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Lay Abstract

Many bacteria reside in the human gut, and they are essential in our health and in
disease. It is evident that these bacteria are associated with inflammatory bowel disease,
but we do not yet know how and what bacteria are involved in this disease. In this
work, I describe a method to study these bacteria from stool that relies on growing
them and investigating their DNA. I showed that our approach helped us recover a
greater diversity of these bacteria and their genetic content in healthy individuals and
patients with inflammatory bowel disease compared to methods that use only DNA
based approaches. Using this method, we could better understand why some patients
responded to a treatment consisting of transferring stool content from healthy donor to
patient. I also investigated a group of viruses that infect bacteria and implemented a new
computational method based on DNA sequencing to test whether these viruses transfer
to the patient after receiving the fecal therapy. We also found that antibiotic treatment
before fecal therapy in patients with inflammatory bowel disease does not improve the
patient’s recovery.
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Abstract
The collection of microbes that inhabits the human gastrointestinal tract is known as
intestinal microbiota, and an enormous body of work has shown that their activities
contribute to health and disease. Ulcerative colitis (UC), which is a type of inflamma-
tory bowel disease, is considered to arise due to a disruption in the balance between the
immune system and microbiota. However, there is little consensus on the mechanism
of action and microbes involved in the disease manifestation. In this work, I applied
culture-enriched metagenomics (CEMG) to characterize the dynamics of gut microbiota
in healthy individuals and UC patients. I showed that CEMG provides a higher reso-
lution to study these microbial communities, and we used this approach to understand
microbial colonization after fecal microbiota transplantation (FMT) therapy in UC pa-
tient. I showed that sequencing approaches alone did not reveal consistent engraftment
across FMT responders. Using CEMG and a collection of bacterial whole-genome se-
quences, I showed patient-specific microbial strain transfer and a signature of commonly
engrafted genes only in patients who responded to FMT. In this work, I also investi-
gated the dynamics of a highly abundant bacteriophage, crAssphage, in an FMT donor
and implemented a new method to detect bacteriophage engraftment post-FMT using
SNP analysis. Finally, it has been suggested that antibiotic treatment before FMT may
increase the efficacy of FMT. However, in this work, I show that while antibiotics alter
the microbiome, there was no difference in the composition of the microbiome of antibi-
otic vs placebo group post-FMT. This is consistent with the randomized controlled trial
results that shows pretreatment with antibiotics does not improve FMT outcome. To-
gether, this work demonstrate the importance of in-depth microbiome analysis applied
to culture-dependent and -independent sequencing to characterize microbial changes
post-FMT.
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Chapter 1

Introduction

1.1 The human microbiome

The community of microbes (bacteria, viruses, archaea, and fungi) that inhabit the hu-

man body is known as microbiota, and their "theatre of activity" modulated by genotype

—genetic makeup — is referred to as the microbiome (Whipps et al. 1988; Berg et al.

2020). The number of microbial cells is as abundant as the somatic cell in humans

(Sender et al. 2016). These microbes collectively contain more genetic content than the

human genome. Estimates vary and are often exaggerated, but hundreds of microbial

species, with each genome containing at least 1000 genes, live on and inside the human

body (Locey and Lennon 2016), while there are 19-22 thousand host genes (Willyard

2018).

The human microbiome has been studied since the seventieth century (1670) with

Antonie van Leeuwenhoek’s work on discovering microorganisms, which he called "an-

imalcules". In 1884, Robert Koch elucidated the concept of pathogenicity and defined

microbial infection as the cause of human diseases. Although this definition was an

essential milestone in microbiology, it has shaped the role of microorganisms as harmful

1
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agents. Today, most members of the human microbiota are considered commensal- gen-

erally beneficial, if not essential, organisms that do not harm their host (Hugon et al.

2015).

The commensal microbes have co-evolved with their animal hosts for millions of

years and have become highly adapted to the specific host niches (Dominguez-Bello et

al. 2019). For example, Bifidobacterium acquired during birth are essential for neonate

development. These bacteria use human milk oligosaccharides (HMOs) that are indi-

gestible for infants as energy sources, and they facilitate babies’ immune, metabolic and

nervous system development (Zivkovic et al. 2011; Hamilton et al. 2017; Berger et al.

2020). Another example of mutualistic co-adaptation between commensal microbes and

the host is colonization resistance- the mechanisms microbiota uses to protect against

invasion of exogenous pathogens in their host (Levine and D’Antonio 1999; Hibbing et

al. 2010; Lawley and Walker 2013).

The two initiatives, Human Microbiome Project (HMP) and Metagenomics of the

Human Intestinal Tract (MetaHIT), contributed significantly to the understanding of

the microbiome associated with the healthy human (Turnbaugh et al. 2007; Ehrlich,

Consortium, et al. 2011). These programs revealed a tremendous microbial heterogene-

ity between healthy individuals and between body sites. The cross-sectional samples

from healthy individuals were primarily clustered based on body sites, suggesting that

the microbial communities residing in a body site (e.g. oral cavity, vaginal, lung, etc.)

from different individuals were more similar than communities present in multiple body

sites of the same individual. Longitudinal samples from the same individuals were more

similar than samples from healthy individuals, highlighting heterogeneity among indi-

viduals and stability of the healthy microbiome over time. HMP and MetaHIT examined

only samples from developed ("westernized") countries. However, other studies from in-

digenous communities showed that the non-western microbiomes consists of more species
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and an increase in the relative abundance of Firmicutes and Proteobacteria (De Filippo

et al. 2010; Yatsunenko et al. 2012; Schnorr et al. 2014; Clemente et al. 2015).

1.2 The human gut microbiome

The largest microbial community in the human body inhabits the gastrointestinal (GI)

tract, from the mouth to the anus, and they play a fundamental role in health. A growing

body of evidence suggest that the human gut microbiome is shaped by internal and

external factors such as host genetics (Benson et al. 2010; New et al. 2022), geography

(Deschasaux et al. 2018), diet (David et al. 2014), and disease state (Greenblum et al.

2012). Further, age affects the composition of the intestinal microbiota (O’Toole and

Jeffery 2015), and aspects including the maternal microbiome (Mueller et al. 2015), mode

of delivery (Dominguez-Bello et al. 2010), and antibiotics (Bokulich et al. 2016) shape

the early life microbiome in humans.

The gut microbiome modulates many critical functions, including fermentation of

indigestible dietary compounds, such as fibres, into short chain fatty acids (SCFA). Bu-

tyrate that is a SCFA that enhances the intestinal barrier and has anti-inflammatory

properties (Morrison and Preston 2016; Peng et al. 2007; Maslowski et al. 2009). It was

shown that the abundance of Lachnospiraceae, a butyrate-producing bacterial family

is reduced in patients with inflammatory bowel disease (IBD), suggesting the impor-

tance of these bacteria for modulating digestion and producing metabolites (Frank et

al. 2007; Morgan et al. 2012). The microbiome is also actively involved in protecting

against pathogens (Kamada et al. 2013; McDonald et al. 2020), and stimulating the

immune system (Wu and Wu 2012; Maynard et al. 2012). Germ-free (GF) and specific-

pathogen-free (SPF) mice studies have helped us to appreciate the delicate balance and

interactions between intestinal microbiota and the immune system (Hooper et al. 2012).

Microbial residence in the intestine shape systemic immunity by mediating regulatory T
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cells that maintain immune homeostasis and inflammation. For example, Polysaccharide

A (PSA) produced by Bacteroides fragilis directly affect regulatory T cell activity via

TLR2 signalling of dendritic cells (Round and Mazmanian 2010; Shen et al. 2012; Smith

et al. 2013).

1.3 The human gut microbiome in disease

Dysbiosis — loosely defined as disease-related disruption of microbiota — of the in-

testinal microbiota has been implicated in both GI-related and non-related diseases.

Although the term "dysbiosis" is often used to describe a deregulated microbial commu-

nity without considering that the healthy microbiota is highly heterogeneous, it is clear

that a shift in the microbial community of the intestine is associated with disease and

disorder in human (Shanahan et al. 2021). IBD, irritable bowel syndrome (IBS), and

colorectal cancer all have been associated with the altered gut microbiota (Zhang et al.

2022; Ford et al. 2018; Pleguezuelos-Manzano et al. 2020). Further, the balance and

composition of the intestinal microbes have been shown to affect depression, Parkinson’s

disease, and autism disorder through a more complex system called the gut-brain axis

(Bastiaanssen et al. 2019; Sampson et al. 2016; Sharon et al. 2019). These microbial

disruptions could be manifested in the relative abundance of a diverse group of bacterial

phyla, specific strains, and functional changes. Recognizing the cause-and-effect rela-

tionship between the intestinal microbiota and other factors in the context of a disease

is also essential. Microbiome changes could be a consequence or a cause of disease. For

example, it was shown that the chemicals used to induce inflammation could cause al-

tered gut microbiota in mice (Lupp et al. 2007) and this change in microbiome may be a

consequence of disease induction. On the other hand in vivo transfer of gut microbiota

from patients with IBS could recapitulate disease phenotypes in naive mice (De Palma

et al. 2017) supports causation. Sample size is another critical factor in finding whether
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there is a direct association between a disease and microbiome and adequately compar-

ing it to other confounding factors. For example, recently, it was implicated that dietary

preferences caused by autism modulate the microbial changes in these patients (Yap

et al. 2021).

1.4 Inflammatory bowel disease

IBD, defined as chronic inflammation of the GI tract, includes two similar but distinct

conditions: ulcerative colitis (UC), and Crohn’s disease (CD). The etiology of IBD is

unknown, but it is known to be caused by a complex interplay between host genetics,

environment and the immune system. The incidence of IBD is rapidly rising in developed

countries, especially in Canada, and particularly in children (Ng et al. 2017; Benchimol

et al. 2009). Over 200 genes have been link to IBD (such as NOD2, ATG16L1 ) involved

in epithelial barrier integrity, autophagy, and oxidative stress (Imielinski et al. 2009;

Hampe et al. 2007; Hugot et al. 2001). However, only 20% of IBD cases are explained

by genetics (Peters et al. 2017), and the recent increase in IBD incidence can not reflect

genetics alone and highlights the importance of environmental factors.

Diet (Levine et al. 2018; Rangan et al. 2019; Liu et al. 2021), smoking (Mahid

et al. 2006), infection in infancy (Bernstein et al. 2019), and the gut microbiome are

environmental factors associated with IBD. These factors are not all equally important

and seem to depend on the study population and sample size. For example, it was shown

that smoking increases the chance of CD but reduces the risk of UC (Calkins 1989). The

gut microbiota is the most potent environmental factor related to IBD reproduced in

meta-analysis, microbiome analysis from population studies, and mice models (Llewellyn

et al. 2018; Walters et al. 2014; Abbas-Egbariya et al. 2022; Franzosa et al. 2019; Lee

et al. 2021).
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1.4.1 Crohn’s disease

Chronic inflammation in CD is patchy, asymmetrical, transmural and can affect all

segments of the GI tract. CD is associated with dis-regulated barrier function due to

increased intestinal permeability (Torres et al. 2017). The impaired intestinal barrier

in CD results in leaky tight-junction and loose regulation of transepithelial transport

that allows pathogenic bacteria to induce immune responses that can lead to intestinal

inflammation (Libertucci et al. 2018). It was inferred that the reduction of butyrate-

producing bacteria (i.e. Clostridia) in CD leads to increased O2 in the gut lumen by

intestinal epithelial cells. As a result of this change in oxygen level, facultative anaerobe

(e.g. Escherichia coli) expansion and the loss of obligate anaerobes accelerates (Byndloss

et al. 2017; Rivera-Chávez et al. 2016; Mottawea et al. 2016). The overgrowth of E. coli

strains, that adhere to ileal tissue using the FimH adhesin, has been shown in CD patients

and hypothesized to be one of the causes of CD (Lapaquette et al. 2012; Martinez-Medina

and Garcia-Gil 2014).

1.4.2 Ulcerative colitis

UC is a chronic disorder characterized by inflammation and ulceration of the colonic

mucosa. Canada has one of the highest incidents of UC worldwide, with a peak incident

in early adulthood (Molodecky et al. 2012; Ng et al. 2017). The primary symptoms of

UC are bloody diarrhea, abdominal cramps, fatigue, increased risk of colon cancer, and

increased depression, which significantly impact the quality of life (Collins et al. 2012).

The cause of UC is unknown, but it is generally considered that the disease arises from an

immune response to altered intestinal microbiota in genetically susceptible individuals

(Talley et al. 2011). Antimicrobial peptide secretion, antigen presentation, and intestinal

barrier are reduced in UC patients and contribute to increased inflammation (Ho et al.

2013). Although UC-related microbial changes are less known than CD, it was implicated

that UC patients’ ability to produce SCFA is diminished, and microbial diversity in these
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patients is reduced compared to healthy controls (Michail et al. 2012; James et al. 2015).

Current therapies for UC are primarily focused on suppressing the immune response

with anti-tumour necrosis alpha monoclonal antibodies (anti-TNFα), 5-aminosalicylic

acid (5-ASA), and corticosteroid therapy (Talley et al. 2011) rather than reducing factors

that stimulate immune response(Danese 2012). As a result, these immune suppressive

treatments are associated with increased risk of infection (Tinsley et al. 2013; Kirchgesner

et al. 2018) and colon cancer (Ekbom et al. 1990; Eaden et al. 2001). Prescription drugs

accounts for 42 % of total direct costs for IBD patients in Canada, and costs to treat IBD

continue to rise due to increased use of existing biologic therapies and the introduction

of several new biologic therapies in recent years. For example, in Manitoba, the mean

healthcare utilization and medication costs for persons with IBD in the year before

beginning anti-TNF treatment was $10,206 and increased to $44,786 in the first year of

therapy (Crohn′s and Colitis Canada 2018).

If the altered colonic microbiome is the trigger of immune responses, then alternative

treatments are required to restore microbiota-intestinal immune homeostasis. Antibiotic

therapy and fecal microbiota transplantation (FMT) are microbiome targeting therapies

that have been trialled for UC patients. A systematic review focused on the efficacy of

antibiotics versus placebo showed that antibiotic treatment had a modest effect on pa-

tients with UC (Khan et al. 2011). However, they could not make any recommendations

because different antibiotics were used in every trial. These therapies and their efficacy

in UC are part of the main objectives of this thesis, and I will discuss these therapies in

Chapters 3 and 4.
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1.5 Fecal microbiota transplantation

1.5.1 History of FMT

FMT — administration of a fecal suspension from a healthy donor to a patient — is an

ancient therapy that goes back to 1,700 years ago. In the 4th century, Ge Hong in China

used FMT to treat food poising and diarrhea. Li Shizen, in the 16th century, referred to

FMT as "golden syrup" to treat patients with abdominal pain, diarrhea and even fever

(Zhang et al. 2012; De Groot et al. 2017). It is unclear how effective these treatments

were and how they originally started long before discovering microbes. It is possible

that the idea behind this treatment was first created by observing animal species that

naturally practice coprophagia, potentially enabling them to have a more diverse diet.

Numerous other cases of FMT historically reported in different diseases, particularly in

veterinary medicine (Mullen et al. 2018), but the first modern study conducted for four

patients with pseudomembranous colitis, likely caused by Clostridioides difficile infection

(CDI), resulted in complete recovery for all participants (GS, AJ, et al. 1958).

1.5.2 FMT in CDI

CDI is one of the leading cause of heathcare associated infections (HAIs) in the world

(Khanna et al. 2012). Ubiquitous spores of Clostridioides difficile (C. difficile) can stay

infectious for a long time and can transfer to GI tract of both animals and humans

(Paredes-Sabja et al. 2014). Antibiotic agents, metronidazole and vancomycin, are the

standard therapy for CDI (Shen and Surawicz 2008; Bagdasarian et al. 2015). The risk

of complication associated with CDI increases by antibiotic use and age possibly due

to microbial changes that may result in loss of colonization resistance. An episode of

CDI occurring within two months of the initial infection either by the same or different

strain is known as recurrent- Clostridioides difficile infection (rCDI). It is estimated

that 15-30% of patients who initially respond to antimicrobial therapy will develop rCDI

(Song and Kim 2019). Currently, FMT is the standard treatment for rCDI with ≥ 90%
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remission rate. (Kassam et al. 2012; Van Nood et al. 2013; Quraishi et al. 2017). It

was implicated that the microbial community shift modulated by antimicrobials depletes

bile acid production and promotes C. difficile growth in the large intestine of patients

with rCDI (Theriot et al. 2016). In this context, FMT can bring back a more diverse

microbial communities to the intestine and potentially increase colonization resistance.

1.5.3 FMT in CD

FMT has been used for the treatment of CD since 1989 (Borody et al. 1989), but its

efficacy remained controversial because the reported studies contained small participants

and lacked proper controls (Cui et al. 2015; Suskind et al. 2015; Vaughn et al. 2016).

More recently, the first pilot randomized controlled trial (RCT) aimed to investigate the

efficacy of FMT for CD (FMT:n=8 vs. Placebo:n=9) showed that the clinical remission

at 10 weeks was 87.5% in the FMT group compared to 44.4% in the sham transplantation

group. Further, Yang et al. 2020 conducted a RCT and showed that there was no signifi-

cant difference in delivering FMT via gastroscopy and colonoscopy in the small intestine

and colon, respectively. Systematic reviews suggest that FMT is a safe and potentially

effective treatment, but further randomized clinical trials are needed to evaluate their

efficacy in CD comprehensively (Cheng et al. 2021; Fehily et al. 2021).

1.5.4 FMT in UC

Similar to CD, the first case of FMT in UC was reported in 1989 (Bennet and Brinkman

1989), but FMT has shown to be more successful in UC than CD. Six adult and one

pediatric RCTs have been conducted so far to evaluate the efficacy of FMT in UC.

Rossen et al. 2015 concluded that there was no significant difference between the FMT

and placebo group in clinical remission at the end of their study. They included UC

patients with mild disease activity, which resulted in an increased remission rate in

the placebo group. The first successful RCT was conducted in Canada, showing that
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24% of patients who received FMT went into remission versus 5% in the placebo group

(Moayyedi et al. 2015). Since then, these results have been reproduced in multiple

other trials, and they all confirmed the safety and efficacy of FMT treatment in UC

(Paramsothy et al. 2017; Costello et al. 2019; Smith et al. 2022; Haifer et al. 2022b).

FMT was delivered to the patient’s colon via enema in all of these RCTs except two

studies (Smith et al. 2022; Haifer et al. 2022b) that used oral FMT capsules. A study

randomizing to colonoscopy versus lyophilized pills was too small to measure a deference

between delivery methods (Crothers et al. 2018).

1.5.5 FMT donors

Selecting an appropriate donor for the FMT studies has been controversial, and still

not clear whether the microbial composition of the donor determines the FMT success.

For example, Van Nood et al. 2013 studied FMT donors for CDI patients suggested

that there was no apparent difference between donors; however, FMT outcomes from

UC (Moayyedi et al. 2015) and obesity (Wilson et al. 2021) patients implicated that

the choice of the donor is important. It was shown that the donor’s species richness

(Vermeire et al. 2016), metabolite fitness (Watson et al. 2021), and stability (Haifer

et al. 2022a), are likely important factors that indicate a successful donor. At the same

time, more extensive studies that merged various datasets of different diseases suggested

that the recipient’s factors outweigh the donor’s microbiome composition (Schmidt et

al. 2022). Further, it was recommended that matching a recipient to a suitable donor

should be the priority in selecting successful donors (He et al. 2022). Given the variation

between these diseases, the importance of donor may be disease-dependent related to

the mechanism of FMT.
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1.5.6 Mechanism of FMT

Microbial engraftment — donor’s microbiota that transfer and colonize in the FMT

recipient — is considered as the main mechanism of FMT and focuses on restoring

the bacteria in the gastrointestinal tract (Youngster et al. 2014) that may change host

metabolism (Floch 2015), host immunity (Furusawa et al. 2013; Round and Mazmanian

2010), and restrain pathogens (Britton and Young 2014). This mechanism of action is

likely disease dependent. For example, CDI is an acute infection disease while IBD is

a chronic inflammatory disease. The goal of FMT in rCDI is to restore the community

balance but in IBD it needs to fix the metabolic dysfunction. Previously, it was shown

that the donor-specific bacteria might establish alongside the host microbiota, and they

can be detected after FMT (Angelberger et al. 2013; Fuentes et al. 2014), but it is

difficult to determine if these newly observed bacteria are transferred from the donor or

present in the patient prior to treatment at low levels, meaning that the new detected

bacteria had been below detection level in recipient before FMT and they became more

abundant after FMT.

In addition to the donor, other factors can potentially influence FMT outcome. These

factors include mode of delivery, anaerobic considerations for FMT preparation, duration

of FMT treatments, and antibiotic pretreatment. The FMT treatment may proceed by

a course of antibiotics that presumably alter the intestinal-microbiota (Dethlefsen and

Relman 2011) and may facilitate the implantation of donor-specific bacteria. During

inflammation, immune cells Increase their uptake of oxygen, reducing oxygen levels at

the epithelial layer (Campbell et al. 2014). As a result of these oxygen changes, epithelial

cell absorption and barrier functions are disrupted (Rigottier Gois 2013). Considering

the important role of obligate anaerobes in gut homeostasis (Peterson and Artis 2014),

particularly during inflammation, preserving these microbes during FMT preparations

should be prioritized.
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1.6 Studying the gut microbiome

1.6.1 16S rRNA gene amplicon sequencing

One of the fundamental research aims of studying gut microbiota is to uncover the

composition and the abundance of microbiota. 16S ribosomal RNA (rRNA) gene ampli-

con sequencing provides a relatively cost-efficient approach to estimating the bacteria’s

abundance in a sample. 16S rRNA gene has been traditionally used to determine the

phylogeny of prokaryotes (Fox et al. 1977). The 16S rRNA gene with a total length of

∼1500bp is a highly conserved gene containing nine variable regions (V1 - V9), which

makes it suitable for primer binding and capturing diverse bacteria (as well as some

archaea depending on the variable region) (Woese et al. 1990). These regions within the

16s rRNA gene are typically referred to as hypervariable regions, and universal primers

have been used to amplify these regions, such as the variable 3, 4 and 5 regions (Ca-

poraso et al. 2010b). High-throughput sequencing (HTS) technologies, most notable of

which being the second-generation platforms such as Illumina, have provided the ability

to sequence regions up to 600 bp on a large scale. More recently, the third generation

platforms (e.g. PacBIOs Sequel and Oxford Nanopore MinION) allowed sequencing of

the entire 16S gene, but they lack standardization and MinION include a relatively high

error rate (Rhoads and Au 2015; Bowden et al. 2019).

The 16S rRNA gene sequencing workflow includes clustering sequences into opera-

tional taxonomic units (OTUs) at 97% sequence similarity. Alternatively, a 100% se-

quence identity threshold could be used, by implementing denoising methods, to identify

amplicon sequence variants (ASVs) or zero-radius OTUs (zOTUs) (Callahan et al. 2016;

Edgar 2018). Next, these clustered sequences are used for taxonomic classification using

different programs (e.g. Mothur (Schloss et al. 2009), Qiime (Caporaso et al. 2010a),

Qiime2 (Bolyen et al. 2019), DADA2 (Callahan et al. 2016), etc.) and databases (e.g.

GreenGenes (GG) (DeSantis et al. 2006), the Ribosomal Database Project (RDP) (Cole
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et al. 2014), Silva (Quast et al. 2012), etc.).

In order to reproduce microbiome findings, the sequencing pipelines need to be stan-

dard, meaning that the difference between datasets represents biological differences and

not technical variations. Szamosi et al. 2020 found that 16S rRNA gene amplicon analysis

variation in the extraction and sequencing protocols are less sensitive than data process-

ing pipelines when they compared matched samples processed in multiple laboratories,

suggesting the importance of bioinformatics workflows. The factors that contribute most

to variations in 16S rRNA gene analysis include the choice of primer (variable region),

reference databases, and to a less extent, clustering approaches (Abellan-Schneyder et al.

2021). The other caveat in 16S rRNA gene sequencing is the low taxonomic resolution.

Although debatable and depending on the taxonomic group, the identified OTUs and

ASV represent bacterial genera occasionally accurate to the species-level (Johnson et al.

2019) which seems insufficient to study intestinal microbiota given the observed species

and strain variations (Truong et al. 2017; Park et al. 2022).

1.6.2 Read-based metagenomics

The 16S rRNA gene sequencing led to the discovery of novel microbial diversity, but the

lack of culture representatives for many microbial groups, such as Archea, demanded a

new approach to investigate these microbes. Stein et al. 1996 reported the first attempt

to solve this problem by random shotgun sequencing of the archaeal clones extracted from

picoplankton assemblage collected in the Pacific Ocean. However, the term metagenome

was used two years later to refer to "the collective genomes of soil microflora" (Han-

delsman et al. 1998). Since then, "metagenomics" have been used to describe various

data structures. For example, 16S rRNA gene amplicon sequencing sometimes is re-

ferred to as metagenomics inaccurately- maybe because this approach could identify

microbes beyond one genome (Arboleya et al. 2012; Brooks et al. 2015). Despite issues

with metagenomic terminology, shotgun (untargeted) metagenomics is trying to uncover
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both "what is there" regarding the functional potential of microbial community and "who

is there" regarding microbiota composition.

In the last decade, the reduced cost and improvement in DNA sequencing have al-

lowed large-scale metagenomics to study human microbiota (Temperton and Giovannoni

2012). The higher taxonomic and functional resolution in metagenomic sequencing has

significantly improved our understanding of the human microbiota. In this approach,

the total DNA will be extracted from a sample (e.g. fecal, biopsy, swab, etc.) and

a sequencing library will be prepared depending on the sequencing technology plat-

form. Currently, the most common sequencing platform for metagenomic sequencing

is Illumina (HiSeq, NextSeq, and NovaSeq), which generate 150-250bp sequence reads.

PacBIO and Nanopore can sequence a longer DNA fragment but is less frequently used

due to the higher cost (Sevim et al. 2019; Mahmoud et al. 2019).

Read-based metagenomics aims to profile a microbial community’s taxonomy and

functional capacity without necessarily gaining knowledge of the microbial members

that contribute to the functions or genes that are present but not annotated in the

publicly available databases. This approach compares the reads that passed the quality

control to external sequence databases. There are three main approaches that com-

pare query sequence to databases for taxon and/or functional assignment (supervised

learning): similarity search (use homology or alignment-based methods based on lowest

common ancestor (LCA) ; e.g., BLAST (Altschul et al. 1997) and MEGAN (Huson et al.

2011)), composition methods (use k-mer counts or frequencies; e.g., KRAKEN (Wood

and Salzberg 2014), RDP (Wang et al. 2007)); and phylogenetic approach (use evolution-

ary models coupled with homology-based or interpolated Markov models; e.g., (Brady

and Salzberg 2009)). The homology-based method searches each query sequence against

large databases that takes a long time. The phylogenetic approach for taxonomic classi-

fication employs evolutionary models utilizing maximum likelihood, neighbor-joining, or
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Bayesian methods to calculate the suitable place of a query sequence on a phylogenetic

tree (Bazinet and Cummings 2012). These tools use simple observation to find where

an inserted branch is divergent from a node representing a species or higher rank. It re-

quires enormous computational power as it contains multiple alignments, fixed topology

(e.g., NCBI taxonomy), and the insertion of a query sequence into the reference align-

ment. The compositional methods, including the Naive Bayesian classifiers, interpolated

Markov models (IMMs) and kmer/k-nearest-neighbor algorithms (Ames et al. 2013) are

much faster than alignment or phylogenetic-based approaches. Still, they require a large

computational memory because a pre-computed database needs to be pre-loaded into

the memory.

Marker-based algorithms are another read-based approach that incorporates a set

of representative genes (markers) instead of a more extensive database of all known

sequences to profile microbial composition. These assembly-free methods have been

used to analyze large human associated metagenomic datasets from MetaHIT and HMP

consortiums via mOTU (Sunagawa et al. 2013) and MetaPhlAn (Segata et al. 2012;

Beghini et al. 2021), respectively (Voigt et al. 2015; Nielsen et al. 2014; Lee et al.

2022). For example, it was shown that the clade-specific markers in the CHOCOPhlAn

database, used in MetaPhlan, provide an accurate estimate of microbial composition

and, most importantly, offer a faster run time (Meyer et al. 2021). The main caveat is

to profile previously unknown microbes, particularly gene families and functions. For

example, HUMAnN package that is being used to profile functional pathways and gene

families usually returns 40% unmapped reads (Franzosa et al. 2018). Although the list of

reference genomes is exponentially expanding and markers are becoming more accurate

in detecting species and pathways, these databases are often not well annotated or

complete.
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1.6.3 Assembly-based metagenomics

In 1995, the two bacterial genomes Haemophilus influenzae (Fleischmann et al. 1995)

and Mycoplasma genitalium (Fraser et al. 1995) were completely sequenced. Since then,

DNA sequencing technologies have revolutionized systems biology and biomedical re-

search. Recent advancements significantly reduced the cost of sequencing and resulted

in a dramatic growth of genomic data from all organisms, particularly human micro-

biota (Muir et al. 2016). Despite these advancements, current technologies can only

sequence small genomic fragments, ranging from 150bp (such as Illumina) to approxi-

mately >10–20kb (such as PacBIO). A typical bacterial genome is 5 million bp (Land et

al. 2015); thus, reconstructing the whole genome requires a sophisticated computational

algorithm to assemble the short sequencing reads together. By contrast, human intestinal

microbiota contains thousands of these bacterial genomes making the gut metagenome

assembly a daunting task.

The two main genome assembly approaches include reference-based and de novo as-

sembly (reference-independent). Due to the diversity of the healthy gut microbiome

(Lozupone et al. 2012) and the incomplete nature of microbial reference databases (Lo-

effler et al. 2020), it is essential to reconstruct the metagenome structure of the new

microbes in an unbiased reference-free approach. Although there have been some at-

tempts to use reference-guided methods (Dutilh et al. 2009; Tsai et al. 2010; Lischer

and Shimizu 2017), predominantly de novo assemblers were used to assemble microbial

genomes and metagenomics (Quince et al. 2017).
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The de novo assembly approach can be classified into three basic categories: OLC

graph, string graph, and de Bruijn graph. The OLC algorithms (such as Celera (Myers

et al. 2000), AMOS (Treangen et al. 2011), and PCAP (Huang et al. 2003)) work based

on three main principles: finding overlaps across the reads, constructing a layout graph

from the overlapped reads, and inferring the consensus reads from the layout. String-

based methods are derivatives of OLC graph-based methods that attempt to remove

duplicate and substring reads before building the graph layouts. The notable string

graph algorithms are SGA (Simpson and Durbin 2012) and FALCON (Chaisson et al.

2015), specifically designed to assemble PacBIO long reads. De Bruijn graph is the most

widely used de novo assembly framework. This approach will divide reads into k-mers

representing a node. The overlapping nodes with k-1 bases create an arc in one read,

and k-mers that share k-1 bases between the reads construct a direct edge. De Bruijn

graph can be classified into Hamiltonian and Eulerian graphs (Conway and Bromage

2011). Hamiltonian kmers represent the nodes, and the edge is the overlap (similar to

OLC approach), whereas, in Eulerian method, kmers are the edges. Eulerian approach,

used in algorithms such as IDBA-UC (Peng et al. 2012), and SPAdes (Bankevich et al.

2012), is more robust in assembling large genomes than Hamiltonian-based algorithms,

such as SOAPdenovo (Luo et al. 2012), velvet (Zerbino and Birney 2008), because it

avoids a simplification step required in the construction of the Hamiltonian path (Liao

et al. 2019).

Challenges in de Bruijn assembly of a genome include sequencing errors, repetitive

regions, and computations resources. These assembly methods assume that the genomic

coverage is uniform; however, metagenomic coverage depends on the abundance of that

genome in the community. As a result, low abundance genomes in metagenomic sequenc-

ing are more likely to end up fragmented. Although algorithms such as Meta-IDBA (Peng

et al. 2011), MetaVelvet (Namiki et al. 2012), and metaSPAdes (Nurk et al. 2017), were
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built to improve this task, highly fragmented contigs are still common in these assem-

blies. In chapter two, I will further discuss this problem and present culture-enriched

metagenomics, an approach that could potentially address some of these obstacles.

Metagenomic assembly results in thousands of contigs with variable length, but it

is unclear where those contigs came from and how many genomes are present in a

community. Unsupervised binning of the contigs is a common approach to identifying

metagenome assembled genomes (MAGs) (Quince et al. 2017). Binning algorithms pre-

dominantly use tetranucleotide frequencies Dick et al. 2009 and coverage information to

define similarities across contigs and to cluster them together. The widely used metage-

nomic binning alogithms include CONCOCT (Alneberg et al. 2014), MetaBAT (Kang

et al. 2019), and MaxBin (Wu et al. 2016). Genome-resolved metagenomics allowed the

discovery of many microbial groups without culture representative (Brown et al. 2015)

and significantly improved microbial genome collections (Nayfach et al. 2019; Xie et al.

2021; Nayfach et al. 2021). However, the metrics that assess the quality of MAGs are

not robust. The two metrics that evaluate the quality of MAGs, completeness and con-

tamination based on single-copy core genes, are not sensitive enough and do not assess

the quality of accessory genome (Parks et al. 2015; Meyer et al. 2021). In chapter 2, I

will compare the length of MAGs with complete whole-genome sequencing (WGS) and

discuss how culture-enriched metagenomic can improve the quality of MAGs.
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1.6.4 Combination of culture-Independent and -dependent sequencing

With the advancement in DNA sequencing technologies that led to the discovery of new

bacterial groups across all taxonomic levels ( i.e. new species, genera, families. . . phyla),

the general notion that the human microbiota is not culturable became popular (Rappé

and Giovannoni 2003; Stewart 2012) and the human microbiome had been considered

unculturable without necessarily testing this hypothesis. In contrast, 48 years ago, Fine-

gold et al. 1974 cultured fecal microbiota of healthy individuals with different diets. They

recovered 300 unique species (close to our current estimates of unique bacterial species

in a human gut) using a combination of aerobic and anaerobic media conditions. Today,

culture-dependent sequencing are at the forefront of innovative microbiome research and

the collection of cultured isolates are keep growing (Forster et al. 2019; Poyet et al. 2019;

Zou et al. 2019; Aggarwala et al. 2021).

Culture-dependent methods have three main advantages compared to culture-

independent sequencing. First, culture distinguishes viable bacteria from dead or-

ganisms. Second, selective media conditions allow the growth of the low abundant

organisms, often missed by 16S rRNA gene or metagenomic sequencing. And third,

building a microbial isolates library for mechanistic and phenotypic investigations. Pre-

vious studies from the Surette lab showed that the culture-enrichment increased the

number of detected bacterial species of the cystic fibrosis lung microbiota (Sibley et al.

2011; Whelan et al. 2020). Lau et al. 2016 applied culture-enrichment molecular profiling

to fecal samples from healthy individuals and IBS patients, and they captured 95% of

the OTUs with > 0.1% relative abundance. It was shown that the majority of microbes

captured by culture-independent were recovered by culture; however, culture- dependent

profiling identified 3-5 fold more bacterial species (OTUs), suggesting that combining

these approaches provides a more comprehensive view of the human microbiota (Lagier

et al. 2012; Lau et al. 2016). Whelan et al. 2020 recovered greater taxonomic diversity

of the lung microbiota when coupling culture-enrichment with shotgun metagenomics.
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In chapters 2 and 3, I will further discuss the advantages of culture-enriched metage-

nomics and how this approach can provide a higher resolution than culture-independent

methods.

1.6.5 Central hypothesis and objectiveness

The importance of the gut microbiome in our health has been well established. As

the field moves from microbial associations to microbial treatments in disease, a more

in-depth understanding of microbial strains and their functions is necessary. The over-

arching goal of this thesis is to build bioinformatics tools and approaches to investigate

the gut microbiome. I hypothesize that assembly-based metagenomics provides higher

resolution than marker-based approaches and that combining culture-enrichment with

metagenomics can provide a more comprehensive understanding of intestinal microbiota.

This approach will be applied to healthy individuals to capture intestinal microbial diver-

sity. I will also use this method to investigate microbial changes post-FMT to understand

the mechanism of microbial engraftment in UC patients.

1.6.6 Aims

To address the above hypothesis, I proposed the following aims:

1. Combine culture-enrichment with shotgun metagenomics to characterize healthy

microbiota in eight healthy individuals and compare this approach with culture-

independent metagenomics. More specifically, I will investigate whether culture-

enriched metagenomics improves the quality of metagenome-assembled genomes

and functional annotations (Chapter 2).
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2. Conduct culture-enriched metagenomics for a successful FMT donor to compare

the microbial composition of UC patients pre- and post-FMT. I will compare 16S

rRNA gene amplicon, metagenomics, and culture-enriched metagenomic sequenc-

ing to investigate whether these approaches can provide enough resolution to study

microbial engraftment. Further, phylogenetic and pangenomic approaches will be

applied to examine the mechanism of microbial engraftment in UC patients (Chap-

ter 3).

3. Track longitudinal dynamics of a highly abundant bacteriophage, crAssphage, in a

healthy FMT donor. I will investigate whether crAssphage strain from this donor

engraft in UC patients post-FMT and compare these dynamics with a publicly

available dataset of rCDI patients post-FMT. High-resolution SNP analysis will be

applied to the metagenomic samples from UC and rCDI patients to track donor’s

cAssphage post-FMT (Chapter 4).

4. Compare the gut microbiota of UC patients who received antimicrobial pretreat-

ment before FMT with those who only received FMT in a randomized control

trial. 16S rRNA gene amplicon sequencing will be applied to characterize micro-

bial changes in patients compared to donor’s microbiota (Chapter 5).

21



Chapter 2

Culture-enriched metagenomic

sequencing of the intestinal

microbiota

2.1 Introduction

High-throughput sequencing (HTS) has changed our understanding of the human phys-

iology, particularly the role of the gut microbiome in health and disease. 16S rRNA

gene amplicon sequencing has shown the diversity and abundance of human gut micro-

biota that mainly consist of bacteria but also include bacteriophages, viruses, archaea

and fungi. Shotgun metagenomic sequencing provided a higher-resolution view of the

complex gut microbiota community and has characterized the intestinal microbial func-

tions in gastrointestinal diseases (e.g. inflammatory bowel disease (Franzosa et al. 2019)

and irritable bowel syndrome (Vich Vila et al. 2018)) as well as other systemic disease

manifestations (e.g. obesity (Greenblum et al. 2012), Type 2 diabetes (Qin et al. 2012)),

and gut-brain axis (Zhu et al. 2020).

22



Ph.D. Thesis Shahrokh Shekarriz; McMaster University - Biochemistry & Biomedical Sciences

Although metagenomic sequencing is the current standard approach to survey micro-

bial taxa and function of the human gut microbiota, this method has a few limitations.

First, depending on the source of sampling (e.g. fecal, biopsy, swab, etc), a large propor-

tion of sequenced reads might consist of human DNA (Schmieder and Edwards 2011).

Second, low abundant bacterial communities that are an active part of gut microbiota,

such as Enterobactericeae are poorly covered at typical sequencing depths resulting in

few or no sequencing reads (Rajilić-Stojanović and De Vos 2014). As a result, these taxa

are often undetected by standard metagenomic pipelines. And third, de novo assembly

algorithms used to assemble contigs and metagenome assembled genomes (MAGs) from

short sequence reads are highly dependent on the coverage information provided by raw

metagenomic reads. A single metagenomic sample from a highly complex microbial com-

munity can fail to provide sufficient coverage information required to assemble contigs

and MAGs accurately (Liao et al. 2019).

Methods for comprehensive culturing of the human gut microbiome have been de-

scribed (Sibley et al. 2011; Lagier et al. 2012; Rettedal et al. 2014; Lau et al. 2016;

Forster et al. 2019; Poyet et al. 2019; Zou et al. 2019; Whelan et al. 2020), which

identify greater microbial diversity than culture-independent methods alone. Here, we

used culture-enriched metagenomics (CEMG) — shotgun metagenomic sequencing ap-

plied to a comprehensive culturing of microbial communities from aerobic and anaerobic

media conditions — to characterize the intestinal microbiota of eight healthy individ-

uals, we then compared this approach to shotgun metagenomics, referred here to as

direct metagenomics (DMG). We investigated whether CEMG can consistently improve

de novo assembly of genes and genomes from metagenomic samples across a group of

healthy donors. In order to compare these methods, we have established a de novo

assembly pipeline by benchmarking multiple algorithms.
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2.2 Methods

2.2.1 Study design and sample collection

Eight healthy individuals with no gastrointestinal symptoms and no history of antibiotic

therapy within three months of the collection were selected for a comprehensive assess-

ment of intestinal microbiota. This project was approved by the Hamilton Integrated

Research Ethics Board and conducted at McMaster Children Hospital (Hamilton, ON,

Canada).

2.2.2 Culture-enrichment and plate pool libraries

Immediately after defecation, fecal samples were transferred to a sterile container and

stored in sealed bags containing an anaerobic pouch (GasPak EZ; BD, MD, USA) and

ice-pack. Samples were transferred to the laboratory within three hours of collection and

were further processed in an anaerobic chamber (5% CO2, 5% H2, 90% N2; Shel Labs,

OR, USA). The sample was cultured using up to 33 media and incubated both anaero-

bically and aerobically, resulting in 66 culture conditions for culture-enriched molecular

profiling using a previously described protocol (Lau et al. 2016). The media and culture

conditions were described previously (Lau et al. 2016). 16S rRNA amplicon sequencing

was conducted on all 66 culture conditions to determine community composition. To

determine a representative subset of culture-enriched plates that adequately represent

the sample, the distribution of amplicon sequence variants (ASVs) in the direct sequenc-

ing was compared to the culture-enriched sequencing per plate pool using the PLCA

algorithm (Whelan et al. 2020). DNA from the plate pools selected using the PLCA

algorithm were used for shotgun metagenomics as previously described (Whelan et al.

2020). Supplementary Table A1.1 shows the list of plate pools selected for each sample.

24



Ph.D. Thesis Shahrokh Shekarriz; McMaster University - Biochemistry & Biomedical Sciences

2.2.3 Shotgun metagenomic sequencing

Genomic DNA was extracted using the MagMAX Express 96-Deep Well Magnetic Par-

ticle Processor from Applied Biosystems with the Multi-Sample kit (Life Technologies

# 4413022) with the addition of a bead beating step. First, samples (0.2g of stool or

300µL of plate pools) were transferred to screw cap tubes containing 2.8mm ceramic

beads, 0.1mm glass beads, 100µL of GES (guanidium isothiocyanate, EDTA, N-lauryl

sarcosine) and 800µL of 200µM sodium phosphate monobasic, pH8.0. Samples were

bead beat at 3000rpm for 3 minutes and centrifuged at 15000rpm. The supernatant was

further processed using the Multi-Sample kit. In a 96 well plate, 200uL of the super-

natant for each sample was added to 160µL of isopropanol. The plate was sealed and

shaken at 505rpm for 3 min. 20 µL of the binding bead mix was added and the plate

was shaken again at 505 rpm for 3 min. The plate was then processed on the MagMax

express as the manufacturer protocol. The samples were washed twice with wash buffer,

then lysis buffer was added, and an RNase treatment was performed. The samples were

washed twice again with wash buffer and finally eluted from the beads with two elution

buffers in a final volume of 150µL.

DNA concentrations were quantified by Qubit dsDNA HS kit (ThermoFisher Scien-

tific, Mississauga, Canada). Illumina libraries were prepared according to a miniaturized

library preparation protocol previously described (Derakhshani et al. 2020), using the

NEBNext Ultra II FS DNA Library Prep Kit (NEB, MA, USA). The resulting libraries

were subjected to dual size selection using the ProNex Size-Selective Purification Sys-

tem (Promega, WI, USA) to enrich for 800-1000 bp insert sizes. Final libraries were

sequenced on an Illumina HiSeq2500 platform in rapid run mode, paired-end 2x250nt,

at the McMaster Metagenomics Facility (Hamilton, ON, Canada).
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2.2.4 De novo assembly and binning

Shotgun metagenomic reads were trimmed using Trimmomatic (Bolger et al. 2014) to

remove primer sequences and low quality reads and paired-end libraries interleaved us-

ing a custom python script. To build culture-enriched metagenomic assemblies, I have

co-assembled trimmed reads from plate pools and fecal samples for each donor using

metaSPAde (Bankevich et al. 2012). Trimmed short reads from fecal samples were as-

sembled for each donor separately to build a direct metagenomic (DMG) library.

A custom python script was used to remove contigs ≤ 1kb in length. Metabat2 (Kang

et al. 2019) was used to assemble metagenomic bins, followed by CheckM to identify

metagenome-assembled genomes (MAG). Only bins that contains ≤ 10% contamination

and ≥ 70% completion were defined as MAGs. Contigs that were not present in any

bin were defined as unbinned (UnBin). GTDB-tk (Chaumeil et al. 2019) was used for

taxonomic classification and multiple sequence alignment of 120 ubiquitous bacterial

single-copy proteins. A phylogenetic tree of all MAGs was constructed based on GTDB

protein alignment via an approximately-maximum-likelihood model by fasttree (Price

et al. 2010). The phylogenetic trees were visualized in R v. 4.0.3. using tidyverse

(Wickham et al. 2019), ggtree, ape, ggtreeExtra, and treeio packages.

The cumulative assembly length and total assembly length of contigs ≥ 1kb for each

sample were calculated in R v. 4.0.3 using the tidyverse package. The most closely

related genome of each MAG was identified using GTDB-tk (Chaumeil et al. 2019). The

total genomic length of each MAG assembled via DMG and CEMG approaches was

compared against their closely related genome in the GTDB whole genome sequence

(WGS) library using a log ratio of MAG/WGS. In order to compare the size of MAGs

assembled via DMG versus CEMG, microbial families with ≥ 5 MAGs were selected

and then a linear mixed-effect model was fitted with the sequencing method as the fixed

effect as well as microbial families and healthy donors as random effects using lme4 and
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lmerTest (Bates et al. 2014) packages in R 4.2.0. Similarly, to compare the assembled size

of MAGs within microbial genera that contains ≥ 5 MAGs, a linear mixed-effect model

was fitted with the sequencing method and genus as fixed effects and healthy donors as

random effect. All the figures were visualized in R 4.2.0. using ggplot2 package. All the

above scripts are available at https://github.com/SShekarriz/SHCM.

2.2.5 Gene annotation and functional predictions

The genes were annotated in the assembled contigs ≥ 1kb using Prokka (Seemann 2014)

and the contig ids in Prokka’s gff outputs were used to find the position of each gene

in Bins, MAGs, and UnBin contigs using a custom code in R 4.2.0. The identified

proteins were then clustered at 90% and 70% identity using MMseqs2 (Steinegger and

Söding 2017). Next, we used EggNOG-mapper (Cantalapiedra et al. 2021) for functional

annotation of all and clustered proteins using cluster of orthologous groups (COGs)

(Tatusov et al. 2003), Pfam (Bateman et al. 2004), and the Enzyme Commission (EC)

databases. The antimicrobial resistance genes were identified from assembled contigs ≥

1kb using rgi mapper from the CARD database (Alcock et al. 2020). All the data were

merged and visualized in R 4.2.0 using the tidyverse (Wickham et al. 2019) package.

2.3 Results

To investigate whether CEMG can enhance de novo assembly of gut microbiota con-

tigs and genomes, CEMG and DMG were carried out on fresh fecal samples collected

from eight healthy individuals. Briefly, the samples were cultured on up to 66 media

conditions, and 16S rRNA gene amplicon sequencing was used to profile the taxonomic

composition of each media condition. A subset of plate pools that adequately represent

each sample were selected by PLCA (Whelan et al. 2020) for metagenomic sequencing.

Supplementary Table A1.1 lists the plates selected for metagenomic sequencing. To com-

pare the de novo assembly in CEMG and DMG, we used cumulative assembly length,
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quality of MAGs, percentage of genes and functions as de novo assembly metrics in the

same sample collected from the donors.

2.3.1 Benchmarking of the de novo assembly algorithms and methods

In order to construct a robust pipeline for de novo assembly of contigs and genomes for

metagenomic sequencing, we have benchmarked the performance of multiple assembly

and binning algorithms. I compared co-assembly and single sample assembly as well

as the performance of two de novo prokaryotic assemblers: 1) metaSPAdes (Bankevich

et al. 2012), 2) Megahit (Li et al. 2015) and three de novo binning softwares: 1) CON-

COCT (Alneberg et al. 2014), 2) Maxbin2 (Wu et al. 2015), 3) Metabat2 (Kang et al.

2019). These tools were selected based on the result of a previous study on the critical

assessment of metagenomic interpretation (CAMI) (Yue et al. 2020).

A metagenomic sample (B13; supplementary Table A1.1) was assembled using both

metaSPAde (Bankevich et al. 2012) and Megahit (Li et al. 2015) to compare the per-

formance of these algorithms. Also to compare co-assembly with single assembly, I used

metaSPAde to assemble B13 and B13 + B16 (Table A1.1) samples. These represents

two samples from the same donor collected two years apart. To test the performance

of binning algorithms, all the assembled samples were binned using Maxbin2 (Wu et al.

2015), CONCOCT (Alneberg et al. 2014) and Metabat2 (Kang et al. 2019). We used

MetaQuast (Mikheenko et al. 2015), and CheckM (Parks et al. 2015) to compare the

quality of assembly, and binning respectively. Table 2.1 shows the assembly and binning

benchmarking result for two DMG samples from a healthy donor.

metaSPADE resolved a longer N50 value — the sequence length of the shortest con-

tig at 50% of the total assembly length — compared to Megahit (Table 2.1). However,

Megahit was faster and required less computational memory compared to metaSPADE.

These results showed that co-assembly (B13+B16) increased the N50 size compared to
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single assembly (B13) from the same healthy individual. These results were consistent

with previous findings, highlighting the advantage of co-assembly in improving de Bruijn

graph-based assemblies (Sims et al. 2014; Parks et al. 2017). Metabat2 generated the

highest number of MAGs, followed by CONCOCT and Maxbin2, for all assembly meth-

ods (Table 2.1). Based on the above results and CAMI challenge (Yue et al. 2020),

metaSPAde, and metabat2 were used for metagenome assemblies.

Table 2.1: Benchmarking multiple assembly and binning softwares.

metaSPAde Megahit metaSPAde

Sample B13 B13 B13 + B16
Total Length 378.7 MB 293.7 MB 423.0 MB
Num Contigs 433457 224227 385172
Num Genes (prodigal) 668139 436877 752180
Longest Contig 663.2 kB 343.9 kB 723.4 kB
Shortest Contig 0.1 kB 0.3 kB 1.0 kB
N50 45525 24844 47800
L50 1.3 KB 2.1 KB 8.4 KB
HMM (Campbell et al) 18899 14483 11895
HMM (Rinke et al) 12500 9553 7640
HMM (Ribosomal RNAs) 50 50 153

CONCOCT (bins) 76 73 77
CONCOCT (MAGs) 30 28 34

Maxbin2 (bins) 51 51 53
Maxbin2 (MAGs) 28 27 28

Metabat2 (bins) 83 81 86
Metabat2 (MAGs) 35 35 39

2.3.2 Culture-enriched metagenomics assembles more complete ge-

nomic fragments

I applied metaSPAde and Metabat2 to the 8 stool and culture-enriched metagenomic

sequencing. This data was used to assess the quality of de novo assembly in CEMG

compared to DMG. CEMG generated longer contigs compared to the DMG approach

(Fig. 2.1A). The total assembly size was more extensive in CEMG than DMG, partly

due to the increased sequencing depth. However, the largest contigs in CEMG were

bigger than DMG, which resulted in a steeper curve in cumulative assembly length for

each donor (Fig. 2.1A). Although the individual’s assembly sizes were different, CEMG

has shown improved de novo assemblies for all healthy donors evaluated (Fig. 2.1A).

29



Ph.D. Thesis Shahrokh Shekarriz; McMaster University - Biochemistry & Biomedical Sciences

In order to investigate the utility of the larger genomic fragments assembled by

CEMG, we have binned — grouped contigs that likely originated from the same genome

based on coverage information and tetranucleotide frequencies — the contigs per indi-

vidual and method. We observed that most of the CEMG assembly length was located

inside a MAG — a single-taxon bin that has been implicated to be a close representation

of an actual individual genome containing ≤ 10% contamination and ≥ 70% completion

based on the identified single-copy core genes — across all individuals, while the majority

of DMG assemblies were either outside or inside a bin (Fig. 2.1B).

Figure 2.1: De novo assembled contigs in CEMG vs. DMG. A. Cumu-
lative length of assembly for contigs ≥ 1kb across eight healthy donors.
B. Total assembly length of each sample via CEMG and DMG method.
Total metagenomic assembly present in CEMG Bin and MAG are shown
in light and dark green, respectively. Total metagenomic assembly present
in DMG Bin and MAGs are shown in light and dark purple, respectively.
The contigs that are not present in a bin are shown in grey (Unbinned).
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2.3.3 Culture-enriched metagenomics improves de novo assembly of

genomes from metagenomics

In order to test whether CEMG systematically improves the assembly of MAGs, the

quantity and quality of assembled MAGs in CEMG and DMG was compared to de-

termine whether these methods can equally assemble a diverse groups of bacteria. A

phylogenetic tree of MAGs assembled via CEMG and DMG from all the eight donors was

constructed. 1255 out of 2823 bins contain the minimum information (≤ 10% contam-

ination and ≥ 70% completion) to be reported as MAGs. From the total 1255 MAGs,

879 (%51) and 376 (%34) were generated by CEMG and DMG, respectively. We have

used single-copy proteins identified by GTDB to align these MAGs and constructed a

phylogenetic tree (Fig. 2.2A). We observed that DMG systematically failed to identify a

number of bacterial families such as Streptococcaceae, Enterococcaceae, Lactobacillaceae,

Staphylococcaceae, and Bacillaceae compared to CEMG (Fig. 2.2B). When we mapped

DMG raw-reads to these MAGs, we found that they are present in their associated donor

sample, but not assembled into a MAG.

Another measure of the quality of MAGs is the total genomic length compared to the

expected length. To estimate this, the closest-related genome of each MAG was identified

in a publicly available database (GTDB (Chaumeil et al. 2019)) and their total genomic

length was compared as a log ratio of MAG/whole-genome sequencing (WGS) (Fig. 2.2C,

D). We found that the size of the MAGs assembled via CEMG was significantly (LMM,

est=0.05, p=7.7e−06) closer to their closely-related genome compared to DMG across

the same bacterial families with ≥ 5 MAGs (Fig. 2.2C). More specifically, Staphylococcus,

Escherichia, Enterococcus, Streptococcus, Clostridium and Flavonifractor genera with ≥

5 MAGs were not assembled by DMG (Fig. 2.2D). Eubacterium, Sutterella, Bilophila,

Anaerobutyricum, Acetatifactor, Agathobaculum, Faecalibacterium, Dysosmobacter, and

Gemmiger genera were significantly different in CEMG than DMG in terms of their

genomic size (Fig. 2.2D).
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2.3.4 Culture-enriched metagenomics improves gene and functional

annotations

Since CEMG resulted in more complete MAGs than DMG, I asked whether these more

completed genomes enhance gene and functional predictions. First, the distribution of all

predicted genes for each dataset was mapped across MAGs, Bins and unbinned contigs.

On average, 50% of genes identified in CEMG across all the samples were present in

the MAGs while only 30% of genes in DMG were located inside a MAG (Fig. 2.3A,

B). In contrast, the majority of DMG genes (39%) were present in contigs outside of

Bins (Fig. 2.3B). As expected, this increases the confidence in assigned genes to specific

species/strains

Cluster of Orthologous Groups (COGs) (Tatusov et al. 2003) were used to compare

the functional mapping in CEMG and DMG datasets. Although the mean percentage of

detected COGs was not significantly different in CEMG and DMG (Anova, CEMG=77.9,

DMG=75, se=1.03, p=0.08; Fig. 2.3C), the greatest difference was observed in those

COGs that were present in MAGs. On average, 40% of CEMG COGs were identified in

MAGs but that number reduced to 24% using the DMG method (Fig. 2.3D).
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Figure 2.2: De novo assembled MAGs in CEMG vs. DMG. A. A phy-
logenetic tree of all assembled MAGs from CEMG (n=879) and DMG
(n=376) approaches together based on 120 ubiquitous bacterial single-
copy proteins alignment. CEMG and DMG MAGs are shown in green
and purple, respectively. B. An example clade that CEMG MAGs over-
represent. C. Comparison of the predicted MAGs in CEMG and DMG to
their closely related genome in the GTDB database. Each dot shows the
mean of MAGs distance compared to a whole-genome sequence (WGS)
in GTDB. D. Comparison of the predicted MAGs in CEMG and DMG
to their closely related genome in GTDB for each genus. The genera
only present in CEMG are shown in the middle facet, and those in which
their length are significantly different than their closely related genome
are shown in the bottom facet.
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Figure 2.3: De novo prediction of genes in DMG vs. CEMG. A. Per-
centage of genes present in Bins, MAGs and unBinned contigs in CEMG
and DMG methods. B. Mean percentage of genes present in MAGs, Bins
and UnBinned contigs across eight healthy donors. Mean percentage of
genes with known COG functions across metagenomic samples (C.) and
within MAGs, Bins, and UnBinned contigs (D.).
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2.3.5 Culture-enriched metagenomics improves detection of antimicro-

bial resistance genes

To investigate whether CEMG can enhance the detection of antimicrobial resistance

(AMR), I used the CARD database (Alcock et al. 2020) to identify AMR genes in

CEMG and DMG. No "perfect" AMR hits (proteins with 100% identity to a CARD

reference sequence) were identified in MAGs from DMG samples, while on average, 70%

of AMR genes from CEMG were located in the MAGs (Fig. 2.4A). Similarly, the mean

percentage of strict hits (proteins within the BLAST bit score cut-off) in the MAGs

reduced from 50% in CEMG to 25% in DMG. The greatest percentage of perfect and

strict AMR hits from DMG were in the contigs outside of any Bin.

In order to test the importance of AMR genes in the genomic context, MAG/Bin

taxonomy was used to show the percentage of AMR genes that were identified in each

phylum. Interestingly, the greatest percentage of perfect hits that were identified in

CEMG MAGs or Bins belonged to Proteobacteria, while DMG systematically failed to

identify any of these potentially essential hits in all the samples (Fig. 2.4B). A higher

percentage of strict hits were observed in Proteobacteria in CEMG compared to the

DMG method (Fig. 2.4B).
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Figure 2.4: Antimicrobial resistance genes in DMG vs. CEMG. A.
Mean percentage of AMR genes present in MAGs, Bins, and UnBinned
contigs across CEMG and DMG methods. Each dot shows the percentage
of AMR genes detected in healthy donors (n=8). The perfect and strict
AMR genes identified by CARD database are shown in top and bottom
facets, respectively. B. Percentage of AMR genes identified across eight
healthy donors. The taxonomy of MAGs and Bins containing AMR genes
are shown in color.
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2.3.6 Culture-enriched metagenomics predicts more novel proteins.

To determine whether CEMG can discover more novel proteins than DMG, we have

clustered the identified proteins in each method at 90% and 70% and annotated these

proteins using EggNOG-mapper (Cantalapiedra et al. 2021) across all samples. The

total number of proteins increased in CEMG compared to DMG, which was expected

given the increased depth of sequencing and greater number of contigs assembled in the

CEMG approach (Fig. 2.5A). Further, the mean number of novel proteins — measured

as proteins with no close matches in Pfam, EC, and COG databases — was increased in

CEMG compared to DMG at 100%, 90%, and 70% clusters (Fig. 2.5B-D). Nevertheless,

the differences between these approaches are not significantly different in percentage of

proteins with no close match in Pfam, EC, and COG database at 90% clustering thresh-

old (Fig. 2.5E-G), suggesting that CEMG accurately reflects the original metagenomic

community. Interestingly, we observed that by increasing the clustering threshold, the

percentage of novel proteins has increased, indicating that the unique proteins in the

healthy microbiome are more novel than the redundant proteins.

2.4 Discussion

The human microbiota are culturable and it was shown that culture-enriched molecular

profiling could provide a more comprehensive view of the microbiota diversity in samples

collected from the human intestine (Lagier et al. 2012; Rettedal et al. 2014; Lau et al.

2016), lung (Sibley et al. 2011; Whelan et al. 2020), skin (Myles et al. 2016), and urine

(Hilt et al. 2014). We hypothesized that combining culture-enrichment and metagenomic

sequencing can improve de novo assembly of intestinal microbiota genomes. The simpler

microbial communities present in each culture-enriched plate should provide a more

even and unique read coverage, which is essential for assembling complex microbial

communities in de Bruijn graph-based algorithms (Liao et al. 2019). Furthermore, the

distribution of microbes across multiple metagenomic sequencing is expected to improve
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Figure 2.5: Prediction of novel proteins in DMG vs. CEMG. A. Mean
number of predicted proteins at decreasing clustering thresholds across
eight healthy donors. Proteins predicted by DMG and CEMG are shown
in purple and green, respectively. Mean number of proteins with no Pfams
(B), COGs assignments (C), or Enzyme Commission number (D) are
shown at different clustering thresholds. Percentage of proteins with no
Pfams (B), COGs assignments (C), or Enzyme Commission number (D)
are shown at 90%t clustering threshold

binning of assembled contigs. To test this hypothesis, we applied CEMG and DMG to

fresh fecal samples collected from eight healthy individuals.

De novo metagenomic assembly is crucial for the future advancement of computa-

tional microbiology. It is essential to reconstruct the "meta-genome" structure of the new

microbes in an unbiased reference-free approach, given the high heterogeneity in the gut

microbiome of healthy individuals (Lozupone et al. 2012) and incomplete microbial ref-

erence databases (Loeffler et al. 2020). De Bruijn graph-based methods predominantly

used by de novo metagenomic assembler are impaired by sequencing errors, genomic

repeats, and uneven sequencing coverage information. Our results have shown that
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CEMG could improve de Bruijn graphs by providing unique coverage information that

help these algorithms to find matched k-mers across assembly nodes and fill gaps across

the assembly scaffolds.

Although there are multiple large-scale benchmarking studies to assess metagenomic

interpretations (Yue et al. 2020; Sczyrba et al. 2017; Meyer et al. 2021), it was shown that

the performance of these algorithms depends on the microbial community’s complexity

and the depth of metagenomic sequencing (Fritz et al. 2019). Widely used algorithms

for de novo assembly and binning of metagenomic contigs were compared based on the

reference-independent (N50) and -dependent (single-core genes) metrics. Our results

indicated that Eulerian de Bruijn algorithms (such as SPAdes) resolve longer contigs

compared to other memory efficient de Bruijn methods (such as MEGAHIT), presum-

ably because they do not partition reads using k-mer abundance patterns. However,

SPAdes required a memory-intensive machine and a longer run time. The binning algo-

rithms showed variable results, and the number of identified MAGs was sample specific.

However, our results indicated that CEMG reduced the variability of binning algorithms

indicating that unique coverage information provided by plate pools improved the bin-

ning of metagenomic contigs.

Genome-resolved metagenomics, the construction of MAGs, has helped us to further

understand the diversity and functions of microbial strains in healthy human gut micro-

biota (Almeida et al. 2019). However, these MAGs are often not accurate representations

of the bacterial genomes. A common challenge with the assembly of MAGs is over or

under estimation of genomic size. The standards metrics that assess MAG quality (the

number of single-copy core genes) are not necessarily robust enough to report this issue.

We found that MAGs resolved by CEMG were significantly more similar to the closest

complete bacterial genomes than DMG. Interestingly, some bacterial families that were

present in DMG as mapped reads, were only assembled as MAGs in the CEMG method.
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The larger genome fragments assembled by CEMG have improved the gene and func-

tional annotations compared to DMG because they reduce the chance of missing open

reading frames via gene prediction tools such as Prodigal (Hyatt et al. 2010). We also

observed the greatest percentage of genes, functions, and AMR genes in the CEMG

MAGs. Detection of AMR genes in a MAG is crucial because it provides contextu-

alized information about the resistance mechanism. The DMG method has failed to

identify any perfect Proteobacteria sp. AMR hits in a MAG, implicating the impor-

tance of culture-based methods to identify these high-priority resistance bacteria in a

sample. The total proportions of COGs and proteins clustered at multiple thresholds

were not significantly different between these two methods, suggesting that CEMG is

not biased towards any bacterial groups and could show an accurate representation of

original bacterial communities present in DMG.

CEMG is not a replacement for DMG, instead it is an approach that in combination

with DMG can significantly enhance de novo assembly of microbial genes, functions, and

genomes from metagenomics. This approach is labour-intensive and possibly not feasible

for large sample size studies but can be used to build a comprehensive assembly for key

reference samples in addition to providing a strain collection library. In chapter 3, I used

this approach for high resolution characterization of a healthy donor to investigate the

mechanism of microbial engraftment after fecal microbiota transplantation.
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Chapter 3

Culture-enriched metagenomics

reveals microbial engraftment

after FMT in patients with

ulcerative colitis

3.1 Introduction

ulcerative colitis (UC) is a type of inflammatory bowel disease (IBD) restricted to the

colon and of unknown etiology (Kappelman et al. 2007). UC is generally considered to

arise due to a disruption in the balance between the immune system and microbiota

in a genetically susceptible individual (De Souza and Fiocchi 2016; Hindryckx et al.

2016). Current standard medical treatments have focused on supressing the immune

response and are not always effective at controlling disease (Talley et al. 2011). An

alternative approach is to alter the microbial environment responsible for driving the

immune response (Moayyedi 2018). fecal microbiota transplantation (FMT) has emerged

as an increasingly popular approach to alter the colonic microbiota (Fuentes et al. 2017)
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and is a standard therapy for patients with recurrent- Clostridioides difficile infection

(rCDI) (Khoruts et al. 2021; Khanna et al. 2017a) and has also been evaluated in UC

(Moayyedi et al. 2015; Rossen et al. 2015; Costello et al. 2019; Paramsothy et al. 2017;

Haifer et al. 2022b).

Moayyedi et al. (2015) reported on the first randomized controlled trial (RCT) of

FMT for patients with active UC. This RCT showed that the percentage of patients

with active UC in which remission was induced after FMT (24%) was significantly higher

than the placebo (5%), with no difference in adverse events. This has been replicated

by other researchers and there are now four RCTs suggesting FMT is efficacious in UC

(Narula et al. 2017; Paramsothy et al. 2017; Costello et al. 2019; Haifer et al. 2022b).

One of the donors (donor B) involved in the trial reported by Moayyedi et al. (2015),

was more successful compared to other donors, with 7 of the 9 responders — defined as

a Mayo score <3 and complete healing of the mucosa at flexible sigmoidoscopy at week

7 — in the trial receiving FMT from donor B. This apparent donor effect cannot be

studied in some trials as they used a mixture of donors rather than narrowing the pool

of donors and only using one donor per patient. In this study, we built upon the RCT

of Moayyedi et al. (2015) by further investigating the microbial composition of patients

who received FMT from donor B compared to those who received placebo treatments

to ask whether a specific group of microbes were engrafted following FMT and to deter-

mine whether microbial engraftment is associated with remission post-FMT. Previous

studies have characterised microbial enrichments — an increase in the relative abun-

dance of observed bacteria — following FMT using 16S rRNA gene amplicon (rCDI,

(Weingarden et al. 2015; Khanna et al. 2017b)) and marker-based metagenomics (UC,

(Paramsothy et al. 2019)). However, microbial engraftment — the transfer of microbes

from donor to patients — following FMT has yet to be determined, especially given

the low strain/species resolution provided by 16S rRNA gene amplicon. These culture-

independent approaches are often not sensitive enough to capture low-abundant bacteria
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(Lau et al. 2016). The bacteria identified via 16S rRNA gene amplicon or metagenomic

sequencing following FMT may be present before FMT but below the detection level

for culture-independent methods. The culture-enriched sequencing methods provide a

more comprehensive view of the human microbiome than culture-independent sequenc-

ing, particularly for low abundant bacteria, and past studies showed the utility of this

approach to capture the diversity of intestinal (Lagier et al. 2012; Rettedal et al. 2014;

Lau et al. 2016), lung (Sibley et al. 2011; Whelan et al. 2020), skin (Myles et al. 2016),

and urine (Hilt et al. 2014) human microbiota.

To answer the question of whether specific groups of microbes are responsible for

inducing remission in UC, we have therefore used three high-throughput sequencing

approaches; 16S rRNA gene amplicon, metagenomics and culture-enriched metagenomics

(CEMG). Further, we asked whether the observed enrichment post-FMT was due to

the patients’ own microbiome being restored through FMT (e.g., the enrichment of

low abundance bacteria that were originally below the level of detection) or due to

engraftment of the organisms from the donor.

3.2 Methods

3.2.1 Study design and sample collection

The study design and sample collection as described earlier (Moayyedi et al. 2015).

Briefly, 70 active UC patients (Mayo score ≥4 with an endoscopic Mayo score ≥1)

randomly assigned to either 6 weeks of FMT (once per week; 50 mL, via enema, from

healthy anonymous donor) or placebo (once per week; 50 mL water enema) in a double-

blind randomized controlled trial. The stool samples were collected at baseline, before

the FMT, and during each week of FMT.
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Figure 3.1: Graphical illustration of the methodology used in
this study A. Moayyedi et al. (2015) double blind randomized control
trial of FMT for UC patients. Donor B (green) was more successful
compared to the five other donors involved in the trial. B. 16S rRNA
gene amplicon sequencing was conducted for all the patients who received
FMT from donor B or placebo. C. Shotgun metagenomic sequencing was
carried out for a subset of patients who received FMT from donor B. D.
The culture-enriched metagenomics workflow to build a comprehensive
microbiome database of donor B’s gut microbiome.

3.2.2 DNA extraction and 16S rRNA gene sequencing

Genomic DNA extraction and PCR amplification of the V3 region of 16S rRNA gene, was

conducted using previously described protocols (Whelan et al. 2014; Bartram et al. 2011;

Moayyedi et al. 2015). Briefly, 0.2 g of fecal matter was mechanically homogenized using

ceramic beads in 800 µL of 200 mM NaPO 4 (pH 8) and 100 µL of guanidine thiocyanate-

EDTA-N-lauroyl sacosine. This was followed by enzymatic lysis of the supernatant using

50 µL of 100 mg/mL lysozyme, 50 µL of 10 U/µL mutanolysin, and 10 µL of 10 mg/mL

RNase A for one hour at 37 °C. Then, 25 µL of 25% sodium dodecyl sulfate (SDS), 25

µL of 20 mg/mL proteinase K, and 75 µL of 5 M NaCl was added, and incubated for one
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hour at 65◦C. Supernatants were collected and purified through the addition of phenol-

chloroform-isoamyl alcohol (25:24:1; Sigma, St. Louis, MO, USA). DNA was recovered

using the DNA Clean &amp; Concentrator TM -25 columns, as per manufacturer’s

instructions (Zymo, Irvine, CA, USA) and quantified using the NanoDrop (Thermofisher,

Burlington, ON). After genomic DNA extraction, the V3 region of the 16S rRNA gene

was amplified via PCR using these conditions per reaction well: Total polymerase chain

reaction volume of 50 µL (5 µL of 10X buffer, 1.5 µL of 50mM MgCl 2 , 1 µL of 10 mM

dNTPs, 2 µL of 10mg/mL BSA, 5 µL of 1 µM of each primer, 0.25 µL of Taq polymerase

(1.25U/ µL), and 30.25 µL of dH 2 O. Each reaction was divided into triplicate for greater

efficiency. The primers used in this study were developed by Bartram et al.,2011. PCR

conditions used included an initial denaturation at 94◦C for 2 minutes, followed by 30

cycles of 94◦C for 30s, 50◦C for 30s, 72◦C for 30s, followed by a final elongation at 72◦C

for 10 minutes. All samples were sequenced using an Ilumina MiSeq platform at the

McMaster Genome Facility (Hamilton, Ontario, Canada). Samples were processed in

batches, meaning not all samples were extracted and sequenced at the same time.

3.2.3 16S rRNA gene sequencing processing pipeline

Cutadapt v. 1.14 (Martin 2011) was used to filter and trim adapter sequences and PCR

primers from the raw reads, using a quality score cut-off of 30 and a minimum read length

of 100 bp. We used DADA2 (Callahan et al. 2016) to resolve the sequence variants from

the trimmed raw reads as follow. DNA sequences were trimmed and filtered based on the

quality of the reads for each Illumina run separately. The Illumina sequencing error rates

were detected, and sequences were denosied to produce ASV count table. The sequence

variant tables from the different Illumina runs were merged to produce a single ASV

table. Chimeras were removed and taxonomy was assigned using the DADA2 imple-

mentation of the RDP classifier against the SILVA database v. 1.3.2 (Quast et al. 2012),

at 50% bootstrap confidence. All downstream analysis was conducted in R v. 4.0.3
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(Ihaka and Gentleman 1996). We curated the data and generated plots using phyloseq

v. 1.22.3 (McMurdie and Holmes 2013) and the following tidyverse packages: dplyr v.

0.7.6, tidyr v. 0.8.1, rlang v. 0.2.1, and ggplot2 v. 3.0.0. To visualize sample distances

(beta-diversity), we calculated both Aitchison and Bray–Curtis distances. ASV counts

transformed to the centered log-ratio (CLR) using microbiome v.1.12.0 and visualized

via Principal Component Analysis (PCA) for Aitchison distances. We applied PCoA to

generate Bray-Curtis distances for ordination plots and unweighted pair group method

with arithmetic mean (UPGMA) for clustering trees using ape package v. 5.2 (Paradis

et al. 2004) and hclust() function in R. Trees were visualized using the stringi package

v. 1.2.3 in R and the Interactive Tree of Life (iTOL) (Letunic and Bork 2007). To

measure sample diversity, we calculated Shannon values for sample or group using phy-

loseq package and visualize them using ggplot. The variability of microbiota was tested

by PERMANOVA on Bray-curtis distances based on relative-abundance of microbes in

each sample using adonis() function in ape package (Paradis et al. 2004). The diversity

of samples calculated by Shannon values using phyloseq and the significant changes were

measured by Linear Mixed-Effects Models using lmer package. Those ASVs that were

present in ≥ 1 sample from donor B selected as donor B’s ASVs. Then, the donor B’s

ASVs were compared in each patient with data from prior and post-FMT, ASVs with a

relative abundance of 0 in a patient before FMT and ≥ 0.1% post-FMT were labelled as

engrafted. In order to find the commonly engrafted ASVs, the number of engrafted ASVs

was compared across an increasing number of patients in FMT vs. placebo group. To

have an equal number of patients across these two groups, 20 of 31 patients on placebo

treatment were randomly sampled (with 100 re-sampling).
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3.2.4 Library preparation and read-based shotgun metagenomics

pipeline

We have conducted shotgun metagenomics on 22 samples collected from 11 patients,

with 2-time points each, in this study (4 non-responder, 6 responders patients who re-

ceived FMT and one patient on placebo). Genomic DNA was standardized to 5 ng/

µL and sonicated to 500 bp. Using the NEBNext Multiplex Oligos for Illumina kit

(New England Biolabs), DNA ends were blunted, adapter ligated, PCR amplified, and

cleaned as per manufacturers instructions. Library preparations were sent to the Mc-

Master Genome Facility, and sequenced using the Illumina HiSeq platform. The forward

and reverse sequencing runs were concatanated and trimmed for primer adapters and

low quality reads using Trimmomatic (Bolger et al. 2014). The taxonomic, and gene-

family composition of trimmed shotgun reads identified using Metaphlan2 and Humann2

pipeline (Franzosa et al. 2018). All downstream analysis was conducted in R v. 4.0.3.

The Bray-Curtis distances calculated based on the relative abundance of known species

and gene-families using phyloseq package. Principal coordinate analysis (PCoA) plots

were generated using phyloseq and ggplot2. Unweighted pair group method with arith-

metic mean (UPGMA) trees based on Bray–Curtis distances were generated using the

ape package v. 5.2 (Paradis et al. 2004) and hclust() function in R. Trees were visualized

using the stringi package v. 1.2.3 in R and the Interactive Tree of Life (iTOL). (Letunic

and Bork 2007). The diversity of samples measured by Shannon index using phyloseq

and the significant changes were measured by Linear Mixed-Effects Models using lmer

package. For the microbial taxonomy dataset, the engrafted strains were defined as any

strains present in ≥ 1 sample from donor B with relative abundance of 0 prior to FMT

and 0.1% post-FMT in a patient. Humann2 uses a detection threshold of 0.01% relative

abundance which is equivalent to 0.1x fold-coverage of a 5 Mbp microbial genome (Fran-

zosa et al. 2018). Given 1000 genes per Mbp, we expect 0.0005% relative abundance for

detection of a gene family. Thus, any gene family with a minimum relative abundance
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of 0.0005% in donor B samples, 0% before FMT and 0.0005% post- FMT defined as

engrafted gene-families.

3.2.5 Culture-enriched and independent metagenomics on donor B

samples

A single fresh, anaerobic fecal sample collected from donor B. The collected sample

was cultured using 33 media, and incubation of plates anaerobically and aerobically re-

sulted in 66 culture conditions for culture-enriched molecular profiling using previously

described protocol (Lau et al. 2016). The list of media and culture conditions are de-

scribed earlier (Lau et al. 2016). 16Sr RNA amplicon sequencing was conducted on all

the 66 culture conditions. To determine a representative subset of culture-enriched plates

that adequately represent the sample, the distribution of ASVs in the direct sequencing

was compared to the culture-enriched sequencing per plate pool using the PLCA algo-

rithm (Whelan et al. 2020). Shotgun metagenomics was conducted on the subset of plate

pools identified by the PLCA algorithm. Genomic DNA was isolated from the thirteen

selected plate pool and shotgun metagenomics conducted as previously described (Whe-

lan et al. 2020; Lau et al. 2016). Direct shotgun metagenomics conducted on the same

fecal sample, which was earlier used for culture-enriched metagenomics as well as three

other fecal samples collected from donor B at different time points (2013, 2017x2).

3.2.6 Comparison of the culture-enriched metagenomics with direct

metagenomics data

To build the culture-enriched metagenomic library, the raw shotgun sequences from the

selected plate pools and the original fecal sample collected from donor B co-assembled
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together as follows. The low-quality reads and sequencing primers removed using Trim-

momatic (Bolger et al. 2014). The reads decontaminated for any human DNA utiliz-

ing DeconSeq package (Schmieder and Edwards 2011). The shotgun reads were co-

assembled and binned using metaSPADE (Bankevich et al. 2012) and Metabat2 (Kang

et al. 2019) respectively. In addition to CEMG assembly, the microbial composition of

direct metagenomics (DMG) from the fecal sample assembled and binned separately.

These two datasets are labelled as CEMG and DMG in Figure A2.3. The microbial

composition of DMG and CEMG datasets were then comprehensively evaluated using

the following procedure. The single-copy core genes were identified within each bin using

CheckM (Parks et al. 2015), any bin with minimum 70% completion and maximum 10%

contamination were defined as a metagenome assembled genome (MAG). The shotgun

reads were mapped to the assembled contigs to estimate sequence coverage for all con-

tigs, Bins, MAGs, and those contigs that were not present in any bin. We used bwa

(Li and Durbin 2009) to map reads to assembled contigs and anvio pipeline (Eren et al.

2015) to normalize the coverage to the depth of sequencing. The detection values calcu-

lated for each bin using anvio package (Eren et al. 2015). The detection value defined

as the proportion of a given MAG that is covered at least 1X; in other words, it esti-

mates the proportion of MAG that recruited reads to it. We used GTDB-Tk (Chaumeil

et al. 2019) to build a phylogenetic tree, and taxonomic assignment of MAGs. All of the

figures visualized in R v. 4.0.3.

3.2.7 Microbial engraftment detection in metagenomic data

To detect microbial engraftment, we aimed to construct a comprehensive library of mi-

crobial genes and genomes from donor B. This library contains 4 DMG samples and

single CEMG sequencing methods. The low-quality reads and sequencing primers re-

moved using Trimmomatic (Bolger et al. 2014). The reads decontaminated for any

human DNA utilizing DeconSeq package (Schmieder and Edwards 2011). The shotgun
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reads from both culture-dependent and independent libraries were co-assembled and

binned using metaSPADE (Bankevich et al. 2012) and Metabat2 (Kang et al. 2019)

respectively. The MAGs and MABs were identified using previously described criteria.

The single-copy core genes were identified within each bin using CheckM (Parks et al.

2015), any bin with minimum 50% completion and maximum 10% contamination were

defined as a metagenome assembled genome (MAG). To include more number of MAGs

in our database, we reduced the completion value of a MAG from 70% to 50%. We used

Prodigal (Hyatt et al. 2010) to predict prokaryotic genes and coding DNA sequences

(CDS) from the assembled contigs. The taxonomic labels are assigned to all bins using

GTDB-Tk (Chaumeil et al. 2019). In total, we were able to assemble 255 metagenomics

assembled genomes (minimum 50% completion and maximum 10% contamination) and

1,130,000 completed prokaryotic genes. After de-novo prediction of genes and MAGs,

we mapped the collected metagenomics samples from before and after FMT (22 sam-

ples in total) to the assembled contigs from donor B. The raw reads from each sample

were mapped to the assembled contigs using bwa mem (Li and Durbin 2009) and the

coverage information normalized to the depth of sequencing using anvio package. For

each MAG, the detection and single nucleotide variability measurements calculated us-

ing anvio pipeline. The variability index shows the number of reported single-nucleotide

variants per kilobase pair. All the downstream analyses to detect microbial engraftment

at gene and genomic-level were performed in R v. 4.0.3 R.

The assembled MAGs from donor B were classified by comparing the short read

mapping coverage and SNV frequencies from before and after FMT for each patient.

Shared category was defined as MAGs covered above our minimum detection cutoff (≥

60% proportion of nucleotides in a MAG that has at least 1X coverage) in a patient both

before and after FMT. The MAGs with coverage lower than the minimum detection

cutoff in both time points were classified as Unique to Donor. The MAGs with 0

coverage before FMT and ≥ 60% post-FMT were classified as Engrafted and opposite
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cutoffs were used for Lost category. To measure variability across detected MAGs, the

SNV frequency calculated for MAGs with minimum 0.6% coverage in both time points

using anvio pipeline (Eren et al. 2015). The SNV frequency shows the number of single-

nucleotide variants per kilo base pair. The Shared MAGs that showed >=1 SNV per

kilobase pair before FMT but their frequencies reduced to <= 0.5 per kbp after FMT

were classified as Strain Replacement. In other words, those MAGs that were present

in both time points but highly similar to donor B’s original MAG only after FMT are

defined as strain replacement.

To detect microbial engraftment at the gene-level, we compared the coverage of all

the 1,130,000 donor B microbial genes across UC patients before and after FMT. In this

model, those genes that their detection (% of gene covered at least 1X) was 0 before

FMT and became at least 0.6 with minimum 5X coverage after FMT is called engrafted

genes (Fig. 3.5 C). To narrow down the number of engrafted genes, commonly engrafted

ones across three patients were labelled as common engraftment. This model applied

to all eleven patients, regardless of their response to FMT. Then, we compared these

commonly engrafted genes against the Uniref90 reference database using Diamond blastp

and the identified Uniprot ids annotated with GO, KEGG, COG, Pfams, and lineage

information.

3.2.8 Single whole-genome sequencing and comparative genomics

30 Dorea, 1 F.prausnitzii, and 67 Blautia strains were isolated from human gut. The

media, culture conditions for isolation, library preparation, and sequencing protocols as

described earlier (Derakhshani et al. 2020). In addition, we have collected 65 Dorea, 98

F.prausnitzii, and 143 Blautia strains available in NCBI RefSeq (May 2020). We have

annotated all the genes and CDS using Prokka (Seemann 2014) with default settings.

The assembled genomes were re-classified using GTDB-Tk (Chaumeil et al. 2019) and
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phylogenetic trees were constructed within each genus based on multiple sequence align-

ment of 120 bacterial marker genes from GTDB database (Parks et al. 2020). We used

panaroo (Tonkin-Hill et al. 2020) with strict mode and mafft aligner to generate core-

gene alignment within each species. We then used approximately-maximum-likelihood

model via FastTree (Price et al. 2010) to construct phylogenetic trees for strains within

each species. We made a blastn database using all the 402 genomes and tracked the com-

monly engrafted genes across these genomes with a minimum ≥90 pident and qcovhsp

≥90 cut-offs. The number of non-redundant positive hits from blastn output were visu-

alized for each genome on the phylogenetic trees for genus and species collections. All

the phylogenetic trees were visualized in v. 1.2.3 R using ggtree, ggtreeExtra, and ape

packages.

A single genome with the most number of commonly engrafted genes and fewest con-

tigs were selected for D. longicatena, F. prausnitzii, and F. saccharivorans as represen-

tative strains of commonly engrafted genes. Then we mapped all the shotgun raw-reads

from donor B (5 samples) and UC patients (22 samples) to these three genomes using

bwa-mem (Li and Durbin 2009). The commonly engrafted genes identified for each rep-

resentative strain using previously described gene engraftment model. Briefly, genes that

were not present (0% 1X coverage) pre-FMT but present (>0.6% with ≥5X coverage)

post-FMT across ≥3 patients were selected as commonly engrafted genes. We used a

custom python code to extract all the commonly engrafted genes and their flanking re-

gions (20,000 bps) from the three representative strains. To find whether the engrafted

genes are the result HGT or strain replacement, we used anvio pipeline (Eren et al.

2015) for de-novo characterization and reporting of SNVs for the two selected flanking

regions in F.prausnitzii and F. saccharivorans strains. In short, a table of nucleotide

base frequencies for the 80,000 bp gene clusters, contained commonly engrafted genes,

were constructed for F. saccharivorans and F.prausnitzii representative strains. The

consensus nucleotide identified based on anvio’s conservative heuristic model. We then
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selected and visualized only those base positions that were identical across all donor B

samples (5 samples). These are donor B’s specific SNVs that we used to see whether the

samples collected after FMT are closer to the donor’s SNV profile (less number of SNV)

or contain increased SNVs. The SNV tables were filtered and visualized in v. 1.2.3 in R

using tidyverse packages.

3.2.9 Species- and strain-specific markers for a metagenomic survey of

IBD patients and healthy controls

To build species-specific marker, a group of genomes from distinct species were selected

from Dorea sp., Feacalibacterium sp., and Fusicatenibacter sp. collections for pangenome

analysis. Species-specific core-genomes were identified and visualized using Anvio micro-

bial pangenomics workflow. Brierly, gene calls were annotated with prodigal and MCL

algorithm (Van Dongen and Abreu-Goodger 2012) was used to identify gene-cluster

across the pangenome alignment with –mcl-inflation 10 –minbit 0.5 –use-ncbi-blast. To

test the accuracy of species-specific and strain-specific (the commonly engrafted genes)

markers, we have used 1200 WGS from our lab strain collections. These strains are

diverse bacterial isolates from all bacterial phyla collected from the human microbiota.

We mapped shotgun reads from 1112 WGS to markers using bwa-mem (Li and Durbin

2009) with –B 40 –O 60 –E 10 —L 100 parameters to find perfectly aligned reads over

their entire length and samtools (Li et al. 2009) to extract coverage information from

bam file. We then used the percentage of 1X coverage to visualize the coverage infor-

mation for each marker in v. 1.2.3 in R using tidyverse packages. We used a publicly

available metagenomic dataset (PRJNA279196 (Franzosa et al. 2019)) to investigate the

specificity of D. longicatena, F. prausnitzii, and F. saccharivorans strains in IBD pa-

tients compared to healthy controls. We downloaded metagenomic samples from the

SRA database via Entrez Direct (EDirect) command line. Metagenomic shotgun reads

from all the samples (n=220) were mapped to marker gene-clusters using bwa-mem (Li

53



Ph.D. Thesis Shahrokh Shekarriz; McMaster University - Biochemistry & Biomedical Sciences

and Durbin 2009) with the parameters specified above and samtools (Li et al. 2009).

Subsequently, the percentage of 1X coverage of strain- and species-specific markers were

visualized in v. 1.2.3 in R using tidyverse packages.

3.3 Results

We collected samples from 51 patients (paired samples before and after FMT) who

randomly assigned to 6 weeks of FMT from donor B (n=20) or placebo treatment (n=31)

once per week (Moayyedi et al. 2015) as well as 34 fecal slurries from donor B collected

during the clinical trial (Fig. 3.1A). We sequenced the variable 3 region of the 16S rRNA

gene amplicon from all samples (Fig. 3.1B) and conducted shotgun metagenomics for

ten patients who received FMT from donor B (six responders and four non-responders

to FMT), one patient who randomized to the placebo group, and five samples from

donor B (Fig. 3.1C). We built a comprehensive de novo sequence library of donor B via

culture-enriched metagenomics. 16S rRNA gene amplicon sequencing was carried out

on 66 growth conditions (33 anaerobic and 33 aerobic, see Methods), and metagenomic

sequencing on the 13 most comprehensive plate pools selected using a plate coverage

algorithm, as previously described (Whelan et al. 2020) (Fig. 3.1D).

3.3.1 16S rRNA gene sequencing does not provide the necessary res-

olution to determine if engraftment is occurring

We reanalysed the 16S rRNA gene sequencing data of donor B fecal slurries as well

as patients who received FMT from donor B or placebo from Moayyedi et al. (2015),

using higher resolution amplicon sequence variants (ASV) (Callahan et al. 2016). We

hypothesised that remission induced by FMT would be associated with changes in the

microbial composition of patients before and after FMT, either due to enrichment (in-

crease in relative abundance of ASVs present at baseline) or engraftment (detection of

donor-specific ASVs following FMT). To do so, we compared paired patient samples
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collected prior to and six weeks post-treatment. The 16S rRNA gene dataset contained

102 samples from 51 patients and 34 donor B samples (Fig. 3.1B). This dataset includes

8 patients who went into remission following FMT (6 who received FMT, and two from

the placebo group).

We calculated the community-wide distance between each sample using the Bray-

Curtis beta-diversity metric and clustered all samples into a UPGMA tree (Fig. 3.2A)

FMT recipients were less likely to cluster most closely to their pre-treatment sample

compared to patients given placebo (45% vs. 71%, respectively) indicating smaller

community change in the placebo compared to the FMT group, as previously describe

(Moayyedi et al. 2015). Further, there was no significant separation based on FMT

or placebo treatment regardless of whether all patients were analyzed or samples were

sub-setted to just responder or non-responder (ANOVA non-parametric test based on

Bray-Curtis distance; FMT R2 =0.02, p-value=0.2; Placebo R2 =0.01, p-value=0.06;

Responder R2=0.06, p-value=0.2; Non-responder R2=0.02, p-value=0.3 Fig. 3.2B; or

based on Aitchison distance Supplementary Figure A2.1B). The alpha diversity of the

microbiota, as measured by the Shannon index, did not significantly change in week

six following either FMT (linear mixed-effect model, p-value=0.8) or placebo treatment

(linear mixed-effect model, p-value=0.5) when compared to baseline. These findings

suggest that there is not a common change to the microbial community post-FMT in

UC patients, most likely due to the heterogeneity in the microbiome composition across

UC patients (R2=0.71, p-value=0.001). However, the microbial composition of samples

collected from donor B is significantly different from the rest of the samples in this co-

hort (R2 =0.08, p-value=0.001; Fig. 3.2B, and Supplementary Figure A2.1B). Using 16S

rRNA gene sequencing data, we were not able to find a global difference between samples

collected from patients before and after FMT or an association between remission and

microbial composition.
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To test whether microbial engraftment is associated with remission post-FMT, we

determined any ASVs from donor B that could be potentially engrafted based on their

relative abundance in each patient (donor B ASVs with a relative abundance of 0 in a

patient before FMT and ≥ 0.1% post-FMT). If we used this definition of engraftment, on

average, 164 and 63 donor B’s ASVs were engrafted (≥1 patient) in the FMT and placebo

groups, respectively (Fig. 3.2C). These results suggest that there is a moderately high

false positive in detecting true engraftment via 16S rRNA gene amplicon data even with

the stringent cut-offs used here. Although there is a signature of 25 ASVs commonly

engrafted in ≥ 3 patients post-FMT (Fig. 3.2C), these ASVs are not unique to those

who responded to FMT treatment (Supplementary Figure A2.1D). We conclude that

low resolution provided by 16S rRNA gene sequencing results in too high of an error

rate to accurately predict microbial engraftment.
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Figure 3.2: 16S rRNA gene sequencing does not indicate a com-
mon microbial shift following FMT. The microbial composition of
51 patients who either randomly received FMT from donor B or placebo
treatment using 16S rRNA gene amplicon sequencing. A. The UPGMA
tree of Bray-Curtis distances for all the samples collected (patients and
donor B). The light and dark green colours in the inner ring show baseline
and week six samples, respectively, collected from patients who random-
ized to FMT treatment. The light and dark blue colours show baseline and
week six samples, respectively, collected from patients who randomized to
placebo treatment. The outer layer shows the taxonomic composition of
samples at the phylum-level. B. The top left panel shows the PCoA of
Bray-Curtis distances for all samples. The bottom left panel shows donor
B samples compared to all the other samples collected from patients. The
middle panels show the same PCoA space, comparing only the samples
collected from before and after FMT or placebo treatments. The right
panels compare samples collected prior and post-FMT in responder (top)
and non-responder (bottom) patients. C. Donor B’s ASVs that were com-
monly engrafted across an increasing number of patients post-FMT vs.
placebo (as a control).
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3.3.2 Shotgun metagenomics does not indicate consistent microbial

engraftment across FMT responders

To increase the taxonomic resolution and to investigate the functional composition of the

gut microbiota in the patients who received FMT from donor B, we conducted shotgun

metagenomics on a subset of patients consisting of 6 responder and 4 non-responder

FMT patients, 4 samples from donor B, and two samples from week 0 and week six from

a non-responder patient who received placebo treatment (n=11 patients, 1 donor; 26

samples total, Fig. 3.1C). In order to assess whether there were microbial community-

wide changes following FMT, we first identified the taxonomic composition of samples.

Using Metaphlan2, we measured the Bray-Curtis and Aitchison beta-diversity distances

between each sample and visualized the results via a PCoA (Fig. 3.3A) and UPGMA

tree (Supplementary Figure A2.2A). Our results showed that there was not a significant

community-wide change post-FMT either in all patients, or only those who responded

to FMT (ANOVA non-parametric test based on Bray-Curtis distance; FMT R2 =0.02,

p-value=0.9 Fig. 3.3A; Responder R2=0.04, p-value=0.9 Supplementary Figure A2.2C;

or based on Aitchison distance; FMT R2=0.03, p-value=0.09; Responder R2=0.05,p-

value=0.9). In addition to taxonomic composition, we also assessed community-wide

changes based on identified microbial gene families following FMT. Visualising the Bray-

Curtis and Aitchison metrics via a PCoA (Fig. 3.3B) and UPGMA tree (Fig.A2.2B) we

did not observe a significant community-wide shift post- FMT (ANOVA non-parametric

test based on Bray-Curtis distance; FMT R2 =0.03, p-value=0.9 Fig. 3.3B; Responder

R2=0.04, p-value=0.8 Supplementary Figure A2.2D; or based on Aitchison distance;

FMT R2=0.03, p-value=0.09; Responder R2=0.04,p-value=0.8).

Similar to the 16S rRNA gene sequencing results, we were not able to find a global mi-

crobial community shift post-FMT either at the strain or gene family level (Fig. 3.3A,B).

To assess whether a group of microbial strains or gene families commonly engraft in pa-

tients who respond to FMT, we detected donor B’s strain and gene families transferred
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to patients following FMT using shotgun read-based metagenomics (see Methods). We

identified 40 strains and > 600 gene families that were engrafted in ≥ 1 patients following

FMT (Fig. 3.3C). Interestingly, there were 2 strains and 131 gene families that commonly

engrafted in ≥ 3 patients post-FMT, and that were detected post-FMT in both respon-

der and non-responder patients; none of them were present in the placebo treated patient

(Supplementary Figure A2.2E and F). These shotgun metagenomic analyses show that

FMT induces changes in the patient’s microbiota strain and gene composition. However,

these changes are not specific to those who went into remission following FMT.

We observed that the microbial composition of donor B using taxonomic and gene

family composition is significantly different compared to all samples collected in this

cohort (ANOVA non-parametric test based on taxonomy using Bray-Curtis distance; R2

=0.08, p-value=0.01 Fig. 3.3A; based on gene families R2=0.07 p-value=0.02 Fig. 3.3B).

We concluded that engraftment occurs but is not specific to those who responded to

FMT treatment. We need higher resolution data to investigate microbial engraftment

following FMT and assess whether donor B could drive a signature of microbial changes

across responder patients.
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Figure 3.3: Shotgun metagenomics shows microbial engraftment
but is not specific to reponder patients. The taxonomic and func-
tional composition of 10 patients who received FMT from donor B and a
patient on placebo treatment using shotgun metagenomics. A. The PCoA
of Bray-Curtis distances based on the taxonomic composition of assigned
reads. Dotted lines connect samples collected at week 0 and week 6 for
each individual. B. The PcoA of Bray-Curtis distances based on the com-
position of known gene families in each sample. Donor B’s strains (C.)
and microbial gene families (D.) engrafted across increasing number of
patients post-FMT.
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3.3.3 Culture-enriched metagenomics improves the quality of de novo

assembly and taxonomic binning

Detection of microbial engraftment may require greater microbial resolution (e.g.,

genomes and genes). It is often challenging to determine if the donor is responsible

for the observed microbial changes post-FMT or if they instead represent patient’s

own microbiota shared with donor. De novo metagenomic approaches could provide

a better resolution of the community, and it may be more suitable than amplicon or

read-based metagenomic techniques for tracking strain or gene-level changes. However,

the quality of genome assembly and taxonomic binning of de novo metagenomics can be

poor (Sieber et al. 2018), and recovering the low-abundant taxa is challenging (Sczyrba

et al. 2017). Previous studies have shown that the human microbiota is culturable

(Lagier et al. 2012; Rettedal et al. 2014; Lau et al. 2016; Lagier et al. 2016; Lewis et al.

2021), and that a combination of de novo metagenomics and comprehensive culturing

can result in increased observed microbial diversity (Forster et al. 2019; Whelan et al.

2020). Specifically, culture-enriched metagenomics could detect lower abundant organ-

isms before FMT that are often missed by culture-independent methods, potentially

improving detection of microbial engraftment following FMT. As such, we hypothesize

that combining microbial de novo techniques with culture-enriched metagenomics of the

donor B microbiota would improve microbial gene and strain recovery from this donor

compared to the commonly used direct metagenomic approach (DMG). To test this

hypothesis, a fresh fecal sample from donor B was plated on 33 media types under both

aerobic and anaerobic conditions. 16S rRNA gene amplicon sequencing was conducted

on each plate condition (66 culture conditions in total) as well as on the fecal sample

itself (as described previously (Lau et al. 2016)). The minimum number of plate con-

ditions with adequate ASV diversity to recapitulate the diversity of the donor B fecal

sample were identified using the previously established plate coverage algorithm (PLCA,

(Whelan et al. 2020)). Shotgun metagenomics was performed on 13 media conditions
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as selected via the PLCA (Fig. 3.1D). We then compared the de novo assembly and

microbial binning quality for a single fecal sample collected from donor B via DMG and

CEMG approaches.

DMGs resulted in 35,577 assembled contigs (> 2.5 k) accounting for ∼340 Mbps of

the assembled data, where as the same number of contigs in CEMG captured ∼620 Mbps

(Supplementary Figure A2.3A, dashed lines). CEMG assemblies resulted in longer con-

tigs compared to DMGs. Consequently, these longer contigs enhanced the de novo gene

predictions and generated more (132 vs. 49) complete metagenome-assembled genomes

(MAGs; > 70% completion and < 10% contamination) in CEMG compared to DMG (see

Methods; Supplementary Figure A2.3A–C). To assess the CEMG approach, we mapped

raw reads from both DMG and CEMG to the assembled MAGs from both approaches.

CEMG recovered 83 more MAGs than DMG; however, most of these MAGs were present

in the DMG based on the short-read mapping coverage, indicating that these results are

not due to contamination but instead increased sequencing resolution (Supplementary

Figure A2.3B). The increased number of MAGs in CEMG are not derived from a par-

ticular group of bacteria, but instead are enriched in all families in proportion to the

original abundance in the DMG approach (Supplementary Figure A2.3B,C).

To examine the quality of assembled MAGs, we selected 40 homologous MAGs in

DMG and CEMG based on their position in the phylogenetic tree and compared their

genome size. We found that 24 of 40 (60%) of MAGs include more genetic information in

CEMG compared to DMG (Supplementary Figure A2.3D). We concluded that CEMG

enhanced the de novo assembly of genes and MAGs for intestinal microbiota and set to

use this approach to detect and establish microbial engraftment following FMT.
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3.3.4 High resolution mapping of the donor microbiota shows micro-

bial genome engraftment following FMT

To refine the composition of donor B’s microbiota regardless of temporal variations,

we built a comprehensive database of donor B’s microbiota using a co-assembly of four

longitudinal DMG samples as well as one CEMG. In order to build a more comprehensive

library of MAGs from donor B, we used the standard minimum 50% completion and

maximum 10% contamination cutoffs Bowers et al. 2017 which identified 255 MAGs out

of a total of 447 bins (Fig. 3.4A). To track donor B MAGs following FMT, we mapped

raw shotgun reads from 11 patients (6 responders, 4 non-responders, and 1 placebo; 22

samples) to 255 donor B MAGs both before and after FMT. We then classified the donor

B MAGs into five microbial detection categories by comparing the genomic coverage and

single nucleotide variant (SNV) information from before and after FMT for each patient.

These groups include: 1. Unique to Donor (Donor B MAGs that didn’t transfer after

FMT), 2. Shared (Donor B MAGs that are present in a patient both before and

after FMT), 3. Engrafted (Donor B MAGs that were not detected before FMT but

are present after FMT), 4. Strain Replacement (Donor B MAGs that replaced a

patient’s strain after FMT), 5. Lost (Donor B MAGs detected in a patient before but

not following FMT).

"Unique to Donor" was the most abundant category across patients (204 / 255, on

average). These MAGs were not present (defined as >60% of a MAG that has at least

1X coverage) in any patient sample (Fig. 3.4B, Supplementary Figure A2.4A). "Shared"

and "Engrafted" were the second (31 / 255, on average) and third (10 / 255, on aver-

age) abundant categories, respectively. In order to assess if the MAGs present following

FMT were a patient’s own strains or if they were replaced by strains from the donor,

we assessed the number of SNVs per kbp for "Shared" MAGs. Based on the number

of SNVs identified, on average, 4 MAGs were categorized as "Strain replacement" (see

63



Ph.D. Thesis Shahrokh Shekarriz; McMaster University - Biochemistry & Biomedical Sciences

Methods, Fig. 3.4C, Supplementary Figure A2.4A) while most represented patient spe-

cific strains. We also identified a group of "Lost" MAGs strongly delineated in only one

patient (pt79). Most MAGs (252 out of 255) were not present in patient 25 (microbial

placebo treatment). These MAGs were classified as either "Unique to Donor" (n=170)

or "Shared" (n=80) but we observed 2 "Strain replacement", a single "Engrafted", and

a single "Lost" MAGs, highlighting the low margins of error of this model (Fig. 3.4B,

Supplementary Figure A2.4A).

Using the microbial transfer model, we showed that most donor B MAGs were not

transferred or present in patients after FMT. Although patients 4 and 10 (remission

following FMT) illustrated the highest number of engrafted and replaced MAGs, we did

not find an overall difference between responders and non-responders in terms of the total

number of donor B MAGs transferred after FMT (Fig. 3.4B). Engrafted / replaced MAGs

belong to 5 different bacterial phyla (as well as a single MAG assigned to Euryarchaeota)

and the most abundant families in these MAGs were Lachnospiraceae, Osillospiraceae,

Ruminococcaceae, Bacteroidaceae, and Acutalibacteraceae. Interestingly, we were able

to detect 103 and 9 MAGs from donor B that engrafted / replaced in ≥ 1 and ≥

3 patients, respectively, following FMT (Fig. 3.4D). However, these MAGs were not

specific to responder patients (except a single MAG, M300, that we were only able to

assign to Lachnospiraceae family; Fig. 3.4E). We concluded that the microbial shift at

the genomic level is patient-specific; and that there are some specific strains from donor

B which were able to engraft in ≥ 3 patients (n=9, Fig. 3.4D, E), regardless of whether

they responded to FMT or not.
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Figure 3.4: High resolution genome-resolved metagenomics
shows microbial genome engraftment and replacement follow-
ing FMT. A. De novo assembled donor B MAGs (n=255) via culture
dependent and independent metagenomics, classified to the Family-level.
B. Donor B’s MAGs classified into different categories post-FMT in each
patient using genomic coverage and single nucleotide variability. C. Com-
parison of the engraftment and strain replacement events across all pa-
tients post-FMT. The list of patients is sorted from the lowest to the
highest number of engrafted and replaced MAGs. The taxonomy of each
MAG is shown at the genus and phylum levels. D. The number of en-
grafted MAGs across an increasing numbers of patients. E. 9 donor B’s
MAGs commonly engrafted or replaced in ≥3 patients post-FMT.
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3.3.5 A signature of gene engraftment in patients who responded to

FMT

The CEMG approach allowed us to refine 255 MAGs from a single FMT donor, but

tracking these MAGs alone does not provide a comprehensive assessment of the microbial

dynamics after FMT. In highly related strains (or species) the presence or absence of

only a few genes can correspond to a divergent functional profile (Karcher et al. 2021;

Rousset et al. 2021). Subsequently, the detection of these strain replacement events

following FMT becomes more challenging and required in-depth assessment of bacterial

genes in addition to genomic coverage and SNV variability.

We were interested in identifying genes associated with engraftment and/or response

to FMT. Because of the inherit challenges of metagenomic binning, we focused on the

microbial genes assembled from donor B independent of their MAG/bin assignment,

assembling and predicting 1,130,000 genes. Using stringent coverage thresholds (see

Methods), we detected 139,535 (12%) genes that were potentially engrafted in ≥ 1

patient. In this model, engrafted genes are defined as those whose coverage before FMT

were 0 but were ≥ 5X covered after FMT (see Methods). While many of the engrafted

genes identified vary across patients, we identified a set of genes that commonly engraft

across multiple patients. When we compared all 139,535 engrafted genes across all

patients, 13,092 (9%), 267 (0.2%), and 7 (0.005%) genes commonly engrafted for at

least 2, 3, and 4 patients respectively (Fig. 3.5A).

Interestingly, 265 of 267 (≥ 3 patients) and all 7 (≥ 4 patients) genes which com-

monly engrafted were specific to patients who responded to FMT (Fig. 3.5A, B). In con-

trast, only two of these genes were found in non-responder patients and none engrafted

with placebo treatment (Fig. 3.5B). 43% of these genes belong to Lachnospiraceae (19%

Dorea, 14% Blautia, 10% Other), and 21% Ruminococcaceae (11% Faecalibacterium, 10%

Other); we were unable to predict the taxonomic origin of 30% of these genes. From
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the 267 commonly engrafted genes, 50% are found in MAGs, 12% in bins and, 38%

were not assigned a bin/MAG. Most of these genes (on average ∼500bp) are not well

characterized (51% hypothethical proteins; (Fig. 3.5C). The top categories of Clusters

of Orthologous Groups (COGs) predicted for these genes are transcription, translation,

amino acid transport metabolism, carbohydrate transport metabolism, and coenzyme

transport metabolism (Fig. 3.5C). 34% (n=93) of these genes have a corresponding pro-

tein in the Pfam database (Supplementary Table A2.1) The top predicted molecular

functions across these genes are DNA binding (e.g., Cold-shock, antitoxins, Cro/C1-

type HTH, Sigma-70, and Transposase IS200), ATP binding and ATPase activity (e.g.,

Type II/IV secretion system, Histidine kinase-like, Phosphomethylpyrimidine, AAA do-

main, ABC transporter), and hydrolase, kinase, peptidase activity (Supplementary Ta-

ble A2.1). Some of these genes are part of mobile genetic elements (MGEs) or lysogenic

phages that may improve the host strain’s ability to compete in the gut environment

(Rodriguez-Beltran et al. 2020; Koonin et al. 2020). For example, ATPase domains as-

sociated with relaxases, and ATP binding cassettes associated with DNA mobilization

complexes are suggestive of mobile genetic elements (MGEs) (Coyne et al. 2014). The

engraftment of these genes only in responder patients implicates the potential signifi-

cance of these genes in the response to FMT treatment.
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Figure 3.5: Patients who responded to FMT show a signature
of microbial gene engraftment. A comparison of commonly engrafted
genes across patients post-FMT. A. The number of commonly engrafted
genes across an increasing numbers of patients. B. 267 genes are com-
monly engrafted in ≥3 patients. The taxonomic composition of these
genes are shown at the Family- and Genus-level. A gene was called en-
grafted if it was not covered before FMT but was detected ≥5X coverage
after FMT. C. The functional composition of commonly engrafted genes
using categories of clusters of orthologous groups (COG) database.
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3.3.6 The commonly engrafted genes identified in responder patients

are strain specific

Of the 267 commonly engrafted genes (in ≥ 3 patients) 115 were associated with 3

genera (Blautia, Dorea, and Faecalibacterium). In order to test if these genes were strain-

specific, we examined 402 whole-genome sequences (WGS) of Blautia sp., Dorea sp., and

Faecalibacterium prausnitzii strains. This included 306 WGS from NCBI RefSeq (65

Dorea, 98 F.prausnitzii, and 143 Blautia) and 96 isolates from our lab strain collection

(30 Dorea, 1 F.prausnitzii, and 67 Blautia). We constructed phylogenetic trees based

on ribosomal proteins (independent of the commonly engrafted genes) and mapped the

commonly engrafted genes to the phylogeny (Supplementary Figures A2.5, A2.6).

49% (47 of 95) of the genomes for Dorea were assigned to D. longicatena, and 39%

(37 of 95) to D. formicigenerans; 11% of these genomes are not taxonomically clas-

sified at the species-level (Supplementary Figure A2.5A). From the 47 D. longicatena

genomes, the phylogeny shows two distinct clades (Fig. 3.6A). All 15 genomes of the D.

longicatena B clade contains ≥ 50 Dorea specific commonly engrafted genes, indicating

strain-specificity of commonly engrafted genes in this species. In order to better un-

derstand the function of these commonly engrafted genes in D. longicatena, we mapped

metagenomic read information to Isolate 14 — a sequenced strain within our lab col-

lection that lies within clade B and was selected as the Dorea representative strain of

commonly engrafted genes — and used stringent coverage information to detect com-

monly engrafted genes (0% of 1x detection before FMT with 5X coverage following FMT

across ≥ 3 patients). Our results show that 42 bacterial genes commonly engrafted in

≥ 3 patients after FMT. The commonly engrafted genes present in Isolate 14 are not

present in a particular gene neighbourhood and are distributed across the genome. Par-

ticularly, we identified glycan biosynthesis; sucrose metabolism pathway among the list

of these proteins in Isolate 14. This supports that a specific Dorea strain from donor B

replaced the strains in patients 4, 10, and 56 strains after FMT.
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Figure 3.6: The commonly engrafted genes are strain-specific.
A phylogeny of available strains in NCBI (RefSeq #) as well as Surrette
lab whole genome collection (Isolate #) constructed per species. The
number of commonly engrafted genes identified in each genome are shown
in A. Dorea longicatena (n=47), B. Faecalibacterium prausnitzii (n=45),
and C. Fusicatenubacter saccharivorans (n=43) phylogenies. A represen-
tative strain of commonly engrafted genes (rsCEGs, annotated with ∗∗∗)
selected for each phylogenetic tree.

The phylogenetic tree of all 210 Blautia genomes (Supplementary Figure A2.6) re-

vealed a single lineage that contained the engrafted genes. The taxonomy of this group
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was unclassified in NCBI RefSeq but assigned to Fusicatenibacter saccharivorans in the

GTDB taxonomy database (Parks et al. 2020). Interestingly, we identified 11 genomes

with ≥ 15 commonly engrafted genes that all belonged to a particular phylogenetic

clade (Fig. 3.6C). The identified commonly engrafted genes are distributed throughout

this species but three groups are enriched in these genes and suggest that the commonly

engrafted genes associated with F. saccharivorans represent engraftment of a specific

donor B strain in FMT patients. The genomic coverage of Isolate 19 — a sequenced

strain within our lab collection selected as the F. saccharivorans representative strain of

commonly engrafted genes — across donor B samples showed that this particular strain

is stable and consistently present in donor B (2012–2017). However, the genomic cover-

age of Isolate 19 in UC patients is variable, which implies strain replacement following

FMT. To assess strain replacement of the patient’s strain after FMT, we have applied

our engraftment model to identify the commonly engrafted genes following FMT. Our

results show that 135 genes were engrafted in ≥ 3 patients. Note the 135 engrafted

genes predicted using the genome of Isolate 19 is greater than the 38 genes identified

from the Donor B CEMG database. This reflects the stringency of data included in the

database limiting it to contigs >2.5kb. The majority of these genes are present in a 40

kbp gene cluster in patients 4, 56, and 85. These bacterial genes are part of various

pathways such as phospholipid metabolism, L-tryptophan and L-histidine biosynthe-

sis. In order to determine whether these genes are the result of strain replacement or

whether they were transferred to the patients microbiota via horizontal gene transfer

(HGT), we selected adjacent flanking regions surrounding this gene cluster (20,000bp on

each side) and compared SNVs across patients. High SNV frequency in flanking regions

suggest the gene cluster originates from HGT while little/no SNV frequency suggest

strain replacement (Supplementary Figure A2.7). The comparison of genomic coverage

and SNV variability across donor and patients samples does not provide any evidence

for bacterial HGT (Supplementary Figure A2.7). In contrast, we observed increased
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variability for this region in patient 25 (placebo treatment) at week six and low cover-

age in patient 75 (non-responder) following FMT. The data presented here is consistent

with F. saccharivorans strain replacement after FMT, specifically in 3 of the responders

(Supplementary Figure A2.7).

Faecalibacterium prausnitzii genomes are highly diverse and this was reflected in the

99 strains we analysed (Supplementary Figure A2.5B). The ribosomal protein based

phylogenetic tree resolved into 15 F. prausnitzii clades. Recently, 22 Faecalibacterium-

like clades were refined using a larger dataset and metagenomic binning approach (De

Filippis et al. 2020). We found that 25 of the 99 genomes (part of a single clade)

contained ≥ 15 commonly engrafted genes from donor B (Fig. 3.6B). Similar to the Dorea

and F. saccharivorans collections, we showed that the donor B commonly engrafted

genes are strain-specific among a collection of F. prausnitzii genomes. The majority

of the commonly engrafted genes in RefSeq 89 — a selected representative strain of

commonly engrafted genes — are predicted to be lysogenic phage genes corresponding

to uncharacterised proteins, most located in a single gene-cluster 60 kbps in length in

RefSeq 89. To assess if the identified lysogenic phage was transferred via HGT, we used

SNV variability information similar to the previously described method. Two flanking

regions adjacent to the 60 kbps commonly engrafted region were selected and filtered

for only donor B conserved base positions. Given the identity of reported SNVs from

before and after FMT in the extracted flanking region, we argue that the commonly

engrafted genes identified in this genome are the result of bacterial HGT and not strain

replacement (Supplementary Figure A2.8). The comparison of identified SNVs compared

to the donor B samples showed patient-specific patterns of SNVs and gene coverage for

all patients (Supplementary Figure A2.8). The lysogenic phages are possibly a source

of selective pressure for high strain diversity in Faecalibacterium prausnitzii-like strains

(Cornuault et al. 2018). The identified lysogenic phage in RefSeq 89 appears to be strain-

specific and possibly provides a unique advantage to their bacterial host to succeed in
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bacterial competitions after FMT.

3.3.7 The 3 donor B strains identified in FMT responders are depleted

in IBD patients

Our results showed that the microbial strain replacement following FMT can be seen for

a group of accessory genes within a genome. To explore whether the deficit of these genes

is associated with disease activity in a strain- or species-specific manner, we developed

strain- and species-specific markers for the three representative strains of commonly

engrafted genes. We used commonly engrafted genes as strain-specific markers for each

representative strain and developed species-specific core-gene markers of similar size (50

kb gene clusters) using pangenome analysis (Supplementary Figure A2.9, see Methods).

We first validated the accuracy of these markers with our current data (Supplemen-

tary Figure A2.10, A2.11). This approach allows us to separately determine the presence

of the species and the specific set of engrafted genes that define specific strains of in-

terest. The detection of conserved markers (1X coverage of ≥ 80% gene clusters) alone

shows the presence at the species level. However, the detection of both conserved and

commonly engrafted gene markers in a metagenomic sample indicates the presence of the

representative strain containing the commonly engrafted genes. For example, we veri-

fied that all donor B samples contain only the strains of interest and strain-specificity

increased in UC patients post-FMT (30% in D. longicatena, 30% in F. prausnitzii, and

50% in F. saccharivorans; A2.11).

A limitation of our study was the small number of samples examined. In order to

explore the relevance of these commonly engrafted genes more broadly, we examined

the distribution of these species- and strain-specific genes in IBD patients compared

to healthy controls from publicly available metagenomic data. We mapped reads from

a metagenomic dataset (NCBI SRA ID: PRJNA400072) containing patients with UC
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(n=76), Crohn’s disease (CD, n=88), and healthy controls (n=56) (Franzosa et al. 2019)

to the species and strain-specific markers (Fig. 3.7). For D. longicatena a decrease in

prevalence with the disease was observed with the species-specific markers being detected

in 82% of healthy controls and only 46% and 29% of UC and CD patients (Fig. 3.7B). A

similar decrease in prevalence was observed for F. prausnitzii (present in 91% HC vs 70%

and 25% UC and CD patients respectively) and F. saccharivorans (present in 91% HC

vs 45% and 52% UC and CD patients respectively). Both strains with and without the

commonly engrafted genes were depleted in the IBD patients (Fig. 3.7B). Interestingly,

the strain-specificity decreased in UC patients 2.7 and 3.4 fold in F. prausnitzii and F.

saccharivorans, respectively, compared to healthy individuals, while species-specificity

only reduced 1.2 and 1.5 folds respectively for the same species.
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Figure 3.7: Tracking the representative strains of commonly engrafted
genes in metagenomic samples using strain and species-specific markers.
The specificity of D. longicatena, F. prausnitzii, and F. saccharivorans
representative strains compared across metagenomic samples a publicly
available metagenomic dataset (bottom row in each figure; healthy con-
trols (n=56), UC (n=76), and CD (n=88)). A. Comparison of a conserved
(species-specific) vs. commonly engrafted gene (strain-specific) cluster
for each strain within each metagenomic sample. Each dot represents
one genome in a metagenomic sample. B. The classified genomes from a
metagenomic sample based on conserved and commonly engrafted gene’s
coverage percentage. Genomes with CEG=commonly engrafted gene and
conserved gene cluster coverage ≥ 80% (dark green) and those with con-
served coverage ≥ 80% (light green) in a metagenomic sample are labelled
as B1 (strain-specific) and B2 (species-specific) respectively. The genomes
with conserved region coverage < 80% are labelled as B3 (other species).
rsCEGs= representative strain of commonly engrafted genes from Figure
3.6
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3.4 Discussion

FMT has recently gained attention as a treatment for patients with UC. The efficacy

of this approach has been shown in the RCTs comparing FMT to placebo (Narula et

al. 2017). FMT is not risk-free (DeFilipp et al. 2019); however, it can lead to more

targeted microbial therapies by better understanding why some patients respond to FMT

treatment while others do not. We are yet to recognize the role of the donor’s microbiota

in the successfulness of FMT for UC patients. While some past trials combined multiple

donor microbiomes (Costello et al. 2019), others have reported donor-dependent efficacy

(Moayyedi et al. 2015; Wilson et al. 2021). Within this article, we set out to study a

successful FMT donor in an RCT for patients with UC. We have focused specifically on

whether engraftment of a donor microbiota was associated with remission post-FMT.

16S rRNA gene sequencing does not provide enough resolution to track microbial

engraftment (Fig. 3.2). We found that there was no signature of engraftment associated

with response in patients receiving FMT. Moreover, it demonstrates the degree of noise

in these analyses, as a significant number of “donor specific ASVs” were absent in patients

at baseline but do appear in the placebo patients at the end of the study period. This is

because there are always taxa present but below the level of detection that can confound

the analysis. We have previously demonstrated this through extensive culture approaches

where more taxa were detected by culture than by direct 16S rRNA gene sequencing

(Lau et al. 2016).

Our read-based metagenomic analysis has shown that microbial engraftment was not

specific to those who responded to FMT (Fig. 3.3). Similar to the previous studies using a

marker-based metagenomic pipeline (Franzosa et al. 2018) to uncover microbial engraft-

ment in UC Paramsothy et al. 2019; Chu et al. 2021, rCDI ((Smillie et al. 2018)), and

obesity Wilson et al. 2021, we observed evidence of microbial engraftment post-FMT.

However, there was not any association between engraftment and remission post-FMT.
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These profiles that metagenomic markers and uniref90 gene-families have characterized

do not represent unique donor strains or genes. In addition, approximately 40% of

the metagenomic reads were not mapped to any gene-family marker in this approach

(Supplementary Figure A2.2B). Many donor strains are closely related, and the pres-

ence/absence of only a few gene clusters in the accessory genome can distinguish these

strains from each other.

De novo assembly of short metagenomic reads into contigs and MAGs provides a

more robust resolution of the gut microbiota, and the effectiveness of this approach

to track microbial engraftment has been shown previously (Lee et al. 2017; Watson

et al. 2021). When we applied the same method to our culture-enriched collection of

a donor B sample, we found that CEMG improved the quality of the de novo gene

and genome recovery of gut microbiota compared to direct shotgun metagenomics (Sup-

plementary Figure A2.3A). Culture-independent sequencing methods revolutionized our

understanding of human intestinal microbiota (Dominguez-Bello et al. 2011), but they

often miss low-abundant bacteria. For example, it was shown that culture-dependent 16S

rRNA amplicon gene profiling recovers a greater number of OTUs compared to culture-

independent approaches with the same depth of sequencing (Whelan et al. 2020). These

low abundant bacteria could be essential in FMT treatments.

We observed that most donor B MAGs were not engrafted or replaced post-FMT,

and those that transplanted showed a patient-specific pattern (Fig. 3.4). The engrafted

or replaced MAGs indicated inconsistent engraftment across responder patients (Sup-

plementary Figure A2.4). Further, we could only assign 52% of donor B’s assembled

base pairs into MAGs, even with the CEMG approach. Although metagenomic de novo

assembly and taxonomic binning have seen recent algorithmic improvements, it’s still a

challenge to refine highly related strains from a complex microbial community (Yue et al.

2020). We argued that detecting strain engraftment and replacement events following
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FMT requires an in-depth assessment of bacterial genes.

Tracking donor B’s microbial genes identified 265 genes that are commonly engrafted

in ≥ 3 responder patients (Fig. 3.5). 115 genes commonly engrafted post-FMT were

associated with Fusicatenubacter, Dorea, and Faecalibacterium. These genes are species

and strain-specific (Fig. 3.6, Supplementary Figure A2.5, Supplementary Figure A2.6).

We identified a particular phylogenetic clade with the greatest number of commonly

engrafted genes within each species. Our results showed that these engrafted genes were

the result of strain replacement in D. longicatena and F. saccharivorans and that some

of them share homology with MGEs. The commonly engrafted genes identified from

F. prausnitzii likely represent a horizontal gene transfer event, and these genes were

predicted to be within a lysogenic phage. MGEs and lysogenic phage are widespread

among commensal intestinal bacteria. For example, recently, it implicated that strains

secreting Bacterial ADP-ribosyltransferases (ADPRTs) associated with phage elements

can positively select strain colonization than other closely related strains (Brown et al.

2021).

Our dataset was limited to samples prior- and post-FMT; however, recently, it was

shown that the engraftment of a donor’s strains post-FMT is stable for an extended

period (Aggarwala et al. 2021). To assess the presence of these engrafted genes within

the three strains in a larger cohort of IBD patients and healthy controls, we developed

species and strain-specific markers for each representative strain and evaluated their

accuracy using data from this study. We observed that the strains from donor B that

replaced in FMT recipients in ≥ 3 patients were also depleted in IBD patients compared

to healthy controls (Fig. 3.7). Similar to previously published data (Franzosa et al. 2019),

we observed that D. longicatena and F. prausnitzii are depleted in IBD patients, however;

distinguishing closely related strains belonging to F. prausnitzii and F. saccharivorans

were crucial to assessing the relevance of these bacteria to disease activity. This suggests
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that these genes are depleted in patients and implicates strains carrying these genes in

successful FMT.

Our data is consistent with the engrafted strains having a fitness advantage over

closely related strains of the same species. This advantage is associated with clini-

cal response and implicate these strains in promoting remission. However, the fitness

advantage may be manifested in a more healthy gut environment in which case this

association with response may be a consequence and not a cause of remission. This

study highlights the challenges in studying engraftment in FMT and the importance of

strain level characterization. Using high resolution metagenomic data generated from

culture-enriched metagenomics of the donor microbiome improves our ability to detect

engraftment and demonstrates that large scale engraftment of donor microbes to patients

is not occurring during FMT. Only a few engrafted strains are specifically associated

with response across multiple patients and these strains may have therapeutic potential

for designed microbiota consortia for FMT in ulcerative colitis.

79



Chapter 4

Longitudinal dynamics and

transferability of crAssphage
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4.1 Introduction

The human intestinal microbiota that contains bacteria, viruses, archaea, and fungi is

highly linked to health and disease. Bacteriophages — bacterial viruses — predominated

the human gut virome (Sutton and Hill 2019; Manrique et al. 2016). Despite this

abundance, until recently, the human gut bacteriophages (phages) have been poorly

characterized in relation to the rest of the human microbiome (Minot et al. 2013; Roux

et al. 2015; Shkoporov et al. 2019; Shkoporov et al. 2022). Since bacteriophages infect

only bacteria, they can alter the human gut microbiome through various implicated

mechanisms, such as horizontal gene transfer (Chen et al. 2018) and elimination of their

host (Avrani et al. 2012). Therefore, intestinal bacteriophages have an impact on human

health (Norman et al. 2015).

crAssphage is the most abundant bacteriophage in the human gut, initially identified

by metagenomics, and it is estimated that crAssphage is present in ∼40% of humans (Du-

tilh et al. 2014). This phage has a ∼95-97 kb circular, double-stranded DNA genome.

crAssphage sequences are found in human fecal metagenomes in diverse populations

globally and can be highly abundant. Recent studies have shown that crAssphage is

one member of a wide range of crAss-like phages (Alpha, Beta, Gamma, Delta subfam-

ilies, and 10 clusters) that exist in the human microbiome (Guerin et al. 2018). The

crAssphage has since been found to be globally distributed, with strains reflecting the

geographic distribution of human populations (Edwards et al. 2019). Sequencing of

the crAssphage genome demonstrated that the phylogeography of crAssphage is locally

clustered within countries, cities, and individuals (Edwards et al. 2019). Subsequently,

crAssphage has been studied in a variety of environments, from infant gut samples,

to patients with diarrhea, and in samples from healthy donors and fecal microbiota

transplantation (FMT) recipients (Liang et al. 2016; Siranosian et al. 2020). Additional

metagenomic evaluation has demonstrated that crAssphage is closely associated with

81



Ph.D. Thesis Shahrokh Shekarriz; McMaster University - Biochemistry & Biomedical Sciences

human fecal waste, and crAssphage has been used for human fecal source identification

(Stachler et al. 2017; Karkman et al. 2019; Wu et al. 2020).

FMT involves the transfer of fecal matter from a healthy donor to a recipient in

an attempt to restore microbiota diversity and composition. Currently, FMT is mostly

used for the treatment of recurrent- Clostridioides difficile infection (rCDI), where it has

been found to be highly effective. Studies have shown evidence for engraftment of donor

bacteria into recipients (Smillie et al. 2018; Paramsothy et al. 2019; Wilson et al. 2021),

but information about viral alterations after FMT treatment is limited (Lam et al. 2022).

Sterile filtrates from donor stool, rather than fecal microbiota, can be sufficient to restore

normal stool habits and eliminate symptoms after Clostridioides difficile (C. difficile)

infections. Therefore, it is possible that bacteriophages are mediating some of the effects

of FMT. FMT studies provide an opportunity to look at crAssphage engraftment and

potentially at strain competition.

In this study, I used donor samples from an FMT randomized controlled trial (RCT)

for patients with ulcerative colitis (UC) (Moayyedi et al. 2015) to examine long term

crAssphage dynamics in a healthy donor (>5 years). Recipient samples from this FMT

study and publicly available data (Draper et al. 2018) were used to study short-term

dynamics and potential engraftment of donor crAssphage. Shotgun metagenomics and

assembly was used to identify crAssphage in each sample and read mapping was used to

characterize population heterogeneity and crAssphage transfer from donor to recipients.

4.2 Methods

4.2.1 Study design and sample collection

Five longitudinal stool samples were collected from a single healthy individual (donor B;

2012−2017, see Table 4.1). This individual was an FMT donor for a RCT of FMT for UC

patients (Moayyedi et al. 2015). We have conducted shotgun metagenomics on paired
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samples (pre-and post-FMT) from 10 patients who received FMT treatment from donor

B, and a single patient who received placebo treatment (11 x 2= 22 samples in total). We

also collected cross-sectional stool samples from seven healthy donors (SHCM1−6 and

SHCM15). Publicly available viral metagenomic dataset (PRJNA446038) from sequence

read archive (SRA) was also investigated. This dataset contains viral metagenomic data

from donors and rCDI patients who received FMT from healthy donors with follow up

samples up to 12 months (Draper et al. 2018).

4.2.2 DNA extraction and metagenomic library preparation

Briefly, 0.2 g of fecal matter was mechanically homogenized using 2.8mm ceramic beads,

0.1mm glass beads in 800 µL of 200 mM NaPO 4 (pH 8) and 100 µL of guanidine

thiocyanate-EDTA-N-lauroyl sarcosine. This was followed by enzymatic lysis of the su-

pernatant using 50 µL of 100 mg/mL lysozyme and 10 µL of 10 mg/mL RNase A for one

hour at 37◦ Then, 25 µL of 25% sodium dodecyl sulfate (SDS), 25 µL of 20 mg/mL pro-

teinase K, and 75 µL of 5 M NaCl was added, and incubated for one hour at 65◦C. DNA

was purified using the MagMAX Express Magnetic Particle Processor (Thermofisher,

Burlington, ON) as per manufacturers instructions. DNA was standardized to 5 ng/ µL

and sonicated to 500 bp. Using the NEBNext Multiplex Oligos for Illumina kit (New

England Biolabs), DNA ends were blunted, adapter ligated, PCR amplified, and cleaned

as per manufacturers instructions. Library preparations were sent to the McMaster

Genome Facility, and sequenced using the Illumina HiSeq platform.

4.2.3 De novo assembly of crAssphage genomes from metagenomics

Low-quality reads and sequencing primers were removed using Trimmomatic (Bolger

et al. 2014). Samples were assembled from paired-end reads using metaSPAdes (Banke-

vich et al. 2012), except for one sample (donor B 2012) that was assembled via SPAdes
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(Bankevich et al. 2012) using single-end reads. A local BLAST database for each as-

sembled library was generated and searched for sequences with a minimum 90% pident

against the uncultured crAssphage reference in NCBI (NC_024711.1), which belongs to

the alpha subfamily from cluster one of crAss-like phages (Guerin et al. 2018). These

hits were aligned against this reference genome via a circular genome aligner (CSA;

Fernandes et al. 2009), and they were reverse completed in case they were in the op-

posite strand. Based on their alignment to the reference genomes, the contigs with the

correct orientation were merged as a draft crAssphage genome. Gene prediction and

annotation for each phage genome was carried with Prokka (Seemann 2014). The refer-

ence crAssphage (NC_024711.1) was used for annotation for consistency with previous

studies.

4.2.4 Assessing crAssphage variability in metagenomic samples

Trimmed shotgun reads from each sample were mapped using bwa-mem (Li and Durbin

2009) to: 1) the reference crAssphage (NC_024711.1) genome, 2) de novo assembled

crAssphage genomes from each sample, and 3) the crAssphage genome assembled from

donor B’s from 2013 sample. Then I used samtools (Li et al. 2009) to get coverage

and breseq (Deatherage and Barrick 2014) to identify SNPs. I merged the coverage

and SNP information for every single base position in R v. 4.0.3. Figures containing

gene annotation and genome coverage were generated using tidyverse (Wickham et al.

2019) and gggenomes packages. A phylogenetic tree of de novo assembled crAssphage

genomes was generated by whole-genome alignment using mafft (Katoh et al. 2002) and

approximately-maximum-likelihood model via fasttree (Price et al. 2010), and visualized

using the gggenomes package in R v. 4.0.3.
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4.2.5 crAssphage host in donor B samples

Metagenomic reads from all donor B samples were mapped to the reference crAssphage

using bwa-mem (Li and Durbin 2009). Total and mapped read numbers were parsed

from samtool’s flagstat (Li et al. 2009) outputs, and the relative abundance of crAssphage

was calculated for each sample. MetaPhlAn3 (Nousias and Montesanto 2021) was used

to profile the relative abundance of microbial species for all donor B samples. I used a

Spearman rank-sum test to estimate the association between crAssphage and bacterial

species for each sample in R v. 4.0.3. All figures were made in R v. 4.0.3 using tidyverse

package.

4.2.6 crAsSNPer pipeline for accurate detection of crAssphage en-

graftment

Using the public dataset (PRJNA446038), I assembled donor D3’s crAssphage genome

by co-assembly of samples F0 and F1 using SPAde (Bankevich et al. 2012). I then used

the crAsSNPer pipeline to detect crAssphage engraftment in Draper et al. 2018 dataset

and in our own FMT dataset, as follows.

The metagenomic reads were mapped to the appropriate (donor B for our data, donor

D3 for the downloaded data) de novo assembled crAssphage genome using bwa-mem (Li

and Durbin 2009). Samtools (Li et al. 2009) was used to calculate genome coverage

and mean depth of coverage for each sample. Samples with coverage over ≥ 90% of the

crAssphage genome’s length and mean coverage depth ≥ 10X were selected as crAssphage

positive, and the lowest mean coverage depth was identified across these samples. Reads

mapping to the crAssphage genome were extracted from the bam file and converted to a

fastq file for each sample using samtools (Li et al. 2009). These reads were subsampled

with replacement to the lowest coverage depth using samtools -s (Li et al. 2009) 20 times

for each sample. breseq (Deatherage and Barrick 2014) was used to identify SNPs across

these samples compared to their appropriate assembled genome (donor B or D3). breseq
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output tables were merged together using breseq gdtools ANNOTATE (Deatherage and

Barrick 2014). The final SNP table was merged with the metadata from the study and

figures were made in R v. 4.0.3 using the tidyverse (Wickham et al. 2019) package.

The median of the resampling for each sample was used to model the among-individual

differences in SNP counts for the downloaded data. Resampled data from our FMT

dataset were plotted directly. The tukey method was used for the pairwise comparisons

to identify significantly different estimates.

Table 4.1: Metagenomic samples from healthy donors and ulcerative
colitis subjects examined for crAssphage.

Number Sample Individual Time Status p-crAssphage Total reads crAssphage reads Assembly length PCR result

1 B2012 donorB 2012 Healthy positive 26146370 19477 96034 positive
2 B2013 donorB 2013 Healthy positive 39780181 6692 96198 positive
3 B2016 donorB 2016 Healthy positive 13875813 13440 96717 positive
4 B2017A donorB May 2017 Healthy positive 61859261 103477 97496 positive
5 B2017B donorB Oct 2017 Healthy negative 48934277 3 0 negative

6 SHCM1 SHCM1 single Healthy negative 37786351 997 0
7 SHCM2 SHCM2 single Healthy positive 58502658 146075 93266
8 SHCM3 SHCM3 single Healthy negative 86230076 3000 0
9 SHCM4 SHCM4 single Healthy positive 57676099 97220 93982
10 SHCM5 SHCM5 single Healthy negative 57548384 4 0
11 SHCM6 SHCM6 single Healthy negative 80652914 0 0
12 SHCM15 SHCM15 single Healthy negative 233990946 0 0

13 PMCL380 pt4 pre-FMT UC negative 29879728 20 0 negative
14 PMCL385 pt4 post-FMT UC negative 25579014 11 0 negative
15 PMCL356 pt10 pre-FMT UC negative 22968602 2 0 negative
16 PMCL360 pt10 post-FMT UC negative 28442655 476 0 negative
17 PMCL656 pt25 pre-placebo UC negative 66881504 46 0 negative
18 PMCL657 pt25 post-placebo UC negative 85160380 8 0 negative
19 PMCL720 pt56 pre-FMT UC negative 12298708 0 0 negative
20 PMCL721 pt56 post-FMT UC negative 35411714 7 0 negative
21 PMCL726 pt60 pre-FMT UC negative 11991630 14 0 negative
22 PMCL727 pt60 post-FMT UC negative 14118620 36 0 negative
23 PMCL796 pt74 pre-FMT UC negative 14154374 60 0 negative
24 PMCL797 pt74 post-FMT UC negative 40102264 134 0 negative
25 PMCL800 pt75 pre-FMT UC negative 12548192 12 0 negative
26 PMCL801 pt75 post-FMT UC negative 11006750 13 0 negative
27 PMCL813 pt79 pre-FMT UC negative 12813300 0 0 negative
28 PMCL883 pt79 post-FMT UC negative 13720164 6 0 negative
29 PMCL817 pt80 pre-FMT UC negative 12136957 7 0 negative
30 PMCL818 pt80 post-FMT UC positive 14074341 10730 94148 positive
31 PMCL822 pt84 pre-FMT UC positive 11804105 297409 96661 positive
32 PMCL823 pt84 post-FMT UC positive 15044972 163677 96661 positive
33 PMCL824 pt85 pre-FMT UC negative 12252354 22 0 negative
34 PMCL825 pt85 post-FMT UC negative 14119902 15 0 negative

4.3 Results

Using a metagenomic dataset containing 34 fecal samples from healthy donors and UC

patients (Table 4.1), I asked whether the crAssphage is variable in longitudinal samples
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from a single healthy subject (donor B; 2012−2017; Table 4.1). I investigated crAssphage

variability in terms of genome structure, abundance, and population (strain variability)

using de novo assembly of the genomes, shotgun metagenomic reads counts, and single-

nucleotide polymorphism (SNP) data, respectively. Since donor B provided fecal matter

to a RCT of FMT for UC patients, I also asked whether donor B’s crAssphage was

engrafted in UC patients post-FMT. I used paired samples from UC patients (pt4−85;

n=11; Table 4.1) and donor B to investigate these questions. I have focused on p-

crAssphage — the original uncultured crAssphage deposited in NCBI (NC_024711.1,

Dutilh et al. 2014) — which was classified as an alpha subfamily, cluster 1 of crAss-like

phages (Guerin et al. 2018) and here I refer to it as reference crAssphage.

4.3.1 crAssphage dynamics in longitudinal samples from donor B

In order to test crAssphage dynamics, I investigated five longitudinal metagenomic sam-

ples from a healthy individual (donor B; 2012-2017). To do this, I mapped metagenomic

reads from each sample to the reference crAssphage. I showed that the relative abun-

dance of crAssphage has been variable in donor B over time (Fig. 4.1A). Interestingly,

this phage was highly abundant (0.2% of metagenomic reads) in May 2017 (2017A) while

it was completely absent in October of the same year (2017B;Fig. 4.1A). I found that

the proportion of the crAssphage reference genome — covered 1X — increased from 93%

(2012-2016) to 96% (2017A) and disappeared in 2017B sample (Fig. 4.1B) suggesting

that the donor B’s crAssphage was more similar to the reference genome in 2017A sam-

ple. I compared the PCR and metagenomic results for these five samples from donor

B (Fig. 4.1C). These results showed that the designed primer sets are sensitive enough

to detect the presence of crAssphage in a sample and we have used this to expand the

number of donor B’s samples used for tracking crAssphage.
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4.3.2 crAssphage host bacteria in donor B

Definitive host bacteria for crAssphage have remained elusive although it has been

demonstrated that crAssphage — can replicate in vitro in Bacteroides intestinalis (Shko-

porov et al). From our metagenomic samples from donor B I looked for correlations in

abundances in bacterial species and crAssphage over time. I was not able to associate

the relative abundance of any of the Bacteroides sp. to crAssphage (Figs. 4.1D, 4.2A).

However, I found that the donor B 2017B sample, which was negative for crAssphage,

showed an increased relative abundance of a B. vulgatus. Instead, our results showed

that Eubaterium sp CAG 180 and Roseburia intestinalis were significantly associated

(Spearman’s correlation=1, p=0.02) with crAssphage (Fig. 4.2B) among all the bacte-

rial species identified in these samples.

4.3.3 crAssphage variability in de novo assembled genomes

To compare the genomic structure of donor B’s crAssphage over time, I have de novo

assembled crAssphage genomes in samples collected from donor B. crAssphage contigs

were identified in metagenomic assemblies and aligned to the reference genome to con-

struct draft genomes. I found that the genomic organization of donor B’s crAssphages

was also variable. crAssphages assembled from samples taken 2012-2016 are most simi-

lar to each other while assembled crAssphage in 2017A is more similar to the reference

crAssphage (Figs. 4.1E, 4.8). These differences are in the presence/absence of hypothet-

ical proteins related to phage replication (putative dUTP), putative tail, and a single

gene related to capsid (Fig. 4.1E). I assembled complete genomes in all crAss positive

samples except donor B 2012 sample, which was a single-end sequencing and resulted in

genomic re-arrangement (Fig. 4.8).
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Figure 4.2: crAssphage−bacterial in donor. A. Relative abundance
of crAssphage (x-axis) compared to relative abundance of Bacteroides
genus (top left grid) and all the identified Bacteroides species. Green and
black lines shows the relative abundace of crAssphage and bacteria in each
sample respectively. B. Eubaterium sp. and Roseburia intestinalis that
were significantly associated with crAssphage in donor B samples.

4.3.4 crAssphage contains homogeneous population but a variable

strain in donor B

The metagenomic data represents not a single isolate but the population of the

crAssphage present at that time. To investigate the population diversity at each

time point, metagenomic reads from the longitudinal data were mapped to the de

novo assembled crAssphage from the same sample. I observed relatively homogeneous

crAssphage populations in each sample (Fig. 4.3). crAssphage in the 2016 and 2017A

samples have shown the most and fewest observed SNPs, respectively. Here I define

SNPs as positions with sequence variants at the population level that differ from the

consensus (with a minimum threshold of 5% of the total reads at that position). As

shown in Figure 4.3, the 2016 and 2017A samples contained 22 and 11 non-synonymous

mutations, respectively, compared to the de novo assembly (consensus nucleotide) from
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the same sample. Interestingly, the genome coverage was increased from 50X in 2016 to

250X in 2017A, but the number of detected SNPs reduced, showing that this crAssphage

has a more homogeneous population.

To investigate how the crAssphage populations may change over time, the metage-

nomic reads from each time point were mapped to a single reference genome (the 2013

assembly).I found that donor B’s crAssphage was stable from 2012 to 2016; however,

the 2017A sample had a high number of sequence variants relative to the 2013 reference

genome ( 2% of positions in the genome were different). This is consistent with dis-

placement of the previous resident strain being replace by a different crAssphage strain

(within subfamily alpha, cluster 1) in 2017A. This new phage completely disappeared

within 7 months in the 2017B sample (Fig. 4.4).

4.3.5 crAssphage variability between individuals

To further examine population and strain variability between and within individuals, I

used a cross-sectional metagenomic dataset from seven healthy donors. First, I mapped

raw metagenomic reads from all seven samples (SHCM1-6 and SHCM15) to the de

novo assembled crAssphage from donor B 2013. Only 2 out of 7 SHCM donors were

positive, and the reference reference crAssphage was completely absent in the rest of

these individuals (Fig. 4.5A) except SHCM1 that showed fragmented genome coverage,

suggesting that the abundance of crAssphage for this donor was below the detection

level or that it has a very different strain (Fig.4.5A). The aligned crAssphage reads

from SHCM2 and SHCM4 had 926 and 873 non-synonymous mutations, respectively,

versus the donor B 2013 assembly, suggesting these individuals carry a different strain.

I also mapped shotgun reads from SHCM2 and SHCM4 to their own respective de novo

assembled crAssphage genomes to investigate population variability in each sample. I

found that the crAssphage populations in SHCM2 and SHCM4 were more heterogeneous

than the donor B samples with 186 and 80 non-synonymous mutations (Fig. 4.5B).
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Figure 4.3: crAssphage populations in donor B samples. Comparison
of detected SNPs compared to the consensus assembly of each sample as
a measurement of crAssphage populations in four longitudinal samples
from donor B. The x-axis shows the assembled crAssphage genome from
metagenomics, and the y-axis shows crAssphage coverage. The SNP types
are coloured as intergenic, synonymous, nonsynonymous. The length of
each bar shows the frequency of that SNP.
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Figure 4.4: crAssphage variability in donor B samples. Comparison of
detected SNPs in each sample compared to consensus assembly in 2013
sample. The x-axis shows the assembled crAssphage genome from metage-
nomics, and the y-axis shows crAssphage coverage. The SNP types are
coloured as intergenic, synonymous, nonsynonymous. The length of each
bar shows the frequency of that SNP.
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Figure 4.5: crAssphage variability in other healthy donors. Comparison
of detected SNPs in each sample compared to consensus assembly in A.
donor B 2013 and B. SHCM2 and SHCM4 samples. The x-axis shows
the assembled crAssphage genome from metagenomics, and the y-axis
shows crAssphage coverage. The SNP types are coloured as intergenic,
synonymous, nonsynonymous. The length of each bar shows the frequency
of that SNP.
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4.3.6 Detection of crAssphage engraftment requires population infor-

mation

I have investigated paired metagenomic assemblies (pre-and post-FMT) from 11 UC

patients (22 samples) who received FMT from donor B. crAssphage was only present

in 3 out of 22 samples. I was able to identify crAssphage in pt80 only post-FMT,

and pt84 was crAssphage positive in both pre-and post-FMT samples. In order to track

population variabilities, I mapped metagenomic reads from these three samples to the de

novo assembly from the same sample and compared them to the donor B 2013 assembly.

The post-FMT sample from pt80 showed homogeneous crAssphage population with a

modest increase in variability compared to donor B (Fig. 4.6A,B). However, pt-84’s post-

FMT variability was almost identical to the sample pre-FMT with 26 out 32 variable

site SNPs shared(Fig. 4.6C,D).

To test whether the crAssphage detected post-FMT was engrafted from donor B, I

mapped metagenomic reads from these two patients to the de novo assembled crAssphage

in donor B (2013). I found that the crAssphage strain post-FMT in pt80 was different

from the donor B with 849 nonsynonymous and 977 synonymous mutations, suggest-

ing that the detected crAssphage was not engrafted from donor B (Fig. 4.7A,B). The

crAssphage strain post-FMT in pt84 was identical to the one pre-FMT based on the ge-

nomic gaps and number of observed mutations between these two samples (Fig. 4.7C,D).
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Figure 4.6: crAssphage population in UC patients pre-and post-FMT
treatment. Comparison of detected SNPs as a measurement of crAssphage
populations in pt80 that was crAssphage positive only post-FMT and pt84
that contains crAssphage both pre-and post-FMT. For each sample, the
x-axis shows the assembled crAssphage genome from metagenomics, and
the y-axis shows crAssphage coverage. The SNP types are coloured as
intergenic, synonymous, nonsynonymous. The length of each bar shows
the frequency of that SNP.
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Figure 4.7: crAssphage variability in UC patients pre-and post-FMT
treatment. Number of detected SNPs in pt80 and pt84 compared to con-
sensus assembly in donor B 2013 sample. The x-axis shows the assembled
crAssphage genome from metagenomics, and the y-axis shows crAssphage
coverage. The SNP types are coloured as intergenic, synonymous, non-
synonymous. The length of each bar shows the frequency of that SNP.
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4.3.7 crAsSNPer: a method to detect crAssphage engraftment using

metagenomics

I showed that accurate detection of crAssphage engraftment requires SNP information.

However, the number of reported SNPs depends on the sequencing depth and crAssphage

abundance (copy number) in a sample. To address these challenges, I developed a method

(crAsSNPer) for accurate detection of crAssphage engraftment in samples with variable

depths of sequencing and crAssphage abundance. crAsSNPer conducts a bootstrap by

randomly sampling crAssphage reads from a metagenomic sample using the lowest mean

depth of crAssphage in a sample from the same dataset and re-calculates the total num-

ber of SNPs. The user can change the number of iterations for sampling with replace-

ment, but the default crAsSNPer subsamples the data twenty times. crAsSNPer uses a

linear model to find the upper and lower confidence intervals for the expected crAssphage

SNP frequencies for an individual (multiple samples) or sample (see Methods).

To test the performance of crAsSNPer, I used a viral metagenomic dataset (PR-

JNA446038) from a previously published FMT study for patients with rCDI (Draper

et al. 2018). I assessed longitudinal samples from a donor (D3, 16 samples) who was

crAssphage positive, as well as samples from patients who received FMT from donor

D3. For each patient, one sample was collected before FMT, and seven longitudinal

samples were collected post-FMT up to one year (54 samples in total) (Draper et al.

2018). I also investigated the data from a single FMT recipient (P7) who received FMT

from donor D1 (crAssphage negative) but became crAssphage positive two months after

FMT (4 samples). The sample from P7 shows expected SNP frequencies from a dif-

ferent crAssphage strain and can be used as a negative control for accurate detection

of crAssphage engraftment in patients who received FMT from donor D3. A de novo

reference genome with a total length of 92kb was assembled by co-assembly of the F0

and F1 samples from donor D3 and all the samples from the donor and patients were

compared to this reference genome.
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Figure 4.9: (Caption next page.)
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Figure 4.9: Evaluation of the crAsSNPer using a publicly available viral
metagenomic dataset. A. crAssphage variation in longitudinal samples
collected from donor D3 (F0−F15) compared to the de novo assembled
crAssphage from D3. The y-axis shows the total number of SNPs iden-
tified in each sample. The colours in each bar shows the SNP types. B.
crAssphage variation in donor D3 using the crAsSNPer pipeline. The
y-axis shows a normalized number of SNPs (20 subsampling) for each
sample on the x-axis. C. crAssphage variation in patients who received
FMT from donor D3. The y-axis shows the total number of SNPs identi-
fied in each sample of patients. Longitudinal samples collected before and
post-FMT are shown on the x-axis. Patients P6, P8, P9, P10, P11, P12,
and P14 received FMT from donor D3, and patient P7 received FMT from
a different donor who was crAssphage negative. D. crAssphage variation
in patients who received FMT from donor D3 (black) and patient P7 (red)
using the crAsSNPer pipeline. The y-axis shows a normalized number of
SNPs (20 subsampling) for each sample on the x-axis. E. Comparison of
the identified crAssphage in patients who received FMT from donor D3
(black) versus patient 7. Each dot shows a median number of normalized
SNPs on x-axis for all the samples for each individual with 20 subsam-
pling. The upper and lower confidence intervals are shown around each
dot.

Our result showed that donor D3’s crAssphage is moderately stable over time, with

F4, F14, and F15 samples showing slightly increased SNP frequencies compared to the

reference genome (Fig. 4.9A,B). The samples collected from D3’s patients post-FMT

(P6, P8, P9, P10, P11, P12, and P14) showed variable SNP frequencies over time based

on the total number of reported SNPs (Fig. 4.9B), and normalized number of SNPs

with 20X subsampling (Fig. 4.9D). Interestingly, the SNP frequencies increased post-

FMT over time compared to donor D3, particularly in patients P9, P10, P11, and P14

(Fig. 4.9D). However, these variations were close to the expected boundaries of donor

D3 and significantly different (est=1357, p < 0.0001) compared to the median number

of SNPs in patient P7 (Fig. 4.9E). These results confirmed Draper et al. 2018 findings

suggesting the engraftment of donor D3’s crAssphage in patients post-FMT.

Next, I applied crAsSNPer to the data from donor B and their FMT recipients. I

used donor B’s de novo assembled crAssphage from 2013 as a reference. Consistent with

our previous results (section 4.3.4), crAsSNPer also showed that donor B’s crAssphage
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was stable from 2012 up to 2016 but contained a significantly different (est=1957.40, p<

0.0001) median number of SNPs in the sample collected from 2017A, suggesting strain re-

placement (Fig.4.10A, B). I also showed that pt84, who was only positive for crAssphage

post-FMT, contains significantly different (est=1785.65, p< 0.0001) crAssphage strain

based on the median number of SNPs (Fig.4.10B). Similarly, patient 84’s crAssphage

from pre-and post-FMT showed a significantly different (pre-FMT; est=1382, p< 0.0001,

post-FMT; est=1958.35, p< 0.0001) median number of SNPs at the level expected in

other individuals (SHCM2, SHCM4).

Figure 4.10: Accurate detection of donor B’s crAssphage post-FMT
using the crAsSNPer. A. crAssphage variation in samples collected from
donor B, UC patients, and two other healthy individuals compared to the
de novo assembled crAssphage from donor B (2013 sample). The y-axis
shows total number of SNPs identified in each sample. The colours in each
bar shows the SNP types. B. Comparison of the identified crAssphage
in donor B, patients who received FMT from donor donor B (pt80 and
pt84), and two healthy donors (SHCM2, SHCM4). Each dot shows a
median number of normalized SNPs on y-axis for each sample (n=20
subsampling). The upper and lower confidence intervals are shown around
each dot.
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4.4 Discussion

crAssphage is a highly abundant bacteriophage (Dutilh et al. 2014) that has co-evolved

with humans for millions of years (Edwards et al. 2019). This phage belongs to a

family of crAss-like phages consisting of at least four subfamilies (Guerin et al. 2018).

crAssphage is globally distributed and locally clustered within individuals (Edwards et

al. 2019). It has been shown that crAssphage is stable and can transfer between indi-

viduals within a household (Siranosian et al. 2020) or via FMT (Draper et al. 2018).

However, the temporal stability of this bacteriophage within and between individuals is

not well understood. I asked whether individuals can still show temporal crAssphage

changes and whether these changes are related to the transferability of crAssphage be-

tween individuals. Here I have reported a case of variable crAssphage in a single healthy

individual. I have argued that given these temporal strain replacements, accurate detec-

tion of crAssphage transfer requires high-resolution SNP information, as these changes

are not captured in PCR data alone.

A stable crAssphage strain in donor B was replaced by a closely related strain with

an increased relative abundance, and subsequently disappeared in this individual within

less than five months. The replacement strain in donor B is more similar to the NCBI

crAssphage reference, and the difference is in the presence/absence of genes as well as

SNP frequencies. The variability in the relative abundance of crAssphage in donor B

potentially reflects changes in their bacterial host. It has been shown that Bacteroides

sp. are potential crAssphage hosts, and using enrichment-based techniques, the host

for one member of the crAss family, crAss001, was confirmed to be Bacteroides in-

testinalis(Shkoporov et al. 2018). Although changes in the relative abundance of B.

ovatus and B. uniformis were similar to crAssphage, I have not observed any signif-

icant correlation between Bacteroides sp. and crAssphage in donor B. The increased

relative abundance of B. vulgatus in the 2017B sample may suggest that a single none
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crAssphage Bacteroides sp. host took over the microbial community and out-competed

the crAssphage host.

Previously, it was shown that crAssphage could transfer from healthy individuals to

patients with rCDI and stay stable for up to one-year (Draper et al. 2018; Siranosian

et al. 2020). Because C. difficile is over-represented in the intestinal microbiota in

patients with rCDI, crAssphage hosts are potentially diminished in these patients. I

argue that in a more complex microbiome in which a single bacterium does not dominate

the community (UC patients), a pre-existing crAssphage prior to FMT would compete

with the one present in the donor. crAssphage polymerase chain reaction (PCR) data

from UC patients pre-and post-FMT suggested successful transfer of this phage post-

FMT. However, using high-resolution SNP analysis from metagenomic data, I showed

that a completely different strain was, in fact, present in patient 84 post-FMT. It is

also possible that strains at very low levels will not be detected in donor samples but

expand in the recipients, which can be a caveat for any engraftment detection. These

results suggest that accurate detection of crAssphage engraftment post-FMT requires

whole genome population information.

crAsSNPer can detect crAssphage transfer despite variation in sequencing depth and

crAssphage copy number in the metagenomic samples. Using this pipeline, I have con-

firmed Draper et al. 2018 findings suggesting the engraftment of donor D3’s crAssphage

in rCDI patients post-FMT. crAsSNPer was able to show crAssphage SNP variation

within and between individuals. Most importantly, using this pipeline, I showed that

donor D3’s crAssphage is substantially different from that in patient P7, who was

crAssphage positive but did not receive FMT from donor D3.

104



Chapter 5

Efficacy of antimicrobials versus

placebo in addition to FMT in

patients with ulcerative colitis
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5.1 Introduction

Ulcerative colitis (UC) is a type of inflammatory bowel disease (IBD) that is character-

ized by colonic mucosa inflammation. The etiology of UC is unknown but it is suspected

to be an immune response to altered intestinal microbiota in predisposed individuals. Fe-

cal microbiota transplantation (FMT) — transfer of stool content from healthy, screened

individual to patients — is a proposed treatment for UC. FMT is an existing therapy for

patients with recurrent- Clostridioides difficile infection (rCDI), but its efficacy against

UC remains an open question. Previous randomized controlled trials (RCTs) have shown

that FMT can alter colonic microbiota by microbial engraftment — the colonization of

donor’s microbiota in patients post-FMT — and that these changes are associated with

remission in a subset of UC patients (Chapter 3).

The microbiology of IBD is complex, as the active disease will alter the microbiome.

Identifying which features of the changing microbiota are cause or consequence of in-

flammation has been challenging to resolve. It is not yet clear if specific pathogens

drive inflammation; however, a few studies have suggested that enteric pathogens are

involved in disease complications (Petersen et al. 2009; Mirsepasi-Lauridsen et al. 2016;

Axelrad et al. 2018). Enteric infection is frequently seen in UC patients, but little is

known regarding the distribution and genomic variability of those pathogens (Axelrad

et al. 2018). The efficacy of antibiotics in treating UC flare-ups suggests that eliminating

or reducing some bacterial pathogens may result in disease improvement (Khan et al.

2011).

A combination of antimicrobial and FMT therapies can potentially enhance FMT

outcome. It has been implied that pretreatment with antibiotics increased the efficacy

of FMT (Ishikawa et al. 2017; Keshteli et al. 2017), but it is not clear whether that

improvement is associated with microbial changes or engraftment post-FMT. In this

study, we report the first RCT of antibiotics versus placebo in combination with FMT
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for active UC patients. We investigated whether these therapies are associated with

microbiome changes post-FMT.

5.2 Methods

5.2.1 Study design

A randomized placebo-controlled trial was conducted at McMaster University to evaluate

whether adding an antimicrobial cocktail prior to FMT increases the remission rate in

patients with ulcerative colitis. The recruited patients received two antibacterial agents

(metronidazole 500mg, doxycycline 100mg) and an antifungal (terbinafine 250mg), or

placebo once daily for two weeks prior to FMT. Within 1-3 days post completion of

their antimicrobial/placebo course, patients received FMT enemas twice weekly for eight

weeks.

5.2.2 Study population, clinical outcome, and sample collection

Seventy-five patients were assessed for trial eligibility. Active UC patients — Mayo

score > 3 and endoscopic Mayo score > 0 — who were ≥ 18 years were included in the

trial. Exclusion criteria were defined as severe UC requiring hospitalization, Clostridium

difficile infection, severe comorbid medical illness, antibiotic therapy in the last 30 days,

increase in medical therapy for UC in the last 12 weeks, and any condition that the

treatment may pose a health risk. The trial’s primary outcome was defined as a Mayo

score < 3 with an endoscopic Mayo score = 0 at the end of the trial (week 9). Fecal

samples were collected from each patient at baseline, after two weeks of antimicrobial

treatment, and post-FMT at week 9. A sample was taken from every batch of FMT

slurry from each donor.
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5.2.3 Genomic DNA extraction and 16S rRNA amplicon sequencing

Genomic DNA was extracted using the MagMAX Express 96-Deep Well Magnetic Par-

ticle Processor from Applied Biosystems with the Multi-Sample kit (Life Technologies

# 4413022) with the addition of a bead beating step as described in Chapter 2. Puri-

fied DNA was used to amplify the v34 region of the 16S rRNA gene by PCR. 50 ng of

DNA was used as template with 1U of Taq, 1x buffer, 1.5 mM MgCl2, 0.4 mg/mL BSA,

0.2 mM dNTPs, and 5 pmoles each of 341F (CCTACGGGNGGCWGCAG) and 806R

(GGACTACNVGGGTWTCTAAT) with Illumina adapters and barcodes, as described

in Bartram et al. 2011. The reaction was carried out at 94C for 5 minutes, 5 cycles of

94C for 30 seconds, 47C for 30 seconds and 72C for 40 seconds, followed by 25 cycles

of 94C for 30 seconds, 50C for 30 seconds and 72C for 40 seconds, with a final exten-

sion of 72C for 10 minutes. Resulting PCR products were visualized on a 1.5% agarose

gel. Positive amplicons were normalized using the SequalPrep normalization kit (Ther-

moFisher#A1051001) and sequenced on the Illumina MiSeq platform at the McMaster

Genomics Facility.

5.2.4 16S rRNA gene amplicon sequencing processing pipeline

Reads were processed using DADA2 (Callahan et al. 2016). First, Cutadapt (Martin

2011) was used to filter and trim adapter sequences and PCR primers from the raw reads

with a minimum quality score of 30 and a minimum read length of 100bp. Sequence

variants were then resolved from the trimmed raw reads using DADA2. DNA sequence

reads were filtered and trimmed based on the quality of the reads for each Illumina run

separately, error rates were learned and sequence variants were determined by DADA2.

Sequence variant tables were merged to combine all information from separate Illumina

runs. Bimeras were removed and taxonomy was assigned using the SILVA database

version 1.3.8 Quast et al. 2012.

The ASV table was rarefied to the lowest read count to measure microbial diversity
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in each sample and the Shannon values were estimated based on the rarefied ASV table

using the phyloseq (McMurdie and Holmes 2013) package. A custom function was writ-

ten in R 4.2.0 to parse result tables and visualize the sample’s diversity using tidyverse

1.3.1. In order to test the diversity difference across group variables, the desired samples

were selected for each variable, and a linear mixed-effect model was fitted with sampling

timepoint as the fixed effect and patient ID as random effect using lme4 and lmerTest

(Bates et al. 2014) packages in R 4.2.0.

To visualize sample distances (beta-diversity), two different distance metrics were

used; 1) Bray–Curtis based on the relative abundance of ASVs 2) Aitchison distance

based on centered log-ratio (CLR) transformed of ASV counts. For Bray-Curtis dis-

tance, the ASV table was transformed to relative abundance, and the distances among

samples were visualized with a Principal Component Analysis (PCoA) using a custom

function incorporating phyloseq (McMurdie and Holmes 2013) in R 4.2.0. For Aitchin-

son distance, the ASV counts were transformed to the centered log-ratio (CLR) using

microbiome v.1.12.0 and visualized via Principal Component Analysis (PCA). A per-

manova test on Bray–Curtis and Aitchison distances to measure microbial shift between

time points using a custom function incorporating the ape and vegan packages (Oksanen

et al. 2013) in R 4.2.0.

ANCOMBC (Lin and Peddada 2020) was used to identify the differentially abundant

ASVs between time points for each group. ASVs with adjusted p-values < 0.05 were

visualized using a custom function in R 4.2.0. To compare engrafted ASVs among

donors, donor-specific ASVs — the ASVs that were present in at least one sample from

one donor — were selected. Their relative abundance was compared between baseline

and post-FMT samples for each patient. ASVs with a relative abundance of 0 at baseline

and ≥ 0.1% post-FMT were defined as engrafted. We then compared the number of

engrafted ASVs across an increasing number of patients who received donor B vs. donor
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M1 FMTs. Since donors B and M1 were used for different numbers of patients, we

randomly sampled 15 patients from each donor (with 100 re-sampling) and compared the

number of engrafted ASVs across an increasing number of patients to estimate confidence

intervals. Two custom functions were written in R 4.2.0 to identify engrafted ASVs and

perform the permutations as described above. All the code used above is available at

https://github.com/SShekarriz/UCFMT2
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5.3 Results

A previous RCT by our team demonstrated that FMT improved UC over placebo and

induced endoscopic remission in 24% of subjects (Moayyedi et al. 2015). A second RCT

has been completed to determine in pretreatment of subjects with antibiotic would im-

prove efficacy of FMT. The treatment group received antibiotics (metronidazole 500mg,

doxycycline 100mg, terbinafine 250mg) for two weeks followed by FMT therapy (twice

weekly for eight weeks). 63 out of 75 UC patients screened were eligible for the trial (see

Methods). 31 and 32 were randomly assigned to receive antibiotic therapy and placebo

intervention, respectively. Fecal samples were collected at baseline, after antibiotic ther-

apy, and during the last week of FMT (Fig. 5.1). 4 patients (three from the antibiotic

group and one on placebo intervention) withdrew before the completion of the trial.

However, their baseline and post-antibiotic sampes were included in this analysis.

17 of the 28 (61%) patients who received antimicrobial pretreatment showed partial

improvement — defined as < 33% reduction in partial Mayo clinic score — versus 20 out

31 (65%) who received placebo pretreatment. Endoscopy post-FMT was not completed

for three patients who were randomized to antibiotic therapy and four patients on placebo

intervention due to hospital closure during the Covid19 pandemic. 7 of the 25 (28%)

patients with full week nine endoscopy from the antimicrobial group went into clinical

remission — defined as a Mayo score < 3 with an endoscopic Mayo score of 0 at the end

of the trial — compared to 9 of the 27 (33%) of those on placebo pretreatment. Three

samples from patients who received antibiotic therapy (one baseline and two post-FMT

samples) and five samples from the placebo group (two baseline, one post-antibiotic, and

two post-FMT) were not available for sequencing (Fig. 5.1).
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Figure 5.1: Flow chart of enrolled patients and fecal samples collected
for 16S rRNA gene amplicon sequencing. The mucosal healing at the
end of the study (week 9) was not assessed for 3 patients randomized to
antibiotic therapy (*1) and 4 patients on placebo intervention (*2) due
to hospital closure during the Covid19 pandemic. Fecal samples collected
at Baseline, post-antibiotic (p-Antibiotic), and post-FMT (p-FMT) were
used for 16S rRNA gene amplicon sequencing.
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5.3.1 Pretreatment with antimicrobials alters the microbiome but does

not induce a greater charge by FMT.

To test whether antibiotic therapy before FMT would increase the diversity of micro-

biota post-FMT, we have identified amplicon sequence variant (ASV) in all the fecal

samples collected at baseline, post-antibiotic, and post-FMT using 16S rRNA gene am-

plicon sequencing. We used the Shannon diversity index to measure the alpha diver-

sity in each sample. As we expected, the mean difference between baseline and post-

antibiotic samples was significantly bigger in patients who received antibiotics compared

to placebo (LMM, est=0.8, p=0.0001; Fig. 5.2A). The mean difference between post-

antibiotic and post-FMT samples was significantly smaller in the antibiotic group com-

pared to the placebo (LMM,est=-0.6,p=0.002; Fig. 5.2A). However, the mean difference

between baseline and post-FMT was not significantly different (LMM, est:0.14, p=0.4;

Fig. 5.2A) between these two groups.

In order to ask whether pretreatment with antimicrobial therapy induces microbiota

community-wide shift post-FMT, Bray-Curtis and Aitchison distances were calculated

and compared pairwise samples within each patient. We observed that the mean distance

between baseline and post-antibiotic was significantly greater in patients who received

antibiotics compared to placebo (Bray-Curtis: Anova, antibiotic=0.71,placebo=0.51,

se=0.04,p=0.0008; Fig. 5.2C and Aitchison: antibiotic=71, placebo=55,se=2.4,p=2.9e-

05; Fig. 5.2D), suggesting a microbial community change after two weeks of antibiotic

treatments. However, the mean distance between baseline and post-FMT was not sig-

nificantly different in antibiotic group compared to placebo intervention (Bray-Curtis:

Anova, antibiotic=0.67,placebo=0.68,se=0.03,p=0.8; Fig. 5.2C and Aitchison: antibi-

otic=80, placebo=76, se=2.4,p=0.2; Fig. 5.2D).

Next, we asked whether there were any ASVs that differentially abundant in an-

tibiotic group compared to placebo across different time-points. ANCOMBC (Lin and
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Peddada 2020) was used with interactions effects between sample’s time and patients

interventions to normalize and identify the different ASVs (p-adjust < 0.05, see Meth-

ods). Figure 5.3B compares these ASVs for patients who received placebo versus an-

timicrobial interventions prior to FMT. Most of these ASVs shared bacterial families

across antibiotic and placebo groups. Most notably, the patients who received antibi-

otic showed increased abundance of Enterococcaceae and reduction of multiple ASV

belonging to Peptostreptococcaceae in their post-antibiotic samples. The abundance of

Enterococcaceae, Prevotellaceae, and Sutterellaceae ASVs reduced and Peptostrepto-

coccaceae increased post-FMT in patients who received antibiotic treatment compared

to placebo.

Figure 5.2: Comparison of the antibiotic versus placebo treatment prior
to FMT therapy. A. The Shannon alpha diversity metric for samples
collected from patients baseline (Base), post-antibiotc (Anti), and post-
FMT (FMT). The left and right facets shows patients who received an-
tibiotic and placebo treatments prior to FMT. B. PCoA of Bray-Curtis,
beta diversity, distances between all samples. Pairwise Bray-Curtis (C.)
and Aitchison (D.) distances between samples within patients who re-
ceived antibiotic or placebo pretreatments. Distances are measured be-
tween baseline vs. post-antibiotic (Base<>Anti), baseline vs. post-FMT
(Base<>FMT), baseline vs. donor (Base<>Donor), and post-FMT vs.
donor samples. The last donor sample for each patient was used to cal-
culate these distances.
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Figure 5.3: Taxonomic composition of fecal samples in antibiotic ver-
sus placebo treatment. A. Relative abundance of bacterial families in
samples collected at baseline (Base), post-antibiotic (Anti), and post-
FMT (FMT) in patients who either received antibiotic or placebo in-
terventions. B. Significantly different ASVs between placebo and an-
tibiotic (Placebo>Antibiotic) interventions compared across baseline ver-
sus post-antibiotic (Base>Anti), baseline versus post-FMT (Base>FMT),
and post-antibiotic versus post-FMT (Anti>FMT) samples. x-axis shows
a natural log of coefficients.
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5.3.2 Microbial shift is not specific to patients who responded to treat-

ments

In order to explore whether the clinical outcome was associated with microbial change

after antimicrobial pretreatment, microbial composition of baseline and post-FMT sam-

ples was compared in patients who showed clinical remission (responders; n=16, 27%)

versus those who did not respond to the treatment (non-responders; n=36,61%) at the

end of the trial. 7 (12%) patients who completed the trial but not the endoscopy at the

end of the trial were excluded from our analysis.

Shannon index based on identified ASVs was used to measure alpha diversity in

each sample. The mean difference between baseline and post-FMT samples was

not significantly different in patients who responded to therapy compared to non-

responders (LMM, est=0.32, p=0.15; Fig. 5.4A). Bray-Curtis and Aitchison distances

were used to test whether remission resulted in microbial community shift. No sig-

nificant difference between responder and non-responder patients in inducing more

microbial community shift was observed using pairwise samples within each patient

(Anova, Bray-Curtis: NoRes=0.7,Res=0.75, se=0.5,p=0.7 Fig. 5.4C and Aitchison:

NoRes=84,Res=80, se=5,p=0.3 Fig. 5.4D), suggesting that these change are not de-

tectable at the community-level.
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Figure 5.4: Microbial change post-FMT is not associated with clini-
cal outcome. A. The Shannon index for samples collected at baseline
(Base) and post-FMT (FMT) in patients who went to remission (Re-
sponse), did not respond to treatments (NoResponse), and those who
completed the trail but not the final endoscopy (Unknown). B. PCoA of
Bray-Curtis distances between all samples. Pairwise Bray-Curtis (C.) and
Aitchison (D.) distances between samples within patients who were non-
responder (NoRes) and responder (Res) at the end of the trial. Distances
are measured between baseline and post-FMT (Base<>FMT), baseline
and donor (Base<>Donor), and post-FMT and donor (FMT<>Donor)
samples. The last donor sample for each patient was used to calculate
these distances.
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5.3.3 Donor affects microbial change post-FMT.

To examine whether the donor can affect the microbial shift post-FMT, donors B

and M1, who donated fecal slurries to 19 and 24 patients, respectively, were com-

pared. The Shannon index was used to calculate alpha diversity for paired samples

collected at three time-points. We observed that the mean difference between baseline

and post-FMT samples was significantly smaller in patients received FMT from donor

M1 compared to donor B (LMM,est=-0.5,p=0.01). However, patients who received

donor B FMT were significantly less diverse than donor samples at baseline (Anova,

Base=3.3, B=3.9,se=0.11,p=1.9e-05; Fig. 5.5A) and became similar to donor B’s post-

FMT (Anova, FMT=3.9, B=3.9,se=0.05,p=0.9; Fig. 5.5A). However, the mean Shan-

non index for donor M1’s patients was not different from the donor samples, neither at

baseline nor post-FMT (Anova, Base=3.4,M1=3.5,se=0.04,p=0.2; FMT=3.6, se=0.04,

p=0.3; Fig. 5.5A). More interestingly, less variability in Shannon values post-FMT com-

pared to baseline or post-antibiotic samples was observed (Fig. 5.5A).

Bray-Curtis distance was used to test whether donor B or M1 can induce micro-

bial community shift post-FMT (Fig. 5.5C-F). Our results showed that the micro-

bial community in patients who received FMT from donor B was changed post-FMT

(R2=3.2%,p=0.01; Fig. 5.5D), while those who received FMT slurries from donor M1

(R2=1.4%,p=0.36; Fig. 5.5E) or V4 (R2=9%,p=0.04; Fig. 5.5F) did not show a signifi-

cant difference post-FMT.

Comparing samples within each patient, there was no significant difference in com-

munity change post-FMT between donor B and M1 patients (Anova Bray-Curtis:

B=0.7,M1=0.7, se=0.1,p=0.9; Fig. 5.5G and Aitchison: B=80,M1=80, se=0.1,p=0.4;

Fig. 5.5H). The patients who received slurries from donor B were significantly more sim-

ilar to the donor sample post-FMT (Anova Bray-Curtis: Base-B=0.87, FMT-B=0.78,

se=0.02, p=0.01; Fig. 5.5G) but not significantly different in patients received FMT from
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donor M1 (Anova Bray-Curtis: Base-B=0.8, FMT-B=0.75, se=0.02, p=0.09; Fig. 5.5G).

A group of ASVs were found to be differentially abundant (p-adjust < 0.05, see

Methods) in patients who received FMT from donor B compared to donor M1 across

different time-points. As shown in figure 5.6B, ASVs that were belonged to Pre-

votellaceae, Anaerovoracaceae, Christensenellaceae, Ruminococcaceae, Bacteroidaceae,

Anaerococcus, Acidaminococcaceae, Oscillospiraceae, Lachnospiraceae, Rikenellaceae

were increased in donor B patients post-FMT.
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Figure 5.5: Comparison of donor B versus M1 in inducing microbial
change. A. Comparison of the Shannon index for samples collected from
patients baseline (Base), post-antibiotc (Anti), post-FMT (FMT), and
donors. The left and right facets shows patients who received donor B and
donor M1 FMT slurries. B. Comparison of the Shannon diversity across
donor samples. PCoA of Bray-Curtis, beta diversity, distances between
all samples (C.), baseline and post-FMT for patient who received FMT
from donor B (D.), M1 (E.), and V4 (F.)
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Figure 5.6: Taxonomic composition of fecal slurries collected from
donors B and M1. A. Relative abundance of bacterial families. B. Sig-
nificantly different ASVs between baseline and post-FMT (FMT) samples
collected from patients who received donor B and M1 slurries are shown
for each family in y-axis. The families are ordered based on mean esti-
mates of differences. x-axis shows a natural log of coefficients.
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5.3.4 Microbial engraftment post-FMT: donor B vs. M1

In order to examine whether the observed microbial changes in donor B patients are the

result of microbial engraftment, donor ASVs that were engrafted post-FMT from the

two major donors (B and M1) were identified. To do this, ASVs that were specific to

each donor were compared with data from pre- and post-FMT in patients. In this model,

donor ASV with relative abundance of 0 pre-FMT and > 0.01% post-FMT were defined

as engrafted. "Engrafted" ASVs from donors B and M1 in patients with different donors,

was used to estimate the rate of spurious "engraftment". The engrafted ASVs were

visualized in an increasing number of patients to find whether a group of these ASVs

were commonly engrafted despite the microbial variation in each patient (Fig. 5.7A).

Since donors B and M1 were used for different numbers of patients (B: 19, M1: 24), 15

patients from each donor were randomly subsampled 100 times with replacement and

re-calculated engrafted ASVs (Fig. 5.7B). Our results showed that the engrafted ASVs

for both B and M1 donors contains spurious engraftment — ASVs that were detected

from wrong donor post-FMT — in which the donor’s effect is less clear. However, donor

B’s ASVs were observed in an increased number of engraftments compared to donor M1

(Fig. 5.7B).

5.4 Discussion

Current therapies for UC patients are primarily focused on suppressing the immune

response without targeting the main trigger of the inflammation (Talley et al. 2011).

The etiology of UC is complex, but the intestinal microbiome is the environmental

factor most closely related to UC. Previously, we have shown the efficacy of FMT in a

RCT to induce remission in active UC patients (24% FMT vs. 5% placebo (Moayyedi

et al. 2015)). Systematic reviews of previous RCTs have shown that antibiotic therapy

has a potential effect on reducing disease activity in UC (Khan et al. 2011). However,

as different antibiotics were used in each trial, it is difficult to understand whether
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Figure 5.7: Effects of donor on microbial engraftment post-FMT. A.
Donor B and M1 ASVs that were commonly engrafted across patients
who received donor B and M1 slurries in an increasing number of individ-
uals post-FMT. B. Donor B and M1 ASVs that were commonly engrafted
across 15 patients (100 subsampling) who received donor B and M1 slur-
ries.

suppressing a group of bacteria induces more remission in UC patients. In this study, the

RCT was designed to determine whether pretreatment with antibiotics would increase

the efficacy of FMT. Two mechanistic rationales for antibiotic pretreatment are 1) that

the antibiotics may reduce or eliminate pathogenic bacteria that contribute to disease,

2) depletion of gut microbiota by the antibiotics might improve engraftment of donor

microbiota. While the final clinical report on this RCT are still pending, there does not

appear to be a benefit to the course of antibiotic prior to FMT.

We found that antibiotic therapy significantly reduced microbial diversity and
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changed the microbial composition of patients. We observed that the microbial com-

position of patients who received either placebo or antibiotic pretreatment changed

after FMT, suggesting that FMT had a more substantial effect than antibiotic therapy.

Although studies have suggested a role of pathogenic bacteria in UC (Petersen et al.

2009; Mirsepasi-Lauridsen et al. 2016; Axelrad et al. 2018), it is still not clear what

those bacteria are and how they are involved in mucosal inflammation. We used two

broad spectrum antibacterial compounds with some activity against parasites and an

antifungal (metronidazole and doxycycline, and terbinafine, respectively). We could not

assess mucosal appearance at the end of trial for seven patients and they were excluded

from our analysis. Nevertheless, our results showed that 33% and 28% of patients who

received only FMT therapy and antibiotic pretreatment before FMT, respectively went

to remission suggesting that antibiotics do not improve FMT in the treatment of UC.

16S rRNA gene amplicon sequencing has been used to detect microbial engraftment

post-FMT (Khanna et al. 2017b; Hamilton et al. 2013; Staley et al. 2019; Staley et al.

2021). We investigated whether this approach provides adequate resolution to examine

microbial engraftment by tracking donor-specific ASVs in FMT recipients. We used data

from two donors (B and M1) who provided FMT to the highest number of patients (B:19,

M1:24). It was shown that the microbial changes post-FMT were individual-specific. To

address these variations, we assessed engrafted ASVs in an increasing number of patients

(common engraftment). We found that the difference between engraftment (matched

donor) and spurious engraftment (non-matched donor) was not distinguishable, indi-

cating that 16S rRNA gene sequencing does not provide enough resolution to detect

engraftments. As I report in Chapter 3 and inconsistent with previous metagenomic

studies (Smillie et al. 2018; Paramsothy et al. 2019; Chu et al. 2021; Podlesny et al.

2022b), FMT induces strain-level microbial changes, and high-resolution microbiome

analysis is required to detect these subtle changes. More recently, It was implicated that
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antibiotic pretreatment in rCDI patients reduces colonization resistance and leads to in-

creased microbial engraftment (Podlesny et al. 2022b). We have conducted metagenomic

seqeuncing for all the patients and donors involved in this RCT. We will use this dataset

to examine whether antibiotic pretretmanet is associated with microbial engraftment in

UC.

In our trial, we had two major donors (donors B and M1) who provided FMT to

the highest number of patients (B: 19, M1: 24). Our results showed that donor B

was more successful than M1 in shifting microbial composition and the patients’ micro-

biomes became more similar to donor B post-FMT. Although we observed a high rate

of suprious engraftment in detecting commonly engrafted ASVs, the number of donor

B’s engrafted ASVs was greater than M1. Our results, consistent with previous findings

(Moayyedi et al. 2015; Wilson et al. 2021), suggests that the donor microbiome affects

microbial changes post-FMT. However, we argue that the extent of this effect needs to

be investigated with a higher-resolution metagenomic analysis.
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Chapter 6

Conclusions

Within the work of this thesis, I present in-depth gut microbiome characterization

through culture-independent and -dependent sequencing of healthy individuals and pa-

tients with ulcerative colitis (UC). The focus of this thesis was to develop and improve

computational approaches to study intestinal microbiota with the goal of shifting from

microbiome associations to causation in human health and disease. In Chapter 2, I

developed a bioinformatics workflow to apply shotgun metagenomics to comprehensive

culture-enrichment of the intestinal microbiota and compared this approach to culture-

independent (direct) metagenomics from the same samples. I show that culture-enriched

metagenomics (CEMG) improves de novo assembly of the gut microbiota compared to

direct metagenomics (DMG) by providing a more in-depth view of microbial genes and

genomes using data from eight healthy individuals.

In Chapter 3, I applied CEMG to a successful fecal microbiota transplantation

(FMT) donor based on a randomized controlled trial (RCT) for UC patients (Moayyedi

et al. 2015). The higher resolution provided by CEMG allowed us to identify a group

of genes commonly engrafted in patients who responded to FMT. Using publicly avail-

able genomes and metagenomic datasets, I show that most of these genes were strain-

specific and over-represented in the healthy individuals than UC patients (Chapter 3).
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Tracking non-bacterial component of microbiota, such as bacteriophages, is essential and

can affect FMT outcomes. In Chapter 4, I present a highly dynamic bacteriophage,

crAssphage, using longitudinal data from an FMT donor. I developed a pipeline to

track the crAssphage strain present in donors based on SNP information, and I show

that accurate detection of bacteriophage engraftment post-FMT requires SNP analysis

in UC that PCR detection is not sufficient evidence for engraftment. And in Chapter

5, we report the first RCT to assess the efficacy of antibiotic treatment prior to FMT

in UC patients. We showed that antibiotic therapy changed the microbial composition

but didn’t improve the efficacy of FMT.

The previous work from the Surette lab showed that the culture-enrichment provides

a more robust assessment of the human lung microbiota (Sibley et al. 2011; Whelan et al.

2020). Although we previously published the same protocol for the molecular profiling

of the gut microbiota (Lau et al. 2016), I applied shotgun metagenomics to this approach

for the first time. The intestinal microbiota is significantly more diverse than lung micro-

biota, and the complex dataset generated by this approach required a new bioinformatics

pipeline. I have compared the performance of widely used metagenomic algorithms, some

of which were not presented in this thesis, but they were instrumental for this body of

work. These comparisons included de novo assembler, binning algorithms, taxonomic

assigner, and functional annotation approaches. De no assembly algorithms, particu-

larly de Bruijn methods, that are standard in the field and have advanced the microbial

genome collections are highly computationally expensive. I compared multiple assem-

bly approaches, including sub-assembly, co-assembly and single assembly of cultured

plate pools, to develop and optimize memory-intensive cloud instances (google cloud)

for CEMG assemblies. The results showed that co-assembly of plate pools with metaS-

PAde produced the highest quality assemblies (measured by N50) with the shortest run

time.
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Recent de novo assembled catalogues of genes (Coelho et al. 2022) and genome

(Almeida et al. 2021) from metagenomic samples has advanced the field and provided

an extensive resource for hypothesis generation. Nevertheless, these collections may pro-

vide a spurious interpretation of the human microbiota. Even the most conservative gene

prediction program, such as Prodigal, misses up to 5% of genes and consequently func-

tions. This is exaggerated with highly fragmented contigs, which results in incomplete

open reading frames (ORFs) generated by de novo assembly with short read sequenc-

ing. Further, there is no robust metric to assess the quality of metagenome assembled

genomes (MAGs), and they are often incomplete or contain multiple strains in the same

bin. A single metagenomic sample likely includes thousands of strains, and the uniform

coverage information required by binning algorithms is often missing in these datasets.

CEMG provide more complete assembly fragments and unique coverage information

from multiple plate pools that can improve de novo assembly and binning of contigs.

The widely used prokaryote assembler that use de Bruijn graph-based methods di-

vides a read into k-mer sequences to construct a graph. In a more complex microbial

community (e.g. deep sequencing of gut microbiota or environmental samples), the split

k-mers might result in misassemblies. Although debatable and not fully understood,

there seems to be a threshold where the increased depth of sequencing (or co-assembly)

results in a highly complex assembly graph which causes increased misassemblies in

the contigs. The third-generation high-throughput sequencing (HTS) methods (such as

Nanopore and PacBIO) could address some of these challenges and we should focus on

combining this method with CEMG in future. Particularly, assembling these long read

sequences via string-based algorithms that avoid dividing reads will potentially result in

a greater quality of genes and genomes. The long-read sequencing is more expensive and

less standardized. It was shown that optimizing the genome library preparation could

reduce the cost of these methods (Derakhshani et al. 2020) and, in future, should be

followed for metagenomics library construction of PacBIO sequencer.
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It is evident that studying microbial changes post-FMT, particularly determining the

donor’s effect on recipients’ microbiota, requires strain-level resolution (Li et al. 2016;

Smillie et al. 2018; Podlesny et al. 2022b). However, the term "strain" is not well defined,

and it is highly debatable to describe a standard genomic data property that most

accurately represents a strain from a microbial community. In classical microbiology,

strain is an isolate from pure culture that originated from a single colony (Dijkshoorn et

al. 2000); however, this definition is more flexible in microbial genetics which defined by

phylogenetic principles originally derived from eukaryote taxonomy (Hugenholtz et al.

2021). Typically it is expected to observe 95-97% identity in core genes of a species while

the identity threshold could increase to >99-99.9% to be considered a strain. Similar

to the terminology, the methods attempted to identify strains in FMT studies were

debatable and not standardized.

Although 16S rRNA gene amplicon sequencing does not provide strain-level resolu-

tion, it has been the most widely used approach to track microbial changes post-FMT.

Even the full 16S rRNA gene can not distinguish closely related species or strains from

each other. For example, Escherichia coli (E. coli) and Shigella sp. have an almost

identical 16S rRNA gene (Brenner et al. 1972; Ragupathi et al. 2018). Using data from

two RCTs, I show that 16S rRNA sequencing is not sufficient to detect donor-specific

amplicon sequence variants (ASVs) in FMT recipients (Chapter 3 and 5). The so-

called "engrafted ASVs" were detected independent of the recipient-specific microbial

changes, which were determined by common engraftment across an increasing number

of patients. I compared these expected engraftments from a matched donor to a placebo

treatment (Chapter 3) or a non-matched donor (Chapter 5). These studies provide an

approach to measure noise in FMT experiments and indicate that 16S rRNA sequencing

does not provide sufficient resolution to determine donor-specific ASVs. The patient-

specific microbial changes post-FMT were evident by 16S rRNA sequencing. However,

shotgun metagenomics was required to track microbial changes and investigate microbial
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engraftment post-FMT.

Marked-based approaches are predominately used to detect microbial strains in

metagenomic data from FMT studies. The tools such as StrainPhlan (Truong et al.

2017), strainFinder (Smillie et al. 2018) , PStrain (Wang et al. 2021), and SameStr

(Podlesny et al. 2022a) rely on marker gene databases (e.g., MetaPhlAn) to identify

species-level markers and use SNV information by read mapping to infer strains. These

methods are sensitive to the sequencing depth and limited to the most abundant strain

within each species. Alternatively, kmer-based approaches such as GT-Pro (Shi et al.

2022), and StrainGE (Dijk et al. 2022) have been developed that work based on unique

kmer information. Although these methods are computationally efficient, there seems

to be a trade-off in the length of k-mer in which longer n provides higher resolution

but with the cost of reduced sensitivity. Even if we assume maker-based approaches

determine 100% of strains in a metagenomic sample, like multilocus sequence typing

(MLST), they provide no functional information about the so-called strains in FMT

studies and gene content and phenotype can vary within a single MLST sequence type.

Additionally, assembly-based approaches have been used to detect microbial strains.

It is debatable whether MAGs represents strains, but MAGs of the same species from

different sources probably represent different strains. For each assembly, contigs and

MAGs represent consensus assemblies. While SNP analysis can be used to estimate

strains diversity based on core genes, accessory genes (which define functional differ-

ences between strains) tend to be excluded from MAGs if multiple strains are present in

a sample. CEMG improves this over DMG as I show in Chapter 2 with the increase

size of MAGs in the CEMG assemblies. However, these are still smaller than genomes

from isolated strains. High-quality MAGs resolved by CEMG were used to track strains

post-FMT (Chapter 3). Similar to the past studies (Lee et al. 2017; Watson et al.
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2021), short reads from recipients were mapped to the MAGs collection and 1X cover-

age information cut-offs were used to detect engrafted, and replaced MAGs post-FMT

(Chapter 3). Importantly, this approach provides functional context for the strains but

will be limited to the dominant strain in the community based on the consensus assem-

blies. We show that CEMG can potentially address some of these challenges (Chapter

3) by binning low abundant microbes. The other caveat is that the short reads can

map to multiple MAGs in the reference. Potentially, this issue can be resolved by in-

creasing mapping stringency, filtering primarily perfectly mapped reads. More recently,

algorithms such as STRONG (Quince et al. 2021) and SynTracker (Enav and Ley 2021)

have attempted to address some of these challenges by strain decomposition of only

core-genes and pairwise comparison of homologous regions, respectively. However, there

is no consensus on defining single-copy core genes for each strain, and accessory genes

are disregarded in these approaches.

As mentioned above, many tools have attempted to track microbial strains, particu-

larly after FMT treatment, but less effort was made to validate these approaches. In fu-

ture, synthetic mock metagenomes from single whole-genomic data with variable degrees

of microbial complexity should be generated to investigate whether these approaches are

adequately robust. Further, culture-enriched plate pools from selective media can be

used to test the recovery of closely-related strains. The golden standard to evaluate the

efficacy of a treatment in medicine is to conduct RCT. Similarly, metagenomic data from

patients who received a placebo should be used to estimate the error rate and validate

strain engraftment post-FMT. I think the Surette lab is well positioned to follow these

projects in future. FMT is not risk-free, and the field should move from FMT therapy

to small molecule therapies or defined communities based on FMT results. To do this,

investigating the functional mechanism of strain colonization should be followed instead

of only methods that track strains in FMT studies.
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With improvement in our publicly available sequence repositories, it has become eas-

ier to re-analyze and merge various omics datasets from FMT studies (e.g. recurrent-

Clostridioides difficile infection (rCDI), metabolic disorder, UC, Crohn’s disease (CD)).

However, these diseases manifest different phenotype which suggests the mechanism of

action and possibly the importance of the donor depends on the disease. For example,

CDI is an acute infectious disease, while IBD is a chronic inflammatory disease. In

rCDI patients, the goal of FMT is to restore the microbial community balance, and it

was shown that independent of the donor’s microbial composition, the recipient’s micro-

biome becomes more similar to the donor post-FMT, although evidence for engraftment

is often weak. In other GI-related diseases such as UC, we have more heterogeneity in

the microbial composition of recipients. The patient’s microbiome likely changes post-

FMT but these differences are not as stark as rCDI. As a result, the mechanism of FMT

seems to be more complex. For example, Podlesny et al. 2022b recently suggested that

antibiotic pretreatment leads to increased strain engraftment post-FMT using multiple

omics datasets from rCDI patients. In contrast, we presented that the antibiotic pre-

treatment in UC does not affect FMT outcomes but significantly changes the patient’s

microbiota in a RCT (Chapter 5). In future, metagenomic sequencing should be car-

ried out to investigate whether there is any association between microbial colonization

and antibiotic pretreatment in UC. However, given the concerns with antibiotic resis-

tance (Chatterjee et al. 2018; Laxminarayan et al. 2020), antibiotic treatment before

FMT should be carefully recommended only based on disease manifestation, instead of

a standard protocol to increase the efficacy of FMT. Another example is the bacterio-

phage colonization post-FMT. It was implicated that crAssphage is a stable phage that

colonizes rCDI patients post-FMT (Draper et al. 2018; Siranosian et al. 2020). However,

I presented a dynamic crAssphage in a healthy donor that was not engrafted in UC pa-

tients post-FMT with data from a subset of FMT participants (Chapter 4) indicating

that potentially bacteriophage colonization after FMT is related to disease phenotypes.
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The intestinal microbiome is an essential part of our health. This thesis further

provides insight into these microbial communities, their functions, and balance in healthy

individuals and UC patients. In past decades, an enormous number of studies have

characterized the gut microbiota using culture-independent approaches. The work of this

thesis shows that classical microbiology, in combination with metagenomics, provides an

opportunity to improve our informatics methods to characterize gut microbiota. The role

of intestinal microbiota in UC patients is evident, and FMT has emerged as a potential

therapy for these patients. The data and results presented within suggest that a high-

resolution microbiome analysis is required to understand the mechanism of bacterial and

non-bacterial colonization post-FMT. Ultimately, FMT is not an appealing treatment

for patients, and the field should transition to new microbial-based therapies. Culture-

enriched metagenomic coupled with new sequencing technologies can truly help us to do

this transition and better understand the mechanism of action post-FMT.
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Table A1.1: List of culture-enriched plates and stool samples selected
for metagenomic sequencing.

Number Sample Donor Class Media Paired-end Source

1 S1C1 SHCM1 anaerobic AIAana 12423664 Plate pool
2 S1C2 SHCM1 anaerobic BHI4ana 6972664 Plate pool
3 S1C3 SHCM1 aerobic BHI5aer 6540709 Plate pool
4 S1C4 SHCM1 anaerobic BHI5ana 6074129 Plate pool
5 S1C5 SHCM1 aerobic CHOCaer 6065023 Plate pool
6 S1C6 SHCM1 anaerobic FAAana 6723345 Plate pool
7 S1C7 SHCM1 anaerobic KVLBana 9958984 Plate pool
8 S1C8 SHCM1 anaerobic M9inuana 11817414 Plate pool
9 S1C9 SHCM1 anaerobic M9mucana 13908034 Plate pool
10 S1C10 SHCM1 anaerobic M9pectana 10962936 Plate pool
11 S1C11 SHCM1 aerobic Mkaer 6016412 Plate pool
12 S1C12 SHCM1 anaerobic Mkana 6443660 Plate pool
13 S1C13 SHCM1 anaerobic MRSana 6618148 Plate pool
14 S1C14 SHCM1 aerobic PEAaer 9599360 Plate pool
15 S2C1 SHCM2 aerobic ppae1012 10391787 Plate pool
16 S2C2 SHCM2 aerobic ppae1427 14648038 Plate pool
17 S2C3 SHCM2 aerobic ppae16 12934202 Plate pool
18 S2C4 SHCM2 aerobic ppae17 11593021 Plate pool
19 S2C5 SHCM2 aerobic ppae30 11595422 Plate pool
20 S2C6 SHCM2 aerobic ppae3233 15251439 Plate pool
21 S2C7 SHCM2 anaerobic ppana10 16348397 Plate pool
22 S2C8 SHCM2 anaerobic ppana13 13981690 Plate pool
23 S2C9 SHCM2 anaerobic ppana16 16259303 Plate pool
24 S2C10 SHCM2 anaerobic ppana17 15436604 Plate pool
25 S2C11 SHCM2 anaerobic ppana18 12703011 Plate pool
26 S2C12 SHCM2 anaerobic ppana20 10090848 Plate pool
27 S2C13 SHCM2 anaerobic ppana22 10630986 Plate pool
28 S2C14 SHCM2 anaerobic ppana25 6084039 Plate pool
29 S2C15 SHCM2 anaerobic ppana26 14549152 Plate pool
30 S2C16 SHCM2 anaerobic ppana29 23417489 Plate pool
31 S2C17 SHCM2 anaerobic ppana2 13161099 Plate pool
32 S2C18 SHCM2 anaerobic ppana31 15928472 Plate pool
33 S2C19 SHCM2 anaerobic ppana3 20094719 Plate pool
34 S2C20 SHCM2 anaerobic ppana6 14803557 Plate pool
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Number Sample Donor Class Media Paired-end Source

35 S3C1 SHCM3 anaerobic AIAana 15079290 Plate pool
36 S3C2 SHCM3 anaerobic BBEana 11470669 Plate pool
37 S3C3 SHCM3 anaerobic BEEFana 8710803 Plate pool
38 S3C4 SHCM3 anaerobic BHI2ana 9332890 Plate pool
39 S3C5 SHCM3 anaerobic BHICELLana 11413552 Plate pool
40 S3C6 SHCM3 anaerobic BSMana 10262653 Plate pool
41 S3C7 SHCM3 anaerobic GIFUana 9593351 Plate pool
42 S3C8 SHCM3 anaerobic GMMana 7152566 Plate pool
43 S3C9 SHCM3 anaerobic KVLBana 8023341 Plate pool
44 S3C10 SHCM3 anaerobic M9INUana 9742779 Plate pool
45 S3C11 SHCM3 anaerobic MKana 7884008 Plate pool
46 S3C12 SHCM3 anaerobic MRSana 7962911 Plate pool
47 S3C13 SHCM3 aerobic MRSar 13571107 Plate pool
48 S3C14 SHCM3 anaerobic MSAana 8985249 Plate pool
49 S4C1 SHCM4 anaerobic AIAana 8560850 Plate pool
50 S4C2 SHCM4 anaerobic BHI3ana 11617084 Plate pool
51 S4C3 SHCM4 anaerobic BHI5ana 10857541 Plate pool
52 S4C4 SHCM4 anaerobic BHICELLana 10360435 Plate pool
53 S4C5 SHCM4 anaerobic BHIINUana 10904630 Plate pool
54 S4C6 SHCM4 anaerobic BHIMUCana 8688033 Plate pool
55 S4C7 SHCM4 anaerobic BHIPECana 11712255 Plate pool
56 S4C8 SHCM4 anaerobic BSMana 9623876 Plate pool
57 S4C9 SHCM4 anaerobic CANana 8764280 Plate pool
58 S4C10 SHCM4 anaerobic GIFUana 10040569 Plate pool
59 S4C11 SHCM4 anaerobic GMMana 11192751 Plate pool
60 S4C12 SHCM4 anaerobic M9INUana 12191238 Plate pool
61 S4C13 SHCM4 anaerobic M9MUCana 11952205 Plate pool
62 S4C14 SHCM4 anaerobic MRSana 10315073 Plate pool
63 S4C15 SHCM4 anaerobic TSYana 11465462 Plate pool
64 S5C1 SHCM5 anaerobic BBEana 8434003 Plate pool
65 S5C2 SHCM5 anaerobic BHI2ana 10985548 Plate pool
66 S5C3 SHCM5 anaerobic BHI5ana 9776659 Plate pool
67 S5C4 SHCM5 anaerobic BHIMUCana 10578043 Plate pool
68 S5C5 SHCM5 anaerobic CBAana 8477519 Plate pool
69 S5C6 SHCM5 aerobic CNAaer 7019320 Plate pool
70 S5C7 SHCM5 anaerobic FAAana 8318595 Plate pool
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Number Sample Donor Class Media Paired-end Source

71 S5C8 SHCM5 anaerobic GIFUana 8464269 Plate pool
72 S5C9 SHCM5 aerobic GMMaer 8777563 Plate pool
73 S5C10 SHCM5 anaerobic KVLBana 8747468 Plate pool
74 S5C11 SHCM5 anaerobic M9PECTana 7965356 Plate pool
75 S5C12 SHCM5 anaerobic MKana 13338529 Plate pool
76 S5C13 SHCM5 aerobic MSAaer 8469224 Plate pool
77 S5C14 SHCM5 anaerobic TSYana 8681989 Plate pool
78 S6C1 SHCM6 anaerobic BBEana 8813192 Plate pool
79 S6C2 SHCM6 anaerobic BEEFana 7863172 Plate pool
80 S6C3 SHCM6 anaerobic BHI3ana 11550569 Plate pool
81 S6C4 SHCM6 anaerobic BHI5ana 11122559 Plate pool
82 S6C5 SHCM6 anaerobic BHICellana 7902431 Plate pool
83 S6C6 SHCM6 anaerobic CBAana 8704711 Plate pool
84 S6C7 SHCM6 aerobic CHOCaer 8125876 Plate pool
85 S6C8 SHCM6 anaerobic CHOCana 12422595 Plate pool
86 S6C9 SHCM6 anaerobic CNAana 9443836 Plate pool
87 S6C10 SHCM6 anaerobic GMMana 4222141 Plate pool
88 S6C11 SHCM6 anaerobic KVLBana 11422493 Plate pool
89 S6C12 SHCM6 anaerobic MACana 8987424 Plate pool
90 S6C13 SHCM6 aerobic MixedAer 10515677 Plate pool
91 S6C14 SHCM6 anaerobic MKana 10911723 Plate pool
92 S6C15 SHCM6 anaerobic MRSana 14659766 Plate pool
93 S6C16 SHCM6 anaerobic MSAana 15347614 Plate pool
94 S15C1 SHCM15 aerobic aer30 15333183 Plate pool
95 S15C2 SHCM15 aerobic aer4 23667949 Plate pool
96 S15C3 SHCM15 anaerobic ana10 22442273 Plate pool
97 S15C4 SHCM15 anaerobic ana10b 166163330 Plate pool
98 S15C5 SHCM15 anaerobic ana11 16142855 Plate pool
99 S15C6 SHCM15 anaerobic ana12 30020329 Plate pool
100 S15C7 SHCM15 anaerobic ana15 66365295 Plate pool
101 S15C8 SHCM15 anaerobic ana16 18831075 Plate pool
102 S15C9 SHCM15 anaerobic ana18 40436742 Plate pool
103 S15C10 SHCM15 anaerobic ana20 35197675 Plate pool
104 S15C11 SHCM15 anaerobic ana23 67231962 Plate pool
105 S15C12 SHCM15 anaerobic ana24 43118477 Plate pool
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Number Sample Donor Class Media Paired-end Source

106 S15C13 SHCM15 anaerobic ana26 22041105 Plate pool
107 S15C14 SHCM15 anaerobic ana28 22275048 Plate pool
108 S15C15 SHCM15 anaerobic ana29 11189647 Plate pool
109 S15C16 SHCM15 anaerobic ana31 26292516 Plate pool
110 S15C17 SHCM15 anaerobic ana7 47788248 Plate pool
111 S15C18 SHCM15 anaerobic ana8 15328894 Plate pool
112 S15C19 SHCM15 anaerobic ana9 26285894 Plate pool
113 B13C1 SHCM0 Other P10 7212641 Plate pool
114 B13C2 SHCM0 Other P11 13658127 Plate pool
115 B13C3 SHCM0 Other P1 13547295 Plate pool
116 B13C4 SHCM0 Other P12 9955109 Plate pool
117 B13C5 SHCM0 Other P13 12746585 Plate pool
118 B13C6 SHCM0 Other P2 8114888 Plate pool
119 B13C7 SHCM0 Other P3 15246685 Plate pool
120 B13C8 SHCM0 Other P4 14464941 Plate pool
121 B13C9 SHCM0 Other P5 18023885 Plate pool
122 B13C10 SHCM0 Other P6 19748129 Plate pool
123 B13C11 SHCM0 Other P7 19266475 Plate pool
124 B13C12 SHCM0 Other P8 12827228 Plate pool
125 B13C13 SHCM0 Other P9 12450314 Plate pool
126 S1S1 SHCM1 18893172 Stool
127 S2S1 SHCM2 29250143 Stool
128 S3S1 SHCM3 43115009 Stool
129 S4S1 SHCM4 28836989 Stool
130 S5S1 SHCM5 28774192 Stool
131 S6S1 SHCM6 40326457 Stool
132 S15S1 SHCM15 116995473 Stool
133 B13 SHCM0 19890046 Stool
134 B16 SHCM0 7629264 Stool
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Table A2.1: List of characterized proteins from commonly engrafted
genes.

# Protein.names Pfam Taxonomic Family

1 Single-stranded DNA-binding protein PF00436; Lachnospiraceae
2 AAA domain-containing protein Lachnospiraceae
3 ESAT-6-like protein PF06013; Lachnospiraceae
4 ESAT-6-like protein PF06013; Lachnospiraceae
5 (4Fe-4S)-binding protein PF00037;PF01243; Lachnospiraceae
6 Signal peptidase I W (EC 3.4.21.89) PF00717; Lachnospiraceae
7 LPD11 domain-containing protein PF18824; Lachnospiraceae
8 C2H2-type domain-containing protein Lachnospiraceae
9 Type IV pilus twitching motility protein PilT PF00437; Lachnospiraceae
10 D-ribose-binding periplasmic protein PF13407; Clostridiaceae
11 Ribosomal protein HS6-type (S12/L30/L7a) PF01248; Clostridiaceae
12 Integral membrane protein (Intg_mem_TP0381) PF09529; Clostridiaceae
13 Probable membrane transporter protein PF01925; Clostridiaceae
14 Sodium/proline symporter (Proline permease) PF00474; Clostridiaceae
15 ABC-type dipeptide/oligopeptide/nickel transport systems, permease components PF00528;PF12911; Clostridiaceae
16 Galactoside transport system permease protein mglC PF02653; Clostridiaceae
17 4HBT domain-containing protein PF03061; Clostridiaceae
18 Probable cell division protein ytgP PF01943; Lachnospiraceae
19 ANTAR domain protein PF03861; Lachnospiraceae
20 Sugar-specific transcriptional regulator, TrmB family PF01978; Lachnospiraceae
21 Pyridoxine kinase (EC 2.7.1.35) PF08543; Lachnospiraceae
22 Enolase (EC 4.2.1.11) (2-phospho-D-glycerate hydro-lyase) (2-phosphoglycerate dehydratase) PF00113;PF03952; Lachnospiraceae
23 Flp pilus assembly protein, protease CpaA (Prepilin peptidase) PF01478; Lachnospiraceae
24 Stage V sporulation protein AB PF13782; Lachnospiraceae
25 Biotin transporter PF02632; Lachnospiraceae
26 Chorismate–pyruvate lyase Lachnospiraceae
27 Cold shock domain-containing protein (Cold shock-like protein) PF00313; Lachnospiraceae
28 SseB domain-containing protein PF07179; Lachnospiraceae
29 Cell division inhibitor MinD PF13614; Lachnospiraceae
30 Cell division suppressor protein YneA Lachnospiraceae
31 RNA polymerase sigma factor sigX PF04542;PF08281; Lachnospiraceae
32 HIT-like protein (EC 3.-.-.-) PF01230; Lachnospiraceae
33 Deoxyuridine 5’-triphosphate nucleotidohydrolase (EC 3.6.1.23) PF00692; Lachnospiraceae
34 Uncharacterized conserved protein PF12821; Lachnospiraceae
35 Sporulation protein, YlmC/YmxH family (YlmC/YmxH family sporulation protein) PF05239; Lachnospiraceae
36 tRNA-dihydrouridine synthase (EC 1.3.1.-) PF01207; Lachnospiraceae
37 RNA polymerase sigma factor PF04542;PF04545; Lachnospiraceae
38 Phosphatidylglycerol lysyltransferase (EC 2.3.2.3) (Lysylphosphatidylglycerol synthase) PF03706; Lachnospiraceae
39 Molybdate ABC transporter, permease protein PF00005; Lachnospiraceae
40 Septum formation initiator (Septum formation initiator family protein) PF04977; Lachnospiraceae
41 N-acetylmuramoyl-L-alanine amidase LytC (EC 3.5.1.28) PF01520; Lachnospiraceae
42 tRNA-specific adenosine deaminase (EC 3.5.4.33) PF14437; Lachnospiraceae
43 Dicarboxylate/amino acid:cation symporter (Glutamate-aspartate carrier protein) PF00375; Lachnospiraceae
44 Flagellin N-methylase PF03692; Lachnospiraceae
45 Cytidylate kinase Lachnospiraceae
46 Ubiquitin-like domain-containing protein PF03780; Lachnospiraceae
47 Formate channel 1 (Formate/nitrite transporter family protein) PF01226; Lachnospiraceae
48 2-dehydro-3-deoxy-6-phosphogalactonate aldolase (EC 4.1.2.21) PF01081; Lachnospiraceae
49 Cytidylate kinase Lachnospiraceae
50 Hpt domain PF01627; Lachnospiraceae
51 [Ribosomal protein S18]-alanine N-acetyltransferase (EC 2.3.1.266) PF00583; Lachnospiraceae
52 DUF1275 domain-containing protein PF06912; Lachnospiraceae
53 DnaB_2 domain-containing protein PF07261; Ruminococcaceae
54 Mini-ribonuclease 3 (Mini-3) (Mini-RNase 3) (EC 3.1.26.-) (Mini-RNase III) (Mini-III) PF00636; Ruminococcaceae
55 AbrB family transcriptional regulator (AbrB/MazE/SpoVT family DNA-binding domain-containing protein) PF04014; Ruminococcaceae
56 Adenosylcobinamide kinase/adenosylcobinamide-phosphate guanylyltransferase PF02283; Ruminococcaceae
57 PTS ascorbate transporter subunit IIC Ruminococcaceae
58 ANTAR domain-containing protein (Probable transcriptional regulatory protein pdtaR) PF03861; Ruminococcaceae
59 DUF5626 domain-containing protein PF18540; Ruminococcaceae
60 NADH dehydrogenase (EC 1.6.99.3) PF00881; Ruminococcaceae
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# Protein.names Pfam Taxonomic Family

61 Putative endoribonuclease L-PSP PF01042; Ruminococcaceae
62 DUF2500 domain-containing protein PF10694; Ruminococcaceae
63 UPF0145 protein FPR_16870 PF01906; Ruminococcaceae
64 Na+-driven multidrug efflux pump PF01554; Ruminococcaceae
65 Stress-response A/B barrel domain-containing protein PF07876; Ruminococcaceae
66 REP element-mobilizing transposase RayT PF01797; Ruminococcaceae
67 Oxaloacetate decarboxylase Ruminococcaceae
68 TrbC/VIRB2 family protein PF04956; Ruminococcaceae
69 Nitrous oxide-stimulated promoter PF11756; Ruminococcaceae
70 Beta-galactosidase PF16355;PF18565;PF00703;PF02836;PF02837; Ruminococcaceae
71 Iron-sulfur cluster carrier protein PF10609; Ruminococcaceae
72 Ion channel (Two pore domain potassium channel family protein) PF07885; NA
73 Spo0A_C domain-containing protein PF08769; NA
74 Predicted transcriptional regulator PF13443; NA
75 Cyclic lactone autoinducer peptide NA
76 Cobyrinic acid a,c-diamide synthase PF01656;PF07685; NA
77 DNA-binding helix-turn-helix protein PF13443; Lachnospiraceae
78 Signal peptidase I (EC 3.4.21.89) PF10502; NA
79 CNA-B domain-containing protein PF05738; NA
80 HTH cro/C1-type domain-containing protein PF13443; NA
81 Replication initiator A domain-containing protein PF06970; NA
82 Pro-sigmaK processing inhibitor BofA PF07441; NA
83 L-arabinose transport system permease protein AraQ PF00528; Lachnospiraceae
84 Uncharacterized protein NA
85 Uncharacterized protein NA
86 Membrane protease subunits stomatin/prohibitin homologs PF01145; NA
87 HTH_17 domain-containing protein PF12728; NA
88 Translation initiation factor IF-1 PF01176; NA
89 Cold-shock DNA-binding protein family PF00313; NA
90 DUF3991 domain-containing protein PF13154; NA
91 Nicotinamide-nucleotide amidohydrolase family protein PF02464;PF18146; NA
92 Anti-sigma F factor (EC 2.7.11.1) (Stage II sporulation protein AB) PF13581; Ruminococcaceae
93 Urease accessory protein UreF PF01730; NA
94 Arginine transport system permease protein ArtQ PF00528; NA
95 Exodeoxyribonuclease 7 small subunit (EC 3.1.11.6) (Exonuclease VII small subunit) PF02609; NA
96 Bacterial nucleoid DNA-binding protein PF00216; NA
97 DUF4230 domain-containing protein PF14014; NA
98 Uncharacterized protein Lachnospiraceae
99 Stage V sporulation protein T PF04014;PF15714; NA
100 Phosphoribosylglycinamide formyltransferase NA
101 Predicted nucleotidyltransferase component of viral defense system PF08843; Ruminococcaceae
102 Isopentenyl-diphosphate Delta-isomerase (EC 5.3.3.2) PF00293; NA
103 DUF4253 domain-containing protein PF14062; Lachnospiraceae
104 RNA polymerase sigma factor sigma-70 family PF08281; NA
105 Sensor histidine kinase graS (EC 2.7.13.3) PF02518; NA
106 Uncharacterized protein NA
107 Conserved hypothetical integral membrane protein TIGR02185 PF09605; NA
108 DUF4367 domain-containing protein PF14285; Lachnospiraceae
109 CAI-1 autoinducer sensor kinase/phosphatase CqsS (EC 2.7.13.3) PF00072; NA
110 HTH cro/C1-type domain-containing protein PF01381; NA
111 IS200/IS605 family transposase PF01797; NA
112 50S ribosomal protein L29 PF00831; Oscillospiraceae
113 Accessory gene regulator protein A PF04397;PF00072; Lachnospiraceae
114 GGACT domain-containing protein PF06094; Lachnospiraceae
115 Site-specific DNA methylase (EC 2.1.1.37) PF00145; Lachnospiraceae
116 50S ribosomal protein L7/L12 PF00542;PF16320; Lachnospiraceae
117 30S ribosomal protein S10 PF00338; Lachnospiraceae
118 Bacteriophage Gp15 protein PF06854; Ruminococcaceae
119 Putative agmatine deiminase (EC 3.5.3.12) (Agmatine iminohydrolase) PF04371; Ruminococcaceae
120 Dinitrogenase iron-molybdenum cofactor PF02001;PF02579; Ruminococcaceae
121 HPr domain-containing protein PF00381; Ruminococcaceae
122 KipI antagonist PF02626; Ruminococcaceae
123 ABC transporter ATP-binding protein PF00005;PF12399; Ruminococcaceae
124 4Fe-4S binding domain-containing protein PF00037;PF12724; Ruminococcaceae
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Figure A2.1: The microbial composition of 51 patients who either ran-
domly received FMT from donor B or placebo treatment using 16S rRNA
gene amplicon sequencing. A. Taxonomic composition of samples at
the family-level. B. PCoA of Aitchison distances for all samples (top
left panel), donor B samples compared to all the other samples (bottom
left), samples collected from before and after FMT or placebo treatment
(middle panels), and samples collected prior/post-FMT in responder (top
right) and non-responder (bottom right) patients. C. Comparison of ob-
served and Shannon, alpha diversity, metrics for samples collected from
patients prior and post FMT or placebo treatment, and donor B.D. Com-
parison of the commonly engrafted ASVs in ≥ three individuals across
non-responder (NoRes) and responder (Res) patients.
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Figure A2.2: Taxonomic and functional composition of samples col-
lected from 10 patients who received FMT from donor B and a patient
on placebo treatment using shotgun metagenomics. The UPGMA tree
of Bray-Curtis distances based on taxonomic composition (A) and mi-
crobial gene families (B). The colours of the inner line show samples
collected from patients prior and post FMT (light and dark green re-
spectively) or placebo (light and dark blue respectively) and donor B
(purple). The outer layer shows the taxonomic composition of samples at
the phylum-level (A) and the percentage of annotated gene families (B).
C. The PCoA of Aitchison distances based on the taxonomic composition
of assigned reads. Dotted lines connect samples collected at week 0 and
week 6 for each individual. D. The PcoA of Aitchison distances based
on the composition of known gene families in each sample. The number
of donor B’s species (E) and microbial gene families (F) engrafted in ≥
three patients post-FMT.
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Figure A2.3: Comparison of culture-enriched (CEMG) and direct
metagenomics (DMG) for a single donor B sample. A. The cumulative
lengths of assembled contigs for the contigs and MAGs. B. DMG and
CEMG coverage (percentage of MAG covered at least 1X) of the MAGs
(n=49) assembled via DMG. The top colour bar shows the taxonomy of
MAGs at the family-level. B. DMG and CEMG coverage of the MAGs
(n=49) assembled via DMG. C. CEMG and DMG coverage for the MAGs
(n=132) assembled via CEMG. D. Comparison of the genome size among
homologous assembled MAGs in CEMG and DMG.
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Figure A2.4: Tracking donor B MAGs after FMT. A. The genomic
coverage (percentage of 1X; D) and SNV frequencies (S) of donor B MAGs
(n=255) in samples collected from patients prior and post FMT or placebo
treatment. Non-responder, placebo, and responder patients are labelled
as N, P, R respectively. B. Commonly engrafted MAGs in ≥ three patient
post FMT.
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Figure A2.5: The commonly engrafted genes are strain-specific. A phy-
logeny of available strains in NCBI (RefSeq #) as well as Surrette lab
whole genome collection (Isolate #) constructed for Dorea sp. (A) and
Faecalibacterium sp. (B). The number of commonly engrafted genes iden-
tified in each genome are shown in A. Dorea sp. (n=95), B. Faecalibac-
terium sp. (n=99) phylogenies.
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Figure A2.6: The commonly engrafted genes are strain-specific. A phy-
logeny of available strains in NCBI (RefSeq #) as well as Surrette lab
whole genome collection (Isolate #) constructed for Blautia sp.. The
number of commonly engrafted genes identified in each genome are shown
in Blautia sp. (n=210) phylogeny. A clade of Fusicatenubacter saccha-
rivorans genomes that contains most of the commonly engrafted genes
identified in this collection using GTDB-Tk Chaumeil et al. 2019.
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Figure A2.7: The genomic coverage and variability of the commonly en-
grafted gene (CEGs) cluster as well as flanking regions in Fusicatenubacter
saccharivorans. Gene clusters are coloured based on their variability rel-
ative to stable microbial base positions stable in donor B samples. The
frequency of SNVs calculated in each gene cluster relative to donor B
samples and shown from less variable (green) to more variable (white) in
donor B and patient samples. For example, the genomic coverage and
SNV frequency of this 80 kbp region from patient 4, who responded to
FMT, became similar to donor B following FMT.
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Figure A2.8: The genomic coverage and variability of the commonly
engrafted gene (CEGs) cluster as well as flanking regions in Faecalibac-
terium prausnitzii. Gene clusters are coloured based on their variability
relative to stable microbial base positions stable in donor B samples. The
frequency of SNVs calculated in each gene cluster relative to donor B
samples and shown from less variable (green) to more variable (white)
in donor B and patient samples. For example, the identified commonly
engrafted genes in patient 4 accompany a variable right flanking region
following FMT.
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Figure A2.9: Building species-specific markers for A.D. longicatena,
B.F. prausnitzii, and C. F. saccharivorans. Gene clusters are aligned
across the pangenome, and 50 kb core-specific regions are selected as
markers for each species. Each row shows a single genome and the aligned
gene clusters in black. The gene clusters are shown in the x-axis for each
collection, and core-specific regions are labelled in different colours. The
red dotted line for each species shows the 50 kb marker.
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Figure A2.10: Validating the accuracy of strain- and species-specific
markers using a diverse collection of 1112 human gut bacterial whole-
genome sequences (WGS). Shotgun reads from each WGS were mapped to
both markers in each representative strain of commonly engrafted genes.
A. Comparison of strain-specific (CEGs) and species-specific (Conserved)
markers in two panels. Each dot shows a single WGS, and the y-axis shows
the percentage of 1X coverage. B. Comparison of strain-specific (CEGs)
and species-specific (Conserved) markers in a single plot.
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Figure A2.11: Tracking the representative strains of commonly en-
grafted genes in metagenomic samples using strain and species-specific
markers. The specificity of D. longicatena, F. prausnitzii, and F. sac-
charivorans representative strains compared across metagenomic samples
from this study (top row in each figure; 4 samples from donor B(n=1),
10 samples before FMT(n=10), and 10 samples following FMT (n=10)).
A. Comparison of a conserved (species-specific) vs. commonly engrafted
gene (strain-specific) cluster for each strain within each metagenomic
sample. Each dot represents one genome in a metagenomic sample.
B. The classified genomes from a metagenomic sample based on con-
served and commonly engrafted gene’s coverage percentage. Genomes
with CEG=commonly engrafted genes and conserved gene cluster cover-
age ≥ 80% (dark green) and those with conserved coverage ≥ 80% (light
green) in a metagenomic sample are labelled as B1 (strain-specific) and B2
(species-specific) respectively. The genomes with conserved region cover-
age < 80% are labelled as B3 (other species). rsCEGs= representative
strain of commonly engrafted genes from Figure 3.6. As we expected,
all the samples collected from donor B (n=4) contain the representative
strains (≥80% of both conserved and commonly engrafted gene mark-
ers. Samples from UC patients post-FMT showed increased percentage
of rsCEG strains compared to samples collected prior to FMT. D. long-
icatena, F. prausnitzii, and F. saccharivorans species that are present
in 30%, 90%, and 40% of patients respectively are replaced by donor B
strains post-FMT. While the percentage of species-level (other strain)
detection reduced post-FMT, the percentage of D. longicatena, F. praus-
nitzii, and F. saccharivorans representative strains increased to 50%, 30%,
and 60% respectively.
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