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Abstract

A long-standing question in planet formation is the origin of planetesimals, the kilometre-

sized precursors to protoplanets. Asteroids and distant Kuiper Belt objects are believed

to be remnant planetesimals from the beginnings of our Solar system. A leading mech-

anism for explaining the formation of these bodies directly from centimetre-sized dust

pebbles is the streaming instability (SI). Using high resolution numerical simulations

of protoplanetary discs, we probe the behavior of the non-linear SI and planetesimal

formation in previously unexplored configurations. Small variations in initial state of

the disc can lead to different macroscopic outcomes such as the total mass converted

to planetesimals, or the distribution of planetesimal masses. These properties can vary

considerably within large simulations, or across smaller simulations re-run with different

initial perturbations. However, there is a similar spread in outcomes between multiple

smaller simulations and between smaller sub-regions in larger simulations. In small simu-

lations, filaments preferentially form rings while in larger simulations they are truncated.

Larger domains permit dynamics on length scales inaccessible to the smaller domains.

However, the overall mass concentrated in filaments across various length scales is con-

sistent in all simulations. Small simulations in our suite struggle to resolve dynamics at

the natural filament separation length scale, which restricts the possible filament config-

urations in these simulations. We also model discs with multiple grain species, sampling

a size distribution predicted from theories of grain coagulation and fragmentation. The

smallest grains do not participate in the formation of planetesimals or filaments, even

while they co-exist with dust that readily forms such dense features. For both single-

grain and multiple-grain models, we show that the clumping of dust into dense features

results in saturated thermal emission, requiring an observational mass correction factor

that can be as large as 20-80%. Finally, we present preliminary work showing that the

critical dust-to-gas mass ratio required to trigger the SI can vary between 3D and 2D

simulations.
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Chapter 1

Introduction

The study of astronomy is, at least in part, the study of origins. Where did we come

from? What process created the Sun and the stars, the Moon, the Earth, or the atoms

that make up everything on our planet, both living and not? In this thesis, our target

is planets. The neighbouring planets in the Solar System—Jupiter, Saturn, and the

rest—are easily identifiable by their slow, predictable march in front of the background

stars. Hellenic observers named this class of objects for their wandering behaviour, and

to this day, in western cultures, the individuals bear the Roman names of deities from

their mythology. Planets are wondrous objects for backyard and academic astronomers

alike, and the story of where they come from is fraught with surprise and mystery.

But before there are planets, there must come stars. The birthplace of stars is the

interstellar medium (ISM): the gas, dust and radiation that pervades the space between

stars and star clusters in a galaxy. The formation of stars begins with the gravitational

collapse of dense clouds of ISM material (see Pineda et al. 2022, for a review). Obser-

vations of young stellar objects undergoing this process display a significant amount of

radiation in the infrared spectrum (IR) and at longer millimetre wavelengths, more than

is expected from the star alone. This IR/mm excess can be explained by the presence of

a substantial dust structure surrounding the star, absorbing optical light and re-emitting

1
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it at longer wavelengths (e.g. Lada & Wilking 1984; Adams et al. 1987; Greene et al.

1994; Calvet et al. 1994). Note, however, that the dust represents only a small fraction

of the mass of the system. The ratio of dust mass to gas mass in the ISM is around 1%

(Bohlin et al. 1978). The diversity of IR flux and spectral indices seen in young stellar

objects invites a classification scheme that describes how the circumstellar environment

evolves from an enveloping shell to a disc that becomes progressively less pronounced

until it is nonexistent (Lada 1987; Adams et al. 1987; Andre et al. 2000; Williams &

Cieza 2011). The evolution of the cloud geometry towards a flattened disc results from

the conservation of any angular momentum initially present in the pre-collapse cloud.

Further evidence of the evolution of the young stellar environment are bursts of optical

and X-ray photons associated with the accretion of gas onto the star (e.g Gullbring et

al. 1997) Observations of these objects in optical light with the Hubble Space Telescope

reveal dark, disc-shaped silhouettes against the background light of the star-forming

nebulae (e.g. Bally et al. 2000; Smith et al. 2005). The dusty discs around young stars,

which can span hundreds of AU in diameter, absorb optical radiation strongly, and are

most easily seen when the disc is edge-on and obscuring the star at the centre of the

disc.

These objects are referred to as protoplanetary discs, and it is within these structures—

which are composed of the gas and dust once dispersed in the ISM—where planets are

born. The typical lifetime of protoplanetary discs around young stars, seen in both

accretion signatures (Hartmann et al. 1998) and IR/mm radiation (Haisch et al. 2001;

Ribas et al. 2014) has been observed to be between 5-10 million years. For stars be-

yond that age, these signatures cease to exist, indicating the dispersal of the protostellar

envelope, likely due to a combination of the accretion of material onto the star due to

a turbulent viscosity, or dispersal of the upper gaseous disc atmosphere via magneti-

cally driven winds (Pascucci et al. 2022; Manara et al. 2022). This places a stringent
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constraint on timescales for planet formation. It is just one of many recent observa-

tional breakthroughs that have challenged paradigms and invigorated the field of planet

formation.

1.1 Planet Formation in the Modern Era

Over the last 10 years, the Kepler and K2 NASA space missions have revealed thou-

sands of exoplanets orbiting nearby stars, expanding our conceptions of what is possible

in planet formation. This has inspired follow up missions with ambitions such as the

Transiting Exoplanet Survey Satellite (TESS), which promises to add thousands of en-

tries to the exoplanet catalogue by surveying an area of the sky 400 times larger than the

Kepler mission. In Figure 1.1, we present data on all confirmed exoplanets in the param-

eter space of orbital semi-major axis versus planet mass. These data are retrieved from

the NASA exoplanet archive1 and summarize the current findings from every technique

in exoplanet discovery.

Each discovery method comes with individual biases and strengths. We will briefly

describe them here, following Armitage (2020) Section 1.7, and associate each method

with the locations of points in Figure 1.1. Planets that orbit far from their stars can

be directly imaged at infrared wavelengths by telescopes with high resolving power and

the assistance of a coronagraph, an instrument which blocks the light from the star at

the centre of planetary system (see mauve circles at > 1000 Earth Masses, ME , with

a semi-major axis of a ≳ 30 AU). The radial velocity method tracks the gravitational

influence of close-in, massive planets, which can induce a periodic “wobble” in stellar

motions. The component of these motions along the line of sight—the radial velocity—is

discernible in stellar spectra. This signal is most apparent for planets that are massive,

≳ 100ME or on orbits ≲1 AU (green circles). The same wobbling motions of the star

can also be observed directly via astrometry, a technique which makes use of precise
1https://exoplanetarchive.ipac.caltech.edu/
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Figure 1.1: Known exoplanets in the Mass - semi-major axis (M -a) parameter space. Each
data point is coloured by the method used to detect the planet. Error bars are not shown.
Data retrieved on August 15, 2022 from the NASA Exoplanet Archive, which is operated by
the California Institute of Technology, under contract with the National Aeronautics and Space
Administration under the Exoplanet Exploration Program.
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measurements of the position of stars on the sky (pink triangles). High spatial resolu-

tion is required to resolve the relatively short distances travelled by stars as they orbit

the system centre of mass. Hence, to date this technique has not been as fruitful as

the radial velocity method. Measurements of the line-of-sight stellar velocity directly

with spectroscopic instrumentation are typically more accessible. The transit method,

employed by Kepler/K2 and TESS, observes the periodic dimming of starlight due to

the transit of an exoplanet across the line of sight (pink squares). Properties of the

occulted starlight signal are useful in constraining the planet radius and properties of

the planet atmosphere. Gravitational microlensing makes use of the gravitational focus-

ing of background starlight by foreground planets. This technique requires somewhat

serendipitous observations but is useful for detecting lower mass planets between 1-10

AU, where the other techniques are not sensitive (purple squares—note the two data

points with Earth-like properties!). Further details on these detection techniques are

available in a review by Fischer et al. (2014).

A compelling feature of Figure 1.1 is the separated clusters of data points, suggesting

distinct categories of exoplanets. There are the so-called Hot Jupiters: planets greater

than 100 Earth masses on very tight, ≲ 0.1 AU orbits; gas giants on orbits between

1-3 AU; massive > 1000ME giant planets on distant, > 100 AU orbits; and a group

collectively known as super-Earths or sub-Neptunes, with masses between 3 − 20ME

on orbits ≲ 1 AU. Recall the transit technique can also reveal the planet radii, and

within the super-Earth/sub-Neptunes, there is a distinct deficiency of planets with radii

around ∼1.7 Earth radii (RE) (Fulton et al. 2017; Fulton & Petigura 2018). As the name

implies, this category hence represents two subgroups: super-Earths with radii < 1.7RE ,

which, based on calculations of the bulk density (assuming a sphere of uniform density),

are believed to be terrestrial, rocky worlds; and sub-Neptunes2 with radii ∼ 1.7−3.0RE ,

which are believed to have rocky cores with varying amounts of ice, water, or gaseous
2The mass of Neptune is ∼ 17.15 Earth masses and has a radius of ∼3.8 Earth radii (Data courtesy

of D. Williams, online NSSDCA planetary fact sheets).
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atmospheres. Whether these planets are—for example—worlds with substantial liquid

oceans, or rocky planets with Hydrogen/Helium envelopes, is a topic of ongoing research

(e.g. Zeng et al. 2019). Leading theories for the cause of the radius gap itself include

the removal of lighter elements from gaseous atmospheres due to the radiation pressure

from a bright, cooling rocky core (Ginzburg et al. 2018), or the photoevaporation of

atmospheres from incident high-energy photons from the central star (Owen & Wu 2017).

Another interesting observation from Figure 1.1 is the relative dearth of Solar System

analogues: Venus (0.72 AU, 0.82ME), Earth (1 AU, 1 ME), Mars (1.52 AU, 0.11ME),

Jupiter (5.2 AU, 318ME), Saturn (9.6 AU, 95ME), Neptune (30 AU, 17ME) (Data

courtesy of D. Williams, online NSSDCA planetary fact sheets). This may simply be

because current observational facilities are not particularly sensitive to extrasolar objects

at these masses and orbital distances. Yet, it is worthwhile to acknowledge the abundance

of exoplanets unlike the Solar System planets, such as Hot Jupiters, extremely distant gas

giants, and super-Earths or sub-Neptunes, which represent the most populous exoplanet

category (Fulton & Petigura 2018). Further, before the landmark discovery of Mayor &

Queloz (1995), for which the authors were awarded the 2019 Nobel Prize in Physics, the

Solar System constituted the only known planets around sun-like stars. Early models of

planet formation presumed the solar system architecture—e.g., with inner rocky planets,

and outer gas and ice giants—was ordinary. A decade of exoplanet discoveries has

determined the opposite.

This has lead to the ongoing refinement of planet formation models. It is believed

that rocky planets form from vast populations of smaller, ∼km-sized objects (of which

the asteroids are likely Solar System remnants) via gravitational interactions that drive

collisions (Wetherill & Stewart 1989; Kokubo & Ida 1996; Pollack et al. 1996; Raymond

et al. 2006; Wallace & Quinn 2019). The growth of rocky cores can also be driven by

the rapid accretion of millimetre to centimetre-sized pebbles (Johansen & Lambrechts
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2017). Once the core reaches 5-10 ME or larger, the planet gravity can cause the rapid

accretion of gaseous material from the protoplanetary disc onto the planet, creating

gas giants (Perri & Cameron 1974; Pollack et al. 1996; Ayliffe & Bate 2012). The

formation of the Hot Jupiters specifically could occur via multiple channels (Dawson

& Johnson 2018): in-situ formation in the inner disk (given a large concentration of

solids), the migration of the planet from intermediate disc radii, or the tidal evolution of

high eccentricity orbits driven by gravitational interactions with other planets post disc

dispersal. Migration could also cause the orbital evolution of smaller, super-Earth/sub-

Neptunes, which could explain their close-in ≲ 1 AU orbits (e.g. Alessi et al. 2020). The

likely formation mechanism for the extremely massive, distant gas giants is via the direct

collapse of outer disc material in massive protoplanetary discs with large radial extents

(e.g. Mayer et al. 2004; Backus & Quinn 2016). In Section 1.2.4, we further discuss the

growth of protoplanets into full planets, including the above processes.

1.1.1 Protoplanetary discs

New observational facilities have also revolutionized our conceptions of protoplanetary

discs themselves. The Atacama Large Millimeter/submillimeter Array (ALMA) has

provided high resolution images of the disc gas as well as the millimetre sized dust in

the orbital midplane, commonly referred to as pebbles in the literature. The first object

observed with this instrument was HL Tau (ALMA Partnership et al. 2015). Planets

are expected to form within the disc midplane, thus observations of the millimetre dust

provides an invaluable probe into the ongoing planet formation process. In Figure 1.2,

we show images from a survey of protoplanetary discs that display a stunning variety of

rings, gaps, spiral-like features, and other asymmetries in the dust/pebble disc. Similar

features have since been found in many other objects (e.g. Pérez et al. 2016; Cazzoletti

et al. 2018; Macías et al. 2019; Maucó et al. 2021; van der Marel et al. 2021). Embedded

protoplanets within the disc are a proposed explanation for these gaps and spirals (e.g.
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Figure 1.2: 1.25 mm continuum emission in protoplanetary discs from the Disk Substructures
at High Angular Resolution Project (DSHARP) survey, data recorded with ALMA. The scale bar
in the bottom right of each panel represents 10 AU. Reproduced with permission from Andrews,
S., Huang, J., Pérez, L. et al. (2018), ApJL 869, L41. DOI:10.3847/2041-8213/aaf741, Figure
3. ©AAS.
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Dipierro et al. 2015; Dong et al. 2015; Pinilla et al. 2016; Yang & Zhu 2020; Speedie

et al. 2022a), though alternative explanations exist, as we discuss in Section 1.2.2.

Recent studies have shown that the majority of protoplanetary discs do not display

rings or gaps in the dust pebbles. Van der Marel & Mulders (2021) combine several

surveys to show that most discs are compact and unlike the ∼100 AU discs like HL Tau

(ALMA Partnership et al. 2015). The DSHARP survey (Andrews et al. 2018) contains

both large discs with rings and gaps (e.g. AS 209, HD 163296 in Fig. 1.2) as well as com-

pact discs (DoAr 33, WSB 52 in Fig. 1.2). The disc sample in van der Marel & Mulders

(2021) includes hundreds of discs from several star forming regions, and they find rings

and gaps beyond 25 AU primarily appear in only the most massive discs (greater than 10

Earth masses) and around stars more massive than a solar mass. (It is worth noting that

for most discs thus far, ALMA observations have typically been limited to a resolution

of ∼20 AU, so it is possible that compact discs have structure that is unresolved. The

closest objects are resolvable at ≲ 5 AU.) Interestingly, exoplanet observations also show

an increased number of giant planets around massive stars (Johnson et al. 2010). Thus,

van der Marel & Mulders (2021) suggest a simple explanation for their observed trends:

massive disks around larger stars are more capable of forming giant planets, which leads

to the gaps and rings seen in a minority of the protoplanetary disc population. The less

massive, more common compact discs (<40 AU) can be explained by the inward radial

drift of dust in a disc unperturbed by massive planets (See Section 1.2.2 for further

discussion).

The SPHERE instrument at the Very Large Telescope is capable of incredible spatial

resolution at near-IR wavelengths which reveals the distribution of smaller ∼µm grains

in the protoplanetary disc. We present images from a recent survey of young stellar

objects from this facility in Figure 1.3. These images record the light of the central star

scattering off micron-sized dust grains. These observations and others (e.g. Muto et al.
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Figure 1.3: H -band (1.65 µm, infrared) images of various young stellar objects. The white 100
AU scale bar applies for all panels. Reproduced with permission from Avenhaus, H., Quanz, S.
P., Garufi, A. et al. (2018), ApJ 863, 44. DOI:10.3847/1538-4357/aab846, Figure 1. ©AAS.
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Figure 1.4: The PDS 70 planet forming system at 855 µm. Image credit: ALMA
(ESO/NAOJ/NRAO)/Benisty et al. Reproduced under Creative Commons license (CC BY
4.0).

2012; Benisty et al. 2015; Benisty et al. 2017; Avenhaus et al. 2018) reveal a rich variety

of discs, both in size (80 – > 400 AU) and structure. Some discs reveal flared profiles

and shadows, a sign that the smaller grains are vertically extended throughout those

discs, unlike the millimetre dust in the midplane seen by ALMA (See Benisty et al. 2022

for a review of the observational techniques and discoveries at these wavelengths.)

Most disc observations offer indirect constraints, as planets are difficult to detect

directly. The system PDS 70 is an exciting and rare exception. Multiple observations

at various wavelengths have revealed two planetary companions orbiting a young star in

the inner cavity of protoplanetary disc (Keppler et al. 2018; Müller et al. 2018; Haffert

et al. 2019), and even a circumplanetary disc around one of the companions (Benisty

et al. 2021). This system offers a rare glimpse into active planet-disc interactions in

nature. In Figure 1.4, we present an image of this system.
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There are multiple components to models of protoplanetary disc structure, in how the

gas mass, dust mass, and temperature vary with radius and vertical position away from

the midplane. A widely used result for discs evolving via viscous processes from Lynden-

Bell & Pringle (1974) gives an initial gaseous surface density profile described by a power

law, Σg(r) ∝ (r/rc)−1, combined with an exponential cut-off at a characteristic radius

rc. Constraints on the total disc mass have come from observations of gaseous molecular

emission lines (e.g. Long et al. 2017; Kama et al. 2020), or from a reconstruction of the

protosolar disc by considering the gas profile needed to produce the planets in the solar

system (minimum mass solar nebula, Weidenschilling 1977b; Hayashi 1981).

Estimates of the dust mass in observed disc populations range from 1-100 Earth

masses, depending on the age of the disc (see Drążkowska et al. 2022, Fig. 2). The

interstellar medium predicts a dust-to-gas mass ratio of ∼0.01 (Bohlin et al. 1978), but

estimates of this ratio from observations of protoplanetary discs can be as high as 0.1

(Long et al. 2017; Kama et al. 2020). However, there are currently large uncertainties in

these estimates, especially in measurements based on carbon monoxide (CO) emission

lines, due in part to difficulties in constraining the amount of CO that exists in the

gaseous versus solid (ice) phase (Long et al. 2017).

In planet formation literature, the dust content in the disc is often characterized as

the dust-to-gas surface density ratio. This quantity differs from the common definition of

metallicity for gaseous nebula, which is usually defined as the mass ratio of all elements

heavier than helium to the total gas mass (which is nearly 99% hydrogen and helium).

From measurements of the Solar photosphere spectra, meteoritic chemical abundances,

and models of heavy element settling in the interior of the Sun, ∼1.5% of the protosolar

nebula mass was potentially solid material (Lodders 2003). Roughly 1/3 was rocky

material, with the rest being gas species that could have condensed in the outer Solar

System, where low temperatures permit the freeze-out of volatile gases onto solid rock
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grains. Thus, in the outer Solar System disc, the solids-to-gas mass ratio was ≈ 0.015,

and in the inner disc this ratio was ≈ 0.005. Many processes in planet formation are

driven by the amount of solid material locally. A leading mechanism for the formation

of planetesimals (which is the focus of this thesis, introduced in Section 1.3) generally

requires a super-solar solids-to-gas mass ratio initially. Hence, a different mechanism may

need to create regions of concentrated dust before planetesimal formation can occur. We

discuss candidate processes for dust concentration in Section 1.2.2.

The temperature within a protoplanetary disc can vary between the vertical surface

layer and the midplane. The vertical surface of the disc is irradiated by photons from

the central star, which is absorbed by a layer of small dust grains suspended in the upper

disc atmosphere. This layer then reradiates about half of this energy into empty space,

and the other half towards the interior of the disc, driving gas heating and consequent

vertical flaring of the disc (Chiang & Goldreich 1997). In observed discs, flared profiles

are often seen in the small grains which are tightly aerodynamically coupled to the

gas and hence trace gas structure (Figure 1.3). Hence, models of protoplanetary disc

temperature often describe the disc with three components (Armitage 2020): a hot,

low density upper atmosphere, a warm surface layer where the gas can be substantially

hotter than the dust, and a relatively cool midplane layer where the dust and gas are

in thermal equilibrium. A popular analytical model (Chiang & Goldreich 1997) predicts

a cool interior temperature profile (applicable to dust and gas) of T = 150 (r/AU)−3/7

K and a warm surface layer with Tdust = 550 (r/AU)−2/7 K, with gas disc photosphere

height profile that increases with radius (i.e. flared), given by hp/r = 0.17 (r/AU)2/7.

Protoplanetary discs are not static structures, however. Observations of the accretion

of material onto the star (Hartmann et al. 1998) and the decrease in IR/mm excess

radiation with age (Haisch et al. 2001; Ribas et al. 2014) confirm that discs evolve and

have limited lifetimes. A long-standing question in theory of protoplanetary discs and
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accretion discs more broadly is what process causes material to lose angular momentum

and cause accretion. A commonly invoked mechanism is the macroscopic mixing of disc

material due to turbulent motions, which can result in an effective turbulent viscosity. As

this process is generally difficult to model in detail. Shakura & Sunyaev (1973) provide

a simple parameterization for this viscosity. Assuming motions occur at velocities no

larger than the sound speed (cs), with a typical length scale given by the gas scale height

(Hg), the viscosity ν can be crudely modelled as,

ν = αtcsHg, (1.1)

where αt is a dimensionless scaling parameter. This so-called alpha-disc model is ubiq-

uitous in the field of planet formation. It is used widely to estimate angular momentum

transport, accretion, and local turbulent velocities, but it is not expected to be correct

in detail. In protoplanetary discs, recent observations of gas turbulence and analyses

of dust ring widths suggest αt ≈ 1 × 10−4 to 1 × 10−3 for discs in nature (Pinte et al.

2016; Flaherty et al. 2017; Teague et al. 2018b; Dullemond et al. 2018; Trapman et al.

2020). This value is generally considered to represent weak turbulence in the context of

the models that depend on it, such as the local growth and fragmentation of dust grains

due to collisions (e.g. Birnstiel et al. 2011), global dust evolution in discs (Drążkowska

et al. 2016), and the migration of planets (Speedie et al. 2022b).

The physical source of this turbulent viscosity remains an ongoing topic of research.

In the inner ≲ 0.1 AU, gas temperatures ≳ 1000 K can thermally ionize the gas, leading

to the development of turbulence via the magnetorotational instability (MRI; Balbus

& Hawley 1991) at levels of αt ∼ 0.01 (Simon et al. 2012) that are consistent with

observed accretion rates of the disc material at the inner radial edge (Hartmann et al.

1998). Beyond this point, out to ≳ 50 AU, the midplane gas is not expected to be

strongly ionized (Turner & Drake 2009), supported by observations of ion abundances
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in the disc TW Hya (Cleeves et al. 2015). This leads to a “dead zone” of low ionization

fraction where magnetic fields can only interact with the gas indirectly through non-

ideal effects of magnetohydrodynamics (MHD). Models of MRI turbulence in the regime

of non-ideal MHD leads to predictions for αt ∼ 0.01 (Simon et al. 2013; Simon et al.

2015), which is slightly too high for the aforementioned observed values, suggesting

another mechanism drives midplane turbulence in the midplane disc region between

0.1-50 AU that is applicable to planet formation. Candidate large scale hydrodynamic

instabilities include the vertical shear instability, convective overstability, or the zombie

vortex instability (see Lyra & Umurhan 2019, for a review).

In the proceeding section, we will outline the full growth of dust in protoplanetary

discs, from ∼µm to millimetre sized grains, to asteroid-sized planetesimals (which are

the focus of this thesis), to protoplanets, and finally how these rocky cores evolve into

the rich diversity of exoplanets seen in the Solar neighbourhood.

1.2 The Stages of Growth in Planet Formation

In protoplanetary discs, the journey of planet formation begins with micron-sized dust

aggregates and ends with objects that are over 1000 kilometres in radius, spanning an

incredible 12 orders of magnitude in size and over 30 orders of magnitude in mass. This

growth process is best subdivided into distinct regimes, each a full sub-field of study on

their own. In this section we will discuss the research devoted to each stage.

1.2.1 Micrometre-sized Grains

Dust pervades the interstellar medium (ISM), the baryonic material between stars. By

mass, the ISM is almost entirely gas: approximately 75% in hydrogen, in atomic, ionized,

and molecular forms, ∼23% in helium, and just a trace few percent of the material

is in atoms heaver that helium, which includes the solid material referred to as dust.
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Observations of attenuated/reddened starlight, the polarization of starlight, and infrared

thermal emission from these dust grains have provided constraints on the properties

of the ISM dust. Generally speaking, models agree that this dust is made up of a

combination of silicates, carbonaceous/graphite-based grains, and polycyclic aromatic

hydrocarbons—planar molecules consisting of hexagonal carbon rings. The size of these

grains ranges from about 0.001 micrometre to 1 micrometre (see Ch. 21-23 of Draine

2011).

Within the protoplanetary disc environment, micron-sized dust grains (as seen in

Figure 1.3) will collide and stick together due to electrostatic forces (Blum & Wurm

2008). At these sizes, the dominant influence on the relative velocity in collisions is

Brownian motion (Birnstiel et al. 2011; Birnstiel et al. 2016). Beyond micrometres,

local turbulent motions in the gas become increasingly important, increasing the relative

velocity between the grains, yet still driving the net growth of the grains to larger

objects. A summary of the various sources of relative velocity between dust objects in

protoplanetary discs is provided in Figure 1.5. Processes such as relative radial and

azimuthal drift become important for dust objects near centimetre sizes, and further

considerations regarding the material strength of the dust can determine whether the

centimetre-sized dust will stick together or fragment as a result of collisions. We will

discuss these ideas further at the end of the Section 1.2.2.

It is widely believed that the growth of micron-sized ISM dust grains to ∼centimetre

sizes is efficient. Once the disc is established from the protostellar cloud, the central

gravity of the forming star will pull dust to the midplane. During this process, the

different settling rates of grains of slightly different sizes can drive the growth of micron-

sized grains to centimetre sizes in less than 1000 years (Dullemond & Dominik 2005).

Recent observations of protostellar envelopes (Galametz et al. 2019) suggests that grain

growth to millimetre sizes could begin even in the pre-disc phase of star formation.
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Figure 1.5: A summary of contributions to the relative velocities between colliding dust grains
in protoplanetary discs. Each axis represents the size of one of the objects in the collision.
Reproduced under Creative Commons license (CC BY 4.0) from Birnstiel, T., Fang, M. &
Johansen, A., 2016, Space Sci Rev 205, 41–75. DOI:10.1007/s11214-016-0256-1, Figure 1.

Further, as seen in Figure 1.2, there is a wealth of protoplanetary disc observations

revealing significant dust mass near millimetre sizes.

1.2.2 Millimetre-sized Pebbles

The images in Figure 1.2 exemplify the diversity of structure—rings, gaps, asymmetries—

seen in the millimetre-sized dust in protoplanetary discs. Many other observations with

ALMA see similar features (e.g. van der Marel et al. 2015; Cazzoletti et al. 2018; Ans-

dell et al. 2018; van der Marel et al. 2021). As mentioned previously, embedded planets

provide a plausible explanation for the rings, but alternate explanations exist. In the

outer regions of discs, even with weak levels of magnetization in the gas, the presence of

magnetic fields can create a circumferential gas pressure maximum (Bai 2015; Béthune

et al. 2016), in which the dust can concentrate and form a ring (Riols & Lesur 2018).

Also, at certain radii, the temperature in the gas drops below the condensation point
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for trace volatile chemical species such as CO and NH3, and gases freeze-out onto the

dust grains. These condensation fronts, also called ice lines, represent a steep change in

the physical structure of the dust which affects the outcomes of collisions and can cause

local radial concentrations of dust (Zhang et al. 2015; Okuzumi et al. 2016). In the outer

regions of discs, where the gas density is lower, the dust layer midplane can be unstable

to slow, secular gravitational instability that can lead to the formation of rings (Youdin

2011; Tominaga et al. 2018; Tominaga et al. 2020).

Pebble-sized dust is also subject to radial drift, which is a natural consequence of

the headwind all solid material feels as it orbits within the gaseous component of proto-

planetary discs. The gas is subject to hydrodynamic pressure, and since the gas surface

density decreases with radius (Weidenschilling 1977b), there is a radially-outward pres-

sure force that results in a sub-Keplerian orbital speed for the gas. The dust feels no

such pressure directly, and thus attempts to orbit at the Keplerian speed, resulting in a

headwind that removes angular momentum from the dust and causes inward orbital drift

(Weidenschilling 1977a; Nakagawa et al. 1986). This radial drift effect is an essential

component of models of dust evolution in protoplanetary discs (e.g Brauer et al. 2008;

Birnstiel et al. 2012). It also offers a simple explanation for observed compact dust discs,

which in some surveys have approximately half the radius of their associated gas disc

(Ansdell et al. 2018).

This radial drift also contributes to constraints on the growth of solid material beyond

centimetre sizes. The magnitude of the effects of radial drift—like any process rooted

in aerodynamic drag—depends on the physical size of the solids that interact with the

fluid. The small, micron-sized ISM dust in the protostellar environment feels strong drag

forces relative to their mass, and are hence tightly coupled to the gas motions, which

do not involve significant radial motions. Millimetre-sized pebbles are more susceptible

to drift, with characteristic timescales for falling into the central star ≳100,000 years.
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However, at metre sizes drift is maximally efficient, and can remove these objects from

the disc in less than 1000 years (Weidenschilling 1977a). This timescale is much too

short for simple growth pathways such as collisions.

Further, collisional outcomes based on the relative velocities between objects at that

size (Figure 1.5) have been shown to be primarily destructive under the conditions

expected in the midplane of protoplanetary discs (Güttler et al. 2010; Zsom et al. 2010;

Windmark et al. 2012). The material strength of the pebbles is not strong enough to

resist fragmentation, or erosion, which results in a net decrease in the size of colliding

objects. These results have largely come from laboratory experiments, and recent work

is reviewed in Blum (2018). In Figure 1.6, we present their summary of collisional

outcomes between two objects of varying sizes. We see that beyond ∼10 centimetres in

size, collisions generally do not result in net growth.

The results of the combined collisional and radial drift barriers is a dust grain size

distribution that peaks (or at least has a maximum size) near ∼ 1cm in the inner disc

(< 10 AU) and near ∼ 1mm in the outer disc (Birnstiel et al. 2012, see Fig. 4 of Birnstiel

et al. 2016). In inner disc, regions grain sizes are limited by efficient fragmentation and in

the outer regions by efficient radial drift. Locally, within fragmentation limited regions,

an equilibrium between growth and fragmentation is achieved such that most of the dust

mass is in the largest ≳mm sizes.

Together, the collisional growth barrier and the radial drift barrier present a serious

impediment to the continued growth of solids towards planetary sizes. It is believed that

some process must efficiently and rapidly produce kilometre-sized objects (planetesimals)

directly from millimetre/centimetre sized pebbles. Kataoka et al. (2013) show that

fluffy, icy solid aggregates can avoid the radial drift barrier and form icy planetesimals.

There have been many studies on the sorting of dust from turbulent motions due to the

difference in drag forces at different grain sizes that could result in local concentrations
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Figure 1.6: Collisional outcomes between two solid objects/agglomerates of different sizes.
The axes are the same as in Figure 1.5, and each represent the size of one of the objects in
the collision. The Reproduced with permission from Blum, J., 2018, Space Sci Rev 214, 52.
DOI:10.1007/s11214-018-0486-5, Figure 1.

20



Ph.D. Thesis – Josef J. Rucska McMaster University – Physics and Astronomy

leading to the formation of planetesimals (e.g. Cuzzi et al. 2001; Cuzzi et al. 2010;

Hartlep & Cuzzi 2020). The concentration of dust into rings from the aforementioned

mechanisms (magnetic fields: Riols & Lesur 2018, large scale gravitational instabilities:

Youdin 2011; Tominaga et al. 2018; Tominaga et al. 2020), or into hydrodynamic vortices

(Lyra et al. 2008), can create strong enough concentrations of the dust such that its

own self gravity can lead to planetesimal formation. Xu & Bai (2022a) and Xu & Bai

(2022b) demonstrate this process with high resolution numerical simulations for the case

of pressure bumps formed from magnetic fields.

Arguably, the leading mechanism for the formation of planetesimals in protoplanetary

disks is the streaming instability (SI; Youdin & Goodman 2005). The SI is an instability

driven by the momentum exchange between dust and gas via aerodynamic drag. In

protoplanetary discs, the settling of pebble-sized dust can lead to a thin midplane dust

layer that can become unstable to the SI, leading to the direct formation of planetesimals

(Johansen et al. 2007). This process has been the target of numerous studies over the

last decade, and is the focus of this thesis. We discuss the existing literature on the

streaming instability in Section 1.3. For now, we will accept that planetesimals are

capable of efficiently forming directly from mm-cm sized pebbles via the SI and/or a

combination of other mechanisms. This is consistent with observations of Solar system

asteroids, which are commonly described as rubble piles: an unorganized collection of

smaller material of various sizes, bound together by self-gravity (Walsh 2018).

1.2.3 Planetesimals

In the Solar system, remnants of the primordial planetesimal population are believed to

be the asteroids and minor bodies beyond Neptune known as trans-Neptunian objects,

of which Kuiper Belt Objects (KBOs) are a subset. These populations represent objects

between ∼1 km and 1000 km. Together, they provide our best observational constraints
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on planetesimal objects in nature, as our ability to gather information on such small,

cold objects beyond the Solar system is limited.

Excluding the very largest objects ≳ 400 km in radius which dominate the total

asteroid mass budget, the observed size distribution of asteroids peaks near 140 km

(Cuzzi et al. 2010). Some authors have suggested this means asteroids were preferentially

born big (at that size) (Morbidelli et al. 2009), or born near that size and grew via the

rapid accumulation of remnant pebbles in their local environment (Johansen et al. 2015).

Some studies claim that this peak can be produced from the growth of a vast population

of much smaller bodies near 1km in size (Weidenschilling 2011). Current models of

planetesimal formation via the streaming instability suggest that this process readily

forms ≳100 km sized objects directly (e.g. Simon et al. 2016; Schäfer et al. 2017; Li

et al. 2019; Rucska & Wadsley 2021). A recent survey of the Cold Classical Kuiper belt

objects (Kavelaars et al. 2021) finds an exponential cut off in the size distribution at the

large mass end, which is consistent with SI predictions. Further, Nesvorný et al. (2019)

and Nesvorný et al. (2021) show with numerical models that the SI-formed planetesimal

distribution exhibits the same fraction of retrograde vs. prograde orbits seen in KBO

binaries.

Interestingly, samples of meteorites have displayed a geochemical dichotomy in the

abundances of isotopes of elements such as Ti and Cr (Leya et al. 2008; Warren 2011).

This dichotomy can be explained if there were two spatially and temporally distinct

epochs of planetesimal formation in the Solar system (Lichtenberg et al. 2021). Mea-

surements of the optical and near-infrared colour of KBOs also shows a distinct di-

chotomy between the Cold-Classical population (low inclinations ≲ 5◦, low eccentricity)

and the excited population, which hints at geochemical differences and perhaps distinct

formation histories between these populations (e.g. Schwamb et al. 2019). This suggests

that the process that forms planetesimals, such as the streaming instability, is efficient
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throughout the lifetime of the protoplanetary disc.

Perhaps the most visually stunning data on planetesimals in recent years has come

from the NASA New Horizons mission, which made a close encounter with Pluto and

Charon in 2015 and the KBO (486958) Arrokoth. The surfaces of Pluto and Charon are

believed to contain pristine records of impacts from the early solar system. Analyses of

the crater size distribution reveal an impactor population consistent with observations of

the KBOs today (Shankman et al. 2016), and with a turnover near 1-2 km that suggests

a deficit of objects below that size (Singer et al. 2019). Unfortunately, neither observa-

tional techniques applicable to viewing KBOs or numerical techniques for modelling the

streaming instability are capable of providing constraints at small sizes.

Another main target of the New Horizons mission was the KBO (486958) Arrokoth,

pictured in Figure 1.7. The object displays two distinct lobes, and models suggest this

structure is the result of a low-velocity impact between two different objects on a slowly

decaying binary orbit (McKinnon et al. 2020; Grishin et al. 2020; Marohnic et al. 2021).

The spatial crater densities on this object suggests the primordial planetesimal number

density in our Solar system was not much higher than the number density of KBOs seen

today, and this number density is too low to drive a significant collision rate between

those objects (Greenstreet et al. 2019). Thus, while the asteroids are known to represent

a significantly evolved population of minor bodies, the Cold Classical KBOs are believed

to be fair representations of the primordial planetesimal disc from the outer Solar system.

Another space mission to a minor Solar System body came from the European Space

Agency’s Rosetta mission to the comet 67P/Churyumov-Gerasimenko. Results from

this mission show that the comet likely formed from the gentle gravitational collapse of

a cloud of mm-sized dust aggregates (Blum et al. 2017; Fulle & Blum 2017). This is

further observational support for the streaming instability and the other mechanisms of

planetesimal formation from dense pebble clouds we discussed at the end of the previous
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Figure 1.7: Image of (486958) Arrokoth captured by the New Horizons mission. Image from
NASA/Johns Hopkins Applied Physics Laboratory, processing by P. Budassi for Wikimedia.org.
Reproduced here under Creative Commons license (CC BY 4.0).

section.

Global models of protoplanetary disc dust evolution show that planetesimal formation

via the SI can be efficient throughout the disc under various scenarios that can cause

the local concentration of pebbles (Drążkowska et al. 2016; Drążkowska & Alibert 2017;

Drążkowska & Dullemond 2018). Once a population of some billions of planetesimals

exists, gravitational interactions can lead to the runaway growth of a few > 1000 km

bodies (Wetherill & Stewart 1989; Kokubo & Ida 1996) which leads into a phase of

oligarchic growth where the planetary embryos interact with each other and dominate

the disc dynamics (e.g. Pollack et al. 1996; Raymond et al. 2006; Wallace & Quinn 2019).

Recent studies have taken outputs from models of planetesimal formation via the SI and

used them as inputs for their initial planetesimal population (Liu et al. 2019; Jang et

al. 2022). At sizes >1000 km, these objects are capable of significantly perturbing the

surrounding gas and dust disc, driving further growth and evolution.
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1.2.4 Protoplanets & Planetary Embryos

Massive, rocky protoplanets (or planetary embryos) can interact with their host disc

through a variety of complex mechanisms. Broadly speaking, it is these interactions

that will determine the mass, composition, and final orbital position of planets in the

assembled, post-disc planetary system. This is a relatively young, active field of re-

search. Up-to-date and thorough reviews are available in Drążkowska et al. (2022) and

Paardekooper et al. (2022).

If a rocky planetary core is to become a gas giant, the process must occur within

the 5-10 Myr lifetime of the disc inferred from observations of accretion signatures and

IR/mm excess (Hartmann et al. 1998; Haisch et al. 2001; Ribas et al. 2014). These results

have ruled out older theories for the formation of gas giants that require hundreds of

millions of years, and inspired new models of protoplanet evolution that are compatible

with this stringent time constraint.

The core accretion model of giant planet formation begins with a massive protoplanet

which accretes gas from the protoplanetary nebula, forming an envelope that is initially in

hydrostatic equilibrium. If gas continues to accrete and the core achieves a mass beyond a

critical threshold near 5-10 Earth masses, the envelope can rapidly collapse onto the core,

and rapid accretion begins in a runaway process (Perri & Cameron 1974; Pollack et al.

1996; Ayliffe & Bate 2012). This of course requires the existence of bodies more massive

than Earth early in the disc lifetime, so that there is sufficient gas within the disc available

to the gas giant in the first place. This core likely forms from the oligarchic growth

process mentioned in the previous section. The early growth of massive solid bodies can

also be enhanced by the process of pebble accretion, where millimetre sized pebbles that

are abundant in protoplanetary discs are effectively accreted onto planetary embryos due

to enhanced effective collisional cross-sections from the aerodynamic coupling of pebbles

to the disc gas (see Johansen & Lambrechts 2017, for a review).
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Numerical models shows that the direct formation of giant planets from the collapse

of dense clumps is possible in discs that are gravitationally unstable (e.g. Rice et al. 2003;

Mayer et al. 2004; Backus & Quinn 2016). This mechanism is likely only applicable in the

outer regions of massive discs that are able to cool efficiently (Rogers & Wadsley 2011).

Interestingly, there have been observations of several exoplanets orbiting at ≳100 AU

distances from their star (Figure 1.1), for which formation via gravitational instability

is a viable explanation.

For protoplanets near an Earth mass, gravitational torque interactions between the

planet and the disc gas can drive substantial inward radial migration of the planet (Type

I migration; Goldreich & Tremaine 1980; Tanaka et al. 2002; Paardekooper et al. 2011).

Depending on the planet mass and local disc properties such as gas surface density,

temperature, and gradients in these properties, the net torque on the planet could also

direct the planet outwards, in cases of low turbulent viscosity (Speedie et al. 2022b).

Once the protoplanet becomes sufficiently massive (Saturn mass for solar mass stars),

the planet can clear the gas material around its orbit, forming a gap (Type II; Lin &

Papaloizou 1986). At this point, migration is much slower, and develops as the viscous

evolution time scale for the disc (see Paardekooper et al. 2022 for a review: Section 2 for

the classic migration picture and Section 3 for recent developments). Catastrophically

rapid Type I migration of planets into the central star can be halted at planet traps

caused by inhomogeneities in disc surface density or temperature profiles, ice-lines where

certain volatile gas species are prone to freezing onto the solid material, and boundaries

between inner regions with low turbulence (i.e. midplane to ∼50 AU) and outer regions

undergoing magnetically driven turbulence (e.g. Alessi & Pudritz 2018; Alessi et al.

2020).

As mentioned in Section 1.2.2, the gaps, rings, and asymmetries seen in observations

of millimetre pebbles have been used to guide theories of planet-disc interactions. Some
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discs have large cavities with smaller, interior discs, and some of these inner discs are

inclined with respect to the outer disc, likely due to the influence of a massive companion

(Francis & van der Marel 2020). Features in the kinematics of gas discs have also been

interpreted as the influence of massive, perturbing planets (Pinte et al. 2018; Pérez et al.

2018; Dong et al. 2019; Teague et al. 2018a; Teague et al. 2019).

The whole of Figure 1.1 can also be used to constrain statistical outcomes of planet

growth and formation models. The techniques of populations synthesis (Ida & Lin 2004,

Alessi & Pudritz 2018; Alessi et al. 2020, see Benz et al. 2014 for a review) involve

generating thousands of individual planetary embryo growth tracks in 1-D models of

protoplanetary discs. These techniques are powerful tools for discerning the dominant

physical processes that affect protoplanets as they grow to full planets.

1.3 The Streaming Instability

The streaming instability (SI) was first explored and applied to the context of plan-

etesimal formation by Youdin & Goodman (2005). This study demonstrated that the

SI is present when solid particles move through a fluid with a steady relative velocity.

This condition arises naturally in a protoplanetary disc. The gas phase feels a hydrody-

namic force from the global gas radial pressure gradient that pushes the gas to slightly

sub-Keplerian speeds, while the dust feels no such force and attempts to orbit at the

Keplerian speed, providing the persistent, steady-state relative velocity between the two

phases (Nakagawa et al. 1986).

A seminal result from Johansen et al. (2007) showed conclusively with numerical

simulations that, under ideal conditions, the SI could form objects as massive as Ceres

directly from clouds of ∼10 cm sized objects in just tens of orbits. This cemented the

SI as a leading candidate to overcome the aforementioned radial drift and collisional

barriers discussed at the end of Section 1.2.2. In Figure 1.8, we show the evolution
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of the dust surface density and the formation of a gravitationally bound clump in a

simulation from Johansen et al. (2007).

Since then, much effort has been dedicated to characterizing the SI in both the linear,

small perturbation phase and the non-linear phase applicable to planetesimal formation.

In this section we summarize this body of work.

1.3.1 Linear and pre-planetesimal non-linear phase

Youdin & Goodman (2005) introduced the SI as a linear instability with small, 2D

plane-wave perturbations and analytical analyses that determined the fastest growing

eigenmodes of the system. The perturbations are in the radial-vertical plane, denoting

axisymmetric rings globally. The growth rates are largest for dust-to-gas mass volume

ratios µ ≳ 1, and when the characteristic stopping time for the aerodynamic drag (tstop)

is resonant with the dynamical or epicyclic timescale of the disc (Ω−1, the orbital period

is Torb = 2π/Ω−1), commonly expressed in terms of a dimensionless stopping time:

τs = tstopΩ = 1. These growth rates were explored in my Master’s thesis (Rucska 2018),

and a plot of the SI growth rates as a function of the perturbation wavevector for various

dust conditions is shown in Figure 1.9.

The resonance interpretation for the peak SI growth rates was introduced by Squire

& Hopkins (2018), who identified the SI as a specific case of a broader class of resonant

drag instabilities. They also identified a faster growing mode of the SI, when a steady

vertical velocity is included for the dust, which follows the physical scenario of dust grains

settling to the disc midplane due to the gravity of the central star (Chiang & Youdin

2010). Growth rates in this scenario are plotted in the bottom panel of Figure 1.9.

Notice that, especially for small τs dust (which corresponds to smaller grains in physical

size, see discussion below), the growth rates of the SI are greatly enhanced, suggesting

clumping of dust via the SI can occur during settling, especially given that smaller grains
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Figure 1.8: Surface density of dust particles in the radial-azimuthal (x-y) plane over time in
simulation from Johansen et al. (2007), highlighting the collapse of dense dust clumps into bound
planetesimals. The inset is centered on the most massive bound clump, the white circle denotes
the clump Hill sphere. The colourbar is normalized to the mean surface density in the grid. The
time for each panel is in units of the orbital period, and t = 0 corresponds to the time self-gravity
was turned on. The middle four panels show the surface density in each grain species considered
(differentiated by the parameter τf ). Reproduced with permission from Johansen, A., Oishi, J.,
Mordecai-Mark, M. L., et al. (2007), Nature 448, 1022. DOI:10.1038/nature06086, Figure 12.

29



McMaster University – Physics and Astronomy Ph.D. Thesis – Josef J. Rucska

experience longer settling times. With τs ≪ 1, tsettle ∝ τ−1
s (see Rucska 2018, Section

4.1.5).

The equation for tstop depends on the regime of drag considered. In all but the

innermost regions of protoplanetary discs, the applicable regime is the Epstein regime

(Epstein 1924), where the dust grain size is smaller than the mean free path of the gas

(Birnstiel et al. 2016). The form of tstop in this regime is

tstop = ρs

ρgcs
s, (1.2)

where ρs is the material density of the particles, ρg is the local gas density, cs is the local

sound speed and s is the radius of the dust grains. For ρs ≈ 2.6 g cm−3 (applicable to

silicates Moore & Rose 1973), and with Σg(r) = 1000 (r/AU)−3/2 g/cm2 (e.g. minimum

mass solar nebula model; Weidenschilling 1977b), then at 5 AU, τs = 1 corresponds to

∼ 35 cm.

Youdin & Johansen (2007) confirmed the streaming instability growth rates in a nu-

merical dust-fluid scheme in the Pencil grid code (Brandenburg et al. 2021), which

uses a finite difference discretization that is non-conservative and sixth-order accurate

in spatial derivatives, third-order in time. Bai & Stone (2010b) also confirmed growth

rates from the SI in the Athena grid code (Stone et al. 2008) which is based on a finite

volume Godunov scheme that conserves quantities like mass and momentum and is 2nd-

order accurate in spatial and time derivatives. Both methods use Lagrangian particles to

represent the dust phase. Particle properties are interpolated onto the grid when com-

puting aerodynamic forces that couple the dust and gas phases. Pencil and Athena

have each been used in numerous studies of the SI. Outcomes regarding clumping and

planetesimal formation are broadly consistent across the two codes, suggesting the main

outcomes of the SI are not sensitive to the numerical choices associated with the hyr-

dodynamic scheme. Notably, the linear streaming instability has yet to be studied in a
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Figure 1.9: Top. Growth rates of the fastest growing mode in the linear streaming instability.
The growth rate s is normalized to the orbital dynamical frequency Ω. The plane wave wavevector
has a component in the radial (x) and vertical (z) directions, and the angle is set to θk ≡
tan−1(kx/kz) = 30◦, and k ≡

√
kx

2 + kz
2. The growth rates are plotted as a function of k, with

the x-axis scaled by the (dimensionless) radial pressure gradient parameter η (see Section 2.2.1)
and the global disk radius r. Each curve represents SI growth rates for different combinations
of the dust-to-gas density ratio µ ≡ ρd/ρg and the dimensionless stopping time parameter τs =
tstopΩ (equation 1.2). Bottom. As in the top panel, but a steady vertical settling velocity (Chiang
& Youdin 2010) is included. The X marks represent confirmations of growth rates in numerical
calculations. Reproduced from Figure 4.2 (top) and Figure 4.6 (bottom) of my Master’s Thesis
(Rucska 2018), results match Squire & Hopkins (2018).
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Lagrangian hydrodynamics scheme, e.g. smoothed particle hydrodynamics (Gingold &

Monaghan 1977; Wadsley et al. 2017; Price et al. 2018)

There have been recent expansions to the original linear perturbation paradigm of

(Youdin & Goodman 2005). When isotropic turbulence is applied to the local disc

environment, the viable regimes of rapid growth are restricted, suggesting that global

turbulence inhibits the SI, especially for small particles and the interior regions of discs

(Umurhan et al. 2020; Chen & Lin 2020). Lin (2021) considered a vertically stratified

disk model, i.e. with vertical length scales beyond the disc midplane, so that both gas

density and the rotational velocity vary with height, setting up a vertical shear gradient.

They find that the vertically stratified SI has faster growth rates and operates on larger

length scales than the unstratified SI. Lin & Hsu (2022) consider magnetized discs and

find that magnetic torques drive rapid growth even in the absence of the radial gas

pressure gradient, which is required for growth in the classic SI. The studies by Li &

Youdin (2021) and Lin & Hsu (2022) suggest the SI is a viable mechanism for dust

clumping in a broader range of physical conditions than originally considered.

The classic studies of the SI considered only a single size of dust grains, but given

the discussion from Sections 1.2.1 and 1.2.2, there is reason to believe a distribution

of dust sizes can exist locally within a protoplanetary disc. There are several studies

of the linear phase of the SI with multiple species (Krapp et al. 2019; Paardekooper

et al. 2020; Paardekooper et al. 2021; McNally et al. 2021; Zhu & Yang 2021), which

generally conclude that the growth rates in this case are primarily driven by the largest

grains in the distributions, and, like the classic SI, growth rates are high so long as the

local concentration of dust mass is roughly equal to or high than the local gas mass.

Numerical, non-linear studies of the multi-species SI in 2D (Schaffer et al. 2018; Schaffer

et al. 2021; Yang & Zhu 2021) and 3D (Bai & Stone 2010a) reach similar conclusions.

They also find that the large dust grains readily clump or settle to the disc midplane,
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while the smaller, more aerodynamically coupled grains clump less, leading to a spatial

separation between dust of different sizes and potentially a population of planetesimals

that would only be composed of the largest grains in a given size distribution.

All of the above multi-species SI models considered a size distribution given by a

power law, following observed properties of ISM grains (Mathis et al. 1977). However,

in protoplanetary discs, grain growth and fragmentation can lead to an equilibrium

size distribution with a peak at large sizes (Birnstiel et al. 2011). McNally et al. (2021)

studied this size distribution in their linear study of the SI, and in Chapter 4 of this thesis

we study this distribution in the context of 3D simulations of planetesimal formation.

Analytical studies of 2D, radial-azimuthal plane-wave perturbations provide useful

information on the physical conditions that are most unstable to the SI, but the non-

localized nature of the plane waves and the 2D geometry cannot directly relate to lo-

calized behavior such as planetesimal formation. Localized clumping can be studied

in 3D numerical simulations of the non-linear phase SI, such as in Johansen & Youdin

(2007) and Bai & Stone (2010b). Both studies show that perturbations from an initial

random distribution of dust can grow via the SI until they clump into dense filaments

that merge and interact with complex dynamics. In just 100 dynamical timescales a

uniform dust distribution can develop into filaments with local densities two orders of

magnitude greater than the initial average. When self-gravity is included, these density

fluctuations are large enough to gravitationally collapse into bound clumps, demonstrat-

ing the viability of the SI as a mechanism for forming planetesimals directly from pebble

clouds.
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1.3.2 Planetesimal formation via the SI

In this section we discuss the existing literature on planetesimal formation via the SI

from studies of numerical simulations of protoplanetary discs. Pebble-sized dust set-

tles efficiently to the disc midplane, creating a dense, vertically narrow midplane layer.

This layer imparts significant momentum onto the gas, modifying the velocity of the gas

locally, leading to the development of vertical shear. Thus, in the context of the stream-

ing instability in stratified disc models, the growth of the first perturbations maybe be

assisted by the Kelvin-Helmholtz instability (Gerbig et al. 2020; Lin 2021). Yet, the

SI does play as critical role, as Johansen et al. (2007) show clumping to the scale of

planetesimal formation is not seen in models that do not include the influence of dust

imparting momentum back onto the gas.

Once the initial perturbations grow, dust rapidly collects into dense, azimuthally

oriented (ring-like) filaments (e.g. Johansen et al. 2007; Bai & Stone 2010a; Yang &

Johansen 2014; Simon et al. 2016; Simon et al. 2017; Li et al. 2018; Abod et al. 2019;

Carrera et al. 2021). Within those filaments, local clumps of high density form, seeding

planetesimal formation. The width of these features appears to depend on dust grain

size (Simon et al. 2017) and the radial pressure gradient (Abod et al. 2019), though

a systematic study of these correlations has not been conducted. Yang & Johansen

(2014) and Li et al. (2018) represent some of the more dedicated studies of the filaments

to date, and they find that over time, filaments merge and these interactions produce

strong clumping. The filaments represent the mass reservoir available to planetesimal

formation via the SI, and hence the total amount of mass in formed planetesimals, which

places an upper limit on the mass of protoplanets that can form from via the runaway

accretion of the planetesimal population (Liu et al. 2019; Jang et al. 2022). Thus,

constraining the filament mass reservoir is essential to inform the future stages of planet

formation beyond planetesimals. This is the focus of our work in Chapter 3.
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Early work from Johansen et al. (2009b) demonstrated the dependence of non-linear

SI clumping in discs on the local concentration of solids. They conclude that a slightly

super-solar concentration of solids is required in order to achieve strong enough particle

clumping to initiate planetesimal formation for ∼1-10 cm sized pebbles. In the literature,

this is typically translated to a critical surface density ratio of dust-to-gas mass, and this

critical ratio has been shown to depend on grain size/drag stopping times (Carrera et

al. 2015, Yang et al. 2017, Li & Youdin 2021). For sufficiently large concentrations of

solids, however, planetesimal formation in 3D simulations is possible across a few orders

of magnitude in grain size, from roughly centimetre to 0.1 millimetres in size (Simon

et al. 2017).

To address the requirement of super-solar solid concentrations, Carrera et al. (2021)

and Carrera et al. (2022) study whether an axisymmetric pressure bump could concen-

trate dust locally. The pressure bump creates a gradient in the radial pressure force on

the gas, resulting in reduced radial dust drift speeds near the pressure maximum that

can cause a local pile up of solids that triggers the SI. This occurs even though the

overall ratio of solid mass in the simulation domain is below the threshold to trigger the

SI in models without a pressure bump. Carrera et al. (2021) and Carrera et al. (2022)

demonstrate that for a variety of bump amplitudes, cm-sized dust can collect to large

local dust-to-gas mass ratios that initiates planetesimal formation. However, Carrera

& Simon (2022) show this does not occur for slightly smaller grains near millimetres in

size, raising questions about the viability of pressure bumps as a mechanism to collect

dust mass and induce the SI for mm-sized dust.

Like the linear and non-linear phases of the SI, planetesimal formation appears to be

minimally affected by numerical treatments. Johansen et al. (2012) show that including

particle-particle collisions (only kinematics, without grain growth) does not significantly
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influence planetesimal formation outcomes. Simon et al. (2016) first studied the plan-

etesimal formation phase of the SI in the code Athena. They find that properties of the

formed planetesimals agree well with prior work from A. Johansen and collaborators,

who use Pencil.

A primary target of these studies has been to constrain the properties of the mass

distribution of SI-formed planetesimals—e.g. power-law slopes, characteristic masses,

maximum or minimum masses. These properties are useful inputs for models of post-

planetesimal formation evolution (Liu et al. 2019; Jang et al. 2022). Many studies explore

how these properties vary with numerical or physical parameters, such as gravity ver-

sus rotational shear (Simon et al. 2016), grain size and dust-to-gas mass ratio (Simon

et al. 2017), radial pressure gradient (Abod et al. 2019), global turbulence (Gole et al.

2020), numerical domain size (Schäfer et al. 2017; Rucska & Wadsley 2021), different

perturbations to the initial dust density (Rucska & Wadsley 2021), and how the out-

comes change with varying functional fits to the mass distribution (Li et al. 2019). The

growing consensus appears to be that the properties of the SI-formed planetesimal mass

distribution are remarkably consistent across these varied conditions, hinting at some

universality in this process. However, fixed grid resolution models are limited in their

ability to constrain the small-mass end of the distribution due to limits in computational

resources.

Planetesimal formation also appears to be robust to changes in physical conditions

beyond the local dust concentration and drag stopping time/dust grain size. Simon

et al. (2016) show that the planetesimal mass distribution is not strongly influenced by

the relative strength of self-gravity versus tidal shear—equivalent to considering different

radial positions in the disc. More dust mass is converted to planetesimals in regions with

stronger gravity vs. shear (i.e. the outer disc), as expected, but planetesimals still form

in lower gravity vs. shear environments. Abod et al. (2019) study models with varying
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strengths for the radial pressure gradient which drives the relative velocity between the

dust and gas phase, and, ultimately, the streaming instability. They find the power-

law slope that characterizes the planetesimal mass distribution is relatively consistent

for different gradient strengths, while weaker gradients form more small planetesimals.

At zero pressure gradient, the growth of dust perturbations are driven by the secular

gravitational instability instead (e.g. Youdin 2011).

The presence of external turbulence is one mechanism that can suppress planetesimal

formation. Gole et al. (2020) find even low levels of external turbulence (external to the

simulation domain, i.e. global in terms of the disc) can influence planetesimal formation.

The turbulence prevents the settling of dust to a thin midplane later, and from achieving

the local dust-to-gas mass volume ratio ≳0.5 (from their results) required to achieve

strong clumping via the SI. However, upper limits on the levels of turbulence present in

observed discs are also low (Pinte et al. 2016; Flaherty et al. 2017; Teague et al. 2018b;

Dullemond et al. 2018; Trapman et al. 2020), and within limits that suggest turbulence

may not pose a serious issue for the SI (See Section 1.3.3 for further discussion).

As mentioned in Section 1.2.3, the properties of SI-formed planetesimals have been

shown to be consistent with observations of asteroids as well as Kuiper Belt Objects

(KBOs). The latter are believed to represent a pristine population of planetesimals from

the early solar system. Recent studies find that the fraction of retrograde to prograde

orbits seen in KBO binaries is consistent with SI-formed binaries (Nesvorný et al. 2019),

and that the angular momentum distribution among KBOs is also similar to SI-formed

clumps (Nesvorný et al. 2021). The size distribution of the Cold Classical KBOs features

an exponential cut-off at the high-mass end (Kavelaars et al. 2021) that is consistent

with SI models (e.g. Simon et al. 2016; Schäfer et al. 2017; Li et al. 2019; Rucska &

Wadsley 2021). The KBO (486958) Arrokoth also displays a two-lobe structure that is

consistent with the slow orbital decay of a planetesimal binary (McKinnon et al. 2020;
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Grishin et al. 2020; Marohnic et al. 2021). Further, the “rubble-pile” physical structure

of asteroids (Walsh 2018), as well as the comet 67P/Churyumov-Gerasimenko (Blum et

al. 2017; Fulle & Blum 2017), suggests these objects formed from the collapse of a dense

pebble cloud, consistent with the SI. Analysis of the crater size distribution on Pluto and

Charon suggests that the primordial planetesimal population in the outer Solar system

had a low number of objects below ∼ 1-2 km. Unfortunately, as mentioned previously,

the minimum mass of planetesimals formed in simulations of the SI with increasingly

high numerical resolution is not converged. The smallest size objects produced with

current techniques (i.e. fixed numerical grid size) is ∼50 km. The broad agreement

between the predictions of the SI and the observational tests put forth thus far provides

support to the claim that the SI is a productive mechanism for producing planetesimals

from pebble-sized dust.

1.3.3 Challenges to the SI

The requirement of local concentrations of dust to trigger planetesimal formation via

the streaming instability is well-documented (Johansen et al. 2009b; Carrera et al. 2015;

Yang et al. 2017; Li & Youdin 2021). The logical question arises of how that concentra-

tion occurs.

The strong dust pebble features seen in many ALMA observations (Section 1.2.2)

have often been cited as regions of local dust concentration where the SI could be active.

Interestingly, recent observations of dust rings have shown that this emission is likely not

optically thick (Dullemond et al. 2018; Huang et al. 2018; Cazzoletti et al. 2018; Macías

et al. 2019; Maucó et al. 2021). Further studies have explained that this may be due to

the initiation of planetesimal formation via the SI within the dust ring (Stammler et al.

2019; Maucó et al. 2021). Observed axisymmetric pebble dust bumps (van der Marel

et al. 2021) have often been attributed to hydrodynamic vortices, which have also been

shown to be capable of concentrating pebble-sized dust to levels compatible with the SI
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(e.g. Lyra et al. 2008). Magnetized discs are also capable of producing zonal flows, or

circumferential pressure bumps (Johansen et al. 2009a; Bai & Stone 2014), and dust can

concentrate dust within these structures and result in the formation of planetesimals,

even when these bumps are locally turbulent and the SI is believed to be suppressed (Xu

& Bai 2022a; Xu & Bai 2022b).

Recent studies regarding both the linear SI (Umurhan et al. 2020; Chen & Lin 2020)

and 3D hydrodynamic simulations (Gole et al. 2020), show that planetesimal formation

is suppressed in the presence of global disc turbulence. The degree to which gas motions

in the midplane protoplanetary discs are turbulent has been an essential question for

many aspects of planet formation theory. According to Umurhan et al. (2020), Chen

& Lin (2020), and Gole et al. (2020), the levels of turbulence from recent observations

of discs (Pinte et al. 2016; Flaherty et al. 2017; Teague et al. 2018b; Dullemond et al.

2018; Trapman et al. 2020) which give α ∼ 1 × 10−4 to 1 × 10−3 (see equation 1.1

and surrounding discussion) does not fully suppress the SI. However, these observational

constraints come from only a few objects thus far. More work is needed to discern the

level of turbulence in disc midplanes where the SI is believed to occur.

1.4 Thesis Overview

As shown in the previous section, much progress in understanding the behavior of the SI

in the context of planetesimal formation has come from empirical studies of data collected

from 3D numerical simulations. Our work makes use of this strategy, exploring the SI in

previously unexplored numerical contexts, configurations for the dust size distribution,

and with novel analyses. Here, we outline the methods and results for each chapter of

this thesis.

In chapter 2, we explore variance in the planetesimal formation process within large

39



McMaster University – Physics and Astronomy Ph.D. Thesis – Josef J. Rucska

numerical domains and re-run simulations with smaller domains that are otherwise iden-

tical except for the initial perturbations to the dust density. Most prior work has used

small domains for computational expedience. We see that the non-linear nature of the

SI leads to a large variability in the planetesimal mass distribution and the total dust

mass converted to planetesimals. This is seen in the multiple re-run small simulations

as well as in subdomains within the individual larger simulations. However, the power-

law slope that describes the mass distributions is consistent between the populations of

planetesimals from all small simulations taken together and the full populations from

the larger simulation. The slope we find is also consistent with prior work.

In chapter 3, we study the same suite of simulations from Chapter 2, but with an

additional, larger run. We analyze the pre-planetesimal formation, filament-dominated

epoch of the SI. We identify dust filaments as contours in the surface density maps, and

find that the filaments in the smaller domains primarily span the full azimuthal length

of their domain, which translates to ring-like structures globally. In the largest domains,

the filaments are truncated. Fourier spectra of the dust surface density in 1D reveal

the largest power in the azimuthal direction is at the box scale, regardless of domain

size. Hence, large scale dynamics break up the filaments in larger domains, while small

domains cannot represent dynamics on that scale.

The Fourier spectra in the radial direction identify a natural radial filament spacing

of approximately 0.1 gas scale heights, which is half the length of the smallest domains.

Thus, the small domains have low dynamical resolution at this length scale, which leads

to configurations of dust filaments that are not seen in the larger domain simulations.

We also conduct a novel mock signal analysis procedure to explain features of Fourier

spectra from the simulation filament profiles that are difficult to explain with analytical

fits. We find these spectral features can be explained by a configuration of filaments

that is nearly evenly spaced, but, crucially, with a small level of variation.
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In chapter 4, we run simulations using multiple species (or grains sizes) of dust

with a grain size distribution guided by outcomes from theories of grain growth and

fragmentation and equilibrium. Prior work on the multi-species SI has used distributions

set by single power laws. We compare these multi-size models to our previous models

with single sizes from Chapters 2 and 3. We find that the largest grains in our distribution

readily form clumps and filaments, while the smallest grains do not. The planetesimals

are primarily composed of the largest grains. The 2nd smallest grains (out of 6 species)

exhibit in-between behavior—they form filaments readily, but not clumps.

We also show that the clumping driven by the SI would result in optically thick

thermal emission in observations. The single size models clump more readily than the

multi-size models, for which 1/6 of the dust mass does not clump at all. We compute an

expected mass correction factor to account for this saturated emission, and find values

between 40-90% for single-size (or strongly peaked) models, and 20-50% for the multi-size

models.

In chapter 5, we build on prior work which explored the boundary for strong clumping

via the SI in the parameter space set by the drag stopping time (or grain size) and the

dust-to-gas mass surface density ratio. Strong clumping via the non-linear SI seeds

planetesimal formation. Prior work primarily used 2D (radial-vertical) calculations.

Motivated by the dynamical behavior seen in the azimuthal direction in the non-linear SI,

we perform a parameter sweep in these parameters with 3D calculations. Interestingly,

we find disagreement with recent work (Li & Youdin 2021), which generally predict

lower critical surface density ratios (at a fixed grain size). Possible reasons for this

disagreement include the wider numerical domains in the radial direction used by Li &

Youdin (2021), or the vertical outflow boundary conditions used in their numerical work.

Additional work is needed to discern the cause of this discrepancy.
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Lastly, in chapter 6, we summarize the results, discuss their impact on the field and

avenues for future research.
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Chapter 2

Streaming instability on different

scales. I. Planetesimal mass

distribution variability

Josef Rucska & James Wadsley

What follows has been published in Monthly Notices of the Royal Astronomical Society

(MNRAS). See: Rucska & Wadsley (2021), MNRAS, 500, 520.

Abstract

We present numerical simulations of dust clumping and planetesimal formation initi-

ated by the streaming instability with self-gravity. We examine the variability in the

planetesimal formation process by employing simulation domains with large radial and

azimuthal extents and a novel approach of re-running otherwise identical simulations

with different random initializations of the dust density field. We find that the plan-

etesimal mass distribution and the total mass of dust that is converted to planetesimals

can vary substantially between individual small simulations and within the domains of
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larger simulations. Our results show that the non-linear nature of the developed stream-

ing instability introduces substantial variability in the planetesimal formation process

that has not been previously considered and suggests larger scale dynamics may affect

the process.

2.1 Introduction

Planet formation requires solid growth over a dozen orders of magnitude, from micron-

sized grains embedded in protostellar clouds to centimetre or ten-centimetre sized dust

pebbles in protoplanetary disks to terrestrial planets and planetary cores thousands of

kilometres across. It is widely accepted that the first stage of growth, from micron-

sized grains to centimetre-sized pebbles, is achieved by collisions. Similarly, once a large

population of kilometre and tens of kilometre-sized planetesimals are present, these

objects will interact gravitationally to build protoplanets and the final planetary system

(Armitage 2020). The intermediate growth phase, from centimetre sized pebbles to

kilometre sized planetesimals, however, faces two key constraints known as the metre-

barrier.

The first barrier is rapid radial drift. All solid material feels a headwind as it orbits

through the gaseous component of the disk. The gas orbits at sub-Keplerian speeds

due to a radial pressure gradient, while dust attempts to orbit at the Keplerian speed.

This headwind removes angular momentum from the dust, so that the dust orbit decays

towards the star with a net inward radial drift. This effect is small for micron-sized

dust grains that are tightly coupled to the gas, as well as for kilometre-sized objects.

However, for intermediate sized objects, near one-metre, the radial drift timescale can

be as short as a few hundred years (Weidenschilling 1977a).

The second barrier is related to collisional growth. Relative velocities in collisions

between dust grains are strongly dependent on their size. When the objects approach
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one metre in size, the combination of turbulence and lower drag leads to fast collisions

that are always destructive, resulting in net mass loss for both objects (Zsom et al. 2010;

Windmark et al. 2012).

These barriers act to exclude metre-sized objects from the disk. The formation

of kilometre-sized planetesimals thus requires a specific mechanism that is capable of

rapidly concentrating solid mass without relying on collisions between dust grains.

2.1.1 The Streaming Instability and Planetesimal Formation

The streaming instability (SI) (Youdin & Goodman 2005) provides a promising mech-

anism to enhance dust concentrations. The SI is always present in shearing, dust-gas

mixtures. It is one of a class of resonant drag instabilities (RDI) present in protoplane-

tary disks (Squire & Hopkins 2018; Squire & Hopkins 2020). At high dust to gas ratios

it can operate faster than radial drift timescales (Youdin & Goodman 2005; Youdin &

Johansen 2007).

The formation of planetesimals via the SI requires local dust densities that exceed

the Roche density (Li et al. 2019), so that they can condense under their own gravity.

Localized collapse occurs at local dust surface densities 2-3 orders of magnitude larger

than the local average in the disk. This represents a non-linear, evolved state of the

SI that must be treated numerically (Youdin & Johansen 2007; Bai & Stone 2010b).

Prior work has established that the non-linear phase consistently produces azimuthally

oriented (i.e. globally ring-like) dust filaments (Johansen et al. 2007; Bai & Stone 2010a;

Yang & Johansen 2014; Simon et al. 2016; Simon et al. 2017; Li et al. 2018).

In an influential paper, Johansen et al. (2007) showed that these filaments can pro-

duce local dust densities high enough to initiate gravitational collapse and planetesimal

formation. The timescale for this process is just tens of orbits. This result highlighted

the promise of SI for overcoming the metre barrier. 3D hydrodynamical simulations of
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shearing patches of protoplanetary disks are now well-established as a way to predict the

properties of planetesimals formed by the non-linear SI (Johansen et al. 2009b; Johansen

et al. 2012; Johansen et al. 2015; Simon et al. 2016; Simon et al. 2017; Schäfer et al.

2017; Abod et al. 2019; Li et al. 2019; Nesvorný et al. 2019; Gole et al. 2020). These

studies have explored how this process depends on parameters such as the dust mass

(Johansen et al. 2009b; Simon et al. 2017), dust grain size (Simon et al. 2017), radial

pressure gradient (Abod et al. 2019) and local gas turbulence (Gole et al. 2020).

Ideally, the streaming instability would operate directly within simple (e.g. smooth,

axisymmetric) models based on observations of protoplanetary disks. However, achiev-

ing growth rates relevant to planetesimal formation may require local dust-to-gas mass

density ratios greater than unity (Youdin & Goodman 2005; Youdin & Johansen 2007).

In simulations of local patches of protoplanetary disks this translates to a requirement of

super-solar dust-to-gas surface densities in order to achieve sufficient dust clumping for

gravitational collapse (Johansen et al. 2009c; Bai & Stone 2010a; Bai & Stone 2010c).

Local concentrations of dust in the disk would circumvent this issue. Large-scale gas

structures such as pressure bumps and vortices could create large scale dust traps with

enhanced local dust-to-gas mass surface density ratios (see Birnstiel et al. 2016, for a

review). Observations show protoplanetary disks in nature can have non-uniform dust

distributions, including rings (e.g. Dullemond et al. 2018) and non-axisymmetric bumps

(van der Marel et al. 2013; van der Marel et al. 2015)1. Drążkowska & Dullemond (2014)

and Drążkowska et al. (2016) presented global models of dust in protoplanetary disks

using semi-analytic prescriptions for planetesimal formation via the SI, and conclude

that planetesimal formation via the SI is most efficient in regions with enhanced solid

abundances such as beyond the snow line, or where dust pebbles can accumulate due to

radial drift pile-up.
1Note: features in the dust surface density formed directly by the non-linear SI are much too small

to be observed directly.
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Planetesimals formed by the streaming instability are sand-piles and initially lack

cohesion other than their own self-gravity. This fits the emerging consensus that aster-

oids are rubble piles and represent somewhat evolved planetesimals (Walsh 2018). For

example, data from the recent fly-by of the New Horizon’s space mission of Kuiper Belt

object 486958, Arrokoth, supports the gravitational collapse scenario. McKinnon et al.

(2020) and Grishin et al. (2020) report that this object, which is characterized by two

distinct lobes, was likely formed by a low-velocity impact resulting from the slow decay

of a binary orbit of two smaller Kuiper Belt objects. Additionally, Nesvorný et al. (2019)

compared the observed distribution of prograde vs. retrograde binary orbits in trans-

Neptunian objects with similar, planetesimal-sized objects formed via the SI in local

simulations of patches of protoplanetary disks, and find that the observed data agree

with the simulation. Earlier work (Morbidelli et al. 2009) modeled the gravitational

interactions within a population of planetesimals and planetary embryos and finds that

to produce a final size distribution consistent with the present day asteroid belt, the

initial planetesimal size distribution was dominated by bodies with a minimum size of

approximately 100 km, suggesting smaller objects were not present to build planetesimals

hierarchically.

Prior models for planetesimal formation usually assume the hierarchical build-up of

kilometre-sized objects from smaller objects via collisions (Kataoka et al. 2013). How-

ever, this build-up phase would have to occur incredibly efficiently to avoid the afore-

mentioned metre barrier constraints. Thus, the mechanism of planetesimal formation

via the gravitational collapse of over-dense clouds of dust pebbles that were generated

by the non-linear phase of the streaming instability has become a leading model for this

phase of the process of planet formation.
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2.1.2 Simulating the planetesimal mass distribution

A primary objective of many studies of planetesimal formation via the SI is to charac-

terize the mass and size distribution of the formed planetesimals (Johansen et al. 2015;

Simon et al. 2016; Simon et al. 2017; Schäfer et al. 2017; Abod et al. 2019; Li et al. 2019;

Gole et al. 2020). Such results are useful inputs for models of the evolution protoplanets

and planetary cores in the presence of planetesimal disks (e.g. Pollack et al. 1996). How-

ever, there is still much about simulations of the streaming instability in protoplanetary

disks that remains to be understood.

The SI operates on scales that are a tiny fraction of a protoplanetary disk (≲ 0.01 AU),

as might be expected of a process that can make ∼ 100 km-sized bodies. Thus, published

3D numerical simulations have focused on tiny patches in protoplanetary disks. As

might be expected, prior work has also focused on regions of parameter space with

favourable growth rates which greatly limits the computational expense. In addition,

the ubiquitous turbulence and large stopping-distance of dust grains makes the phase

space of the dust very complex and difficult to model. This precludes simple adaptive

strategies and explains the use of fixed meshes with the associated limits on dynamical

range. Thus it is an expensive and ongoing process to explore the full parameter space

of dust grain sizes, dust mass, total disk mass, global gas pressure gradient and the role

of disk structures. Global disk simulations which resolve the key scales for SI are still

far out of reach.

Key questions remain regarding numerical convergence. For example, establishing

a minimum planetesimal mass, the detailed properties of the dust density distribution

and the turbulent velocity field. We would also like to investigate the non-linear in-

teractions between the non-linear SI and the full, evolving distribution of grain sizes.

Generally, there is much work to be done in characterizing the non-linear SI, including

perturbation growth rates, characteristic length scales, the interaction between newly
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collapsed planetesimals and dust, the amount of dust converted to planetesimals, the

collapse process for individual planetesimals, their resultant properties and the roles of

mergers and collisions.

Due to these challenges and the associated computational expense, most studies using

3D simulations to study the planetesimal mass distribution from the SI considered a

numerical domain size that was at most 0.2 gas scale heights on a side (∼ 0.02 AU).

Thus the impact of larger domains is relatively unstudied. Yang & Johansen (2014) and

Li et al. (2018) used larger domains in a study of the non-linear SI, but their simulations

did not consider gravitational forces between the dust mass, and thus did not follow

the development of the non-linear SI all the way to planetesimal formation. Schäfer

et al. (2017) used larger domains that were twice and four times as large in the radial

and azimuthal directions and studied the population of planetesimals in the full domain.

They constrain parameters of the planetesimal mass distribution in the full domain of the

simulation, and they find disagreement in some parameters for the simulations of different

sizes, and agreement in other parameters. Carrera et al. (2021) used domains with large

radial extents to study planetesimal formation via the SI within large-scale, background

pressure bumps associated with axisymmetric rings in protoplanetary disks. Larger

domains permit new dynamical modes which may impact the planetesimal formation

process, but not much research has been done in exploring this impact.

In this paper, we confirm the basic results of Schäfer et al. (2017), with a different

code and hydrodynamical treatment, using similarly large domains. We expand on their

results by running multiple simulations with parameters that are identical but for differ-

ent random perturbations in initial dust density. We also briefly examine convergence

via enhanced resolution in the largest domain simulation. Through a novel analytical

approach we probe the spatial variability in the planetesimal mass distribution and con-

version rate of the dust mass to planetesimals throughout the larger domains. We also
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consider the mass distributions on the scale of the full domain to compare to prior work.

The paper is organized as follows. In Section 2.2 we outline our methods and pa-

rameters of our simulations. In Section 2.3 we describe our methods for analyzing our

simulation data and our results. Sections 2.3.1 to 2.3.2 focuses on the properties of the

mass distributions and Section 2.3.3 focuses on the quantifying the total amount of dust

that is converted to planetesimals. In Section 2.4 we summarize and discuss our results

and their impact on the field, as well as future work.

2.2 Methods and initial conditions

We model the dynamics of localized portion of a protoplanetary disk, using the shearing

sheet approximation (Goldreich & Lynden-Bell 1965) to simulate a local portion of a

near-Keplerian, protoplanetary disk with a co-rotating Cartesian frame (x, y, z). Relative

to the central star, the box centre is at (r, θ0, z0) in cylindrical coordinates. The box is

centred on the midplane so that z0 = 0. Points within the box are at global coordinates

(r + x, θ0 + y, z). This approximation neglects the effects of azimuthal curvature in the

orbit.

The equations that describe the gas and dust evolution in this non-inertial reference

frame are

∂ρg

∂t
+ ∇ · (ρgu) = 0 (2.1)

∂ρgu

∂t
+ ∇ · (ρguu) = −∇Pg

+ ρg

[
− 2Ω × u + 2q Ω2x x̂ − Ω2z ẑ + µ

v − u

tstop

]
(2.2)

dvi

dt
= 2vi × Ω + 2q Ω2x x̂ − Ω2z ẑ − vi − u

tstop
+ F g (2.3)
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where ρg denotes the gas mass volume density, Pg is the gas pressure, and µ ≡ ρd/ρg

is the ratio of the local dust mass density to the gas mass density. The velocity of the

gas is represented by u, and the velocity of an individual dust particle is vi, where

the subscript i identifies the ith dust particle. We use an isothermal equation of state,

Pg = ρgc2
s, where cs is the sound speed.

The gas and the dust are coupled together by the terms µ(v − u)/tstop and −(vi −

u)/tstop in the gas and dust momentum equations, respectively. The notation v repre-

sents the mass-weighted average velocity of the dust particles in the gas cell (though in

our simulations all dust particles have the same mass). The stopping time of the dust

particle, tstop, is a timescale that characterizes the rate at which momentum is exchanged

between the gas and dust. In the Epstein drag regime (Epstein 1924), where the particle

size is smaller than the mean free path of the gas, this parameter is given by

tstop = ρss

ρgcs
(2.4)

where ρs is the bulk solid density of the particles (approximately 2.6 g cm−3 for silicates

(Moore & Rose 1973)) and s is the radius of the dust grains if we assume they can be

approximated with a spherical shape. In protoplanetary disks, the Epstein drag regime

applies to dust particles everywhere except the very inner part of the disk (Birnstiel

et al. 2016), so we use this drag formalism.

In the local frame described by (x, y, z), which rotates with the Keplerian rotation

with the disk, there is a background velocity flow due to differential rotation in the radial

direction. The angular velocity is a power law in the disk radius, Ω ∝ r−q, and we model

Keplerian rotation, where q = 3/2. In our co-ordinates, the rotation vector is oriented

along the z-axis, Ω = Ω ẑ, which leads to a background velocity flow given by (qΩx)ŷ,

where x is the local radial co-ordinate.
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2.2.1 Numerical methods

We simulate this system with the public C-version of the Athena hydrodynamics grid

code (Stone et al. 2008). We employ the HLLC Riemann solver to compute the numerical

fluxes and the cornered transport upwind (CTU) integrator to evolve the equations in

time (Stone et al. 2008; Stone & Gardiner 2009). Dust is modeled following Athena

(Bai & Stone 2010b) with the semi-implicit integrator and the triangular-shaped cloud

(TSC) scheme to interpolate particle properties to and from the gas grid. The gravity

solver was modified to include dust self-gravity. Otherwise, what follows are standard

Athena options.

The orbital advection scheme separates the background flow velocity from the fluc-

tuations, leading to a more computationally expedient and accurate algorithm (Masset

2000; Johnson et al. 2008; Stone & Gardiner 2010). Thus the momentum equation for

the dust particles which is integrated in our simulations has the background shear flow

subtracted, and is of the form

dv′
i

dt
= 2(v′

iy − ηvK)Ωx̂ − (2 − q)v′
ixΩŷ − Ω2zẑ − v′

i − u′

tstop
+ F g (2.5)

where v′ = v − (qΩx)ŷ and u′ = u − (qΩx)ŷ.

To maintain this shear flow at the radial boundary, our simulations employ shearing

box boundary conditions, where the azimuthal (y-direction) and vertical (z-direction)

hydrodynamic boundary conditions2 are purely periodic, and the radial (x-direction)

boundary conditions are shear periodic (see Hawley et al. 1995; Stone & Gardiner 2010).

The radial periodic zones move along the y-direction with velocities of magnitude qΩLx.

Once the periodic zones have moved beyond the extent of the computational domain in

the y-direction, the motion resets and the shear periodic boundary conditions become

momentarily purely periodic. The time period for this is given by tn = nLy/(qΩLx),
2The boundary conditions are slightly different for the gravity solver, see Section 2.2.1
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where for each n = 0, 1, 2... the radial boundary conditions are purely periodic, and for

all intermediate times the are boundaries are not perfectly aligned, according to the

shear periodic scheme. Here, Lx and Ly are the extent of the box in the x-direction and

y-direction, respectively.

Another essential component of the streaming instability is large-scale, radial pressure

gradients in the gas disk, which has a surface density profile that decreases with radius.

This pressure gradient is responsible for maintaining a persistent difference between the

radial component of the velocity of the dust and the velocity of the gas. Only the gas feels

the radially-outward pointing hydrodynamic force due to this pressure gradient, which

causes the gas to orbit at slightly sub-Keplerian speeds (Armitage 2020). The dust does

not feel this force, and orbits at the Keplerian speed. The difference in these radial

velocities is small, but it is persistent, which means there is a persistent momentum

exchange between the dust and gas via the drag force, hence why this gradient is a key

component of the streaming instability (Youdin & Goodman 2005).

Including this radial pressure gradient directly in the gas phase within the simulations

would create a discontinuity between the inner and outer radial boundaries of the domain.

Hence, when including this effect in Athena, Bai & Stone (2010b) approximate the

effect of the pressure gradient as a constant force within the shearing box. However,

instead of applying an outward radial (positive x) force to the gas, a constant inward

radial (negative x) force is added to the particles. This is the Fgrad = −2ηvkΩx̂ term in

equation 2.5. The factor ηvk measures the amount by which the azimuthal component

of the dust and gas is modified from the Keplerian velocity. Given a disk model with a

radial pressure profile Pg ∝ r−n and an isothermal equation of state,

η = n
c2

s

v2
k

. (2.6)

With the gas scale height defined as Hg ≡ cs/Ω, then η ∼ O(Hg/r)2, and in many
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models of PPDs, e.g. minimum mass solar nebula (Hayashi 1981), Hg/r ∼ 0.05, and a

typical value for η is ∼ 0.003. In Athena (Bai & Stone 2010b), this factor η in the radial

pressure gradient force Fgrad = −2ηvkΩx̂ is parameterized via the dimensionless factor

ηvk/cs, and the simulations in this study use a value of ηvk/cs = 0.05 (see Section 2.2.2).

Particle self-gravity

Exploring the creation of bound clumps requires the gravitational acceleration due to

dust particles,

F g = −∇Φd (2.7)

where the potential due to dust, Φd, is the solution of Poisson’s equation,

∇2Φd = 4πGρd, (2.8)

where G is the gravitational constant. The TSC interpolation scheme is used to compute

the dust density, ρd (used for drag and gravity).

Following prior work (e.g. Simon et al. 2016), we neglect the self-gravity of the gas

whose local density perturbations are relatively small and also the effect of gravity on gas

which is small compared to other forces. These assumptions can be justified by examining

the gaseous Toomre (1964) parameter, Q ≡ csΩ/(πGΣ) ∼ 32 for our simulations and

thus the gas disk is very gravitationally stable (see also equation 2.13 and associated

discussion).

We use the Poisson solver implemented in the public (C-version) of Athena by C.-G.

Kim (Kim & Ostriker 2017), with shear-periodic horizontal boundary conditions (Gam-

mie 2001) and vacuum (open) boundary conditions in the vertical direction (Koyama &

Ostriker 2009). We show tests confirming the correct behaviour of dust with self-gravity

in our simulations in Appendix Appendix 2.A.
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2.2.2 Initial conditions & parameters

Our choice for the parameters that control the dust mass, dust grain size, radial pressure

gradient, and ratio of gravitational and rotational shear strength are either identical or

very similar to choices from previous work (Simon et al. 2016; Schäfer et al. 2017;

Johansen et al. 2012; Li et al. 2018; Gole et al. 2020). These parameters are summarized

in the bottom row Table 2.1 and are defined in this section.

The gas is initialized with a Gaussian profile in the vertical direction

ρg(z) = ρg,0 exp
(

− z2

2H2
g

)
(2.9)

where ρg,0 is the gas density in the midplane and Hg is the gas scale height. We set the

units of our model so that ρg,0 = Hg = Ω = cs = 1. The dust particle positions are

initialized with a random number generator based on a uniform distribution in the x-y

plane, and a Gaussian profile in the z direction with a scale height Hd = 0.02Hg. The

number of particle resolution elements in each simulation is equal to the number of grid

resolution elements in the domain. As seen in Table 2.1, we ran multiple simulations

with identical domain sizes and resolutions, each of which labelled with a letter a, b, c,

or d. The dust particles in these otherwise identical simulations were initialized with

different random number seeds, changing the individual particle positions. This leads to

different outcomes in the planetesimal formation process during the non-linear evolution

of the streaming instability (explored in Section 2.3).

The size of the dust grains, s, controls the strength of the drag coupling between dust

and gas. This sets the dimensionless stopping time,

τs ≡ tstopΩ. (2.10)

In all our simulations, we choose τs = 0.314. In terms of orbital periods, Torb = 2π/Ω,
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we have tstop/Torb ≈ 0.05. The mass of the dust particles is controlled by the ratio of

dust mass surface Σd density to the gas mass surface Σg density

Z ≡ Σd

Σg
(2.11)

and we use Z = 0.02, a slightly super-solar solid mass ratio. The radial pressure gradient

parameter η (see equation 2.6), is parametrized via

Π ≡ ηvK

cs
(2.12)

and for this parameter we choose Π = 0.05. Lastly, the strength of gas self-gravity versus

tidal shear is captured by

G̃ ≡ 4πGρg,0
Ω2 . (2.13)

The value of this parameter sets the relative importance of self-gravity versus tidal shear.

Varying G̃ is equivalent to moving through different radial portions of the disk. For our

simulations, as in the fiducial simulation from Simon et al. (2016), we set G̃ = 0.05,

equivalent to a Toomre Q of 32. For a disk model where these quantities are power laws

in the disk radius r, i.e. Σg ∝ r−a, Hg ∝ rb, Ω ∝ r−q, then G̃ ∝ r−a−b+2q. For a = 1,

q = 3/2, and, as in the minimum mass solar nebula (MMSN) model (Hayashi 1981),

b = 5/4, then G̃ ∝ r3/4 and varies with radial position within the disk.

2.2.3 Simulation domain

In our study, we consider simulation domains of various sizes, as well as multiple runs of

simulations with identical physical parameters to investigate the variance planetesimal

formation process via the streaming instability. The domain sizes are summarized in

Table 2.1.

We employ simulations with Lx = Ly = Lz = 0.2, as well as Lx = Ly = 0.4, Lz = 0.2
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Table 2.1: Simulation parameters.

Run name Domain Size Grid Resolution
(Lx × Ly × Lz)/Hg Ncell = Nx × Ny × Nz

L02a 0.2 × 0.2 × 0.2 120 × 120 × 120
L02b 0.2 × 0.2 × 0.2 120 × 120 × 120
L02c 0.2 × 0.2 × 0.2 120 × 120 × 120
L02d 0.2 × 0.2 × 0.2 120 × 120 × 120
L04a 0.4 × 0.4 × 0.2 240 × 240 × 120
L04b 0.4 × 0.4 × 0.2 240 × 240 × 120
L08 0.8 × 0.8 × 0.2 480 × 480 × 120
Npar/Ncell τs Z G̃ Π

1 0.314 0.02 0.05 0.05

a

b

b

c

d

a

Figure 2.1: Dust surface density in the x-y plane for each of the 7 simulations. The colour
represents the logarithm of the dust surface density normalized by the mean dust surface density.
Bound planetesimals identified by the group finder are highlighted by the white circles, where
the radii of the circles is equal to the Hill radius (equation 2.18). Each snapshot represents the
simulation at time t = 80 in units of the inverse orbital frequency, Ω−1.
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and Lx = Ly = 0.8, Lz = 0.2, where all above lengths are in units of the gas scale

height, Hg. We introduce a shorthand for the simulations with the previously described

domain sizes, and refer to them as L02, L04 and L08, respectively.

We maintain an equivalent numerical resolution (in terms of cells per length) between

runs. In our smallest domains, the L02 runs, which matches the size of the domains from

Simon et al. (2016), we use a moderate resolution of (Nx, Ny, Nz) = (120, 120, 120).

This results in cubic resolution elements in our simulation grids, with a side length of

0.2Hg/120 ≈ 0.00167Hg. We maintain this resolution in our larger simulations, hence

the L04 runs have (Nx, Ny, Nz) = (240, 240, 120) and the L08 runs have (Nx, Ny, Nz) =

(480, 480, 120).

We note that, according to Simon et al. (2016), for these dust parameters our reso-

lution of ∼ 0.001667Hg is sufficient to adequately sample the planetesimal distribution,

typically providing several planetesimals per L02 sized box. At higher resolutions, the

dust particles can collapse to smaller length scales because gravity is discretized at the

grid cell scale, and thus smaller mass planetesimals can be formed, and a greater number

of planetesimals overall. At lower resolutions, only a few planetesimals per L02 box can

form.

While the ratio of the dust-to-gas mass surface density is Z = 0.02, the ratio of the

midplane dust mass density and dust gas density, given by,

ρd,0
ρg,0

≡ Σd

Σg

Hg

Hd
= Z

(
Hd

Hg

)−1

, (2.14)

is actually rather high once the dust settles to the midplane. The ratio Hd/Hg approaches

∼ 0.05, which gives ρd,0/ρg,0 ∼ 0.4, approaching unity. Also, as shown in the next

section, the relationship between the total dust mass and the total gas mass in the

simulation domain is Mdust,T = 0.25Mgas,T. This is because the vertical extent of the
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box is 0.2Hg, which excludes a significant portion of the gas mass in this small patch

of the protoplanetary disk, while all the dust mass in the vertical dimension is included

within the domain (recall Hd,0 = 0.02Hg).

2.2.4 Physical unit conversion

Following Simon et al. (2016) and Johansen et al. (2012) we convert to physical units by

considering a mass unit given by M0 = ρg,0Hg
3, and then use the MMSN model (Hayashi

1981) for the gas scale height as a function of disk radius, Hg(r) ∼ 0.033(r/AU)5/4. With

r = 3 AU, we have M0 = 6.7 × 1026 g. For our smallest (L02) boxes, the total amount

of gas in the box is Mgas,T ≈ 0.008M0. With Σg =
√

2πρg,0Hg, Σd = Mdust,T/(LxLy),

we have Mdust,T =
√

2π(Lx/Hg)(Ly/Hg)ZM0. Again, for the L02 boxes, this gives

Mdust,T ≈ 0.002M0 = 0.25Mgas,T and with the conversion for M0 to physical units,

assuming a global disk radius of r = 3 AU, the total mass of dust in the L02 boxes under

these assumptions is Mdust,T = 1.34 × 1024 g ≈ 1.5MCeres.

With the same MMSN prescription for Hg(r) as above, 0.2Hg (the side length of our

smallest domain) converts to ∼ 0.025 AU if we place the simulation box at r = 3 AU.

At the same radius, our resolution unit of ∼ 0.00167Hg converts to ∼ 2 × 10−4 AU, or

32, 000 km.

2.2.5 Computational resources

Every simulation in this study was integrated to at least t = 200Ω−1 in Athena. The

number of CPU hours used to integrate to t = 200Ω−1 was ∼3500 for each L02 simulation,

∼8200 for each L04 simulation, and 27400 for the L08 simulation. All simulations were

run on the ComputeCanada Niagara cluster.
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2.2.6 Planetesimal mass distribution characterization

In this section we describe the methods we used to quantify the mass distribution of

planetesimals formed in our simulations. The cumulative mass distribution, N>(mp),

is the number N is the number of planetesimals of greater or equal mass than mp.

Following Simon et al. (2017), we estimate the differential mass distribution via,

dN

dmp

∣∣∣∣∣
i

= 2
mp,i+1 − mp,i−1

. (2.15)

where i denotes the ith planetesimal ranked in increasing mass. We use the maximum

likelihood estimator (MLE) of Clauset et al. (2009) to estimate the power-law index p

such that dN
d mp

∝ m−p
p . This gives,

p = 1 + n

[
n∑

i=1
ln
(

mp,i

mp,min

)]−1

, (2.16)

where n is the number of planetesimals in the set of planetesimal masses, {mp,i}, and

mp,min is the minimum planetesimal mass in the set. The error in the estimate for p is,

σ = p − 1√
n

. (2.17)

Other studies (Schäfer et al. 2017; Li et al. 2019) characterized the mass distribution

with a variety of functions that contain more parameters, including some that combined

a power-law fit with an exponential cut-off. Since we use only moderate resolution and

thus have lower planetesimal numbers than the high-res simulations from Simon et al.

(2016), we choose to only fit our data with a single power law.
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2.2.7 Group finding

We employ the group finding algorithm SKID (Stadel 2001) to identify gravitationally

bound clumps in our particle data, which we refer to as planetesimals in our study.

The Hill radius, RH , characterizes the roughly spherical region where a planetesimal’s

gravity dominates over shear (Armitage 2020). This radius can be expressed as,

RH =
(

mpG

3Ω2

)1/3

, (2.18)

which gives the Hill density for a planetesimal with mass mp,

ρH ≡ 3
4π

mp

R3
H

= 9 Ω2

4πG
. (2.19)

The SKID algorithm computes a mass density estimate on the dust particle data, and

we consider any clumps with densities above ρH and with a sufficiently large mass mp so

that the Hill radius for that clump is greater than the width of the hydrodynamic grid

cell, ∆x = Lx/Nx. These are the same conditions used in Li et al. (2019) and Gole et al.

(2020), who likewise employed a clump finding algorithm on the dust particle data to

identify planetesimals. We note that the results of our study are not sensitive to these

cut-offs as most of the identified planetesimals are massive enough that their Hill radius

RH is much larger than ∆x, and the densities of the particles in these clumps are well

clear of ρH , confirming that these particles are unambiguously gravitationally bound.

2.3 Planetesimal mass distribution

In this section we examine the variability in the formation of planetesimal via the stream-

ing instability. We explore this via simulations with domains of varying sizes and re-runs

of otherwise identical simulations with different random seeds used to distribute the dust

particles (see Section 2.2.2).
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Figure 2.1 shows the dust surface density in the x-y plane for each of our simulations

at t = 80Ω−1. We choose to present the dust surface density and perform our mass dis-

tribution analyses at t = 80Ω−1 because at this time, enough planetesimals have formed

to sample the distribution well, but this is also before planetesimals have grown sub-

stantially3. The planetesimals in Figure 2.1 are highlighted with white circles. Visually,

it is clear that the distribution of dust varies significantly amongst the simulations with

the same domain size and different random seeds. For the larger domain runs (such as

L08), regions that have the same area as an entire L02 run may contain many more or

many fewer planetesimals at the same state of evolution.

2.3.1 Cumulative number distributions

For these data, we subdivide the larger simulations (L04a, L04b, L08) into regions with

the same area as the L02 runs. The cumulative number distributions for each sub-region

are shown as separate lines in Figure 2.2. Explicitly, there are 4 such sub-domains for

each L04 run and 16 for L08.

Figure 2.2 demonstrates the large variability in the cumulative number distribution

for the planetesimal masses at t = 80Ω−1 in these equal area regions. At the mass

mp/Mt,02 = 0.03, the spread in the number of planetesimals within the different L02

simulations is 14 to 22, and in the L04 simulations the spread is 6 to 14, and in the

L08 the spread is 6 to 29. This spread–most easily seen in the L08 simulation, which

represents largest total area with 16 L02-sized boxes–demonstrates the variable behavior

in the planetesimal formation process via the streaming instability that is not represented

well by even a few L02 simulations.

There is also variation in how these planetesimals are distributed in mass. There are

many planetesimals between 0.02 MCeres and 0.03 MCeres in the L02a run and between
3In Section 2.4 we discuss how the cross-sections of the bound dust objects in the simulations in this

study (and all similar studies) are unrealistically large, and how this impacts the mass distribution over
time.

62



Ph.D. Thesis – Josef J. Rucska McMaster University – Physics and Astronomy

Figure 2.2: Cumulative number distributions of the planetesimal mass at time t = 80Ω−1. For
the L04 and L08 data, the simulation domains have been subdivided into smaller boxes equivalent
in size to the L02 domains (see Section 2.3.1). The data represents the planetesimal distribution
at the simulation time t = 80Ω−1, the same snapshot considered in Figures 2.1 and 2.3. The
planetesimal masses are given in units of the total mass of the dust in an L02-sized domain on
the bottom x-axis and the mass of Ceres on the top x-axis (see Section 2.2.4 for physical unit
conversions).
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0.01 MCeres and 0.02 MCeres in the L02c run, but the other L02 runs do not have many

planetesimals at these masses. This trend is observed in the samples of L02-sized domains

within the larger boxes as well.

2.3.2 Differential number distributions

Figure 2.3 shows the differential mass distributions, estimated as described in 2.2.6.

Each symbol in the top panel represents dN/dM for just one of the four L02 simulations.

However, the indicated power-law index p was computed with all four runs. The same

procedure was used for the L04 runs in the middle panel.

We find power-law indices of p02 = 1.73 ± 0.09, p04 = 1.64 ± 0.07, p08 = 1.60 ± 0.04

for the different domain sizes. The decreasing uncertainty reflect the larger total area.

Within this modest uncertainty, the different cases agree with each other and are also

generally in agreement with values reported in Simon et al. (2016), Simon et al. (2017)

and Johansen et al. (2015).

The mass distribution of the planetesimals changes over the course of the simulations

and this is reflected in the indices as shown in Figure 2.4. When considering the small

domain simulations individually, as in the top panel, there is a lot of variance in the

value of p, typically ranging from 1.5 to 2.0, and upper and lower limits exceeding that.

This partly reflects the total numbers in each sample being in the range of 10-30 at the

chosen resolution. There is a general trend to less variation at later times and smaller p

values.

In the bottom panel, when the larger domains are considered and the planetesimal

populations from the multiple L02 and L04 runs are combined, there is much less variance

in the value for p. The steady, decreasing trend with time is readily apparent. At

t = 50Ω−1, when enough planetesimals have formed to compute a reliable value for p,

the values range between 1.6 and 2.0 across the different sized simulations, and well
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Figure 2.3: Differential number distributions of the planetesimal mass, computed according
to equation 2.15. The data for each of the 7 simulations is plotted individually. The grey
dashed lines are power-law fits, where the slopes are calculated according to equation 2.16. The
calculation for the fit in the L02 panel includes every data point for all four simulations, and
the fit in the L04 panel includes every data point in the two simulations. The data represents
the planetesimal distribution at the simulation time t = 80Ω−1, the same snapshot considered
in Figures 2.1 and 2.2. The planetesimal masses are given in units of the total mass of the dust
in an L02-sized domain on the bottom x-axis and the mass of Ceres on the top x-axis. See
Section 2.2.4 for details on the conversion to physical units (see Section 2.2.4 for physical unit
conversions).
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Figure 2.4: The slope of the power-law fit to the dN/dmp mass distributions over time. The
power-law index p is calculated according to equation 2.16. Top. The data for the L02 simula-
tions. Bottom. The data for all 7 simulations. As in Figure 2.3, when computing the power-law
index, every data point in all of the L02 simulations is included in the calculation for p, and the
same goes for the L04 data. Both. The shaded region represents σ, the error in p, calculated
according to equation 2.17.
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after planetesimals have formed, at t = 150Ω−1, the values are between 1.4 and 1.6. A

decrease in p represents a shift towards fewer and more massive planetesimals at late

times.

A trend toward larger masses with time is somewhat expected. However, a clear

demonstration of this trend has not been demonstrated in previous studies. In Figure 3

from Simon et al. (2017), the authors show data for p over time in their simulations, but

only over a relatively narrow range of time4. Similarly, Schäfer et al. (2017) show how the

values of their fit parameters change over time, but also only for a narrow window. This

decrease in distribution fit parameters emphasizes that care is needed when attempting to

extract a single value for the power-law index or a single set of parameters that describes

the mass distribution of planetesimals formed by the streaming instability. The mass

distribution is transient and should be expected to evolve indefinitely, albeit as a slowing

rate, particularly when a larger simulation domain provides for more material as shown

in the next section.

2.3.3 Total mass of dust in planetesimals and the onset of planetesimal

formation

Figure 2.5 shows the total mass of the planetesimals in the simulations over time. As in

Figure 2.2, the larger domain simulations are divided into smaller sub-domains with the

same area as the L02 runs. The L08 run shows the largest variance in these data. After

t = 40Ω−1, the spread in the total dust mass in planetesimals in any of the sub-domains

from the L08 run spans 5% to 45% of the total mass of dust in a single sub-domain. The

data from the L02 and L04 runs generally fit within the maximum-minimum bounds

of the L08 run. Once again we note that simply re-running these simulations with

a different random seed leads to significantly different consequences for planetesimals
4Our physical dust parameters very closely match the simulation from the middle panel of their Figure

3.
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Figure 2.5: The total mass of the planetesimals Mp in the simulations over time. For the
L04 and L08 data, the simulation domains have been divided into smaller boxes equivalent in
size to the L02 domains (see Section 2.3.1). For the L02 data, all four of the small domain
simulations are considered simultaneously, and the L04 data considers both of the intermediate
sized simulations. The solid line represents the average mass of planetesimals for all the L02 or
L02-sized boxes, and the shaded region is bounded by the maximum and minimum values in this
set. The planetesimal masses are given in units of the total mass of the dust in an L02-sized
domain on the left y-axis and the mass of Ceres on the right y-axis. See Section 2.2.4 for details
on the conversion to physical units.
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Figure 2.6: Maximum value for the dust surface density in the x-y plane of the 7 simulations
over time, normalized by the mean dust surface density. The circles represent the point in time
where each simulation first formed planetesimals.
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formation, shown here directly by the wide spread denoted by the red shaded region

that is quite similar to the region-to-region variation in the larger domains.

Figure 2.6 shows the maximum value of the dust surface density, max(Σd), in the

x-y plane over the course of all 7 simulations. Before approximately t ∼ 10Ω−1, all

simulations evolve quite similarly, however, between about t ∼ 10Ω−1 to t ∼ 20Ω−1, the

larger domain simulations have the highest values of max(Σd). After this time highly

turbulent motions are present in the dust dynamics and the chaotic evolution of the dust

density leads to diverging tracks.

The point where planetesimals first form in each simulation (denoted by the circles in

Figure 2.6) spans a range of t = 15Ω−1 to 35Ω−1. This is another representation of the

non-linear nature of the streaming instability: even among nearly identical simulations,

the dust surface density can evolve differently, which affects the timing for planetesimal

formation. Also, the first formation of planetesimals tends to occur earlier in the bigger

domains. This is likely related to the observation that the value of max(Σd) is higher in

the larger domains from t ∼ 10Ω−1 −20Ω−1. Planetesimal formation requires large over-

densities, and the simulations that first reach dust densities sufficient for gravitational

collapse will be the first to form planetesimals. The large domain simulations can more

quickly reach high dust over-densities because large scale dynamical modes can enable a

faster growth to more extreme local density maxima. The influence of these large scale

modes can also be seen in the variation in the spatial distribution of the planetesimals at

t = 80Ω−1 in Figures 2.1 and 2.2. The smaller L02 domains cannot represent the large

scale modes available in the L08 domains. We will quantify and discuss the presence of

these large scale modes in an upcoming paper in this series.
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2.4 Summary & Discussion

In this study we used 3D simulations of patches of protoplanetary disks to study the for-

mation of planetesimals from the gravitational collapse of dust over-densities generated

by the streaming instability. We employ simulations that use larger domains than most

studies and higher resolution than a study that used similar sized domains. Also, we re-

run simulations with identical physical parameters except for the randomized placement

of the dust particles–a novel approach for these kinds of simulations. Both the larger

domains and re-run simulations allow us to probe the variability in the population of

planetesimals which is caused by the non-linear nature of the streaming instability. Our

main results are as follows:

(i) The cumulative number distribution for the planetesimal mass in any of the sin-

gle L02 domains (which represent the maximum domain size used by most similar

studies) or L02-sized sub-domains within the larger simulations exhibits large vari-

ability. The re-run L02 simulations exhibit a spread in the total number of plan-

etesimals that ranges from 14 to 22, and this spread is 6 to 29 in the sub-domains

within the L08 simulation. That is, there is greater variability in the planetesimal

distribution in the larger domain simulations than the smaller domains. The num-

ber of planetesimals at specific masses is also highly varied within the different L02

or L02-sized domains.

(ii) Variability in the planetesimal formation process can also be seen in the total mass

of dust converted to planetesimals within these domains. In the case of re-run L02

simulations, the mass conversion rate to planetesimals varies between 5 and 25%,

and within the domain of the L08 simulation this conversion is between 5 and 45%.

Spatial variability in the planetesimal formation process has not previously been

reported in other studies.
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(iii) In our study we characterize the differential number mass distribution of planetes-

imals with a single parameter: a power-law index. The value of this parameter is

consistent across our three different choices of domain size when all planetesimals

for each domain size are considered together, and our values as consistent with

the index measured by other studies. However, we find these indices decrease over

time, by as much as ∼ 10% over the course of several orbits. This is representative

of the planetesimal population becoming more top-heavy, i.e. the largest planetes-

imals disproportionately increase in mass over the course of the simulation. Thus,

identifying a single choice of parameters that describes the mass distribution may

be intrinsically difficult in our simulations and similar set-ups.

(iv) The dust surface density in the radial-azimuthal plane in the L08 simulation dis-

plays box-scale structure in the azimuthally oriented filaments. In this large do-

main, the filaments do not span the full azimuthal extent as in the smaller domain

simulations. The distribution of planetesimals is also clearly unevenly distributed

in the azimuthal directions. This implies large-scale dynamical modes which are

not present in the small domains are contributing to the highly variable planetes-

imal formation process observed in the L08 simulation. In subsequent work, we

intend to quantify these larger-scale modes and their role.

(v) The maximum surface density grows quicker and planetesimals form earlier in

larger domains simulations. This suggests an active role for larger-scale dynamical

modes that exists in the larger domains but cannot be represented by the smaller

domains. Again, we defer a detailed exploration of large-scale modes to a up-

coming work where we will consider filament evolution leading up to planetesimal

formation.
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2.4.1 Ongoing challenges and future work

When characterizing the planetesimal mass distribution in our simulation, and in all

studies that employ similar techniques, a fundamental issue arises due to limited com-

putational power. At the resolution in our study, the minimum length scale that is

resolved, i.e. the cell-size, converts to approximately ∼ 30, 000 km in physical units (see

Section 2.2.4). The gravitational force is discretized at this length scale, meaning this

is the smallest sized bound object that can represented in our simulation. We should

aim to probe kilometre and tens of kilometres length scales: the true length scale of

planetesimals, extrapolated from observations of asteroids and Kuiper Belt objects. If

we kept the same domain sizes from this study, we would require some 1000 times better

resolution, or 1000 times more grid points in each dimension. This is beyond the reach

of current computational capabilities. Our conclusion then is the smallest planetesi-

mals in our study (and all studies of this variety) do not accurately represent what we

would expect to be the true smallest planetesimal mass in nature. Simon et al. (2016)

use higher resolution simulations in their study and the minimum planetesimal mass

in that study is not converged. This means that the low-mass end of the planetesimal

mass distribution in such studies is still an open question. The minimum size of the

planetesimals is an important parameter in studies that model the interior evolution of

the planetesimals to constrain the planetesimal formation timescales in the early Solar

system (Lichtenberg et al. 2018).

A second effect of the large grid cell size is the enhancement of planetesimal-planetesimal

interactions such as mergers and planetesimal-disk interactions such as the accumulation

of dust material post-formation, compared to what would occur in nature. As mentioned

in our summary point (iii) above, we observe that the mass distributions become increas-

ingly top-heavy over time, but this phenomenon is likely more pronounced in this and

all similar work due to artificially large interaction cross-sections. Planetesimals could
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accrete mass after formation, but not with effective collisional cross-sections of ∼ 1 bil-

lion km2. To combat this issue, Gole et al. (2020) use a clump-tracking algorithm to

identify planetesimal masses at the moment they are formed in their simulation. This

probes the “birth” mass distribution, and avoids including planetesimals that may have

grown artificially large. Johansen et al. (2015) and Schäfer et al. (2017) replace bound

dust objects with sink particles but find this does not substantially change the mass

distribution. The objective of our study, which used moderate resolution, was not to

definitely explore the planetesimal mass distribution itself, so we do not employ these

more advanced techniques. Instead, we study how these outcomes vary due to larger

domain simulations and across a sample of re-run simulations. Our methods are suffi-

ciently accurate for those purposes and illustrate the impact of domain size and intrinsic

variation.

Characterizing the azimuthally-oriented dust filaments formed by the non-linear SI

(readily visible in Figure 2.1) will be essential for establishing a broader understanding of

planetesimal formation via the SI. These filaments are where dust over-densities become

large enough to gravitationally collapse, hence they comprise the material reservoirs for

planetesimal formation. Key characteristics include their radial width, and radial sepa-

ration. The non-linear physics that produces these filaments makes a priori predictions

from analytical theory difficult. A few studies have empirically investigated these length

scales (Yang & Johansen 2014; Gerbig et al. 2020). Of particular interest is whether

scales significantly larger than typical simulation boxes could affect filaments and conse-

quent planetesimal formation. In a subsequent paper in this series, we will explore the

origin and impact of characteristic dust filament lengths scales and the role of large-scale

dynamical modes.
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Appendix 2.A Self-gravitating shearing wave test

To test our implementation of self-gravity applied to the dust particles, we used the

shearing wave test from Section 2.2.2 of Simon et al. (2016) and Section 1.3.1 of the

Supplementary Information from Johansen et al. (2007), which is based on methods

from Goldreich & Lynden-Bell (1965). In this set-up, the initial condition is a plane

wave perturbation in the x-y (radial-azimuthal) plane and uniform properties in the z

direction, and the amplitude of the wave is small compared to the background follows

so that the evolution of the amplitude can be described by a linear approximations to

the hydrodynamic equations. As in Simon et al. (2016) and Johansen et al. (2007),

we compare the evolution of the amplitudes from the numerical integration in Athena

to a semi-analytical Runge-Kutta integration of the amplitudes computed using the

solve_ivp routine from the scipy.integrate module of SciPy ver. 1.1.0 (Virtanen

et al. 2020).

The numerical integration used the shearing box configuration in Athena with purely

periodic boundary conditions in y and z and shear-periodic boundaries conditions in

x. Also, to isolate the influence of the self-gravity forces on the wave, we eliminate

the back-reaction of the aerodynamic drag of the dust particles on the gas, which is

akin to considering a dust-gas mixture with a very low dust-to-gas mass ratio, µ (see

equation 2.2). The equations that describe the full self-gravitating dust fluid in this case

are thus,
dρd

dt
= −ρg(∇ · v), (2.A1a)

dv

dt
= −∇Φ − Ω

τs
(v − u), (2.A1b)

∇2Φ = 4πGρd, (2.A1c)
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where u is the background gas velocity, but going forward we will set this velocity to zero,

placing the integration in the frame of the background gas fluid, leaving the drag term

above proportional only the to dust fluid velocity w.r.t. to this background, stationary

gas fluid.The other symbols represent the same quantities as Section 2.2.1. In the frame

of the shearing flow, given by ((3/2)Ωx)ŷ, we have,

dρd

dt
− 3

2Ωx
∂ρd

∂y
= −ρd∇ · v, (2.A2a)

dv

dt
− 3

2Ωx
∂v

∂y
= 2Ωvyx̂ − 1

2Ωvxŷ − ∇Φ − Ω
τs

v, (2.A2b)

∇2Φ = 4πGρd. (2.A2c)

Now, following Goldreich & Lynden-Bell (1965), we transform to sheared axes, which

we denote with a ′,

x′ = x (2.A3a)

y′ = y + (3/2)Ωxt (2.A3b)

t′ = t (2.A3c)

and the derivatives in terms of these axes are,

∂

∂x
= ∂

∂x′ + (3/2)Ωt′ ∂

∂y′ (2.A4a)

∂

∂y
= ∂

∂y′ (2.A4b)

d

dt
= d

dt′ + (3/2)Ωx′ ∂

∂y′
. (2.A4c)
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The linear perturbations to the fluid properties are of the form,

ρd = ρd0[1 + δρd], (2.A5)

v = v + δv, (2.A6)

thus, we note that δρd is a dimensionless quantity. The functional form the perturbations

is a plane wave in the sheared axes,

δf(x′, y′) = f̃ exp[i(kxx′ + kyy′ − ωt)]. (2.A7)

Lastly, still following Goldreich & Lynden-Bell (1965), we denote a dimensionless shear

time parameter

τ ≡ (3/2)Ωt′ − kx/ky, (2.A8)

and we will track the temporal evolution of the wave according to this parameter τ .

Returning to the shearing-frame fluid equations from eq. 2.A2, applying the linear,

small-amplitude perturbations and discarding non-linear terms, we have the equations

that describe the evolution of the amplitudes of the wave with the dimensionless time

τ :
dδρd

dτ
= −i

2ky

3Ω (δvxτ + δvy), (2.A9a)

dδvx

dτ
= 4

3δvy + i
2

3Ωτ
4πG

ky(1 + τ2)ρd,0δρd − 2
3τs

δvx, (2.A9b)

dδvy

dτ
= −1

3δvx + i
2

3Ω
4πG

ky(1 + τ2)ρd,0δρd − 2
3τs

δvy. (2.A9c)

We choose the following parameters for the numerical (Athena) and semi-analytic in-

tegrations: τs = ρd,0 = ky = G = 1.0, and the initial conditions: τ0 = −2, δvx(τ0) =

77



McMaster University – Physics and Astronomy Ph.D. Thesis – Josef J. Rucska

Figure 2.A1: Evolution of the amplitudes of the self-gravitating dust fluid from the shearing
wave test. The solid lines represent the evolution from a semi-analytical Runge Kutta integration,
and the dots represent the evolution from the numerical (Athena) integration. The time axis
is units of the dimensionless shearing time parameter τ .

δvy(τ0) = 0, δρd(τ0) = 10−6. The domain in Athena is set-up with (Lx,Ly,Lz) =

(2π,2π,0.2) and (Nx,Ny,Nz) = (256,256,2).

The evolution of the amplitudes of the sheared wave is shown in Figure 2.A1. The

numerical and semi-analytic solutions agree strongly until τ ∼ 4, when the δρd/ρd,0

amplitude approaches 0.1, and the perturbation becomes non-linear. At this point the

linearized equations no longer describe the non-linear behavior captured in the numerical

integration. This confirms that our implementation of self-gravity for the dust particles

follows the expected behavior.
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Chapter 3

Streaming instability on different

scales. II. Filaments and

dynamics

The following presents work towards a paper to be submitted to the Monthly Notices of

the Royal Astronomical Society (MNRAS), by J. Rucska and J. Wadsley.

Abstract

We present numerical simulations of strong dust clumping via the non-linear streaming

instability (SI). We focus on the dust filaments in the pre-planetesimal formation phase.

The dense filaments represent the mass reservoir available to planetesimals, and are an

under-studied component of the SI. We model patches of protoplanetary disks with vary-

ing physical sizes, and find the small domains common to prior work predict filaments

that are globally ring-like, yet in large domains these filaments are azimuthally trun-

cated. Fourier spectra reveal dynamics at large scales inaccessible to smaller domains.

The natural radial filament spacing length also occurs at a scale where the small do-

mains have limited spectral resolution, forcing the organization of the dust into limited
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configurations not seen in larger simulations. A mock filament profile fitting procedure

shows that small variations in the filament spacing can explain aspects of the simula-

tions spectra that are otherwise difficult to model. Our results suggests large domain

simulations of the SI are useful tools for constraining properties of the mass reservoir

available to planetesimal formation via the SI.

3.1 Introduction

The formation of rocky planetary cores begins with the micron-sized grains the proto-

planetary disc inherits from the interstellar medium. These micron-sized grains grow

via collisions to pebbles in the size range of millimetres to centimetres (Birnstiel et al.

2016). Recent observations of these pebbles in protoplanetary discs have revealed a

stunning diversity in disc size and structure (e.g. Ansdell et al. 2016; Andrews et al.

2018; van der Marel et al. 2021). An open question concerns how these pebbles grow

to become kilometre-sized planetesimals–the precursors to protoplanets, full sized rocky

planets, and the cores of some gas giants. In protoplanetary discs, collisions between dust

objects of approximately a centimetre in size are believed to occur at relative velocities

large enough that the collisions are primarily destructive (Zsom et al. 2010; Güttler et al.

2010; Windmark et al. 2012). Further, objects near a metre in size will drift rapidly into

the central star due to the headwind they feel from the gaseous component of the disc

(Weidenschilling 1977a). Hence, a mechanism for the rapid formation of planetesimals

directly from pebbles is required to overcome these barriers.

The streaming instability (SI, Youdin & Goodman 2005) is a leading mechanism for

this process. In the disc midplane, dust pebbles orbit at slightly different speeds from

the gas, which is subject to a radial pressure force (Nakagawa et al. 1986). Under these

conditions, the dust and gas constantly exchange momentum via aerodynamic coupling.

This coupling is a key driver of SI dynamics. For pebble-sized grains in environments
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with high local dust mass concentrations, the SI growth rates are substantial, leading

to the rapid, spontaneous concentration of dust (Johansen & Youdin 2007; Bai & Stone

2010b). In stratified disc models, the settling of dust to a dense midplane layer can

initiate other hydrodynamic instabilities such as the Kelvin-Helmholtz instability (KHI),

which can interact with SI and drive dust clumping (Gerbig et al. 2020; Lin 2021). The

dust clumps created by the SI can easily grow to high densities that are unstable to

gravtiational collapse, resulting in the formation of bound planetesimals from pebble

clouds in just tens of orbits (Johansen et al. 2007).

Before planetesimals form, the non-linear phase of the streaming instability collects

dust into extended, azimuthally-oriented filaments. These filaments have been seen in

3D simulations of the SI under a wide range of physical conditions (Johansen et al.

2007; Bai & Stone 2010a; Simon et al. 2016; Simon et al. 2017; Li et al. 2018; Abod

et al. 2019; Carrera et al. 2021). It is primarily within these filaments that the highest

local dust densities are achieved. Thus, these filaments represent the reservoirs of dust

mass available for planetesimal formation, and characterizing their properties–such as

key length scales: width, separation, and the total mass in these structures–is essential

to characterizing planetesimal formation via the SI more broadly.

Once planetesimals are formed, the subsequent phase in planet formation is the

growth of protoplanetary cores. Recent models have directly incorporated outcomes

from the non-linear SI to inform their input planetesimal populations (Liu et al. 2019;

Jang et al. 2022). Useful predictions from the SI include the shape of the planetesimal

mass distribution, the characteristic planetesimal mass, and the maximum and minimum

planetesimal mass. Constraining these quantities has the been the focus of much prior

work (Johansen et al. 2015; Simon et al. 2016; Simon et al. 2017; Schäfer et al. 2017;

Abod et al. 2019; Li et al. 2019; Gole et al. 2020). By comparison, the filaments that
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represent the mass reservoir planetesimals are born from has been relatively understud-

ied.

This is partially because a robust characterization of the length scales and timescales

of the non-linear streaming instability across a wide range of physical conditions has

remained elusive. The analytic theory for the linear mode of the SI assumes the per-

turbations are both axisymmetric and oriented in the radial-vertical direction (Youdin

& Goodman 2005; Youdin & Johansen 2007; Bai & Stone 2010b; Squire & Hopkins

2018). Thus, progress on characterizing the filaments seen in the non-linear SI in 3D

has come through empirical measurements of simulation data. Yang & Johansen (2014)

and Li et al. (2018) represent the most dedicated studies to date. Both explore how the

vertical dynamics of the non-linear SI can affect outcomes in the disc midplane relevant

to planetesimal formation. Gerbig et al. (2020) connect properties of the non-linear

dust dynamics to length scales and time scales associated with the KHI and report on

measurements of some filament properties.

There remains much to explore regarding SI filaments. Yang & Johansen (2014)

and Li et al. (2018) modelled SI dynamics without the gravitational collapse of bound

objects. In prior work (Rucska & Wadsley 2021), we find that the formation of plan-

etesimals disrupts the filament structures, which suggests the filament-dominated phase

is temporary and difficult to identify in models that cannot conclusively delineate the

beginning of planetesimal formation. Further, an in-depth exploration of Fourier spec-

tra of the dust surface density can effectively highlight key length scales in the system

dynamics, and Li et al. (2018) are the only study to our knowledge to provide a brief

exploration of Fourier modes in the dust density.

In this paper, we conduct an expanded analysis on a data set first studied in a previous

paper (Rucska & Wadsley 2021, hereafter Paper I). Our simulation suite is composed

of multiple runs of varying domain size. We use self-gravitating models to identify the
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pre-planetesimal, dust filament dominated phase of the SI. We conduct in-depth analyses

of Fourier spectra, and discuss a novel technique using mock 1D filament profiles which

can explain unique features of the simulation’s surface density Fourier spectra.

Our paper is organized as follows. In Section 3.2, we briefly summarize our model,

numerical methods, and physical parameters. In Section 3.3 we analyze the real-space

dust surface density features with a focus on the filaments. In Section 3.4 we discuss

properties of 1D Fourier spectra in both the radial and azimuthal direction. In Section 3.5

we describe a procedure for generating mock filament profiles, and how their spectra

compare to our simulation data spectra. Finally, in Section 3.6 we summarize our results,

discuss their impact on the field and prospects for future work. Appendix Appendix 3.A

summarizes a small parameter sweep to provide loose constraints of filament properties

with our mock signal procedure. In Appendix Appendix 3.B we repeat our analyses

at different numerical resolutions, and conclude that the level of resolution common to

prior work struggles to capture the filament properties explored in our study.

3.2 Methods and initial conditions

The numerical methods, set-up, and parameter choices for this study are identical to

those used in Paper I. Hence, here we provide only a summary of our methods and direct

readers seeking a more detailed description to Paper I.

We model the dynamics of a local region of a protoplanetary disc, which involves a

gas phase coupled to a solids or dust phase via aerodynamic drag. The disc is localized

using the shearing sheet approximation (Goldreich & Lynden-Bell 1965), in which a local

Cartesian frame (co-ordinates x, y, z) co-rotates with the Keplerian rotation in the disc.
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The following equations describe the gas and dust evolution:

∂ρg

∂t
+ ∇ · (ρgu) = 0, (3.1)

∂ρgu

∂t
+ ∇ · (ρguu) = −∇Pg

+ ρg

[
− 2Ω × u + 2q Ω2x x̂ − Ω2z ẑ + µ

v − u

tstop

]
, (3.2)

dvi

dt
= 2vi × Ω + 2q Ω2x x̂ − Ω2z ẑ − vi − u

tstop
+ F g, (3.3)

where ρg denotes the gas mass volume density, Pg is the gas pressure, µ ≡ ρd/ρg is the

ratio of the local dust mass density to the gas mass density, u is the velocity of the gas,

and vi is the velocity of an individual dust particle, which tracks a clump of dust mass.

We use an isothermal equation of state, Pg = ρgc2
s, where cs is the sound speed. The

parameter q is the exponent for the power-law of angular rotation frequency with radial

position in the disc, Ω ∝ r−q, which in Keplerian rotation has the value q = 3/2.

The magnitude of the drag term and dynamical timescale for the exchange of mo-

mentum between the gas and dust is set by the stopping time of the dust particle, tstop.

In the Epstein drag regime (Epstein 1924), where the particle size is smaller than the

mean free path of the gas, this parameter is given by

tstop = ρss

ρgcs
(3.4)

where ρs is the bulk solid density of the particles (approximately 2.6 g cm−3 for silicates,

Moore & Rose 1973) and s is the radius of the dust grains. In protoplanetary discs, the

Epstein drag regime applies to dust particles everywhere except the very inner part of

the disc (Birnstiel et al. 2016).
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3.2.1 Numerical methods

Our simulations employ the Athena hydrodynamics grid code (Stone et al. 2008; Stone

& Gardiner 2009) with the Lagrangian particles module to model the dust (Bai & Stone

2010b). Our hydrodynamic scheme uses the HLLC Reimann solver and the cornered

transport upwind (CTU) integrator. For the dust momentum evolution, we use a semi-

implicit integrator, as well as the triangular-shaped cloud (TSC) scheme to interpolate

particles to and from the gas grid.

The background Keplerian radial shear velocity is integrated separately from the

fluctuations to the shear. This common technique increases numerical accuracy and

decrease computational run time (Masset 2000; Johnson et al. 2008; Stone & Gardiner

2010). Thus, the dust momentum equation that is integrated by the simulation has the

background shear flow subtracted,

dv′
i

dt
= 2(v′

iy − ηvK)Ωx̂ − (2 − q)v′
ixΩŷ − Ω2zẑ − v′

i − u′

tstop
+ F g (3.5)

where v′ = v−(qΩx)ŷ and u′ = u−(qΩx)ŷ. This background shear flow requires the use

of shearing box boundary conditions across the radial (x-direction) numerical domain

boundary (see Hawley et al. 1995; Stone & Gardiner 2010). The azimuthal (y-direction)

and vertical (z-direction) boundary conditions are purely periodic.

As in prior work (Bai & Stone 2010b), we model the influence of the radially outward

pointing gas pressure gradient with a constant inward radial force term applied to the

dust, Fgrad = −2ηvkΩx̂. The parameter η is related to the strength of the radial pressure

gradient, and is give by,

η = n
c2

s

v2
k

. (3.6)

where n is the exponent of the radial pressure profile Pg ∝ r−n. The value of η (and n)

is ultimately set by another parameter, Π (see equation 3.12).
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We include the gravitational acceleration from the dust density field in the dust

fluid momentum calculations. This permits the collapse of high-density regions and the

formation of bound dust clumps. Though the focus of this study is not on the clumps or

planetesimals themselves, we include the effects of self-gravity so that we can accurately

model and analyze the environment they are actively formed in. This acceleration is

given by,

F g = −∇Φd (3.7)

where the gravitational potential due to the dust density field, Φd, comes from the

solution to Poisson’s equation,

∇2Φd = 4πGρd, (3.8)

where G is the gravitational constant. To solve this equation we use an FFT method

implemented by C.-G. Kim (Kim & Ostriker 2017), with shear-periodic horizontal bound-

ary conditions (Gammie 2001) and vacuum (open) boundary conditions in the vertical

direction (Koyama & Ostriker 2009).

3.2.2 Initial conditions & parameters

As with Paper I, our choice for the parameters for the dust mass, dust grain size, radial

pressure gradient, and ratio of gravitational and rotational shear strength are either

identical or very similar to choices from previous work (Johansen et al. 2012; Simon

et al. 2016; Schäfer et al. 2017; Li et al. 2018; Gole et al. 2020). These parameters are

summarized briefly discussed in this section, and our choices for those values are in the

bottom row of Table 3.1.

The initial gas density is set to be uniform in the x-y plane and with a Gaussian

profile in the vertical direction

ρg(z) = ρg,0 exp
(

− z2

2H2
g

)
(3.9)
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where ρg,0 is the gas density in the midplane and Hg is the gas scale height. We set the

units of our model so that ρg,0 = Hg = Ω = cs = 1. Following section 2.4 of Paper I, if

we choose the disc model from Hayashi (1981) with Hg(r) ∼ 0.033(r/AU)5/4 and place

our local shearing-box model at r = 3 AU, then the total mass of dust in the simulation

domain is 1.34 × 1024 g ≈ 1.5MCeres, and the 0.2Hg side length of our smallest domain

converts to ∼ 0.025 AU.

The dust particle positions are initialized with a random number generator that sets a

similar initial density profile to the gas: uniform in the x-y plane, and a Gaussian profile

in the z direction with a scale height Hd = 0.02Hg. We re-run simulations with identical

physical parameters but different initial random seeds (labelled with a letter a, b, c, or

d in Table 3.1), which changes the exact initial placement of the dust particles and sets

a differential initial noise field in the dust density. Through the non-linear nature of the

streaming instability, the differences in these initial perturbation leads to macroscopic

differences in the high-density dust features such as filaments and planetesimals. This

procedure from Paper I probes the variability in the non-linear SI.

We parameterize the drag stopping time (tstop, see equation 3.4) via a dimensionless

parameter,

τs ≡ tstopΩ, (3.10)

and we choose τs = 0.314, which is the same stopping time from Paper I and many other

studies. The mass of the dust particles is controlled by the ratio of dust mass surface

Σd density to the gas mass surface Σg density,

Z ≡ Σd

Σg
, (3.11)

89



McMaster University – Physics and Astronomy Ph.D. Thesis – Josef J. Rucska

Table 3.1: Simulation parameters.

Run name Domain Size Grid Resolution
(Lx × Ly × Lz)/Hg Ncell = Nx × Ny × Nz

L02a 0.2 × 0.2 × 0.2 120 × 120 × 120
L02b 0.2 × 0.2 × 0.2 120 × 120 × 120
L02c 0.2 × 0.2 × 0.2 120 × 120 × 120
L02d 0.2 × 0.2 × 0.2 120 × 120 × 120
L04a 0.4 × 0.4 × 0.2 240 × 240 × 120
L04b 0.4 × 0.4 × 0.2 240 × 240 × 120
L08 0.8 × 0.8 × 0.2 480 × 480 × 120
L16 1.6 × 1.6 × 0.2 960 × 960 × 120
Npar/Ncell τs Z G̃ Π

1 0.314 0.02 0.05 0.05

and we use Z = 0.02, a slightly super-solar solid mass ratio. The radial pressure gradient

parameter η (see equation 3.6), is parametrized via,

Π ≡ ηvK

cs
, (3.12)

and for this parameter we choose Π = 0.05, applicable to a wide range of disc models

(Bai & Stone 2010a). Lastly, the strength of self-gravity versus tidal shear is captured

by

G̃ ≡ 4πGρg,0
Ω2 . (3.13)

The value of this parameter sets the relative importance of self-gravity versus tidal shear.

We choose G̃ = 0.05, equivalent to a Toomre (1964) Q parameter of 32.

3.2.3 Simulation domain

As with Paper I, we consider simulation domains of various sizes: Lx = Ly = Lz = 0.2;

Lx = Ly = 0.4, Lz = 0.2; Lx = Ly = 0.8, Lz = 0.2; and include one larger simulation

with Lx = Ly = 1.6, Lz = 0.2. All lengths are in units of the gas scale height, Hg. We

introduce a shorthand for the simulations with the previously described domain sizes,
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and refer to them as L02, L04, L08, L16, respectively. We also study multiple runs

of the L02 and L04 simulations with identical physical parameters but different initial

dust density fields, as described in the previous section. The simulation parameters are

summarized in Table 3.1. We maintain an equivalent numerical resolution (in terms of

cells per length) between runs which equates to a cell size of 0.2Hg/120 ≈ 0.00167Hg.

3.3 Dust surface density features

In this section we examine the features of the dust surface density from our simulations

with a dedicated focus on the filaments in Section 3.3.1.

Figure 3.1 shows the (radial-azimuthal) dust surface density for all 8 simulations at

time t = 40Ω−1. As this early time, the dominant dust features are the azimuthally-

oriented filaments, and we can readily see differences in these filamentary features be-

tween simulations with different domain sizes. In the smaller L02 and L04 boxes, the

filaments seem to span the full azimuthal length, while the filaments in the larger L08 and

L16 runs are broken up along this dimension before they reach across the full box length.

In the proceeding section we provide a quantitative assessment of this observation.

We choose t = 40Ω−1 as a representative time for our analyses, as this is when

the filaments have become prominent features, yet before planetesimal formation has

begun in earnest. Figure 3.2 shows the dust surface density in the L04a simulation

over time. We see that the coherent, box-scale filaments do not form until about t =

35Ω−1, and they persist until about t = 50Ω−1, at which point the planetesimals detach

from the filaments and disrupt the filament structure. Figure 3.3 shows the total dust

mass in structures with a surface density above the mean (our proxy for filaments,

see Section 3.3.1) and the total mass in planetesimals over time1. We see that the

mass in filaments saturates early, and the first bound clumps appear at about t =
1Planetesimals are identified using a group finding algorithm (Stadel 2001), see Section 2.7 in Paper

I for details
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a

b

c

d

a

b

Figure 3.1: Dust surface density in the x-y (radial-azimuthal) plane for each of the 8 simula-
tions. The colour represents the logarithm of the dust surface density normalized by the mean
dust surface density. Each snapshot represents the simulation at time t = 40 in units of the
inverse orbital frequency, Ω−1.
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Figure 3.2: Dust surface density in the x-y plane for the L04(a) simulation over time.
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Figure 3.3: Total dust mass in planetesimals (Mp/MT , dashed lines) and in over-dense struc-
tures above the mean surface density (Σd|>Σ0/ΣT , solid lines) over time, for each simulation.
The dust mass in these structures are normalized to the total dust mass in the box. The over-
dense structures are a proxy for the filaments (see Section 3.3.1).
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20Ω−1. Combining conclusions from Figures 3.2 and 3.3, we identify t = 40Ω−1 as a

snapshot where the quasi-stable filaments have formed and planetesimal formation has

not substantially altered their structure. Thus, we focus our analyses in this study on

t = 40Ω−1 or a time average from t = 40−50Ω−1. The techniques we discuss are general

and apply at other times, but at these times the signals we aim to measure are the

strongest.

3.3.1 Filament lengths

In this section we first briefly summarize our procedure for identifying dust filaments,

and then discuss our measurements of the azimuthal lengths of the filaments.

We identify filaments as contours/continuous objects that are more dense than the

mean surface density in the simulation, after applying a Gaussian smoothing filter to the

dust surface density. We approximate the width of the filament features as ∼ 0.0012Hg,

and set the standard deviation of the Gaussian filter as one sixth of this width. Or,

equivalently, 6-σ is set as 0.0012Hg or 7.2 resolution elements. Our results are not

strongly dependent on this choice. The smoothing filter makes the filaments/contours

more continuous in shape, and thus our length analysis less noisy. Our main results hold

without the filter.

To calculate the contours, we use the astrodendro Python package2. We do not

use any advanced features of the software to identify substructures or dendrogram trees

within the filaments, we simply make use of the contour-finding capabilities of this

package. We choose the mean surface density of the simulation as the threshold above

which to trace contours. The mean is a logical choice since the initial dust surface

density is uniform in the x-y plane, so by definition this value represents the boundary

between concentrated and depleted regions of dust mass. Lastly, we ignore any contours
2Available at http://www.dendrograms.org.
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a b

Figure 3.4: Identified dust filaments in the L04(a), L04(b) (top) and L08 (bottom) simulations.
The coloured outlines represent individual filaments, defined as contours in the dust surface
density at the mean surface density (see Section 3.3.1). The different colours distinguish adjacent
filaments. The positions of the identified filaments/contours can be compared to the features seen
in the surface density in Figure 3.1, which also represents the same simulation time t = 40Ω−1.
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Figure 3.5: Mass weighted probability density functions (PDF) for the azimuthal (y-dir.)
lengths of the dust filaments. Filaments are identified as contours at the mean surface density,
see Section 3.3.1 for details of this procedure and Figure 3.4 for a demonstration the output from
our identification scheme. The filament lengths are normalized by 0.2 Hg, the side length of the
L02 simulations. The PDFs are time averaged over the interval t = (40 − 50)Ω−1 and averaged
over the multiple L02 and L04 simulations. For all simulations except for the largest one, L16,
there is a strong peak at the respective box-length scales, indicating the smaller simulations
preferentially form filaments that span the full azimuthal length of the simulation. For the L02
data, the peak bin value at Lfil,y = 0.2 (i.e. their full box length) is greater than 95%. See
Table 3.2 for more specific values from the PDFs.
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Table 3.2: Specific values from the probability density functions of azimuthal filament lengths
from Figure 3.5.

L02 L04 L08 L16
≥ 0.2 Hg 0.949 0.951 0.944 0.904
≥ 0.4 Hg — 0.750 0.822 0.794
≥ 0.8 Hg — — 0.500 0.556
≥ 1.6 Hg — — — 0.134

that are below 10 pixels in total area, which removes isolated planetesimals from our

filament-focused analysis.

Figure 3.4 demonstrates the results of our procedure. Individual filaments are high-

lighted by the different colours. These contours can be compared with the raw surface

density maps in Figure 3.1. Note, due to the smoothing filter that we apply to the

surface density before we locate the contours, the filaments in Figure 3.4 are slightly

wider and smoother than the filaments in Figure 3.1.

With the filaments identified, we compute their azimuthal length. The mass-weighted,

time-averaged probability distribution functions (PDFs) of the filament lengths in the

different simulations are shown in Figure 3.5. We can immediately see that the smaller

domain simulations primarily produce filaments that span the full azimuthal width of

the domain. The distributions in Figure 3.5 from the L02, L04, and L08 simulations are

all very strongly peaked at their respective box scales. The peak of the L16 distribution

is also at its box scale, but the peak is not nearly as strong as with the other simulations

(note that the y-axis in Fig. 3.5 has logarithmic scaling). In Table 3.2, we provide specific

numbers from the PDFs in Fig. 3.5. The numbers along the diagonal show the values

from the respective box length scales: ∼ 95% for L02, 75% for L04, 50% for L08, and

∼ 14% for L16.

Given the periodic boundary conditions across the azimuthal boundary, box-scale

filaments imply ring-like structures globally. The larger domains produce more truncated
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filaments along this dimension, hinting that there are dynamical modes in the non-linear

streaming instability (for these grain sizes/stopping times) which break up the filaments

at length scales that the smaller L02, 0.2Hg-sized boxes cannot capture. We explore

these ideas further using Fourier spectra of the dust surface density in Section 3.4.1.

Also shown in Table 3.2 is the sum of the total mass in filaments above the various

box scales in the simulation suite, as fraction of the total filament mass at all length

scales. For example, the top row shows the total mass in filaments above 0.2Hg, the L02

box scale. We see fairly consistent values among the different rows in this Table, which

shows that the overall segregation of filament mass is consistent across the different

simulation domain sizes. All simulations have between 90% and 96% of the filament

mass in filaments with azimuthal lengths above 0.2Hg. In the L08 and L16 simulations,

approximately 50% of the filament mass is at or above the 0.8Hg length scale. This

result shows that, although the commonly used 0.2Hg domain size from prior work does

not capture the azimuthal length of the filaments accurately, the mass segregation in

filaments at or above 0.2Hg appears to be consistent with runs with larger domains.

3.4 Dust surface density power spectra

In this section we explore the spectral power in the dust surface density using Fourier

transforms. Fourier analysis provides insight on key dynamical length scales that shape

the distribution of dust. We focus specifically on comparing the large-scale dynamical

modes between the simulations with different domain sizes, the peak radial length scale

associated with the dust filaments, and the variance in the real-space dust surface density,

which quantifies the degree to which the dust mass is concentrated into dense structures.
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Figure 3.6: Average of 1D Fourier transform magnitudes through the x and y dimensions for
all 8 simulations. For the top panel, each line represents the average magnitudes for each single
row of the dust surface density at a specific y grid coordinate (i.e. along the x-direction). The
average (mean) is taken for all x-direction rows. The bottom panel represents analogous data,
where rows of Fourier transform magnitudes are averaged along the y-direction. There is a strong
peak in the radial (x-dir., top panel) spectra, representing the radial filament separation length
scale. This peak length scale is plotted over time in Figure 3.7.
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3.4.1 Fourier spectra and large length scale power

Increasing the radial and azimuthal domain lengths above the 0.2Hg domain size common

to prior work permits dynamics on longer length scales. Figure 3.6 shows our representa-

tion of the averaged 1D Fourier transform magnitudes, or Fourier spectra. To compute

this spectra, we first calculate the (complex-valued) Fourier transform amplitudes for a

single row of dust surface density, e.g., for the x direction:

Σ̂d,x(kx) = 1
Nx

Nx−1∑
xj=0

Σd,x(xj) exp
(

− 2πi
xjkx

Nx

)
, (3.14)

and then we compute the magnitude of the amplitudes (for a complex signal â, |â| =
√

â · â∗) and take the average of those magnitudes across the other dimension,

< |Σ̂d,x| >≡ 1
Ny

Ny−1∑
yj=0

|Σ̂d,x(yj)|. (3.15)

Unlike projecting 2D Fourier amplitudes, this procedure is a non-linear averaging that

avoids phase interference, and highlights the strong peak feature in the x-direction spec-

tra. The normalization of 1/N in equation 3.14 ensures that we are able to directly

compare the spectra across the simulations with different box sizes. We compute these

averaged transforms along the rows/columns in both the x and y directions, and plot

the spectra for all simulations versus physical length scale ℓ(x,y) = 1/k(x,y) in Figure 3.6.

The dominant feature of the radial direction spectra (top panel) are the peaks that

(primarily) occur below the full-length box scale for each simulation, in the vicinity

of 0.1Hg. This value corresponds to the spacing between the filaments in the radial

direction (cf. Fig. 3.1). We explore this peak feature in more detail in Section 3.4.2.

In the azimuthal (y) direction, the spectra steadily increase in power from small length

scales to large length scales in all simulations. For all simulations (except L04b) the full-

domain length scale has the most power. This is consistent with earlier observations
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from Figure 3.5, that the filaments generally occur on the largest length scales accessible

to the simulation. The large-scale structure and organization in the dust density suggest

that the SI generates dynamics on large scales that can lead to this structure. Perhaps

in even larger domains there would be a turn-over in these spectra beyond or near 1.6Hg,

and in the mass-weighted PDF of length scales (Fig. 3.5), signalling a preferred azimuthal

filament length similar to what is seen in the radial direction. Such a simulation would

be computationally expensive, however.

In both directions, the larger domain sizes provide an increase of spectral resolu-

tion. The larger simulations can capture dynamics at various length scales that smaller

simulations cannot. For example, at its largest scale, the L02 sims can capture modes

at 0.2Hg and 0.1Hg. The L16 simulation can represent 8 dynamical modes between

[0.2Hg, 0.1Hg). This effect has interesting consequences for the radial spacing of the

filaments, which, according to the peak values from the top panel of Figure 3.6, appears

to prefer a length scale near 0.1Hg. At this scale, the L02 simulation–a common box

length from the literature–has limited spectral resolution. We explore this idea further

in the proceeding section.

3.4.2 Spacing between dust filaments: peak spectra length scales

The peak near 0.1Hg in the radial Fourier spectra at t = 40Ω−1 (Fig. 3.6) is a robust

feature that persists over time. In Figure 3.7, we plot the peak length scale max(ℓx)

over time.

We see that, at early times, and at late times, max(ℓx) can vary substantially. Before

t ∼ 30Ω−1, the filaments have yet to become the dominant features, and dust surface

density is less ordered when compared to slightly later times (cf. Fig. 3.2). Beyond

t ∼ 60Ω−1, the planetesimals disrupt the filaments substantially (cf. Figure 1 from

Paper I, the surface density at t = 80Ω−1). Between t ∼ 35 − 55Ω−1, the peak length
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Figure 3.7: Peak Fourier spectra radial (x) length scales over time (i.e. the peak ℓx from the
top panel of Fig 3.6). The top panel is a zoom-in of the region bounded by the rectangle with
light pink dashed line in the bottom panel. The data in the top panel have been vertically shifted
to make the individual lines at the 0.1Hg and 0.08Hg length scales visible. The horizontal dashed
lines in the bottom panel represent each dynamical move available to the L16 simulation over
the range [0.2, 0.05Hg].
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scale and the filamentary structures are the most stable, which is the reason we focus

our analyses on these times.

From Figure 3.7, we see that the ∼ 0.1Hg peak length scale from the spectra at

t = 40Ω−1 (Fig. 3.6) is consistent over t ∼ 35 − 55Ω−1. Each of the L02b-d and the L08

simulations peak exactly at this scale without variation, and the L04a,b peaks are at

0.08Hg. The L02a peak length begins at 0.05Hg and then jumps to 0.2Hg near t = 38Ω−1.

This large jump demonstrates limitations of the smaller domain sizes. Every simulation

can numerically represent dynamical modes at integer divisions its domain size. For the

L02 simulations, this corresponds to (in Hg): 0.2, 0.1, 0.05, 0.25... etc. That is, there

are only 3 dynamical length scales for these simulations in the range [0.2, 0.05Hg]. The

numbers of modes available to the L16 simulation over this range, each one represented

by a grey, horizontal dashed line in Figure 3.7, is 17.

The limited number of large-scale dynamical modes influences the macroscopic orga-

nization of dust in real space. The peak length scale can be translated into the number

of filaments present in each simulation. In the vicinity of the apparent preferred filament

radial separation length scale near 0.1Hg, the L02 simulations are forced into a configu-

ration with either 1 filament (0.2Hg separation), 2 filaments (0.1Hg), or 3 (0.05Hg). As

seen in the dust surface density (Fig. 3.1), in our sample, 3 of the L02 simulations (b-d)

organize into a 2-filament (0.1Hg) configuration, while the L02a has just one filament.

The L02-sized simulation from Simon et al. (2016) as well as the L02-sized, 1283 run from

Schäfer et al. (2017) (see their Table 23) both organize into 1 filament. Our 1 filament

simulation forms a higher number of planetesimals than the other L02 simulations (Fig.

2 of Paper I), and has more total mass in planetesimals (Fig. 3.3) than its 2-filament

counterparts, suggesting that there is indeed an enhanced amount of dust locally con-

centrated into the L02a filament, and hence an increased opportunity for planetesimal
3This observation was made at t ≈ 250Ω−1, well after planetesimal formation would have distrupted

the filament structure (see Figure 1 of Paper I).

103



McMaster University – Physics and Astronomy Ph.D. Thesis – Josef J. Rucska

formation.

The L04 simulations, which, near 0.1Hg, can represent 5 filaments (0.08Hg), 4 (0.1Hg),

or 3 (0.133Hg), have constant peak length scales at 0.08Hg in Figure 3.7. This repre-

sents a configuration with 2.5 filaments per L02 box length, which is a smaller linear

filament density than is seen in the L02 simulations in our sample4. Interestingly, in

terms of both number of planetesimals and total mass in planetesimals, the L04 simu-

lations are generally less active in terms of planetesimal formation than any of the L02

simulation. These results—which, admittedly, represent a limited sample size—suggest

limited spectral resolution can even impact outcomes such as planetesimal formation.

From Figure 3.7, the peak radial length scale for the L16 simulation does not stay

at one mode between t ∼ 35 − 55Ω−1, but wanders among modes in the vicinity of

0.1Hg. In Figure 3.6, the relative peak amplitude for the L16 is the smallest among

our simulation suite. The radial organization of the filaments at this domain size–even

when probed row-by-row as in our analysis–is less ordered and constant, though the

predominant structure is still filaments spaced roughly 0.08 − 0.1Hg apart.

The preferred filament separation length scale of ∼ 0.1Hg from our analyses is fairly

consistent with similar results from the literature. Yang & Johansen (2014) report

measurements of the filament separations using stencils. For simulations with resolution

at a similar level to our study (their 640Hg
−1 linear cell density, our equivalent value

is 600Hg
−1), they find a stable filament separation of 0.1Hg at early times. Li et al.

(2018) use a similar procedure as our Section 3.4.1 for computing peak radial direction

length scales using Fourier power spectra. They find a preferred filament separation of

∼ 0.15Hg. Also, inspecting the real-space density data in their Figures 9-11 at early

times (before t = 10Porbit ≈ 62.8Ω−1, to match their Fourier analysis in the pre-strong

clumping phase), a filament spacing between near 0.1Hg appears to match their data.
4Further, following our discussion on dynamical resolution, the L02 domain size would not be capable

of forming 2.5 equally spaced filaments, and would instead need to organize into 2 or 3.
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Figure 3.8: Variance in the logarithm of the dust surface density over time (equation 3.16).
The larger simulation domains have been divided into smaller domains equivalent in size the
L02-sized domains, and the curves for these simulations show the mean in the solid lines and the
standard deviation from the average in the shaded regions.

It is important to note that most of the simulations in Yang & Johansen (2014)

used resolutions lower than 640Hg
−1, and that Li et al. (2018) used an equivalent of

320Hg
−1. We explore the effects of resolution on our results in Appendix Appendix 3.B,

and conclude that a resolution of 600Hg
−1 (1203 in a (0.2Hg)3 box) is required to achieve

converged results regarding the filament structures.

3.4.3 Variance

Through Parseval’s Theorem, a related quantity to the integrated spectral power of a

signal (e.g., 2D, discrete a(xi, yi)) is the variance:

var(a) =
∑
xi

∑
yi

(
a(xi, yi) − a

)2
, (3.16)

where a is the mean of the signal. We plot the variance of the logarithm of the dust

surface density in Figure 3.8. We compute the variance on the logarithmic values in order

to down-weight the influence of the planetesimals (and deeply depleted regions), which

are not the focus of this study. From Figure 3.1, the filament features appear to represent

densities within 1 and 10 times the mean surface density. We also divide each larger
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simulation into subdomains equivalent in size to the L02, similar to our analyses from

Paper I. For the larger simulations, the mean values (solid line) and standard deviation

(shaded region) for the set of L02-sized regions are plotted. For each curve, the variance

is zero at the beginning of the simulation when the dust density is uniform, and then rises

sharply with a narrow standard deviation in the early onset of the streaming instability

near t = 10Ω−1. Once the non-linear SI and dramatic variations in density develop

beyond t =∼ 30Ω−1 (cf. Fig. 3.2), the data become more variable, with wide standard

deviations in the larger simulations.

As seen in the averaged Fourier magnitude spectra in Figure 3.6, the L02 simulations

have the highest vertical offsets, then the L04, L08 and L16.

We can see immediately that var(log10[Σd]) is the largest for the L02 simulations, and

the variance generally decreases with domain size. This tracks the order of the vertical

offsets in the Fourier magnitude spectra in Fig. 3.6. This means the surface density

distribution in the smaller simulation contains more deviations from mean values, and

is overall less smooth than in the larger simulations. This may be due to the periodic

boundary conditions having a stronger reinforcing effect on the dynamics of the smaller

domains due to the shorter crossing times for these domains.

3.5 Filament properties via mock signals

In this section, we describe a novel procedure for exploring properties of the SI-formed

filaments via Fourier spectra and mock signals. Gerbig et al. (2020) measured the widths

of filaments in 1D, radially oriented, azimuthally integrated surface density profiles.

They identify filaments as continuous structures above the mean (integrated) surface

density, similar to our 2D contour method for measuring azimuthal filament lengths

(Sections 3.3.1). As with Gerbig et al. (2020), we focus on the radially oriented, 1D

surface density profile from one of our simulations. Along this axis, the filaments stand
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Figure 3.9: A summary of our mock signal procedure (Section 3.5). Top row. The azimuthally
averaged dust surface density at t = 40Ω−1 on the left and the magnitude of the Fourier transform
amplitudes, time averaged from t = 40 − 50Ω−1 on the right. 2nd row. A single Gaussian pulse
with a full width at half maximum (FWHM) of a = 0.03Hg. 3rd row. A series of 8 equally
spaced Gaussian pulses. 4th row. A series of 8 Gaussian pulses with periods perturbed from the
equal-spaced value by δP = 25% (eq. 3.18). In rows 2-4, the spectra of each signal is shown
on the right panels. The blue line in these rows is the spectra of the single pulse from row 2,
a sinc envelope with the amplitude multiplied by the number of pulses in the mock signals for
comparison purposes. Bottom row. On the left, another example of the same kind of mock signal
from the 4th row. On the right, the spectra of 100 iterations of mock signals with randomly
selected spacings versus the spectra from the simulation. The solid red line represents the mean
spectra from the 100 iterations, the darker shaded region represents 1 standard deviation above
and below the mean, the light shaded region shows the maximum and minimum values from the
sample.
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out as distinct peaks. Our procedure compares the Fourier spectrum of that 1D signal

against the spectra from a series of mock signals. The goal of this method is to offer

an explanation for some of the erratic features of the simulation spectral signal. In

Appendix Appendix 3.A, we apply our procedure within a parameter sweep to suggest

loose bounds on specific filament properties.

We define the 1D, azimuthally averaged dust, radially oriented dust surface density

profile as,

Σd

∣∣
x
(xi) ≡ 1

Ny

∑
yi

Σd(xi, yi). (3.17)

We plot this profile at t = 40Ω−1 and the magnitude of the Fourier spectra of that signal

(|Σ̂d

∣∣
x
|, eq. 3.14) for the L08 simulation in the top row of Figure 3.9. The Fourier spectra

are time averaged over multiple snapshots from t = 40 − 50Ω−1 to reduce noise. As seen

in the full power spectra in Figure 3.6, there is a well-defined peak corresponding to the

kx = 8 mode (in inverse box-length units, the same as the x-axis of Figure 3.9)5. The

strength of this mode comes from the strongest features of the real-space data, namely

the 8 roughly equally spaced filaments that are readily visible in the full 2D surface

density (Fig. 3.1) and the Σd

∣∣
x

signal at these times.

This spectrum displays strong off-peak power at kx = 7, 9, and local peaks at kx =

11, 13, 18, 19, 26. Our attempts to explain all of these features with simple analytic

functional fits proved unsatisfactory. Instead, we construct mock signals using a series

of Gaussian pulses–i.e. narrow Gaussian functions–which individually resemble the peaks

from the real-space simulation. We find that pulses with uneven spacing could plausibly

explain the erratic features of the simulation spectra.

Figure 3.9 summarizes our mock signal procedure. The left column shows real space

signals, and the right column shows the spectra of these signals, which are the magnitude
5For the rest of this section, values for kx in the text will be given in units of the inverse box length,

though we will no longer explicitly state so.
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of the Fourier amplitudes as a function of kx. The spectrum of a single pulse, shown in

the second row, is close to that of a sinc function6: sinc(kL) ≡ sin(kL)/(kL). When the

signal is composed of a regularly spaced series of pulses (third row), the spectra is zero

everywhere except the at spatial frequencies that correspond to the number of pulses

(i.e. the fundamental mode), as well as harmonics of that frequency. The amplitude of

the mock signal at the fundamental and harmonic modes follows the envelope set by the

single-pulse spectrum. (In the figure, the envelope amplitude is multiplied by the number

of pulses in order to be directly comparable to the spectra from multiple peaks.) Note

that at the harmonic frequencies (kx = 16, 24...) the simulation spectrum has relatively

low signal, which was one of the main difficulties in our attempts at analytical functional

fits. Also, the amplitude of the Gaussian pulses in the real space signals y2(x) and y3(x)

are set so that the mean value of these signals is equal to the mean of the simulation

signal.

In the fourth row, the series of pulses are no longer exactly equally spaced, but

perturbed from the equal-spaced period value of P0 ≡ Lx/Np. The pulses are assigned

spacing values from a random uniform distribution bounded by

P = P0(1 ± δP ). (3.18)

In Figure 3.9, the value of δP chosen is 0.25 or 25%. Adding variation to the spacing

between the pulses pushes spectral power to off-harmonic values. As a consequence,

the power at kx = 8, 16, 24... does not reach the envelope set by the blue line, unlike

in the third row. Further, for this particular pulse arrangement (y3(x) in the fourth

row), there are peaks in power at kx = 11, 13, 16. Thus, we conclude that the power at

kx = 11, 13, 18, 19 in the simulation spectra could be due to unequal spacing between

the dust filaments.
6If the pulse were a square wave, the spectrum would be exactly be a sinc function.
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The bottom right panel of Figure 3.9 summarizes the results of multiple iterations of

mock signals. Taking unique set of spacings determined by equation 3.18 will produce

a slightly different arrangement of pulses and hence a different spectra for that one

particular mock signal (the left panels in the fourth and fifth rows show two iterations of

mock signals). To characterize the effect of this random placement on the spectra, 100

iterations of randomly generated mock signals and associated spectra were generated,

and the solid red line from this panel represents the mean spectra, while the dark and

light shaded regions represent 1 standard deviation from the mean and the max./min.

bounds from the set of 100 spectra, respectively.

The degree to which power is leaked to off-harmonic frequencies by the variation in

pulse spacing depends on the value of δP . The zero-values of the sinc function envelope

in k-space are inversely proportional to the width of the pulse in real space, so the decay

of the spectra at high kx is determined by the thickness of the pulses. Here, a is the

Gaussian full width at half maximum (FWHM)). In Appendix Appendix 3.A, we repeat

this procedure with different values of δP and a to demonstrate these effects, and suggest

constraints on those properties based on the fits of the mock spectra to the simulation

spectra.

Lastly, we note that our analysis in this section is focused on the spectrum from

the L08 simulation because the larger domain permits better spectral resolution (i.e.

a larger number of modes) at modes near the L02 box scale than the L02 and L04.

However, we do not use the even larger L16 run the peaks in the radial spectra from

this simulation are less well defined. We believe this is due in part to the first step of

the procedure, the azimuthal average of the dust surface density. As can been seen in

the 2D dust surface density (Fig. 3.1), and based on results from our azimuthal filament

length analysis (Fig. 3.5), the filaments in the L16 are less contiguous than in any of the

other simulations. Azimuthally averaging the dust surface density blurs together many
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filaments that are separated by large azimuthal distances but are near adjacent in radial

projections. Even when the spectra are taken row-by-row (Section 3.4), dominant radial

modes are difficult to identify (Fig. 3.6) and this peak mode varies more than in other

simulations, even at times when the filaments are dominant features (Fig. 3.7). Thus,

we identify the L08 as the appropriate simulation from our suite for this procedure.

3.6 Discussion

In this study, we present an expanded analysis of numerical models of patches of proto-

planetary discs from our previous study, Rucska & Wadsley (2021) (Paper I). In Paper

I, we highlighted the effects of larger domains and different random initial perturbations

to quantify the variability in the properties of planetesimals formed via the SI. Here, we

focus on the filaments in the pre-planetesimal formation stage. The filaments represent

the reservoirs of mass available to form planetesimals, and hence are an essential com-

ponent of the planetesimal formation process. Prior work in the literature has studied

filament properties in large numerical domains (Yang & Johansen 2014; Li et al. 2018;

Schäfer et al. 2017; Gerbig et al. 2020), albeit with lower numerical resolution. We

find that an increased number of grid points compared to that primarily used in older

studies is required to accurately represent the filament properties we characterize (see

Appendix Appendix 3.B).

Also, in prior work where filaments where were a primary focus (Yang & Johansen

2014; Li et al. 2018), models without self gravity (and hence the gravitational collapse of

dense clouds into planetesimals) were used. Self gravity likely does not strongly influence

the large-scale properties of filaments, as they are generally at densities well below the

gravitational collapse threshold. However, following the dense clumps to gravitational

collapse useful for defining the end of the filament-dominated phase of the SI, as we

discuss in beginning of Section 3.3. In Yang & Johansen (2014) and Li et al. (2018),
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their analysis either focused on late times, well beyond when planetesimal formation

would have occurred in earnest and disrupted the filament structure, or they had to

make estimates of when the pre-strong clumping phase occurs. Here, by using models

that incorporate self gravity we are able to conclusively define the pre-planetesimal,

filament-dominated epoch of the SI.

A summary of our primary results are as follows:

1. We identify the dust filaments as objects bound by contours in the dust surface

density above the mean value, i.e. the uniform dust surface density in the initial

conditions. We find that smaller simulation domains preferentially form filaments

that span the full azimuthal extent of the box, which denotes ring-like structures

globally. In the smallest domains (a size common to much prior work), over 90%

of the filament mass is in such ring-like structures. However, in the largest simu-

lation from our suite (8 times the size of the smallest in the radial and azimuthal

directions), less than 15% of the filament mass is in filaments that span the full az-

imuthal width, suggesting that the smaller domains are not capable of representing

the true azimuthal length of the filaments. However, the filament mass segregation

at the various domain sizes from our simulation suite is fairly consistent across all

simulations.

2. There is significant power in the largest length scale (i.e. box-scale) modes. In the

azimuthal direction in particular, the peak power is at this full box scale. This

suggests that capturing the full dynamical behaviour of the non-linear streaming

instability requires the use of domains that permit these large scale modes that

can result in the organization of dust on large scales. These modes are likely

responsible for the disruption of filaments in the azimuthal direction in the large

simulations as discussed in point (i). They may also contribute to the variance in

the spatial distribution of planetesimals observed in Paper I.
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3. The Fourier spectra in the radial direction reveal a dominant peak length scale of

∼ 0.08 − 0.1Hg (gas scale heights), which corresponds to the radial spacing of the

filaments. This peak is consistent across a range of domain sizes during the pre-

planetesimal formation stage in which filaments are the dominant feature of dust

mass. Our value is consistent with prior calculations of this length scale (Yang &

Johansen 2014; Li et al. 2018).

4. Like Li et al. (2018), we conclude that the 0.2Hg sized simulations (L02) struggle to

represent the radial filament separation length scale from point (iii). We build on

this observation through discussion of the limited dynamical resolution available

to these simulations at this scale, which forces the dust mass into specific configu-

rations of filaments. We find 3 of the 4 L02 simulations form two filaments, giving

a spacing of 0.1Hg that is consistent with other domains, while the other L02 run

forms just one filament, implying a spacing that is double that size. Other runs of

equivalent L02-sized simulations from the literature also find a configuration with

one filament (Simon et al. 2016; Schäfer et al. 2017). Thus, similar to conclusions

from Paper I, we see large variability in the non-linear SI, and evidence that single

runs of L02-sized simulations cannot capture the full range of outcomes when it

comes to the formation of filaments. For these reasons, like Li et al. (2018), in fu-

ture studies of filaments formed by the SI, we recommend large numerical domains

that can accurately represent the radial separation length scale.

5. Through a novel procedure that makes use of randomized mock filament density

profiles and Fourier spectra, we find that the arrangement of filaments in our larger

0.8Hg simulation (in radial and azimuthal extent) are best described as peaks that

are perturbed by ∼ 25% from an arrangement where the peaks are exactly evenly

spaced. This variance in peak placement best describes the radial Fourier spectra

of the simulation data.
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6. A small parameter sweep the properties of the mock filaments from point (v) in

addition to an alternate mock signal procedure of manually placing peaks provides

loose constraints on the filament width of approximately 0.03Hg. This value is

consistent with filament width measurements from Gerbig et al. (2020), and the

length scale associated with the radial pressure gradient.

3.6.1 Implications and future work

In prior work on planetesimal formation via the SI in 3D simulations, much of the

focus has been on constraining the properties of the planetesimals themselves. The

mass distribution is an essential input for models of how the population of planetesimals

evolves via gravitational interactions into protoplanets post-formation (e.g. Pollack et al.

1996). However, the environment that planetesimals are formed from–the dust filaments–

remains relatively understudied.

Recent work on planetesimal population evolution (Liu et al. 2019; Jang et al. 2022)

has used properties of dust filaments from 3D simulations of the SI. They assume the

mass reservoir available for planetesimal formation is a single SI filament that forms a

continuous dust ring around the full circumference of the disc. In this study, we have

shown with larger numerical domains that the filaments do not primarily span the full

circumferential length of the disc. Rather, the mass reservoir available for planetesimal

formation is best described by a more complex picture where several filaments exist

simultaneously within a local region. These filaments are truncated azimuthally and are

(roughly) spaced evenly apart in the radial dimension. Liu et al. (2019) and Jang et al.

(2022) also assume that the width of the filament is set by the radial pressure gradient

length scale. This is roughly consistent with our loose constraints on the filament width,

but, to our knowledge, this correlation has not been explicitly explored.

Indeed, the qualities of the dust surface density and filaments may vary with the
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strength of the radial pressure gradient (Abod et al. 2019) as well as grain size (Simon

et al. 2017). Specifically, from Simon et al. (2017), smaller grains produce wider, less

clumpy filaments that may actually be coherent over larger azimuthal lengths than the

pebbles studied here. Smaller dust grains have yet to be studied in larger numerical

domains to confirm whether this is true.

However, despite the fact that the qualities of the filaments are different in larger

domains, based on our previous study (Rucska & Wadsley 2021), the spread in planetes-

imal formation outcomes such as the mass distribution and the total mass converted to

planetesimals is consistent between several re-run small-domain simulations and larger

domain simulations. Given our observations that the small simulations appear to strug-

gle to represent the natural radial filament spacing (in agreement with Li et al. 2018),

large domain simulations with different physical properties such as grain size, total dust

mass, radial pressure gradient, etc., would be useful tools for constraining the properties

of the planetesimal mass reservoir across a variety of disc conditions.

Also, Yang & Johansen (2014) and Li et al. (2018) show in simulations without self

gravity that larger vertical domain lengths can lead to different outcomes in dust clump-

ing and the organization of dust filaments in the late-stages of the non-linear SI. How

these vertical domain lengths influence the pre-planetesimal formation filaments as well

as the planetesimal formation process itself remains unstudied. Due to computational

expense, we kept the vertical extent of the domains constant at 0.2 gas scale heights.

Exploring simulations with large physical extents in all three dimensions at the fiducial

resolution from this study would be an interesting avenue for future research.
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Appendix 3.A Filament properties from mock signals

In this section we explore results of repeating the same mock signal procedure of Sec-

tion 3.5, culminating in the plot in the bottom right panel of Figure 3.9, but for different

values of the Gaussian pulse full width at half maximum (FWHM), a, and the pulse

spacing perturbation factor δP (eq. 3.18). We compute 100 iterations of the mock signal

spectra for each combination of a and δP . Our results are summarized in Figure 3.A1.

Visually, it appears the spectra with (δP = 25%, a = 0.03Hg), and (δP = 25%,

a = 0.02Hg) fit the simulation data spectra the best. When δP is smaller than 25%–

that is, as the pulse spacing closer resembles an evenly spaced signal (3rd/middle row of

Figure 3.9)–there is too much power near the harmonic frequencies (kx = 16, 24...) which

does not fit the simulation spectrum well. When a = 0.02Hg, there is too much power

at high kx, and for a = 0.04Hg, there is too much power at low kx. The parameter a sets

the zeros of the sinc envelope in k-space. We quantify these fits with the χ2 statistic,

using the mean simulation spectra (solid red lines in Fig. 3.A1),

χ2 =
Nx∑
i=0

(
mean(|ŷ3(kx,i)|) − |Σ̂d

∣∣
x
(kx,i)|

)2
|Σ̂d

∣∣
x
(kx,i)|

. (3.A1)

These values confirm our visual observations: the a = 0.03Hg, and δP = 25% parameter

choice is the best fit to the simulation spectrum.

3.A.1 Manual mock

Alternatively, we can remove the randomness and statistical focus of our previous anal-

yses and instead manually construct mock signals with Gaussian pulses manually placed

at the locations of peak in the simulation data. Figure 3.A2 shows 3 mock signals

with varying FWHM (a) and their associated spectra. We see that there is substantial

off-harmonic power (i.e. away from kx = 8, 16, 24...) in the mock spectra, as in the

simulation signal. The average spacing between the centres of the manual mock pulses
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Figure 3.A1: Results of the 100 iteration mock signal procedure (Sec. 3.5) for signals with
different Gaussian full width at half maximum values (a, all in units of the gas scale height
Hg) and different values for the variance in the spacing between the pulses (δP , eq. 3.18). As
in Figure 3.9, the solid red line represents the mean spectra from the 100 iterations, the darker
shaded region represents 1 standard deviation above and below the mean, the light shaded region
shows the maximum and minimum values. The chi-square statistic (equation 3.A1) for each mock
signal mean curve is also shown for each set of parameters. The panel in the middle is the same
data as in Figure 3.9.
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Figure 3.A2: A series of mock signals with Gaussian pulses manually fit (by eye) to the peaks
in the azimuthally averaged dust surface density from the L08 simulation. Top. The 1D, radial
surface density profile in real space (left) and in Fourier space (right). 2nd to 4th rows. Three
different mock signals and their spectra, with three different full width at half maximum values
for the Gaussian pulses (a, in units of the gas scale height Hg). The centres of the pulses are
manually adjusted to roughly match the simulation signal. The amplitudes of the pulses are set
such that the total integrated area (i.e. mass) for the mock signals is the same as the area under
the simulation signals. The χ-square statistic (equation 3.A1) for each mock signal spectra and
the simulation spectra is also shown, for each choice of a.
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is P = 0.101 ± 0.013Hg, where 0.013Hg is the standard deviation in the set of spacings.

Interestingly, for the procedure from Section 3.5 with sets of 100 mock signals with ran-

dom spacings, when δP = 0.25, the average standard deviation from the 100 mock signal

spacings is also approximately 0.013Hg. Thus, there is agreement between the variation

in the pulse spacings predicted by this manual procedure and from the multiple itera-

tions of randomized mock signals with varied pulse parameters from Section Appendix

3.A. Further, the χ2 values comparing the various manual mock signal spectra suggest

that a = 0.03Hg provides the best fit, also corroborating predictions from the previous

section.

This value roughly agrees with prior work. For the choice of the radial pressure gradi-

ent parameter from this study, Gerbig et al. (2020) measure the width of the most dense

dust filaments in their simulations to be ∼ 0.03 ± 0.01Hg
7. They used a different proce-

dure of measuring the widths of the filament from their base in the azimuthally averaged

radial surface density profiles. Also, this calculation was only for the densest filament in

their simulation, and was calculated at a very late time (t ≈ 240Ω−1) compared to our

analyses (t ≈ 40 − 50Ω−1).

Given our choice of the pressure gradient parameter (eq. 3.12), ηvk/cs = 0.05, the

length scale set by pressure gradients is ηr = 0.05Hg (where r is the global disc radius).

This length is approximately consistent with the filaments widths calculated here and

from Gerbig et al. (2020). It appears plausible that stronger pressure gradients cre-

ate wider filaments in the pre-planetesimal formation phase of the SI (see Figure 2 of

Abod et al. 2019), though, to our knowledge, no study has thoroughly investigated this

correlation.
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Table 3.B1: Simulation parameters for the different resolution runs. The physical parameters
are the same as in Table 3.1.

Run name Domain Size Grid Resolution Ncell
(Lx × Ly × Lz)/Hg Ncell = Nx × Ny × Nz per Hg

L08(240) 0.8 × 0.8 × 0.2 240 × 240 × 60 300
L08(480) 0.8 × 0.8 × 0.2 480 × 480 × 120 600
L08(960) 0.8 × 0.8 × 0.2 960 × 960 × 240 900

Figure 3.B3: Dust surface density in the x-y (radial-azimuthal) plane for each of the 3 L08
sized simulations, at t = 40Ω−1.

Appendix 3.B Effect of numerical resolution

In this section we discuss how our results vary with numerical grid resolution. We re-

run the L08 simulation at two additional resolutions, one with twice as many grid points

and another with half as many, see Table 3.B1. The physical parameters are the same,

and we maintain the Npar/Ncell = 1 resolution for the dust particles resolution. Prior

work on SI that explored filament properties in 3D simulations (Yang & Johansen 2014;

Schäfer et al. 2017; Li et al. 2018; Gerbig et al. 2020) used a cell size resolution near our

L08(240) run, or lower. We retrace much of our analysis from the main text for each of

these simulations.

The radial-azimuthal dust surface density at t = 40Ω−1 for each L08 simulation is

shown in Figure 3.B3. There is a stark, visual difference in the characteristics of the
7cf. the top panel of their Figure 8. The relationship between the radial pressure gradient parameter

used in this study Π and the similar parameter β from Gerbig et al. (2020) is 2Π = β
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Figure 3.B4: Mass weighted probability density functions (PDF) for the azimuthal (y-dir.)
lengths of the dust filaments, as in Figure 3.5. Filaments are identified as contours at the mean
surface density, see Section 3.3.1. The PDFs are time averaged over the interval t = (40−50)Ω−1.

dense dust features in the lower (240) resolution run. Both the 480 and 960 form long,

extended filaments, while the dense features in the 240 run clump on much shorter length

scales (cf. Li et al. 2018 Figure 1). This suggests the behavior of the non-linear SI for

our dust parameters is consistent for the 480 and 960 resolutions but not at the 240

resolution.

Indeed, when we apply our filament identification and azimuthal length measurement

procedure from Section 3.3.1, we find the 240 filaments no longer preferentially span the

full azimuthal length of the box. The mass-weighted filament length PDFs for these

simulations are shown in Figure 3.B4. Both the 480 and 960 PDFs peak at the box-

length 0.8Hg length scale, with ∼ 50% of the mass in the runs in filaments at that length

scale. The same procedure in the 240 produces a PDF with less than 20% of the mass

in box-scale filaments.
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Figure 3.B5: Probability density function (PDF) of the surface density in each of the 3 L08
simulations (cf. Figure 3.B3).

Figure 3.B5 shows (non-mass weighted) PDFs of the dust surface density for these

simulations. As resolution increases, there are fewer regions with surface densities below

0.1 of the mean value. There are also more regions with densities above 100 < Σd >,

which is a rough proxy for planetesimal formation.

The variance in the logarithm of the dust surface density (Section 3.4.3) is shown in

Figure 3.B6. The 960 run follows a similar curve to the 480 run at early times before

t = 10Ω−1, though the variance peaks at a higher value before settling into values closer

to the 480 run and the L16 simulation (see Figure 3.8). However, the variance in the

240 simulation differs dramatically from the other two simulations. The curve rises at

later times, suggesting the non-linear SI develops slower at this resolution. The 240 run

also settles at higher levels of variance. The greater number of low surface density values

(Figure 3.B5) is likely is the main contributor to this effect.
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Figure 3.B6: Variance in the logarithm of the dust surface density overtime (Section 3.4.3) for
the 3 L08 simulations. As in Figure 3.8, the simulation domains have been divided into smaller
domains equivalent in size the L02-sized domains. The solid lines represent the mean values and
the shaded regions represent one standard deviation from the average. The normalization factor
A480 accounts for the different number of cells in each sum, and is equal to 0.5, 1.0, and 2.0 for
the 240, 480, 960 simulations respectively.
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Finally, we produce averaged Fourier spectra magnitudes for each simulation, accord-

ing to the procedure in Section 3.4.1. In the top panel, the strongly peaked feature at

0.1Hg (480) and 0.08Hg (960) that represents the radial spacing length scale for fila-

ments does not appear in the 240 data. This is not surprising considering the filaments

do not appear strongly in the real space surface density (Fig. 3.B3). In the azimuthal (y)

direction, we see the same trend discussed in Section 3.4.1, in that the spectral power

climbs steadily to the largest length scales in all simulations. Li et al. 2018 compute the

radial power spectra for simulations with a resolution similar to our 240 run, and their

data likewise lack a well defined peak as seen in our higher resolution runs.

We conclude that at the 300 grid cells per Hg resolution of the 240 simulation, the

properties of the filaments formed by the non-linear SI is unresolved. The 480 run–which

is the default resolution for the main results from study–appears to be an appropriate

resolution for our analyses.
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Figure 3.B7: Average of 1D Fourier transform magnitudes through the x and y dimensions for
the 3 L08 simulations, as in Figure 3.6. See Section 3.4.1 for details on the anlaysis procedure.
Top. Average magnitudes for each row of the dust surface density along x-direction. Bottom.
As in top, but for the y-direction.
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Chapter 4

Planetesimal formation via the

streaming instability with

multiple grain sizes

The following presents work submitted to the Monthly Notices of the Royal Astronomical

Society (MNRAS), by J. Rucska and J. Wadsley.

Abstract

The formation of kilometre-sized planetesimals from centimetre-sized pebbles requires a

rapid mechanism that can overcome barriers that limit growth. We present 3D numerical

simulations of the streaming instability (SI), a mechanism that is capable of directly

forming planetesimals via the gravitational collapse of pebble clouds. We model multiple

grain sizes simultaneously. These are the first simulations to use a realistic, peaked size

distribution based on grain growth predictions. Both multi-size and single-size models

form dense, clumped structures. We show observations underestimate the dust surface

density due to clumping and optical depth effects. We estimate 20%-80% more dust

can be present. The smallest grains in our size distribution do not participate in the
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formation of filaments or planetesimals formed by the remaining ∼80% of the dust

mass. This implies a size cutoff for pebbles incorporated into asteroids and comets.

Our results reveal spatially distinct dust populations. Future work using dynamically

varying size distributions would reveal how these populations evolve and interact due to

SI-driven grain growth, affecting both the observable properties of protoplanetary discs

and planetesimal formation.

4.1 Introduction

In the process of planet formation, planetary embryos grow from the collisions of many

millions of 1 km to 100 km sized planetesimals. In turn, planetesimals are born from

millimetre-centimetre sized pebbles in protoplanetary discs. However, the formation of

planetesimals cannot occur through simple pathways such as the collisional coagulation

of progressively larger objects. It is well understood that collisions between objects in

the range of 1 cm to 1 m in protoplaneteary disc environments are predominantly de-

structive, resulting in smaller remnants from the original bodies in the collision (Zsom

et al. 2010; Güttler et al. 2010; Windmark et al. 2012). Further, all solid objects or-

biting in protoplanetary discs experience a headwind as they orbit through the gaseous

component of the disc. At ∼1 m sizes, this process is maximally efficient, and causes the

rapid orbital decay of these objects, sending them into the central star on timescales on

the order of a few hundred years (Weidenschilling 1977a).

Hence, planet formation requires a mechanism that is capable of rapidly forming

planetesimals directly from cm sized pebbles. A leading candidate for this process is

known as the streaming instability (SI), first studied by Youdin & Goodman (2005) (see

also: Youdin & Johansen 2007; Johansen & Youdin 2007). The SI is a specific example

of a broader family of resonant drag instabilities that exist when the aerodynamic drag
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timescale becomes resonant with another dynamical timescale in the disc (Squire & Hop-

kins 2018; Squire & Hopkins 2020). In the saturated, non-linear phase of the instability,

the SI is capable of producing strong, localized overdensities of clouds of pebble-sized

dust that can then gravitationally collapse into planetesimals (Johansen et al. 2007),

thus directly overcoming the aforementioned growth barriers.

Since the seminal work from Johansen et al. (2007), over a decade of research has

explored planetesimal formation via the SI with high resolution 3D hydrodynamic sim-

ulations (Johansen et al. 2009b; Johansen et al. 2012; Johansen et al. 2015; Simon et al.

2016; Simon et al. 2017; Schäfer et al. 2017; Abod et al. 2019; Li et al. 2019; Nesvorný

et al. 2019; Nesvorný et al. 2021; Gole et al. 2020; Rucska & Wadsley 2021; Carrera et al.

2021; Carrera et al. 2022; Carrera & Simon 2022). The streaming instability has proven

to be a robust mechanism for forming planetesimals, so long as the local protoplane-

tary disc region meets the prerequisite conditions of enhanced dust mass concentration

(i.e. supersolar) and sufficiently large dust grains (Carrera et al. 2015; Yang et al. 2017;

Li & Youdin 2021). Protoplanetary discs observed with the Atacama Large Millime-

ter/submillimeter Array (ALMA) and the Very Large Telescope (VLT)/SPHERE and

Subaru/HiCIAO have shown features with concentrated dust mass, such as rings (e.g.

Dullemond et al. 2018; Macías et al. 2019; Muto et al. 2012; Avenhaus et al. 2018),

non-axisymmetric bumps (e.g. van der Marel et al. 2013; van der Marel et al. 2015;

Cazzoletti et al. 2018; van der Marel et al. 2021) and spiral structure (e.g. Benisty et al.

2015; Pérez et al. 2016; Benisty et al. 2017). Some rings may have sufficiently high

dust concentrations to initiate planetesimal formation via the SI (Stammler et al. 2019;

Maucó et al. 2021). Indeed, Carrera et al. (2021), Carrera et al. (2022) and Xu & Bai

(2022a) and Xu & Bai (2022b) show that persistent radial gas pressure maxima, which

likely play a role in the formation of the observed large-scale rings (Whipple 1972), can

sufficiently concentrate dust to trigger planetesimal formation via the SI.
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Observations of minor solar system bodies support the idea that these objects may

have been formed via the SI or a similar process. Asteroids are commonly described

as “rubble piles”: gravitationally bound conglomerates of smaller pebbles with sig-

nificant bulk porosity (Walsh 2018). Further, results from the Rosetta mission to

comet 67P/Churyumov-Gerasimenko suggest this object likely formed from a cloud of

millimetre-sized dust particles (Blum et al. 2017; Fulle & Blum 2017). Results from the

New Horizons flyby of the Kuiper belt object (486958) Arrokoth suggest that this object,

a contact binary with two distinct lobes, is likely a result of the slow decay of a binary

orbit, where the two progenitor objects formed via the gravitational collapse of a pebble

cloud (McKinnon et al. 2020; Grishin et al. 2020; Marohnic et al. 2021). Nesvorný et al.

(2019) and Nesvorný et al. (2021) also show that the gravitational collapse of dense peb-

ble clouds from SI simulations can produce planetesimal binaries with properties similar

to binaries observed in the Kuiper belt. Kavelaars et al. (2021) measured the size dis-

tribution of objects in the cold classical Kuiper belt and find it is well described by an

exponential cut-off at large sizes—a feature predicted by the streaming instability.

The New Horizons mission also observed the craters that cover the 4 billion-year-old

surfaces of the Pluto-Charon system, enabling an analysis of the inferred size distribution

of the impactors from the early Solar system that produced those craters (Singer et al.

2019; Robbins & Singer 2021; Robbins et al. 2017). Singer et al. (2019) find a deficit of

craters at small sizes, for impactors below ≲ 1-2 km in diameter. Unfortunately, current

limits on computational power prevent 3D simulations of the SI from providing any

insights on the SI-formed planetesimal size distribution at these small sizes (Simon et al.

2016; Li et al. 2019; see Section 4.1 of Rucska & Wadsley 2021 for further discussion).

Observational constraints on planetesimal formation are difficult to acquire, yet there

is a general agreement between observational data and predictions from models of plan-

etesimal formation via the SI. To date, the SI remains a leading candidate for the efficient
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formation of planetesimals, yet there remains open questions regarding this process, such

as how the presence of a distribution of dust grain sizes affects outcomes regarding plan-

etesimal formation.

4.1.1 Dust grain size distributions in protoplanetary discs

Observations reveal that protoplanetary discs in nature have at least two distinct dust

populations: ∼millimetre-sized pebbles which have settled to the disc mid-plane and are

most readily visible via their sub-mm wavelength thermal emission with ALMA (e.g.

Andrews et al. 2016; van der Marel et al. 2021; Maucó et al. 2021), and ∼micron-sized

grains suspended vertically in the disc, seen in infrared scattered light (e.g. Muto et

al. 2012; Benisty et al. 2015; Avenhaus et al. 2018). Though these components occur

in spatially distinct regions in the disc, they are likely linked, as grain growth theory

shows that pebbles can readily grow via coagulation from the micron-size grains that

the disc inherits from the interstellar medium (Birnstiel et al. 2011; Birnstiel et al. 2015,

see Birnstiel et al. 2016, for a review). Once the grain growth/fragmentation process

reaches equilibrium, the predicted outcome from the widely-used Birnstiel et al. (2011)

model is a grain size distribution described by multiple power-laws and a distinct peak,

so that most of the mass in the distribution is within a factor of two of a specific grain

size.

4.1.2 Streaming instability with a distribution of grain sizes

Until recently, there were few studies of the streaming instability with multiple sizes.

Johansen et al. (2007) included multiple dust species in a subset of their runs, but the

focus of their work was the onset of planetesimal formation rather than the behavior

of the different grains. Bai & Stone (2010a) modelled discs with a variety of grain

size distributions simultaneously in 3D simulations, and explored the influence of these
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distributions on properties of the non-linear, saturated state of the SI, pre-planetesimal

formation.

Recently, there have been multiple studies on how particle size distributions influ-

ence the linear growth phase of the SI (Krapp et al. 2019; Paardekooper et al. 2020;

Paardekooper et al. 2021; McNally et al. 2021; Zhu & Yang 2021) and the linear and

non-linear phase in 2D numerical simulations (Schaffer et al. 2018; Schaffer et al. 2021;

Yang & Zhu 2021). These studies explored linear SI growth rates and the clumping of

dust in the non-linear phase for distributions with a wide range of grain sizes. Over-

all, they conclude that the SI can produce strong dust clumping so long as the local

dust-to-gas mass ratio is large, approaching unity, and that the grain size distribution

involves sufficiently large grains (near approximately a centimetre in size). In this paper,

we study dust that is well within the strong growth regime, and follow the non-linear

phase of the SI all the way to planetesimal formation.

We expand prior work by Bai & Stone (2010a) (3D), Schaffer et al. (2018) and

Schaffer et al. (2021) (2D) and Yang & Zhu (2021) (2D). The grain size distributions in

these studies are power laws, with exponents similar to the fiducial slope for interstellar

grains from Mathis et al. (1977). In this study, we sample the grain size distribution of

Birnstiel et al. (2011), which is the equilibrium outcome of a grain growth/fragmentation

model applicable to the midplane of protoplanetary discs, where planetesimal formation

is believed to occur. The Birnstiel et al. (2011) distribution deviates from a single power

law and includes a peak at large sizes. Thus, in our discretized version of that grain size

distribution, the spacing between the representative grain size for each bin is not equal,

in linear or logarithmic space, which is unique from prior work on this subject.

We present the first 3D, vertically stratified simulations of the SI with multiple species

of dust grains since Bai & Stone (2010a), and compare the non-linear development of

the SI in dust with multiple sizes against data from our prior work which used a single
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size (Rucska & Wadsley 2021). We highlight the differences in the dust surface density

distribution between multi-size and single-size models, along with a novel analysis that

reveals the observational consequences of the strong dust clumping seen in our runs, and

explore how grains of different sizes participate in planetesimal formation.

Our paper is organized as follows. In Section 4.2 we present our methods and choice of

parameters and a discussion about the dust grain size distribution we model. Section 4.3

focuses on the different dust surface density distributions between our multi-size model

and prior work with single grain sizes, and the observational consequences of these

differences. Section 4.4 focuses on how the different grain sizes participate in the non-

linear filament and planetesimal formation process. In Section 4.5 we summarize our key

results and discuss how this paper influences the current understanding of planetesimal

formation via the SI.

4.2 Methods

We model a local portion of a near-Keplerian protoplanetary disc. We study the dy-

namics of a gas phase aerodynamically coupled to a dust/solids phase. The specifics of

our numerical and hydrodynamic set-up are nearly identical to those described in Ruc-

ska & Wadsley (2021), so we briefly summarize those methods here and refer a reader

interested in a more detailed discussion to that paper.

We use the shearing sheet approximation of Goldreich & Lynden-Bell (1965) to track

the local dynamics of a Cartesian frame co-rotating at the Keplerian orbital velocity.

We employ the Athena hydrodynamics code (Stone et al. 2008; Stone & Gardiner

2009) with the solids particle module (Bai & Stone 2010b) to numerically evolve the

protoplanetary disc system. Vertically, the box is centred on the disc midplane (z = 0),

and the co-rotating frame of reference leads to an imposed background velocity in the

azimuthal (y) direction described by (qΩx)ŷ. Here x is the radial co-ordinate in the

133



McMaster University – Physics and Astronomy Ph.D. Thesis – Josef J. Rucska

co-rotating frame, with x = 0 being the radial centre of the box, and q is the power-

law index of the angular velocity with radial position in the disc, Ω ∝ r−q, so that in

Keplerian discs q = 3/2.

The equations that describe the dynamics of the gas and solids (dust) are

∂ρg

∂t
+ ∇ · (ρgu) = 0, (4.1)

∂ρgu

∂t
+ ∇ · (ρguu) = −∇Pg

+ ρg

[
− 2Ω × u + 2q Ω2x x̂ − Ω2z ẑ + µ

v − u

tstop

]
, (4.2)

dv′
i

dt
= 2(v′

iy − ηvK)Ωx̂ − (2 − q)v′
ixΩŷ − Ω2zẑ − v′

i − u′

tstop
+ F g, (4.3)

where ρg is the gas mass density, Pg is the gas pressure, u, is the velocity of the gas,

v′
i is the velocity of an individual dust particle in the frame of the background shear

flow, and v is the mass-weighted average velocity of the dust in a gas cell. The gas

equation of state is isothermal, Pg = ρgc2
s, where cs is the sound speed. The quantity

µ ≡ ρd/ρg is the local ratio of dust to gas mass density, and η controls the strength

of the radially inward drag force on the dust, which is related to the steepness of the

radial gas pressure gradient (see Section 4.2.1). The quantity tstop is the time-scale for

the exchange of momentum between the dust and gas phase, which depends on a local

gas quantities such as density and temperature, and, crucially, the physical size of the

dust grains. We discuss this parameter in more detail in Section 4.2.2 as it is central to

the context for this paper.

For the numerical algorithms, as in Rucska & Wadsley (2021) we use the standard

Athena options for the Reimann solver (HLLC), hydrodynamics integrator (corner

transport upwind) and a semi-implicit integrator for the dust momentum equations

with a triangular-shaped cloud scheme to interpolate the dust particle properties with

the simulation grid. In equation 4.3, the background shear flow has been subtracted from
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the dust and gas velocities. Separating the advection of the shear velocity from local

deviations leads to a more efficient and accurate numerical integration (Masset 2000;

Johnson et al. 2008). For the hyrdodynamic boundary conditions of the numerical do-

main, we use the shearing box boundary conditions, which are periodic in the azimuthal

(y) and the vertical directions (z) and shear periodic in the radial (x) direction (Hawley

et al. 1995; Stone & Gardiner 2010).

The term F g in equation 4.3 represents the gravitational acceleration. Not all prior

work on high-resolution studies of the non-linear SI includes the effects of the dust

density field self-gravity, but since our study is in part focused on the properties of

planetesimals, it is included here. Self-gravity enables the collapse of dense dust material

into gravitationally bound objects (i.e. planetesimals). Following Simon et al. (2016),

based on an implementation described and tested in Rucska & Wadsley (2021), this

acceleration is computed via the gradient in the gravitational potential from the dust

density field, and this potential is computed from the solution to Poisson’s equation,

F g = −∇Φd, (4.4)

∇2Φd = 4πGρd. (4.5)

Here G is the gravitational constant. Our parameterization of this constant is discussed

further in the next section (equation 4.9). Note, we neglect the gravitational influence of

the gas, since the density perturbations in the gas in these kinds of local protoplanetary

disc models are very small (Li et al. 2018). We use the fast Fourier transform Poisson

solver available in Athena (Kim & Ostriker 2017) to solve equation 4.5, shear periodic

horizontal boundary conditions and vaccuum boundary conditions vertically.
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Table 4.1: Simulation parameters.

Run names τs - grain stopping time(s)
S0,S1,
S2,S3
(S)

0.314

M6-0,M6-1,M6-2,
M6-3,M6-4
(M6)

0.036, 0.191, 0.270, 0.314, 0.353, 0.412

M12
0.021, 0.113, 0.170, 0.218, 0.256, 0.284,
0.305, 0.324, 0.342, 0.363, 0.390, 0.437

M18 18 values between 0.016 and 0.450
Domain Size Grid Resolution

(Lx × Ly × Lz)/Hg Ncell = Nx × Ny × Nz

0.2 × 0.2 × 0.2 120 × 120 × 120

Npar/(Nspecies × Ncell) Z G̃ Π
1 0.02 0.05 0.05

4.2.1 Physical and numerical parameters, initial conditions

In this section we discuss the physical parameters that influence the dynamics of our

local protoplanetary disc system. In this study we choose identical or very similar values

as previous work on these systems (Simon et al. 2016; Schäfer et al. 2017; Johansen

et al. 2012; Li et al. 2018; Gole et al. 2020; Rucska & Wadsley 2021). These parameters

and our choices are summarized in Table 4.1 and briefly discussed in this section, with

a more in-depth discussion of the stopping time parameter τs in Section 4.2.2.

The total mass of the dust particles is controlled by the ratio of dust mass surface

density to the gas surface density

Z = Σd

Σg
, (4.6)

and we choose Z = 0.02, which is a slightly supersolar metal mass ratio. Note that

our simulation domains model only a fraction of the vertical gas scale height while
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capturing the full dust scale height. Thus the effective surface density mass ratio within

the simulation domain is higher than 0.02. Following the discussion from Section 2.4 of

Rucska & Wadsley (2021), the ratio of total dust mass to total gas mass within the full

simulation domain is approximately 0.25.

The radial gas pressure gradient represented by the −2ηvkΩ term equation 4.3 is

parameterized via η:

η = n
c2

s

v2
K

. (4.7)

where n is the pressure power law index, Pg ∝ r−n, the local Keplerian speed is vK , and

the isothermal sound speed is cs. This pressure gradient shifts the azimuthal component

of the dust and gas velocities by ηvK , and we subtract this shift from our data to conduct

analysis in this shifted frame. As with other work, in our simulations η is ultimately

controlled by a similar parameter

Π = ηvk

cs
, (4.8)

and we choose Π = 0.05, a typical value that applies to a wide variety of disc models

(Bai & Stone 2010a).

The strength of self-gravity versus tidal shear is controlled by

G̃ ≡ 4πGρg,0
Ω2 . (4.9)

Selecting G̃ = 0.05 is equivalent to a Toomre (1964) Q of 32, so the gas phase is grav-

itationally stable, supporting our exclusion of the gas density field in solving for the

gravitational potential (equation 4.5).

In equation 4.9, ρg,0 is the gas midplane density. The gas density is initialized to

have a Gaussian profile vertically with a scale height Hg, and a uniform distribution in

the radial and azimuthal directions. The dust phase is initialized analogously except
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with a scale height of Hd = 0.02Hg. We set the units of our scale-free model to that

ρg,0 = Hg = Ω = cs = 1. See Section 2.4 of Rucska & Wadsley (2021) for a discussion

on how to convert these units to physical units. Using the minimum mass solar nebula

model of Hayashi (1981), there is approx 1.5 MCeres worth of dust mass in our full

simulation domain.

The 3D simulation domains we study have equal lengths of Lx = Ly = Lz = 0.2 Hg,

and we choose a grid resolution of Nx = Ny = Nz = 120. Simon et al. (2016) show

that this resolution and Rucska & Wadsley (2021) show that this box size is sufficient

to accurately capture the planetesimal formation process with our chosen set of physical

parameters. This grid resolution matches that of Rucska & Wadsley (2021).

We choose a dust resolution such that the total number of particles for each grain

species is equivalent to the total number of grid points in the gas grid. The millions of

dust particles are initially placed so that the overall dust density distribution is uniform

in the x-y plane and follows a Gaussian profile vertically. The precise initial positions of

the particles are set via a random number generator. As in Rucska & Wadsley (2021),

we re-run multiple simulations that are otherwise identical except for the initial seed

for the random number generator, which gives a different initial (and very small in

amplitude) noise pattern to the dust density in each run. Once the streaming instability

develops into the non-linear phase, the initial perturbations result in dramatic variations

in the dust density. Thus, re-running simulations with different initial seeds probes the

stochastic qualities of the non-linear SI and the variance in the outcomes in a way that

a single simulation cannot.

In Table 4.1, the simulation labels S0,...,S3 denote the simulations which use a

single dust grain size (these are the same L02(a-d) simulations from Rucska & Wadsley

2021), and analogously the labels M6-0,...,M6-4 represent the simulations that use

multiple grain species simultaneously. The M12 and M18 are simulations that sample the
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same size distribution as the M6-0,...,M6-4 simulations but with a greater number of

grain species/bins. Details on the grain sizes in each simulation are discussed in the

proceeding section.

4.2.2 Grain size distribution

We base our distribution of grain sizes on the results from Birnstiel et al. (2011), a widely

used model of the collisional growth and fragmentation of dust grains in protoplanetary

discs. Dynamics such as local turbulence, vertical settling, and radial drift affect the

relative velocities between dust grains and can lead to grain growth or fragmentation

via destructive collisions, depending on local conditions (for a review, see Birnstiel et al.

2016).

Birnstiel et al. (2011) conclude that the dust grain population will equilibrate towards

a size distribution with a shape that depends quite strongly on properties of the disc

(see their Fig. 6). Properties such as the gas surface density, midplane temperature,

the Shakura & Sunyaev (1973) α turbulent viscosity parameter, and a fragmentation

threshold velocity for the grains. The authors also provide an online tool for exploring

different combinations of disc quantities. For the distribution shape we study, we choose

Σg = 100 g/cm2, Tmid = 100 K, roughly equivalent to a radial position of ∼ 5 AU for

a disc with Σg(r) = 1000 (r/AU)−3/2 g/cm2 (e.g. minimum mass solar nebula model;

Weidenschilling 1977b) and Tmid = 200 (r/AU)−3/7 K (e.g. Chiang & Goldreich 1997).

For other parameters we choose α = 1 × 10−4, vfrag = 3 m/s. These choices lead to a

distribution that peaks towards ∼4 cm.

However, it is not the grain size that is a direct input for our simulation model, but

the characteristic time scale for the aerodynamic coupling between the dust and gas,

tstop (equations 4.2 and 4.3). There are different forms for this stopping time depending

on the regime of drag one considers, but for protoplanetary discs, almost all grains are
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in the Epstein (Epstein 1924) drag regime (Birnstiel et al. 2016), where the size of the

dust grains is smaller than the mean free path of the gas particles. The form of tstop in

this regime is

tstop = ρs

ρgcs
s, (4.10)

where ρs is the material density of the particles (approximately 2.6 g cm−3 for silicates;

Moore & Rose 1973), ρg is the local gas density, cs is the local sound speed, which

depends on the gas temperature, and s is the size of the dust grains. Thus, for the

same gas properties, the grain size sets tstop. In our models, as with other studies of

the streaming instability, we model the drag coupling between the dust and gas with a

dimensionless parameter τs = tstopΩ,

τs = Ωρss

ρgcs
. (4.11)

In an α-disc model, the midplane gas density is ρg,0 = (1/
√

2π)(Σg/Hg) and Hg =

cs/Ω (Armitage 2020), so that τs = (ρs/Σg)s. With our above choices for the disc

properties in the grain size distribution, the previous mentioned size peak of 4 cm grains

translates to τs ∼ 0.1. In this study, we wish to directly compare our results to both our

previous study (Rucska & Wadsley 2021) and prior work which has focused on a single

stopping time of τs = 0.314. Thus, we maintain the original shape of this particular

Birnstiel et al. (2011) distribution from our chosen disc parameters, but slightly shift

the peak to τs = 0.314, which is analogous to considering a different radial position

in the disc. Setting the distribution to peak at our previous single grain size value is

the most logical method for comparing these two different representations of the dust

environment.
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Figure 4.1: Grain size distribution sampled for this study. The grey curve represents the surface
density distribution as a function of grain size according to a grain growth model in collision-
fragmentation equilibrium (Birnstiel et al. 2011). The red curve represents our sampling of the
distribution with six bins, and the vertical dashed lines are the representative τs selected for each
bin (See Section 4.2.2).
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Sampling the Birnstiel et al. (2011) distribution

Figure 4.1 shows the dust mass surface density distribution that we sample, as a function

of τs. The six different bins (red curve), used for the five M6-0...M6-4 simulations, are

chosen such that there is roughly an equal number of mass in each bin while enforcing

that one bin is centred on the peak at τs = 0.314. Since the streaming instability is driven

by the aerodynamic coupling between the dust and gas, we chose the representative τs

for each bin so that there is the same total drag force (proportional to Σd/τs) in each

bin as in the original distribution. This requires us to satisfy the equality

∫ τbin,r

τbin,l

Σd(τs)
τs

′ dτs
′ = Σbin

τbin

(
τbin,r − τbin,l

)
, (4.12)

where τbin,(r,l) are the right and left τs values in each bin, Σbin is the mean height of the

distribution in that bin, and τbin is the representative size in that bin which we solve for.

We see from Figure 4.1 that τbin in the bins for τs > 0.1 roughly tracks the half-mass

point of the Σd(τs) curve, but in the bin for the smallest grains, τbin is closer to the

leftmost, small-τs edge of the bin, because the drag force per unit mass scales as 1/τs.

Table 4.1 lists the exact values of τbin (hereafter just referred to by τs) modelled

simultaneously by our simulations, with each species given a roughly equal amount of the

total dust mass in the simulation domain1. Note that these values of τs are not equally

spaced, linearly or logarithmically, which is different from the distributions modelled by

prior work (Johansen et al. 2007; Bai & Stone 2010a; Schaffer et al. 2018; Yang & Zhu

2021) which also used equal-mass bins in their discretized distributions.
1We could not simultaneously ensure that our sample has one bin with a representative τbin exactly

at the peak τs = 0.314 and have the bins contain exactly equal mass. However all bin total masses are
within 10% of each other.
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Increasing the number of grain species

To accompany our main M6-0...M6-4 simulations which use 6 bins, we also run two

simulations with more species of grains/bins in order to test how our results are affected

by the number of species present. We ran one with 12 bins and the other with 18 bins,

which we denote M12 and M18 respectively. When creating these samples with additional

bins, we decide to subdivide each of the original 6 bins into 2 and 3 bins, again keeping an

equal mass in each bin. This maintains the original bin edges from the 6-bin sample and

thus allows for a more straightforward comparison of the results between the different

discrete distributions. Once the new (additional) bin edges are computed, the same

procedure of equal drag from eqaution 4.12 is used to select a representative τs for each

bin.

4.2.3 Planetesimal/clump identification

To quantify how the different sized grains participate in the formation of planetesimals

in our simulations, we must first identify which grains are a part of bound planetesimals.

For this study, we accomplish this with a dust density cut. The Hill radius denotes a

region where the gravity of an object in a circumstellar disc dominates over the shear

due to the velocity gradient of the background Keplerian rotation. This shear is the

only force that directly opposes the gravitational collapse of the dust. As described in

Rucska & Wadsley (2021), we can covert the Hill radius into a Hill density, above which

a dust clump is unstable to gravitational collapse. In the physical parameters of our

model, this Hill density is given by,

ρH = 9 Ω2

4πG
. (4.13)

With our choices of parameters, ρH = 180.

We identify all particles within cells with dust densities greater than ρH as being a
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part of bound planetesimals, All adjacent cells above this threshold are considered the

same planetesimal. The triangular shaped cloud scheme that translates particle data to

the gas grid smooths the dust density on the length scale of a single grid cell. As a result,

some cells with relatively few particles have a dust density above ρH because there are

tens of thousands of particles in the neighbouring cells. We also average clump-related

data over the multiple M6-0...M6-4 simulations, removing some of the influence of the

stochastic nature of the non-linear SI from our results concerning planetesimals. For

reasons of computational expense from the large number of particles in our simulations,

we do not opt for a more sophisticated clump finding algorithm as in Rucska & Wadsley

(2021).

4.3 Dust surface density at different grain sizes

In this section we examine the dust surface density in the multiple-grain simulations

(M6-0,...,M6-4, hereafter referred to collectively as M6) and compare them with the

surface density from the single-grain simulations (S0,...,S3, hereafter S). We inspect

the surface density maps visually and then present a quantitative analysis of rudimentary

observational consequences resulting in differences from these maps.

The dust surface density in the 6 different sizes or species of dust grains at t = 100Ω−1

in the M6-0 simulation is shown in Figure 4.2. We present all data from single snapshots

at t = 100Ω−1 because at this stage planetesimal formation has begun in earnest, but

the planetesimals have not yet disrupted the other features in the dust such as the fila-

ments. As we discuss in detail in Section 4.1 of Rucska & Wadsley (2021), the numerical

cross-sections of the planetesimals in our simulations (and all similar simulations in the

literature) are unphysically large, which causes the planetesimals to post-formation in-

teract more strongly with the other dust particles than we would expect in nature. Thus,

the true final state of the dust surface density post planetesimal formation is uncertain.
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Figure 4.2: Dust surface density in the x-y (radial-azimuthal) plane for each species of grain
in the M6-0 simulation. The two right columns represent the surface density in the individual
species, each identified by their grain size which here is represented by the dimensionless stopping
time, τs (see equation 4.11 and surrounding discussion). The lone panel in the left column
represents the full dust surface density in the simulation, with all grain species. The colour
represents the logarithm of the dust surface density normalized by the mean dust surface density.
The mean and normalization is computed in each panel individually. These data represents the
simulation at time t = 100 in units of the inverse orbital frequency, Ω−1.
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Figure 4.3: Dust surface density at t = 100 Ω−1 in the x-y (radial-azimuthal) plane for all
simulations. The S simulations use a single grain size, and the M6 simulations use multiple sizes
simultaneously. See Table 4.1 for a summary of the simulation parameters.
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We pick t = 100Ω−1 as a compromise to capture the coexistence of the planetesimals and

the filaments, which we believe to be the most realistic representation of the saturated

stage of the non-linear streaming instability.

We notice immediately in Figure 4.2 that the smallest sized dust grains (lowest τs)

do not readily collect into filaments or planetesimals at all, even when the larger grains

are producing dense feature simulatenously. All grains with τs > 0.1 participate in the

structure of the filaments, while the distribution of the τs = 0.0355 grains is smooth

with relatively little spatial variation. Secondly, with a more careful visual inspection

of the τs = 0.191 surface density map, one can see that the brightest, ∼2-3 cell wide

objects in the largest grains–which represent the planetesimals–are less bright than in

the τs > 0.2 grains, suggesting the τs = 0.191 grains do not form into planetesimals

as readily (for more quantitative results concerning clumping, see Section 4.4). In the

full dust surface density, which includes all grains (“all τs” panel), we see altogether the

filaments, planetesimals, and the smooth, dispersed quality of the smallest grains which

is most apparent in the space between filaments. Similar visual observations can be seen

in other studies of the non-linear SI with multiple grain sizes (cf. Yang & Zhu 2021

Figures 4 and 6, Bai & Stone 2010a Figure 2, Johansen et al. 2007 Figure 2).

We can make similar observations when comparing the surface density maps of the

M6 and S simulations, shown in Figure 4.3. The S use one grain size of τs = 0.314 and

thus more closely resemble the τs = 0.270 to 0.412 grains from the M6 simulations, in

that the dust mass at these sizes is predominantly concentrated into planetesimals and

filaments which are separated by relatively empty regions with surface densities ≲10%

of the mean surface density. The smaller grains in the M6 simulations fill these empty

regions.

More quantitative confirmation of these observations can be seen in the probability

distribution functions (PDFs) of the dust surface density, in Figure 4.4. The top panel
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Figure 4.4: Probability distribution functions (PDFs) of the dust surface density in our sim-
ulations at t = 100Ω−1. Top. PDF for the M6-0 simulation for each τs (grain size) bin (cf.
Figure 4.2). The normalization by the mean surface density is computed for each grain species
individually. Bottom. PDFs for all simulations (cf. Figure 4.3). The red (blue) shaded regions
represent the maximum and minimum bounds among all M6 (S) simulations, and solid line repre-
sents the mean PDFs. Analogously, the grey shaded data and solid line represent the τs = 0.314
grains from the M6 simulations only. The dashed curves are the PDFs for the M12 and M18 sim-
ulations.
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shows the PDFs for the individual grains from the M6-0 simulation at t = 100Ω−1.

Here, we quantify what is observable in Figure 4.2: the distribution of surface density

in the τs = 0.036 grains is narrow, peaking around the mean, Σd,0. The τs = 0.191

distribution is wider by an order of magnitude in each direction, which is a sign that

these grains are participating in filaments. Yet only the grains with τs > 0.2 extend out

to surface densities greater than 100Σd,0–a (rough) proxy for planetesimals. The PDFs

of the particle volume density from Yang & Zhu (2021) Figure 8 show similar segregation

by grain size.

The bottom panel of Figure 4.4 highlights how this affects the overall surface density

in the M6 simulations. The PDFs extend only as low as 0.1Σd,0, while the distributions

from the single size τs = 0.314 simulations extend out to 0.01Σd,0. Interestingly, when

looking at the τs = 0.314 grains from the M6 simulations on their own, these PDFs

show there are more low surface density areas in these grains than there are in the S

simulations at the this size. This suggests that the presence of different-sized dust grains

in the M6 results in more empty or lower surface density regions than if the τs = 0.314

grains were left to evolve on their own.

The PDFs for the M12 and M18 simulations–which have more grain size bins than the

M6 simulations–are also shown in the bottom panel of Figure 4.4. These PDFs follow

the M6 data closely, suggesting that the number of grain species does not affect how the

dust surface density is distributed.

The differences in the S (blue) and M6 (red) PDFs have interesting observational

consequences. There many more regions with low surface density in the S simulations

and (on average) more regions at higher surface densities. Depending on the opacity of

the dust, this could lead to a lower estimate of the total dust mass from observations

due to optical depth effects. We explore this idea in the next section.
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4.3.1 Observational consequences

Observations of some bright rings in protoplanetary discs have come to the interesting

conclusion that the thermal emission from the dust in these rings is likely not optically

thick (Dullemond et al. 2018; Huang et al. 2018; Cazzoletti et al. 2018; Macías et al.

2019; Maucó et al. 2021). Other studies have shown that, with a parameterized model

of planetesimal formation via the streaming instability, this can be explained by pebble-

sized dust mass in rings being converted into planetesimals, which do not contribute to

mm wavelength emission (Stammler et al. 2019; Maucó et al. 2021). Taking this idea

a step further, Scardoni et al. (2021) took the dust surface density profiles from 2D

simulations of the SI and explored how the dust clumping would affect observations.

They use a complex model for the dust opacity (Birnstiel et al. 2018) and find general

agreement between their calculations of observed properties of discs such as the fraction

of the emission that is optically thick and the spectral index. They also conclude that

planetesimal formation can reduce the optical depth of emission at mm wavelengths.

In this, section we construct two mass correction factors which quantify the obser-

vational implications of the varying degrees of dust clumping seen in our simulations2.

We explore how these mass correction factors vary with optical depth (τopt = κΣd,0)3,

and how they evolve over time. We forgo a detailed mock observational treatment and

complicated calculations of the dust opacity in favour of a technique that primarily high-

lights the differences in emission from our single grain size and multiple grain size models

versus a uniform dust surface density map without clumping due to the SI.
2Note, the dust features created by the SI occur on length scales well below 1 AU, and are hence

unresolvable by any contemporary observational facility.
3We vary τopt by holding Σd,0 fixed and varying κ in units of (Σd,0)−1.
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The intensity of emission (I) from a source of radiation (source function S, assumed

constant with dust physical properties, etc.), can be written in integrated form as,

I(τ) = S
(
1 − e−τopt

)
, (4.14)

where τopt is the optical depth, and the wavelength dependence of all quantities has been

ignored. We consider a simple prescription for the optical depth, τopt = κΣ, where κ

is the dust opacity and Σ is the dust surface density. For optically thin emission (low

opacity, and/or small amount of mass), τopt ≪ 1, and then I ≈ SκΣ and one can convert

that emission to an estimate of the surface density if S and κ are known: Σest = I/Sκ.

However, if we consider that this underlying emission I may or may not be optically

thick (equation 4.14), e.g. due to clumping, then we have,

Σest =
(
1 − e−κΣ)

κ
, (4.15)

which is the (potentially erroneous) surface density one would compute under the as-

sumption the emission was optically thin (If κ ≪ 1, then Σest ∼ Σ). This expression is

useful as it does not require knowledge of the source function.

We take the surface density map from our simulations (Σ) and compute an converted

surface density map Σest via equation 4.15. We do a wide sweep of values of κ, acknowl-

edging that there are large uncertainties in the values of dust opacity (Birnstiel et al.

2018). We then take the spatial average of that converted surface density, < Σest >,

to model the fact that all features in our simulations would be unresolved and hence

smoothed by the observational beam.

Finally, we construct two dust mass correction factors from these average estimate
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surface densities. First, using a ratio of the true averaged surface density of the simula-

tion Σactual (i.e. the mean surface density Σd,0),

C = Σactual
< Σest >

. (4.16)

This factor quantifies ignorance about the optical depth of the emission as well as unre-

solved clumping.

Perhaps more interestingly, we can compute the < Σest > for a uniform dust density

distribution at Σactual, and then divide that by the < Σest > for our simulations, which

display strong clumping in the dust surface density. This leads to a second correction

factor

Cclump = < Σest,uniform >

< Σest >
= C

Cuniform
. (4.17)

This ratio excludes any ignorance about the optical depth, and instead isolates the effects

of dust clumping via the streaming instability. If one is confident about the optical depth

of an observed source, Cclump represents the factor the inferred dust surface density

should be multiplied by if the SI is believed to have caused significant clumping in that

region of the disc.

The top panel of Figure 4.5 shows C as a function of τopt. At low τopt, C1 ∼ 1 for

all simulations, since in this regime the optically thin assumption is valid by definition.

At high τopt, all simulations converge to C1 ∼ τopt since the exponential term in equa-

tion 4.15 vanishes, removing any dependence in C on the surface density distribution in

the simulations and hence any influence of clumping. It is at intermediate values of τopt

where differences between the sets of simulations are apparent.

To better observe these differences, we use our second correction factor Cclump, seen in

the bottom panel of Figure 4.5. This factor is the ratio of C for each simulation (coloured
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Figure 4.5: Observational dust mass correction factors, C and Cclump. Details on how these
factors are defined are in Section 4.3.1. Top. Comparing the mean surface density from the sim-
ulation (Σd,0) to surface densities converted from mock emission of the simulation dust surface
density maps (Figure 4.3), viewed at varying optical depth (or, equivalently, dust opacity). Bot-
tom. Mass correction factor due to the effects of strong clumping from the streaming instability.
Comparing observed mean surface densities converted from simulation surface density maps to
a uniform surface density. These data are equivalent to dividing the coloured and dashed curves
by the solid black curve in the top panel.
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and dashed lines, top panel) to the C for a spatially uniform dust surface density distri-

bution at Σd,0 (black line, top panel4). Hence, what Cclump highlights is the influence of

the different amount of clumping in the dust surface density maps/distributions between

the two sets of simulations (Figure 4.3 and 4.4). If the optical depth is well constrained

(e.g. from grain properties), it is the factor one would multiply a dust surface density

inferred from observations by in order to account for the (unresolved) dust clumping

from our simulations.

We note that Cclump peaks near τopt = 1 for all simulations, with peak values generally

higher for the single size simulations S than the M6 simulations with multiple sizes. As

we discussed earlier in Section 4.3, when compared the simulations with multiple grains,

the dust in the S sims is more heavily concentrated into filaments and planetesimals,

and the spaces between filaments have much lower surface density. As a consequence, in

our simple model, the dust emission from the S models is overall less bright than the M6

models, as there is relatively less dust mass in the inter-filament space, and there is more

dust in the filaments and planetesimals, where the emission is saturated at intermediate

optical depths. Said another way, more of this dust mass is “hidden” in the S simulations,

requiring a higher mass correction factor Cclump to account for this effect.

The peak values of Cclump are between ∼ 1.2 − 1.5 for the M6 and M12 and M18

simulations, which we believe to be more representative of protoplanetary disc grain size

distributions in nature rather than a single size. Thus, for dust grains described by a

Birnstiel et al. (2011) grain size distributions with stopping times peaked at τs = 0.314,

observational estimates of the dust mass from protoplanetary discs could be off by a

factor of 20 − 50% in regions of the disc where the streaming instability is active. If

the grain size distribution were instead much more strongly peaked at a single size–i.e.,

closer to the S models than M6–then this mass correction factor could be as high as 80%.
4This curve is simply a plot of τopt/(1 − exp(−τopt)).
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Figure 4.6: The dust mass correction factor Cclump over time in all simulations, at an optical
depth of τopt = 1.0. The shaded regions are bounded by the maximum and minimum values
across the sample of multiple simulations, and the solid curves represent the means of that
sample.
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The values of Cclump at τopt = 1.0 over time, plotted in Figure 4.6, are fairly stable over

the course of our simulations. Once planetesimal formation begins, the main features

of the dust surface density which influence Cclump persist over dozens of dynamical

timescales. Note that the single snapshot values of Cclump presented in Figure 4.5 are

from t = 100Ω−1, and in Figure 4.6 this is one of the rare times where there is significant

overlap between the single size and multiple size sims. At most other times the curves

in Figure 4.5 do not overlap at all. Similar to the single snapshot data, the curves for

the M12 (12 bins) and M18 (18 bins) simulations in Figure 4.6 are consistent with the M6

simulations, suggesting incorporating more grain species does not influence our results.

Note, we do not plot C over time as it has the same shape of Cclump, since the

difference in normalization between C and Cclump (at a specific optical depth) are just

different constant factors. C uses Σd,0 as a reference point, and, for the purposes of

Figure 4.6, Cclump uses < Σd,unif > (τopt = 1.0).

4.4 Planetesimal composition: grain size

The bright cells in the surface density maps in Figure 4.3 suggest that all simulations from

our study produce dense, gravitationally bound clumps. As described in Section 4.2.3,

we identify bound clumps (i.e. planetesimals) as regions where the 3D dust volume

density (ρd) exceeds the Hill density (ρH)–the density threshold above which the dust

mass is unstable to gravitational collapse. All grid cells with ρd > ρH that are adjacent

to each other are identified as the same plantesimal. In this section we explore the

composition of these clumps in terms of the various dust species within them, as well as

the composition of the dust mass that lost from each clump from simulation snapshot

to snapshot.

The fraction of mass in clumps for each grain size is shown in Figure 4.7. The

different coloured bands represent the mass in each grain size bin. Table 4.2 shows the
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Figure 4.7: Fraction of total dust mass for particles in bound clumps or lost by clumps, for
each τs (grain size) bin. These data represent an average over the whole group of M6 simulations.
The coloured bands represent the fractional mass for each τs. The data for each grain size are
vertically stacked so that the total mass in clumps (or lost by clumps) for all dust grains is
tracked by the top of the pink shaded region. The data for τs = 0.036 are too small to be seen
on this scale; see Table 4.2 for time-averaged values of these data for all τs, and for the data
from the M12 and M18 simulations.
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Table 4.2: Time averages (t = 80 − 120Ω−1) of the total dust mass in bound clumps and lost
by clumps, split by τs (grain size) (cf. Figure 4.7).

(a) Dust mass in bound clumps (as fraction of total
dust mass).

τs 6 bin sims 12 bin 18 bin
0.036 4.90 × 10−5 4.38 × 10−4 5.84 × 10−4

0.191 7.73 × 10−3 7.47 × 10−3 1.08 × 10−2

0.270 2.60 × 10−2 1.81 × 10−2 3.20 × 10−2

0.314 3.38 × 10−2 2.29 × 10−2 4.23 × 10−2

0.353 3.30 × 10−2 2.24 × 10−2 4.33 × 10−2

0.412 3.43 × 10−2 2.06 × 10−2 4.46 × 10−2

(b) Dust mass lost by clumps (as fraction of total
dust mass).

τs 6 bin sims 12 bin 18 bin
0.036 4.71 × 10−5 2.74 × 10−4 3.52 × 10−4

0.191 2.04 × 10−3 1.99 × 10−3 2.70 × 10−3

0.270 2.78 × 10−3 2.51 × 10−3 3.83 × 10−3

0.314 2.43 × 10−3 2.21 × 10−3 3.38 × 10−3

0.353 1.95 × 10−3 1.75 × 10−3 2.73 × 10−3

0.412 1.93 × 10−3 1.72 × 10−3 2.55 × 10−3

time averages for these data over the range of time across the full x-axis in Figure 4.7.

As seen in the top panel and in Table 4.2a, the majority of the mass in clumps (> 90%)

is in the grains with τs > 0.2. A small fraction of the clumps are composed of τs = 0.191

grains and there is effectively no clump mass associated with the τs = 0.035 grains.

These results corroborate earlier observations from Figure 4.2 regarding the decreased

prominence or total lack of visible planetesimals in the surface density maps for these

grain sizes.

Some particles that are within in a clump in one snapshot are not within that same

clump5 in the consecutive snapshot. These particles may be loosely bound at the edge of

the gravitational influence of the planetesimal (i.e. near the Hill radius) or simply passing

through the high-density grid cells that are identified as planetesimals. We explore these
5Planetesimals in concurrent simulation snapshots which share over 50% of the same unique particles

(determined by particle ID numbers) are determined to be the same clump.
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Table 4.3: Residence time (equation 4.18) for the different dust grains in the M6 simulations.

τs Mass Mass lost Residence
in clumps from clumps time (Ω−1)

0.036 4.90 × 10−5 4.71 × 10−5 2.08
0.191 7.73 × 10−3 2.04 × 10−3 7.60
0.270 2.60 × 10−2 2.78 × 10−3 18.7
0.314 3.38 × 10−2 2.43 × 10−3 27.8
0.353 3.30 × 10−2 1.95 × 10−3 33.9
0.412 3.43 × 10−2 1.93 × 10−3 35.6

ideas with velocity and vertical position data in Section 4.4.2. For the purposes of this

analysis, we identify these transient clump particles as “lost”, and plot the composition

of this lost dust mass in the bottom panel of Figure 4.7 and provide the time averages

of these data in Table 4.2b. The lost dust mass is nearly evenly distributed among the

grains at τs > 0.1, with the highest proportion involving the τs = 0.270 grains. Note that

on average, approximately 10% of all the mass in clumps is consistently lost between

snapshots.

We can combine the results from the two panels of Figure 4.7 into a single idea

known as the residence time–a quantity that estimates how long the dust mass of a

particular grain species will remain in clumps given how quickly that mass is lost. This

is represented simply by,

Residence time = ∆tsnap

(
Mass in clumps

Mass lost btwn. snapshots

)
, (4.18)

where ∆tsnap is the amount of time between data outputs and in this study is equal to

2.0 Ω−1. The residence time is hence equivalent to diving the data in Table 4.2a by the

data in Table 4.2b and multiplying by ∆tsnap.

We present calculations of the residence time in Table 4.3. This table confirms our

prior conclusions when considering both panels of Figure 4.7 together: the largest grains

are the most bound, longest-lived components of the planetesimals. All grains with

159



McMaster University – Physics and Astronomy Ph.D. Thesis – Josef J. Rucska

τs > 0.2 have residence times above 18 Ω−1, and this quantity increases monotonically

with τs. The smallest grains at τs = 0.036 have residence times comparable to ∆tsnap,

suggesting they form only a transient component of the clump mass6.

Interestingly, the τs = 0.191 grains have an intermediate residence time of ∼ 8 Ω−1.

We can also observe from the dust surface density maps for each grain species (Fig. 4.2)

and the PDF of those surface densities (top panel Fig. 4.4) that the τs = 0.191 grains

exhibit behavior that is not like the smallest grains or the larger grains. The smallest

grains do not participate in any kind of dust clumping, and the larger grains readily

form gravitationally unstable planetesimals. Our results suggest the τs = 0.191 grain

behavior in the non-linear evolution of the streaming instability is somewhere in-between

these two regimes.

We can see evidence of this in-between behavior for the τs = 0.191 grains in Figure 4.8,

which shows the amount of dust mass above a certain density threshold at each grain

size at t = 100 Ω−1. In the bottom panel, the threshold is ρH , and hence these data are

equivalent to (a single time/vertical slice of) the data from the top panel of Figure 4.7.

We see similar conclusions as before: the τs > 0.2 grains dominate the clump mass

budget, the τs = 0.036 grains are not a part of the clumps at all, and the τs = 0.191

make up a small fraction of the mass at clump densities.

In the top panel of Figure 4.8, the threshold is ρg,0, the mid-plane gas density. In our

simulations and those like it from the literature, the gas density displays little variation,

even when the streaming instability develops strong dust clumps and filaments (Li et

al. 2018). So the ρg,0 threshold effectively marks the boundary where the dust density

dominates the total local mass density (ρ = ρd + ρg), an important regime for the

streaming instability (Youdin & Goodman 2005). We see that the τs = 0.036 grains are
6A more sophisticated clump-finding approach may definitely determine these small grains to be

kinematically unbound. However, our simpler (and less expensive) analysis reaches the same conclusion
to the degree of precision suitable for our study.
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Figure 4.8: Total dust mass above certain density thresholds as a function of grain size (τs),
normalized by the total dust mass in the simulation domain. In the top panel the threshold
is the initial midplane gas density ρg,0 and the bottom panel the threshold is the Hill density
(equation 4.13), the threshold above which dust forms gravitationally bound planetesimals. The
shaded regions represent the bound for the maximum and minimum across the five M6 simulations.
The M12 and M18 data are shown with grey and black curves, with multiplications by 2 and 3
to allow for a direct comparison with the M6 simulations, which have fewer bins and hence more
dust mass per bin.
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proportionally underrepresented even at the lower threshold of ρg,0, representing ∼ 7%

of all dust mass. Meanwhile, the τs = 0.191 grains contribute just as much mass above

this threshold as the larger grains.

Including observations from the dust surface density at each grain size (Fig. 4.2), we

can interpret the data in Figure 4.8 as supporting the idea that the τs = 0.191 grains

form filaments but not strong clumps, while the smaller τs = 0.036 grains form neither.

In other words, the ρg,0 threshold appears to delimit the dust density boundary for the

filamentary features.

4.4.1 Simulations with larger numbers of species

As with the results from Section 4.3, using a larger number of grain species to sample

the grain size distribution does not change our results. In Table 4.2, we include time

averages of the mass in clumps and lost by clumps for the M12 and M18 simulations.

As discussed in Section 4.2.2, the larger bin samples are created by sub-sampling the

6 bins from the M6 simulations, so that we can easily combine the sub-sampled bins to

match the τs bin boundaries from 6 bin sample for the purposes of comparison. The

overall conclusions from the M12 and M18 data are the same: the larger τs > 0.2 grains

dominate the clump mass budget, while the dust mass lost is more evenly spread among

the τs > 0.1 grains. Also, the shape of the curves from Figure 4.8 are within the bounds

set by the M6 simulations.

We note that, as a whole, including Figure 4.5, the M12 has slightly lower mass in

clumps and dense structures than the M6 average, while the M18 data is slightly above

this average. We do not interpret these differences as evidence that an increased number

of bins affects planetesimal formation in a deterministic way. Rather, we view these

differences are a consequence of the non-linear nature of the developed stage of the

streaming instability. The variability in the SI is immediately observable as the range
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Figure 4.9: 2D histogram in the dust density-velocity phase space for the different grains in
the M6-0 simulation at t = 100Ω−1. Each panel is the histogram for the individual grain species.
Note that all dust velocities are measured with respect to the background Keplerian flow. The
(logarithmic) colourbar is normalized to the total dust mass in the simulation. The darkest bins
do not contain any particles; a minimum value is applied for aesthetic purposes. The solid white
curve represents the NSH equilibrium velocity (Nakagawa et al. 1986; see also equations 7 in
Youdin & Johansen 2007) and the vertical white dashed line represents the Hill density in our
simulation units (equation 4.13). The NSH velocity is a function of τs and the local dust-to-gas
mass ratio, ϵ = ρd/ρg. Since ρg ≈ 1 throughout our simulation domain, we use ρd as a proxy for
ϵ.

of outcomes among the individual M6 and S simulations, and is the overarching theme

of our previous study (Rucska & Wadsley 2021).

4.4.2 Dust velocity

In this section we use velocity data to further explore the differences in behavior between

the smaller and larger dust grains in our simulations, and the consequences this has on

planetesimal formation.

A 2D histogram of the dust particles in the dust volume density (ρd) and individual
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particle velocity (|vdust|) phase space, for the M6-0 run, is shown in Figure 4.9. Also

plotted is the magnitude of the equilibrium drift velocity for the dust (Nakagawa et al.

1986) as the white curve, which tracks the expected steady-state drift rates of the dust

(in the absence of complex dynamics like the non-linear SI). We see at large ρd, the

expected drift velocity falls to 0, predicting that the dust fully decouples from the dust-

gas equilibrium and orbits at the Keplerian velocity, and at low ρd the drift velocity

approaches to the radial pressure gradient offset ∼ ηvK with a factor of order unity that

depends on τs.

The smallest τs = 0.036 dust grains have most of their mass below ρg,0, which is

in line with conclusions regarding Figure 4.8. Nearly all of the dust at this size–which

does not form filaments or clumps–follows the NSH equilibrium curve closely. This

provides further evidence that these smallest grains do not participate in highly non-

linear behavior that deviates from analytical, steady-state expectations.

Most of the τs = 0.191 grains do not exist at densities above ρH = 180, but between

30 and 100ρg,0, which corroborates earlier discussions in Section 4.4 which conclude

these grains predominantly participate in filament formation but not clump formation.

The lower density dust between ∼ 0.3 and 10ρg,0 primarily follows the NSH equilibrium

curve.

For the larger τs > 0.2 grains, most of their mass exists at large densities well above

ρH . Dust in the centre of planetesimals can be seen as the bright yellow pixels at

ρd ≥ 10ρH . The lines of above and below these brightest pixels show that the dust

resolution element superparticles can have slightly different velocities within a single

grid cell. As with the τs = 0.191 grains, the lower density dust is centered around the

NSH expectations.

Note that for all grains with dust densities above ∼ 30ρg,0, the bulk of the mass
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Figure 4.10: Dust surface density in the x-z (radial-vertical) plane for a subset of grains from
the M6-0 simulation at t = 100Ω−1.

deviates substantially from the NSH equilibrium, settling at velocities between ∼ 0.001

and 0.01cs. This is evidence of small amplitude, local turbulence, likely driven in part

by the dense dust clumps near the midplane imparting substantial momentum onto the

gas over small length scales. The width of the histogram about the NSH curve at lower

densities is likely a result of this more disperse dust interacting with stirred up midplane

gas.

4.4.3 Vertical position

We can further highlight the different behavior between the different sized dust grains by

briefly exploring the properties of the vertical (out of midplane) dynamics. Figure 4.10

shows the dust surface density in the radial-vertical (x-z) plane. We can see the that

small grains have a much more extended vertical profile than any of the larger grains,

with no bright features. Comparatively, the τs = 0.314 grains (which look nearly iden-

tical to the other grains in the largest four sizes, which are not shown) are distributed

very closely to the midplane. The τs = 0.191 are slightly more extended with slightly

broader features than the large grains, and the bright planetesimal between x = 0.0 and

0.05Hg is not very bright in these grains. Yet, the filament features are readily visible.
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We can further quantify these observations by computing the dust scale height, de-

fined as,

Hp =

√√√√ 1
Npar

Npar∑
i

(zi − z)2, (4.19)

and a similar (and related) quantity, the root mean-square (RMS) z velocity,

vz,rms =

√√√√ 1
Npar

Npar∑
i

(vz,i − vz)2. (4.20)

These values for all dust grains in the M6-0 simulation are presented in Table 4.4. The

Hp data confirm what is visible in the vertical surface density: the smallest grains have

by far the most vertically extended scale heights, and the scale height monotonically

decreases with τs. The scale height is directly related to the RMS of the vertical dust

velocity since it is only through turbulent motions–which provide a constant source of

vertical velocity dispersion–that the dust can maintain a persistent scale height (Youdin

& Lithwick 2007). Similar to observations made by Schaffer et al. (2018) and Schaffer

et al. (2021) in their 2D simulations of the SI with multiple grains, it appears in our

simulations that the larger grains stir up turbulence near the midplane, which causes

the smaller grains, which are more tightly coupled to the gas aerodynamically (short

drag stopping times), to remain suspended at relatively large scale heights. The vertical

RMS velocity for the gas near the midplane is 4.13 × 10−3 (in units of cs), which is very

close to vz,rms for the small τs = 0.036 grains.

4.5 Conclusions and discussion

In this study we model a patch of a protoplanetary disc in 3D numerical hydrodynamics

simulations. We model the dust component of the disc with multiple grain sizes simul-

taneously under conditions that are unstable to the streaming instability, and track the

non-linear development of the SI to the formation of bound planetesimals. This paper
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Table 4.4: Particle scale height and vertical RMS velocity for the different dust grains in the
M6-0 simulation at t = 100Ω−1.

τs Hp (Hg) vz,rms (cs)
0.036 11.7 × 10−3 4.16 × 10−3

0.191 4.47 × 10−3 2.87 × 10−3

0.270 3.40 × 10−3 2.50 × 10−3

0.314 3.03 × 10−3 2.31 × 10−3

0.353 2.77 × 10−3 2.29 × 10−3

0.412 2.64 × 10−3 2.37 × 10−3

extends previous work that used multiple grain sizes in simulations of the non-linear

phase of the SI (Johansen et al. 2007; Bai & Stone 2010a; Schaffer et al. 2018; Schaffer

et al. 2021; Yang & Zhu 2021). Most prior work used a grain size distribution with a

number density described by a single power law, but in our study we sample a distri-

bution that is the output of a widely-used model of grain growth and fragmentation

applicable to midplane of protoplanetary discs (Birnstiel et al. 2011). To compare our

multi-species results to prior work which modelled the dust with a single species, we

match the peak of the size distribution to the grain size studied in Rucska & Wadsley

(2021).

Our main results are as follows:

1. Only larger grains with dimensionless stopping times τs > 0.1 participate strongly

in the non-linear SI, producing filaments and regions with large dust densities

that gravitationally collapse into planetesimals. The smaller grains do not form

filaments or clumps at all, despite the fact they are embedded in an environment

where roughly 5/6 of the dust mass is forming dense structures. This confirms a

basic property of the multi-species SI at the non-linear stage (Bai & Stone 2010a;

Yang & Zhu 2021), which remains true for a realistic protoplanetary disc grain size

distribution from Birnstiel et al. (2011). The net result is there is more dust mass in

the regions between the filaments in the multi-species simulations when compared
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to the single grain simulations, and slightly less mass in the dense structures.

2. Clumping of dust via the SI on sub-AU length scales reduces the average surface

brightness for a given amount of dust. This confirms in 3D models that the SI

could explain the lower than expected (order unity) optical depths seen in observed

protoplanetary disc rings (see Section 4.3.1 for details). We estimate that 20%-80%

more dust may be present than in uniform mass distribution models. The effect is

less severe for multi-size versus single-size models.

3. We identify bound clumps and dense dust features. Larger τs ≳ 0.2 grains form

clumps, τs ≲ 0.04 grains do not form clumps or filaments. Intermediate sizes are

somewhat in between, forming filaments but not clumps. The velocities of the

smallest grains are quite different from the larger grains in clumps and filaments,

suggesting that these small grains—with a short drag stopping time that enforces

tight coupling to the gas—simply sweep by the planetesimals rather than becoming

incorporated into them. This implies a size cutoff for pebble and dust grains

incorporated into asteroids and comets.

4. The main group of the multi-species runs in this study used 6 bins or species to

sample of the grain size distribution. We test 12 and 18 bins to show convergence.

More bins appears to have no measurable effect on the results for the multi-species

simulations and we conclude that 6 bins is sufficient to study peaked grain size

distributions.

4.5.1 The future of planetesimal formation via the SI with multiple

grain sizes

Including multiple sizes in models of the non-linear SI effects not just planetesimal

formation but also the observable properties of protoplanetary discs. Most prior work
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on the SI has modelled the dust with a single grain size. However, recent observations

of protoplanetary discs (see Andrews 2020, for a review) and results from grain growth

theory (Birnstiel et al. 2011; Birnstiel et al. 2015) suggest that there is a distribution of

dust grain sizes within discs. An important consideration then is what the shape of this

distribution should be.

In this paper we have shown that just an order of magnitude difference in grain

size can determine whether grains are fully active in the SI all to way to planetesimal

formation, or whether they do not even form filaments. This observation motivates

further exploration of the grain size distribution parameter space. Our study represents

a single instance of the Birnstiel et al. (2011) distribution for a specific set of disc

conditions. In our results, most of the species participate in planetesimal formation.

Shifting the distribution peak to smaller sizes—equivalent to considering different radial

positions in the disc—would move dust mass from species that undergo strong clumping

towards species that do not participate in planetesimal formation or primarily form only

filaments. Presumably, this would result in an overall decrease in the total dust mass that

is converted to planetesimals. Extending our work to a broader range of distributions

would reveal how planetesimal formation varies in conditions at different radial locations

in the disc.

Of particular interest is a distribution with a more equal mix of SI-active and SI-

inactive grains. These conditions likely describe the onset of the SI and planetesimal

formation. Early in the disc lifetime, most of the dust in the midplane may be too small

(τs ≲ 0.04) to participate in planetesimal formation initially, and then grow through

mutual collisions (e.g. Birnstiel et al. 2011) to involve sizes that are unstable to the

SI. However, the time scales for grain growth are typically > 104 yr (e.g. Birnstiel et

al. 2012), while the timescale for planetesimal formation via the SI is much shorter7.
7For the timescales in our study, 100Ω−1 ≈ 16 orbital periods, which is equivalent to ∼200 years at

5 AU around a solar mass star.
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Thus, for initially small grains, planetesimal formation may occur as grains grow. It

would be interesting to explore this initial planetesimal formation phase with a dust size

distribution that includes a larger proportion of smaller, SI-inactive grains.

More realistically, however, it is likely grain growth and the streaming instability

occur simultaneously. Dust growth and fragmentation is driven by collisions between

dust grains. The source of the relative velocity for these collisions in models such as

Birnstiel et al. (2011) is an underlying turbulence that may be driven by large scale

hydrodynamic instabilities (see Lyra & Umurhan 2019, for a review). The streaming

instability generates its own turbulence locally (e.g. Li et al. 2018) that drives relative

velocities between dust, especially when a distribution of sizes is considered (Bai &

Stone 2010a). How these SI-driven collisions influence grain growth remains unstudied.

A possible technique may be a model where the dust size can change based on collisions

and expectations of growth/fragmentation. These dynamic grain size models have been

applied to global models of disc evolution (e.g. Gonzalez et al. 2017; Drążkowska et al.

2021), yet have not appeared in high resolution studies of the SI.

Our results show that, under the SI, a distribution of sizes will segregate spatially.

The larger, pebble-sized dust settles to the midplane and undergoes vigorous non-linear

dynamics leading to filament and planetesimal formation, while the smaller grains remain

vertically suspended and occupy the space between filaments. Thus, the influence of

grain growth likely varies spatially as well. Perhaps the small, vertically suspended grains

could grow to sizes that are more SI-active, settle towards the midplane, and participate

in planetesimal formation. The dense, dust-dominated regions within filaments could

promote the growth of pebbles to larger sizes than is possible in gas-dominated regimes.

Or, the pebbles in filaments could fragment to smaller SI-inactive grains and reduce the

efficiency of planetesimal formation. These smaller sized, fragmented remnants would be

created at low scale heights near the midplane, and it is unclear how those grains would
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interact with clumps and pebble-rich filaments. Such possibilities could be explored in

dynamic grain size models.

Incorporating grain growth introduces models dependent on physical units (e.g. frag-

mentation threshold velocity). This breaks the scale-free property of the common shear-

ing box model used in high-resolution studies of the SI that allows, for example, the

translation of τs = 0.314 dust to represent different physical grain sizes depending on

the disc model and radial position. This means multiple simulations will be required

to model how grain growth theory interacts with the local dynamics of the streaming

instability under different disc conditions.

The composition of grains could also influence both grain growth and the aerody-

namic coupling between the solids and gas phase. Icy grains can stick together at larger

collisional velocities than silicate grains (e.g. Gundlach & Blum 2015), and since icy

grains are, generally speaking, larger than dry grains, they can radially drift through

protoplanetary discs at different rates (Drążkowska & Alibert 2017). If both dry and

icy grains co-exist in a disc region that is unstable to the SI (in the vicinity of a disc

ice line), our results suggest the two populations could become spatially separated. The

small, dry grains would preferentially remain suspended above the disc midplane while

the larger, SI-active icy grains would form filaments and planetesimals. This would dis-

tinguish the chemical composition of the planetesimals from the overall dust population

within which they are formed.

Improving numerical resolution to near planetesimal (∼10 km) length scales could

confirm our interpretation of our results that small grains do not participate in clump

formation because they are tightly coupled to the gas which flows around the plantes-

imals. An increase in resolution to this scale is not possible with the methods applied

to the streaming instability thus far, but may be approachable with adaptive resolution

techniques and/or zoom-in simulations with small domains.
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The ability of the available numerical schemes to model an aerodynamically coupled

solids-gas system with a dynamic grain size distribution also remains unexplored. Bai

& Stone (2010a) suggested that 1 dust superparticle per grid cell per grain species is

adequate to capture the non-linear SI, and this has been the literature standard since.

It is unclear how this would translate to a dust phase with a continuous, dynamic size

range. Difficulties and uncertainties aside, we believe a dynamic dust size distribution

could be a promising avenue for approaching a more realistic model of planetesimal

formation via the streaming instability.
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Chapter 5

Critical conditions for strong

clumping via the streaming

instability in 3D

In this chapter we probe the conditions where strong clumping of dust via the streaming

instability is possible. We run a suite of 3D numerical simulations to conduct a parameter

sweep over the two most influential parameters to the streaming instability: the amount

of dust mass and the aerodynamic drag stopping time (a proxy for the grain size). We

build on prior work based on 2D simulations.

5.1 Introduction

The streaming instability is a mechanism capable driving dust clumping in protoplane-

tary discs. The strength of this clumping varies with the local dust mass as well as the

drag stopping time. The growth rates of plane wave perturbations in the linear SI are

largest for high dust-to-gas mass ratios ≥ 1 and for drag stopping times (tstop) that are

resonant with the orbital dynamical timescale (Ω−1) in the disc (Youdin & Goodman

2005; Youdin & Johansen 2007; Squire & Hopkins 2018). Figure 1.9 shows growth rates
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for different dust conditions. The amount of dust mass and the stopping time have a sim-

ilar influence on dust clumping in the saturated, non-linear phase of the SI (Johansen &

Youdin 2007; Bai & Stone 2010b). In an influential study, Johansen et al. (2007) showed

that for large grains with tstopΩ ∼ 1, and a slightly super-solar concentration of solids,

a local region of a protoplanetary disc is unstable to dust clumping via the SI. Dense

dust filaments form on the order of tens of orbits, and within these structures highly

dense clumps collapse under their own self-gravity to form planetesimals. This result

identified the streaming instability as a leading mechanism to overcome growth barriers

for solid material in protoplanetary discs, such as the destructive collisions barriers for

centimetre sized dust pebbles (see Blum 2018, for a review) and the rapid radial drift

barrier of metre sized objects due to aerodynamic headwind (Weidenschilling 1977a).

Hence, there is interest in understanding under what conditions the streaming in-

stability operates within protoplanetary discs. Through empirical analyses of numerical

simulations suites, a series of studies (Carrera et al. 2015; Yang et al. 2017; Li & Youdin

2021) has sought to define boundaries for dust clumping via the SI. These boundaries

are summarized roughly as curves through a parameter space set by the local dust-to-gas

surface density ratio and drag stopping time. Semi-analytical models of the evolution of

global protoplanetary discs have made use of these results to determine when the SI is

active and planetesimal formation occurs (e.g. Drążkowska et al. 2016; Drążkowska &

Dullemond 2018; Cridland et al. 2022).

One limitation of the studies by Carrera et al. (2015), Yang et al. (2017), and Li &

Youdin (2021) is their simulation suite was based on 2D simulations in the radial-vertical

plane, primarily to limit computational cost. This follows analytical studies of the linear

SI (e.g Youdin & Goodman 2005) which used axisymmetric perturbations with radial-

vertical modes only (Fig. 1.9). Recent work has demonstrated that the SI can promote

dust clumping in the 2D radial-azimuthal plane as well, both in linear perturbations (Pan
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& Yu 2020) and in numerical simulations of the non-linear, saturated phase (Schreiber

& Klahr 2018). However, many 3D studies of the SI demonstrate the formation of dust

structure in all 3 dimensions (Johansen et al. 2007; Bai & Stone 2010a; Simon et al.

2016; Simon et al. 2017; Li et al. 2018; Abod et al. 2019; Carrera et al. 2021). Structure

in 2D radial-vertical domains denotes rings globally, and thus cannot accurately model

localized clumping along the circumferential length that is likely an essential component

of planetesimal formation. Thus, our motivation for this work is to probe the boundary

for strong clumping via the SI and hence planetesimal formation in a more physically

realistic 3D model that includes dynamics in the 3rd dimension.

5.2 Methods

We use the Athena hydrodynamics code (Stone et al. 2008; Bai & Stone 2010b) with

the same localized protoplanetary disc model and numerical methods as our prior work,

so we direct readers interested in discussion of the equations we solve and the numerical

schemes to Section 2.2 of this thesis. In this section, we summarize the key components

of our methods relevant to this chapter.

Our simulation domains span 0.2 gas scale heights1 in each dimension, with a resolu-

tion of 2563 total grid cells. We do not include the effects of self-gravity on the dust as in

our prior studies, because we believe self-gravity does not strongly affect the first stage

of planetesimal formation, which is strong clumping via the non-linear SI. Indeed, for

reasons of computational expediency, some studies on planetesimal formation waited to

initiate self-gravity until strong clumping was initiated by the SI (e.g. Simon et al. 2016).

Following prior work (Li & Youdin 2021), we define clumping sufficient for planetesimal

formation via a density threshold (equation 5.6).
1Both the gas and dust are initialized with a Gaussian density profile along the vertical direction.
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The parameter Z sets the total dust mass in the simulation domain,

Z = Σd

Σg
, (5.1)

which is the ratio of the dust-to-gas mass surface density. As discussed in Section 1.1.1,

this is different from the common definition of metallicity, which is the mass ratio of

elements heavier than helium to the total gas mass. For our purposes, we are interested

in the mass content of the solid material that can participate in the streaming instability

and planetesimal formation, Zsolids. In the outer protosolar disc, beyond the ice lines of

volatile gases, Zsolids ≈ 0.015, and in the inner disc, Zsolids ≈ 0.005 (Lodders 2003). A

value of Z = 0.005 is quite low in the context of the streaming instability, and in most

cases from Li & Youdin (2021), this amount of dust will not produce strong clumping.

Hence, the streaming instability typically requires a preexisting mechanism to enhance

local dust concentrations, such as pressure bumps (Carrera et al. 2021; Carrera et al.

2022), vortices (Lyra et al. 2008), magnetically driven zonal flows (Johansen et al. 2009a;

Bai & Stone 2014), ice lines (Drążkowska et al. 2016; Drążkowska & Dullemond 2018),

or radial drift (Birnstiel et al. 2012).

As with prior work, we conduct a parameter sweep, with Z representing one of the

axes. We can translate this mass ratio to 3D densities in the midplane, which is more

relevant to the whether the SI is capable of large growth rates (Fig. 1.9). The midplane

gas density is set by

ρg,m = 1√
2π

Σg

Hg
, (5.2)

where Hg is the gas scale height. If we approximate the vertical settled dust density

profile as a Gaussian, then the ratio of the midplane dust to gas density is,

ρd,m

ρg,m
= Hg

Hd

Σd

Σg
= Z

(
Hd

Hg

)−1

. (5.3)
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The dust scale height in vertically settled states of the non-linear SI in stratified

protoplanetary discs is typically within the range of 0.005 − 0.02Hg (Bai & Stone 2010a;

Li et al. 2018; Gerbig et al. 2020). In this study, we will sweep through values of Z

within the range of ∼ 0.004 − 0.04, so in some runs we will have ρd,m/ρg,m ≳ 1, which

is the physically pertinent condition for strong clumping via the SI (Gole et al. 2020).

This condition is achieved indirectly through a sufficiently large value of Z.

The second main parameter in our study is the characteristic timescale for the aero-

dynamic coupling between the dust and the gas, or more simply, the drag stopping time,

tstop. There are different regimes of drag that results in different forms for tstop, but in

our work we only consider the Epstein drag regime (Epstein 1924), where the dust grain

size is smaller than the mean free path of the gas. This drag regime is believed to apply

for all but the very inner parts of the protoplanetary disc (Birnstiel et al. 2016). In the

Epstien regime, the drag stopping time is

tstop = ρs

ρgcs
s, (5.4)

where ρs is the material density of the particles, ρg is the local gas density, cs is the local

sound speed—a function of the gas temperature—and s is the radius of the dust grains,

if the grains are approximated as spheres. In this form, we can see that for constant gas

properties, the grain size controls tstop. In all work on the SI, tstop is incorporated into

the model protoplanetary disc units via a dimensionless parameter τs = tstopΩ, where Ω

is the disc orbital dynamical timescale, so that the orbital period is P = 2π/Ω.

We can convert τs to a physical size by invoking a disc model with physical units.

If we consider the disc midplane, with the the gas density given by equation 5.2 and

the gas scale height set by Hg = cs/Ω (Armitage 2020), we get τs = (ρs/Σg)s. Li &

Youdin (2021) find that the lowest Z for which there is still strong clumping via SI

occurs for grains with τs ≈ 0.314. For silicates, ρs ≈ 2.6 g cm−3 (Moore & Rose 1973),
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Table 5.1: Simulation suite parameters.

τs - drag stopping time Z dust-to-gas surface density ratio

0.01 0.0133, 0.02, 0.04

0.03 0.02, 0.04

0.1 0.01, 0.0133, 0.02

0.3 0.003, 0.004, 0.006, 0.01, 0.0133, 0.02

1.0 0.004, 0.005, 0.0075, 0.01, 0.0133, 0.02

2.0 0.02, 0.04

and if we take Σg(r) = 1000 (r/AU)−3/2 g/cm2 (e.g. minimum mass solar nebula model;

Weidenschilling 1977b), then at 5 AU, τs = 0.314 corresponds to ∼ 11 cm.

Our simulation suite consists of a parameter sweep in τs–Z. The values considered are

summarized in Table 5.1. Note that the computational expense limits the total number

of parameter choices we can consider, especially for τs ≲ 0.01, which have slower growth

rates (see Fig. 1.9). Our choices reflect those of Li & Youdin (2021).

The last quantity we introduce here is the density threshold above which dust is

unstable to gravitational collapse. The Hill radius, RH , delimits the region around a

massive object (mass mp) where the gravity of the object dominates over rotational shear

set by the central star (Armitage 2020). This radius can be expressed as,

RH =
(

mpG

3Ω2

)1/3

, (5.5)

where G is the gravitational constant. This also sets a Hill density for a planetesimal

with mass mp,

ρH ≡ 3
4π

mp

R3
H

= 9 Ω2

4πG
. (5.6)
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If the dust density locally increases beyond ρH , the dust clump is unstable to gravita-

tional collapse. For our choice of physical parameters and simulation units, ρH = 180.

If any simulation in our suite achieves ρd > ρH anywhere in the simulation domain, we

consider that simulation to have strong clumping (as in Li & Youdin 2021).

5.3 Results

The main results of our study can be summarized with a plot in the τs–Z plane labelling

which conditions produce strong clumping capable of producing planetesimals and which

do not. We present these results in Figure 5.1 alongside other results probing strong

dust clumping from the literature.

We plot the value of the maximum dust density max(ρd) over time for all simula-

tions in Figure 5.2. If max(ρd) > ρH (equation 5.6) for a particular run, we determine

that combination of (τs, Z) to have produced strong clumping, which sets whether the

parameter pair is represented by a green circle or red X in Figure 5.1.

Figure 5.3 shows the simulations that border the boundary between clumping and no

clumping. We immediately see structure in all three dimensions. For dust with τs ≥ 0.1

that shows strong clumping, there are dense, azimuthally-oriented filaments that roughly

span the full azimuthal length of the domain and which have settled to a vertically thin

region at the disc midplane. For the smaller grains, τs = 0.01, 0.03, the clumps appear

as bright groups with short azimuthal lengths in the radial-azimuthal (x-y) plane. In

the case of no clumping, for the dust with τs ≥ 0.1, there are no filaments or extended

coherent structures in the x-y plane. Filaments are visible in the no clumping case for

the smallest two grains, but they are much less dense than the filaments seen in larger

grains that display clumping.

From Figure 5.2, we see for some simulations max(ρd) crosses above and then below

179



McMaster University – Physics and Astronomy Ph.D. Thesis – Josef J. Rucska

Figure 5.1: A summary of which combination of the parameters (τs,Z) produce strong clumping
in our 3D simulations. Green and red symbols represent 3D simulations with strong clumping
and no clumping, respectively, with circles and X’s for our runs. The grey filled/unfilled circles
are 2D results from Li & Youdin (2021), and the green diamond represents their single 3D run.
Other 3D simulations from the literature (Yang et al. 2017; Simon et al. 2017) that display
clumping are also shown. The two lines summarize the clumping boundary from Carrera et al.
(2015) and Yang et al. (2017).
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Figure 5.2: The maximum dust density in each simulation from our suite over time. Each
panel represents a different value of τs, each colour a different value of Z. The horizontal dashed
line represents ρH = 180 (equation 5.6), the threshold for planetesimal formation and hence our
definition of strong clumping for Figure 5.1.
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CNC CNC

CNC CNC

CNC CNC

Figure 5.3: The dust surface density in the radial-azimuthal (x-y) and radial-vertical (x-z)
planes for various simulations from our suite. For each τs, we present two choices of Z in
columns: the highest Z for which there is no clumping on the left (labelled with "NC"), and the
lowest value of Z for which there is strong clumping on the right (labelled with "C").
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the ρH threshold. This transient behaviour would not appear in simulations with self-

gravity as the dense clumps would gravitationally collapse and remain above ρH (see

Section 4.4). We plot the dust surface density over time across the transient max(ρd)

behaviour for these particular simulations in Figure 5.4. As in Figure 5.3, there is

azimuthal structure in the dust density in all cases. In the (τs = 0.01,Z = 0.04) and

(τs = 0.3,Z = 0.0133) cases (top, middle rows), the clumps in the middle columns

have short azimuthal lengths. The larger grain case (τs = 1.0,Z = 0.0133) produces an

azimuthally coherent filament as seen in the larger grains in Figure 5.2.

183



McMaster University – Physics and Astronomy Ph.D. Thesis – Josef J. Rucska

Figure 5.4: Dust surface density in the radial-azimuthal plane for a few select runs which
display a transient phase of strong clumping (cf. Figure 5.2). Each row represents a unique
simulation at three different times, just before strong clumping (left), during strong clumping
(middle), and after strong clumping (right).

5.4 Discussion

The most interesting observation from this study is the disagreement between our pre-

dictions for the boundary between strong clumping and no clumping in τs–Z space and

that same boundary from Li & Youdin (2021), Carrera et al. (2015), and Yang et al.
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(2017). In general, the 2D results from Li & Youdin (2021) predicts a lower critical Z

for the same τs than our 3D simulations. Here we discuss some possible reasons.

First, we discuss the differences in modelling all three dimensions versus only two.

In the 2D, radial-vertical simulations from Li & Youdin (2021), clumps represent rings

in the global disc geometry. Dust mass is confined to a single value of (r, z) with no

variation in the azimuthal direction. Our 3D models capture the 3D dynamics of the

non-linear SI and show that the filaments, while azimuthally oriented, display a variety

of non-axisymmetric structure that is not well described by uniform rings. Perhaps

most relevant to dust clumping is the truncation of filaments and other dense features

azimuthally, resulting in clumps with short azimuthal lengths and azimuthal gradients

of density along filaments. Such features can be seen in Figures 5.3 and 5.4. With this

in mind, one might expect for a given τs that 3D simulations would produce clumping

at lower values of Z than the same simulation in 2D. Carrera et al. (2015) and Yang

et al. (2017) both use 2D models, and for τs = 0.3, 1.0, our results do predict a lower

Z clumping threshold than their studies. However, at (τs = 0.03,Z = 0.02), our models

do not produce clumping, contrary to their predictions, and at (τs = 0.03,Z = 0.02),

we predict no clumping above the Yang et al. (2017) line. Yang et al. (2017) use an

improved algorithm for stiff drag forces at short stopping times (Yang & Johansen 2016)

that may contribute to this discrepancy. Our discrepancy with the Li & Youdin (2021)

results may come from other differences, given they did run one set of parameters in 3D

which displays strong clumping below the boundary from our results.

Second, Li & Youdin (2021) also used different hydrodynamic boundary conditions

(BCs) for the vertical domain boundary. They employ outflow conditions (Simon et al.

2011; Li et al. 2018) where gas momentum is permitted to leave through the boundary,

and then the mass in the domain is renormalized at every timestep to keep the gas mass

in the box constant. We use periodic BCs, where any material that leaves through one
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boundary returns to the domain through the opposite side. Explicitly, the implied con-

figuration of the disk model under periodic BCs is the numerical domain interacts with

copies of itself through both the bottom and top boundary. Under outflow conditions,

there is nothing beyond the vertical domains, and mass is artificially replaced. Both

numerical treatments necessarily produce artefacts, and it is possible they contribute to

whether the SI produces strong clumps, and hence the differences between our results

and Li & Youdin (2021). Both Carrera et al. (2015) and Yang et al. (2017), used periodic

BCs as well, and their results are, broadly speaking, closer to our boundary than that

in Li & Youdin (2021).

The cycling of vertical gas momentum in periodic BCs can slightly stir up particles in

the midplane, leading to higher scale heights and weaker clumping (Li et al. 2018). In-

deed, from Figure 14 in Li & Youdin (2021), for conditions near their clumping boundary,

they find outflow conditions predict a lower critical Z. Similarly, increasing the vertical

height of the domain can cause less stirring in the midplane, promoting clumping and

different predictions for the clumping boundary. Li et al. (2018) conduct a thorough

investigation of the effects of vertical domain size and boundary conditions in the case

of strong clumping in 3D, albeit at a numerical resolution where some properties of

the dust filaments are not resolved (See Appendix 3.B). It would be useful to apply a

similar, 3D investigation with varied BCs near the clumping boundary to determine the

influence of the aforementioned numerical choices.

Lastly, Li & Youdin (2021) use 4 times longer domain extents in the radial direction,

which permits multiple filaments for larger grains. As seen in Figure 2 from Li &

Youdin (2021), capturing multiple filaments permits interactions and mergers between

the filaments that can drive strong clumping. From our suite, for dust with τs ≥ 0.3,

there is only one filament in the cases where strong clumping occurs (Figure 5.3). We

discuss in Chapter 3 how the (0.2Hg)3 box size for τs = 0.314 (and Z = 0.02) struggles
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to represent what appears to be the preferred filament spacing of 0.1Hg for dust grains of

that size. This restricts the domain to a configuration with either 1 or 2 filaments. As Z

is lowered to near the critical clumping threshold, the one-filament configuration enforces

a relatively large radial distance between itself across the shear-periodic boundary, which

may result in decreased interactions and hence less intense clumping than in models with

multiple filaments present.

The most effective tool for probing the boundary for strong clumping via the SI may

be simulations with very large vertical extents to remove the influence of the vertical

boundary conditions and radial extents wide enough for multiple filaments. However,

3D simulations at moderate to high resolutions and large domains are computationally

expensive. Especially in the application of probing the SI clumping boundary, which

may require incredibly long run times (Yang et al. 2017; Li & Youdin 2021). This cost

would limit the number of runs in a parameter sweep study such as this work or in Li &

Youdin (2021). However, our work and that of Carrera et al. (2015), Yang et al. (2017)

and Li & Youdin (2021) could serve as a guide for what choices of τs and Z—such as

those where there is disagreement—should be explored first.

The fact remains that determining what conditions produce strong clumping via the

streaming instability is invaluable to the field of planet formation, and worthy of intense

scrutiny. The boundary between strong and no clumping determines where planetesimals

can form within a protoplanetary disc (Drążkowska et al. 2016; Drążkowska & Dullemond

2018; Cridland et al. 2022). Once planetesimals form, they are no longer strongly affected

by radial drift due to their large inertia (Weidenschilling 1977a), and these stationary

planetesimal populations could set the locations for the formation of rocky protoplanets

in models of planetesimal accretion (Wallace & Quinn 2019; Liu et al. 2019; Jang et

al. 2022). If the growing planet reaches a few Earth masses it can open a gap in the

gaseous disc, and the exchange of torque between the planet and the disc can cause the
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planet to migrate. The magnitude of the torque is a strong function of the radius of

the planet (Tanaka et al. 2002; Jiménez & Masset 2017), and hence the initial radial

position of this planet could significantly influence the final location of the planet within

the disc, as well as its final mass, chemical composition, etc. (Alessi et al. 2020; Alessi

& Pudritz 2022). Planet formation is an interlinked, cascading process spanning many

orders of magnitude in length scales. Precise information about the early stages such as

planetesimal formation, refined by studies of the boundary for strong clumping via the

SI, can lead to tighter constraints on the population of the final planets.

Another interesting consequence of the strong clumping boundary in the SI is that,

for a fixed solids-to-gas surface density ratio, small grains can grow from SI-inactive

regions to SI-active regions. Thus, models of grain growth globally within discs (Birnstiel

et al. 2012; Gonzalez et al. 2017; Drążkowska et al. 2021) can determine the global

distribution of SI-active grains, which then feeds into localized planetesimal formation

via the SI and the aforementioned processes. Local grain growth (e.g. Birnstiel et al.

2011) coupled with constraints on the SI clumping boundary can also inform models

of planetesimal formation within dust rings observed by ALMA (Stammler et al. 2019;

Maucó et al. 2021), which is a proposed explanation for the intermediate optical depths

seen in numerous dust rings (Dullemond et al. 2018; Huang et al. 2018; Cazzoletti et al.

2018; Macías et al. 2019; Maucó et al. 2021).
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Chapter 6

Conclusions

In this thesis, we have studied planetesimal formation via the streaming instability (SI) in

simulations of previously unexplored configurations. We model the evolution of aerody-

namically coupled gas and dust in high-resolution, 3D numerical simulations of patches of

protoplanetary discs in shearing boxes. All simulations were computed with the Athena

hydrodynamic code (Stone et al. 2008; Bai & Stone 2010b).

The streaming instability has been shown to be an effective mechanism for form-

ing planetesimals directly from the gravitational collapse of dense pebble clouds in the

midplane of protoplanetary discs. Once the dust pebbles settle to the midplane and dom-

inate the local mass budget of the protoplanetary disc, the instability develops rapidly,

producing azimuthally extended dust filaments that further clump to form planetesi-

mals. Such a mechanism must exist in nature due to well-documented barriers that

impede the growth of millimetre/centimetre sized pebbles beyond ∼10 cm sizes. Much

remains to be understood about how efficiently and under which conditions the SI can

operate. Progress on the planetesimal formation phase of the SI has primarily come

from empirical studies of high-resolution simulations. The contributions of this thesis to

the existing literature continue this process, exploring new behaviors of the streaming

instability until filaments and planetesimals form, and reporting on our discoveries.
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Here, we synthesize our main results, and discuss our ideas for future progress in this

field in the proceeding section.

Our work in Chapters 2 and 3 is based on a simulation suite with small and large

domains. Much prior work in the literature has made use of cubic domains with a

side length of 0.2 gas scale heights, which matches the smallest domain in our suite.

Expanding the domain lengths in the radial and azimuthal directions permits larger-

scale dynamics, and the co-existence of multiple filaments. Interactions between the

filaments can drive strong dust clumping and initiate planetesimal formation. Filament

interactions are not captured in the smallest domains that form one filament in one of our

runs. We also explored re-runs of simulations with otherwise identical properties except

for the initial random perturbation to the dust density distribution. Under the non-

linear dynamics of the SI, the slightly varied perturbations grow to different macroscopic

outcomes. This technique probes the variability in the planetesimal formation process,

and was novel to the field at the time Chapter 2 was published.

In Chapter 2, we focus on the properties of the planetesimals formed in our simula-

tion suite. In our analysis, we subdivide the larger domains simulation into subdomains

equivalent in size to the smallest domains, and find dramatic variation between the

cumulative number distributions among the individual small domains sims and the sub-

domains within the larger simulation. Further, the amount of dust mass converted to

planetesimals varies across the same regions. Within the largest domain in this study,

with 16 smaller subdomains, the spread in mass conversion varies as much as 5% to

45% of the total dust mass in the subdomain. These results demonstrate that accurate

assessments of planetesimal properties requires either multiple small simulations or large

domains. There is a large spread in planetesimal formation outcomes intrinsic to the SI

that cannot be observed in single small domain runs.

Following prior work (e.g. Simon et al. 2016), we characterize the differential number
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distribution (dN/mp) of the population of all planetesimals in the largest domain, and

the combined populations of the multiple smaller simulations, and we find that the

power-law slopes at each domain size are consistent with each other, and with prior

work. Thus, combining the results across multiple smaller simulations and using the full

domain in large simulations, the degree of variability decreases, and there is a convergent

answer in the power-law slope. This suggests that there is some equivalency in the mass

distribution as sampled by multiple small domains and larger domains.

However, in Chapter 3, we find different properties across different sized domains in

the azimuthally oriented filaments that dominate the dust surface density in the pre-

planetesimal formation phase of SI. We identify filaments as contours in the dust surface

density maps above the mean surface density. We find that, in the smallest domains,

filaments preferentially span the full azimuthal length of the simulation domain, implying

ring-like structures globally. In larger domains, progressively less of the filament mass is

at the full box scale, demonstrating that the filaments are naturally truncated at larger

sizes. The filaments are an essential intermediate step in planetesimal formation. They

represent the mass reservoir available to planetesimals form. Our results suggest the

properties of this mass reservoir is not accurately represented by the small domains in

our study.

We observe that the small domain simulations are locked into configurations of either

1 or 2 filaments, while the domain that is 4 times as wide (run L08) forms 8 filaments.

The 1D Fourier transform magnitudes in the radial-direction displays a strong peak

associated with the filament spacing scale. The peak length scale in the L08 is persistent

during the filament-dominated phase of the SI, which suggests the natural spacing length

of the filaments is approximately 0.1 scale heights. This length scale represents half the

radial width of the smallest domain, and hence the spectral/dynamical resolution of

these runs is limited at this scale. We conclude this offer an explaination for why these

191



McMaster University – Physics and Astronomy Ph.D. Thesis – Josef J. Rucska

simulations are forced into configurations of one or two filaments–radial spacings of 0.2

or 0.1 scale heights, respectively. Other simulations from the literature with similar dust

parameters also see dust configurations with a single filament at this box size (Simon

et al. 2016; Schäfer et al. 2017). This variation of a factor of 2 the filament spacing

is not seen in the largest domains, and is evidence that the smallest domains struggle

to represent filament properties in the radial direction, in addition to the azimuthal

direction, as discussed above. Fourier spectra in the azimuthal direction confirm that

the peak power is in the box-scale mode, which is an indicator of large-scale dynamics

that truncates the filaments and cannot be captured by the smaller simulations.

One filament property that is consistent across domain sizes is the segregation of

dust mass at the various box-scale sizes. There is roughly equal mass in filaments that

are longer than 0.2 gas scale heights (smallest domain) in all larger domains, and equal

mass at 0.4 scale heights and above, etc. This consistency in how the SI segregates

mass azimuthally may be related to the consistency in the spread in total planetesimal

mass across the various domain sizes seen in Chapter 1. The spatial variation in the

filaments across domain sizes (i.e. azimuthal truncation) echoes the variation in the

spatial distribution of planetesimals.

We also use a novel procedure of manual mock signals to demonstrate that the fil-

aments in the 0.8 scale height (L08) simulation are best described as being roughly

equally spaced, but not exactly so. The spectra of the simulation filament profile reveal

off-harmonic power that resists analytical functional fits but is readily described by a

mock signal with randomly shifted peaks. In the appendix, we vary properties of the

mock signal to suggest loose constraints on the filament width that is roughly consistent

with prior work.

Combing our results from Chapter 1 and 2 together, we conclude, for the purposes of
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quantifying the planetesimal mass distribution and the total mass converted to planetes-

imals, running multiple small simulations is roughly equivalent to running large simu-

lations. For characterizing the mass reservoir available for planetesimal formation—the

filaments—we believe larger domains should be used. The filament properties in small

domains are too inconsistent with the properties seen in the large domains. Further,

based on a resolution study from Appendix 3.B in Chapter 2, a resolution of at least

600 cells per gas scale height should be used for our dust properties. Constraining these

properties is useful for studies that wish to model the post-formation evolution of the

planetesimals into protoplanets (e.g. Liu et al. 2019; Jang et al. 2022).

In Chapter 4, we run a different suite of simulations that models the dust with mul-

tiple grain sizes (or species) simultaneously. Recent models of the SI with multiple sizes

have explored both the linear phase and the non-linear saturated phase in 2D. Older work

(Bai & Stone 2010a) studied 3D stratified discs, but without self-gravity/planetesimal

formation. All prior studies of the multi-species non-linear SI used a grain size dis-

tribution described by a single power-law, in line with models of dust grains from the

interstellar medium (ISM). However, in the midplane of protoplanetary discs, equilib-

rium between grain growth and fragmentation can result in a grain size distribution with

a distinct peak (Birnstiel et al. 2011). In our study, we use a discrete sampling to model

the Birnstiel et al. (2011) distribution in the context of a 3D patch of a protoplanetary

disc. Our work represents the first multi-species dust treatment in this context since Bai

& Stone (2010a) and the only multi-species non-linear SI study to model the Birnstiel

et al. (2011) distribution that is a more realistic grain size distribution for protoplanetary

discs than the distribution applicable to the ISM.

Our sample consists of grains between roughly 4mm and 5 cm in size. We place the

peak of our grain size distribution to match the single-size runs considered by our prior

work (Ch. 2 and 3) and directly compare the two models to quantify the influence on
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the SI of multi-species dust.

In the multi-species runs, the larger dust grains readily form filaments and clumps

while the smaller grains do not, despite being embedded in a dust environment that is

primarily composed of dense dust structures. This results in a greater amount of dust

mass in the inter-filament space than is seen in the comparable single-size models. This

general behavior is seen in other models of the multi-species non-linear SI (Bai & Stone

2010a; Yang & Zhu 2021).

Depending on the opacity of the dust, the different spatial distributions of dust mass

could have significant observational consequences. Thermal emission from the clumped

dust features from our simulation will saturate at intermediate optical depths ≳1. To

quantify this effect, we compute mass conversion factors based on the dust surface density

maps in our simulations—a new analysis for 3D studies of the SI. We find that the

single-size models with greater amounts of clumping require correction factors between

40-90% percent to account for the saturated emission. The multi-size models, which

clump less, and are hence overall brighter, require correction factors of 20-50%. It is

interesting to note that the dust sizes we model are very similar to the sizes seen by

ALMA observations, and some studies have explained the low optical depth seen in

some dust rings as evidence for ongoing planetesimal formation via the SI (Stammler

et al. 2019; Maucó et al. 2021). In these cases a mass correction factor to accurately

estimate the mass of the dust ring from the dust surface density is likely required. Our

results provide bounds on what these factors may be, depending on the size of grains

present and how strongly peaked the grain distribution is.

Second, we investigate the composition of planetesimals by grain size. We identify

bound clumps (i.e. planetesimals) as dust that is above the gravitational collapse den-

sity threshold. We find that the smallest ∼mm size grains do not participate in clump

formation at all, and display kinematic behavior to suggest they merely stream past
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the planetesimals without becoming gravitationally bound. The clump masses are dom-

inated by the four largest species in our sample. For the second smallest species, at

∼2.5 cm if the size at the distribution peak is 4cm, these grains display an in-between

behavior. They readily form filaments but do not participate in clump formation. The

segregation of clump composition by size suggests that planetesimals will primarily be

made up of grains that undergo strong clumping via the SI, a prediction that can be

tested by meteorite measurements and observational inferences of the composition of

asteroids.

In Chapter 5, we probe the boundary between strong clumping via the SI and no

clumping, building on prior work by Carrera et al. (2015), Yang et al. (2017) and Li &

Youdin (2021). We explore the parameter space set by drag stopping time (linear in grain

size) and the dust-to-gas mass surface density ratio. Prior studies used 2D simulations.

Inspired by the evident azimuthal dynamics seen in the 3D SI (and quantified in our

study in Chapter 3), we conduct our parameter sweep in cubic 3D domains with a side

length of 0.2 scale heights.

Interestingly, our results disagree with the recent study from Li & Youdin (2021).

These authors predict a lower critical surface density threshold (for fixed stopping time)

than is seen our suite, sometimes lower by more than a factor of 2. Our results are in

closer agreement to the previous studies of Carrera et al. (2015) and Yang et al. (2017).

We interpret these differences as a demonstration that the nature of the SI clumping

boundary is sensitive to choices in the numerical set-up.

Likely candidates are 1) the longer radial domains studied by Li & Youdin (2021),

which permit multiple filaments and hence filament interactions that can drive clump-

ing and lower surface density thresholds, 2) larger vertical extents (for some parameter

choices), which permits momentum in the gas to leave the midplane, and hence promot-

ing dust settling and clumping, or 3) their choice of outflow vertical boundary conditions
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which promotes settling for similar reasons as taller vertical boundaries. Additional ex-

ploration of the effects of the above choices may be required. Accurately probing the

clumping boundary for the SI with numerical simulations appears to be a difficult task.

The best tool for this problem may be 3D simulations with moderate radial extents and

tall vertical domains that limit the influence of artefacts that come from any choice of

boundary conditions.

6.1 Future Work

A key short-coming of all models of planetesimal formation via the SI to date is the

inability to properly resolve dynamics on the physical planetesimal length scale. We

cannot simultaneously model both the filaments and the final collapse phase of the

bound dust clumps, which in our models are resolved at the level of the Hill radius—

the length scale for the region around the clump where the gravitational influence of

the clump dominates over the rotational shear. Explicitly, we find a radial filament

spacing length scale of approximately 0.1 gas scale heights for the dust parameters we

model in Chapter 3. For a typical protoplanetary disc model (e.g. Hayashi 1981), at

∼3 AU, this filament separation scale corresponds to ∼ 106 km—some 4 to 5 orders

of magnitude larger the physical planetesimal size. No current computational facility,

nor any in the near future, is capable of simultaneously resolving those length scales

with a fixed grid scale (i.e. brute force). This means the final spin of the clumps,

or what fraction of clumps form binaries or multiple bodies—both quantities that can

be compared to measurements from Kuiper belt objects—is not calculated within the

filament environment. As in Nesvorný et al. (2019) and Nesvorný et al. (2021), the SI-

formed clump particle distribution can be exported to a separate simulation, which can

then follow the collapse phase fully. This strategy excludes the environment surrounding

the clump from potentially participating in the collapse, such as the smaller grains that

preferentially flow through clumps at relatively large relative velocities in our models.
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Including these grains would alter the final size distribution within the aggregate clump,

and potentially the chemical composition of the clump as well, if it were formed in the

vicinity of an ice line where larger grains are icy and small grains are bare silicates.

Further, these resolution limitations result in unphysically large numerical cross sec-

tion of the clumps. The post-formation growth of these objects is likely enhanced com-

pared to what we would expect in nature. Thus, in quantifying planetesimal properties

such as the mass distribution, we are required to pick a time before the objects have

substantially interacted with the rest of the mass in the domain. The overall behavior

of the planetesimals is correct, in that they detach from the filaments and experience

less radial drift due to their substantial inertia, but the details are unknown. Of great

interest is how a 10 km sized object interacted with a dense filament of dust pebbles that

is 10,000 times wider. Johansen et al. (2015) show with a semi-analytical model that

planetesimals can grow substantially via the accretion of pebbles. It would be fascinating

to explore this in resolved numerical simulations.

Resolving the smallest length scales would also permit constraints on the low mass

end of the size distributions. Simon et al. (2016) show that as numerical resolution is

increased, the smallest planetesimals formed also decreases. Information on the min-

imum planetesimal size formed via the SI constrains models of the internal geological

evolution of solid bodies and consequently the timescale of planetesimal formation in

the solar system (Lichtenberg et al. 2018). This would also allow for direct comparisons

to data from the crater size distribution on Pluto and Charon that predict a minimum

size in primordial minor solar system bodies near 1-2 km.

Of course, if resolving this minimum scale were simple, conceptually or technologi-

cally, then it would have been done already. But that does not mean it is impossible.
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There may be avenues for future work on zoom-in simulations of dust filaments–if accu-

rate localized models of filaments could be reproduced on planetesimal scales. Alterna-

tively, adaptive dust-gas methods (Huang & Bai 2022) may be able to simultaneously

resolve relevant small and large scales. Though this would also likely require some novel

ideas for domain sizes, as no refinement techniques could simultaneously capture the 4

orders of magnitude between the aforementioned filament spacing length scale and the

10 km planetesimal scale, for instance.

Another interesting avenue for further research is in exploring various grain size dis-

tributions in the local protoplanetary disc shearing box context. Our results from Chap-

ter 4 represent just one iteration of possible grain size distributions. More interestingly,

one could also consider a dynamic grain size model, where the grain size for each dust

resolution is a variable, constantly evolution due to collisions with other dust. Dynamic

grain size distributions have been studied in global models of protoplanetary discs (e.g.

Gonzalez et al. 2017; Drążkowska et al. 2021) but not in the dynamic environment of a

shearing box that is unstable to the SI. Most models of grain growth (including Birnstiel

et al. 2011, from which we base our grain size distribution from Chapter 4) use a model

of global disc turbulence to drive dust collisions. In our models, and others like it in

the literature, the non-linear SI drives its own turbulence in the disc midplane. As this

turbulence has not been thoroughly characterized in the literature, how it would affect

grain growth is poorly explored.

In our opinion, the most exciting possibilities for future research on the streaming

instability in high-resolution shearing boxes exist in creative conceptions of the size of

the numerical domain and the dust grain size model. We are excited to see what comes

next in the field of planetesimal formation.
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