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Lay Abstract

This thesis explores theoretical and computational aspects of the p-adic numbers,
which are fundamental objects of study in number theory. The thesis approaches
these problems using techniques from model theory, which is a branch of mathemat-
ical logic which is particularly effective at analyzing algebraic structures. The thesis
has two parts. The first is purely theoretical and focuses on the proof of a theorem
about p-adic functions which can be defined in certain logical languages. The second
part takes a computational approach and focuses on developing theoretical results
about p-adic numbers using a special software system called a proof assistant (the
particular proof assistant is called Isabelle). By developing theory of p-adics in Is-
abelle, we can use software to automatically verify the correctness of proofs of results
and coherence of definitions. The resulting libraries can then be imported and used
in future developments of machine-verified mathematical theory for more complex
results.
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Abstract

This thesis explores various aspects of the model theory of p-adic fields. It is divided
into two distinct parts. The first part pertains to the theory of P -minimal structures.
The main focus is exploring a class of P -minimal structures which display a certain
tameness property with respect to the approximation of definable functions by their
Taylor polynomials, and builds to a proof of a theorem for passing from local ap-
proximations by Taylor polynomials to global (piecewise-definable) approximations
of functions by their Taylor polynomials in such structures. The final chapter of this
part discusses some aspects of classifying the scope of the class of structures that this
theorem applies to. The second part of the thesis describes a formally verified proof
of Macintyre’s quantifier elimination theorem for p-adic fields in the Isabelle proof
assistant. The algebraic formalisations to required state and prove this theorem are
outlined, including constructions of the p-adic integers and fields, as well as a formally
verified proof of Hensel’s Lemma.
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Part I

Approximating Definable
Functions by Taylor Polynomials in

P-minimal Structures
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Chapter 1

Introduction

The p-adic numbers are fundamental objects of study in number theory. They pro-
vide, along with the real numbers, the only metric completions of the rational numbers
on the standard absolute value. The real numbers and first-order structures which
can be imposed on the reals have been an object of intense study since the inception
of model-theoretic techniques. Among the earliest results include Tarski’s quantifier
elimination theorem for the elementary theory of the real numbers in the language of
ordered fields [31]. Paul Cohen later produced a simplified proof of Tarski’s Theorem
in [11] and showed that similar ideas could be applied to prove a quantifier elimina-
tion result for p-adic fields. Later, in [26] Macintyre showed that one could prove a
quantifier elimination result for any finite extension of a p-adic field, in a modified
first order language which allowed for a more refined description of the underlying
definable sets one could produce. In [18], Denef proved a cell decomposition theo-
rem for definable subsets of Qm

p in Macintyre’s language which gave strong insights
into the behaviour of the definable functions in this language. Denef was able to use
this method to provide a powerful technique for the computation of p-adic integrals,
yielding a siginificantly simpler proof that the Poincaré series associated to a p-adic
variety is represented by a rational function. Denef’s results also strengthened the
analogy between the first order theory of p-adic fields in Macintyre’s language and
o-minimal expansions of real closed fields. This analogy was subsequently strength-
ened and formalized by Haskell and Macpherson in [21], with the introduction of the
theory of P -minimal structures, which provided a class of structures which satisfied
a minimality property with respect to Macintyre’s language for valued fields which
closely mirrors the definition of o-minimality in the context of ordered fields.

This thesis makes two contributions to the theory of P -minimal structures. In
the first section, we prove a theorem on uniform Taylor approximations of definable
functions in P -minimal structures. In the second section, we provide a machine-
verified formalisation of Macintyre’s quantifier elimination theorem for p-adic fields
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using the Isabelle proof assistant.
The theorem proved in the first section applies to P -minimal theories which also

satisfy a stronger property known as Hensel-minimality. In [7], Cluckers, Comte, and
Loeser proved a theorem analogous to the Pila-Wilkie theorem for counting points of
bounded height on an o-minimal structure for certain non-archimedean valued fields,
including analytic expansions of p-adic fields. A key step in this proof requires one
to produce Cr parametrizations of definable sets whose Cr norms can be uniformly
bounded on their domains. This in turn required showing that a function which
is well-approximated locally by its degree r Taylor polynomial must also have this
property globally on the pieces of a finite partition of its domain. This result itself
generalizes similar results proved by the same authors in [6] for definable functions
which are locally Lipschitz. Our generalization of the approximation lemma is a step
towards situating the main theorems of [7] in the more general P -minimal context.

The second section of this thesis focuses on formalizing Denef’s p-adic Cell De-
composition theorem and Denef’s proof of Macintyre’s p-adic quantifier elimination
theorem (as exposited by Denef in [19]) in the Isabelle proof assistant. Formalisa-
tions of ordinary mathematics in proof assistants such as Isabelle, Lean, and Coq
have become an increasing preoccupation of the mathematical community in the 21st

century, with a variety of motivations. As Jeremy Avigad and John Harrison observe
in a survey on the subject [1], concerns over correctness and what can be said to
constitute a correct proof have long been discussed in mathematics. Progress was
made on clarifying this issue with the increased focus on rigorous definitions in the
19th century, and the development of formal axiomatic systems in the early 20th cen-
tury. These projects were ultimately limited by the realization that to work fully
within these systems to produce complete derivations of complex results from first
principles would be hopeless by hand, and at best one could use these systems as
guidelines for producing approximately rigorous proofs, where a formal system could
be used for rectifying ambiguity when our intuitive faculties could not. However,
with the advent of modern computing, we now have the tools to digitally implement
these formal systems, and are increasingly able to automate the tedious details that
previously left complete formalisations of complex mathematical results beyond our
grasp. In order to make such a project practical and useful, one needs a robust library
of basic mathematical results which future developments can import and use without
the need to reprove them. For Isabelle, such a library exists both in libraries which
come with the standard distribution of Isabelle as as well as in the Archive of Formal
Proofs (AFP) which can be accessed at https://www.isa-afp.org/. The AFP is
an online library which accumulates developments of various authors in Isabelle, and
one can download the archive locally for use in their own Isabelle developments. Our
own results in this thesis have been submitted to the archive, with some currently
published [14].

3
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Chapter 2

P-minimality

This section will introduce the notion of P -minimality and establish the basic alge-
braic and model-theoretic properties of P -minimal structures.

2.1 P-adically closed fields and Macintyre’s lan-

guage

Definition 2.1.1 (Haskell-Macpherson [21]). Let K be a valued field with valuation
ν, value group ΓK , valuation ring O and residue field K. Let p be a prime integer.
We say that (K, ν) is p-valued if K has characteristic p. K is of characteristic 0, and
O/pO, viewed as a vector space over Fp, is finite dimensional. If (K, ν) is p-valued,
then we say that the p-rank of K is the dimension of O/pO as a vector space over
Fp.

Definition 2.1.2. [21] The language of p-adically closed fields of p-rank d, de-
noted Ld is the one-sorted first order language consisting of the language of fields
(+,−, ·, 0, 1) with a binary predicate Div, unary predicates Pn for each positive inte-
ger n, and constant symbols c1, . . . , cd.

For a p-valued field (K, ν) of rank d, the intended interpretation of the symbols
in Ld is as follows:

1. The symbols (+,−, ·, 0, 1) are interpreted as the usual field operations and con-
stants on K.

2. The predicate Div(x, y) holds if and only if ν(x) ≤ ν(y). That is, if and only if
y/x ∈ O.

4
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3. The predicates Pn define the set of n-th powers in the p-adic closure of K, i.e.
Pn(x) holds if and only if x = yn for some y ∈ K×.

4. The constants c1, ..., cd are elements of O such that the residues ci + pO form a
basis for O/pO over Fp.

Definition 2.1.3. A valued field (K, ν) is called p-adically closed if it is p-valued,
and there is no algebraic extension L of K which is p-valued with the same p-rank.
A valued field (K, ν) is called henselian if for every algebraic extension L/K, there is
a unique extension of ν to L.

These two closure properties for valued fields are connected via the following
theorem:

Fact 2.1.1. (Prestel-Roquette [29]) A p-valued field is p-adically closed if and only
if it is henselian and its value group is a Z-group.

In this result, an ordered abelian group Γ is defined to be a Z-group if it is
elementarily equivalent to the group Z as an ordered abelian group. Our particular
choice of first-order language for p-adically closed fields is justified by the following
theorem, which generalizes the p-adic quantifier elimination results of Macintyre [26]:

Fact 2.1.2. [29] Suppose (K, ν) is a p-adically closed field of rank d. Then (K, ν)
admits elimination of quantifiers in Ld.

In particular, the predicates Pn are used to eliminate the existential quantifier in
formulas of the form ∃y(x = yn), and the constants ci are necessary to express that
the dimension of the residue field is exactly d, as this requires the assertion of the
existence of a basis.

While our first definition of a henselian valued field K is formulated in terms of
the uniqueness of extensions of valuations, one can formulate an equivalent notion
which is readily expressed as a first-order axiom schema in Ld. That is, a valued field
K, with valuation ν and valuation ring O is Henselian if and only if it satifies Hensel’s
Lemma (see [20] Theorem 4.1.3 for a proof of this equivalence):

Fact 2.1.3 (Hensel’s Lemma). Suppose f(x) ∈ O[x] and a ∈ O such that ν(f(a)) >
2ν(f ′(a). Then there exists a unique α ∈ O such that f(α) = 0 and ν(a − α) >
ν(f ′(a)).

The prototypical example of a Henselian p-adically closed field is the field Qp of p-
adic numbers. Qp can be defined as the completion of the field Q of rational numbers
with the p-adic absolute value | · |p, where

5
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|a/b|p := eordp(b)−ordp(a)

and ordp(x) is defined to be the largest exponent n such that pn divides x. Hensel’s
lemma was originally formulated as a theorem specifically for Qp by Kurt Hensel [22]
and later generalized to larger classes of valued fields.

We can close this section by offering the definition of P-minimality, as given in [21]:

Definition 2.1.4. Let L′
d be a language which extends Ld, and K = (K, ν) an L′

d-
structure. We say that K is P-minimal if every L′

d-definable subset of K is definable
by a quantifier-free Ld formula.

Haskell and Macpherson also proved that P-minimal structures are p-adically
closed:

Fact 2.1.4. [21] Suppose that the L′
d-structure (K, ν) is P-minimal. Then K is

p-adically closed.

2.2 The value group of a P-minimal structure

Fact 2.1.4 tells us that P -minimal structures are p-adically closed. We can use this fact
and Fact 2.1.1 to infer that the value group of a P -minimal structure will always be
elementarily equivalent to the additive group of integers. In this section we will discuss
a strengthening of this fact: if K is P -minimal, then it is not possible to have any
extra structure on the value group beyond that imposed by the language of ordered
abelian groups. The resulting complete theory of the value group is then exactly the
well-understood theory of Presburger Arithmetic, which we describe below.

If we expand the language of ordered abelian groups by congruence relation sym-
bols for the complete theory of the integers, we obtain a theory which admits quantifier
elimination. This expansion is defined here.

Definition 2.2.1. The language LPres of Presburger arithmetic is given by the lan-
guage LOAG of ordered abelian groups, plus unary predicate symbols x ≡ y mod n
for each n > 0.

As mentioned above, this definitional expansion of the theory of ordered abelian
groups is justified by the following theorem due to Presburger:

Fact 2.2.1. The theory Th(Z,LPres) has definable Skolem functions, quantifier elim-
ination, and is decidable.

The next theorem is due to Cluckers in [5], and guarantees that the structure of
Presburger Arithetic is all one can have on the value group of a P-minimal Field.

6
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Fact 2.2.2. Let (K, ν) be a P-minimal L′
d-structure with value group Γ. Then every

L′
d-definable subset of Γ

m is LPres-definable, and every LPres-definable set S ⊆ Γm is
of the form ν(X) for some L′

d-definable set X ⊆ Km.

In [5], Cluckers also proves a cell decomposition theorem for LPres-definable sub-
sets of Γn, and proves that all LPres-definable functions f : Γn → Γ are piecewise
linear (see definition 2.2.3). This fact is frequently useful for analyzing definable sets
in a P -minimal structure. We state these results precisely here as they will be useful
later for understanding and manipulating P -minimal cells. In the next definition, we
fix a model Γ of presburger arithemtic:

Definition 2.2.2. A Presburger (0)-cell is a singleton {a} ⊆ Γ. A Presburger (1)-cell
is a subset X ⊂ Γ of the form:

X = {x ∈ Γ | α □1 x □2 β and x ≡ l mod n}

For constants α, β ∈ Γ, natural numbers l, n ∈ N, and symbols □i which are either
≤, <,=, or no condition.

A concise way to characterize a Presburger (1)-cell is that it is the intersection of
a definable convex subset of Γ and an arithmetic sequence. The following definition
is just the familiar notion of a linear function adapted to the context of LPres:

Definition 2.2.3. A function f : X ⊆ Γ → Γ is called linear if there exist integers
l, n, c (where 0 ≤ c < n) and constant d ∈ Γ such that for every x ∈ X:

f(x) = l

(
x− c
n

)
+ d

Notice that integer division is clearly not a globally defined function in Presburger
arithmetic, but on any subset the arithmetic sequence {x | x ≡ c mod n} such
a function is well-defined and LPres-definable. We can inductively define a linear
function f : X ⊆ Γn+1 → Γ as a function of the form:

f(x, t) = l

(
t− c
n

)
+ d(x)

where x is a Γn variable, t is a Γ variable, and d(x) is a linear function defined on a
subset of Γn. Using this we can also inductively define Presburger (i1, ..., in, 1)-cells
as subsets of Γn+1 of the form

{(x, t) | x ∈ A and | α(x) □1 t □2 β(x) and t ≡ l mod n}

7
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where A ⊆ Γn is a Presburger (i1, ..., in)-cell, and α, β are definable linear functions
from A→ Γ. We can define Presburger (i1, ..., in, 0)-cells as graphs of definable linear
functions α : A ⊆ Γn → Γ where A is a Presburger (i1, ..., in)-cell.

The Presburger cell decomposition theorem is Theorem 1 from [5] and character-
izes definable subsets of Γn in Presburger arithmetic:

Fact 2.2.3. Let X ⊂ Γm and f : X → G be LPres-definable. Then there exists a
finite partition P of X into Presburger cells, such that the restriction f |A: A→ Γ is
linear for each A ∈ P . Moreover, if X and f are S-definable, then the parts A ∈ P
can be taken to be S-definable.

2.3 Multiplicative Subgroups of K×

The valuation map and the predicates Pn give two important ways to define multi-
plicative subgroups of K×. For each natural number n, the set {x ∈ K× | ν(x) ≡ 0
mod n} will be a subgroup, and the sets Pn ∩K× themselves are also subgroups. In
this section we will explore other important Ld-definable subgroups of K× and their
quotients.

2.3.1 Definable Angular Component Maps

Definition 2.3.1. Let (K, ν) be a valued field whose value group is a Z-group. We
say that π is a uniformizer for K if ν(π) is of minimal positive valuation.

Since it is clear that such an element must always exist in a P -minimal field,
throughout this section we will work with a fixed P -minimal field K with a choice of
uniformizer π. If our p-adically closed field has rank 1, then the natural choice of π
will be the prime p itself.

Definition 2.3.2. Let (K, ν) be a valued field whose value group is a Z-group, with
valuation ring O. Let n > 0 be an integer. The n-th residue ring of K is the ring
O/πnO. We will denote by resn : O → O/πnO the canonical quotient map, and write
Rn to denote the nth residue ring.

The restrictions resn|O× : O× → R×
n are homomorphisms of multiplicative groups.

The main goal of this section will be to show that there are unique extensions of
these maps to definable homomorphisms K× → R×

n . These maps are called angular
component maps.

Lemma 2.3.1. Each residue ring O/πnO is finite, and each element of this quotient
has a ∅-definable representative in O.

8
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Proof. By definition of P -minimality, the ring O/pO is finite. Similarly, we see that
for each k, the ring O/pkO has {pjci|j < k, i < d} as a basis (viewed as an Fp-
vector space), hence it is finite. If we set m = ν(p), we see that pkO = πkmO, hence
the rings O/πkmO are all finite. The result follows, since |O/πkmO| > |O/πnO|
whenever km > n. The above basis is ∅ -definable, which proves the second part of
the lemma.

Lemma 2.3.2. Let a ∈ K and n, l ∈ N such that ν(a) ≡ l mod n. There is some
u ∈ O× and z ∈ Pn such that a = uπlz.

Proof. By assumption there is an integer m such that ν(a)− l = nm. Choose c such
that ν(c) = m and set z = cn, so that ν(z) = ν(a) − l. Then set u = aπ−lz−1. This
choice of u and z satisfy the claim of the lemma.

Definition 2.3.3. With the same context as above, we call f a degree n angular
component map for K if f : K× → (O/πnO)× is a homomorphism of multiplicative
groups, f(π) = 1, and f |O× = resn|O× .

The following lemma is essentially due to Denef [19], and Cluckers and Leenknegt
[9]:

Lemma 2.3.3. Suppose (K, ν) is a P-minimal field, with a uniformizer π. Then K
has an Ld-definable degree n angular component map. Furthermore this map is the
unique degree n angular component map. We will denote this map by acn.

Proof. Let N = |R×
n |. We know that every z ∈ K× can be written in the form

z = πluxN for some l ∈ {0, . . . , N−1}, u ∈ O×, and x ∈ K×. Then there is a definable
homomorphism φ : K× → O×P×

N given by φ(z) = π−(ord(z) mod N)z. If we further
compose this with the natural quotient map O×P×

N → O×P×
N /P

×
N
∼= O×/(O× ∩ P×

N )
we get a homomorphism φ̃ : K× → O×/(O×∩P×

N ) which maps πluxN 7→ u(O×∩P×
N )

(and where u ∈ O×). Notice that by choice of N , the kernel of this map is contained
in the kernel of the map resn, so that the residue map descends to the quotient, to
give the desired angular component homomorphism πluxN 7→ resn(u). This is clearly
a homomorphism as defined, and also clearly restricts to resn on O×. Also, it is
evident that φ(π) = 1, so that π is mapped to 1, as desired. Uniqueness follows from
the fact that any other such homomorphism must also send πlxN to 1, so it agrees
with the above map at all values.

We can choose to define the angular component maps to send 0 ∈ K to 0 ∈ Rn

to make them total, and to distinguish 0 from the field units. The degree n angular
component should be thought of as a way to view the “first n digits” of the π-adic

9
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expansion of an element in K. Clearly for any n ∈ Z, we can always find an element
x ∈ K with ν(x) = n and acm(x) = 1 by setting x = πn. Despite a lack of a notion
of general exponentiation for possibly non-standard elements of the value group, we
can still find such witnesses in general:

Lemma 2.3.4. Suppose γ ∈ Γ and n ∈ N. Then there exists some x ∈ K such that
ν(x) = γ and acn(x) = 1.

Proof. Let N = |R×
n | and x ∈ P×

n . We can write γ = l + Nη for some η ∈ Γ and
l ∈ {0, . . . , N − 1}. Choosing x ∈ K satisfying ν(x) = η, we see that acn(x

N) = 1 (as
acn is a homomorphism to a group of order N), so πlxN satisfies our requirements.

Corollary 2.3.5. Suppose γ ∈ Γ, n ∈ N, and ξ ∈ R×
n . Then there exists some x ∈ K

such that ν(x) = γ and acn(x) = ξ.

Proof. Choose some x ∈ K with ν(x) = γ and acn(x) = 1, and u ∈ O× satisfying
res(u) = ξ. Then ux satisfies the requirements.

One very useful property of the angular component maps is that they allow us
to parametrize open balls in the valuative topology on K, which we express in the
following lemma:

Lemma 2.3.6. Suppose (K, ν) is a P-minimal field, with degree n > 0 angular com-
ponent map acn. Suppose x, y ∈ K such that ν(x) = ν(y) = γ. Then acn(x) = acn(y)
if and only if ν(x− y) ≥ γ + n.

Proof. Suppose we have x, y ∈ K satisying ν(x) = ν(y) = γ. We may assume neither
of these elements are equal to 0. Let z be an element of K where ν(z) = γ, and
acn(z) = 1. Then we can obtain u,w ∈ O× such that x = uz and y = wz. Note that
ν(x− y) = ν(u− w) + ν(z).

First, suppose acn(x) = acm(y). We may assume x and y are both elements of
K×. Then acn(u) = acn(w), which means that resn(u) = resn(w). It follows that
u − w ≡ 0(mod πn), hence ν(u − w) ≥ n. The desired result follows from the fact
that ν(x− y) = ν(u− w) + ν(z).

Conversely, supposing that ν(x − y) ≥ γ + n, we see that ν(u − w) ≥ m, which
means that u ≡ w mod πm, hence acn(u) = acn(w), so the result follows.

Up to this point, we have shown how angular component maps can be defined in
terms of the valuation and nth power sets. In what follows we will show that we can
also recover the sets Pn from an angular component map in a definable way. The
next lemmas shows that the sets P×

n are large in the sense that these groups always
contain an open neighbourhood around 1. This is an easy consequence of Hensel’s
Lemma:

10
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Lemma 2.3.7. Let n ≥ 2, and λ = 2ν(n) + 1. For every u ∈ O, if u ≡ 1 mod πλ

then u ∈ Pn.

Proof. Suppose u ∈ O and u ≡ 1 mod πλ . Let p(x) = xn − u. Then ν(p′(1)) = ν(n)
and ν(p(1)) = ν(1− u) ≥ λ > 2ν(p′(1)) . By Hensel’s lemma the result follows.

Rather than work with the subgroups P×
n , we can define a related family of groups

defined in terms of the valuation and angular components which carry the same data
but can be more convenient to work with:

Definition 2.3.4. Let n,m be positive natural numbers. The set Qn,m is defined as:

Qn,m := {x ∈ K× | acm(x) = 1, ν(x) ≡ 0 mod n}

It is clear that each Qn,m defines a subgroup of K×. Also note that if acn(x) =
acn(y), and ν(x) ≡ ν(y) mod m, then xy−1 ∈ Qn,m. This shows that the cosets of
Qn,m lie in bijection with the (finite) set {0, ..., n− 1}×R×

m, so Qn,m is a finite index
subgroup of K×. The next lemma will allow us to conclude the same thing for the
groups P×

n .

Lemma 2.3.8. If λ = 2ν(n) + 1, then Qn,λ ⊆ P×
n

Proof. Let M = lcm(n, |Rλ|). Using Lemma 2.3.2, any x ∈ Qn,m can be written
x = uπlz, where l < M , u ∈ O×, and z ∈ PM . We must have acλ(z) = 1 (since
z ∈ P|Rλ|), so acλ(x) = acλ(u), which means that u ∈ Pn by Lemma 2.3.7. Since n
divides M , we must have that z ∈ Pn as well. Finally, because ν(x) ≡ l mod M , we
see that l must divide n. Then πl ∈ Pn, hence x ∈ Pn.

Corollary 2.3.9. Every group P×
n has finite index in K× and is a finite disjoint union

of cosets of Qn,λ, where λ = 2ν(n) + 1.

2.3.2 The Language of Denef-Pas

The fact that the nth-power sets can be construed as unions of the groups Qn,m means
that a P -minimal Ld-structure can always be interpreted in the following multi-sorted
language, where extra sorts have been added for the residue rings and value group:

Definition 2.3.5. The infinite-sorted language of Denef-Pas is the first order lan-
guage LDP with home sort K for the valued field structure, residue ring sorts Rn for
each n > 0, to be interpreted as the residue rings O/πnO, and a sort Γ for the value
group. The home sort K has the language of rings, plus a constant π, the residue
ring sorts each have the language of rings on them, and the Γ sort is endowed with
the language of Presburger arithmetic. In addition, there are functions acn : K → Rn

11
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to be interpreted as the angular component maps on K×, and sending 0K to 0Rn ,
a function ord : K → Γ ∪ {∞} to be interpreted as the valuation on K, and maps
resn,m : Rn → Rm for each n ≥ m to be reduction (mod m). The language LDP,d

is just LDP with extra home sort constants c1, . . . , cd added (to be interpreted as a
preimage of a basis of R1 over Fp).

Fact 2.1.2 tells us that the theory PCFd,p of p-adically closed fields of rank d can
be axiomatized in the language Ld by axioms which state that the universe is a valued
field and the constants c1, . . . , cd induce an Fp-basis of the residue field, the axioms
of Presburger arithmetic for the value group, and an axiom schema asserting that
Hensel’s Lemma holds for polynomials of any degree. All of these axioms can also
be stated in LDP,d. We will refer to the LDP,d theory PCFd,p to mean the axioms
of PCFd,p translated to LDP,d, along with axioms which state that the map ord is a
surjective valuation, and that the maps acn are surjective angular component maps
in the sense of Definition 2.3.3. The next proposition collects the basic information
we will need to know about this theory.

Proposition 2.3.10. If the Ld-structure (K, ν) is a model of PCFd,p, then (K, ν) can
be uniquely interpreted as an LDP,d structure, which also satisfies PCFd,p. Conversely,
every LDP,d structure induces a unique Ld-structure which is a model of PCFd,p. The
LDP,d theory PCFd,p eliminates quantifiers in every sort.

Proof. The first two claims follow easily from definitions and Lemma 2.3.3. Using
Corollary 2.3.9, we see that every set Pn is quantifier-free definable from the sets
Qn,m, which themselves are clearly quantifier-free definable in LDP,d. The quantifier
elimination claim then follows from Fact 2.1.2, Fact 2.2.2, and the fact that every
residue ring Rn is finite of a fixed cardinality, with every element ∅-definable in LDP,d.

Proposition 2.3.10 means that one could equivalently define a P -minimal structure
to be a structure in a language L which extends LDP,d only in the home sort, such that
the LDP,d-theory of the structure is PCFd,p, and every definable set in one home-sort
variable is definable by a quantifier-free LDP,d-formula, which is the notion that we
will use for the rest of this thesis.

2.4 Cells in P-minimal Structures

The main benefit of working in LDP,d as the base language for P -minimality is that
it allows one to readily define and reason about a class of sets called P -minimal cells.
In particular, P -minimal cells can be parametrized by definable sets in the sorts Γ
and Rn using the angular component and valuation maps.

12
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Definition 2.4.1. An LPres-formula I(x;α, β) is called a convex condition if I is of
the form

α □1 x □2 β

where the symbols □i are either ≤, <, or no condition, and α, β ∈ Γ ∪ {∞}

Definition 2.4.2. The LDP -formula Qn,m(x) is defined to be:

ν(x) ≡ 0 mod n ∧ acm(x) = 1

The sets defined by the formulas Qn,m were already introduced in Section 2.3.1,
and as shown there, are finite index multiplicative subgroups of K×. The next propo-
sition expresses a useful property of these sets — that they are closed under finite
intersections. This provides one of the chief advantages of working with the groups
Qn,m over the groups P×

n , as the latter groups have a less obvious combinatorial
structure. The proof is a straightforward computation.

Proposition 2.4.1. Let N = lcm(n, l) and M = max(m, k). Then Qn,m(K) ∩
Ql,k(K) = QN,M(K)

Proof. For any x ∈ K,

x ∈ Qn,m(K) ∩Ql,k(K) ⇐⇒ ν(x) ≡ 0 mod n ∧ acm(x) = 1 and

ν(x) ≡ 0 mod l ∧ ack(x) = 1

⇐⇒ ν(x) ≡ 0 mod N and acM(x) = 1

⇐⇒ x ∈ QN,M(K)

Definition 2.4.3. A 1-cell condition is the data C = (c, n, l,m, ξ, I, α, β) where n,m
are positive integers, 0 ≤ l < n, c ∈ K, ξ ∈ O× is ∅-definable, I is a convex condition,
and α, β ∈ Γ ∪ {∞}. Given a 1-cell condition, the associated LDP -formula φC(x) is
the formula:

I(ν(x− c);α, β) ∧Qn,m(π
−lξ−1(x− c))

While this definition makes the dependence on the formulas Qn,m and I explicit,
the formula φC(x) is equivalent to the formula

α □1 ν(x− c) □2 β ∧ acm(x− c) = ξ ∧ ν(x− c) ≡ l mod n.

A set defined by the above formula is called a 1-cell. We will frequently abuse notation
and write C to denote the 1-cell defined by φC . Note that for n fixed, all possible
elements of the form π−lξ−1 are ∅-definable, hence the 1-cell C is always cαβ-definable.

13
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Definition 2.4.4. An (n + 1)-cell condition is the data C = (c, C ′, n, l,m, ξ, I, α, β)
where n,m > 0, c : Kn+1 → K is a definable function, C ′ is an n-cell condition, ξ is
a ∅-definable representative of Rm, I is a convex condition, and α, β : Kn+1 → Γ∪∞
are definable. Given an n + 1-cell condition C, the associated LDP -formula φC(x; y)
is the formula:

φC′(y) ∧ I(ν(x− c(y));α(y), β(y)) ∧Qn,k(π
−lξ−1(x− c(y)))

Note that the cell associated to C is definable over any parameter set S, for which
C ′, α, β, and c are S-definable.

Definition 2.4.5. Let S ⊆ Kn. A cell decomposition of S is a finite collection of
cells C0, . . . Cn such that S =

⋃
i φCi

(K) and the sets φCi
are pairwise disjoint.

Definition 2.4.6. We say that K admits cell decomposition if every definable set
S ⊆ Kn has a cell decomposition.

The definition below is introduced by Mourgues in [27]. While Mourgues calls
this property as having “definable selection”, the functions mentioned below are also
frequently referred to as “definable Skolem functions”.

Definition 2.4.7. [27] Let M be an L-structure, for L an arbitrary first-order
language. We say thatM admits definable selection if for each definable set S ⊆ Kn+m

there exists a definable function g : π(S)→ Km whose graph is contained in S (where
π : Kn+m → Kn is the projection onto the first n coordinates).

Mourgues [27] characterized P-minimal fields for which cell decomposition is pos-
sible in terms of definable selection:

Fact 2.4.1. [27] Let K be a P-minimal structure. Then K admits cell decomposition
if and only if K has definable selection.

A precise classification of which P -minimal structures have the definable selection
property is not yet known, however it is now known that there do exist P -minimal
structures which do not have definable selection, as discovered by Kovacsics and
Nguyen in [23]. The known examples of such structures are obtained as reducts of
larger structures which do have definable selection, so it is also unknown whether
every P -minimal structure has a P -minimal Skolemization.

2.5 Balls in P-minimal fields

Every valued field has a notion of ball induced by the valuation. For completeness we
repeat this definition below. Throughout this section, we assume K is a P -minimal
structure.
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Definition 2.5.1. A subsetB ⊆ K is called a ball if it is of the form {x ∈ K|ν(x−c) ≥
γ} for some c ∈ K and γ ∈ Γ. We call γ the radius of the ball B, which we will
denote by r(B). Given a radius γ and c ∈ K, we will write Bγ(c) to denote the ball
{x ∈ K|ν(x− c) ≥ γ} .

This lemma is a simple consequence of the ultrametric inequality and will be useful
in computations involving P -minimal cells later on.

Lemma 2.5.1. Let B,B′ be disjoint balls in K, such that B = Bγ(c) and B′ =
Bγ′(c′). Then for any x ∈ B, and x′ ∈ B′, ν(x− x′) = ν(c− c′). □

The set of all balls in K will be denoted by T (K). This set can be ordered by
reverse-inclusion, i.e. B ≤ B′ if and only if B′ ⊆ B. Given two balls B,B′ ∈ T (B),
there is a unique B′′ ∈ T (K) such that B′′ = inf(B,B′), where inf(B,B′) denotes
the pairwise greatest lower bound on the above ordering. If B ≤ B′ then clearly
inf(B,B′) = B. If B and B′ are disjoint, then inf(B,B′) = Bγ(c), where c, c

′ are the
centres of B,B′, respectively, and γ = ν(c− c′) (this is an easy consequence of 2.5.1).

Lemma 2.5.2. The function r : T (K)→ Γ is ∅-definable.

Proof. Given a ball B, r(B) = min{v(x− y)|x, y ∈ B}.

Lemma 2.5.3. Suppose S ⊂ K is a proper open definable subset of K. Then for
every s ∈ S, there is a unique ball B ∈ T (K) such that s ∈ B and B ⊆ S and which
is maximal with respect to this containment condition.

If B is such a ball in a set S, we will call B a maximal ball of S. Clearly any
proper open definable subset of K is the disjoint union of its maximal balls.

Lemma 2.5.4. Suppose c ∈ K, γ ∈ Γ and ξ is a unit of Rm. Then the formula
ν(x− c) = γ ∧ acm(x− c) = ξ defines the ball Bγ+m(a), where a is any element of K
which satisfies this formula.

Proof. Let B denote the set defined by this formula. Fix a ∈ B, and let x ∈ B be
any other element. Then ν(x− c) = ν(a− c) = γ and acm(x− c) = acm(a− c), hence
ν(x−a) ≥ γ+m, which proves that Bγ+m(a) ⊆ B. The opposite containment follows
similarly.

Corollary 2.5.5. Suppose C = (c, n, k,m, ξ, I, α, β) is a 1-cell and B is a maximal
ball of C. Then B is of the form B = {x ∈ K|ν(x − c) = γ ∧ acm(x − c) = ξ} for
some γ such that I(γ;α, β) holds, and such that γ ≡ k mod n. Conversely, every set
of this form is a maximal ball of C. □
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Given a cell C as in the corollary, we will refer to a maximal ball B = {x ∈
K|ν(x − c) = γ ∧ acm(x − c) = ξ} as the maximal ball of C at height γ, and write
LC(γ) to refer to it. Note that this ball is well-defined from the parameters of C
and γ. Also note that the definable set φC(K) for a cell C = (c, n, k,m, ξ, I, α, β)
is entirely determined by the definable set I(α, β) ⊆ Γ as well as the function LC :
I(α, β) ∩ (nΓ + k) → T (K). Frequently this perspective is conceptually simpler for
reasoning about cells.

Lemma 2.5.6. Suppose C = (c, n, k,m, ξ, I, α, β) is a 1-cell condition and and
LC(γ), LC(η) are maximal balls of C, with γ < η. Then inf(LC(γ), LC(η)) = Bγ(c).
□

Definition 2.5.2. If B,B′ are two distinct maximal balls of a cell C with r(B) <
r(B′), we say they are adjacent if for all maximal balls B′′ of C such that r(B) <
r(B′′), we have r(B′) ≤ r(B′′).

2.6 Lemmas on Cell Decompositions

In sections 3 and 4 we will prove several existence results about particular kinds of
cell decompositions of definable sets in a P -minimal field. This section compiles some
technical lemmas for producing new cell decompositions from old ones which will be
useful to that end. Of particular interest is understanding the possible relationships
of two cells C and D such that D ⊆ C. Given such cells, we would like to understand
conditions under which we may assume that D and C are defined by cell conditions
which have the same center.

Definition 2.6.1. Suppose C and D are cells, with D ⊂ C. We call D a subcell of
C if no two maximal balls of D are contained in the same maximal ball of C.

Definition 2.6.2. Suppose D is a cell. We call a partition D0 ⊔D1 of D a partition
by maximal balls of D if for each maximal ball B of D, either B ⊆ D0 or B ⊆ D1.

In other words, a partition D0 ⊔D1 of a cell D is a partition by maximal balls if
there is some partition S1 ⊔ S2 of the maximal balls of D such that D1 =

⋃
S1 and

D2 =
⋃
S2.

Lemma 2.6.1. Suppose D is a subcell of C, and C has center c. Then there exists a
partition by maximal balls D0⊔D1 of D such that D0 is a cell which can be presented
with center c and D1 is the union of a finite collection of balls.

Proof. Let C = (c, n, l,m, ξ, I, α, β), and D = (c′, n′, l′,m′, η, I ′, α′, β′). Let γ = ν(c−
c′). If ν(x− c) < γ, then the ultrametric inequality tells us that ν(x− c′) = ν(x− c).
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Furthermore, if ν(x−c) < γ−n′ then we must also have that acn′(x−c) = acn′(x−c′).
Then the cell D |(−∞,γ)= (c, n′, l′,m′, η, I ′, α′, β′) |(−∞,γ) as sets. We claim that there
are only finitely many maximal balls of D in D − D |(∞,γ). To see this, let x, x′ be
elements of D, which lie in distinct maximal balls above the height of γ. Suppose
without loss of generality that ν(x− c′) > ν(x′ − c′). Then we have that

ν(c− c′) < ν(x− c′)

which implies that

ν(x− c) = ν(c− c′)

and similarly that

ν(x′ − c) = ν(c− c′)

This implies that x, x′ lie in the same maximal ball of C, but different maximals
balls of D, contrary to our assumption. Then let D0 = D |(−∞,γ) and D1 = D −D0

to get our desired decomposition.

Lemma 2.6.2. Let C be the cell condititon (α, β, n,m, λ), and D ⊂ C a cell with
center d ̸= c. Then we can decompose D into a finite union:

D = D0 ⊔D1 ⊔
ord(m)⊔
i=0

Bi

where D0 is a subcell centred at c, D1 is a cell entirely contained in a maximal ball of
C, and each Bi is an open ball.

Proof. Set γ = ν(c − d). Let D0 := D|(γ,∞). If some element x ∈ X is in the cell
D0, then γ < ν(x − d), therefore ord(x − c) = γ. It follows that D0 must be totally
contained in the maximal ball at level γ in X. Let D1 = D|(−∞,γ−ν(m)). Then for any
x ∈ D1, ord(x − d) + n < ν(c − d). It follows that ord(x − d) = ν(x − c) and also
that acm(x − d) = acm(x − c). Then the cell D1 can be presented with center c. If
we let Bi be the ball of D at level γ + i for 0 ≤ i ≤ ν(m), then we get:

D = D0 ⊔D1 ⊔
ord(m)⊔
i=0

Bi

as desired.
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Chapter 3

Tameness Conditions For
P-Minimal Structures

3.1 Differentiability and the Jacobian Property

In this section we will give basic defintions of differentiability in the P -minimal con-
text, and explore the family of properties that Cluckers, Comte, and Loeser call the
Jacobian Property for definable functions [6]. The Jacobian property is also closely
related to the prior and more general notion of “b-minimality with preservation of
balls” introduced by Cluckers and Loeser in [10]. We will discuss versions of the
property which apply to specific definable functions on certain domains, as well as
a version which holds for theories which says that all definable functions have this
property up to definable finite partition. The Jacobian property for a definable func-
tion says that the image of any ball under the function is itself a ball, and that the
radius of the image ball is strictly controlled by the valuation of the derivative of the
function.

A local version of this property is given by Schikhof for complete non-archimedean
fields in Proposition 27.3 of [30], which is generalized to a P-minimal context by
Leenknegt and Kuijpers in [24]. In both of the above, the Jacobian property is
derived from the notion of strict differentiability, and provides a valuable substitute
for the mean value theorem in classical calculus. In particular, it is used to prove
elementary facts such as that a function with a nonzero derivative is locally injective,
and a function whose derivative is zero is locally constant. These facts are false
in general for differentiable functions on a non-Archimedean field, but true in the
presence of a Jacobian property.

To begin we note that it is possible to define the notions of limit and derivative of
a function in a valued field using the valuation in place of the standard absolute value
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function in the obvious way. Unless stated otherwise, the definitions that follow only
assume that K is a valued field with value group Γ. We will often find it useful to
write the valuation multiplicatively, using absolute value bars around a field element
to denote the valuation of an element. In this case we will reverse the ordering on the
group, denote 0Γ as 1, and ∞ as 0. This makes for increased readability in certain
contexts where the arguments closely mimic similar arguments that one might make
using an absolute value on a field.

Definition 3.1.1. Let c be an accumulation point of X ⊆ K, and f : X → K. The
limit of f at c is equal to L if for every γ ∈ Γ there exists some η ∈ Γ such that for all
x ∈ X, if ν(x− c) > η, then ν(f(x)−L) > γ. In this case we write limx→c f(x) = L.

Definition 3.1.2. Let X ⊂ K be a definable set, and f : X → K a definable
function. We say that f is differentiable at c ∈ X, with derivative l ∈ K if

lim
y→c

f(c)− f(y)
c− y

= l.

If f is differentiable at every point of X we say that f is differentiable on X and
denote by f ′ : X → K the function sending x ∈ X to the derivative of f at x. We
recursively define f (0) : X → K := f and f (n+1) : X → K := f (n)′ if these functions
exist.

The following definition is just the familiar notion of a Lipschitz function, adapted
to the context of general valued fields:

Definition 3.1.3. Suppose K is a valued field with value group Γ, γ ∈ Γ, and
f : X → K, where X ⊆ Kn for some n. We say that f is γ-Lipschitz on X if for all
x, y ∈ X:

|f(x)− f(x)| ≤ γ|x− y|

We say a function is locally γ-Lipschitz on X if every x ∈ X has a neighbourhood in
X on which f is γ-Lipschitz.

We can now state the definition of the Jacobian property for a function whose
domain is a ball.

Definition 3.1.4. Let F : B1 → B2 be a function with B1, B2 ⊂ K. We say that F
has the Jacobian property if the following hold:

1. F is a bijection B1 → B2 and B1, B2 are balls;

2. F is C1 on B1;
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3. |F ′(x)| is constant (and finite) on B1;

4. for all x, y ∈ B1 with x ̸= y, one has

|F ′(x)||x− y| = |F (x)− F (y)|.

As previously stated, if a function has the Jacobian property then it is easy to
track the radii of the images of balls in the domain, which is the content of the next
lemma.

Lemma 3.1.1. Suppose f : B → K has the Jacobian property (B is a ball). Let
γ ∈ Γ be the constant value ν(f ′(x)) for x ∈ B. Then rad(f(B)) = γ+rad(B) (recall
that f(B) is a ball by the definition of the Jacobian property).

Proof.

rad(f(B)) = min{ν(x− y) : x, y ∈ f(B)}
= min{ν(f(x)− f(y)) : x, y ∈ B}
= min{γ + ν(x− y) : x, y ∈ B}
= γ + rad(B)

Our interest will be in studying P -minimal structures for which every definable
function satisfies the Jacobian property on every ball in its domain, up to definable
partition.

Definition 3.1.5. Let K be a valued field which is an L-structure, where L extends
the language Ld for some d with value rings Rn and value group Γ. We say that K
satisfies the global Jacobian property if the following statement holds for K:

Suppose X ⊆ K × Y and Y are definable sets, and

f : X → K

is an L-definable function. Then there exists an L-definable decomposition A1, . . . , An

of X into sets Ai such that for each i ≤ n it is either the case that the restriction of
f(·, y) to the fibre Ai,y ≡ {t ∈ K | (t, y) ∈ Ai} is injective for each y ∈ Y , or it is
constant for each y ∈ Y . In the case of injectivity, for each y ∈ Y , and for each ball
B ⊆ Ai,y, the image f(B, y) is also a ball, and f(·, y) : B → f(B, y) has the Jacobian
property.
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3.2 Mapping Cells to Cells with the

Jacobian Property

By definition, a function with the Jacobian Property maps a cell to a union of balls,
one for each ball in the cell. We would now like to show that it can be arranged that
after passing to a sufficiently fine cell decomposition, a function with the Jacobian
Property maps cells to cells, carrying maximal balls of the domain cell to the maximal
balls of the image cell. We will also be interested in performing this procedure for
finite families of functions. The following definitions and lemmas will help us towards
this end.

We will first state a simple lemma:

Lemma 3.2.1. Suppose d /∈ B and B′ ⊆ B, for balls B,B′ where

B′ = {z ∈ K | ν(z − d) = γ, acn(z − d) = ξ}

Then there exists some m ≤ n such that

B = {z ∈ K | ν(z − d) = γ, acm(z − d) = ξ′}

where ξ′ is the image of ξ under the projection from Rn to Rn′.

Proof. There is a finite chain of balls B0 = B′ ⊆ B1 ⊆ . . . Bk with no intermediate
balls, where Bk is the minimal ball containing both d and B′. Each of these balls
(except for Bk) is of the desired form, and so B must be one of these intermediate
balls.

The next theorem is adapted from Proposition 3.11 of Cluckers, Comte and Loeser
[6], with adaptations made for out slightly different axiomatic framework:

Theorem 3.2.2. Suppose K is a P -minimal L-structure with definable Skolem func-
tions and which satisfies the global Jacobian property. Suppose F : X ⊆ K → K is a
definable function. Then there exists a cell decomposition {Xi | i ≤ n} of X into cells
such that for each Xi, F |Xi

is either injective or constant. Furthermore, if F |Xi
is

injective, then F (Xi) is a cell and F maps maximal balls of Xi to maximal balls of
F (Xi).

Proof. By passing to a cell decomposition as in the definition of the Jacobian property
for theories, we may assume that X is a cell on which F is injective, and that F has
the Jacobian property on each maximal ball of X. We can take a cell decomposition
X1, . . . , Xn of F (X) such that each Xi is of the form:

Xi = {x ∈ K | ν(x− di) ∈ (niΓ + ki ∩ Ii), acmi
(x− di) = ξi}
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Note that for any maximal ball B of X, the set F (B) is a ball. It follows that each
maximal ball of a set Xi must either be entirely contained within F (B), or disjoint
from it. Define

I1 = {i ≤ n | di ∈ F (B) for some maximal ball B of X}

and let I2 = {1, .., n} − I1. For each i ∈ I1, let Bi be the ball of X such that F (Bi)
contains di. Note that for each i ∈ I1 and j ≤ n, the sets Xj ∩F (Bi) and Xj −F (Bi)
form a partition by maximal balls of Xj, so if necessary we can pass to a finer cell
decomposition of F (X) where no new centers are required, and for each ball Bi, each
cell in our decomposition is either entirely contained in F (Bi), or disjoint from it.
Appropriately numbering this new decomposition, and redefining the sets I1 and I2,
we may assume without loss of generality that the original decomposition X1, . . . , Xn

has this property. Then (removing the balls Bi from X if necessary) we can assume
without loss of generality:

1. X is a cell on which F is injective and has the Jacobian property on maximal
balls.

2. X1, . . . , Xn is a cell decomposition of F (X) where Xi has center di.

3. Each di is disjoint from all of F (X).

For each maximal ball B of X, choose some i such that F (B) contains a maximal
ball Bi of Xi. We know that Bi is of the form:

{z ∈ K | ν(z − di) = γ(B,i), acmi
(z − di) = ξi}

For some γ(B,i) ∈ Γ. Using 3.2.1 we can find m ≤ mi and ξ such that

F (B) = {z ∈ K | ν(z − di) = γ(B,i), acm(z − di) = ξ}

Then for some positive integer N , there are definable subsets G1, . . . , GN of Γ,
definable centers c1, . . . , cN , positive integers M1, . . . ,MN and angular components
ν1, . . . , νN such that the set F (X) is a finite disjoint union of the sets

{z ∈ K | ν(z − ci) ∈ Gi, acMi
(z − ci) = νi}

for i ≤ N , and furthermore, the maximal balls of these sets are all of the form F (B),
where B is a maximal ball of X. By Presburger cell decomposition we can assume
without loss of generality that the sets Gi are Presburger cells, hence the above sets
can be taken to themselves be cells. In this case, the preimages of these cells under F
form a partition by maximal balls of X, so refining further if necessary we can assume
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that these preimages are cells, hence we have found the desired decomposition of X
to prove the theorem.

This theorem can be generalized to any finite collection F1, . . . , Fn of definable
functions as well:

Corollary 3.2.3. Suppose K is a P -minimal L-structure with definable Skolem func-
tions and which satisfies the global Jacobian property. Suppose Fi : X ⊆ K → K
is a definable function for i = 0, . . . , k. Then there exists a cell decomposition
{Xj | j ≤ n} of X into cells such that for each Xj and each i, Fi |Xj

is either
injective or constant. Furthermore, if Fi |Xj

is injective, then Fi(Xj) is a cell and Fi

maps maximal balls of Xj to maximal balls of Fi(Xj).

Proof. The proof proceeds by induction on k with the previous theorem as the base
case. So we may assume without loss of generality that X is already a cell such that
Fi(X) is a cell for each i < k. Since being constant on a cell is clearly a hereditary
property, we can assume without loss of generality that Fi is injective on X for each
i < k. We can also assume without loss of generality that Fi has the Jacobian property
on X for each i ≤ k. Then any maximal ball of X is a cell which is mapped by Fi to
another cell (since a ball is a cell) for i ≤ k. Let X1, . . . , Xm be a cell decomposition
of X such that Fk is as desired on each cell Xj. If some maximal ball of X contains
infinitely many balls of some cell Xj, we can pass to partitions by maximal balls,
and add that ball itself as a further cell in our decomposition. In this way, applying
Lemma 2.6.2 we can assume that each cell Xi is a subcell of X. If Fk is constant
on Xj for some Xj, then we can apply the inductive hypothesis to Xj and obtain
the desired result on each cell obtained. So without loss of generality, (by passing to
some X = Xj where Fk is injective, and renaming Y = X) we can reduce to the case
where:

1. There exists a cell Y such that Fi(Y ) is a cell with center di and Fi |Y is injective
for each i < k.

2. X ⊆ Y is a subcell of Y with the same center as Y (call it c) such that Fk |X is
injective, Fk(X) is a cell with center dk, and Fi has the Jacobian property on
X for all i ≤ k.

We can now mimic the argument in Lemma 3.2.6 to obtain the desired partition. Let
H be the set:

H := {rad(B) | B is a maximal ball of X}

This is a definable subset of the value group, and is a Presburger 1-cell. For each
function Fi, there is a definable function ri : H → Γ defined:
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ri(h) = rad(Fi(Bh))

where h = rad(Bh) and Bh is the unique maximal ball of X of radius h. By the
Jacobian property, we know that if Fi(X) is a cell whose residue condition comes
from residue ring Rni

, then we actually have an explicit formula for ri(h):

ri(h) = h+ ν(F ′
i (Bh))

where ν(F ′
i (B)) denotes the constant value of F ′

i on this ball. Since the image Fi(Y ) is
a cell for i < k and the image Fk(X) is a cell, we know that each function ri is linear,
hence so is the function h → ν(F ′

i (Bh)). It follows that the radius function induced
by Fi is linear for any subcell of X as well. Then we can take a further decomposititon
of X using finiteness of residue rings and presburger cell decomposition to get our
desired decomposition.

Frequently in our arguments, we will need to perform several cell decompositions
successively, and this naturally raises the question as to how stable this construction is
under further decompositions. More precisely, suppose C is a cell, f has the Jacobian
property on C, and f(C) is also a cell. Now suppose we have a cell decomposition
C1, . . . , Cn of C. We would like to understand under what conditions we can be
guaranteed that f(C1), ..., f(Cn) also gives a cell decomposition of f(C). Furthermore,
if some Ci has the same center as the larger cell C, we would like to understand when
f(Ci) will have the same center as f(C).

Definition 3.2.1. Suppose C is a cell. Then the set of radii of the maximal balls of
C will be denoted by Rads(C).

Rads(C) is clearly a definable subset of Γ, and in fact is always a Presburger 1-cell.
That is, it is of the form (kΓ + l) ∩ I for some definable convex set I ⊂ Γ. If some
function f has the Jacobian Property and maps C to another cell, then f also induces
a definable function radf,C : Rads(C) → Rads(f(C)) mapping a value γ := rad(B)
to radf,C(γ) := rad(f(B)). In fact, this function is defined for any function f with
the Jacobian property on C, since f is guaranteed to map balls to balls.

Lemma 3.2.4. Suppose that C is a cell and f is a definable function on C such that
f has the Jacobian property on C. Then there is a cell decomposition C1, . . . , Cn of
C by maximal balls such that radf,Ci

: Rads(Ci)→ Γ is linear for each i.

Proof. Suppose without loss of generality that C is a cell of the form

{x ∈ K | ν(x) ∈ (k0Γ + l0) ∩ I0 ∧ acm0(x) = ξ0}
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The function radf,C : Rads(C) → Γ is definable, hence it is Presburger defin-
able. By presburger cell decomposition it follows that there is a decomposition of
Rads(C) ⊆ Γ into presburger cells D1, . . . , Dn such that radf,C |Di

is linear for each
i. If we set Ci to be the restriction of C to those maximal balls whose radii lie in Di,
then C1, . . . , Cn is our required cell decomposition.

Lemma 3.2.5. Suppose that C is a cell and f is a definable function on C such
that f has the Jacobian property on C and radf,C : Rads(C)→ Γ is linear. Suppose
that D is any subcell of C with the same center as C. Then the function radf,D :
Rads(D) → Γ is a linear function. In fact, there exists a constant M ∈ N such that
radf,D(γ) = radf,C(γ −M) +M , where M only depends on C and D (not on f).

Proof. Using Lemma 3.1.1 we know that for any ball B in C,

rad(f(B)) = ν(f ′(x)) + rad(B)

where x is any point in B. In particular, this holds for maximal balls of C. Then we
have that for any maximal ball B of C, and any x ∈ B:

ν(f ′(x)) = rad(f(B))− rad(B)

Since both terms in the difference on the left are linear functions in the radius of
B, the function mapping a radius γ of a maximal ball B ⊆ C to the constant value
ν(f ′(x)) for x ∈ B must also be linear. Furthermore, there is some constant M such
that whenever B′ ⊆ B, where B′ is a maximal ball of D and B is a maximal ball
of C, then rad(B′) = rad(B) +M (in particular M is the difference of the angular
component degrees required to specify balls in D and C respectively). It follows that
for a value γ which is a radius of a maximal ball B′ in D, we know that B′ ⊆ B where
B is a maximal ball of C, hence:

radf,D(γ) = γ + ν(f ′(x)) for x ∈ B′

= γ + (rad(f(B)− rad(B))

= γ + radf,C(γ −M)− (γ −M)

= radf,C(γ −M) +M

which is also linear.

Lemma 3.2.6. Suppose that C is a cell and f1, . . . , fn are definable functions such
that

1. fi(C) is a cell for each i
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2. fi has the Jacobian property on C for each i.

Suppose furthermore that D is a subcell of C with the same center as C. Then
there is a partition by maximal balls of D into subcells D1, . . . , Dm such that the above
two properties hold for each fi on each Dj. Furthermore, we can arrange so that for
each fi and each j, the cell fi(Dj) is a subcell of fi(C) with the same center as fi(C).

Proof. We know from Lemma 3.2.5 that there is a fixed M such that radsfi,D(γ) =
radsfi,C(γ −M) +M for each i. This means that whenever B′ ⊆ B for a maximal
ball B′ of D, and maximal B of C, with γ = rad(B), we have that fi(B

′) is a ball in
fi(B), and their radii differ by M . Then supposing

fi(C) = {x ∈ K | ν(x− di) ∈ S ∧ acm(x− di) = ξ}

we have that every maximal ball of fi(C) is of the form

{x ∈ K | ν(x− di) = γ ∧ acm(x− di) = ξ}

and therefore every maximal ball of fi(D) must be of the form

{x ∈ K | ν(x− di) = γ ∧ acm+M(x− di) = ξ′}

for some ξ′. By partitioning the balls of D according to the possible values of ξ′,
and possibly partitioning them again to ensure that the heights are an arithmetic
progression, we can get our desired decomposition D1, . . . , Dn of D.

One should note that the next lemma uses multiplicative absolute value notation
for the valuations of field elements:

Lemma 3.2.7. Suppose f : C → K is a definable differentiable function on a cell C
such that f(C) and f ′(C) are all cells centred at 0 and have the Jacobian Property
on C. Then there is a rational number q such that for all x ∈ C

|f(x)| = |q||f ′(x)||x|

Proof. Let x be some point in C, and choose y ∈ C from the same maximal ball as x
so that |x − y| is as large as possible (i.e. |x − y is the radius of this maximal ball).
Let m be the angular component condition in the definition of C, and let m′ be the
condition in a cell condition defining f(C). Choose n, n′ such that ν(n) = m and
ν(n′) = m′. We know by the Jacobian Property that |f(x) − f(y)| = |f ′(x)||x − y|,
and therefore that |f(x)−f(y)| is the radius of f(C) (by choice of x, y). Furthermore,
we know by 2.5.4 that |f(x)− f(y)| = |n′||f(x)| and |x− y| = |n||x| (using that the
centres of C and f(C) are both 0). Then we get:
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|f(x)| = |n′|−1|f(x)− f(y)|
= |n′|−1|f ′(x)||x− y|
= |n′|−1|f ′(x)||n||x|
= |q||f ′(x)||x|

where q = n/n′.

3.3 Property Tr

The idea of mapping cells to cells with the Jacobian property was used in [6] to prove
the following theorem:

Fact 3.3.1. Let ϵ > 0 be given. Let f : X ⊆ Km → K be an L-definable function,
where K is a finite field extension of Qp for some p, and L is either the subanalytic
or semi-algebraic language for valued fields. Suppose that f is ϵ-Lipschitz continuous
locally. Then there exists a C > 0 and a finite definable partition of X into parts Ai

such that the restriction of f to Ai is globally C-Lipschitz continuous for each i.

In fact, the proof of this result can be made in the more general context of a P -
minimal L-structure with definable Skolem functions and the Jacobian Property, as
the assumptions on K and L are used to provide concrete contexts which obtain these
more general properties. In [7], a similar question is explored under the context of
Fact 3.3.1, but about functions which are locally well-approximated by their degree
r Taylor polynomials at nearby points. This section will further elaborate on this
property, establishing a suitable P -minimal framework for proving some of the results
from [7], but without the concrete assumptions on the language and fields involved.

Definition 3.3.1. Suppose f : X ⊆ K → K. We define the sup norm of f to be:

|f |sup := max{|f(x)| | x ∈ X}

if this quantity exists.

Note that in a model of Presburger arithmetic, any definable set which is bounded
below has a definable infimum, so any definable bounded function f : X → K must
have a well-defined sup norm.

Definition 3.3.2. Suppose f : X ⊆ K → K is r-times continuously differentiable.
We define the Cr-norm of f to be the value:
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|f |r := max
0≤k≤r
x∈X

|fk(x)|
k!

As above, this value is well defined as long as f (i) is bounded on X for i ≤ r. The
following definition was introduced by Cluckers, Comte, and Loeser in [7].

Definition 3.3.3. Let f : X → K with X ⊂ K be a Cr function. We say f satisfies
property Tr on X if X is open, |f |r ≤ 1, and for every x, y ∈ X one has:

|f(x)− T<r
y,f (x)| ≤ |x− y|r

where T<r
y,f (x) denotes the degree r − 1 Taylor polynomial of f , centred at y. In the

case where f instead satisfies

|f(x)− T<r
y,f (x)| ≤ |c||x− y|r

for all x, y ∈ X and some c ∈ K, we will say that f has property Tr with coefficient
c.

The first observation we can make is that polynomials have this property:

Lemma 3.3.1. Suppose f is a polynomial with |f |r ≤ 1, and X ⊆ O. Then f has
property Tr on X.

Proof. Let n = deg(f). Since f(x) = T<k
f,y (x) for any k > n, and any y, it follows that

f(x)− T<r
f,y (x) = 0 if r > n and if r ≤ n:

f(x)− T<r
f,y (x) = T<n+1

f,y (x)− T<r
f,y (x)

= (x− y)r
n∑

k=r

f (k)(x)

k!
(x− y)k−r

We know by assumption that

|f
(k)(x)

k!
(x− y)k−r| ≤ 1

for each k ≤ n, so it follows by the ultrametric inequality that

|f(x)− T<r
f,y (x)| ≤ |x− y|r

for any x, y ∈ X.
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Similarly to our abstraction of the global Jacobian property for theories, whereby
we identify those theories where all functions satisfy the Jacobian property up to
definable partition, we introduce a similar abstraction for property Tr.

Definition 3.3.4. A theory T is Tr-tame if for every definable function f : X ⊆
O → K, where |f |r ≤ 1: If f has property Tr locally on X then, there is a cell
decomposition C of X and an integer m such that for any cell C ∈ C, either f is
constant on C, or for every maximal ball B ⊂ C and i ≤ r:

1. |f (i)(x)| is constant as x ∈ B varies

2. If x, y ∈ B, then
|f(x)− T<r

f,y (x)| ≤ |m−1||x− y|r

In particular, property 2 implies that f has property Tr with coefficient 1/m
on each maximal ball of each cell C. The main examples of theories with the Ja-
cobian property are the theory of a finite extension of the p-adics in Macinytre’s
semi-algebraic language, or the same field with an analytic expansion, which are also
Tr-tame. The idea behind this property is that we can pass from a function having
property Tr locally on a set to having an actual infinite definable family of neigh-
bourhoods on which f has this property globally, with these neighbourhoods being
parametrized by the auxiliary sorts of K. What we will see later on that we can
situate the class of P -minimal and Tr-tame theories in the more general setting of
Hensel minimality.

Our main motivation for introducing Tr-tameness is to prove the following theo-
rem, which can be viewed as a generalization of Fact 3.3.1, and is later restated as
Theorem 3.4.1:

Theorem. Suppose K is P -minimal with definable Skolem functions, and Tr-tame
for some fixed r. Suppose X is a definable subset of K, f : X → K satisfies |f |r ≤ 1,
and f has property Tr locally on X. Then there is a cell decomposition C1, . . . , Cn of
X such that for each cell Ci, f has property Tr on all of Ci.

A version of this theorem was proved in [7] to establish the existence of Tr-
parametrizations for definable sets in analytic expansions of a finite extension of
Qp. Our goal is to provide a proof of this result which formally follows from the prop-
erty of Tr-tameness and P -minimality, but does not require any concrete assumptions
about the underlying structure. The next definition describes a configuration for a
function f : C → K, where C is a one-cell, which will be essential for proving this
theorem:

Definition 3.3.5. Let C ⊂ K be a cell, and f : C → K a definable function. We
will say that f is Tr-compatible with C if the following hold:
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1. f is Cr on C.

2. f (i) has the Jacobian property on each maximal ball of Ci for each i ≤ r.

3. The image f (i)(C) is a cell for each i ≤ r.

4. f has property Tr on each maximal ball of C.

3.4 Main Result

Our goal is to decompose an arbitrary set into one on which our function f has
property Tr globally on each piece:

Theorem 3.4.1. Suppose K is P -minimal with definable Skolem functions, and Tr-
tame for some fixed r. Suppose X is a definable subset of K, f : X → K satisfies
|f |r ≤ 1, and f has property Tr locally on X. Then there is a cell decomposition
C1, . . . , Cn of X such that for each cell Ci, f has property Tr on all of Ci.

Throughout the rest of this section, we will be adopting the background assump-
tion that we are working in the context of this theorem. That is, we have a fixed
background field K which is P -minimal with definable Skolem functions, and Tr-tame
for some fixed r.

Lemma 3.4.2. Suppose X is a definable subset of K, f : X → K satisfies |f |r ≤ 1,
and f has property Tr locally on X. Then there is a cell decomposition C1, . . . , Cn of
X such that f is Tr compatible with each cell Ci.

Proof. By using Tr-tameness we may assume that X already is a cell for which f has
property Tr on each maximal ball. By passing to a finer cell decomposition of X,
using the Jacobian property, and using Corollary 3.2.3 on f (i) for i ≤ r we can also
arrange that f is Tr-compatible with each cell in the decomposition.

Lemma 3.4.3. Suppose that C is a cell with center c, f is Tr compatible with C, and
D ⊆ C is a cell. Then D can be decomposed into cells D0 ⊔D1 ⊔ · · · ⊔Dn, where D0

is a subcell of C with center c and f has property Tr on Di for i > 0.

Proof. Taking the decomposition from the Lemma 2.6.2 we can break D into a subcell
D0 centered at c and finitely many sets D1, ..., Dn, each of which are contained in a
maximal ball of C. Since f has property Tr on maximal balls of C and property Tr
is hereditary, it must also have property Tr on each piece Di for i > 0.
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The next lemma is a technical result which solves a common problem in the
constructions that will follow. We start from a cell C with center c on which f is Tr
compatible. Using the centers of the cells f (i)(C) as well as c as input data, we then
construct some related function h. We can pass to a cell decomposition C1, . . . , Cn

of C, so that h is Tr-compatible with each Ci. The problem now is that the images
f (i)(Cj) may no longer be cells. If we refine these so that they are cells, we then
may lose this property for h, and furthermore the centers of the cells may change,
meaning our definition of h should change as well (since it depends on the centers of
the image cells). This lemma allows us to iteratively refine cell decompositions to get
Tr compatibility for new functions, without losing this property for existing functions
and without changing the centers of image cells.

Lemma 3.4.4. Let C be a cell with center c. Suppose f is Tr compatible with C
and D ⊆ C is a cell (possibly with a different center). Suppose further that some
function h is Tr-compatible with D. Then there is a finite decomposition of D into
cells D1, ..., Dn and D′

1, ..., D
′
k such that each Di is a subcell of D with center c, f has

property Tr globally on each definable set D′
i and f and h are Tr compatible with each

Di. We may also arrange so that the centers of the cells f (i)(Dj) are the same as the
centers of the cell f (i)(C), and the centers of the cells h(i)(Dj) are the same as the
centers of the cell h(i)(D).

Proof. We can first use Lemma 3.4.3 to decompose D into a subcell D0 of D with
center c, and finitely many definable pieces D′

1, ..., D
′
k on which f has property Tr

globally. We can then apply Lemma 3.2.6 to D0 to get a decomposition by cells
D1, ..., Dn with center c with the functions fi = f (i) such that each cell Dj is a subcell
of D and f (i)(Dj), have the same centers as f (i)(D), respectively. The problem now
is that potentially h(i)(Dj) may fail to be a cell with the same center as h(i)(D).
However, since h(i) has the Jacobian property on D, and each Dj is a subcell of D,
we know that each h(i) maps maximal balls of Dj to balls contained in maximal balls
of h(D). Then we can repartition each cell Dj by maximal balls into even finer cells
such that both f (i) and h(i) map to cells with the appropriate centers.

The next lemma gives a pathway to showing that a function f has property Tr
on a cell C, in the special case that f and all of its partial derivatives up to r map
to cells which are centered at 0. Our eventual proof of the general case of theorem
3.4.1 will entail iteratively decomposing a set and manipulating the function f until
we can reduce to the case of this lemma.

Lemma 3.4.5. Suppose that f : C ⊂ O(K) → K is a definable function, where C
is a cell which is Tr-compatible with f . Suppose furthermore that C and f (i)(C) are
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all centered at 0 for i ≤ r. Then there is some rational q such that f has property T r

with coefficient |q| on all of C.

Claim 1. For all i < r and all x ∈ C, there is a rational number qi such that
|f (i)(x)| = |qi||f (r)(x)||x|r−i.

Proof of claim. This follows by iteratively applying Lemma 3.2.7, using that the func-
tions f (i), f (i+1), . . . , f (r−1) all satisfy the hypotheses of that lemma.

Claim 2. There is a fixed rational number q such that if x, y lie in different balls of
C, then:

|f(x)− T<r
y,f (x)| ≤ |q||x− y|r. (3.1)

Proof of claim. Let x, y ∈ C as stated. Then by the first claim, we obtain a rational
q and have that for all i ≤ r:

|f(x)| ≤ |q||f (r)(x)||x|r (3.2)

and
|f (i)(y)| ≤ |q||f (r)(y)|y|r−i (3.3)

Since x, y lie in different balls, we know that |x− y| = max{|x|, |y|}, hence from (4)
we get ∣∣∣∣f (i)(y)

i!
(x− y)i

∣∣∣∣ ≤ |q| ∣∣∣∣f (r)(y)

i!

∣∣∣∣ |y|r−i|x− y|i

≤ |q||x− y|r
(3.4)

Furthermore, from (1) and the assumption of bounded Cr-norm we get:

|f(x)| ≤ |q||x− y|r (3.5)

(5) and (6) give us that every term in f(x)− T<i
y,f (x) is bounded by |q||x− y|r so by

the ultrametric inequality the result follows.

Proof of lemma. Let x, y ∈ C. If x, y lie in the same maximal ball, then the Tr
inequality holds by hypothesis. Otherwise, apply the second claim.

The next lemma and its corollary will be important for reducing the proof of
Theorem 3.4.1 to the case of Lemma 3.4.5. The idea is that starting from a general Tr-
compatible function f on a cell C, we can iteratively perform polynomial translations
of f and further cell decompositions until we obtain a new function f + g and finitely
many cells, such that the hypothesis of Lemma 3.4.5 are satisfied for f+g. Concluding
that f + g has property Tr on each new cell will imply the result for f .
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Lemma 3.4.6. Suppose f : X → K is a function and h : X → K has property Tr.
Then f has Tr if and only if f + h does.

Proof. Notice that for any y, we have that T r
y (f + h) = T r

y (f) + T r
y (h). Suppose f

has Tr. Then:

|f(x) + h(x)− T r
y,f+h(x)| = |f(x)− T r

y,f (x) + h(x)− T r
y,h(x)|

≤ max{|f(x)− T r
y,f (x)|, |h(x)− T r

y,h(x)|}
= max{|f(x)− T r

y,f (x)|, |x− y|r+1}

Replacing h with −h and applying the forward direction to f + h gives the converse.

We can combine this fact with Lemma 3.3.1 to obtain an important version of this
fact:

Corollary 3.4.7. Suppose f : X → K is a function, X ⊆ O, and h is a polynomial.
Then f has Tr on X if and only if f + h does. □

Lemma 3.4.8. Suppose (K,L) is a P -minimal structure with definable Skolem func-
tions and the Jacobian property. Suppose that X is definable, and f : X → K is a
differentiable definable function, and f (r) ≡ 0 for some r ≥ 0. Then there is a cell
decomposition X1, . . . Xn of X such that f |Xi

is a polynomial of degree no more than
r for each i.

Proof. The proof is by induction on r. The r = 0 is a consequence of the Jacobian
property, since there is a cell decomposition of X where the restriction of f to each
cell is constant. If the result holds for some k, and r = k + 1, then we can find a
cell decomposition where f ′ is a polynomial on each cell. Suppose f ′|C = p|C for
some cell C and polynomial p of degree ≤ k. Let P be any polynomial of degree
deg(p) + 1 which is an antiderivative of p. Then f − P has derivative 0 on C, so we
can apply the r = 0 case to see that (perhaps after passing to a finer decomposition)
f |C = (P + c)|C for some constant c ∈ K, finishing the proof.

Lemma 3.4.9. Suppose X is a cell, and f : X → K a Tr-compatible function, such
that f (i) is injective on X for all i ≤ r. Then there is a cell decomposition C1, . . . , Cn

of X, an integer k, and a polynomial g of degree ≤ r of Cr-norm ≤ |k|−1 such that
for each cell Ci, either f has property Tr globally on Ci, or f+g is Tr-compatible with
Ci and for each j ≤ r, (f + g)(j)(Ci) is a cell centered at 0.

Proof. Adopting the context of the lemma, we will show by induction on m that for
any m ≤ r, the result can be proved for all jth derivatives of f + g with j ≤ m.
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Base Case: By assumption, we know that f (i)(X) is a cell for each i ≤ r. Let d0
be the center of f(X), and g(x) = d (a constant polynomial). Then clearly (f−g)(X)
is a cell centered at 0. Since (f+g)(i) = f (i) for i > 0, the singleton cell decomposition
{X} of X suffices to establish the case.

Inductive Step: Suppose 0 < m ≤ r. Suppose we have a cell decomposition
C1, . . . , Cn of X, an integer km, and a polynomial g of degree ≤ r of Cr-norm ≤ |km|−1

such that for each cell Ci, either f has property Tr globally on Ci, or h := f + g is
Tr-compatible with Ci and for each j < m, h(j)(Ci) is a cell centered at 0. We only
need to perform the required decomposition on a single cell Ci to establish the case.
So fix C := Ci for some i. If f has property Tr globally on this cell then we are done,
so we may assume we are not in this case.

Let dm be the center of the cell h(m)(C). By partitioning C by its maximal balls,
we may assume that either dm = 0, or |h(m)(x)| = |dm| for all x ∈ C. If dm = 0 then
there is nothing to prove, so we may assume that the latter case holds. Define

h0 := h− dm
m!
xm

and note that the monomial above has Cr-norm bounded by 1. Additionally, note
that h0 clearly has property Tr locally on C, since it is the sum of such functions.
We can therefore use Tr-tameness to pass to a decomposition of C such that h0 is
Tr-compatible with each cell. Let D be a cell in this new decomposition. By Lemma
3.4.4, we can further decompose D into cells Di such that either h (and hence f) has
property Tr globally on Di, or Di is a subcell of D with the same center as C, both h0
and h are Tr-compatible with Di, and the centers of the cells h(j)(Di) are the same as
the centers of h(j)(C). Our desired result holds on those Di for which f has property
Tr, so we can now focus on further decomposing the latter kind of Di.

Suppose now that Di is as above. At this point that h(Di) is a cell centred at 0

for i < m. Further, since h
(m)
0 = h− dm, we know that h

(m)
0 (Di) is a cell centered at

0. What remains is to modify h0 and repartition Di so that the images of h
(j)
0 are also

cells centered at 0 for j < m. If these modifications are translations by polynomials
of degree less than m, then we can guarantee that this won’t change the fact that the
image of h

(m)
0 is also centered at 0 and we will be done.

For each i < m, there exists a rational constant qi such that for each maximal ball
B in Di we have for all x ∈ B and i < n:

|h(i)(x)| = |qi||h(i+1)(x)||x|

By induction there is some rational constant l such that
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|h(x)| = |l||hm(x)||x|m

= |l||dm||x|m

and similarly we can find rational constants li such that

|h(i)(x)| = |li||hm(x)||x|m−i

= |li||dm||x|m−i

for all x ∈ Di.
Let ej be the center of h

(j)
0 (Di) for each j < m. Let i0 be maximal such that

ei0 ̸= 0 and i0 < m. Without loss of generality we may assume that |h(i0)0 (x)| = |ei0|
for each x ∈ Di. On the other hand we know that

h
(i0)
0 (x) = h(i0)(x)− dm

(m− i0)!
xm−i0

So by the ultrametric inequality we see that there exists a rational number q such
that for all x ∈ Di:

|h(i0)0 (x)| ≤ |q||h(i0)(x)|
= |qli||dm||x|m−i0

Define the function:

h1(x) = h0(x)−
ei0
i0!
xi0

Passing again to a decomposition, we can assume that the image of Di under every
function mentioned so far is a cell with the same center as before, and that h

(j)
1 (Di)

is a cell for each j ≤ r as well. Furthermore, we see that for m ≥ j > i0 we must have
that h

(j)
1 (x) = h

(j)
0 (x), so that for all such j we must have that h

(j)
1 (C) is centered at

0 (by choice of i0). Also, since

h
(i0)
1 (x) = h

(i0)
0 (x)− ei0

we may also assume that h
(i0)
1 (Di) is a cell centered at 0. Now we can let i1 be maximal

such that i1 < i0 and h
(i1)
1 (Di) is not centered at 0, and repeat this process until we

have a function g which differs from f by a polynomial, and for which g(i)(Di) is a
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cell centered at 0 for all i ≤ m, completing the inductive step.

Lemma 3.4.10. Suppose X is a cell, and f : X → K a Tr-compatible function.
There is an integer n and a decomposition of X into finitely many cells Ci such that
f |Ci

has property Tr with coefficient |n|−1 for some n ∈ N.

Proof. Since f is Tr-compatible with X, we know that f (i) has the Jacobian Property
on X for all i ≤ r. If any of the f (i) are constant on X, then by Lemma 3.4.8 we
can further decompose X into pieces on which f is a polynomial, hence f will have
Tr globally on each piece and we are done. So instead we will suppose that f (i) is
injective on X for all i ≤ r. This places us in the context of Lemma 3.4.9, so we can
obtain a further decomposition of X into finitely many pieces X1, ..., Xn such that
for each Xj, f either has Tr there, or there is some polynomial gj such that f + gj is
Tr-compatible with Xj, and the image (f + gj)

(i)(Xj) is a cell centred at 0 for i ≤ r.
The latter case implies that f + gj has property Tr globally on Xj by lemma 3.4.5,
and by corollary 3.4.7 this means that f also has property Tr on Xj, which completes
the proof.

We can finally establish the main result of this section:

Proof of Theorem 3.4.1. Using Lemma 3.4.2, there is a cell decomposition C1, . . . , Cn

of X such that f is Tr compatible with each cell Ci. Then by Lemma 3.4.10, for
each cell Ci we can obtain an integer mi, natural number ki and a cell decomposition
Ci,1, . . . , Ci,ki such that f |Ci,j

has property Tr with coefficient |mi|−1 for each j ≤ ki.
Taking M := mi where |mi|−1 is maximal, we see that {Ci,j | i ≤ n, j ≤ ki} is a cell
decomposition of X, and on each cell of this decomposition f has property Tr with
coefficient |M |−1.
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Chapter 4

Hensel Minimality

The main theorem of the previous chapter applies to theories which are Tr-tame. We
do not yet know another way to characterise these theories, but in this section we show
that it includes a broad class of theories known as Hensel-minimal theories, which
are introduced in [8] by Cluckers, Halupczok, and Rideau-Kikuchi. The definition of
Hensel-minimality is first given for valued fields of equicharacteristic zero, and is then
generalized to the mixed characteristic case (when the base field has characteristic
zero). Intuitively, Hensel-minimal structures are henselian valued fields for which one
dimensional definable sets admit a form of cell decomposition. The formulation in [8]
relies on leading term structures, which are (parameter-definable) imaginary sorts
which combine the data of a residue ring and the value group, and will be explained
in the next section.

4.1 Leading Term Structures

In what follows, let K be a valued field with value group Γ, valuation ν, and valuation
ring O. Let λ ∈ Γ such that λ ≥ 0. We define the ideal Iλ of O to be:

Iλ := {x ∈ O | ν(x) > λ}
Definition 4.1.1. With the notation from above, the leading term structure RV ×

λ

is defined to be the multiplicative group K×/(1 + Iλ), and we let rvλ : K → RVλ :=
RV ×

λ ∪ {∞} be the quotient map on K×, sending 0 7→ ∞.

If K is interpreted as a structure in the language of valued fields, then each RVλ,
along with the leading term map rvλ is a λ-definable imaginary sort. Note that
1 + Iλ is a multiplicative subgroup of O×, hence there is a natural quotient map
RV ×

λ → Γ := K×/O×. Additionally the residue ring kλ := O/Iλ has a natural
inclusion map k×λ → RVλ defined by the map a+ Iλ 7→ a(1 + Iλ).
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Lemma 4.1.1. The natural map a+ Iλ 7→ a(1 + Iλ) is a well defined injective group
homomorphism k×λ → RVλ.

Proof. Suppose a, b ∈ O and a+ Iλ = b+ Iλ and a+ Iλ ∈ k×λ . Then ν(a) = ν(b) = 0.
Obtain i ∈ Iλ such that

a = b+ j

Hence

a = b

(
1 +

j

b

)
So a(1 + Iλ) = b(1 + Iλ). That this map is a homomorphism follows from well-
definedness. Injectivity follows from the fact that a = b(1+ j) implies that a = b+ bj
hence a+ Iλ = b+ Iλ.

The above implies that there is a natural short exact sequence

0→ k×λ → RVλ → Γ→ 0

This implies that we can coherently refer to ν(ξ) where ξ ∈ RVλ, and this is just
defined as the value ν(a) for any a ∈ K× where ξ = a(1 + Iλ). In many cases
(including the P -minimal case) this sequence splits:

Lemma 4.1.2. Suppose K is P -minimal, n ∈ N≥0, and Γ = Z. Then the sequence
0→ k×n → RVn → Γ→ 0 splits.

Proof. Let π be a uniformizer for K. Then the map σ : Γ→ RVn defined by

σ(m) = πm(1 + In)

is a section of the quotient map RVn → Γ.

It should be noted that the above splitting map is not definable in the language
of valued fields, since it relies on exponentiation, and therefore it does not follow that
the above sequence splits for every P -minimal field. However we can say the following
in the general P -minimal case:

Lemma 4.1.3. Suppose K is P -minimal, n ≥ 0, and a, b ∈ K×. Then rvn(a) =
rvn(b) if and only if acn(a) = acn(b) and ν(a) = ν(b).

Proof. That rvn(a) = rvn(b) implies ν(a) = ν(b) has already been noted. To see that
we also get acn+1(a) = acn+1(b), we note:
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rvn

(a
b

)
= rvn(1) =⇒ a

b
= 1 + i for some i ∈ In

=⇒ acn+1(a) = acn+1(b)

Conversely, if ν(a) = ν(b) and acn+1(a) = acn+1(b) then

ν(
a

b
− 1) = ν(a− b)− ν(b)

≥ n+ 1

> n

hence a/b− 1 ∈ In, and therefore rvn(a) = rvn(b).

This lemma means that we can therefore also meaningfully write acn(ξ) for ξ ∈
RVn in the P -minimal case, where acn(ξ) denotes acn(a) for any a ∈ K such that
rvn(a) = ξ. One key property of the leading term maps rvλ is that the fibres of these
maps parametrize open balls in the field K:

Lemma 4.1.4. Let λ ∈ Γ satisfy λ ≥ 0, and ξ ∈ RV ×
λ . Let η = λ+ ν(ξ), and c ∈ K

such that rvλ(c) = ξ. Then the fibre rv−1
λ (ξ) ⊆ K is the open ball:

rv−1
λ (ξ) := {x ∈ K | ν(x− c) > η}

Proof. If some a satisfies rvλ(a) = ξ then a = c(1+ i) for some i ∈ Iλ. Then a−c = ci
which implies that ord(a − c) = ν(c) + ν(i) > η. Conversely, if ord(a − c) > η then
we can write:

a = c

(
1 +

a− c
c

)
where

ν

(
a− c
c

)
> η − ν(ξ) = λ

which shows that rvλ(a) = ξ.

In the case where K is a P -minimal field and n is a non-negative integer, lemma
4.1.3 gives us a more precise description of these fibres: rv−1

n (ξ) is exactly equal to
the ball {x ∈ K | acn(x) = acn(ξ) and ν(x) = ν(ξ)}.
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4.2 Prepared Sets and l-ω-Minimality

Having introduced leading term structures, we can now introduce the preliminary
notions needed to define Hensel-minimality.

Definition 4.2.1. Fix a valued field K, element λ ≥ 0 in Γ, and a ball B ⊂ K

1. Fix an element c ∈ K. We say that B is λ-next to c if there exists some ξ ∈ RVλ
such that

B = {x ∈ K | rvλ(x− c) = ξ}

2. Fix a finite subset C ⊂ K. We say that B is λ-next to C if B is of the form

B :=
⋂
c∈C

Bc

where each Bc is a ball which is λ-next to c.

A key property of the λ-nextedness is that if two distinct balls B and B′ are both
λ-next to c (or to a finite set C), then B∩B′ = ∅. Additionally, the collection of balls
λ-next to c forms a partition of K −{c}, and similarly the balls λ-next to a finite set
C form a partition of K − C.

In the P -minimal case, there is a close relationship between balls λ-next to a point
c and one-cells centered at a point c ∈ K. In particular, for a non-negative integer n,
the union of all balls B which are n-next to c is the finite union of cells⋃

η∈R×
n

{x ∈ K | acn(x− c) = η}

and the maximal balls of each of the above cells are exactly the balls n-next to c.
The next definition is a general notion of cell decomposition for a valued field:

Definition 4.2.2. Let C be a finite subset of K and X ⊂ K. We say that C λ-
prepares X if for any elements x, x′ ∈ K such that rvλ(x− c) = rvλ(x

′ − c) for each
c ∈ C, either x ∈ X and x′ ∈ X, or x /∈ X and x′ /∈ X.

In other words, C λ-prepares X if X is a union of balls which are λ-next to C.
In the P -minimal case, and fixing a nonnegative integer n, one can use Presburger
cell decomposition to show that a definable set X is n-prepared by a finite set C if
and only if there is a cell decomposition of X into cells with centers c ∈ C which are
defined by degree n+ 1 angular components.

We can now state the definition of hensel minimality which will be of concern in
our context, and comes from definition 1.1.4 in [8]:
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Definition 4.2.3. Let T be a complete theory of valued fields of equi-characteristic
0, in a language L expanding the language of valued fields. We say that T is ω-h-
minimal if every model K |= T has the following property:

For every λ ∈ Γ≥0, for every set A ⊂ K and for every set A′ ⊂ RVλ, every
(A ∪ A′)-definable set X ⊆ K can be λ-prepared by a finite A-definable set C ⊆ K.

4.3 Equicharacteristic zero coarsenings

While the definition of hensel minimality applies only to equi-characteristic zero the-
ories, it is possible to generalize to the mixed case.

Definition 4.3.1. Let (K, ν,Γ) be a valued field. We call another valuation ν ′ on
K a coarsening of ν if there exists some convex subgroup ∆ ≤ Γ such that ν ′ is the
valuation induced by composing ν with the quotient map Γ→ Γ/∆. That is:

ν ′(x) = ν(x) + ∆

for each x ∈ K. We say that a coarsening is nontrivial when ∆ is a proper convex
subgroup (hence the value group Γ/∆ is nontrivial).

If we take K = Qp and νp to be the p-adic valuation on Qp, there do not exist
any coarsenings of νp, since Z has no proper convex subgroups. However, there do
exist fields K where Qp ≼ K and K has nontrivial coarsenings (such as a saturated
elementary extension). In fact, there may also exist coarsenings of such fields for
which the residue field has characteristic zero.

Definition 4.3.2. Given a valued field (K, ν,Γ), define OK,eqc to be the smallest
subring of K containing OK and Q, and let νeqc be the corresponding valuation.

Note that since OK,eqc contains Q, the residue field must have characteristic 0 (Q
injectively embeds into the residue field by the standard residue map). Also note that
x ∈ OK,eqc if and only if x = N−1y for some N ∈ Z and some y ∈ OK .

Example 4.3.1. Let K be some ℵ0-saturated elementary extension of Qp. Then
the value group Γ of K is an ℵ0-saturated elementary extension of Z. Suppose that
νeqc(x) = 0. Then we can write:

x =
y

N

for some y ∈ OK and some N ∈ Z. We know that ν(N) = n for some integer n, since
K is an elementary extension of Qp. Then we have:
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ν(x) = ν(y)− n

Furthermore we know that

x−1 =
z

M

for some z ∈ OK and some M ∈ Z. Then

y−1 =
z

NM

So that for some m ∈ Z:

m ≥ ν(y) ≥ 0

and therefore

n+m ≥ ν(x) ≥ −n

which shows that the convex subgroup ∆ which induces νeqc must actually be the
subgroup Z ≤ Γ. To compute the residue field k, we note that Qp maps injectively
to k via the residue map, and that νeqc(x) ∈ Z if and only if x ∈ Qp or there exists
some y ∈ Qp such that v(x − y) > N for every N ∈ N. In the latter case, we see
that the residues of x and y must be equal, which shows that the residue map maps
surjectively onto the image of Qp, hence k = Qp.

4.4 Generalizing Hensel-Minimality to

Mixed Characteristic

The notion of hensel minimality in the mixed characteristic case can be defined in
terms of the equicharacteristic zero coarsening:

Definition 4.4.1. Let T be a complete theory of valued fields of characteristic 0
(and arbitrary residue field characteristic) in a language L expanding the language
of valued fields. We say that T is ω-heqc-minimal if for every model K |= T the
following holds: If the valuation νeqc on K is non-trivial, then the Leqc-theory of K,
when considered as a valued field with the valuation νeqc, is ω-h-minimal.

In Corollary 6.1.11 of [8] it is proved that we can recover preparation results for
ω-heqc-minimal theories in the base language L:

Fact 4.4.1. Assume that Th(K) is ω-heqc-minimal. For any k > 0 and any L-
definable set
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W ⊂ K ×RV k
λ

there exists a finite non-empty L-definable set C and an integer m ≥ 1 such that for
every ball B which is (λ+ ν(m))-next to C, the fiber Wx := {ξ ∈ RV k

λ | (x, ξ) ∈ W}
does not depend on x when x runs over B.

This is used in [8] to deduce the result which is of primary interest in our context:
theories which are ω-heqc-minimal are Tr-tame for all r:

Fact 4.4.2. Suppose that T is ω-heqc-minimal and let K be a model of T . Let
f : K → K be an L-definable function and let r ∈ N be given. Then there exists
a finite L-definable set C and an integer m ≥ 1 such that for every ball B which is
ν(m)-next to C, f is (r + 1)-fold differentiable on B, ν(f r+1) is constant on B, and
we have:

|f(x)− T≤r
f,x0

(x)| ≤
∣∣∣∣ 1m · f (r+1)(x0) · (x− x0)r+1

∣∣∣∣
for every x0, x ∈ B.

Corollary 4.4.1. Suppose K above is also P -minimal. Then K is Tr-tame.

Proof. Assuming that we have a function f : X ⊂ O → K where |f |r ≤ 1, we can
obtain a set C and integer m such that the above inequality holds on every ball B
which is ν(m)-next to C. We know that such balls form a partition of K−C. We can
take a cell decomposition of X − C with angular components of degree ≥ ν(m) + 1.
Then every maximal ball of a cell in such a decomposition is contained in a ball
which is ν(m)-next to C, hence f is well-approximated on such balls by its Taylor
polynomial, as desired.

Finally, citing corollary 7.1.7 of [8] we obtain that the familiar examples of nice
P -minimal structures are in fact hensel-minimal, and so this notion generalizes the
known examples of P -minimal structures which are Tr-tame:

Fact 4.4.3. Let K be a Henselian valued field of mixed characteristic in a language
L. Then in each of the following cases, Th(K) is ω-heqc-minimal:

1. L is the pure valued field language.

2. K is a finite field extension of Qp and L is the sub-analytic language.
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Part II

Formalization of Macintyre’s
Theorem in Isabelle/HOL
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Chapter 5

Macintyre’s Theorem in Isabelle

Fact 2.1.2 is foundational to the definition of P -minimality, and allows us to under-
stand the structure of definable sets in the language Ld. In this section we will outline
a machine-checkable formal proof of a version of this theorem using the proof assistant
Isabelle. The formalisation draws on existing libraries of algebraic formalisations in
Isabelle, both from the HOL-Algebra library which comes with the standard Isabelle
distribution, as well as the archive of formal proofs, an online journal which acts as a
central repository of Isabelle formalisations. All the Isabelle sessions and files referred
to in Part 2 of this thesis can be found in a github repository [15].

5.1 Abstract Algebra in Isabelle-HOL

The standard Isabelle distribution includes the HOL-Algebra library [3], which is a
library of definitions and theorems developing the basic notions of abstract algebra.
Our formalisation of Macintyre’s Theorem and its algebraic prerequisites builds on
this library. Here we will give a general outline of how algebraic formalisations in
HOL-Algebra work.

5.1.1 Records

A record type in Isabelle is a tuple-like data structure which stores data in named
fields. Here we will outline the aspects of records needed for the purposes of our
formalisation, but one can refer to Section 11.6 of the Isabelle/Isar Reference Manual
[33] for more detailed information. The HOL-Algebra library uses records to define
algebraic structures such as partially ordered sets, monoids and rings with record
types. For example, the record type for a structure containing only the data of a set
can be defined as follows:
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record ’a partial_object =

carrier :: "’a set"

Having defined this record, it can be extended to richer record types by adding fields
for new data. For example, if a partial object is the data of a single set, a monoid
structure can be viewed as a partial object augmented with the additional data of a
binary operation and constant symbol:

record ’a monoid = "’a partial_object" +

mult :: "[’a, ’a] ⇒ ’a" (infixl "⊗ι" 70)

one :: ’a ("1ι")

and again this can be extended to define a record structure for a ring:

record ’a ring = "’a monoid" +

zero :: ’a ("0ι")
add :: "[’a, ’a] ⇒ ’a" (infixl "⊕ι" 65).

One can create a new instance of a record by providing the required data of each
field. For a monoid for instance, one must provide a set S whose elements are of some
fixed type ’a, as well as a binary operation mult of function type ’a ⇒ ’a ⇒ ’a

and a unit element one of type ’a. The resulting object, which we can call M will
have type ’a monoid. Since the ring record extends the monoid record, a ring will
simultaneously be viewed as having type ’a ring for some fixed type ’a, but also
is viewed as having type ’a monoid_scheme, which essentially means “monoid with
extra structure”.

5.1.2 Locales

While records in Isabelle/HOL carry the raw data of a structure, they cannot hold
axiomatic assumptions about them. As such, one can freely define a monoid record
in Isabelle whose binary operation is not associative, or whose unit element is not a
member of the carrier set. Management of axiomatic assumptions about algebraic
structures can be handled in Isabelle through locales. A locale in Isabelle is a proof
context which can be declared and reused at will to keep track of axiomatic assump-
tions and definitions. For a detailed explanation of how locales in Isabelle work, one
can refer to [2]. One can declare a locale in Isabelle by listing objects which are
assumed to be fixed by the locale and then listing logical assumptions one would like
to make about these objects. For example, the declaration for the monoid locale is
given below.:

locale monoid =
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fixes G (structure)

assumes m_closed [intro , simp]:

"[x ∈ carrier G; y ∈ carrier G ] ⇒ x ⊗ y ∈
carrier G"

and m_assoc:

"[x ∈ carrier G; y ∈ carrier G; z ∈ carrier G]

⇒ (x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)"

and one_closed [intro , simp]:

"1 ∈ carrier G"

and l_one [simp]:

"x ∈ carrier G ⇒ 1 ⊗ x = x"

and r_one [simp]:

"x ∈ carrier G ⇒ x ⊗ 1 = x".

Here one could explicitly declare the type of G to be that of ’a monoid, but since
this has not been done, Isabelle will infer that G is a record type which has the fields
of a monoid record, and therefore can be assumed to have type ’a monoid_scheme

(leaving the possibility of extra structure being present). In this way, any ring can
also be viewed as an instance of this locale, and all theorems proved about monoids
will apply to the multiplicative monoid of a ring. One can now prove theorems
and give definitions within this locale. This allows one to avoid tedious duplication
of premises in theorem and lemma statements when one wants to constantly work
within a possibly very specific and complex mathematical context. Once a locale has
been declared, one can prove that a particular instance of the types of objects fixed
within the locales satisfy the locale axioms and then these objects will inherit all
theorems proved within it, through a process called locale interpretation. Again, one
may consult [2] for more detailed information on locale interpretation.

We may explicitly define a new locale to extend an old one (for example the locale
for rings should extend that of monoids). One can also interpret one locale as an
instance of another in a post hoc way via the sublocale command. This is necessary
when a certain locale does not inherit the structure of another locale by definition,
but one can prove a theorem within it that the axioms of another locale are satisfied.
For example, a locale for elliptic curves would not axiomatically declare that the
curve is a group, but instead would prove a theorem within the locale that a group
structure can be defined, at which point one could declare the elliptic curve locale to
be a sublocale of the group locale.
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5.2 Denef’s Proof of Macintyre’s Theorem

A formal proof in Isabelle requires every intermediate result in the proof to itself be
formalized in Isabelle. As a result, careful attention has to be paid to underlying
mathematical tools that a particular proof requires in order to formalize. Macintyre’s
original proof in [26] establishes quantifier elimination using the following criterion
due to Shoenfield:

Theorem 5.2.1. Suppose L is a first-order language containing a constant symbol
and T is an L-theory. Then T admits elimination of quantifiers if and only if the
following holds: For all, M1,M2, A1, A2, f , if M1 is an L-structure, and M2 is an
|M|+-saturated L-structure, Ai is a substructure of Mi for each i, and f : A1 → A2 is
an isomorphism of L structures, then f can be extended to an elementary embedding
of M1 into M2.

A formalisation of this theorem would require drawing on concepts in model theory
and set theory such as first-order languages, models, saturated models, etc. While
developing this criterion and its underlying principles in Isabelle-HOL is surely a
worthwhile endeavour, most quantifier elimination results for algebraic structures
can be expressed and proved as purely algebraic facts, which reduces the theoretical
overhead required to produce a formal proof. In the case of the p-adics, Denef proved
Macintyre’s theorem in [19] in an entirely algebraic manner. For this reason we have
chosen this paper as the primary reference material for a formalisation of the result.
As is standard in model theory, to avoid any reference to formal languages, quantifier
elimination can be expressed as the closure of a certain class of subsets of powers of
Qn

p under projections. Furthermore, the notion of definable functions and definable
sets must be replaced by an algebraically expressible version of these notions. Denef’s
proof assumes that the base field is either Qp or some finite extension of Qp but for
simplicity our formalisation explicitly assumes the base field is Qp. This allows us
the luxury of avoiding extra developments regarding finite field extensions and their
properties.

In the rest of this section we will list the definitions and theorems of [19] which are
most pertinent to its formalisation. First, we have the definitions of semi-algebraic
sets and functions:

Definition 5.2.1. A subset of Qm
p is called semi-algebraic if it is a boolean combi-

nation of subsets of the form

{x ∈ Qm
p | ∃y ∈ K : f(x) = yn}

where f(x) ∈ Qp[x], x = (x1, . . . , xm), and n ∈ N, n ≥ 2.

48



Ph.D. Thesis - Aaron Crighton McMaster University - Mathematics and Statistics

Definition 5.2.2. A function f : Qm
p → Qp is semi-algebraic if for every semi-

algebraic subset S ⊆ Qp ×Qr
p, the set

{(x, y) ∈ Qm+r
p | (f(x), y) ∈ S}

is semi-algebraic.

Denef infers Macintyre’s Theorem from two cell decomposition theorems, which
are proved by a joint induction. However, Denef’s notion of cell is slightly different
from the one we used in Section 1, in that it omits the presence of a condition stipu-
lating membership in a multiplicative subgroup of the field. The precise definition is
given in section 8.9.1. Below we outline Denef’s two cell decomposition theorems.

Theorem 5.2.2 (Cell Decomposition Theorem I). Let t be one variable and x =
(x1, . . . , xm). Let f(x, t) be a polynomial in t with coefficients which are semi-algebraic
functions of x. Then there exists a finite partition of Km ×K into cells A, such that
each such cell A has a center c(x) such that the following holds:

If we write f(x, t) as a polynomial in t− c(x):

f(x, t) = a0(x) + a1(x)(t− c(x)) + · · ·+ ai(x)(t− c(x))i + . . . ,

then
ordf(x, t)−Miniord[ai(x)(t− c(x))i]

is bounded on A.

Theorem 5.2.3 (Cell Decomposition Theorem II). Let t be one variable and x =
(x1, . . . , xm). Let fi(x, t), for i = 1, . . . , r be polynomials in t with coefficients which
are semi-algebraic functions of x. Let n ∈ N, n > 0 be fixed. Then there exists a
finite partition of Km × K into cells A, such that each such cell has a center c(x)
such that for all (x, t) ∈ A we have

fi(x, t) = ui(x, t)
nhi(x)(t− c(x))νi , for i = 1, . . . r

with ord(ui(x, t)) = 0, hi(x) a semi-algebraic function of x, and vi ∈ N.

These theorems suggest several important notions that need to be formalized in
order to express statements of this form in the Isabelle language. We briefly describe
some of these challenges below.

First, we needed to provide a formalisation of the field Qp for an arbitrary prime p.
Importantly, the proof of Macintyre’s theorem requires us to prove Hensel’s Lemma
(Fact 2.1.3) for the field Qp. This work is described in Chapter 7. We also need to be
able to reason about tuples (x1, . . . , xm) over the field Qp. While an existing library
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for this was available in the standard Isabelle distribution, it was underdeveloped, and
significant work had to be done on this, which is described in Section 6.4. We then
need to be able to reason robustly about the semi-algebraic subsets of the powers of a
field. This is both to express the notion of a semi-algebraic function, and also to define
and reason about p-adic cells. The basic formalisations regarding semi-algebraic sets
are exposited in Section 8, and formalisations regarding cells and cell decompositions
are discussed in Section 8.9

Next, we notice that we need to be able express the concept of a polynomial in one
variable, whose coefficients are a specific kind of function in m variables over a field.
For Theorem 5.2.2, we need to be able to take Taylor expansions of these polynomials,
where the center of expansion is a semi-algebraic function c(x), which will result in
new coefficient functions ai(x). To express Theorem 5.2.3, these polynomials must
be able to be interpreted as functions in the variables (x1, . . . , xm, t), which can be
factored by semi-algebraic functions over certain sets. This first required generic tools
for reasoning about polynomials in one or several variables, with coefficients over an
arbitrary ring, which is detailed in Section 6.3. We then we needed to formalize
semi-algebraic functions in m variables as a ring, which is detailed in Section 8.6.
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Chapter 6

General Algebraic Developments

This chapter outlines some generic algebra whose development was necessary for the
formalisation of Denef’s proof. These make no particular use of p-adics themselves,
but mainly pertain to arbitrary commutative rings. We do not develop any particu-
larly deep algebra, but instead focus on constructing basic properties of polynomials
in one and several variables over a commutative ring, and the very basic notions of
algebraic sets. These results will be applied later to the field Qp, the ring Zp, as well
as to the ring of semi-algebraic functions f : Qn

p → Qp. While some material on poly-
nomials was already available in the standard HOL-Algbera library ( [3]), the main
tools that were found lacking were an explicit construction of single variable Taylor
polynomials over a commutative ring (section 6.2) and construction of multivariable
polynomials as a ring, with evaluation maps to interpret polynomials as functions
(section 6.3). The material on rings of functions in Section 6.1 and cartesian powers
of a ring in section 6.4 are new, with little previously available in HOL-Algebra.

6.1 Rings of Functions

A central construction that is used in several places in the formalisation is the notion
of a ring of functions from some arbitrary set S to the carrier of a base ring R. In
Isabelle’s logic, a function f of type ’a⇒’b must be a total function mapping values
of type ’a to those of type ’b. However, one can explicitly leave certain values of
a function unspecified using a special expression named undefined. This allows one
to define partial functions by specifying values on some elements of the universe of
a type, and explicitly specifying that the function takes value undefined on others.
The expression undefined can be cast to any type, but essentially nothing can be
proved about it, and it behaves like a generic element of the type. Since undefined is
a well-typed expression, pure logical statements such as undefined = undefined can
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be proved in Isabelle, but statements which depend on a specifically underlying value
of this expression can never be proved. In this way we can reason about functional
identity of two partial functions. Such an approach to partial functions can be found
in the theory FuncSet from HOL-Library in the standard Isabelle distribution, and
serves as the basis for our construction of rings of functions in the style of HOL-
Algebra.

In our theory Function_Ring in [14], we define extensional function operations
pointwise in the obvious way. For example we can define multiplication with the
following:

definition function_mult :: "’c set ⇒ (’a, ’b) ring_scheme

⇒ (’c ⇒ ’a) ⇒ (’c ⇒ ’a) ⇒ (’c ⇒ ’a)" where

"function_mult S R f g = (λx ∈ S. (f x) ⊗R (g x))"

where the notation (λx ∈ S. f x) is shorthand for the piecewise function whose
values equal those specified by the function f on the set S and are undefined elsewhere.

One point of note is that a function not being defined at a point is not the
same as that function being explicitly specified as undefined there. This is why
the extensional guard “λx ∈ S” is needed in front of every operation definition. For
example, we define

definition function_zero ::

"’c set ⇒ (’a, ’b) ring_scheme ⇒ (’c ⇒ ’a)" where

"function_zero S R = (λ x ∈ S. 0R)".

If we were to take some set S whose elements have type ’c, and an element x

which lies outside of S, then in Isabelle we can prove that

function_zero S R x ⊗ function_zero S R x = undefined ⊗
undefined

where the expression undefined⊗undefined is well-typed but unspecified. We can
prove an identity such as undefined⊗undefined = undefined⊗undefined with no
trouble since this follows from the basic laws of identity. However, we cannot in
general prove that undefined⊗undefined = undefined, unless there was a general
rule that allowed us to infer x⊗x = x for all values of x.

Defining all ring constants and operations in the style above, we can then define a
general function ring over a base ring. In fact, we define it as an algebra rather than
just a ring, as we can perform scalar multiplication on functions:

definition function_ring :: "’c set ⇒ (’a, ’b) ring_scheme

⇒ ( ’a, ’c ⇒ ’a) module" where

"function_ring S R = (|
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carrier = extensional_funcset S (carrier R),

Group.monoid.mult = (function_mult S R),

one = (function_one S R),

zero = (function_zero S R),

add = (function_add S R),

smult = function_scalar_mult S R |) ".

With this construction, we can handle many constructions over rings in a uniform
way, without having to re-specify pointwise operations each time. For example, the
expression function_ring (UNIV::nat set) R gives us the algebra of sequences
over a ring, and the expression function_ring (carrier R) R gives us the ring of
functions from the carrier set of a ring to itself.

6.2 Evaluation and Taylor Expansions of Polyno-

mials

The HOL-Algebra library includes a theory UnivPoly describing polynomials in one
variable. Polynomials over base ring are equated with their coefficient maps, which
maps a natural number degree to the coefficient of that degree. Constructions over
polynomial rings are facilitated by a generic evaluation function eval for which a
universal mapping property is proved:

definition

eval :: "[(’a, ’m) ring_scheme , (’b, ’n) ring_scheme ,

’a ⇒ ’b, ’b, nat ⇒ ’a] ⇒ ’b"

where "eval R S phi s = (λp ∈ carrier (UP R).⊕
Si ∈ {.. deg R p}. phi (coeff (UP R) p i) ⊗S s [^]S i

)".

Given rings R and S, a homomorphism ϕ : R → S and an element s ∈ S, eval
maps a polynomial a0+ a1x+ · · ·+ anxn over R to the element ϕ(a0)+ϕ(a1)s+ · · ·+
ϕ(an)s

n in S. It its proved that this is the unique homomorphism R[x] → S which
maps x → s and restricts to ϕ on constant values. This allows for a uniform way of
handling definitions such as polynomial composition and evaluation of polynomial as
a function over the base ring. For example, in [14] we defined the composition of two
polynomials as:

definition compose where

"compose R f g = eval R (UP R) (to_polynomial R) g f"
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where UP R denotes the ring of univariate polynomials over ring R, and
to_polynomial R is the morphism mapping an element of ring R to its associated
constant value. For evaluating a polynomial as a function we only needed:

definition to_function where

"to_function R f = (λ r ∈ carrier R. eval R R (λ x. x) r f

".

We can also prove that to_function R is a ring homomorphism from the polynomial
ring UP R to function_ring (carrier R) R. This also made it particularly easy to
define the Taylor expansion of a polynomial at a given point. The Taylor coefficients
of a polynomial f at a point c are just given by the coefficients of the polynomial
f(x+ c):

definition taylor_expansion where

"taylor_expansion R c p = compose R p (( X_poly R) ⊕UP R

to_polynomial R c)".

This construction is important for the proof of Hensel’s Lemma, which requires con-
sidering the degree 1 Taylor approximation of a polynomial. We prove the following
lemma:

lemma(in UP_cring) Taylor_deg_1_expansion ’:

assumes "f ∈ carrier (UP R)"

assumes "a ∈ carrier R"

assumes "x ∈ carrier R"

shows "∃a ∈ carrier R. to_fun f x =

(to_fun f c) ⊕ (deriv f a)⊗(x⊖c) ⊕ a⊗(x ⊖ c)[^]2".

6.3 Polynomials in Several Variables over a Com-

mutative Ring

It is essential for expressing and formalizing the proof of Macintyre’s Theorem that
we have a formalisation of multivariable polynomials over a base ring. Some work
on this has been done and is included in the HOL-Algebra library in the theory
Indexed_Polynomials. A mulitivariable polynomial is a finitely supported function
from monomials to ring elements, and monomials are formalized as (finite) multisets
over a variable set I. The original purpose of this formalisation was to define the
algebraic closure of a field [17], which requires considering multivariable polynomi-
als with an infinite variable set indexed by single variable polynomials. The set of
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polynomials over a variable set is defined, as well a function for constructing constant
polynomials, addition of two polynomials, and multiplication of a polynomial by a
single variable.

We extended the work on multivariable polynomials to include polynomial multi-
plication and scalar multiplication. Adopting the notation

∑
α

aαx
α for a multivariable

polynomial, where α is a multi-index, the product of two multivariable polynomials
can be defined by the equation:(∑

α

aαx
α

)(∑
β

bβx
β

)
=
∑
γ

( ∑
α+β=γ

aαbβ

)
xγ.

which we can state in the Isabelle formalism as:

definition P_ring_mult :: "(’a, ’b) ring_scheme ⇒ (’a,’c)

mvar_poly ⇒ (’a,’c) mvar_poly ⇒ ’c monomial ⇒ ’a"

where

"P_ring_mult R P Q m =⊕
R x∈mset_factors m. (P x) ⊗R (Q (m - x))"

where mset_factors m denotes the set of all monomial factors of a monomial m. From
this definition we can show that multiplication is associative and commutative. The
proof of associativity is somewhat tedious. By definition we have:

(∑
α

aαx
α

)((∑
β

bβx
β

)(∑
γ

cγx
γ

))
=
∑
ϵ

( ∑
α+δ=ϵ

aα

( ∑
β+γ=δ

bβcγ

))
xγ.

((∑
α

aαx
α

)(∑
β

bβx
β

))(∑
γ

cγx
γ

)
=
∑
ϵ

( ∑
δ+γ=ϵ

( ∑
α+β=δ

aαbβ

)
cγ

)
xγ.

So the challenge is to show that for any muliti-index ϵ, and coefficients aα, bβ, cγ, we
have that ∑

α+δ=ϵ

aα

( ∑
β+γ=δ

bβcγ

)
=
∑

δ+γ=ϵ

( ∑
α+β=δ

aαbβ

)
cγ.

Our approach is to prove that both sides of this equation can be written as a sum
over a single (product) index set, and then to show that these two single sums are
equal.

55



Ph.D. Thesis - Aaron Crighton McMaster University - Mathematics and Statistics

Having constructed the basic algebraic operations on polynomials, we can define
the algebra Pring R I of multivariable polynomials over a base ring R and variable
set I, and prove that this structure satisfies the axioms of a commutative algebra (i.e.
a commutative ring which is also a module over a base ring).

The approach to defining polynomial evaluation is incremental. In order, we:

1. Define evaluation of a monomial (i.e. a multiset) over variable set I to a ring
element, given a function f mapping I to carrier R.

2. Use this to define the partial evaluation of a polynomial f over variables I on
some subset J⊆I. The result is a polynomial over variables I - J.

3. Taking J = I above, we can define total evaluation of a polynomial in variables
I over ring R to a constant polynomial. Taking the constant coefficient of this
yields a value in carrier R.

Having constructed this, we now have a function total_eval R g f allowing for
total evaluation of a polynomial f over ring R and a variable assignment g mapping
the variables of f to carrier R. However, as is done for univariate polynomials, we
would like a more general notion of evaluation which allows us to evaluate f given
a variable assignment into some other ring S and a homomorphism φ from the base
ring R to S. We can do this by first applying φ to the coefficients of f, then applying
total_eval. We name this map “indexed_poly_induced_morphism I S φ g”. We
can then prove a universal mapping property for this function, which says that this
is the unique morphism from R[XI ] to S which respects the variable assignment
g : I → S and extends the base morphism φ : R→ S:

lemma Pring_universal_prop:

assumes a_cring: "cring S"

assumes index_map: "g ∈ I → carrier S"

assumes ring_hom: "ring_hom_ring R S φ"
assumes "ψ = indexed_poly_induced_morphism I S φ g"

shows "( ring_hom_ring (Pring R I) S ψ)"
"(∀i ∈ I. ψ (mset_to_IP R {#i#}) = g i)"

"(∀a ∈ carrier R. ψ (indexed_const a) = φ a)"

"∀ ϱ. (ring_hom_ring (Pring R I) S ϱ) ∧
(∀i ∈ I. ϱ (mset_to_IP R {#i#}) = g i) ∧
(∀a ∈ carrier R. ϱ (indexed_const a) = φ a) →
(∀x ∈ carrier (Pring R I). ϱ x = ψ x)".

We can use this for a number of useful constructions. For example, we can easily
construct the isomorphism from R[XI ] → R[XI−{i}][xi] which views a polynomial in
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variables I as a univariate polynomial in the variable i over the polynomial ring in
variables I - i. We can also construct, for disjoint variable sets I, J , the isomor-
phism R[X(I∪J)] → R[XI ][XJ ], and show that such maps commute with evaluation
of polynomials.

6.4 Powers of a Ring

One basic tool that was found lacking from the HOL-Algebra library is the general
theory of finite cartesian powers of a ring and their subsets. The theory
Chinese_Remainder from the standard distribution [16] does define the direct product
of a finite list of rings, but little development is provided there that it well-suited
to our purposes. The direct product of a list of rings [R_1, ..., R_n] is defined
as the set of lists of length n whose ith element lies in carrier R_i. Using this
definition as a starting point, in the theory Ring_Powers we develop many of the basic
properties of cartesian powers in the context of HOL-Algebra. Topics of main interest
are defining inclusion and projection maps between powers of different dimensions,
defining coordinate rings for affine spaces, defining affine algebraic sets, and showing
that many basic subsets of a ring power Rn are algebraic.

6.4.1 Basics of Cartesian Powers

Since there is a pre-defined function RDirProd_list which maps a list of rings to
their direct product ring, we can define a cartesian product first by defining a function
which maps a ring R and a dimension n to the list of length R containing repeated
copies of R, then passing to this function:

fun R_list ::

"nat ⇒ (’a, ’b) ring_scheme ⇒
((’a, ’b) ring_scheme ) list" where

"R_list n R = map (λ_. R) (index_list n)"

definition cartesian_power ::

"(’a, ’b) ring_scheme ⇒ nat ⇒ (’a list) ring" where

"cartesian_power R n ≡ RDirProd_list (R_list n R)".

We also define notation Rn as a shorthand for cartesian_power R n. Our formalism
has the unfortunate consequence of having to distinguish between the ring R and its
1-dimensional cartesian product R1, the latter consisting of singleton lists [r] for r
∈ carrier R.
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The decision to view elements of Rn as lists rather than functions f : {0, ..., n −
1} → R was motivated by the fact that much of the reasoning involved in model the-
oretic arguments about Qp involve partitioning and permuting variables in sequential
order. This is readily done with many of the existing functions and lemmas available
in Isabelle for lists. For example, if we have points a ∈ Rn and b ∈ Rm, we easily
form the point (a, b) ∈ Rn+m by list concatenation, whereas if we viewed these as
functions the resulting definition would take more work.

6.4.2 Algebraic Sets

We can define the coordinate polynomial rings R[x0, ..., xn−1] over R using the tools
outlined in Section 6.3,

definition coord_ring ::

"(’a, ’b) ring_scheme ⇒ nat ⇒
(’a, (’a, nat) mvar_poly) module"

("_ [X ]" 80) where

"R[Xn] ≡ Pring R {..< n::nat}".

We can then use the notation R [Xn] to denote this ring. Since we have chosen
to view points in Rn as lists rather than functions, we cannot directly evaluate a
polynomial at a point using the total_eval function. Instead we define:

definition eval_at_point ::

"(’a, ’b) ring_scheme ⇒ ’a list ⇒ (’a, nat) mvar_poly ⇒
’a" where

"eval_at_point R as p ≡ total_eval R ((!) as) p"

where “(!) as i” denotes the ith element of the list as. Now we can define the zero
set of a polynomial,

definition zero_set :: "(’a, ’b) ring_scheme ⇒ nat ⇒ (’a

, nat) mvar_poly ⇒ ’a list set" where

"zero_set R n p = {as ∈ carrier Rn. eval_at_point R as p

= 0R}"

and then the affine algebraic set corresponding to a finite set of polynomials,

definition affine_alg_set ::

"(’a, ’b) ring_scheme ⇒ nat ⇒ (’a, nat) mvar_poly set ⇒
’a list set" where

"affine_alg_set R n as =
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{a ∈ carrier Rn. ∀ b ∈ as. a ∈ (zero_set R n b)}"

and finally a predicate for algebraic sets,

definition is_algebraic :: "(’a, ’b) ring_scheme ⇒ nat ⇒
’a list set ⇒ bool" where

"is_algebraic R n S =

(∃ps. finite ps ∧ ps ⊆ carrier (R[Xn])

∧ S = affine_alg_set R n ps)".

A common theme that we see in these definitions and will see in many others is that
the predicates and functions we would like to define for ring powers will need to take
a parameter n for dimension of the power of R.

Our main interest in defining algebraic sets is that later we will prove that all
algebraic sets are semi-algebraic, which will be needed in the proof of Macintyre’s
Theorem. It would be optimal to formulate algebraic sets in terms of polynomial
ideals rather than the finite sets of generators, but for our purposes this definition
suffices. A drawback of this approach is that it is not immediate that algebraic sets
over domains are closed under finite unions. We can prove this by induction, with
binary unions as the base case. This required defining a function which maps two
finite sets of polynomials to the set of all pairwise products between them, and proving
that this set is still finite.

We also included versions of set operations relativised to carriers of ring powers.
For example, the function evimage takes the inverse image of a function, intersected
with carrier Rn,

definition evimage where

"evimage n f S = (f -‘ S) ∩ carrier Rn"

with notation f-1n S as shorthand for evimage n f S. We also use the notation Funn(R)
as shorthand for the extensional function rings function_ring (carrier (Rn)) R

consisting of functions whose domain is a Cartesian power of the ring.

6.4.3 Polynomial Maps

It is useful to introduce definitions and lemmas about polynomial maps (i.e. tuples
of polynomials). These will be important for reasoning about and constructing new
examples of semi-algebraic functions. The definitions are straightforward,

definition poly_tuple_eval ::

"(’a, nat) mvar_poly list ⇒ ’a list ⇒ ’a list" where

"poly_tuple_eval fs as =
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map (λ f. eval_at_poly R f as) fs ".

We also provide an extensional version of this function,

definition poly_map ::

"nat ⇒ (’a, nat) mvar_poly list ⇒ ’a list ⇒ ’a list"

where

"poly_map n fs = (λ a ∈ carrier Rn. poly_tuple_eval fs a)".

This construction is useful because it can be shown that polynomial maps are simple
examples of semi-algebraic maps, and hence preserve semi-algebraic sets under inverse
images.
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Chapter 7

Constructing Zp, Qp and Hensel’s
Lemma

This section outlines the basic construction of the p-adic ring of integers Zp and the
p-adic field Qp, as well as proofs of Hensel’s Lemma in both contexts. Work pertaining
purely to the ring Zp can be found in the AFP submission padic_ints [13], while
work pertaining to Qp is in a session titled padic_fields, which has been submitted
for publication to the AFP as of writing.

7.1 Defining Zp

There are many options available for a formal construction of Zp and Qp in a proof
assistant. For example, in [25], the author formalizes the proof of Hensel’s Lemma
in the Lean proof assistant. The approach here is to first define the p-adic absolute
value on the field Q, and then define the field Qp as the completion of Q with respect
to this absolute value. One can then define Zp as the unit ball in Qp. We opt for a
different approach, which is more compatible with the formalism of the HOL-Algebra
library. The standard algebraic approach to defining Zp as the inverse limit of the
rings Z/pZ. Set theoretically, this is:

Zp = lim←−
i∈N

Z/piZ

=

{
f ∈

∏
i∈N

Z/piZ | ∀m < n. f(m) = f(n) mod pm

}
.

This lends itself to a simple formalisation in Isabelle using existing tools from the
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standard distribution:

definition padic_set :: "int ⇒ padic_int set" where

"padic_set p =

{f::nat ⇒ int .

(∀ m::nat. f m ∈ carrier (residue_ring pm))

∧ (∀ (n::nat) (m::nat).

n > m −→ residue (pm) (f n) = (f m))}".

Here the type padic int is a synonym for the function type nat ⇒ int. Here the
function residue ring is pre-defined in the standard distribution so that
residue ring n is a ring-record object representing the ring Z/nZ. We can then
define the standard ring operations for Zp componentwise in the usual way. For
example, addition can be defined in Isabelle as:

definition padic_add ::

"int ⇒ padic_int ⇒ padic_int ⇒ padic_int"

where "padic_add p f g n = (f n) ⊕residue ring pn (g n)

".

Performing similar constructions to the above for the other usual ring construc-
tions, we can then define the ring Zp as a ring record object in the following way:

"padic_int p = (| carrier = padic_set p,

mult = padic_mult p,

one = padic_one p,

zero = padic_zero p,

add = padic_add p|)"}.

This must be accompanied by lemmas stating that for any prime p, the set padic set

p is closed under the operations padic add p and padic mult p and that these op-
erations are associative, commutative, and obey the usual algebraic identities of ring
operations.

We can bundle the data of our Zp construction into a locale of its own, which we
call padic int. It fixes constants Zp for the ring Zp as well as for the prime parameter
p, and has as its only axiom that p is a prime.

For the sake of containing the scope of this project, these constructions have been
performed specifically for the ring Zp. However, further improvements to this would
allow one to define a general notion of inverse limit for sequences of rings, with Zp

only a special case of this. One could also provide a locale for discrete valuation rings
(DVR), and then define the canonical completion of a DVR in terms of the inverse
limit construction.
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7.2 The Valuation on Zp
There are many options for how one can approach the problem of defining the p-
adic valuation on padic set p. One possible approach is to construct it as a real-
valued absolute value, which maps to the pre-defined field of real numbers available
in the standard HOL Library. Since our goal is the formalisation of results in p-adic
model theory, this approach is not desirable, since it obscures the arithmetic of the
value group, which plays an essential role in formalizing Macintyre’s Theorem. Our
approach instead occurs in two steps. First, we define an integer-valued valuation
on Zp \ 0. We then define a new abstract type eint in Isabelle to represent the
extended integers, with an infinite element added to represent the valuation of 0. We
call the integer-valued valuation ord Zp and the extended integer-valued valuation
val Zp. The main advantage of this two-step approach is that lemmas regarding
ord Zp can admit more proof automation, since they can avail themselves of Isabelle’s
built-in proof tactics such as linarith and presburger (described in [28]). One can then
efficiently prove restricted versions of lemmas for ord Zp applied to nonzero elements,
and then reformulate them in general for val Zp and transfer the proofs over, usually
with a case distinction over the possibility of zero and nonzero elements.

7.2.1 The Integer-Valued Valuation on Nonzero Elements

The inverse limit definition of padic set p means that each element of the set is
literally the residue map of the element of the ring Zp which it represents. This
means that for every x ∈ Zp is represented by an element x ∈ padic set p, such that
for every natural number n, the value x n is just the element of Z/pnZ representing
x mod pn (technically x n is actually an integer between 0 and pn − 1 which is
a representative of the residue class). This allows for a straightforward definition
of ord Zp x for nonzero x ∈ padic set p. The definition below is for the function
padic val, which depends on the parameter p. Once we are working in the padic int

locale we can define ord Zp to remove the dependence on p. The valuation of an
element of Zp is just the largest n for which its residue modulo pn is zero. We
arbitrarily assign the value −1 to 0 to make the function total on padic set p.

definition padic_val :: "int ⇒ padic_int ⇒ int" where

"padic_val p f ≡ if (f = padic_zero p) then -1

else int (LEAST k::nat. (f (Suc k)) ̸= 0".

Without too much difficulty we can then prove the basic properties of the valuation,
such as multiplicativity:

lemma val_prod:

assumes "prime p"
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assumes "f ∈ (padic_set p)"

assumes "g ∈ (padic_set p)"

assumes "f ̸= padic_zero p"

assumes "g ̸= padic_zero p"

shows

"padic_val p (padic_mult p f g) = padic_val p f +

padic_val p g".

From this it is easily inferred that Zp is an integral domain:

lemma padic_int_is_domain:

assumes "prime p"

shows "domain (padic_int p)".

7.2.2 The Extended Integer-Valued Valuation

Our construction of the extended integers is directly modelled on a similar construc-
tion for the extended natural numbers from the standard Isabelle distribution [32].
The type eint is defined as an abstract type whose underlying set is just int option,
i.e. a type whose elements either represent a unique integer, or a “None” type (which
will be our infinity). We define a function

definition eint :: "int ⇒ eint" where

"eint n = Abs_eint (Some n)"

which maps an integer to its associated extended integer. In this way we can easily
define the eint-valued valuation:

definition(in padic_integers) val_Zp where

"val_Zp x = (if (x = 0) then (∞::eint)

else (eint (padic_val p x)))".

We then define addition and multiplication on the type eint in the obvious way on
integer values, and stipulate (as is standard) that the sum or product of anything
with ∞ is just ∞. We also define the ordering on eint in the usual way on integers,
with ∞ as our infinite element.

7.3 Angular Components and Division

In the proof of Hensel’s Lemma and elsewhere, it will be necessary to have a notion of
restricted division of two p-adic integers. Since we have defined Zp prior to defining
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Qp, simply performing division of two elements of Zp as their quotient in Qp is not
desirable. There is a pre-defined function for inverses of ring units in HOL-Algebra,
but this can’t be directly applied since we would like to be able to form the quotient
x/y whenever val(x) ≥ val(y), even in the case that y may not be an actual unit.
A convenient way to do this internally to Zp is with angular components. We can
define a function ac_Zp which maps a nonzero element x ∈ Zp to its normalized value
p−val(x)x. This will always have valuation 0, hence will always be a unit. The residues
of this function implement the angular component maps which are also described in
Part 1 of the thesis in Definition 2.3.3, and this construction is extended to the fields
Qp, as is outlined in Section 7.5.3. We then define an ad-hoc division function on Zp

as:

definition divide where

"divide x y =

(if x = 0 then 0 else

(p[^]( nat (ord_Zp x - ord_Zp y)) ⊗ ac_Zp x ⊗ (inv

ac_Zp y)))".

Which corresponds to the mapping:

x, y 7→ pval(x)−val(y)p
−val(x)x

p−val(y)y

when val(x) ≥ val(y), in which case it will simply evaluate to the p-adic integer x/y.

7.4 Hensel’s Lemma

7.4.1 Cauchy Sequences and Completeness

The particular formalism we have chosen makes development of basic toplogical prop-
erties of Zp relatively straightforward. The standard definition of a cauchy sequence
for a valued field (as in section 2.4 of [20], for example) can be stated for Zp with no
difficulty. For the purposes of developing the necessary topology for proving Hensel’s
Lemma, we use the characterization of Cauchy sequences over Zp which says that a
sequences is Cauchy if and only if it’s residues are eventually constant:

Lemma 7.4.1. Suppose (sn) is a sequence in Zp. Then (sn) is Cauchy if and only if
for all k ∈ N, there exists some N ∈ N such that for all n0, n1 > N ,

sn0 mod pk = sn1 mod pk.
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In our Isabelle formalism this can be expressed as a distinct rule for each direction
of the bi-implication:

lemma is_Zp_cauchyI:

assumes "s ∈ closed_seqs Zp"

assumes "
∧

n. (∃N. (∀ n0 n1. n0 > N ∧ n1 > N =⇒ (s n0

) n = (s n1) n))"

shows "is_Zp_cauchy s"

lemma is_Zp_cauchy_imp_res_eventually_const:

assumes "is_Zp_cauchy s"

fixes n::nat

obtains N r where "r ∈ carrier (Zp_res_ring n)" and "
∧

m

. m > N ⇒ s m) n = r".

One useful aspect of this characterization in our formalism is that completeness of Zp

is almost immediate: an element of Zp is literally a coherent residue map, and every
Cauchy sequence induces such a map by looking at its eventually constant residue
values for each residue degree n.

definition res_lim :: "padic_int_seq ⇒ padic_int" where

"res_lim s k = (THE r. (∃N. (∀ m.

m > N =⇒ (s m) k = r) ) ) ".

We can easily prove that the residue map defined in this way is an element of Zp, and
that it is the limit of the Cauchy sequence:

lemma is_Zp_cauchy_imp_has_limit:

assumes "is_Zp_cauchy s"

assumes "a = res_lim s"

shows "Zp_converges_to s a".

Since Zp is a compact metric space, a function f : Zp → Zp is continuous if and only if
it carries a Cauchy sequence (sn) to a Cauchy sequence (f(sn)). We directly adopt this
as our definition of continuity, and prove that all polynomials are continuous (which is
the only kind of continuous function we need to consider for the purposes of proving
Hensel’s Lemma). Some extra work is needed to actually infer that f(lim sn) =
lim(f(sn)) holds for a continuous f and a Cauchy sequence sn, but this is relatively
straightforward:

lemma continuous_limit:

assumes "is_Zp_continuous f"

assumes "is_Zp_cauchy s"
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shows "Zp_converges_to (f ◦ s) (f (res_lim s))".

Although it is not needed for anything else in the project, we are also able to prove
sequential compactness of Zp in this formalism.

7.4.2 Proof of Hensel’s Lemma

As in the formal proof in Lean by Robert Y. Lewis from [25], we used a proof of
Hensel’s Lemma using Newton’s method exposited by Keith Conrad in [12] as an
outline. The constants and hypothesis in the statement of the theorem are declared
in a locale which we call hensel to reduce the need for repetition of hypotheses in
lemmas:

locale hensel = padic_integers+

fixes f:: padic_int_poly

fixes a:: padic_int

assumes f_closed: "f ∈ carrier Zp_x"

assumes a_closed: "a ∈ carrier Zp"

assumes fa_nonzero: "f·a ̸= 0"

assumes hensel_hypothesis: "val_Zp (f·a) > 2* val_Zp ((

pderiv f)·a)".

In the above we have defined abbreviated notation for application of a polynomial
function. We can write f·a to denote application of a polynomial f to a number a
in Zp. We have added the assumption that f(a) ̸= 0 to remove unnecessary case
distinctions from the proof, and this will be removed in the final statement of the
theorem.

The proof of Hensel’s lemma involves starting from an approximate root a, defining
the Newton sequence:

a0 = a

an+1 = an −
f(an)

f ′(an)

and showing that this sequence is Cauchy and converges to a root of f of the desired
form. We can easily define this sequence in Isabelle using our restricted p-adic division
function. First we define the function which maps an to an+1 in the Newton sequence,
then define the Newton sequence itself as a recursive function.

definition newton_step :: "padic_int ⇒ padic_int" where

"newton_step x = x ⊖ (divide (f·x) (f’·x))"

fun newton_seq :: "padic_int_seq" ("ns") where
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"newton_seq 0 = a"|

"newton_seq (Suc n) = newton_step (newton_seq n)".

In this definition we are using f ′ as an abbreviation for the polynomial derivative of
f . We follow the same inductive pattern as Conrad in proving by induction on n that
the Newton sequence increases in valuation as the index n increases:

lemma newton_seq_props_induct:

shows "
∧
k. k ≤ n =⇒ ns k ∈ carrier Zp

∧ val_Zp (f’·(ns k)) = val_Zp ((f’·a))
∧ val_Zp (f·(ns k)) ≥ 2*( val_Zp (f’·a)) + (2^k)*t"

where t is a predefined valuative constant of positive valuation:

definition hensel_factor ("t") where

"hensel_factor = val_Zp (f·a) - 2*( val_Zp (f’·a))"

lemma t_pos:

"t > 0".

The main challenge in proving the inductive lemma above is performing the alge-
braic calculations in HOL-Algebra. Many applications of basic operations such as
commutativity and associativity, as well as cancellation of quotients, must be applied
manually after checking certain closure conditions.

We can finally prove Hensel’s Lemma in two parts: first showing existence of the
root, then showing uniqueness in a separate lemma:

lemma hensels_lemma:

assumes "f ∈ carrier Zp_x"

assumes "a ∈ carrier Zp"

assumes "val_Zp (f·a) > 2* val_Zp (( pderiv f)·a)"
shows "∃!α ∈ carrier Zp.

f·α = 0 ∧ val_Zp (a ⊖ α) > val_Zp (( pderiv f)·a)"

7.5 Constructing Qp and Importing Results

7.5.1 Fields of Fractions

Building on an existing AFP entry by Anthony Bordg [4] formalizing the general
notion of the localization of a commutative ring at a multiplicative set , we defined
the basic properties of the field of fractions over a domain in an Isabelle theory
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Fraction_Field in [14]. We defined a locale domain_frac for proving lemmas about
fields of fractions over a domain. Within this locale, we define the field of fractions
Frac R for a domain R, and have an inclusion map ι for R into Frac R. We can then
define choice functions numer and denom from Frac R to R satisfying

x = ι (numer x) ⊗Frac R invFrac Rι(denom x)

for all x ∈ carrier (Frac R) where invFrac R is the multiplicative inverse function.
With this in place the definition of Qp is straightforward. In Fraction_Field we
define explicit choice functions numer and denom which map elements of a fraction
field Frac R over a domain R to witnesses in R. To work with a field Qp, we created
a locale padic_fields which has named constants for the prime p, the ring Zp, the
field Qp, and the inclusion map ι : Zp → Qp. Here we define Zp exactly as in the
previous section, and define Qp simply by Qp = Frac Zp. There is also a constant Op

for embedded image of Zp in Qp under ι. Op is defined only as a set rather than a full
ring structure, though closure properties are still proved. We also can define a partial
inverse for ι

definition to_Zp where

"to_Zp a = (

if (a ∈ Op) then (SOME x. x ∈ carrier Zp ∧ ι x = a)

else 0Zp )".

The locale padic_fields can inherit the lemmas from padic_integers via the
sublocale command:

sublocale padic_fields < padic_integers Zp
apply (simp add: padic_integers_def prime)

using Zp_def by auto

which allows us to efficiently import defintitions and facts from Zp to Qp.

7.5.2 The p-adic Valuation

As in the case of the p-adic integers, we define the valuation on Qp twice over: once
with integer values for efficient reasoning, and once over the extended integers. Within
the locale padic_fields, we name these ord and val respectively, and define val in
terms of ord. We can define ord using the existing definition of ord_Zp:

definition ord where

"ord x = (ord_Zp (numer x)) - (ord_Zp (denom x))"

definition val where
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"val x = (if x = 0 then (∞::eint) else eint (ord x))".

From this the basic properties of the valuation are easily proved from their analogues
for Zp and the properties of numer and denom.

7.5.3 Angular Components

We can define angular component functions on Qp using their analogous definitions
for Zp as well as numer and denom:

definition angular_component where

"angular_component a = ac_Zp (numer a)⊗Zp(invZp ac_Zp (

denom a))".

The angular component takes its values in carrier Zp, which makes it straightforward
to define versions which take values in the residue rings:

definition ac :: "nat ⇒ padic_number ⇒ int" where

"ac n x = (if x = 0 then (0:: int)

else (angular_component x) n )"

and to prove that these maps are homomorphisms (since they are obtained by com-
position with the already defined residue maps on Zp).

7.5.4 Hensel’s Lemma for Qp

We can state and Hensel’s Lemma for Qp using the version proved for Zp, as well as
our canonical maps between Zp and Qp. A useful tool for this is development of the
gauss norm for polynomials in Qp[x]. This construction is outlined for general valued
fields in Section 2.2 of [20]. The gauss norm of a polynomial f is simply the minimum
of the valuations of its coefficients, which can be easily stated in Isabelle:

definition gauss_norm where

"gauss_norm g = Min (val ‘ g ‘ {.. degree g})"

where the function Min denotes the minimum element function for an ordered set,
the notation “f ‘ X” for a function f defined on a set X denotes the image set, and
.n..n denotes the set of natural numbers ranging from 0 up to and including n. We
can prove that on this definition, a polynomial in Qp[X] has positive gauss norm if
and only if its coefficients all lie in Op:

lemma positive_gauss_norm_valuation_ring_coeffs:

assumes "g ∈ carrier (UP Qp)"

assumes "gauss_norm g ≥ 0"
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shows "g n ∈ Zp"

lemma val_ring_cfs_imp_nonneg_gauss_norm:

assumes "g ∈ carrier (UP Qp)"

assumes "
∧

n. g n ∈ Zp"

shows "gauss_norm g ≥ 0".

We then define maps between the polynomial rings Qp[X] and Zp[X] induced by
the maps ι and to_Zp defined on their coefficients, and prove that these maps com-
mute with evaluation of polynomials as functions and taking polynomial derivatives.
Finally, we prove a version of Hensel’s Lemma for Qp:

theorem hensels_lemma:

assumes "f ∈ carrier (UP Qp)"

assumes "a ∈ Op"

assumes "gauss_norm f ≥ 0"

assumes "val (f·a) > 2*val (( pderiv f)·a)"
shows "∃!α ∈ Op. f·α = 0 ∧ val (a ⊖ α) > val (( pderiv f)·a
)".

As a sample application of this, we can prove the following common criterion for the
existence of nth roots in the field Qp:

lemma nth_root_poly_root:

assumes "(n::nat) > 1"

assumes "a ∈ Op"

assumes "val (a ⊖ 1) > 2*val ([n]·1)"
shows "∃!b ∈ Op. b[^]n = a ∧ val (b ⊖ 1) > val ([n]·1)".

In the above, the notation “[n]·1” refers to the inclusion of the natural number n in
the field Qp.
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Chapter 8

Sets and Functions on Powers of Qp

Our account of semi-algebraic sets closely follows Denef’s in [19]. This requires bring-
ing together content from section 6.4 and 7.5. In addition, since definition 5.2.1 re-
quires appeal to boolean combinations, we need to include a formalisation of boolean
algebras of sets generated by some basic set of generators. This will be especially
important in the proof of Macintyre’s theorem to keep track of repeated partitions of
semi-algebraic sets into successively smaller ones.

8.1 Generated Boolean Algebras

We can define the boolean algebra generated by generator sets B over a universe set
S as an inductive set in Isabelle. That is,

inductive_set gen_boolean_algebra

for S and B where

universe: "S ∈ gen_boolean_algebra S B"

| generator: "A ∈ B =⇒ A ∩ S ∈ gen_boolean_algebra S B

"

| union:

"[| A ∈ gen_boolean_algebra S B;

C ∈ gen_boolean_algebra S B|]

=⇒ A ∪ C ∈ gen_boolean_algebra S B"

| complement: "A ∈ gen_boolean_algebra S B

=⇒ S - A ∈ gen_boolean_algebra S B".

This defines the expression gen_boolean_algebra S B as the minimal collection of
subsets of the set S which contains intersections of the generator sets in the collection
B with S, contains S itself, and is closed under unions and complements. Technically
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this allows for the possibility that the generators B are not subsets of S, but in almost
all use-cases they will be. Closure of gen_boolean_algebra S B under intersections
and set differences are easy consequences of this defintion.

We will frequently be interested in looking at boolean algebras generated by a
finite collection of generators. For example, this will be useful for partitioning sets
according to the zero sets of some collection of polynomials, so that each polynomial
is either always zero or always nonzero on each element of the partition. Given a
finite set of generating sets Xs, we know that the atoms (i.e. the nonempty elements
minimal with respect to inclusion) of the generated boolean algebra will always be
given by an intersection of elements of Xs and their complements. We therefore give
the definition,

definition subset_to_atom where

"subset_to_atom Xs As =
⋂

As -
⋃

(Xs - As)".

For a given subset As of the generators Xs, either subset_to_atom Xs As will be an
atom of Xs, or it will be empty, which justifies the definition,

definition atoms_of where

"atoms_of Xs = (subset_to_atom Xs ‘ ((Pow Xs) - {{}})) -

{{}}"

with Pow Xs denoting the power set of Xs. This definition makes it straightforward
to establish that a finite collection of sets has only finitely many atoms. We can also
easily prove that for every atom of Xs, and each element X∈Xs, either the atom is
contained in X or disjoint from it,

lemma atoms_are_minimal:

assumes "A ∈ atoms_of Xs"

assumes "X ∈ Xs"

shows "X ∩ A = {} ∨ A ⊆ X"

We can then recharacterize the atoms of a collection of generators as induced by
points from the union of the generators. We name these types due to the conceptual
similarity to types from model theory:

definition point_to_type where

"point_to_type Xs x = {X ∈ Xs. x ∈ X}"

lemma point_in_atom_of_type:

assumes "x ∈
⋃

Xs"

shows "x ∈ subset_to_atom Xs (point_to_type Xs x)".
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We can finally characterize finitely generated boolean algebras as the collection of all
possible unions of the atoms of its generators,

lemma gen_boolean_algebra_generated_by_atoms:

assumes "finite Xs"

assumes "S =
⋃

Xs"

shows "gen_boolean_algebra S Xs =
⋃

‘ (Pow (atoms_of Xs)

)"

which in turn means that finitely generated boolean algebras are themselves finite,

lemma fin_gens_imp_fin_algebra:

assumes "finite Xs"

assumes "S =
⋃

Xs"

shows "finite (gen_boolean_algebra S Xs)".

Furthermore, we can prove that the atoms generated by a collection of generators Xs
are the same as those generated by the whole boolean algebra itself,

lemma atoms_of_sets_eq_atoms_of_algebra:

assumes "finite Xs"

assumes "S =
⋃

Xs"

shows "atoms_of Xs = atoms_of (gen_boolean_algebra S Xs)

".

In cell decomposition arguments, we often would like to take multiple partitions
of some set and amalgamate these into one partition which is a refinement of all of
them. This is can be easily expressed in the formalism we have developed above,

definition family_intersect where

"family_intersect parts = atoms_of (
⋃

parts)"

lemma family_intersect_partitions:

assumes "
∧

Ps. Ps ∈ parts =⇒ s partitions A"

assumes "
∧
Ps. Ps ∈ parts =⇒ finite Ps"

assumes "finite parts"

assumes "parts ̸= {}"

shows "family_intersect parts partitions A".

8.2 Basic semi-algebraic Sets

The basic semi-algebraic generators defined in Definition 5.2.1 are easy to describe,
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definition basic_semialg_set where

"basic_semialg_set (m::nat) (n::nat) P =

{q ∈ carrier (Qmp). ∃y ∈ carrier Qp. Qp_ev P q = (y[^]n)}"

using Qp_ev P q as shorthand for the evaluation of the polynomial P at the point
q∈carrier(Qmp). We can then define a predicate for basic semi-algebraic sets,

definition is_basic_semialg ::

"nat ⇒ ((nat ⇒ int) × (nat ⇒ int)) set list set ⇒ bool"

where

"is_basic_semialg m S ≡
∃ (n::nat) ̸= 0.

(∃ P ∈ carrier (Qmp). S = basic_semialg_set m n P)"

and define the class of semi-algebraic sets as the boolean alegbra generated by these

definition semialg_sets where

"semialg_sets m =

gen_boolean_algebra (carrier (Qmp)) (basic_semialgs m)".

We define a predicate version is_semialgebraic m S which identifies a semi-algebraic
subset S of carrier Qmp, as well as an alternate version is_univ_semialgebraic S

for semi-algebraic subsets S of carrier (Qp) rather than the isomorphic carrier Q1p.
From here we can begin to show that various familiar sets and constructions are in
fact semi-algebraic. For example, we show that the valuation relation

{(x, y) ∈ Q2
p | val(x) ≤ val(y)}

is a basic semi-algebraic set. This requires proving the algebraic fact that val(y) ≤
val(x) holds for x, y ∈ Qp (for any prime p) if and only if y4 + p3x4 is a square, a
proof which uses Hensel’s lemma. We can then give the name Qp_val_poly to the
polynomial f(x, y) = y4 + p3x4, and prove the lemma:

lemma Qp_val_semialg:

assumes "a ∈ carrier Qp"

assumes "b ∈ carrier Qp"

shows "val b ≤ val a ↔
[a,b] ∈ basic_semialg_set 2 2 Qp_val_poly ".

Giving the name val_relation_set to the subset of Q2
p given by

{(x, y) | val(y) ≤ val(x)}
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, it is now trivial to infer that this is semi-algebraic:

lemma val_relation_is_semialgebraic:

"is_semialgebraic 2 val_relation_set ".

In addition, it is important to state and prove the contents of Denef’s Lemma 2.1
from [19], which addresses the various ways one can define new semi-algebraic subsets
of carrier (Qmp) from polynomials in Qp[Xn]. One main tool we use for this is the
lemma which shows that the inverse image of a semi-algebraic set under a polynomial
map is again semi-algebraic,

lemma pullback_is_semialg:

assumes "is_poly_tuple n fs"

assumes "length fs = k"

assumes "is_semialgebraic k S"

shows "is_semialgebraic n (poly_map n fs)-1n S".

This lemma follows easily from the fact that the composition of a polynomial with a
polynomial map produces a new polynomial.

8.3 Semi-Algebraic Functions

To define semi-algebraic functions as in definition 5.2.2, we create some new explicit
functions to represent the modified version of inverse image being used,

definition partial_image where

"partial_image m f xs = (f (take m xs))#(drop m xs)"

definition partial_pullback where

"partial_pullback m f l S = (partial image m f)-1m+l S"

definition is_semialg_function where

"is_semialg_function m f =

f ∈ carrier (Qmp) → carrier (Qp) ∧
(∀l ≥ 0. ∀S ∈ semialg_sets (1 + l).

is_semialgebraic (m + l) (partial_pullback m f l S)

)".

A priority is to verify the contents of Denef’s Remark 1.5, namely to show that semi-
algebraic functions have semi-algebraic graphs, and are closed under composititon,
addition, multiplication, and (multiplicative) inverses. This will then allow us to
define the rings of semi-algebraic functions over Qnp for each n. In fact, once we
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have shown that semialgebraic functions are closed under composition, closure under
the basic algebraic operations will be simple, due to the fact that the basic ring
operations either are polynomial functions or can be defined in terms of them. We
can therefore simply note that the sums, products, etc of functions are compositions
of semi-algebraic functions with another semi-algebraic function.

8.4 Closure of Semi-Algebraic

Functions Under Composition

The informal proof that semi-algebraic functions are closed under composition is given
below.

Lemma 8.4.1. Suppose R ⊆ Qn+n+k
p is semi-algebraic. Then the set

R′ = {(x, y) ∈ Qn+k
p | (x, x, y) ∈ R}

is also semi-algebraic.

Proof. The map (x, y) → (x, x, y) is a polynomial map from Qn+k
p → Qn+n+k

p . Then
we see that R′ is the inverse image of the set R under this mapping, hence it is also
semi-algebraic.

Lemma 8.4.2. Suppose fi : Qm
p → Qp are semi-algebraic, for i = 1, ..., k, and

S ⊆ Qk+n
p is semi-algebraic. Then the set

{(x, y) ∈ Qm+n
p | (f1(x), . . . , fk(x), y) ∈ S}

is also semi-algebraic.

Proof. If k = 1 then this follows straightforwardly from the definition of semi-
algebraic functions. Proceeding by induction on k, suppose we know this fact for
k, and would like to prove it for k + 1. Take S ⊆ Qk+1+n

p semi-algebraic. By induc-
tion, we know that the set,

S0 := {(x, t, y) ∈ Qm+1+n
p | (f1(x), . . . , fk(x), t, y) ∈ S}

is semi-algebraic. By the definition of semi-algebraic functions (up to permutation of
indices), it follows that the set

S1 := {(x, x′, y) ∈ Qm+m+n
p | (x, fk+1(x

′), y) ∈ S0}
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is semi-algebraic. Applying Lemma 8.4.1 we get that

S2 := {(x, y) ∈ Qm+n
p | (x, x, y) ∈ S1}

is semi-algebraic. The set S2 is precisely the set

{(x, y) ∈ Qm+n
p | (f1(x), . . . , fk(x), y) ∈ S}

which completes the proof.

Finally we can prove the desired result:

Proposition 8.4.3. Suppose fi : Qm
p → Qp are semi-algebraic, for i = 1, ..., k, and

F : Qk
p → Qp is semialgebraic. Then F (f1(x), . . . , fk(x)) : Qm

p → Qp is semi-algebraic.

Proof. It suffices to fix a semi-algebraic set S ⊆ Q1+n
p for an arbitrary n, and show

that the set S0 := {(x, y) ∈ Qm+n
p | (F (f1(x), . . . , fk(x)), y) ∈ S} is semi-algebraic.

However, this set is of the form

{(x, y) ∈ Qm+n
p | (f1(x), . . . , fk(x), y) ∈ S1}

where S1 := {(x, y) ∈ Qk+n
p | (F (x), y) ∈ S}. S1 is semi-algebraic by the definition of

a semi-algebraic function, and therefore S0 is by the previous lemma.

After defining the notion of a semi-algebraic map to match the map

x 7→ (f1(x), . . . , fk(x))

in the above lemma, this can be stated and proved in Isabelle:

lemma semialg_function_comp_closed:

assumes "is_semialg_function m f"

assumes "is_semialg_map k m g"

shows "is_semialg_function k (f ◦ g)".

8.5 Inversion is Semi-Algebraic

Using the fact that semi-algebraic functions are closed under function composition,
we only need to show that the function x→ 1/x is semi-algebraic (arbitrarily sending
0→ 0 so as to be total). This requires showing that

S := {(x, y) ∈ Q1+k
p | ∃t((x = 0 ∧ f(0, y) = tn) ∨ f(x−1, y) = tn)}
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are semi-algebraic for any n > 0 and polynomial f . The approach is straightforward.
For any n, there is a polynomial g(x, y) such that xnmf(x−1, y) = g(x, y), where m
is the degree of f in the variable x. Giving the map f(x) 7→ 1/f(x) the admitedly
awkward name one_over_fun n f (for x ∈ Qn

p ), we can prove the lemma in Isabelle:

definition one_over_fun where

"one_over_fun n f = invSA n(to_fun_unit n f)"

lemma one_over_fun_closed:

assumes "f ∈ carrier (SA n)"

shows "one_over_fun n f ∈ carrier (SA n)".

8.6 Rings of Semi-algebraic Functions

Denef’s paper requires us to consider various arithmetic operations on semi-algberaic
functions, as well as to consider polynomials with semi-algebraic coefficients. For
this reason we chose to construct, for each n, the ring of semi-algebraic functions f:
carrier Qnp → carrier Qp, which we denote by SA n. We can then, for example, write
UP (SA n) to refer to the ring of single-variable polynomials with semi-algebraic co-
efficients in n variables. These rings are defined as subrings of the rings of all possible
functions f: carrier Qnp → carrier Qp, which have already been constructed. With-
out doing this, we would be able to perform operations such as forming the sum of two
functions, but this approach allows us to efficiently perform constructions such as tak-
ing the Taylor expansion of a semi-algebraic polynomial centred at a semi-algebraic
function, and we will know that the resulting coefficients are again semi-algebraic.
This material is outlined in the theory padic_semialgebraic_function_ring.

8.7 Piecewise Semi-Algebraic Functions

One crucial property of semi-algebraic functions is that they are closed under piece-
wise definitions, provided that the domain components are themselves semi-algebraic,
and there are only finitely many pieces. This is easily shown from the definition of
semi-algebraic functions. We provide a special function for (binary) piecewise defini-
tions,

definition fun_glue where

"fun_glue n S f g = (λx ∈ carrier Qnp. if x ∈ S then f x

else g x)"

and prove a closure lemma,
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lemma fun_glue_closed:

assumes "f ∈ carrier (SA n)"

assumes "g ∈ carrier (SA n)"

assumes "is_semialgebraic n S"

shows "fun_glue n S f g ∈ carrier (SA n)".

We also define a parametric version of this function for piecewise definitions with
finite but arbitrarily large collections of domain pieces. It requires a finite collection
Xs of semi-algebraic sets (which are expected to be disjoint and cover all of carrier
Qnp) and a function fs mapping the sets in Xs to the semi-algebraic function we would
like to take the values of on that piece. In Isabelle this can be defined using the
definite description operator,

definition parametric_fun_glue where

"parametric_fun_glue n Xs fs =

(λ x ∈ carrier (Qnp). let S = (THE S. S ∈ Xs ∧ x ∈ S) in (

fs S x))".

This characterization of this function makes the output of the function transparent
and simple to prove. However, to show that this function is semi-algebraic, we can
prove that the result of gluing functions f0, . . . , fn along semi-algebraic sets S0, . . . , Sn

can be written as the finite sum f0χS0+· · ·+fnχSn where χSi
denotes the characteristic

function on Si. That χS is semi-algebraic follows from the fact that it can be expressed
as fun_glue n S 1(SA n) 0(SA n).

8.8 Semi-Algebraic Units and Division

Since we have proved that multiplicative inversion is semi-algebraic, it is simple to
show that 1/f is semi-algebraic whenever f is. This statement, however, is somewhat
ambiguous when f is a function which may sometimes take the value zero. In practice
(and in Denef’s paper), the meaning of 1/f for such functions is often left ambiguous,
with the understanding that this function will not be applied at points x where
f(x) = 0, and could be arbitrarily redefined at such points to yield a function with a
multiplicative inverse everywhere. Isabelle requires us to make a concrete decision on
this point, so we chose to define a function to_fun_unit n f which uses fun_glue
to glue f to the function 1SA n along the set of nonzero values of f (which is semi-
algebraic as long as f is. This leaves us with the awkward but workable solution of
using the value inv(SA n) (to_fun_unit n f) as a stand-in for 1/f .
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8.9 Cells and Cell Decompositions

8.9.1 Defining Cells

Denef’s notion of a cell differs slightly from the one we give in definition 2.2.2 in that
it does not include a condition for membership in a certain multiplicative coset of Qp.

Definition 8.9.1. A cell in Qm
p ×Qp is a set of the form

A = {(x, t) ∈ Qm
p ×Qp | x ∈ C and ord(a1(x))□1ord(t− c(x))□2ord(a2(x))},

where C is a semi-algebraic subset of Qm
p , and a1(x), a2(x), c(x) are semi-algebraic

functions from Qm
p → Qp, and □i is either ≤, <, or no condition. We call c(x) a

center of the cell A.

There are a few choices that need to be made in deciding how to translate this def-
inition in Isabelle. First, one needs to decide how to specify the boundary constraints
□i. This is done with the notion of a convex condition over the value group.

To begin, we define a predicate which can identity a subset of the value group
which is convex in the obvious way,

definition is_convex :: "eint set ⇒ bool" where

"is_convex A = (∀ x ∈ A. ∀y ∈ A. ∀c. x ≤ c ∧ c ≤ y → c ∈
A)".

We can then define four special classes of convex sets which will be sufficient to
characterize all possible convex subsets of the extended integers,

definition closed_interval :: "eint ⇒ eint ⇒ eint set"

where

"closed_interval α β = {a. α ≤ a ∧ a ≤ β}"

definition left_closed_interval :: "eint ⇒ eint ⇒ eint

set" where

"left_closed_interval α β = {a. α ≤ a ∧ a < β}"

definition closed_ray :: "eint ⇒ eint ⇒ eint set" where

"closed_ray α β = {a. a ≤ β}"

definition open_ray :: "eint ⇒ eint ⇒ eint set" where

"open_ray α β = {a. a < β}".

From these definitions, we can then disjunctively define a convex condition as a set
defined by one of the above four binary functions,
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definition is_convex_condition :: "(eint ⇒ eint ⇒ eint

set) ⇒ bool"

where "is_convex_condition I ≡
I = closed_interval ∨ I =

left_closed_interval ∨
I = closed_ray ∨ I = open_ray ".

With this definition in hand, we can replace the choice of two boundary conditions
□i in the definition of cell with a choice of one of the four possible convex condition.

definition cell :: "nat ⇒ padic_tuple set ⇒
padic_nary_function ⇒ padic_nary_function ⇒
padic_nary_function ⇒ (eint ⇒ eint ⇒ eint set)" where

"cell m C c a1 a2 I =

{as ∈ carrier (QSuc m
p ). tl as ∈ C ∧

val (hd as ⊖ (c (tl as)))

∈ I (val (a1 (tl as))) (val (a2 (tl as)))

}"

where tl and hd are the tail and head functions on linked lists. Using these functions
for reasoning about cells is very useful because of the privileged status of the “t”
coordinate in an element (x, t) of a cell. For this reason the coordinates of our
cells are ordered oppositely to Denef’s. The definition of cell as a set will however
be inadequate for our purposes. This is because one set can be defined by various
different choices of defining parameters, and thus the parameters C, c, a1, a2, I cannot
be recovered from the data of the set cell m C c a1 a2 I alone. For this reason we
define a special datatype called a cell condition, which abstractly carries the defining
data of a cell,

datatype cell_condition = Cond nat

"padic_tuple set"

"padic_nary_function"

"padic_nary_function"

"padic_nary_function"

"eint ⇒ eint ⇒ eint set".

Given a cell condition Cond m C c a1 a2 I, we have named functions arity,
fibre_set, center, l_bound, u_bound, boundary_condition which explicitly return
the parameters m, C, c, a1, a2, I respectively. We can also define a function
condition_to_set which maps an abstract cell condition to the underlying set which
it corresponds to. We could provide well-typed parameters to the Cond constructor
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which would produce “junk” cells which we do not want to consider. For example,
the parameter C might fail to be a semi-algebraic set, or the boundary condition I

could fail to map to a convex set. Since it will be possible to construct malformed cell
conditions which are well-typed but do not define legitimate cells, we also provide a
predicate on cell conditions Skolemwhich pick out the desired ones,

primrec is_cell_condition :: "cell_condition ⇒ bool"

where

"is_cell_condition (Cond n C c a1 a2 I) =

is_semialgebraic n C ∧ c ∈ carrier (SA n) ∧ a1 ∈ carrier (

SA n) ∧ a2 ∈ carrier (SA n) ∧ is_convex_condition I".

8.9.2 Cells are Semi-Algebraic

Since we have proved that the valuation relation is semi-algebraic, we can show that
a cell defined by a cell condition is semi-algebraic. In this section we outline how this
proof is formalized to give an idea of how such arguments proceed in our formalism.
The argument is very elementary, but like many of the results we have formalized,
the details can become quite tedious. The final result is stated in the lemma,

lemma condition_to_set_is_semialg:

assumes "is_cell_condition C"
assumes "arity C = m"

shows "is_semialgebraic (Suc m) (condition_to_set C)".

First, we show, for any n > 0, that a set of the form

{x ∈ Qn
p | ord(f(x))□ord(g(x))}

is semi-algebraic if f and g are both semi-algebraic (where □ may be ≤, <,or no
condition). This is easy to show since the valuation relation is semi-algebraic, and
this set is therefore inverse image of a semi-algebraic set under the semi-algebraic map
(f(x), g(x)) : Qn

p → Q2
p. Since semi-algebraic sets are closed under intersection, we

get that {x ∈ Qn
p | ord(a1(x))□ord(f(x))□ord(a2(x))} is also semi-algebraic provided

that a1, f, and a2 are.
Next, we note that if f(x) is a semi-algebraic function Qm

p → Qp, then the function
(t, x) 7→ f(x) is a semi-algebraic function Qm+1

p → Qp, since this is the composition of
f with the semi-algebraic map (t, x) 7→ x. We define a generic operation for functions
of this kind which we call drop_apply,

definition drop_apply where

"drop_apply m n f = restrict (f ◦ drop n) (carrier (Qmp))"
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where the function drop n is the function which maps a list to a new list obtained by
removing the first n elements. We can prove that for any k ≥ n, the function drop n

is a semi-algebraic map from Qk
p → Qk−n

p . This requires showing that it is induced by
evaluating the polynomial map (x1, . . . , xk) 7→ (xn+1, xn+2 . . . , xk). It will then follows
that drop_apply k n f will always be a semi-algebraic function from Qk

p → Qp as
long as f : Qn

p → Qp is, and k ≥ n. We can express the map Q1+m
p → Qp defined by

(t, x) 7→ f(x) as drop_apply (Suc m) m f. If c(x) is semi-algebraic Qm
p → Qp, then

the function (t, x) 7→ t− c(x) also semi-algebraic since this is the composition of the
polynomial (x1, x2) 7→ x1 + x2 with the semi-algebraic map (t, x) → (t, c(x)). From
these observations, and the previous paragraph (applied to n = m+ 1), that for any
m, the set

{(t, x) ∈ Qp ×Qm
p | ord(a1(x))□1ord(t− c(x))□2ord(a2(x))}

is semi-algebraic.
Finally, if C ⊆ Qm

p is semi-algebraic, we know that the cartesian product Qp×C ⊆
Qm+1

p is also semi-algebraic. Intersecting this with the set from the last paragraph,
we get that

{(t, x) ∈ Qp ×Qm
p | x ∈ C ∧ ord(a1(x))□1ord(t− c(x))□2ord(a2(x))}

is semi-algebraic, as desired.

8.9.3 Cell Decompositions

Having defined cells, we can now define cell decompositions. For reasons discussed pre-
viously, we would like a cell decomposition to be a collection of cell conditions, rather
than a collection of sets, because this allows us to preserve parameter information
that would otherwise be lost. We define a boolean valued function is_cell_decomp

n S, where n is an arity, S is a set to be decomposed, which identitfies when a set
of cells A is a valid cell decomposition:

definition is_cell_decomp :: "arity ⇒ cell_condition set

⇒ padic_tuple set ⇒ bool" where

"is_cell_decomp n S A ≡ finite S ∧
(∀s ∈ S. is_cell_condition s ∧ arity s = n) ∧
(( condition_to_set ‘ S) partitions A) ∧
A ⊆ carrier (QSuc n

p ) ∧
(∀ s ∈ S. ∀s’ ∈ S. s ̸= s’ →

condition_to_set s ∩ condition_to_set s’ = {})

".
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This just says that a cell decomposition of a set A ⊆ Qn+1
p is a finite collection of cell

conditions whose underlying sets partition A. The last condition in the conjunction,
that distinct cells s, s’ will produce disjoint sets, may look redundant but is in fact
needed. This is because two distinct cells could produce identical underlying sets,
which would mean that they would contribute the same member to the collection of
underlying sets.

A basic technique for producing new cell decompositions of a set A ⊆ Q1+m
p is

to take an existing partition of A and, for each set in this partition, producing a
cell decomposition of this set where each new cell satisfies a certain property. This
is so ubiquitous in the proof of Macintyre’s Theorem that we include it as a pair of
lemmas. The first lemma below assumes the initial partition of A is induced by a cell
decomposition, and the second only assumes it is a partition by sets:

lemma refine_each_cell:

assumes "is_cell_decomp m S A"

assumes "
∧

C. C ∈ S ⇒
∃S’. is_cell_decomp m S’ (condition_to_set C) ∧

(∀B ∈ S’. P B)"

shows "∃S’. is_cell_decomp m S’ A ∧ (∀B ∈ S’. P B)"

lemma refine_each_cell ’:

assumes "A ⊆ carrier (QSuc m
p )"

assumes "As partitions A"

assumes "finite As"

assumes "
∧
C. C ∈ As =⇒

∃S. is_cell_decomp m S C ∧
(∀B ∈ S. P B)"

shows "∃S’. is_cell_decomp m S’ A ∧ (∀B ∈ S’. P B)".

Most of our formalized proofs from Denef’s paper which construct cell decompositions
by repeated refinement of cell decompositions are structured by repeatedly using
refine_each_cell on successively smaller cells until the desired property holds.

8.10 Algebraic Properties of Cells

8.10.1 Cells With a Common Center Generate a Boolean
Algebra

A common theme in this project was that many of Denef’s innocuous remarks which
are made without proof turned out to be some of the more tedious assertions to verify

85



Ph.D. Thesis - Aaron Crighton McMaster University - Mathematics and Statistics

in Isabelle. One of these comes at the beginning of Denef’s proof of cell decomposition
II: “We will often use without mentioning the trivial fact that a boolean combination
of cells with the same center c(x) can be partitioned into a finite number of cells with
the same center c(x)”.

The first step in verifying this was to exhaustively classify the results of taking
set differences and intersections between the four different types of convex conditions,
and showing that the results is always a disjoint union of new convex conditions. This
requires explicitly identifying the endpoints of the new convex sets, in terms of the
endpoints of the old ones. For example,

lemma open_ray_minus_closed_interval:

assumes "d ̸= ∞"

assumes "I = open_ray a b"

assumes "J = closed_interval c d"

shows "I - J =

open_ray a (min b c) ∪ left_closed_interval (d + 1) b

".

We then need to verify that when the endpoints of such sets are given by the val-
uations of semi-algebraic functions, the endpoints of the new sets also are. For ex-
ample, in the above example, we would need to verify that if a, b, c, d are all semi-
algebraic, then there are new semi-algebraic functions α, β satisfying val(α(x)) =
min((val(b(x))), val(c(x)))) for all x and val(β(x)) = val(d(x)) + 1 for all x. These
constructions can be easily performed using piecewise functions and scalar multipli-
cation, but the need to exhaustively cover every case requires many lines of proof to
produce.

To complete the proof we define a predicate is_c_decomposable m c C which
holds if and only if a set C ⊆ Q1+m

p can be decomposed into a finite disjoint union of
cells with center c. We then define a function c_cells m c C which denotes the class
of cells with center c which are subsets of the given set C. We also require a function
c_decomposables m c C which picks out those subsets of the given set C which can
be partitioned into cells with center c. The formalisation of Denef’s remark can be
encapsulated in the statement that the class c_decomposables m c C is the same as
the boolean algebra generated over C by the generators c_cells m c C. This is the
content of the following lemma,

theorem c_decomposable_is_gen_boolean_algebra:

assumes "is_c_decomposable m c C"

shows "c_decomposables m c C =

gen_boolean_algebra C (c_cells m c C)".
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Given that these form a boolean algebra, we can prove lemmas such as the fol-
lowing, which are necessary for proving the cell decomposition theorems. It says that
if a subset of a cell with center c has a decomposition into cells of center c, then its
complement within the larger cell also admits such a decomposition:

lemma cell_decomp_same_center:

assumes "is_cell_condition C
assumes "C= Cond m C c a1 a2 I"

assumes "B ⊆ condition_to_set C
assumes "∃ S. is_cell_decomp m S B ∧ (∀ A ∈ S. center A

= c)"

shows "∃ S’. is_cell_decomp m S’ (condition_to_set C - B

) ∧
(∀A ∈ S’. center A = c)".

8.10.2 Algebras of Cells with One Boundary Point

It is also useful to consider a subclass of the class c_decomposables m c C which
also enjoys convenient closure properties under boolean operations. This is the
class of sets which admit decompositions by cells of the form Cond m C c a1 a1

closed_interval, i.e. cells like,

{(t, x) | x ∈ C and ord(t− c(x)) = ord(a1(x))}

These sets are also closed under operations such as set differences, unions, and in-
tersections. However, verifying this poses a challenge because they do not form a
generated boolean algebra. This is because there is no sensible choice of “universe”
set to situate these set in such they are closed under complements relative to the
universe. For this reason, we need to posit a slightly different kind of set algebra to
classify these, which we call a cell_algebra:

inductive_set cell_algebra

for Cells where

empty: "{} ∈ cell_algebra Cells"

| generator: "A ∈ Cells =⇒ A ∈ cell_algebra Cells"

| disjoint_union: "[|A ∈ cell_algebra Cells ; C ∈
cell_algebra Cells; A ∩ C = {}|] =⇒ A ∪ C ∈
cell_algebra Cells".

This says that a cell algebra generated over some collection of generator Cells is the
smallest class of sets which contains the empty set, all generators, and is closed under
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disjoint union. In the case that the cells algebra is closed under intersections and
set differences of generating cells, we can show that the resulting cell algebra will be
closed under finite (possibly non-disjoint) unions of generators:

lemma cell_algebra_finite_union:

assumes "
∧

A C. [|A ∈ Cells ; C ∈ Cells|] =⇒
A ∩ C ∈ cell_algebra Cells"

assumes "
∧

A C. [|A ∈ Cells ; C ∈ Cells|] =⇒
A - C ∈ cell_algebra Cells"

shows "
∧
S. finite S ∧ S ⊆ Cells =⇒

⋃
S ∈ cell_algebra

Cells".

We give the name one_val_point_c_cells m c C for the class of such cells whose
underlying set is contained in the set C. We then give the name
one_val_point_c_decomposables m c C for the class of subsets of C which ad-
mit decompositions by cells in one_val_point_c_cells m c C. It is clear that
one_val_point_c_decomposables m c C is the cell algebra generated by
one_val_point_c_cells m c C. One therefore only needs to show the above lemma
for the set one_val_point_c_cells m c C to conclude that such sets are closed
under finite unions. This way, if a certain set is covered by these cells, we can auto-
matically conclude that it admits a cell decomposition by them.

8.10.3 Endpoint Algebras

There is another class of cell algebra we would like to consider, which we refer to
as “Endpoint Algebras”. Given a finite set Fs of semialgebraic functions, and a cell
condition C = Cond m C c a1 a2 I, we would like to decompose the underlying set
of C into finitely many cells S which are compatible with Fs in the sense that for any
cell D ∈ S, and any cell B = Cond m C c f g J where f, g ∈ Fs and J is arbitrary,
either condition to set D ⊆ condition to set B or they are disjoint. This will
be useful in the proof of Denef’s Theorem II. In particular, it will be crucial for
establishing equation (3) from Denef’s proof of cell decompostion theorem IId. This
proof will use the results from the previous section that sets which can be decomposed
into cells with a common center form a boolean algebra. We can proceed as follows:

1. Form the collection of underlying sets of cells B = Cond m C c f g J where
f, g ∈ Fs ∪ {a1, a2}, which are contained in condition to set C. These gen-
erate a subalgebra of c-decomposable sets contained in condition to set C.
This subalgebra is what we call

endpoint c algebra in the theory Algebras_of_Cells.
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2. Since there are finitely many sets above, we can obtain the atoms of the subal-
gebra they generate. Since c-decomposable sets form a boolean algebra, these
atoms themselves will be c-decomposable. Thus each atom can be further de-
composed into a finite disjoint union of cells centered at c. Collecting the cells
in each of these decompositions will give us our desired decomposition of C. We
can thus prove the following lemma:

lemma semialg_boundary_cell_decomp:

assumes "finite Fs"

assumes "Fs ⊆ carrier (SA m)"

assumes "is_cell_condition C"
assumes "C = Cond m B c a1 a2 I"

shows

"∃S. is_cell_decomp m S (condition_to_set (Cond m B c a1

a2 I))

∧ (∀C ∈ S. center C = c

∧ (∀f ∈ Fs. ∀g ∈ Fs. ∀I. is_convex_condition I −→
condition_to_set C ⊆ condition_to_set (Cond m B c f g

I)

∨ condition_to_set C ∩ condition_to_set (Cond m B c f

g I) = {}))"

which says that given any finite set of endpoints, there is a finite collection of cells
which are either totally contained in, or totally disjoint from, any other cell defined
with the same fibres and center, and with boundary endpoints draws from the set Fs.
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Chapter 9

Proving Denef’s Cell
Decomposition Theorems

Denef’s proof is by a joint induction on degrees of the polynomials mentioned in
theorems 5.2.2 and 5.2.3. The names Id and IId are given to the statements in theorems
5.2.2 and 5.2.3, restricted to polynomials of degree ≤ d. The inductive argument
proceeds by proving:

1. I0

2. II0

3. Id and IId implies Id+1

4. Id+1 implies IId+1

There are also two lemmas on the construction of semi-algebraic functions which fit
into this inductive argument,

Lemma 9.0.1 (Lemma 2.3 from [19]). Assume that cell decomposition theorem IId
holds. Let t be one variable and x = (x1, . . . , xm). Let g(x, t) be a polynomial in t of
degree ≤ d + 1 with coefficients which are semialgebraic functions of x taking values
in Op. Let e ∈ N, κ ∈ Op be fixed. Suppose that ξ(x) is a function from Qm

p to Op

such that for all x ∈ Qm
p :

1. g(x, ξ(x)) = 0

2. ξ(x) ≡ κ mod pe+1

3. ord g′(x, ξ(x)) ≤ e,
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where g′ denotes the derivative of g with respect to t. Then ξ(x) is a semialgebraic
function.

Lemma 9.0.2 (Lemma 2.4 from [19]). Assume cell decomposition IId. Let ξ(x) be a
semialgebraic function from Qm

p → Qp, x = (x1, . . . , xm). Let k ∈ N, k ≥ 2, k ≤ d+1.
Suppose for every x ∈ Qm

p that ξ(x) ̸= 0, and that ord (ξ(x)) is a multiple of k. Then
there exists a semialgebraic function η(x) from Qm

p → Qp such that

ord(η(x)) =
1

k
ord(θ(x)), for all x ∈ Qm

p

The proof of Id and IId is structured with a series of locales to keep track of
the complex parameters and assumptions involved. These are laid out in the theory
Locales_For_Macintyre.

9.1 The Conclusions of the Decomposition Theo-

rems

The conclusion of Theorem 5.2.2 is a statement about the boundedness of the expres-
sion,

ordf(x, t)−Miniord[ai(x)(t− c(x))i]

on some set A. In a footnote, Denef clarifies this to mean that there exists some
e ∈ N such that

ordf(x, t) ≤Miniord[ai(x)(t− c(x))i] + e

for all values (t, x) ∈ A. We make this relationship precise in the locale which we
name SA_poly_ubounded:

locale SA_poly_ubounded = padic_fields +

fixes n P c A N

assumes P_closed: "P ∈ carrier (UP (SA n))"

assumes c_closed: "c ∈ carrier (SA n)"

assumes A_closed: "A ⊆ carrier (QSuc n
p )"

assumes ubounded: "
∧

x t. t#x ∈ A =⇒
val (( SA_poly_to_Qp_poly n x P)· t) ≤
val ((UPQ.taylor_term (c x)

(SA_poly_to_Qp_poly n x P) i)·t) + eint N".

We can then express the conclusion of the theorem for a particular semi-algebraic
polynomial f by the expression “SA_poly_ubounded p n f c A e” for the particular
integer bound e which we have found.
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The conclusion of theorem 5.2.3 asserts that we can perform a certain factorization
of polynomials,

f(x, t) = u(x, t)nh(x)(t− c(x))ν

which again can be encoded into a locale:

locale SA_poly_factors = padic_fields +

fixes n::nat and m::nat and P::

padic_nary_function_poly and

c:: padic_nary_function and A::" padic_tuple set"

and

u:: padic_nary_function and h::

padic_nary_function and k::nat

assumes h_closed: "h ∈ carrier (SA n)"

assumes c_closed: "c ∈ carrier (SA n)"

assumes u_closed: "u ∈ (carrier (QSuc n
p ) → carrier Qp)"

assumes A_closed: "A ⊆ carrier (QSuc n
p )"

assumes u_val:

"
∧

x t. [| x ∈ carrier (Qnp); t ∈ carrier Qp; t#x ∈ A|]

=⇒
val (u (t#x)) = 0"

assumes factors:

"
∧

x t. [| x ∈ carrier (Qnp); t ∈ carrier Qp; t#x ∈ A|]

=⇒
(SA_poly_to_Qp_poly n x P)· t = ((u (t#x))[^] m)⊗(h x)

⊗ (t ⊖ (c x))[^] k".

9.2 Expressing Theorems I and II With Locales

We can now use the locales of the conclusion to express the propositions for our
inductive argument in locales as well:

locale denef_I = padic_fields +

fixes d::nat

assumes cell_decomp:

"
∧
m P.[| P ∈ carrier (UP (SA m)); deg (SA m) P ≤ d |]

=⇒
∃ S. (is_cell_decomp m S (carrier (QSuc m

p )) ∧
(∀A ∈ S. ∃N. SA_poly_ubounded p m P (center A) (

condition_to_set A) N))"
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locale denef_II = padic_fields +

fixes d::nat

assumes cell_decomp:

"
∧
n m Ps.

[| finite Ps ;

(∀P ∈ Ps. P ∈ carrier (UP (SA n)) ∧ deg (SA n) P ≤ d);

m > 0 |]

=⇒
(∃ S. (is_cell_decomp n S (carrier (QSuc n

p )) ∧
(∀A ∈ S. ∀P ∈ Ps. ∃u h k. SA_poly_factors p n m P

(center A) (condition_to_set A) u h k)))".

9.3 Constructing Semialgebraic Functions

There are two important lemmas which Denef uses to infer Macintyre’s Theorem,
which pertain to the construction of semi-algebraic functions from functions which
are roots of polynomials. These are Lemmas 2.3 and 2.4 of [19]. Both of these Lemmas
fit into the inductive scheme for proving cell decomposition theorems I and II, and
hence they assume theorem II for polynomials of degree ≤ d. Both Lemmas 2.3 and
2.4 use a substantially similar procedure for proving that function is semi-algebraic,
based on euclidean division of semi-algebraic polynomials. In Lemma 2.3, we have a
function which is a root of the semi-algebraic polynomial g(x, t), and in Lemma 2.4,
the proof proceeds by constructing a semi-algebraic function which is a kth root of
another semi-algebraic function. In either case, we have some function ξ(x) and a
semi-algebraic polynomial g(x, t) such that we know g(x, ξ(x)) = 0 always holds.

To show that ξ(x) is semi-algebraic, we can fix a semi-algebraic set S and show
that the set,

{(y, x) ∈ Qr+m
p | (y, ξ(x)) ∈ S}

is semi-algebraic. In fact, it is fine to assume that S is a basic semi-algebraic set, of
the form

S = {(y, t) ∈ Qr+1
p | ∃z ∈ Qp.f(y, t) = zn}

for some semi-algebraic polynomial f(y, t) and some n > 0. The goal is therefore to
show that the set

{(y, x) ∈ Qr+m
p | ∃z ∈ Qp.f(y, ξ(x)) = zn}

is semi-algebraic.
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We can view f(y, t) and g(y, t) as polynomials in one variable t, whose coefficients
are semialgebraic functions in the variables (x, y). In this way, we perform polynomial
division of f by g to get an equation:

f(y, t) = q(x, y, t)g(x, t) + f1(x, y, t)

with the degree of f1 in the variable t being ≤ d − 1. so that we know that for all
(x, y) ∈ Qr+m

p , f(y, ξ(x)) = f1(x, y, ξ(x)). We therefore see that to show that ξ is
semi-algebraic is suffices to show that the set

{(y, x) ∈ Qr+m
p | ∃z ∈ Qp.f(x, y, ξ(x)) = zn}

is, for f of degree ≤ d and arbitrary n, semi-algebraic. Having reduced to the case
where f has degree ≤ d, we may use cell decomposition II to verify this. We can
then prove, in the locale denef_II, the following theorem:

theorem(in denef_II) SA_fun_test:

assumes g_deg_bound :"deg (SA m) g ≤ Suc d"

assumes g_deg_pos :"deg (SA m) g > 0"

assumes g_closed :"g ∈ carrier (UP (SA m))"

assumes ξ_fun:"ξ ∈ carrier (Funm Qp)"

assumes g_ltrm_Unit:

"UP_ring.lcf (SA m) g ∈ Units (SA m)"

assumes ξ_root:
"∀x ∈ carrier (Qmp).

(SA_poly_to_SA_fun m g) ((ξ x)#x) = 0"

assumes val_leq_inv_im:

"
∧

k c a.

[|c ∈ carrier (SA (m+k)); a ∈ carrier (SA (m+k))|]

=⇒
is_semialgebraic (m+k)

{x ∈ carrier (Qm+kp ). val (ξ (take m x) ⊖ c x)

≤ val (a x)}"

assumes pow_res_inv_im:

"
∧

k c α n.

[|c ∈ carrier (SA (m+k)); α ∈ carrier (Qp) ; n > 0 |]

=⇒
is_semialgebraic (m+k)

{x ∈ carrier (Qm+kp ).(ξ (take m x) ⊖ c x) ∈ pow_res n α}"

shows "ξ ∈carrier (SA m)".
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This will be the proof method called in the formal proofs of both lemma 2.3 and 2.4
and formally captures the logic of the statement Denef makes in the proof of Lemma
2.4 “As in the proof of Lemma 2.3, after Euclidean division, [...] we see that if suffices
to prove that the relations [...] are semi-algebraic...” [19].

The assumption g_ltrm_Unit in the above lemma states that the leading term
of the polynomial g is a semi-algebraic unit, i.e. that it only takes nonzero values.
This is technically not needed, but is helpful as it guarantees that the degree of the
polynomials over Qp which are obtained by evaluating the coefficients will always
have the same degree as the semi-algebraic polynomial.

9.4 Lemmas 2.3 and 2.4

Lemma 2.3 (our lemma 9.0.1) shows that under certain circumstances, a semi-algebraic
function which is a root of a semi-algebraic polynomial is again semi-algebraic. Since
the lemma contains many parameters and assumptions, and assumes cell decompo-
sition theorem II_d, it is natural to organize these assumptions into a locale which
extends the locale denef_II,

locale denef_lemma_2_3 = denef_II +

fixes g ξ e l m

assumes DL_2_3_1 :"deg (SA m) g ≤ Suc d"

assumes DL_2_3_2 :"deg (SA m) g ≥ 0"

assumes DL_2_3_3 :"g ∈ carrier (UP (SA m))"

assumes DL_2_3_4 :"
∧
j. g j ∈ carrier (Qmp) → Op"

assumes DL_2_3_5 :"ξ ∈ carrier (Funm Qp) ∧ ξ ∈ carrier (Qmp)

→ Op"

assumes DL_2_3_6 :" UP_ring.lcf (SA m) g ∈ Units (SA m)"

assumes DL_2_3_7 :"∀x ∈ carrier (Qmp). (SA_poly_to_SA_fun m

g) (ξ x#x) = 0"

assumes DL_2_3_8 :"∀x ∈ carrier (Qmp). to_Zp (ξ x) (Suc e)

= l"

assumes DL_2_3_9 :"∀x ∈ carrier (Qmp). val (

SA_poly_to_SA_fun m (UP_cring.pderiv (SA m) g) (ξ x#x))

≤ e"

assumes DL_2_3_10: "m ≥ 0".

Within this locale, we can then state the conclusion of the lemma succinctly:

lemma denef_lemma_2_3:

"ξ ∈ carrier (SA m)"
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and the proof can be automatically structured by invoking the generic lemma
SA_fun_test as described in section 9.3. To simplify the structure of the proof, the
goals generated by the invocation of this rule are proved within the denef_lemma_2_3
locale prior to the proof:

lemma pow_res_inv_im:

assumes "c ∈ carrier (SA (m+k))"

assumes "b ∈ carrier Qp"

assumes "n > 0"

shows "is_semialgebraic (m+k) {x ∈ carrier (Qm+kp ). (ξ (

take m x) ⊖ c x) ∈ pow_res n b}"

lemma val_leq_inv_im:

assumes "c ∈ carrier (SA (m+k))"

assumes "a ∈ carrier (SA (m+k))"

shows "is_semialgebraic (m+k) {x ∈ carrier (Qm+kp ). val (ξ
(take m x) ⊖ c x) ≤ val (a x)}".

The proof of Lemma 2.4 (our lemma 9.0.2) is essentially structured in exactly the
same way as Lemma 2.3. The generic semi-algebraicity test from section 9.3 can
be used, which allows us to divide the proof into lemmas showing two particularly
simple sets are semi-algebraic. The proof is also performed within a special locale
fixing relevant parameters.
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Chapter 10

Proof Sketches for Cell
Decomposition Theorems and
Macintyre’s Theorem

10.1 Sketching the Proof of Decomposition Theo-

rem Id+1 from Theorems Id and IId

In this section we will give an enumerated outline of the proof of theorem Id+1, which
we will refer back to in the next section in our exposition of how this is formalized in
Isabelle. In some cases, the choices to parse one part of the proof into distinct steps
reflects the logic of our formalisation. First, we will introduce some shorthand for
ease of exposition.

Definition 10.1.1. Let f(x, t) be a semi-algebraic polynomial in variable t, with
x = (x1, . . . , xm) and C a cell in Qm

p × Qp with center c(x). We say that f is
uniformly bounded on C if there exists an N ∈ Z such that for all (x, t) ∈ C:

ordf(x, t) ≤ Mini ord[ai(x)(t− c(x))i] +N

where ai(x) denotes the i
th Taylor coefficient of f , expanded at c(x).

Then we can summarize theorem Id as saying that for any polynomial f(x, t)
of degree ≤ d, there exists a cell decomposition S of Qm

p such that f is uniformly
bounded on each A ∈ S. Notice that if f is uniformly bounded on a cell A, then
it is automatically uniformly bounded on any cell D ⊆ A, provided D has the same
center.

Then, the proof proceeds as follows: assuming that we have fixed some polynomial
f(x, t) of degree ≤ d+ 1.
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Step 1. (Obtain Initial Decomposition) We can apply theorem Id to f ′ to get a cell
decomposition where f ′ is uniformly bounded on each cell A in our decomposition.

Step 2. By further refinement of the cells, we can assume that the Taylor coefficients
ai(x) of f(x, t) expanded at c(x) are either identically zero or never zero at all points
(x, t) ∈ A, for any cell A in our decomposition.

Step 3. For a fixed cell A with center c(x) in the prior decomposition, define A0 to
be

A0 := {(x, t) ∈ A | ord(t− c(x)) ̸=
1

i− j
ord

(
aj(x)

ai(x)

)
for all i ̸= j, with i, j ∈ I}

where I is the set of indices at which ai(x) is not identically zero on A. Since A0 ⊆ A,
to finish the proof we can show that both A0 and A\A0 can be decomposed into cells
on which f is uniformly bounded.

Step 4 (Obtain an initial decomposition of A−A0). Inspecting the definition of A0

and using Lemma 2.3, we can infer that A− A0 can be decomposed into cells of the
form

{(x, t) | x ∈ C and ord(t− c(x)) = θ(x)}

where C ⊆ Qm
p and θ(x) is a semi-algebraic unit.

Step 5 (Decomposing A0). By the prior step, we can also decompose A0 into cells
with center c(x), since A is such a cell, and A0 can be decomposed into these cells.
By definition of A, it follows that f is uniformly bounded on each cell in this decom-
position.

At this point, all that remains is to refine the decomposition from Step 4 into
smaller cells on which f is uniformly bounded. We fix a single cell B from this
partition, which is of the form,

B := {(x, t) | x ∈ C and ord(t− c(x)) = θ(x)}

Step 6 (Partition B to obtain a uniform minimal coefficient). After partitioning B
into finer cells by partitioning its fibre set C, we may assume that for all x ∈ C, there
is one i0 ∈ N such that for all x ∈ C:

ordai0(x)θ(x)
i0 = Mini ordai(x)θ(x)

i

Step 7 (Reduce to the case where i0 > 0). After partitioning again, we can assume
without loss of generality that either i0 = 0 and for all j > 0,
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orda0(x) < ordaj(x)θ(x)
j

or i0 > 0. In the case of i0 = 0, the conclusion of theorem Id+1 can be established
easily. The case i0 > 0 requires more work and is the focus of the rest of the proof.

Step 8 (Change variables). By setting u = t−c(x)
θ(x)

, and

g(x, u) =
f(x, t)

ai0θ(x)
i0

We may replace the cell B from Step 5 with:

B′ := {(x, u) ∈ Qm
p ×Qp | x ∈ C and ord(u) = 0}

and we have that g = b0(x) + b1(x)u+ · · ·+ bi(x)u
i + . . . , with bi0(x) = 1, and every

coefficient bi taking values in the valuation ring. The proof can now be completed by
decomposing B′ into finer cells which satisfy Id+1 for the polynomial g.

Step 9 (Disjunction over Residue Ring). The final step requires partitioning B′

further. First, we obtain a parameter e such that 0 ≤ ord(g′(x, u)) ≤ e for all (x, u) ∈
B′. Now we can decompose B′ according to the residue classes of the parameters u
and g(x, u) to obtain the final desired decomposition.

10.2 Sketching the Proof of Decomposition Theo-

rem IId+1 from Id+1

The statement of theorem IId+1 applies to a finite collection f1, . . . , fr of polynomials.
The proof proceeds by induction on the number r of polynomials, and we sketch the
structure in this section. Steps enumerated here will be referred back to in the
exposition of the corresponding formalisation.

10.2.1 The Base Case r = 1

In this case we assume that there is only one polynomial f1 of degree ≤ d+ 1, which
we would like to factor on each cell in a cell decomposition. As in the previous proof,
it proceeds by successive refinements of an initial cell decomposition until the desired
property is attained. The power n ≥ 2 in the factorization is fixed in the background,
and we also fix a parameter λ ≥ 1 such that for all x ∈ O, x ≡ 1 mod pλ implies
that x is an nth power.
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Base Case Step 1. Apply theorem Id+1 to the polynomial f := f1 to obtain a cell
decomposition such that for each cell C in the decomposition, and all (x, t) ∈ C:

ordf(x, t) ≤ Mini ord[ai(x)(t− c(x))i] +N

where c(x) is the center of C and ai(x) are the Taylor coefficients of f(x) at c(x).

Base Case Step 2. By further refinement of the cells, we can assume that the Taylor
coefficients ai(x) of f(x, t) expanded at c(x) are either identically zero or never zero
at all points (x, t) ∈ A, for any cell A in our decomposition.

Base Case Step 3. Further partition each cell into finer cells so that on each cell C
there is a uniform i0 ∈ N such that for all (x, t) ∈ C:

ord[ai0(x)(t− c(x))i0 ] = Mini ord[ai(x)(t− c(x))i]

Base Case Step 4. For each cell A of our current decomposition, with center c(x)
and Taylor coefficients ai(x) for f(x, t) at c(x), define a subset

A0 := {(x, t) ∈ A | λ+ ord[ai0(x)(t− c(x))i0 ] ≤ Mini ̸=i0 ord[ai(x)(t− c(x))i]}

of A. We now decompose both A\A0 and A0 separately into cells of the desired form.

Base Case Step 5. For each cell A with center c(x) we can decompose A \A0 into
cells of the form

{(x, t) | x ∈ C, ord(t− c(x)) = ordθ(x)}

For a semialgebraic function θ(x).

Base Case Step 6. Using that boolean combinations of cells with a fixed center
c(x) admit decompositions into cells with center c(x), we can use the previous step to
decompose each A0 into cells centered at the center c(x) of the cell A. The definition
of A0 makes it so that on each of these cells our desired conclusion holds

All that remains is to show that a cell of the form

B = {(x, t) | x ∈ C, ord(t− c(x)) = ordθ(x)}

can be decomposed into cells of the desired form. We assume there is a fixed such
cell.
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Base Case Step 7. Change variables as in the proof of Id+1 to u = t−c(x)
θ(x)

. This
transforms B into the cell

B′ = {(x, u) | x ∈ C, ord(u) = 0}

and if we replace f with

g(x, u) :=
f(x, t)

ai0(x)θ(x)
i0

and let bi(x) denote the Taylor coefficients of g at 0 (in the variable u), then g satisfies
the conclusion of the theorem on B′ if and only if f does on B. Therefore, we can
shift our attention to g and B′, noting that bi0 = 1 and that bi(x) ∈ O for all xinC.

Base Case Step 8. The boundedness of f established in Step 1 implies that we
have ord(g(x, u)) ≤ κ for some κ ∈ Z and all (x, u) ∈ B′. Partition the cell B′ into
finer cells so that the residues of u and bi(x) are constant for each (x, u) ∈ B′ and
i ≤ deg(g), modulo pκ+λ. We now can argue that on each of these new cells the
desired property holds for g, completing the proof.

10.2.2 The Induction Step

We now want to decompose Qm+1
p so that an entire collection f1, . . . , fr of polynomials

factors appropriately on each cell.

Inductive Step 1 (Apply Base Case). We can apply the base case to each fi sepa-
rately to obtain a cell decomposition on which fi has the desired property. The issue
then is that these cells may be different for each i. Intersecting all of these cells with
one another, we obtain a semi-algebraic partition of our domain such that each par-
tition element is an intersection of cells A1, . . . Ar, and each fi factors appropriately
on Ai. Some of the intersected cells may have the same center, and some may not.

Inductive Step 2 (Reduce the Number of Centers). We have a set A which is the
intersection of cells. These cells have distinct centers c1, . . . , cs. If s = 1, then we can
repartition A as desired (since boolean comnbinations of cells with the same center
admit cell decompositions with the same center). The goal then becomes iteratively
partitioning A into finer sets which themselves are the intersections of cells prepared
for each fi, such that the number of distinct centers for each intersection is just 1. If
we can show how to reduce s by 1, then this will be accomplished.
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10.3 Sketching Denef’s Proof of Macintyre’s The-

orem

As in our accounts of the proofs of the cell decomposition theorems, we can start our
account of Macintyre’s Theorem by factorizing the informal proof into enumerated
steps, so that we may refer back to those steps in our exposition of our formal proof:

1. First, we formulate the precise version of the theorem we aim to prove. We fix
a natural number m, a semi-algebraic set S ⊆ Qm+1

p . The goal is to show that
the set

P = {x ∈ Qm
p | ∃t ∈ Qp : (x, t) ∈ S}

is semi-algebraic.

2. Second, using the defintition of semi-algebraic sets, we may assume that S is a
disjunction of relations of the form

ord(a1(x))□1ord(t− c(x))□2ord(a2(x)) and x ∈ C and

hi(x)(t− c(x))νi is (is not) an ni-th power, for i = 1, . . . , k

with a1, a2, c, h all semi-algebraic functions, and □i either ≤, <, or no condition.
Since projections commute with finite unions, we may even assume that S
consists of just one set in the above form.

3. We make a disjunction over nth power residues of hi(x) and t − c(x) so that
without loss of generality S is of the form:

ord(a1(x)) ≤ ord(t− c(x)) ≤ ord(a2(x)) and x ∈ C and

t− c(x) = ϱ · ( nonzero n-th power),

for some ϱ ̸= 0.

4. For a fixed x, there exists a t such that (x, t) satisfies the above relations if and
only if

∃l ∈ Z : ord(a1(x)) ≤ l ≤ ord(a2(x)) and l ≡ ord(ϱ) mod n

Clearly l = ord(t− c(x)) would be such an l for a given (t, x), and conversely, if
such an l exists then we can set t = c(x) + ϱ · pl−ord(ϱ). So we may assume that
S is defined by a relation of the above form, which can then be re-expressed as
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∃l ∈ Z :
ord(a1(x)ϱ

−1)

n
≤ l ≤ ord(a2(x)ϱ

−1)

n

5. We perform a disjunction over the possible values of ord(a1(x)ϱ
−1) mod n to

reduce P to a set of the form

{x ∈ Qm
p | ord(a1(x)ϱ−1) ≤ ord(a2(x)ϱ

−1)}∩
{x ∈ Qm

p | ord(a1(x)ϱ−1) mod n = 0}

or

{x ∈ Qm
p | ord(a1(x)ϱ−1) + n− γ ≤ ord(a2(x)ϱ

−1)}∩
{x ∈ Qm

p | ord(a1(x)ϱ−1) mod n = γ}

for some 0 < γ < n. In both cases the set is semi-algebraic, which completes
the proof.
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Chapter 11

Formalizing the Cell
Decomposition Proofs

The proofs of the decomposition theorems are structured by a series of locales which
reflect the successive reductions made in their proofs. They are also structured in
such a way that certain locales can be re-used between the two main proofs to avoid
redundancy. The two main proofs are that theorem Id and IId imply theorem Id+1,
and that theorem Id+1 implies IId+1. For simplicity, we will refer to these as the
proofs of theorem Id+1 and IId+1 respectively, with the background assumptions being
implied. In addition, based on the inductive structure of the final proofs, we can
also add Id and IId as background assumptions for the proof of IId+1. The theory
Cell_Decomp_Helper_Lemmas sets up a common library of results and context that
are needed in both of the proofs. To start we create a common locale for both proofs
which we call common_decomp_proof_context, which can be extended as needed for
the more specific contexts we will need later:

locale common_decomp_proof_context = denef_I + denef_II

11.1 Refining for Unit Taylor Coefficients

Step 2 of the proof of Id+1 and step 2 of the base case of the proof of IId+1 both
involve taking a cell decomposition for a single polynomial of degree ≤ d + 1 and
further decomposing so that the Taylor coefficients of f expanded at cell centres are
either always zero or never zero. We can therefore create a common locale for both
of these situations, which again can be extended and interpreted in either context as
needed:
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locale common_refinement_locale =

common_decomp_proof_context +

fixes C c a1 a2 I f m

assumes f_closed: "f ∈ carrier (UP (SA m))"

assumes f_deg: " deg (SA m) f ≤ (Suc d)"

assumes C_def: "C = Cond m A c a1 a2 I"

assumes C_cond: "is_cell_condition C
assumes f_taylor_cfs:

"
∧

i. (taylor_expansion (SA m) c f i = 0SA m) ∨
(taylor_expansion (SA m) c f i ∈ Units (SA m))"

We make the stronger assumption here that the Taylor coefficients are not just uni-
formly zero or nonzero on the cell in question, but that this holds globally for f so
that it’s coefficients are either the zero function or are semi-algebraic units. This
simplifies the proof since we can divide by semi-algebraic units without restriction,
and the zero function evaluates to 0 provably without having to worry about whether
the points of evaluation are in the correct subset of Qm

p . To match the notation of the
source paper, we define a new polynomial a := taylor expansion (SA m) c f, so
that the ith term in the Taylor expansion of f , evaluated at a point (t, x) ∈ Q1+m

p will
be given (in HOL-Algebra’s notation) by the expression (a i x)⊗(t⊖c x)[^]i.

11.2 Fixing the Order Type of Taylor Expansion

Terms

There is some detail missing in Denef’s exposition of what we call Step 3 in the
base case of the proof of theorem Id+1. The fact that we can perform this finer cell
decomposition so that there is some degree i0 whose term in the Taylor expansion is
always minimal with respect to the valuation is simply said to follow from Lemmas
2.4 and 2.1, without further explanation. While we do not know the specific proof
that the author had in mind, we can achieve this result using the specified lemmas,
borrowing techniques from the proofs of steps 3 to 6 in the proof of theorem Id+1.
While a plain english paper has the luxury of alluding to similar processes, in a formal
proof we must make these similarities explicit. To avoid the inelegant of copy-pasting
of one proof and making the necessary changes to fit both cases, we instead formalize
this construction in common_refinement_locale, so that it can be used in both
proofs without repetition. This forms the bulk of the development within the theory
Cell_Decomp_Theorem_Helpers. The basic outline of this theory is as follows:

1. One works within common_refinement_locale. In this context, we may parti-
tion the set condition_to_setC according to the set A0:
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definition A0 where

"A0 = {x ∈ condition_to_set C.
(∀ i ∈ inds. (∀ j ∈ inds. i < j

−→
val (a i (tl x)) ̸=
val (a j (tl x) ⊗ (hd x ⊖ c (tl x))[^](j-i))))

}"

which corresponds to the set defined in Step 3 of the proof outline for theorem
Id+1. Note that we have moved some terms around in the definition since our
valuation does not allow division. The set inds here refers to those degrees i
for which the Taylor expansion of f at c is a semi-algebraic unit (as opposed to
being identically zero). We can prove that this set is semi-algebraic since it is
an intersection of semi-algebraic sets.

2. We can obtain a decomposition as described in Step 4 of condition to set C \
A0. To do this, we construct a function Θ(i, j) such that for all i, j ∈ inds,
with i < j, the value Θ(i, j) is a semi-algebraic unit such that for all (t, x) ∈
condition to set C,

val(ai(x)) ̸= val(aj(x)(t− c(x))j−i) ⇐⇒ val(t− c(x)) = val(Θ(i, j)(x)).

It is clear that we can then cover (condition to set C \A0) with finitely many
cells of the appropriate form. We can then use results described in Section 8.10
to construct a fixed cell decomposition, which we name A0 comp decomp which
satisfies the following lemma:

lemma A0 comp decomp:

"( is_cell_decomp m A0 comp decomp (condition to set C \ A0) ∧
(∀B ∈ A0 comp decomp.

(∃ ϕ. ϕ ∈ Units (SA m) ∧
center B = c ∧ l_bound B = ϕ ∧ u_bound B

= ϕ ∧
boundary_condition B = closed_interval))

)"

which establishes the goal of Step 4 in the proof of Theorem Id+1.

3. Using the lemma cell_decomp_same_center described in Section 8.10, we can
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immediately obtain a cell decomposition of the set A0, where all constituent cells
have the same center c(x), using that both the cell C itself and the complement
(condition to set C \ A0) admit such a decomposition:

lemma A0 decomp,:

assumes "inds ̸= {}"

shows "∃S. is_cell_decomp m S A0 ∧
(∀B ∈ S. center B = c ∧
(∃N. SA_poly_ubounded p m f (center B) (

condition_to_set B) N))"

where the assumption that the set inds is nonempty is only present because
otherwise the set A0 would be the entire cell C.
We can now refine the decompositions we obtained above to also satisfy the
requirements of the proof of Step 3 in the base case of theorem IId+1. To
simplify proofs, we develop a predicate for cells which have this property:

definition has_minimal_i where

"has_minimal_i B = (∃i0 . (∀j. ∀t. ∀x. t#x ∈
condition_to_set B

−→ val ((a i0 x)⊗(t ⊖ c x)[^]i0) ≤ val ((a j

x)⊗(t ⊖ c x)[^]j)))".

4. For the cells in A0 comp decomp, this is relatively easy because on each cell, there
is a semi-algebraic unit φ(x) such that for each i for which ai(x) is not identically
zero, the valuation of ai(x)(t − c(x))i is equal to the valuation of ai(x)φ(x)

i,
which is a semi-algebraic function in the Qm

p -variable x. We therefore only need
to decompose each cell in A0 comp decomp further by decomposing its fibre set
sufficiently finely so that the ordering of the valuations of each ai(x)φ(x)

i is
fixed on each piece. This is codified in the following lemma:

lemma A0_comp_minimal_i_decomp:

assumes "inds ̸= {}"

shows "∃ S. is_cell_decomp m S (condition to set C \ A0)∧
(∀ B ∈ S. has_minimal_i B ∧

(∃ ϕ i0. ϕ ∈ Units (SA m) ∧
center B = c ∧ l_bound B = ϕ ∧

u_bound B = ϕ ∧
boundary_condition B = closed_interval ∧
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(∀j. ∀t. ∀x.
t#x ∈

condition_to_set B −→
val ((a i0 x)⊗(ϕ x)

[^]i0) ≤ val ((a j x)⊗(ϕ x)[^]j))))".

This also satisfies the requirements of Step 6 of Theorem Id+1.

5. Refining the cells in a decomposition of A0 so that has_minimal_i B holds for
each B in the decomposition is slightly more involved, and draws on tools again
related to algebras of cells discussed in Section 8.10.3.

6. We can now prove the lemma that will be needed in the proof of Theorem IId+1

about the existence of a unique index i0, within the locale
common_refinement_locale:

lemma C _comp_minimal_i_decomp:
shows "∃ S. is_cell_decomp m S (condition_to_set C)
∧ (∀ B ∈ S. center B = c ∧ has_minimal_i B)".

11.3 Cell Normalization

The proofs of both Theorems Id+1 and IId+1 (at Step 8 and Base Case Step 7, re-
spectively) involve taking a cell of the form

B = {(x, t) | x ∈ C, ord(t− c(x)) = ordθ(x)}

and performing the change of variables u = t−c(x)
θ(x)

to obtain a new cell in the variables

(u, x) of the form:

B′ = {(x, u) | x ∈ C, ord(u) = 0}.

One then defines the polynomial

g(x, u) :=
f(x, t)

ai0(x)θ(x)
i0

where i0 has the valuative minimality property discussed in the previous section on all
of the cell B. Many of the results needed in these proofs are common to both, and we
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gather them in a theory named Cell_Normalization. In this theory, we first create
a locale establishing the underlying context of a cell B as above, with a polynomial
f expanded at the center c of the cell:

locale one_val_point_cell = padic_fields +

fixes C a b c φ m f

assumes f_closed: "f ∈ carrier (UP (SA m))"

assumes φ_Unit: "φ ∈ Units (SA m)"

assumes C_cell: "is_cell_condition C"
assumes C_eq: "C = Cond m b c φ φ closed_interval"

assumes a_def: "a = taylor_expansion (SA m) c f"

assumes b_nonempty: "b ̸= {}".

We can further extend this locale to reflect the context where the Taylor coeffi-
cients of f at c are either semi-algebraic units or constantly zero:

locale refined_one_val_point_cell = one_val_point_cell +

fixes inds :: "nat set"

assumes inds_memE: "
∧

j. j ∈ inds =⇒ a j ∈ Units (SA m)

"

assumes inds_non_memE: "
∧

j. j /∈ inds =⇒ a j = 0SA m

assumes inds_nonempty: "inds ̸= {}"

and finally we can extend further again by adding the minimality assumption on the
index i0:

locale cell_normalization = refined_one_val_point_cell +

fixes i0 :: nat

assumes i0_min: "
∧

j t x. t#x ∈ condition_to_set C
=⇒ val ((a i0 x)⊗(t ⊖ c x)[^]

i0) ≤ val ((a j x)⊗(t ⊖ c x)[^]j)".

Within cell_normalization, we can define the polynomial g:

definition α where α_def:
"α = invSA ma i0 ⊗SA m φ SA m - int i0"

definition g where g_def:

"g = α ⊙UP (SA m)compose (SA m) a (up_ring.monom (UP (SA m))

φ 1)".

In the above, the constant α is just the semi-algebraic function
ai0 (x)

φ(x)i0
, the term

up_ring.monom (UP (SA m))φ 1 denotes the monomial ϕ(x)t in the variable t, and
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the function compose (SA m) represents polynomial composition. We can also define
a semi-algebraic function u which corresponds to the change of variables, and prove
the lemma characterizing its evaluation:

lemma u_eval:

assumes "t#x ∈ condition_to_set C"
shows "u(t#x) = inv (φ x) ⊗ (t ⊖ c x)".

We similarly define an inverse function u_inv for u and prove that they satisfy the
inverse relationship:

lemma u_inv_u:

assumes "t#x ∈ condition_to_set C"
shows "u_inv(u(t#x)#x) = t" .

Given a set of cell fibres b we also define a function which maps this to the cell of
the form B′ above:

definition normal_cell where

"normal_cell m b = Cond m b (1SA m) (1SA m) (0SA m)

closed_interval ".

For the purposes of this formalisation, we will also need a way to map cells which
are contained in the cell B to cells which are contained in B′, such that applying this
mapping to a cell decomposition of B will product a cell decomposition of B′, and
the desired properties of each cell in the statements of Theorems Id+1 and IId+1 will
transfer under this mapping as well (for the polynomial f for cells contained in B
and for g for cells contained in B′). To this end, we define a transformation on cell
conditions, along with an inverse for this function:

fun normalize_cell where

"normalize_cell (Cond n C d a1 a2 I) =

Cond n C ((invSA mφ)⊗SA m(d ⊖SA mc))

((invSA mφ) ⊗SA m a1) ((invSA mφ) ⊗SA m a2)

I"

fun normalize_cell_inv where

"normalize_cell_inv (Cond n C d a1 a2 I) =

Cond n C ((φ ⊗SA m d) ⊕SA mc) (φ ⊗SA m a1) (φ ⊗SA m a2) I

".

The following lemmas (proved within the locale cell_normalization justify why we
can prove the conclusions of theorems Id+1 and IId+1 on cells of the form {(x, t) | x ∈
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C, ord(t− c(x)) = ordθ(x)} by proving these instead on normalized cells. First, a cell
decomposition of a normalized cell maps to a decomposition of the original cell:

lemma transfer_cell_decomp:

assumes "is_cell_decomp m S (condition_to_set (

normal_cell m b))"

shows "is_cell_decomp m (normalize_cell_inv ‘ S) (

condition_to_set C)".

Secondly, if a cell contained in a normalized cell satisfies the axioms of the
SA_poly_ubounded locale for the polynomial g, then that cell mapped under
normalize_cell_inv will satisfy this for the polynomial f:

lemma transfer_SA_poly_ubounded1:

assumes "is_cell_condition B"
assumes "arity B = m"

assumes "SA_poly_ubounded p m g (center B) (

condition_to_set B) N"

shows "SA_poly_ubounded p m f (center (

normalize_cell_inv B))
(condition_to_set (

normalize_cell_inv B)) N".

Finally, we have a similar result for the locale SA_poly_factors:

lemma transfer_SA_poly_factors1:

assumes "is_cell_condition B"
assumes "arity B = m"

assumes "∃u h k. SA_poly_factors p m n g (center B) (

condition_to_set B) u h k"

shows "∃u h k. SA_poly_factors p m n f (center (

normalize_cell_inv B))
(condition_to_set (

normalize_cell_inv B)) u h k".

These in turn easily translate into more user-friendly lemmas about the existence of
the desired cell decompositions:

lemma transfer_decomp_ubounded:

assumes "∃S. is_cell_decomp m S (condition_to_set (

normal_cell m b)) ∧
(∀ C ∈ S. ∃N. SA_poly_ubounded p m g (

center C)
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(condition_to_set C) N)"

shows "∃S. is_cell_decomp m S (condition_to_set C) ∧
(∀ C ∈ S. ∃N. SA_poly_ubounded p m f (

center C)

(condition_to_set C) N)"

lemma transfer_decomp_poly_factors:

assumes "is_cell_condition B"
assumes "arity B = m"

assumes "∃S. is_cell_decomp m S (condition_to_set (

normal_cell m b)) ∧
(∀ C ∈ S. ∃u h k. SA_poly_factors p m n g

(center C) (condition_to_set C) u h k)"

shows "∃S. is_cell_decomp m S (condition_to_set C) ∧
(∀ C ∈ S. ∃u h k. SA_poly_factors p m n f

(center C) (condition_to_set C) u h k)".

11.4 Proving Theorem Id+1

11.4.1 Obtaining the Conclusion in Stricter Locales

The developments in the theory Cell_Decomp_Theorem_Helpers outline the major
steps needed for proving Id+1 up to 6. From Step 7 onward, we only need to obtain a
decomposition of the set A0 into cells of the appropriate form. Toward that end, we
extend the locale common_refinement_locale to one which reflects this specialized
context:

locale A0_comp_refinement = common_refinement_locale +

fixes B b φ i H

assumes φ_Unit: "φ ∈ Units (SA m)"

assumes B_cell: "is_cell_condition B"

assumes B_eq: "B = Cond m b c φ φ closed_interval"

assumes b_subset: "condition_to_set B ⊆ condition_to_set

C - A0"

assumes i_inds: "i ∈ inds"

assumes H_def: "H = (λi. a i ⊗SA mφ[^]SA m i)"

assumes H_ineq: "
∧
j x. j ∈ inds =⇒ x ∈ b =⇒ val (H i x)

≤ val (H j x)"

assumes b_nonempty: "b ̸= {}"
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assumes static: "static_order_type (H ‘ inds) b".

In the above, we are using the constant name i in place of the constant i0 from
Denef’s paper. Our main goal in this locale is to decompose the underlying set of
the cell B into the desired form. The locale axiom H_ineq expressed the statement
that the constant i is minimal in the sense of Step 6. The axiom static expresses
an even stronger property than this, essentially saying that the ordering relations
between val(ai(x)ϕ(x)

i) and val(aj(x)ϕ
j) for any two natural numbers i, j are fixed

for all possible x ∈ b (b being the fibre set of the cell B). This stronger property is
needed for the reduction in Step 7 to the case that i > 0.

The existence of the minimal constant i in A0_comp_refinement is guaranteed by
theorem A0_comp_minimal_i_decomp described in the previous section, but it may
not be unique. The axiom static guarantees that if there is some other j and a
point x ∈ b such that val(ai(x)ϕ(x)

i) = val(aj(x)ϕ
j) at x, then we could replace i

with j and the axioms of the locale would still be satisfied. This means that if we
ended up in a situation where i =, we could either replace i with a nonzero value, or
it would be the case that val(a0(x)) < val(aj(x)ϕ

j) holds for all j > 0 and all x ∈ b.
This dichotomy allows us to further refine A0_comp_refinement into two locales to
deal with the positivity of the index i:

locale A0_comp_refinement_i_pos = A0_comp_refinement +

assumes deriv_bounded: "∃N. SA_poly_ubounded p m (UPSA.

pderiv m f) c (condition_to_set C) N"

assumes i_nonzero: "i ̸= 0"

locale A0_comp_refinement_i_zero = A0_comp_refinement +

assumes deriv_bounded: "∃N. SA_poly_ubounded p m (UPSA.

pderiv m f) c (condition_to_set C) N"

assumes i_zero: "i = 0"

assumes i_unique_min: "
∧
j x. j ∈ inds =⇒ j > 0 =⇒ x ∈ b

=⇒ val (H 0 x) < val (H j x)".

In the above we have also added the assumption that the desired boundedness
property has already been established on the cell C, which can be arranged for in
the final proof of theorem Id+1 by induction. We now can prove that our desired
decomposition of B can be performed separately in each of these locales. In A0
_comp_refinement_i_zero we prove that no further decomposition of the cell B
defined in the axioms of A0_comp_refinement is needed:

lemma ubounded: "SA_poly_ubounded p m f c (

condition_to_set B) 0".
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In A0_comp_refinement_i_pos the proof is more involved, and requires us to invoke
the tools from Cell_Normalization to obtain an appropriate decomposition of the
underlying set of the cell B by obtaining one for the corresponding cell normal_cell
m b. To access the necessary lemmas from the locale cell_normaliztion in the

context of A0_comp_refinement_i_pos, we can perform a locale interpretation:

cell_normalization p B a b c φ m f inds i

which binds the constants of A0_comp_refinement_i_pos to corresponding constants
of cell_normaliztion. We can then construct the desired decomposition of
normal_cell m b (with some work, following the construction in Denef’s paper):

lemma normal_cell_final_decomp:

"∃ Cs. is_cell_decomp m Cs (condition_to_set (normal_cell

m b)) ∧
(∀C∈ Cs. (∃N. SA_poly_ubounded p m g (center C (

condition_to_set C N ) )"

which we can then transfer to a cell decomposition of the cell B, by invocation of the
inference rule transfer_decomp_ubounded which was stated in Section 11.3:

lemma B_final_decomp:

"∃ Cs. is_cell_decomp m Cs (condition_to_set B) ∧
(∀C∈ Cs. ∃N. SA_poly_ubounded p m f (center C (

condition_to_set C) N )".

11.4.2 Pulling Results back to the General Proof Context

Up until now, we have only shown how to perform our desired decomposition on
the underlying sets of certain cells which we have axiomatically assumed to satisfy
certain properties in locales. To obtain the final desired decomposition of the actual
set Qm+1

p , we can pull the conclusions of Theorem Id+1 backwards from the stronger
locales to the weaker ones. We first provide a summary of the locale hierarchy up
until this point for the purposes of proof:
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common decomp proof context

common refinement locale

A0 comp refinement

A0 comp refinement i pos A0 comp refinement i zero

.

Following Denef, we would like to prove

theorem denef_I:

"denef_I p (Suc d)"

in the locale common decomp proof context. We globally structure this proof by
first defining a predicate for a set that can be decomposed as in the conclusion of the
theorem:

definition denef_I_property where

"denef_I_property m f A = (∃ S. (is_cell_decomp m S A ∧
(∀C ∈S. ∃N. SA_poly_ubounded p m f (center C) (

condition_to_set C) N)))"

and prove a simple lemma that allows one to iteratively prove denef_I_property m

f A for a set by successive cell decomposition

lemma denef_I_property_refine:

assumes "is_cell_decomp m S A ∧ (∀ C ∈S.
denef_I_property m f (condition_to_set C))"
shows "denef_I_property m f A"

and finally creating a simple lemma that can be invoked to conclude the theorem
based on denef_I_property:

lemma denef_I_proof_by_property:

assumes "
∧
m f.[|f∈carrier (UP (SA m)); deg (SA m) f ≤ d

|] =⇒
denef_I_property m f (carrier (QSuc m

p )"

shows "denef_I p d"

To prove the theorem, we can invoke the rule denef_I_proof_by_property, produce
an initial cell decomposition of Qm+1

p using denef_I d, and then iteratively refine this
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decomposition to satisfy the finer and finer locales, until we find ourselves working in
a locale where we can directly prove denef_property_I on the current cell.

11.5 Proving the Base Case of Theorem IId+1

The proof of Theorem IId+1 for the case that we only have one polynomial is struc-
tured very similarly to the proof Theorem Id+1, successively refining a proof context
until we have imposed sufficiently strong assumptions to prove the conclusions of
the theorem, before lifting those results back up to the more general context. Since
the proof will make use of Theorem Id+1, we extend common_refinement_locale by
adding the assumption that we are working with a cell where the conclusion of Theo-
rem Id+1 is already satisfied, and we have already refined sufficiently so that there is
a minimial index in the sense of Step 3. In addition, we add some assumptions that
guarantee neither the polynomial f nor the cell C are trivial:

locale denef_II_base = common_refinement_locale +

fixes n

assumes n_pos: "(n::nat) > 0"

assumes inds_nonempty: "inds ̸= {}"

assumes ubounded: "∃N. SA_poly_ubounded p m f c (

condition_to_set C) N"

assumes min_taylor_term: "has_minimal_i C"
assumes nontrivial: "condition_to_set C ≠ {}".

The axiom min_taylor_term allows us to define a witness to this minimality, which
we call i0 (following the naming conventions of the source paper):

definition i0 where i0_def: "i0 = (SOME i0. (∀j. ∀t. ∀x. t#x

∈condition_to_set C
−→ val ((a i0 x)⊗(t ⊖ c x)[^]i0) ≤ val ((a j x)

⊗(t ⊖ c x)[^]j)))"

lemma i0_fact:

"
∧

t x j. t#x ∈condition_to_set C =⇒
val ((a i0 x)⊗(t ⊖ c x)[^]i0) ≤ val

((a j x)⊗(t ⊖ c x)[^]j)".

We can also use the choice operator to define a concrete parameter witnessing the
axiom ubounded, which Denef calls κ and we call N0:

definition N0 where N0: "(N0::nat) = (SOME N. ∀x t i.

t # x ∈ condition_to_set C −→

116



Ph.D. Thesis - Aaron Crighton McMaster University - Mathematics and Statistics

val (SA_poly_to_Qp_poly m x f · t)

≤ val (UPQ.taylor_term (c x) (

SA_poly_to_Qp_poly m x f) i · t) + eint (int N))"

and we can do the same for the value λ which is described in our base case outline.
Since λ is a special symbol in Isabelle, we call this value N1 instead:

definition N1 where N1: "N1 = (SOME (N::nat). N > 1 ∧
(∀u∈carrier Qp. ac N u =

1 ∧ val u = 0 −→ u ∈ P_set n))"

and for later use, we also define a parameter which is larger than both of these, a
value N which is defined to be N0 + N1 + 1.

The next step in the proof is to define the set which Denef calls A0, and is described
in Step 4 of our proof outline. Since this name is already used in a definition within
common_refinement_locale, we give this set the name A1 instead:

definition A1 where A1_def:

"A1 = {xs ∈condition_to_set C.
(∀j ∈inds. j ̸= i0 −→ val (a i0 (tl xs) ⊗ ((hd

xs) ⊖ c (tl xs))[^]i0) + N ≤
val (a j (tl xs) ⊗ ((hd

xs) ⊖ c (tl xs))[^]j))}".

Without too much difficulty we can use this definition to show that the complement
can be decomposed into cells with center c:

lemma A1_comp_decomp:

assumes "i0 ∈inds"
assumes "inds ̸= {i0}"

shows "∃S. is_cell_decomp m S (condition_to_set D- A1)∧
(∀D∈S. center D ∧

boundary_condition D= closed_interval ∧
(∃φ ∈Units (SA m)

. u_bound D = φ ∧ l_bound D = φ))"

which allows us to get a decomposition of A1 as well, again using the lemma
cell_decomp_same_center described in Section 8.10. This decomposition is already
of the desired form in the conclusion of Theorem IId+1 without the need for further
refinement, which completes the proof up to Step 6 of our outline:

lemma A1_factored_decomp:

assumes "i0 ∈ inds"
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assumes "inds ̸= {i0}"

shows "∃S. is_cell_decomp m S A1 ∧ (∀ D ∈S. ∃ u h k.

SA_poly_factors p m n f (center D) (condition_to_set D)
u h k)".

The decomposition of the complement takes the majority of the work, and again
will require cell normalization techniques as in the proof of Theorem Id+1. Since we
are interested in decomposing a single cell contained in the complement of A1, we can
make a locale to reflect this context:

locale normal_cell_transformation =

denef_II_base +

fixes B b φ H

assumes subset: "condition_to_set B ⊆ condition_to_set C
- A1"

assumes φ_Unit: "φ ∈ Units (SA m)"

assumes B_cell: "is_cell_condition B"
assumes B_eq: "B = Cond m b c φ φ closed_interval"

assumes b_nonempty: "b ̸= {}"

and then note that this interprets the locale cell_normalization

lemma cell_normalization_axioms_hold:

"cell_normalization p B a b c φ m f inds i0"

interpretation cell_normalization _ _ _ _ B a b c φ _ _

inds i0

using cell_normalization_axioms_hold by auto

to gain access to the lemmas and definitions of that locale which was described in
Section 11.3. The polynomial g described in Section 11.3 is again the same one from
Denef’s proof of Theorem IId+1. This proof follows Denef’s closely. We can then
perform the final decomposition needed in this locale:

lemma cell_decomp:

"∃S. is_cell_decomp m S (condition_to_set B) ∧
(∀ C ∈ S. ∃ u h k. SA_poly_factors p m n f (center C

) (condition_to_set C) u h k)"

and transfer the results to the locale denef_II_base via locale interpretation and
successive cell decomposition refinements:

lemma denef_II_base_cell_decomp:
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"∃S. is_cell_decomp m S (condition_to_set C) ∧
(∀ C ∈ S. ∃u h k. SA_poly_factors p m n f (center C)

(condition_to_set C) u h k)".

11.6 The Inductive Step of Theorem IId+1

In the proof of the inductive step, a somewhat complicated setup is described. Denef’s
proof proceeeds as we described in Inductive Step 1. We work in the locale
common_decomp_proof_context, which we recall consists of the amalgamation of the
locales denef_I and denef_II. We need to define two predicates which are essential
to the structure of our formalisation. First, we have a predicate is_r_prepared,
which describes a set which is an intersection of cells of a certain kind:

definition is_r_prepared where

"is_r_prepared m n r Fs A ≡
finite Fs ∧

Fs ⊆ carrier (UP (SA m)) ∧ (∃Cs C. C ∈ Fs → Cs ∧ card

(center ‘ C ‘ Fs) ≤ r ∧

A = (
⋂
f ∈ Fs. condition_to_set (C f)) ∧

(∀ f ∈ Fs. is_cell_condition (C f) ∧ arity (C f) = m ∧
(∃u h k. SA_poly_factors p m n f (center (C f)) (

condition_to_set (C f)) u h k))) ".

We can break this definition down into simpler terms:

1. The set Fs is a finite set of semi-algebraic polynomials f(t, x), with x being a
variable with arity m.

2. We are asserting the existence of a set of cells Cs, and a function C which maps
polynomials in Fs to cells in Cs. The image of this function is a set of cells with
no more than r distinct centers.

3. The set A is the intersection of the cells in the image of the function C.

4. For each f ∈ Fs, the polynomial f factors on the cell (C f) as in the conclusion
of Theorem IId+1.

We also need a predicate to describe a set which can be partitioned into sets of the
above kind, which we call is_r_preparable,
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definition is_r_preparable where

"is_r_preparable m n r Fs A = (∃Ps. finite Ps ∧ Ps

partitions A ∧ (∀S ∈ Ps. is_r_prepared m n r Fs S ))".

As in the proof of Theorem IId+1, we aim to show that Qm+1
p is r-preparable with

r = 1, for any finite set Fs of polynomials. From this we can infer Theorem IId+1

itself using the lemma cell_decomp_same_center which allows us to refine boolean
combinations of cells with the same center into cell decompositions with the same
center. Using the fact that we have proved the base case of Theorem IId+1, we can
prove that Qm+1

p is r-preparable with r = 1, in the case that Fs is a singleton:

lemma is_1_preparable_singelton:

assumes closed: "f ∈ carrier (UP (SA m))"

assumes deg: "deg (SA m) f ≤ Suc d"

assumes "n > 0"

shows "is_r_preparable m n 1 {f} (carrier (QSuc m
p )".

We can then easily show that if sets A,B can be r and k-prepared relative to sets
Fs and Gs, respectively, then A ∩B can be r + k prepared relative to Fs ∪Gs:

lemma is_r_preparable_intersect:

assumes "is_r_preparable m n r Fs A"

assumes "Fs ̸= {}"

assumes "is_r_preparable m n k Gs B"

assumes "Gs ̸= {}"

assumes "Fs ∩ Gs = {}"

shows "is_r_preparable m n (r+k) (Fs ∪ Gs) (A ∩ B)".

These previous two basic lemmas are enough to show that Qm+1
p is r-preparable

relative to a set Fs of size r,

lemma Qp_is_r_preparable:

assumes "n > 0"

assumes "
∧
f. f ∈ Fs =⇒ deg (SA m) f ≤ Suc d"

assumes "Fs ⊆ carrier (UP (SA m))"

assumes "finite Fs"

assumes "Fs ̸= {}"

shows "is_r_preparable m n (card Fs) Fs (carrier (QSuc m
p )

".

From this, we only need to prove a lemma which shows that allows us to decrease the
value of r in the previous lemma, provided that we known that r ≥ 2:
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lemma is_r_preparable_reduce:

assumes "is_r_preparable m n (Suc (Suc r)) Fs A"

assumes "
∧
f. f ∈ Fs =⇒ deg (SA m) f ≤ Suc d"

assumes "n > 0"

shows "is_r_preparable m n (Suc r) Fs A".

The lemmas Qp_is_r_preparable and is_r_preparable_reduce can then be used
in an inductive argument to show:

lemma Qp_is_1_preparable:

assumes "n > 0"

assumes "
∧
f. f ∈ Fs =⇒ deg (SA m) f ≤ Suc d"

assumes "Fs ⊆ carrier (UP (SA m))"

assumes "finite Fs"

assumes "Fs ̸= {}"

shows "is_r_preparable m n 1 Fs (carrier (QSuc m
p )".

The bulk of the work in executing this proof strategy goes into showing the lemma
is_r_preparable_reduce. As in Denef’s proof, we can easily infer this result from
the case of r = 2, so our work is focussed on this. In particular, we can infer the
lemma is_r_preparable_reduce by induction from the following:

lemma is_2_prepared_reduce:

assumes "fs ⊆ carrier (UP (SA m))"

assumes "
∧
f. f ∈ fs =⇒ deg (SA m) f ≤ Suc d"

assumes "gs ⊆ carrier (UP (SA m))"

assumes "
∧
g. g ∈ gs =⇒ deg (SA m) g ≤ Suc d"

assumes "n > 0"

assumes "is_r_prepared m n 1 fs A"

assumes "is_r_prepared m n 1 gs B"

assumes "fs ∩ gs = {}"

shows "is_r_preparable m n 1 (fs ∪ gs) (A ∩ B)".

Finally, once we have shown that Qm+1
p is 1-preparable, we can express it as a

disjoint union of intersections of cells, where each intersection of cells shares a common
center. This means that the intersection can be re-expressed as the underlying set of
a single cell, from which we can infer Theorem IId+1:

lemma denef_cell_decomp_II_induct:

shows "denef_II p (Suc d)".
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11.7 Proving the Cell Decomposition Theorems

for all Degrees

To prove cell decomposition theorems I and II unconditionally in the locale
padic_fields, we do an induction on degree. We only need to prove a base case for
Theorem II:

lemma denef_cell_decomp_II_base:

"denef_II p 0"

from which we can use induction to prove, for an arbitrary parameter d:

theorem denef_cell_decomp_I:

"denef_I p d"

theorem denef_cell_decomp_II:

"denef_II p d".
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Chapter 12

Proving Macintyre’s Theorem

The final formalisation is for Macintyre’s Theorem itself, and is contained within the
theory file Macintyre_Theorem.thy. As in the proofs of the other theorems, the
result is obtained iteratively by showing it for successively simpler sets. The main
iterative tool is the lemma macintyre_finite_union, which states that a projection
of a set is semi-algebraic if the set is a finite union of sets whose projections are
semi-algebraic,

lemma macintyre_finite_union:

assumes "∧a. a ∈ A =⇒ is_semialgebraic m {x ∈ carrier

(Qmp). (∃t ∈ carrier Qp) (t#x) ∈ a)}"

assumes "finite A"

shows "is_semialgebraic m {x ∈ carrier (Qmp. (∃t ∈
carrier Qp (t#x) ∈ (

⋃
A))}".

The proof uses 4 locales which successively refine one another to describe the
generic construction. To get a reduction to a set as described in Step 2 of our proof
sketch, we need to do a few things. First we can use the basic properties of generated
Boolean algebras to decompose a semi-algebraic set S into a finite union of inter-
sections of basic semi-algebraic sets and their complements. Our first locale reflects
this:

locale macintyre_reduction_i = padic_fields +

fixes Bs m

assumes Bs_sub: "Bs ⊆ basic_semialgs (Suc m)"

assumes Bs_finite: "finite Bs"

assumes Bs_un: "carrier (QSuc m
p =

⋃
Bs"

assumes Bs_nonempty: "Bs ̸= {}"
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where the set Bs reflects the collection of sets in our intersection. For each b ∈ Bs we
can use the choice operator to select a defining polynomial and exponent for this set:

definition F where F_def: "F = (λb. (SOME f. f ∈ carrier (

QSuc m
p ∧ (∃(N::nat). N ̸= 0 ∧

b = basic_semialg_set (

Suc m) N f)))"

definition N where N_def: "N = (λb. (SOME N. N ̸= 0 ∧ b =

basic_semialg_set (Suc m) N (F b)))"

and prove a lemma characterizing these functions:

lemma F_N_eval: "
∧

b. b ∈ Bs =⇒ b = basic_semialg_set (

Suc m) (N b) (F b)".

In order to complete the obligations of this step, we must also apply theorem iid to
obtain a cell decomposition of Qm+1

p , which will allow us to replace the polynomials
from the definition of basic semi-algebraic sets with expressions of the form h(x)(t−
c(x))ν instead. This can be done because if we factor a polynomial f(x, t) into the
form

f(x, t) = u(x, t)nh(x)(t− c(x))ν

then we know that f will be an nth power iff h(x)(t−c(x))ν is. Since the corresponding
exponents N b for polynomials F b depend on the choice of b ∈ Bs, we must replace
these with their least common multiple so that this replacement can be performed in a
way compatible with each F b simultaneously. Assuming such a procedure has already
been done, we can work in a finer locale now which also provides fixed constants for
a background cell,

locale macintyre_reduction_ii = macintyre_reduction_i +

fixes ν:: "padic_tuple set ⇒ nat"

fixes Xs C h H

assumes C_cell: "is_cell_condition C"
assumes C_arity: "arity C = m"

assumes Xs_def: "Xs ⊆ Bs"

assumes h_closed: "
∧

b. b ∈ Bs =⇒ h b ∈ carrier (SA m)

"

assumes H_Xs:

"
∧
b. b ∈ Xs =⇒
H b = {xs ∈ carrier (QSuc m

p ). (h b) (tl xs) ⊗ (hd

xs ⊖ center C tl xs)) [^] (ν b) ∈ P_pows (N b)}"

assumes H_notXs:
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"
∧
b. b /∈ Xs =⇒
H b = {xs ∈ carrier (QSuc m

p ). (h b) (tl xs) ⊗ (hd

xs ⊖ centerC tl xs)) [^] (ν b) /∈ P_pows (N b)}".

In this locale the intention is that the sets H b will represent the conjuncts of the form
“hi(x)(t− c(x))νi is (is not) an ni-th power” which are alluded to in Step 2. The goal
is to prove in this locale the following lemma:

lemma reduction_ii:

"is_semialgebraic m {x ∈ carrier (QSuc m
p ). ∃t∈carrier Qp.

t # x ∈ (
⋂
x∈Bs. H x ∩ condition_to_set C)".

Steps 4 and 5 require showing that certain cell-like sets where the value group
interval endpoints are possible rational numbers rather than integers are still semi-
algebraic sets. In particular, we would like to prove that a set of the form{

x ∈ Qm
p | ∃l ∈ Z :

ord(a1(x)ϱ
−1)

n
≤ l ≤ ord(a2(x)ϱ

−1)

n

}
is semi-algebraic, provided that a1, a2 are semi-algebraic functions, and ϱ ∈ Qp is a
unit. This is done in a dedicated locale which is specified below:

locale rational_cell_interval = padic_fields +

fixes W and n and b1 and b2 and m and I

assumes convex: "is_convex_condition I"

assumes W_def: "W = {x ∈ carrier (Qmp). ∃l::int. l*n ∈ I

(val (b1 x)) (val (b2 x))}"

assumes n_pos: "(n::nat) > 0"

assumes b1_closed: "b1 ∈ carrier (SA m)"

assumes b2_closed: "b2 ∈ carrier (SA m)".

The main goal of this locale is then to prove that a set of the form

{x ∈ Qm
p | ∃l ∈ Z : ord(b1(x))□1ln□2ord(b2(x))} (12.1)

is semi-algebraic. The proof of this lemma is facilitated by slightly sharpened versions
of Denef’s Lemma 2.4 (see 9.0.2). While Denef assumes the function ξ(x) from this
lemma always has a valuation which is a multiple of the modulus k, we can instead
show that for any semi-algebraic unit (i.e. never takes nonzero values) ξ(x), and any
k ≥ 1, there are semi-algebraic units η1(x), η2(x) such that for all x ∈ Qm

p ,

ord(η1(x)) =
1

k
(ord(ξ(x)− (ord(ξ(x) mod k)))
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ord(η2(x)) =
1

k
(ord(ξ(x) + (k − ord(ξ(x) mod k))).

We can then define functions which map a semi-algebraic unit ξ(x) and a modulus
k to these η1, η2, which we name floor_fun and ceiling_fun respectively, and can
then prove the following lemmas which will allow us to reduce inequality statements
about a semi-algebraic unit φ(x) to those about ceiling_fun and floor_fun:

lemma ceiling_fun_equiv:

assumes "x ∈ carrier (Qmp)"

assumes "k ≥ 1"

assumes "φ ∈ Units (SA m)"

assumes "ord (φ x) mod int k ̸= 0"

shows

"(val (φ x) > j*int k) = (val (ceiling_fun m k φ x) >

j)"

"(val (φ x) ≥ j*k) = (val (ceiling_fun m k φ x) > j)"

lemma floor_fun_equiv:

assumes "x ∈ carrier (Qmp)"

assumes "k ≥ 1"

assumes "φ ∈ Units (SA m)"

assumes "ord (φ x) mod int k ̸= 0"

shows

"(val (φ x) < j* int k) =

(val (floor_fun m k φ x) < j)"

"(val (φ x) ≤ j* int k) =

(val (floor_fun m k φ x) < j)".

The remainder of the work in this locale amounts to separating the possible values of
the convex condition I, and separating edge cases where the boundary values b_1,
b_2 are or are not equal to 0 modulo n, which culminates in the lemma:

lemma W_semialg: "is_semialgebraic m W"

where W is specified in the locale definition. Finally, our project culminates with the
statement and proof of the main result:

theorem macintyre_theorem:

assumes "is_semialgebraic (Suc m) A"

shows "is_semialgebraic m

{x ∈ carrier (Qmp. (∃t ∈ carrier Qp. (t#x) ∈ A)}".
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