (SPL9)

qcm + lc a(m) = dcm + lcm − bcm, ∀ c ∈ C, ∀m ∈ T2 \T1, (SPL10)∑
n∈Nc

fn a(m) + lc a(m) = dcm + bc a(m) − bcm + lcm, ∀ c ∈ C, ∀m ∈ T ′
2 , (SPL11)

znj ≤ xj , ∀n ∈ N , ∀ j ∈ N , (SPL12)

znj ≤ γn, ∀n ∈ N , ∀ j ∈ N , (SPL13)

znj ≥ γn + xj − 1, ∀n ∈ N , ∀ j ∈ N , (SPL14)

znj ≥ 0, ∀n ∈ N , ∀ j ∈ N , (SPL15)

xn ∈ {0, 1}, ∀n ∈ N , (SPL16)

qcm ∈ Z+, ∀ c ∈ C, ∀m ∈ T2, (SPL17)

wnm, fnm ∈ Z+, γn, znj ∈ R+, ∀n, j ∈ N , ∀m ∈ T , (SPL18)

dcm, lcm, bcm ∈ Z+, ∀ c ∈ C, ∀m ∈ T . (SPL19)

5.3 Numerical Experiments

In this section, two sets of numerical experiments are performed. Firstly, problem in-

stances are generated to show the value of the joint optimization of the assortment

decisions in the selling season and the spare parts procurement and remanufacturing

decisions in the EOL phase. Afterwards, the impacts on total expected profits brought

by the uncertainties embedded in the product return rates and component failure rates

are explored. All numerical experiments are coded in C++ and carried out through the

IBM ILOG CPLEX 20.1 optimization package on a PC with an Intel Core i7-10750H

2.60 GHz CPU and 16 GB RAM.
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5.3.1 Joint optimization v.s. separate optimization

To highlight the benefits brought by incorporating the assortment planning decisions

with the considerations of the spare parts procurement and remanufacturing under war-

ranty service, we generate a set of instances to compare the total expected profits ob-

tained through both the joint optimizations and the separate optimizations. To be

specific, for one problem instance, the expected profits obtained through solving the

SPL model (i.e., joint optimization model) will be compared with those of determining

the assortment first at the selling season and then deciding the spare parts procurement

and remanufacturing decisions at the EOL product phase (i.e., separate optimization).

In the following, we denote the value of joint optimization as

τ = 100 · zJ − zS

zS
, (5.7)

where zJ denotes the total expected profits obtained by the joint optimization while

zS represents the total expected revenue obtained by the separate optimization. In this

experiment, we generate 12 problem instances in total and the instances are labelled from

JS1 to JS12 (JS represents “joint v.s. separate”). To be specific, the number of product

variants ranges from 5 to 7 and so does the number of components. The product prices,

component purchasing costs, remanufacturing costs, holding costs, and backlogging costs

in all instances are randomly generated. We implement different scenario tree structures

in these instances as follows. The number of periods included in the product lifecycle is

set as T = 3 or 4 in different instances, leading to the scenario trees with 3 or 4 layers

respectively. The whole lifecycle consists a one-period selling season and a 2-period or

4-period product EOL phase. The number of possible realizations of both product return

rate and component failure rate is set as 2. In this case, in the selling season layer of

the tree, one parent node has two branches (or children nodes in the next layer) while

four branches for the parent nodes in the non-leaf EOL layer of the tree. This results
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to 43 or 171 nodes in the whole tree respectively. The corresponding results are shown

in Table 5.3 and the higher profit obtained by either of two optimization strategies is

highlighted in boldface.

Table 5.3: The value of dynamic assortment decisions

Instance Inst. size
zS zJ τ

No. |N | |C| T |T |

JS1 5 5 3 43 7611.67 7702.89 1.20%
JS2 5 5 3 43 12024.8 12095.4 0.59%
JS3 6 6 3 43 9679.99 9847.64 1.73%
JS4 6 6 3 43 3885.13 3952.58 1.73%
JS5 7 7 3 43 1139.47 1264.33 10.96%
JS6 7 7 3 43 902.379 1123.62 24.51%
JS7 5 5 4 171 8141.54 8283.72 1.75%
JS8 5 5 4 171 5721.77 10010.4 1.82%
JS9 6 6 4 171 9831.78 6527.4 14.08%
JS10 6 6 4 171 3640.73 4139.57 13.70%
JS11 7 7 4 171 4753.42 5640.13 18.65%
JS12 7 7 4 171 2330.7 2758.52 18.36%

From the results in Table 5.3, we can see that the benefits brought by joint opti-

mization is significantly increased as the quantities of both the product variants and the

components in the instance rise. This indicates that when the OEM has many products

variants which can be put into the assortment or many components used in those vari-

ants, they should determine the assortment decisions from a lifecycle perspective, i.e.,

they need to consider incorporating the spare parts procurement and remanufacturing

with assortment planning. Meanwhile, the benefits of joint optimization is more signif-

icant when more periods are included in the planning horizon. Specifically, the values

of joint optimization in the instances JS7-JS12 are higher than those in the instances

JS1-JS6, which have one less period. This observation is due to that, as the number of

periods in the product EOL phase rises, the costs for providing the warranty service to a

product will increase, weakening the role of the customer preferences on the assortment

planning decisions.
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5.3.2 Impact of uncertainty levels

In this chapter, we consider two types of uncertainties, one is embedded in the product

return rates and the other is in the component failure rates. To investigate the impacts

of those uncertainties on the total expected profits gained by the OEM through selling

and maintaining the assortment over the whole product lifecycle, we set up numerical

experiments. Specifically, we aim to explore the impacts of the uncertainty levels of both

uncertainties on the decisions made by the OEM.

In the experiments, we randomly generate 30 problem instances. These instances

consist of 10 sets of problem instances and each set has 3 instances with different scales

of uncertainty. Those instance sets are labelled from IU1 to IU10 (IU represents “impact

of uncertainty”). In the same instance set, the three instances have various uncertainty

levels for both the product return rates and the component failure rates. Specifically,

the parameters of the product return rates and the component failure rates in the three

instances are generated from three different uniform distributions: Uniform[5,30], Uni-

form[10, 25], and Uniform[15, 20], respectively. The corresponding results are shown in

Table 5.4.

Table 5.4: The expected total profits gained under different uncertainty levels in the
product return rates and component failure rates

Instance set The expected total profits

[5, 30] [10, 25] [15, 20]

IU1 10522.90 12165.30 11928.50
IU2 10502.20 10490.90 10548.60
IU3 9311.65 9607.29 9768.81
IU4 7654.94 8611.81 8833.56
IU5 9451.09 9891.33 9749.79
IU6 8214.87 8500.24 8346.56
IU7 15795.30 15942.50 16146.30
IU8 14733.80 14760.00 15092.10
IU9 12769.50 12510.80 12648.30
IU10 10652.40 10720.60 11055.90

Average 10960.87 11320.08 11411.84
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From the table, we can see that generally the OEM could obtain higher expected

total profits when the size of the uncertainty set decreases. The average expected total

profits of the instances increase from 10960.87 to 11320.08 when the uncertainty set is

changed from Uniform[5, 30] to Uniform[10, 25] and finally reaches the greatest value

11411.84 when the uncertainty set becomes Uniform[15, 20]. This observation indicates

the uncertainty levels significantly impacts the expected total profits gained by the OEM.

A managerial insight can be derived accordingly, i.e., the more the errors the OEM can

diminish when estimating both the product return rates and component failure rates,

the higher the expected total profits could be obtained.

5.4 Conclusions and Future Research Directions

In this chapter, we studied an assortment planning problem from the perspective of

the product lifecycle. Specifically, we assume that the product lifecycle consists of two

phases: one is the selling season and the other is the EOL phase. In the selling season,

the OEM selects the products put in the assortment based on the customer preferences

and produce them in an assemble-to-order system. After the selling season, the produc-

tion stops and the supplies of certain parts are permanently discontinued by suppliers.

We first developed a deterministic model for this problem and then extended it in to

a multistage stochastic programming model when the uncertainties embedded in the

estimations of both the products return rates and components failure rates. The aim

of this study is to explore the impacts on product assortment decisions brought by im-

plementing the LTB and remanufacturing strategies to supply the spare parts through

the warranty periods. Through the numerical experiments, we first demonstrated the

advantages of joint optimization on the assortment planning decisions and the spare

parts procurement and remanufacturing decisions compared to the separate optimiza-

tions on those decisions. Afterwards, we explored the impacts of the uncertainty levels

of those two uncertainties on the the expected total profits obtained by the OEM. We
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found that the OEM can obtain higher expected total profits on average when the lev-

els of the uncertainty set decrease. This observation indicates the OEM can optimize

their decision-making by improving their estimation tools used for predicting both the

product return rates and component failure rates.

The future research directions include the following two aspects. Firstly, more re-

search can focus on developing solution methods for the proposed multistage stochastic

programming model in this chapter. This model is a mixed integer programming and

the commercial software (e.g., CPLEX and Gurobi) may not be able to solve the large

scale instances in the reasonable time. Therefore, new solution methods for solving the

large scale instances are valuable in practice. Secondly, as indicated in the numerical

experiments, the joint optimization on the product assortment decisions and spare parts

procurement and remanufacturing decisions can increase the expected total profits but

subjects to the estimation accuracy of both the products return rates and components

failure rates. In this sense, developing reliable and accurate estimation techniques by

utilizing the data-mining and machining learning methods is another future direction

under this topic.
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Chapter 6

Conclusions

In this chapter, the major contributions of this thesis are summarized. In this thesis,

we build up mathematical models based on adaptive robust optimization (ARO) and

stochastic programming (SP) for the spare parts inventory management under various

uncertainties in a multi-period planning horizon, especially for the substitute consumer

durable products offered in an assortment. In other words, our main focus is to incorpo-

rate the spare parts inventory management with assortment planning under uncertain-

ties. The uncertainties considered in this thesis are normally embedded in the prediction

and estimation process for many parameters needed in the assortment planning and spare

parts inventory management. To be specific, the uncertainties considered in this thesis

include the products and spare parts failure rates, the customer preferences, the used

products return rates, etc.

In Chapter 2, we present a comprehensive literature review on spare parts inventory

management and 142 papers are surveyed and classified. Two different typologies are

used for the literature classification. One typology classifies the literature based on the

systematic characteristics of spare parts inventory systems while the other typology is

built based on the research methodologies and topics. This review presents a big picture

on the spare parts supply chains to discuss the studies on spare parts inventory man-

agement. This big picture links the important aspects relevant to managing spare parts
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inventory system, such as product and spare part types, after-sales services, maintenance

operations, inventory management strategies and policies, supply sources, demand pat-

terns and so on. Furthermore, we classify the research methodology from the perspective

of supply chain analytics and current studies using descriptive, predictive and prescrip-

tive analytics are identified. Several research directions regarding reverse logistics, spare

parts demand pattern modelling, and big data analytics, are also highlighted for future

research in this field.

In Chapter 3, we consider a multi-period spare parts inventory system providing

spare parts for several products in an assortment and formulate a multi-stage adaptive

mixed-integer robust optimization model to minimize the total inventory costs when

the uncertainty embedded in the spare parts demand is involved. We aim to develop

the spare parts inventory policies for the original equipment manufacturer (OEM). We

improve the partition-and-bound method proposed by Bertsimas and Dunning (2016)

to solve the proposed model and conduct extensive numerical experiments to validate

its performance. Through the sensitivity analysis, we explore the impacts of spare parts

purchase cost, product popularity, and product backorder cost on the inventory policy

and total cost, and provide some managerial insights regarding how to adjust the order

quantities for both the dedicated and common spare parts used in the popular and

unpopular products and how to determine the order quantities of those spare parts

when the backorder costs of products using them are changing.

In Chapter 4, we consider a dynamic assortment planning problem for an OEM who

launches and sells the product variants through an online platform under uncertain cus-

tomer preferences over a multi-period selling season. We aim to develop the dynamic

products assortment decisions and spare parts inventory policies when there are uncer-

tainties in the customer preferences to the products in the assortment. A multi-stage
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stochastic programming model is proposed for this problem. We design a branch-and-

price (B&P) algorithm based on the block-angular structure of the stochastic program-

ming model. In the numerical experiments, we evaluate the advantage brought by the

dynamic assortment compared to the static assortment and the structure of the optimal

solutions. In addition, the impacts of component commonality and unit cost on the

decisions and total expected profits are explored. Finally, the performance of the B&P

algorithm is confirmed in the experiments through comparing it with CPLEX solver.

In Chapter 5, we study an assortment planning problem from the perspective of

the product lifecycle and intend to simultaneously determine the products assortment

decisions, spare parts inventory policies, and returned product remanufacturing decisions

when there are uncertainties in the failure rates of both the products and the spare parts,

and the return rates of the used products. We first develop a deterministic model for

this problem and then extend it in to a multistage stochastic programming model when

the uncertainties embedded in the estimations of both the products return rates and

components failure rates are considered. The aim of this study is to explore the impacts

on product assortment decisions brought by implementing the last-time buy (LTB) and

remanufacturing strategies to supply the spare parts over the warranty periods. In the

numerical experiments, we first evaluate the advantages of joint optimization of the

assortment planning decisions and the spare parts procurement and remanufacturing

decisions. Afterwards, we explore the impacts of the uncertainty levels of those two

uncertainties on the the expected total profits obtained by the OEM. Finally, we observe

that the OEM can optimize their decision making by improving their estimation tools

used for predicting both the product return rates and component failure rates.
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Appendix A

Chapter 3 Supplements

A1 Reformulation to the AMIO Model

To replace lct(dc) in the objective (3.6) and constraints (3.9) with constraints (3.7), the

AMIO model (3.6)-(3.10) can be rewritten as:

min
qp

ct(dc),bct(dc),θnt(d)
max
d∈Ξ

z =
∑

t∈T \{T −Lc+1,··· ,T }

∑
c∈C

Pc qp
ct(dc) (A.1)

+
∑
t∈T

∑
c∈C

Hc lct(dc) +
∑
t∈T

∑
n∈N

Bnθnt(d)

s.t.
∑

n∈Nc

θnt(d) ≥ bct(dc), ∀c ∈ C, t ∈ T , (A.2)

lct(dc) ≥ SSc, ∀c ∈ C, t ∈ T , (A.3)

qp
ct(dc), bct(dc), θnt(d) ∈ Z+, ∀c ∈ C, t ∈ T , (A.4)

where,

lc,t+1(dc) = lc,t(dc)−
(
dt+1

c + bc,t(dc)− bc,t+1(dc)
)
, ∀c ∈ C, t ∈ {1, · · · , Lc}, (A.5)

lc,t+1(dc) = lct(dc) + qp
c,t−Lc

(dc)−
(
dt

c + bc,t−1(dc)− bct(dc)
)
, ∀c ∈ C, t ∈ T \ {1, · · · , Lc},

dt
c =

∑
n∈N

dt
cn, ∀c ∈ C, t ∈ T , ∀ dt

cn ∈ dcn, (A.6)
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and dcn represents the demand for spare part c used in product n. In addition, the

inventory level at a certain period t can be represented as follows:

lc,t+1(dc) =



lc1(dc)−
∑t

k=1 dk
c + bct(dc), ∀ t ∈ {1, · · · , Lc},

lc,1+Lc(dc) +
∑t−Lc

k=1 qp
ck(dc)−

∑t
k=Lc+1 dk

c − bc,Lc + bct(dc),

∀ t ∈ T \ {1, · · · , Lc}.

(A.7)

In the following contents, we will use qp
ct, lct, bct, and θnt to replace qp

ct(dc), lct(dc), bct(dc),

and θnt(d) respectively. Note that we can find the summation of inventory levels in k

consecutive planning periods in the above equation, i.e.,
∑k+1

t=2 lct (note initial inventory

level is lc1), as

k+1∑
t=2

lct =


klc1 −

∑k
t=1

∑t
n=1 dn

c +
∑k

t=1 bct, ∀ k ∈ {1, · · · , Lc},

klc1 +
∑k−Lc

t=1
∑t

n=1 qp
cn +

∑k
t=1 bct −

∑k
t=1

∑t
n=1 dn

c , ∀ k ∈ T \ {1, · · · , Lc}.
(A.8)

Using equation (A.8) to replace the term
∑

t∈T lct(dc), i.e.,
∑T +1

t=2 lct in the objective

(3.6), we can obtain a new form of objective function without inventory level as:

z =
∑
c∈C

T −Lc∑
t=1

Pc qp
ct +

∑
c∈C

Hc
(
T lc1 +

T −Lc∑
t=1

t∑
n=1

qp
cn +

T∑
t=1

bct −
T∑

t=1

t∑
n=1

dn
c

)
+

N∑
n=1

Bn

T∑
t=1

θnt

=
∑
c∈C

[ T −Lc∑
t=1

(
Pcq

p
ct + Hc

t∑
n=1

qp
ct

)
+ Hc

T∑
t=1

bct + THclc0 −Hc

T∑
t=1

t∑
n=1

dn
c

]
+

N∑
n=1

Bn

T∑
t=1

θnt

=
∑
c∈C

[ T −Lc∑
t=1

(
Pc + (T − t)Hc

)
qp

ct + Hc

T∑
t=1

bct + THclc0 −Hc

T∑
t=1

(T − t + 1)dt
c

]

+
N∑

n=1
Bn

T∑
t=1

θnt (A.9)
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A2 Partition-and-Bound Method for Multistage AMIO

Algorithm 2 Partition-and-bound for multistage AMIO

Results: zalg, the objective value of multi-stage adaptive robust optimization problem obtained
using adaptive partition algorithm.
Step 1. Initialization. Input the parameters and initialize number of iteration k ← 1 and the
root node (any d ∈ Ξ).
Step 2. Solve the partition model of the problem, with one partition (Ξ(d̂j)) for every d̂j ∈
Leaves(T k), where Leaves(T k) represents the set of leaves of the scenario tree. The problem
is

zalg(T k) = min z

s.t.
∑
c∈C

[ T −Lc∑
t=1

(
Pc + (T − t)Hc

)
qp

ct + Hc

T∑
t=1

bct + THclc0 −Hc

T∑
t=1

(T − t + 1)dt
c

]

+
N∑

n=1
Bn

T∑
t=1

θnt ≤ z, ∀c ∈ C, t ∈ T , dt
c ∈ Ξ(d̂j), d̂j ∈ Levaes(T k), (A.10)

lct ≥ SSc, ∀c ∈ C, t ∈ T ,∑
n∈Nc

θnt ≥ bct, ∀c ∈ C, t ∈ T ,

qt
i = qt

j , ∀ d̂i, d̂j ∈ Leaves(T k),

∀ t : Ξ(d̂i)t−1 ∩Ξ(d̂j)t−1 ̸= ∅ (A.11)
qp

ct, bct, θnt ∈ Z+, ∀c ∈ C, ∀n ∈ N , t ∈ T .

where qt
i is equivalent to (qp

1t, . . . , qp
Ct)T , Equation (A.11) represents nonanticipativity constraints

(Bertsimas and Dunning, 2016), and

lc,t+1 =
{

lc1 −
∑t

k=1 dk
c + bct, ∀ t ∈ {1, · · · , Lc}

lc1 +
∑t−Lc

k=1 qp
ck −

∑t
k=1 dk

c + bct, ∀ t ∈ T \ {1, · · · , Lc}.

Step 3. Grow the tree. Initialize T k+1 ← T k and do the following. For each leaf node in
T k+1, add children to that leaf for each d̂ in the set of active uncertain parameters d̂j (obtained
by finding the constraints with zero slack) for the solution to (A.10).
Step 4. Determine partition Ξ(d̂j) for each child node d̂j ∈ T k+1 by the scheme:

Ξ(d̂i) ={d| ∥ d̂i
ti,j
− dti,j

∥2≤∥ d̂j
ti,j
− dti,j

∥2, ∀d̂j ∈ Siblings(d̂i)} (A.12)

∩ {d| ∥ Parent(d̂i)t′
i,j
− dt′

i,j
∥2≤∥ d̂j

t′
i,j
− dt′

i,j
∥2, ∀d̂j ∈ Siblings(Parent(d̂j))}

∩ · · · ∩Ξ,

where, ti,j is the minimum t such that d̂i
t ̸= d̂j

t ∈ Siblings(d̂i), i.e., the first time stage for which
the demand of d̂i differs from that of d̂j .

165



Ph.D. Dissertation Shuai Zhang McMaster - Management Science

Algorithm 3 Partition-and-bound for multi-stage AMIO (continued)

Step 5. Calculate a lower bound zlow(T k+1) of the fully adaptive solution by solving following
program:

zlow(T k+1) = min z

s.t.
∑
c∈C

[ T −Lc∑
t=1

(
Pc + (T − t)Hc

)
qp

ct + Hc

T∑
t=1

bct + THclc0 −Hc

T∑
t=1

(T − t + 1)dt
c

]

+
N∑

n=1
Bn

T∑
t=1

θnt ≤ z, ∀c ∈ C, t ∈ T , dt
c ∈ d̂j , d̂j ∈ Levaes(T k), (A.13)

lct ≥ SSc, ∀c ∈ C, t ∈ T ,∑
n∈Nc

θnt ≥ bct, ∀c ∈ C, t ∈ T ,

qt
i = qt

j , ∀ d̂i, d̂j ∈ Leaves(T k),

∀ t : Ξ(d̂i)t−1 ∩Ξ(d̂j)t−1 ̸= ∅
qp

ct, bct, θt ∈ Z+, ∀c ∈ C, t ∈ T .

where

lc,t+1 =
{

lc1 −
∑t

k=1 dk
c + bct, ∀ t ∈ {1, · · · , Lc}

lc1 +
∑t−Lc

k=1 qp
ck −

∑t
k=1 dk

c + bct, ∀ t ∈ T \ {1, · · · , Lc}.

Terminate if the bound gap
zalg(T k)− zlow(T k+1)

|zlow(T k+1)| (A.14)

is less than ϵgap. Otherwise, set k ← k + 1 and go to Step 2.

A3 A Three-stage Example with Two Products and Two

Spare Parts

The corresponding three-stage AMIO model in this example is as follows.

min z

s.t. (P1 + 2H1)qp
11 + (P1 + H1)qp

12 + H1(b11 + b12 + b13) + 3H1l11 −H1(3d1
1 + 2d2

1 + d3
1)

+ (P2 + 2H2)qp
21 + (P2 + H2)qp

22 + H2(b21 + b22 + b23) + 3H2l21 −H2(3d1
2 + 2d2

2

+ d3
2) + B1(θ11 + θ12 + θ13) + B2(θ21 + θ22 + θ23) ≤ z, ∀ dt

c ∈ d̂j , d̂j ∈ Leaves(T k),

(A.15)
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l11 + b11 − d1
1 ≥ SS1, l21 + b21 − d1

2 ≥ SS2, ∀ dt
c ∈ d̂j , d̂j ∈ Leaves(T k), (A.16)

l11 + qp
11 + b12 − (d1

1 + d2
1) ≥ SS1, l21 + qp

21 + b22 − (d1
2 + d2

2) ≥ SS2,

∀ dt
c ∈ d̂j , d̂j ∈ Leaves(T k), (A.17)

l11 + qp
11 + qp

12 + b13 − (d1
1 + d2

1 + d3
1) ≥ SS1,

l21 + qp
21 + qp

22 + b23 − (d1
2 + d2

2 + d3
2) ≥ SS2, ∀ dt

c ∈ d̂j , d̂j ∈ Leaves(T k), (A.18)

θ11 + θ21 ≥ b11, θ11 + θ21 ≥ b21,

θ12 + θ22 ≥ b12, θ12 + θ22 ≥ b22,

θ13 + θ23 ≥ b13, θ13 + θ23 ≥ b23,

qp
11, qp

21, qp
12, qp

22, qp
13, qp

23, b11, b21, b12, b22, b13, b23 ≥ 0.

For this small instance, we will solve it and then find the active uncertain parameters

in constraints (A.15), (A.16), (A.17), and (A.18) respectively. Even the instance has

only two products and two spare parts, the quantity of constraints is quite big. For

example, constraints (A.15) include (4 × 4 × 4) × (4 × 4 × 4) = 642 constraints. To

be specific, for each of the two spare parts in each period, the corresponding demand

has four possible realizations and each spare part has three rounds of demands, thus

there are 4 × 4 × 4 = 64 possible combinations for each one and 642 constraints in

total. Similarly, constraints (A.16) have 4 + 4 = 8 constraints, constraints (A.17) have

4× 4 + 4× 4 = 32 and constraints (A.18) have 4× 4× 4 + 4× 4× 4 = 128 constraints.

Clearly, the constraint quantity increases as the iteration number increases, making the

problem in later iteration harder to solve.

A4 Proof of Theorem 3.1

For constraints (3.17), we prove it by contradiction. Given an optimal solution x∗
j and z∗,

assume there exists an non-minimum sum-product of coefficients c′(2)t and corresponding

realized spare parts demands ξ̂′t
j ∈ Ξ(ξ̂j), i.e.,

∑T
t=1 c′(2)t · ξ̂′t

j − δ =
∑T

t=1 c(2)t · ξ̂t

j
, such
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that the active uncertain parameters are in the constraints with it:

T∑
t=1

c(1)t(ξ) · x∗t
j −

T∑
t=1

c′(2)t · ξ̂′t
j ≤ z∗, ∀ ξ̂j ∈ Leaves. (A.19)

If we replace
∑T

t=1 c′(2)t · ξ̂′t
j in constraints (A.19) with

∑T
t=1 c(2)t · ξ̂t

j
+ δ:

T∑
t=1

c(1)t(ξ) · x∗t
j −

T∑
t=1

c(2)t · ξ̂t

j
− δ ≤ z∗, ∀ ξ̂j ∈ Leaves.

⇔
T∑

t=1
c(1)t(ξ) · x∗t

j −
T∑

t=1
c(2)t · ξ̂t

j
≤ z∗ + δ, ∀ ξ̂j ∈ Leaves. (A.20)

In addition, for the constraints with minimum sum-product of coefficients c(2)t and

corresponding realized spare parts demands ξ̂
t

j
∈ Ξ(ξ̂j), they still hold when optimal

solution is achieved:

T∑
t=1

c(1)t(ξ) · x∗t
j −

T∑
t=1

c(2)t · ξ̂t

j
≤ z∗, ∀ ξ̂j ∈ Leaves. (A.21)

Comparing (A.20) and (A.21), we can conclude that (A.21) have lower slack than (A.20),

i.e., the active uncertain parameters are ξ̂
t

j
, which contradicts our assumption. For

(3.18), we can prove it in the same way as that of (3.17).

A5 Proof of Corollary 3.3

Constraints (3.12) lead to ΠC
c=1ΠT

t−1 | d̂t
c | constraints, since for the demand of spare part

c in a period t, there are | d̂t
c | possible realization such that there are ΠC

c=1ΠT
t=1 | d̂t

c |

combinations of realizations of all spare parts in every period. In contrast, constraints

(3.23) contain single constraint which has the combination of all spare parts demand

realization as d̂ = (d̂1, . . . , d̂c, . . . , d̂C)T , where d̂c = (d̂1
c , d̂2

c , . . . , d̂T
c )

Similarly, for constraints (3.13), given period t and spare part c, there are (Πt
k=1 |

d̂k
c |) number of constraints induced. The total quantity of constraints included is
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(
∑C

c=1
∑T

t=1 Πt
k=1 | d̂t

c |). For constraints (3.24), given a period t and a spare part c,

only one constraint which has the combination of the spare parts demand realization as

d̂t
c = (d̂1

c , d̂2
c , . . . , d̂t

c), thus leading to (C × T ) constraints.

A6 Illustration of Corollary 3.3 on the Example in A3

At the first iteration of partition-and-bound method, we take constraints (A.15) for

instance and write down all the constraints:

(P1 + 2H1) qp
11 + (P1 + H1) qp

12 + H1 (b11 + b12 + b13) + 3H1 l11 −H1(3 + 7 + 13)

+ (P2 + 2H2) qp
21 + (P2 + H2) qp

22 + H2 (b21 + b22 + b23) + 3H2 l21 −H2 (4 + 6 + 12)

+ B1(θ11 + θ12 + θ13) + B2(θ21 + θ22 + θ23) ≤ z,

(P1 + 2H1) qp
11 + (P1 + H1) qp

12 + H1 (b11 + b12 + b13) + 3H1 l11 −H1(4 + 7 + 13)

+ (P2 + 2H2) qp
21 + (P2 + H2) qp

22 + H2 (b21 + b22 + b23) + 3H2 l21 −H2 (4 + 6 + 12)

+ B1(θ11 + θ12 + θ13) + B2(θ21 + θ22 + θ23) ≤ z,

· · ·

(P1 + 2H1) qp
11 + (P1 + H1) qp

12 + H1 (b11 + b12 + b13) + 3H1 l11 −H1(6 + 10 + 16)

+ (P2 + 2H2) qp
21 + (P2 + H2) qp

22 + H2 (b21 + b22 + b23) + 3H2 l21 −H2 (7 + 9 + 14)

+ B1(θ11 + θ12 + θ13) + B2(θ21 + θ22 + θ23) ≤ z,

(P1 + 2H1) qp
11 + (P1 + H1) qp

12 + H1 (b11 + b12 + b13) + 3H1 l11 −H1(6 + 10 + 16)

+ (P2 + 2H2) qp
21 + (P2 + H2) qp

22 + H2 (b21 + b22 + b23) + 3H2 l21 −H2 (7 + 9 + 15)

+ B1(θ11 + θ12 + θ13) + B2(θ21 + θ22 + θ23) ≤ z,

The only difference among the above constraints is that they have various uncertainty

parameters, i.e., the demand realization for spare parts varies. If we apply the results

of Corollary 3.3, it is clear that, given a optimal solution qp and z∗, the constraints

with the lowest demand (3, 7, 13) for the first spare part, and (4, 6, 12) for the second
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spare part, are the constraints with active uncertain parameters. In this sense, we can

see that the rest constraints do not affect the partition result, thus can be treated as

redundant constraints and eliminated from the model. Same logic can be applied to

constraints (A.16), (A.17), and (A.18). Finally we can find that the constraints with

the highest demand (6, 10, 16) and (7, 9, 15) for two spare parts respectively are the

constraints with active uncertain parameters. With this treatment, we only need to

reserve the constraints with active uncertain parameters in the model, leading to only

one constraint in (A.15), two in (A.16), and two in (A.17) respectively.
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Appendix B

Chapter 4 Supplements

B1 Scenario Tree Structures

The scenario tree structure used in the Instances 1 to 12 is illustrated in Figure 2 while

that in Instances 13 to 24 is shown in Figure 3. The probability of each node in the

scenario tree is randomly generated.
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Figure B2.1: The scenario tree used in Instances 1-12
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Figure B2.2: The scenario tree used in Instances 13-24

172



Ph.D. Dissertation Shuai Zhang McMaster - Management Science

B2 Problem Instance Scales

Table B2.1: The scales of problem instances

Inst. No.
Inst. size No. of variables

No. of constraints No. of nonzeros
|N | |C| |T | Binary Integer Total

BP1 5 5 15 75 150 675 1576 5345
BP2 5 5 15 75 150 675 1576 5345
BP3 5 10 15 75 225 750 1726 7095
BP4 5 10 15 75 225 750 1726 7095
BP5 5 15 15 75 300 825 1876 8845
BP6 5 15 15 75 300 825 1876 8845
BP7 10 5 15 150 225 2025 5251 16540
BP8 10 5 15 150 225 2025 5251 16540
BP9 10 10 15 150 300 2100 5401 19890
BP10 10 10 15 150 300 2100 5401 19890
BP11 10 15 15 150 375 2175 5551 23240
BP12 10 15 15 150 375 2175 5551 23240
BP13 5 5 40 200 400 1800 4201 14545
BP14 5 5 40 200 400 1800 4201 14545
BP15 5 10 40 200 600 2000 4601 19495
BP16 5 10 40 200 600 2000 4601 19495
BP17 5 15 40 200 800 2200 5001 24445
BP18 5 15 40 200 800 2200 5001 24445
BP19 10 5 40 400 600 5400 14001 44690
BP20 10 5 40 400 600 5400 14001 44690
BP21 10 10 40 400 800 5600 14401 54190
BP22 10 10 40 400 800 5600 14401 54190
BP23 10 15 40 400 1000 5800 14801 63690
BP24 10 15 40 400 1000 5800 14801 63690
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