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LAY ABSTRACT 

Arterial stiffening both accompanies the normal aging process and can progress due to acquired 

health conditions. As arteries begin to stiffen the ability to buffer high pressure blood flow is 

impaired and can put microvasculature at risk of damage. Microvascular damage in the brain can 

disrupt blood and subsequent oxygen delivery to the brain. When delivery to the brain does not 

meet the metabolic demand, changes in brain structure brain can occur. Changes in brain structure 

are associated with impaired brain function, as well as potentially accelerating the progression of 

neurological diseases. What remains unclear is whether arterial stiffness impacts brain structure 

differently across regions or all regions homogenously. The purpose of this thesis was to examine 

the relationship between arterial stiffness and structural and functional changes in the brain over 

time (objective 1: 2-5 years; objective 2: 8-11 years). Our observations suggest that the progression 

of arterial stiffness had an effect that was equivalent to approximately 30% of the rate of grey 

matter tissue loss associated with normal healthy aging (~0.25% reduction in grey matter per year). 

We found no effect of changes in arterial stiffness on the progression of total grey matter volume, 

white matter lesions or brain function. We did observe a significant negative relationship between 

arterial stiffness at baseline and total grey matter volume 8-11 years later. We found no relationship 

between baseline arterial stiffness and brain structure or function 8–11-years post-baseline. Taken 

with the effects of normal aging, the loss of tissue in select brain regions associated with changes 

in arterial stiffness may result in grey matter reductions beyond the range associated with what is 

considered healthy or normal aging. The association of arterial stiffness and total grey matter 

volume 8-11 years later suggests that changes in whole brain structure are the product of long-

term exposure to arterial stiffness.  
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ABSTRACT 

While evidence suggests there is indeed a relationship between arterial stiffness and changes in 

brain structure and function cross-sectionally, the longitudinal relationship between arterial 

stiffness and changes in brain structure and function is unclear. Also unclear is whether a regional 

effect of arterial stiffness on brain structure exists, or if the effect is homogenous across brain 

regions. Using a healthy cohort of the UK Biobank study (N = 1858, mean±SD: 61 ± 7 years), we 

investigated the longitudinal association between changes in arterial stiffness index (ASI) and 

brain structure (grey matter cortical thickness, whole brain grey matter volume, white matter 

hyperintensity volume) and function (cognitive performance in 6 tests) over 2.5 ± 1 years. We also 

examined the association between baseline ASI and all structural and functional brain outcomes 

8-11 years post-baseline (N = 630). Prior to post-hoc correction, we observed a significant effect 

of changes in ASI over 2.5 ± 1 years on grey matter cortical thickness in 11 brain regions 

contributing to reductions between 0.0004-0.0024mm annually, but none of the 11 regions 

remained significant post-correction. Following correction there was also no effect of changes in 

ASI on whole brain grey matter volume (p = 0.76), white matter hyperintensity volume (p = 0.84), 

or cognitive performance in the domains of interest. Baseline ASI was not associated with regional 

grey matter cortical thickness, white matter hyperintensity volume, or cognitive function, but did 

have a significant negative association with whole brain grey matter volume 8.5 ± 1.05 (p = 0.015) 

years later and 11 ± 1.02 (p = 0.03) years later. Our findings suggest that taken with the effect of 

age, elevations in ASI may have an additive effect to accelerate changes in brain structure beyond 

the range that is to be expected as a part of normal aging. Our findings also suggest the relationship 

between ASI and reductions in whole brain grey matter volume may require long-term exposure 

to elevations in arterial stiffness in otherwise healthy older adults.
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Arterial Stiffness 

Arterial Structure   

Arteries have three primary layers of tissue: intima, media, and adventitia (Figure 1). All cells 

within the vasculature including endothelial cells of the intima, smooth muscle cells of the media, 

and fibroblasts of the adventitia, are sensitive to mechanical stimuli. The intrinsic cells within each 

layer typically seek to establish and maintain a preferred mechanical homeostatic state (or vascular 

tone) (Humphrey & Tellides, 2019). Many vascular conditions appear to arise with compromised 

or a loss of homeostasis. One pathophysiological consequence of disrupted vascular homeostasis, 

either via the process of normal aging or through disease pathways such as atherosclerosis, diabetes 

mellitus (Fjell et al., 2014; Ramanoël et al., 2018; Thambisetty et al., 2010), or obesity, is stiffening 

of the arterial wall. Arterial stiffening is an early-stage modification to the composition and 

function of the vascular system, and is the precursor to several pathological conditions including 

atherosclerosis (Fernandes et al., 2008), hypertension (Laurent et al., 2006), and various other 

cardiovascular diseases (Vlachopoulos et al., 2010). As a result, assessment of subclinical changes 

in the elastic properties of arteries are often used for risk stratification purposes (Pereira et al., 

2015). It is important to note that arterial stiffness is more common in central and conduit arteries 

such as the aorta, and less frequent in peripheral arteries (Zieman et al., 2005). Vessel stiffening 

typically develops from complex interactions involving structural and cellular factors (Lacolley et 

al., 2020).  
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Figure 1. Composite structure of elastic artery (Kohn et al., 2015). 

Structural factors contributing to arterial stiffness  

Structural properties of the vascular wall are largely dependent on the joint contributions of two 

primary scaffolding proteins within the extracellular matrix: elastin and collagen (Zieman et al., 

2005). The presence of elastin affords arteries the ability to distend during systole and recoil during 

diastole, which causes a dampening of high systolic pressures ejected from the heart prior to 

reaching distal arteries, microvasculature, and end-organs, while the presence of collagen provides 

strength and structure to prevent vessel failure or rupture when exposed to high systolic pressures 

(Cecelja & Chowienczyk, 2009; Messerli et al., 1985; Stakos et al., 2010; Wagenseil & Mecham, 

2012; Xu et al., 2000). Under normal conditions, the relative composition of these two proteins 

within the vasculature is held stable by a cyclical process of production and degradation via 

catabolic matrix metalloproteases (MMPs). These MMP’s allow for synthesis of new proteins 

within the extracellular matrix of the vessel by degrading collagen and elastin. As a product of 

both normal aging and disease such as diabetes or obesity, there may be a disruption of the balance 

between production and degradation via MMPs which may potentially result in an overabundance 

of collagen, and a degradation in elastin within the vessel wall (Wagenseil & Mecham, 2012). 

Elevations in arterial stiffness can also occur via advanced glycolytic end products (AGEs), which 
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act to form cross-links between long-lived proteins such as collagen. AGEs-linked collagen is 

stiffer, disorganized, and more resistant to MMP degradation, leading to accumulation of 

structurally and functionally inadequate collagen formations (Zieman et al., 2005). Shifting the 

balance of extracellular matrix composition in favour of collagen greatly contributes to arterial 

stiffness, as collagen fibres are ~100-1000 times stiffer than elastin fibres (Wagenseil & Mecham, 

2012). Disruption in the collagen and elastin production and degradation cycle may stem from 

vascular trauma leading to an increase of pro-inflammatory cytokines, growth factors, and vascular 

adhesion molecules (Zieman et al., 2005). Taken together, these structural changes contribute to 

the stiffening of the arterial wall (Zieman et al., 2005). Another factor contributing to increased 

collagen production is increased luminal pressure by way of chronic elevations in blood pressure 

(Xu et al., 2000). Increased collagen synthesis is related to elevated arterial stiffness in individuals 

with treated hypertension (Stakos et al., 2010).  

 

Cellular and neural factors contributing to arterial stiffness  

The two most prominent cellular factors influencing arterial stiffness are endothelial cell signalling 

and smooth muscle cell tone (Zieman et al., 2005). Endothelial function is largely defined by the 

vasodilatory response to stimuli, both mechanical (shear stress) and cellular (e.g., acetylcholine) 

(Ballermann et al., 1998; Wilson et al., 2016). In healthy vessels, the response to either mechanical 

or cellular stimuli triggers a cascade leading to increased nitric oxide production by endothelial 

cells, which subsequently leads to smooth muscle cell relaxation (vasodilation) (Ballermann et al., 

1998). Impairments in production of nitric oxide by endothelial cells are a hallmark of endothelial 

dysfunction and has been frequently associated with the progression of arterial stiffening and 

elevated risk of cardiovascular diseases (Hadi et al., 2005; Jadhav & Kadam, 2005; van Bussel et 
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al., 2011). Vascular smooth muscle cells are similarly responsive to both mechanostimulation 

(smooth muscle cell stretch), and hormonal factors such as angiotensin-II, endothelin-1, oxidative 

stress, and nitric oxide (Zieman et al., 2005).  

 

Additionally, there is a significant role of sympathetic nerve activity on vascular tone (Nardone et 

al., 2020). Evidence suggests that chronic elevations in sympathetic outflow may contribute to 

increased vascular remodelling by acting on the a-adrenergic receptors of vascular smooth muscle 

(Nardone et al., 2020). The relationship between elevations in sympathetic nerve activity and 

arterial stiffening across multiple indices including carotid intima media thickness, aortic wave 

reflection characteristics, pulse wave velocity, augmentation index, and arterial compliance has 

been reported frequently in the literature (Holwerda, Luehrs, DuBose, Collins, et al., 2019; 

Holwerda, Luehrs, DuBose, Majee, et al., 2019; Millar et al., 2019; Nardone et al., 2020; 

Swierblewska et al., 2010; Tanaka et al., 2017). The dynamic interplay between mechanical, 

cellular, and neural factors contribute to regulate vascular smooth muscle tone, and in healthy 

vessels allow for vasoconstriction and vasodilation to regulate blood flow to match metabolic 

demand at rest and during physiological challenges.  

 

Atherosclerotic stiffening 

In addition to the factors intrinsic to the vessel and age-related vascular stiffening, disease states 

and vascular injury are also strongly associated with the progression of arterial stiffness. 

Atherosclerosis is a chronic vascular condition that leads to vessel stiffening via build-up of 

plaques on the arterial wall (Bergheanu et al., 2017). While many risk factors may contribute to 
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the build-up of arterial plaques including hypertension, smoking, and hyperglycemia, 

hypercholesterolemia is believed to be one of the most potent triggers for the development of 

atherosclerosis (Bergheanu et al., 2017). Description of the full process behind the development 

of atherosclerotic vascular stiffening is beyond the scope of this literature review but has been 

described elegantly by several (Bentzon et al., 2014; Bergheanu et al., 2017; Moore & Tabas, 2011; 

Rafieian-Kopaei et al., 2014). 

 

Measurement of Arterial Stiffness 

Regional pulse wave velocity (PWV)  

The current gold standard measurement approach for the assessment of arterial stiffness is pulse 

wave velocity (PWV). This measurement technique provides essential information about the state 

of the systemic arterial system. PWV is defined as the velocity at which systolic pressure waves 

propagate along the arterial tree (Pereira et al., 2015). As previously mentioned, when functioning 

optimally, arteries are capable of distending during systole and recoil during diastole, allowing 

elastic arteries to act as a buffer, preventing high pressure waves from reaching distal 

microvasculature or end-organs (Belz, 1995). Higher values of PWV correspond to lower 

distensibility and compliance of the vessel, and therefore, is an indication of stiffer vessels. 

Regional PWV is a widely accepted approach for the quantification of arterial stiffness and is 

assessed by measuring the propagation time of systolic pulse waves to travel between two 

measurement sites. The most frequently used arterial segment when measuring regional PWV is 

the segment between the carotid and the femoral arteries (Millasseau et al., 2005; Pereira et al., 

2015). It is important to note that the measure of carotid-femoral PWV (cfPWV) presents with 

limitations, as it is an averaged value of PWV over the length of the segment between each vessel, 
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that may or may not account for potential differences in the mechanical and elastic properties of 

the two arteries (Pereira et al., 2015). In addition, because cfPWV is an averaged value, potential 

variations in arterial properties between the two measurement sites can go undetected (Darwich et 

al., 2015). At early stages of age-related vascular stiffening or atherosclerosis, fibrous spots 

contributing to the stiffening of the arterial wall are not uniformly distributed, and as such using a 

measure such as cfPWV is unable to provide any information about specific areas of stiffness or 

abnormalities (Darwich et al., 2015). Additionally, although the length of the arterial segment 

between each site is measured, the curvatures or irregularities within the arterial segment are not 

considered and could serve as a contributing factor leading to inaccurate estimation of PWV. 

Measurement of cfPWV can also be greatly influenced and confounded by the presence of 

abdominal obesity, which can influence and skew the measurement of the distance between each 

measurement site (Equation 1) (Calabia et al., 2011; Pereira et al., 2015).  

 

PWV = D (meters)/Dt (seconds)    Equation 1. 

D is the distance between measurement point 1 and measurement point 2, and Dt is the transit or 

propagation time (i.e., the time required for the foot of the pressure wave to travel the full distance 

of the segment). 

 

The devices most frequently used to measure regional PWV include the PulsePen® (DiaTecne, 

Milan, Italy), Complior® (Colson, France), and SphygmoCor® (AtCor Medical, Sydney, Australia) 

(Rajzer et al., 2008; Salvi et al., 2004). All three of the devices are approaches that rely on the use 

of tonometry-based techniques (Pereira et al., 2015). The PulsePen® is a device composed of one 
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tonometer and an integrated ECG unit. Typically, to quantify cfPWV, two PulsePen® units are 

required, one at each measurement site. The delay between systolic pulse waves is determined by 

applanation tonometry obtained at each measurement site, and is then synchronized with the ECG 

signal (Salvi et al., 2004). The Complior® uses two pressure mechanotransducers directly applied 

to the surface of the skin at two measurement sites. In comparison to the PulsePen®, the Complior® 

does not include an integrated ECG unit (Rajzer et al., 2008). SphygmoCor® analyzes the pulse 

wave at two measurement sites, simultaneously estimating the delay in pulse wave propagation 

between the proximal and distal measurement sites with respect to the ECG wave, via integrated 

ECG unit, to calculate PWV (Rajzer et al., 2008). While measuring the same construct, the values 

derived from each device differ to varying degrees. For example, in a comparative study of these 

devices, PWV derived from the Complior® was a mean 1.4m/s higher than SphygmoCor® derived 

PWV (Rajzer et al., 2008). Despite being the gold standard approach for measurement of PWV, 

tonometry is highly dependent on operator skill, meaning that inter-user reliability may confound 

measurements (Laurent et al., 2006). As a result, sufficient training is required for operators of 

tonometry-based techniques used in both research and clinical settings for PWV assessment.  
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Table 1. Distribution of pulse wave velocity (PWV) values (m/s) in the reference value population 
(N=11,092) according to age and blood pressure category (The Reference Values for Arterial 
Stiffness’ Collaboration, 2010). Age category is reported in years, PWV reference ranges are 
reported as means and 95% CI.  

 

Local pulse wave velocity  

Local PWV differs from regional PWV as it measures the systolic pulse wave at a single 

measurement site. By measuring PWV at a single arterial segment, typically the aorta or the carotid 

arteries, the local approach to measurement of PWV avoids the previously mentioned limitations 

of regional PWV such as different mechanical properties of arterial segments, curvatures in the 

arterial segment between the measurement sites, and measurement errors associated with 

abdominal obesity (Pereira et al., 2015). Understanding and considering the heterogeneity between 

stiffness states and mechanical properties of segments along the entire arterial system can provide 

more nuanced insight into what is happening at the point of measurement. Local PWV is typically 

measured via two primary non-invasive approaches; Phase-contrast (PC) MRI and Doppler 

ultrasound (Pereira et al., 2015). PC-MRI assessment of local PWV is an accurate assessment 

approach as it provides both high temporal and spatial resolution (Pereira et al., 2015). PC-MRI 

allows the direct imaging of the thoracic and abdominal aorta without operating under any 

 Blood Pressure Category 

Age  Optimal Normal Pre-HT Grade I HT Grade II HT 

<30 6.1 (4.6–7.5) 6.6 (4.9–8.2) 6.8 (5.1–8.5)  7.4 (4.6–10.1)  7.7 (4.4–11.0) 

30-39 6.6 (4.4–8.9) 6.8 (4.2–9.4)  7.1 (4.5–9.7) 7.3 (4.0–10.7) 8.2 (3.3–13.0) 

40-49 7.0 (4.5–9.6) 7.5 (5.1–10.0) 7.9 (5.2–10.7)  8.6 (5.1–12.0) 9.8 (3.8–15.7)  

50-59 7.6 (4.8–10.5) 8.4 (5.1–11.7)  8.8 (4.8–12.8)  9.6 (4.9–14.3)  10.5 (4.1-16.8) 

60-69 9.1 (5.2–12.9)  9.7 (5.7–13.6)  10.3 (5.5–15.1)  11.1 (6.1–16.2)  12.2 (5.7–18.6)  

>70 10.4 (5.2-15.6)  10.4 (5.2–15.6)  11.8 (5.7–17.9)  12.9 (6.9–18.9)  14.0 (7.4–20.6)  
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anatomical assumptions (i.e., lack of curvature along the arterial segment). This direct 

measurement of the path length of the systolic pressure wave makes the use of PC-MRI 

measurement approaches a useful technique for the assessment of arterial stiffness compared to 

tonometry and ultrasound based-techniques (Joly et al., 2009; Pereira et al., 2015). There are 

multiple approaches to assessing arterial stiffness via ultrasound. One Doppler ultrasound 

technique for the assessment of local PWV estimates the time delay (pulse wave transit time) 

between vessel distension at two close positions along the length of the same arterial segment of 

interest (Calabia et al., 2011; Pereira et al., 2015). Another Doppler ultrasound-based approach 

estimates local PWV by calculating the ratio between change in blood velocity and change in 

vessel cross-sectional area over the duration of one cardiac cycle (Pereira et al., 2015; Rabben et 

al., 2004). Using ultrasound-based approaches for the assessment of PWV is highly user-

dependent, and as such require significant training for reliable measurements (Calabia et al., 2011; 

Pereira et al., 2015). While regional PWV is accepted as the ‘gold standard’ methodological 

approach for the measurement of arterial stiffness, local PWV may be the more clinically insightful 

and relevant method. This is especially true in clinically relevant cases such as early-stage arterial 

stiffening, where homogeneity of vascular stiffening or mechanical properties of the vessel cannot 

be assumed confidently (Laurent et al., 2006). 

 

Arterial stiffness index (ASI)  

The previously highlighted techniques for the assessment of arterial stiffness all come with the 

caveat of requiring skilled technicians to complete these assessments, as well as the cost and 

accessibility of equipment (pressure transducers, ultrasound, MRI), which may pose a barrier to 

data collection (S. R. Alty et al., 2007). One suggested alternative and potentially more widely 
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applicable technique for the estimation of arterial stiffness is the contour of the digital volume 

pulse (DVP) (S. R. Alty et al., 2007). The DVP is created by two components: the pressure 

transmitted from the left ventricle directly to the finger, and the transmission of the pressure from 

the left ventricle to the lower body, and reflected back via the aorta (Fung et al., 2019).  

 

Figure 2. Estimation of arterial stiffness via  digital volume pulse (DVP) (Millasseau et al., 2002)  

The DVP waveform can be quickly and efficiently acquired by using photoplethysmography at the 

tip of the finger, an approach that measures the absorption of infrared light at the point of 

measurement to quantify volumetric variations of blood flow (Castaneda et al., 2018). Though this 

approach can be confounded by factors such as temperature and perfusion of the hand, the DVP 

contour is mainly determined by characteristics of the heart and large arteries (S. R. Alty et al., 

2007). Arterial stiffness index (ASI) is a non-invasive, photoplethysmography derived index 

measure of vascular stiffness shown to be correlated with cfPWV (r = 0.65, Millasseau et al., 2002) 

(r = 0.58, Woodman et al., 2005). Much like the values derived from all PWV measures, higher 
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ASI values reflect stiffer arterial walls, characterized by faster arrival of the reflected waveform 

(Fung et al., 2019). ASI is a simple, fast, and inexpensive approach requiring minimal user training, 

making it favourable for large scale studies (Millasseau et al., 2002). Measurement of ASI via 

finger photoplethysmography obtains the systolic pulse waveform during a 10‐ to 15‐second 

measurement. The shape of the waveform is directly related to the time it takes for the pulse wave 

to travel through the arterial tree in the lower body, and to be reflected to the finger (Millasseau et 

al., 2002). In other words, ASI is characterized as the time interval between the peaks of the direct 

and reflected components of the DVP contour, divided by the individual’s height (Fung et al., 

2019). Estimation of arterial stiffness via ASI is illustrated in Figure 2, where h represents the 

height of the subject, and DT represents the temporal difference between the arrival of the direct 

and reflected components of the DVP contour (Millasseau et al., 2002). While ASI is not the gold 

standard measurement technique for the assessment of arterial stiffness, it has been demonstrated 

to be a simple, quick, cost effective, and easily reproducible alternative requiring little-to-no 

training allowing for the estimation of arterial stiffness. Additionally, ASI has been shown to be 

an independent predictor of cardiovascular disease, myocardial infarction, and all-cause mortality 

in a 169,613 subject subsample of the United Kingdom (UK) Biobank cohort (Said et al., 2018). 

ASI also allows for data collection in a seated position, rather than a supine position as required 

by many of the other approaches for the measurement of PWV, further contributing to the 

convenience of this approach (Fung et al., 2019). For all these reasons, ASI is favourable for large 

scale population-based studies spanning multiple assessment centers, as it is easily accessible, 

requires little training, and reduces inter-user variability during the measurement process 

(Millasseau et al., 2002).  
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FreeSurfer Image Processing Pipeline 

FreeSurfer is a freely available set of software tools used for the automated processing and study 

of cortical and subcortical anatomy 

(https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferAnalysisPipelineOverview). FreeSurfer 

conducts analysis on brain MR images by reconstructing a 3D input image into a 2D surface based 

representation of the brain (Fischl & Dale, 2000). The use of surface-based representations for 

analysis of brain MRI is advantageous over volume based approaches as it provides several 

different morphological phenotypes including volumes, cortical thicknesses, surface area, and 

curvature compared to volume alone (Fischl & Dale, 2000). FreeSurfer requires several steps to 

reconstruct the 3D MR image into a 2D surface representation (Dale et al., 1999). The first step is 

a non-linear registration to a standard space atlas. Following registration, the bias field of the input 

image is estimated by measuring the variation of voxel intensities in the cerebral white matter. 

Each voxel intensity is divided by the bias field value to remove the effects of the field. Following 

bias field correction, the skull is then stripped to remove all non-brain tissues in the image. Once 

non-brain tissues have been removed from the image, the FreeSurfer tool automatically classifies 

tissues in the image as either white matter or non-white matter based on intensity values and 

neighbouring voxel intensity values. An initial surface is then generated by following the outline 

of the defined white matter boundary, which is defined as the orig.mgz surface 

(https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all). This initial surface is further refined by 

determining and following the intensity gradients between the white and grey matter labelled the 

white surface or white.mgz (https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all). When the white 

matter boundary is established, the boundary is expanded outwards towards the outer boundary of 

the grey matter, which is labelled as the pial surface, or pial.mgz by Freesurfer 

(https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all). The difference between the white surface 
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and the pial surface is used to estimate the measure of grey matter cortical thickness (Fischl & 

Dale, 2000). Once each tissue type has been classified, the surface of each hemisphere is 

individually inflated into a smooth ‘boxing glove’ shaped representation while still maintaining all 

the morphological characteristics including cortical folding, gyri, and sulci of the cortical surface. 

The initial inflated surface is then further inflated into a spherical representation, further 

facilitating inter-subject registration with the FreeSurfer standard space template sphere 

FSaverage (https://surfer.nmr.mgh.harvard.edu/fswiki/FsAverage) along two dimensions (latitude 

and longitude). Once registered to FSaverage, the spherical surface representation is parcellated 

according to a standardized atlas, and in the case of the present study was parcellated according to 

the Desikan-Killiany atlas, which are then mapped back onto the individual surface reconstruction, 

providing image derived phenotypes (IDPs) for 34 bilateral (68 total) cortical regions 

(https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation).  

 

UK Biobank Magnetic Resonance Image Data Collection and Processing 

T1 MRI   

The full UK biobank T1 brain MRI processing pipeline is described in detail in the work from 

Alfaro-Almagro et al (Alfaro-Almagro et al., 2018) and supplementary materials provided by the 

UK Biobank data showcase (https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/brain_mri.pdf). In 

summary, the raw MR images enter the pipeline and are preprocessed by conducting bias field 

correction and defacing to protect the anonymity of the UK biobank participants. From this point, 

the field of view (FoV) is cut down to reduce the amount of non-brain tissue present in the image. 

Primarily, the portion of the image that is removed includes the space above the head, and any 

tissues below the brain such as the neck. Additionally, all images fed through the UK Biobank 
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brain MRI processing pipeline are anonymized or ‘defaced’ automatically by masking out voxels 

in the face and ear regions without loss of brain voxel resolution. After the FoV is cut down, the 

gradient distortion correction is applied. These preliminary steps result in a reduced FoV T1 brain 

MR image. The image is then non-linearly warped to a standard space T1 template 

(http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin6). A standard-space brain mask is 

then back-transformed into the T1 space and applied to the reduced-FoV T1 image to generate a 

brain-extracted T1 image. Following the creation of the brain-extracted T1-image, tissue-specific 

segmentation is applied using an automated segmentation tool developed by Zhang and colleagues 

(Zhang et al., 2001). Using the automated segmentation tool, tissues can then be classified as one 

of the following: cerebrospinal fluid, brain grey matter, and white matter, as well as partial volume 

images for each tissue type. This image processing step is also used to generate a fully bias-field-

corrected version of the brain-extracted T1 image. The external surface of the skull on the newly 

generated fully bias-field-corrected brain-extracted T1image is then estimated from the original 

T1 image and used to normalize brain tissue volumes to total head size. Both normalized and non-

normalized volumes of different tissue types and total brain volume are generated as IDPs and are 

accessible from the UK Biobank database 

(https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100). The automated segmentation tool 

developed by Zhang and colleagues is also used to generate 139 grey matter IDPs. This is done by 

summing the partial grey matter volume estimates within 139 regions of interest, both cortical and 

subcortical. These regions of interest are defined in the standard space T1 template and combine 

parcellations from several atlases (the Harvard- Oxford cortical and subcortical atlases 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases and the Diedrichsen cerebellar atlas 

(https://www.diedrichsenlab.org/imaging/atlasPackage.htm). The previously estimated warp field 
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is then applied to the regions of interest to generate a version of the regions in native space, for 

masking onto the segmented T1 image. Both shapes and volumes of subcortical structures are 

modelled using an integrated registration and segmentation tool (Patenaude et al., 2011). Shapes 

and volumes are for 15 different subcortical structures are stored in a subfolder, and a single 

summary image with a unique integer value for each structure is saved within the folder. The 

respective volumes of each individual subcortical structure are saved as IDPs in the UK Biobank 

database.  

 

As part of the UK Biobank image processing pipeline T1 images are also processed using the 

freely available segmentation software FreeSurfer (https://surfer.nmr.mgh.harvard.edu). 

FreeSurfer is a tool developed at Harvard university, and is used to model the cortical surface 

anatomy, relying on surface atlases to map different neuroanatomical IDPs according to the atlas 

regional surface areas, volumes, and mean cortical thickness (Desikan et al., 2006; Fischl et al., 

2002). FreeSurfer also provides the ability to extract subcortical regions according to the selected 

standard atlas, resulting in additional IDPs. “Grey-white” contrast cortical region IDPs are also 

created and represent the contrast between white (W) and grey (G) matter pixel intensities and 

expressed by the following equation (W-G)/((W+G)/2) (Alfaro-Almagro et al., 2018). Following 

FreeSurfer modelling, outputs are then manually quality control checked using a supervised 

random forest based machine learning approach to automatically identify problematic images 

based on a comprehensive range of imaging derived metrics including measures of asymmetry, 

normalized intensity per subcortical structure, and matrices to detect alignment that can classify 

images as usable or unusable for analysis. The full scope of the machine learning algorithm 

developed by Klapwijk and colleagues is described elsewhere (Klapwijk et al., 2019). Any 



M.Sc. Thesis – E.Y. Allison; McMaster University - Kinesiology                     17 

 

 

 

 

 

FreeSurfer outputs that fail the quality check are not included in the final FreeSurfer IDPs folder 

of the UK Biobank dataset. Where available, T2-FLAIR images can be used alongside T1 images 

to achieve a more accurate model of the cortical surface compared to T1 images alone. For some 

derived measures such as regional cortical thicknesses, there is a clear bias in the estimation of 

regional thicknesses when using both T2-FLAIR and T1 vs. T1 alone. It is recommended by the 

developers of the UK Biobank image processing pipeline to use both T1 and T2-FLAIR inputs 

(Alfaro-Almagro et al., 2018).  

 

T2-FLAIR MRI  

The full T2-FLAIR image processing pipeline is similar to the T1 pipeline, with some key 

differences. As done in the T1 image, the original T2-FLAIR image is first corrected for gradient 

distortion, after which a linear registration using an automated image registration tool is applied to 

transform the gradient corrected T2-FLAIR image into the corrected standard space T1 template. 

Following the transformation of the T2-FLAIR image into the T1 space, T1 brain and defacing 

masks are applied to preserve anonymity. The final difference in the T2-FLAIR image processing 

pipeline is the correction of residual bias field inhomogeneities using the values derived from the 

automated segmentation of the T1 image. The total volume of white matter hyperintensities is 

estimated to generate a final IDP. The lesion segmentation is automatically conducted using a tool 

developed by Griffanti and colleagues (Alfaro-Almagro et al., 2018; Griffanti et al., 2016).  

 



M.Sc. Thesis – E.Y. Allison; McMaster University - Kinesiology                     18 

 

 

 

 

 

Arterial Stiffness, Pulsatility, and the Brain 

In healthy vessels, central elastic arteries expand and recoil within each cardiac cycle to effectively 

dampen high pressure pulsatile flow ejected from the heart, which acts to protect less elastic distal 

arteries, microvasculature, and end-organs (Tarumi et al., 2014). Windkessel function is 

characterized by the innate ability of elastic arteries to expand and recoil in response to high 

pressure systolic flow. Aging or pathology associated with stiffening of the vascular wall may lead 

to impairments in Windkessel function, resulting in augmented pulsatility of blood flow, and in 

turn leading to an increased risk of microvascular and end-organ damage (Tarumi et al., 2014). 

This is especially true in the context of cerebral hemodynamics. High pulsatile flow reaching and 

potentially damaging micro vessels within the cerebral circulation has been identified as an 

independent risk factor for the development of cerebrovascular disease (Scuteri et al., 2011). A 

hallmark of cerebrovascular disease is the chronic disruptions or attenuation in perfusion to 

cerebral tissues (Alosco et al., 2014).  

 

Hypoperfusion of neural tissue has been linked to structural changes in neural tissue integrity such 

as grey matter (GM) atrophy (Alosco et al., 2014) and white matter hyperintensities (WMH) 

(Gupta et al., 2012). Recent cross-sectional work conducted as a part of the Framingham Heart 

Study demonstrated that aortic stiffness as measured by cfPWV was associated with reduced total 

brain volume, elevations in WMH volume, and significant impairments in cognitive performance 

related to cerebrovascular dysfunction in older adults (Tsao et al., 2013). They also observed that 

for each SD increase in cfPWV, there was a reduction in total brain volume equivalent to 1.2 years 

of aging (Tsao et al., 2013). The AGES study from Mitchell et al., showed a similar relationship, 

highlighting an association between elevated arterial stiffness and cerebrovascular dysfunction, 
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leading to greater WMH volume and significant reductions in cognitive performance, while 

elevations in pulsatility index (PI) was related to reductions in both white matter volume and GM 

volume (Mitchell et al., 2011). Findings across the literature are consistent, and systematic reviews 

and meta-analyses have corroborated the relationship between arterial stiffness (measured via 

cfPWV) and cerebrovascular disease (van Sloten et al., 2015). Both reductions in GM volume and 

elevated WMH volume are of great clinical relevance, as structural changes in brain tissue beyond 

the rate expected in normal aging is linked to impaired neurological function including deficits 

across multiple cognitive domains, as well as increasing the risk for the progression of 

neurodegenerative disorders such as vascular dementia, Parkinson’s disease, and Alzheimer’s 

disease (Arvanitakis et al., 2016; Pasha et al., 2015; Soriano-Raya et al., 2012). Beyond changes 

in neurological function and health, cerebrovascular disease also dramatically increases the risk of 

adverse cerebrovascular outcomes such as stroke or cerebrovascular accident (Gupta et al., 2012).  

 

Cortical grey matter (GM) in healthy aging  

When considering the structure of the grey matter tissue in the brain, there are three main indices 

that are used to describe grey matter structure: 1) cortical surface area, 2) cortical thickness, and 

3) grey matter volume (GMV) (Winkler et al., 2010). Evidence suggests that measures of cortical 

surface area and cortical thickness are genetically and phenotypically independent, and GMV is a 

function of the two independent indices, while more heavily influenced by cortical surface area 

(Panizzon et al., 2009; Winkler et al., 2010). Acquired from T1-weighted MRI, GM cortical 

thickness is measured by the distance between the outer surface of the cerebral white matter and 

the inner surface of the pia mater. GM cortical thickness seems to be a more robust measure than 

volumetric measures for detection of differences between functionally healthy and pathological 
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brains, including cognitive impairment and neurodegenerative conditions including Parkinson’s 

disease (Winkler et al., 2010). Work from Hutton and colleagues involved a comparative analysis 

between thickness and volumetric based measures of grey matter atrophy and determined that 

thickness was indeed believed to be a more sensitive measure of age-related decline in grey matter 

(Hutton et al., 2009). The greater sensitivity of cortical thickness measures in comparison to GMV 

is likely due to the reliance of GMV on cortical surface area, and therefore is prone to being 

confounded by cortical folding (Hutton et al., 2009).  

 

Changes in brain structure, and specifically atrophy of grey matter is expected with normal aging. 

A gradual reduction of ~0.02-0.06mm per decade in GM cortical thickness is believed to be a 

normal part of the aging process; whereas GM cortical thinning exceeding 0.06mm per decade 

may be considered indicative of pathology (Thambisetty et al., 2010). Whole-brain atrophy rate as 

measured by GMV is believed to be within a range of 0.2-0.7% reduction per year (Enzinger et 

al., 2005; Scahill et al., 2003; Sluimer et al., 2008). In a study investigating both GMV and cortical 

thickness, Hutton et al., determined that there was an age-related global decline in whole brain 

GMV of approximately 2.6mL per year, and an age-related global decline in mean cortical 

thickness of 0.0086mm per year in 48 otherwise healthy subjects (age range: 20-60 years) (Hutton 

et al., 2009). These values of age-related reductions in grey matter are variable across the literature, 

with work from Lemaitre et al., reporting an age-related reduction of 3.68mL and 0.004mm in 

GMV and mean cortical thickness per year, respectively in 216 healthy subjects aged 18-87 

(Lemaitre et al., 2012). Findings from Thambisetty et al., support the findings from Lemaitre, and 

also reported an approximate 0.004mm reduction in mean cortical thickness per year (reported as 

~0.4mm reduction per decade) in 66 older adults with no evidence of neuropathology (Thambisetty 
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et al., 2010). Quantitative analyses based solely on volumetric representations of the brain are still 

common across the literature, despite belief that analysis of surface area and thickness 

independently are the more comprehensive approach. Volumetric approaches such as voxel-based 

morphometry (VBM) classify voxels according to different tissue types (grey and white matter, 

cerebrospinal fluid). Due to GMV being a function of two independent indices, there is likely 

information to be derived from cortical surface area and cortical thickness measures that is not 

captured with GMV (Winkler et al., 2010). Furthermore, because GMV is the function of two 

independent indices, it can complicate interpretation of volumetric based findings (Fjell et al., 

2014). Volumetric approaches still quantify the volume of grey matter per voxel, and provide a 

fast, straightforward approach for the analysis of brain structure that still allows for comparisons 

across subjects despite variability in head and brain size, as volumetric indices are typically 

normalized to head size (Winkler et al., 2010).  

 

Atrophy of grey matter tissues in the brain is not homogenous across different regions of the brain 

or between measurement approaches of grey matter, and as such a measure such as whole brain 

GMV or global mean cortical thickness is an oversimplification of the atrophic patterns likely 

occurring as either a part of normal aging or as a consequence of pathology (Ramanoël et al., 

2018). A review from Fjell et al., suggests that the most drastic age-related reductions in grey 

matter occurred in the frontal and temporal lobes, independent of any evidence of pathology (Fjell 

et al., 2014). Other more recent cross-sectional work corroborated these findings, identifying that 

when comparing healthy middle aged adults (aged 40 ± 8) to older adults (aged 70 ± 6.5), older 

age was associated with significantly smaller bilateral GMV in the frontal and temporal regions, 

while also detecting significant age related reductions in the parietal and occipital regions 
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(Ramanoël et al., 2018). The work from Thambisetty and colleagues also reported an “anterior-

posterior gradient” for the structural change in grey matter over the decade long study, with frontal 

and parietal regions exhibiting the greatest rates of reduction in cortical thickness (Thambisetty et 

al., 2010). This finding supports the “last in, first out” hypothesis, suggesting that more advanced 

and late maturing brain regions responsible for higher level cognitive tasks are the most vulnerable 

to age related changes in structure (Fjell et al., 2014). The anterior-posterior gradient in 

vulnerability to aging is supported by evidence of age-related declines in cognitive performance 

across several domains including processing speed and working memory, both of which depend 

on the integrity of the prefrontal cortex (Lemaitre et al., 2012). Hutton and colleagues also reported 

the most sensitive cortical regions to age-related declines in grey matter that included the 

prefrontal, orbitofrontal, and temporal regions, as well as the insula, cingulate and precentral sulci, 

which is agreement with much of the literature (Hutton et al., 2009; Lemaitre et al., 2012). As 

previously mentioned, certain cortical regions present with more pronounced reductions in grey 

matter than others, and as such a metric of whole brain GMV atrophy or global mean cortical 

thickness, while valuable, is an incomplete representation of age-related reductions in brain 

volume. Taken together, the evidence points to a clear anterior bias concerning age related declines 

in cortical grey matter. Another key takeaway is that likely the best and most comprehensive 

approach to quantifying changes in grey matter is to use both thickness and surface area indices 

independently, as opposed to volumetric measures; however thickness-based approaches provide 

greater sensitivity for differentiating between functionally healthy and pathological brains when 

compared to surface-based or volume-based approaches alone (Winkler et al., 2010).  
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White matter hyperintensities (WMH) in healthy aging  

As previously mentioned, a consequence of cerebrovascular dysfunction or cerebral small vessel 

disease is hypoperfusion of neural tissues. With hypoperfusion, structural changes in the brain can 

be detected via MRI. One of the most frequently detected changes in brain structure with MRI is 

the presence of white matter hyperintensities (WMH). WMH are lesions found deep in cerebral 

white matter, and correspond to areas of diminished white matter density. WMH are identified as 

‘bright spots’ on T2-FLAIR images indicating damage, or lesions to cerebral white matter 

(Ramanoël et al., 2018). These lesions within the white matter are typically believed to be of 

vascular origin, as lesions are typically detected near cerebral microvasculature exhibiting signs 

of cerebrovascular disease (Chutinet & Rost, 2014; Debette & Markus, 2010). Certain subjective 

visual rating scales exist for the assessment of WMH severity, such as the Fazekas scale, and the 

Scheltens scale (Chutinet & Rost, 2014). Both scales take into consideration location, size, and 

number of hyperintense regions within the white matter. While these visual rating measures may 

be applicable for clinical diagnosis and regularly used by neuroradiologists, the issue remains that 

these assessments are subjective in nature when it comes to assessing lesion burden severity. In 

comparison to the visual rating scales, volumetric methods provide more accurate and reliable 

measures of WMH severity. Volumetric assessments of WMH are more sensitive than subjective 

visual scores in detecting memory symptoms, risk of stroke, onset of dementia, stroke severity, 

and other functional disabilities (Chutinet & Rost, 2014). Evidence suggests that in older adults, 

WMH volumes is variable across the literature, with any value between 1-14mL considered as 

normal, as these ranges have been observed over time in the literature in healthy older-adult models 

(60-85 years at baseline) (Garde et al., 2005; Kramer et al., 2007; Raz et al., 2012; Silbert et al., 

2008; Wolfson et al., 2013). An increase of ~0-0.8mL per year in WMH even in healthy individuals 

is to be expected, with one study by Garde and colleagues observing an average 1.3mL increase 
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per year in WMH in otherwise healthy Danish older adults (80-85 years of age) (Ramirez et al., 

2016; Garde et al., 2005; Kramer et al., 2007; Raz et al., 2012; Silbert et al., 2008; Wolfson et al., 

2013). Despite the presence of WMH being a part of normal aging, evidence suggests that 

increases in WMH volume beyond 0.8mL per year (Ramirez et al., 2016) may be associated with 

greater cognitive impairment across domains of verbal IQ, memory, and executive function, as 

well as placing those with elevated WMH burden at greater risk for neurodegenerative diseases 

such as vascular dementia (Chutinet & Rost, 2014; Garde et al., 2005; Kramer et al., 2007; Schmidt 

et al., 2005; Silbert et al., 2009).  

 

Cognitive Function 

Digit symbol substitution test (DSST) 

The digit symbol substitution test (DSST) is a neuropsychological testing tool primarily used by 

researchers seeking to understand and assess human associative learning, but is also considered to 

be a measure of complex attention (Jaeger, 2018). The DSST has become a staple in 

neuropsychological testing due to its sensitivity in the determination of the presence or brain 

damage, as well as its sensitivity to changes in cognitive function (Jaeger, 2018). The test requires 

subjects to match symbols to numbers according to a key or legend typically located at the top of 

the page. The number of correct matches made by the subject within the allotted time (typically 

90-120 seconds) determines their DSST score. To avoid training effects, the symbol-digit pairings 

differ with each test attempt. The DSST is frequently used by researchers largely due to its efficacy 

in the assessment of a wide range of cognitive operations (Jaeger, 2018). High scoring on the DSST 

requires motor speed, attention, and visuoperceptual functions. Performance is believed to also be 

influenced by associative learning (Jaeger, 2018). In addition, the ability or decision to engage in 
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learning strategies during the test to improve performance calls for executive functions of planning 

and strategizing (Jaeger, 2018). The notion that DSST called on sub-domains of executive function 

was supported by Beres and Baron, by measuring the effect of active training on DSST 

performance (Beres & Baron, 1981). The study observed that improvement in DSST performance 

occurred with repeated exposure and speculated that this was largely in part due to the executive 

function of strategizing or the exertion of effort to learn the pairings with each attempt (as pairings 

cannot be memorized) contributes to improved performance. Additionally, working memory, 

another sub-domain of executive function, is also believed to be required to hold in mind the rules 

of the DSST and for the continual updating of the symbol-digit pairings (Jaeger, 2018). For these 

reasons, the consensus is that the DSST is polyfactorial cognitive test, and impairments in any one 

of the mentioned cognitive domains is believed to result in a decline in performance (Jaeger, 2018). 

DSST responses have been described in textbooks to be the “end product of the integration of 

visual perceptual, oculomotor, fine manual motor, and mental functions” (Walsh, 1978). While the 

DSST is a polyfactorial test, and multiple domains influence DSST performance, one drawback is 

the lack of specificity in the determination of which domain is impaired. This inability to precisely 

determine which domain is being affected makes interpretation of DSST performance difficult and 

limits its use as a diagnostic tool for specific cognitive domain performance. That said, sensitivity 

of the DSST to brain damage, cognitive dysfunction, as well as changes in cognitive function 

across a wide range of clinical populations makes it a practical and effective approach for the 

assessment of global cognitive performance and the overall condition of the brain when cognitive 

battery is not feasible or available.  
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Trail making test A (TmA) and B (TmB) 

Both the Trail Making Test part A (TmA) and part B (TmB) are neuropsychological tools used 

either in isolation or as part of cognitive battery for the detection of cognitive impairment in the 

domains of processing speed, sequencing, mental flexibility, and visuomotor skills (Bowie & 

Harvey, 2006). Performance on the trail making tests is considered to be a robust measure that 

correlates strongly with intelligence, and is a sensitive indicator of neurological impairment 

(Reitan & Wolfson, 2004; Steinberg et al., 2005; Waldmann et al., 1992). Certain evidence 

suggests that the trail making tests are also a sensitive measure for the detection of normal-age 

related declines in concentration, vigilance, and visuospatial ability that occur later in life (Bowie 

& Harvey, 2006).  

 

In the TmA, the subject being assessed uses a pencil to connect 25 encircled numbers in numerical 

order. The TmA is presumed to be a test of visual search and motor speed skills. In the TmB, the 

subject connects 25 encircled numbers and letters in numerical and alphabetical order, 

respectively, alternating between numbers and letters. The TmB is considered to be a test of higher 

level cognitive skills such as mental flexibility (Bowie & Harvey, 2006). The numbers and letters 

are placed in a semi-random fixed order as to avoid overlapping of the lines connecting each 

encircled number or letter. A subject’s performance is determined by the total time required for 

completion of both the part A and B. A higher time to completion of the two tests suggests greater 

cognitive impairment  (Bowie & Harvey, 2006). A cut-off time of ~300s is typically used as a 

marker to discontinue the test administration as such is treated as the maximum score for the trail 

making tests. A full detailed description of the protocols for both the TmA and TmB can be found 

in publication (Bowie & Harvey, 2006).  



M.Sc. Thesis – E.Y. Allison; McMaster University - Kinesiology                     27 

 

 

 

 

 

 

Fluid intelligence test 

The cognitive domain of fluid intelligence is characterized by one’s ability to reason, flexibly 

engage with the environment, recognize patterns, and solve problems with no prior experience or 

knowledge (Cochrane et al., 2019). Fluid intelligence is centered around the ability to solve 

problems that have not been encountered before, distinguishing it from the domain of crystallized 

intelligence, which is a measure of a subject’s respective body of knowledge and specialized 

problem-solving skills already acquired. Fluid intelligence is a particularly popular measure as it 

has been suggested to be a measure of high ecological interest, correlating strongly with both 

academic and occupational success (Gottfredson, 1997; Hunter, 1986; Neisser et al., 1996). 

Evidence suggests that fluid intelligence is also reduced with advancing age (Kaufman & Horn, 

1996). In the context of the UK Biobank, the Fluid Intelligence Test a 2-minute assessment in 

which subjects are required to answer as many questions as possible, and performance on the Fluid 

Intelligence Test is determined by the total number of correct answers within the allotted two 

minutes https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id=20016.  

 

Numeric memory 

The numeric memory test, sometimes referred to as the digit span test, is a salient assessment of 

working verbal memory. Working memory refers to the short term storage and manipulation of 

information required for complex tasks such as language comprehension, learning, and reasoning 

(Baddeley Alan, 1992). The numeric memory test assesses numeric memory capacity by 

presenting a subject with a two-digit number to remember. The number is taken away (i.e., 

disappears from the screen) and after a short period the subject is asked to recall the two-digit 
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number presented. Following each correct recall, one digit is added to the number up to a maximum 

of 12 digits. Numeric memory test performance is determined by the maximum number of digits 

correctly recalled (https://biobank.ndph.ox.ac.uk/ukb/label.cgi?id=100029).  

 

Pairs matching 

The Pairs Matching test, or sometimes referred to as the Episodic memory test, is an assessment 

of a subject’s ability to encode (transforming perceived stimuli into a mental representation), 

consolidate, and retrieve past events within a given context (Buck et al., 2021). During the pairs 

matching test, subjects are asked to memorize the position of as many matching pairs of cards as 

possible. The cards are then turned face down, and the participant is asked to flip as many pairs as 

possible in the fewest number of attempts. There are a total of two rounds in the pairs matching 

test. The first round contains three pairs of matching cards (total of six cards), while the second 

round contains six pairs of matching cards (total of twelve cards). Pairs matching test performance 

is determined by the number of errors, or incorrect matches per round. In other words, a score of 

zero is considered a perfect score on the Pairs matching test 

(https://biobank.ndph.ox.ac.uk/ukb/label.cgi?id=100030).  

 

Linear mixed effects models 

Fixed and random effects 

Linear mixed effects models (LMM) are an extension of the standard linear regression model that 

allow for the incorporation of both fixed and random effect terms (Bates et al., 2015). It is crucial 

to correctly classify variables as either fixed or random factors when fitting LMMs. Fixed factors 
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can be defined as variables in which all levels of interest are included within the experiment. One 

example is the use of sex as a fixed effect. If a study design includes both male and female 

participants, all possible levels of sex exist within the data and as such a fixed-effects specification 

is appropriate for sex. A grouping variable such as occupation can serve as another example to 

help in understanding the concept of fixed and random effects. Consider a dataset containing a 

categorical variable of ‘occupation’ with 4 levels: Teacher, Police officer, Firefighter, Chef. If 

researchers have reason to only be interested in generalizing findings to these four occupations, 

the variable ‘occupation’ can be fit as a fixed effect. However, if the researchers aim to generalize 

their findings to all occupations, the variable occupation would instead be fit as a random effect, 

as the values for this variable are not representative of all levels of interest (Magezi, 2015). 

Random effect terms of LMMs include random factors, or interactions between fixed and random 

factors (Magezi, 2015). In simple terms, a factor is considered random if the levels included in the 

study represent a random subset of a larger set of potential levels (Oberg & Mahoney, 2007). It is 

not possible to anticipate the contributions of random effects a priori, as it is not reasonable to 

assume that similar shifts in the variation of the data will occur with addition of another level 

(Oberg & Mahoney, 2007). Consider the frequently used example of a treating physician. If a 

reseacher hopes to examine the health status of subjects on a criteria of y, but want to account for 

how different physicians may influence health status on criteria y, they may use physician as a 

random effect to examine between group (subjects with the same physician) differences in health 

status (Magezi, 2015). To extend this example one step further, if researchers wanted to investigate 

both within-group variance of participant within physician, and variability between physician 

group, they may use a hierarchial random effect term of individual subject nested within physician 

(Magezi, 2015). One can examine variance at the individual subject level without nesting within a 
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group or leveled variable, by fitting individual subject alone as a random effect. By fitting 

individaul subjects as a random effect, it allows researchers to examine how each subject differs 

at baseline (random intercept) and how they may change over the course of time or between 

repeated measures (random slopes). In this example, individual subjects are conisdered to be their 

own grouping variables, as data will be correlated within subject between repeated measures 

(Lohse et al., 2020). A more detailed and nuanced explanation of fixed and random effects terms, 

as well as detailed explanation of the mathematics behind LMMs can be found in online 

publication (Oberg & Mahoney, 2007).  

 

Linear mixed effects models for longitudinal analysis 

Compared to other models used to assess longitudinal changes such as repeated measures ANOVA 

and latent change score models, LMM offer greater flexibility in the type of data they are able to 

handle, making them preferable for assessing relationships over two or more time points. LMM 

are able to handle and effectively model unstructured time series data (when time intervals between 

visits are not the same across subjects or groups), making these models preferable for trajectory-

based investigations such as the proposed study (Lohse et al., 2020). While repeated measures 

ANOVA models can model mean differences between two (or more) correlated data points, it 

cannot model directionality of time (Lohse et al., 2020). Compared to repeated measures ANOVA, 

latent change score models can effectively model directionality of timepoints, however, they are 

only able to model time as a discrete or structured variable (i.e., timepoint 1, timepoint 2, timepoint 

3) and operate under the assumption that all subjects have the same time intervals between each 

measurement (McNeish & Matta, 2018). Linear mixed effects models provide a versatile and 

powerful framework to address more complex research questions when compared to traditional 
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linear regression models, or other repeated measures approaches such as repeated measures 

ANOVA and latent change score models.  

 

Monte-Carlo simulations, estimating statistical power and sample size 

The power of a study is defined as the probability that the test will be able to reject the null 

hypothesis, assuming the null hypothesis is truly false (Green & MacLeod, 2016). If a study is 

underpowered, the real effects may go undetected and therefore there is a greater risk of incurring 

type II error. The widely agreed upon benchmark for a study to be considered ‘adequately 

powered’ is 80 percent. In other words, at a given sample size with 80% power, if one was to run 

a study 100 times, each time with a new sample, one would be able to confidently reject the null 

hypothesis in 80 of those 100 studies. For these reasons, performing power analyses a priori is 

considered good practice to ensure that the study can test the hypothesis and address the research 

question at hand (Green & MacLeod, 2016). Monte-Carlo simulations are a flexible and accurate 

mathematical method that are used to determine necessary sample size when designing a study 

(Green & MacLeod, 2016). Simulation based approaches for estimating sample size are applicable 

across a wide range of statistical methods and study designs (Green & MacLeod, 2016). Using 

statistical software such as R (https://www.r-project.org/) an otherwise complex and 

computationally expensive approach of conducting simulation-based power analyses are made 

relatively simple. Using the package SimR (https://cran.r-

project.org/web/packages/simr/index.html), one begins the process of simulation-based power 

analyses by first fitting mock, simulated, or pilot data to the statistical model that is to be used in 

the study to test the hypothesis. Following the model fit, using SimR, power is calculated using a 

Monte-Carlo based approach which iteratively repeats the following three steps: 1) simulate new 
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values for the response variable using the model provided; 2) refit the model to the new simulated 

response; 3) apply a statistical test to the simulated fit. In this approach, the tested effect is known 

to exist, and as such each positive test is a true positive (or a rejection of the null hypothesis when 

the null hypothesis is indeed false), and each negative test is classified as type II error. The power 

of the test at a given sample size is calculated from the number of successful rejections of the null 

hypothesis and the number of type II errors that occur and expressed as a percentage value (Green 

& MacLeod, 2016). Modifiable parameters in the SimR package include: the number of iterations 

or simulations to be conducted (default 1000 simulations), the variable to conduct the simulations 

along (i.e., number of participants vs. total number of observations), the alpha significance level 

(default p = 0.05), and desired main effect of model (default first fixed effect in the model).  

 

Thesis objectives and hypotheses 

Evidence suggests there is a cross-sectional association between arterial stiffness and brain 

structure and function. What remains less understood is the longitudinal relationship between the 

progression of arterial stiffness and changes in brain structure and function. To our knowledge, no 

study to date has investigated the longitudinal role of changes in arterial stiffness on changes in 

regional grey matter cortical thickness. It is currently unclear whether a regional effect of arterial 

stiffness on changes in brain structure exists, or if the effect is homogenous across all brain regions. 

The present study is the first to investigate the potential longitudinal relationship between arterial 

stiffness and changes in regional grey matter cortical thicknesses in a large population-based 

cohort (N = 1858). Our work also aims to extend on previous work (Jochemsen et al., 2015; Suri 

et al., 2020) by investigating the longitudinal relationship between arterial stiffness and brain 

volumes (total GMV; WMH volume) and cognitive function. Therefore, in the present study we 
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analyze a large sub-cohort of middle- to older-aged healthy adults from the UK Biobank 

population study to 1) examine the relationship between changes in arterial stiffness and changes 

in brain structure over 2.5 ±1 years; and 2) examine whether indices of arterial stiffness at baseline 

are associated with brain structure and function approximately a decade later.   
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Introduction 

Changes in brain structure (grey matter atrophy, white matter lesions) and function (reductions in 

cognitive performance) have been established to be present in even healthy subjects as a part of 

the normal aging process (Thambisetty et al., 2010; Lemaitre et al., 2012; Scahill et al., 2003; 

Hutton et al., 2009; Raz et al., 2012; Kramer et al., 2007; Resnick et al., 2003; Cornelis et al., 2019; 

Silbert et al., 2008; Harada et al., 2013). Due to the high metabolic demand of the brain, and its 

inability to store energy, cerebral tissues require constant and stable blood supply, and therefore 

are highly vulnerable to changes in vascular function and health (Hoiland et al., 2016; Raichle  & 

Gusnard, 2002). The accumulation of vascular risk factors including smoking, obesity, diabetes 

mellitus, and hypertension, are suggested to have a role in the acceleration of structural and 

functional changes in the brain beyond what is expected with normal aging (Alosco et al., 2014; 

Jochemsen et al., 2015). The potential neurological consequences of accumulated vascular risk 

factors include impaired cognitive function (Iadecola et al., 2016; Lamar et al., 2015; Llewellyn et 

al., 2008), vascular dementia (Wiesmann et al., 2013), and Alzheimer’s disease (Dickstein et al., 

2010). While there are likely several pathological pipelines of this link between cardiovascular 

and brain health, one proposed mechanism for vascular related changes in brain structure and 

function is stiffening of central arteries (Hussain et al., 2018; Iadecola et al., 2016; Llewellyn et 

al., 2008). Arterial stiffening, both a consequence of the normal aging process and a potential 

acquired condition as a result of lifestyle habits, is a subclinical marker suggested to be a precursor 

to a myriad of vascular disease states such as hypertension, atrial fibrillation, coronary artery 

disease, heart failure, and stroke (Chae et al., 1999; Franklin et al., 1997; Mitchell, 2014; Mitchell 

et al., 2007; Sutton-Tyrrell et al., 2005).  
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A widely accepted approach for the assessment of central arterial stiffness is pulse wave velocity 

(PWV), a non-invasive tonometry-derived measurement of the transit time of a systolic pulse wave 

to travel between two sites, typically the carotid artery and the femoral artery (cfPWV). Pulse wave 

arterial stiffness index (ASI) provides an index of vascular stiffness similar to cfPWV (r = 0.65) 

(Millasseau et al., 2002). Measurement of ASI is a simple, fast, and inexpensive approach requiring 

minimal user training, making it favourable for large scale studies (Millasseau et al., 2002). Due 

to their elastic properties, arteries distend during systole and recoil during diastole, which allows 

for dampening of high systolic pressures ejected from the heart prior to reaching distal arteries, 

microvasculature, and end-organs (Chae et al., 1999; Godia et al., 2007; Mitchell, 2008, 2014; 

Mitchell et al., 2007). As arterial stiffness increases, the vessel’s ability to dampen high systolic 

pressures may be impaired, potentially leading to high pulse pressure waves reaching vessels in 

the microcirculation (Mitchell, 2008). Within the context of the cerebral vasculature and brain 

health, the increased pulsatility and high-pressure blood flow secondary to vessel wall stiffening 

may lead to damage of the fragile cerebral microvasculature. This cascade of events is believed to 

be a key mechanism behind the onset and progression of cerebrovascular disease (Chae et al., 

1999). Cerebrovascular disease predisposes the brain to interruptions or chronic reductions in 

regional cerebral blood flow, which in turn can lead to hypoperfusive injury within the neural 

tissue (Chutinet & Rost, 2014; Gupta et al., 2012).  

 

Two structural changes of interest resulting from cerebral hypoperfusion include the atrophy of 

cortical grey matter (GM) and the accumulation of white matter hyperintensities (WMH) (Alosco 

et al., 2014; Makedonov et al., 2013). Acquired from T1-weighted anatomical magnetic resonance 

(MR) images, GM cortical thickness is measured by the distance between the outer surface of the 

cerebral white matter and the inner surface of the pia mater. Additionally, GM cortical thickness 
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seems to be more reliable than volumetric measures for detection of differences between 

functionally healthy and pathological brains, including cognitive impairment and Parkinson’s 

disease (Singh et al., 2006; Sørensen et al., 2014). A gradual reduction of ~0.02-0.06mm per 

decade in GM cortical thickness is believed to be a normal part of the aging process; whereas GM 

cortical thinning exceeding 0.06mm per decade may be considered indicative of pathology 

(Thambisetty et al., 2010). WMH lesions appear as ‘bright spots’ on T2 fluid-attenuated inversion 

recovery (FLAIR) images indicating damage to cerebral white matter (Silbert et al., 2008). 

Evidence suggests that WMH burden beyond the expected +0.8mL increase in WMH per two-year 

interval accompanying normal aging (Ramirez et al., 2016) is associated with greater cognitive 

impairment across domains of verbal IQ, memory, and executive function (Garde et al., 2005; 

Kramer et al., 2007; Schmidt et al., 2005; Silbert et al., 2008). Both GM cortical atrophy and 

elevated WMH volume are of great clinical relevance, as structural changes in the brain are linked 

to impaired neurological function including deficits across multiple cognitive domains, as well as 

increasing the risk for the progression of neurodegenerative disorders such as vascular dementia, 

Parkinson’s disease, and Alzheimer’s disease (Arvanitakis et al., 2016; Pasha et al., 2015; Soriano-

Raya et al., 2012). Cross-sectionally, measures of arterial stiffness have been shown to be 

associated with structural changes in neural tissue, observing reductions in cortical GM volume 

and an elevation in WMH volume, as well as reductions in cognitive performance across domains 

of memory, processing speed, and executive function (Mitchell et al., 2011). Longitudinally, the 

relationship between changes in arterial stiffness and brain structure is less clear, with no 

association of arterial stiffness with the progression of whole brain atrophy or increases in WMH 

volumes (Jochemsen et al., 2015; Suri et al., 2020). Furthermore, evidence from a large sample (N 

= 591) suggests that elevations in arterial stiffness is a strong predictor of cognitive decline 
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longitudinally across multiple domains over 4-years of follow up (Hajjar et al., 2016). While 

evidence supports the structural and functional relationships between arterial stiffness and brain 

structure cross-sectionally (Badji et al., 2019; Hajjar et al., 2016; Jochemsen et al., 2015; Mitchell 

et al., 2011), no study to date has investigated how changes in arterial stiffness may affect the rate 

of change in GM regional cortical thicknesses, total grey matter volume (GMV), WMH volume, 

and cognitive performance compared to the effects of normal aging in the same cohort of 

individuals.  

 

Via data made available from the UK Biobank, we aimed to address two primary objectives. 

Objective 1 was to investigate how changes in arterial stiffness (assessed via ASI) influences 

longitudinal structural (i.e., regional GM cortical thickness in 26 regions, whole brain GMV, and 

whole brain WMH volume) and functional (cognitive performance in six tests) changes in the 

brain. Objective 2 was to assess the association between baseline ASI and brain structure and 

function 8-11 years following baseline. For Objective 1, we hypothesized that longitudinal 

increases in ASI will be associated with longitudinal reductions in regional GM cortical thickness 

and whole brain GMV, increases in WMH, and reductions in cognitive performance over 2.5 ± 1 

years. For Objective 2, we hypothesized that greater ASI at baseline will be associated with brain 

structure and function in an 8-11 year follow-up.  

 

Methods 

Study Population 

We analyzed data from the first full release of the UK Biobank database (released in 2012). The 

UK Biobank is a prospective study of over 500,000 participants recruited in 2006–2010 (Sudlow 

et al., 2015). Data collected from the participants included questionnaires, physical measures, MRI 
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imaging data, and ongoing hospital records. UK Biobank received ethical approval from the 

Northwest Multi-Centre Research Ethics Committee (REC reference: 11/NW/0382). All 

participants in the UK Biobank gave informed consent for the study via a touch‐screen interface 

that required agreement for all individual statements on the consent form as well as the participant's 

signature on an electronic pad. In this process, all participants gave informed consent for data 

linkage as one statement requested consent for access to medical and other health‐related records, 

the long‐term storage and use of this and other information about the participants, also after 

incapacity or death, for health‐related research. The UK Biobank consent form is available at: 

https://www.ukbiobank.ac.uk/media/05ldg1ez/consent-form-uk-biobank.pdf. UK Biobank has 

approval from the institutional review boards, namely, the North West Multi‐centre Research 

Ethics Committee for the UK, from the National Information Governance Board for Health & 

Social Care for England and Wales, and from the Community Health Index Advisory Group for 

Scotland (https://www.ukbiobank.ac.uk/media/0xsbmfmw/egf.pdf). We acquired approval from 

the UK Biobank to access data based on the proposed research questions (application # 71652) as 

well as ethics approval from McMaster Research Ethics board (MREB#: 5833) (please see “ethics 

clearance” component on the project OSF link; Hamilton, ON, Canada).  

 

Study Design 

To investigate the role of changes in arterial stiffness on the progression of changes in brain 

structure and function, we included both male and female middle aged and older adults (61 ± 7 

years; age range: 46-81) at a maximum of three time points (baseline, imaging visit 1, imaging 

visit 2). Participants were excluded from the present analysis if they reported having been 

diagnosed with diabetes mellitus, hypertension, cardiovascular disease, stroke, angina, 
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neurodegenerative diseases (dementia, Parkinson’s disease, Alzheimer’s disease), brain cancer, 

brain haemorrhage, brain abscess, aneurysm, cerebral palsy, encephalitis, head injury, nervous 

system infection, multiple sclerosis, head, or neurological injury. Participants were also excluded 

from analyses if they were missing >5% of data for primary measures, or if they were missing 

follow up data (first and second imaging visits corresponding with instance 2.0 and instance 3.0) 

for any of our primary outcome measures of regional GM cortical thickness, grey matter volume, 

and WMH. Only participants that met all the eligibility criteria, as well as having data for ASI at 

the first and second imaging visits (corresponding with instance 2.0 and instance 3.0), were 

included in study analyses. To investigate the role of arterial stiffness on changes in brain structure 

and function, we used the ASI*instance (instance 2.0 - instance 3.0) interaction as the independent 

variables in Objective 1 and used ASI at baseline (instance 0.0), adjusted for age, as the 

independent variable in Objective 2.  

 

Measures 

Pulse wave arterial stiffness index (ASI) 

ASI was measured during the first visit to the assessment center using the PulseTrace PCA2 

(CareFusion, San Diego, CA) (Field‐ID 21021) in 169,829 participants from 2006 until 2010 as 

part of the UK Biobank cohort study. The PulseTrace PCA2 uses finger photoplethysmography to 

obtain the pulse waveform during a 10‐ to 15‐s measurement using an infrared sensor clipped to 

the end of the index finger. The measurement was repeated on a larger finger or on the thumb if 

less than two thirds of the waveform was visible on the display of the PulseTrace PCA2 device, or 

if the waveform did not stabilize within 1 minute after clipping the infrared sensor to the end of 

the index finger (protocol: 
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https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/Pulsewave.pdf). The shape of the 

waveform is directly related to the time it takes for the pulse wave to travel through the arterial 

tree in the lower body, and to be reflected to the finger. ASI, while not the gold standard 

measurement technique for the assessment of arterial stiffness, has been demonstrated to be a 

simple, quick, and easily reproducible alternative approach for the measurement of arterial 

stiffness that is favourable for large scale population-based studies such as the UK Biobank. The 

strength of relationship between cfPWV (applanation tonometry) and ASI is higher than other 

measures of arterial stiffness such as PWV and arterial compliance (r=0.65 vs. r=0.47, 

respectively) (Millasseau et al., 2002).  

 

Magnetic resonance imaging (MRI) data and image processing 

In 2014, UK Biobank began inviting back 100,000 of the original volunteers for brain, heart, and 

body imaging. Imaging data for 10,000 volunteers has already been processed and made available 

for further research (Alfaro-Almagro et al., 2018). The included MRI sequences are T1 (Section T1 

pipeline), T2-FLAIR (Section T2 FLAIR pipeline) anatomical scans. All brain MRI data were 

acquired on the same 3T Siemens Skyra scanner, following a freely available protocol 

(http://www.fmrib.ox.ac.uk/ukbiobank/protocol/V4_23092014.pdf), documentation 

(http://biobank.ctsu.ox.ac.uk/crystal/docs/brain_mri.pdf), and publication (Alfaro-Almagro et al., 

2018). In brief, data were acquired with a standard Siemens 32-channel head coil. T1-weighted 

MPRAGE and T2-weighted FLAIR volumes were acquired in sagittal orientation at 1 × 1 × 1 mm 

and 1.05 × 1 × 1 mm resolution, respectively. Regional GM cortical thicknesses values were 

extracted from T1-Weighted anatomical scans according to the Desikan-Killiany atlas intrinsic to 

FreeSurfer (https://surfer.nmr.mgh.harvard.edu/fswiki), an open-source surface-based 
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segmentation software. Using the Desikan-Killiany atlas, FreeSurfer parcellation generated 34 

bilateral cortical parcels, attributed to eight lobar structures.  

 

We investigated changes in GM cortical thickness in 26 (13 per hemisphere) regions based on their 

associations with the selected cognitive domains for the present study. For executive function the 

cortical regions included consisted of the caudal middle frontal gyri, rostral anterior cingulate, 

rostral middle frontal gyri, and superior frontal gyri (Wen et al., 2011). For the domain of working 

memory, cortical regions included consisted of superior and inferior parietal cortices, superior and 

inferior temporal cortices, as well as the parahippocampus (Wen et al., 2011). We additionally 

investigated the lateral occipital lobe and medial-temporal lobe which corresponded with visual  

and verbal declarative memory, respectively (Wen et al., 2011). For cognitive domains of verbal 

reasoning and numeric reasoning we included cortical regions of the caudal anterior cingulate and 

posterior cingulate (Arsalidou et al., 2018; Feng et al., 2021). For the domain of fluid intelligence, 

all relevant brain regions had already been included among other domains, including the caudal 

middle frontal gyri, the superior and inferior parietal lobes, rostral anterior cingulate, rostral middle 

frontal gyri, and the superior frontal lobe (Chen et al., 2020). Finally, for processing speed, 

literature suggests that this domain is a function of global cortical network connectivity, and as 

such no additional regions were included to represent this domain (Wen et al., 2011). The full MR 

image processing and segmentation pipeline is described in detail in publication (Alfaro-Almagro 

et al., 2018). WMH volumes were extracted from T2-FLAIR MRI using the BIANCA automated 

segmentation tool, as described in publication (Alfaro-Almagro et al., 2018).  
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Cognitive outcomes 

Cognitive function was assessed using self-administered computerized battery unique to UK 

Biobank to enable population wide cognitive assessment able to be administered without 

researcher supervision (https://www.ukbiobank.ac.uk/media/gnkeyh2q/study-rationale.pdf). A 

detailed description of all tests is provided online 

(https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=116). Brief descriptions of the tests chosen for 

the purposes of this study are provided below (Cornelis et al., 2019).   

 

Digit symbol substitution test (DSST) 

This test for complex processing speed was completed at follow-up on home computers and 

involves matching numbers to a set of symbols. We used the number of correct substitutions for 

our analyses. Detailed information on the digit symbol substitution test is provided through the 

UK Biobank data showcase (https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=23324) (Cornelis et 

al., 2019).  

 

Trail making test A (TmA) and B (TmB) 

Trail making test A and B are visual attention tests provide information on visual search, scanning, 

speed of processing, mental flexibility, and executive functions and were completed at follow-up 

on home computers. Participants were asked to connect scattered circles containing a sequence of 

numbers (Trail A) and then to connect circles containing numbers or letters by alternating between 

them in ascending sequence (Trail B). We used the total time to completion for each test for our 

analyses. Detailed information on the Trail Making test A 
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(https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=6348) and B 

(https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=6350) is provided through the UK Biobank data 

showcase (Cornelis et al., 2019).  

 

Fluid intelligence test  

Participants were presented with 13 verbal logic/reasoning-type multiple choice questions and had 

to answer as many as they could within 2 minutes. Incorrect or unanswered questions were scored 

as zero. The total number of correct answers (maximum of 13) was used for our analysis. Detailed 

information on the fluid intelligence test is provided through the UK Biobank data showcase 

(https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20016) (Cornelis et al., 2019).  

 

Numeric memory test 

The numeric memory test is designed assess numeric short-term memory, as part of the 

touchscreen questionnaire. The participant was shown a 2-digit number to remember. The number 

then disappeared and after a short while they were asked to enter the number onto the screen. The 

number became one digit longer each time participants remembered a number correctly (up to a 

maximum of 12 digits). Data to be used in analyses is the maximum number of digits remembered. 

Detailed information on the numeric memory test is provided through the UK Biobank data 

showcase (https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=4282) (Cornelis et al., 2019).  

 

Pairs matching test 
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This episodic visual memory test was completed at the assessment centers. Participants were 

shown 6 pairs of cards for 5 seconds and asked to memorise the position of as many matching 

pairs of cards as possible. Following the 5 seconds, the cards were turned over. Participants were 

instructed to select the pairs of cards that had matching symbols in the fewest number of attempts. 

Two rounds were conducted: the first round used 3 pairs of cards and the second round used 6 

pairs of cards. The data from the pairs matching test used for analyses was the total number of 

incorrect matches made in the respective round. Detailed information on the pairs matching test is 

provided through the UK Biobank data showcase 

(https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=399) (Cornelis et al., 2019).   

 

Statistical Analysis  

For Objective 1, the longitudinal relationship between ASI and the outcome measures of GM 

cortical thickness (26 regions), WMH volume, and cognitive outcomes for all six tests of interest 

were examined using a robust linear mixed effects model (LMM). All statistical analyses were 

conducted in the freely available statistical software R (https://cran.r-project.org). We primarily 

relied on the package robustlmm (https://cran.r-

project.org/web/packages/robustlmm/vignettes/rlmer.pdf) to implement the LMMs. The use of 

robust linear mixed effects models allowed us to identify and consider outliers without 

necessitating their exclusion by reweighing of residuals according to their distance from the model 

fit (Koller, 2016). In each model the interaction between ASI and instance (visit number) was 

treated as the independent variable. The ASI*Instance interaction and all covariates (age, sex, 

years between visits, waist to hip ratio, self-reported physical activity) were added to the model as 

fixed effects. Individual observations (subject ID) were fit as a random effect, with random 
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intercepts, to account for the variability between subjects at baseline as well as allowing each 

subject to have a different trajectory of changes in brain structure and function (Equation 1). Based 

on previous research, we analyzed a smaller subset (N = 1801) of our total UK Biobank cohort 

using LMM, excluding all subjects with WMH volume greater than 15mL to determine whether 

those with non-healthy levels (>15mL) of WMH influence the relationship between ASI and 

WMH volume (Garde et al., 2005; Kramer et al., 2007; Raz et al., 2012; Silbert et al., 2008; 

Wolfson et al., 2013). For our a priori sample size calculations, we chose age, sex, and years 

between visits as our base number of covariates. Where applicable, we conducted paired t-tests (or 

non-parametric equivalent) to detect whether mean (or median) differences between imaging visits 

were statistically significant. For Objective 2, we used analyzed a subsample (N = 630 subjects 

with baseline ASI data) of our healthy UK Biobank sample using linear regressions to test the 

association between ASI at baseline (collected between 2006-2010) and 26 regional GM cortical 

thicknesses, whole brain GMV, WMH volume, and cognitive performance in all six tests at the 

first imaging visit (~8.5 ± 1.05 years post baseline) and second imaging visit (~11 ± 1.02 years 

post baseline), adjusted for age, to examine the temporal relationship between arterial stiffness at 

a single point and structural and functional brain health at a 8-11 year follow-up 

(https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=53). 

 

Due to the use of several different models for each of our outcome measures using the same 

predictor variables and covariates, where appropriate, significant p-values were adjusted using the 

Holm-Bonferroni post-hoc test for multiple comparisons. Significant findings were reported when 

the adjusted p-value was below the set alpha threshold of p = 0.05 for all outcomes. All analysis 

code was uploaded to our laboratory’s Open Science Framework account and/or our Gitlab 
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repository for this project. Given the nature of the data, and in compliance with UK Biobank’s 

materials transfer agreement, raw participant level data are not shared, and only aggregated data 

are presented herein. All values are reported as mean ± SD unless otherwise stated.  

 

The independent variable was ASI * Instance, and the outcome measures of interest were 

regional GM Cortical Thickness (26 regions), GMV, WMH volumes, DSST, TmA, TmB, Fluid 

Intelligence Test, Numeric Memory Test, Pairs Matching Test. Covariates included in the model 

were age, sex, years between visits, waist-to-hip ratio, physical activity levels. The model fit was 

based off a linear mixed model with fixed effects of ASI*Instance, all covariates, and random 

effects of Subject ID (Equation 1). 

Outcome	~	ASI ∗ Instance + Covariates +	(1|Subject	ID) + error  Equation 1. 

 

A Priori Sample Size Calculation 

To calculate required sample size, we used a simulation-based approach using the R package SimR 

(https://cran.r-project.org/web/packages/simr/index.html) (Green & MacLeod, 2016) and tested 

for the ASI*Instance interaction along the variable “participant” to assess power for a given 

number of participants. We created a single mock data set based on estimated normative values 

either from the UK Biobank data showcase or from the literature for all outcomes of interest. For 

all outcome measures, we included minimum mean differences of interest associated with what is 

expected during normal aging to conservatively approach our sample size simulations. All reported 

values in the mock dataset are reported as mean ± SD unless otherwise noted. The mock data set 

includes ASI values of 9 ± 4m/s based on the values available via the UK Biobank data showcase 
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(https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=21021) and an increase in ASI of 0.5m/s per 

decade (~0.25m/s per follow up), based on work from the Baltimore Longitudinal study on Aging 

in which cfPWV was assessed in adults over approximately a decade (AlGhatrif et al., 2013). Due 

unstructured and non-uniform follow-up times in UK Biobank participants (between 2-5 years 

between follow up sessions), we also included a continuous variable named “time between visits”, 

in which the value for visit 1 was 0 and visit 2 was a random number between 2-5 years. For our 

primary outcome variable of GM cortical thickness, we chose to use an approximated mean and 

SD representative of the mean thickness of most brain regions (2.5 ± 0.25mm) 

(https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=196; field ID range 27174-27296). The 

minimum mean difference of interest used for the mock cortical GM thickness values was based 

on the degradation expected in normal aging, ~0.02-0.06mm reduction per decade (Lemaitre et al., 

2012). We used a mean GM cortical thickness reduction of ~0.005mm per year as our observed 

mean difference in the mock data set to conservatively estimate necessary sample size. For whole 

brain GMV (800 ± 50mL), a mean difference of -3mL per year was included, as this is a 

conservative reduction in whole brain GMV based on the literature for what is expected in normal 

aging (Enzinger et al., 2005; Scahill et al., 2003; Sluimer et al., 2008). For WMH values (5 ± 6mL) 

(https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=25781), a mean difference of +1mL of WMH 

volume per follow up point was used, a slightly greater mean difference than the +0.8mL in WMH 

volume seen in Ramirez et al., over a 2-year time interval due to a larger time interval between 

visits in the UK Biobank data (Ramirez et al., 2016). To estimate our necessary sample size to 

detect normal aging-related changes in cognitive performance, mean differences were taken from 

Cornelius et al., a recent study which used the UK Biobank database to assess cognitive decline 

across multiple domains cross-sectionally in healthy subjects across several decades of adulthood 
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(Cornelis et al., 2019). For the Digit Symbol Substitution Test (18 ± 5 correct substitutions) 

(https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=23324), a difference of -1 correct substitutions 

per follow up was used (Cornelis et al., 2019). For Trail Making Test A (22.9 ± 0.88 seconds) 

(https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=6349) and B (58.0 ± 27 seconds) 

(https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=6351), mean differences of +1.6 seconds for 

Trail Making A and a mean difference +4 seconds for Trail Making B were used for the mock 

dataset (~7% increase per ~5 years of age cross-sectionally) (Cornelis et al., 2019). A mean 

difference of -0.1 correct answers per follow up was used for the minimum change of interest for 

Fluid Intelligence Test performance (6.15 ± 2 correct answers) 

(https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20016) (Cornelis et al., 2019). For the Numeric 

Memory Test (6.7 ± 1.25 correct digit recall) 

(https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=4282) we included a mean difference of -1 

correct digit recall per follow up point (Cornelis et al., 2019). For the Pairs Matching Test (2.3 

± 3 errors) (https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=399) mean difference of interest, we 

used a change of +0.07 errors per follow up point (Cornelis et al., 2019). The mock data set also 

included age (57 ± 8 years) (https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=21022), sex (M = 1, 

F = 2), waist to hip ratio (0.75 ±  0.35) (Molarius et al., 1999), self-reported physical activity (days 

per week exercising 10+ minutes, ranging from 0-7), and a discrete variable relating to visit 

number, using values of 1 or 2, corresponding to image visit 1 and 2, respectively. Means and 

standard deviations for variables of interest and covariates included in the mock dataset are directly 

based on the values seen in the literature and UK Biobank data showcase 

(https://biobank.ndph.ox.ac.uk/showcase/). The mock dataset was fit to the LMM in accordance 

with Equation 1 using the R package lme4 (https://cran.r-
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project.org/web/packages/lme4/index.html) prior to conducting our a priori sample size 

calculations. Following 1000 simulations of the mock dataset fit to the LMM, using the SimR 

package, it was determined that at any sample beyond 665 subjects, we are >80% powered to test 

the effect of the ASI and instance interaction effect on all outcomes of interest. All power 

calculations for outcomes of interest are presented in Table 1.  
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Table 1. Power curve for all outcome measures of interest 
Sample 
Size (n) 

5 225 445 665 885 1105 1325 1545 1765 1985 

Statistical 
Power 

% % % % % % % % % % 

GM 
Cortical 
Thickness 

0% 

[0-0] 

99% 

[98-100] 

99% 

[98-100] 

99% 

[98-100] 

99% 

[99-100] 

100% 

[100-100] 

100% 

[100-100] 

100% 

[100-100] 

100% 

[100-100] 

100% 

[100-100] 

Whole 
Brain 
GMV 

0% 

 [0-0] 

98% 

 [97-99] 

100%  

[99-100] 

100%  

[99-100] 

100% 

 [99-100] 

100%  

[99-100] 

100%  

[99-100] 

100% 

 [99-100] 

100%  

[99-100] 

100%  

[99-100] 

WMH 
Volume 

0% 

[0-0] 

90% 

[87-92] 

99% 

[98-99] 

99%  

[98-99] 

100%  

[99-100] 

100%  

[99-100] 

100%  

[99-100] 

100%  

[99-100] 

100%  

[99-100] 

100%  

[99-100] 

Digit 
Symbol 
Substitutio
n Test 

0% 

[0-0] 

99% 

[98-100] 

99% 

[98-100] 

99% 

[98-100] 

100%  

[99-100] 

100%  

[99-100] 

100%  

[99-100] 

100%  

[99-100] 

100%  

[99-100] 

100%  

[99-100] 

Trail 
Making 
Test A 

0% 

[0-0] 

41% 

[37-46] 

72% 

[68-76] 

90% 

[87-92] 

97% 

[96-98] 

98%  

[97-99] 

100%  

[99-100] 

100%  

[99-100] 

100%  

[99-100] 

100%  

[99-100] 

Trail 
Making 
Test B 

0% 

[0-0] 

50% 

[45-54] 

82% 

[78-85] 

95% 

[92-96] 

99% 

[98-99] 

99%  

[98-100] 

100%  

[99-100] 

100%  

[99-100] 

100%  

[99-100] 

100%  

[99-100] 
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Fluid 
Intelligenc
e Test 

0% 

[0-0] 

30% 

[26-34] 

56% 

[51-60] 

72% 

[68-76] 

83%  

[79-86] 

92%  

[90-94] 

95%  

[92-97] 

98%  

[96-99] 

99%  

[97-99] 

100%  

[99-100] 

Numeric 
Memory 
Test 

0% 

[0-0] 

52% 

[48-57] 

79% 

[76-83] 

92% 

[89-94] 

97%  

[95-98] 

99%  

[98-99] 

99%  

[98-99] 

99%  

[98-99] 

100%  

[99-100] 

100%  

[99-100] 

Pairs 
Matching 
Test 

0% 

[0-0] 

39% 

[34-43] 

62% 

[58-66] 

81% 

[77-84] 

91% 

[88-93] 

97%  

[95-99] 

99%  

[97-99] 

99%  

[98-99] 

99%  

[98-99] 

100%  

[99-100] 

Note: Simulated observed power calculations (rounded to the nearest percentage [95% CI]) based on minimum mean differences of 
interest from the literature using a mock dataset. Mock data (n=1999) were fit to linear mixed model using lmer() function on R and fit 
to Outcome ~ ASI*Instance + Age + Sex + Time between visits + (1|Subject ID) + error. 
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Results 

Table 2. Descriptives of sample population from UKB who met inclusion criteria with no history 
of stroke, myocardial infarction, cardiovascular disease, hypertension, blood clots, or other 
comorbid conditions. Reported as mean ± SD unless otherwise stated. Body Mass Index (BMI); 
Blood pressure (BP); Self-reported physical activity (PA); Hormone replacement therapy (HRT); 
Digit symbol substitution test performance (DSST) 

 
First Imaging 
Visit 

Second Imaging 
Visit 

 

 n = 1858 M SD M SD p 

Female (n) 1007 - - - - 

Male (n) 851 - - - - 

Age (years) 61 7 64 7 - 

Time between assessments (years) 2.57 0.96 - - - 

Height (cm) 170.43 9.30 - - - 

Weight (kg) 73.93 14.49 74.17 14.51 <0.001 

BMI 26.04 4.16 26.04 4.23   0.375 

Body Fat (%) 30.40 8.16 30.99 8.33 <0.001 

Waist Circumference (cm) 86.68 12..27 87.47 12.24 <0.001 

Hip Circumference (cm) 100.10 8.59 99.41 8.43 <0.001 

Waist to Hip Ratio 0.86 0.086 0.88 0.087 <0.001 

Arterial Stiffness Index (m/s) 9.79 2.66 9.13 3.12 <0.001 

Systolic BP (mmHg) 137.68 18.52 132.12 19.99 0.207 

Diastolic BP (mmHg) 77.28 10.46 76.80 9.53 0.341 

PA >10 minutes (days/week) 4.02 2.22 4.07 2.25 0.319 

Medications (n / %)      

Cholesterol Lowering Medication 83 4.4% 111 5.9% - 

BP Lowering Medication 43 2.3% 51 2.7% - 

Insulin 4 0.2% 3 0.1% - 

HRT 55 2.9% 60 3.2% - 

Oral Contraceptives 8 0.4% 4 0.2% - 

Whole Brain Grey Matter Volume (mL) 805.902 46.330 796.033 45.563 <0.001 

White Matter Hyperintensities (mL) 4.009 4.914 4.609 5.662 <0.001 
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DSST Performance (correct matches) 20.20 4.79 20.06 5.21 0.961 

Trail Making Test A (total time required; s) 20.689 6.633 21.236 10.371 0.008 

Trail Making Test B (total time required; s) 50.069 21.133 51.311 25.750 0.007 

Fluid Intelligence Test (correct answers) 6.79 2.01 6.75 1.99 0.93 

Numeric Memory Test (digits remembered) 6.79 1.39 6.63 1.79 0.33 

Pairs Matching Test (incorrect matches) 0.30 0.80 0.29 0.75 0.54 
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Table 3. Mean grey matter cortical thicknesses for regions of interest reported in mm. All unadjusted p values are result of Wilcoxon 
rank test to determine whether median values were significantly different between imaging visits. Bonferroni adjusted alpha level of 
significance is 0.0019 after accounting for 26 regions.

 
First Imaging Visit 
(Left Hemisphere) 

Second Imaging Visit 
(Left Hemisphere) 

 First Imaging Visit 
(Right Hemisphere) 

Second Imaging Visit 
(Right Hemisphere) 

  

Cortical region M SD M SD p M SD M SD p 

Caudal Anterior Cingulate  2.7455 0.2796 2.722 0.2865 p < 0.001 2.8332 0.1421 2.8188 0.1539 p < 0.001 

Caudal Middle Frontal Gyri  2.8717 0.1490 2.8600 0.1560 p < 0.001 1.9544 0.1366 1.9493 0.1411 p = 0.0086 

Rostral Anterior Cingulate  2.9061 0.1876 2.8859 0.1917 p < 0.001 2.9475 0.1972 2.9319 0.1989 p < 0.001 

Rostral Middle Frontal Gyri 2.6852 0.1290 2.6685 0.1387 p < 0.001 2.6353 0.1181 2.6181 0.1259 p < 0.001 

Superior Frontal Gyri 2.9604 0.1421 2.9387 0.1534 p < 0.001 2.9186 0.1303 2.8994 0.1408 p < 0.001 

Superior Parietal Cortex 2.4792 0.1270 2.4684 0.1406 p < 0.001 2.4482 0.1313 2.4356 0.1413 p < 0.001 

Inferior Parietal Cortex 2.6978 0.1183 2.6839 0.1284 p < 0.001 2.7246 0.1300 2.7081 0.1386 p < 0.001 

Superior Temporal Cortex 2.9868 0.1641 2.9637 0.1692 p < 0.001 3.0639 0.1592 3.0376 0.1645 p < 0.001 

Middle Temporal Cortex 2.9107 0.1482 2.8891 0.1532 p < 0.001 2.9957 0.1454 2.9892 0.1505 p < 0.001 

Inferior Temporal Cortex 3.0577 0.1370 3.0411 0.1389 p < 0.001 3.0323 0.1319 3.0195 0.1387 p < 0.001 

Parahippocampus  2.7828 0.2962 2.7657 0.2953 p < 0.001 2.7127 0.2522 2.7040 0.2515 p < 0.001 

Posterior Cingulate  2.6985 0.1717 2.6767 0.1742 p < 0.001 2.7058 0.1759 2.6825 0.1834 p < 0.001 

Lateral Occipital Lobe 2.3203 0.1272 2.3047 0.1340 p < 0.001 2.3517 0.1348 2.3414 0.1386 p < 0.001 
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Table 4. Statistical output from linear mixed effects models for each outcome of interest (objective 1). Unadjusted p-value and Holm’s 
corrected p-value are both provided, where the Holm’s corrected p value is the final value used to assess significance of findings. 
N = 1858 ASI * Instance Age Sex Years between 

Visits 
Waist to hip ratio Self-reported 

physical activity 

Outcome p Holm’s 
corrected p 

p Holm’s 
corrected 

p 

p Holm’s 
corrected 

p 

p Holm’s 
corrected 

p 

p Holm’s 
corrected 

p 

p Holm’s 
corrected 

p 

LH Caudal 
Anterior 
Cingulate  

0.01 0.11 <0.001 <0.001 0.65 - <0.001 0.0015 0.029 0.095 0.48 - 

LH Caudal 
Middle Frontal 
Gyri  

0.034 0.21 <0.001 <0.001 0.42 - 0.006 0.036 0.53 - 0.13 - 

LH Rostral 
Anterior 
Cingulate  

0.35 - <0.001 <0.001 0.96 - 0.007 0.036 0.16 - 0.55 - 

LH Rostral 
Middle Frontal 
Gyri 

0.22 - <0.001 <0.001 0.039 0.12 0.51 - 0.71 - 0.46 - 

LH Superior 
Frontal Gyri 

0.053 - <0.001 <0.001 0.37 - <0.001 0.0014 0.79 - 0.14 - 

LH Superior 
Parietal Cortex 

0.16 - <0.001 <0.001 0.39 - <0.001 <0.001 0.52 - 0.038 0.038 

LH Inferior 
Parietal Cortex 

0.023 0.20 <0.001 <0.001 0.026 0.10 0.004 0.032 0.91 - 0.061 - 
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LH Superior 
Temporal Cortex 

0.104 - <0.001 <0.001 0.001 0.011 0.76 - 0.044 0.095 0.35 - 

LH Middle 
Temporal Lobe 

0.031 0.21 <0.001 <0.001 <0.001 <0.001 0.28 - 0.008 0.056 0.63 - 

LH Inferior 
Temporal Cortex 

0.041 0.21 <0.001 <0.001 <0.001 <0.001 0.19 - 0.53 - 0.83 - 

LH 
Parahippocampus  

0.03 0.21 <0.001 0.005 <0.001 <0.001 0.28 - 0.49 - 0.84 - 

LH Posterior 
Cingulate  

0.072 - <0.001 <0.001 0.17 - 0.002 0.018 0.70 - 0.83 - 

LH Lateral 
Occipital Lobe 

0.076 - <0.001 <0.001 0.002 0.02 0.10 - 0.022 0.095 0.007 0.014 

RH Caudal 
Anterior 
Cingulate  

0.091 - <0.001 <0.001 0.054 - 0.002 0.018 0.01 0.06 0.43  

RH Caudal 
Middle Frontal 
Gyri  

0.036 0.21 <0.001 0.016 0.005 0.04 0.90 - 0.001 0.009 0.44 - 

RH Rostral 
Anterior 
Cingulate  

0.63 - 0.24 - 0.013 0.078 0.005 0.035 0.097 - 0.14 - 

RH Rostral 
Middle Frontal 
Gyri 

0.30 - <0.001 <0.001 0.69 - 0.53 - <0.001 0.0012 0.75 - 
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RH Superior 
Frontal Gyri 

0.058 - <0.001 <0.001 0.024 0.12 0.002 0.018 0.056 - 0.66 - 

RH Superior 
Parietal Cortex 

0.025 0.20 <0.001 <0.001 <0.001 0.003 0.006 0.032 0.019 0.095 0.63 - 

RH Inferior 
Parietal Cortex 

0.090 - <0.001 <0.001 0.074 - 0.083 - 0.021 0.095 0.41 - 

RH Superior 
Temporal Cortex 

0.019 0.19 <0.001 <0.001 0.29 - 0.66 - 0.26 - 0.67 - 

RH Middle 
Temporal Lobe 

0.035 0.21 <0.001 <0.001 0.01 0.07 0.88 - 0.12 - 0.90 - 

RH Inferior 
Temporal Cortex 

0.057 - <0.001 <0.001 0.47 - 0.44 - 0.40 - 0.76 - 

RH 
Parahippocampus  

0.36 - <0.001 0.012 <0.001 <0.001 0.58 - 0.36 - 0.054 - 

RH Posterior 
Cingulate  

0.29 - <0.001 <0.001 0.004 0.036 0.002 0.018 0.55 - 0.83 - 

RH Lateral 
Occipital Lobe 

0.037 0.21 <0.001 <0.001 0.004 0.036 0.92 - 0.002 0.016 0.36 - 

GMV 0.76 - <0.001 - <0.001 - <0.001 - 0.005 - 0.92 - 

WMH  0.84 - <0.001 - 0.23 - <0.001 - 0.005 - 0.36 - 

DSST 
Performance 

0.81 - <0.001 <0.001 0.56 - 0.99 - 0.017 0.042 0.72 - 
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TmA 
Performance  

0.25 - <0.001 <0.001 0.005 0.01 0.23 - 0.83 - 0.63 - 

TmB 
Performance  

0.23 - <0.001 <0.001 0.35 - 0.57 - 0.46 - 0.44 - 

Fluid 
Intelligence 
Test 
Performance  

0.029 0.17 0.019 0.11 0.009 0.009 0.23 - 0.021 0.042 0.068 - 

Numeric 
Memory Test 
Performance  

0.65 - <0.001 <0.001 <0.001 <0.001 0.019 0.114 <0.001 <0.001 0.42  

Pairs Matching 
Test 
Performance 

0.74 - <0.001 <0.001 0.001 0.003 0.52 - 0.014 0.042 0.30 - 
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Table 5. Statistical output for linear regression analysis for each outcome of interest (objective 2). 

N = 630 First Imaging Visit Second Imaging visit 

 Baseline ASI Age Baseline ASI Age 

Outcome p Holm’s 
corrected p 

p Holm’s 
corrected p 

p Holm’s 
corrected p 

p Holm’s 
corrected p 

LH Caudal Anterior 
Cingulate  

0.39 - 0.001 0.027 0.268 - <0.001 0.005 

LH Caudal Middle 
Frontal Gyri  

0.053 - <0.001 <0.001 0.023 0.069 <0.001 <0.001 

LH Rostral Anterior 
Cingulate  

0.62 - <0.001 0.027 0.85 - <0.001 0.004 

LH Rostral Middle 
Frontal Gyri 

0.52 - <0.001 <0.001 0.34 - <0.001 <0.001 

LH Superior Frontal 
Gyri 

0.058 - <0.001 <0.001 0.15 - <0.001 <0.001 

LH Superior Parietal 
Cortex 

0.33 - <0.001 <0.001 0.24 - <0.001 <0.001 

LH Inferior Parietal 
Cortex 

0.034 0.068 <0.001 <0.001 0.028 0.069 <0.001 <0.001 

LH Superior Temporal 
Cortex 

0.082 - <0.001 <0.001 0.23 - <0.001 <0.001 

LH Middle Temporal 
Cortex 

0.014 0.056 <0.001 <0.001 0.058 - <0.001 <0.001 

LH Inferior Temporal 
Cortex 

0.54 - 0.003 0.078 0.40 - <0.001 <0.001 
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LH Parahippocampus  0.061 - 0.72 - 0.39 - 0.024 0.48 

LH Posterior Cingulate  0.76 - <0.001 <0.001 0.26 - <0.001 <0.001 

LH Lateral Occipital 
Lobe 

0.27 - <0.001 <0.001 0.46 - <0.001 <0.001 

RH Caudal Anterior 
Cingulate  

0.49 - <0.001 <0.001 0.27 - <0.001 <0.001 

RH Caudal Middle 
Frontal Gyri  

0.16 - 0.059 - 0.53 - 0.002 0.052 

RH Rostral Anterior 
Cingulate  

0.26 - 0.30 - 0.85 - 0.78 - 

RH Rostral Middle 
Frontal Gyri 

0.84 - <0.001 <0.001 0.46 - <0.001 <0.001 

RH Superior Frontal 
Gyri 

0.45 - <0.001 <0.001 0.088 - <0.001 <0.001 

RH Superior Parietal 
Cortex 

0.21 - <0.001 <0.001 0.098 - <0.001 <0.001 

RH Inferior Parietal 
Cortex 

0.049 0.068 <0.001 <0.001 0.028 0.069 <0.001 <0.001 

RH Superior Temporal 
Cortex 

0.31 - <0.001 <0.001 0.17 - <0.001 <0.001 

RH Middle Temporal 
Cortex 

0.87 - <0.001 <0.001 0.33 - <0.001 <0.001 

RH Inferior Temporal 
Cortex 

0.018 0.056 0.003 0.056 0.012 0.048 <0.001 <0.001 

RH Parahippocampus  0.66 - 0.055 - 0.063 - 0.004 0.10 
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RH Posterior Cingulate  0.96 - <0.001 0.005 0.24 - 0.004 0.10 

RH Lateral Occipital 
Lobe 

0.91 - <0.001 <0.001 0.79 - <0.001 <0.001 

GMV 0.015 - <0.001 <0.001 0.030 - <0.001 <0.001 

WMH  0.47 - <0.001 <0.001 0.083 - <0.001 <0.001 

DSST Performance 0.78 - <0.001 <0.001 0.71 - <0.001 <0.001 

TmA Performance  0.71 - <0.001 <0.001 0.29 - <0.001 <0.001 

TmB Performance  0.25 - <0.001 <0.001 0.64 - <0.001 <0.001 

Fluid Intelligence Test 
Performance  

0.37 - 0.296 - 0.71 - 0.25 - 

Numeric Memory Test 
Performance  

0.36 - 0.12 - 0.31 - 0.013 0.026 

Pairs Matching Test 
Performance 

0.034 0.20 <0.001 <0.001 0.44 - 0.087 - 
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A descriptive summary of demographic characteristics and brain measures for the study population 

can be found in Table 2. All values are reported as mean ± SD unless otherwise stated. The mean 

age of eligible study participants (n = 1858) at the first imaging visit was 61 ± 7 years of age, and 

the number of males and females was 851 and 1007, respectively. For the present sample, time 

interval between baseline and the first imaging visit was 8.5 ± 1.02 years, and 2.5 ± 1 years 

between the first and second imaging visit. All subjects that were missing multiple data points for 

ASI, regional GM cortical thickness, GMV, or WMH, as well as having any disease conditions as 

described in the exclusion criteria were excluded from the present analyses. Following Wilcoxon 

rank tests for non-parametric data, significant differences were detected in weight, BMI, body fat 

percentage, waist to hip ratio, ASI, GMV, WMH (Table 2), and all 26 GM cortical thickness 

regions (Table 3) between the first and second imaging visit. All statistical model outputs for 

Objective 1 can be found in Appendix A, and model outputs for Objective 2 can be found in 

Appendix B.  

 

Objective 1 - Linear Mixed Effect Model Results  

Regional Cortical Grey Matter (GM) Thickness 

Following linear mixed effect model analysis on 26 cortical regions, prior to post-hoc correction 

it was determined that there was a significant effect of the ASI*Instance interaction on 11 of the 

26 cortical regions analyzed. The 11 brain regions included: the left hemisphere caudal anterior 

cingulate (p = 0.01), left hemisphere caudal middle frontal gyri (p = 0.034), the right hemisphere 

caudal middle frontal gyri (p = 0.036), right hemisphere superior parietal cortex (p = 0.025), left 

hemisphere inferior parietal cortex (p = 0.023), right hemisphere superior temporal cortex (p = 

0.019), left hemisphere inferior temporal cortex (p = 0.041), left hemisphere parahippocampus (p 
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= 0.03), left hemisphere middle temporal lobe (p = 0.035), right hemisphere middle temporal lobe 

(p = 0.035), right hemisphere lateral occipital lobe (p = 0.037). Following post-hoc correction for 

multiple comparisons using the Holm-Bonferroni method, there was no significant effect of the 

ASI*Instance interaction on any of the 26 cortical regions analyzed (raw p and adjusted p reported 

in Table 4). Graphical representation of the effect of the changes in ASI on changes in each 

regional GM cortical thickness over 2.5 ± 1 years can be seen in Figures 1-13. Our linear mixed 

effects model also detected a significant effect of age in all but one (right hemisphere rostral 

anterior cingulate) of the 26 cortical regions analyzed (p ≤0.001 for all regions in which age effect 

was detected) and all regions in which an effect was detected prior to correction remained 

significant following post-hoc correction. There was a significant effect of sex on regional GM 

cortical thickness in 15 of 26 brain regions prior to post-hoc correction (right hemisphere caudal 

middle frontal gyri; right hemisphere rostral anterior cingulate; left and right hemisphere rostral 

middle frontal gyri; right hemisphere superior frontal gyri; right hemisphere superior parietal 

cortex; left hemisphere inferior parietal cortex; left hemisphere superior temporal cortex; left 

hemisphere inferior temporal cortex; left and right hemisphere parahippocampus; left and right 

hemisphere lateral occipital lobes; left and right hemisphere middle temporal lobes). Nine of the 

15 regions in which sex differences were detected suggested that the reductions in cortical 

thickness over the time between imaging visits was greater in males than females (right hemisphere 

caudal middle frontal gyri; right hemisphere rostral anterior cingulate; left hemisphere superior 

temporal cortex; left hemisphere inferior temporal cortex; left and right hemisphere lateral 

occipital lobe; left hemisphere middle temporal lobe; right hemisphere temporal lobe) and six of 

which (right hemisphere superior frontal gyri; right hemisphere superior parietal cortex; left 

hemisphere inferior parietal cortex; left and right hemisphere parahippocampus; right hemisphere 
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posterior cingulate) suggested that the reduction in cortical thickness was greater in female than 

males over the time between imaging visits. Following post-hoc correction there was a significant 

effect of sex in 10 total cortical regions including the right hemisphere caudal middle frontal gyri, 

right hemisphere superior parietal cortex, left hemisphere superior temporal cortex, left 

hemisphere inferior temporal cortex, left and right hemisphere parahippocampus, left and right 

hemisphere lateral occipital lobes, left hemisphere middle temporal lobe, and right hemisphere 

posterior cingulate. Years between visits had a significant effect on GM cortical thickness in 12 of 

26 regions analyzed prior to post-hoc correction; however, this should be interpreted with caution 

as this variable is assessing whether the variability in the time interval between visits in the UK 

Biobank has a significant influence on outcomes and should not be interpreted as a measure of 

longitudinal changes or directionality of changes in the outcomes of interest. Following post-hoc 

correction, all 12 regions in which years between visits had a significant effect remained 

significant. The regions significantly associated with years between visits included the bilateral 

caudal anterior cingulate, left hemisphere caudal middle frontal gyri, bilateral rostral anterior 

cingulate, bilateral superior frontal gyri, bilateral superior parietal cortices, left hemisphere inferior 

parietal cortex, and bilateral posterior cingulate. There was also a significant effect of waist to hip 

ratio in 10 of 26 regions analyzed which included the bilateral hemisphere caudal anterior 

cingulate, right hemisphere caudal middle frontal gyri, right hemisphere rostral middle frontal gyri, 

right hemisphere superior parietal cortex, right hemisphere inferior parietal cortex, left hemisphere 

superior temporal cortex, bilateral lateral occipital lobes, and left hemisphere middle temporal 

lobe; however, following post-hoc correction, only four regions remained significant (right 

hemisphere caudal anterior cingulate, right hemisphere caudal middle frontal gyri, right 

hemisphere rostral middle frontal; right hemisphere lateral occipital lobe). The covariate of 
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self-reported physical activity had no effect on 24 of the 26 brain regions. The two brain regions 

in which self-reported physical activity was significant were the left hemisphere superior parietal 

cortex and left hemisphere lateral occipital lobe (adjusted p = 0.038 and 0.014, respectively). 

Overall, the linear mixed effects models were able to explain an average of 78 ± 5.5% of total 

variance across all 26 regions. The raw linear mixed effects model outputs for each region can be 

found in Appendix A (A1-A26). 
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Figure 1. Association of changes in ASI (m/s) and changes in left and right hemisphere caudal anterior cingulate cortical thicknesses 

(mm) over 2.5 ± 1 years (range 1.1-6.9 years). Each individual line indicates a single participant’s trajectory over the two instances 

(instance 2.0 and 3.0) (N = 1855). 
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Figure 2. Association of changes in ASI (m/s) and changes in left and right hemisphere caudal middle frontal gyri cortical thicknesses 

(mm) over 2.5 ± 1 years (range 1.1-6.9 years). Each individual line indicates a single participant’s trajectory over the two instances 

(instance 2.0 and 3.0) (N = 1855). 
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Figure 3. Association of changes in ASI (m/s) and changes in left and right hemisphere rostral anterior cingulate cortical thicknesses 

(mm) over 2.5 ± 1 years (range 1.1-6.9 years). Each individual line indicates a single participant’s trajectory over the two instances 

(instance 2.0 and 3.0) (N = 1855). 
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Figure 4. Association of changes in ASI (m/s) and changes in left and right hemisphere rostral middle frontal gyri cortical thicknesses 

(mm) over 2.5 ± 1 years (range 1.1-6.9 years). Each individual line indicates a single participant’s trajectory over the two instances 

(instance 2.0 and 3.0) (N = 1855). 
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Figure 5. Association of changes in ASI (m/s) and changes in left and right hemisphere superior frontal gyri cortical thicknesses (mm) 

over 2.5 ± 1 years (range 1.1-6.9 years). Each individual line indicates a single participant’s trajectory over the two instances 

(instance 2.0 and 3.0) (N = 1855). 
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Figure 6. Association of changes in ASI (m/s) and changes in left and right hemisphere superior parietal cortex cortical thicknesses 

(mm) over 2.5 ± 1 years (range 1.1-6.9 years). Each individual line indicates a single participant’s trajectory over the two instances 

(instance 2.0 and 3.0) (N = 1855). 
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Figure 7. Association of changes in ASI (m/s) and changes in left and right hemisphere inferior parietal cortex cortical thicknesses 

(mm) over 2.5 ± 1 years (range 1.1-6.9 years). Each individual line indicates a single participant’s trajectory over the two instances 

(instance 2.0 and 3.0) (N = 1855). 
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Figure 8. Association of changes in ASI (m/s) and changes in left and right hemisphere superior temporal cortex cortical thicknesses 

(mm) over 2.5 ± 1 years (range 1.1-6.9 years). Each individual line indicates a single participant’s trajectory over the two instances 

(instance 2.0 and 3.0) (N = 1855). 
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Figure 9. Association of changes in ASI (m/s) and changes in left and right hemisphere middle temporal lobe cortical thicknesses 

(mm) over 2.5 ± 1 years (range 1.1-6.9 years). Each individual line indicates a single participant’s trajectory over the two instances 

(instance 2.0 and 3.0) (N = 1855). 
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Figure 10. Association of changes in ASI (m/s) and changes in left and right hemisphere inferior temporal cortex cortical thicknesses 

(mm) over 2.5 ± 1 years (range 1.1-6.9 years). Each individual line indicates a single participant’s trajectory over the two instances 

(instance 2.0 and 3.0) (N = 1855). 
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Figure 11. Association of changes in ASI (m/s) and changes in left and right hemisphere parahippocampus cortical thicknesses (mm) 

over 2.5 ± 1 years (range 1.1-6.9 years). Each individual line indicates a single participant’s trajectory over the two instances 

(instance 2.0 and 3.0) (N = 1855). 
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Figure 12. Association of changes in ASI (m/s) and changes in left and right hemisphere lateral occipital lobe cortical thicknesses 

(mm) over 2.5 ± 1 years (range 1.1-6.9 years). Each individual line indicates a single participant’s trajectory over the two instances 

(instance 2.0 and 3.0) (N = 1855). 
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Figure 13. Association of changes in ASI (m/s) and changes in left and right hemisphere posterior cingulate cortical thicknesses (mm) 

over 2.5 ± 1 years (range 1.1-6.9 years). Each individual line indicates a single participant’s trajectory over the two instances 

(instance 2.0 and 3.0) (N = 1855). 
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Whole Brain Grey Matter Volume  

There was no significant relationship detected between the main effect of the ASI*Instance 

interaction and whole brain GMV (p = 0.76). Graphical representation of the effect of the changes 

in ASI on changes in whole brain GMV over 2.5 ± 1 years can be seen in Figure 14. There was a 

significant association between age and GMV (p < 0.001), with a 3.699mL reduction in GMV with 

each year of age. The model also detected significant differences between sexes (p < 0.001), 

suggesting males had a reduction in GMV that was ~20.484mL greater compared to females over 

2.5 ± 1 years. The effect of ‘Years between visits’ was significantly associated with whole brain 

GMV (p < 0.001). The model also detected a significant effect of waist to hip ratio (p = 0.005), 

suggesting that for every 0.05 unit increase in waist to hip ratio, GMV decreased by ~0.633mL. 

The linear mixed effects model was able to explain ~96% of the variance in GMV in the present 

sample. Summary of the linear mixed effects model for GMV (raw and adjusted p) can be found 

in Table 4. The raw linear mixed effects model output for GMV can be found in Appendix A27.  

 

 

 



M.Sc. Thesis – E.Y. Allison; McMaster University - Kinesiology                     82 

 

 

 

 

 

 

Figure 14. Association of changes in ASI (m/s) and changes in whole brain GMV (mL) over 2.5 

± 1 years (range 1.1-6.9 years). Each individual line indicates a single participant’s trajectory 

over the two instances (instance 2.0 and 3.0) (N = 1858). 

 

White matter hyperintensities (WMH) volume 

Similar to GMV, there was no significant effect of ASI*Instance interaction on WMH volume (p 

= 0.84). Graphical representation of the effect of the changes in ASI on changes in WMH volume 

over 2.5 ± 1 years can be seen in Figure 15 and 16 (WMH volume with a maximum value of 15mL). 

There was however a significant effect of age (p < 0.001), with the model estimating a 0.167mL 

increase in WMH volume with each additional year of age. There was no significant effect of sex 

(p = 0.23) on WMH volume. A significant effect of years between visits on WMH volume was 

detected (p = 0.005). A significant effect of waist to hip ratio was also observed (p < 0.001), with 

the model estimating an ~0.105mL increase in WMH volume per 0.05 unit increase in waist to hip 

ratio. There was no effect of self-reported physical activity on WMH volume over 2.5 ±  1 years 
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(p = 0.36). Collectively, the linear mixed effects model was able to explain 85% of variance in 

WMH volume in the UK Biobank subcohort. Summary of the linear mixed effects model for WMH 

(raw and adjusted p) can be found in Table 4. The raw linear mixed effects model output for WMH 

can be found in Appendix A28.  

 

 

Figure 15. Association of changes in ASI (m/s) and changes in whole brain WMH (mL) over 2.5 

± 1 years (range 1.1-6.9 years). Each individual line indicates a single participant’s trajectory 

over the two instances (instance 2.0 and 3.0) (N = 1858). 
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Figure 16. Association of changes in ASI (m/s) and changes in whole brain WMH (mL) over 2.5 

± 1 years (range 1.1-6.9 years) when adjusted to only include max WMH volume of 15mL. Each 

individual line indicates a single participant’s trajectory over the two instances (instance 2.0 and 

3.0) (N = 1801). 

 

Cognitive performance   

Linear mixed effects model analysis for the six cognitive tests of interest determined that the ASI 

and instance interaction effect was significant only on Fluid Intelligence Test performance (p = 

0.029) prior to post hoc correction and following correction for multiple comparisons using the 

Holm-Bonferroni method, there was no effect of the ASI*Instance interaction on any of the 

cognitive tests included in the present study. Graphical representation of the effect of the changes 

in ASI on changes in each cognitive test performance over 2.5 ± 1 years can be seen in Figures 

17-22.  There was a significant effect of age on all cognitive test performances prior to correction, 

and five of six remained significant following post-hoc correction using the Holm-Bonferroni 

method. Significant sex differences were detected in performance of six tests prior to correction, 
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and following correction remained significant in four of six tests including TmA (p = 0.005, 

adjusted p = 0.01), Fluid Intelligence Test (p = 0.009, adjusted p = 0.01), Numeric Memory Test 

(p < 0.001, adjusted p < 0.001), and Pairs Matching Test performance (p = 0.001, adjusted p = 

0.003). The models also detected a significant effect of waist to hip ratio for cognitive performance 

in the Digit Symbol Substitution Test (p = 0.017, adjusted p = 0.042), Fluid Intelligence Test (p 

= 0.021, adjusted p = 0.042), the Numeric Memory Test (p < 0.001, adjusted p = <0.001), and 

the Pairs Matching Test (p = 0.014, adjusted p = 0.042). There was no effect of self-reported 

physical activity on any of the cognitive tests analyzed. Overall, the linear mixed models were able 

to explain ~24.4 ± 30.5% of the variance in the cognitive models included. Summary of the linear 

mixed effects model for all cognitive tests included in analyses (raw and adjusted p) can be found 

in Table 4. The raw linear mixed effects model output for cognitive performance for each test can 

be found in Appendix A (A29-A34). 
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Figure 17. Association of changes in ASI (m/s) and changes in Digit Symbol Substitution Test 

performance over 2.5 ± 1 years (range 1.1-6.9 years). Each individual line indicates a single 

participant’s trajectory over the two instances (instance 2.0 and 3.0) (N = 1834). 
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Figure 18. Association of changes in ASI (m/s) and changes in Trail Making Test part A 

performance over 2.5 ± 1 years (range 1.1-6.9 years). Each individual line indicates a single 

participant’s trajectory over the two instances (instance 2.0 and 3.0) (N = 1845). 
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Figure 19. Association of changes in ASI (m/s) and changes in Trail Making Test Part B 

performance over 2.5 ± 1 years (range 1.1-6.9 years). Each individual line indicates a single 

participant’s trajectory over the two instances (instance 2.0 and 3.0) (N = 1845). 
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Figure 20. Association of changes in ASI (m/s) and changes in Fluid Intelligence Test performance 

over 2.5 ± 1 years (range 1.1-6.9 years). Each individual line indicates a single participant’s 

trajectory over the two instances (instance 2.0 and 3.0) (N = 1835). 
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Figure 21. Association of changes in ASI (m/s) and changes Numeric Memory Test performance 

over 2.5 ± 1 years (range 1.1-6.9 years). Each individual line indicates a single participant’s 

trajectory over the two instances (instance 2.0 and 3.0) (N = 1845). 
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Figure 22. Association of changes in ASI (m/s) and changes in Pairs Matching Test performance 

over 2.5 ± 1 years (range 1.1-6.9 years). Each individual line indicates a single participant’s 

trajectory over the two instances (instance 2.0 and 3.0) (N = 1845). 
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Objective 2 – Linear Regression Results  

Regional grey matter (GM) cortical thickness 

Following our linear regression analysis (N = 630) using baseline ASI as our independent variable 

and adjusting for age, our models determined that there was a significant association of baseline 

ASI on regional cortical thickness at the first imaging visit (8.5 ± 1.02 years post baseline) in four 

of 26 cortical regions prior to post-hoc correction for multiple comparisons. The regions in which 

there was a significant association between baseline ASI and cortical thickness at the first imaging 

visit included: left and right inferior parietal cortices (p = 0.034 and 0.049, respectively), the right 

hemisphere inferior temporal cortex (p = 0.018), and the left hemisphere middle temporal lobe (p 

= 0.014). Following post-hoc correction for multiple comparisons using the Holm-Bonferroni 

method, there was no significant effect of baseline ASI on regional cortical thickness at the first 

imaging visit (8.5 ± 1.05 years follow-up from baseline). Similarly, prior to post-hoc correction 

there was a significant association between ASI at baseline and cortical thickness at the second 

imaging visit for four of 26 cortical regions including: the left hemisphere caudal middle frontal 

gyri (p = 0.023), left and right hemisphere inferior parietal cortices (p = 0.028 for both regions), 

and the right hemisphere inferior temporal lobe (p = 0.012). Following post-hoc correction for 

multiple comparisons using the Holm-Bonferroni method, the association between baseline ASI 

and cortical thickness at the second imaging visit (11± 1.02 years follow-up from baseline) 

remained significant in only the right hemisphere inferior temporal lobe (adjusted p = 0.048). 

There was a significant association between age and regional cortical thicknesses at the first 

imaging visit in all but four of 26 regions prior to correction (right hemisphere caudal middle 

frontal gyri, right hemisphere rostral anterior cingulate, bilateral hippocampus), and at the second 

imaging visit in all but one of 26 regions (right hemisphere rostral anterior cingulate). The 
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association between age and cortical thickness remained significant following post-hoc correction 

for multiple comparisons in all but one region for the first imaging visit (left hemisphere inferior 

temporal cortex) and all but four regions for the second imaging visit (right hemisphere caudal 

middle frontal gyri, left and right hemisphere parahippocampus, right hemisphere posterior 

cingulate). The raw and adjusted p values for each cortical region can be found in Table 5. The 

raw linear regression model outputs for all cortical regions can be found in Appendix B (B1-B26).  

 

Whole brain grey matter volume (GMV) and white matter hyperintensities (WMH) volume 

Following linear regression analysis using baseline ASI as our independent variable and adjusting 

for age, it was determined that there was a significant effect of baseline ASI on whole brain GMV 

at both the first imaging visit (p = 0.015) and the second imaging visit (p = 0.030). There was a 

significant association between age and whole brain GMV for both imaging visits (p < 0.001). In 

contrast, there was no effect of baseline ASI on WMH volume at either the first (p = 0.45) or the 

second (p = 0.08) imaging visits, however there was a significant association of age at both imaging 

visits (p < 0.001). Raw p values for the relationship between baseline ASI and GMV and WMH at 

each imaging visit can be found in Table 5. Raw linear regression model outputs for outcomes of 

GMV and WMH volume can be found in Appendix B27 and B28, respectively.   

 

Cognitive performance  

Following our linear regression analyses investigating the association between baseline ASI 

adjusted for age and cognitive outcomes, our models determined that prior to post-hoc correction, 

baseline ASI was only associated with Pairs Matching Test performance at the first imaging visit 

(p = 0.034) and was not associated with performance of any cognitive tests at the second imaging 
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visit. Following post-hoc correction, there was no association between baseline ASI and cognitive 

performance for any of the tests included in analysis. There was a significant association of age on 

four of six cognitive tests at the first imaging visit (DSST, TmA, TmB, Pairs Matching), and on 

four of six cognitive tests at the second imaging visit (DSST, TmA, TmB, Numeric Memory) prior 

to correction. Following post-hoc correction the association between age and cognitive 

performance at each imaging visit remained significant in all regions except for the Numeric 

Memory Test performance at the second imaging visit. Raw and adjusted p values for the 

relationship between baseline ASI and cognitive performance at each imaging visit can be found 

in Table 5. Raw linear model outputs for each cognitive test analyzed can be found in Appendix B 

(B29-B34).   

 

Discussion 

This is the first study to date to investigate the longitudinal role of arterial stiffness on changes in 

regional GM cortical thickness and builds on other work done as part of the SMART-MR study 

(N = 526, age 59 ± 10 years) and the Whitehall II study (N = 542 age 63.9 ± 5.2 years) who 

investigated the longitudinal influence of arterial stiffness on brain volumes (GMV, WMH 

volume)(Jochemsen et al., 2015; Suri et al., 2020) and cognitive function (Suri et al., 2020). To 

our knowledge, our study used the largest cohort to date (N = 1858) for investigating the 

longitudinal relationship between indices of arterial stiffness and both structural and functional 

brain outcomes. Brain structure was assessed via outcome measures of regional GM cortical 

thicknesses across 26 brain regions (13 per hemisphere), whole brain GMV, and WMH volume, 

and brain function was assessed via cognitive performance in six tests which included the Digit 

Symbol Substitution Test, Trail Making Test Parts A And B, Fluid Intelligence Test, Numeric 
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Memory Test, and Pairs Matching Test. We investigated the longitudinal influence of arterial 

stiffness (measured by ASI) on structural and functional brain outcomes as part of two objectives. 

The first objective was to determine whether changes in ASI over 2.5 ± 1 years were associated 

with changes in structural and functional brain outcomes. For Objective 1 we used robust linear 

mixed effects models to consider variability at the individual level, allowing each individual 

subject to be significantly different at baseline (random intercepts), as well as a different trajectory 

of changes in brain structure and function. The use of robust linear mixed effects models allowed 

us to identify and consider outliers without necessitating their exclusion by reweighing of residuals 

according to their distance from the model fit. Visualization of all robust linear mixed effects 

model fits can be found in Appendix A. The random effects term of individual subject added 

significant value to our analysis models, explaining up to 84% of the variance for changes in brain 

structure models including all regional GM cortical thickness models, whole brain GMV, and 

WMH models and as much as 60% of the variance for our brain function models which included 

cognitive performance for all six tests of interest. The variance explained by random effects is 

calculated as the difference between marginal vs conditional R2. Full model outputs for each 

outcome can be found in Appendix A and marginal and conditional R2  can be found at the bottom 

of each output table in Appendix A. The second objective aimed to examine whether ASI was 

significantly associated with brain structure and function when preceding imaging visits 1 and 2 

by 8.5 ± 1.05 and 11 ± 1.02 years, respectively. For Objective 2, we used a smaller subsample of 

our full sample (N = 630 subjects with baseline ASI data and brain structure and function data at 

each imaging visit) and conducted linear regression analysis with baseline ASI as our independent 

variable (adjusted for age) and brain structure and function at imaging visit 1 and imaging visit 2 
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as our dependent variables. All linear regression model outputs for each outcome at both the first 

and second imaging visits can be found in Appendix B.  

 

Objective 1. Longitudinal influence of ASI has a non-significant contribution to reductions 
in GM cortical thickness, but no effect on whole brain GMV, WMH volume or cognitive 
performance 

In the context of GM cortical thickness, there was no statistically significant effect of ASI over the 

2.5 ± 1 years between imaging visits on any of the 26 cortical regions analyzed when interpreting 

our findings based on adjusted p-values. However, estimates for each of our statistical models did 

suggest that changes in ASI was associated with non-significant reductions in cortical thickness in 

all regions analyzed ranging from 0.001-0.006mm change in cortical thickness per m/s increase of 

ASI over the 2.5 ± 1 years between imaging visits. Literature suggests that reductions in cortical 

thickness of approximately 0.002-0.006mm per year is a part of the normal aging process, and any 

reductions in cortical thickness beyond 0.006mm per year (reported as 0.06mm reduction per 

decade) may potentially be considered pathological (Thambisetty et al., 2010). While the influence 

of ASI alone was not statistically significant, taken alongside the effect of age, which was 

statistically significant in 25 of our 26 brain regions (range of estimates: 0.001-0.008mm reduction 

in cortical thickness per year), the effect of changes in ASI on cortical thickness (0.0004-

0.0024mm reduction in cortical thickness per year) within the time between imaging visits may 

have an additive effect to drive individuals outside of the range of normal aging and potentially 

into a pathological range of reductions in cortical thickness. Our analyses determined the regions 

that were most affected by changes in ASI over 2.5 ± 1 years included the caudal anterior and 

caudal middle frontal gyri, the superior temporal cortex, both superior and inferior parietal 
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cortices, and the middle temporal lobe. This is in line with much of the literature of the effect of 

aging on regional cortical thickness, as the most robust changes in brain structure occur in the 

frontal, temporal, and parietal regions independent of pathology (Fjell et al., 2009, 2014; Ramanoël 

et al., 2018; Storsve et al., 2014; Thambisetty et al., 2010). Our findings of the effect of ASI on 

brain regions agree with the literature that points to a greater vulnerability in anterior regions 

within the context of changes in brain structure (Lemaitre et al., 2012). While this anterior-

posterior gradient has typically been associated with age, our findings suggest this relationship 

may also be present related to arterial stiffness. Greater vulnerability of anterior brain regions has 

been suggested to be connected to the “last in-first out” theory of brain aging, suggesting that later 

maturing brain regions responsible for higher order cognitive tasks are the most vulnerable (Fjell 

et al., 2014). We observed significant sex differences in the rate of cortical thinning in 10 cortical 

regions, including frontal, parietal, parahippocampal, temporal regions, and occipital regions. 

These regions demonstrating sex differences in the rate of cortical thinning are consistent with the 

findings from Thambisetty et al., (N = 66), as well as Driscoll et al., (N = 138) who similarly found 

pronounced sex differences in the rate of cortical thinning in the frontal, parietal, postcentral, 

parahippocampal, and temporal regions (Driscoll et al., 2009; Thambisetty et al., 2010). In both 

studies, they observed that in all regions in which sex differences were detected, all regions 

indicated that males had greater rates of cortical atrophy compared to females. Where our findings 

deviate from the findings from the two studies mentioned above is that we observed a greater rate 

of cortical thinning in frontal, temporal, and occipital regions in males compared to females, while 

females demonstrated a greater rate of cortical thinning in parietal and hippocampal regions. It is 

important to note that any sex-based differences observed in the current study should be interpreted 
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with caution, as we did not specifically design our analyses to detect sex differences by using sex-

stratified analyses, and rather included sex as a covariate in our models.  

 

We also found a significant effect of waist to hip ratio in four right hemisphere cortical regions 

including the caudal anterior cingulate, caudal middle frontal gyri, rostral middle frontal gyri, and 

lateral occipital lobe. While there was only a significant effect of waist to hip ratio in four cortical 

regions, our findings partially support the findings from Kim et al., (N = 1777) who observed an 

inverted U-shaped association between waist to hip ratio and cortical thickness, particularly in the 

frontal cortical regions (Kim et al., 2015). Seemingly, the inverted U-shaped relationship between 

waist to hip ratio also exists in other metrics of abdominal obesity, as found in work by Cho and 

colleagues, who observed a similar relationship when examining the relationship between visceral 

fat and cortical thickness (Cho et al., 2021).  

 

For whole brain grey matter volume, there was no observed effect of changes in ASI over the 2.5 

± 1 years between imaging visits. The relationship between arterial stiffness and lower brain 

volumes has been frequently observed cross-sectionally, however the longitudinal relationship 

between the two remains controversial. Both the SMART-MR and Whitehall II study each had 

both longitudinal and cross-sectional components. Our findings support the longitudinal findings 

from SMART-MR, in which there was no significant relationship between arterial stiffness and 

the progression of whole brain grey matter atrophy over a duration of 4 years (Jochemsen et al., 

2015). Our findings are also in line with the longitudinal findings from the Whitehall II imaging 

study, in which there was no longitudinal association between arterial stiffening and total GM 
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density (Suri et al., 2020). In contrast, cross-sectional literature suggests that there is indeed an 

association between indices of vascular stiffness and whole brain volume. Tsao and colleagues 

observed a significant association between PWV and total brain volume that was equivalent to 1.2 

years of aging (Tsao et al., 2013). Mitchell and colleagues observed a similar relationship between 

indices of arterial stiffness and whole brain GMV, in which elevations in pulsatility index were 

associated with significantly reduced GMV (Mitchell et al., 2011). One possible reason for the 

discrepancy in the literature is that the present study and both the SMART-MR and Whitehall II 

studies were, at least partially, longitudinal in nature (follow up over 2.5 ± 1 year, 4.1 ± 0.55 years, 

and 4 years respectively), while the other studies referenced were cross-sectional associations 

(Jochemsen et al., 2015; Suri et al., 2020; Tsao et al., 2013; Mitchell et al., 2011). The cross-

sectional component of the SMART-MR study also observed a significant association between 

arterial stiffness and total GMV. While in the present study there was no significant effect of ASI 

on whole brain GMV over the time interval between imaging visits, there was a significant effect 

of age independently (p < 0.001). Our model estimates suggested that per year increase in age there 

was an associated 3.599mL reduction in whole brain GMV. These estimates are comparable to 

findings from Lemaitre et al., in which there was an observed 3.68mL reduction in whole brain 

GMV per year in otherwise healthy older adults, and when expressed as a percent reduction in 

whole brain GMV (~0.45%), fall into the normal range of relative reductions in whole brain GMV 

believed to be within the range of 0.2-0.7% per year (Lemaitre et al., 2012; Enzinger et al., 2005; 

Scahill et al., 2003; Sluimer et al., 2008). Our findings also suggested that men had a significantly 

steeper decline in GMV over time when compared to women, which is in agreement with much of 

the literature (Armstrong et al., 2019; Driscoll et al., 2009; Pacheco et al., 2015). Our findings of 

a significant association between waist to hip ratio and whole brain GMV are also in line with 
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what is typically observed in the literature, which suggests that elevations in abdominal obesity 

across metrics of BMI, waist to hip ratio or body fat percentage are associated with lower whole 

brain GMV (Debette et al., 2014; Hamer & Batty, 2019).  

 

There was no significant effect of changes in ASI on WMH volume over the 2.5 ± 1 years between 

imaging visits, and similar to the findings for GMV, this contributes to the inconsistent findings 

across the literature. Cross-sectionally, Mitchell et al., and Tsao and et al., both found a significant 

association between cfPWV and elevations in WMH volume, with their statistical models 

estimating a 0.1mL and a 0.05mL increase in WMH volume per SD increase in cfPWV, 

respectively (Mitchell et al., 2011; Tsao et al., 2013). Our findings resemble the longitudinal 

findings from the SMART-MR and Whitehall II studies in which there was no association between 

arterial stiffness and increased WMH volume over the 4-year duration of both studies (Jochemsen 

et al., 2015; Suri et al., 2020). We did however observe a significant effect of age on WMH volume, 

in which our model estimates a 0.167mL increase in WMH volume per year increase in age. This 

model estimate falls within the consensus range across the literature of ~0-0.4mL increase in 

WMH per year associated with normal aging (Ramirez et al., 2016; Garde et al., 2005; Kramer et 

al., 2007; Raz et al., 2012; Silbert et al., 2008; Wolfson et al., 2013). Our models did not identify 

any effect of sex on explaining the variance in the WMH volumes for this cohort of individuals. 

This finding is inconsistent with much of the literature pointing to a trend that otherwise healthy 

elderly women typically demonstrate a greater progression of WMH volume compared to men 

(Fatemi et al., 2018; van den Heuvel et al., 2004; van Dijk et al., 2008). Our models did identify a 

significant effect of waist to hip ratio on WMH progression (p < 0.001), which confirms and 

extends the literature that points to obesity and visceral adiposity as an independent predictor of 
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WMH progression (Kim et al., 2017; Lampe et al., 2019; Yamashiro et al., 2014). Following the 

additional analysis of the subset with WMH volume <15mL, we observed no change in the 

relationship between changes in ASI and WMH volume (p = 0.83). Visualization of the 

relationship between changes in ASI and WMH volume in both the full cohort model and the 

model with WMH volume <15mL can be seen in Figure 15 and Figure 16, respectively.  

 

The relationship between arterial stiffness and cognitive function has been reported previously 

(Alvarez‐Bueno et al., 2020). In the present study, we did not identify any relationship between 

changes in ASI and cognitive performance across the six tests included in analysis over the time 

interval between imaging visits. The absence of an observed relationship between the rate of 

arterial stiffening and cognitive function in our study is in line with recent work conducted as part 

of the Whitehall II imaging study, in which changes in aortic stiffness were not related to cognitive 

function (Suri et al., 2020). The domain in which changes in ASI over 2.5 ± 1 years had the largest 

effect was the domain of fluid intelligence, which does not corroborate much of the literature that 

suggests executive function is the domain that is most vulnerable to elevations in arterial stiffness 

and vascular aging cross-sectionally, a domain in which we observed no effect of changes in ASI 

over the time interval between imaging visits (Mitchell et al., 2011; Nilsson et al., 2014). Other 

studies (Rotterdam study and the Sydney Memory and Ageing Study) investigating the 

longitudinal influence of arterial stiffness on cognitive function agree with our findings, in which 

no relationship between changes in arterial stiffness and cognitive function across several domains 

including attention, memory, and executive function were identified (Poels et al., 2007; Singer et 

al., 2013), whereas work as part of the Framingham cohort study did identify an association 

between aortic stiffness and cognitive performance in the domains of processing speed and 
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executive function (Pase et al., 2016). While there was no significant effect of the change in ASI 

on cognitive performance for any of our six tests included in analysis, as expected, and frequently 

reported in the literature, following post-hoc correction there was a significant effect of age for 

five of six tests analyzed over the duration of 2.5 ± 1 years between imaging visits (Cornelis et al., 

2019; Harada et al., 2013). Our robust linear mixed models did identify a significant impact of sex 

on 4 of 6 tests analyzed including the TmA, Fluid Intelligence Test, Numeric Memory Test, And 

Pairs Matching Test. Evidence from the literature suggests that females maintain superior 

cognitive performance in the domains of reasoning, memory, verbal recognition, perceptuomotor 

speed and integration, and semantic fluency with advancing age compared to males, whereas males 

typically have greater performance in executive function and visuospatial tasks with advancing 

age (De Frias et al., 2006; McCarrey et al., 2016; Nichols et al., 2020). Our findings point to males 

exhibiting a steeper decline in cognitive functions in the domains of executive function, 

visuospatial ability, and processing speed (TmA), as well as episodic memory (Pairs Matching). 

In contrast, females showed a steeper decline in cognitive function in the domains of fluid 

intelligence, verbal logic, and reasoning (Fluid Intelligence Test) and short-term memory 

(Numeric Memory Test). These findings of the effect of sex as it pertains to cognitive function are 

largely in conflict with much of the literature directly investigating sex-based differences in 

cognitive function (Lee et al., 2022). The interpretability of our sex-difference observations is 

somewhat limited as sex was only included as a covariate, and no specific analyses to uncover sex 

differences were conducted. We also found a significant effect of waist to hip ratio in four of six 

cognitive tests analyzed (DSST, Fluid Intelligence Test, Numeric Memory Test, Pairs Matching 

Test). The association between indices of abdominal obesity and cognitive function has been 
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reported frequently in the literature, and our findings corroborate the existence of this association 

(Liu et al., 2019; Zhang et al., 2018). 

 

Objective 2. Baseline ASI is associated with lower whole brain GMV, but not regional GM 
cortical thickness, WMH volume, or cognitive performance over a follow-up of 8-11 years.  

We observed a significant association between baseline ASI and grey matter cortical thickness in 

four regions at the first imaging visit (8.5 ± 1.05 years post baseline) and four regions at the second 

imaging visit (11 ± 1.02 years post baseline) prior to post-hoc correction for multiple comparisons. 

Following post-hoc correction none of those associations remained significant except for the right 

hemisphere inferior temporal lobe at the second imaging visit. The regions in which there was an 

association detected included primarily frontal, temporal, and parietal cortical regions. Much of 

the literature suggests that these regions are also the most vulnerable to age-related atrophy (Fjell 

et al., 2009, 2014; Ramanoël et al., 2018; Storsve et al., 2014; Thambisetty et al., 2010). According 

to model estimates, each m/s increase in baseline ASI independently contributed to a non-

significant reduction in cortical thickness ranging from 0.001-0.005mm 8-11 years later. We also 

detected a significant effect of baseline ASI after adjusting for age on whole brain GMV at both 

the first (p = 0.015) and second (p = 0.03) imaging visits. For the first and second imaging visits, 

our model estimates suggests that each m/s increase in baseline ASI contributed to a 1.330 and a 

1.153mL reduction in whole brain GMV, respectively. We did not observe any significant 

association between baseline ASI on WMH volume at either imaging visit. These findings agree 

with the finding from the Whitehall II study in which no significant association between arterial 

stiffness and brain structure when PWV preceded brain measurements by 5.9 ± 1.4 years (Suri et 

al., 2020). Taken together, our findings do not suggest that there is a temporal lag between the 
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expression of arterial stiffness and future changes in GM cortical thickness or WMH volume, and 

this relationship is still likely primarily mediated by natural age-related changes in brain structure. 

While there was no statistical association between baseline ASI and GM cortical thickness or 

WMH volume approximately a decade later, there was a significant effect of baseline ASI on 

whole brain GMV. The effect of baseline ASI on future whole brain GMV may be of interest, as 

grey matter atrophy beyond what would be expected in normal aging by even marginal amounts, 

may lead to neurological complications such as impaired cognitive function (Arvanitakis et al., 

2016; Pasha et al., 2015; Soriano-Raya et al., 2012).  

 

Much like most of the structural outcomes analyzed, there was no significant association of 

baseline ASI and cognitive performance 8-11 years later in the current study. Our observations of 

no association between baseline ASI and cognitive performance are in contrast with the findings 

from the Whitehall II study, which observed a significant association of baseline PWV and 

cognitive performance 5.9 ± 1.4 years post baseline assessment (Suri et al., 2020). The Whitehall 

II study found that baseline PWV was related to impaired cognitive performance, largely driven 

by semantic fluency and verbal learning (Suri et al., 2020). The Whitehall II study similarly saw 

no longitudinal association of the rate of arterial stiffening and changes in cognitive function 

(Objective 1), but instead a relationship between arterial stiffening and cognitive performance 

when the stiffness measure preceded the cognitive assessments (Objective 2). Our findings suggest 

that when correcting for age, there was no effect of baseline ASI on cognitive performance. Taken 

together, our findings as well as the findings from the Whitehall II study supports the growing 

understanding that long-term chronic exposure to vascular aging or pathology in the years 
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preceding older adulthood, rather than late-life vascular aging, may be more representative of 

stiffness related cognitive decline (Livingston et al., 2020; Suri et al., 2020).  

 

Strengths and Limitations 

Strengths  

There are several strengths to the current study. This is the first study to investigate the longitudinal 

relationship between arterial stiffness on regional GM cortical thicknesses and builds on previous 

work looking at arterial stiffness on whole brain GMV, WMH and cognitive performance. 

Furthermore, this is the first study to assess longitudinal changes of arterial stiffness on structural 

(regional GM cortical thickness, GMV, WMH volumes) and functional (cognitive performance) 

in a single cohort of individuals. Via the UK Biobank, we were able to test the relationship between 

changes in ASI and brain structure and function in a large sample of 1858 healthy subjects (age 61 

± 7 years). Beyond the large sample size, the longitudinal nature of the UK Biobank dataset 

allowed us to track changes in outcomes within subjects over 2.5 ± 1 years for our linear mixed 

effects models (Objective 1) and for up to 11 ± 1.02 years in our linear models (Objective 2). The 

UK Biobank is a multicenter study, and thereby strengthens the work in the current study as it 

includes subjects from across the UK, as opposed to a community dwelling cohort which may limit 

generalizability. Another strength of the present study is the use of a priori simulation-based power 

calculations by creating a mock dataset with expected differences in outcome values extracted 

from literature. We based our power calculations around conservative changes in effects of interest 

that reflected the changes expected to be a product of the normal aging process. Despite using 

conservative changes in outcomes over time for the mock dataset, we were still sufficiently 

powered at N = 1858 to detect true effects where they might exist for all outcomes of interest. In 
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addition, using robust linear mixed effects models we were able to fit each individual subject as 

random effects, allowing us to consider the variability at the individual subject level and 

significantly improved the amount of variance explained by our statistical models. The use of 

robust models as opposed to a standard linear mixed effects model meant we were also able to 

handle and consider outliers without their removal from the sample. This was done by reweighing 

different outliers based on their deviance from the model fits for each outcome (Appendix A). The 

inclusion of covariates of age, sex, waist to hip ratio, years between visits, and physical activity 

allowed us to explain more variance in our statistical models and assess the independent effect of 

changes in ASI over time more accurately.  

 

Limitations 

There were several limitations to the current study. Despite the utility in using mock data for 

estimating sample size, all the effect sizes used to create the mock dataset were unidirectional, 

(i.e., trended in the direction that is representative of the overall relationship for each variable). 

For example, GMV decreased on average ~3mL per timepoint for each individual subject in the 

mock dataset. While relevant for the detection of our conservative effects of interest (reductions 

in cortical thickness), this approach does not accurately model the variability of individual subjects 

across all variables. Future work should attempt to create more random variation in mock data, 

where values can increase, decrease, or stay the same to more accurately represent longitudinal 

changes that would be observed in a real large-scale cohort study such as the UK Biobank. 

However, regardless of the unidirectionality of the effect sizes used in the mock data, we still 

included a much higher sample size than what was required for all variables as illustrated by our 

sample size calculations. 
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Other limitations include the use of ASI over PWV as a measure of arterial stiffness. While ASI 

is a more feasible approach for a large-scale cohort like the UK Biobank study due to its quick and 

uncomplicated administration requiring little to no training, we nonetheless interpret our results 

with caution as our independent variable was not measured using the gold standard approach of 

PWV. Another potential limitation in the generalizability of the current study is the use of WMH 

volume as a primary outcome measure. Some evidence suggests that WMH can be ill-defined and 

imaging abnormalities have potential to be misclassified as lesions therefore confounding results 

and reducing the validity of the WMH volume measures. Furthermore, some findings suggest that 

WMH can get smaller or disappear over time, once again pointing to reduced validity of WMH 

volume as a measure of permanent and clinically meaningful cerebral white matter damage 

(Wardlaw et al., 2015).   

 

Another limitation is the use of only two time points for all imaging and cognitive data. While we 

were able to track subjects over time, additional data would improve interpretability of findings 

related to the association between arterial stiffness and brain health. While sex was considered by 

its inclusion as a covariate for the linear mixed effects model analyses, the effect of sex is limited 

in its interpretability in the present work as we did not run a sex-specific analysis (i.e., stratify by 

sex). The inclusion of physical activity as a covariate, while justified, may be somewhat limited in 

its ability to truly explain the relationship between physical activity and the progression of changes 

in brain structure and function. The physical activity variable used in the present study was a self-

report measure and only represented the frequency (days per week) of moderate physical activity 
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of 10+ minutes per day. A more empirical and physiologically relevant measure such as metabolic 

equivalent (MET) or volume of oxygen consumption (VO2) may be more accurate assessment of 

the role physical activity plays on the progression of brain aging.  

 

We also did not consider ethnicity, education, or socioeconomic status, which all may have been 

useful inclusions as covariates in our statistical models. There is precedence for differences in 

arterial stiffness across ethnicities, and inclusion of ethnicity in statistical models may aid in 

discerning potential ethnic differences in the relationship between arterial stiffness and brain health 

(Snijder et al., 2015). The same can be said for education and socioeconomic status, as both have 

been well established as predictors of all-cause cardiovascular risk (Stringhini et al., 2017; Dégano 

et al., 2017). Our selection of cortical regions included in analyses, while justified based on 

cognitive domains of interest, may have also overlooked the potential relationship between arterial 

stiffness and grey matter atrophy in regions not included in the present study.  

 

Future Work  

The UK Biobank and other longitudinal cohort studies of the same nature are constantly growing 

and expanding on the scope of the studies. Future work should aim to investigate additional 

timepoints to deepen the current understanding of how normal age-related arterial stiffening affects 

brain structure and function over a longer range of years. The UK Biobank continues to add data 

to the database and the addition of follow up imaging data will only bolster the current 

understanding of the longitudinal relationships between vascular and brain health. Additional UK 

Biobank imaging data that is released can add valuable insight into the trajectory of changes in 
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brain structure, as a third imaging visit would be ~8 years after the first imaging visit and ~16 

years post baseline. Longitudinal data spanning nearly two decades provides a unique opportunity 

to track the same individuals and significantly expand on our current understanding of the links 

between vascular function and the trajectory of brain aging.  

 

Future work should also aim to consider different levels of WMH even within a healthy subset. 

Despite filtering and only including healthy subjects, there was a wide range of observed WMH 

volumes in the current cohort. Greater consideration into what a healthy aging brain may look like 

in the context of WMH volume may provide a more nuanced look at the role of vascular health in 

otherwise healthy subjects. Additionally, using a measure of susceptibility weighted images (SWI) 

over WMH volume could provide critical information on the state of brain structure, microbleeds 

and white matter integrity in future studies. Available as part of the UK Biobank database, SWI is 

an MRI sequence that has garnered significant clinical support for lesion visualization (Tate et al., 

2017). SWI is suggested to be a more precise approach for the detection of small microbleeds, and 

can be up to six times more sensitive in the detection of subtle lesions, microbleeds, or axonal 

injury when compared to other sequencing approaches (Tate et al., 2017; Tong et al., 2003).  

 

Future longitudinal studies should also aim to use a more validated measurement approach than 

ASI. Using a gold-standard approach for the measurement of arterial stiffness such as tonometry 

or MRI derived PWV can increase validity and provide a stronger measure of arterial stiffness, 

potentially yielding additional insight into the relationship between vascular aging and brain 

structure and function. Additionally, focusing on and directly investigating sex differences that 



M.Sc. Thesis – E.Y. Allison; McMaster University - Kinesiology                     110 

 

 

 

 

 

may exist within the relationship of vascular health and brain aging both pre- and post-menopause 

is an important area that should be studied further, as evidence suggests arterial stiffness is 

drastically increased in women-post menopause (Zaydun et al., 2006). Finally, future studies 

should aim to include a more diverse sample, including different ethnic and socioeconomic 

backgrounds, as well as those who are living with diseases that have been identified as risk factors 

for vascular or neurological pathology to deepen the understanding of the relationship between 

vascular and brain health in unique populations.  

 

Key Findings 

Overall, our findings suggest that there is a non-significant effect of arterial stiffness on brain aging 

both structurally (through regional GM cortical thicknesses, whole brain GMV and WMH) and 

functionally (through six cognitive tests). Our findings of an anterior region vulnerability bias as 

well as our individual model estimates for the role of arterial stiffness on structural changes in the 

brain suggest that arterial stiffness may contribute to accelerate brain aging compared to the normal 

aging process. Elevations in ASI contributed to cortical thinning equivalent to up to ~30% of the 

annual rate of cortical thinning associated with age observed in our model estimates (ASI 

contributed to 0.0004-0.0024mm reduction in GM cortical thickness per year; age contributed to 

0.001-0.008mm reduction in GM cortical thickness per year). As such, late-life arterial stiffening 

taken alongside the effect of age may have an additive effect and drive individuals beyond the 

normal age-related rate into pathological ranges of cortical thinning. Atrophy of grey matter 

beyond the rate associated with normal aging may put individuals at a greater risk for the 

development of cognitive impairment or the progression of neurodegenerative disease including 

vascular dementia, Parkinson’s disease, and Alzheimer’s disease. We found no association 
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between either the progression of arterial stiffness (Objective 1) or arterial stiffness at baseline 

(Objective 2) and WMH volume in the present study. After adjusting for age, our models 

determined that most changes in WMH volume were driven by age in both our longitudinal and 

cross-sectional analyses. Similarly, we found that there was no association between changes in and 

cognitive performance across six tests longitudinally, and no association of baseline ASI on 

cognitive assessment after 8-11 years post-baseline after adjusting for effects of age. Taken 

together, we propose that arterial stiffness may have an additive effect when taken together with 

age-related declines in cortical thickness to drive individuals outside of the range of grey matter 

atrophy that is part of the normal aging process, while changes in WMH volume and declines in 

cognitive performance seem to be driven primarily by age. Finally, while changes in ASI were not 

associated with reductions in GMV longitudinally, there was a significant association between 

baseline ASI and GMV 8-11 years later, even after adjusting for effects of age, suggesting that the 

relationship between arterial stiffness and whole brain grey matter atrophy may potentially be more 

time dependent, requiring long-term chronic exposure to elevations in arterial stiffness.  

 

Conclusion 

To our knowledge, we have provided the first evidence of the independent role of arterial stiffening 

on longitudinal changes in regional GM cortical thickness. We also provide additional insight into 

the independent effect of arterial stiffening on brain structure and function in healthy middle- and 

older aged adults, extending previous work. The findings from the present study suggest that in 

otherwise healthy middle- to older-aged adults from the UK Biobank cohort, there is a minimal 

effect of arterial stiffness on brain structure and function both longitudinally over 2.5 ± 1 years 

and when measures of arterial stiffness preceded brain measures by 8-11 years. We also find that 
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in otherwise-healthy subjects, changes in brain structure and function are primarily a product of 

aging, not indices of arterial stiffness. The association of arterial stiffness and total grey matter 

volume nearly a decade later may suggest that changes in global brain structure are the product of 

prolonged, chronic exposure to vascular pathology rather than acute changes. The delayed 

relationship between arterial stiffness and whole brain grey matter volume may be indicative of 

the subclinical nature of arterial stiffness measures and could point to a potential treatment window 

for the onset of arterial stiffness and subsequent expression of structural changes within the brain. 
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Appendix A1a). Left Hemisphere Caudal Anterior Cingulate Cortical Thickness Linear 

Mixed Effects Model Output 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
LH Caudal Anterior 

Cingulate (mm) 

Predictors Estimates CI p 

(Intercept) 3.073 2.927 – 3.219 <0.001 

ASI 0.003 -0.001 – 0.007 0.125 

Instance [3 0] 0.100 0.044 – 0.157 0.001 

Years between visits -0.021 -0.031 – -0.010 <0.001 

Waist to hip ratio -0.155 -0.294 – -0.016 0.029 

Age -0.003 -0.005 – -0.002 <0.001 

Sex -0.006 -0.034 – 0.021 0.649 

Physical Activity 0.001 -0.002 – 0.005 0.479 

ASI * Instance [3 0] -0.006 -0.011 – -0.002 0.010 

Random Effects 

σ2 0.03 
τ00 eid 0.04 
ICC 0.58 
N eid 1855 
Observations 3620 
Marginal R2 / Conditional R2 0.019 / 0.586 
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Appendix A1b). Left Hemisphere Caudal Anterior Cingulate Cortical Thickness Linear 

Mixed Effects Model Fit 
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A2a). Right Hemisphere Caudal Anterior Cingulate Cortical Thickness Linear Mixed 

Effects Model Output 

  RH Caudal Anterior 
Cingulate (mm) 

Predictors Estimates CI p 

(Intercept) 3.144 3.075 – 3.214 <0.001 

ASI 0.001 -0.001 – 0.002 0.413 

Instance [3 0] -0.001 -0.023 – 0.021 0.930 

Years between visits 0.007 0.003 – 0.011 0.002 

Waist to hip ratio 0.079 0.019 – 0.139 0.010 

Age -0.006 -0.007 – -0.005 <0.001 

Sex -0.014 -0.027 – 0.000 0.054 

Physical Activity -0.001 -0.002 – 0.001 0.428 

ASI * Instance [3 0] -0.002 -0.003 – 0.000 0.091 

Random Effects 

σ2 0.00 
τ00 eid 0.01 
ICC 0.79 
N eid 1855 

Observations 3620 
Marginal R2 / Conditional R2 0.103 / 0.810 

 

  



M.Sc. Thesis – E.Y. Allison; McMaster University - Kinesiology                     150 

 

 

 

 

 

Appendix A2b). Right Hemisphere Caudal Anterior Cingulate Cortical Thickness Linear 

Mixed Effects Model Fit 
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Appendix A3a). Left Hemisphere Caudal Middle Frontal Gyri Cortical Thickness Linear 

Mixed Effects Model Output 

  LH Caudal Middle Frontal 
gyri(mm) 

Predictors Estimates CI p 

(Intercept) 3.242 3.171 – 3.313 <0.001 

ASI 0.001 -0.000 – 0.003 0.052 

Instance [3 0] 0.009 -0.012 – 0.031 0.393 

Years between visits 0.006 0.002 – 0.010 0.006 

Waist to hip ratio -0.019 -0.079 – 0.041 0.531 

Age -0.006 -0.007 – -0.005 <0.001 

Sex -0.006 -0.020 – 0.008 0.421 

Physical Activity -0.001 -0.003 – 0.000 0.125 

ASI * Instance [3 0] -0.002 -0.004 – -0.000 0.034 

Random Effects 

σ2 0.00 
τ00 eid 0.02 
ICC 0.81 
N eid 1855 

Observations 3620 
Marginal R2 / Conditional R2 0.090 / 0.828 
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Appendix A3b). Left Hemisphere Caudal Middle Frontal Gyri Cortical Thickness Linear 

Mixed Effects Model Fit 
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Appendix A4a). Right Hemisphere Caudal Middle Frontal Gyri Cortical Thickness Linear 

Mixed Effects Model Output 

  RH Caudal Middle Frontal 
gyri (mm) 

Predictors Estimates CI p 

(Intercept) 1.929 1.860 – 1.997 <0.001 

ASI 0.001 -0.000 – 0.003 0.064 

Instance [3 0] 0.016 -0.006 – 0.037 0.150 

Years between visits -0.000 -0.004 – 0.004 0.903 

Waist to hip ratio 0.102 0.043 – 0.161 0.001 

Age -0.001 -0.002 – -0.001 0.001 

Sex 0.019 0.006 – 0.033 0.005 

Physical Activity -0.001 -0.002 – 0.001 0.436 

ASI * Instance [3 0] -0.002 -0.004 – -0.000 0.036 

Random Effects 

σ2 0.00 
τ00 eid 0.01 
ICC 0.78 
N eid 1855 

Observations 3620 
Marginal R2 / Conditional R2 0.021 / 0.789 
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Appendix A4b). Right Hemisphere Caudal Middle Frontal Gyri Cortical Thickness Linear 

Mixed Effects Model Fit 
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Appendix A5a). Left Hemisphere Rostral Anterior Cingulate Cortical Thickness Linear 

Mixed Effects Model Output 

  LH Rostral Anterior 
Cingulate (mm) 

Predictors Estimates CI p 

(Intercept) 3.164 3.068 – 3.260 <0.001 

ASI -0.000 -0.002 – 0.002 0.953 

Instance [3 0] 0.022 -0.011 – 0.054 0.194 

Years between visits -0.008 -0.015 – -0.002 0.007 

Waist to hip ratio -0.062 -0.148 – 0.025 0.162 

Age -0.003 -0.004 – -0.002 <0.001 

Sex -0.000 -0.019 – 0.018 0.961 

Physical Activity -0.001 -0.003 – 0.002 0.550 

ASI * Instance [3 0] -0.001 -0.004 – 0.001 0.356 

Random Effects 

σ2 0.01 
τ00 eid 0.02 
ICC 0.73 
N eid 1855 

Observations 3620 
Marginal R2 / Conditional R2 0.023 / 0.732 
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Appendix A5b). Left Hemisphere Rostral Anterior Cingulate Cortical Thickness Linear 

Mixed Effects Model Fit 
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Appendix A6a). Right Hemisphere Rostral Anterior Cingulate Cortical Thickness Linear 

Mixed Effects Model Output 

  RH Rostral Anterior 
Cingulate (mm) 

Predictors Estimates CI p 

(Intercept) 3.076 2.977 – 3.176 <0.001 

ASI -0.002 -0.004 – 0.001 0.122 

Instance [3 0] 0.016 -0.019 – 0.051 0.361 

Years between visits -0.009 -0.016 – -0.003 0.005 

Waist to hip ratio -0.077 -0.169 – 0.014 0.097 

Age -0.001 -0.002 – 0.000 0.065 

Sex 0.024 0.005 – 0.043 0.013 

Physical Activity 0.002 -0.001 – 0.004 0.142 

ASI * Instance [3 0] -0.001 -0.004 – 0.002 0.632 

Random Effects 

σ2 0.01 
τ00 eid 0.02 
ICC 0.69 
N eid 1855 

Observations 3620 
Marginal R2 / Conditional R2 0.009 / 0.695 
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Appendix A6b). Right Hemisphere Rostral Anterior Cingulate Cortical Thickness Linear 

Mixed Effects Model Fit 
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Appendix A7a). Left Hemisphere Rostral Middle Frontal Gyri Cortical Thickness Linear 

Mixed Effects Model Output 

  LH Rostral Middle Frontal 
gyri (mm) 

Predictors Estimates CI p 

(Intercept) 3.043 2.981 – 3.106 <0.001 

ASI 0.001 -0.000 – 0.003 0.060 

Instance [3 0] 0.007 -0.012 – 0.026 0.465 

Years between visits 0.001 -0.002 – 0.005 0.508 

Waist to hip ratio -0.010 -0.064 – 0.043 0.712 

Age -0.006 -0.007 – -0.005 <0.001 

Sex 0.013 0.001 – 0.026 0.039 

Physical Activity -0.001 -0.002 – 0.001 0.456 

ASI * Instance [3 0] -0.001 -0.003 – 0.001 0.217 

Random Effects 

σ2 0.00 
τ00 eid 0.01 
ICC 0.79 
N eid 1855 

Observations 3620 
Marginal R2 / Conditional R2 0.114 / 0.818 
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Appendix A7b). Left Hemisphere Rostral Middle Frontal Gyri Cortical Thickness Linear 

Mixed Effects Model Fit 
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Appendix A8a). Right Hemisphere Rostral Middle Frontal Gyri Cortical Thickness Linear 

Mixed Effects Model Output 

  RH Rostral Middle Frontal 
gyri (mm) 

Predictors Estimates CI p 

(Intercept) 2.895 2.838 – 2.951 <0.001 

ASI 0.000 -0.001 – 0.002 0.502 

Instance [3 0] 0.002 -0.016 – 0.019 0.853 

Years between visits 0.001 -0.002 – 0.004 0.530 

Waist to hip ratio 0.096 0.047 – 0.145 <0.001 

Age -0.006 -0.006 – -0.005 <0.001 

Sex 0.002 -0.009 – 0.014 0.686 

Physical Activity -0.000 -0.001 – 0.001 0.749 

ASI * Instance [3 0] -0.001 -0.002 – 0.001 0.297 

Random Effects 

σ2 0.00 
τ00 eid 0.01 
ICC 0.79 
N eid 1855 

Observations 3620 
Marginal R2 / Conditional R2 0.127 / 0.812 
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Appendix A8b). Right Hemisphere Rostral Middle Frontal Gyri Cortical Thickness Linear 

Mixed Effects Model Fit 
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Appendix A9a). Left Hemisphere Superior Frontal Gyri Cortical Thickness Linear Mixed 

Effects Model Output 

  LH Superior Frontal Gyri 
(mm) 

Predictors Estimates CI p 

(Intercept) 3.429 3.362 – 3.497 <0.001 

ASI 0.002 0.000 – 0.003 0.026 

Instance [3 0] -0.003 -0.024 – 0.019 0.807 

Years between visits 0.008 0.004 – 0.012 <0.001 

Waist to hip ratio -0.008 -0.066 – 0.051 0.791 

Age -0.008 -0.008 – -0.007 <0.001 

Sex -0.006 -0.020 – 0.007 0.366 

Physical Activity -0.001 -0.003 – 0.000 0.142 

ASI * Instance [3 0] -0.002 -0.004 – 0.000 0.053 

Random Effects 

σ2 0.00 
τ00 eid 0.01 
ICC 0.79 
N eid 1855 

Observations 3620 
Marginal R2 / Conditional R2 0.160 / 0.820 
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Appendix A9b). Left Hemisphere Superior Frontal Gyri Cortical Thickness Linear Mixed 

Effects Model Fit 
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Appendix A10a). Right Hemisphere Superior Frontal Gyri Cortical Thickness Linear 

Mixed Effects Model Output 

  RH Superior Frontal Gyri 
(mm) 

Predictors Estimates CI p 

(Intercept) 3.290 3.227 – 3.353 <0.001 

ASI 0.001 -0.000 – 0.002 0.187 

Instance [3 0] -0.001 -0.021 – 0.020 0.931 

Years between visits 0.006 0.002 – 0.010 0.002 

Waist to hip ratio 0.054 -0.001 – 0.110 0.056 

Age -0.007 -0.008 – -0.006 <0.001 

Sex -0.014 -0.027 – -0.002 0.024 

Physical Activity -0.000 -0.002 – 0.001 0.661 

ASI * Instance [3 0] -0.002 -0.003 – 0.000 0.058 

Random Effects 

σ2 0.00 
τ00 eid 0.01 
ICC 0.76 
N eid 1855 

Observations 3620 
Marginal R2 / Conditional R2 0.151 / 0.797 
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Appendix A10b). Right Hemisphere Superior Frontal Gyri Cortical Thickness Linear 

Mixed Effects Model Fit 
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Appendix A11a). Left Hemisphere Superior Parietal Cortex Cortical Thickness Linear 

Mixed Effects Model Output 

  LH Superior Parietal 
Cortex (mm) 

Predictors Estimates CI p 

(Intercept) 2.753 2.689 – 2.817 <0.001 

ASI 0.002 0.001 – 0.003 0.005 

Instance [3 0] -0.010 -0.031 – 0.010 0.320 

Years between visits 0.010 0.006 – 0.014 <0.001 

Waist to hip ratio 0.018 -0.037 – 0.074 0.517 

Age -0.005 -0.006 – -0.004 <0.001 

Sex -0.006 -0.018 – 0.007 0.391 

Physical Activity -0.002 -0.003 – -0.000 0.038 

ASI * Instance [3 0] -0.001 -0.003 – 0.000 0.158 

Random Effects 

σ2 0.00 
τ00 eid 0.01 
ICC 0.78 
N eid 1855 

Observations 3620 
Marginal R2 / Conditional R2 0.084 / 0.794 
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Appendix A11b). Left Hemisphere Superior Parietal Cortex Cortical Thickness Linear 

Mixed Effects Model Fit 
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Appendix A12a). Right Hemisphere Superior Parietal Cortex Cortical Thickness Linear 

Mixed Effects Model Output 

  RH Superior Parietal 
Cortex (mm) 

Predictors Estimates CI p 

(Intercept) 2.722 2.657 – 2.786 <0.001 

ASI 0.001 0.000 – 0.003 0.042 

Instance [3 0] 0.006 -0.015 – 0.026 0.588 

Years between visits 0.005 0.002 – 0.009 0.006 

Waist to hip ratio 0.068 0.011 – 0.124 0.019 

Age -0.005 -0.006 – -0.005 <0.001 

Sex -0.024 -0.037 – -0.011 <0.001 

Physical Activity -0.000 -0.002 – 0.001 0.631 

ASI * Instance [3 0] -0.002 -0.004 – -0.000 0.025 

Random Effects 

σ2 0.00 
τ00 eid 0.01 
ICC 0.78 
N eid 1855 

Observations 3620 
Marginal R2 / Conditional R2 0.099 / 0.801 
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Appendix A12b). Right Hemisphere Superior Parietal Cortex Cortical Thickness Linear 

Mixed Effects Model Fit 
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Appendix A13a). Left Hemisphere Inferior Parietal Cortex Cortical Thickness Linear 

Mixed Effects Model Output 

  LH Inferior Parietal 
Cortex (mm) 

Predictors Estimates CI p 

(Intercept) 3.004 2.946 – 3.062 <0.001 

ASI 0.002 0.001 – 0.003 0.003 

Instance [3 0] 0.004 -0.013 – 0.022 0.630 

Years between visits 0.005 0.002 – 0.008 0.004 

Waist to hip ratio 0.003 -0.046 – 0.052 0.910 

Age -0.005 -0.006 – -0.004 <0.001 

Sex -0.013 -0.025 – -0.002 0.026 

Physical Activity -0.001 -0.002 – 0.000 0.061 

ASI * Instance [3 0] -0.002 -0.003 – -0.000 0.023 

Random Effects 

σ2 0.00 
τ00 eid 0.01 
ICC 0.81 
N eid 1855 

Observations 3620 
Marginal R2 / Conditional R2 0.106 / 0.828 
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Appendix A13b). Left Hemisphere Inferior Parietal Cortex Cortical Thickness Linear 

Mixed Effects Model Fit 
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Appendix A14a). Right Hemisphere Inferior Parietal Cortex Cortical Thickness Linear 

Mixed Effects Model Output 

  RH Inferior Parietal 
Cortex (mm) 

Predictors Estimates CI p 

(Intercept) 3.045 2.985 – 3.106 <0.001 

ASI 0.001 0.000 – 0.002 0.045 

Instance [3 0] 0.004 -0.014 – 0.022 0.648 

Years between visits 0.003 -0.000 – 0.006 0.083 

Waist to hip ratio 0.059 0.009 – 0.109 0.021 

Age -0.006 -0.007 – -0.005 <0.001 

Sex -0.011 -0.023 – 0.001 0.074 

Physical Activity -0.001 -0.002 – 0.001 0.408 

ASI * Instance [3 0] -0.001 -0.003 – 0.000 0.090 

Random Effects 

σ2 0.00 
τ00 eid 0.01 
ICC 0.82 
N eid 1855 

Observations 3620 
Marginal R2 / Conditional R2 0.125 / 0.845 

 

  



M.Sc. Thesis – E.Y. Allison; McMaster University - Kinesiology                     174 

 

 

 

 

 

Appendix A14b). Right Hemisphere Inferior Parietal Cortex Cortical Thickness Linear 

Mixed Effects Model Fit 
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Appendix A15a). Left Hemisphere Superior Temporal Cortex Cortical Thickness Linear 

Mixed Effects Model Output 

  LH Superior Temporal 
Cortex (mm) 

Predictors Estimates CI p 

(Intercept) 3.433 3.352 – 3.515 <0.001 

ASI 0.002 0.000 – 0.004 0.035 

Instance [3 0] 0.016 -0.011 – 0.044 0.239 

Years between visits -0.001 -0.006 – 0.004 0.757 

Waist to hip ratio -0.075 -0.148 – -0.002 0.044 

Age -0.007 -0.008 – -0.006 <0.001 

Sex 0.027 0.011 – 0.043 0.001 

Physical Activity -0.001 -0.003 – 0.001 0.345 

ASI * Instance [3 0] -0.002 -0.004 – 0.000 0.104 

Random Effects 

σ2 0.01 
τ00 eid 0.02 
ICC 0.74 
N eid 1855 

Observations 3620 
Marginal R2 / Conditional R2 0.096 / 0.764 

 

  



M.Sc. Thesis – E.Y. Allison; McMaster University - Kinesiology                     176 

 

 

 

 

 

Appendix A15b). Left Hemisphere Superior Temporal Cortex Cortical Thickness Linear 

Mixed Effects Model Fit 
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Appendix A16a). Right Hemisphere Superior Temporal Cortex Cortical Thickness Linear 

Mixed Effects Model Output 

  RH Superior Temporal 
Cortex (mm) 

Predictors Estimates CI p 

(Intercept) 3.501 3.422 – 3.579 <0.001 

ASI 0.001 -0.001 – 0.003 0.197 

Instance [3 0] 0.016 -0.011 – 0.043 0.240 

Years between visits 0.001 -0.004 – 0.006 0.666 

Waist to hip ratio 0.041 -0.030 – 0.112 0.260 

Age -0.008 -0.009 – -0.007 <0.001 

Sex 0.008 -0.007 – 0.023 0.293 

Physical Activity 0.000 -0.001 – 0.002 0.673 

ASI * Instance [3 0] -0.003 -0.005 – -0.000 0.019 

Random Effects 

σ2 0.01 
τ00 eid 0.02 
ICC 0.72 
N eid 1855 

Observations 3620 
Marginal R2 / Conditional R2 0.138 / 0.758 
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Appendix A16b). Right Hemisphere Superior Temporal Cortex Cortical Thickness Linear 

Mixed Effects Model Fit 
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Appendix A17a). Left Hemisphere Middle Temporal Lobe Cortical Thickness Linear 

Mixed Effects Model Output 

  LH Middle Temporal Lobe 
(mm) 

Predictors Estimates CI p 

(Intercept) 3.208 3.133 – 3.284 <0.001 

ASI 0.002 -0.000 – 0.003 0.054 

Instance [3 0] 0.020 -0.005 – 0.044 0.123 

Years between visits -0.003 -0.007 – 0.002 0.284 

Waist to hip ratio -0.090 -0.157 – -0.023 0.008 

Age -0.004 -0.005 – -0.003 <0.001 

Sex 0.039 0.024 – 0.054 <0.001 

Physical Activity -0.000 -0.002 – 0.001 0.634 

ASI * Instance [3 0] -0.002 -0.004 – -0.000 0.031 

Random Effects 

σ2 0.01 
τ00 eid 0.02 
ICC 0.74 
N eid 1855 

Observations 3620 
Marginal R2 / Conditional R2 0.055 / 0.759 
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Appendix A17b). Left Hemisphere Middle Temporal Lobe Cortical Thickness Linear 

Mixed Effects Model Fit 
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Appendix A18a). Right Hemisphere Middle Temporal Lobe Cortical Thickness Linear 

Mixed Effects Model Output 

  RH Middle Temporal Lobe 
(mm) 

Predictors Estimates CI p 

(Intercept) 3.234 3.161 – 3.306 <0.001 

ASI 0.001 -0.000 – 0.003 0.103 

Instance [3 0] 0.018 -0.006 – 0.042 0.151 

Years between visits -0.000 -0.005 – 0.004 0.877 

Waist to hip ratio 0.052 -0.013 – 0.117 0.117 

Age -0.005 -0.006 – -0.004 <0.001 

Sex 0.019 0.005 – 0.033 0.010 

Physical Activity -0.000 -0.002 – 0.002 0.901 

ASI * Instance [3 0] -0.002 -0.004 – -0.000 0.035 

Random Effects 

σ2 0.00 
τ00 eid 0.01 
ICC 0.74 
N eid 1855 

Observations 3620 
Marginal R2 / Conditional R2 0.070 / 0.759 
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Appendix A18b). Right Hemisphere Middle Temporal Lobe Cortical Thickness Linear 

Mixed Effects Model Fit 
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Appendix A19a). Left Hemisphere Inferior Temporal Lobe Cortical Thickness Linear 

Mixed Effects Model Output 

  LH Inferior Temporal 
Cortex (mm) 

Predictors Estimates CI p 

(Intercept) 3.233 3.164 – 3.301 <0.001 

ASI 0.001 -0.000 – 0.003 0.114 

Instance [3 0] 0.017 -0.005 – 0.039 0.133 

Years between visits -0.003 -0.007 – 0.001 0.190 

Waist to hip ratio -0.019 -0.080 – 0.041 0.528 

Age -0.003 -0.004 – -0.002 <0.001 

Sex 0.030 0.016 – 0.043 <0.001 

Physical Activity -0.000 -0.002 – 0.001 0.829 

ASI * Instance [3 0] -0.002 -0.004 – -0.000 0.041 

Random Effects 

σ2 0.00 
τ00 eid 0.01 
ICC 0.76 
N eid 1855 

Observations 3620 
Marginal R2 / Conditional R2 0.039 / 0.772 
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Appendix A19b). Left Hemisphere Inferior Temporal Lobe Cortical Thickness Linear 

Mixed Effects Model Fit 
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Appendix A20a). Right Hemisphere Inferior Temporal Lobe Cortical Thickness Linear 

Mixed Effects Model Output 

  RH Inferior Temporal 
Cortex (mm) 

Predictors Estimates CI p 

(Intercept) 3.178 3.111 – 3.245 <0.001 

ASI 0.001 -0.001 – 0.002 0.402 

Instance [3 0] 0.007 -0.014 – 0.027 0.528 

Years between visits 0.002 -0.002 – 0.005 0.442 

Waist to hip ratio 0.024 -0.032 – 0.081 0.402 

Age -0.003 -0.004 – -0.002 <0.001 

Sex 0.005 -0.008 – 0.018 0.467 

Physical Activity -0.000 -0.002 – 0.001 0.764 

ASI * Instance [3 0] -0.002 -0.003 – 0.000 0.057 

Random Effects 

σ2 0.00 
τ00 eid 0.01 
ICC 0.80 
N eid 1855 

Observations 3620 
Marginal R2 / Conditional R2 0.027 / 0.807 
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Appendix A20b). Right Hemisphere Inferior Temporal Lobe Cortical Thickness Linear 

Mixed Effects Model Fit 
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Appendix A21a). Left Hemisphere Parahippocampus Cortical Thickness Linear Mixed 

Effects Model Output 

  LH Parahippocampus (mm) 

Predictors Estimates CI p 

(Intercept) 3.046 2.905 – 3.187 <0.001 

ASI 0.001 -0.001 – 0.004 0.383 

Instance [3 0] 0.037 -0.001 – 0.075 0.058 

Years between visits -0.004 -0.011 – 0.003 0.282 

Waist to hip ratio -0.039 -0.150 – 0.072 0.490 

Age -0.003 -0.005 – -0.002 <0.001 

Sex -0.065 -0.094 – -0.035 <0.001 

Physical Activity -0.000 -0.003 – 0.003 0.839 

ASI * Instance [3 0] -0.004 -0.007 – -0.000 0.030 

Random Effects 

σ2 0.01 
τ00 eid 0.07 
ICC 0.86 
N eid 1855 
Observations 3620 
Marginal R2 / Conditional R2 0.023 / 0.866 
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Appendix A21b). Left Hemisphere Parahippocampus Cortical Thickness Linear Mixed 

Effects Model Fit 
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Appendix A22a). Right Hemisphere Parahippocampus Cortical Thickness Linear Mixed 

Effects Model Output 

  RH Parahippocampus (mm) 

Predictors Estimates CI p 

(Intercept) 2.875 2.752 – 2.997 <0.001 

ASI -0.001 -0.003 – 0.002 0.606 

Instance [3 0] 0.013 -0.024 – 0.050 0.492 

Years between visits -0.002 -0.009 – 0.005 0.582 

Waist to hip ratio 0.048 -0.055 – 0.151 0.364 

Age -0.003 -0.004 – -0.001 0.001 

Sex -0.095 -0.120 – -0.071 <0.001 

Physical Activity 0.003 -0.000 – 0.005 0.054 

ASI * Instance [3 0] -0.001 -0.005 – 0.002 0.358 

Random Effects 

σ2 0.01 
τ00 eid 0.05 
ICC 0.81 
N eid 1855 
Observations 3620 
Marginal R2 / Conditional R2 0.043 / 0.818 
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Appendix A22b). Right Hemisphere Parahippocampus Cortical Thickness Linear Mixed 

Effects Model Fit 
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Appendix A23a). Left Hemisphere Lateral Occipital Lobe Cortical Thickness Linear 

Mixed Effects Model Output 

  LH Lateral Occipital Lobe 
(mm) 

Predictors Estimates CI p 

(Intercept) 2.420 2.355 – 2.485 <0.001 

ASI 0.002 0.001 – 0.004 0.005 

Instance [3 0] -0.001 -0.022 – 0.020 0.939 

Years between visits 0.003 -0.001 – 0.007 0.102 

Waist to hip ratio 0.067 0.009 – 0.124 0.022 

Age -0.003 -0.004 – -0.002 <0.001 

Sex 0.020 0.008 – 0.033 0.002 

Physical Activity -0.002 -0.004 – -0.001 0.007 

ASI * Instance [3 0] -0.002 -0.003 – 0.000 0.076 

Random Effects 

σ2 0.00 
τ00 eid 0.01 
ICC 0.76 
N eid 1855 

Observations 3620 
Marginal R2 / Conditional R2 0.045 / 0.769 
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Appendix A23b). Left Hemisphere Lateral Occipital Lobe Cortical Thickness Linear 

Mixed Effects Model Fit 
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Appendix A24a). Right Hemisphere Lateral Occipital Lobe Cortical Thickness Linear 

Mixed Effects Model Output 

  RH Lateral Occipital Lobe 
(mm) 

Predictors Estimates CI p 

(Intercept) 2.461 2.395 – 2.528 <0.001 

ASI 0.001 -0.000 – 0.002 0.167 

Instance [3 0] 0.013 -0.007 – 0.033 0.194 

Years between visits 0.000 -0.004 – 0.004 0.921 

Waist to hip ratio 0.090 0.034 – 0.147 0.002 

Age -0.003 -0.004 – -0.003 <0.001 

Sex 0.019 0.006 – 0.033 0.004 

Physical Activity -0.001 -0.002 – 0.001 0.363 

ASI * Instance [3 0] -0.002 -0.004 – -0.000 0.037 

Random Effects 

σ2 0.00 
τ00 eid 0.01 
ICC 0.80 
N eid 1855 

Observations 3620 
Marginal R2 / Conditional R2 0.045 / 0.812 
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Appendix A24b). Right Hemisphere Lateral Occipital Lobe Cortical Thickness Linear 

Mixed Effects Model Fit 
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Appendix A25a). Left Hemisphere Posterior Cingulate Cortical Thickness Linear Mixed 

Effects Model Output 

  LH Posterior Cingulate 
(mm) 

Predictors Estimates CI p 

(Intercept) 2.907 2.819 – 2.995 <0.001 

ASI 0.001 -0.001 – 0.003 0.146 

Instance [3 0] 0.028 0.000 – 0.057 0.049 

Years between visits -0.007 -0.013 – -0.002 0.007 

Waist to hip ratio -0.015 -0.092 – 0.062 0.700 

Age -0.003 -0.004 – -0.002 <0.001 

Sex -0.012 -0.030 – 0.005 0.165 

Physical Activity 0.000 -0.002 – 0.002 0.830 

ASI * Instance [3 0] -0.002 -0.005 – 0.000 0.072 

Random Effects 

σ2 0.01 
τ00 eid 0.02 
ICC 0.77 
N eid 1855 

Observations 3620 
Marginal R2 / Conditional R2 0.026 / 0.772 
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Appendix A25b). Left Hemisphere Posterior Cingulate Cortical Thickness Linear Mixed 

Effects Model Fit 
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Appendix A26a). Right Hemisphere Posterior Cingulate Cortical Thickness Linear Mixed 

Effects Model Output 

  RH Posterior Cingulate 
(mm) 

Predictors Estimates CI p 

(Intercept) 2.912 2.821 – 3.004 <0.001 

ASI 0.001 -0.001 – 0.003 0.331 

Instance [3 0] 0.023 -0.008 – 0.053 0.149 

Years between visits -0.009 -0.015 – -0.003 0.002 

Waist to hip ratio -0.025 -0.107 – 0.057 0.548 

Age -0.003 -0.004 – -0.002 <0.001 

Sex -0.026 -0.044 – -0.008 0.004 

Physical Activity 0.000 -0.002 – 0.002 0.832 

ASI * Instance [3 0] -0.001 -0.004 – 0.001 0.296 

Random Effects 

σ2 0.01 
τ00 eid 0.02 
ICC 0.73 
N eid 1855 

Observations 3620 
Marginal R2 / Conditional R2 0.028 / 0.735 
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Appendix A26b). Right Hemisphere Posterior Cingulate Cortical Thickness Linear Mixed 

Effects Model Fit 
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Appendix A27a). Whole Brain Grey Matter Volume Linear Mixed Effects Model Output 

 GMV (mL) 

Predictors Estimates CI p 

(Intercept) 1046.836 1031.393 – 1062.279 <0.001 

ASI 0.002 -0.225 – 0.229 0.988 

Instance [3 0] -4.214 -7.455 – -0.973 0.011 

Years between visits 1.262 0.615 – 1.910 <0.001 

Waist to hip ratio -12.652 -22.478 – -2.825 0.012 

Age -3.599 -3.816 – -3.383 <0.001 

Sex -20.484 -23.892 – -17.076 <0.001 

Physical Activity -0.012 -0.260 – 0.235 0.922 

ASI * Instance [3 0] 0.042 -0.231 – 0.316 0.761 

Random Effects 

σ2 83.97 
τ00 eid 1135.46 
ICC 0.93 
N eid 1858 
Observations 3709 
Marginal R2 / Conditional R2 0.417 / 0.960 
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Appendix A27b). Whole Brain Grey Matter Volume Linear Mixed Effects Model Fit 
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Appendix A28a). White Matter Hyperintensities Volume Linear Mixed Effects Model 

Output 

  WMH (mL) 

Predictors Estimates CI p 

(Intercept) -8.934 -10.041 – -7.827 <0.001 

ASI -0.013 -0.036 – 0.011 0.281 

Instance [3 0] -0.302 -0.640 – 0.035 0.079 

Years between visits 0.092 0.028 – 0.157 0.005 

Waist to hip ratio 2.053 1.116 – 2.989 <0.001 

Age 0.167 0.154 – 0.180 <0.001 

Sex 0.137 -0.086 – 0.359 0.228 

Physical Activity 0.011 -0.013 – 0.036 0.361 

ASI * Instance [3 0] 0.003 -0.026 – 0.031 0.842 

Random Effects 

σ2 0.97 
τ00 eid 3.85 
ICC 0.80 
N eid 1858 
Observations 3709 
Marginal R2 / Conditional R2 0.251 / 0.849 
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Appendix A28b). White Matter Hyperintensities Volume Linear Mixed Effects Model Fit 
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Appendix A29a). Digit Symbol Substitution Test Performance Linear Mixed Effects Model 

Output 

  DSST Performance 

Predictors Estimates CI p 

(Intercept) 39.31 36.79 – 41.84 <0.001 

ASI -0.01 -0.08 – 0.06 0.860 

Instance [3 0] 0.72 -0.25 – 1.68 0.144 

Years between visits -0.00 -0.19 – 0.18 0.993 

Waist to hip ratio -2.87 -5.24 – -0.51 0.017 

Age -0.27 -0.30 – -0.24 <0.001 

Sex 0.14 -0.32 – 0.60 0.558 

Physical Activity -0.01 -0.08 – 0.05 0.721 

ASI * Instance [3 0] -0.01 -0.09 – 0.07 0.809 

Random Effects 

σ2 7.60 
τ00 eid 10.94 
ICC 0.59 
N eid 1834 
Observations 3241 
Marginal R2 / Conditional R2 0.172 / 0.661 
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Appendix A29b). Digit Symbol Substitution Test Performance Linear Mixed Effects Model 

Fit 
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Appendix A30a). Trail Making Test Part A Performance Linear Mixed Effects Model 

Output 

  TmA Performance 

Predictors Estimates CI p 

(Intercept) 66.06 39.36 – 92.76 <0.001 

ASI 0.42 -0.53 – 1.37 0.381 

Instance [3 0] 8.38 -5.06 – 21.82 0.222 

Years between visits -1.34 -3.51 – 0.83 0.226 

Waist to hip ratio -2.82 -29.22 – 23.57 0.834 

Age 2.11 1.86 – 2.35 <0.001 

Sex 6.58 2.04 – 11.12 0.005 

Physical Activity 0.19 -0.58 – 0.95 0.627 

ASI * Instance [3 0] -0.71 -1.90 – 0.49 0.247 

Random Effects 

σ2 2351.24 
τ00 eid 0.00 
ICC 0.00 
N eid 1845 
Observations 3293 
Marginal R2 / Conditional R2 0.097 / 0.097 
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Appendix A30b). Trail Making Test Part A Performance Linear Mixed Effects Model Fit 
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Appendix A31a). Trail Making Test Part B Performance Linear Mixed Effects Model 

Output 

  TmB Performance 

Predictors Estimates CI p 

(Intercept) 25.44 -56.51 – 107.38 0.543 

ASI -1.26 -3.42 – 0.89 0.249 

Instance [3 0] -21.81 -51.88 – 8.26 0.155 

Years between visits -1.75 -7.70 – 4.21 0.565 

Waist to hip ratio 28.34 -47.30 – 103.98 0.463 

Age 7.26 6.39 – 8.12 <0.001 

Sex 7.17 -7.87 – 22.21 0.350 

Physical Activity 0.82 -1.26 – 2.89 0.441 

ASI * Instance [3 0] 1.62 -1.00 – 4.24 0.225 

Random Effects 

σ2 7249.35 
τ00 eid 12885.09 
ICC 0.64 
N eid 1845 
Observations 3293 
Marginal R2 / Conditional R2 0.123 / 0.684 
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Appendix A31b). Trail Making Test Part B Performance Linear Mixed Effects Model Fit 
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Appendix A32a). Fluid Intelligence Test Performance Linear Mixed Effects Model Output 

  Fluid Intelligence 
Performance 

Predictors Estimates CI p 

(Intercept) 8.32 7.23 – 9.41 <0.001 

ASI 0.02 -0.00 – 0.05 0.083 

Instance [3 0] 0.52 0.13 – 0.91 0.009 

Years between visits -0.04 -0.11 – 0.03 0.226 

Waist to hip ratio -1.19 -2.21 – -0.18 0.021 

Age -0.01 -0.03 – -0.00 0.019 

Sex 0.28 0.07 – 0.48 0.009 

Physical Activity -0.03 -0.05 – 0.00 0.068 

ASI * Instance [3 0] -0.04 -0.07 – -0.00 0.029 

Random Effects 

σ2 1.29 
τ00 eid 2.55 
ICC 0.66 
N eid 1835 

Observations 3380 
Marginal R2 / Conditional R2 0.007 / 0.666 
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Appendix A32b). Fluid Intelligence Test Performance Linear Mixed Effects Model Fit 
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Appendix A33a). Numeric Memory Test Performance Linear Mixed Effects Model Output 

  Numeric Memory 
Performance 

Predictors Estimates CI p 

(Intercept) 8.71 8.04 – 9.39 <0.001 

ASI 0.02 -0.00 – 0.04 0.053 

Instance [3 0] -0.04 -0.31 – 0.23 0.775 

Years between visits 0.06 0.01 – 0.11 0.019 

Waist to hip ratio -1.21 -1.86 – -0.57 <0.001 

Age -0.02 -0.03 – -0.01 <0.001 

Sex 0.31 0.19 – 0.44 <0.001 

Physical Activity -0.01 -0.03 – 0.01 0.415 

ASI * Instance [3 0] -0.01 -0.03 – 0.02 0.646 

Random Effects 

σ2 0.66 
τ00 eid 0.67 
ICC 0.50 
N eid 1845 

Observations 3300 
Marginal R2 / Conditional R2 0.027 / 0.517 
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Appendix A33b). Numeric Memory Test Performance Linear Mixed Effects Model Fit 
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Appendix A34a). Pairs Matching Test Performance Linear Mixed Effects Model Output 

  Pairs Matching 
Performance 

Predictors Estimates CI p 

(Intercept) -0.00 -0.00 – -0.00 <0.001 

ASI 0.00 -0.00 – 0.00 0.693 

Instance [3 0] -0.00 -0.00 – 0.00 0.402 

Years between visits 0.00 -0.00 – 0.00 0.518 

Waist to hip ratio 0.00 0.00 – 0.00 0.014 

Age 0.00 0.00 – 0.00 <0.001 

Sex -0.00 -0.00 – -0.00 0.001 

Physical Activity 0.00 -0.00 – 0.00 0.302 

ASI * Instance [3 0] 0.00 -0.00 – 0.00 0.742 

Random Effects 

σ2 0.00 
τ00 eid 0.00 
ICC 0.00 
N eid 1845 

Observations 3440 
Marginal R2 / Conditional R2 0.014 / 0.014 
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Appendix A34b). Pairs Matching Test Performance Linear Mixed Effects Model Fit 
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Appendix B. Linear Regression Model Outputs for Imaging Visits 1 and 2 
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B1. Left Hemisphere Caudal Anterior Cingulate Cortical Thickness 

B1a). Linear Regression Model Output Imaging Visit 1 

  LH Caudal Anterior Cingulate at First Imaging Visit   

Predictors Estimates CI p 

(Intercept) 3.031 2.875 – 3.186 <0.001 

ASI at baseline -0.003 -0.011 – 0.004 0.394 

Age -0.005 -0.008 – -0.002 0.001 

Observations 639 
R2 / R2 adjusted 0.021 / 0.018 

 

 

B1b). Linear Regression Model Output Imaging Visit 2 

  LH Caudal Anterior Cingulate at First Imaging Visit   

Predictors Estimates CI p 

(Intercept) 2.986 2.822 – 3.150 <0.001 

ASI at baseline 0.005 -0.004 – 0.013 0.268 

Age -0.006 -0.009 – -0.003 0.001 

Observations 630 
R2 / R2 adjusted 0.022 / 0.019 
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B2. Right Hemisphere Caudal Anterior Cingulate Cortical Thickness 

B2a). Linear Regression Model Output Imaging Visit 1 

  RH Caudal Anterior Cingulate at First Imaging Visit 

Predictors Estimates CI p 

(Intercept) 3.220 3.141 – 3.298 <0.001 

ASI at baseline -0.001 -0.005 – 0.003 0.487 

Age -0.007 -0.008 – -0.006 <0.001 

Observations 639 
R2 / R2 adjusted 0.131 / 0.129 

 

 

B2b). Linear Regression Model Output Imaging Visit 2 

  RH Caudal Anterior Cingulate at Second Imaging Visit 

Predictors Estimates CI p 

(Intercept) 2.986 2.822 – 3.150 <0.001 

ASI at baseline 0.005 -0.004 – 0.013 0.268 

Age -0.006 -0.009 – -0.003 <0.001 

Observations 630 
R2 / R2 adjusted 0.022 / 0.019 
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B3. Left Hemisphere Caudal Middle Frontal Gyri Cortical Thickness 

B3a). Linear Regression Model Output Imaging Visit 1 

  LH Caudal Middle Frontal Gyri at First Imaging Visit 

Predictors Estimates CI p 

(Intercept) 3.287 3.204 – 3.370 <0.001 

ASI at baseline -0.004 -0.008 – 0.000 0.053 

Age -0.007 -0.009 – -0.006 <0.001 

Observations 639 
R2 / R2 adjusted 0.133 / 0.131 

 

 

B3b). Linear Regression Model Output Imaging Visit 2 

  LH Caudal Middle Frontal Gyri at Second Imaging Visit 

Predictors Estimates CI p 

(Intercept) 3.333 3.246 – 3.420 <0.001 

ASI at baseline -0.005 -0.010 – -0.001 0.023 

Age -0.008 -0.010 – -0.006 <0.001 

Observations 630 
R2 / R2 adjusted 0.158 / 0.156 
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B4. Right Hemisphere Caudal Middle Frontal Gyri Cortical Thickness 

B4a). Linear Regression Model Output Imaging Visit 1 

  RH Caudal Middle Frontal Gyri at First Imaging Visit 

Predictors Estimates CI p 

(Intercept) 2.010 1.926 – 2.094 <0.001 

ASI at baseline 0.003 -0.001 – 0.007 0.161 

Age -0.002 -0.003 – 0.000 0.059 

Observations 639 
R2 / R2 adjusted 0.007 / 0.004 

 

 

B4b). Linear Regression Model Output Imaging Visit 2 

  RH Caudal Middle Frontal Gyri at Second Imaging Visit 

Predictors Estimates CI p 

(Intercept) 2.064 1.983 – 2.146 <0.001 

ASI at baseline 0.001 -0.003 – 0.005 0.528 

Age -0.002 -0.004 – -0.001 0.002 

Observations 630 
R2 / R2 adjusted 0.015 / 0.012 
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B5. Left Hemisphere Rostral Anterior Cingulate Cortical Thickness 

B5a). Linear Regression Model Output Imaging Visit 1 

  LH Rostral Anterior Cingulate at First Imaging Visit 

Predictors Estimates CI p 

(Intercept) 3.102 2.992 – 3.212 <0.001 

ASI at baseline -0.001 -0.007 – 0.004 0.615 

Age -0.003 -0.006 – -0.001 0.001 

Observations 639 
R2 / R2 adjusted 0.020 / 0.016 

 

 

B5b). Linear Regression Model Output Imaging Visit 2 

  LH Rostral Anterior Cingulate at Second Imaging Visit 

Predictors Estimates CI p 

(Intercept) 3.108 2.995 – 3.221 <0.001 

ASI at baseline -0.001 -0.006 – 0.005 0.845 

Age -0.004 -0.006 – -0.002 <0.001 

Observations 630 
R2 / R2 adjusted 0.025 / 0.022 
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B6. Right Hemisphere Rostral Anterior Cingulate Cortical Thickness 

B6a). Linear Regression Model Output Imaging Visit 1 

  RH Rostral Anterior Cingulate at First Imaging Visit 

Predictors Estimates CI p 

(Intercept) 2.973 2.862 – 3.084 <0.001 

ASI at baseline 0.003 -0.002 – 0.009 0.258 

Age -0.001 -0.003 – 0.001 0.302 

Observations 639 
R2 / R2 adjusted 0.003 / -0.000 

 

 

B6b). Linear Regression Model Output Imaging Visit 2 

  RH Rostral Anterior Cingulate at Second Imaging Visit 

Predictors Estimates CI p 

(Intercept) 2.948 2.837 – 3.059 <0.001 

ASI at baseline -0.001 -0.006 – 0.005 0.848 

Age -0.000 -0.002 – 0.002 0.779 

Observations 630 
R2 / R2 adjusted 0.000 / -0.003 
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B7. Left Hemisphere Rostral Middle Frontal Gyri Cortical Thickness 

B7a). Linear Regression Model Output Imaging Visit 1 

  LH Rostral Middle Frontal Gyri at First Imaging Visit  

Predictors Estimates CI p 

(Intercept) 3.076 3.005 – 3.147 <0.001 

ASI at baseline -0.001 -0.005 – 0.002 0.515 

Age -0.007 -0.008 – -0.006 <0.001 

Observations 639 
R2 / R2 adjusted 0.159 / 0.156 

 

 

B7b). Linear Regression Model Output Imaging Visit 2 

  LH Rostral Middle Frontal Gyri at Second Imaging Visit 

Predictors Estimates CI p 

(Intercept) 3.097 3.020 – 3.174 <0.001 

ASI at baseline -0.002 -0.006 – 0.002 0.343 

Age -0.008 -0.009 – -0.006 <0.001 

Observations 630 
R2 / R2 adjusted 0.164 / 0.162 
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B8. Right Hemisphere Rostral Middle Frontal Gyri Cortical Thickness 

B8a). Linear Regression Model Output Imaging Visit 1 

  RH Rostral Middle Frontal Gyri at First Imaging Visit 

Predictors Estimates CI p 

(Intercept) 2.976 2.912 – 3.040 <0.001 

ASI at baseline -0.000 -0.004 – 0.003 0.844 

Age -0.006 -0.008 – -0.005 <0.001 

Observations 639 
R2 / R2 adjusted 0.151 / 0.148 

 

 

B8b). Linear Regression Model Output Imaging Visit 2 

  RH Rostral Middle Frontal Gyri at Second Imaging Visit 

Predictors Estimates CI p 

(Intercept) 3.031 2.962 – 3.101 <0.001 

ASI at baseline -0.001 -0.005 – 0.002 0.457 

Age -0.008 -0.009 – -0.006 <0.001 

Observations 630 
R2 / R2 adjusted 0.183 / 0.180 
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B9. Left Hemisphere Superior Frontal Gyri Cortical Thickness 

B9a). Linear Regression Model Output Imaging Visit 1 

  LH Superior Frontal Gyri at First Imaging Visit 

Predictors Estimates CI p 

(Intercept) 3.451 3.376 – 3.526 <0.001 

ASI at baseline -0.004 -0.007 – 0.000 0.058 

Age -0.009 -0.010 – -0.007 <0.001 

Observations 639 
R2 / R2 adjusted 0.208 / 0.205 

 

 

B9b). Linear Regression Model Output Imaging Visit 2 

  LH Superior Frontal Gyri at Second Imaging Visit 

Predictors Estimates CI p 

(Intercept) 3.492 3.411 – 3.573 <0.001 

ASI at baseline -0.003 -0.007 – 0.001 0.151 

Age -0.010 -0.011 – -0.008 <0.001 

Observations 630 
R2 / R2 adjusted 0.229 / 0.227 
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B10. Right Hemisphere Superior Frontal Gyri Cortical Thickness 

B10a). Linear Regression Model Output Imaging Visit 1 

  RH Superior Frontal Gyri at First Imaging Visit 

Predictors Estimates CI p 

(Intercept) 3.324 3.255 – 3.394 <0.001 

ASI at baseline -0.001 -0.005 – 0.002 0.452 

Age -0.007 -0.009 – -0.006 <0.001 

Observations 639 
R2 / R2 adjusted 0.172 / 0.169 

 

 

B10b). Linear Regression Model Output Imaging Visit 2 

  RH Superior Frontal Gyri at Second Imaging Visit 

Predictors Estimates CI p 

(Intercept) 3.397 3.322 – 3.472 <0.001 

ASI at baseline -0.003 -0.007 – 0.000 0.088 

Age -0.009 -0.010 – -0.007 <0.001 

Observations 630 
R2 / R2 adjusted 0.217 / 0.214 
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B11. Left Hemisphere Superior Parietal Cortex Cortical Thickness 

B11a). Linear Regression Model Output Imaging Visit 1 

  LH Superior Parietal Cortex at First Imaging Visit 

Predictors Estimates CI p 

(Intercept) 2.792 2.722 – 2.863 <0.001 

ASI at baseline -0.002 -0.005 – 0.002 0.331 

Age -0.006 -0.007 – -0.004 <0.001 

Observations 639 
R2 / R2 adjusted 0.110 / 0.107 

 

 

B11b). Linear Regression Model Output Imaging Visit 2 

  LH Superior Parietal Cortex at Second Imaging Visit 

Predictors Estimates CI p 

(Intercept) 2.875 2.797 – 2.952 <0.001 

ASI at baseline -0.002 -0.006 – 0.002 0.244 

Age -0.007 -0.009 – -0.006 <0.001 

Observations 630 
R2 / R2 adjusted 0.153 / 0.150 
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B12. Right Hemisphere Superior Parietal Cortex Cortical Thickness 

B12a). Linear Regression Model Output Imaging Visit 1 

  RH Superior Parietal Cortex at First Imaging Visit 

Predictors Estimates CI p 

(Intercept) 2.789 2.716 – 2.861 <0.001 

ASI at baseline -0.002 -0.006 – 0.001 0.210 

Age -0.006 -0.007 – -0.005 <0.001 

Observations 639 
R2 / R2 adjusted 0.119 / 0.116 

 

B12b). Linear Regression Model Output Imaging Visit 2 

  RH Superior Parietal Cortex at Second Imaging Visit 

Predictors Estimates CI p 

(Intercept) 2.874 2.797 – 2.952 <0.001 

ASI at baseline -0.003 -0.007 – 0.001 0.098 

Age -0.008 -0.009 – -0.006 <0.001 

Observations 630 
R2 / R2 adjusted 0.168 / 0.165 
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B13. Left Hemisphere Inferior Parietal Cortex Cortical Thickness 

B13a). Linear Regression Model Output Imaging Visit 1 

  LH Inferior Parietal Cortex at First Imaging Visit  

Predictors Estimates CI p 

(Intercept) 3.000 2.933 – 3.068 <0.001 

ASI at baseline -0.004 -0.007 – -0.000 0.034 

Age -0.005 -0.006 – -0.004 <0.001 

Observations 639 
R2 / R2 adjusted 0.113 / 0.110 

 

 

B13b). Linear Regression Model Output Imaging Visit 2 

  LH Inferior Parietal Cortex at Second Imaging Visit 

Predictors Estimates CI p 

(Intercept) 3.075 3.003 – 3.146 <0.001 

ASI at baseline -0.004 -0.008 – -0.000 0.028 

Age -0.007 -0.008 – -0.005 <0.001 

Observations 630 
R2 / R2 adjusted 0.162 / 0.159 
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B14. Right Hemisphere Inferior Parietal Cortex Cortical Thickness 

B14a). Linear Regression Model Output Imaging Visit 1 

  RH Inferior Parietal Cortex at First Imaging Visit 

Predictors Estimates CI p 

(Intercept) 3.098 3.026 – 3.170 <0.001 

ASI at baseline -0.004 -0.007 – -0.000 0.049 

Age -0.006 -0.008 – -0.005 <0.001 

Observations 639 
R2 / R2 adjusted 0.143 / 0.140 

 

 

B14b). Linear Regression Model Output Imaging Visit 2 

  RH Inferior Parietal Cortex at Second Imaging Visit 

Predictors Estimates CI p 

(Intercept) 3.161 3.085 – 3.237 <0.001 

ASI at baseline -0.004 -0.008 – -0.000 0.028 

Age -0.008 -0.009 – -0.006 <0.001 

Observations 630 
R2 / R2 adjusted 0.183 / 0.181 
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B15. Left Hemisphere Superior Temporal Cortex Cortical Thickness 

B15a). Linear Regression Model Output Imaging Visit 1 

  LH Superior Temporal Cortex at First Imaging Visit 

Predictors Estimates CI p 

(Intercept) 2.792 2.722 – 2.863 <0.001 

ASI at baseline -0.002 -0.005 – 0.002 0.331 

Age -0.006 -0.007 – -0.004 <0.001 

Observations 639 
R2 / R2 adjusted 0.110 / 0.107 

 

 

B15b). Linear Regression Model Output Imaging Visit 2 

  LH Superior Temporal Cortex at Second Imaging Visit 

Predictors Estimates CI p 

(Intercept) 2.875 2.797 – 2.952 <0.001 

ASI at baseline -0.002 -0.006 – 0.002 0.244 

Age -0.007 -0.009 – -0.006 <0.001 

Observations 630 
R2 / R2 adjusted 0.153 / 0.150 
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B16. Right Hemisphere Superior Temporal Cortex Cortical Thickness 

B16a). Linear Regression Model Output Imaging Visit 1 

  RH Superior Temporal Cortex at First Imaging Visit 

Predictors Estimates CI p 

(Intercept) 2.789 2.716 – 2.861 <0.001 

ASI at baseline -0.002 -0.006 – 0.001 0.210 

Age -0.006 -0.007 – -0.005 <0.001 

Observations 639 
R2 / R2 adjusted 0.119 / 0.116 

 

 

B16b). Linear Regression Model Output Imaging Visit 2 

  RH Superior Temporal Cortex at First Imaging Visit 

Predictors Estimates CI p 

(Intercept) 2.874 2.797 – 2.952 <0.001 

ASI at baseline -0.003 -0.007 – 0.001 0.098 

Age -0.008 -0.009 – -0.006 <0.001 

Observations 630 
R2 / R2 adjusted 0.168 / 0.165 
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B17. Left Hemisphere Middle Temporal Lobe Cortical Thickness 

B17a). Linear Regression Model Output Imaging Visit 1 

  LH Middle Temporal Lobe at First Imaging Visit 

Predictors Estimates CI p 

(Intercept) 3.146 3.065 – 3.226 <0.001 

ASI at baseline -0.005 -0.009 – -0.001 0.014 

Age -0.004 -0.005 – -0.002 <0.001 

Observations 639 
R2 / R2 adjusted 0.054 / 0.051 

 

 

B17b). Linear Regression Model Output Imaging Visit 2 

  LH Middle Temporal Lobe at Second Imaging Visit 

Predictors Estimates CI p 

(Intercept) 3.179 3.094 – 3.264 <0.001 

ASI at baseline -0.004 -0.009 – 0.000 0.058 

Age -0.005 -0.007 – -0.003 <0.001 

Observations 630 
R2 / R2 adjusted 0.072 / 0.069 
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B18. Right Hemisphere Middle Temporal Lobe Cortical Thickness 

B18a). Linear Regression Model Output Imaging Visit 1 

  RH Middle Temporal Lobe at First Imaging Visit 

Predictors Estimates CI p 

(Intercept) 3.315 3.232 – 3.397 <0.001 

ASI at baseline -0.000 -0.005 – 0.004 0.869 

Age -0.006 -0.007 – -0.004 <0.001 

Observations 639 
R2 / R2 adjusted 0.086 / 0.083 

 

 

B18b). Linear Regression Model Output Imaging Visit 2 

  RH Middle Temporal Lobe at Second Imaging Visit 

Predictors Estimates CI p 

(Intercept) 3.338 3.254 – 3.421 <0.001 

ASI at baseline -0.002 -0.006 – 0.002 0.331 

Age -0.006 -0.008 – -0.005 <0.001 

Observations 630 
R2 / R2 adjusted 0.103 / 0.101 
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B19. Left Hemisphere Inferior Temporal Cortex Cortical Thickness 

B19a). Linear Regression Model Output Imaging Visit 1 

  LH Inferior Temporal Cortex at First Imaging Visit 

Predictors Estimates CI p 

(Intercept) 3.186 3.109 – 3.264 <0.001 

ASI at baseline -0.001 -0.005 – 0.003 0.539 

Age -0.002 -0.004 – -0.001 0.003 

Observations 639 
R2 / R2 adjusted 0.017 / 0.014 

 

 

B19b). Linear Regression Model Output Imaging Visit 2 

  LH Inferior Temporal Cortex at Second Imaging Visit 

Predictors Estimates CI p 

(Intercept) 3.236 3.157 – 3.315 <0.001 

ASI at baseline -0.002 -0.006 – 0.002 0.401 

Age -0.003 -0.005 – -0.002 <0.001 

Observations 630 
R2 / R2 adjusted 0.039 / 0.036 
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B20. Right Hemisphere Inferior Temporal Cortex Cortical Thickness 

B20a). Linear Regression Model Output Imaging Visit 1 

  RH Inferior Temporal Cortex at First Imaging Visit 

Predictors Estimates CI p 

(Intercept) 3.238 3.163 – 3.312 <0.001 

ASI at baseline -0.005 -0.008 – -0.001 0.018 

Age -0.003 -0.004 – -0.002 <0.001 

Observations 639 
R2 / R2 adjusted 0.047 / 0.044 

 

 

B20b). Linear Regression Model Output Imaging Visit 2 

  RH Inferior Temporal Cortex at Second Imaging Visit 

Predictors Estimates CI p 

(Intercept) 3.263 3.183 – 3.342 <0.001 

ASI at baseline -0.005 -0.009 – -0.001 0.012 

Age -0.004 -0.005 – -0.002 <0.001 

Observations 630 
R2 / R2 adjusted 0.059 / 0.056 
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B21. Left Hemisphere Parahippocampus Cortical Thickness 

B21a). Linear Regression Model Output Imaging Visit 1 

  LH Parahippocampus at First Imaging Visit  

Predictors Estimates CI p 

(Intercept) 2.890 2.724 – 3.056 <0.001 

ASI at baseline -0.008 -0.016 – 0.000 0.061 

Age -0.001 -0.004 – 0.003 0.722 

Observations 639 
R2 / R2 adjusted 0.007 / 0.004 

 

 

B21b). Linear Regression Model Output Imaging Visit 2 

  LH Parahippocampus at Second Imaging Visit 

Predictors Estimates CI p 

(Intercept) 2.995 2.826 – 3.165 <0.001 

ASI at baseline -0.004 -0.012 – 0.005 0.398 

Age -0.004 -0.007 – -0.000 0.024 

Observations 630 
R2 / R2 adjusted 0.012 / 0.009 
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B22. Right Hemisphere Parahippocampus Cortical Thickness 

B22a). Linear Regression Model Output Imaging Visit 1 

  RH Parahippocampus at First Imaging Visit  

Predictors Estimates CI p 

(Intercept) 2.866 2.725 – 3.006 <0.001 

ASI at baseline -0.002 -0.009 – 0.005 0.655 

Age -0.003 -0.005 – 0.000 0.055 

Observations 639 
R2 / R2 adjusted 0.007 / 0.004 

 

 

B22b). Linear Regression Model Output Imaging Visit 2 

  RH Parahippocampus at Second Imaging Visit  

Predictors Estimates CI p 

(Intercept) 2.971 2.832 – 3.111 <0.001 

ASI at baseline -0.007 -0.014 – 0.000 0.063 

Age -0.004 -0.007 – -0.001 0.004 

Observations 630 
R2 / R2 adjusted 0.025 / 0.022 
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B23. Left Hemisphere Lateral Occipital Lobe Cortical Thickness 

B23a). Linear Regression Model Output Imaging Visit 1 

  LH Lateral Occipital Cortex at First Imaging Visit 

Predictors Estimates CI p 

(Intercept) 2.496 2.424 – 2.569 <0.001 

ASI at baseline -0.002 -0.006 – 0.002 0.265 

Age -0.003 -0.004 – -0.002 <0.001 

Observations 639 
R2 / R2 adjusted 0.035 / 0.032 

 

 

B23b). Linear Regression Model Output Imaging Visit 2 

  LH Lateral Occipital Cortex at Second Imaging Visit 

Predictors Estimates CI p 

(Intercept) 2.555 2.479 – 2.630 <0.001 

ASI at baseline -0.001 -0.005 – 0.002 0.461 

Age -0.005 -0.006 – -0.003 <0.001 

Observations 630 
R2 / R2 adjusted 0.067 / 0.064 
  

 

  



M.Sc. Thesis – E.Y. Allison; McMaster University - Kinesiology                     239 

 

 

 

 

 

B24. Right Hemisphere Lateral Occipital Lobe Cortical Thickness 

B24a). Linear Regression Model Output Imaging Visit 1 

  RH Lateral Occipital Cortex at First Imaging Visit 

Predictors Estimates CI p 

(Intercept) 2.530 2.449 – 2.610 <0.001 

ASI at baseline 0.000 -0.004 – 0.004 0.913 

Age -0.003 -0.005 – -0.002 <0.001 

Observations 639 
R2 / R2 adjusted 0.031 / 0.028 

 

 

B24b). Linear Regression Model Output Imaging Visit 2 

  RH Lateral Occipital Cortex at Second Imaging Visit 

Predictors Estimates CI p 

(Intercept) 2.561 2.481 – 2.641 <0.001 

ASI at baseline -0.001 -0.005 – 0.004 0.788 

Age -0.004 -0.006 – -0.003 <0.001 

Observations 630 
R2 / R2 adjusted 0.046 / 0.043 
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B25. Left Hemisphere Posterior Cingulate Cortical Thickness 

B25a). Linear Regression Model Output Imaging Visit 1 

  LH Posterior Cingulate at First Imaging Visit 

Predictors Estimates CI p 

(Intercept) 2.915 2.819 – 3.011 <0.001 

ASI at baseline 0.001 -0.004 – 0.006 0.764 

Age -0.004 -0.006 – -0.003 <0.001 

Observations 639 
R2 / R2 adjusted 0.035 / 0.032 

 

 

B25b). Linear Regression Model Output Imaging Visit 2 

  LH Posterior Cingulate at Second Imaging Visit 

Predictors Estimates CI p 

(Intercept) 2.907 2.807 – 3.006 <0.001 

ASI at baseline 0.003 -0.002 – 0.008 0.261 

Age -0.005 -0.007 – -0.003 <0.001 

Observations 630 
R2 / R2 adjusted 0.041 / 0.038 
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B26. Right Hemisphere Posterior Cingulate Cortical Thickness 

B26a). Linear Regression Model Output Imaging Visit 1 

  RH Posterior Cingulate at First Imaging Visit 

Predictors Estimates CI p 

(Intercept) 2.902 2.797 – 3.006 <0.001 

ASI at baseline 0.000 -0.005 – 0.005 0.955 

Age -0.004 -0.006 – -0.002 <0.001 

Observations 639 
R2 / R2 adjusted 0.023 / 0.020 

 

 

B26b). Linear Regression Model Output Imaging Visit 2 

  RH Posterior Cingulate at Second Imaging Visit 

Predictors Estimates CI p 

(Intercept) 2.862 2.757 – 2.967 <0.001 

ASI at baseline -0.003 -0.009 – 0.002 0.237 

Age -0.003 -0.005 – -0.001 0.004 

Observations 630 
R2 / R2 adjusted 0.020 / 0.017 
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B27. Whole Brain Grey Matter Volume 

B27a). Linear Regression Model Output Imaging Visit 1 

  
GMV at first imaging 

visit 

Predictors Estimates CI p 

(Intercept) 1013.081 991.947 – 1034.215 <0.001 

ASI at baseline -1.330 -2.401 – -0.259 0.015 

Age -3.687 -4.087 – -3.287 <0.001 

Observations 650 
R2 / R2 adjusted 0.373 / 0.371 

 

 

B27b). Linear Regression Model Output Imaging Visit 2 

  
GMV at second imaging 

visit 

Predictors Estimates CI p 

(Intercept) 1006.801 986.206 – 1027.397 <0.001 

ASI at baseline -1.153 -2.197 – -0.109 0.030 

Age -3.791 -4.181 – -3.401 <0.001 

Observations 650 
R2 / R2 adjusted 0.394 / 0.393 
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B28. White Matter Hyperintensity Volume 

B28a). Linear Regression Model Output Imaging Visit 1 

  
WMH at first imaging 

visit 

Predictors Estimates CI p 

(Intercept) -8.015 -10.213 – -5.817 <0.001 

ASI at baseline 0.043 -0.068 – 0.155 0.446 

Age 0.214 0.173 – 0.256 <0.001 

Observations 650 
R2 / R2 adjusted 0.151 / 0.149 

 

 

B28b). Linear Regression Model Output Imaging Visit 2 

  
WMH at second imaging 

visit 

Predictors Estimates CI p 

(Intercept) -10.109 -12.885 – -7.332 <0.001 

ASI at baseline 0.124 -0.016 – 0.265 0.083 

Age 0.253 0.201 – 0.306 <0.001 

Observations 650 
R2 / R2 adjusted 0.144 / 0.142 
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B29. Digit Symbol Substitution Test Performance 

B29a). Linear Regression Model Output Imaging Visit 1 

  
DSST at first imaging 

visit 

Predictors Estimates CI p 

(Intercept) 31.528 28.582 – 34.473 <0.001 

ASI at baseline 0.021 -0.130 – 0.173 0.782 

Age -0.219 -0.275 – -0.163 <0.001 

Observations 511 
R2 / R2 adjusted 0.109 / 0.106 

 

 

B29b). Linear Regression Model Output Imaging Visit 2 

  
DSST at second imaging 

visit 

Predictors Estimates CI p 

(Intercept) 34.765 31.851 – 37.680 <0.001 

ASI at baseline 0.029 -0.120 – 0.177 0.706 

Age -0.284 -0.339 – -0.229 <0.001 

Observations 619 
R2 / R2 adjusted 0.149 / 0.146 
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B30. Trail Making Test Part A Performance 

B30a). Linear Regression Model Output Imaging Visit 1 

  
TmA at first imaging 

visit 

Predictors Estimates CI p 

(Intercept) 121.688 78.471 – 164.904 <0.001 

ASI at baseline -0.419 -2.626 – 1.788 0.709 

Age 1.705 0.883 – 2.527 <0.001 

Observations 515 
R2 / R2 adjusted 0.032 / 0.029 

 

 

B30b). Linear Regression Model Output Imaging Visit 2 

  TmA at second imaging 
visit 

Predictors Estimates CI p 

(Intercept) 36.148 -15.888 – 88.185 0.173 

ASI at baseline -1.411 -4.070 – 1.248 0.298 

Age 3.596 2.611 – 4.581 <0.001 

Observations 634 
R2 / R2 adjusted 0.076 / 0.073 
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B31. Trail Making Test Part B Performance 

B31a). Linear Regression Model Output Imaging Visit 1 

  
TmB at first imaging 

visit 

Predictors Estimates CI p 

(Intercept) 194.465 60.150 – 328.779 0.005 

ASI at baseline -4.062 -10.922 – 2.798 0.245 

Age 6.627 4.072 – 9.182 <0.001 

Observations 515 
R2 / R2 adjusted 0.048 / 0.045 

 

 

B31b). Linear Regression Model Output Imaging Visit 2 

  
TmB at second imaging 

visit 

Predictors Estimates CI p 

(Intercept) 64.800 -81.880 – 211.480 0.386 

ASI at baseline 1.799 -5.696 – 9.294 0.638 

Age 8.209 5.431 – 10.987 <0.001 

Observations 634 
R2 / R2 adjusted 0.057 / 0.054 
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B32. Fluid Intelligence Test Performance 

B32a). Linear Regression Model Output Imaging Visit 1 

  
Fluid Intelligence at 

first imaging visit 

Predictors Estimates CI p 

(Intercept) 6.355 5.116 – 7.593 <0.001 

ASI at baseline -0.029 -0.093 – 0.034 0.368 

Age 0.013 -0.011 – 0.036 0.296 

Observations 559 
R2 / R2 adjusted 0.003 / -0.001 

 

 

B32b). Linear Regression Model Output Imaging Visit 2 

  Fluid Intelligence at 
second imaging visit 

Predictors Estimates CI p 

(Intercept) 7.536 6.372 – 8.700 <0.001 

ASI at baseline -0.011 -0.071 – 0.048 0.709 

Age -0.013 -0.035 – 0.009 0.250 

Observations 621 
R2 / R2 adjusted 0.003 / -0.000 
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B33. Numeric Memory Test Performance 

B33a). Linear Regression Model Output Imaging Visit 1 

  
Numeric Memory at first 

imaging visit 

Predictors Estimates CI p 

(Intercept) 7.722 6.782 – 8.662 <0.001 

ASI at baseline -0.022 -0.070 – 0.026 0.364 

Age -0.014 -0.032 – 0.004 0.120 

Observations 518 
R2 / R2 adjusted 0.008 / 0.004 

 

 

B33b). Linear Regression Model Output Imaging Visit 2 

  
Numeric Memory at second 

imaging visit 

Predictors Estimates CI p 

(Intercept) 8.098 7.147 – 9.049 <0.001 

ASI at baseline -0.025 -0.074 – 0.023 0.307 

Age -0.023 -0.041 – -0.005 0.013 

Observations 634 
R2 / R2 adjusted 0.015 / 0.011 
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B34. Pairs Matching Test Performance 

B34a). Linear Regression Model Output Imaging Visit 1 

  
Pairs Matching at first 

imaging visit 

Predictors Estimates CI p 

(Intercept) 0.657 -1.017 – 2.331 0.441 

ASI at baseline -0.093 -0.178 – -0.007 0.034 

Age 0.069 0.037 – 0.101 <0.001 

Observations 564 
R2 / R2 adjusted 0.033 / 0.029 

 

 

B34b). Linear Regression Model Output Imaging Visit 2 

  
Pairs Matching at second 

imaging visit 

Predictors Estimates CI p 

(Intercept) 1.609 0.049 – 3.170 0.043 

ASI at baseline 0.031 -0.048 – 0.111 0.438 

Age 0.026 -0.004 – 0.055 0.087 

Observations 634 
R2 / R2 adjusted 0.007 / 0.004 

 


