
ENCODING THE CLOCK CYCLE SEMANTICS OF BSV IN PVS

AN ENCODING OF THE CLOCK CYCLE SEMANTICS OF BLUESPEC
SYSTEMVERILOG IN PVS

By NICHOLAS CLIFFORD CHARLES MOORE B.Eng.

A Thesis Submitted to the School of Graduate Studies in Partial
Fulfillment of the Requirements for the Degree Doctor of Philosophy

McMaster University © Copyright by Nicholas Clifford Charles Moore,
September 2022

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

McMaster University DOCTOR OF PHILOSOPHY (2022) Hamilton, On-
tario (Software Engineering)

TITLE: An Encoding of the Clock Cycle Semantics of Bluespec SystemVer-
ilog in PVS AUTHOR: Nicholas Clifford Charles Moore, B.Eng. (McMaster
University) SUPERVISOR: M. Lawford NUMBER OF PAGES: xiv, 229

ii

ABSTRACT

The invention of Hardware Description Languages has given hardware design-
ers access to powerful methods of abstraction and organization, previously
only available to software developers.

A high-powered means of examining properties such as reliability, correct-
ness and safety is the creation of formal, mathematical proofs of correctness.
One approach to this is the modelling of the artifact in the logic of some de-
ductive system, such as the higher order logic of the Prototype Verification
System (PVS). The ambition of this work is to demonstrate a mechanism by
which a class of hardware descriptions may be used to generate such models
automatically. We further demonstrate the utility of said models, using them
to demonstrate non-trivial correctness properties. We also present a method
of generating hardware descriptions, logical models, and proofs from a class
of tabular specifications.

The language on which this method operates is Bluespec SystemVerilog
(BSV), a high-level hardware description language notable for its elegant se-
mantics. The target platform of our translation is the Prototype Verification
System (PVS), which features a highly automatic theorem-proving system.
The translation algorithm is discussed at length, including the reconciliation
of BSV’s action-oriented semantic and the Kripke semantics employed by our
chosen model in PVS.

Five case studies demonstrate our methodology. In studies one and
two, function blocks of the International Electrotechnical Commission (IEC)
61131-3 Annex F library are verified against tabular specifications, or gen-
erated from the same. The remaining case studies are based on the Shakti
RISC-V implementation of the RapidIO subsystem. Our final case study
demonstrates progress towards the verification of highly abstract and com-
plex properties over the entire translatable subset of the RapidIO library.

CONTENTS

1. Introduction . 1
1.1 Motivation . 1
1.2 Overview of Verification Methodology 5

1.2.1 BSV to PVS . 5
1.2.2 Tabular Expressions to BSV and PVS 6

1.3 Contributions . 8
1.3.1 Publications . 9

1.4 Related Work . 9
1.4.1 Verification Work on Bluespec Designs 10
1.4.2 Other Projects of Interest 13

1.5 Organization of the Thesis . 15

2. Preliminaries . 17
2.1 Bluespec SystemVerilog . 17

2.1.1 The Bluespec Language at a Glance 18
2.1.2 A More Detailed Semantic Overview of a Bluespec

Package . 20
2.1.3 Logical Abstraction of Bluespec Modules 22

2.2 Prototype Verification System 23
2.2.1 Constructing Theorems in PVS 24
2.2.2 Antecedents . 25
2.2.3 Consequents . 27
2.2.4 Using the PVS Interactive Proof Environment 27
2.2.5 Automatic Deduction on Functional Requirement Se-

quents . 28
2.2.6 Automatic Deduction on Consistency Sequents 28

2.3 A Previous Monadic Embedding 30
2.4 RISC V and RapidIO . 31

2.4.1 RISC-V . 32

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

2.4.2 The Shakti Project . 33
2.4.3 The RapidIO Interconnect Framework 34

2.5 Extended Backus Naur Form 34
2.6 Primer on Haskell and the Haskell Type System 35

2.6.1 Haskell Type System Primer 35
2.6.2 The Anatomy of a Haskell Function 36

2.7 Tabular Specifications . 38
2.7.1 Disjointness . 39
2.7.2 Completeness . 39
2.7.3 Complications . 39

3. Definition and Parsing of our Subset of BSV 41
3.1 Defining a Grammar for BSV 41

3.1.1 BSV Types . 44
3.1.2 Literals . 46
3.1.3 Identifiers . 48
3.1.4 Expressions . 49
3.1.5 Statements . 53
3.1.6 Intra-module Interfaces 55
3.1.7 State Declaration . 57
3.1.8 Action Declaration . 59
3.1.9 Rule Declaration . 61
3.1.10 Method Body Declaration 63
3.1.11 Module Level Grammar 65
3.1.12 Default Instance Declaration 68
3.1.13 Function Declaration 70
3.1.14 Type Definition . 71
3.1.15 Constant Declaration 73
3.1.16 Interface Declaration 74
3.1.17 Import Declaration . 77
3.1.18 Include Declaration . 78
3.1.19 Package Level Grammar 79

3.2 Data Structures Supporting an Abstract Syntax for a PVS
Embedding . 82
3.2.1 PVS Package . 83
3.2.2 PVS Constant Declaration and Type Definition 84
3.2.3 PVS State Declaration 84
3.2.4 PVS Transitions . 85

v

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

3.2.5 Transition Trees . 87
3.2.6 Functions . 88
3.2.7 Instance Definitions . 89

3.3 A Grammar for PVS Output Files 89
3.4 A Treatment of Tabular Specifications 90

3.4.1 Tabular Specification Grammar 90
3.4.2 Tabular Specification Abstract Syntax 91
3.4.3 A Note on Generation 93

3.5 Conclusion . 93

4. Deriving State Interactions from BSV Action Arbitration Semantics 94
4.1 BSV Semantics . 94

4.1.1 The BSV Transition System 95
4.1.2 Arbitration . 96
4.1.3 Wire and FIFO Semantics 99

4.2 An Arbitration Algorithm . 101
4.2.1 A Running Example 101
4.2.2 The Determination of Conflicts 105
4.2.3 Conflict Resolution using Rules of Precedence 108
4.2.4 Generating a Universal Schedule 113
4.2.5 State-Oriented Universal Schedule Interpretation . . . 119
4.2.6 Comparison to Richards and Lester Method 122

4.3 Optimizations Addressing Scalability 126
4.3.1 Tree Simplification via If Expression Observations . . . 126
4.3.2 Module Hierarchy Action Set Refinement 126
4.3.3 Action Merger via Schedule Independence Checking . . 127
4.3.4 Top Level Methods and Schedule Indexing 128

4.4 Conclusion . 129

5. Proving the Correctness of BSV Implementations 130
5.1 Refinement via Timing Simulation 130
5.2 Using Tabular Specifications to Construct Theorems 131
5.3 Proofs of Consistency . 134

6. Case Studies . 136
6.0.1 Introduction to RISC-V and RapidIO 136

6.1 The Limits Alarm Function Block 139
6.1.1 The Hysteresis Function Block 139

vi

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

6.1.2 The Limits Alarm Function Block 142
6.1.3 Constructing the Proof Sequent 144
6.1.4 Proving the Proof Sequent 147

6.2 Alarm Int and Automatic Generation using Tabular Specifi-
cations . 147
6.2.1 Encoding in PVS . 148
6.2.2 Resultant BSV Description 150
6.2.3 Generation of Proofs of Correctness and Consistency . 152

6.3 RapidIO Read/Write Size and Word Pointer Decoder Module 154
6.3.1 Formalization of the RISC-V Specification 155
6.3.2 Application to Shakti and the Translation Process . . . 157
6.3.3 Generating a Proof of Correctness 157
6.3.4 Proving the Sequent 158
6.3.5 Limitations of this Case Study 159

6.4 RapidIO Read Size and Word Pointer Encoder Module 159
6.4.1 Objective . 159
6.4.2 Formalization of the RISC-V Specification 160
6.4.3 Performing the Translation 160
6.4.4 Formalization of the RISC-V Specification 160
6.4.5 Derivation of a Theorem 168
6.4.6 Proving The Sequent 169
6.4.7 In Conclusion . 170

6.5 Progress Towards RapidIO Transaction ID Echoing 171
6.5.1 The Problem Attempted 171
6.5.2 Derivation of a Formal Property 171
6.5.3 Translator Configuration 176
6.5.4 Current State of the Translation 176

7. Conclusion . 179
7.1 Summary of Empirical Data 179

7.1.1 Translation Software 179
7.2 Applicability of Work . 180
7.3 Alternative Approaches . 182
7.4 Updates Regarding Recent Software Releases 183

7.4.1 Open Source Bluespec Compiler Release 183
7.5 Future Work . 184

7.5.1 Other Pragmas . 185
7.5.2 Type Classes and Type Class Declarations 185

vii

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

7.5.3 Parameterized Modules 185
7.6 Summary of Contributions . 185

Appendix 197

A. BAPIP: A BSV-to-PVS Translator 198
A.1 Translator Architecture . 198

A.1.1 Organization of PVS Output 200
A.2 Prerequisites . 200

A.2.1 Installation of Bluespec SystemVerilog 201
A.2.2 Installation and Configuration of PVS 202
A.2.3 Compile-time Requirements 203

A.3 Unmodelled Behaviours . 204
A.3.1 Other Pragmas . 204
A.3.2 Type Classes and Type Class Declarations 204
A.3.3 Parameterized Modules 204

A.4 Operational Instructions . 204
A.4.1 User Specification of Top-Level Method Invocations . . 205

B. Full Code Listing for BAPIP Translation Tool 207
B.1 Haskell Source Files . 207

B.1.1 BAPIP.hs . 207
B.1.2 BSV2PVS.hs . 207
B.1.3 BSVGenerator.hs . 207
B.1.4 BSVLexer.hs . 207
B.1.5 ConflictSolver.hs . 207
B.1.6 HEXLexer.hs . 207
B.1.7 LexerTypes.hs . 207
B.1.8 LiteralLexer.hs . 207
B.1.9 MacroProcessor.hs . 207
B.1.10 PVS2BSV.hs . 207
B.1.11 PVSGenerator.hs . 207
B.1.12 SourceFiles.hs . 207
B.1.13 TSP2BSV.hs . 207
B.1.14 TSPLexer.hs . 207

viii

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

C. Full Code Listing for Traffic Signals Example 208
C.1 BSV Source Files . 208

C.1.1 TrafficSignals.bsv . 208
C.2 Generated PVS Files . 210

C.2.1 TypeDefinitions.pvs . 210
C.2.2 State.pvs . 211
C.2.3 Methods.pvs . 212
C.2.4 Transitions.pvs . 213
C.2.5 TrafficSignals.pvs . 215

D. Full Code Listing for Limits Alarm Case Study 218
D.1 BSV Source Files . 218

D.1.1 LIMITS ALARM.bsv 218
D.1.2 HYSTERESIS.bsv . 218

D.2 Generated PVS Files . 218
D.2.1 TypeDefinitions.pvs . 218
D.2.2 State.pvs . 218
D.2.3 Transitions.pvs . 218
D.2.4 LIMITS ALARM.pvs 218

D.3 PVS Proof File . 218
D.3.1 LIMITS ALARM.prf 218

E. Full Code Listing for Alarm Int Case Study 219
E.1 TSP Source File . 219

E.1.1 ALRM INT.tsp . 219
E.2 Generated BSV File . 219

E.2.1 Alrm int.bsv . 219
E.3 Generated PVS Files . 219

E.3.1 TypeDefinitions.pvs . 219
E.3.2 State.pvs . 219
E.3.3 Methods.pvs . 219
E.3.4 Transitions.pvs . 219
E.3.5 mkAlrm int.pvs . 219

F. Full Code Listing for RapidIO Decoder Case Study 220
F.1 BSV Source Files . 220

F.1.1 RapidIO.defines . 220
F.1.2 RapidIO DTypes.bsv 220

ix

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

F.1.3 RapidIO RegisterFile Offset.defines 220
F.1.4 RapidIO TgtDecoder ByteCnt ByteEn.bsv 220

F.2 Generated PVS Files . 220
F.2.1 TypeDefinitions.pvs . 220
F.2.2 RapidIO TgtDecoder ByteCnt ByteEn.pvs 220

F.3 PVS Proof File . 220
F.3.1 RapidIO TgtDecoder ByteCnt ByteEn.prf 220

G. Full Code Listing for RapidIO Encoder Case Study 221
G.1 BSV Source Files . 221

G.1.1 RapidIO.defines . 221
G.1.2 RapidIO DTypes.bsv 221
G.1.3 RapidIO InitEncoder WdPtr Size.bsv 221

G.2 Generated PVS Files . 221
G.2.1 TypeDefinitions.pvs . 221
G.2.2 State.pvs . 221
G.2.3 Methods.pvs . 221
G.2.4 Transitions.pvs . 221
G.2.5 RapidIO InitEncoder WdPtr Size.pvs 221

G.3 PVS Proof File . 221
G.3.1 RapidIO InitEncoder WdPtr Size.prf 221

H. Full Code Listing for RapidIO Transaction ID Case Study 222
H.1 BSV Source Files . 222

H.1.1 RapidIO InComingPkt Separation.bsv 222
H.1.2 RapidIO IOPkt Concatenation.bsv 222
H.1.3 RapidIO IOPkt Generation.bsv 222
H.1.4 RapidIO MainCore.bsv 222
H.1.5 RapidIO PktTransportParse.bsv 222
H.1.6 RapidIO RxPktFTypeAnalyse.bsv 222
H.1.7 RapidIO TargetReqIFC.bsv 222
H.1.8 RapidIO TargetRespIFC.bsv 222

I. Included PVS Library Files . 223
I.1 PVS Files . 223

I.1.1 ClockTick.pvs . 223
I.1.2 defined operators.pvs 223
I.1.3 monad.pvs . 223

x

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

I.1.4 Time.pvs . 223
I.1.5 arith bitwise.pvs . 223

xi

LIST OF FIGURES

1.1 BAPIP - BSV2PVS mode toolchain 6
1.2 BAPIP - TSP2BSV and TSP2PVS mode toolchains 7

2.1 State Transition Diagram for a Stoplight 18

3.1 BSV Grammar Hierarchy Diagram 43

4.1 A 2x1 Multiplexer . 94
4.2 Intersection Signal System Overview 103
4.3 Intersection Example Conflict Graph 107
4.4 Intersection Example Partially Ordered Set 117
4.5 Intersection Example Universal Schedule 118

6.1 Hysteresis behaviour of a home furnace 140
6.2 Implementation in STL of Hysteresis Block (Pang et al., 2015) 141
6.3 Hysteresis behaviour of a home furnace 141
6.4 Limits Alarm Tabular Specifications for QH, QL, and Q outputs143
6.5 Limits Alarm Tabular Specification for Integer Variant of QH 144
6.6 Specifications for ALRM INT function block, as published in

(IEC, 2013) . 148
6.7 Shakti RISC-V Module Hierarchy Diagram 172
6.8 Flow of Data Through Parsing 174
6.9 Flow of Data Through Concatenation 175

A.1 Expanded Bluespec And Prototype Verification System (PVS)
Interlanguage Processor (BAPIP) Architectural Overview . . . 199

LIST OF TABLES

2.1 EBNF reference table . 34

4.1 Scheduling Implications for FIFO Method Invocations (Blue-
spec Inc., 2012a) . 110

6.1 Integer Alarm - Tabular Expressions for hi, lo, and alrm int 149
6.2 Table 4-3 from (RapidIO.org, 2017) 155
6.3 Table 4-3 from (RapidIO.org, 2017) slightly rearranged 161
6.4 Packet Types and Transaction ID Bit Ranges 173

7.1 BAPIP Source Code Statistics 180
7.2 BAPIP Case Study Statistics 181

A.1 Output files produced by BAPIP 200
A.2 Associated PVS libraries automatically generated 201
A.3 List of Haskell Library Dependencies 203

LIST OF ACRONYMS

ASIC Application Specific Integrated Circuit. 9

BAPIP Bluespec And PVS Interlanguage Processor. 3, 6, 7, 11, 22, 25, 29,
31, 34, 44, 62, 83, 90, 93, 98, 109, 111, 117, 131, 132, 136, 139, 147, 152,
154, 157, 159, 160, 170, 171, 178, 179, 181, 182, 184, 187–191, 193–196,
212

BSV Bluespec SystemVerilog. 3–12, 15–23, 31, 33, 34, 41, 42, 44–46, 48–50,
53, 57, 62, 63, 66–68, 70, 71, 73, 74, 77, 79, 81–86, 88–91, 93–102,
105–107, 109, 112, 114–117, 120, 121, 123, 124, 126–128, 130, 131, 136,
138, 139, 142, 146, 147, 150, 152, 154, 157, 175, 179–182, 184, 185, 187,
188, 190–194

CISC Complex Instruction Set Computer. 32, 137

CPU Central Processing Unit. 32, 137

DSL Domain Specific Language. 184

EBNF Extended Backus Naur Form. 17, 34, 35, 41

FIFO First-In-First-Out Buffer. 190

FPGA Field Programmable Gate Array. 9, 12

GHC the Glorious Glasgow Haskell Compiler. 192

HDL Hardware Description Language. 8, 20

HOL Higher Order Logic. 4

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

IEC International Electrotechnical Commission. iii, 16, 131

ISA Instruction Set Architecture. 32, 33, 137, 138

PLC Programmable Logic Controller. 11, 12, 140

PVS Prototype Verification System. 3–13, 15, 16, 23–25, 27–30, 34, 39, 41,
44, 48, 49, 71, 82–86, 88–91, 93, 118, 120, 121, 125, 126, 128–130, 134,
139, 144, 147, 152, 157–160, 162, 166, 167, 181–183, 185, 187–191, 193,
194, 212

RISC Reduced Instruction Set Computer. 32, 137

SBCL Steel Bank Common Lisp. 158, 191

SBV SMT-based verification in Haskell. 106, 183

SMT Satisfiability Modulo Theory. 4, 106, 107

TSP PVS Tabular Specification file format. 90, 91, 188

UML Unified Modelling Language. 11

VHDL VHSIC Hardware Description Language. 4, 12, 13, 65, 181, 182

xv

1. INTRODUCTION

In this chapter, we will provide motivation for the work in §1.1, followed by
an overview of the work in §1.2, an overview of the contributions of this work
to the state of the art in §1.3, and finally, we will discuss the outline of the
thesis.

1.1 Motivation

As hardware design complexity has increased with the lifting of constraints
related to design abstraction and prototyping, so too has the effort required to
verify hardware designs. Formal methodologies have been adopted in a wide
variety of industrial applications since the 1990s (Fitzgerald et al., 2013).
There are many disparate formal techniques employed in industry (model
checking, formal proof, and code generation, for example) across a broad do-
main of industries (Transport, Telecom, Nuclear, etc.), fulfilling an equally
broad domain of applications (Controls Engineering, Distributed Computing,
and Hardware Design, to name a few). Fitzgerald et al. indicate an overall
positive response among the applications surveyed in (Fitzgerald et al., 2013),
supporting the investigation of further applications of formal methods, and
formal methods tool support. Fitzgerald et al. surveyed 62 industrial appli-
cations of formal methods, including projects within the transport, finance,
defence, telecommunications, and office administration sectors. In particu-
lar, those surveyed expressed a desire for simplified and integrated toolchains
for the deployment of formal methods, with a greater degree of usability, and
reduced operational time. The purpose of the project presented herein is to
address these two concerns, within the chosen domain of application.

However, despite the increasing use of formal methods, software testing
is still the primary means of software and hardware verification. The test-
ing process roughly consists of providing strategically selected inputs to the
module under test, and the comparison of the produced results to expected
results. While widespread and eminently practical, it suffers from a funda-

1

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

mental, mathematical problem. Exhaustive testing is practically impossible
for complex systems. That is to say, in order to determine whether a module
is correct for every possible input, one would need to test every single input.
Further, for modules which hold state, one would need to test every possible
input in every possible sequence of inputs. Fortunately, in most cases, not
every input needs to be tested. While all tests provide information on a sys-
tem’s correctness or performance, large sets of unique test cases may reveal
the same information about the system under test, and exhaustively testing
all such cases is a poor use of resources. In addition, determining a set of
tests to reveal the maximum amount of information about the correctness
of a system is nontrivial, and normally requires at least some knowledge of
the internal structure of the system, to ensure that tests fully cover all be-
haviours of the system under test. When heuristics are employed to reduce
the number of test cases to a manageable size, there can be no guarantee
that meaningful test cases have not been dropped by the heuristic. Essen-
tially, it is always possible, however unlikely, for a discounted test case to
expose a bug hitherto unknown, as unpredictable behaviour is an emergent
property of sufficiently complex systems (Lorenz, 1995). As a demonstration
of the impracticality of exhaustive testing, let us imagine we have a module
that takes as input 8 bytes of data. This results in 1.84× 1019 possible con-
crete input values. If we generously assume we can test one million cases per
second, it would take over five hundred thousand years to exhaustively test
every possible arrangement of memory. Not only is this a very long time for
a very small program, but each bit we add to the input doubles this value.
This is commonly known as the state explosion problem. Although software
testing can provide high levels of confidence, there is always the spectre of
the untested catastrophic failure case that, however remote the possibility,
cannot be discounted completely.

However, formal methods cannot provide the mythical 100% guarantee of
correctness (as some advocates claim, according to (Hall, 1990)). While clos-
ing the gap between formal models and the programs they represent remains
an active area of research, even with respect to Bluespec SystemVerilog (Choi
et al., 2017), there is a problem inherent to modelling itself. That is, any-
thing proven for a model is only proven for the model. For example, classical
mechanics are a series of mathematical models of the motion of objects. It
should not be claimed that these models predict with 100% accuracy the
motion of all objects in the universe. Many more models have been created
over the course of the development of physics as a science, which supplement

2

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

our understanding of motion, to bring that understanding more in line with
the behaviour of objects. Formal methods do a similar thing with hardware
and software. The key question is not, is our formal model 100% accurate to
the behaviour of the physical system, but, is our model accurate enough for
the conclusions we draw to be largely applicable to the underlying physical
system.

In this work, we make the argument that the hardware model in the
Bluespec language is sufficient to demonstrate useful properties on examples
that are large enough to be of practical value, as demonstrated by our case
studies. We also delineate where our current understanding of the physi-
cal behaviour of Bluespec derived hardware breaks down, and where more
refinement would be necessary to demonstrate more advanced properties.

In general, mathematical proof generally begins with the modelling of
the system under examination as a set of axioms (such as those of set theory
and propositional logic), predicates and propositions in first order or higher
order logic. The property the user is interested in is also expressed as a
logical theorem, and the user then attempts to demonstrate, by means of in-
ductive and/or deductive reasoning that the conclusion may be reached from
the given premises. The production of mathematical proof requires a high
degree of mathematical skill and training, and a great deal of effort, which
significantly contributes to the lack of proliferation of formal mathematical
proof employed in private-sector software and hardware development.

Modern formal verification is performed using software tools which reduce
the effort required to produce proofs of correctness. The purpose of this
thesis is to present one such tool, developed by the author, which reduces the
verification effort required to demonstrate the validity of hardware designs.

The intention of the work herein presented is to demonstrate a novel
means of verifying hardware components via formal mathematical proof.
These hardware components must first be expressed in the language Blue-
spec SystemVerilog (BSV) (Nikhil, 2004). Using the purpose-built program
BAPIP, hardware descriptions encoded in Bluespec SystemVerilog (BSV)
are translated by means of logical model extraction and static analysis into
PVS (Owre et al., 1992). Once encoded in the higher order logic of PVS,
verification theorems represented as logic sequents may be proven using the
PVS theorem prover.

This work documents the author’s progress towards the problem of auto-
matic formal verification of hardware descriptions written in Bluespec System
Verilog (BSV). BSV was selected as a language for several reasons. First, its

3

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

design philosophy and origin as a library of the functional language Haskell
(Hudak and Fasel, 1992) set it apart as one of only a handful of hardware lan-
guages based in the functional paradigm (Chen, 2012). The guarantees made
about the atomicity of transactions, and a state-machine approach enforced
at a syntactic level lend BSV to formal modelling and reasoning much more
easily than the majority market-share languages, such as VHSIC Hardware
Description Language (VHDL) and Verilog.

PVS was selected as a modelling environment due to the power and re-
liability of its automatic deduction strategies, and because PVS was used
by our predecessors in this field, Richards and Lester Richards and Lester
(2011), who published a methodology for the embedding of BSV descriptions
in PVS which largely preserved the syntactic structure of the original BSV.
The original embedding by Richards achieved a high degree of similarity be-
tween parts of his BSV and PVS code through the use of monads in PVS
Richards (2011b). While the use of monads necessitates the use of a theorem
prover with higher-order logic capabilities, the choice of PVS by Richards
is not well motivated. Yices integration and Satisfiability Modulo Theory
(SMT) solving is cited as a point in PVS’s favour, but this functionality goes
unused in Richards’ work. Only one other automated proof tools making use
of higher order logic cited by Richards and Higher Order Logic (HOL) (Gor-
don and Melham, 1993) and Isabella (Wenzel et al., 2008), but no reason is
given for preferring PVS. In particular, Coq seems a natural choice (Bertot,
2008), and is popular among related work, but is only mentioned as a “type
theory tool” (Richards, 2011b) in related work. Early versions of the work
presented here sought to automate Richards’ manual translation, so PVS
was selected by this choice in the project’s earliest phases. As the project
evolved and departed from Richards’ embedding, the monadic aspect was
also dropped, but enough work had gone into PVS as the target language of
translation that this choice was upheld. The project only began to push on
what is possible in PVS in its latest phases (see §6.5), at which point switch-
ing to another tool was infeasible. PVS does indeed have many qualities to
recommend it, including a highly legible specification language, counterex-
ample generation, and highly automatic deductive strategies. Further, the
translator has been modularily designed, so that the translation given could
in theory be modified to support several theorem proving engines, so long as
something like state records and transition predicates can be expressed (see
§A).

Our work’s relation to that of Richards and Lester is discussed in detail

4

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

in §2.3.
The remainder of this chapter provides an overview of the proof process

and toolchain in §1.2, highlights the contributions made by this work in §1.3
and describes the organization of the thesis in §1.5.

1.2 Overview of Verification Methodology

Two separate but complementary verification toolchains are developed. One
is a verification methodology for hardware designs which have been encoded
in BSV. The other takes as input tabular expressions of hardware module
requirements expressed in PVS’s specification environment, and generates
as output BSV hardware descriptions, while also optionally generating PVS
proofs of correctness of the generated BSV descriptions.

1.2.1 BSV to PVS

The primary proof method presented herein is intended as a general-purpose
mechanism for encoding BSV designs in PVS, with additional optional pro-
cesses supporting the production of proofs. The proposed workflow is out-
lined in Figure 1.1. Solid arrows indicate manual processes. Dotted arrows
are automatic processes requiring minimal human intervention, and dashed
arrows indicate partially automated processes.

Minimally, a BSV description of a hardware module is necessary for trans-
lation. The translator must be invoked to generate a logical encoding in PVS.
The user may then use the PVS proof system to attempt to prove any con-
dition or predicate which can be expressed in PVS.

Optional additions to this method require the existence of a specifica-
tion document from which the BSV description can be created, as shown
in Figure 1.1. In addition, the formalization of the specification document
into tabular expressions encoded in PVS, when appropriate, provides a set of
requirements that may be used directly to verify the generated PVS encod-
ing of the BSV source. Tabular specifications, specifically function tables,
have been selected as our primary mathematical formalism for expressing
requirements due to their ability to express the conditions for the total cor-
rectness of a hardware module (see §2.7), and to maintain consistency with
other research within our research group (Pang et al., 2015). However, as
demonstrated in §6.5, such formalization need not take the form of tabular
specifications. Case studies 1 through 4 (§6.1, §6.2, §6.3, §6.4) target the

5

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Specification
Document

BSV Hard-
ware Descrip-
tion (*.bsv)

PVS Encoding
(*.pvs)

Formal
Tabular

Specifications
(*.pvs)

Proof of
Correctness

(*.prf)

Implementation Translation

Deduction

Formalization
Incorporation

Legend
File

Not Automated Semi Automated Full Automation

Figure 1.1: BAPIP - BSV2PVS mode toolchain

complete correctness of the hardware modules under study, so tabular speci-
fications are appropriate, whereas case study 5 (§6.5) examines one property
of one data pathway through a highly complex series of hardware modules.
In the context of this thesis, complete correctness of such a system would
not be a feasible goal.

1.2.2 Tabular Expressions to BSV and PVS

For certain types of specifications, we have developed a second toolchain to
generate both BSV hardware descriptions, and proofs of correctness in PVS,
in a single step. In order to accomplish this, certain assumptions and design
decisions have been encoded in the BAPIP translation tool, which are not
claimed to be optimal. This tool supported workflow is illustrated in Fig
1.2, where all processes which can be fully or partially automated have been
indicated with dotted or dashed arrows respectively.

The major advantage to this technique over previous methods, such as

6

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Specification
Document

Formal
Tabular

Specifications
(*.pvs)

BSV Hard-
ware Descrip-
tion (*.bsv)

PVS Encoding
(*.pvs)

Proof of
Correctness

(*.prf)

Formalization

Generation

Translation

Deduction

Incorporation

Legend
File

Not Automated Semi Automated Full Automation

Figure 1.2: BAPIP - TSP2BSV and TSP2PVS mode toolchains

that proposed by Richards and Lester (2011), is the much greater degree
of automation available. Once a formalized tabular specification has been
produced in PVS, it is possible to automate all other aspects of the toolchain.
This comes at the expense of a restricted set of hardware modules that may
be generated, and the types of specifications which are acceptable.

The toolchain begins with specifications, which must be formalized by
the user into tabular specifications in PVS. From there, BSV descriptions
may be automatically generated via an invocation of BAPIP. The invocation
selected may either be the tabular specification to Bluespec SystemVerilog
translator, which only generates the associated hardware description, or the
tabular specification to PVS proof obligation generator, which generates the
Bluespec SystemVerilog hardware description, its encoding in PVS, as well
as proof scripts for PVS which, when invoked by the proof engine, result in
the verification of the generated BSV description against the tabular speci-

7

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

fications originally used to generate them. For more detail, see §2.2.1.

1.3 Contributions

The work presented in this thesis extends the state of the art in the field of
the tool-assisted verification of Hardware Description Language (HDL)s as
follows.

• A novel translation algorithm is presented for the embedding of BSV
in PVS. While some aspects of this embedding were originally based
on work previously published by Richards and Lester (Richards and
Lester, 2011), most of the previous work has been superseded, with
only a few core concepts persisting into the current iteration. However,
this work can be seen as an enhancement of the work of Richards and
Lester in a few key categories.

1. The embedding presented by Richards and Lester was a manual
process, whereas we present software automating the translation.

2. The subset of the source language over which our tool operates is
much larger than the subset of BSV demonstrated using Richards
and Lester’s manual embedding. This allows our tool to be applied
to real-world embeddings, of a type not possible in previous works.

3. The semantics encapsulated by our methodology is a more accu-
rate simulation of the semantics underlying BSV itself, addressing
key components of the BSV semantics never addressed by the em-
bedding presented by Richards and Lester, such as full clock cycle
semantics.

4. The embedding of BSV’s whole clock-cycle semantics in a logical
system and the application of formal methods to prove logical
properties over these whole clock cycle semantics, is something
which has never before been attempted. All other formal methods
projects on Bluespec SystemVerilog stop at single-step semantics,
and do not compose these single steps into full clock cycles.

The goals of this work are that:

– The software translation tools are useful to those wishing to per-
form their own verifications of hardware modules

8

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

– Some of the algorithmic methods used to move between state and
rule based systems may be informative to future translation ef-
forts.

– Some of the algorithmic techniques addressing the state explosion
problem presented in §4.4 may be useful in addressing scalability
in future similar systems.

• We also present a tool-assisted methodology for the generation of BSV
hardware descriptions directly from tabular specifications expressed in
PVS, as well as a method for generating proofs of correctness for these
hardware descriptions automatically.

• We present full examples and practical instructions for the development
of verified Bluespec SystemVerilog modules from requirements tables,
with multiple pathways for varying levels of user participation. This
includes :

– practical instructions for the verification process, including how to
use, construct, and integrate theorems with tabular specifications
and other types of conditions for correctness.

– five case studies demonstrating our methodology.

1.3.1 Publications

The work of this thesis has garnered recognition by the broader scientific
community in the form of the following two paper publications.

• Moore, N., & Lawford, M. (2022, July). A Case Study in the Auto-
mated Translation of BSV Hardware to PVS Formal Logic with Subse-
quent Verification. In International Symposium on Theoretical Aspects
of Software Engineering (pp. 65-72). Springer, Cham.

• Moore, N., & Lawford, M. (2017, May). Correct safety critical hard-
ware descriptions via static analysis and theorem proving. In 2017
IEEE/ACM 5th International FME Workshop on Formal Methods in
Software Engineering (FormaliSE) (pp. 58-64). IEEE.

9

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

1.4 Related Work

Given the prevalence of embedded systems in safety-critical applications, and
the use of Hardware Description Languages in both Field Programmable Gate
Array (FPGA) and Application Specific Integrated Circuit (ASIC) design, it
is unsurprising that significant scientific effort has been directed toward the
mathematical verification of these design languages. It should be noted that
the most related work to this thesis, i.e., that of Richards and Lester (2011)
and the Shakti project (Menon et al., 2017) (upon which several case studies
have been based), have been discussed in detail in §2.3 and §2.4 respectively.

1.4.1 Verification Work on Bluespec Designs

A major development in the formal methods applications of Bluespec Sys-
temVerilog is Kami (Choi et al., 2017), advertised as “a platform for high-
level parametric hardware specification and its modular verification.” This
paper by Choi et al., was co-authored by Vijayaraghavan, who has made
other major contributions to the formal methods applications of BSV (Vi-
jayaraghavan et al., 2015), and Arvind, who was influential in the early de-
velopment of the Bluespec language (Nikhil, 2008). Kami is an extension of
Coq (Bertot, 2008) which duplicates a subset of BSV semantics within the
Coq framework. The essential verification workflow is to generate both a
specification module and an implementation module in Kami, and then to
demonstrate a refinement relation via module substitutions, inlining method
calls, and demonstrating rule and method correspondences (Vijayaraghavan
et al., 2015).

Similarly to the work presented here, and the work of Richards and Lester
(2011), Kami models Bluespec actions as a state transition system. Simi-
larly to Richards and Lester, and dissimilarly to the work presented here,
that formal work stops short of whole clock cycle semantics. The expected
workflow in Kami starts with composing the hardware design inside of Kami
(and therefore Coq), where individual rules can have their behaviour veri-
fied. From there, Kami code is de-sugared into Bluespec, and the Bluespec
compiler itself is used to compose the whole clock-cycle semantics. As such,
many of the issues with the Richards and Lester embedding in PVS recur in
Kami. While it is certainly useful to be able to verify the action of a single
rule, scheduling behaviour is not sufficiently straight-forward to not be worth
the effort of closer examination. Under one-rule-at-a-time semantics, if you

10

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

want some property to hold for any combination of actions, it must be proved
for each individual action. While this is useful for properties such as safety
conditions, there are many behaviours which are interesting to prove which
are not provable for every action in a module. For example, if two actions are
in conflict, and write different values to a register, these two actions would
not both prove the register was written with either of the particular values
written. This is also not a completely vacuous example, as this conflict could
be resolved via means other than guard exclusivity, and be a perfectly valid
design. Kami also explicitly does not a address “constructs that violate one-
rule-at-a-time semantics [...] namely “wires,” whose behaviour depends on
the schedule” (Choi et al., 2017). It is only possible to simulate wires in the
context of whole clock cycle semantics, so this is an understandable omission
in Kami, but not one that is shared by BAPIP.

Kami defines a syntax for an acceptable subset of BSV, and semantics
for making “judgments” on this syntax. These judgements are stylistically
similar to operational semantics. In Kami, a specification model is written in
a combination of Kami syntax and Gallina, the specification language of Coq,
and an implementation is written in Kami, without the Gallina component.
Choi then attempts to prove the existence of a multi-step judgment relation
between the specification and the implementation. This approach sharply
contrasts our approach to the encoding of specifications. Our approach is to
expose BSV semantics to a mechanized logical system of reasoning in which
a module’s requirements may be directly expressed, as nearly as possible to
their original or natural expression in formal logic. While the utility of Kami
to a Bluespec designer is undeniable, our approach is intended for a more
general audience. Aside from a recent case study (Uma et al., 2022), there
seems to not be much recent published work on Kami.

While the generation of code for embedded systems is a popular topic of
model based engineering (Rashid et al., 2015), these techniques most often
start from modelling languages such as Unified Modelling Language (UML)
or similar, which may lack the interdisciplinary legibility of requirements.
In the case of Durand and Bonato (2012), finite state machines encoded in
UML are used to generate BSV templates. It is intended that users populate
states with behaviour manually, as only the state transition mechanism is
converted. While our technique operates on a less abstract model, the BSV
files generated by BAPIP have no need for manual intervention in TSP2PVS
mode, which accepts tabular specifications encoded in PVS and produces
both BSV descriptions from said specifications and translates this generated

11

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

hardware module to PVS. S. Durand has no publications past the original
2012 paper. Though Durand and Bonato (2012) is cited by a number of
papers, none seems to be a direct descendant of the orignal work.

The work presented here was originally intended as a parallel verification
effort to the work of Pang et al. (2015), in an effort to improve the degree
of assurance provided by a pre-verified library of Programmable Logic Con-
troller (PLC) function blocks extracted from (IEC, 2013). Pang’s work has
since seen a great deal of development by Newell et al. (2018). It is projects
such as this that our work is intended to be useful for.

Another hardware verification strategy targeting Coq is Featherweight
Synthesis (Fe-Si) (Braibant and Chlipala, 2013). Similarly to BAPIP, this
tool translates a subset of Bluespec SystemVerilog to a proof environment,
in this case Coq. This work follows more in the line of Richards and Lester
(2011), by modelling state transitions monadically, rather than using records
such as BAPIP. Similarly to Blech and Biha (2013), verification is depen-
dant on the advanced skills required to operate in a dependently typed proof
environment. Fe-Si is presented as a proof-of-concept, and expansion to a
more practical subset of BSV is cited as a goal of the project, in contrast
to BAPIP, which verifies an industrial-strength subset of BSV. Addition-
ally, and similarly to Kami, Fe-Si avoids the problems of action conflicts and
wire semantics by leaning on the fallacious expansion of one-rule-at-a-time
semantics to address the issue of composition, and excluding wires from con-
sideration. It seems Fe-Si didn’t go anywhere, but was co-authored by A.
Chlipala, who has co-authored a number of other Bluespec-related papers. It
is possible that Fe-Si was influential in the eventual design of Koika (Bourgeat
et al., 2020).

Tools also limited in language scope are the Theosim translation tool
(Morin-Allory and Borrione, 2006), and to a lesser degree its subsequent
re-implementation VSYML (Ouchet et al., 2009). Both of these model the
simulation semantics of VHDL in theorem proving environments. Theosim
targets PVS, and VSYML has been designed to accommodate add-on back-
ends for a number of proof systems. Both require simulation of the hardware
description in order to generate logical statements, whereas our approach
derives logical sequents primarily from the manipulation of abstract syntax
trees. Hardware simulation can be quite time consuming, but is a fundamen-
tal testing mechanism in hardware development. Because they’re starting
with VHDL, a large language which lacks the semantic elegance of Bluespec,
a simulation approach is quite understandable. Neither project has had any

12

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

recent citations.
Newell et al. have published a tool-supported method for translating Tab-

ular Expressions and FBDs into PVS for the purposes of verification (Newell
et al., 2016). This method is presented within the context of verifying the
safety shutdown system of the Darlington Nuclear Power Generating Sta-
tion. While powerful and useful, this approach does not leverage the power,
efficiency and flexibility of FPGA based control systems. This paper is co-
authored by Linna Pang, whose PhD work on PLC function block verification
was a direct antecedant to this thesis.

Bidmeshki et al. present a translator for converting Verilog code to Coq
(Bidmeshki and Makris, 2015), for the purposes of detecting hardware “Tro-
jans,” or, malicious code designed to infiltrate designs and violate data flow
policies. The emphasis here is proof-carrying hardware code, and the trans-
lator goes so far as to automatically construct theorems to verify the en-
forcement of data flow policies. This work demonstrates a considerable effort
towards usability, which is always welcome in the formal methods commu-
nity, but unfortunately the application domain is too narrow for this to be a
good general purpose tool. Burlyaev et al. demonstrate a very similar strat-
egy, but focusing on fault-tolerance rather than hardware Trojans (Burlyaev,
2015).

Vijayaraghavin et al. present a prototype embedding of Bluespec in Coq
(Vijayaraghavan et al., 2015), similarly to the Richards and Lester paper on
which our embedding in PVS is based. They present a far more complex
example than Richards and Lester, a multi-core shared memory system, and
indicate that they are working on a software tool for automating this trans-
lation process. This, presumably, either influenced or resulted in Kami (Choi
et al., 2017).

Saeed et al. present a VHDL to HOL4 translation called V-Holt (Saeed
et al., 2012), in which users specify the properties they want checked in a
Java-like language. In addition to the translation, the V-HOLT tool also
produces proof strategies for the specified properties, and returns to the user
a simple pass/fail output. This project is a paragon of user-friendliness,
but there are few pitfalls of such a technique. If V-HOLT fails to prove
something, that does not mean that it is unprovable, as no algorithm can
completely replace the insight and intuition of a human operator. Further,
specifying the desired properties in this Java-like language must be easier
than specifying them in HOL4 in order to justify such an approach. This
work has had no recent citations.

13

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Ostroumov (Ostroumov et al., 2013; Ostroumov and Waldén, 2015) demon-
strate the generation of VHDL from EventB models. The resulting VHDL
is claimed to be correct by construction. This is the reverse of our approach,
which generates models from hardware descriptions. Later derivative work
focuses on languages such as Java (Catano, Néstor and Rivera, Vı́ctor, 2016)
and C++ (Bonfanti et al., 2020).

1.4.2 Other Projects of Interest

Koika, by Bourgeat et al. (2020) is a high profile project to improve Blue-
spec semantics. As with Kami (Choi et al., 2017), Koika is a product of the
same MIT group who originated Bluespec. Koika is primarily an attempt
to address the gap between the one-rule-at-a-time semantics of the Bluespec
language and the whole-clock-cycle semantics. Their paper, “The essence of
Bluespec: a core language for rule-based hardware design” presents many
of the same scheduling difficulties as are presented in this very thesis. It is
claimed that Bluespec and Koika are both implementations of the one-rule-
at-a-time semantics. One interesting point of comparison between Bourgeat
et al. (2020) and the Bluespec documentation is how it is claimed the seman-
tic works in the absence of a priority ordering of rules. The Bluespec doc-
ument claims firmly that an “arbitrary but deterministic” decision is made
by the scheduler circuit generated by the Bluespec compiler in ambiguous
cases. In our work, we seek to eliminate this by not permitting any design to
translate wherein such ambiguities lie. The claim of Bourgeat et al. (2020)
is that this decision is fully “non-deterministic”. Whether this is a misun-
derstanding on Bourgeat’s part, a shift in policy on the part of the Bluespec
research group, or whether this was the hidden truth the whole time remains
to be seen. The manner in which Koika solves this issue is by requiring the
user to manually schedule rules. In the opinion of the author, this looks a
lot like taking the descending urgency pragma from Bluespec and promoting
it to a first-class member of the language.

Koika also seeks to address the problem of inter-action communication in
a novel way. Bluespec (and most hardware languages) solve this problem by
designating named “Wires”. In Bluespec, an action may receive information
from another action, so long as that action is transmitted via a wire, and that
wire is written to before it is read from. Koika’s scheme involves labelling
registers(!) with read-write priorities. This relies on an interpretation of the
one-rule-at-a-time semantics where the results of each rule’s calculation are

14

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

visible to the next rule to fire. Effectively, this means every register is also a
wire. In Koika, these semantics are combined, so that read-write priority is
set at the level of the individual registers.

Koika is attempting to address the observed behaviour of Bluespec de-
signers. It is noted that designers are often using somewhat arcane methods
in an effort to make Bluespec designs more parallel, and therefore faster. The
design philosophy of Koika seeks to eliminate the need for this, by exposing
more of the scheduler to the designer.

Koika has been provided formal semantics in Coq, which have been used
to produce a verified compiler, and most interestingly, a formal proof that
Koika semantics observe the one-rule-at-a-time semantics. It is an interesting
attempt to have one’s cake and eat it too. Each rule can be treated as if it
is the only one executing in a clock cycle, yet through use of wire-register
hybrid constructs (termed “Ephemeral History Registers”) we can execute
many such actions in one clock cycle. Comparisons of algorithm processing
times between Bluespec and Kioka indicate Bluespec designs are slightly
more efficient citepBourgeat2020.

The catch is that Koika is, as yet, not a mature language. According to
github commit logs (at time of writing) koi (2022), active development ceased
in early March of 2022. Certain things one would expect are still missing,
including a detailed language reference manual. Further, claims are made
that there is still work to be done in optimizing the post-compilation RTL
designs koi (2022). Aside from these points, Koika also takes Bluespec syntax,
which has a sort of Fortran/C feel, and giving it a much more functional feel,
perhaps more closely resembling the original Bluespec Haskell libraries.

One project of interest is Π-ware, a project by Pizani Flor (2014). This
project is to Agda as Bluespec was to Haskell, aiming at proof-carrying hard-
ware code with dependent types in a functional environment. Hardware
modules written in such a system would theoretically require no further ver-
ification effort, but would require considerable effort to compose. Π-ware
seems to have gained some traction, having had an official release citep-
pizani2018pi, and several recent citations (Lööw, 2021; Lööw, Andreas and
Kumar, Ramana and Tan, Yong Kiam and Myreen, Magnus O and Norrish,
Michael and Abrahamsson, Oskar and Fox, Anthony, 2019; Lööw, Andreas
and Myreen, Magnus O, 2019).

Another interesting project is presented by Brandt et al. (2010), which
translates concurrent, action-oriented specifications (similar to Bluespec) into
scheduled actions, explicitly exposing the schedule which some languages

15

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

(like Bluespec) have historically put a lot of effort into hiding.
Daylight and Shukla (2009) presents an overview of four specification lan-

guages, including Bluespec. Bluespec rates highly for maximizing through-
put, but rates poorly in local reasoning and adaptability, though it should be
noted that this is an evaluation of Bluespec as a specification language, not
a hardware description language. Stappers et al. (2010) extends this study
to mCRL2, a specification language for describing concurrent discrete event
systems.

1.5 Organization of the Thesis

Chapter 2 presents preliminary background information, including brief out-
lines of the source and target languages of the translation process (§2.1 &
2.2), as well as other topics of relevance.

In Chapter 3 we present the grammar of the accepted subset of both the
source language (§3.1), and abstract syntaxes for both BSV and PVS, as
expressed as types in Haskell (§3.1 & §3.2). The generation of PVS from ab-
stract syntax is discussed in the chapter discussing BSV’s action arbitration
semantic (§4). §3.3 discusses why providing a full syntax for the resultant
PVS specifications is beyond the scope of this work, and in §3.4 the formal
grammar used to parse tabular specifications is discussed.

The core algorithm of the BSV to PVS translation is presented in Chap-
ter 4, where we explain the process for transforming the action-centric BSV
representation into the state-centric PVS representation. The action arbi-
tration semantic is presented in detail with a running example in §4.2, and
steps taken towards the optimization of the above algorithm are presented
in §4.3, with a focus on improving the scalability of the algorithm.

Chapter 5 concerns the production of proofs of correctness from translator
results. We address the construction and use of theorems demonstrating both
functional requirements (§2.2.1) and consistency (§5.3).

Chapter A discusses the translation software itself, including its architec-
ture (§A.1), restrictions (§A.3), and instructions for operation (§A.4).

In Chapter 6, we present several case studies. In §6.1, we present a verifi-
cation case study over a small example from the IEC 61131-3 function block
library (IEC, 2013). This case study is based on one originally published
by the author at the 2017 IEEE/ACM 5th International FME Workshop on
Formal Methods in Software Engineering (FormaliSE) (Moore and Lawford,

16

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

2017). We here present an updated version of the same verification, which
has been streamlined and simplified to make use of later expansions of the
translation software. Second, we present in §6.2 the verification of a similar
hardware module, making use of the translator’s ability to generate BSV de-
scriptions and PVS proofs of those descriptions from tabular specifications
encoded in PVS. Third, in §6.3 we verify a more complex function from the
Shakti RISC-V processor project’s RapidIO interconnect fabric. Finally, in
§6.5, we show progress towards the partial verification of the interconnect
fabric. Specifically, the handling of transaction ID numbers in packet pro-
cessing.

We conclude in Chapter 7, summarize our results, and discuss future
work.

17

2. PRELIMINARIES

This chapter is presented for the benefit of those who may be unfamiliar
with the subject area of this thesis. We will begin by discussing Bluespec
SystemVerilog (BSV) in § 2.1, a hardware description language with seman-
tics based in the functional paradigm. The Prototype Verification System
(PVS) will then be discussed in § 2.2, including its structure and the reason
for its selection. Next we will address the groundwork for our approach from
(Richards and Lester, 2011), as well as our departures from this model, in
§ 2.3. We will also provide a brief discussion of the RISC-V microproces-
sor standard, the RapidIO interface, and the Shakti processor project (Gala
et al., 2016) in § 2.4. In § 2.5 we review the Extended Backus Naur Form
(EBNF) (Extended Backus-Naur Form) notation that will be used in this
thesis. A primer on the Haskell type system is provided in §2.6. Finally,
an overview of tabular specifications, as well as some properties of note, is
presented in §2.7.

2.1 Bluespec SystemVerilog

Bluespec SystemVerilog (BSV) is a high-level hardware description language
(HDL) influenced by the functional programming paradigm (Nikhil, 2004). It
is designed as an alternative to the so-called “ad-hoc,” lower-level languages,
exemplified by Verilog, SystemVerilog and VHDL. BSV’s main claim is that it
makes the benefits of programming in abstract languages available to codified
hardware design (Nikhil, 2004).

Bluespec originated as a library of the Haskell programming language
(Hudak and Fasel, 1992; Nikhil, 2004), and has since developed into a fully
fledged hardware description language in its own right. Bluespec Inc., the
company which produces and distributes Bluespec, was founded in 2003 by
Dr. Arvind of MIT. Despite claims made by Bluespec Inc. of the increased
speed and reliability of BSV versus conventional languages, Bluespec was
primarily a language of academic interest, until the Shakti RISC-V project

18

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

(Gala et al., 2016), at which point Bluespec Inc. pivoted to become a provider
of RISC-V technologies (Bluespec Inc., 2019).

2.1.1 The Bluespec Language at a Glance

In order to discuss the detailed semantics of the Bluespec language, a basic
introduction to the language is necessary. We will illustrate this using the
example of a stoplight.

Figure 2.1: State Transition Diagram for a Stoplight

In this very simple system, different lamps are lit based on the value of
the input signal T, which is the time in seconds since the beginning of the
day. The system cycles through the green, yellow and red lamps being lit
every 300 seconds, with the green and red lamps being lit for 140 seconds
out of each cycle, and the yellow lamp being lit 20 seconds of each cycle.

This system could be expressed as a BSV hardware description in the
following manner.

BSV�
package TrafficLight;

typedef enum {Green, Yellow, Red} Colour;

interface TrafficLight ;
method Action setTime (Int#(32) t);
method Bool getGreen ();
method Bool getYellow ();
method Bool getRed ();

endinterface

19

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

module mkTrafficLight (TrafficLight);
Reg#(Colour) lampState <− mkReg(Red);
Reg#(Int#(32)) T <− mkReg(0);

rule goYellow (lampState == Green && (T % 300) >= 140);
lampState <= Yellow;

endrule

rule goRed (lampState == Yellow && (T % 300) >= 160);
lampState <= Red;

endrule

rule goGreen (lampState == Red && (T % 300) == 0);
lampState <= Green;

endrule

method Action setTime(t);
T <= t;

endmethod

method Bool getGreen;
return lampState == Green;

endmethod

method Bool getYellow;
return lampState == Yellow;

endmethod

method Bool getRed;
return lampState == Red;

endmethod
endmodule

endpackage �
END BSV

The foregoing Bluespec description is nearly a direct implementation of
the state transition system described in Figure 2.1. The arrows of the dia-
gram, which direct the order and timing of the lamps, are directly expressed
as rule constructs in BSV. Each rule is “guarded” by a Boolean expression,

20

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

and transforms the values of state elements (registers). In the same way that
an arrow in Figure 2.1 provides a transition between different lamp states, the
rules in BSV provide transitions between different states in register memory.

The methods in this description act in the same manner as getter and
setter methods in object oriented programming. The setTime method sets
the internal T register with a time value, derived from an external hardware
component. Similarly, signals to the traffic light lamps are extracted from this
hardware module by means of the three methods “getGreen”, “getYellow”
and “getRed”. Each of these methods will send a high or low voltage signal,
depending on the results of the combinational circuits interpreted from the
return expressions.

One item of note, and a dissimilarity from conventional hardware descrip-
tion semantics, is that hardware module inputs and outputs are accessed
atomically. That is, rather than a wire being connected in an “always on”
fashion, data is transferred between BSV hardware modules only when specif-
ically requested by method invocation. In this manner, BSV modules follow
software language semantics more so than hardware language semantics.

BSV modules and their interfaces are declared separately, and a module
must specify which of the available interfaces it uses. This allows interfaces
to be abstracted, and shared across multiple Bluespec modules. A Bluespec
package may contain an arbitrary number of modules.

2.1.2 A More Detailed Semantic Overview of a Bluespec Package

From the top-level, Bluespec follows roughly the same organizational scheme
as SystemVerilog; whereas packages are collections of module declarations.
Like SystemVerilog, and functional languages generally, Bluespec is a declar-
ative language. Declaration of modules are distinct from instantiations, and,
as with SystemVerilog, a module may instantiate any number of submod-
ules. This gives rise to a hierarchical organization of modules, wherein each
instantiated module has exactly one parent which instantiates it, except for
the root-level module, of which there may be only one. A module may have
any number of children which it instantiates.

The manner of passing data between modules differs significantly from
SystemVerilog. Whereas in SystemVerilog a module’s interface provides a
number of identifiers corresponding to input and output wires which may be
used more or less freely throughout the module, a Bluespec module’s interface
provides the user with a set of access methods, which function similarly to

21

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

how one might expect an Object Oriented language to behave. Various claims
are made of Bluespec’s methods, and the improvement they constitute over
the regular HDL model. To fully appreciate the difference, however, it is first
necessary to discuss the internal semantics of Bluespec Modules.

Bluespec modules have two elementary components: submodule instan-
tiations and guarded actions. In §2.1.3 we will discuss the ease with which
this system may be modelled logically as a Kripke structure.

Submodule instantiation refers not only to modules defined by the user,
but also Registers, FIFOs, and other organizations of memory. Some syntac-
tic sugar is applied for ease of use (particularly in the case of registers), and
this partially obfuscates the fact that they are invoked and used in precisely
the same manner as any other user-defined submodule. Even in the case
of user-defined submodules, unless the submodule is purely combinational,
it will itself contain instantiations of memory-holding elements. Therefore it
can be considered to hold state, albeit in a somewhat more complex structure
which also specifies the manner of interaction with those memory-holding ele-
ments. As such, a user-defined Bluespec module allocates and accesses mem-
ory exclusively through the use of instantiated submodules, which become
synonymous with the concept of state.

Guarded actions in a BSV module manipulate state. A guarded action is
somewhat predictably composed of a guard and an action, where a guard is
a Boolean expression that limits the conditions under which the action may
be executed. In order for an action to execute in a particular clock cycle,
the corresponding guard expression must evaluate to “True”, when given
the state of any invoked memory elements for their values at the beginning
of the clock cycle under examination. An action consists of one or more
statements, normally invoking submodule methods, which describe changes
in the module state over one clock cycle. The statements within an action
operate concurrently, not sequentially, and therefore every statement in an
action must modify a distinct memory element. There are three types of
guarded action in a Bluespec module: Rules, Methods and Actions.

To begin, Actions are blocks of statements with no guard that may be
invoked as statements themselves. One practical use of Action blocks is to
encapsulate commonly used statements, such as a reset procedure. This
allows these statements to be collectively invoked by action name, rather
than having code snippets copied and pasted haphazardly throughout one’s
design. In short, separately declared action blocks are abstraction tools for
improving code quality, but do not constitute distinct semantic entities.

22

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

A “Rule” is a guarded action which is always available, but not always
executed. One way of thinking about them is as “passive actions,” which
require no invocation from a parent module in order to execute. That being
said, calculating which rules will indeed execute on any given clock cycle is
non-trivial. Only “active” rules, which have had successful guard checks,
may execute. But only rules which succeed on action arbitration will actu-
ally execute, or “fire.” The action arbitration semantic is a complex issue,
addressed in §4.

Methods, as mentioned previously, are the means by which a parent mod-
ule interacts with its children. They may be thought of as “active actions,”
which must be invoked by a parent module to be available. When invoked,
methods must still pass a guard check, for example, a design may decide to
use a guard to restrict access to a module’s output data while that data is
invalid. Methods take priority over rules during action arbitration, and will
automatically succeed against them during conflict resolution.

In BSV, guarded actions are atomic, and will execute completely or not
at all. While it is possible to write a BSV description that produces race con-
ditions with respect to memory access, this will produce compiler warnings
which, due to the sparse nature of warning and error messages when develop-
ing BSV descriptions, are unlikely to go unnoticed. For the purposes of the
BAPIP translation tool and the work presented herein, BSV descriptions are
required to resolve any ambiguities of this nature via pragmas, which may
be used to pass instructions to the action arbitration mechanism.

A more precise description of the syntactic construction of Bluespec Sys-
temVerilog will be presented in §3.

2.1.3 Logical Abstraction of Bluespec Modules

For the purposes of logically modelling BSV descriptions, we may collectively
consider memory-holding submodules to have some particular state on any
given clock cycle, and we may consider the actions, which govern all of the
interactions between submodules, to be a system of transitioning between
different states. As such, BSV descriptions may be modelled as finite state
machines, and may be described logically as Kripke structures (Bowen, 1979),
as proposed by Richards and Lester (2011),

K = (S, s0, T, L), (2.1)

23

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

where S is the set of program states, s0 ∈ S is the initial state, T is a left-total
transition relation on S, i.e.,

T ⊆ S × S (2.2)

∀s ∈ S • (∃s′ ∈ S • (s, s′) ∈ T) (2.3)

and L is a labelling function. In BSV it is mandatory to initialize declared
state elements, and this declared arrangement of memory comprises the ini-
tial state s0. Rules and methods, along with BSV’s internal semantics of
rule arbitration, create the set of valid state transitions. This formal logi-
cal approximation of BSV descriptions is of central importance to the PVS
embedding presented by Richards and Lester (2011) and forms the logical
framework for our own translation.

2.2 Prototype Verification System

The Prototype Verification System (PVS) is an interactive specification and
proof environment, providing both a high degree of mechanization and the
expressive power of higher order logic (Owre et al., 1992). This free and open
source tool, developed by SRI International, consists of an Emacs-like envi-
ronment, where logical expressions and theorems are encoded by the user, and
an interactive proof environment, in which the user may apply proof tactics
to prove theorems. The proof environment automatically generates sub-goals
and counter-examples, exhibits high mechanicity, and produces highly legible
proofs. Users may opt for step-by-step manual control, or invoke high-level
proof strategies. Herein, “PVS” will signify either the proof environment
itself or the associated specification language contextually. In the past, PVS
has been used to successfully verify safety critical embedded systems, such
as the AAMP5 avionics microprocessor (Miller and Srivas, 1995), and shut-
down systems for the Darlington nuclear power plant (Wassyng et al., 2011).
This combination of mechanicity, legibility, and a logic expressive enough to
accommodate our extracted BSV program models, recommends PVS to this
project. Use of PVS to verify our BSV modules will be presented in §4.

The previous work of Pang et al. (2015) makes use of PVS for the speci-
fication of tabular expression for the IEC61131-3 function block library. The
work of Richards and Lester (2011) make PVS the target language of an
embedding procedure for BSV. While there are many languages which would
have been suitable target languages for the translation algorithm specified

24

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

herein, in the interest of integration with directly relevant research PVS was
selected as the target of our translation algorithm.

2.2.1 Constructing Theorems in PVS

To prove some property of the logic generated by BAPIP, we must postulate
this property in a manner which PVS can parse: a theorem. According
to the Collins English Dictionary, in logic, a theorem is “a statement or
formula that can be deduced from the axioms of a formal system by means
of its rules of inference” (Forsyth, 2014). In PVS, we may use the theorem

keyword to construct hypotheses. That is, sequents that may or may not
represent theorems. Since a sequent is only a theorem in mathematical logic
if the theorem is demonstrable from axioms by means of a deductive system,
until such a sequent has been demonstrated to be true (using PVS’s theorem
proving system), it is not yet a theorem. Usage of the word “theorem” in PVS
seems more to follow the mathematical definition of the word, rather than the
logical definition. According to the American Heritage dictionary, a theorem
in mathematics is “A proposition that has been or is to be proved on the
basis of explicit assumptions” (Kleinedler, 2016) (my emphasis). Given that,
in PVS, we write theorems for things we wish to prove, rather than things we
have already proven, it would seem that usage of the term “theorem” in PVS
more closely follows the second definition given above than the first. It is also
possible that this second definition reflects changing English usage, as the
definition is more recent than that of the first, though the first is undoubtedly
more mathematically rigorous. In general, the theorems we construct in PVS
follow a well-known pattern.

<Theorem Name> : THEOREM

<Antecedents>

IMPLIES <Consequents>

By using implication, we can reproduce the functionality of a logical se-
quent within the context of a Boolean expression. In this manner, <Theorem
Name> is a unique identifier, <Antecedents> is a conjunctive list of all the
sequent’s premises, and <Consequents> is a conjunctive list of all of the log-
ical expressions we wish our sequent to prove. It should be noted that PVS
implicitly assumes universal closure, and that any free variables are implic-
itly universally quantified (Owre et al., 2001). As such, free variables do not
need to be universally quantified explicitly, but can be for legibility.

25

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

2.2.2 Antecedents

The premises of our sequent must include in an appropriate manner the
definitions generated by the translation software, whether directly or indi-
rectly. This includes, but is not limited to, transition predicates, requirement
pre-conditions, information regarding relevant previous program states, and
overall assumptions. Consider the following theorem, taken from our fourth
case study in §6.4.

PVS�
correctness 1 : theorem
forall(x1 : ByteEn, x2 : ByteCount, x3 : bool) :

x3 = True
and valid bytemask(x1)
and valid bytecount(x2)

and transition (1, s(0) , s(1) , x1, x2, x3)
implies req word pointer(x1, x2)

= outputs WdPointer (1,s(1),s(1),x1,x2,x3) �
END PVS

In the above example, we have examples of general conditions (line 3),
miscellaneous predicates (lines 4 and 5), a transition predicate (line 6), re-
quirements predicate (line 7), and output method derived function invocation
(also line 7). As we can see, the underlying formulation still holds. A con-
junctive list of premises is used to imply some particular conclusion.

Transition predicates, as produced by the BAPIP translation software,
must be included as an antecedent for any theorem in order to prove proper-
ties of the modules they model, as demonstrated above. The transition pred-
icates BAPIP provides contain all user specified schedules, selectable via the
first argument of the predicate. Information concerning these schedules is au-
tomatically provided in the top-level generated PVS file. Due to Bluespec’s
atomic transaction architecture, a Bluespec module’s “input wires” are not
always available, in a hardware sense, but must be invoked by a parent-level
entity. When constructing theorems in PVS, the user is that parent-level
entity. When the user invokes the transition predicate, care must be taken,
or one risks invalidating the theorem. For example, if the various transition
predicates and tabular specifications used are not all given the same input
variables, or if the wrong set of methods is selected to execute in a given

26

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

clock cycle, inconsistent and incorrect results are highly probable. Input val-
ues of the specification must be passed to the first transition for them to be
modelled, and a schedule must be selected that invokes the input methods
appropriate to the specified data.

Though more complex ways to organize the interaction of requirements
with the model are described below, the most basic form is to manually
extract pre and post conditions from the specification and add them to the
theorem. This is the method used in §6.5. In the case of pre conditions, the
Boolean expression describing the precondition is added to the conjunctive
list of antecedents without any modification. Due to the implicit universal
closure of theorems, the pre-condition will act as a restriction on the input
space. This process may be made more efficient by taking more advantage
of PVS’s type system. Such improvements are left as future work.

Depending on the nature of the behaviour under examination, it may be
necessary to describe the behaviour of pre-states previous to the pre state
used by the transition predicate. One example is if the calculation outcome
is dependent not just on the temporally local input, but on values stored in
memory. Such preconditions may be encoded as Boolean conditions invok-
ing those variables directly, as state is encoded in nested record syntax, and
record field access is an easy enough operation. An alternative that could
result in greater efficacy would be to use predicate sub-types. Adaptation of
the existing algorithm to use predicate sub-types is left as future work. If
the calculation under examination requires more than one clock cycle to cal-
culate the expected value, it is then necessary to “chain together” transition
predicates. In this case, one additional transition predicate should be added
for every additional previous state that the calculation under examination re-
quires. Determination of the number of previous states required often implies
a thorough understanding of the design under verification. Each additional
transition should take as pre-state the post-state of the preceding transition,
thus describing continuous operation.

It may also sometimes be necessary to make global assumptions about
the nature of the inputs. This can result from the discovery of implicit
assumptions in informal specifications, discovered during the formalization
process, such as those discovered by Pang et al. (Pang et al., 2015). One such
example, occurring in §6.1, is the fact that one of the inputs to the function
block is required to be greater than zero, though this does not appear in the
original documentation (IEC, 2013).

While it is possible to take such pre-conditions as axioms, the vastly

27

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

preferred method is to include them as additional antecedents, in the same
manner as functional pre-conditions. PVS’s existing set of axioms is consis-
tent, and adding additional axioms, why syntactically possible, runs the risk
of introducing contradiction (Rushby et al., 1998). Additional axioms would
need to be demonstrated consistent with the existing PVS axioms, which is
not preferable to simply using definitions and the type system. Encoding
our hardware designs using definitions and the type system constitutes a
conservative extension of PVS’s deductive system, so the system as a whole
maintains consistency.

2.2.3 Consequents

The process of theorem proving attempts to deduce the consequents of a
theorem from its antecedents. As with pre-conditions, we will examine more
useful organizations in §5.2, but the basic form of these consequents is the
post-condition of the functional requirements. In the case of tabular speci-
fications, the consequent will most often take the form of a test of equality
between the variable under examination and the expected value of that vari-
able. If more than one post-condition must hold simultaneously, simply add
it to the conjunctive list of consequents. This is the same form given in the
example above in §2.2.2.

2.2.4 Using the PVS Interactive Proof Environment

Once a theorem has been constructed, it remains to be demonstrated that
it is correct using the formal mathematics of the PVS proof environment.
Manual proofs of complex sequents in PVS can be cumbersome, but the
theorem constructions presented above are highly amenable to the automatic
proof strategies native to PVS.

In order to enter the proof environment from within a loaded PVS in-
stance in Emacs, place the cursor somewhere inside the theorem you wish to
prove and invoke the prover with M-x prove or C-c p. PVS will then type-
check the theory and any imported theories, and upon successful completion
open a new buffer in split-screen mode. This new buffer will contain the PVS
proof environment, which may be interacted with by entering commands and
strategies at the prompt. The goal of this process is the discharging of all
proof obligations generated from the theorem under examination. Upon suc-
cessful completion, the prover will display Q.E.D., and transcribe the proof

28

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

generated into an associated .prf proof file.

2.2.5 Automatic Deduction on Functional Requirement Sequents

Both theorems for which pre and post conditions have been manually entered
and theorems which use tabular specifications are proven in the same manner.
In simple cases, an invocation of the (grind) command will discharge the
proof, with no intervention required from the user. In some cases, rewriting a
large number of unnecessary recursive definitions may bog down the prover,
causing unacceptably long run times. In such cases, it is recommended the
user instruct the strategy not to automatically install recursive definitions as
auto-rewrite rules. In order to do this, use of the modified command (grind

:defs explicit) is recommended.
It is sometimes the case that (grind) is not adequate in and of itself

to discharge a proof with a high level of complexity, such as the theorem
presented in §6.5. This might be due to either the size of the underlying
modules, or the requirement for multiple chained transitions. In these cases,
a certain amount of proof decomposition in the initial phases is necessary
before proceeding with the Swiss-Army sledgehammer that is (grind). A
concrete example is presented in §6.5, but the general strategy is as follows.
Composition of a new automatic PVS strategy based on this general outline
may compose interesting future work.

1. (skolem!) - Skolemization to eliminate the universal quantification
(whether explicit or due to universal closure).

2. (bddsimp) - A rudimentary algorithm for binary decision diagram sim-
plification. This breaks the sequent into any relevant top-level sub-
proofs.

3. (expand *) - Takes function and predicate definitions and applies them
throughout the sequent.

4. (lift-if) - Exposes conditional expressions as top-level sub-sequents.

Steps 3 and 4 are applied interchangeably as needed. Although the point
at which a sub-proof becomes grindable is not yet well known, repeating this
procedure does typically result in a grindable proof sequent.

29

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

2.2.6 Automatic Deduction on Consistency Sequents

Theorems attempting to prove the consistency of our transition predicates re-
quire a slightly different tactic to discharge than our functional requirement
theorems, owing to the presence of existential quantification. Existential
quantification cannot be addressed via automatic proof strategy in PVS. In
order to prove existence, PVS requires the proof operator to provide a hy-
pothetical instantiation value, which is substituted into the sequent in place
of the quantified variable. In anticipation of this requirement, the BAPIP
translator automatically generates modified transition functions which may
be used for this instantiation step. This instantiation term consists of the
transition predicate, modified to be a function returning the post-state of the
transition, rather than being a predicate on the equality of the calculated
post-state and the post-state provided as an argument to the predicate. As
such, the function has no post-state argument. The following commands,
executed in sequence, will successfully discharge consistency theorems, pre-
suming the transition predicates under analysis are in fact consistent.

(skolem!)

(inst + < instantiation term >)

(expand transition)

(expand transition_val)

(assert)

Where the < instantiation term > is an invocation of the modified
transition function, using skolemized variables for arguments. These proofs
are sufficiently routine that BAPIP automatically generates prooflite scripts
containing proofs discharging them, conforming to the methodology specified
above. The following is an automatically generated theorem and prooflite
script from §6.2.

PVS�
%|− consistency 0 : PROOF
%|− (then (skolem!)
%|− (inst + ”transition val (i !1, pre!1)”)
%|− (rewrite transition)
%|− (rewrite transition val)
%|− (assert))
%|− QED

30

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

consistency 0 : Theorem
FORALL (i : nat, pre : mkAlrm int) :
EXISTS (post : mkAlrm int) :

transition (i , pre, post) �
END PVS

As we can see, the instantiation term is simply a version of the transition
predicate returning a concrete state, rather that comparing a pre and a post
state. This theorem asks the question “for every input state, there must
exist a valid output state.” To prove the existence of a valid output state,
the easiest thing to do is provide one, which satisfies the requirement for
existential quantification.

2.3 A Previous Monadic Embedding

The original basis for the work herein presented was a paper by Richards
and Lester (2011), which demonstrated a manual method for the embedding
of Bluespec SystemVerilog in the higher order logic of PVS. This system em-
ployed numerous library functions, as well as a BSVMonad type, in order to
minimize the syntactic difference between the Bluespec guarded action struc-
ture and the corresponding PVS embedding. The intention was to minimize
the difficulty of performing the transformation manually. Recognizing the
numerous advantages of an automated process over a manual one, the orig-
inal intent of the research presented in this thesis was to merely automate
the manual embedding. When the time came to apply the newly created
program, then called BSV2PVS, to practical examples, however, several de-
ficiencies were recognized in the original work which prevented its application
to more complex problems.

The most fundamental issue relates to the timed and untimed seman-
tics discussed in §4.1. The Richards and Lester embedding, as a byproduct
of attempting to reproduce the action-oriented structure of BSV, modelled
each action as an individual transition predicate. Transition predicates for
the entire module are modelled as the disjunction of all action transitions.
They modelled a transition relation, rather than a transition function, as
this setup can result in multiple contradictory, but still valid, post states. In
short, they go only so far as to model the untimed semantic, as the effort

31

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

towards modelling the timed semantics are incomplete. In only attempting
to model the deterministic but arbitrary choice of the Bluespec scheduler,
the complexities of the Bluespec scheduler’s action arbitration semantics are
completely ignored. This severely restricts the applicability of the Richards
and Lester method. Since no deterministic decision is made about the post-
state, chaining transition predicates together to model behaviour over more
than one clock cycle becomes inherently problematic. The number of states
this produces is the number of possible states in one clock cycle raised to
the power of the number of clock cycles we have to model over, which ex-
ceeds the practical limits of computation very quickly. Further, it is not even
a good model of the underlying hardware, as the hardware is necessarily
deterministic, as it is mapped to a physical system.

It also fails to model a very basic function of Bluespec modules, in that
modules will not do anything if there is nothing to be done. If no methods
are invoked and no rules are active during a particular clock cycle, a Bluespec
module will not change its state or perform calculations, other than those
required to determine whether or not its rules are active. Since the Richards
and Lester transition relation is the disjunction of all action transitions, tak-
ing the transition relation as an antecedent specifies that at least one action
must have been executed, though again, it is impossible to know which one.
We explore this concept further in §4.2.6 by comparing our method to the
Richards and Lester method as applied to a running example.

Furthermore, by not modelling the complete timed semantic, a Richards
and Lester transition relation at best models an untimed step, as will be
discussed in §4.1 Untimed steps have no direct relationship with hardware
clock cycles, so it is impossible for such a transition relation to make any
assertions at all about timing requirements.

By contrast, our method, encoded as the BAPIP translation tool, accu-
rately models the timed semantic of BSV hardware descriptions. Our tran-
sition functions deterministically calculate a module’s output from its state
and inputs. Multiple transition functions may be chained together to model
behaviour over multiple clock cycles. We impose no artificial restrictions on
whether at least one action must occur in any given clock cycle. Further,
our transition predicates map to actual hardware clock cycles, allowing us to
test claims of timing properties in hardware descriptions.

32

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

2.4 RISC V and RapidIO

The primary case studies provided in this work (§6.3 & 6.5) are applied to a
Bluespec SystemVerilog implementation of the RapidIO message packet pass-
ing subsystem of the RISC-V processor Instruction Set Architecture (ISA)
available in the Shakti processors project, by (Gala et al., 2016). It is there-
fore appropriate to introduce the RISC-V processor, the Shakti project, and
provide an overview of the RapidIO framework.

2.4.1 RISC-V

RISC-V is an open-source specification for the design of computer processors
(Porter III, 2018). Reduced Instruction Set Computer (RISC) stands for
Reduced Instruction Set Computer, and RISC-V is an open-source hardware
initiative led by the RISC-V Foundation (2020). In order to understand the
purpose of RISC-V, one must consider the importance of ISAs in the de-
sign of computers. Processing, as performed in Von Neumann architectures,
comprises the manipulation of memory through the execution of instruc-
tions. The set of instructions a processor implements, and the manner of
their implementation, are the objects of a great deal of design effort on the
part of processor manufacturers. Each instruction that is included must have
corresponding electronic circuitry within the final processor. The set of in-
structions that a processor implements is that processor’s ISA, and there are
multiple ISAs used by different manufacturers, for example, Intel’s ubiqui-
tous x86-64, or Zilog’s Z80, which was highly popular in embedded systems
applications in the 1980s, such as audio synthesizers and arcade machines.
CISCs, or Complex Instruction Set Computers, often have large numbers of
instructions. This is sometimes due to the need for backwards compatibility
with legacy software. One of the primary design goals of the RISC-V archi-
tecture (and all other Reduced Instruction Set Computer architectures, of
which there are many) is to implement a minimized set of instructions, de-
creasing the size, cost, and design effort required to implement the processor.
(Porter III, 2018) There is a trade-off between the number of instructions in
an Instruction Set Architecture (ISA) and the amount of memory the con-
troller requires. Reducing the number of instructions a Central Processing
Unit (CPU) can execute necessary reduces the expressivity of the associated
machine language. Given some complex operation, a RISC must use at least
as many instructions as a CISC, and possibly many more, because limiting

33

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

the number of instructions limits the expressivity of the assembly language.
Not only do more instructions take more CPU cycles to execute, but the
program itself will tend to be larger, requiring more instruction memory. In
the early days of computing, when memory was expensive, the economic in-
centive was to build up the CPU so that less memory would be required.
As memory has become less expensive and CPU speed has increased over
the decades, the RISC approach is generally favoured, and now Intel and
AMD are supporting Complex Instruction Set Computer (CISC) ISAs with
RISC-style micro-instructions (Isen et al., 2009).

Another point of difference between RISC-V and other ISAs is that it is an
open-source specification. For many processor manufacturers, precise details
about the implementation of specific instructions are a closely guarded se-
cret, protected by intellectual property law, licensing fees and non-disclosure
agreements. If this were not the case, any company could manufacture chips
based on the x86-64 ISA, for example, and create undesirable competition
for Intel. However, many companies and individuals are now recognizing
open-source licensing as a viable alternative to this standard industrial prac-
tice. Under open-source these designs are much easier to use and contribute
to, meaning the development of the design can leverage a far greater pool
of talent than any one company could hope to, irrespective of their size and
respectability. As such, RISC-V makes itself much more attractive to re-
searchers and industrialists, who can engage with the ISA without incurring
prohibitive licensing costs, producing implementations and improvements.
This creates an “ecosystem” of RISC-V processors, rather than a handful of
strictly regulated sources.

2.4.2 The Shakti Project

The Shakti project is a family of implementations of the RISC-V ISA by
(George et al., 2018), and the RISE group at IIT Madras. The work is cur-
rently ongoing, and individual cores within the family have different design
focuses, such as targeting embedded, control, and mobile processor applica-
tions, and security-focused and fault tolerant variants. The Shakti family
of processors have been designed and implemented in Bluespec SystemVer-
ilog, citing a higher level of abstraction, “superior behavioural semantics,”
architectural transparency and parameterizability as justification. Bluespec
Inc. has itself recently pivoted towards being a supplier of RISC-V technolo-
gies (Bluespec Inc., 2019). Additionally, Bluespec has seen an open-source

34

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

release on github (https://github.com/B-Lang-org/bsc), with it’s first
open source release in July of 2021.

Because Shakti is an open source project, the source code for these pro-
cessors and their subcomponents is fully available for viewing and download
(Madhusudan, 2018). As such, the BSV designs were available for use as
verification case studies. The combination of open source code and the free
availability of the standards from which it was derived, as well as the non-
trivial size of the example, made Shakti ideal for a demonstration of our
techniques.

2.4.3 The RapidIO Interconnect Framework

The particular subsystem focused on in our case studies is the RapidIO mes-
sage passing system. Generally speaking, the various chips of a circuit board
require some sort of framework for the transmission of information. There
are many approaches to this problem; the one used by Shakti is RapidIO, an
open standard.

The RapidIO system passes information through its network via message
packets. These packets often represent instructions to be carried out or
requests for data. The format of the message packets is rigidly determined
by the specification (RapidIO.org, 2017), and so is the format of response
packets.

The RapidIO subsystem under examination is that which forms response
packets in response to packets received from the network. The focus of the
verification case studies presented in this thesis, at a high level, is to verify
that the response packets formulated by the Shakti BSV implementation of
RapidIO are consistent with various properties derived from examination of
the RapidIO specification.

2.5 Extended Backus Naur Form

Throughout the work to follow, EBNF (Jensen and Wirth, 2012) will be used
to formally and systematically encode syntax, be it BSV, PVS, or any other
language. This system will be used mainly to define valid parsing targets for
the BAPIP tool.

EBNF presents sets of syntax rules, which may be used symbolically and
recursively in further definitions. A rule of syntax is an arrangement of
strings and syntax rules which define correct grammatical arrangements of

35

https://github.com/B-Lang-org/bsc

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Symbol Description

〈. . .〉 Syntax Rule (Non-terminal) Symbol
〈. . .〉 ::= Syntax Rule Definition
| Alternative
‘. . . ’ String Delimiters (Terminal Symbol)
[. . .] Option Delimiters
{. . . } Repetition Delimiters (Zero or more itera-

tions)

Tab. 2.1: EBNF reference table

lexemes in the target language. Rules of syntax may have multiple valid
definitions, indicated by |. Strings are the atomic element of EBNF, and
will be delimited by single quotes. Some constructions may be optional, and
are delimited by square braces. Other constructions may occur a number
of times equal to or greater than zero, and are delimited by curly braces.
Concatenation is implicit. For a summary of EBNF symbols, please see
Table 2.1.

2.6 Primer on Haskell and the Haskell Type System

Being the language of implementation for the translation software BAPIP, an
introduction to Haskell is necessary for understanding various code snippets
within this thesis.

2.6.1 Haskell Type System Primer

It is helpful at this point to review the notation used in the construction
of Haskell types. The definition below will be provided using EBNF, as
described in §2.5.

GRAMMAR

〈Type Definition〉 ::= ‘type’ 〈Type〉 ‘=’ 〈Type〉
| ‘data’ 〈Type〉 ‘=’ 〈Constructor List〉 [‘deriving(’ 〈Typeclass List〉

‘)’]
| ‘data’ 〈Type〉 ‘=’ 〈Constructor Name〉 ‘{’ {〈Field List〉} ‘}’

[‘deriving(’ 〈Typeclass List〉 ‘)’]

36

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

〈Constructor List〉 ::= 〈Constructor〉 { ‘|’ 〈Constructor〉 }

〈Constructor〉 ::= 〈Constructor Name〉 { 〈Type〉 }

〈Field List〉 ::= 〈Identifier〉 ‘::’ 〈Type〉 {, 〈Identifier〉 ‘::’ 〈Type〉 }

〈TypeClass List〉 ::= 〈TypeClass〉 {‘,’ 〈TypeClass〉}

END GRAMMAR

The first type of type definition is a “type synonym.” This is a simple
renaming of a type, and is generally used for code readability and ease of
coding. These can sometimes be fairly complex types including tuples and
lists in any combination.

Haskell’s type system also has an “or” symbol, denoted by the ‘|’ char-
acter, which functions very similarly to the same operator in EBNF. Specifi-
cally, it denotes that a type can be constructed with any one of the specified
type constructors. These type constructors can be pattern matched against,
which can be used to determine which type constructor a value of this type
has used at any given time. The third definition is record syntax. This func-
tions somewhat similarly to C’s struct, except that, in typical Haskell style,
implementation details are handled for us, and the “labels” for the fields of
the record are actually also names of functions which take the record as an
argument and return the corresponding field as a result. The populated type
structure is the generated result of the parser, and therefore hypothetically
minimizes the number of semantic details included. This structure tries to
be an encoding, not an interpretation.

2.6.2 The Anatomy of a Haskell Function

Haskell is a purely functional language. Functions are first class members,
and function application is so common in Haskell, arguments are applied to
functions through mere juxtaposition, without requiring parenthesis as in
most languages. Effectively, the space character applies an argument to a
function. The purpose of this section is to provide a general overview of how
to read a Haskell function.

<function name> :: <Type Signature>

<function name> <pattern A> = <Expression A>

<function name> <pattern B> = <Expression B>

<function name> <pattern C> = <Expression C>

37

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

The first line of a Haskell function declares the type signature of the
function. Type signatures are discussed below. During evaluation, a Haskell
function will attempt to pattern match on each of the provided patterns.
The expression corresponding to the first matched pattern will be evaluated,
and the result will be the return result of the function. Pattern matching
is also used to label inputs with identifiers, which may change from pattern
to pattern. One common form in a Haskell function is to split a list into its
first element and all subsequent elements using pattern matching, perform
some operation on the first element, and then recursively call the function on
the remaining elements. Note that this is different from tail recursion. For
example, the following Haskell function computes the sum of a list.

HASKELL�
sum :: [Int] −> Int
sum [] = 0
sum (x:xs) = x + (sum xs) �

END HASKELL

The type signature above indicates the function expects a list of integers,
and produces an integer. Haskell functions may accept any number of ar-
guments, but those arguments are strongly statically typed. In the author’s
experience, when developing a Haskell program, more care, attention, and
work is required to ensure your program is correctly and consistently typed,
but as a result, Haskell programs require far less debugging of semantic er-
rors.

The base case for this recursion is the empty list []. The recursive case
uses the list construction “cons” operator : to distinguish the head of the
list (x) from the tail (xs). The returned result is x, added to the result of
sum called on the tail of the list.

A slightly more complex example is the quicksort algorithm implemented
in Haskell. The fact quicksort can be written in so few lines in Haskell, and
so lucidly, is a testament to Haskell’s power as a language.

HASKELL�
quicksort :: [Int] −> [Int]
quicksort [] = []
quicksort (x:xs) = lowerList ++ x ++ higherList
where

lowerList = quicksort [l | l <− xs, l <= x]

38

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

higherlist = quicksort [h | h <− xs, h > x] �
END HASKELL

In Haskell, ++ is the concatenation operator, and the parts occurring
between square braces are list comprehensions. One modification which is
often made for readability is the assignment of temporary values using where

clauses. Lines following the where clause are local bindings enhancing legi-
bility.

Most of the functions composing the translation software feature such
clauses. Concepts such as control flow and sequential execution of operations
do not figure prominently in the Haskell programs in this thesis.

2.7 Tabular Specifications

Tabular Specifications, in particular function tables, are a formal means of
describing the behaviour of some output variable in a system, based on inputs
to said system. One tabular specification, presented in §6.1, is as follows:

Condition QH
X > H True

(H − EPS) ≤ X ≤ H No Change
X < (H − EPS) False

The interpretation of the specific symbols in the above specification is
best left for §6.1. If we generalize the above, we get the following form.

Condition Ψ
P0(Φ) ψ0

P1(Φ) ψ1

P2(Φ) ψ2

...
...

P3(Φ) ψn

Where:

• Φ is the set of input variables.

• Ψ is the output variable.

39

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

• Pi is a predicate on the input variables.

• ψi is some element of the domain of Ψ.

The way that the table is read, is that, if we consider some set of particular
inputs to the function or module represented by the table, we evaluate which
of the available predicates is true. The ψi on that row is then assigned as
the value of the output variable Ψ. A question that naturally arises from
this description would be what happens when multiple predicates are true
simultaneously. We will see that with a correctly formulated table, such
an event is impossible, due to the property of disjointness. A table is not
considered properly constructed, unless it is both complete and disjoint.

By encoding a tabular specification in PVS using the TABLE construct, the
PVS theorem prover may be used to automatically prove the completeness
and disjointness of the specification.

2.7.1 Disjointness

A table is considered disjoint iff, for every pair of predicates, it is impossible
for both to evaluate to true simultaneously. Or:

¬∃φ • (∀p, q ∈ P • p 6= q ∧ ¬(p(φ) ∧ q(φ)))

That is, there does not exist a set of inputs for which both of some distinct
pair of predicates in the set of predicates evaluate true. For example, for
x ∈ N , the predicates p(x) = x < 6 and q(x) = x > 8 are disjoint, because
x can not simultaneously be greater than 8 and less than 6. The expressions
p(x) = x < 22 and q(x) = x > 14 are not disjoint, because there exist values
of x which satisfy p and q simultaneously.

2.7.2 Completeness

The completeness property might also be termed a totality property, in that a
tabular specification that is not complete is a partial function, and a tabular
specification which is complete is a total function from Φ to Ψ

The completeness property is as follows:

∀φ ∈ Φ • P0(φ) ∨ P1(φ) ∨ P2(φ) ∨ · · · ∨ Pn(φ)

In other words, for all particular sets of input values, one of the predicates
Pi must hold.

40

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

2.7.3 Complications

In addition to the above descriptions, there are ways tabular specifications
are often abbreviated, which bear mentioning, since they require some degree
of semantic interpretation. Consider the following tabular specification:

Condition Ψ
X ∧ Y ψ0

X ∧ ¬Y ψ1

¬X ∧ Y ψ2

¬X ∧ ¬Y ∧ Z ψ3

¬X ∧ ¬Y ∧ ¬Z ψ4

We may notice, from the above, that all our predicates are the conjunction
of the two terms X and Y , or their negations. We may visually separate the
table along this conjunction:

Condition Ψ
X Y ψ0

X ¬Y ψ1

¬X Y ψ2

¬X ¬Y Z ψ3

¬X ¬Y ¬Z ψ4

It is a usual simplification to eliminate blank cells in the table by merging
them with the cell to the left, as so:

Condition Ψ
X Y ψ0

X ¬Y ψ1

¬X Y ψ2

¬X ¬Y Z ψ3

¬X ¬Y ¬Z ψ4

Our table still contains some unnecessary repetition. We can collect ad-
jacent identical conditions vertically as follows:

Condition Ψ

X
Y ψ0

¬Y ψ1

¬X
Y ψ2

¬Y Z ψ3

¬Z ψ4

41

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

The above simplifications are designed to increase the readability and ease
of use of tabular specifications. This is accomplished through the removal of
redundant formulas.

42

3. DEFINITION AND PARSING OF OUR SUBSET OF BSV

In this chapter, we will examine the translation algorithm. Complete syntax
both for accepted BSV hardware descriptions and generated PVS files will
be presented. A semantic interpretation of our abstract syntaxes, and the
mapping between the two, will also be presented.

The syntax presented in this section represents only those language con-
structs selected for inclusion in the translation. Aside from some basic ele-
ments, such as literals, types and arithmetic expressions, language constructs
qualified for inclusion based on their presence in targeted case study descrip-
tions. This includes enough language elements to be practical for design
purposes, while avoiding some of the more exotic features that would be re-
quired by a full translation, such as the ability to include C functions in BSV
modules (Bluespec Inc., 2012a).

3.1 Defining a Grammar for BSV

In order to parse a BSV file, we must first define a grammar. This will be ac-
complished in bottom-up form using Extended Backus-Naur Form (EBNF).
For more information, please see §2.5. The Parsec parsing library (Leijen
and Meijer, 2001) resembles EBNF syntactically, so the grammar presented
in this section resembles the actual source code of the parser. Please note
that this is a syntactic definition only. The semantic interpretation of these
syntactic constructs is discussed in §3.3. For a thorough discussion of the
semantic translation, please see §4.

It must be stressed that this grammar defines a subset of BSV which is
amenable to translation via BAPIP. BSV has a large number of language
constructs which the translation software makes no attempt to translate, so
we will provide here a positive description of the supported sub-language.
Historically, this subset was originally developed as a small subset of the
language accepting the decriptions in case studies 1 and 2 (§6.1 and §6.2).

43

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Language features were added gradually as demanded by the ongoing work
towards developing case studies.

The grammar presented here has been partially derived from the Bluespec
reference manual (Bluespec Inc., 2012a), and partially re-engineered over the
course of the project. At the time when this portion of the work was taking
place, the Bluespec compiler was a closed-source tool, thus requiring some
degree of reverse engineering. The compiler has since been released open
source (Bluespec Inc., 2020).

Throughout this section, a modified version of the BSV program from §2.1
will be used to demonstrate the applicability of the grammar being discussed.
This will be demonstrated in the “running example” section of all relevant
subsections. This BSV description has been expanded, so that each of the
specified grammar productions is represented within the description. The
circuit which can be derived from this example is not meaningful or useful.
This example is meant purely as a demonstration of syntax.

Top-Down Overview of Bluespec Grammar

Although BSV files may contain several packages, the package is the largest
working unit of the Bluespec language. Packages primarily contain module
declarations, import statements, and various declarations (type definitions,
constants, functions, etc.). Modules are the top-level construct which can
be wholly synthesized into hardware. Modules are broken down primarily
into state declarations and various flavours of action. Actions are the only
elements which carry statements.

For an pictorial overview of structure of BSV grammar, see Figure 3.1.
Identifiers, type annotations and literals have been omitted from this figure.
Including these would not add to our understanding of the structure of the
language, and they clutter the diagram quite badly.

To reduce clutter, syntactic units which were very common have been
omitted (specifically identifiers, type annotations, and literals).

Haskell Data Structures

After parsing, the generated abstract syntax tree is encoded in Haskell data
types. Since Haskell is statically typed, the type structure cannot be violated,
providing assurance that the data extracted from our BSV descriptions aren’t
misused. In the grammatical descriptions which follow, the Haskell data

44

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Figure 3.1: BSV Grammar Hierarchy Diagram
45

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

types which encode the given grammar will be stated, with explanatory notes.
For a primer on the Haskell type system, see §2.6.1.

Comments and Whitespace Handling

Comments in BSV follow the C convention, with line comments indicated by
//, and block comments enclosed by /* and */. All comments are stripped
out during preprocessing. Neither comments nor whitespace are included in
the following syntactic description, and no arrangement of whitespace and
comments will prevent a description from being parsed.

Populating the PVS design with BSV comments would be a useful addi-
tion to the process, hypothetically increasing the readability of the output.
However, in practice this would only be applicable to state elements and
methods. Rules, modules, interfaces, and packages are either flattened by
the translation process or have no analog in the PVS output, so comments
would not be locatable within the output files.

Macro Definitions and the BAPIP Preprocessor

In addition to stripping whitespace, BAPIP preprocesses macros out of a
BSV file prior to invoking the parser. Although BSV supports macros in
the C style, macros as defined in PVS operate very differently. A PVS
macro behaves like a constant declaration, whereas a BSV macro may contain
arbitrary characters, including expressions and commands.

Since there is no direct translation of macros possible, macros are made
the subject of preprocessing. All macros (which typically occur in included
.define files), are collected, and a find-and-replace operation is executed
over each BSV file to be processed. At the time of this software’s design and
implementation, the Bluespec compiler was closed source, so such routines
were inaccessible. At any rate, the macro substitutions themselves were
trivial to implement.

3.1.1 BSV Types

Due to its nature as a hardware description language, numeric types which do
not have an implicit bitwidth (such as Float and Bool) are parameterized
by bitwidth. In other HDLs, this information is attached to registers and
wires, but in BSV it is incorporated into the type system, and adherence to
bitwidth limitations is enforced by the Bluespec type-checker.

46

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

GRAMMAR

〈BSV Type〉 ::= ‘Bool’ | ‘Float’ | 〈Identifier〉
| ‘Bit#(’ 〈decimal digit〉 {〈decimal digit〉} ‘)’
| ‘Int#(’ 〈decimal digit〉 {〈decimal digit〉} ‘)’
| ‘UInt#(’ 〈decimal digit〉 {〈decimal digit〉} ‘)’
| ‘Maybe#(’ 〈BSV Type〉 ‘)’

END GRAMMAR

Abstract Syntax in Haskell

The parameterizability of data types in BSV transfers effectively into Haskell’s
type system. A BSV type in Haskell may be any of the types given above.
The custom data type is for type definitions and enumerations, and corre-
sponds to the ability of an identifier to form a type name in BSV. Numeric
types are parameterized by a bit width, and the Maybe type is parameter-
ized by another BSV type. In theory this makes the type system divergent,
but since all BSV modules are assumed to have appeased the BSV compiler
before having reached BAPIP, this is not an issue in practice.

HASKELL�
data BSVType = BSV Bool −− Booleans
| BSV Bit N −− Bit Vector
| BSV Int N −− Signed Integer
| BSV UInt N −− Unsigned Integer
| BSV Real −− Floating Point
| BSV Custom Name −− As defined in typedef
| BSV Maybe BSVType −− Maybe monad

deriving (Eq, Show, Ord)

type N = Integer �
END HASKELL

The Maybe Type

The Maybe type in BSV is a type which encapsulates other types, and seems
to be a holdover from when BSV was a library of Haskell. Things of type
Maybe may be either valid or invalid. This terminology differs from normal

47

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

usage for Maybe types in other languages, but is taken from the BSV doc-
umentation (Bluespec Inc., 2012a). If a value is valid, then some specific
concrete value is coupled to it. Otherwise no value is coupled. This ostensi-
bly allows us to save the trouble specifying a value for the invalid case, and
allows a degree of pattern matching from within if statements.

3.1.2 Literals

Literals, given below, are much as one would expect them in a C-based
language. The underscore character is a valid syntactic character, but has no
semantic meaning. It is used for readability and formatting purposes to assist
in keeping place value straight. For example, 16b1010101010101010 can be
written as 16b1010 1010 1010 1010. In BSV the ability to designate size
literally and numerically, rather than implicitly via data types (long or short
int, etc.) is essential to BSV’s function as a hardware description language.

GRAMMAR

〈Literal〉 ::= 〈Real Literal〉 | 〈Integer Literal〉 | 〈String Literal〉
| 〈Boolean Literal〉 | 〈Enumeration Literal〉 | 〈Other Literal〉

〈Integer Literal〉 ::= ‘’0’ | ‘’1’
| 〈decimal digit〉 〈decimal digit〉 〈based Literal〉
| 〈decimal digit〉 〈decimal digit〉

〈based Literal〉 ::= (‘d’ | ‘D’) 〈decimal digit〉 {〈decimal digit〉}
| (‘h’ | ‘H’) 〈hexadecimal digit〉 {〈hexadecimal digit〉}
| (‘o’ | ‘O’) 〈octal digit〉 {〈octal digit〉}
| (‘b’ | ‘B’) 〈binary digit〉 {〈binary digit〉}

〈Real Literal〉 ::= 〈decimal digit〉 { 〈decimal digit〉 } ‘.’ 〈decimal digit〉 {
〈decimal digit〉 } [(‘e’ | ‘E’) [‘-’] 〈unsized Integer Literal〉]

〈String Literal〉 ::= ‘"’ { character } ‘"’

〈Boolean Literal〉 ::= ‘true’ | ‘True’ | ‘TRUE’ | ‘false’ | ‘False’ | ‘FALSE’

〈Enumeration Literal〉 ::= 〈Identifier〉

〈decimal digit〉 ::= ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’ | ‘ ’

〈hexadecimal digit〉 ::= ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’ | ‘a’
| ‘b’ | ‘c’ | ‘d’ | ‘e’ | ‘f’ | ‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ | ‘F’ | ‘ ’

48

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

〈binary digit〉 ::= ‘0’ | ‘1’ | ‘ ’

〈octal digit〉 ::= ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘ ’

〈Other Literal〉 ::= ‘defaultValue’ | ‘default’

END GRAMMAR

49

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Abstract Syntax in Haskell

In Haskell, literals are encapsulated by the Lit type.

HASKELL�
data Lit = LitString String −− Strings
| LitEnum String −− Enumerats
| LitInt Integer −− Integers
| LitBool Bool −− Booleans
| LitReal Float −− Floating Point
| LitChar Char −− Characters
| LitSizedInt N Integer −− Integer with bit width
| LitStructConstructor −− Struct Initializer
| LitVoid −− Internal use

deriving (Eq,Ord) �
END HASKELL

Structures which are initialized to their default values behave syntacti-
cally as literals.

3.1.3 Identifiers

Depending on the context, Identifiers must or must not be capitalized.
Following the Haskell convention, capitalized identifiers typically indicate
types, and lowercase identifiers may be state elements, rule names, etc.
Within the context of this grammar, identifiers which must be capitalized
are called “Name,” and those which must not be capitalized are called “Iden-
tifier.”

Identifiers and names with leading underscores, while valid syntax in BSV
are not in PVS. PVS does, however, allow identifiers to start with Unicode
characters other than the ASCII symbol set (Bluespec Inc., 2012a; Owre
et al., 2001). Thus, during the translation process, any identifiers or names
with leading underscores have those swapped with double low line, a char-
acter resembling, but distinct from, underscore. Since BSV does not allow
Unicode characters, there is no intersection between the set of allowable BSV
identifiers and the set of PVS identifiers thus modified.

50

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

GRAMMAR

〈Name〉 ::= 〈UC 〉 {〈character〉}

〈Identifier〉 ::= 〈LC 〉 {〈character〉}

〈character〉 ::= 〈UC 〉 | 〈LC 〉 | 〈DD〉 | ‘ ’ | ‘$’

〈UC 〉 ::= ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ | ’G’ | ’H’ | ’I’ | ’J’ | ’K’ | ’L’ | ’M’
| ’N’ | ’O’ | ’P’ | ’Q’ | ’R’ | ’S’ | ’T’ | ’U’ | ’V’ | ’W’ | ’X’ | ’Y’ | ’Z’ |

〈LC 〉 ::= ’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’ | ’g’ | ’h’ | ’i’ | ’j’ | ’k’ | ’l’ | ’m’ | ’n’ |
’o’ | ’p’ | ’q’ | ’r’ | ’s’ | ’t’ | ’u’ | ’v’ | ’w’ | ’x’ | ’y’ | ’z’

〈DD〉 ::= ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’

END GRAMMAR

Abstract Syntax in Haskell

The Haskell representation of certain low-level constructs, such as identi-
fiers and expressions, are shared between the PVS and BSV abstract syntax
trees. One of the necessary translation processes is annotating identifiers
with absolute addressing within the PVS state record that will eventually be
generated. This, and other instances, such as structure field access, cause the
discrepancy between the grammar of identifiers in BSV and the generated
data structure in Haskell.

HASKELL�
data ID Path = ID Submod Struct ModuleInst ID Path
| ID String
| ID Vect String Index deriving (Eq, Ord)

type ModuleInst = String
type Index = Expression �

END HASKELL

3.1.4 Expressions

Expressions in BSV, for which the grammar is given below, are constructed
similarly to C-based languages, and fortunately, are very similar to PVS

51

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

expressions. Some operations have different symbols, but are semantically
identical. Other operators are introduced by the fact that this is a hardware
description language, such as those involving square braces. In hardware de-
sign, treating variables as bit-vectors and performing sub-variable individual
bit access and ranged bit access is quite common, as is bit vector concatena-
tion. These three bit vector operations are included in BSV as primitives.

GRAMMAR

〈Expression〉 ::= 〈Expression〉 〈Binary Operator〉 〈Expression〉
| 〈Unary Operator〉 〈Expression〉
| ‘(’ 〈Expression〉 ‘)’
| 〈Identifier〉 ‘.’ 〈Identifier〉

‘(’ [〈Expression〉 { ‘, ’ 〈Expression〉 }] ‘)’
| 〈Identifier〉 ‘(’ [〈Expression〉 { ‘, ’ 〈Expression〉 }] ‘)’
| 〈Identifier〉
| 〈Literal〉
| ‘(’ 〈Expression〉 ’) ?’ 〈Expression〉 ‘:’ 〈Expression〉
| 〈Identifier〉 ‘[’ 〈Expression〉 ‘:’ 〈Expression〉 ‘]’
| 〈Identifier〉 ‘[’ 〈Expression〉 ‘]’
| ‘matches tagged’ 〈Maybe Test〉
| ‘{’ 〈Expression〉 { ‘,’ 〈Expression〉 } ‘}’
| ‘tagged’ 〈Maybe Identifier〉
| 〈BSV Type〉 ‘{’ 〈Record Statement List〉 ‘}’
| ‘fromMaybe (’ 〈Expression〉 ‘,’ 〈Identifier〉 ‘)’

〈Binary Operator〉 ::= ‘==’ | ‘!=’ | ‘>=’ | ‘<=’ | ‘>’ | ‘<’ | ‘&&’ | ‘||’ | ‘&’ |
‘|’ | ‘^’ | ‘<<’ | ‘>>’ | ‘*’ | ‘/’ | ‘%’ | ‘+’ | ‘-’

〈Unary Operator〉 ::= ‘-’ | ‘+’ | ‘!’

〈Maybe Test〉 ::= ‘Valid’ ‘.’ 〈Identifier〉
| ‘Invalid’

〈Maybe Identifier〉 ::= ‘Valid’ 〈Expression〉
| ‘Invalid’

END GRAMMAR

52

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Abstract Syntax in Haskell

As with most expression systems, we must account for a large number of
terms, making this one of the largest declarations in terms of lines of code.
Again, the expression system may theoretically contain infinitely regressive
terms, but unlike the type system, this expression system does not diverge.

HASKELL�
−− | Expressions are collections of tokens indicating mathematical
−− | operations. These include Boolean operations such as equality
−− | and other comparisons, Bitwise operations, arithmetic
−− | operations, and others.
data Expression = Negative Op −− (−x)
| Not Op −− (!x)
| Equals Op1 Op2 −− (x == y)
| NotEquals Op1 Op2 −− (x != y)
| GreaterEquals Op1 Op2 −− (x >= y)
| LessEquals Op1 Op2 −− (x <= y)
| Greater Op1 Op2 −− (x > y)
| Less Op1 Op2 −− (x < y)
| And Op1 Op2 −− (x && y)
| Or Op1 Op2 −− (x || y)
| BitwiseAND Op1 Op2 −− (x & y)
| BitwiseOR Op1 Op2 −− (x | y)
| BitwiseXOR Op1 Op2 −− (x ˆ y)
| LShift Op1 Op2 −− (x << y)
| RShift Op1 Op2 −− (x >> y)
| BitSelect Op1 Op2 −− (x[y])
| BitSelectRange Op Op1 Op2 −− (x[y:z])
| BitConcat [Op] −− concat(x, y, z, ...)
| Multiply Op1 Op2 −− (x ∗ y)
| Divide Op1 Op2 −− (x / y)
| Modulo Op1 Op2 −− (x % y)
| Add Op1 Op2 −− (x + y)
| Subtract Op1 Op2 −− (x − y)
| Literal Lit −− (x)
| Identifier ID Path −− (x.y)
| Exp MethodCall ID Path MethodName [Expression]

(Maybe Writes) −− (mod.meth(x,y,z,...))
| Exp FunctionCall String [Expression]

−− (func(x,y,z ,...))

53

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

| ValueMethodCall SuperModuleName ModuleName InstanceName
MethodName −− (mod.meth()), includes annotations
| Exp If Guard Op1 Op2 −− (x)? y : z
| Skip −− internal use
| RPFlag Op −− internal use
| MaybeIf Matching ID Path Op1 Op2

−− Pattern matching if statement for
Maybe values

| Tagged (Maybe PVSType) MaybeTag
−− In−situ maybe wrapping

| FromMaybe ID Path Op −− internal use
| MaybeValue Op −− internal use
| Binding [LocalVar] Expression−− Local Variable Binding
| CasesOf Expression [ExpCase] −− Case expression
| StructCluster (Either BSVType PVSType)

[(String, Expression)] −− Multiple fields of a structure
| PMatch MaybeIDTag −− Pattern match on maybes
| IsValid MaybeTag −− Maybe type test for validity
| FieldAccess Op ID Path −− structure field access

deriving (Eq, Ord, Show)

type LocalVar = (ID Path
, (Either (Maybe BSVType) (Maybe PVSType))
, Expression)

type Matching = ID Path
type Op = Expression
type Op1 = Expression
type Op2 = Expression
type ModuleName = String
type SuperModuleName = String
type InstanceName = String
type MethodName = String
type UTArgs = [(String, Maybe BSVType)]
−− Arguments without type annotations

type StructName = String
type FieldName = String �

END HASKELL

54

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

3.1.5 Statements

All Statements are either control flow or method invocation. Commonly
used methods, such as register writes, may be used with syntactic sugar that
gives the appearance of assignment. This is not to be confused with assign-
ment in the imperative sense, which BSV does not support. The mapping
between the types of statements presented in the grammar below is surjec-
tive, but not injective, as statements which are syntactically distinct are
sometimes semantically equivalent, such as the three ways given for register
write operations. In some cases these are straight syntactic sugar. In others,
these are special cases for particular operations, such as if statements which
perform maybe type extraction.

GRAMMAR

〈Stmt〉 ::= [〈Stmt Pragma〉] 〈Statement〉

〈Statement〉 ::= 〈Identifier〉 ‘<=’ 〈Expression〉 ‘;’
| 〈Identifier〉 ‘[’ 〈Expression〉 ‘] <=’ 〈Expression〉 ‘;’
| 〈Identifier〉 ‘. write(’ 〈Expression〉 ‘);’
| 〈Identifier〉‘.’〈Identifier〉[‘(’[〈Expression〉{‘, ’〈Expression〉}]‘)’]‘;’
| 〈Identifier〉 ‘;’
| ‘$’ 〈string〉 ‘;’
| ‘return’ 〈Expression〉 ‘;’
| ‘return’ 〈BSV Type〉 ‘{’ 〈Record Stmt List〉 ‘}’
| ‘if (’ 〈Expression〉 ‘)’ 〈Stmt〉 [‘else’ 〈Stmt〉]
| ‘if (’ 〈Identifier〉 ‘matches tagged Valid .’ 〈Identifier〉 ‘)’
〈Stmt〉
[‘else’
〈Stmt〉]

| ‘for (’〈Stmt〉{‘, ’〈Stmt〉}‘;’〈Expression〉‘;’〈Stmt〉{‘, ’〈Stmt〉}‘)’
〈Stmt〉

| ‘case (’ 〈Expression〉 ’)’ [‘matches’]
{ 〈case〉 }
‘endcase’

| ‘let ’ 〈Identifier〉 ‘ <- ’ 〈Expression〉 ‘;’
| 〈BSV Type〉 〈Identifier〉 ‘=’ 〈Expression〉 ‘;’
| ‘begin’ 〈Stmt〉 { 〈Stmt〉 } ‘end’
| 〈Identifier〉 ‘<=’ 〈Name〉 ‘{’ 〈Record Stmt List〉 ‘}’

55

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

〈Record Stmt List〉 ::= 〈Identifier〉‘:’〈Expression〉[‘,’〈Record Stmt List〉]
| 〈Identifier〉 ‘:’ 〈Expression〉

〈case〉 ::= 〈Literal〉 { ‘,’ 〈Literal〉 } ‘:’ 〈Stmt〉

〈Stmt Pragma〉 ::= ‘(*’ 〈Stmt Att〉 { ‘, ’ 〈Stmt Att〉 } ‘*)’

〈Stmt Att〉 ::= ‘split’
| ‘nosplit’
| 〈Common Att〉

〈Common Att〉 ::= ‘descending urgency = "’ 〈string list〉 ‘"’
| ‘execution order = "’ 〈string list〉 ‘"’
| ‘mutually exclusive = "’ 〈string list〉 ‘"’
| ‘conflict free = "’ 〈string list〉 ‘"’
| ‘preempts = "’ 〈string list〉 ‘"’
| ‘doc = "’ 〈string〉 ‘" ’

END GRAMMAR

Abstract Syntax in Haskell

As demonstrated below, statements can contain many sub-elements, includ-
ing the names of actions and methods. In BSV, it is possible to attach
attributes (or pragmas) at the individual statement level. Most attributes
are not relevant to the translation process, particularly at the statement
level, since scheduling pragmas are more likely to be included at the action
or module levels. Nevertheless, scheduling pragmas are permitted to occur
at this level, and must be accounted for, however out of place they may seem.

HASKELL�
data Statement =

Write ID Path Expression [StatementAttribute]
−− Register write operation

| MethodCall ID Path MethodName [Expression]
[StatementAttribute]
−− Action method invocation

| ActionCall ActionName [StatementAttribute]
−− Action block invocation

| Return Expression [StatementAttribute]
−− Return statement

56

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

| StructReturn BSVType [(String, Expression)]
[StatementAttribute]
−− Return statement which returns a structure

| If Guard Then Else [StatementAttribute]
−− Garden Variety Conditional

| PMatchIf ID Path ID Path Statement Statement
[StatementAttribute]
−− Pattern matching if statement for maybe types

| ForLoop [Inits] Guard [Increments] Statement
[StatementAttribute]
−− For loops are only for syntactic iteration only

| Switch Guard [Case] [StatementAttribute]
−− Switch−case block

| LocalDec [LocalVar] Statement [StatementAttribute]
−− Local variable binding

| StatementBlock [Statement]
−− Statements grouped by ’begin’ and ’end’

| Void
−− Internal use

deriving (Eq)

type Case = (Literal, Statement)
type ExpCase = (Literal, Expression)
type Guard = Expression
type Then = Statement
type Else = Statement �

END HASKELL

3.1.6 Intra-module Interfaces

When an interface is declared within a module, its syntax changes substan-
tially enough to make it distinct from extra-module interface declarations.
Intra-module interfaces encapsulate a number of method declarations as seen
in 3.1.10, as opposed to method stubs. Methods inside intra-module inter-
faces are addressed through the declared interface name.

57

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

GRAMMAR

〈IntraModule Interface〉 ::= ‘interface’ 〈Name〉 〈Name〉 ‘;’
{ 〈Method Stub〉 }
‘end interface’

END GRAMMAR

Running Example

In our running example, an interface is declared within the mkTrafficLight

module. This permits additional points of access to be declared and instan-
tiated within a module, accessed via dot syntax.

BSV...
Reg#(Colour) lampState <- mkReg(Red);

Reg#(Int#(32)) T <- mkReg(0);

interface TrafficLight2;

method Bool getYellow ();

method Bool getRed ();

endinterface

Action reset =

(action

...
END BSV

Abstract Syntax in Haskell

Intra-module interface declarations (or mid-module interface declarations)
are simply a tagged collection of method stubs.

HASKELL�
type MidModInterfaceDec = (String, String, [MethodBody]) �

END HASKELL

58

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

3.1.7 State Declaration

State Declarations instantiate submodules, whether they are custom de-
fined, or a prelude module, such as Register. It should be noted that there
are more types of Vectors and FIFOs than are presented here. Those exten-
sions are beyond the scope of the present implementation. Implementation
of these modes of operation is reserved as future work.

GRAMMAR

〈State Declaration〉 ::= 〈Name〉 〈Identifier〉 ‘<-’〈Identifier〉‘;’
| ‘Reg#(’ 〈BSV Type〉 ‘)’ 〈Identifier〉 ‘<- mkReg(’ 〈Literal〉 ‘);’
| ‘FIFO#(’ 〈BSV Type〉 ‘)’ 〈Identifier〉 ‘<- <FIFO Type>;’
| ‘Vector#(’ 〈Literal〉 ‘,’ 〈Vector Type〉 ‘)’ 〈Identifier〉

‘<-’〈Vector Init〉‘;’
| ‘RegFile#(’ 〈BSV Type〉 ‘,’ 〈BSV Type〉 ‘)’ 〈Identifier〉

‘<-’〈Register Loader〉‘;’

〈FIFO Type〉 ::= ‘mkSizedBypassFIFOF(’ 〈Literal〉 ’)’
| ‘mkSizedFIFO(’ 〈Literal〉 ’)’
| ‘mkSizedFIFOF(’ 〈Literal〉 ’)’
| ‘mkFIFOF’
| ‘mkFIFO’

〈Vector Type〉 ::= ‘Reg#(’ 〈BSV Type〉 ‘)’

〈Vector Init〉 ::= ‘replicateM(’ 〈Constructor〉 ‘)’

〈Constructor〉 ::= ‘mkReg(’ 〈Expression〉 ‘)’

〈Register Loader〉 ::= ‘mkRegFileLoad("’〈Identifier〉‘",’
〈Literal〉‘,’〈Literal〉‘)’

END GRAMMAR

Register Files are registers with initialization data stored in files out-
side the source file. For more information regarding the various types of FIFO
buffers, please see the BSV documentation Bluespec Inc. (2012a).

Running Example

The mkTrafficLight module declares two registers, lampState and T, rep-
resenting the state of the traffic lamp and the time elapsed. One is of the
enumerated Colour type, the other is a 32 bit integer.

59

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

BSV...
endinterface

module mkTrafficLight (TrafficLight);

Reg#(Colour) lampState <- mkReg(Red);

Reg#(Int#(32)) T <- mkReg(0);

interface TrafficLight2;

method Bool getYellow ();

...
END BSV

Abstract Syntax in Haskell

State declarations are encoded as follows.

HASKELL�
−− | State Declaration
data BSVstateDec = BSV Reg ID Path BSVType Init
| BSV FIFO FIFOType ID Path BSVType
| BSV Vector ID Path BSVType N VectorInit
| BSV RegFile ID Path AddressWidth BSVType RegFileLoader
| BSV SubModuleDec InterfaceName Name InstName
| DWire ID Path BSVType Init
deriving (Eq, Show)

−− | FIFOs may be initialized with any of the following
data FIFOType = FIFO | FIFOF | SizedFIFO Literal
| SizedFIFOF Literal | DepthParamFIFO | FIFO1
| FIFOF1 | LFIFO | LFIFOF | PipelineFIFO
| PipelineFIFOF | BypassFIFO | BypassFIFOF
| SizedBypassFIFOF Literal deriving (Eq, Show)

−− | Vectors may be initialized with the following
data VectorInit = Replicate Literal
| Explicit [Literal] deriving (Eq, Show)

60

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

−− | Register files must have bounds specified
data RegFileLoader =

RegFileLoad FileName MinIndex MaxIndex deriving(Eq,Show)

−− | The following are provided for the legibility .
type Name = String
type N = Integer
type Init = Expression
type InstName = String
type MinIndex = Literal
type MaxIndex = Literal
type AddressWidth = BSVType �

END HASKELL

In other words, a state declaration may be a register, FIFO buffer, vector
or submodule declaration. Each type option for the BSVstateDec type bun-
dles together all of the information declared in the state declaration, such as
the identifier of the declared element, any initialized value, et cetera. Sub-
module instantiations are included in this category because, from a semantic
standpoint, the objects we consider state elements are in fact submodules.
They are submodules supported by the Bluespec prelude, and have generous
amounts of syntactic sugar supporting their use, but behaviourally they are
submodules. One can even call read and write methods on a register in
exactly the same way as a method of any other module. It just so happens
that read is contextually implicit, and write can also be accomplished by
means of the <= operator.

3.1.8 Action Declaration

An Action is a group of statements that may be declared separately from
rules and methods, and invoked as a statement. Contrary to their name,
Actions take no action by themselves, they are simply an abstraction mech-
anism for Statement blocks. Common uses for Action declarations are en-
capsulating frequently used or changed code, so that multiple instances of
the same set of statements need not be modified individually each time a
change is required.

61

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

GRAMMAR

〈Action Declaration〉 ::= [‘(*’ 〈Action Att〉 { ‘, ’ 〈Action Att〉 } ‘*)’]
‘Action’ 〈Identifier〉 ‘=’
‘(action ’
〈Stmt〉
{ 〈Stmt〉 }
‘endaction);’

〈Action Att〉 ::= ‘doc = "’ 〈string〉 ‘"’

END GRAMMAR

Stmt is defined in §3.1.5.

Running Example

The action given in the following code example is a simple reset routine,
which merely resets the lamp state to Green.

BSV...
method Bool getRed ();

endinterface

Action reset =

(action

lampState <= Green;

endaction);

rule goYellow (lampState == Green && T >= 140);

lampState <= Yellow;

...
END BSV

Abstract Syntax in Haskell

Actions are encoded simply as a list of statements tupled with an identifier
and a set of declared attributes.

62

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

HASKELL�
type ActionDec = (ActionName

, [Statement]
, [ActionAttribute]
) �

END HASKELL

When invoked, the list of statements grouped together to form an ac-
tion are inserted into the hardware description in the location of the action
invocation.

3.1.9 Rule Declaration

Rules are actions which are eligible for scheduling by Bluespec’s action ar-
bitration mechanism. For an in-depth examination of the action arbitration
semantic, please see §4.1. In both actions generally and rules specifically, the
guard expression may be omitted. Semantically, this means that the rule is
“always on”. This can be modelled by using True as the guard expression.
When a module performs calculations that are not directly controlled or ini-
tiated by a parent module, those calculations will typically be contained in
a Rule.

GRAMMAR

〈Rule Declaration〉 ::= [‘(*’ 〈Rule Att〉 { ‘, ’ 〈Rule Att〉 } ‘*)’]
‘rule’ 〈Identifier〉 [‘(’ 〈Expression〉 ‘)’] ‘;’
〈Stmt〉
{ 〈Stmt〉 }
‘endrule’

〈Rule Att〉 ::= ‘fire when enabled’
| ‘no implicit conditions’
| ‘descending urgency = "’ 〈string list〉 ‘"’
| ‘execution order = "’ 〈string list〉 ‘"’
| ‘mutually exclusive = "’ 〈string list〉 ‘"’
| ‘conflict free = "’ 〈string list〉 ‘"’
| ‘preempts = "’ 〈string list〉 ‘"’
| ‘doc = "’ 〈string〉 ‘"’

END GRAMMAR

63

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Return Type is defined in §3.1.16.
The pragmas included at this level (descending urgency, conflict free,

etc.) have direct scheduling implications, and are the only pragmas BAPIP
currently takes into account.

In order to handle pattern matching over Maybe types, a pattern matching
guard is transformed into a test for the Maybe having a value in the guard,
and an encapsulation of all statements in a local definition for the specified
identifier. While this introduces a slight difference between BSV and our
abstract syntax, it reduces the complexity of the translation while having no
impact on the underlying semantics. For example:

BSV�
rule r (s matches tagged Valid q);
<statements>

endrule

// Becomes

rule r (isValid s);
let q = fromMaybe s in
<statements>

endrule �
END BSV

Maybe types are discussed in §3.1.1.

Running Example

The running example contains one rule, which causes the lamp state to
change to yellow if it is first green, and if the timer value exceeds 139.

BSV...
lampState <= Green;

endaction);

rule goYellow (lampState == Green && T >= 140);

lampState <= Yellow;

endrule

64

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

method Action setTime(time);

...
END BSV

Abstract Syntax in Haskell

Rules are actions with guards, or “guarded actions.”

HASKELL�
type RuleDec = (RuleName

, Guard
, [Statement]
, [RuleAttribute]
) �

END HASKELL

At this level, we are not yet concerned with rule scheduling, just organiz-
ing the data contained in the BSV file. The next step is primarily concerned
with rule scheduling.

3.1.10 Method Body Declaration

Methods are Rules which are not available for execution by default, but must
be invoked by a parent module. Once invoked, Methods take the highest
priority during action arbitration, but execution of a Method can still be
blocked by that Method’s guard.

Method body declarations are distinct from the method stubs appearing
in interface declarations (§3.1.16), in that method stubs merely declare the
type of the method, including the types of its arguments and its return
value, whereas a Method body declaration declares the statements a method
executes and it’s guard (if any).

GRAMMAR

〈Method Body Declaration〉 ::= [‘(*’〈Method Att〉{‘, ’〈Method Att〉 }‘*)’]
‘method’ 〈Return Type〉 〈Identifier〉 ‘(’ [〈Arglist〉] ‘)’
[‘if (’ 〈Expression〉 ‘)’] ‘;’

65

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

〈Stmt〉
{ ‘, ’ 〈Stmt〉 }
‘endmethod’

〈Arglist〉 ::= 〈Argument〉 {‘, ’ 〈Argument〉}

〈Method Att〉 ::= ‘doc = "’ 〈string〉 ‘"’

END GRAMMAR

where Return Type and Argument is defined in §3.1.16.

Running Example

The mkTrafficLight module declares two interface methods, one for setting
the time register, the other for outputting whether the lamp state is green
or not.

BSV...
endrule

method Action setTime(time);

T <= time;

endmethod

method Bool getGreen;

return lampState == Green;

endMethod

endmodule

...
END BSV

Abstract Syntax in Haskell

Just as rules are actions with guards, methods are rules with arguments and a
return type. In the case of input methods, the return type indicates whether

66

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

the method is input, output, or both, which is why the Maybe monad has
not been used.

HASKELL�
type MethodBody = (MethodName

, ReturnType
, UTArgs
, Guard
, [Statement]
, [MethodBodyAttribute])

type UTArgs = [(String, Maybe BSVType)] �
END HASKELL

It should be noted that, while the arguments used in a method body
declaration are recommended to be typed by the Bluespec compiler (i.e., a
warning is tripped by the absence of typing information), this is not a strict
requirement. Typing information is already provided by a module’s interface
declaration. There is also no strict requirement that the argument identifiers
used in the method stubs in the interface declaration be reused in the method
declaration. The identifiers used in the method’s statements and guard must
correspond to the identifiers declared in the method declarations.

3.1.11 Module Level Grammar

Modules are the highest level of hardware organization underneath packages,
and are analogous to the modules of other Hardware Description Languages
such as VHDL and Verilog. Modules declare an interface, which provides type
information for all the methods provided by a module. When instantiated
by parent modules, the interface of a Module is that Module’s type.

Intra-module interfaces are somewhat distinct from those declared outside
of modules. These are discussed in §3.1.6.

GRAMMAR

〈BSV Module〉 ::= [‘(*’ 〈Module Att〉 { ‘, ’ 〈Module Att〉 } ‘*)’]
‘module’ 〈Identifier〉 ‘ (’ 〈Identifier〉 ‘);’
{ 〈Module Level Declaration〉 }
‘endmodule’

67

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

〈Module Level Declaration〉 ::= 〈State Declaration〉
| 〈Action Declaration〉
| 〈Rule Declaration〉
| 〈IntraModule Interface〉
| 〈Method Body Declaration〉

〈Module Att〉 ::= ‘synthesize’
| ‘always ready = "’ 〈Identifier〉 {‘, ’ 〈Identifier〉} ‘"’
| ‘always enabled = "’ 〈Identifier〉{‘, ’ 〈Identifier〉} ‘"’
| ‘clock prefix = "’ 〈string〉 ‘"’
| ‘gate prefix = "’ 〈string〉 ‘"’
| ‘reset prefix = "’ 〈string〉 ‘"’
| ‘gate input clocks = "’ 〈string〉{‘, ’ 〈string〉} ‘"’
| ‘gate all clocks’
| ‘default clock osc = "’ 〈string〉 ‘"’
| ‘default clock gate = "’ 〈string〉 ‘"’
| ‘default gate inhigh’
| ‘default gate unused’
| ‘default reset = "’ 〈string〉 ‘"’
| ‘no default reset’
| ‘clock family = "’ 〈string〉{‘, ’ 〈string〉} ‘"’
| ‘clock ancestors = "’ 〈string〉{‘, ’ 〈string〉} ‘"’
| 〈Common Att〉

END GRAMMAR

Running Example

This grammar encapsulates the mkTrafficLight module in its entirety. This
module is a stripped-down version of that presented in §2.1, and is intended to
demonstrate correct BSV syntax, with no attention paid to semantic content.

BSV...
endinterface

(*synthesize*)

module mkTrafficLight (TrafficLight);

Reg#(Colour) lampState <- mkReg(Red);

68

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Reg#(Int#(32)) T <- mkReg(0);

interface TrafficLight2;

method Bool getYellow ();

method Bool getRed ();

endinterface

Action reset =

(action

lampState <= Green;

endaction);

rule goYellow (lampState == Green && T >= 140);

lampState <= Yellow;

endrule

method Action setTime(time);

T <= time;

endmethod

method Bool getGreen;

return lampState == Green;

endMethod

endmodule

...
END BSV

Abstract Syntax in Haskell

An observant reader will notice that in the previous definitions, use of record
syntax corresponds to the use of permutation parsing. This is also the case
with BSV modules, as demonstrated below.

69

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

HASKELL�
data BSVModuleDec = BSVModuleDec
{ mName :: String
, instanceName :: String
, instances :: [BSVModuleDec]
, interfaceName :: String
, interfaceDecs :: [MidModInterfaceDec]
, attributes :: [ModuleAttribute]
, state :: [BSVstateDec]
, actions :: [ActionDec]
, rules :: [RuleDec]
, methods :: [MethodBody]
} deriving (Eq, Show) �

END HASKELL

At this level, a distinction is drawn between the a module’s name (mName),
and its instance (instanceName), which must be considered in the context of
the instances field. BSV modules instantiate submodules as part of their
state declaration. The instances field contains a list of submodules declared
by the module. This is not a reference to some globally defined module, it is
an actual copy of the module declaration, which has had its instanceName

field modified to the instance name assigned to it by its supermodule. The
top-level module is given the instance name “root.” This converts our en-
coding of a BSV description from a disjoint set of module declarations to
a hierarchical structure of modules which may be traversed. This structure
is left empty by the parser, and is later filled in during the scheduling pre-
processor.

The interfaceName simply indicates which of the declared interfaces this
module uses. The information contained therein describes the complete typ-
ing information for the methods used in this module. interfaceDecs how-
ever, is a list of all intra-module interface declarations made in the specified
module.

3.1.12 Default Instance Declaration

Default Instances are a specific case of instance declaration in BSV, which
is best likened to the type class instance in Haskell. When a structure is de-
clared in BSV, it can become cumbersome to write a value out explicitly for

70

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

each field in the structure, wherever a default value is called for. This is es-
pecially true given how large and frequently used structures can become. By
importing the DefaultValue library in BSV, one may give structs an explicit
default value. Then, whenever such a value is called for, defaultValue may
be used in place of explicit declaration.

GRAMMAR

〈Default Instance Definition〉 ::= ‘instance DefaultValue#(’
〈Name〉 ‘) {’ 〈Identifier〉 ‘:’ 〈Expression〉
{‘,’ 〈Identifier〉 ‘:’ 〈Expression〉 }
‘};’

END GRAMMAR

where Expression is defined in §3.1.4.

Running Example

In this case, we define the default value of the struct mystruct such that all
three elements are initialized to False.

BSV...
package TrafficLight;

Bool c;

} myStruct deriving (Eq);

instance DefaultValue#(myStruct);

defaultValue = myStruct a:False, b:False, c:False;

endinstance

interface TrafficLight;

method Action setTime (Int#(32) time);

...
END BSV

Abstract Syntax in Haskell

Instance definitions are collected for eventual substitution for struct con-
structor literals.

71

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

HASKELL�
type BSVInstDef = (Name, [(Name, Literal)]) �

END HASKELL

3.1.13 Function Declaration

Functions in BSV are roughly analogous to functions as defined in the func-
tional programming paradigm. Given specific inputs, a function will produce
the specified output, and have no side effects. In hardware terms, a function
is a purely combinational circuit with no sequential elements.

GRAMMAR

〈Function Definition〉 ::= ‘function’ 〈BSV Type〉 〈Identifier〉 〈Args List〉
‘;’
{ 〈Stmt〉 }
‘endfunction’

END GRAMMAR

where Arguments are defined in §3.1.16, and Statements are defined in
§3.1.5. While it may seem that the only Statement type allowable inside
a function would be the return statement, such a statement may legally be
preceded by many local variable declarations, or inside an if-else structure.
Thus, it is necessary to read a collection of statements, rather than a single
statement.

Running Example

The following function returns the increment of the 8 bit value passed, but
returns the value itself if the number would overflow.

BSV...
endmodule

function Bit#(8) safe_increment (Bit#(8) val) ;

if (val == 8’hff)

return 8’hff;

else

72

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

return val + 1;

endpackage

END BSV

Abstract Syntax in Haskell

A function consists of a name, a return type, a list of arguments and a list
of statements.

HASKELL�
type BSVFunction = (String

, [Argument]
, BSVType
, [Statement]
) �

END HASKELL

3.1.14 Type Definition

Type Definitions may be used to define new types either by renaming
existing types, via type enumerations, or using C-style struct constructors.
While type classes are parsable, they are not utilized by the translation
algorithm. Those type-classes relating to hardware production are simply
ignored, as PVS deals with these values as enumerations themselves. Some
type-classes are not addressed, and perhaps could be in future work, such
as Ord, Bounded and Arith. The others are assumed to hold, even if not
declared. Because the BSV designs are assumed to be compilable by the
Bluespec compiler prior to translation, the original description cannot use
any constructs not in conformity with declared type-classes. Thus, if Eq is
not declared, == could not be used on the enumeration type. It does not
alter the semantics of the description to attribute more type-classes than are
declared if they are never used.

GRAMMAR

〈Type Definition〉 ::= ‘typedef’ 〈BSV Type〉 〈Name〉 ‘;’
| ‘typedef enum {’ 〈Identifier〉 {‘, ’ 〈Identifier〉 } ‘}’ 〈Name〉

[‘deriving (’ 〈Type Class〉 { ‘, ’ 〈Type Class〉 } ‘)’]

73

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

| ‘typedef struct {’ [〈Fields〉] ‘}’ 〈Name〉
[‘deriving (’ 〈Type Class〉 { ‘, ’ 〈Type Class〉 } ‘)’]

〈Type Class〉 ::= ‘Bits’ | ‘Eq’ | ‘Literal’ | ‘Ord’ | ‘Bounded’ | ‘Bitwise’
| ‘BitReduction’ | ‘BitExtend’ | ‘Arith’

〈Fields〉 ::= 〈BSV Type〉 〈Identifier〉 ‘;’ 〈Fields〉
| 〈BSV Type〉 〈Identifier〉 ‘;’

END GRAMMAR

Some types are parameterized by bit-width. Using typedefs, we can de-
clare types of fixed width, which otherwise behave like their carrier type.

Running Example

Here we see typedefs of all three flavours. An enumeration gives us more
human-readable lamp states. A regular type def identifies 50 bit registers as
addresses. Finally, we create a structure containing three Booleans.

BSV...
String client1_req_msg = "Client 1 requesting.";

typedef enum Green, Yellow, Red Colour;

typedef Bit#(50) Addr;

typedef struct {Bool a;

Bool b;

Bool c;

} myStruct deriving (Eq);

instance DefaultValue#(myStruct);

defaultValue = myStruct a:False, b:False, c:False;

...
END BSV

Abstract Syntax in Haskell

Type definitions are defined in Haskell as follows.

74

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

HASKELL�
data BSVTypeDef = BSV Synonym Name BSVType
| BSV Enumeration Name [Enumerat]
| BSV Struct Name [BSV Field] deriving (Eq, Show)
type Enumerat = String
type BSV Field = (Name, BSVType) �

END HASKELL

A type definition can be either a type synonym or an enumeration. Both
require a name, but the type synonym requires the type that the new type
identifier will be a synonym of, and the enumeration requires a list of enu-
merats, which are simply strings.

3.1.15 Constant Declaration

Constant values may be declared in BSV programs in order to utilize com-
monly used literal values symbolically, either for convenience or information
hiding.

GRAMMAR

〈Constant Declaration〉 ::= 〈BSV Type〉 〈Identifier〉 ‘=’ 〈Literal〉 ‘;’

END GRAMMAR

Running Example

Although strings can not be generated to hardware in BSV, they can still
be used for print statements used by the BSV compiler for the purposes of
debugging. This constant declaration encodes a debug message.

75

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

BSV...
import FIFO ::*;

String client1_req_msg = "Client 1 requesting.";

typedef enum Green, Yellow, Red Colour;

typedef Bit#(50) Addr;

...
END BSV

Abstract Syntax in Haskell

Constant declarations are easily defined in Haskell.

HASKELL�
type BSVConstantDec = (Name, BSVType, Literal) �

END HASKELL

3.1.16 Interface Declaration

Interface declarations abstract the declaration of a module’s interface meth-
ods from the module itself, allowing multiple modules to share the same
interface. A module will declare which interface it is using in its own decla-
ration. The interface is where all methods potentially possessed by a module
must have their typing information fully specified.

The “Attribute Lists” appearing below are pragmas that may or may not
be specified by the user. While the set of pragmas being parsed in these
contexts is comprehensive, semantically they are not taken into considera-
tion by the translation algorithm, as most relate to hardware details that
are unnecessary at this level of abstraction. For example, the synthesize

pragma, placed at the beginning of a module, specifies that said module is
to be synthesized into hardware. This has no impact on the logic we are
analyzing, and is therefore not relevant enough to keep.

It is also possible in BSV to include other interfaces declared elsewhere,
even in other packages, in an interface declaration. This adds the speci-
fied methods to any module invoking the interface, but those methods must

76

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

be addressed through the local name given that interface within the super
interface.

GRAMMAR

〈Interface Declaration〉 ::= [‘(*’〈Interface Att〉{‘, ’〈Interface Att〉}‘*)’]
‘interface’ 〈Identifier〉 ‘;’
{ 〈Method Stub〉 }
‘end interface’

〈Method Stub〉 ::= ‘method’ 〈Return Type〉 〈Identifier〉 〈Args List〉 ‘;’
| ‘interface’ 〈Name〉 〈Name〉

〈Return Type〉 ::= ‘Action’
| ‘ActionValue #(’ 〈BSV Type〉 ‘)’
| 〈BSV Type〉

〈Args List〉 ::= ‘(’ 〈Argument〉 { ‘, ’ 〈Argument〉 } ‘)’ | ‘()’

〈Argument〉 ::= [‘(*’ 〈Argument Att〉 { ‘, ’ 〈Argument Att〉 } ‘*)’]
〈BSV Type〉 〈Identifier〉

〈Interface Att〉 ::= ‘always ready’
| ‘always enabled’
| ‘doc = "’ 〈string〉 ‘"’

〈Argument Att〉 ::= ‘ready = "’ 〈Identifier〉 ‘"’
| ‘enable = "’ 〈Identifier〉‘"’
| ‘result = "’ 〈Identifier〉 ‘"’
| ‘prefix = "’ 〈Identifier〉 ‘"’
| ‘port = "’ 〈Identifier〉 ‘"’
| ‘always ready’
| ‘always enabled’
| ‘doc = "’ 〈string〉 ‘"’

END GRAMMAR

Running Example

Here we see method stubs of both methods declared in our module. A method
stub functions analogously to a function prototype in C, providing type in-
formation for a module’s (or function’s) interface.

77

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

BSV...
defaultValue = myStruct a:False, b:False, c:False;

endinstance

interface TrafficLight;

method Action setTime (Int#(32) time);

method Bool getGreen ();

endinterface

(*synthesize*)

...
END BSV

Abstract Syntax in Haskell

The definition of the InterfaceDec type is as follows.

HASKELL�
type InterfaceDec = (Name

, [MethodDec]
, [InterfaceRef]
, [InterfaceAttribute]
)

type MethodDec = (Name
, ReturnType
, [Argument]
, [MethodDecAttribute]
)

data ReturnType = Action
| ActionValue BSVType
| Value BSVType deriving (Eq, Show)

type Argument = (Name, BSVType, [ArgumentAttribute])
type InterfaceRef = (InterfaceName, String)
type InterfaceName = String �

END HASKELL

78

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Each interface declaration consists of a name and a list of method declara-
tions, as distinct from method body declarations occurring within modules.
Method declarations consist of a name, a return type, and a list of argu-
ments. Valid return types include Action, ActionValue, and Value. Both
ActionValue, and Value additionally have a BSVType specified, which sig-
nifies the type of the return value of the method

3.1.17 Import Declaration

Import statements allow a BSV package to include other BSV packages as
libraries, in the same manner as an include statement. A BSV package may
include any number of Import statements. While it is possible to import
specified modules from a package via Import statements by naming them in
the place of the asterisk below, at the semantic level the lazy evaluation of the
translation will only use modules which are used by the top-level module’s
module hierarchy, even though all modules in every imported package are
parsed.

GRAMMAR

〈Import Declaration〉 ::= ‘import’ 〈Identifier〉 ‘:: *;’

END GRAMMAR

Running Example

In this case, we are importing the FIFO module. Now FIFOs may be used
in this package.

BSV

package TrafficLight;

‘include "RapidIO.defines"

import FIFO ::*;

String client1_req_msg = "Client 1 requesting.";

...
END BSV

79

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Abstract Syntax in Haskell

In our Haskell abstract syntax data structure, import declarations are stored
simply as a list of imported package names.

3.1.18 Include Declaration

Include statements are similar to Import statements, but are used specifi-
cally to include files with a .define extension, which contain macros. macros
are discussed in §3.1.

GRAMMAR

〈Include Declaration〉 ::= ‘`include "’ 〈Identifier〉 ‘"’

END GRAMMAR

While macro substitutions are performed as a preprocessing step, include
statements are never removed from the files. They are instead parsed as a
separate syntactic construct and ignored.

Running Example

This define statement indicates that all the macros contained in the file
RapidIO.defines should be applied to the source code in this package, and
all packages which import this package.

BSV

package TrafficLight;

‘include "RapidIO.defines"

import FIFO ::*;

...
END BSV

Abstract Syntax in Haskell

Similarly to import declarations, include statements are stored simply as a
list of the filenames of the files imported.

80

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

3.1.19 Package Level Grammar

The top-level entity of a BSV file is the Package, typically the container for
the entire file. A Package, and the entities contained at this level, are defined
by the following grammar productions:

GRAMMAR

〈BSV Package〉 ::= ‘package’ 〈Identifier〉 ‘;’
{ 〈Package Level Declaration〉 }
‘endpackage’

〈Package Level Declaration〉 ::= 〈Import Declaration〉
| 〈Include Declaration〉
| 〈Interface Declaration〉
| 〈Constant Declaration〉
| 〈Type Definition〉
| 〈Function Declaration〉
| 〈Default Instance Declaration〉
| 〈BSV Module〉

END GRAMMAR

Please note that the grammatical definition of a BSV Module will be
addressed in §3.1.11.

Running Example

The package level grammar and its subordinates encompass the entirety of
a BSV file.

BSV

package TrafficLight;

‘include "RapidIO.defines"

import FIFO ::*;

String client1_req_msg = "Client 1 requesting.";

typedef enum Green, Yellow, Red Colour;

typedef Bit#(50) Addr;

81

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

typedef struct {Bool a;

Bool b;

Bool c;

} myStruct deriving (Eq);

instance DefaultValue#(myStruct);

defaultValue = myStruct a:False, b:False, c:False;

endinstance

interface TrafficLight;

method Action setTime (Int#(32) time);

method Bool getGreen ();

endinterface

(*synthesize*)

module mkTrafficLight (TrafficLight);

Reg#(Colour) lampState <- mkReg(Red);

Reg#(Int#(32)) T <- mkReg(0);

interface TrafficLight2;

method Bool getYellow ();

method Bool getRed ();

endinterface

Action reset =

(action

lampState <= Green;

endaction);

rule goYellow (lampState == Green && T >= 140);

lampState <= Yellow;

endrule

method Action setTime(time);

T <= time;

endmethod

82

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

method Bool getGreen;

return lampState == Green;

endMethod

endmodule

function Bit#(8) safe_increment (Bit#(8) val) ;

if (val == 8’hff)

return 8’hff;

else

return val + 1;

endpackage

END BSV

Abstract Syntax in Haskell

At the top level, a BSV package is encoded as a record, with fields as shown
below.

HASKELL�
data BSVPackage = BSVPackage
{ bsv packageName :: PackageName
−− the name of this package

, imports :: [PackageName]
−− packages this package imports

, including :: [String]
−− invoked .define files

, interfaces :: [InterfaceDec]
−− declared module interfaces

, bsv constants :: [BSVConstantDec]
−− declared constants

, bsv typedefs :: [BSVTypeDef]
−− declared type definitions

, bsv instDefs :: [BSVInstDef]
−− structure default value defs

, bsv modules :: [BSVModuleDec]
−− declared modules

83

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

, bsv functions :: [BSVFunction]
−− declared functions

, bsv macros :: [BSVMacro]
−− macro substitutions

, hexFiles :: [HexFile]
−− Contents of files loaded into RegFile elements.

} deriving (Show)

type BSVFunction = (String
, [Argument]
, BSVType
, [Statement]
)

type BSVInstDef = (Name, [(Name, Literal)])
data BSVMacro = SimpleMacro String String
| CompoundMacro String [String] String deriving (Show,Eq)
type HexFile = (String , [Literal])
type Argument = (Name, BSVType, [ArgumentAttribute]) �

END HASKELL

In this context, PackageName is a synonym for the String type. In BSV,
one may declare register files, which are, for all intents and purposes, vectors
initialized by the values stored in files in hexadecimal format.

3.2 Data Structures Supporting an Abstract Syntax for a
PVS Embedding

Just as we encode the abstract syntax of BSV in Haskell datatypes, so do
we generate a similar representation of our eventual PVS product. Not only
does this afford us the same benefits of type-correctness, but it affords us the
opportunity to demonstrate the close correspondence between many parts
of BSV and PVS. We will be comparing and contrasting the corresponding
BSV structures throughout this section, but more algorithmically complex
mappings are left for §3.6. For a list of all files generated by BAPIP, see
§A.1.1.

84

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Design Goals and Decisions, and Coverage of PVS

The design goal of this set of data structures was to support the present
translation effort, and was in no way meant to be a general or complete
encoding of PVS itself. The only PVS language constructs addressed are
those directly touching on the PVS implementation of the logical model ex-
tracted at previous stages of the translator. Most of the language constructs
discussed in this section in fact encode the design decisions of the BAPIP
translation process.

Because this is not a general abstract syntax for PVS, its utility to other
projects as such would be severely restricted. Thus, this abstract syntax has
not been contributed to hackage.

3.2.1 PVS Package

The moniker “Package” is not derived from any endemic property of the data
structure containing the translated PVS information, but rather because it
is the corresponding symmetric object to the BSV package.

85

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

HASKELL�
data PVSPackage = PVSPackage
{ pvs packageName :: PackageName
, pvs constants :: [PVSConstantDec]
, pvs typedefs :: [PVSTypeDef]
, transitions :: PVStransitions
, pvs state :: [PVSstateDec]
, pvs instantiations :: [PVSInstDef]
, pvs functions :: [PVSFunction]
} deriving (Show) �

END HASKELL

The lesser degree of complexity in the PVS package is readily apparent
when compared to the BSV package. The main reasons for this are that
all the imports have been flattened into this one structure, and interface
information is discarded as unnecessary. Otherwise, the main difference is
the absence of a structure symmetrical to the BSV module.

3.2.2 PVS Constant Declaration and Type Definition

Given the similar natures of type definitions and constant declarations in
both languages, translating from one to the other is mostly a matter of
changing values of type BSVType to PVSType, which is also nearly trivial.

HASKELL�
data PVSTypeDef = PVS Synonym Name PVSType
| PVS Enumeration Name [Enumerat]
| PVS Struct Name [PVS Field]
deriving (Eq, Show)

type PVS Field = (Name, PVSType)

type PVSConstantDec = (Name, PVSType, Literal) �
END HASKELL

3.2.3 PVS State Declaration

A PVS state declaration is a list of sub-declarations packaged with the name
of the module they declare the state of. In BSV, the actual structure of the

86

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

module hierarchy is set by the manner in which modules invoke each other
as submodules within the modules’ state declarations. We opt to express this
as a list of module state declarations, which contain lists of individual state
declarations, some of which may be references to other declared submodules.
Similarly to type declarations, this information is extracted from a BSV
module record via simple traversal.

HASKELL�
type PVSstateDec = (Name, [PVSstate])

data PVSstate = PVS Reg ID Path PVSType Init
| PVS FIFO FIFOType ID Path PVSType
| PVS Vector ID Path PVSType N VectorInit
| PVS SubModuleDec InterfaceName Name InstName
| PVS DWire ID Path PVSType Init
deriving (Eq, Show) �

END HASKELL

Some primitive data types are shared between BSV and PVS records.
These include VectorInit and FIFOType (see §3.1.7).

3.2.4 PVS Transitions

The transition file in our PVS output is pivotal to the modelling of complex
behaviour. The process of producing transitions is the most algorithmically
complex element of the overall translation. However, there are some pe-
ripheral elements to the production of the actual transition predicates which
we will address here. A PVS transition corresponds to one user-specified
schedule.

HASKELL�
type PVStransition =

(Integer
, [(MethodName, [(MethodArg, PVSType)])]
, [ValueMethod]
, [TransitionTable]
) �

END HASKELL

87

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

A PVS transition is a tuple containing an index indicating the schedule
number, a list of the input methods invoked in that schedule and their argu-
ments, a list of value method definitions, and a transition table for all state
elements.

Value Methods

Value methods are a type of method that may be declared in a BSV file, but
have no effect on the state of the file when invoked. That said, a value method
may return complex expressions, not just individual register values, and those
values may use wires. Since wires are often set by method invocation, the
output value of a value method must take into account the entirety of the
schedule.

HASKELL�
type ValueMethod =

(MethodName
, ModuleName
, String
, Path
, PVSType
, Expression
, [ID Path]
)

type Path = [String] �
END HASKELL

Transition Tables

The module transition type is a container for all of the information required to
generate transition predicates, which is more that just simply the transition
table. It is also necessary to know which, if any, methods have been included
in the transition currently under consideration, and it is necessary to know
what, if any, arguments are required by these top-level method invocations.

88

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

HASKELL�
data TransitionTable = TransMod Name [TransitionTable]
| TransReg ID Path SpecificTree
| TransVect ID Path Size [(Expression, SpecificTree)]
| TransStruct Name [TransitionTable]
| TransDWire ID Path SpecificTree DefaultValue
| TransFIFO ID Path EnqTree DeqTree ClearTree
deriving (Show, Eq)

type EnqTree = SpecificTree
type DeqTree = SpecificTree
type ClearTree = SpecificTree �

END HASKELL

Transition tables correspond to a record update over the state record type.
Each element of the state record has an entry in the transition table, and
submodules are represented by including a nested transition table. Elements
such as registers which have values modified do so by means of the “transition
tree,” discussed in §3.2.5

FIFO entries contain three trees, one for enqueueing operations, one for
dequeueing operations, and one for clearing operations. Since these opera-
tions must occur in a specific order, the default value for dequeue is the result
of enqueue, and the default of clear is the value of dequeue. These are all
handled as local variables in PVS, with the value at the end of the execution
of the clear tree (regardless whether it contains anything or not) is written
into memory.

3.2.5 Transition Trees

Transition trees are binary trees which correspond to branching if state-
ments. Each if statement, instead of including an expression to denote the
condition, includes a reference to the relevant rule guard, as each branch of
the transition tree represents the decision the action arbitrator makes about
whether each rule fires or not. Transition trees terminate with “Leaf” ex-
pressions, which encode the expression which gets written to the register in
the particular case represented by its position in the transition tree.

Transition trees pass through an intermediate form before reaching the
final “Specific Tree” form. The “Total Tree,” whose generation is described

89

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

in detail in §4.2, is as follows. Note how each node in the tree has a list
of statements and a guard. This is because each node in the total tree
corresponds to an action in a BSV module.

HASKELL�
data TotalTree

= TotalStem Guard [Statement] TrueTree FalseTree
| TotalLeaf Guard [Statement]
deriving (Eq)

type TrueTree = TotalTree
type FalseTree = TotalTree �

END HASKELL

The “Specific Tree” is a traversal of the total tree, keeping only those
statements relevant to the state entry at hand.

HASKELL�
data SpecificTree

= SpecStem Guard (Either Expression SpecTrueTree) SpecFalseTree
| SpecLeaf Guard TrueExpression FalseExpression
| SpecEx Expression
deriving (Eq)

type SpecTrueTree = SpecificTree
type SpecFalseTree = SpecificTree
type TrueExpression = Expression
type FalseExpression = Expression �

END HASKELL

3.2.6 Functions

The conversion from a BSV function to a PVS function is extremely straight-
forward, comprised mostly in converting from BSV types to PVS types in
the return type and in the arguments. Unlike methods, functions really do
have no interest in state or scheduling, as they cannot contain identifiers that
are not declared arguments.

90

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

HASKELL�
type PVSFunction = (String

, [PVSArgument]
, PVSType
, Expression
)

type PVSArgument = (String, PVSType) �
END HASKELL

BSV functions are discussed in §3.1.19.

3.2.7 Instance Definitions

PVS instance definitions are identical to the BSV, referenced in §3.1.12.

HASKELL�
type PVSInstDef = (Name, [(Name, Literal)]) �

END HASKELL

3.3 A Grammar for PVS Output Files

After finding intermediate representation in an abstract syntax tree, the de-
sign under examination then passes into concrete PVS syntax via generation.
While it is possible to create a grammar of PVS output, and at points in this
project this was accomplished, the additions and modifications made to the
PVS grammar over the course of the last few years of the project have in-
creased the complexity of this grammar to such a point that producing a full
grammar is no longer a straightforward matter of organizing data contained
in the source code of the generator.

It is due to the complexity of this grammar, as well as the multitude of
design decisions embedded in BAPIP, that BSV files are not recoverable from
PVS files by means of reverse-translation. While this avenue was explored
earlier on in the project, it became less and less viable a feature as BSV2PVS
increased the complexity to accommodate real-world examples. Enforcing
this constraint would have forced us to accept a much smaller subset of BSV,
and would have even had a negative effect on the freedom to implement in

91

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

PVS such things as wire handling and the action arbitration mechanism. As
such, the prospect of a reversible translation is left as future work.

If such a reverse translation existed, it would be reasonably straightfor-
ward to construct a grammar from the parser. It would also be reasonably
straightforward to construct a parser, given a grammar of BAPIP generated
PVS code.

3.4 A Treatment of Tabular Specifications

Tabular specifications are a rigorous and formal way to specify the behaviour
of software. These specifications feature prominently in the work of (Pang
et al., 2015), which the present work is in part an extension of. Since BAPIP
includes a mode for the generation of BSV code directly from such tabular
specifications, it therefore follows that we must define a grammar for them.

The set of valid .tsp files used as input for BAPIP’s TSP2BSV and TSP2PVS

modes are a proper subset of the PVS specification language, so all .tsp files
are valid, typecheckable PVS files. That said, the grammar only of the sub-
set of PVS which constitute valid .tsp files, from the perspective of parsing
and generating by BAPIP. While the tabular expressions encoded in .tsp

files are in fact also valid PVS code, and can be used in other contexts for
verification purposes, the PVS Tabular Specification file format (TSP) parser
does not function as a general parser of PVS files.

3.4.1 Tabular Specification Grammar

In this section we will specify a grammar for the tabular specification files
accepted by the TSP2BSV and TSP2PVS modes of BAPIP. This grammar will
be expressed in extended Backus Naur form (EBNF) §2.5. Grammatical
expressions for basic constructs such as expressions, types, and identifiers
are shared with the BSV grammar, and may be found in §3.1.

GRAMMAR

〈TSP File〉 ::= 〈Header〉 {〈Import〉} {〈Content〉} 〈Footer〉

〈Header〉 ::= 〈Theory Declaration〉 〈Begin〉

〈Theory Declaration〉 ::= 〈Name〉
[‘[(IMPORTING Time) delta t:posreal]’] ‘: Theory’

92

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

〈Begin〉 ::= ‘BEGIN’ | ‘begin’

〈Import〉 ::= ‘IMPORTING’ 〈Theory Reference〉

〈Theory Reference〉 ::= 〈Name〉 [‘[’ 〈Identifier List〉 ‘]’] [‘@’ 〈Name〉]

〈Identifier List〉 ::= 〈Identifier〉 {‘, ’ 〈Identifier List〉}

〈Content〉 ::= 〈Variable Declaration〉
| 〈Table Declaration〉

〈Variable Declaration〉 ::= 〈Identifier List〉 ‘: VAR’ 〈Type〉

〈Table Declaration〉 ::= 〈Name〉 ‘(’ 〈Identifier List〉 ‘)(t) :’ 〈Type〉 ‘=’
〈Table Assignment〉
〈Table〉

〈Table Assignment〉 ::= 〈Identifier〉 〈Time Specification〉 ‘=’

〈Time Specification〉 ::= ‘(next(t))’ | ‘(t)’

〈Table〉 ::= ‘TABLE’
〈Table Line〉
{〈Table Line〉}
‘END TABLE’

〈Table Line〉 ::= ‘|’ 〈Boolean Expression〉 ‘|’ 〈Expression〉 ‘||’

〈Footer〉 ::= ‘End’ 〈Name〉

END GRAMMAR

In general, a TSP file is a PVS theory containing one or more tables,
which make use of the Time libraries by Pang et al. (2015). It should be
noted that the grammar for TSP file parsing is far less complex than that of
a BSV file. This should give some indication of the range of expressivity of
these two grammars.

3.4.2 Tabular Specification Abstract Syntax

Post parsing, the tabular specification is organized into a TSPpackage data
structure. The structure is organized as follows.

93

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

HASKELL�
data TSPpackage = TSPpackage {

tName :: String
, typedefs :: [PVSTypeDef]
, defInsts :: [PVSInstDef]
, varDecs :: [TVarDec]
, tsps :: [TSPTable]
, tsp funcs :: [PVSFunction]
, macros :: [PVSMacro]
} deriving (Show, Eq)

type TVarDec = ([String], PVSType)

type PVSMacro = (String, PVSType, Literal) �
END HASKELL

Type definitions, functions, Macros and instance definitions are used as
per their definitions in §3.2. The main elements contained in this data struc-
ture are variable declarations, and the tabular expressions themselves. Vari-
able declarations are encoded simply as all of the declared identifiers tupled
to their declared type. These variables are not used to generate some sort of
symmetric structure in BSV, but are used to fill in typing information.

HASKELL�
type TSPTable = (TName −− Table name

, TSPOutVar −− output variable
, Expression −− init expression
, [Replacement] −− variable synonyms
, [String] −− input variables
, [TSPLine] −− table lines
)

type TSPLine = (Guard, Expression)
type TSPOutVar = (ID Path, Temporal)
data Temporal = N Time Int deriving (Eq, Show)
type TName = String �

END HASKELL

94

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Tables contain a non-trivial amount of miscellany, such as declared local
variables, input variable identifiers, initialization expressions, among them.
All this is framing for the individual tabular specification lines, which are
composed simply of a Boolean guard and a resulting expression.

3.4.3 A Note on Generation

Once the design has been fully parsed, and the relevant data structures gen-
erated, the design is always converted to BSV, regardless as to whether we
are in TSP2BSV or TSP2PVS mode. For a grammar of the BSV output, see the
BSV input grammar presented in §3.1. For notes on why a corresponding
grammar of PVS does not appear in this thesis, see §3.3

3.5 Conclusion

The grammar specified in this chapter sets firm limits on what is and is
not covered by the BAPIP translation software. Creation of the glsBAPIP
software tool would have been impossible without such a grammar, implicit or
explicit. Between our understanding of the grammar of our BSV subset, and
the algorithm used to translate said subset presented in §4, we are now ready
to discuss how one would go about using the product of this set of syntax
and semantics to go about creating proof sequents, and proving them.

95

4. DERIVING STATE INTERACTIONS FROM BSV
ACTION ARBITRATION SEMANTICS

One of the primary algorithmic contributions of this work is a conversion
algorithm, taking the action-centred semantics of BSV and producing the
state-centred semantics of a Kripke structure. This chapter details this pro-
cess, provides illustration, discusses limitations of the process, and how those
limitations were overcome.

4.1 BSV Semantics

Before the algorithm is described, it is important to have a clear under-
standing of the underlying semantics of BSV’s guarded actions. Each action
is comprised of a combinational circuit, which sends its results to a state-
holding element, normally a register. In situations where multiple circuits
may write their results to the same register, these data wires must be multi-
plexed so that only one may write to a register on any given clock cycle. A
very basic multiplexer is shown in Figure 4.1.

Multiplexers are very common electronic components used in register-
transfer level electronic designs. A multiplexer receives a selector signal, and

Figure 4.1: A 2x1 Multiplexer

96

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

based on that signal, outputs exactly one of its input signals. A selector
signal with a bit-width of n can switch between 2n input signals. In BSV, a
multiplexer of the style given in Figure 4.1 would be given by the expression
if sel then A else B. The wire out in the diagram is equivalent to the
evaluated value of the above expression, and would simply be “plugged in”
to the next step of the calculation.

The question this section answers is, while the hardware described by a
BSV design is performing calculations, how are the selector signals of these
multiplexers generated? The answer is the action arbitration algorithm. This
algorithm is implemented as a control circuit, and executes concurrently with
the rest of the hardware’s calculations, controlling those calculations as state
changes, inputs are received, and outputs are requested. This control circuit
is necessarily specific to the hardware being designed, and is generated at
compile time.

We will begin with a mathematical overview of the algorithm, and then
give a full example in §4.2.

4.1.1 The BSV Transition System

The use of finite state machines for hardware modelling is standard practice
for single-purpose processor design (Davis and Reese, 2008). To model BSV
designs in PVS, we use the Kripke structure (Bowen, 1979), a similar state
transition system. Kripke structures were used previously by Richards and
Lester (2011) to model BSV in PVS, and, as this work derives from Richards’
work, the same fundamental abstraction is used. We model a BSV hardware
module as:

K = (S, s0,→, L)

In hardware, state is held in sequential components, or those containing
flip-flops. S is the set of all possible state permutations. If R is the set of all
sequential components defined in our target module, and B = {1, 0} is the
set of the valid values of any particular flip-flop, we can then say that the
set of possible values of a state element ranges over B ×B × · · · ×B, where
the number of B terms is the bit-size of the state element. S is defined more
formally as the Cartesian product of the value ranges of each state element.

In BSV, sequential hardware elements must have a concrete initializa-
tion value. The permutation of bits stored in memory composed by these
initializations, so ∈ S, is the initial state.

97

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

The transition relation → relates S back to itself, or →⊆ S × S. It is
left-total, so that domain(→) = S. Implicitly, state elements retain their
previously held value unless modified. This is interpreted as reflexivity, and
produces left-totality for all states not explicitly addressed by module actions.

The labelling function L describes the mapping of elements of S into
physical register values.

The purpose of this discussion is to document the properties of the tran-
sition relation →, but over the course of this discussion, we will refine the
above model. In addition to the above, we will make use of A, the set of
actions a module defines, which includes both rules and methods.

4.1.2 Arbitration

The goal of the arbitration algorithm is to determine, from the set of all
actions contained within a module A, the set of actions which will fire F , and
the order in which they do so. The first step in this process is to determine
which actions are “available.” We may define a subset of actions, A ⊆ A,
or those actions which are available to fire. A includes all rules at all times,
but methods are only included if invoked by a supermodule during the clock
cycle under examination. In BSV, each action can have a guard expression
specified. In the absence of explicit specification, guards default to being
true. Let us define a predicate G, such that G(a) if and only if the guard
expression defined for a ∈ A will evaluate to true in the given clock cycle.

We may then refine our set of actions using the above predicates to cal-
culate F ⊆ A, the set of actions which may “fire” during a clock cycle.

∀a ∈ A • A(a) ∧ G(a) | F(a)

It is important to note that F does not indicate the set of actions which will
fire, only those that may fire. Actions must still succeed in arbitration in
order to fire. The BSV action arbitration mechanism is designed to prevent
race conditions while also attempting to maximize the number of actions
executed in a particular clock cycle (Bluespec Inc., 2012a). This final step is
non-trivial, as we shall see in §4.2, and throughout the bulk of this chapter.

Untimed vs Timed Semantics

In order to discuss action arbitration intelligently, we must first examine both
semantics for action interpretation presented in the Bluespec literature: the

98

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

untimed and timed semantics. These semantics are not adversarial, though
they may at first seem to be. In fact, both are applicable simultaneously, as
will be described below.

The untimed semantics presented in the Bluespec training material (Blue-
spec Inc., 2012b) describes the process by which one action is selected to fire,
and what happens when it does fire. We will refer to the resulting operation
as a “step”. Since there is no direct relationship between untimed steps and
hardware clock cycles, it is impossible to accurately model the behaviour
of hardware generated from Bluespec descriptions solely on the basis of the
untimed semantics. All formal models of Bluespec discussed in §1.4.1 apply
themselves to the untimed semantics, without making this crucial leap to the
timed semantics.

The single-step semantics of BSV may be summarized briefly as follows.
An action in BSV is composed of either state element updates or invocations
of submodule methods. State element updates are composed of a state el-
ement selection, combined with an update expression. In implementation,
update expressions are interpreted as combinational circuitry, deriving inputs
from the module’s back of registers, so we derive two interesting properties.

• All update calculations occur simultaneously in hardware.

• Values read from registers remain constant for the duration of a clock
cycle.

Note that constancy is retained for an entire clock cycle, not a single step.
State holding elements update only once per clock cycle, regardless as to
how many rules fire. Thus, if more than one action requests write access to
a register in a clock cycle, these requests must undergo arbitration as here
described. In addition, BSV actions fire either completely, or not at all.

Once F , the set of actions which may fire, has been determined, these
actions must undergo arbitration to resolve any potential conflicts. This is
achieved by consulting rules of action precedence. Higher precedence actions
block the execution of lower precedence actions in cases of memory conflict.

Let us define a relation, S ⊆ A × R, relating actions to state elements.
For a ∈ A and r ∈ R, (a, r) ∈ S only if the action a makes a write request to
state element r. Read requests do not need to be included here, since they
do not cause conflicts.

We can therefore define conflicts as a set of unordered pairs C = (a0, a1),
where a0, a1 ∈ A and S(a0) ∩ S(a1) 6= ∅. That is, if two actions write

99

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

data into at least one common memory object (register, vector, FIFO, wire
etc.), those actions are said to be in conflict. It should be noted that the
BAPIP translator requires all conflicting actions to be “resolved” by rules of
precedence.

Precedence is established either implicitly via access rules for certain state
elements, or explicitly by user-defined pragmas. In either case, we may define
precedence as an ordered pair P = (a0, a1), where a0, a1 ∈ A. Defining PE as
those pairs belonging to explicit precedence, and PI as the same belonging
to implicit precedence (both discussed below), we may say P = PE ∪ PI .

The rule of explicit precedence is that, if an action name is included in the
list of actions specified inside a descending urgency pragma, each action
in the list is of higher precedence than every action subsequent to it in the
list. For example, if the descending urgency list is (A,B,C), where A, B and
C are actions then {(A,B), (A,C), (B,C)} ⊆ PE.

Implicit precedence derives either from the use of particular hardware
elements, or by the use of methods. All methods take precedence over all
rules. So, if M ⊆ A is the set of all methods in a module, and U ⊆ A is the
set of all rules in a module, then:

∀m ∈M • ∀u ∈ U • (m,u) ∈ PI

The use of certain specialized hardware elements has side effects on action
scheduling (though not on state), most particularly wires. For wires with
default values (DWire in BSV), rules writing to wires are given precedence
over those reading them. So, if W ⊆ R is the set of wires defined in a BSV
module, WR ⊆ A × W is a relation from actions to the wires that action
reads from. Similarly, WW ⊆ A ×W is a relation between actions and the
wires that action writes to. Note that conflicts also occur between wires.

∀a0, a1 ∈ A • ∀w ∈ W • {(a0, w), (a1, w)} ⊆ WW | (a0, a1) ∈ C

Inclusion in PI is determined either by two actions reading and writing
to the same wire.

∀a0, a1 ∈ A • ∀w ∈ W • (a0, w) ∈ WR ∧ (a1, w) ∈ WW | (a0, a1) ∈ PI

Wires are discussed more fully in §4.1.3. This analysis proceeds similarly
for FIFO enqueue and dequeue operations.

100

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

In effect, P describes a partial order over A. While actions are executed
simultaneously in hardware, this partial order forms the basis for a sequential
algorithm which determines the contents of F (those actions selected to fire).
This ordering is identical with the concept of action scheduling.

Scheduling begins with the assumption that F = F , and removes elements
from F as required by the conflict resolution mechanism. At this stage,
the translation process will have failed unless C ⊆ P , and will fail during
scheduling if P contains cycles (indicating circular precedence). Scheduling
proceeds by examining the contents of F one at a time. The partial order
given by P is examined for maximal elements, and if P contains no cycles,
there will always be at least one.

If multiple maximal actions exist, one is selected arbitrarily. In order for
a0, a1 ∈ A to both be maximal, {(a0, a1), (a1, a0)} ∩ P = ∅. Since C ⊆ P ,
we may deduce that these actions can not be in conflict. In hardware, if two
actions do not conflict, and no precedence relates them, they are completely
independent, simultaneous circuits. As such, it makes no difference which is
selected to be scheduled first, the outcome will be the same.

Using the above selection mechanism, elements of F are examined one-
at-a-time, and sorted into two sets, F ⊆ F , the set of actions that will in
fact fire, and F ′ ⊆ F , the set of actions that will not fire. All actions must
be sorted in to these two subsets, so that, by the end, F ∪ F ′ = F

If G(m), that is, the guard expression of m evaluates as true, then m ∈ F
and C(m) ⊆ F ′. If ¬G(m), then m ∈ F ′ only, and no decision is made as to
how the actions in C(m) are sorted. It should be noted that, once an action
has been sorted into F ′, it is also considered to have been examined, from the
perspective of examining each maximal element of F , in order of maximality.

Repeated invocation of this selection mechanism composes some number
of untimed steps into a single clock cycle, and is complete when there are no
actions left to consider.

4.1.3 Wire and FIFO Semantics

Wires are an indispensable element of hardware design, used when a calcu-
lated result must be passed on in less than a clock cycle. Wires are exemplary
of a small number of BSV constructs which violate the assumption of state
output consistency within clock cycles. This property requires a lack of com-
munication between the results of one action and another. It is only by
maintaining this state consistency and other properties that action schedul-

101

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

ing may be dealt with in so abstract a manner.
Syntactically, wire read and write operations are precisely the same as

register read and write operations. The only differences exist semantically,
and during instantiation. Wires make use of a range of constructors, but for
this work only DWire, or wires with default values, are considered. This is
because DWire is used exclusively in the real-world examples presented in §6.

The following code snippet gives syntax for wire declaration (line 2),
reading (line 4), and writing (line 6). The primary purpose of this example
is to demonstrate that, aside from a different initializer being used during
declaration, and different type information, wires are used in precisely the
same manner as registers.

BSV�
DWire#(Bool) w1 <− mkDWire(False); // Wire Declaration
x <= w1; // Wire Read Operation
w1 <= True; // Wire Write Operation �

END BSV

Wires are specifically a mechanism for communication of data between
the actions of a module during a single clock cycle. Wires express data
lines in a hardware design with no intervening state holding elements. Thus,
they are purely combinational circuits. In Verilog, wires are handled using
assign statements, and exist outside the always blocks in which registers are
typically written to. In BSV, wires and registers may be used together within
the same action; the semantic implications of using purely combinational
circuits is enforced at the level of the scheduler.

Specifically, BSV will try to ensure that wires have values written to them
before they are read from. If this is not possible, a DWire will substitute a
specified default value. In this manner, wire scheduling introduces an order-
ing of precedence over the actions in a module without that ordering being
backed up by rule pre-emption. That is, DWires will never block a rule from
executing, but they do change the order in which rules execute. Specifically,
the scheduler puts rules with DWire write operations before rules with DWire

read operations in the schedule. This will have important knock-on effects
to overall scheduling, and can even be used for conflict resolution, so it is
important to consider them when simulating BSV’s scheduling mechanism.

It should be noted that FIFOs are also in this category. A FIFO, or a First
In First Out buffer, is another essential hardware construct. It is a buffer,

102

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

composed of registers, which may have elements queued and dequeued. The
BSV scheduler will try to ensure that elements are queued in the buffer before
being dequeued or cleared, and uses the same precedence ordering mechanism
to do so as applies to wires. The various FIFO operations are discussed in
more detail in §4.2.3.

Both wires and FIFOs violate one of the core abstraction principles of
BSV, the one-rule-at-a-time semantics previously discussed. Insofar as pre-
vious work has sought only to model these simpler semantics formally, wires
and FIFOs have been excluded from consideration by such works. As such,
our consideration of them in our semantic translation constitutes an original
contribution of this research. In our translation, we model these intermedi-
ately determined values using let bindings.

4.2 An Arbitration Algorithm

One of the primary algorithmic problems solved by the translation algorithm,
and a primary contribution of this work, is transition from the guarded-
action semantic of BSV to the state based Kripke semantics adapted for PVS.
The key is accurately reproducing the manner in which the BSV scheduler
decomposes scheduling into iterations of untimed steps.

At a very high level, the following steps are performed in the following
order to translate from action to state based semantics.

1. Implicit and explicit scheduling constraints are tabulated for each ac-
tion.

2. The actions are used to compose a binary decision tree, which describes
all possible state transitions, for all state elements.

3. The decision tree is traversed once for each state element (i.e., register,
wire, or FIFO), and a specified decision tree is generated which contains
only the relevant state transformations.

A number of refinements and optimizations have been necessary, which are
discussed in §4.3.

4.2.1 A Running Example

The information to follow is the most abstract and difficult part of this work,
and this was reflected in amount of time it took to develop. In order to

103

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

demonstrate and contextualize the following description, a running example
will now be introduced. We expand our traffic light example from §2.1 to
include some new features to control a four-way intersection:

• A North-South road and an East-West road.

• Two sets of car lights corresponding to the above roads.

• Pedestrian crossing signals, in addition to the car signals.

• Pedestrian crossing request signals for both North-South and East-
West.

• A system reset signal.

An overview of the system, along with light timings, is given in Figure
4.2. Both car signals are controlled by the same state machine in Figure 2.1,
though the East-West direction has had a timing offset. Pedestrian signals
are easily calculated from the state of the car signals of the same direction.
In our implementation of TrafficSignals, the pedestrian signals are not
even given their own state elements, but are determined directly from the
state of the car signal registers.

Our new TrafficSignals package is given below. Several changes have
been made from the TrafficLight package presented in §2.1. Whereas
TrafficLight relied on an external counter to time light transitions,
TrafficSignals builds this functionality in. Below, literals of the form
N‘dXXX are sized decimal integers, where N indicates the bitwidth of the lit-
eral. Annotations of this kind make proofs easier, but are not necessary to
BSV semantics.

BSV�
package TrafficSignals;

interface TrafficSignals ;
method Action reset ();
method Action pedestrian request NS();
method Action pedestrian request EW();
method Bit#(2) getlamp NS();
method Bit#(2) getlamp EW();
method Bool getPedestrianLamp NS();
method Bool getPedestrianLamp EW();

104

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Figure 4.2: Intersection Signal System Overview

endinterface

(∗descending urgency = ”reset,pedestrian request NS,
pedestrian request EW”∗)

module mkTrafficSignals (TrafficSignals);
Reg#(Bit#(2)) carLamps NS <− mkReg(2);
Reg#(Bit#(2)) carLamps EW <− mkReg(2);
Reg#(Bit#(9)) t <− mkReg(0);

rule tick ;
if (t < 300)

t <= t + 1;
else

t <= 0;
endrule

rule goYellow NS((carLamps NS==2’d0)&&(t==9’d140));

105

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

carLamps NS <= 1;
endrule

rule goRed NS((carLamps NS==2’d1)&&(t==9’d160));
carLamps NS <= 2;

endrule

rule goGreen NS((carLamps NS==2’d2)&&(t==9’d0));
carLamps NS <= 0;

endrule

rule goYellow EW((carLamps EW==2’d0)&&(t==9’d0));
carLamps EW <= 1;

endrule

rule goRed EW((carLamps EW==2’d1)&&(t==9’d20));
carLamps EW <= 2;

endrule

rule goGreen EW((carLamps EW==2’d2)&&(t==9’d160));
carLamps EW <= 0;

endrule

method Action reset ();
carLamps NS <= 2;
carLamps EW <= 2;
t <= 0;

endmethod

method Action pedestrian request NS();
if (carLamps EW == 0 && t < 9’d280)

t <= 280;
endmethod

method Action pedestrian request EW();
if (carLamps NS == 0 && t < 9’d120)

t <= 120;
endmethod

method Bit#(2) getlamp NS();

106

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

return carLamps NS;
endmethod

method Bit#(2) getlamp EW();
return carLamps EW;

endmethod

method Bool getPedestrianLamp NS();
return carLamps NS == 0;

endmethod

method Bool getPedestrianLamp EW();
return carLamps EW == 0;

endmethod

endmodule : mkTrafficSignals

endpackage : TrafficSignals �
END BSV

As any pedestrian can attest, whether the pedestrian crossing request
signals work depends on when the button is pressed. A request only works
if received during a red light, with more than 20 seconds remaining until the
light goes yellow. The effect of the request is to “move up” the timer, so that
the time remaining during the red light is reduced to twenty seconds. This
delay allows car traffic some chance of clearing before the light transition,
and instills doubt in the mind of the pedestrian as to whether the button even
works, which is a universal feature of pedestrian crossing request buttons in
the author’s home city. At all other times the signal has no effect.

4.2.2 The Determination of Conflicts

Action Scheduling in BSV requires the explication of two implicit properties
of actions: confliction and precedence. From a practical standpoint, each
action carries a (possibly empty) list of the other actions it conflicts with
during scheduling. The property of confliction, explored in detail in §4.1.2,
states that two actions are in conflict if and only if a) the set of state elements
they write to is non-disjoint AND b) the Boolean guard expressions are also
non-disjoint. In other words, actions do not conflict if they do not compete

107

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

for writing privileges on at least one state element, and if they do, they only
conflict if their guard expressions may both be True at the same time.

The first condition may be determined by extracting the set of state
elements written to via analysis of the action’s statements.

The second condition is less trivial. The disjointness of expressions is
not a property which can be determined via purely syntactic analysis; but
the problem is amenable to SMT (Satisfiability Modulo Theory) analysis
(Dutertre and De Moura, 2006). While Boolean Satisfiability would suffice
for expressions containing only Boolean values, guard expressions may con-
tain any valid BSV type, such as integers and bit vectors. As such, SMT
solving is necessary. The disjointness property is easily re-conceptualized
as conjunctive satisfiability. That is, if we take the Boolean conjunction
of the two expressions, is there some set of concrete variable values which
yield true, when substituted into the conjunction of the guard expressions.
Without solving the disjunction problem with respect to rule guards, no false
conflicts can be eliminated, and classes of hardware descriptions that would
in fact work would be excluded from modelability.

To this end, we use SBV, a Haskell library for symbolic SMT solving,
to check the satisfiability of these guard constraints (Erkök, 2019). SMT-
based verification in Haskell (SBV) is a Haskell-based front-end to a number
of popular SMT solvers, including Z3 (De Moura and Bjørner, 2008), Yices
(Dutertre and De Moura, 2006), MathSat (Cimatti et al., 2013), Boolector
(Brummayer and Biere, 2009), and CVC4 (Barrett et al., 2011). Yices was
adopted as our back-end SMT solver. Not only did it work satisfactorily
and consistently, but, like PVS, is developed and maintained by SRI In-
ternational. This necessitated the construction of an analysis engine which
converts Boolean expressions represented in our BSV abstract syntax (§3) to
the expression system of SBV, as well as the extraction of symbolic variables,
and determination of their possible ranges based on type declarations. For-
tunately, this latter information is well constrained, due to both the strong
static typing of BSV and the inherent nature of hardware description.

Practically, the algorithm first identifies all potentially conflicting actions
via state disjointness analysis. SMT solving is invoked to adjudicate whether
a conflict is truly present. If the guards are not satisfiable in conjunction,
the conflict is a false one, and the conflict is removed from the tabulated
conflicts of the relevant actions. The SMT results have no further use after
this point, and are not kept. If the conflict is authentic, the schedule checks
that an order of precedence is established. If not, the BSV design is declared

108

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

to have unresolved conflicts, and the translation process is terminated. A
detailed explanation of why we treat this as a fatal error is given in §4.2.3.

Running Example

Our TrafficSignals hardware description contains a number of conflicts,
as displayed in Figure 4.3. Based solely on an analysis of which actions
write to which registers, TrafficSignals has three potential conflict groups,
corresponding to the three registers instantiated by the module.

Figure 4.3: Intersection Example Conflict Graph

Some of these conflicts are not truly conflicts. Upon observation of their

109

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

guard expressions, the rules controlling lamp state (goRed, goYellow, etc.)
cannot be executed simultaneously. This is deduced by Yices and SBV, by
testing to see if any particular combination of registers allows any two rules
in the same conflict group to have guard expressions evaluating to True si-
multaneously. In this case, the lamp state alone is sufficient to demonstrate
mutual exclusivity. For an example like this which considers only equality
comparison, the argument could be made that SMT solving is overkill. The
advantage of SMT solving is that we can deduce the satisfiability of expres-
sions containing not only simple equality comparisons, but any arithmetic or
logical operator supported by BSV.

Examination of the reset method tells a different story. By resetting
each register, the reset method places itself in conflict with every other
action. This makes sense of course, if a reset signal is received, the controller
should do nothing except service the reset operation. However, in order to
give reset this privileged position, we need to explore both the implicit and
explicit mechanisms of precedence.

4.2.3 Conflict Resolution using Rules of Precedence

While conflict seems an inherently undesirable state, it is not necessarily
the case that every conflict needs to be worried about. The secondary layer
of action scheduling interactions is that of precedence. Precedence resolves
conflict in a very straightforward manner. If two actions are in conflict,
the action with the highest precedence is given the opportunity to execute
first, preempting the other. This does not necessarily mean that the higher
precedence action will execute, but it is given the opportunity to. In other
words, conflict plus precedence plus execution equals preemption.

From a practical standpoint, it is only necessary for each action to know
which actions may preempt it directly, and from this a partial order may
be constructed over actions. Interpretation of this poset will be discussed in
§4.2.4. The rules of precedence are as follows:

1. Methods take precedence over rules.

2. Precedence may be assigned manually using pragmas.

3. Actions in which DWires are written to take precedence over actions
in which the same DWires are read from.

110

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

4. Actions containing methods operating on FIFOs have precedence im-
plications (as shown in Fig 4.1).

In general, we refer to precedence rules declared by the user using pragmas
as being explicit, since the rule of precedence is the primary result of user
action. In all other cases, rules of precedence are secondary consequences of
BSV semantics, and so are referred to as implicit.

Semantically, methods are identical to rules, except that they must be
invoked by a supermodule in order to be eligible to fire in any particular
clock cycle. When a method is invoked by a supermodule, it is given priority
over all rules in that module. In our running example, this gives precedence to
reset, pedestrian request NS and pedestrian request EW over tick,
resolving three out of the six conflicts not resolved during mutual exclusivity
checking.

It is useful at this point to elaborate method semantics somewhat. It is
not possible for a method to be invoked more than once by different modules
because each module, when instantiated, has only one supermodule. The
modules in a BSV design form a strict hierarchy. It is possible for multiple
actions in a single module which invoke a method to be queued for execution,
but the write conflict resolution mechanism kicks in, so that both actions are
prevented from executing in the same clock cycle. A method can therefore
only be invoked once per clock cycle.

Methods are not guaranteed to be free of conflict, since it is possible to
construct them such that multiple methods write to the same state element.
While it is generally bad practice to create conflicting methods, this is also
true of rules, and invoking multiple methods in one clock cycle is perfectly
legal in BSV, so conflicts are not resolved by only being able to call one at
a time. Such cases are handled the same as rules, using the same implicit
or explicit rules of precedence, and BAPIP will fail to translate unresolved
method conflicts for the same reason as it fails on unresolved rule conflicts.
The only distinction between methods and rules with respect to scheduling
is that a method must be queued for execution by the supermodule, and
methods are implicitly higher priority than rules. After these conditions are
established, the normal mechanism takes over.

A DWire is a wire with a default value. Wires are impermanent data
containers which, in terms of hardware, can be thought of literally as the
connection of the result of some combinational circuit to some other part
of the design, with identifier labelling for ease of use. A default wire has

111

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

a default value, if it is accessed before it has been written to, but for ev-
ery declared wire, the action in which that wire is written to has implicit
precedence over any action reading it. In effect, each declared DWire carries
within an implicit statement of precedence, dependent on the manner of its
usage, which may be used to adjudicate conflicts.

C Conflict
CF Conflict and Preemption Free
SB Scheduled Before
SA Scheduled After
SBR Scheduled Before (Restricted1)

Tab. 4.1: Scheduling Implications for FIFO Method Invocations (Bluespec
Inc., 2012a)

In Table 4.1, we have a delineation of all of the scheduling implications
introduced by the use of the four basic FIFO methods (enq, deq, clear, and
first). Table 4.1 is meant to be read as “row method has X relation to the
column method”.

In this manner we may see that, for example, use of a clear operation
implies that the clearing action is of lower precedence than all other actions
invoking any other method on the same FIFO. Note also that the state
altering operations enq and deq do not conflict with each other. As with
wires, there are a number of types of FIFO available in BSV, and many of
these are distinct not from functional or descriptive differences, but due to
different scheduling implications.

In the failure of all implicit forms of precedence assignment, the user
is given an explicit precedence mechanism, in the form of the descending

urgency pragma. Invoked anywhere within or immediately adjacent a mod-
ule, this pragma takes a list of rule names, and assigns them descending

112

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

precedence. This is the most efficient manner of resolving unresolved conflicts
which the translation algorithm fails on, though the presence of unresolved
conflicts may mean the design should be re-examined.

In our example, the conflict between our three methods can not be solved
by implicit precedence mechanisms. Thus, a descending urgency pragma is
used to break the tie. It is reasonable that a reset operation should have
the highest level of priority, and it is given such. The ordering between the
other two is selected arbitrarily. This explicit precedence assignment resolves
the remaining three conflicts that went unresolved during mutual exclusivity
checking.

Tabulating Actions

In order to transform BSV’s action centric semantics into state centric seman-
tics, it is necessary to illustrate the manner in which actions are tabulated.
This will give some insight into the details that the translation algorithm
must gather before schedule generation.

For each action in the hierarchy of modules, one of the following record
structures in Haskell are put together. The reason this structure is referred to
as a rule schedule and not an action schedule, is that the translator contains
a preprocessing step which converts all non-rule actions to rules. The most
work invoked in this transformation is keeping track of the method arguments
for later use by the state transition predicates. By the time we get to this
stage, every action is encoded as a rule in BAPIP. The following Haskell
code is a record data type containing all information BAPIP collects about
an action.

HASKELL�
data RuleSchedule = RuleSchedule{

rName :: ActionPath
−− Action’s Identifier

, rGuard :: Expression
−− Guard Expression

, rStatements :: [Statement]
−− Contained Statements

, implicitConditions :: [Expression]
−− Guards of Called Methods

, writesTo :: [ID Path]
−− Registers Written To

113

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

, dWireWrites :: [ID Path]
−− DWires Written To

, dWireReads :: [ID Path]
−− DWires Read From

, fifoEnqs :: [ID Path]
−− FIFO enq() Calls

, fifoDeqs :: [ID Path]
−− FIFO deq() Calls

, fifoClears :: [ID Path]
−− FIFO clear() Calls

, fifoFirsts :: [ID Path]
−− FIFO first() Calls

, actionMethodsCalled :: [Expression]
−− Invoked Action Methods

, conflictsWith :: [ActionPath]
−− Actions I conflict with

, noConflictsWith :: [ActionPath]
−− Actions I don’t conflict with

, preempts :: [ActionPath]
−− Actions I preempt

, isPreemptedBy :: [ActionPath]
−− Actions I don’t preempt

, executesAfter :: [ActionPath]
−− Actions I excute after

, executesBefore :: [ActionPath]
−− Actions I execute before

} deriving (Eq) �
END HASKELL

Why Unresolved Conflicts are a Sufficiently Bad Problem

It is important to note that the algorithm will fail in its translation if any
two actions are determined to have an unresolved conflict. This may seem
like an over-reaction, but it is the only way to guarantee the correctness
of the translation algorithm, for reasons that will now be illustrated. In
the BSV documentation (Bluespec Inc., 2012a), it is explicitly stated that
conflicts are resolved by some “arbitrary but deterministic” mechanism, the
details of which are not published. While the idea of this arbitration being
deterministic is a tantalizing clue as to the operation of the scheduler, the

114

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

deliberate lack of information about the scheduling algorithm means that
it is impossible for us to determine which action would win an ambiguous
conflict, regardless of how repeatable the result may be. Previous authors
addressing this problem seem to have interpreted this as “any action may
fire,” and excused themselves from the difficulty of reproducing the clock
cycle composition semantics (Richards and Lester, 2011). In order to usefully
demonstrate the correctness of a class of theorems larger than invariants
over single untimed steps, it is necessary to precisely emulate full clock cycle
semantics. Theorems involving timing requirements are one such example.
Therefore, it is necessary to constrain the design to completely unambiguous
schedules. The translation algorithm will therefore fail if unresolved conflicts
are detected.

In our running example, we observe that pedestrian request NS and
reset are in conflict with each other. The state of register t is dependent
on the execution order of these two actions (see Figure 4.3 above). Since
we can say with confidence that their guard expressions are not disjoint,
both being the truth literal, this is a “true conflict”. It is impossible to
determine with consistency which of these two rules would be selected for
execution on any given clock cycle, due to the “arbitrary but deterministic”
nature of conflict resolution. Therefore, we have two possibilities: either
pedestrian request NS goes first, or reset does. This can be determinis-
tically calculated from the evaluation of action guards and the confliction and
precedence graphs If a formal determination of the outcome of the schedule
is to be made, we must know which is considered for execution first. Other-
wise, the number of possible valid schedules grows with each such ambiguous
conflict. While it would be theoretically possible to keep track of all such
possible schedules, this would have a disastrous effect on proof execution
times, and may not even be desirable.

The additional argument can be made that, in practice, the presence of
unresolved and underdetermined action scheduling constitutes bad design on
the part of the hardware designer. If one is being sufficiently conscious of
modularization and information hiding principles, one would take care that
state elements are being written to in as few places as possible. This design
principle is mostly adhered to in the RapidIO subsystem discussed in §2.4,
minimizing conflicts.

115

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

4.2.4 Generating a Universal Schedule

All combinations of action firings with unique effects on the state, as well
as state transformations, require a data structure. Examination of this data
structure is also informative with respect to understanding the design of the
algorithm.

The universal schedule is a binary tree which describes all possible ac-
tion execution sequences, and encapsulates all information necessary for the
generation of scheduling trees for each individual state element. In other
words, all guards and statements are collected into the universal tree for
later reference.

Each node in this tree is an action, with a branch for the consequences of
its execution, and a branch for the consequences of its non-execution. The
root of the tree must be maximal with respect to all the precedence orderings
discussed in §4.2.3.

The universal scheduling tree is created via the following recursive graph
algorithm, which uses as input the conflict and precedence posets as de-
scribed above. Given a set of actions and their scheduling implications, one
action is selected as “next to fire.” This action must be a maximal element
of the partial order imposed by implicit and explicit precedence. Mechan-
ically, a maximal action is an action whose list of actions preceding it is
empty. If there are multiple maximal actions any one of them may be se-
lected arbitrarily. For actions which do not conflict, and for which no order
of precedence is established, the order in which those actions are selected for
execution has no effect on the state once all such actions have been executed.
In hardware, such actions are implemented as parallel circuits which perform
calculations simultaneously, but the degree to which assuming consecutive
instantaneous execution simplifies the semantics underlying the translator
can not be overstated. This reasoning is based on the atomic, parallel na-
ture of BSV semantics. Each statement is a combinational circuit, and all
values stored in registers are only updated at the end of a clock cycle. The
translation algorithm trivially selects the first action in the list of actions,
which corresponds to the action which appears first in the source BSV file.
Semantically, any would do. The guard expression and action statements are
recorded in the tree. Two modified lists of action schedules are produced,
which will be used to generate the true and false branches of this node. For
the false branch, the list of actions is reduced by the action selected, and all
references to the maximum are deleted from all other actions’ lists of pre-

116

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

ceding and conflicting actions. For the true branch, the further step is taken
of removing from the list all actions which were in conflict with the maxi-
mum, since the execution of an action blocks the execution of all actions the
chosen action conflicts with. Thus, the true and false action lists are passed
to two instances of the tree generation algorithm recursively. The algorithm
terminates when no actions are remaining to be scheduled.

The purpose of the universal schedule is to serve as an intermediary rep-
resentation between the action oriented rule tabulation read more or less
directly from the BSV source files, and the state-centric trees for each state
element that are necessary to generate branching if expressions for each state
element (Registers, FIFOs, and DWires). These if expressions are eventually
collected into record update predicates, and form the transition predicates
of our Kripke model.

A Data Structure for Schedules

Up to this point, it has been sufficient to store our actions, plus associated
scheduling information, as a tabulation. Each action is parsed into a record,
and these records are analyzed to construct lists of other actions which con-
flict or pre-empt. The conversion from this tabulation of actions, conflicts,
and precedences into a hierarchical organization of precedence constitutes
the actual algorithmic transformation from an action oriented semantic to a
state-based semantic.

The generation of a universal schedule of course necessitates a universal
scheduling algorithm which produces it. This algorithm is discussed in detail
in §4.2.4. Before we discuss it, however, it is important to clearly describe
the form of the generated data structure. A universal schedule data type is
represented in Haskell as follows, where Statement is defined in §3.1.5.

HASKELL�
data TotalTree
= TotalStem Guard [Statement] TrueTree FalseTree
| TotalLeaf Guard [Statement]
deriving (Eq)

type TrueTree = TotalTree
type FalseTree = TotalTree �

END HASKELL

117

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

In other words, a TotalTree, or universal schedule, may be either a stem node
or a leaf node. Stem nodes contain a guard expression and a list of statements
derived from one of the tabulated actions, as well as two more universal
schedules. One assumes the guard expression was true, and describes the
rest of the action decisions that follow from that assumption. The other
assumes the guard expression did not evaluate true, and describes the rest of
the action decisions contingent on that outcome. A leaf node, on the other
hand, contains only the action information, with no subtrees defined. Leaf
nodes will typically only occur when the universal scheduler is scheduling
the final action. In the Haskell, the second and third line merely identify the
TrueTree and FalseTree as type synonyms for TotalTree.

The Generation Algorithm

Running Example

The extraction of a partially ordered set of actions from a BSV file is a matter
of relatively straightforward static analysis. A list of the register and wire
interactions performed by each action is extracted, and from this information
lists of rule conflicts and the (implicit) wire ordering may be extracted. The
primary method of direct schedule manipulation in BSV is pragma declara-
tion. The user may force the scheduler to deal with rules as if they will never
be available to fire simultaneously using the mutually exclusive pragma,
or set explicit precedence orderings using descending urgency. There are
many pragmas available, a full listing is provided at (Bluespec Inc., 2012a).

Pragmas are an extremely powerful mechanism for schedule determina-
tion. They have the power to override not only implicit precedence calcula-
tions, but conflicts themselves. With pragmas such as mutually exclusive

and conflict free, we can override every stage of the scheduling algo-
rithm. The mutually exclusive pragma asserts that two actions will
never be simultaneously available for execution, even if they can be. The
conflict free pragma asserts that two actions do not conflict, even if they
do. Overuse of pragmas can therefore result in the creation of race condi-
tions, so caution is advised. Within the context of our running example,
any conflict between actions could in theory be immediately resolved using
a conflict free pragma, but this may result in an unstable state, unless
the fact the two actions are conflict free is provable by the programmer. In
a sense, the user would need advanced knowledge of a design’s operation in

118

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

order to correctly make such assertions.
If any conflicts remain unresolved by any added pragmas, BAPIP will

terminate, displaying an error requesting additional pragmas in the source
BSV file. The example presented here contains no unresolved conflicts, but
some could easily be created by removing the descending urgency pragma.

For our example file TrafficSignals.bsv, Figure 4.4 is the resulting
partial ordering for all those actions with true conflicts. In this diagram,
unidirectional arrows point from high precedence to low precedence actions.

Figure 4.4: Intersection Example Partially Ordered Set

During scheduling, all three methods take precedence over all rules, but in
the above graph, only those implicit precedence relationships which resolve
rules have been depicted. This is to avoid cluttering the graph unnecessarily.

Following the greedy algorithm approach outlined in §4.2.4, we must now
transform this action poset into a decision tree. A partial elaboration of the

119

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

scheduling algorithm is given in Figure 4.5. Each node of this graph contains
the state of the action poset remaining at that stage. The action selected by
the scheduler at each stage is highlighted in grey.

Our top-level poset contains all ten actions. Given its maximal position
in both implicit and explicit precedence, reset is the first rule to be selected
for scheduling. Each node is a decision about an action firing, with a subtree
both for the instance of it firing and of it failing to fire. Since reset conflicts
with every other action, if executed, no actions will remain to be scheduled.
If it does not execute, the node along the true branch receives a poset with
reset removed.

The next action to be scheduled is pedestrian request NS. At this
stage, the colour changing rules are not eligible for firing, because methods
take precedence over rules. From here, the action firing will result in only
the colour changing rules being left, since pedestrian request NS conflicts
with all the others. At any point when the poset is free of conflicts, the re-
mainder of the tree is omitted. These proceed via rudimentary one-at-a-time
selection, which need not be illustrated. Further, the same series of selections
would be repeated a number of times. After this, pedestrian request EW

and tick are selected along the false paths via the same mechanism.
Reading only the highlighted actions in the above tree yields the universal

scheduling tree.
In the next section, we demonstrate how this universal schedule is easily

transformed into state element specific schedules, which have a one-to-one
mapping with branching if-statement structures implementable in PVS.

4.2.5 State-Oriented Universal Schedule Interpretation

A Data Structure for State Specific Schedules

Once the universal schedule has been created, all that remains is the refac-
toring of this schedule into a decision tree for each specific state element.
Our model of computation in PVS is the state-centric Kripke structure. The
arrangement of state in any given clock cycle is transformed via the schedul-
ing algorithm into the next clock cycle’s state. Now that we have elaborated
the universal schedule, we must use it to generate transition expressions for
each individual state element, which necessitates the creation of state-specific
scheduling trees.

As the universal schedule is traversed, all data pertaining to the particular

120

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Figure 4.5: Intersection Example Universal Schedule

state element under examination will be collected into the following data
structure.

121

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

HASKELL�
data SpecificTree = SpecStem Guard

(Either Expression SpecTrueTree) SpecFalseTree
| SpecLeaf Guard TrueExpression FalseExpression
| SpecEx Expression
deriving (Eq)
type SpecTrueTree = SpecificTree
type SpecFalseTree = SpecificTree
type TrueExpression = Expression
type FalseExpression = Expression �

END HASKELL

The SpecificTree is a tree specific to some particular state element.
Like the universal tree, we recognize stem nodes and leaf nodes. SpecStem

contains the action’s guard expression and a false sub-tree. Rather than
simply pointing to a true sub-tree, the specific tree recognizes that, if the
current action’s guard is true and that action writes to the relevant state
element, there is no need to continue keeping track of the rest of that branch
of the tree. Within the data structure, the true sub-tree may be replaced
with an expression (the value to be written), using Haskell’s Either datatype.
Otherwise, SpecLeaf merely substitutes the expression to be written for a
list of statements on both true and false guard results. The false result is
always a status quo result, which in PVS is interpreted as a state element
being written with its previous value. The SpecEx node is used in rare cases
when an expression needs to be substituted, but has no associated guard.

Generating the State Specific Schedules

Recalling that each node in the universal scheduling tree corresponds to an
action described in the underlying BSV description, to produce a scheduling
tree for a specific state element requires only the exclusion of all write oper-
ations that do not write to the state element under consideration. This can
be accomplished by a straightforward traversal of the universal scheduling
tree, and a recording of the results in the above data structure.

These trees, of which one is generated for each state element, are subse-
quently simplified and transformed into branching if-statements during PVS
generation.

122

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Running Example

The state assignment statements contained in each action are kept track of
within the generated universal scheduling tree. This produces a tree that
must be converted from the action-centric semantics of BSV to the state-
centric representation in PVS. Fortunately, a version specific to each state
element can be generated by traversal.

Once state specific trees have been generated, they may be pretty-printed
as if expressions and inserted into the generated transition predicates, which
are encoded in record-update syntax. The following code listing is an excerpt
of Transitions.pvs, generated from our example file. The full example
may be found in Appendix C.2.4. The syntax below is that of a PVS record
update. In this case, pre is a record holding the previous state in our finite
state machine. The with operation in PVS takes a previous record and
updates those fields for which updates are specified using assignment (in this
case all three). The resulting record is the post state, which may be used by
the theorem prover and checked for properties of interest.

PVS�
%% \gls{pvs} excerpt − Transition with call to reset() %%
transition val (index : nat, pre : TrafficSignals) : TrafficSignals =

pre with
[t := 0
, carLamps EW := 2
, carLamps NS := 2
]

%% \gls{pvs} excerpt − Transition without call to reset() %%
transition val (index : nat, pre : TrafficSignals) : TrafficSignals =
pre with
[t := if (pre‘t < 300)

then (pre‘t + 1)
else 0

endif
, carLamps EW:= if(((pre‘carLamps EW=2) AND (pre‘t=160)))

then 0
else if (((pre‘carLamps EW=1) AND (pre‘t=20)))
then 2
else if (((pre‘carLamps EW=0) AND (pre‘t=0)))
then 1

123

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

else pre‘carLamps EW
endif

endif
endif

, carLamps NS := if (((pre‘carLamps NS=2) AND (pre‘t=0)))
then 0
else if (((pre‘carLamps NS=1) AND (pre‘t=160)))
then 2
else if (((pre‘carLamps NS=0) AND (pre‘t=140)))
then 1
else pre‘carLamps NS

endif
endif

endif
] �

END PVS

The first excerpt is the record update corresponding to a transition in
which the reset method has been called. One may recall that the reset

method had no guard expression in the original description, which defaults to
a truth literal. Although the full tree would have originally been expressed for
all three fields along the false branch of the various state specific scheduling
trees, the presence of a truth literal at the top level allows the tree to be
simplified down to a single statement in the case of each register. The full
decision tree has a maximum depth equal to the number of actions in a
module. In this case, ten actions would yield a tree with a possible maximum
size of 1024 nodes, each of which would occupy a line of code. Without the
simplifications, simply displaying the full if-tree would be a dubious prospect
in so confined a document as a PhD thesis.

Our second excerpt is a transition in which no methods are called. As
such, we can see how the algorithm has removed rules which, although nec-
essarily existing in the universal schedule, contribute nothing to the state
element at hand. What results is highly readable code, which has a direct
correspondence to the original code.

4.2.6 Comparison to Richards and Lester Method

In order to demonstrate the superiority of this approach, let us discuss how
the Richards and Lester (2011) approach would be applied to our running

124

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

example. It should be noted before we begin that the Richards and Lester
method is a manual method, so it is not possible to easily produce an exact
translation of our example into the Richards and Lester method. However, it
is instructive to include some small code example from their published work.
The code is the same used to support their 2011 paper (Richards and Lester,
2011), and can be retrieved from the internet (Richards, 2011a).

The Richards and Lester method (hereafter referred to as the monadic
method) does not attempt any simulation of the BSV action arbitration
mechanism, but stops at modelling the individual actions as individual state
transitions. The greatest strength of this method is that, using a monadic
approach, these state transitions are syntactically very similar to the BSV
actions they are based on. This is somewhat deceiving, however, as these
monadic actions require a not inconsequential amount of supporting defini-
tions, which the authors hide away in imported theories. These support-
ing definitions are not universally applicable, but must be updated as the
monadic action implementations are added or modified, so the claim that
the monadic method’s actions are minimal syntactic manipulations of the
original BSV methods is not well supported by the evidence. The following
code snippet represents one rule from their “Peterson” example (Richards
and Lester, 2011).

PVS�
%%%%%%%% Original \gls{bsv} Code by Richards and Lester

%%%%%%%%
% rule q critical (pcq == Critical && p data.notFull);
% p data.enq (False);
% pcq. write (Sleeping);
% turn. write (True);
% endrule

q critical : Rule
= rule (pcq‘read = Critical and fifo ‘enq cond,

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
fifo ‘enq (true) >>
pcq‘write (Sleeping) >>
turn‘write (true)) �

END PVS

125

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

As we can see, their claim of close syntactic correspondence is superficially
true. Let us therefore examine the supporting definitions, taken from across
three other files (Richards and Lester, 2011).

PVS�
get pcq (p: Peterson): Reg [PC] = p‘pcq
get turn (p: Peterson): Reg [bool] = p‘turn
get fifo (p: Peterson): FIFO1[bool] = p‘fifo

update pcq (p: Peterson, r : Reg[PC]) : Peterson
= p with [(pcq) := r]

update turn (p: Peterson, r: Reg[bool]) : Peterson
= p with [(turn) := r]

update fifo (p: Peterson, r : FIFO1[bool]): Peterson
= p with [(fifo) := r]

pcqT : Transformer [Reg[PC], Peterson, T] =
transform (get pcq, update pcq)

turnT : Transformer [Reg[bool], Peterson, T] =
transform (get turn, update turn)

fifoT : Transformer [FIFO1[bool], Peterson, T] =
transform (get fifo , update fifo)

pcq : RegFunctions [Peterson, PC] =
getRegFunctions (pcqT [PC], pcqT [Null])

fifo : FIFO1Functions [Peterson, bool] =
getFIFO1Functions (fifoT[bool], fifoT [bool], fifoT [Null])

turn : RegFunctions [Peterson, bool] =
getRegFunctions (turnT[bool], turnT[Null]) �

END PVS

This does not include the state record definition, or five files of prelude
material, wherein the Bluespec Monad itself is defined, as well as read and
write operations.

In the case of our example, we would produce a total of ten monadic
action embeddings, one for each rule, and one for the method in our original
BSV description. Each one of these monadic actions would perform the work
of precisely one action in transforming the state, if applied to the module’s
state record. Individually, these monadic actions are capable of proving some

126

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

properties. In particular, this approach is useful if one needs to demonstrate
an invariant in the system. One could reasonably simply compose a theory
which ensures that no action or combination of actions modifies the state in
such a way that the invariant is violated.

The way that Richards and Lester compose their monadic actions into a
single transition predicate is through the simple disjunction of all monadic
actions. The following code snippet, taken again from the Richards and
Lester (2011) Peterson example is all that is given for a transition predicate.

PVS�
transitions (pre, post) : bool =

wake p (pre, post)
or wake q (pre, post)
or grant p (pre, post)
or grant q (pre, post)
or read fifo (pre, post)
or p critical (pre, post)
or q critical (pre, post) �

END PVS

Note that the problem of action scheduling is completely avoided. During
proof, we must split our proof once for each action, deciding whether or not
it actually executes. For our traffic signals example, this yields 210 (1024)
individual theories that would need to be checked.

There are a number of problems with this. First, the exponential explo-
sion of proof obligations swiftly overwhelms PVS if we try to prove anything
larger than a toy example. Second, we have a composability problem. In
order to test properties over multiple clock cycles, we need to apply this dis-
junctive transition predicate multiple times. In the case of this example, this
would mean 210n, where n is the number of clock cycles we are simulating.
If we needed to simulate four consecutive clock cycles, which is a reasonable
thing to ask, we are looking at 1.1 × 1012 proof obligations. This is simply
not feasible, due to time and memory constraints.

Our algorithm may have seemed overkill, but the fact is that the Bluespec
scheduler is deterministic, so of the 1024 theorems generated via the monadic
method, only one of them is true to the eventual generated hardware. It is a
non-trivial amount of work to accurately simulate the scheduler, but doing
so allows us to make a deterministic decision about which rules actually fire,
and we therefore avoid the composability problem.

127

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

4.3 Optimizations Addressing Scalability

One of the largest problems with the scheme described above is the genera-
tion of two subtrees at each node of the universal scheduling tree. This yields
an algorithmic complexity of O(2d), where d is the depth of the tree (maxi-
mally the number of actions to be scheduled). Even moderately sized BSV
descriptions quickly run into projected runtimes of thousands of years, and
translating a large design (such as the RapidIO subsystem) would consume all
computer memory currently existing (approx. 295 Exabytes (Nguyen, 2011))
and still not be satisfied by many orders of magnitude. This is commonly
known as the state explosion problem.

To address these limitations, several algorithmic techniques were applied.
This was necessary in order that the RapidIO subsystem could be usefully
translated and operated on by PVS.

4.3.1 Tree Simplification via If Expression Observations

One immediate simplification involves state specific trees. This optimiza-
tion consists of a fairly rudimentary traversing and refactoring of the tree
according to the following properties of if-then-else expressions:

if True then p else q = p

if False then p else q = q

if b then p else p = p

The application of the above rules had the effect over medium designs
of reducing resultant PVS files from hundreds of thousands of lines of code
to under one thousand in most cases. Designs could then be successfully
typechecked by PVS in a time-frame of minutes, rather than days or weeks,
with no loss to semantic integrity.

4.3.2 Module Hierarchy Action Set Refinement

As the designs being translated grew, so too did their organization into a
hierarchy of modules. The näıve approach creates one universal schedule for

128

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

all actions contained in all modules. While this is a technically correct ap-
proach, as states within sibling modules will never conflict with one another,
and therefore their relative order of execution is immaterial, it is far from an
optimal one. In the file RapidIO MainCore.bsv, the MainCore module col-
lected 84 actions, giving the binary tree a depth of 84 action decisions (a tree
with 1.93× 1025 nodes). Obviously, this was a long way from an acceptable
state of affairs.

We observe, however, that the state elements of any particular module
may only be written to by the module itself (through statements), or by any
of the module’s supermodules (via method calls). As such, the state specific
schedules of any particular module need only concern itself with the actions
in the above specified modules.

Thus, a new recursive hierarchy was introduced which corresponds with
the module hierarchy of the underlying BSV modules. Each node in this
new tree contains a “universal” tree applicable only to the module which the
node corresponds to. These trees are generated from subsets of the set of all
actions, i.e., only those actions in the module itself or its supermodules.

This scheme sufficed to simplify to a manageable size the majority of
the state trees in the module hierarchy under examination in §6.5, which
attempts the translation of the entirety of the Shakti processor’s implemen-
tation of the RapidIO packet processing subsystem. However, on the deepest
branch of the tree, action depths were found of up to 42 actions (a tree with
4.40× 1012 nodes). In particular, the outgoing packet concatenation system
is large, both in terms of the number of modules in the hierarchy, and the
number of actions per module. This method of simplification is most effective
on wide, shallow hierarchies, and is less effective on deep hierarchies. The
RapidIO implementation is a combination of shallow and deep hierarchies,
so this method only takes us so far in addressing the scalability problem.
While a valuable addition to the optimization scheme, other optimizations
were required to achieve scalability. This is discussed in the next section.

4.3.3 Action Merger via Schedule Independence Checking

Continuing the optimization effort described above, a new structural observa-
tion was necessary to further simplify the decision tree. This observation de-
rives from the scheduling interchangeability of actions which neither conflict
with, nor pre-empt each other. If two actions meet the following conditions,
they may be merged into one action:

129

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

• The actions must conflict with the same set of actions

• The actions must preempt the same set of actions

• The actions must be preempted by the same set of actions.

• The actions must have identical guard expressions.

Essentially, if a group of actions have no scheduling differences between
them, and are guarded by the same expression, they will either all be exe-
cuted or none will be executed (atomicity) and their order of execution is
immaterial (parallelism). As such, these actions may be merged into one
action. This action would be guarded by the common guard expression, and
the statements would be the set of all the statements of the merged actions.
The statements themselves would not be merged or altered in any way, just
collected together into a single action.

This has the net effect of eliminating scheduling redundancy, and leaving
behind the set of actions with unique scheduling properties. This ties run-
time complexity to the path complexity of the state element calculations,
rather than to the abstraction and modularization techniques implemented
by the designer in the interests of readability and maintainability. By opti-
mizing the RapidIO library in this manner, a maximum recursion depth of
nine was found (a tree with 512 nodes), bringing even the most complex call
paths of the design within the realm of that which can be typechecked in a
practical amount of time.

4.3.4 Top Level Methods and Schedule Indexing

Methods are the only mechanism for input/output of BSV modules, and the
root module of a hierarchy is no exception. In order to pass data into a mod-
ule, invocation of methods is necessary, but data may be read from modules
for free, as read operations have no scheduling implications for register based
memory. As will be discussed in §5, the user of the translation algorithm
is expected to have sufficient knowledge of the design under verification to
know which methods must be invoked to demonstrate the behaviour under
examination. As such, a mechanism is provided to specify which sets of
methods they would like schedules generated for.

In the top-level PVS file generated by BAPIP, there is a listing of the
generated schedules, the methods they invoke, and an index number. This

130

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

index number must be used as the first argument of any output method or
transition predicate that is invoked by the user. An earlier approach to this
problem, (enumeration of every possible method schedule), is completely in-
feasible for even moderately sized designs. The number of possible schedules
is 2n, where n is the number of action methods, as, for each method, that
method may be invoked or not. The top level file of RapidIO alone contains
64 such methods. Fortunately, very few possible schedules are interesting,
and those which are interesting may be selected prior to translation.

The general procedure is the selection by the user of those methods which
the user wishes to generate transitions for. These method selections must
then be composed into an auxiliary file by the user, to be read by the transla-
tion software at translation time. It is not necessary to specify any ordering
of method calls, as these are composed within the PVS proof sequent.

Our running example above is not a good example of this, due to the
low number of methods available. In general, though, in order to generate a
state transition predicate that uses the method M1, a file that indicates such
must be provided in advance. The exact manner of the composition of these
files is detailed in §A.4.1.

4.4 Conclusion

In this section, our core algorithm has been explained in detail, using running
examples. We have discussed the ways in which our algorithm constitutes
an improvement over the primary ancestor of our work, Richards and Lester
(2011), and we have discussed methods employed in improving the scaleabil-
ity of what is unfortunately an exponential algorithm. This approach is
necessary to provide a deterministic solution to the multiple clock cycle, and
therefore the real-time semantics of BSV.

131

5. PROVING THE CORRECTNESS OF BSV
IMPLEMENTATIONS

While the extraction of logical models from BSV descriptions and their sub-
sequent embedding in the higher order logic of the PVS proof system is
fully automated, the generation of proofs of correctness cannot be fully auto-
mated. A greater degree of automation in proof generation than is currently
presented is theoretically possible, particularly if the requirements are spec-
ified in a format which is easily digestible to PVS. This is, however, left as
future work. The proof process in general requires more information than
is contained by the BSV description under examination, most notably, some
formalization of the functional requirements of the module under examina-
tion. It is impossible to verify that a module implements a set of requirements
without the availability of those requirements. As such, §5 will describe the
methods by which the PVS output of the translator may be used to generate
proofs of correctness.

5.1 Refinement via Timing Simulation

The method for theorem construction presented in the previous section, while
having the advantage of simplicity, does not address the problems that arise
from attempting to make statements about the time it takes a module to
perform some desired function. The strict timing requirements of safety-
critical applications make this a highly desirable capability. Fortunately the
methodology presented above may be refined by adapting the methods of
Wassyng et al. (Wassyng et al., 2005), in particular, the tick type and
supporting theories.

These libraries introduce a simple modal logic, making available a discrete
timeline which may be traversed by various library functions. By reformulat-
ing key variables, such as the state variable, into functions accepting a value
of type tick (i.e., some point on the timeline) and returning its normal type,

132

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

we introduce a concept of time to our variables, so that they may have dif-
ferent values at different points on the timeline. This is particularly useful in
the state type passed to transition predicates. Where before we had separate,
individual variables for pre and post state, we have now arranged the pro-
gression of states into a a timeline, from which various points are accessible
via either direct addressing or modal functions such as next(s). As such,
we may now quantify over time as well as input values, allowing us to assert
a whole new set of antecedents, such as a transition predicate holding for all
points on the timeline, though no case study is presented which illustrates
this capability.

In order to use the tick type, it is necessary to parameterize the top-level
theory with the duration of each clock tick, the delta t. When provided
with the clock period, this allows us to relate intervals on our timeline to real
time, giving us a mathematical foundation for claims regarding the real-world
timing behaviour of BSV modules.

Use of the tick type is also necessary for the interaction of the work
presented herein with the formalized tabular specifications provided by Pang
et al. (Pang et al., 2015).

5.2 Using Tabular Specifications to Construct Theorems

While it is entirely possible to construct theorem antecedents and conse-
quents manually from requirements specifications, it would be better to in-
tegrate these specifications with as little manual intervention as possible. In
order to do so, it is first necessary to have requirements specifications encoded
in a format parsable for PVS. Fortunately, in the case of the IEC 61131-3
function block library (IEC, 2013), we may rely on the work of Pang (Pang
et al., 2015), which not only formalizes the IEC 61131-3 function blocks,
but encodes those formal tabular specifications in PVS. The Pang tabular
expressions are accompanied by proofs of completeness, disjointness and con-
sistency.

Similarly to the transition predicates produced by the BAPIP transla-
tion tool, the tabular specifications presented by Pang are also predicates,
but unlike our transition predicates, they make no attempt to specify inter-
nal behaviours. For an example, please see the code listing below. Tabular
expressions also only concern themselves with one output variable at a time,
so (with regard to sequent construction) modules with multiple output vari-

133

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

ables must invoke one tabular expression for each output variable, as opposed
to BAPIP transition predicates, which calculate all output values in one in-
vocation. The tabular specifications are encoded as tests of equality between
an output variable and a value calculated from input variables and previous
output variables via a condition table, as shown below. As such, they readily
integrate into the established sequent structure. However, we must ensure
input and output variables are handled correctly.

PVS�
f q val (qh,ql)(t) : bool =

TABLE
| qh(t) OR ql(t) | True ||
| NOT qh(t) & NOT ql(t) | False ||

ENDTABLE �
END PVS

In the above code snippet, we declare a function returning a function on
three parameters mapping to the Booleans. The two parameters qh and ql

are also functions resulting in Booleans, parameterized by a timeline position,
and are inputs supplied to the hardware module by methods. The (t) phrase
indicate the variable parameterizing qh and ql. Normal TABLE notation is
used to map conditions to truth values. In this particular case, it would be
trivial to simply state the disjunction of the two inputs as the output, but the
methods applied here are useful for larger, less trivial tabular expressions.

In a previously published work (Moore and Lawford, 2017), it is stated
that some minor changes to the previously published tabular specifications
were required in order to use them with the BAPIP transition predicates. In
particular, it was thought necessary to adjust the time at which the tabular
specification specifies its result. Prior to modification, tabular specifications
describing combinational hardware behaviours had produced a result in the
same clock cycle as the inputs were received. This was due mainly to the
limitations of the BAPIP software at the time of the paper’s publishing, In
particular, the “wire” datatype had not been implemented, preventing the
transport of data between actions in a single cycle. In this manner, the tab-
ular specification predicates have been modified to compare the value calcu-
lated via condition table to the following clock cycle’s output variable. This
approach has been made obsolete by expansion of the translator’s capability.

In terms of theorem construction, tabular specification predicates are
included in precisely the same manner as BAPIP transition predicates, but

134

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

without pre and post condition expressions. Both the specification predicate
and the transition predicate can accept the same input variables. For the
Pang predicates, the time at which the table is applied is specified at the end
of the argument list, whereas in the transition predicate each individual input
value must be provided with the time as an argument, within the argument
list (see below). The state function should be provided in a similar manner,
with the state value at time t being given as the pre-state, and the state
value at time t+delta t or next(t) being given as the post-state. The
specification table has no such requirement, but an output variable must
be pre-declared. Pre-conditions are automatically provided by the tabular
specification, and post-conditions take the form of a test of equality between
the output variable of the tabular specification and the relevant method
call applied to the relevant time of the state function, as given below. This
theorem is derived from our earlier work (Moore and Lawford, 2017). Though
an updated version is presented in §6.1, this sample has been selected because
it illustrates the concept of antecedent and consequent logical expressions in
a more direct manner.

PVS�
line1 2 : theorem LIMITS ALARM t set Alarms

(s(pre(t)) % Pre−state record
, s(t) % Post−state record
, xin(t) % Input under test
, hi(t) % High Threshold
, lo(t) % Low Threshold
, ep(t) % Epsilon
)
and (ep(t) > 0)
and (xin(t) >= (hi(t) − 2∗floor(div(ep(t) ,2))))
and (xin(t) <= hi(t))
implies LIMITS ALARM get qh(s(pre(t)))

= LIMITS ALARM get qh(s(t)) �
END PVS

In this particular example, pre(t) is being used instead of next(t).
This has to do with the data path represented by this module, which will be
discussed in greater detail in §6.1. In effect, we are checking to see that, for
the same input, both the specification and the implementation produce the

135

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

same output at the same time. If successfully proven, we may say that the
Bluespec module implements the requirements.

It is sometimes necessary to add to the antecedents a premise equating
the history of the tabular specification’s output variable to the history of the
transition predicate’s state. This is necessary when the module is not purely
combinational, relying on the previous value of some result to calculate the
next. Without such a statement, PVS would check for equivalence in cases
where both mechanisms had different histories. It is our position that the
assumption that both mechanisms have the same history is reasonable. A
deductive approach is taken to this, rather than an inductive proof starting
from equivalent initial conditions, because it seemed the simpler approach.
It is highly probable that the techniques discussed here could be make far
more efficient via the application of more advanced proof techniques.

5.3 Proofs of Consistency

In order to validate a module, it is insufficient merely to demonstrate that it
meets its functional requirements. It is also necessary to demonstrate that
the antecedents of our proof sequent are not vacuous. If antecedents are self-
contradictory, it is possible to deduce any possible outcome. This means,
for example, that it would be possible to deduce some desired consequent
from a set of antecedents, and the Boolean negation of the same consequent.
In such a case, any demonstrated result is meaningless. As such, we must
demonstrate the consistency of our theorems, where the term consistency
is used in the same manner as (Camilleri et al., 1986). In short, we must
demonstrate that, for every pre state there exists a valid post state, even if
the relation is reflexive.

In order to demonstrate the consistency of our automatically extracted
transition predicates, we must demonstrate that they restrict the space of
possible post-states without eliminating it. In other words, for all pre-states
and combinations of input, there must exist at least one post-state, otherwise
there would exist some combination of inputs and state that would cause the
transition predicate to always return false. This would introduce a contradic-
tion as a premise, allowing us to prove any consequent. This is another way
of saying this is that our transition predicates must be left-total, a property
discussed more fully in §2.1.3.

Constructing a theorem to evaluate this is straightforward. The theo-

136

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

rem must state that for all pre-states and input variables, there must exist
a post state such that the transition predicate holds. This theorem neces-
sarily does not take the antecedent-consequent form of the theorems testing
functionality.

Consistency : Theorem

FORALL pre, <input variables> :

EXISTS post :

transition_predicate (pre, post, <input variables>)

For a description of how to discharge these proofs, and the manner of
their automatic generation, see 2.2.6.

137

6. CASE STUDIES

In this chapter we will examine five case studies, which serve as demonstra-
tions for the BAPIP translation process, as well as the derivation of associated
proofs. The case studies are as follows:

1. The Limits Alarm Function Block — A very simple example, previously
published (Moore and Lawford, 2017).

2. The Alarm Int Function Block — A simple example demonstrating the
translator’s TSP2BSV and TSP2PVS modes.

3. RapidIO Read/Write Size and Word Pointer Decoder Module — A
more complex example demonstrating the ability to verify BSV func-
tions.

4. RapidIO Read Size and Word Pointer Encoder Module — The most
complex working example, demonstrates action arbitration and wire
handling.

5. Progress Towards RapidIO Transaction ID Echoing — Theoretical ground-
work for a highly complex example, encompassing most of the RapidIO
subsystem under examination.

All case studies have associated code listings in the appendix of this thesis.

6.0.1 Introduction to RISC-V and RapidIO

Three of the case studies provided in this work (§6.3, §6.4 & 6.5) are ap-
plied to a Bluespec SystemVerilog implementation of the RapidIO message
packet passing subsystem of the RISC-V processor Instruction Set Architec-
ture (ISA) available in the Shakti processors project, by (Gala et al., 2016).
It is therefore appropriate to introduce the RISC-V processor, the Shakti
project, and provide an overview of the RapidIO framework.

138

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

RISC-V

RISC-V is an open-source specification for the design of computer processors
(Porter III, 2018). RISC stands for Reduced Instruction Set Computer, and
RISC-V is an open-source hardware initiative led by the RISC-V Foundation
(2020). In order to understand the purpose of RISC-V, one must consider the
importance of ISAs in the design of computers. Processing, as performed in
Von Neumann architectures, comprises the manipulation of memory through
the execution of instructions. The set of instructions a processor implements,
and the manner of their implementation, are the objects of a great deal of
design effort on the part of processor manufacturers. Each instruction that is
included must have corresponding electronic circuitry within the final proces-
sor. The set of instructions that a processor implements is that processor’s
ISA, and there are multiple ISAs used by different manufacturers, for exam-
ple, Intel’s ubiquitous x86-64, or Zilog’s Z80, which was highly popular in
embedded systems applications in the 1980s, such as audio synthesizers and
arcade machines. CISCs, or Complex Instruction Set Computers, often have
large numbers of instructions. This is sometimes due to the need for back-
wards compatibility with legacy software. One of the primary design goals of
the RISC-V architecture (and all other Reduced Instruction Set Computer
architectures, of which there are many) is to implement a minimized set of in-
structions, decreasing the size, cost, and design effort required to implement
the processor. (Porter III, 2018) There is a trade-off between the number
of instructions in an ISA and the amount of memory the controller requires.
Reducing the number of instructions a CPU can execute necessary reduces
the expressivity of the associated machine language. Given some complex
operation, a RISC must use at least as many instructions as a CISC, and
possibly many more, because limiting the number of instructions limits the
expressivity of the assembly language. Not only do more instructions take
more CPU cycles to execute, but the program itself will tend to be larger,
requiring more instruction memory. In the early days of computing, when
memory was expensive, the economic incentive was to build up the CPU so
that less memory would be required. As memory has become less expen-
sive and CPU speed has increased over the decades, the RISC approach is
generally favoured, and now Intel and AMD are supporting CISC ISAs with
RISC-style micro-instructions (Isen et al., 2009).

Another point of difference between RISC-V and other ISAs is that it is an
open-source specification. For many processor manufacturers, precise details

139

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

about the implementation of specific instructions are a closely guarded se-
cret, protected by intellectual property law, licensing fees and non-disclosure
agreements. If this were not the case, any company could manufacture chips
based on the x86-64 ISA, for example, and create undesirable competition
for Intel. However, many companies and individuals are now recognizing
open-source licensing as a viable alternative to this standard industrial prac-
tice. Under open-source these designs are much easier to use and contribute
to, meaning the development of the design can leverage a far greater pool
of talent than any one company could hope to, irrespective of their size and
respectability. As such, RISC-V makes itself much more attractive to re-
searchers and industrialists, who can engage with the ISA without incurring
prohibitive licensing costs, producing implementations and improvements.
This creates an “ecosystem” of RISC-V processors, rather than a handful of
strictly regulated sources.

The Shakti Project

The Shakti project is a family of implementations of the RISC-V ISA by
(George et al., 2018), and the RISE group at IIT Madras. The work is cur-
rently ongoing, and individual cores within the family have different design
focuses, such as targeting embedded, control, and mobile processor applica-
tions, and security-focused and fault tolerant variants. The Shakti family
of processors have been designed and implemented in Bluespec SystemVer-
ilog, citing a higher level of abstraction, “superior behavioural semantics,”
architectural transparency and parameterizability as justification. Bluespec
Inc. has itself recently pivoted towards being a supplier of RISC-V technolo-
gies (Bluespec Inc., 2019). Additionally, Bluespec has seen an open-source
release on github (https://github.com/B-Lang-org/bsc), with it’s first
open source release in July of 2021.

Because Shakti is an open source project, the source code for these pro-
cessors and their subcomponents is fully available for viewing and download
(Madhusudan, 2018). As such, the BSV designs were available for use as
verification case studies. The combination of open source code and the free
availability of the standards from which it was derived, as well as the non-
trivial size of the example, made Shakti ideal for a demonstration of our
techniques.

140

https://github.com/B-Lang-org/bsc

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

The RapidIO Interconnect Framework

The particular subsystem focused on in our case studies is the RapidIO mes-
sage passing system. Generally speaking, the various chips of a circuit board
require some sort of framework for the transmission of information. There
are many approaches to this problem; the one used by Shakti is RapidIO, an
open standard.

The RapidIO system passes information through its network via message
packets. These packets often represent instructions to be carried out or
requests for data. The format of the message packets is rigidly determined
by the specification (RapidIO.org, 2017), and so is the format of response
packets.

The RapidIO subsystem under examination is that which forms response
packets in response to packets received from the network. The focus of the
verification case studies presented in this thesis, at a high level, is to verify
that the response packets formulated by the Shakti BSV implementation of
RapidIO are consistent with various properties derived from examination of
the RapidIO specification.

6.1 The Limits Alarm Function Block

This case study serves to illustrate, via a simple example, the process of veri-
fication using BAPIP and PVS. It uses a BSV file created by the author from
specifications found in (IEC, 2013), translates the file into PVS using BAPIP
in BSV2PVS mode, and then verifies consistency with tabular specifications
set out in (Pang et al., 2015). This hardware module was first presented as
a case study in (Moore and Lawford, 2017), but has been modified since.
These modifications take into account the fundamental restructuring of the
translator which has occurred since 2017, and uses a much less convoluted
proof scheme.

6.1.1 The Hysteresis Function Block

In order to understand the Limits Alarm function block, it is first necessary
to understand the function block Limits Alarm is mainly constructed from,
the Hysteresis block.

Hysteresis is a general principle of control systems which seeks to prevent
rapid oscillation between two states. The classic example is a home’s heating

141

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

system. In this system, the inputs to the system are the temperature read-
ing from a thermal sensor, and a temperature set-point from a thermostat
connected to the home heating system. The output is the on or off state of
the home’s furnace. In a naive implementation of this control system, one
would simply turn the furnace on when the temperature reading is less than
the set-point, and off when it is greater than the set-point. There is a prob-
lem with this approach, however. We have set up a system where the room
temperature will oscillate around the set-point, with a frequency depending
on how long the furnace takes to start effecting the room temperature. If
this oscillation is rapid enough, it can be damaging to the electrical and me-
chanical components of the system. This effect can be greatly magnified by
a noisy temperature signal.

The solution to this problem is to enforce a dead band around the set-
point. That is, we pick some reasonable error value ε, and make it so that
the system’s output does not change while inside the dead band. So, in our
furnace example, if we set our home to 20◦C, and decided on an epsilon
of 1◦C, we would see behaviour in Figure 6.1. The room’s temperature
fluctuation has been modelled as sinusoidal, not to accurately describe the
behaviour of a physical system, but as a stand-in for a more general class of
oscillations.

The International Electrotechnical Commission’s standard on PLC pro-
gramming languages (IEC, 2013) implements hysteresis behaviour in the
Structured Text (ST) PLC language as described by Figure 6.2. This diagram
was first published in (Pang et al., 2015), though it is a direct republication
of (IEC, 2013).

In order to verify the implementation of the Hysteresis block given in
(IEC, 2013), or any other implementation, it was necessary to formalize the
specification into a more rigorous form. This was undertaken by (Pang et al.,
2015), and resulted in the tabular specification given in Figure 6.3. Here
and elsewhere, “NC” is an abbreviation for “No Change”, where the output
variable retains its previous value.

142

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Figure 6.1: Hysteresis behaviour of a home furnace

Figure 6.2: Implementation in STL of Hysteresis Block (Pang et al., 2015)

143

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Figure 6.3: Hysteresis behaviour of a home furnace

From here, the following BSV implementation was produced by the au-
thor.

BSV�
package HYSTERESIS;

interface HYSTERESIS;
method ActionValue#(Bool) set Inputs

(Int#(16) xin1
, Int#(16) xin2
, Int#(16) eps
) ;

method Bool get q();
endinterface

module mkHYSTERESIS (HYSTERESIS);
Reg#(Bool) q <− mkReg(False);

method Action set Inputs (xin1, xin2, eps);
q <= (q && (((xin2−eps)<=xin1) && (xin1<=(xin2+eps))))

|| (xin1>(xin2+eps)) ;
endmethod

method Bool get q ();
return q;

endmethod

endmodule : mkHYSTERESIS

144

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

endpackage �
END BSV

6.1.2 The Limits Alarm Function Block

Limits Alarm is a variant type of the Hysteresis block which triggers an
alarm if the value being tested exceeds either an upper or a lower limit. It is
composed of two hysteresis blocks, one which tests the upper threshold, and
another which tests the lower threshold. A global alarm signal will activate
if either hysteresis block indicates that the value under test has exceeded a
threshold. The Limits Alarm block has three corresponding output signals
for the high threshold (QH), the low threshold (QL), and the global alarm
signal (Q). Tabular specifications for these three signals are presented in
Figure 6.4 (Pang et al., 2013, 2015).

Condition QH
X > H True

(H − EPS) ≤ X ≤ H No Change
X < (H − EPS) False

Condition QL
X < L True

L ≤ X ≤ (L+ EPS) No Change
X > (L+ EPS) False

Condition Q
QL ∨QH True
¬(QL ∨QH) False

assuming (EPS/2) > 0

Figure 6.4: Limits Alarm Tabular Specifications for QH, QL, and Q outputs

Here, X is the signal under test, H is the high threshold, L is the low
threshold, and EPS is the width of the hysteresis dead band. A full code
listing for this block may be found in §D.1.1.

145

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Condition QH
X > H True

(H − (EPS/2)− (EPS/2)) ≤ X ≤ H NC
X < (H − (EPS/2)− (EPS/2)) False

assuming (EPS/2) > 0

Figure 6.5: Limits Alarm Tabular Specification for Integer Variant of QH

Some concessions to implementation were made during the development
of the correctness proof for this block, further specifying (IEC, 2013). The
integer implementation of this block highlights a disparity between the way
Limits Alarm and Hysteresis handle thresholding. In the case of Hystere-
sis, the dead band is X ± EPS, with X + EPS being the upper limit, and
X − EPS being the lower. In Limits Alarm, H is the upper limit of the
upper threshold, and the lower limit of the upper threshold is H −EPS. In
order to use a Hysteresis block to produce this effect, the threshold value it is
given must be H−EPS/2, critically introducing division operators. For real
data types this poses no particular threat, as real values can (theoretically)
be divided perfectly, but integer division is not the same operation. In order
to prove our integer implementation, it was necessary to revise our require-
ments such that they reflected this. The tabular specification in Figure 6.5
illustrates the changes that were necessary.

Essentially, during the construction of the QH function block, the term
H−EPS is actually an algebraic simplification of collection ofH−(EPS/2)−
(EPS/2). Under normal mathematical conditions this simplification is valid,
as X/2 + X/2 = X. However, under integer arithmetic, which contains an
implicit floor operation, this equality will only hold for even values of X.
Therefore, to accurately reproduce the integer arithmetic behaviour of the
hysteresis block, it was necessary to reverse this algebraic simplification.

Another design decision made was the clock cycle on which the global
alarm Q was available. The global alarm Q, from a black box perspective,
must be available on the clock cycle following the setting of the module’s
inputs via the input method. As expressed by Pang et al. in PVS (Pang
et al., 2015), the Q tabular specification requires values of QH and QL as
inputs. Since these are calculated values, and not inputs to the module,
they do not become available until one clock cycle has elapsed. Up to this
point, it has been typical to rewrite the tabular specifications slightly such

146

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

that they apply to the output value on the following clock cycle. For Q, the
tabular specification applies to the same clock cycle that it’s inputs occur in.
In the implementation, this is achieved by allowing the access method for
Q to directly access QH and QL, calculate Q, and return that value. This
bypasses the need to calculate and store the value of Q within the Limits
Alarm module itself.

6.1.3 Constructing the Proof Sequent

For this block’s proof of correctness, our first step is to encode the tabular
specifications given above in PVS, as follows.

PVS�
t : VAR tick

s : VAR [tick −> LIMITS ALARM]
pre, post, LIMITS ALARM var : VAR LIMITS ALARM

%%% Requirements Tables

x, l , h, eps: Var Int(16)
qh, ql , prev : Var bool

qh req (x,h,eps,prev) : bool =
TABLE
| x > h | True ||
| x >= (h−div(eps,2)−div(eps,2))
AND x <= (h−div(eps,2)+div(eps,2)) | prev ||
| x < (h−div(eps,2)−div(eps,2)) | False ||
ENDTABLE

ql req (x, l ,eps,prev) : bool =
TABLE
| x < l | True ||
| x <= (l+div(eps,2)+div(eps,2))
AND x >= (l−div(eps,2)+div(eps,2)) | prev ||
| x > (l+div(eps,2)+div(eps,2)) | False ||
ENDTABLE

q req (qh, ql) : bool =

147

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

TABLE
| qh OR ql | True ||
| NOT qh AND NOT ql | False ||
ENDTABLE �

END PVS

Requirements tables are here expressed as functions on all the parameters
used in the table, to the type of the variable to which the table applies. In
this case, we are including the previous value of qh and ql as a parameter, to
avoid having to define the table recursively. Otherwise, these tables should
appear as relatively direct implementations of the requirements tables given
in Figure 6.4

We may now construct the correctness theorem itself.

PVS�
correctness : theorem
forall (X:Int(16), H:Int(16), L:Int(16), EPS:Int(16)):

transition (1, s(0) , s(1) , X, H, L, EPS)
and div(EPS, 2) > 0
implies

qh req(X, H, EPS, s(0)‘high alarm‘q)
= get qh(0,s(1),s(1))

and ql req(X, L, EPS, s(0)‘low alarm‘q)
= get ql(0,s(1),s(1))

and q req(qh req(X, H, EPS, s(0)‘high alarm‘q)
, ql req(X, L, EPS, s(0)‘low alarm‘q)
)

= get q(0,s(1),s(1)) �
END PVS

After the declaration of the theorem itself, our next line binds all free
variables in the subsequent lines and types them. Next, we invoke the tran-
sition predicate, using schedule one, which in this case included the method
which sets the inputs from the input parameters provided. This proof hinges
on the fact that X, L, H and EPS are consistent where they are used. We make
sure that the requirements tables get the same inputs as the hardware model
by providing the same variable to both. After the transition is invoked, we
include the implicit condition that the epsilon value must be greater than
zero. This concludes the antecedents.

148

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

The consequents are somewhat more complex, but still relatively easily
understood. Correctness is here defined as simultaneous satisfaction of three
equalities, in the post-state of the above given transition. The calculated
result of the requirements table qh req must match the result of get qh(),
and similarly for ql and q. Note that value methods must also have a schedule
specified. It works in either case for this example, but it is possible for
the values written to wires to modify the outputs of methods in some BSV
designs, so it is also necessary to tell an output method which input methods
have been called in the requested clock cycle. In this case, we specify schedule
zero, which indicates that no methods have been invoked this clock cycle.

6.1.4 Proving the Proof Sequent

In order to prove the above sequent, the following steps were taken.

• (skolem!) → Skolemization of universally quantified variables.

• (expand ...) → Expanded definitions in antecedent

• (flatten) → Rewrite sequent so that implies becomes turnstile, an-
tecedents come before turnstile, and consequents come after it.

• (split) → Generation of one sub-proof for each of the three conse-
quents.

• For each subproof:

– (expand ...) → Expanded definitions in consequent, including
requirements tables

– (grind)→ At this point, the rest of the proof is completed auto-
matically by a general purpose deductive strategy.

After the application of these proof strategies, the model of our BSV im-
plementation of the Limits Alarm block, as extracted by BAPIP, was proven
consistent with the tabular specification presented in Figure 6.4. Discharg-
ing all proof obligations takes an average of 0.66s on the author’s computer
(ASUS TUF506QM, AMD Ryzen 7 5800H, 16GB RAM, running Linux Mint
20.3). All files used in this case study are available in §D.2, or in the BAPIP
project github repository: https://github.com/nmoore771/bapip.

149

https://github.com/nmoore771/bapip

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Figure 6.6: Specifications for ALRM INT function block, as published in
(IEC, 2013)

6.2 Alarm Int and Automatic Generation using Tabular
Specifications

The purpose of this case study is to demonstrate the automatic generation
of BSV files, PVS encodings, and proofs from a PVS encoded tabular speci-
fication.

The integer alarm ALRM INT is a high-low threshold alarm similar to the
double hysteresis LIMITS ALARM. It takes as input a high and low threshold
value (thi, tlo), and a test value (inp). It has three outputs: a high alarm
hi, a low alarm lo, and a global alarm alrm int. The original specifications
for the ALRM INT block appear in Figure 6.6

Tabular expressions for these values are given in Figure 6.1. While origi-
nally appearing in (Pang et al., 2015), they can be reproduced with minimal
effort from the specifications given in Figure 6.6

6.2.1 Encoding in PVS

When encoding tabular expressions in PVS, the first consideration is whether
a particular table describes primary or secondary data. By primary data, we
mean data which can be calculated directly from supplied method arguments,

150

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Condition hi
inp > thi True
inp <= thi False

Condition lo
inp < tlo True
inp >= tlo False

Condition alrm int
hi ∧ lo True
hi ∧ ¬lo True
¬hi ∧ lo True
¬hi ∧ ¬lo False

Tab. 6.1: Integer Alarm - Tabular Expressions for hi, lo, and alrm int

and stored in registers. In hardware terms, input signals are fed into some
amount of combinational logic, with the results stored in sequential elements
(such as registers). The data in these sequential elements are referred to
here as primary data. Outputs from a module may have combinational logic
between the sequential components (registers, etc.) and the output data
lines. When module outputs are taken from this combinational circuitry,
rather than directly from the registers, we refer to these as secondary data.
If a requirements table references the results of other requirements tables, it
is secondary, and not primary data, as primary data is calculated purely from
inputs to the module. In the case of ALRM INT, the only result referencing
other table results is alrm int, as neither hi nor lo reference any variable
for which a tabular expression exists. Therefore, alrm int is secondary,
and hi and lo are primary. For the full code listing of the interpretation
of these tabular specifications in PVS, please see §E.3.5. Just the tabular
specifications themselves are listed below.

151

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

PVS�
ALRM INT req 1(inp,thi,hi)(t): bool = hi(next(t)) =
TABLE
| inp(t) > thi(t) | True ||
| inp(t) <= thi(t) | False ||

ENDTABLE

ALRM INT req 2(inp,tlo,lo)(t): bool = lo(next(t)) =
TABLE
| inp(t) < tlo(t) | True ||
| inp(t) >= tlo(t) | False ||

ENDTABLE

ALRM INT req 3(hi,lo,alrm int)(t): bool = alrm int(t) =
TABLE
hi(t) & lo(t)	True	
hi(t) & NOT lo(t)	True	
NOT hi(t) & lo(t)	True	
NOT hi(t) & NOT lo(t)	False	

ENDTABLE �
END PVS

These, along with some variable declarations and other paraphernalia,
form the input file to BAPIP’s tsp2bsv algorithm.

6.2.2 Resultant BSV Description

Execution of tsp2bsv on the above data took on average 15.33ms. An
abridgement of the resulting BSV file is presented below. The full file is
available in §E.2.

152

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

BSV�
Reg#(Bool) hi <− mkReg(False);
Reg#(Bool) lo <− mkReg(False);

method Action set Inputs(inp in, tlo in, thi in);
if (inp in < tlo in) lo <= True;
else lo <= False;
if (inp in > thi in) hi <= True;
else hi <= False;

endmethod

method Bool get lo();
return (lo) ;

endmethod

method Bool get hi();
return (hi) ;

endmethod

method Bool get alrm int();
if (hi && lo) return (True);
else if (hi && (!lo)) return (True);
else if ((! hi) && lo) return (True);
else return (False);

endmethod �
END BSV

Some obvious Boolean simplifications can be observed here. First, the
entire contents of the get alrm int() are obviously equivalent to hi or
lo. It is the author’s contention that this simplification would make more
sense implemented in the tabular specifications themselves. In TSP2BSV or
TSP2PVS modes, the translator attempts to create as faithful and direct an
implementation of the tabular specifications as possible. Further, replacing
this if expression with a single return statement would require the translator
to interpret the data type of the table. For the moment, the translation pro-
cess is type-agnostic in this respect. These added optimizations are reserved
as future work.

Please note the differing treatments of primary and secondary processes.
The primary processes calculating lo and hi are encoded in the set Inputs

153

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

method, and the results are registered. In contrast, the output variable
alrm int is calculated inside the Value method returning the calculated
data, via a branching if-statement structure.

Let’s for a moment examine this distinction in terms of hardware. During
each clock cycle, high and low voltage signals stored in registers are propa-
gated through some combinational circuit. The outputs of that circuit are
taken up and stored by the registers for the next clock cycle. These com-
binational circuits feeding from registers to registers, including any external
input signals, are the primary processes referred to above. Output methods
in BSV simply tap into the specified registers, and route their signals outside
of the hardware module. In BSV, we may interpose additional combinational
circuits between the registers and the module output lines. This allows us to
calculate results from data stored in registers with no effect on the internal
state of the module, the changes made to the signals by these combinational
circuits are only visible externally. These are the secondary data referred to
above.

It should also be repeated that, because output methods have no impact
on module state, there is no need to figure them into the module’s scheduling
mechanism.

6.2.3 Generation of Proofs of Correctness and Consistency

After having generated a BSV hardware description, BAPIP will continue in
TSP2PVS mode to generate theorems describing correctness and consistency,
and proof tactics that verify them. The contents of the post-translation
PVS files may be found in §E.3. The following theorems of consistency and
correctness were automatically generated for the Alrm int function block.

154

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

PVS�
%|− mkAlrm int REQ : PROOF
%|− (then (grind))
%|− QED
mkAlrm int REQ : THEOREM

transition (1, s(t) , s(next(t)) , inp(t) , tlo (t) , thi(t))
AND ALRM INT req 3(hi,lo,alrm int)(next(t))
AND ALRM INT req 2(inp,tlo,lo)(t)
AND ALRM INT req 1(inp,thi,hi)(t)
AND (init(t) IMPLIES mkmkAlrm int(s(t)))
IMPLIES alrm int(next(t))

= get alrm int(0, s(next(t)), s(next(t)))
AND lo(next(t)) = get lo(0, s(next(t)), s(next(t)))
AND hi(next(t)) = get hi(0, s(next(t)), s(next(t)))

%|− consistency 0 : PROOF
%|− (then (skolem!)
%|− (inst + ”transition val (i !1, pre!1)”)
%|− (rewrite transition)
%|− (rewrite transition val)
%|− (assert))
%|− QED
consistency 0 : Theorem
FORALL (i : nat, pre : mkAlrm int) :
EXISTS (post : mkAlrm int) : transition(i, pre, post)

%|− consistency 1 : PROOF
%|− (then (skolem!)
%|− (inst + ”transition val (i !1, pre !1, inp in!1, tlo in !1, thi in!1)”)
%|− (rewrite transition)
%|− (rewrite transition val)
%|− (assert))
%|− QED
consistency 1 : Theorem
FORALL (i:nat, pre:mkAlrm int, inp in 0:Int(16),

tlo in 0:Int(16), thi in 0:Int(16)) :
EXISTS (post : mkAlrm int) : transition(i, pre, post,

inp in 0, tlo in 0, thi in 0) �
END PVS

155

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

ALRM INT Req on the first line of the overall correctness theorem is the
transition predicate containing a call of the method set Inputs, and is
asserted. The next three lines assert the three tabular expressions, as encoded
in PVS. The final three lines are a conjunction of consequents. Specifically,
the assertions that each of the output variables specified in each tabular
expression is equal to the results of corresponding method calls from the
BSV encoding.

It might be observed from the above theorems that, since t is a timeline,
an inductive proof would be the appropriate course of action. We may have
expected to prove this theorem for the initial state of the circuit, and then
that the theorem will hold for some hypothetical future state next(t) (or
t+1), given that same theorem holding for t. In this case, proof by induction
is unnecessary. If the post case can be demonstrated from the pre case
without the aid of an induction hypothesis (as is the case above), there is
nothing contributed to the proof by adding one. All we would be doing is
complicating the proof to no purpose.

The consistency theorem tests for the existence of a valid post state, given
either transition predicate generated by BAPIP. Also generated are special
functions which serve as the term instantiated by the prooflite scripts, also
generated by BAPIP, which prove the consistency theorems. These proofs,
when taken together, demonstrate the validity of the automatically generated
BSV implementation.

Resolution of the correctness theorem took on average 0.52s on the au-
thor’s computer (ASUS TUF506QM, AMD Ryzen 7 5800H, 16GB RAM,
running Linux Mint 20.3), and was discharged by the automatic proof strat-
egy (grind). Proof of the consistency theorems took 0.034s on average. All
files used in this case study are available in §E.3, or in the BAPIP project
github repository: https://github.com/nmoore771/bapip.

6.3 RapidIO Read/Write Size and Word Pointer Decoder
Module

The object of this case study is to demonstrate the application of our BAPIP
algorithm and associated procedures to a “real life” BSV example. This
example was required to be sufficiently complex to constitute a real test of
the BAPIP system, and needed to have industry application. Preferably,
this example would have a specification document available which, if not

156

https://github.com/nmoore771/bapip

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

sufficiently formal in itself, might be formalized by the authors. Fortunately,
we found the Shakti processor project (Menon et al., 2017), which uses the
RISC-V standard (Waterman and Asanović, 2017).

6.3.1 Formalization of the RISC-V Specification

The RapidIO standard (RapidIO.org, 2017) falls short of formal mathemat-
ical rigour in many aspects. Specifications are often encoded in natural
language which is insufficient to formally describe the lower-level subcom-
ponents.

Fortunately, this is less the case with Tables 4-3 and 4-4 of the RISC-V
RapidIO specification (Waterman and Asanović, 2017). These tables define
Byte Lanes, a variable which determines which bytes of a particular chunk
of memory are being read from or written to during a memory transaction.
This is controlled by two variables, wdptr (word pointer) and rdsize/wrsize
(read/write size). The relationship between these variables is presented in
Table 6.3. To illustrate the byte lanes better, values are provided in binary.

wdptr rdsize Bytes Byte Lanes wdptr rdsize Bytes Byte Lanes

0b0 0b0000 1 0b10000000 0b0 0b1000 4 0b11110000

0b0 0b0001 1 0b01000000 0b1 0b1000 4 0b00001111

0b0 0b0010 1 0b00100000 0b0 0b1001 6 0b11111100

0b0 0b0011 1 0b00010000 0b1 0b1001 6 0b00111111

0b1 0b0000 1 0b00001000 0b0 0b1010 7 0b11111110

0b1 0b0001 1 0b00000100 0b1 0b1010 7 0b01111111

0b1 0b0010 1 0b00000010 0b0 0b1011 8 0b11111111

0b1 0b0011 1 0b00000001 0b1 0b1011 16

0b0 0b0100 2 0b11000000 0b0 0b1100 32

0b0 0b0101 3 0b11100000 0b1 0b1100 64

0b0 0b0110 2 0b00110000 0b0 0b1101 96

0b0 0b0111 5 0b11111000 0b1 0b1101 128

0b1 0b0100 2 0b00001100 0b0 0b1110 160

0b1 0b0101 3 0b00000111 0b1 0b1110 192

0b1 0b0110 2 0b00000011 0b0 0b1111 224

0b1 0b0111 5 0b00011111 0b1 0b1111 256

Tab. 6.2: Table 4-3 from (RapidIO.org, 2017)

157

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

The first and most prominent problem with these tables is the failure
to distinguish between input and output variables. Contextually, it can be
understood that the first two columns are input, and the last two outputs,
but this should be more clearly defined. The sequence of the output variable
is also given organizational priority over the sequence of the inputs, where
the reverse would be a more readable and less error-prone approach. Fur-
thermore, after a certain point in the table, outputs cease to be defined. It
might be assumed from the behaviour of the other output variable Number

of Bytes that subsequent table entries are assumed to repeat the final en-
try (0b11111111), but it is equally possible that these values of the output
variable no longer make sense in the context of the input variables. For the
purposes of formalizing this specification for use in formal verification, we
have assumed blank output entries represent a “don’t care” state, where any
output will satisfy the specification.

The following code listing contains the formalized specification table. Dis-
counting the “Number of Bytes” output parameter, the read and write op-
eration byte lane decodings are the same. Therefore, one requirements table
was generated for both operations. Here, we can see that values have been
translated from binary representations into integer representations.

PVS�
DC(n:nat) : Bit(8)

req ByteEnable
(wdptr : Bit(1) % Word Pointer
, rwsize : Bit (4) % Read/Write Size
) : Bit(8) =
TABLE

[wdptr = 0	wdptr = 1]		
rwsize = 0	128	8	
rwsize = 1	64	4	
rwsize = 2	32	2	
rwsize = 3	16	1	
rwsize = 4	192	12	
rwsize = 5	224	7	
rwsize = 6	48	3	
rwsize = 7	248	31	
rwsize = 8	240	15	
rwsize = 9	252	63	

158

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

rwsize = 10	254	127	
rwsize = 11	255	DC(0)	
rwsize = 12	DC(1)	DC(2)	
rwsize = 13	DC(3)	DC(4)	
rwsize = 14	DC(5)	DC(6)	
rwsize = 15	DC(7)	DC(8)	

ENDTABLE �
END PVS

As can be seen, DC is an arbitrary “don’t care” function, and is given the
same type as the output type of the requirements table. Our initial approach
was to use an axiom to instantiate DC to any value, but this could be used to
introduce a contradiction. Instead, the correctness theorem was modified to
account for only those cells in the table which represent valid data. In PVS,
predicate sub-typing may also be used for this purpose.

6.3.2 Application to Shakti and the Translation Process

Before translating the Shakti source code into PVS using BAPIP, it was first
necessary to determine which sub-component the above derived specification
applied to. We discovered that Shakti’s implementation of the Byte Lane
decoding occurs in the RapidIO TgtDecoder ByteCnt ByteEn.bsv. This
is a very low-level package in the Shakti Logical Transport subsystem hier-
archy, and contains no module. Rather, this functionality is encapsulated
by a BSV function, the hardware interpretation of which is a combinational
circuit which holds no memory elements.

Once the correct file to translate was identified, the BAPIP translation
algorithm was applied in BSV2PVS mode. The average run-time was 0.7274s.

6.3.3 Generating a Proof of Correctness

The first step to generating the proof of correctness is formulation of the
correctness theorem. Since the functionality we are verifying is encapsulated
by a function rather than a BSV clock cycle, it is unnecessary to invoke
state transitions. This would be impossible anyways, as a package with no
module can hold no state, and therefore can generate no state transitions.
The correctness theorem used is listed below:

PVS

159

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

�
correctness : theorem
FORALL (wr read:bool, wr Size:Size, wd ptr:Bit(1)) :

(((wr Size <= 10) AND (wd ptr = 0 OR wd ptr = 1))
OR ((wr Size = 11) AND (wd ptr = 0)))
implies (fn ByteCountDecoder(wr read

, wr Size
, wd ptr
) ‘byteen dec =

req ByteEnable(wd ptr, wr Size)) �
END PVS

In natural language, this might be expressed as “For all possible inputs,
if the table entry is valid, the byteen dec field of the result of the function
fn ByteCountDecoder matches the result of the requirements specification
req ByteEnable for all the same inputs.” Table validity being defined by
wr Size being less than 11, or the case where wr Size is 11 and wd ptr

is 0. Syntactically, the preconditions imply an equality between the function
invocation (with the appropriate field of the structure selected) and the result
of the requirements table. It is important to note that the same variables are
used as arguments for both sides, to ensure equality of the input parameters
of the function and table invocations.

6.3.4 Proving the Sequent

In order to prove the above sequent, the following steps were taken.

• (skolem!) → Skolemization of universally quantified variables.

• Repeated applications of (flatten) and (split) → Organizes the
proof and splits it into sub-proofs for the various values and ranges of
wd ptr and wr Size.

• (smash) → Each sub-proof could then be addressed by the general
purpose proof strategy smash.

In this example, grind was not used because it caused an error in the
underlying Steel Bank Common Lisp (SBCL) (Steel Bank Common Lisp)
installation. Previously, this proof was entirely dischargable using grind,
with no other human input required. As given in the PVS prover guide (),

160

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

the smash strategy consists of repeated applications of binary decision dia-
gram simplification, if-lifting, and the PVS assert strategy, which attempts
further simplification and attempts to complete the sub-proof.

Discharging all proof obligations takes an average of 0.17s on the author’s
computer (ASUS TUF506QM, AMD Ryzen 7 5800H, 16GB RAM, running
Linux Mint 20.3). All files used in this case study are available in §F.2, or
in the BAPIP project github repository: https://github.com/nmoore771/
bapip. The lower-than-average proof time of this case study may be due
to the fact it contains no state, or it may be the difference in strategies
previously mentioned.

6.3.5 Limitations of this Case Study

The obvious limitation of this case study is that the above example does not
make use of the action arbitration system detailed in previously in §4.

6.4 RapidIO Read Size and Word Pointer Encoder Module

The case study presented in this section demonstrates several key operations
of BAPIP, including the ability to translate and verify modules with wire in-
teractions. In many ways, this proof is symmetrical to that presented in §6.3.
From a high level, §6.3 deals with the extraction of pertinent details related
to memory transactions from packets, which must occur as specified in the
RapidIO specification (RapidIO.org, 2017). Whereas §6.3 deals with packet
decoding, this section deals with packet encoding, or the reconstruction of
values which were decoded by the previous module. This has been imple-
mented as a stateful Bluespec module with rules which require the action
arbitration algorithm.

6.4.1 Objective

We wish to verify the output values of the Shakti RapidIO implementation
module RapidIO InitEncoder WdPtr Size.bsv. Specifically, we wish to
verify the behaviour of reg Size and reg WdPointer. These values are ac-
cessible using output methods outputs Size and outputs WdPointer

respectively. These outputs are derived from the inputs to the methods
inputs Read, inputs ByteCount, and inputs ByteEn. The relation-

161

https://github.com/nmoore771/bapip
https://github.com/nmoore771/bapip

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

ship between these inputs and outputs is given in the RapidIO Specification
RapidIO.org (2017).

6.4.2 Formalization of the RISC-V Specification

From a high-level perspective, the specification we are using for this case
study is the same one used in §6.4.4, read backwards. This has mainly to
do with the module under examination reconstructing the data derived from
the incoming packet which the module in §6.3 decodes. The outputs of one
are the inputs of the other, and vice versa.

6.4.3 Performing the Translation

The invocation of BAPIP to generate the PVS encoding of the module under
examination proceeded according to the structure outlined in §A.4. However,
the selections made during the selection of the top-level method invocations
should be examined.

RapidIO InitEncoder WdPtr Size.bsv has five methods, two of which
are output methods. We are interested in verifying both of them, and both
are dependent on values provided by all three of the input methods. It is
therefore necessary to generate a transition predicate using all three of them.
Further, the calculation at hand takes a single clock cycle to execute, so the
above mentioned transition is also the only one required. That is, we have
no need to chain multiple transition predicates together.

6.4.4 Formalization of the RISC-V Specification

As in the previous case, the use of the table in Figure 6.3 hinges on the first
two columns of each row presenting a unique combination from which the val-
ues in the second two columns may be unambiguously extracted. However,
there is one major difference, mathematically speaking, between the inter-
pretation presented here and that in §6.3. The combination of word pointer
and read size is complete and disjoint, with respect to determining values for
both the number of bytes and the byte lanes. There are 32 table entries and
five bits of complexity between the two, so if each table entry is unique (true
upon examination), this also means that all possible values are represented.
However, in the reverse case, we have 16 bits of complexity at play. While
each combination of the number of bytes and the byte-lanes is unique, it is
wholly impossible to have every value represented, as our table would need

162

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Number of Bytes Byte Lanes wdptr rdsize

1 0b10000000 0b0 0b0000

1 0b01000000 0b0 0b0001

1 0b00100000 0b0 0b0010

1 0b00010000 0b0 0b0011

1 0b00001000 0b1 0b0000

1 0b00000100 0b1 0b0001

1 0b00000010 0b1 0b0010

1 0b00000001 0b1 0b0011

2 0b11000000 0b0 0b0100

3 0b11100000 0b0 0b0101

2 0b00110000 0b0 0b0110

5 0b11111000 0b0 0b0111

2 0b00001100 0b1 0b0100

3 0b00000111 0b1 0b0101

2 0b00000011 0b1 0b0110

5 0b00011111 0b1 0b0111

4 0b11110000 0b0 0b1000

4 0b00001111 0b1 0b1000

6 0b11111100 0b0 0b1001

6 0b00111111 0b1 0b1001

7 0b11111110 0b0 0b1010

7 0b01111111 0b1 0b1010

8 0b11111111 0b0 0b1011

16 0b1 0b1011

32 0b0 0b1100

64 0b1 0b1100

96 0b0 0b1101

128 0b1 0b1101

160 0b0 0b1110

192 0b1 0b1110

224 0b0 0b1111

256 0b1 0b1111

Tab. 6.3: Table 4-3 from (RapidIO.org, 2017) slightly rearranged

to be very long indeed. Therefore, the table as interpreted for this case study
is disjoint, but not complete. As such, the manner of encoding these condi-

163

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

tions in PVS has changed somewhat from §6.3, as will be demonstrated in
a code snippet included in §6.4.4. This situation is compounded by the fact
that neither the byte lanes nor the number of bytes is complete individually
either.

It is also worth noting that the last nine entries in the table are uniquely
determined by the number of bytes alone, and that the byte lanes are not
even specified. This is likely because byte-lanes are only useful when the
data being accessed is smaller than a word (64 bits in this case), and that
the number of bytes for these last entries are multiples of 8, indicating whole
word operations.

The obvious question that arises from this lack of completeness is how to
interpret cases not represented by the table. There are two approaches that
are illustrated in this case study.

Assumed Default Values

Firstly, one may introduce an assumption about behaviour in the implicit
cases. Normally in such situations, it is reasonable to assume that some
default value would be referred to, and zero is a common default value. For
this table, the requirements have been expressed in PVS as nested COND

blocks. A COND block in PVS is syntactic sugar for a set of if-then-else
statements, where the final entry in the COND block is presumed as the else
case, in addition to generating type correctness conditions for disjointness and
completeness. So, if we wish to encode an incomplete table as a COND block,
attention must be paid to the terminal expression. In a naive implementation
which omits an explicit else case, the terminal entry in the COND table will be
assumed to be the else case, as conditionals in PVS may not be incomplete.
Although these implicit cases are not addressed in the table, it is unlikely
that this is a valid interpretation. Therefore, the expressions below have
explicit COND block entries which yield an assumed default value of zero.

PVS�
req word pointer(bytemask : Bit(8)

, bytecount : Bit(8)
) : Bit(1)

= COND
bytecount = 1 −> COND

bytemask = 8 −> 1
, bytemask = 4 −> 1

164

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

, bytemask = 2 −> 1
, bytemask = 1 −> 1
, bytemask = 128 −> 0
, bytemask = 64 −> 0
, bytemask = 32 −> 0
, bytemask = 16 −> 0
ENDCOND

, bytecount = 2 −> COND
bytemask = 12 −> 1

, bytemask = 3 −> 1
, bytemask = 192 −> 0
, bytemask = 48 −> 0
ENDCOND

, bytecount = 3 −> COND
bytemask = 7 −> 1

, bytemask = 224 −> 0
ENDCOND

, bytecount = 4 −> COND
bytemask = 15 −> 1

, bytemask = 240 −> 0
ENDCOND

, bytecount = 5 −> COND
bytemask = 31 −> 1

, bytemask = 248 −> 0
ENDCOND

, bytecount = 6 −> COND
bytemask = 63 −> 1

, bytemask = 252 −> 0
ENDCOND

, bytecount = 7 −> COND
bytemask = 127 −> 1

, bytemask = 254 −> 0
ENDCOND

, bytecount = 8 −> COND
bytemask = 255 −> 0

ENDCOND
, bytecount = 16 −> 1
, bytecount = 32 −> 0
, bytecount = 64 −> 1
, bytecount = 96 −> 0

165

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

, bytecount = 128 −> 1
, bytecount = 160 −> 0
, bytecount = 192 −> 1
, bytecount = 256 −> 1
, bytecount = 224 −> 0
, True −> 0
ENDCOND

req read size (bytemask : Bit(8)
, bytecount : Bit(8)
) : Bit(1)

= COND
bytecount = 1 −> COND

bytemask = 128 −> 0
, bytemask = 64 −> 1
, bytemask = 32 −> 2
, bytemask = 16 −> 3
, bytemask = 8 −> 0
, bytemask = 4 −> 1
, bytemask = 2 −> 2
, bytemask = 1 −> 3
, True −> 0
ENDCOND

, bytecount = 2 −> COND
bytemask = 192 −> 4

, bytemask = 48 −> 6
, bytemask = 12 −> 4
, bytemask = 3 −> 6
, True −> 0
ENDCOND

, bytecount = 3 −> COND
bytemask = 224 −> 5

, bytemask = 7 −> 5
, True −> 0
ENDCOND

, bytecount = 4 −> COND
bytemask = 240 −> 8

, bytemask = 15 −> 8
, True −> 0
ENDCOND

166

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

, bytecount = 5 −> COND
bytemask = 248 −> 7

, bytemask = 31 −> 7
, True −> 0
ENDCOND

, bytecount = 6 −> COND
bytemask = 252 −> 9

, bytemask = 63 −> 9
, True −> 0
ENDCOND

, bytecount = 7 −> COND
bytemask = 254 −> 10

, bytemask = 127 −> 10
, True −> 0
ENDCOND

, bytecount = 8 −> COND
bytemask = 255 −> 11

, True −> 0
ENDCOND

, bytecount = 16 −> 11
, bytecount = 32 −> 12
, bytecount = 64 −> 12
, bytecount = 96 −> 13
, bytecount = 128 −> 13
, bytecount = 160 −> 14
, bytecount = 192 −> 14
, bytecount = 224 −> 15
, bytecount = 256 −> 15
, True −> 0
ENDCOND �

END PVS

One clear and obvious drawback of nested COND blocks vs TABLE notation
is that it is much less compact. Tables could have been used here with equal
effect, but COND blocks were used to minimize the number of explicit “don’t
care” values needed, since these tables had a reasonably large number of
them.

167

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Restriction of input range

There is a second argument that can be made in order to solve the incom-
pleteness problem. One can take the position that in the consideration of
cases not explicitly addressed by the specification, the module under exam-
ination may behave however it likes, so long as it is compliant with those
conditions explicitly stated. This essentially puts an implicit “Don’t Care”
value in any case not explicitly addressed.

The way we might interpret this in PVS is that we are only concerned
with the requirements relation holding for the specific input values indicated
by the table. One way to introduce this condition to our eventual theorem
is to create a predicate which is only true when given a “valid” value for the
input under examination. Valid here means a value addressed in the table
explicitly. The following PVS encodes these predicates.

PVS�
valid bytemask (bytemask : Bit(8)) : bool =

bytemask = 128
or bytemask = 64
or bytemask = 32
or bytemask = 16
or bytemask = 8
or bytemask = 4
or bytemask = 2
or bytemask = 1
or bytemask = 192
or bytemask = 48
or bytemask = 12
or bytemask = 3
or bytemask = 224
or bytemask = 7
or bytemask = 240
or bytemask = 15
or bytemask = 248
or bytemask = 31
or bytemask = 252
or bytemask = 63
or bytemask = 252
or bytemask = 63
or bytemask = 254

168

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

or bytemask = 127
or bytemask = 255

valid bytecount (bytecount : Bit(8)) : bool =
bytecount = 1

or bytecount = 2
or bytecount = 3
or bytecount = 4
or bytecount = 5
or bytecount = 6
or bytecount = 7
or bytecount = 8
or bytecount = 16
or bytecount = 32
or bytecount = 64
or bytecount = 96
or bytecount = 128
or bytecount = 160
or bytecount = 192
or bytecount = 224
or bytecount = 256 �

END PVS

These predicates not only restrict the search space of the deduction in a
very useful way, but also provide an easy way to decompose the proof into
sub-proofs that are more digestible to the automatic proof strategies PVS
incorporates.

Combining the approaches

Our approach to this case study uses both of the above methods simulta-
neously. While it is true that taking the input restricting predicates as an-
tecedents means the else cases are hypothetically never exercised, it is the
position of the author that the inclusion of the else cases make the require-
ment expressions themselves more accurate with respect to the intention of
the specification document, so they are kept. Further, the predicates restrict-
ing input values create such a powerful savings in terms of proof execution
time that it is prudent to keep them, regardless as to their strict necessity.

169

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

It should be noted that the input restrictions specified in §6.4.4 specify
valid values for each input separately. The search space may be considered
the product of these two search spaces, and there are still a large number of
combinations which will be examined by PVS that are not valid table entries.

6.4.5 Derivation of a Theorem

Now we have all the pieces in place to be able to construct our sequents.
The approach taken in the three theorems below is to separate our concerns
with respect to demonstrating the correctness of the word pointer and read
size outputs. Both theorem 1 and 2 have identical antecedents, and we could
therefore compose them into a single sequent. This would be functionally
equivalent, but it is the contention of the author that the approach given
enhances readability. The third theorem is simply the composition of the
two correctness theorems.

PVS�
correctness 1 : theorem
forall(x1 : ByteEn, x2 : ByteCount, x3 : bool) :

x3 = True
and valid bytemask(x1)
and valid bytecount(x2)
and transition (1, s(0) , s(1) , x1, x2, x3)
implies req word pointer(x1,x2)

= outputs WdPointer (1,s(1),s(1),x1,x2,x3)

correctness 2 : theorem
forall(x1 : ByteEn, x2 : ByteCount, x3 : bool) :

x3 = True
and valid bytemask(x1)
and valid bytecount(x2)
and transition (1, s(0) , s(1) , x1, x2, x3)
implies req read size(x1, x2)

= outputs Size (1,s(1),s(1),x1,x2,x3)

correctness total : theorem
correctness 1 and correctness 2 �

END PVS

170

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

We start by universally quantifying over the three input values. The third,
x3, corresponds to wr Read within the module. This wire seems to have some
internal purpose, and does not appear in the specification. Examination of
the code reveals that read mode must be indicated in order for the behaviour
of this module to be in accordance with the specification. The functionality
of the module appears to be compounded with either a write or hybrid mode.
For the purposes of these proofs, we set the module in read mode by including
as an antecedent that x3 is True. We then add as antecedents both our input
validity predicates and our transition predicate. Since this module arrives at
its output in one clock cycle, only one transition predicate is necessary. As
consequent, we call the appropriate output method and test its return value
against the output of the requirements table.

6.4.6 Proving The Sequent

The organization of this case study is somewhat misleading as to the process
of proof development. While it is necessary to derive a provisional theorem
as a base to build the proof upon, in truth the sequent must often undergo
a process of refinement in order to render the proof achievable via some
combination of manual strategies and automatic deduction. This process is
reflected above, but the reader should bear in mind that failed proof attempts
were used in this case to refine the theorem. In this manner, the theorem
and proof may correctly be considered to have been co-developed.

It must be noted before we begin that the general methodology for all
the proofs presented in this thesis is to check first whether a sequent may be
proven completely automatically. The failure of automatic deduction is not
normally the production of a counter example, especially in proofs which will
in any event result in successful deduction. Rather, this is normally a matter
of impatience on the part of the proof author. It is the general observation
of this author that if a proof is not completed within two or three minutes,
there is some possibility of it being completed within 15. However, if a
proof has taken 15 minutes and is not completed, the probability of the
proof being completed within an hour is small. At this point, application of
some introductory strategies to break the proof down into more automatically
digestible components results in faster total run-time than allowing the proof
system to persist in its automatic strategies, even if some degree of human
supervision is necessary.

The latter approach was necessary in the case of the above sequent. We

171

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

will now detail the methodology used to break the proof down and solve it.

1. At the top-level, our overall correctness theorem is the conjunction
of the correctness theorems addressing for the word pointer and read
size registers (correctness 1 and correctness 2 respectively). The
proof is immediately divided into two sub-proofs for these two sub-
theorems using (split). There is no difference whatever between the
sequence of strategies addressing these two branches, the following steps
were applied to both. For the purposes of this description, we will follow
the process for correctness 1.

2. The theorem is expanded using (expand correctness 1)

3. Skolemization is performed over the universal quantification, by using
(skolem!).

4. The top level implication and conjunctions are applied as antecedents
and consequents using (flatten).

5. The definition of the valid bytemask predicate is expanded using
(expand valid bytemask)

6. The proof is then split into 25 sub-proofs, along the disjunctions of the
newly expanded predicate using (split).

7. Each of the resulting 25 sub-proofs is then digestible to the general-
purpose automatic proof strategy (grind). Application of this strategy
to each of the 25 sub-proofs results in the complete discharging of all
proof obligations.

Using the above strategy, the proof of correctness total is discharged
with an average execution time of 18.28s on the author’s computer (ASUS
TUF506QM, AMD Ryzen 7 5800H, 16GB RAM, running Linux Mint 20.3).
All files used in this case study are available in §G.2, or in the BAPIP project
github repository: https://github.com/nmoore771/bapip.

6.4.7 In Conclusion

As demonstrated via the above process of formal logical deduction, we can
state with confidence that RapidIO InitEncoder WdPtr Size.bsv is in

172

https://github.com/nmoore771/bapip

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

compliance with revision 4.1 of the RapidIO Interconnect Specification (Ra-
pidIO.org, 2017), insofar as the byte size and word pointer fields of outgoing
packets are correctly constituted.

6.5 Progress Towards RapidIO Transaction ID Echoing

The goal of the BAPIP project was to produce a series of proofs of concept
for the translation/proof workflow, over a sequence of hardware modules of
increasing complexity. The transaction ID echoing discussed in this case
study should be viewed as a concept which the author was ultimately unable
to prove, for a variety of reasons which we will explore.

In this case study we shall explore the property to which the BAPIP tool
and process were applied, explore how that property might be more formally
stated, describe how the process could be applied to it, and finally, discuss
what went wrong and the limitations to the methodology this demonstrates.

6.5.1 The Problem Attempted

The RapidIO specification describes the interpretation of data packets trans-
mitted via a RapidIO compliant interconnect fabric. The first four bits of any
data packet indicate packet type, for example, READ, WRITE, MAINTENANCE,
etc. One of the fields encoded in most packet types is a transaction ID.
Transaction IDs are generated by a requesting element, and are used to dis-
tinguish packets. In RapidIO, it is possible for many separate, multi-packet
interactions to be occurring simultaneously on the same network. Transac-
tion IDs can even be used to determine sequencing of transactions, presuming
all elements are synchronizing their transaction ID generation.

The goal of this case study was to verify the transaction ID data pathway.
The package hierarchy of the RapidIO logical transport system is given in
Figure 6.7.

Proving this data pathway requires the embedding of most of the package
hierarchy listed in Figure 6.7 in PVS. For context, the MainCore package
alone contains over 100 methods.

6.5.2 Derivation of a Formal Property

RapidIO is fundamentally a message passing system. This means that many
different types of components are intended to be able to communicate with

173

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Figure 6.7: Shakti RISC-V Module Hierarchy Diagram

174

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

each other via RapidIO. It makes sense, therefore, to abstract away the in-
ternal mechanisms of the component as far as possible, and focus on the
interface itself. We can decompose our desired property, “RapidIO must
handle transaction IDs in accordance with the specification,” into “given
correct behaviour in the parent component, RapidIO must interpret an in-
coming packet correctly with respect to the transaction ID, and RapidIO
must generate packets with the transaction ID in the correct location.”

Fortunately the RapidIO specification gives specific locations within the
various packet formats where the transaction ID is to be located. These are
tabulated below. Packet types with no fields specified (those unaddressed
in Chapters 1 and 2 of (RapidIO.org, 2017)) have transaction ID locations
labelled as “not applicable”. For packet types that are specified, but which
do not contain a transaction ID (types 6 and 11), “none” has been used.
Please note also that we are also only dealing with the “Logical Transport”
version of the RapidIO interconnect (RapidIO.org, 2017), and as such, packet
format specifications are taken strictly from Chapters 1 and 2 of the RapidIO
specification.

It is also necessary to know how many clock cycles the specified behaviour
will take. This must be reflected directly in the number of transitions invoked
in the theorem. The only ways to determine this are foreknowledge of the
system, observation of non-formal simulation, or observation of the source
code. In our case, we shall proceed by observing the source code.

Figures 6.8 and 6.9 depict the flow of data through the module hierarchy
in the case of received and transmitted packets respectively. Source code for
these data pathways may be found in §H.1. The order of memory transactions
(indicated by arrows) is expressed using Arabic numerals. The numbers to
the left of the memory elements indicate the number of clock cycles that
have elapsed since the first during the access of the given memory element.
While this gives an overall picture of the flow of data, and the number of
clock cycles required to generate a response packet, the data flow depicted is
one of a number of possible paths. In the interests of simplifying an already
complex diagram, one representative data pathway will be displayed. The
only operations which increase the number of clock cycles used are register
writes and FIFO enqueue operations.

In the case of Figure 6.8, parsing of the data packet, and the arrival of
the transaction ID in its final register, takes 14 steps over a course of 3 clock
cycles. Steps include method invocations, wire write, register write and FIFO
operations. The data passes through five BSV modules before finally being

175

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

ftype Packet Type Packet Description TID bits
0000 Request implementation dependant n/a
0001 Request Reserved n/a
0010 Request ATOMIC / NREAD [12:19]
0011 Request Reserved n/a
0100 Request Reserved n/a
0101 Request ATOMIC / NWRITE [12:19]
0110 Request SWRITE none
0111 Request Reserved n/a
1000 Request MAINTENANCE [12:19]
1001 Request Reserved n/a
1010 Request DOORBELL [12:19]
1011 Request MESSAGE none
1100 Response Reserved n/a
1101 Response RESPONSE [12:19]
1110 Response Reserved n/a
1111 Response implementation dependant n/a

Tab. 6.4: Packet Types and Transaction ID Bit Ranges

stored in MainCore. The complexity of this datapath was the primary reason
this case study did not reach a successful conclusion.

In the case of Figure 6.9, packet construction is not as complex as packet
decomposition. We pass through 13 steps over the course of 2 clock cycles.
While the number of steps overall is lower than with parsing, the number of
steps per clock cycle is higher. This data path passes through four hardware
modules.

From a top level perspective, verification of the transaction echoing prop-
erty can be expressed in two parts. For parsing, given the register in which a
data packet is received, and knowing which register the transaction ID should
be parsed to, can we demonstrate that what goes in also comes out? Simi-
larly for packet generation. Knowing the two endpoints of the data pathway,
and knowing that this pathway should not modify the transaction ID, do we
get out what we put in?

176

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Figure 6.8: Flow of Data Through Parsing

6.5.3 Translator Configuration

In order to begin formulating the above property as a formal theorem in
PVS, the translator must generate a transition schedule that encapsulates
the desired behaviour. While there are a large number of methods contained
in RapidIO MainCore.bsv, as seen in §H.1.4, the overwhelming majority of
them are irrelevant. Specifically, they provide a means of accessing many
intermediate values throughout the subsystem. We are interested primarily
in two methods: link rx data and link tx data , rx and tx being
hardware shorthand for receiving and transmitting respectively. Please note
how link rx data takes a value of type DataPkt as an argument, and
how link tx data returns a value of the same type. Note also that these
two functions are the only functions to operate on this data type, which is
used by the Shakti RapidIO implementation to represent the data packets
discussed in the section above.

177

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Figure 6.9: Flow of Data Through Concatenation

While link tx data is accessible at any time, due to it being a Value

method containing no state implication, link rx data does indeed have
state implication, somewhat obviously. As such, any schedule generated must
include link rx data . As a precautionary measure, one might include
all methods within the Ifc LinkInterfaceRx interface in the generated
schedule. The mechanism for specifying specific methods to be included
as top-level calls for clock cycles under consideration during scheduling is
discussed in §A.4. Once the appropriate methods were specified, the following
command was used.

$ stack exec BAPIP−exe bsv2pvs <dir>/RapidIO MainCore.bsv
RapidIO MainCore <dir>/RapidIO MainCore

178

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

6.5.4 Current State of the Translation

At time of writing, the proximal cause of the failure of this case study is
that running the translation algorithm over the entire RapidIO subsystem
results in code which does not pass PVS’s typechecker. Specifically, the
error occurs during the translation of value methods. Within the top-level
file in the RapidIO library, a couple of output methods exercise a corner case
which currently fails to translate correctly. The problem is caused by the
intersection of three factors.

• The value which is being returned is of the DWire type.

• This wire is a structure type

• This wire’s structure type is encapsulated by a Maybe type.

Variables of the DWire are introduced as locally bound variables (“let”
statements), where the state specific tree specific to said wire is the value
of this locally bound variable. During let binding generation, a data type
must be attributed to the locally bound variable. For some unknown rea-
son, the translator is failing to encapsulate the structure type in the Maybe
type, which is causing a type inconsistency with the return type of the value
method itself. Something specific about the combination of these factors
causes the described error. In other portions of the program, each of these
factors typecheck by themselves.

It should be noted that it is unlikely that this is the only outstanding
error. In the opinion of the author, at least four months of development time
would be needed to work out remaining errors, and it could be more than
that, since the number of remaining errors is unknown. This extended devel-
opment time is due primarily to the complexity of the translation program
and the task being attempted, and is in line with the amount of time other
work on the translator has taken.

So What Went Wrong?

The considered opinion of the author is that the goal of verifying the entirety
of the Shakti RapidIO library was not sufficiently scaffolded by the demon-
stration of case studies of intermediate difficulty. The goal of verifying the
entire library from the top-level was a lofty one, spurred on by the desire to
have achieved a highly impressive result.

179

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

A cautious and gradual approach may have resulted in greater success
in this respect. If with each new file in the library, the time was taken
to develop a case study which explored the new features which had to be
added to accommodate said file, it would have been far easier to isolate
and eliminate the errors. In the opinion of the author, an additional six or
eight case studies would provide have provided a much better scaffold for
the top-level module verification. Further, a longer series of case studies of
increasing complexity would have provided more assurance as to the validity
of the translation and verification methodology. Instead, we tried to rush to
the end goal of the project, missing several rungs on the ladder, and failed
to reach the stated goal.

Of course, the production of additional case studies would have taken
more development time, and it is unlikely that the entirety of the library
would have been attempted. Such a thing would require additional time and
personnel resources to execute successfully.

It is also possible that the abstraction mechanisms built into the transla-
tor could be improved, and thus the debuggability of the software improved.
A better system of abstractions would, however, require reimplementing the
core BAPIP algorithm, and re-proving everything under the new system.
The core BAPIP algorithm has been similarly rebuilt four times over the ten
year lifespan of the project, and always for this reason. While a fifth time is
hypothetically possible, and such an attempt may have scientific value. The
algorithm at this point has been pushed far beyond the scope of the original
work by Richards and Lester (Richards and Lester, 2011), and succeeds in
verifying whole clock cycle semantics (see §6.4). While the need for a greater
degree of abstraction is recognized, the exact nature of that abstraction is
unknown. Throughout the remodellings of BAPIP over the years, the core
abstraction of Kripke semantics has been maintained. It is suspected that the
limits of that model have been reached, and whatever comes next would have
to use some other formalism less susceptible to the state explosion problem.

180

7. CONCLUSION

Through application, the utility of the method of formal mathematical ver-
ification discussed herein has been demonstrated. Several case studies have
been presented applying our multi-purpose translation software BAPIP to
a number of verification problems of varying complexity. The methodology,
construction of the tool, and manner of its operation have all been discussed
in detail.

It is our hope that this technique may be used and adapted in further
verification projects, so that the immense barrier between formal verification
and common practice may be lessened, resulting in more widespread adoption
of mathematically rigorous technique, and the elevation of the discipline of
Software Engineering to the same standards of reliability and repeatability
enjoyed by other Engineering disciplines.

7.1 Summary of Empirical Data

The following is a summary of empirical data related to the translation soft-
ware developed, and the case studies presented.

7.1.1 Translation Software

As a rough approximation, the BAPIP translator itself took around 70 person-
months to develop. Table §7.1 gives statistics on the translator source code.
Table §7.2 gives statistics of interest on all translations of BSV source code
discussed in this thesis.

The following is a summary of the assurances gained through this study.

• The implementation of the LIMITS ALARM function block presented is
compliant with IEC61131-3 (IEC, 2013)

181

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

File Name LoC LoC (no Com.) Functions
BAPIP.hs 381 325 23
BSV2PVS.hs 4095 3738 409
BSVGenerator.hs 401 374 66
BSVLexer.hs 2084 1935 93
ConflictSolver.hs 539 431 44
HEXLexer.hs 102 90 10
LexerTypes.hs 590 443 7
LiteralLexer.hs 239 208 29
MacroProcessor.hs 270 212 29
PVS2BSV.hs 26 21 4
PVSGenerator.hs 2093 1830 236
SourceFiles.hs 32 30 10
TSP2BSV.hs 512 438 69
TSPLexer.hs 756 667 45
Total 12,070 10,698 1070

Tab. 7.1: BAPIP Source Code Statistics

• The tabular specification for the ALRM INT function block, found in
the IEC61131-3 (IEC, 2013) was used to generate a BSV hardware
description, and that description was demonstrated compliant with the
same.

• The Shakti implementation of RapidIO is compliant with the RapidIO
specification (RapidIO.org, 2017) in the following areas:

– When decoding an incoming packet, the positions of enabled bytes
is compliant.

– When encoding the same, the packet fields are filled out correctly,
based on the number and position of bytes requested.

7.2 Applicability of Work

While the work presented herein has expanded our ability to automatically
verify BSV hardware descriptions, it is important to discuss the limitations

182

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Section Reference §4.2.1 §6.1 §6.2 §6.3 §6.4 §6.5
Input BSV Files 2 3 1 4 3 24
Input BSV Lines 86 61 41 1136 1192 8171
Input Characters 1898 1238 755 43934 42952 361208
Output PVS Files 11 11 12 8 11 11
Output PVS Lines 771 801 873 1336 2297 6582
Output Characters 20128 21490 22200 37687 56477 247078
Translation Time 0.234s 0.203s 0.211s 0.547s 0.542s 19.918s
Proof Time n/a 0.66s 0.52s 0.17s 18.28s n/a

Tab. 7.2: BAPIP Case Study Statistics

of the applicability of this methodology. One such limitation is that the mod-
ule we wish to prove must be implemented in Bluespec SystemVerilog. For-
tunately, Logical Equivalence Checkers (LECs) can address this deficiency.
LECs analyze two hardware descriptions for black-box logical equivalence.
They are off-the-shelf software tools, and have been successfully used to check
the Hysteresis block presented in our case studies (which had been verified
in PVS) against an independent implementation of the Hysteresis block in
VHDL. By so doing, our proof of correctness of the BSV block is transferable
to the VHDL implementation, in so far as the Bluespec compiler is correct.

The automated model extraction performed by BAPIP is not total over
Bluespec SystemVerilog. It is our position that the subset of Bluespec Sys-
temVerilog for which our software operates expresses meaningful and in-
dustrially practical hardware descriptions, despite not accepting the entire
language. It is also important to note that the translation is not injective
into PVS, so a future reverse translation for the purposes of round-trip engi-
neering would not be able to exactly reconstruct the original BSV file. Any
reverse translation must necessarily operate on only the set of PVS files that
are generatable by the translator, which is a fairly restrictive subset despite
the wide scope of translatable BSV. The object would not be to produce
a general translation from PVS to BSV, but only to enable the reversion
of slightly modified translator output files back into their original language.
Given the complexity of the PVS output, this functionality may never pass
into the realm of practicality for designs of non-trivial size.

It is also important to note that Bluespec cannot duplicate all function-

183

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

ality expressible in lower-level hardware description languages, due to the
hardware elements added by the Bluespec compiler to create and control
properties like rule scheduling and atomicity. It is therefore possible that a
hardware description in a lower-level language could conform to any given
requirements and not be expressible in BSV.

7.3 Alternative Approaches

During the development of any large project like BAPIP, key decisions made
early in the project have a pronounced effect on project outcomes. Some of
these key decisions will now be explored.

Most of the very early key decisions in the development of BAPIP were
made by adopting the framework proposed by Richards and Lester (2011).
This set the source and target language of the translation, as well as mathe-
matical model of computation.

With respect to the source language BSV, alternative high-abstraction
hardware languages are scarce, and it is the author’s opinion that BSV has
been a serviceable language to attempt to verify. By the time the project had
entered its later stages, it was clear that Bluespec did not quite live up to
the claim of having an “elegant semantic” making it particularly amenable to
translation. All the formal methods projects operating on BSV, except this
one, fall short of modelling the action arbitration mechanism, and in par-
ticular the scheduling complications introduced by wires. Exclusion of wires
severely restricts expressible hardware designs; it is a feature that a hardware
designer would expect to have. Despite this, Bluespec is still preferred to the
majority market-share HDLs, like VHDL and SystemVerilog. The ad-hoc
nature of these languages increases the effort needed for verification quite
drastically, particularly for a static analysis engine like BAPIP.

With respect to the target language PVS, there were a number of al-
ternatives. Among the projects mentioned in §1.4.1, Coq was a particular
favourite, but there are a large number of other theorem provers that would
have served our purpose. The choice to use PVS was again primarily made
in following the work of Richards and Lester. If this project had been at-
tempted after some of these other projects had been published, projects such
as Kami or Fe-Si could have been used in theory as a basis for an action
arbitration extension. The author reserves judgment on this, however, as
this was the planned course of action with the Richards and Lester transla-

184

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

tion, and almost the whole of it had to be thrown out in order to accomplish
what has been accomplished. If the project were to be rebuilt entirely, the
author would investigate the possibility of embedding the property-proving
aspect of the project in the translator program itself. If some suitable form
of input could be found for the original specifications, it might be possible to
accomplish all that PVS currently accomplishes using the SBV library and
Yices. Alternatively, other theorem provers such as HOL4, Isabelle or Event
B would be considered.

7.4 Updates Regarding Recent Software Releases

7.4.1 Open Source Bluespec Compiler Release

During the majority of this project, BSC (the Bluespec Compiler) was a
closed-source tool. The creation of BAPIP required the reverse-engineering
of many aspects of the compiler and language features. Since the open-source
release of the compiler (Bluespec Inc., 2020), some observations can be made
as to the direction the project would have taken, had this source code been
available earlier.

Two mechanisms of primary interest are the BSC parser and typechecker.
In theory, if code could have been adapted from BSC itself, much effort
could have been saved in the development of BAPIP. After an examination
of the BSC source code, it is evident that much of these crucial subroutines
are encoded not in Haskell, as was previously believed, but in C++. Most
particularly, the abstract syntax tree generation and typechecking appear
to occur in C++. Curiously, the first step in Bluespec compilation appears
to be cross-compilation to C. The Haskell method, parseSrc, which is used
by top level main functions to parse BSV source files, outputs a CPackage

data type. This data type, when examined, contains a language definition
for a sub-language of C. Code comments warn that construction of invalid C
programs is possible using said language definition.

The following reasons are hypothesized for why such cross-compilation to
C/C++ is necessary.

• It is possible that the compiler needed to be implemented in a faster
language.

• It is possible that the compiler needed to interface with some pre-
existing compiler (or portion thereof) in order to generate HDL code.

185

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

In the opinion of this author, in order to make use of this code directly for
the implementation of BAPIP, it would be necessary to completely rewrite
the entirety of the translator. The central abstractions of BAPIP are the
record data types which encode BSV and PVS abstract syntax, as well as
internal representations. These central abstractions are encoded in C++ in
BSC, and interfacing these two representations would be highly problematic.
The two ASTs, afterall, are ASTs for different languages. The BAPIP AST
is designed for the Bluespec language, not this previously unknown internal
C++ representation.

This internal C++ representation presents one major additional problem:
the internal language semantics. While external language semantics have
been documented (Bluespec Inc., 2012a), any comparable documentation for
the semantic details of the internal language would presumably be internal
to Bluespec Inc., and have not been subject to public release, to the best
knowledge of the author.

7.5 Future Work

While the work herein presented makes great strides towards to ultimate goal
of automatically verified hardware descriptions, there are a number of ways
the project could be extended and expanded.

First and most obviously, the bsv2pvs translation algorithm could be
extended to encompass the entire language of Bluespec SystemVerilog. This
would permit more hardware descriptions to be translated.

As has been alluded to previously, support for a pvs2bsv algorithm has
been architecturally included in BAPIP, though the algorithm itself has not
been completed. Completion of this algorithm would allow round-trip engi-
neering of BSV files.

There is precedence for this type of system having a specification Do-
main Specific Language (DSL) (domain specific language) attached, so that
the user could specify requirements in some syntactically more convenient
manner. This would not only allow for greater ease of use on the part of
the end user, but would enable the algorithm to automatically generate both
correctness theorems, and even proof strategies for them. In this manner,
it is conceivable that BAPIP would return a simple pass/fail when asked to
prove a block, which really would be the ultimate in user-friendliness.

Finally, the translation process could be further improved in terms of

186

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

applicability to large descriptions using a better core abstraction, as well as
modelling the following currently unmodelled behaviours:

7.5.1 Other Pragmas

Besides those controlling action arbitration, there are many different prag-
mas. While many of these are useful for development in Bluespec, the inte-
gration of them with the existing translator structure is reserved as future
work.

7.5.2 Type Classes and Type Class Declarations

A potentially useful future addition to the translator would be the semantic
interpretation of the type classes included in type definitions. These could be
used to impose/remove additional constraints from custom types, improving
the subset of Bluespec SystemVerilog covered by the translator. Additionally,
user-generated type-classes are not addressed.

7.5.3 Parameterized Modules

One of the powerful abstraction mechanisms available in BSV is the ability
to create parameterized modules. This capability is not currently supported.
Supporting it would require a reasonably drastic re-organization of the post-
translation PVS semantics. Currently, the modularity of Bluespec modules is
preserved only insofar as they extend to the state record. The implementation
of this feature is reserved as future work.

7.6 Summary of Contributions

This thesis has made the following contributions to the state of the art in
the verification of BSV hardware designs:

• This work is the first formalization of BSV semantics to include con-
structs violating one-rule-at-a-time semantics, such as wires and FIFOs.

• This methodology is applicable to descriptions of non-trivial size, drawn
from industry, as demonstrated in our case studies.

• BAPIP has made the formal verification of real-world BSV hardware
designs less expensive in terms of time and expertise.

187

BIBLIOGRAPHY

(2020a). containers :: Stackage Server. URL: https://www.stackage.org/
lts-14.23/package/containers-0.6.0.1 Accessed March 29, 2022.

(2020b). parse :: Stackage Server. URL: https://www.stackage.org/

lts-14.23/package/directory-1.3.3.0 Accessed March 29, 2022.

(2022). mit-plv/koika: A core language for rule-based hardware design.
https://github.com/mit-plv/koika.

Barrett, C., Conway, C. L., Deters, M., Hadarean, L., Jovanović,
D., King, T., Reynolds, A., and Tinelli, C. (2011). Cvc4.
In International Conference on Computer Aided Verification, pages
171–177. Springer. https://link.springer.com/chapter/10.1007/

978-3-642-22110-1_14 Accessed March 30, 2022.

Bertot, Y. (2008). A short presentation of coq. In International
Conference on Theorem Proving in Higher Order Logics, pages 12–
16. Springer. URL: https://link.springer.com/chapter/10.1007/

978-3-540-71067-7_3 Accessed August 11, 2022.

Bidmeshki, M. M. and Makris, Y. (2015). Toward Automatic Proof Genera-
tion for Information Flow Policies in Third-Party Hardware IP. Proceedings
of the 2015 IEEE International Symposium on Hardware-Oriented Secu-
rity and Trust, HOST 2015, pages 163–168. URL: https://ieeexplore.
ieee.org/abstract/document/7140256 Accessed March 30, 2022.

Blech, J. O. and Biha, S. O. (2013). On Formal Reasoning on the Semantics of
PLC Using Coq. arXiv preprint arXiv:1301.3047. URL: https://arxiv.
org/abs/1301.3047 Accessed March 30, 2022.

Bluespec Inc. (2012a). Bluespec™SystemVerilog Reference Guide. URL:
http://csg.csail.mit.edu/6.S078/6_S078_2012_www/resources/

reference-guide.pdf Accessed March 29, 2022.

https://www.stackage.org/lts-14.23/package/containers-0.6.0.1
https://www.stackage.org/lts-14.23/package/containers-0.6.0.1
https://www.stackage.org/lts-14.23/package/directory-1.3.3.0
https://www.stackage.org/lts-14.23/package/directory-1.3.3.0
https://github.com/mit-plv/koika
https://link.springer.com/chapter/10.1007/978-3-642-22110-1_14
https://link.springer.com/chapter/10.1007/978-3-642-22110-1_14
https://link.springer.com/chapter/10.1007/978-3-540-71067-7_3
https://link.springer.com/chapter/10.1007/978-3-540-71067-7_3
https://ieeexplore.ieee.org/abstract/document/7140256
https://ieeexplore.ieee.org/abstract/document/7140256
https://arxiv.org/abs/1301.3047
https://arxiv.org/abs/1301.3047
http://csg.csail.mit.edu/6.S078/6_S078_2012_www/resources/reference-guide.pdf
http://csg.csail.mit.edu/6.S078/6_S078_2012_www/resources/reference-guide.pdf

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Bluespec Inc. (2012b). Learning Bluespec. URL: http://wiki.bluespec.
com/Home Accessed March 29, 2022.

Bluespec Inc. (2019). Open Source RISC-V Cores and Tools. Bluespec Inc.
URL: https://bluespec.com/, Accessed March 29, 2022.

Bluespec Inc. (2020). Bluespec, Inc. to Open Source Its Proven BSV High-
level HDL Tools — Bluespec. https://bluespec.com/2020/01/06/bluespec-
inc-to-open-source-its-proven-bsv-high-level-hdl-tools/.

Bluespec Inc. (2021). B-Lang-org/bsc: Bluespec Compiler (BSC). URL:
https://github.com/B-Lang-org/bsc.git Accessed March 29, 2022.

Bonfanti, S., Gargantini, A., and Mashkoor, A. (2020). Design and valida-
tion of a C++ code generator from abstract state machines specifications.
Journal of Software: Evolution and Process, 32(2):e2205. URL: https:
//cs.unibg.it/gargantini/research/papers/asm2Cpp_JSEP.pdf Ac-
cessed August 30, 2022.

Bourgeat, T., Pit-Claudel, C., and Chlipala, A. (2020). The essence of
bluespec: a core language for rule-based hardware design. In Proceed-
ings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 243–257. ACM New York, NY, USA.
URL: http://adam.chlipala.net/papers/KoikaPLDI20/KoikaPLDI20.
pdf Accessed August 30, 2022.

Bowen, K. A. (1979). Model Theory for Modal Logic — Kripke Models for
Modal Predicate Calculi, volume 127 of Studies in Epistemology, Logic,
Methodology, and Philosophy of Science. D. Reidel Publishing Com-
pany. URL: https://books.google.ca/books?id=VBPvCAAAQBAJ Ac-
cessed March 30, 2022.

Braibant, T. and Chlipala, A. (2013). Formal Verification of Hardware
Synthesis. In Computer Aided Verification, volume 8044, pages 213–
228. Springer. URL: https://link.springer.com/chapter/10.1007/

978-3-642-39799-8_14 Accessed March 30, 2022.

Brandt, J., Schneider, K., and Shukla, S. (2010). Translating Concurrent
Action Oriented Specifications to Synchronous Guarded Actions. Pro-
ceedings of the ACM SIGPLAN Conference on Languages, Compilers,

189

http://wiki.bluespec.com/Home
http://wiki.bluespec.com/Home
https://bluespec.com/
https://github.com/B-Lang-org/bsc.git
https://cs.unibg.it/gargantini/research/papers/asm2Cpp_JSEP.pdf
https://cs.unibg.it/gargantini/research/papers/asm2Cpp_JSEP.pdf
http://adam.chlipala.net/papers/KoikaPLDI20/KoikaPLDI20.pdf
http://adam.chlipala.net/papers/KoikaPLDI20/KoikaPLDI20.pdf
https://books.google.ca/books?id=VBPvCAAAQBAJ
https://link.springer.com/chapter/10.1007/978-3-642-39799-8_14
https://link.springer.com/chapter/10.1007/978-3-642-39799-8_14

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

and Tools for Embedded Systems (LCTES), pages 47–56. URL: https:
//dl.acm.org/doi/abs/10.1145/1755951.1755896 Accessed March 30,
2022.

Brummayer, R. and Biere, A. (2009). Boolector: An Efficient SMT
Solver for Bit-Vectors and Arrays. In International Conference on
Tools and Algorithms for the Construction and Analysis of Systems,
pages 174–177. Springer. https://link.springer.com/chapter/10.

1007/978-3-642-00768-2_16 Accessed March 30, 2022.

Burlyaev, D. (2015). Design, optimization, and formal verification of circuit
fault-tolerance techniques. PhD thesis, Université Grenoble Alpes. URL:
https://tel.archives-ouvertes.fr/tel-01253368/ Accessed March
30, 2022.

Camilleri, A., Gordon, M., and Melham, T. F. (1986). Hardware Verification
Using Higher-Order Logic. University of Cambridge, Computer Labora-
tory. URL: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-91.
html Accessed March 30, 2022.

Catano, Néstor and Rivera, Vı́ctor (2016). EventB2Java: A code gen-
erator for Event-B. In NASA Formal Methods Symposium, pages
166–171. Springer. URL: https://dl.acm.org/doi/abs/10.1007/

978-3-319-40648-0_13 Accessed August 30, 2022.

Chen, G. (2012). A Short Historical Survey of Functional Hardware Lan-
guages. International Scholarly Research Notices, 2012. URL: https:

//downloads.hindawi.com/archive/2012/271836.pdf Accessed March
30, 2022.

Choi, J., Vijayaraghavan, M., Sherman, B., Chlipala, A., et al. (2017). Kami:
A Platform for High-Level Parametric Hardware Specification and its Mod-
ular Verification. Proceedings of the ACM on Programming Languages,
1(ICFP):24. URL: https://dspace.mit.edu/handle/1721.1/134865

Accessed March 30, 2022.

Cimatti, A., Griggio, A., Schaafsma, B. J., and Sebastiani, R. (2013).
The MathSAT5 SMT Solver. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pages

190

https://dl.acm.org/doi/abs/10.1145/1755951.1755896
https://dl.acm.org/doi/abs/10.1145/1755951.1755896
https://link.springer.com/chapter/10.1007/978-3-642-00768-2_16
https://link.springer.com/chapter/10.1007/978-3-642-00768-2_16
https://tel.archives-ouvertes.fr/tel-01253368/
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-91.html
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-91.html
https://dl.acm.org/doi/abs/10.1007/978-3-319-40648-0_13
https://dl.acm.org/doi/abs/10.1007/978-3-319-40648-0_13
https://downloads.hindawi.com/archive/2012/271836.pdf
https://downloads.hindawi.com/archive/2012/271836.pdf
https://dspace.mit.edu/handle/1721.1/134865

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

93–107. Springer. https://link.springer.com/chapter/10.1007/

978-3-642-36742-7_7 Accessed March 30, 2022.

Davis, J. and Reese, R. (2008). Finite State Machine Dat-
apath Design, Optimization, and Implementation. Morgan &
Claypool. URL: https://www-morganclaypool-com.libaccess.lib.

mcmaster.ca/doi/pdf/10.2200/S00087ED1V01Y200702DCS014 Accessed
April 10, 2022.

Daylight, E. G. and Shukla, S. K. (2009). On the Difficulties of
Concurrent-System Design, Illustrated With a 2x2 Switch Case Study.
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 5850
LNCS:273–288. URL: https://link.springer.com/chapter/10.1007/
978-3-642-05089-3_18 Accessed March 30, 2022.

De Moura, L. and Bjørner, N. (2008). Z3: An Efficient SMT Solver. In
International conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, pages 337–340. Springer. URL: https:

//link.springer.com/chapter/10.1007/978-3-540-78800-3_24

Accessed March 30, 2022.

Durand, S. H. and Bonato, V. (2012). A Tool to Support Bluespec
SystemVerilog Coding Based on UML Diagrams. In IECon 2012-
38th Annual Conference on IEEE Industrial Electronics Society, pages
4670–4675. IEEE. URL: https://ieeexplore.ieee.org/abstract/

document/6389493 Accessed March 30, 2022.

Dutertre, B. and De Moura, L. (2006). The Yices SMT Solver. URL: http:
//yices.csl.sri.com/tool-paper.pdf Accessed March 29, 2022.

Erkök, L. (2019). SBV: SMT Based Verification: Symbolic Haskell Theorem
Prover Using SMT Solving. https://hackage.haskell.org/package/

sbv Accessed March 29, 2022.

Erkök, L. (2020). sbv :: Stackage Server. URL: https://www.stackage.
org/lts-14.23/package/sbv-8.3 Accessed March 29, 2022.

Fitzgerald, J., Bicarregui, J., Larsen, P. G., and Woodcock, J. (2013).
Industrial Deployment of Formal Methods: Trends and Challenges.

191

https://link.springer.com/chapter/10.1007/978-3-642-36742-7_7
https://link.springer.com/chapter/10.1007/978-3-642-36742-7_7
https://www-morganclaypool-com.libaccess.lib.mcmaster.ca/doi/pdf/10.2200/S00087ED1V01Y200702DCS014
https://www-morganclaypool-com.libaccess.lib.mcmaster.ca/doi/pdf/10.2200/S00087ED1V01Y200702DCS014
https://link.springer.com/chapter/10.1007/978-3-642-05089-3_18
https://link.springer.com/chapter/10.1007/978-3-642-05089-3_18
https://link.springer.com/chapter/10.1007/978-3-540-78800-3_24
https://link.springer.com/chapter/10.1007/978-3-540-78800-3_24
https://ieeexplore.ieee.org/abstract/document/6389493
https://ieeexplore.ieee.org/abstract/document/6389493
http://yices.csl.sri.com/tool-paper.pdf
http://yices.csl.sri.com/tool-paper.pdf
https://hackage.haskell.org/package/sbv
https://hackage.haskell.org/package/sbv
https://www.stackage.org/lts-14.23/package/sbv-8.3
https://www.stackage.org/lts-14.23/package/sbv-8.3

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

In Industrial Deployment of System Engineering Methods, pages 123–
143. Springer. URL: https://link.springer.com/chapter/10.1007/

978-3-642-33170-1_10 Accessed March 30, 2022.

Forsyth, M., editor (2014). “Theorem”, Collins English Dictio-
nary — Complete and Unabridged. HarperCollins Publishers, 12th
edition. URL: https://www.collinsdictionary.com/dictionary/

english/theorem Accessed March 30, 2022.

Gala, N., Menon, A., Bodduna, R., Madhusudan, G., and Kamakoti, V.
(2016). SHAKTI Processors: An Open-Source Hardware Initiative. In
2016 29th International Conference on VLSI Design and 2016 15th In-
ternational Conference on Embedded Systems (VLSID), pages 7–8. IEEE.
URL: https://www.computer.org/csdl/proceedings-article/vlsid/
2016/8700a007/12OmNAo45Ec Accessed March 30, 2022.

George, P., Sahoo, A., Menon, A., and Kamakoti, V. (2018). SHAKTI: An
Open-Source Processor Ecosystem. Advanced Computing and Communi-
cations. URL: https://doi.org/10.34048/2018.3.f2 Accessed March
30, 2022.

Gill, A. (2020). mtl :: Stackage Server. URL: https://www.stackage.org/
lts-14.23/package/mtl-2.2.2 Accessed March 29, 2022.

Gordon, M. J. and Melham, T. F. (1993). Introduction to HOL: A theorem
proving environment for higher order logic. Cambridge University Press.
URL: https://dl.acm.org/doi/abs/10.5555/155278 Accessed August
11, 2022.

Hall, A. (1990). Seven Myths of Formal Methods. IEEE software, 7(5):11–19.
URL: https://doi.org/10.1109/52.57887 Accessed March 30, 2022.

Hudak, P. and Fasel, J. H. (1992). A gentle introduction to haskell. ACM Sig-
plan Notices, 27(5):1–52. URL: https://dl.acm.org/doi/pdf/10.1145/
130697.130698 Accessed August 11, 2022.

IEC (2013). 61131-3 Ed. 3.0 en:2013: Programmable Controllers — Part
3: Programming Languages. International Electrotechnical Commission.
Proprietary Standard, no URL available.

192

https://link.springer.com/chapter/10.1007/978-3-642-33170-1_10
https://link.springer.com/chapter/10.1007/978-3-642-33170-1_10
https://www.collinsdictionary.com/dictionary/english/theorem
https://www.collinsdictionary.com/dictionary/english/theorem
https://www.computer.org/csdl/proceedings-article/vlsid/2016/8700a007/12OmNAo45Ec
https://www.computer.org/csdl/proceedings-article/vlsid/2016/8700a007/12OmNAo45Ec
https://doi.org/10.34048/2018.3.f2
https://www.stackage.org/lts-14.23/package/mtl-2.2.2
https://www.stackage.org/lts-14.23/package/mtl-2.2.2
https://dl.acm.org/doi/abs/10.5555/155278
https://doi.org/10.1109/52.57887
https://dl.acm.org/doi/pdf/10.1145/130697.130698
https://dl.acm.org/doi/pdf/10.1145/130697.130698

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Isen, C., John, L. K., and John, E. (2009). A Tale of Two Processors:
Revisiting the RISC-CISC Debate. In Spec benchmark workshop, pages
57–76. Springer. URL: https://link.springer.com/chapter/10.1007/
978-3-540-93799-9_4 Accessed March 30, 2022.

Jensen, K. and Wirth, N. (2012). PASCAL User Manual and Report: ISO
PASCAL Standard. Springer Science & Business Media. URL: https:
//books.google.ca/books?id=NvHjBwAAQBAJ Accessed March 30, 2022.

Kleinedler, S. R., editor (2016). “Theorem”, American Heritage Dictio-
nary of the English Language. Houghton Mifflin Harcourt Publishing, 5th
edition. URL: https://www.ahdictionary.com/word/search.html?q=

theorem Accessed March 30, 2022.

Leijen, D., Martini, P., and Latter, A. (2020). parsec :: Stack-
age Server. URL: https://www.stackage.org/lts-14.23/package/

parsec-3.1.14.0 Accessed March 29, 2022.

Leijen, D. and Meijer, E. (2001). Parsec: Direct Style Monadic Parser Com-
binators For The Real world.

Lööw, A. (2021). Lutsig: a verified Verilog compiler for verified circuit
development. In Proceedings of the 10th ACM SIGPLAN International
Conference on Certified Programs and Proofs, pages 46–60. URL: https:
//www.doc.ic.ac.uk/~aloow/papers/cpp2021.pdf Accessed August 30,
2022.

Lööw, Andreas and Kumar, Ramana and Tan, Yong Kiam and Myreen, Mag-
nus O and Norrish, Michael and Abrahamsson, Oskar and Fox, Anthony
(2019). Verified compilation on a verified processor. In Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 1041–1053. URL: https://cakeml.org/pldi19.
pdf Accessed August 30, 2022.

Lööw, Andreas and Myreen, Magnus O (2019). A proof-producing trans-
lator for Verilog development in HOL. In 2019 IEEE/ACM 7th Inter-
national Conference on Formal Methods in Software Engineering (For-
maliSE), pages 99–108. IEEE. URL: https://ieeexplore.ieee.org/

abstract/document/8807452 Accessed August 30, 2022.

193

https://link.springer.com/chapter/10.1007/978-3-540-93799-9_4
https://link.springer.com/chapter/10.1007/978-3-540-93799-9_4
https://books.google.ca/books?id=NvHjBwAAQBAJ
https://books.google.ca/books?id=NvHjBwAAQBAJ
https://www.ahdictionary.com/word/search.html?q=theorem
https://www.ahdictionary.com/word/search.html?q=theorem
https://www.stackage.org/lts-14.23/package/parsec-3.1.14.0
https://www.stackage.org/lts-14.23/package/parsec-3.1.14.0
https://www.doc.ic.ac.uk/~aloow/papers/cpp2021.pdf
https://www.doc.ic.ac.uk/~aloow/papers/cpp2021.pdf
https://cakeml.org/pldi19.pdf
https://cakeml.org/pldi19.pdf
https://ieeexplore.ieee.org/abstract/document/8807452
https://ieeexplore.ieee.org/abstract/document/8807452

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Lorenz, E. N. (1995). The Essence of Chaos. University of Washington
Press. URL: https://www.google.ca/books/edition/The_Essence_

Of_Chaos/CGm2IEWH894C Accessed March 30, 2022.

Madhusudan, G. S. (2018). casl / rapidio / old src / Logical Transport
/ BSV - Bitbucket. URL: https://bitbucket.org/casl/rapidio/src/
master/old_src/Logical_Transport/BSV/ Accessed March 29, 2022.

Marlow, S. (2010). Happy: The Parser Generator for Haskell. URL: http:
//www.haskell.org/happy/ Accessed March 29, 2022.

Menon, A., Murugan, S., Rebeiro, C., Gala, N., and Veezhinathan, K. (2017).
Shakti-T: A RISC-V Processor with Light Weight Security Extensions. In
Proceedings of the Hardware and Architectural Support for Security and
Privacy, page 2. ACM. URL: https://dl.acm.org/doi/abs/10.1145/
3092627.3092629 Accessed March 30, 2022.

Miller, S. P. and Srivas, M. (1995). Formal Verification of the AAMP5 Mi-
croprocessor: A Case Study in the Industrial Use of Formal Methods. In
Industrial-Strength Formal Specification Techniques, 1995. Proceedings.,
Workshop on, pages 2–16. IEEE. URL: https://ieeexplore.ieee.org/
abstract/document/515475 Accessed March 30, 2022.

Mitchell, N. (2020). extra :: Stackage Server. URL: https://www.stackage.
org/lts-14.23/package/extra-1.6.18 Accessed March 29, 2022.

Moore, N. (2022). BAPIP Project Homepage. URL: https://github.com/
nmoore771/bapip Accessed March 29, 2022.

Moore, N. and Lawford, M. (2017). Correct Safety Critical Hardware De-
scriptions via Static Analysis and Theorem Proving. In 2017 IEEE/ACM
5th International FME Workshop on Formal Methods in Software Engi-
neering (FormaliSE), pages 58–64. IEEE. URL: https://ieeexplore.

ieee.org/abstract/document/7967994 Accessed March 30, 2022.

Morin-Allory, K. and Borrione, D. (2006). Automatic Generation of a
Provable Circuit Model: from VHDL to PVS. In 8th International
Mathematica Symposium. URL: https://hal.univ-grenoble-alpes.

fr/hal-00142692/ Accessed March 30, 2022.

194

https://www.google.ca/books/edition/The_Essence_Of_Chaos/CGm2IEWH894C
https://www.google.ca/books/edition/The_Essence_Of_Chaos/CGm2IEWH894C
https://bitbucket.org/casl/rapidio/src/master/old_src/Logical_Transport/BSV/
https://bitbucket.org/casl/rapidio/src/master/old_src/Logical_Transport/BSV/
http://www.haskell.org/happy/
http://www.haskell.org/happy/
https://dl.acm.org/doi/abs/10.1145/3092627.3092629
https://dl.acm.org/doi/abs/10.1145/3092627.3092629
https://ieeexplore.ieee.org/abstract/document/515475
https://ieeexplore.ieee.org/abstract/document/515475
https://www.stackage.org/lts-14.23/package/extra-1.6.18
https://www.stackage.org/lts-14.23/package/extra-1.6.18
https://github.com/nmoore771/bapip
https://github.com/nmoore771/bapip
https://ieeexplore.ieee.org/abstract/document/7967994
https://ieeexplore.ieee.org/abstract/document/7967994
https://hal.univ-grenoble-alpes.fr/hal-00142692/
https://hal.univ-grenoble-alpes.fr/hal-00142692/

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Newell, J., Pang, L., Tremaine, D., Wassyng, A., and Lawford, M. (2016).
Formal Translation of IEC 61131-3 Function Block Diagrams to PVS with
Nuclear Application. pages 206–220. URL: https://link.springer.com/
chapter/10.1007/978-3-319-40648-0_16 Accessed March 30, 2022.

Newell, J., Pang, L., Tremaine, D., Wassyng, A., and Lawford, M. (2018).
Translation of IEC 61131-3 Function Block Diagrams to PVS for Formal
Verification with Real-Time Nuclear Application. Journal of Automated
Reasoning, 60(1):63–84. URL: https://link.springer.com/article/

10.1007/s10817-017-9415-7 Accessed March 30, 2022.

Nguyen, T. (2011). What is the World’s Data Stor-
age Capacity? URL: https://www.zdnet.com/article/

what-is-the-worlds-data-storage-capacity/ Accessed March
29, 2022.

Nikhil, R. (2004). Bluespec System Verilog: Efficient, Correct RTL from High
Level Specifications. In Proceedings of the Second ACM and IEEE Inter-
national Conference on Formal Methods and Models for Co-Design, 2004.,
pages 69–70. IEEE. URL: https://ieeexplore.ieee.org/abstract/

document/1459818 Accessed March 30, 2022.

Nikhil, R. S. (2008). Bluespec: A General-Purpose Approach to High-Level
Synthesis Based on Parallel Atomic Transactions. In High-Level Synthesis,
pages 129–146. Springer. URL: https://link.springer.com/chapter/
10.1007/978-1-4020-8588-8_8 Accessed March 30, 2022.

Ostroumov, S., Tsiopoulos, L., Sere, K., and Plosila, J. (2013). Generation
of Structural VHDL Code with Library Components from Formal Event-
B Models. Proceedings - 16th Euromicro Conference on Digital System
Design, DSD 2013, pages 111–118. URL: https://ieeexplore.ieee.

org/abstract/document/6628267 Accessed March 30, 2022.

Ostroumov, S. and Waldén, M. (2015). Formal Library of Vi-
sual Components. Technical report, TUCS Technical Re-
port 1147, Turku Centre for Computer Science, Turku. URL:
https://www.researchgate.net/profile/Sergey-Ostroumov/

publication/297148975_Formal_Library_of_Visual_Components

Accessed March 30, 2022.

195

https://link.springer.com/chapter/10.1007/978-3-319-40648-0_16
https://link.springer.com/chapter/10.1007/978-3-319-40648-0_16
https://link.springer.com/article/10.1007/s10817-017-9415-7
https://link.springer.com/article/10.1007/s10817-017-9415-7
https://www.zdnet.com/article/what-is-the-worlds-data-storage-capacity/
https://www.zdnet.com/article/what-is-the-worlds-data-storage-capacity/
https://ieeexplore.ieee.org/abstract/document/1459818
https://ieeexplore.ieee.org/abstract/document/1459818
https://link.springer.com/chapter/10.1007/978-1-4020-8588-8_8
https://link.springer.com/chapter/10.1007/978-1-4020-8588-8_8
https://ieeexplore.ieee.org/abstract/document/6628267
https://ieeexplore.ieee.org/abstract/document/6628267
https://www.researchgate.net/profile/Sergey-Ostroumov/publication/297148975_Formal_Library_of_Visual_Components
https://www.researchgate.net/profile/Sergey-Ostroumov/publication/297148975_Formal_Library_of_Visual_Components

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

O’Sullivan, B. (2020). text :: Stackage Server. URL: https://www.

stackage.org/package/text Accessed March 29, 2022.

Ouchet, F., Borrione, D., Morin-Allory, K., and Pierre, L. (2009). High-
Level Symbolic Simulation for Automatic Model Extraction. In 12th In-
ternational Symposium on Design and Diagnostics of Electronic Circuits
& Systems, pages 218–221. IEEE. URL: https://ieeexplore.ieee.org/
abstract/document/5012132 Accessed March 30, 2022.

Owre, S., Rushby, J. M., and Shankar, N. (1992). PVS: A Prototype
Verification System. In Automated Deduction-CADE-11, pages 748–752.
Springer. URL: https://link.springer.com/content/pdf/10.1007/

3-540-55602-8_217.pdf Accessed March 30, 2022.

Owre, S., Shankar, N., Rushby, J. M., and Stringer-Calvert, D. W. J.
(2001). PVS Language Reference. URL: https://pvs.csl.sri.com/doc/
pvs-language-reference.pdf Accessed March 30, 2022.

Pang, L., Wang, C.-W., Lawford, M., and Wassyng, A. (2013). Formalizing
and Verifying Function Blocks Using Tabular Expressions and PVS. In
Formal Techniques for Safety-Critical Systems, volume 419, pages 125–
141. Springer. URL: https://link.springer.com/chapter/10.1007/

978-3-319-05416-2_9 Accessed March 30, 2022.

Pang, L., Wang, C. W., Lawford, M., and Wassyng, A. (2015). Formal Veri-
fication of Function Blocks Applied to IEC 61131-3. Science of Computer
Programming, 113:149–190. URL: https://www.sciencedirect.com/

science/article/pii/S0167642315002981 Accessed March 30, 2022.

Pizani Flor, J. P. (2014). Π-Ware: An Embedded Hardware Description Lan-
guage using Dependent Types. URL: https://archive.alvb.in/msc/

thesis/repo-archive/thesis/main.pdf Accessed March 30, 2022.

Porter III, H. H. (2018). RISC-V: An Overview of the Instruction
Set Architecture. URL: https://web.cecs.pdx.edu/~harry/riscv/

RISCV-Summary.pdf Accessed March 29, 2022.

RapidIO.org (2017). RapidIO TM Interconnect Specification — Part 1: In-
put/Output Logical Specification, 4.1 edition. URL: https://rapidio.

org/files/IO_logical.pdf Accessed March 30, 2022.

196

https://www.stackage.org/package/text
https://www.stackage.org/package/text
https://ieeexplore.ieee.org/abstract/document/5012132
https://ieeexplore.ieee.org/abstract/document/5012132
https://link.springer.com/content/pdf/10.1007/3-540-55602-8_217.pdf
https://link.springer.com/content/pdf/10.1007/3-540-55602-8_217.pdf
https://pvs.csl.sri.com/doc/pvs-language-reference.pdf
https://pvs.csl.sri.com/doc/pvs-language-reference.pdf
https://link.springer.com/chapter/10.1007/978-3-319-05416-2_9
https://link.springer.com/chapter/10.1007/978-3-319-05416-2_9
https://www.sciencedirect.com/science/article/pii/S0167642315002981
https://www.sciencedirect.com/science/article/pii/S0167642315002981
https://archive.alvb.in/msc/thesis/repo-archive/thesis/main.pdf
https://archive.alvb.in/msc/thesis/repo-archive/thesis/main.pdf
https://web.cecs.pdx.edu/~harry/riscv/RISCV-Summary.pdf
https://web.cecs.pdx.edu/~harry/riscv/RISCV-Summary.pdf
https://rapidio.org/files/IO_logical.pdf
https://rapidio.org/files/IO_logical.pdf

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Rashid, M., Waseem, M., and Khan, A. M. (2015). Toward the Tools
Selection in Model Based System Engineering for Embedded Systems
— A Systematic Literature Review. The Journal of Systems & Soft-
ware, 106:150–163. URL: https://www.sciencedirect.com/science/

article/abs/pii/S016412121500103X Accessed March 30, 2022.

Richards, D. (2011a). Automated Reasoning for Bluespec Designs.
URL: https://sourceforge.net/projects/ar4bluespec/files/ Ac-
cessed April 15, 2022.

Richards, D. (2011b). Hardware languages and proof. The University of
Manchester (United Kingdom). URL: http://apt.cs.manchester.ac.
uk/ftp/pub/amulet/OLD_theses/D_Richards11_phd.pdf Accessed Au-
gust 11, 2022.

Richards, D. and Lester, D. (2011). A Monadic Approach to Au-
tomated Reasoning for Bluespec SystemVerilog. Innov. Syst. Softw.
Eng., 7(2):85–95. URL: https://link.springer.com/article/10.

1007/s11334-011-0149-0 Accessed March 30, 2022.

RISC-V Foundation (2020). RISC-V Foundation — Instruction Set Archi-
tecture (ISA). URL: https://riscv.org/ Accessed March 29, 2022.

Rushby, J., Owre, S., and Shankar, N. (1998). Subtypes for Specifications:
Predicate Subtyping in PVS. IEEE Transactions on Software Engineering,
24(9):709. URL: https://ieeexplore.ieee.org/abstract/document/

713327 Accessed March 30, 2022.

Saeed, N., Inam, A., Khan, A., and Hasan, O. (2012). V-HOLT Verifier —
An Automatic Formal Verification Tool For Combinational Circuits. 2012
15th International Multitopic Conference, INMIC 2012, pages 0–3. URL:
https://ieeexplore.ieee.org/abstract/document/6511465 Accessed
March 30, 2022.

Stappers, F. P. M., Reniers, M. A., and Groote, J. F. (2010). Suitabil-
ity of mCRL2 for Concurrent-System Design: A 2 x 2 Switch Case
Study. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6286
LNCS:166–185. URL: https://link.springer.com/chapter/10.1007/
978-3-642-17071-3_9 Accessed March 30, 2022.

197

https://www.sciencedirect.com/science/article/abs/pii/S016412121500103X
https://www.sciencedirect.com/science/article/abs/pii/S016412121500103X
https://sourceforge.net/projects/ar4bluespec/files/
http://apt.cs.manchester.ac.uk/ftp/pub/amulet/OLD_theses/D_Richards11_phd.pdf
http://apt.cs.manchester.ac.uk/ftp/pub/amulet/OLD_theses/D_Richards11_phd.pdf
https://link.springer.com/article/10.1007/s11334-011-0149-0
https://link.springer.com/article/10.1007/s11334-011-0149-0
https://riscv.org/
https://ieeexplore.ieee.org/abstract/document/713327
https://ieeexplore.ieee.org/abstract/document/713327
https://ieeexplore.ieee.org/abstract/document/6511465
https://link.springer.com/chapter/10.1007/978-3-642-17071-3_9
https://link.springer.com/chapter/10.1007/978-3-642-17071-3_9

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Terei, D. (2020). pretty :: Stackage Server. URL: https://www.stackage.
org/lts-14.23/package/pretty-1.1.3.6 Accessed March 29, 2022.

Uma, V., Marimuthu, R., and Hicks, J. (2022). Formal verification of a 4
bit counter using kami verification flow. In AIP Conference Proceedings,
volume 2393, page 020081. AIP Publishing LLC. URL: https://aip.

scitation.org/doi/abs/10.1063/5.0074153 Accessed August 30, 2022.

Vijayaraghavan, M., Chlipala, A., Dave, N., et al. (2015). Modu-
lar Deductive Verification of Multiprocessor Hardware Designs. In
International Conference on Computer Aided Verification, pages 109–
127. Springer. URL: https://link.springer.com/chapter/10.1007/

978-3-319-21668-3_7 Accessed March 30, 2022.

Wassyng, A., Lawford, M., and Hu, X. (2005). Timing Tolerances in
Safety-Critical Software. In International Symposium on Formal Methods,
pages 157–172. Springer. URL: https://link.springer.com/chapter/
10.1007/11526841_12 Accessed March 30, 2022.

Wassyng, A., Lawford, M. S., and Maibaum, T. S. (2011). Software Cer-
tification Experience in the Canadian Nuclear Industry: Lessons for the
Future. In Proceedings of the ninth ACM international conference on Em-
bedded software, pages 219–226. ACM. URL: https://dl.acm.org/doi/
abs/10.1145/2038642.2038676 Accessed March 30, 2022.

Waterman, A. and Asanović, K. (2017). The RISC-V Instruction Set
Manual, Volume I: User-Level ISA. RISC-V Foundation, 2.2 edi-
tion. URL: https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/

EECS-2016-118.pdf Accessed March 30, 2022.

Wenzel, M., Paulson, L. C., and Nipkow, T. (2008). The isabelle framework.
In International Conference on Theorem Proving in Higher Order Logics,
pages 33–38. Springer. URL: https://link.springer.com/chapter/10.
1007/978-3-540-71067-7_7 Accessed August 11, 2022.

Yorgey, B. (2020). split :: Stackage Server. URL: https://www.stackage.
org/lts-14.23/package/split-0.2.3.3 Accessed March 29, 2022.

198

https://www.stackage.org/lts-14.23/package/pretty-1.1.3.6
https://www.stackage.org/lts-14.23/package/pretty-1.1.3.6
https://aip.scitation.org/doi/abs/10.1063/5.0074153
https://aip.scitation.org/doi/abs/10.1063/5.0074153
https://link.springer.com/chapter/10.1007/978-3-319-21668-3_7
https://link.springer.com/chapter/10.1007/978-3-319-21668-3_7
https://link.springer.com/chapter/10.1007/11526841_12
https://link.springer.com/chapter/10.1007/11526841_12
https://dl.acm.org/doi/abs/10.1145/2038642.2038676
https://dl.acm.org/doi/abs/10.1145/2038642.2038676
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-118.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-118.pdf
https://link.springer.com/chapter/10.1007/978-3-540-71067-7_7
https://link.springer.com/chapter/10.1007/978-3-540-71067-7_7
https://www.stackage.org/lts-14.23/package/split-0.2.3.3
https://www.stackage.org/lts-14.23/package/split-0.2.3.3

APPENDIX

A. BAPIP: A BSV-TO-PVS TRANSLATOR

The semantic translation of BSV into PVS presented in §4 and §3 has been
algorithmically encoded in the BAPIP translation tool. It features a sim-
ple, command-line interface, fast execution times, and an easily extensible
modular structure.

A.1 Translator Architecture

An overview of the translator’s architecture in flow-chart form is presented in
Figure A.1. The path through this diagram selects which of the four trans-
lation modes is selected: BSV2PVS, BSV2BSV, TSP2BSV, and TSP2PVS.
In this diagram, ellipses indicate data in concrete form, such as a file or a
populated data structure, whereas the rectangles are the modularized trans-
formation algorithms which translate between representations. While Figure
A.1 may give the appearance of a branching structure, it is more accurate
to consider this architecture a collection of independent data pipelines which
share components. For example, in BSV2PVS mode, the translator has no
interaction whatsoever with either the BSV generator or the Tabular Spec-
ification parser. Not depicted is the top-level control, which handles system
I/O, data passing, the invocation of algorithms, and other functions.

While it may seem somewhat vacuous to have a BSV2BSV mode, it
divulges interesting information in addition to being very simple to imple-
ment after having implemented TSP2BSV. One use is to re-organize BSV
files. Comparing a file before and after parsing and generation demonstrates
what information (if any) is discarded as superfluous. Additionally, the BSV
parser features permutation parsing, but does not preserve the order in which
elements occurred. Rather, it groups like elements and encodes them as ab-
stract syntax. It is therefore possible to automatically organize code via this
method. Such modes are also useful during the extension of BAPIP to other
languages, as it provides a method for testing both parser and generator
before the completion of the translation algorithms.

200

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Figure A.1: Expanded BAPIP Architectural Overview

It should be noted that, in TSP2PVS mode, the original tabular spec-
ifications used to generate BSV code are required by the PVS generation
algorithm, in order to generate PVS files with working proofs of correctness.
As such, the PVS generator requires access to the TSP abstract syntax tree,
if such is available. If no TSP abstract syntax is available, such as when the
translator is invoked in BSV2PVS mode, no tabular specifications or proofs
of correctness are generated in the resulting PVS files.

201

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

A.1.1 Organization of PVS Output

As the result of the PVS Generator, the translator produces four PVS theo-
ries, in separate files, which are written into the selected output folder. Files
are listed in the order of their package hierarchy.

TypeDefinitions.pvs Basic type definitions; translations of
all type definitions, constant declarations,
enumeration declarations; type initializa-
tions for record types; functions

State.pvs State record types for all instantiated
modules; state record instantiation pred-
icates

Methods.pvs Definitions for all value methods declared
in the bsv module hierarchy

Transitions.pvs Schedule indexed transition predicates,
transition functions returning updated
state records

MyModule.pvs Theorem template; transition sched-
ule documentation; auto-generated consis-
tency theorems and proofs

Tab. A.1: Output files produced by BAPIP

Basic type definitions described in TypeDefinitions.pvs provide analogs
for BSV’s Int, UInt and Bit types. These types take a bit-width as an
argument, and in PVS these translate to sub-ranged integers.

BAPIP is designed to minimize the number of libraries the user must
install in PVS prior to the use of BAPIP produced PVS files. As such, the
files in Table A.2 are automatically generated by BAPIP and placed into the
specified output directory as part of any process producing PVS output.

A.2 Prerequisites

BAPIP has been designed as a stand-alone executable, and requires no pre-
installed software to execute. However, in order to use the BAPIP translation
tool for its intended purpose, certain prerequisite software must be installed.
This section presents a comprehensive list of all software dependencies.

202

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

arith bitwise.pvs defines bitwise operators and operations
as equivalent arithmetic operations.

ClockTick.pvs library by (Wassyng et al., 2005). Defines
the tick type.

defined operators.pvs library by (Wassyng et al., 2005). In-
cluded mainly to maintain compatibility
with Pang’s tabular specifications

FIFO.pvs defines a record type and associated
functions implementing First-In-First-Out
Buffer (FIFO) buffers, and the common ac-
cess functions specified in the BSV docu-
mentation.

Maybe.pvs defines a record type and associated func-
tions implementing a Maybe-like type. A
detailed examination of Maybe may be
found in §3.

Time.pvs library by (Wassyng et al., 2005). Sup-
ports ClockTick.pvs

Tab. A.2: Associated PVS libraries automatically generated

In addition to the requirements below, a computer with a Linux/Unix
based operating system is required in order to use the BAPIP tool chain.
The executable which is available at (Moore, 2022) has been compiled under
Ubuntu 18, and as such should be executable on most Debian-family oper-
ating systems. The source code is also available from the same website for
recompilation.

A.2.1 Installation of Bluespec SystemVerilog

For the overwhelming majority of the work here under examination, the
Bluespec compiler was a proprietary, controlled-source tool, made available
to the author through Bluespec Inc.’s university program. On Jan 6, 2020,
Bluespec Inc. announced the release of their compiler under an open-source
framework. The latest version, 2021.07, was released in July of 2021 at
(Bluespec Inc., 2021).

Installation of BSV is not strictly necessary for the operation of BAPIP,

203

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

however, all files translated by BAPIP are assumed to have passed typecheck-
ing by BSC (the Bluespec Compiler) prior to translation. This is not because
BAPIP requires a post-compilation file of any kind, but because it allows the
translation to make certain assumptions about the code being entered into
it. As the project has worn on and the translator made more robust, less
of these assumptions have become necessary, but it is still assumed (for ex-
ample) that the BSV design adheres to BSV’s restrictions on valid identifier
characters.

A.2.2 Installation and Configuration of PVS

The latest PVS release, version 7.1, was released in May of 2020. The BAPIP
package, as well as associated case studies and proofs will not work with the
new version of PVS, so use of PVS 6.0 with the BAPIP system is required,
for the following reasons.

The PVS project maintains a github repository where the latest updates
can be found. On the github page, PVS appears to have been renamed from
“Prototype Verification System” to “The People’s Verification System.” As
with all polities throughout history which have adopted communism, PVS’s
latest versions fail to work as stated or intended. While case study 4 can be
loaded into PVS 7.1, re-entering the proof which works in PVS 6.0 results in
an “undefined function” error of mysterious origin and no known means of
escape. As such, PVS 6.0 is recommended.

PVS 6.0 must use one of two Lisp back-ends to operate, Allegro or SBCL.
The PVS binaries available from the PVS homepage can optionally include a
distribution of the proprietary Allegro Lisp compiler. Allegro is proprietary
and must be bought to be used. Although there is a free version, the licensing
agreement for it states that the use of the free version of Allegro specifically
for the purposes of University sanctioned academic research is prohibited.
The fee associated with use of Allegro is sizable enough for the author to
recommend installation of SBCL, though this somewhat complicates instal-
lation.

The most recent stable version of SBCL with which PVS 6.0 is compat-
ible is SBCL 1.4.14. Once installed, PVS requires the manual creation of a
environment variable pointing to the directory of the Lisp executable. Once
this is configured, PVS may be compiled and installed.

However, the use of SBCL introduces an interesting problem. For theo-
rem proving at the size and scale necessary for the case study in §6.5, it is

204

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

package name version requirement
base >= 4.7 and < 5

text (O’Sullivan, 2020) none
parsec (Leijen et al., 2020) none

directory (hkg, 2020b) none
pretty (Terei, 2020) none
sbv (Erkök, 2020) none
mtl (Gill, 2020) none

containers (hkg, 2020a) none
extra (Mitchell, 2020) none
split (Yorgey, 2020) none

Tab. A.3: List of Haskell Library Dependencies

necessary to increase the default 400 MB of garbage collection space allocated
to SBCL. Since SBCL is invoked automatically by the PVS startup routines
via Emacs lisp, it was necessary in the author’s case to modify one of the PVS
Emacs lisp files to invoke this added command-line flag. Specifically, on lines
145 and 146 of the file emacs/pvs-ilisp.el, the lisp expression (defun

pvs-program () pvs-image) was replaced with (defun pvs-program ()

(format "%s --dynamic-space-size 2048" pvs-image)). This increases
the default allocation of 400 MB to 2GB, which proved sufficient for the
progress towards our correctness conditions represented in §6.5.

A.2.3 Compile-time Requirements

If a specific distribution of Linux cannot execute the program provided at
(Moore, 2022), it is recommended that the program be recompiled from
source. In order to do so, one must minimally have the Glorious Glas-
gow Haskell Compiler (GHC), version 8.0.2. Recompiling using stack will
automatically fetch the libraries specified in package.yaml. Those specific
dependencies are listed in Table A.3, along with links to the associated library
homepages.

Parsec (Leijen and Meijer, 2001) was selected over Happy (Marlow, 2010)
as a parsing library for this project for a number of reasons. As a top-down
parser, Parsec is more natural for parsing BSV files, which are reasonably
structured from a top-down perspective. Parsec also integrates the full ex-

205

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

pressive power of Haskell, as opposed to Happy, which is a domain specific
language.

A.3 Unmodelled Behaviours

While an exhaustive translation from BSV to PVS would be a grand contribu-
tion to the field of formal methods, this is unfortunately not possible given the
resources allocated to this project. As such, the language elements included
in the translation have been triaged so that the most essential functions have
been added first. The following list of unmodelled language elements are
considered future work for the BAPIP translation project.

A.3.1 Other Pragmas

Besides those controlling action arbitration, there are many different prag-
mas. While many of these are useful for development in Bluespec, the inte-
gration of them with the existing translator structure is reserved as future
work.

A.3.2 Type Classes and Type Class Declarations

A potentially useful future addition to the translator would be the semantic
interpretation of the type classes included in type definitions. These could be
used to impose/remove additional constraints from custom types, improving
the subset of Bluespec SystemVerilog covered by the translator. Additionally,
user-generated type-classes are not addressed.

A.3.3 Parameterized Modules

One of the powerful abstraction mechanisms available in BSV is the ability
to create parameterized modules. This capability is not currently supported.
Supporting it would require a reasonably drastic re-organization of the post-
translation PVS semantics. Currently, the modularity of Bluespec modules is
preserved only insofar as they extend to the state record. The implementation
of this feature is reserved as future work.

206

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

A.4 Operational Instructions

The BAPIP translation tool is simple and easy to use. To use it, one must
invoke it from the command line using stack exec and specify a mode:
bsv2pvs, bsv2bsv, tsp2bsv, or tsp2pvs. Modes using BSV and Tabu-
lar Specifications as source languages are viable, but the implementation
of modes with PVS as the source language are reserved as future work. The
help command may also be used to display usage information.

It is then necessary to specify a BSV package as the source file. It is
important to note that this source package’s dependencies must exist in the
same directory as the source file, unless it is part of Bluespec’s library pack-
ages, otherwise the package will not be found by the translator. Next, it is
necessary to specify which module within the selected package is the top-level
module under examination. This information is necessary for the production
of transition predicates, and cannot be deduced by the algorithm. If no valid
module is selected, the translator fails execution, providing a list of modules
which exist within the selected package. As a final argument, the user may
optionally specify an output directory for the translator to put the translated
files. In cases where the required module information is omitted, the soft-
ware will display a list of applicable module names. Some packages do not
contain modules, such as those containing only type definitions or function
declarations. In such cases, the module name may be omitted correctly.

The translator will always create a new directory to place its output. If
the translator is instructed to place the output in a certain directory and that
directory already exists, it will create a new directory, suffixed with “ VXXX”,
where XXX is the number of pre-existing suffixed directories incremented by
one. It is therefore possible to store 1000 versions of the same translated
module in the same directory. If the translator receives no indication of
an output directory, it will put the output directory in the translator’s own
home directory, named with the top level module with the suffix “-pvs,” and
optionally the version number suffix.

Once invoked, the BAPIP translation tool requires no further input from
the user, and will either successfully execute the translation process or indi-
cate a syntax error in the selected BSV package, or a scheduling error.

207

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

A.4.1 User Specification of Top-Level Method Invocations

While methods always take precedence over rules with respect to action ar-
bitration, the set of methods available for scheduling must have been invoked
by a supermodule during that clock cycle. If we consider that each method
either fires or does not fire, each set of methods creates a particular and pos-
sibly unique universal schedule. For clarity, we will refer to these as “plans”.

The cardinality of the set of possible plans is 2n, where n is the number
of action methods in the module. For the target top-level module of the
case study in §5, n = 61, yielding 2.305843 × 1018 possible plans. Needless
to say, brute force verification over all plans is not possible at such scales.
Fortunately, we are once again in a position that the overwhelming majority
of these plans are not of interest for the purposes of verification.

Since the construction of a proof sequent is performed by a person rather
than an algorithm, the person constructing the algorithm can use their knowl-
edge of the system to determine which method invocations are appropriate at
which times. The data-paths for such verification procedures on industrial-
scale examples (such as RapidIO) indicate that a conservative estimate of the
maximum number of chained transition predicates would be around 5 or 6.
It is reasonable for the user to dictate method behaviour at such timescales.

By default, BAPIP generates one plan wherein no methods are called, and
provides a mechanism for the user to specify custom plans. Upon execution,
BAPIP will search for a schedules.bapip file in the same directory as the
input file, and generates any plans it finds. A single plan is specified as
a space-delimited list of method names. Individual plans are delimited by
newlines. All plans must be declared explicitly by the user, excepting the
plan wherein no input methods are invoked.

One drawback of the above approach is that the structure is somewhat
rigid, and lacking some modern conveniences, such being able to generate
multiple schedules from one set of methods by making some of the methods
optional. Such improvements are left as future work.

A full listing of the code for this project results in the thesis document
over a thousand pages. As such, these appendices are supplemented by a
digital appendix, available at https://github.com/nmoore771/bapip. The
code listing for our traffic light example (§C), and all others are reserved for
the digital appendix.

208

https://github.com/nmoore771/bapip

B. FULL CODE LISTING FOR BAPIP TRANSLATION
TOOL

The full code listing for the BAPIP translation software is available in the
digital appendices at https://github.com/nmoore771/bapip.

B.1 Haskell Source Files

B.1.1 BAPIP.hs

B.1.2 BSV2PVS.hs

B.1.3 BSVGenerator.hs

B.1.4 BSVLexer.hs

B.1.5 ConflictSolver.hs

B.1.6 HEXLexer.hs

B.1.7 LexerTypes.hs

B.1.8 LiteralLexer.hs

B.1.9 MacroProcessor.hs

B.1.10 PVS2BSV.hs

B.1.11 PVSGenerator.hs

B.1.12 SourceFiles.hs

B.1.13 TSP2BSV.hs

B.1.14 TSPLexer.hs

209

https://github.com/nmoore771/bapip

C. FULL CODE LISTING FOR TRAFFIC SIGNALS
EXAMPLE

What follows are full code listings for the scheduling example presented in
§4.2.

C.1 BSV Source Files

C.1.1 TrafficSignals.bsv

BSV�
package TrafficSignals;

interface TrafficSignals ;
method Action reset ();
method Action pedestrian request NS();
method Action pedestrian request EW();
method Bit#(2) getlamp NS();
method Bit#(2) getlamp EW();
method Bool getPedestrianLamp NS();
method Bool getPedestrianLamp EW();

endinterface

(∗descending urgency = ”reset,pedestrian request NS,
pedestrian request EW”∗)

module mkTrafficSignals (TrafficSignals);
Reg#(Bit#(2)) carLamps NS <− mkReg(2);
Reg#(Bit#(2)) carLamps EW <− mkReg(2);
Reg#(Bit#(9)) t <− mkReg(0);

rule tick ;
if (t < 300)

t <= t + 1;

210

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

else
t <= 0;

endrule

rule goYellow NS ((carLamps NS == 2’d0) && (t == 9’d140));
carLamps NS <= 1;

endrule

rule goRed NS ((carLamps NS == 2’d1) && (t == 9’d160));
carLamps NS <= 2;

endrule

rule goGreen NS ((carLamps NS == 2’d2) && (t == 9’d0));
carLamps NS <= 0;

endrule

rule goYellow EW ((carLamps EW == 2’d0) && (t == 9’d0));
carLamps EW <= 1;

endrule

rule goRed EW ((carLamps EW == 2’d1) && (t == 9’d20));
carLamps EW <= 2;

endrule

rule goGreen EW ((carLamps EW == 2’d2) && (t == 9’d160));
carLamps EW <= 0;

endrule

method Action reset ();
carLamps NS <= 2;
carLamps EW <= 2;
t <= 0;

endmethod

method Action pedestrian request NS();
if (carLamps EW == 0 && t < 9’d280)

t <= 280;
endmethod

method Action pedestrian request EW();

211

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

if (carLamps NS == 0 && t < 9’d120)
t <= 120;

endmethod

method Bit#(2) getlamp NS();
return carLamps NS;

endmethod

method Bit#(2) getlamp EW();
return carLamps EW;

endmethod

method Bool getPedestrianLamp NS();
return carLamps NS == 0;

endmethod

method Bool getPedestrianLamp EW();
return carLamps EW == 0;

endmethod

endmodule : mkTrafficSignals

endpackage : TrafficSignals �
END BSV

C.2 Generated PVS Files

C.2.1 TypeDefinitions.pvs

PVS�
TypeDefinitions : theory

begin

importing arith bitwise
importing Maybe
importing FIFO

212

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

Int(n : int) : TYPE = {i:int | −(2ˆ(n−1)) <= i AND i < 2ˆ(n−1)}
UInt(n : int): TYPE = {i:int | 0 <= i AND i < 2ˆn}
Bit(n : int) : TYPE = {i:int | 0 <= i AND i < 2ˆn}

mkInt(n : int) : Int(n) = 0
mkUInt(n : int) : UInt(n) = 0
mkBit(n : int) : Bit(n) = 0

end TypeDefinitions �
END PVS

C.2.2 State.pvs

PVS�
State : theory

begin

importing TypeDefinitions

TrafficSignals : type =
[# t : Bit(9)
, carLamps EW : Bit(2)
, carLamps NS : Bit(2)

#]

213

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

TrafficSignals var : var TrafficSignals

mkTrafficSignals (TrafficSignals var) : bool
= TrafficSignals var‘t = 0
AND TrafficSignals var‘carLamps EW = 2
AND TrafficSignals var‘carLamps NS = 2

end State �
END PVS

C.2.3 Methods.pvs

PVS�
Methods : theory

begin

importing State

getPedestrianLamp EW (index : nat, pre : TrafficSignals, mod :
TrafficSignals) : bool = IF (index = 0)

THEN (mod‘carLamps EW = 0)
ELSE IF (index = 1)
THEN (mod‘carLamps EW = 0)
ELSE False
ENDIF ENDIF

getPedestrianLamp NS (index : nat, pre : TrafficSignals, mod :
TrafficSignals) : bool = IF (index = 0)

THEN (mod‘carLamps NS = 0)
ELSE IF (index = 1)
THEN (mod‘carLamps NS = 0)
ELSE False
ENDIF ENDIF

214

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

getlamp EW (index : nat, pre : TrafficSignals , mod : TrafficSignals) :
Bit(2) = IF (index = 0)

THEN mod‘carLamps EW
ELSE IF (index = 1)
THEN mod‘carLamps EW
ELSE 0
ENDIF ENDIF

getlamp NS (index : nat, pre : TrafficSignals , mod : TrafficSignals) :
Bit(2) = IF (index = 0)

THEN mod‘carLamps NS
ELSE IF (index = 1)
THEN mod‘carLamps NS
ELSE 0
ENDIF ENDIF

end Methods �
END PVS

C.2.4 Transitions.pvs

PVS�
Transitions : theory

begin

importing Methods

transition val (index : nat, pre : TrafficSignals) : TrafficSignals =
IF (index = 0) THEN
pre with

[t := if (pre‘t < 300)
then (pre‘t + 1)
else 0

endif

215

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

, carLamps EW := if (((pre‘carLamps EW = 2) AND (pre‘t =
160)))

then 0
else if (((pre‘carLamps EW = 1) AND (pre‘t = 20)))

then 2
else if (((pre‘carLamps EW = 0) AND (pre‘t = 0)))

then 1
else pre‘carLamps EW

endif
endif

endif
, carLamps NS := if (((pre‘carLamps NS = 2) AND (pre‘t = 0)

))
then 0
else if (((pre‘carLamps NS = 1) AND (pre‘t = 160)))

then 2
else if (((pre‘carLamps NS = 0) AND (pre‘t = 140)))

then 1
else pre‘carLamps NS

endif
endif

endif
]

ELSE pre
ENDIF

transition val (index : nat, pre : TrafficSignals) : TrafficSignals =
IF (index = 1) THEN
pre with

[t := 0
, carLamps EW := 2
, carLamps NS := 2
]

ELSE pre
ENDIF

transition (index : nat, pre, post : TrafficSignals) : bool =
post = transition val (index, pre)

216

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

transition (index : nat, pre, post : TrafficSignals) : bool =
post = transition val (index, pre)

end Transitions �
END PVS

C.2.5 TrafficSignals.pvs

PVS�
Theorems[(IMPORTING Time) delta t:posreal] : theory

begin

importing Transitions
importing ClockTick[delta t]

t : VAR tick

s : VAR [tick −> TrafficSignals]
pre, post, TrafficSignals var : VAR TrafficSignals

% The following transitions have been scheduled.
% 0 : Methods Invoked = {none}
% : Input Args = {none}
%
% 1 : Methods Invoked = {reset, pedestrian request NS}
% : Input Args = {none}
%
% The following arguments must be supplied to invoke the transition

predicate .

217

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

% index −> The index number corresponding to the schedule you wish to
invoke

% pre −> The pre−state of the transition predicate
% post −> The post−state of the transition predicate
% method arguments −> supply the arguments given in the above list of

schedules, in the order they appear.
%
% For an example of how this is intended to work, take a look at the auto−

generated consistency theorems below.

%test1 : theorem <antecedents>
%implies <consequents>

%|− consistency 0 : PROOF
%|− (then (skolem!)
%|− (inst + ”transition val (i !1, pre!1)”)
%|− (rewrite transition)
%|− (rewrite transition val)
%|− (assert))
%|− QED

consistency 0 : Theorem
FORALL (i : nat, pre : TrafficSignals) :

EXISTS (post : TrafficSignals) :
transition (i , pre, post)

%|− consistency 1 : PROOF
%|− (then (skolem!)
%|− (inst + ”transition val (i !1, pre!1)”)
%|− (rewrite transition)
%|− (rewrite transition val)
%|− (assert))
%|− QED

consistency 1 : Theorem
FORALL (i : nat, pre : TrafficSignals) :

EXISTS (post : TrafficSignals) :
transition (i , pre, post)

218

Ph.D. Thesis – NCC Moore McMaster University – Computing and Software

end Theorems �
END PVS

219

D. FULL CODE LISTING FOR LIMITS ALARM CASE
STUDY

Full code listings for the Limits Alarm case study (§6.1) may be found in the
digital appendix to this thesis, at https://github.com/nmoore771/bapip.

D.1 BSV Source Files

D.1.1 LIMITS ALARM.bsv

D.1.2 HYSTERESIS.bsv

D.2 Generated PVS Files

D.2.1 TypeDefinitions.pvs

D.2.2 State.pvs

D.2.3 Transitions.pvs

D.2.4 LIMITS ALARM.pvs

D.3 PVS Proof File

D.3.1 LIMITS ALARM.prf

220

https://github.com/nmoore771/bapip

E. FULL CODE LISTING FOR ALARM INT CASE STUDY

Full code listings for the ALRM INT case study (§6.3) may be found in the
digital appendix to this thesis, at https://github.com/nmoore771/bapip.

E.1 TSP Source File

E.1.1 ALRM INT.tsp

E.2 Generated BSV File

E.2.1 Alrm int.bsv

E.3 Generated PVS Files

E.3.1 TypeDefinitions.pvs

E.3.2 State.pvs

E.3.3 Methods.pvs

E.3.4 Transitions.pvs

E.3.5 mkAlrm int.pvs

221

https://github.com/nmoore771/bapip

F. FULL CODE LISTING FOR RAPIDIO DECODER CASE
STUDY

Full code listings for the RapidIO read/write size and word pointer decoder
module case study (§6.3) may be found in the digital appendix to this thesis,
at https://github.com/nmoore771/bapip.

F.1 BSV Source Files

F.1.1 RapidIO.defines

F.1.2 RapidIO DTypes.bsv

F.1.3 RapidIO RegisterFile Offset.defines

F.1.4 RapidIO TgtDecoder ByteCnt ByteEn.bsv

F.2 Generated PVS Files

F.2.1 TypeDefinitions.pvs

F.2.2 RapidIO TgtDecoder ByteCnt ByteEn.pvs

F.3 PVS Proof File

F.3.1 RapidIO TgtDecoder ByteCnt ByteEn.prf

222

https://github.com/nmoore771/bapip

G. FULL CODE LISTING FOR RAPIDIO ENCODER CASE
STUDY

Full code listings for the RapidIO read/write size and word pointer encoder
module case study (§6.4) may be found in the digital appendix to this thesis,
at https://github.com/nmoore771/bapip.

G.1 BSV Source Files

G.1.1 RapidIO.defines

G.1.2 RapidIO DTypes.bsv

G.1.3 RapidIO InitEncoder WdPtr Size.bsv

G.2 Generated PVS Files

G.2.1 TypeDefinitions.pvs

G.2.2 State.pvs

G.2.3 Methods.pvs

G.2.4 Transitions.pvs

G.2.5 RapidIO InitEncoder WdPtr Size.pvs

G.3 PVS Proof File

G.3.1 RapidIO InitEncoder WdPtr Size.prf

223

https://github.com/nmoore771/bapip

H. FULL CODE LISTING FOR RAPIDIO TRANSACTION
ID CASE STUDY

Full code listings for the RapidIO transaction ID echoing case study (§6.5)
may be found in the digital appendix to this thesis, at https://github.

com/nmoore771/bapip.

H.1 BSV Source Files

H.1.1 RapidIO InComingPkt Separation.bsv

H.1.2 RapidIO IOPkt Concatenation.bsv

H.1.3 RapidIO IOPkt Generation.bsv

H.1.4 RapidIO MainCore.bsv

H.1.5 RapidIO PktTransportParse.bsv

H.1.6 RapidIO RxPktFTypeAnalyse.bsv

H.1.7 RapidIO TargetReqIFC.bsv

H.1.8 RapidIO TargetRespIFC.bsv

224

https://github.com/nmoore771/bapip
https://github.com/nmoore771/bapip

I. INCLUDED PVS LIBRARY FILES

The following are full code listings for PVS library files required for theo-
rem proving. This standard set of libraries is included by default during
every successful BAPIP translation run. Full code listings are available from
https://github.com/nmoore771/bapip.

I.1 PVS Files

I.1.1 ClockTick.pvs

I.1.2 defined operators.pvs

I.1.3 monad.pvs

I.1.4 Time.pvs

I.1.5 arith bitwise.pvs

225

https://github.com/nmoore771/bapip

	Introduction
	Motivation
	Overview of Verification Methodology
	BSV to PVS
	Tabular Expressions to BSV and PVS

	Contributions
	Publications

	Related Work
	Verification Work on Bluespec Designs
	Other Projects of Interest

	Organization of the Thesis

	Preliminaries
	Bluespec SystemVerilog
	The Bluespec Language at a Glance
	A More Detailed Semantic Overview of a Bluespec Package
	Logical Abstraction of Bluespec Modules

	Prototype Verification System
	Constructing Theorems in PVS
	Antecedents
	Consequents
	Using the PVS Interactive Proof Environment
	Automatic Deduction on Functional Requirement Sequents
	Automatic Deduction on Consistency Sequents

	A Previous Monadic Embedding
	RISC V and RapidIO
	RISC-V
	The Shakti Project
	The RapidIO Interconnect Framework

	Extended Backus Naur Form
	Primer on Haskell and the Haskell Type System
	Haskell Type System Primer
	The Anatomy of a Haskell Function

	Tabular Specifications
	Disjointness
	Completeness
	Complications

	Definition and Parsing of our Subset of BSV
	Defining a Grammar for BSV
	BSV Types
	Literals
	Identifiers
	Expressions
	Statements
	Intra-module Interfaces
	State Declaration
	Action Declaration
	Rule Declaration
	Method Body Declaration
	Module Level Grammar
	Default Instance Declaration
	Function Declaration
	Type Definition
	Constant Declaration
	Interface Declaration
	Import Declaration
	Include Declaration
	Package Level Grammar

	Data Structures Supporting an Abstract Syntax for a PVS Embedding
	PVS Package
	PVS Constant Declaration and Type Definition
	PVS State Declaration
	PVS Transitions
	Transition Trees
	Functions
	Instance Definitions

	A Grammar for PVS Output Files
	A Treatment of Tabular Specifications
	Tabular Specification Grammar
	Tabular Specification Abstract Syntax
	A Note on Generation

	Conclusion

	Deriving State Interactions from BSV Action Arbitration Semantics
	BSV Semantics
	The BSV Transition System
	Arbitration
	Wire and FIFO Semantics

	An Arbitration Algorithm
	A Running Example
	The Determination of Conflicts
	Conflict Resolution using Rules of Precedence
	Generating a Universal Schedule
	State-Oriented Universal Schedule Interpretation
	Comparison to Richards and Lester Method

	Optimizations Addressing Scalability
	Tree Simplification via If Expression Observations
	Module Hierarchy Action Set Refinement
	Action Merger via Schedule Independence Checking
	Top Level Methods and Schedule Indexing

	Conclusion

	Proving the Correctness of BSV Implementations
	Refinement via Timing Simulation
	Using Tabular Specifications to Construct Theorems
	Proofs of Consistency

	Case Studies
	Introduction to RISC-V and RapidIO
	The Limits Alarm Function Block
	The Hysteresis Function Block
	The Limits Alarm Function Block
	Constructing the Proof Sequent
	Proving the Proof Sequent

	Alarm_Int and Automatic Generation using Tabular Specifications
	Encoding in PVS
	Resultant BSV Description
	Generation of Proofs of Correctness and Consistency

	RapidIO Read/Write Size and Word Pointer Decoder Module
	Formalization of the RISC-V Specification
	Application to Shakti and the Translation Process
	Generating a Proof of Correctness
	Proving the Sequent
	Limitations of this Case Study

	RapidIO Read Size and Word Pointer Encoder Module
	Objective
	Formalization of the RISC-V Specification
	Performing the Translation
	Formalization of the RISC-V Specification
	Derivation of a Theorem
	Proving The Sequent
	In Conclusion

	Progress Towards RapidIO Transaction ID Echoing
	The Problem Attempted
	Derivation of a Formal Property
	Translator Configuration
	Current State of the Translation

	Conclusion
	Summary of Empirical Data
	Translation Software

	Applicability of Work
	Alternative Approaches
	Updates Regarding Recent Software Releases
	Open Source Bluespec Compiler Release

	Future Work
	Other Pragmas
	Type Classes and Type Class Declarations
	Parameterized Modules

	Summary of Contributions

	Appendix
	BAPIP: A BSV-to-PVS Translator
	Translator Architecture
	Organization of PVS Output

	Prerequisites
	Installation of Bluespec SystemVerilog
	Installation and Configuration of PVS
	Compile-time Requirements

	Unmodelled Behaviours
	Other Pragmas
	Type Classes and Type Class Declarations
	Parameterized Modules

	Operational Instructions
	User Specification of Top-Level Method Invocations

	Full Code Listing for BAPIP Translation Tool
	Haskell Source Files
	BAPIP.hs
	BSV2PVS.hs
	BSVGenerator.hs
	BSVLexer.hs
	ConflictSolver.hs
	HEXLexer.hs
	LexerTypes.hs
	LiteralLexer.hs
	MacroProcessor.hs
	PVS2BSV.hs
	PVSGenerator.hs
	SourceFiles.hs
	TSP2BSV.hs
	TSPLexer.hs

	Full Code Listing for Traffic Signals Example
	BSV Source Files
	TrafficSignals.bsv

	Generated PVS Files
	TypeDefinitions.pvs
	State.pvs
	Methods.pvs
	Transitions.pvs
	TrafficSignals.pvs

	Full Code Listing for Limits Alarm Case Study
	BSV Source Files
	LIMITS_ALARM.bsv
	HYSTERESIS.bsv

	Generated PVS Files
	TypeDefinitions.pvs
	State.pvs
	Transitions.pvs
	LIMITS_ALARM.pvs

	PVS Proof File
	LIMITS_ALARM.prf

	Full Code Listing for Alarm_Int Case Study
	TSP Source File
	ALRM_INT.tsp

	Generated BSV File
	Alrm_int.bsv

	Generated PVS Files
	TypeDefinitions.pvs
	State.pvs
	Methods.pvs
	Transitions.pvs
	mkAlrm_int.pvs

	Full Code Listing for RapidIO Decoder Case Study
	BSV Source Files
	RapidIO.defines
	RapidIO_DTypes.bsv
	RapidIO_RegisterFile_Offset.defines
	RapidIO_TgtDecoder_ByteCnt_ByteEn.bsv

	Generated PVS Files
	TypeDefinitions.pvs
	RapidIO_TgtDecoder_ByteCnt_ByteEn.pvs

	PVS Proof File
	RapidIO_TgtDecoder_ByteCnt_ByteEn.prf

	Full Code Listing for RapidIO Encoder Case Study
	BSV Source Files
	RapidIO.defines
	RapidIO_DTypes.bsv
	RapidIO_InitEncoder_WdPtr_Size.bsv

	Generated PVS Files
	TypeDefinitions.pvs
	State.pvs
	Methods.pvs
	Transitions.pvs
	RapidIO_InitEncoder_WdPtr_Size.pvs

	PVS Proof File
	RapidIO_InitEncoder_WdPtr_Size.prf

	Full Code Listing for RapidIO Transaction ID Case Study
	BSV Source Files
	RapidIO_InComingPkt_Separation.bsv
	RapidIO_IOPkt_Concatenation.bsv
	RapidIO_IOPkt_Generation.bsv
	RapidIO_MainCore.bsv
	RapidIO_PktTransportParse.bsv
	RapidIO_RxPktFTypeAnalyse.bsv
	RapidIO_TargetReqIFC.bsv
	RapidIO_TargetRespIFC.bsv

	Included PVS Library Files
	PVS Files
	ClockTick.pvs
	defined_operators.pvs
	monad.pvs
	Time.pvs
	arith_bitwise.pvs

