
Evolution of Security in Automated
Migration Processes

In memory of Mahsa Amini

and all those who were innocently killed . . .

Evolution of Security in Automated
Migration Processes

By Seyed Parsa Tayefeh Morsal, B.Sc

A Thesis Submitted to the School of Graduate Studies in the
Partial Fulfillment of the Requirements for the Degree Master

of Applied Science

McMaster University © Copyright by Seyed Parsa
Tayefeh Morsal September 25, 2022

http://www.mcmaster.ca/

McMaster University

Master of Applied Science (2022)

Hamilton, Ontario (Department of Computing & Software)

TITLE: Evolution of Security in Automated Migration Pro-

cesses

AUTHOR: Seyed Parsa Tayefeh Morsal (McMaster University)

SUPERVISOR: Dr. Richard Paige

NUMBER OF PAGES: ix, 75

ii

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/
http://www.mcmaster.ca/

Abstract
As users’ requirements change in today’s fast-paced business market, com-

puter software has to adapt to new hardware, technologies and requirements

to keep up with the trend. Therefore, to avoid depreciation and obsoles-

cence, which can have detrimental effects on a product, software needs to

be constantly maintained and, when passed a certain point in its lifecycle,

needs to be migrated or re-developed from scratch. Automated migration

enables software vendors to decrease the cost of the migration process by

source code generation. However, as security is a crucial requirement in

any system, it is not guaranteed that the previously satisfied security re-

quirements are satisfied in the migrated software. Therefore, it is critical

to study the evolution of security throughout the automated migration

process to predict where new security vulnerabilities may emerge and to

understand the scale on which the security is affected.

iii

Acknowledgements
I want to express my utmost gratitude to my primary supervisor, Prof.

Richard Paige, who guided me throughout my academic journey with his

deep insight, exceptional professionalism and unconditional support during

the difficult times of COVID and immigration.

iv

Contents

Abstract iii

Acknowledgements iv

Contents v

List of Figures viii

List of Tables ix

1 Introduction 1
1.1 Introduction . 1
1.2 Research Questions . 3
1.3 Motivations . 3

1.3.1 Structure of the thesis 4

2 Background 5
2.1 Software Obsolescence . 5
2.2 Mitigation Strategies . 6
2.3 Migration . 7
2.4 Model-Driven Engineering 8
2.5 Automated Software Migration 9
2.6 Non-functional Requirements 10
2.7 Security Vulnerability . 10
2.8 Software Security Analysis 11
2.9 Vulnerability Insertion . 12

3 Related Works & Literature Review 14
3.1 Overview . 14
3.2 Static Analysis . 15
3.3 Vulnerability Insertion . 17

v

4 Proposed Method 20
4.1 Overview . 20
4.2 Design . 20

4.2.1 Migration Scenarios 22
4.2.2 Java to JavaScript 22
4.2.3 C/C++ to Native Java Execution 24
4.2.4 Automation Scope 25

4.3 Migration Tools . 27
4.3.1 Metrics . 28
4.3.2 JSweet . 30
4.3.3 Java Native Interface 31
4.3.4 Challenges & Limitations 33

4.4 Security Analysis Tools . 34
4.4.1 Metrics . 34
4.4.2 SonarQube . 36
4.4.3 Coverity . 37
4.4.4 Challenges & Limitations 38

4.5 Vulnerability Insertion . 39
4.5.1 Overview . 39
4.5.2 Control Flow Graph 40
4.5.3 Code Insertion . 41
4.5.4 The Scope . 43
4.5.5 Challenges & Limitations 44

5 Samples 46
5.1 Overview . 46

5.1.1 Terminology . 46
5.2 Samples . 47
5.3 Metrics . 47

5.3.1 Project Size . 48
5.3.2 Diversity . 48
5.3.3 Obsolescence . 48
5.3.4 Java to JavaScript 49
5.3.5 C/C++ to JNI . 50
5.3.6 Vulnerability Insertion 50

5.4 Scope & Limitations . 51

6 Results 57
6.1 Overview . 57
6.2 Java to JavaScript . 57
6.3 C++ to JNI . 58

vi

6.4 Vulnerability Insertion . 59
6.5 JNI Security . 60
6.6 Other Observations . 63

7 Conclusion 65
7.1 Overview . 65
7.2 Discussion . 65
7.3 Future Works . 69

vii

List of Figures

4.1 JSweet migration for a single class 32
4.2 High-level JNI Architecture 33
4.3 SonarQube SAST Output Example 37
4.4 List of basic blocks in a CFG generated by GCC 42
4.5 List of local variables by Ctag 43
4.6 Vulnerability Insertion. 44

5.1 Example of obsolescence due to outdated Java version in
build file. 49

5.2 Example of obsolescence due to deprecated library. 50

6.1 Evolution in the severity of the security vulnerabilities based
on Coverity results. 60

6.2 Evolution of defect types based on SonarQube results. 60
6.3 Evolution in the severity of the security vulnerabilities based

on Coverity results . 62

viii

List of Tables

5.1 Java to JavaScript Candidates 51
5.2 Java to JavaScript Candidates Github repositories 52
5.3 Java to JavaScript Candidates Description 53
5.4 C/C++ to JNI Candidates. 54
5.5 C/C++ to JNI Candidates Description 55
5.6 C/C++ to JNI Candidates GitHub repositories 55
5.7 List of the used vulnerabilities for insertion 56

6.1 Pre & post-migration security analysis by Coverity for Java
to JavaScript Samples . 58

6.2 Pre & post-migration security analysis by SonarQube(SonarScanner)
for Java to JavaScript Samples 59

6.3 Pre & post-migration security analysis by Coverity for C/C++
to JNI Samples . 61

6.4 Evolution in the number of the inserted security vulnerabil-
ities based on their language 63

6.5 Evolution of the line of code (LOC) & code duplication per-
centage (DUP) reported by SonarQube 64

ix

Chapter 1

Introduction

1.1 Introduction

Security is a critical property of any system, and a considerable amount of

resources are spent to guarantee and maintain a system’s security. However,

as the system changes due to obsolescence or change in users’ requirements,

the previously satisfied security requirements may no longer hold. There-

fore, it is critical to understand how security is affected when a system goes

through any change.

Migration is one of the most common and essential changes that can

happen to a system throughout its lifetime [1]. A migration process can

be applied on various levels, such as hardware migration in case of hard-

ware obsolescence, operating system migration due to reliability or com-

patibility issues, database migration due to potential changes in business

requirements, or programming language migration due to language or li-

brary obsolesce. Regardless of the scope of the migration process, it is

1

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

critically important to know whether functional and non-functional require-

ments within the scope of the requirements of the migrated system are still

satisfied after the migration process is completed. The system validation

and verification are mainly achieved and investigated through unit testing.

However, this method only answers a single case: whether the functional

and non-functional requirements are still satisfied in this particular system

that went through a specific migration process [1].

Although this traditional method provides a case-dependant answer, it

fails to generalize for future migrations or estimate how a specific func-

tional or non-functional property is affected. Most importantly, in this

method, in order to verify whether critical system properties such as secu-

rity remain intact or were affected by the migration process, the migration

process should be completed; as a result, if it fails to satisfy critical system

requirements, it will waste the resources used to complete the migration

process in the first place [2].

Therefore, a reasonable estimation of how much a system requirement,

whether function or non-functional, is affected by a migration process before

fully committing to the migration process serves a great advantage and may

avoid potential resource loss due to a failed migration process.

In this thesis, it is the author’s main goal to study how security is af-

fected in an automated programming language migration by studying vari-

ous cases of automated language migration and try to achieve a generalized

answer on the extent to which security is affected in such process.

2

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

1.2 Research Questions

The main question that this thesis hopes to answer within its scope is how

an automated migration process affects the security of a software product,

among its other non-functional properties. The literature review carried

out (see Chapter 2) suggests that the extent to which security properties

are affected by software migration has not been systematically analyzed in

previous work. Although the answer to this question can be case-dependent

and have various dimensions, the goal of this thesis is to provide potential

software developers who might incorporate an automated migration process

to migrate their obsolete codebase to a new language with an estimate of

what the state of their software product would be after the migration, from

the security standpoint.

1.3 Motivations

Although the answer this thesis hopes to provide to the above research

question would be generalized and can be, in some cases, inaccurate due

to the different nature of every software product, the author believes that

even a rough estimate of the level of security concern the software develop-

ers would face after migration can be immensely beneficial to them to make

critical technical decisions before actually going through the effort-intensive

process of complete production level migration. For instance, using the an-

alytical framework introduced in this thesis, a team of software developers

might decide that given the results of the post-migration security analysis,

3

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

and considering the internal efforts of the team to apply the migration pro-

cess, as well as any other hidden factors, know only to the team members,

it might not be beneficial for them to go through an automated migration

process or move to a model-driven architecture. Even for a mid-size cor-

porate, knowing the fact that whether or not they will need to re-engineer

their product’s security model after migration, or in contrast, whether the

security concerns would be minimal and could be dealt with in a short pe-

riod, can make a substantial financial difference for them, where the former

may require hundreds of thousands of dollars worth of reinvestment. At

the same time, the latter can be done with the company’s ongoing payrolls.

1.3.1 Structure of the thesis

In Chapter 2, related background concepts are briefly presented. Chapter

3 provides a review of the related literature and previous works. The au-

thor’s proposed method is introduced in Chapter 4, and technical details,

limitations and challenges are discussed. Chapter 5 provides a detailed

description of the performed experiments and samples, followed by the ob-

servations and results of the experiments in Chapter 6. Finally, in chapter

7 author’s conclusion and final discussion are presented.

4

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Chapter 2

Background

2.1 Software Obsolescence

Like any other product, software systems require constant maintenance and

support to adapt to their users’ ever-changing needs. However, as this is

an effort-intensive process, software vendors might fall behind in keeping

up with the innovation waves as customers’ requirements progress. This

can be caused by multiple factors such as a lack of financial resources to

maintain the product, obsolescence of hardware systems used to develop

the software product, or the technical team’s inability to incorporate new

technologies. All of which can gradually deteriorate the quality of a product

that once perfectly served its customers’ needs and result in the total loss

of efforts made to develop and maintain the software product in the first

place [3].

Therefore, software obsolescence is a serious problem that calls for ex-

tensive engineering and analysis; otherwise, if taken lightly, it can turn

5

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

revenue-making software into a constant liability for its vendors or, in worst-

case scenarios, lead to disasters in case of software failure in safety-critical

systems [4].

2.2 Mitigation Strategies

One of the most effective ways to mitigate software obsolescence is to try

to avoid it in the first place through frequent system upgrades and code

maintenance. This includes identifying deprecated APIs and libraries and

incorporating modular architectures to reduce coupling and dependency be-

tween different modules. Decoupling the modules reduces the effort needed

to replace or redesign a deprecated module. However, another source of

software obsolescence is the technological gap between different parts of

the product, which in the case of the highly modular system can result in

sudden incompatibility between different modules once a technology used

by a specific module is deprecated or the service is discontinued [5].

However, applying obsolescence mitigation strategies is naively over-

looked since crippling obsolescence does not seem to be an imminent threat

to a working system or service until the technological gap between differ-

ent parts of the system or availability of required third-party hardware or

service compromises the main functional properties of the product. By

this time, an extensive system-wide migration is required to maintain the

software system [5].

6

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

2.3 Migration

As mentioned earlier, migration is one of the main obsolescence mitigation

strategies, which ranges from hardware migration, i.e. using new or more

compatible hardware, migrating to a different operating system, migrating

to a new programming language or using updated and frequently main-

tained APIs and libraries. Migration can also be a system-wide transition,

such as moving from a monolithic architecture to a microservice architec-

ture or incorporating a model-driven design [1]. However, as mentioned ear-

lier, any of the migrations are effort-extensive and require complex changes

in the system, the difficulty of which might outweigh the required effort to

recreate the software system from scratch in the new desired platform or

language. In some cases, if possible, rewriting the codebase from scratch in

a modern language can be the optimal solution, especially when the tech-

nological and age gap between the source language and the target language

is enormous, e.g. migrating from COBOL to Javascript. However, in other

cases, this may not be a feasible solution, significantly when rewriting the

entire codebase might take substantial time and resources that are unavail-

able or the obsolete part of the system is entirely or partially isolated from

the rest of the system [1] [2].

Many mitigating solutions for addressing software obsolescence and up-

dating a software system are accessible from a technological standpoint.

For example, software rehosting and systematic migration solve the issue

by moving a software system to a new platform or development environment

7

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

simultaneously and in a scheduled manner while taking software architec-

ture into account [6].

2.4 Model-Driven Engineering

Model-driven engineering (MDE) is a software engineering approach that

mainly focuses on raising the level of abstraction to make the general course

of designing a software product easier. MDE introduces models into de-

signing and maintaining a software system, which allows developers and

stakeholders to deal with design decisions on a more abstract level, pre-

venting the design process from becoming unnecessarily overcomplicated

with technical and implantation details [7]. MDE is not limited to the

early stages of a software system. By focusing on models instead of other

software artifacts such as code and documentation, MDD introduces a new

principle to the entire software evolution cycle, from designing an initial

software product to maintaining a software system through its lifetime and

migrating an existing software system when it faces obsolescence. By in-

corporating models not weighed down by technical and syntactic details,

MDE sets the ground for the automation of various software processes [8].

For instance, model-to-model transformation enables automated modifica-

tion of models, while model-to-text transformation allows the automated

generation of code from the existing models [9].

8

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

2.5 Automated Software Migration

Automated software migration is migrating a source software into a new

language, platform or environment without manually rewriting each line of

code in the target language. Instead, in an automated migration process,

most of the codebase is automatically converted to a new language using

methods similar to parsing and compiling the source code into a target ma-

chine code [10]. However, automated migration is not limited to transpiling

a source code in a source language to a code with similar functionality in

the target language. If the source software has been developed using MDE

principles and techniques, then redevelopment and migration time may be

significantly reduced because of the opportunity to reuse model-to-model

and model-to-text transformations. It must be noted that only in straight-

forward cases automated migration directly results in executable code in a

target language. The output of the process usually cannot be compiled and

can be, to varying extents, incomplete and still requires modification and

completion to become executable. However, the overall effort to modify

the automatically generated code is promised to be significantly lower than

rewriting the whole software from scratch in the target language [11]. The

automatically generated code promises to hold, if not all, most of the func-

tional properties of the source software. The automated migration process

allows the development team to exploit the potentials of transpilers and

model-to-text transformers to do most of the effort-intensive job of con-

verting code bodies into the target language.

9

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

2.6 Non-functional Requirements

Non-functional requirements (NFR) describe limitations on the solution

space and encompass a broad spectrum of attributes like security, main-

tainability, usability, execution time, and safety. In contrast, functional

requirements specify what the system needs to perform [12]. NFRs are

system-wide properties that cannot be directly pinned down to a single

component in the system; in contrast, they are satisfied when each com-

ponent plays its role correctly. Therefore it is hard to trace where NFRs

are violated or not satisfied and to provide a clear guideline on dealing

with such cases. For instance, if the execution time of a system follows an

unusual pattern, it is challenging to locate the problem’s source without

examining the system’s whole workflow step by step. The same also ap-

plies to other NFRs such as security and safety[13]. Furthermore, it isn’t

straightforward to test whether NFRs are satisfied since it is challenging

to quantify these properties and create benchmarks and testing and verifi-

cation strategies for them. Therefore, substantial human supervision and

expert knowledge are required to manually and case-dependently trace and

verify their satisfaction [14].

2.7 Security Vulnerability

Any defect in a system that may compromise the system’s availability,

confidentiality or integrity is considered a security vulnerability. Security

vulnerabilities can emerge on various levels such as hardware, software,

algorithm, communication protocols, etc., due to various reasons such as

10

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

obsolescence, hardware defect, software incompatibility, design mistakes,

etc. Furthermore, a security vulnerability in a particular system’s depth

can affect other leaves and the whole system. For instance, a delay in cached

value removal from the CPU cache can break the user-kernel separation

and, when appropriately exploited, may allow a remote attacker to gain

root access to the system [15].

Therefore, it is critical to detect and mitigate security vulnerabilities

at any level, which requires substantial time and resources to be remotely

achieved.

2.8 Software Security Analysis

It can be argued that a system’s security is only as good as the security

analysis performed on it, which as a result, ties the security of a software

system to vulnerability detection tools and security auditing tools [16].

Due to the broad range of security vulnerabilities, security analysis can

be performed on various levels, from binary code and intermediate repre-

sentation (IR) to source code analysis, and with different approaches such

as static analysis and dynamic analysis, each having its advantages and

limitations. For example, while dynamic analysis studies the behaviour

of a runtime program, static analysis evaluates the program based on the

source code without requiring the code to be executed or fully complied

with[16].

11

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

2.9 Vulnerability Insertion

One of the critical challenges that security analysts face is the lack of vul-

nerability corpora to test and evaluate their vulnerability detection tools.

Vulnerability insertion is a technique to intentionally insert vulnerable snip-

pets of code into source code to test security requirements or vulnerability

detection tools thoroughly. Inserted vulnerabilities can be of various types

and inserted in different depths of the program. The artificially seeded

vulnerabilities can then be used to measure the accuracy of vulnerability

detection tools for different types of vulnerabilities with different depths

[17].

One of the main goals in vulnerability insertion is that the seeded code

should ideally not interfere with the functional properties of the source

code. Therefore, while the functional properties of the program remain

intact, its non-functional properties are slightly modified [18].

This method provides a flexible framework to use a single program as

a use case for different security analysis purposes. When applied as an

automated process (Automated Vulnerability Insertion), it enables security

researchers to create arbitrary and on-demand vulnerability corpora.

In summary, software obsolescence is a serious problem, and migration

strategies incorporate various methods in different stages of software devel-

opment to mitigate this problem. Automated software migration reduces

the cost and effort of the migration process. However, non-functional re-

quirements may be violated during an automated migration process. Static

12

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

analysis is a flexible and versatile method to investigate various properties

of a source code and provides various tools for software security analysis.

In the next chapter, related literature and previous works are reviewed.

13

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Chapter 3

Related Works & Literature

Review

3.1 Overview

In this section, I provide a high level overview of the current state of research

in different domains related to this thesis, and further review the existing

and similar works.

Although some of the topics discussed in this section may not directly

match with the scope of this thesis, the ideas or research direction used in

them indirectly inspired some parts of this thesis. It should also be noted

that one of the motivations of this thesis has been the limited number of

studies in this subject.

14

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

3.2 Static Analysis

static analysis is the analysis of source code performed without running

it, for checking properties such as correctness, security, timing, as well as

other functional or non-functional properties.

Static analysis tries to evaluate a source code without running the code.

Instead, it identifies the programming errors that may trigger specific vul-

nerabilities, such as buffer overflow, null pointer, format string, or dead or

inaccessible code that might suggest poor programming practices [19].

It should be noted that static analysis is not limited to source code

security analysis. Many by-products or prerequisites of the static analysis

process, such as Abstract Syntax Tree and Control Flow Graph (CFG), can

be used to analyze a source code for specific properties statically [19].

Industrial static analysis tools go as far as checking the programming

style for impaired function or variable names, coding anti-patterns and bad

smells in the code, which may indirectly increase the chance of serious

vulnerabilities [20].

Some static analysis tools incorporate traditional compiler-like tech-

niques to pars the source code for certain predefined expressions. However,

there have also been numerous valuable works that use machine learning

and deep learning methods for pattern detection or similarity detection,

using the existing vulnerability datasets such as CWE as training sets [19].

15

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

Although static analysis tools can locate code defects in large code bod-

ies in a relatively fast and low-cost fashion, the presence of false positives,

and code snippets that match the patterns of interest but are not defec-

tive, introduces significant challenges when using these tools at the indus-

trial level. Manual labour and expert knowledge is required to investigate

the flagged codes further and dismiss the false positives. Furthermore, as

static analysis tools cannot monitor the runtime behaviour of a program,

they can fail to identify more complex and sophisticated vulnerabilities.

For instance, a code might not contain any pattern of suspicious or de-

fective memory behaviour but, when executed, might create a time-based

side channel for other potentially malicious programs or compromise the

operating system’s interrupt handler queue [20].

Static analysis is contrasted with dynamic analysis, which monitors the

behaviour of a program during runtime and can look for the data flow,

performance, I.O access, memory behaviour, variable values, and other

runtime properties of the program. However, due to its extensive and

deep analysis,in general, dynamic analysis is often slower and requires more

resources, and can only be applied on fully executable code, which is only

available in the very late stages of software development [21].

Therefore, there is a trade-off between the time and resources used for

security analysis and the precision of the analysis. Also, it should be noted

that the earlier in the program development a defect is found, the less

the mitigation cost. Therefore, considering all the advantages and disad-

vantages, static analysis is wildly used in different development stages of

16

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

industrial software mixed with testing and expert supervision and code

review and is preferred over the traditional methods such as formal verifi-

cation and relatively resource extensive methods such as dynamic analysis

[16] [?].

Apart from its primary use case, static analysis is used in an automated

migration framework by Wood et al. to generate the Abstract Syntax Tree

(AST) of the robotic program to be migrated [22]. In this work, static anal-

ysis is further used for preprocessing, semantic analysis, name resolution

and binding. The proposed framework in RoboSMI uses the combination of

model-driven engineering and static analysis for the automated migration

of robotic software [23].

Furthermore, static analysis is used by Haas to identify unnecessary code

to reduce the cost of the software migration process [24]. In this work,

static analysis is used to identify the least central code in the dependency

structure of the software, which by the author’s hypothesis, is deemed

unnecessary. The study also tries to identify dead code, a code snippet

unreachable by the control flow with any input, with a similar mechanism

used to identify unnecessary code based on the dependency graphs and

relations generated by static analysis [24].

3.3 Vulnerability Insertion

With the emergence of web applications, mobile applications, the Internet

of Things (IoT) and other new domains, the need for extensive security

17

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

analysis has increased. However, vulnerabilities can be hard to detect,

and detecting them is hugely resource expensive. At the same time, a sig-

nificant amount of vulnerabilities are required to train, test, and evaluate

the vulnerability detection tools and static and dynamic security analyzers.

Therefore, multiple approaches are suggested by research scientists to auto-

matically and programmatically generate or synthesize new vulnerabilities

from a clean code base [18].

LAVA, for instance, uses variable tainting to trace a local variable through

the program and, by setting the value of the targeted variable to a critical

value in the code, triggers various kinds of defects in the lines dependent on

that variable. Unfortunately, LAVA’s vulnerabilities have been extremely

hard to detect since it uses magical values, a large random integer, to turn

an otherwise harmless line of code into a vulnerability. Therefore, only

dynamic analysis tools which trace data flow and the memory footprint of

the code may be able to identify them [25].

EvilCoder, on the other hand, uses a source-sink approach to identify

critical sinks in the code, such as memory calls, library calls, outputs,

and I.O calls and tries to remove the security conditions around those

lines. By this approach, EvilCode uses developers’ precautions such as size

checks and null checks to identify critical security points and by removing

(commenting) those security checks, it creates various vulnerabilities [17].

Other more complex tools like BugSynthesizer try to insert a new control

flow into the target code by carefully inserting previously designed state

18

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

machines into the code base and merging the target code with the inserted

code on critical points [26].

19

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Chapter 4

Proposed Method

4.1 Overview

In this section, an analytical method is introduced to provide a general an-

swer to the author’s research question: How does an automated migration

process affect the overall security of a software system? The author aims

to provide an analysis of a number of examples to identify patterns of the

evolution of security in an automated migration process. The concluded

analysis is discussed to be independent of the migration tools used for the

process.

4.2 Design

Assessing how security is affected in a migration process is not straightfor-

ward. While providing a case-specific answer is feasible, a general assess-

ment brings several complexities. By studying various cases of migration,

in this particular case, migrating from a programming language to another,

20

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

and investigating how the security has been affected after the migration pro-

cess is partially completed, with comparison to the security status of the

system prior to the migration process, the overall effect of the migration

process on the security of the system can be observed.

Therefore, the proposed analytical method works as follows. First, a

source code, which may have different characteristics, is selected. The

selected software then goes through a static security analysis tool, and

its security vulnerabilities are identified. Then, an automated migration

process is applied to the source code, which will output an automatically

generated source code in the target language. The new code is expected by

the advertised performance of the selected migration tools to partially (and

in some cases fully) satisfy the functional requirements of the initial source

code. The new code then goes through the post-migration static security

analysis, and its security vulnerabilities are identified.

By executing the pipeline mentioned above with several case studies with

various initial states and characteristics, the author believes that some no-

ticeable patterns will be observed, pointing out how the security is affected.

The observed patterns and conclusions can then be used as a guideline

to predict the effort required to modify a migration process’s output to

hold the initial system’s security requirements.

21

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

4.2.1 Migration Scenarios

In this section, two mainly addressed migration scenarios are introduced,

and the motivations, potential solutions, challenges and limitations of these

processes are discussed. Although the programming language migration

and its challenges are not limited to the cases mentioned in this section,

other cases and instances of programming language migration fall out of

the scope of this study.

4.2.2 Java to JavaScript

In the past decade, we have faced a surge of migration from native code

to browser executable JavaScript-based applications. Even desktop appli-

cations are becoming web applications run locally by a browser engine.

Likewise, at least at their early release stages, mobile apps are web pages

rendered to look like native apps. The CPUs are catching up with the trend

by providing machine language to translate Javascript (JS) code to the ma-

chine instructions directly, and web assembly is becoming more mature and

widespread [27] [28].

There are several reasons behind this industry-wide migration. First,

with JS, developers and designers do not need to concern themselves with

native libraries, platform-specific constraints, and in general, any compli-

cations related to the OS, hardware, and system-specific security features.

As a result, the effort to develop applications for different target platforms

is significantly reduced. With a JS dominant code base, a software vendor

is no longer forced to redevelop the whole application for different target

22

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

platforms. The same codebase can work for Android and IoS devices, and

with minor modifications, it works as a website, desktop application or

even a smart TV app. On the downside, this approach drastically impacts

the use of processing power and memory, as executing JS code on most

platforms that do not support native JS execution is expensive to run, and

the memory usage is dramatically increased [27] [28].

However, devices have adapted to this issue by providing more memory

and processing power. In addition, web assembly support is becoming

increasingly popular with CPUs as a long-term solution. Therefore, it

appears that the whole software ecosystem has accepted this trade-off and

prefers the overall comfort of the JS-based frameworks over their price.

Therefore, while migrating to JS is a reasonable and popular business

strategy, it is still not an easy or inexpensive task. However, with the emer-

gence of Java in the early 2000s, most software vendors migrated to Java

to keep up with the changes and benefit from the great features Java and

JVM provided. Also, Java is still the second most popular programming

language with a huge codebase and excellent community support.

Given the popularity of JS, the popularity of Java, and the argument

regarding the benefits of migrating to JS, migrating from Java to JS is both

a popular and important problem. Furthermore, the current and increasing

popularity of automated Java to JS migration tools supports this claim.

As software vendors go through an automated migration from Java to

JS, security concerns arise regarding the generated code. For instance,

23

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

developers may be concerned about the migration of exception handling

mechanism, and whether its completeness and correctness is preserved in

the generated JS code.

4.2.3 C/C++ to Native Java Execution

C and C++ are still vastly used in various sectors of industry and academia

as they provide low-level and high-level programming functionalities. How-

ever, compared to newer languages such as Java and JS, they have certain

drawbacks, like complexity and lack of convenient frameworks. On the

other hand, newer frameworks provide more convenient testing, deploy-

ment and development capabilities.

Therefore, it can be argued that given the volume of legacy codes in

many industrial sections, and considering the problems, migrating from

C/C++ to Java is a reasonable strategy. However, due to their vast struc-

tural differences, automated migration from C/C++ to Java is technically

not feasible, and the most convenient solution is to rewrite the code in Java

manually. Given that such an approach would take considerable time and

effort, a more moderate approach is to move the entire c/C++ codebase to

a Java-based environment which allows the C/C++ code to be executed

on JVM and then gradually go through the manual migration process of

rewriting the code in Java. This approach ensures that the system’s avail-

ability is preserved and enables the migration team to test the product at

every step. Parts of the legacy code that cannot be migrated can stay in the

legacy language (in this case, C/C++). At the beginning of this process,

24

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

the entire c/C++ code is wrapped by JNI. It is being executed on JVM,

where the majority of the codebase is redeveloped in Java by the end of the

migration. In contrast, a few parts of the legacy code cannot be migrated,

or their migration requires extensive effort and resources. At this stage,

the new Java-based system, although still containing some legacy C/C++

code, is ready to replace the old system. As a result, security vulnerabil-

ities of the legacy code might still affect the new system. Therefore, it is

critical to understand the scope of which the security vulnerabilities may

still actively threaten the new system, especially for the immigrated legacy

code (in this case, C/C++) wrapped in the target language (in this case,

Java).

4.2.4 Automation Scope

The level of automation required when migrating source code is a critical

factor to consider when choosing a method. There are two dimensions to

this problem. First, how much automation is technically feasible given the

structural and abstract differences between the source and the target lan-

guage. This also raises another problem: how much of the target language

feature is expected to be utilized. For instance, consider converting a C

source code to Java. Even if a migration process manages to "translate"

the C source code to a functionally equivalent Java source code, the output

of the migration process is not using the inherent features and properties of

Java, as it is the same code body in Java syntax. Although this, in many

senses, can still be extremely useful and reduces the overall labour, the

migration process is not completed. Still, exhaustive expert analysis and

25

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

re-development are required to exploit the target language’s functionalities

fully.

Secondly, a critical trade-off is to choose how much automation is overall

beneficial and how much automation may look like it is reducing human

labour. However, in the long run, it would require so much modification and

testing that it would have cost more than rewriting the code from scratch,

which means that sometime it might be more cost-efficient to choose a less

automated approach to have an output that requires less modification and

validation. An example of this is only to migrate the function bodies that

do not utilize structural features of the source language.

Model-driven approaches benefit from architectural migration and code

generation by translating the structural properties such as class structures

or object types by model-to-model transformation and after that through

model-to-text generation to generate code skeletons and for function bod-

ies by wrappers or user-specified code translators. However, model-driven

approaches require an initial setup time and resource cost of migrating to

model-based architecture, specially if the system was not initially devel-

oped with MDE principles. As a result, to begin with the model-driven

migration, the system must first be described and specified in a model

language.

Therefore, it can be argued through discussing various examples that

there is no optimal migration strategy to follow. Instead, the process highly

depends on the current state of the system, the available expert knowledge

26

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

and artifact, the available migration-specific resources, the expectation of

other potential migrations in the future, and most notably, on the other

side of the balance, the cost of redevelopment of the system from scratch

in a new language and framework.

The above factors, in general, make it almost impossible to describe and

investigate migration as an abstract case-independent concept since every

migration process is different from another one from both technical and

business requirements, constraints, resources and expectations. However,

the author believes that the complexity of this subject should not discourage

the efforts to find patterns, anti-patterns and best practices in migration

processes.

4.3 Migration Tools

One of the most critical technical decisions for any migration process is

the choice of the migration tools. This decision highly depends on the

technical and business requirements and expectations, the expected level

of automation, and the system’s current state.

However, migration tools seem to be a technical bottleneck in the gen-

eral migration process, as translating from one programming language to

another is as extremely complex task. There is only a limited number of

reliable migration tools which vary in their scope from line-to-line code

translators to code skeleton generators or automated wrapper generators,

which provide less effort-extensive on-demand solutions. Various Eclipse

27

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

plugins range similarly in their functionalities. However, large-scale system-

wide migration may trigger unpredictable behaviours and, in the long run,

require extensive corrections and human intervention.

The lack of migration tools and frameworks is, to the author’s belief,

due to the complex nature of the migration process. Although a general

tool may show promising coverage for different standard requirements, it

will fail on project-specific details. Similarly, a detailed-oriented tool may

show excellent performance on a cluster of projects and systems in a spe-

cific sector, industry or class of systems. However, it will not be able to

generalize and keep up the same standard for other classes.

In what follows, the metrics for choosing the proper migration tool that

matches the requirements of this thesis are presented.

4.3.1 Metrics

Several metrics were crucial in selecting the migration tools used in the

proposed analytical method in this study.

Convenience

The goal of this thesis is to cover multiple cases of migration problems in

order to minimize the overhead effort to initialize the migration process

and reduce the manual labour required to complete the process, as well as

eliminate any potentially added bias caused by manual modification of the

samples. Therefore, the migration tools’ convenience and ease of use have

been prioritized. Also, convenience can, to some extent, make a migration

28

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

tool more desirable in a greater range of migration processes and therefore

contribute a more practical analytical value.

Popularity

Although popularity may be a controversial metric, in the case of the mi-

gration problem, it can show the general reliability of a migration tool and

indicate that given all the constraints and limitations that all the migration

tools face, a specific tool has been on overall a cost-efficient option in many

cases with various requirements.

Community Support & Currency

Community support and community currency are another critically impor-

tant metrics, especially in the case of migration tools where user-specific

requirements may emerge due to potential project complexities. In ad-

dition, community support, such as a solid presence in Q&A forums and

open-source repositories, boosts the migration team’s morale and will speed

up the initial setup and potential debugging during the process. Commu-

nity currency and active user interactions can be specially helpful for new

requirements and up-to-date support.

Level of Automation

The level of automation that a migration tool provides can be defined as

the amount of manual modification and fixes that need to be applied after

the automated part to make the system production ready or executable.

Although more automated approaches may speed up the migration process,

29

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

the overall process is sometimes negatively impacted as the output requires

extensive expert knowledge intervention.

Therefore, the level of automation is not necessarily proportional to the

required effort but is more of a technical choice given the nature of the

migration problem and the state of the system.

For the purpose of migration between programming languages, the au-

tomation may benefit the migration process both in code skeleton genera-

tion and source code translation. However, it may negatively impact the

process in case of complex language-specific features and use-cases where

translating the said logic may not be straightforward and even undecidable.

In the next section, the migration tool used in the proposed experiments

is introduced and discussed.

4.3.2 JSweet

JSweet is a transcompiler to write JavaScript programs in Java and fully

supports Java’s object-oriented features and functionalities. JSweet uses

Typescript to write responsive web applications in Java by using JavaScript

frameworks and libraries and, as a result, supports complete syntax map-

ping between Java and JavaScript.

The libraries used in the source Java program are translated to similar

libraries in JavaScript by using "candies," which allow pairing and bridging

libraries between Java and JavaScript. The candies can either be defined by

the programmer to match a specific Java library with a specific JavaScript

30

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

library or can be automatically generated by JSweet transcompiling the

Java library’s source code to JavaScript.

As a result, JSweet provides extensive migration capabilities for both

library and API migration, as well as complete source-to-source migration

from Java to JavaScript. Furthermore, JSweet is an open-source project

and is a relatively lightweight migration tool with Eclipse and Maven sup-

port. The abovementioned features and functionalities make JSweet an

ideal candidate for an on-demand migration tool.

4.3.3 Java Native Interface

Java Native Interface (JNI) allows Java programs running in the Java Vir-

tual Machine (JVM) to call to be called by native applications. JNI enables

programmers to write native code in a Java program when specific domain-

specific requirements cannot be satisfied by Java, but the majority of the

codebase is developed in Java. JNI can be used to call entire programs or

code snippets written in another language within the Java code. This func-

tionally enables programmers to benefit from native codes that may boost

the program’s overall performance, such as driver’s code, I/O handlers and

industrial platform-specific libraries, and legacy code [29].

As a result, JNI is an ideal candidate for partial migration, where the ma-

jority of the system is migrated to another language (in this case, Java),but

some existing legacy or domain-specific code is yet to be rewritten or can-

not be migrated due to technical and business-related requirements and

constraints. Therefore, the legacy code, probably in C, C++ or Assembly,

31

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

Figure 4.1: JSweet migration for a single class

can be called within the Java code running on JVM, while the rest of the

codebase is migrated to Java.

As JNI also allows Java programs to be called within other programs,

it allows API and library migrating, where a specific obsolete library is

replaced by a frequently maintained Java library, by calling the library’s

functions as a separate program using JNI. Although this use case, running

32

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

a JVM instance for library or API calsl, can be resource extensive, it pro-

vides a workaround to replace critically obsolete code with Java code when

a full-scale migration is not feasible [29].

The mentioned migration scenarios capture three of the most popular

programming languages; Java, C/C++, and Javascript. There are other

programming languages and scenarios in which studying the effect of mi-

gration on various functional and non-functional properties may unravel

interesting points regarding the evolution of such properties throughout the

migration. However, as studying other scenarios would require substantial

effort and time, they do not fall into the current scope of this thesis.

Figure 4.2: High-level JNI Architecture

4.3.4 Challenges & Limitations

One of the primary and most frustrating challenges with the selected migra-

tion tools, and other migration tools in general, is the initial setup, which

is the process of mounting the migration tools over the project source code.

This can be challenging for several reasons. First, each project has specific

33

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

build instructions given and specified in different build tools such as Make,

Maven or Gradle. In the case of relatively obsolete projects, the build files

and instructions are also obsolete and produce various errors such as version

inconsistency and deprecation. In most cases, these files must be modified

and fixed manually to build the source code or for the migration tool to

access all the files in the correct order.

Furthermore, isolated execution and compilation of the generated output

are also challenging as there is no explicit instruction on the structure of

the output files, and the output may often contain errors and may require

modifications.

4.4 Security Analysis Tools

As mentioned in the design goals of the proposed analytical method, the

security analysis of the source code plays a critical part in the analysis

and assessment of programming language migration’s effect on security

among the functional and non-functional requirements. In this section, we

discussed the selected security analysis tools and methods and the motiva-

tions, challenges and limitations of using each of them.

4.4.1 Metrics

The system’s security is deeply affected by the tools with which the security

analysis is performed. Inappropriate tools may result in false positives

and false negatives or may drain the resources while returning little value.

34

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

Therefore, carefully choosing the right security analysis tools and methods

is in itself a critical factor in step in securing a system. For the purpose of

this study, like any other system, specific requirements need to be satisfied

to effectively run experiments and provide meaningful results within the

scope of the proposed research question. Therefore, several metrics were

considered when choosing security analysis methods and tools.

Static vs Dynamic

While static analysis provides faster and cheaper analysis without requiring

the code to be executed, dynamic analysis is a more resource-exhaustive

approach mainly contrasted by its requirement to run the source code and

monitor its execution. Dynamic analysis provides a more detailed analysis

and, given proper resources, leaves no stone unturned. However, setting

up and running dynamic analysis tools calls for extensive effort and re-

sources, as in some methods, thousands of rounds of execution are required

to achieve the best coverage [21].

In contrast, static analysis needs significantly less effort to run, and in

some cases, the code may even contain compile errors or missing parts, yet

the security analysis can be performed regardless. Although this method

may fail to find deep and complex vulnerabilities, it still provides an efficient

analysis which uncovers many vulnerabilities that follow structural and

syntactical patterns [20].

This study chooses static analysis as the primary security analysis method

due to the abovementioned arguments. However, the author believes that

35

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

incorporating dynamic analysis in future can significantly increase the depth

of the proposed studies, the details of which will be discussed (see chapter

7).

User Applicability

SonarQube and Coverity are industry standard tools that almost any secu-

rity researcher or expert has worked with at some point in their professional

life. This forms a common language among experts and allows further un-

derstanding of the applications of the result of this study. Although ana-

lyzing the security of the test studies with less popular tools may add value

in some cases, it might make the results inapplicable for real-world and

industrial cases.

4.4.2 SonarQube

SonarQube is a software analysis framework that provides various evalua-

tions and analyses such as static analysis, coding standards, code, coverage

and performance and security recommendations for source codes in many

popular programming languages. SonarQube can further be integrated

into continuous integration/continuous development (CI/CD) pipelines, en-

abling developers to incorporate SonarQube functionalities in various indus-

trial pipelines and build automation tools and frameworks such as Jenkins,

Maven, Gradle and Git.

SonarQube, with its multi-language support and a broad range of plug-

ins, is an ideal tool for on-demand code inspection, evaluation and analysis.

36

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

Thus, it has made SonarQube an industrial standard.

Furthermore, SonarQube provides a modular static analysis framework,

allowing programmers to use custom-built modules such as specific code

parsers, static analyzers, lint checkers and vulnerability discovery tools.

Figure 4.3: SonarQube SAST Output Example

One of the most important and commonly used SonarQube modules is

its Static Application Security Testing (SAST) framework, which provides

detailed security analysis, vulnerability detection and code-vulnerability

mapping by analyzing the source code, bytecode and the binary code of

the program.

4.4.3 Coverity

Coverity is one of the most commonly used and well-known static analy-

sis tools, which supports more than 20 programming languages through a

cloud-based service and desktop environment. Unlike most static analyzers

and static vulnerability detection tools, Coverity sufferers from fewer false

positives and provides a more detailed analysis of the contributing source of

37

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

a defect through its so-called Contributing Event feature. Coverity can also

be easily integrated into CI/CD pipelines and is relativity more focused on

security-related defects and vulnerability detection.

4.4.4 Challenges & Limitations

As security analysis tools need to extend their support over various projects

and systems, working with them becomes more challenging as they are

more setup and modifications needed to fully and effectively mount the

security analysis tools over the source code structure. Some files may be

inaccessible due to issues with headers and imports, which will impact

the coverage of the analysis over the codebase. Therefore, to achieve the

maximum coverage, the input source code must almost entirely compile

and build instructions the supported formats of the security analysis tools

should be available. This creates an effort overhead for each sample since

manual modifications and multiple runs are required to achieve the best

coverage.

The second challenge in dealing with security analysis tools is the false

positives. While false negatives are a more severe threat, false positives also

may compromise the readability of the results and add to the manual effort

of checking each reported vulnerability with expert knowledge to confirm

whether it is a true positive or a false one. Also, some vulnerabilities can

be considered generic and non-threatening. While most tools provide filter-

ing functionalities to discard low-importance vulnerabilities and warnings,

not all of them are covered and may compromise the overall analysis by

38

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

degrading the statistical significance of other vulnerabilities.

In this study, the author aims to provide a security analysis over multiple

samples where no expert knowledge is available, and the projects suffer

from obsolescence. Therefore, identifying and discarding false positives is

a serious obstacle.

4.5 Vulnerability Insertion

During studying various samples for assessing the effects of a programming

language migration on security, it was noted by the author that the limita-

tions associated with only relying on authentic security vulnerabilities limit

the extent of achieving a general conclusion. Therefore, to further study

how security vulnerabilities evolve with more control and proper traceabil-

ity, a vulnerability insertion approach was proposed to effectively increase

the number of vulnerabilities to cover more migration cases. In this sec-

tion, the vulnerability insertion goals, used methods and technical details

are discussed, and the vulnerability insertion tool built with the required

specification is used as an important pillar of this study.

4.5.1 Overview

The goal of vulnerability insertion is to control the type, position, severity

and number of vulnerabilities in a source code. Authentic vulnerabilities

can be found in various forms with different severity; however, finding a

39

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

specific type of vulnerability with a set of required characteristics is chal-

lenging. Therefore, an effective technique is to artificially seed vulnerabili-

ties from previously detected and isolated vulnerable code snippets into an

otherwise secure source code to find them later through testing a vulnera-

bility detection system or more complex testing scenarios.

Moreover, this approach opens the door to a potential automation pro-

cess, which can be used to generate large vulnerability corpora and bench-

marks. The artificially generated corpora can be used for training, fine-

tuning and designing new vulnerability detection and security audit tools,

where at the same time, they can be used as benchmarks for validation and

verification purposes.

In order to effectively parse a source code into a programmatically

traversable structure, generating the Control Flow Graph (CFG) is neces-

sary. CFG enables high-level parsing, which provides essential information

about functions and their local variables, the scope of each function and

statement and the points in the source code when the control flow is passed

to another part of the code. In what follows, CFG is briefly reviewed, and

its role and the details of its application in vulnerability insertion scenario

is presented.

4.5.2 Control Flow Graph

A Control Flow Graph (CFG) represents a program’s basic blocks and their

connections with each other. A basic block is a code snippet that can be

executed without a jump operation, which at the source code level can

40

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

be observed as function calls, loops, or any consecutive lines of code with

the same indentation. The CFG illustrates the relationship between basic

blocks and, as a result, can be used in the static and dynamic analysis to

investigate a vulnerability’s depth.

The deeper a vulnerable basic block is in the CFG, the more conditions

are required to be satisfied for control flow and data flow to reach that

line, and as a result, the depth of a vulnerable basic block is correlated

with the difficulty of reaching, triggering and detecting the vulnerability.

In contrast, the higher a basic block is in the CFG, that piece of code is

more likely to be executed, especially in dynamic analysis methods such as

symbolic execution and fuzzing where the code is fully or partially executed

and the control flow of the vulnerability detection tool over the source code

is decided based on the output of the conditions in the source code.

Therefore, from a vulnerability insertion standpoint, it is necessary to

obtain the CFG of a program to manage the depth of the inserted vulner-

abilities, and it is also required to identify the basic block to follow the

programming language syntax.

4.5.3 Code Insertion

A python script automates the code insertion process. At first, the CFG is

generated by GCC, and the basic blocks are identified. Then, the vulnerable

function is given to the script as a code snippet. Next, a random basic block

in the given depth is selected, and a function call is inserted into the last

line of the selected basic block. Then, for the further realization of the

41

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

Figure 4.4: List of basic blocks in a CFG generated by
GCC

data and control flow, the local variables of the selected basic block are

identified by CTAG and passed as arguments to the inserted function call.

Finally, the function’s signature is inserted at the top of the code file, and

the function body is inserted at the last line of the code.

This process ensures that if the control flow reaches the selected basic

block, the vulnerability is triggered, which may cause a segmentation fault

due to the random and untargeted nature of the vulnerability. The segmen-

tation fault must be enough by any static analyzer to identify the inserted

function as a potential safety or security threat.

42

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

Figure 4.5: List of local variables by Ctag

4.5.4 The Scope

Although vulnerability insertion automation can make the whole process

less resource extensive, in this case, the main goal is not to achieve a fully

automated insertion framework since that is not in the scope of this thesis

research questions. The main objective is to achieve a level of automation

that eliminates the need to understand the target source code and browse

through the basic blocks and functions as objects of defined property. Also,

the vulnerable code snippet is provided manually and is not exhaustively

designed to cover a wide range of vulnerabilities. In fact, the vulnerabilities

are preferred to be easily discovered for the first stages to confirm and vali-

date the experiment, and if they are passed through the migration process,

they can be tuned to more complex severity in later studies.

Therefore, the scope of this section is to automatically insert a limited

set of manually selected code snippets that may cause segmentation faults

without the need to manually inspect the source code of the program the

vulnerabilities are inserted. The vulnerability insertion approach and ex-

periments are limited to C/C++ languages, which are migrated to a Java

code using JNI through the discussed migration process.

43

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

Figure 4.6: Vulnerability Insertion.

4.5.5 Challenges & Limitations

Two types of challenges are associated with this approach—the technical

and the methodological arguments. It can be questioned whether the in-

serted vulnerabilities should always be triggered and, if triggered, they

should crash the program or only initiate an insecure or unsafe behaviour

that may go functionally unnoticed.

If the vulnerability is randomly triggered, the code with seeded vul-

nerability cannot be used as a deterministic use case for investigating the

effects of migration on preexisting vulnerabilities. Since the vulnerability

44

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

may be transferred to the new language but has not been identified be-

cause it was not triggered, giving a false negative. Conversely, suppose

the vulnerability is easily triggered, for instance, out-of-segment memory

access at the first line of the code. In that case, the rest of the code will

not be reached and will become inaccessible by dynamic analysis meth-

ods. Since dynamic analysis methods and tools are not within the scope of

this thesis, this issue can be discarded. Even if an easily discoverable code

crashing vulnerability is inserted at the first line of the source code, this

neither prevents the migration tools from migrating the whole source code

nor prevents the post-migration static analyzers from discovering the rest

of seeded or preexisting vulnerabilities in the migrated code.

In this chapter, the proposed method of analysis was introduced, and

its scope and limitations were discussed. Furthermore, the tools and ap-

proaches used in this thesis were presented, and the metrics for select-

ing them were outlined. In summary, two static security analysis tools,

Coverity and SonarQube, were selected to perform pre-migration and post-

migration security analysis. Furthermore, two migration scenarios, Java

to JS and C/C++ to JNI, were selected with the former executed by the

JSweet migration tool and the latter manually through Java Native Inter-

face (JNI). Last but not least, a novel method of vulnerability insertion was

introduced, and the technical details of its approach and implementation

were presented. The developed vulnerability insertion tool is later used to

increase the depth of the security analysis of the samples used in this thesis.

45

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Chapter 5

Samples

5.1 Overview

This chapter discusses the samples used for security analysis and automated

migration. Specific properties of each sample and their domains are also

presented.

5.1.1 Terminology

The following definitions clarify the exact scope and meaning of the terms

used in the following experiments and samples.

Migration

Migration is the process of running the discussed automated migration

tools on the source code samples to change its programming language to a

target programming language. In the scope of this thesis, migration does

not include any manual effort to maintain, improve or execute the output

46

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

of the migration tool. Therefore, the output of the migration process may

not be executable in its raw form and may lose some of the functional and

non-functional properties of the source code.

Security Analysis

Security Analysis refers to running the discussed static security analysis

tools on the source code samples. Static analysis, security analysis and

static security analysis are used interchangeably in the following chapters.

Within the scope of this thesis, security analysis does not include the man-

ual process of examining the security analysis results to identify and ex-

clude potential false positives, as expert knowledge and understanding of

the source code are required.

5.2 Samples

This section introduces the samples used in each track of the experiments in

this thesis. It also discusses the factors in choosing the selected candidates,

the limitations and the scope of the data and analysis.

5.3 Metrics

Considering the selected tools, methods, limitations and the scope of the

problem and the study, several metrics are prioritized to select the candi-

dates.

47

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

5.3.1 Project Size

As the codebase grows in size, the migration problem’s complexity and

security analysis’s complexity grows exponentially larger. Furthermore,

larger projects introduce more structure complexities and build complica-

tions that are not necessarily in line with the goals of this study and provide

little to no analytical value.

Therefore, the selected projects are preferred to have minimal complexity

and size while showing real-life characteristics and code complexities in their

specific domain.

5.3.2 Diversity

As this study aims to study security vulnerabilities and how they evolve, it

is critical to include a broad range of vulnerabilities. Considering that the

domain of a project has a significant effect on the types of vulnerabilities

it may contain, the projects are selected such that they cover a reasonable

number of diverse domains, such as cryptography, robotics, servers and

web applications, numerical and algorithmic libraries, as well as GUI based

projects.

5.3.3 Obsolescence

Another important factor in selecting the used candidates is obsolescence;

as in real-life scenarios, obsolescence is one of the main reasons for migration

and is one of the main causes of safety and security-critical vulnerabilities.

48

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

To further study the effect of obsolescence on vulnerabilities and the

complexity of the migration problem, an almost equal number of obsolete

and non-obsolete projects are selected.

Figure 5.1: Example of obsolescence due to outdated Java
version in build file.

The metric to decide whether a project is obsolete or not is whether it

can be built and compiled from the provided instructions in the repositories

or if the build process fails due to library deprecation, unmatched versions

or unavailable resources. Fig. 5.1 and Fig. 5.2 demonstrate two common

obsolescence scenarios where an outdated version of a programming lan-

guage is used, or a certain library or API used in the code is no longer

available.

5.3.4 Java to JavaScript

In total, nine open source Java projects are used to be studied in the au-

thor’s analytical framework mentioned in the previous chapter. Table 5.1

49

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

Figure 5.2: Example of obsolescence due to deprecated
library.

notes the technical properties of the selected candidates while Table 5.3

provides a brief description of their domains and functionalities.

5.3.5 C/C++ to JNI

Similar to the previous category, nine open source C/C++ projects are

selected to be studied. Table 5.4 notes the technical properties of the

selected candidates, while Table 5.5 provides a brief description of their

domains and functionalities.

5.3.6 Vulnerability Insertion

In order to investigate how specific vulnerabilities evolve in a controlled

migration process, the nine most common C/C++ and Java vulnerabilities

were selected based on CWE statistics. Table 5.7 shows the vulnerability

50

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

Project Name Build Obsolete LOC NOC NOF License
aes-rsa-java Maven T 1.8K 14 12 Apache
ftpserver-spring-service Maven F 4.1K 5 2 Apache
GoogleAuth Maven F 2.4K 18 14 Google
http-server-iancaffey Gradle T 1.5K 14 22 MIT
JavaFX-Chat Maven T 2.7K 8 32 GNU
elevator-control-system Source T 0.5K 3 9 -
SiliCompressor Gradle T 3.7K 21 19 Apache
swiftp Maven T 7.5K 64 64 GPL

Abbreviation Term
LOC Line of code
NOC Number of classes
NOF Number of files

Table 5.1: Java to JavaScript Candidates

types used in this part of the experiment and a brief description of their

characteristics. Samples generated based on the CWEs shown in Table

5.7 are then automatically seeded into simple C/C++ and Java programs

obtained from public repositories. In this experiment, the host code intro-

duces almost no complexity, so the evolution of the vulnerabilities is more

clearly observed.

This experiment aims to complete the migration process, trace the trans-

mitted vulnerabilities throughout the process, and re-evaluate their be-

haviour and severity in the output code.

5.4 Scope & Limitations

Increasing the number of samples can directly affect the depth of the pro-

posed analysis and may shine a light on previously unseen corners, both

51

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

Project Name GitHub Repository
aes-rsa-java taoyimin/rsa-aes-java.git
ftpserver-spring-service apache/ftpserver.git
GoogleAuth wstrange/GoogleAuth.git
http-server-iancaffey iancaffey/http.git
JavaFX-Chat DomHeal/JavaFX-Chat.git
elevator-control-system joeblau/sample-elevator-control-system.git
SiliCompressor Tourenathan-G5organisation/SiliCompressor.git
swiftp ppareit/swiftp.git

Table 5.2: Java to JavaScript Candidates Github reposi-
tories

in the automated migration problem and static security analysis problem.

However, as previously mentioned, there is a limit to the level of complexity

that this study may find beneficial, as well as the available resources and

time.

Although automated migration tools may significantly reduce the work-

load and human labour of the migration process, there are still a great

number of labour-intensive tasks that cannot be automated. For instance,

preparing an obsolete project for the migration tool takes a substantial

amount of time as the project at its current state cannot be built and

throws multiple compile errors. Secondly, setting up the environment to

build each sample project is another challenge as some of the used libraries

and internal tools may not be available due to deprecation or discontinua-

tion.

Similarly, mounting static security analysis tools over obsolete code

comes with time-consuming challenges. Furthermore, running the post-

migration security analysis tools on a partially migrated codebase with lots

52

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

Project Name Description

aes-rsa-java Java-based cryptography tool kit with AES-RSA
support for client-server authentication handshake

ftpserver-spring-service Spring-based ftp server with synchronous file
download & upload functionalities

GoogleAuth Java server library implementing
Time-based One-time Password (TOTP)

http-server-iancaffey Lightweight Java-based HTTP server with
web application support

JavaFX-Chat Simple chat client using JavaFX graphic library with
file & voice message support

elevator-control-system Java implementation of a simple multi-elevator
platform scheduling algorithm

SiliCompressor Image & video compressor tool supporting multiple
encoding options for Android

swiftp A Swift-based lightweight FTP server with
cryptographic checksum support

Table 5.3: Java to JavaScript Candidates Description

of unresolved errors, incomplete methods, missing files, and new structural

complexities can be even more challenging and complex.

Minor and surgical modifications are sometimes required to trim off some

parts of the projects that cannot be resolved without expert knowledge or

produce unmanageable difficulties to the pipeline. It should be noted that

such modifications are done in the most minimal and surgical fashion to

preserve the authenticity of the projects. However, in some cases, the

coverage of the security analysis prior to and after the migration process

may differ.

In this chapter, the samples used in this thesis were introduced, and their

53

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

Project Name Build Obsolete Lang LOC NOF License
coapserver Make F C 1.3K 7 MIT
driver-loader Make F C++ 807 5 GNU
iokit-dumper-arm64 Make F C 787 3 -
nginx-opentracing Make F C++ 1.8K 13 Apache
Qt-Secret Make F C++ 883 5 GNU
Qt-simple-calculator Make F C++ 541 2 MIT
unblock-me-solver - F C++ 684 4 MIT
ur_inverse_solution - F C++ 487 2 -

Abbreviation Term
LOC Line of code
Lang Programming language
NOF Number of files

Table 5.4: C/C++ to JNI Candidates.

descriptions and proprieties were presented. Furthermore, the criterion

and metrics for selecting these samples were discussed, and the scope and

limitations of the proposed method of analysis were outlined.

The results and observations of running the proposed analysis method

on the previously introduced samples are demonstrated in the next chapter.

54

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

Project Name Description

coapserver Configurable Constrained Application Protocol (CoAP)
server for Internet of Things (IoT) use.

driver-loader Windows kernel driver loader with customization
functionalities for user-kernel isolation security testing

iokit-dumper-arm64 Lightweight IoT toolkit for kernelcache modification for
ARM architecture

nginx-opentracing Implementation of C++ OpenTracing library for
distributed tracing of nginx requests

Qt-Secret Fast encryption library supporting various RSA
key sizes with signature verification support

Qt-simple-calculator Simple Qt-based calculator with power, log, sqrt,
and math expression parsing support

unblock-me-solver Backtrack algorithmic solution for the famous UnlockMe
game with BFS implementation

ur_inverse_solution Implementation of moving algorithm for
Universal Robot (UR) robot arm with safety requirements

Table 5.5: C/C++ to JNI Candidates Description

Project Name GitHub Repository
coapserver farlepet/coapserver.git
driver-loader maldevel/driver-loader.git
iokit-dumper-arm64 jndok/iokit-dumper-arm64.git
nginx-opentracing opentracing-contrib/nginx-opentracing.git
Qt-Secret QuasarApp/Qt-Secret.git
Qt-simple-calculator Bychin/Qt-simple-calculator.git
unblock-me-solver karakanb/unblock-me-solver.git
ur_inverse_solution pyni/ur_inverse_solutions.git

Table 5.6: C/C++ to JNI Candidates GitHub reposito-
ries

55

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

Vulnerability Reference Description

Use After Free CWE-416 Referencing a memory location after
it has been freed

Out-of-bounds Write CWE-787 Writing in memory before the
beginning or past the end of a buffer

Out-of-bounds Read CWE-125 Reading memory before the
beginning or past the end of a buffer

OS Command Injection CWE-78 Unsanitized input is used in an O.S
command as a passed parameter

NULL Pointer Dereference CWE-476 Using a NULL pointer assuming
it is valid without proper check

Integer Overflow CWE-190 Calculation in source code produces
larger than MAX_INT limit

Hard-coded Credentials CWE-798 Source code contains hard-coded
passwords and cryptographic keys

Double Free CWE-415 Calling free() function twice on the
same memory location

Buffer Overflow CWE-120 Copying an input into a buffer
without verifying the size of input

Table 5.7: List of the used vulnerabilities for insertion

56

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Chapter 6

Results

6.1 Overview

This chapter provides the experimental results of the proposed experiments

and studies in detail for each category of experiments and analysis.

6.2 Java to JavaScript

Table 6.1 and Table 6.2 show the evolution in the number of vulnerabili-

ties for the Java samples throughout the automated migration process to

JavaScript.

As shown in Fig. 6.1 and Fig. 6.2 the number of critical vulnerabilities

and their severity are immensely decreased. As shown in Table 6.1, out of

the nine selected samples, none were detected to have high-level vulnera-

bilities after migration and out of 77 medium-level vulnerabilities, only 13

were successfully transmitted through the migration process.

57

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

Furthermore, the result of SonarQube analysis, as shown in Table 6.2

confirms an evident transformation of vulnerabilities to low-severity warn-

ings.

Pre-migration Post-migration
Project Name High Med Low High Med Low
aes-rsa-java 1 1 0 0 0 0
ftpserver-spring-service 0 19 1 0 4 2
GoogleAuth 0 3 3 0 0 4
http-server-iancaffey 0 6 2 0 1 3
JavaFX-Chat 0 15 0 0 0 0
elevator-control-system 0 2 0 0 2 0
SiliCompressor 0 4 4 0 2 0
swiftp 2 25 9 0 4 3

Severity Definition

High Exploitation may results in root-level compromise of
infrastructure.

Medium Exploitation could result in significant data loss
or elevated privileges.

Low Exploitation provides only very limited access and may
require user privileges.

Table 6.1: Pre & post-migration security analysis by
Coverity for Java to JavaScript Samples

6.3 C++ to JNI

Table 6.3 and Fig. 6.3 show apparent preservation of the original C/C++

vulnerabilities in the JNI code and the emergence of additional low to

medium-level vulnerabilities from the JNI code. Table 6.3 shows that the

number of high-severity security vulnerabilities is unchanged through the

58

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

Pre-migration Post-migration
Project Name Vuln Bug SHS Vuln Bug SHS
aes-rsa-java 4 6 14 0 45 73
ftpserver-spring-service 2 27 18 0 48 93
GoogleAuth 0 2 6 0 20 14
http-server-iancaffey 2 13 24 0 35 46
JavaFX-Chat 0 18 27 0 67 32
elevator-control-system 0 4 7 0 11 20
SiliCompressor 0 34 68 0 73 86
swiftp 2 68 92 0 104 135

Abbreviation Term Description

Vuln Vulnerability Point in the code that is open
to attack

Bug - Coding mistake that can lead to
unexpected behavior at runtime

SHS Security Hotspot Security-sensitive piece of code
that developer needs to review

Table 6.2: Pre & post-migration security analysis by
SonarQube(SonarScanner) for Java to JavaScript Samples

migration process. In contrast, several low-severity vulnerabilities are in-

troduced to the output code as the migrated code is wrapped in the Java

interface code.

6.4 Vulnerability Insertion

Table 6.4 shows the post-migration analysis of the artificially seeded vul-

nerabilities. It can be noted that while all of the C/C++ vulnerabilities

are preserved, Java-based vulnerabilities were only partially transmitted

59

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

Figure 6.1: Evolution in the severity of the security vul-
nerabilities based on Coverity results.

Figure 6.2: Evolution of defect types based on SonarQube
results.

through the migration process. The results obtained in this section con-

firms the experimental results provided in section 6.2 and 6.3.

6.5 JNI Security

As a C/C++ code is migrated to a Java program by using the JNI, it

should be noted that all the security vulnerabilities in that native code are

transmitted into the Java program. Furthermore, the intermediate code in

JNI that handles parameter passing and result retrieval (jni.h) adds its own

60

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

Pre-migration Post-migration
Project Name High Med Low High Med Low
coapserver 1 2 6 1 3 9
driver-loader 4 2 2 4 3 8
iokit-dumper-arm64 0 1 0 0 5 6
nginx-opentracing 3 34 12 3 40 27
Qt-Secret 2 7 0 2 11 2
Qt-simple-calculator 12 4 4 12 9 8
unblock-me-solver 0 8 3 0 10 9
ur_inverse_solution 0 19 4 0 21 7

Severity Definition

High Exploitation may results in root-level compromise of
infrastructure.

Medium Exploitation could result in significant data loss
or elevated privileges.

Low Exploitation provides only very limited access and may
require user privileges.

Table 6.3: Pre & post-migration security analysis by
Coverity for C/C++ to JNI Samples

vulnerabilities and defects to the whole process. Therefore, the entire JVM

memory space is exposed to the executed native code, and all of Java’s

security mechanisms are invalidated. This means that although Java code

running on JVM is bound by numerous Java security mechanisms, garbage

collection and memory management, the native code executed through JNI

is not bound by any of the above-mentioned mechanisms, as its execution

is considered trusted by the JVM through JNI calls.

It should also be noted that Java Development Kit (JDK) uses JNI to

export and utilize hundreds of libraries in native C/C++, which, although

61

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

Figure 6.3: Evolution in the severity of the security vul-
nerabilities based on Coverity results

trusted and verified, pose their own security risks if they are misused.

Another inherent security risk noticed in JNI is related to its exception

handling mechanism compared to Java’s exception handling mechanism. It

was observed in multiple experiments that when the native code throws an

exception, the execution of the JNI code is not immediately interrupted but

is continued until the native execution is completed. After the execution of

the native code is completed, the cached exceptions are passed to JVM for

Java-level exception handling and processed as Java exceptions. This allows

illegal control flow and data flow to continue through memory regardless of

the thrown exceptions by JNI.

The two above-mentioned observations, 1) native code access to the en-

tire JVM memory space without JVM routine mechanisms, and 2) the

continued execution of native code regardless of the provoked JNI excep-

tions, can pose a serious threat to the security of the application, especially

if the native code is not properly security audited and may contain critical

62

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

Vulnerability Batch
size Language Severity Post-

migration

Use After Free 5 C
C++ High 5

Out-of-bounds Write 5 C
C++ High 5

Out-of-bounds Read 5 C
C++ High 5

OS Command Injection 5
3

C/C++
Java High 5 C/C++

NULL Pointer Dereference 5
3

C/C++
Java Medium 5 C/C++

Integer Overflow 5
3

C/C++
Java Medium 8

Hard-coded Credentials 2 C/C++
Java High 2

Double Free 5 C
C++ High 5

Buffer Overflow 5 C
C++ High 5

Table 6.4: Evolution in the number of the inserted secu-
rity vulnerabilities based on their language

security vulnerabilities.

6.6 Other Observations

To achieve a more profound analysis of the non-functional requirements

and their evolution, the number of duplicated lines of code and the number

of lines of code before and after the migration process is calculated by

SonarQube analysis. For example, Table 6.5 shows an evident rise in the

63

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

duplicated codes and the overall lines of codes. Similarly, Table 6.2 also

confirms a detrimental effect of the migration process on the non-functional

qualities of the output code, as the number of Security Hotspots (SHS) is

severely increased during the migration process. However, it should be

noted that the increase in the duplicated code can partially account for

the increased number of low and medium-severity vulnerabilities, as the

duplicated codes introduce duplicated vulnerabilities.

Pre-migration Post-migration
Project Name LOC DUP(%) LOC DUP(%)
aes-rsa-java 1.8K 4.2 3.5K 11.3
ftpserver-spring-service 4.1K 3.1 11.2K 14.3
GoogleAuth 2.4K 0.3 4.2K 5.8
http-server-iancaffey 1.5K 0.8 2.5K 7.3%
JavaFX-Chat 2.7K 11.5 4.9k 32.7
elevator-control-system 0.5K 0 1.7K 3.5
SiliCompressor 3.7K 2.4 10.3K 19.6
swiftp 7.5K 4.7 15.3K 14.8

Table 6.5: Evolution of the line of code (LOC) & code
duplication percentage (DUP) reported by SonarQube

64

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Chapter 7

Conclusion

7.1 Overview

In order to investigate how security is affected in a programming language

migration process, several samples in different domains were tested. In this

section, the experimental results obtained from the previously mentioned

experiments are concluded.

7.2 Discussion

It was observed that after the automated migration process is completed,

various new vulnerabilities emerge from the generated source code in the

target language. This includes code skeletons, wrappers and translated

function bodies. However, the severity of vulnerabilities detected in the

code skeletons and wrappers was low and was not security-critical. Fur-

thermore, the number of false positives and warnings was increased, which

65

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

can be accounted for by the recurring patterns in the generated code by

the migration tool.

It is concluded from the above observation that the migration tool used

in the automated migration process plays a significant role in the overall

security of the output source code. Any security-critical vulnerability in the

generated code can severely affect output code since the migration tool’s

functionality that generates the vulnerable code may be triggered in various

places.

Secondly, it was observed that the initial state of the source code be-

fore the migration process is another deciding factor in the security of the

output source code. Security audited codes that had gone through various

security analysis processes by the software vendors satisfied their security

requirements in the target language as well.

It can be concluded that within the scope of the tools used in this study,

it is unlikely that the automated migration process may create high-threat

security vulnerabilities. In fact, it was observed that due to the change in

the language, syntax and libraries, it is likely that some serious security

vulnerabilities would be resolved and no longer pose a threat in the target

language. However, this is not the case for all of the vulnerable, as some

low-level defects and vulnerabilities such as DivideByZero or HardCoded-

Key can transmit through the migration process and still pose a similar

threat in the target language.

Regarding the JNI vulnerabilities discussed in SECTION 6.5, it should

66

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

be noted that although the mentioned JNI exception handling and mem-

ory management poses a substantial risk, the overall security risk of the

program is positively reduced. To clarify, it should be noted that before

the migration, the native C/C++ code, which may contain critical security

vulnerabilities, is being executed on top of the host O.S user space. This

means that the vulnerabilities directly threaten the user memory space and

may even comprise the kernel space. However, after the migration to Java

through JNI, although, as discussed earlier, the threat still exists and may

compromise the entire JVM memory space, on the positive side, the over-

all threat is now contained to the JVM. Meaning that the added layer of

virtualization by the JVM keeps the user memory space and the O.S kernel

memory space safe from vulnerable code. Therefore, even in the case that

all the vulnerabilities are preserved through the migration process and are

transmitted to the new codebase, the migration, in general, enhances the

security of the application.

As discussed in each section, there are several limitations associated with

the proposed conclusions.

First, the output of the automated migration tools in almost all cases

and instances both in this study and in industrial or other domains cannot

be directly used as the final product since it cannot be compiled without

various modifications and fixes by an expert. This is due to the complexity

of the migration process in general. As a result, the conclusions obtained in

this study may not be applied to a full migration process but rather to the

67

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

automated part alone. Secondly, as the output of the automated migra-

tion tools in many cases cannot be compiled without expert knowledge of

the source code, the coverage of the static security analysis tools was nega-

tively affected. This is due to the fact that without the human-written code

that completes the part that the migration tool could not translate to the

target language, some functions, classes or files may become unreachable

and therefore invisible in the control flow of the program. For similar rea-

sons, in the initial security analysis of the source code in the pre-migration

phase, the security analysis suffered from low coverage in some cases due

to obsolescence of the source code and built problems due to deprecated

libraries.

Furthermore, the authors note that due to the limited number of samples

used in this study, and the effort-extensive nature of the migration process

in general, the results reported in this should not be interpreted statistically

but rather analytically.

To conclude the research questions proposed at the beginning of this

study, it was observed that an automated migration process works for the

benefit of security. Although some vulnerabilities are transmitted to the

output of the migration process, a number of security vulnerabilities may be

resolved, and no major security vulnerability was created. Therefore, the

investment of the development team in writing a defect-free and secure code

is returned and reflected in the output of the migration process. Further

experiments and studies are required to archive statistically meaningful

results.

68

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

7.3 Future Works

As discussed in the previous section, more samples are required to arrive

at a statistical conclusion regarding the proposed research questions. An

industrial case study investigating the real-life effects of full-scale program-

ming language migration on security can help researchers understand the

nature of the migration’s security problem deeply and conclude a guideline

for secure automated migration.

Also, more effort can be focused on static security analysis of incomplete

or obsolete code since most deprecated or obsolete codes cannot be fully

and deeply examined by most industrial static security analysis tools.

Furthermore, the author believes that static analysis introduces various

analytical limitations and may limit the analysis’s scope and accuracy. For

further experiments, dynamic analysis can provide a more profound and

thorough analysis regarding the evolution of security and other functional

and non-functional properties. Similarly, safety in safety-critical systems

can be analyzed by the proposed framework in combination with other

safety-specif static analysis tools and dynamic analysis tools for runtime

properties.

Last but not least, based on the observations regarding the quality of the

migrated code after the automated migration process is completed, it was

observed (see Chapter 6.5) that the generated code in its raw form suffers

from various code smells and duplication patterns. It can be discussed

69

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Applied Science– Seyed Parsa Tayefeh Morsal; McMaster
University– Department of Computing & Software

that if the code at its initial state is not developed based on the model-

driven engineering (MDE) practices, the number of observed anti-patterns

may increase significantly, and the generated code may require extensive

refactoring and polishing. Therefore, the extent to which conforming to

MDE standards can increase the quality of the raw output of the migration

tools can be studied, which may potentially result in the development of

pre-migration and post-migration guidelines and best practices.

70

http://www.mcmaster.ca/
http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/

Bibliography

[1] F. Fleurey, E. Breton, B. Baudry, A. Nicolas, and J.-M. Jézéquel,

“Model-driven engineering for software migration in a large industrial

context,” in International Conference on Model Driven Engineering

Languages and Systems. Springer, 2007, pp. 482–497.

[2] D. Faust and C. Verhoef, “Software product line migration and deploy-

ment,” Software: Practice and Experience, vol. 33, no. 10, pp. 933–955,

2003.

[3] P. Sandborn, “Software obsolescence-complicating the part and tech-

nology obsolescence management problem,” IEEE Transactions on

Components and Packaging Technologies, vol. 30, no. 4, pp. 886–888,

2007.

[4] F. J. Romero Rojo, R. Roy, and E. Shehab, “Obsolescence manage-

ment for long-life contracts: state of the art and future trends,” The

International Journal of Advanced Manufacturing Technology, vol. 49,

no. 9, pp. 1235–1250, 2010.

71

BIBLIOGRAPHY

[5] S. Gerasimou, D. Kolovos, R. Paige, and M. Standish, “Technical ob-

solescence management strategies for safety-related software for air-

borne systems,” in Federation of International Conferences on Soft-

ware Technologies: Applications and Foundations. Springer, 2017,

pp. 385–393.

[6] A. Fuhr, A. Winter, U. Erdmenger, T. Horn, U. Kaiser, V. Riediger,

and W. Teppe, “Model-driven software migration: Process model, tool

support, and application,” in Migrating Legacy Applications: Chal-

lenges in Service Oriented Architecture and Cloud Computing Envi-

ronments. IGI Global, 2013, pp. 153–184.

[7] D. C. Schmidt, “Model-driven engineering,” Computer-IEEE Com-

puter Society-, vol. 39, no. 2, p. 25, 2006.

[8] B. Selic, “The pragmatics of model-driven development,” IEEE soft-

ware, vol. 20, no. 5, pp. 19–25, 2003.

[9] J. Hutchinson, M. Rouncefield, and J. Whittle, “Model-driven engi-

neering practices in industry,” in Proceedings of the 33rd International

Conference on Software Engineering, 2011, pp. 633–642.

[10] V. Itsykson and A. Zozulya, “Automated program transformation for

migration to new libraries,” in 2011 7th Central and Eastern European

Software Engineering Conference (CEE-SECR). IEEE, 2011, pp. 1–7.

[11] A. W. Brown, “Model driven architecture: Principles and practice,”

Software and systems modeling, vol. 3, no. 4, pp. 314–327, 2004.

72

BIBLIOGRAPHY

[12] M. Glinz, “On non-functional requirements,” in 15th IEEE interna-

tional requirements engineering conference (RE 2007). IEEE, 2007,

pp. 21–26.

[13] D. Gross and E. Yu, “From non-functional requirements to design

through patterns,” Requirements Engineering, vol. 6, no. 1, pp. 18–36,

2001.

[14] J. Metsa, M. Katara, and T. Mikkonen, “Testing non-functional re-

quirements with aspects: An industrial case study,” in Seventh Inter-

national Conference on Quality Software (QSIC 2007). IEEE, 2007,

pp. 5–14.

[15] O. Alhazmi, Y. Malaiya, and I. Ray, “Security vulnerabilities in soft-

ware systems: A quantitative perspective,” in IFIP Annual Conference

on Data and Applications Security and Privacy. Springer, 2005, pp.

281–294.

[16] B. Chess and G. McGraw, “Static analysis for security,” IEEE security

& privacy, vol. 2, no. 6, pp. 76–79, 2004.

[17] J. Pewny and T. Holz, “Evilcoder: automated bug insertion,” in Pro-

ceedings of the 32nd Annual Conference on Computer Security Appli-

cations, 2016, pp. 214–225.

[18] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha, “Towards

automatic generation of vulnerability-based signatures,” in 2006 IEEE

73

BIBLIOGRAPHY

Symposium on Security and Privacy (S&P’06). IEEE, 2006, pp. 15–

pp.

[19] B. Chess and G. McGraw, “Static analysis for security,” IEEE security

& privacy, vol. 2, no. 6, pp. 76–79, 2004.

[20] P. Emanuelsson and U. Nilsson, “A comparative study of industrial

static analysis tools,” Electronic notes in theoretical computer science,

vol. 217, pp. 5–21, 2008.

[21] A. Russo and A. Sabelfeld, “Dynamic vs. static flow-sensitive security

analysis,” in 2010 23rd IEEE Computer Security Foundations Sympo-

sium. IEEE, 2010, pp. 186–199.

[22] S. J. Carriere, S. Woods, and R. Kazman, “Software architectural

transformation,” in Sixth Working Conference on Reverse Engineering

(Cat. No. PR00303). IEEE, 1999, pp. 13–23.

[23] S. Wood, N. Matragkas, D. Kolovos, R. Paige, and S. Gerasimou,

“Supporting robotic software migration using static analysis and

model-driven engineering,” in Proceedings of the 23rd ACM/IEEE In-

ternational Conference on Model Driven Engineering Languages and

Systems, 2020, pp. 154–164.

[24] R. Haas, R. Niedermayr, T. Roehm, and S. Apel, “Is static analy-

sis able to identify unnecessary source code?” ACM Transactions on

Software Engineering and Methodology (TOSEM), vol. 29, no. 1, pp.

1–23, 2020.

74

BIBLIOGRAPHY

[25] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti,

W. Robertson, F. Ulrich, and R. Whelan, “Lava: Large-scale auto-

mated vulnerability addition,” in 2016 IEEE Symposium on Security

and Privacy (SP). IEEE, 2016, pp. 110–121.

[26] S. Roy, A. Pandey, B. Dolan-Gavitt, and Y. Hu, “Bug synthesis: Chal-

lenging bug-finding tools with deep faults,” in Proceedings of the 2018

26th ACM Joint Meeting on European Software Engineering Confer-

ence and Symposium on the Foundations of Software Engineering,

2018, pp. 224–234.

[27] N. Gok and N. Khanna, Building Hybrid Android Apps with Java and

JavaScript: Applying Native Device APIs. " O’Reilly Media, Inc.",

2013.

[28] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,

D. Gohman, L. Wagner, A. Zakai, and J. Bastien, “Bringing the web

up to speed with webassembly,” in Proceedings of the 38th ACM SIG-

PLAN Conference on Programming Language Design and Implemen-

tation, 2017, pp. 185–200.

[29] S. Liang, The Java native interface: programmer’s guide and specifi-

cation. Addison-Wesley Professional, 1999.

75

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Introduction
	Research Questions
	Motivations
	Structure of the thesis

	Background
	Software Obsolescence
	Mitigation Strategies
	Migration
	Model-Driven Engineering
	Automated Software Migration
	Non-functional Requirements
	Security Vulnerability
	Software Security Analysis
	Vulnerability Insertion

	Related Works & Literature Review
	Overview
	Static Analysis
	Vulnerability Insertion

	Proposed Method
	Overview
	Design
	Migration Scenarios
	Java to JavaScript
	C/C++ to Native Java Execution
	Automation Scope

	Migration Tools
	Metrics
	JSweet
	Java Native Interface
	Challenges & Limitations

	Security Analysis Tools
	Metrics
	SonarQube
	Coverity
	Challenges & Limitations

	Vulnerability Insertion
	Overview
	Control Flow Graph
	Code Insertion
	The Scope
	Challenges & Limitations

	Samples
	Overview
	Terminology

	Samples
	Metrics
	Project Size
	Diversity
	Obsolescence
	Java to JavaScript
	C/C++ to JNI
	Vulnerability Insertion

	Scope & Limitations

	Results
	Overview
	Java to JavaScript
	C++ to JNI
	Vulnerability Insertion
	JNI Security
	Other Observations

	Conclusion
	Overview
	Discussion
	Future Works

