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Lay Abstract
The human body is complex, and an incredible amount of research has been done to better
understand it. Specifically, muscle is built and works in a complex way to allow us to move
and perform everyday tasks. There are many diseases that affect how a muscle works, which
is why there is a need to describe muscle performance when it is healthy and unhealthy. In
this research, muscle behaviour is explored by taking pictures of the leg. From these pictures
the blood flow in the calf and shin was measured both when staying still and when performing
exercise. Four new techniques were created to describe the blood flow in the leg. The first
technique measured how complex the muscle activity is, while staying still. If blood-flow changes
a lot in a short amount of time, it is complex. This showed that the different components of
muscle, either used for stamina or power, receive blood differently. The second technique
used a different way of looking at the muscle to show that there are many different rates and
amounts of blood-flow in the muscle. It revealed that muscle has more than the two blood
flow options of 1) the normal level when resting and 2) the increased level when exercising.
The third technique involved using an image filter to get a clean image of the muscle without
the blood vessels affecting or misrepresenting the image. It was able to show what muscle
regions were involved in exercise more accurately than before. The final technique involved
measuring muscle electricity and blood flow at the same time, to find out when the muscle was
exhausted. It demonstrated that muscle, when exhausted, showed larger changes in blood flow
when going from resting to exercising. Overall, this research described how muscle performs
in healthy individuals using new techniques. These techniques can now be used to compare
healthy muscle to damaged/diseased muscle to determine how the muscle is recovering or to
diagnose muscular disease.
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Abstract
The human body is inherently complex as seen through the structural organization of muscle
in terms of its contractile subunit organization and scaling, innervation patterns, and vascular
organization. However, the functional complexity of muscle such as its state of oxygenation,
metabolism or blood-flow has been less well explored. Thus in an effort to improve our under-
standing of muscle, blood oxygenation level dependent (BOLD) magnetic resonance imaging of
the lower leg, at rest and during a variety of weighted plantar-flexion paradigms, at 40% maxi-
mal voluntary contraction, was employed. Prior to experimentation, on 11 healthy subjects, an
ergometer and electromyogram (EMG), suitable for use within the MRI, were constructed to
allow for concurrent exercise and image acquisition. After collecting muscle BOLD data, four
novel techniques were using to describe muscle function. The first technique used the fractal
dimension, a measure of complexity, conveying the rate of variation of muscle blood flow at rest.
This technique was able to determine differences between the muscles of lower leg, which have
varying distributions of muscle fibre types based on function. The second exploratory technique
was the use of the phase space, which provides insight into state/state-transitions of a system
over time. The phase space representation of the BOLD signal provided novel insight into the
muscle activation state. It demonstrated that muscle has more than the two blood flow states of
reduced levels at rest and increased levels when exercising. The third technique involved using a
signal saturation (SAT) region, proximal to the imaging region, to mitigate the arterial in-flow
effects to more accurately represent muscle activation. By observing the correlation between
the ideal reference and recorded signal, the acquisition with the arterial suppression improved
the assessment of what regions in the muscle were active in the range borderline activation,
which has the highest uncertainty. The final outlook on muscle behaviour involved using mea-
sures of fatigue from the collected EMG data to develop novel metrics of fatigue based on the
BOLD signal. Concurrent BOLD and EMG of the anterior compartment of the lower leg during
a plantar-flexion block design, demonstrated that the change in blood-flow between rest and
contracted states is an excellent indicator of muscle fatigue. The primary outlook of this thesis
is to provide a unique data collection and analytic framework to describe muscle behaviour,
which was achieved using non-invasive measures with a complex outlook.
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Chapter 1

Introduction

1.1 Declaration
Please note italicized text has been taken word for word from my published work:
McGillivray et al. (2021) Crit. Rev. Biomed. Eng. 43:236-260

1.2 Thesis Structure
The specific coverage and positioning of each section can be found in the table of contents
above. But for the reader who chooses to read the thesis in its entirety, the general overview of
the flow is as follows. The introduction section will serve to set the stage for the importance of
the research contained within the thesis and to provide relevance to the more technical details
that follow. The background section will provide an overview of the fundamental anatomy,
magnetic resonance imaging (MRI) knowledge and the basics of the methods to describe systems
in a complex manner. This is followed by a comprehensive literature review of the current
research landscape of skeletal muscle imaging in MRI, with a specific focus on blood oxygenation
level dependent (BOLD) MRI imaging in skeletal muscle, in isolation and in combination with
electromyography (EMG). The research objective, hypothesis and aims will then be described.
The next point of coverage is on the pilot study, which informed the final data acquisition for
this thesis. This will be followed by the developmental phase section, where the development
of the ergometer and EMG are covered. The data acquisition and general preprocessing that
is common to all analysis techniques is then outlined. From there the four major analytical
investigations into the functional behaviour are covered which each having their own brief
methods, results, and discussion. To conclude the thesis, an overarching discussion which ties
in all the analytical techniques, some limitations and areas of future work are outlined.

1.3 The Societal Need for Exercise
The importance of physical exercise is impressed upon us from a very young age, as it has been
shown to improve physical and mental health, as well as cognition. Despite the apparent benefits
of physical exercise, it is still not uniformly practiced across society.

Although exercise benefits all populations, its effects on populations with disease and or dis-
order can sometimes be more profound. One such population is individuals with Alzheimer’s,
which effects 13% and 43% of those above the age of 65 and 85 respectively. [1] The 10 mil-
lion people across the globe who suffer from Parkinson’s disease also benefit from exercise. [2]
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Parkinson’s disease like Alzheimer’s is a devastating disease, which burdens the US healthcare
system with yearly costs of $52 billion and $536 billion, respectively.[2], [3]

Notably, levodopa, a dopamine precursor, is used to treat the Parkinson’s disease dopamine
associated deficiency, yet exercise can be used to naturally increase dopamine levels within the
brain.[4] The increase in dopamine affects the motor initiation pathway and has been linked to
symptom mitigation.[4] Likewise, exercise can benefit the 15 million individuals globally affected
by stroke, 5 million of which experience permanent disability, such as hemiparesis. [5] Physical
exercise has shown to mitigate hemiparesis, thus improving motor function and consequently
quality of life. [6] Remarkably, 85% of strokes worldwide are caused by high blood pressure,
which is more prevalent due to the global obesity crisis. [5] Thus, physical exercise is imperative
to save the lives of the 1.9 billion overweight individuals, who are at risk of stroke, as it reduces
hypertension and body fat. [7], [8] Furthermore, it is essential to relieve this corresponding
healthcare burden, which conservatively costs the American healthcare system 150 billion dollars
annually.[9]

Similarly, the treatment of mental health disorders is a major contributor to the healthcare
burden, with an estimated cost of $201 billion in the USA in 2013.[10] Physical exercise reduces
rate and symptom severity of depression and anxiety, which effect 264 and 284 million worldwide
respectively, lessening this burden.[11] Additionally, exercise serves to benefit the portion of the
population with ADHD which is 2.2% of adolescents (<18 years) and 2.8% of adults (18-44
years) worldwide.[12] Exercise induced increases of dopamine and brain-derived neurotrophic
factor counter the typical deficiency seen in the ADHD population, improving impulse control,
working memory and executive function. [13] Similarly, exercise is known to improve cognition
and promote structural and functional brain changes, thus acting as a protective factor against
neurodegeneration. [14] Finally, research has shown that physical exercise reduces the risk of
developing cardiovascular disease, type II diabetes, some cancers in the bladder, breast, kidney
and lung, and of falling in the elderly.[15]

Physical exercise serves to benefit the general population, to mitigate disease, reduce symp-
tom severity and improve cognition, amongst numerous other things. [4], [5], [11], [13] Although
the cognitive and physical benefits of exercise have been explored, muscle activity during exer-
cise and rest and its relation to muscular health and performance remains not well characterized.
To fill this gap MRI researchers are seeking unique methods to examine muscular health and
function. Muscle is structurally and functionally complex and could benefit from a complex
representation. An improved representation and understanding of the complex nature of mus-
cle, in conjunction with how exercise modulates health and disease symptoms, will allow society
to attain the maximal benefits from physical exercise.

1.3.1 Exercise Forms and Benefits

Simply stated, physical exercise is any form of movement that actively works the muscles and
requires more energy consumption than if one were resting.[16] The four generally agreed upon
types of exercise are aerobic/endurance, strength/muscle strengthening, balance, and flexibili-
ty/stretching. [8], [17], [18] Although exercise can be categorized into these four groups some
physical activity can fit the criteria for multiple groups, but primarily belong to one.

The first type of exercise to discuss is strength/muscle strengthening exercise, which works
a specific muscle or grouping of muscles. Strength exercises serve to build muscle mass, which
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improves posture, regulates body weight and blood sugar, and reduces elderly fall rates.[8] Strength
exercises are performed against resistance, and can be performed statically, such that there is no
change in muscle length or dynamically, which requires muscle shortening and/or lengthening.
Examples include squats, push-ups, lunges, chin-ups and dips.

The second exercise type is flexibility/stretching, where one actively attempts to improve their
range of motion through contorting the body in specific positions. Stretching acts to lengthen
muscles and tendons to maintain their flexibility and length. [8] Stretching increases mobility,
which reduces falling rates, joint pain and the risk of muscle cramps and strains. [8] Stretches
can be static or dynamic and be held for varying time durations.

The third exercise type is balance, which involves muscle control and environmental perception
to stabilize the body and control its positioning.[17] Impaired balance is attributed to loss of
muscle tone, increased joint rigidity and losses in vision and hearing. [8] Regular practice of
balance reduces the onset of its inevitable decline and reduces elderly fall risk. Balance exercises
can be performed with eyes open or closed, to increase difficulty, and include standing on one
foot or the heal-to-toe walk. [18]

The final exercise type that will be discussed is aerobic exercise, which places higher metabolic
demands on the body, thus increasing cardiovascular and respiratory workload. It promotes blood
vessel relaxation, decreases blood pressure and sugar levels, reduces inflammation and body fat,
and improves mood and cognition. [8] A sample of aerobic exercise forms include brisk walking,
swimming, running, cycling, tennis and basketball. [8], [18]

Furthermore, exercise can be less conventionally grouped into either open skill or closed skill
forms. The grouping of open versus closed skill exercise was made because exercise environment
can impact cognition.[19] Accordingly, open skill exercise is performed in a dynamic and chang-
ing environment, whereas the closed skill exercise environment is static and predictable.[19] open
skill exercise requires adaptability, continuous decision making and is often driven by an exter-
nal stimulus, [19] examples include tennis, squash, basketball, and boxing. In contrast, closed
skill exercise is more self-paced, requires less decision making and has a smaller cognitive de-
mand than open skill exercise. [19] closed skill exercise include swimming, golfing, running and
archery. Most aerobic exercise studies examined in this review are closed skill exercise in the
form of cycling, running or brisk walking, reducing exercise environment induced variation.

1.4 The Need to Improve Muscular Disease/Disorder Diagnosis
Neuromuscular disorders can have a profound and devastating effect, as they can inhibit move-
ment, speech, vision, respiration, and various other functions, severely reducing quality of life.
Some common neuromuscular disorders include amyotrophic lateral sclerosis (ALS), multiple
sclerosis (MS), muscular dystrophy, and myopathy. [20] ALS and MS pertain to dysfunction
in the central and peripheral nervous system respectively, whereas muscular dystrophy and
myopathy relate to dysfunction on the muscle fibre level.[20] Remarkably, the global preva-
lence of neuromuscular disease is estimated to be 0.1 – 0.3%, which is comparable to that of
Parkinson’s.[21] Diagnosis and treatment are highly dependent on the specific neuromuscular
disorder. One such subset are muscular dystrophies whose prevalence is 25/100,000 person-
years.[22] With no known cure for muscular dystrophies early diagnosis is essential to delay
muscle wasting and preserve quality of life. The diagnostic pathways include testing for gene
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mutations, blood creatine kinase levels to indicate muscle leakage, electromyography (EMG)
to detect abnormal muscle electricity profiles, and biopsy to examine muscle fibre ratio, vol-
ume, and the prevalence of necrotic tissue.[23] However, the gold-standard for neuromuscular
disorder diagnosis is muscle biopsy, as it identifies fibre type ratios, allowing for comparison to
known muscle norms.[24] The non-invasive clinical alternative of surface EMG does not pro-
vide fibre specific information as surface electrodes only provide information on general muscle
behaviour.[24] In invasive EMG the small surface area of penetrating electrodes reduces the
generalizability of the reading over the entire muscle, but provides information on fibre level
muscle function.[24] Biopsy and EMG can also be complementary in neuromuscular disorder
diagnosis by detailing muscle structural and functional abnormalities, respectively, which can
lead to a more complete diagnosis.

1.4.1 The Need for Improved Muscle Biopsy

To have the ability to non-invasively characterise skeletal muscle fibre composition, would be
clinically valuable to those with neuromuscular disease, as it would alleviate patient pain and
further damage of the already deteriorating muscles, associated with biopsy.[25] It could also
improve on the non-fibre specific electromyography, which showed diagnostic accuracy on the
order of 70% in comparison to 90% for biopsy.[25] Not only this, but it could address some of
the short comings of muscle biopsy associated with sampling region and accuracy. The deltoid,
biceps, and quadriceps muscles are typically chosen for biopsy due to their ease of access, suffi-
ciently large fibre size, and regular fibre type distribution.[24] Sampling solely in these regions
inherently limits the diagnostic ability if the abnormality is present in a region other than those
listed above. To overcome the limitation of biopsy sampling region, MR images present an
alternative as they can examine entire cross sections of muscles other than those listed above.
Furthermore, biopsy assumes that the tissue subsamples are an accurate representation of the
entire muscle. While this assumption is necessary to ensure that we do not extensively damage
the muscle through sampling, this can lead to false negative results. If patients go undiagnosed
the damage associated with a second biopsy and disease progression could cause irreversible
damage that was preventable. Minimally invasive alternatives to biopsy such as the use of
fibre-optic probes, to measure changes in muscle sarcomere length, have been proposed. [26]
Through using reflection spectroscopy and probes on the order of 250 micrometers wide, one
could observe nanoscale muscle movements providing insight into muscle dysfunction. [26] This
technique shows promise but has not been well refined to define twitch fibre behaviour and
muscle composition. The primary focus in the direction of non-invasive biopsy alternatives is
in MR based solutions. As previously stated, MR imaging would allow for entire muscle cross
sections to be examined, which removes the inaccuracy of the chosen biopsy samples and pro-
vides a larger distribution of muscle fibres. This would not only remove the element of muscular
damage associated with biopsy, but could characterize specific muscles to provide more informed
diagnostics. Researchers have attempted to address the problem of developing a non-invasive
biopsy replacement using MRI, but have had little success. The primary current non-invasive
MR alternatives are either using muscle carnosine levels measured via hydrogen spectroscopy
(1H-MRS), [27] or using MR muscle volume estimates with measures of maximum muscle con-
tractile force and strength to estimate muscle composition [28]. The current methods require
anatomically informed voxel placement, so this only alleviates the variance caused by biopsy
muscle subsampling, [27] and an extensive data and clinically infeasible collection procedure,
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requiring a dynamometer for force measurement and a reflective marker camera system to de-
termine ankle orientation [28]. Consequently, there is still a need for a non-invasive muscle
biopsy alternative that is not dependent on regional selection, like the 1H-MRS technique, and
does not require extensive set-up and time, like the forced based technique.

1.5 The Need to Understand and Classify Muscle Injury
Skeletal muscle by mass is the most prominent tissue in the body, accounting for approximately
45% of body weight.[29] It is the voluntary contractile unit of the body connected to bone
through fibrous tendons, which allows for posture maintenance, heat generation, movement,
and various other functions. Muscle injury is highly prevalent due to its high presentation
throughout the body and our dependence on locomotion in daily life. Although more associ-
ated with sport, the conduction of physical work can lead to skeletal muscle strain, which can be
accompanied by subsequent loss in muscle performance, increased inflammation, tissue edema,
and if the injury is sustained long term muscle degeneration. [30] Specifically, in amateur and
professional sports it is estimated that 30 to 50% of all injuries are caused by soft-tissue le-
sions.[29] Although nonsurgical treatment of muscle injury, such as rehabilitation plans, have a
good prognosis for most athletes any treatment failure can postpone the return to physical ac-
tivity for weeks or even months. Absence of physical activity can have negative implications on
physical and mental health, which signifies the importance of understanding muscle and how it
is affected by injury. [8], [11] Although muscle injury to the athlete demographic is a substantial
problem, an arguably larger demographic suffering from this is the elderly. It is estimated that
by 2050 a quarter of the global population will be older than 65 years old. [30] This vast popu-
lation will experience the age induced decline in muscle tone and overall mobility, leaving them
vulnerable to experience muscle injury. The increased latency associated with the restoration of
muscle performance and muscle regeneration in the elderly leaves them particularly vulnerable
as well.[31] Interestingly immobility, which is associated with dysfunction of the musculoskeletal
system, is a predictor for poor health outcomes, such as mortality. [31] Therefore an improved
understanding of muscle function and dysfunction, associated with injury, would be beneficial
for the elderly not only to inform rehabilitation decisions and routes of origin, but for its role
as a health prognostic.

In addition to the diagnosis of muscle injury the severity of the injury must also be assessed.
Classically muscle injury is characterized into three groupings based on signs and symptoms;
grade I (edema and discomfort), grade II (impaired function and possibly ecchymosis), and grade
III (rupture and extensive hematoma). [29] Ultrasound is commonly used to verify diagnosis due
to its ability to image in "real-time" and its good soft tissue contrast. [29] Operator dependence,
such as variation in transducer angle and applied pressure, makes diagnostic repeatability a
point of concern. To mitigate operator dependence MRI is also used as a diagnostic due to
its excellent soft-tissue contrast. Although the anatomical clarity is improved with MRI by
using static images it comes at the cost of dynamic imaging, which could present valuable
insights. [29] An ideal combination of functional and structural MR would provide the benefits
of improved ability to grade muscle injury. With structural MR to assess muscle damage readily
developed, the primary interest in research is to look for functional MR metrics to understand
the complex behaviour of healthy and damaged muscle. Functional magnetic resonance imaging
(fMRI) is being used to bridge this gap as it non-invasively provides insight into the blood flow
and metabolic profiles of tissues, such as muscle.[32] Additionally, it also has shown utility
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in characterising skeletal muscle physiology in healthy and diseased populations.[33] But the
complex structural and functional organization of muscle is yet to be well defined. An improved
understanding of muscle function using complex MRI metrics can provide the novel insight
required to accurately describe muscle health. This would improve diagnosis and reduce the
duration of rehabilitation, which is essential with aging population worldwide.

1.6 The Intended Implications of This Work
This master’s thesis was undertaken to perform research that would hold clinical importance.
The intent of this work was to address the need to understand and promote the effects of
exercise, to aid in muscular diagnosis, and to use a unique representation to describe muscle
in the hopes of providing novel discriminators to determine differences between healthy and
diseased muscle. The work is intended to address the major needs in the areas discussed above.

To address the first issue of understanding the benefits of exercise, functional imaging was
performed at rest and during contraction using an in-house built MRI compatible ergometer.
Concurrent EMG was also recorded during some exercise stints. The intent of this was to
compare muscle activation at rest to during exercise of healthy patients. By using the muscle
BOLD and EMG signal the relationship between the blood flow and electrical activation could be
explored to understand muscle activation. This relationship although previously explored could
benefit from novel complex metrics, such as the fractal dimension or phase space representations,
as muscle is structurally and functionally complex and should be described as such.

In an effort to improve muscular disease and diagnosis a non-invasive biopsy alternative could
be developed using the knowledge of perfusion based differences in muscle. With the rationale
that relative differences in muscle perfusion between slow and fast-twitch muscle fibers could
be isolated using BOLD imaging an exploration into techniques that could identify muscle
differences was undertaken. With the ability to identify muscle specific differences related to
perfusion, as different muscle groups will have varying fiber type ratios, this could provide the
foundation for a non-invasive biopsy replacement. A non-invasive biopsy replacement would
change the landscape of current muscle disease/disorder diagnosis. Additionally, it could be
incorporated into rehabilitation plans to assess muscle fiber dynamics throughout the course of
rehabilitation without the worry of causing harm to already damaged muscle.

The final area of major need that was of focus was to improve fundamental knowledge of
muscle activation using MRI. This would help to address the shortcoming of MRI compared
to ultrasound in grading muscle injury. If MRI had the combination of improved resolution
and soft tissue contrast, paired with the ability to assess muscle functionally, as is done with
ultrasound, it would become the gold standard for grading muscle injury. By using conventional
activation metrics in combination with novel complexity based metrics the goal was to quantify
muscle activation as a gradient, as opposed to a binary on/off representation. An activation
gradient would more accurately describe muscle function allowing one to determine relative
functional deficits as a result of injury. Likewise, an activation gradient would also allow for
rehabilitation progression assessment. Specifically, a phase space representation of the muscle
BOLD signal is used to determine this activation gradient and is explored in the thesis. The
novel complex outlook of muscle through using the non-invasive techniques of MRI and EMG
proposed in this thesis although exploratory was informed with clinical implications. The work
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must be read not only for curiosity in scientific discovery, but with a clinical eye and the goal
of translating findings to the clinic.
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Chapter 2

Background

2.1 Anatomy

2.1.1 Skeletal Muscle

The three types of muscle found in the human body are smooth, cardiac and skeletal. Each has
distinct structural differences that allow for the performance of specific functions. Since this
study is primarily focused on assessing muscle during exercise and at rest, skeletal muscle will
primarily be explored.

A basic knowledge of skeletal muscle anatomy, innervation, and perfusion is necessary prior
to attempting to characterise muscle health and function. Skeletal muscle is the voluntary con-
tractile unit of the body connected to bone through fibrous tendons, which allows for posture
maintenance, heat generation, movement, and various other functions. To enable control of
muscle its fibres are innervated, perfused by blood vessels to meet metabolic demands, and
structurally organised with connective tissue boundaries, which allow for load bearing. The
outermost connective tissue layer of each skeletal muscle is the epimysium, which allows for
structural organisation and containment of contractile subunits to facilitate coherent contrac-
tion.[34] Relative to the muscle body the lower-level contractile unit are the muscle fibres,
bundled in groups called fascicles which are covered in a perimysium connective tissue layer.[34]
Each respective muscle fibre within a fascicle is encased in an endomysium collagen rich con-
nective tissue layer.[34] Muscle fibres mirror the structural organisation of skeletal muscle with
somatic motor neuron innervation, perfusion via capillaries, and contractile units called myofib-
rils.[34] The self-similar nature of the skeletal muscle composition is seemingly fractal like, with
the numerous sarcomere contractile units contributing to the large forces generated by skeletal
muscles.

The fundamental contractile unit in skeletal muscle is a sarcomere, composed of actin and
myosin filaments, whose interaction generates tension and a resulting contractile force.[34]
Groupings of sarcomeres, surrounded by the sarcolemma, make up individual muscle fibres.[34]
It is important to note that any given muscle fibre is innervated by a single motor neuron,
but one motor neuron may innervate multiple muscle fibers.[35] A motor unit is all the muscle
fibres innervated by an alpha motor neuron.[35] The number of muscle fibres in a motor unit
varies; for instance, the motor units consist of 100 and 1000 muscle fibres for the muscles of
the hand and lower leg respectively.[35] The size of a motor unit determines its functionality, as
smaller units achieve fine precision motion, in contrast to the gross motion initiated by larger
units.[34] The size, rate of firing and number of recruited of motor units all contribute to muscle
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contractile force.[34] Intuitively, to generate a greater force more motor units are recruited and
they will fire at a faster rate. In saying this, to prevent motor fatigue motor units are selectively
recruited such that only the minimum amount needed to achieve the task are recruited. [34]

More generally, muscle fibres can be broadly grouped into three types; type I (slow-twitch
oxidative (STO)), type IIA (fast-twitch oxidative (FTO)) and type IIB (fast-twitch glycolytic
(FTG)).[36] They are classified based on their rate of shortening, which is directly correlated
with myosin ATPase activity, perfusion, and primary metabolic pathway.[36] Generally, type I
fibres rely on aerobic/oxidative metabolism, type IIB on anaerobic/glycolytic metabolism and
type IIA falls in the middle of this spectrum.[36] Thus, intuitively type I fibres lend themselves
to endurance-based tasks and type II to power activities, as they will fatigue more quickly.
Along the same lines, postural muscles should contain a higher density of type I fibres and
movement driven muscles with a higher type II fibre density. For instance, in the lower leg
the soleus is considered to be postural and gastrocnemius as movement driven. The percentage
proportion of slow-twitch muscle found in the soleus and gastrocnemius respectively was 70%
and 50%, illustrating how muscle body fibre profiles are dependent on function.[37]

Skeletal muscle cells like neurons, are excitable and this property is leveraged to facilitate
contraction via excitation-contraction coupling.[34] The broad steps that are required to allow
for muscle contraction to occur are detailed below. First, contraction must be initiated either in
the region of the cortical homunculus corresponding to the muscle of interest, or at the specific
spinal level. This signal is sent, via an action potential, to the specific muscular site. This
facilitates the release of the neurotransmitter acetylcholine from the presynaptic membrane of
the neuro-muscular junction.[34] The acetylcholine receptors sitting at the motor endplate then
allow for the action potential to propagate to the muscle fibre through the opening of sodium
ions channels resulting in depolarization.[34] The neuro-muscular junction cannot stay in an
acetylcholine saturated state indefinitely, thus acetylcholine concentration in the synaptic cleft
is regulated by the enzyme acetylcholinesterase.[34] The action potential has now propagated to
the motor plate and continues down the transverse tubules to initiate the release of Ca2+ from
the sarcoplasmic reticulum.[34] This causes local Ca2+ release from the sarcoplasm to cause
contraction on the cellular level of the sarcomere.[34] Contraction is regulated by the release
of calcium from the sarcoplasmic reticulum. Through having a fundamental understanding of
muscle contraction at the cellular level the recording of muscular activation via EMG can be
better interpreted.

Furthermore, the focus of this experiment is to look at overall muscle function during dif-
ferent rest and during exercise paradigms. Skeletal muscle contraction can be divided into two
categories isometric contraction and isotonic contraction.[34] The less common of the two is iso-
metric contraction, which is when the muscle produces tensile forces without a corresponding
change in muscle length.[34] Isotonic contraction on the contrary is when joint angle changes due
to the lengthening or shortening of the muscle.[34] It can be further divided into concentric and
eccentric contraction, which involve muscles shortening and lengthening respectively to move a
load.[34] The primary mode of contraction employed was isometric contraction as this reduces
motion artifact when performing simultaneous muscular imaging and exercise paradigms.
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2.1.2 The Circulatory System

The circulatory system, through its complex network of blood vessels, performs the essential
role of providing blood to cells to facilitate the exchange of nutrients (i.e. oxygen) and removal
of waste (i.e. carbon dioxide).[38] Vascular perfusion responds to the metabolic needs of tissues
by changing blood pressure and flow to the region of interest.[39] Tissues in metabolic need will
receive more blood and thus more oxygen, whereas blood will be shunted from regions that are
relatively inactive. The muscle layer within the vascular wall is responsible for the shunting
of blood, but also modulates blood pressure through vasodilation and vasoconstriction. There
is an interplay between blood pressure, blood flow, and nutrient exchange to achieve optimal
vascular perfusion. This is controlled by brain regions such as the cerebellum and the brain
stem as they regulate breathing, heartbeat, body temperature, and blood pressure.[40]

The physiological needs associated with skeletal muscle during aerobic exercise, such as
cycling, can cause a contradictory change in blood pressure and flow.[39] What is meant by this
is the increased metabolic demands of contracting muscles cause an increase in blood flow along
with a vasodilation.[39] This allows for the exchange of oxygen, carbon-dioxide and other waste
products, such as lactic acid, from the muscle to the blood at a more rapid rate. But vasodilation
causes a corresponding decrease in blood pressure, which can decrease cardiac output and
reduce the amount of blood received at the muscle’s vascular bed. This problem is resolved
through an interplay between the local and systemic responses of the circulatory system.[39]
Vasoconstriction is maintained in larger vessels feeding the muscle, whereas vasodilation occurs
at the arterial level.[39] This provides an optimal balance between having a high enough blood
pressure to achieve a high cardiac output and enough vascular perfusion to meet the metabolic
needs of the muscle tissue.

Additionally, exercise causes alterations to the partial pressure of carbon dioxide and oxygen,
cardiac output, and glucose and lactic acid levels in the blood.[41] These factors will affect
regional blood flow within the muscle in terms of its volume, but also in its distribution. With
a finite amount of blood volume it must be preferentially distributed based on metabolic need.
To facilitate locomotion, blood will be preferentially shunted to the muscle agonist (which
are involved in contraction) versus the antagonist (which relax to enable contraction) due to
differing metabolic demands. The associated regional changes in blood flow can be correlated
with regions of activation and can set the foundation for the use of changes in blood flow to
investigate regional muscle activation.

2.2 Electromyography
Electromyography (EMG) is a means of measuring muscle activation, as muscle contraction
generates a measurable electrical signal. [42] EMG can be performed invasively, with penetrating
needle-based electrodes, or non-invasively, with surface electrodes.[43] The cost of the non-
invasive technique is a lower spatial resolution, as the muscle activation cannot be characterized
at the fibre level, but rather at the level of motor units. In saying this, when one is looking at
gross muscle function the functional unit of contraction is the motor unit, so surface EMG does
provide an adequate spatial resolution in these studies.

Surface EMG measures the activation of motors units which are “comprised of a single alpha
motor neuron and all the fibres it enervates”.[42] The action potential signals for the fibres
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innervated by the motor neuron to contract and cause a local depolarization in the muscle tissue,
inducing a muscle action potential, which varies from the characteristic action potentials seen in
the nervous system.[42] Thus, a motor unit action potential is a summation of muscle fibre action
potentials that align both temporally and spatially.[42] The EMG surface electrodes do not pick
up the activation of a single motor unit, but rather groupings of motor units contributing to
the same task.[42] It is also infeasible for a surface electrode to only detect the activity of one
motor unit, as muscle fibres can lay tangent to each other but be innervated by different motor
units.[42] It has even been found that “any portion of the muscle may contain fibers belonging
to as many as 20-50 motor units”.[42]

Surface EMG recordings are used primarily to characterize superficial muscle contraction
temporally and in terms of its magnitude.[43] EMG signals are a vital electrophysiological mea-
sure to clinicians and researchers in the field of medicine due to their relatively high amplitude,
ease of capture, and use in pathological versus normal comparative studies.[43] However, EMG
data is not easy to analyze as it is contaminated with physiological and electronic noise. Also,
since EMG is recorded during muscle contraction, the movement of the recording electrodes
and leads is inevitable and will correspondingly cause motion artifact. Wavelet decomposition,
independent component analysis and empirical mode decomposition are some of a few meth-
ods to clean the noise contaminated signals.[43] The EMG data can then be analyzed for its
activation time, amplitude, duration, time to peak contract, and contraction frequency among
other measures depending on the application. [43] In this study, EMG is an optimal modality
to look at site-specific measures based on electrode placement and muscle activation, with a
high degree of temporal resolution.

2.3 BOLD MRI

2.3.1 Biological Basis

The blood oxygenation level-dependent (BOLD) effect was discovered in the early 1990s and
since then has been utilized in functional magnetic resonance imaging (fMRI) studies. [32] fMRI
employs the BOLD effect to non-invasively provide insight into the blood flow and metabolic
profiles of tissues, such as brain and skeletal muscle, in both healthy and diseased populations.
[32], [44]–[46] The muscle BOLD signal is hypothesized to originate from the microvasculature.
[45] The physiologic parameters that have been hypothesized to influence the muscle BOLD
signal include muscle blood volume, perfusion, metabolic factors, and vascular architecture.[45]
Since fibre types, have differing perfusion demands and muscles having varying ratios of fibre
types, depending on the muscle’s function, BOLD could characterize functional differences on
the fibre type or global muscle level.[47] Muscle being a profoundly metabolically active tissue
means paradigms that will vary muscular activation can be used to elicit functional differences.
These functional differences can be non-invasively observed through the BOLD signal in a given
volume of interest (on the fibre type or entire muscle level). A task related change in blood flow
can either be characterized by an increase or decrease in regional vascular perfusion, since the
body has a limited supply of blood, which will modulate the BOLD signal within the volume
of interest.

In MRI the signal characteristics are dependent on the magnetic properties of the spin en-
vironment and spin interaction, with hydrogen spins being of interest due to the bodies large
water content. Blood has a high water content, but also contains molecules such as hemoglobin,
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which is imperative to BOLD imaging.[48][34] The magnetic properties of hemoglobin are de-
pendent on its oxygenation state either in its oxygenated (oxyhemoglobin) or deoxygenated
(deoxyhemoglobin) form.[48] Oxyhemoglobin behaves as a diamagnetic substance and has a
weak negative susceptibility to magnetic fields. [48], [49] Deoxyhemoglobin in contrast behaves
as a paramagnetic substance and has a positive susceptibility that is weaker than diamagnetic
substances.[48], [49] Thus, within any particular imaging volume the relative amount of oxy-
and deoxy-hemoglobin will affect the susceptibility of the local water molecules through modu-
lating their rate of dephasing.[48] The rate of spin dephasing is related to the signal amplitude
and the corresponding image contrast.[48] More specifically, regions with highly deoxygenated
blood will be characterized by a decreased signal intensity due to the signal loss associated
with paramagnetic induced spin dephasing.[48] Furthermore, since metabolic activity is related
to the oxy- deoxy- blood fraction the MR signal intensity will dynamically change based on
metabolic need.[48]

Physiologically, the basis for the BOLD effect is that increased metabolic activity is ac-
companied by an increased regional supply of blood and oxyhemoglobin.[48] This at face value
is counter intuitive as one would believe an increased metabolic need would decrease oxyhe-
moglobin tissue concentration.[48] But, to ensure the tissue is highly perfused with oxygenated
blood a pressure gradient to promote local cell oxygen uptake is established. Specifically, to
increase the pressure gradient to transport oxygen from the blood into the cell an increased
blood oxygen concentration is required.[48] Therefore, the activated region will receive more
blood flow, but the amount of oxygen extracted will be less than the amount delivered, causing
a relative decrease in the local concentration of deoxyhemoglobin and a corresponding increase
in signal intensity.[48]

The BOLD effect is often described as an increased MR signal intensity, in an active metabolic
region, due to an increased regional oxyhemoglobin concentration, but this description lacks in
detail. A more detailed characterization of the BOLD response over time, in the two highly
metabolically active tissues of brain and muscle, is outlined through the hemodynamic response
function (HRF), as detailed in Fig. 2.1. It must be noted that the BOLD signal timecourse de-
tailed in Fig. 2.1 is an approximation and the signal amplitude and latency is approximate and
is dependent on exercise intensity. The more commonly modeled HRF is for neural activation.
It is first characterized by an initial dip due to a small increase in deoxyhemoglobin accompa-
nied with stimulus processing.[48] Next the increase in neuronal activity is shown through the
rapid increase in BOLD intensity that is due to greater regional supply of blood and oxyhe-
moglobin.[48] The intensity will rise to a peak of 2-10% change in signal, at 3T, and can plateau
if the stimulus is continually presented.[48] When the stimulus is no longer present the MR
signal returns to the baseline but will undershoot it.[48] The undershoot is caused by the rapid
decrease in regional blood flow and a delayed normalization in hemoglobin levels causing an in-
crease in the local deoxyhemoglobin concentration.[48] Eventually, the undershoot is corrected
and a hemostatic norm is reached. The HRF of muscle has been less readily characterized due
to large variation in the response based on specific muscle site and demand inducing variation.
Instead the muscle BOLD response is characterized by its time to peak (time to peak BOLD
response), hyperemic peak value (maximum BOLD response value), peak area, and peak width.
[46], [50], [51] Some general observations when comparing the HRF of the respective tissues
is the lack of initial dip and more rapid time to peak with muscle. This can be attributed
to reduced latency required to vasodilate in the less restricted vascular framework in muscle
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compared to brain. Both will display the signal undershoot due to a rapid decrease in regional
blood flow and a delayed normalization in hemoglobin levels causing an increase in the local
deoxyhemoglobin concentration. [51]. This will be followed by a return to equilibrium that
would be expected to be more rapid for muscle due to less regulated vascular constriction and
dilation compared to the highly regulated cerebral blood flow in the brain.

Figure 2.1: Sketch of the temporal BOLD response in the brain and muscle.
Note the signal amplitude is approximate and is dependent on exercise intensity.

2.3.2 Image Acquisition Techniques

The imaging sequence must meet two essential criteria to perform functional imaging through
the use of a BOLD technique. Firstly, it must accentuate the BOLD effect, which as previously
outlined relies on the hemoglobin susceptibility based on oxygenation state. Secondly, it must
acquire images at a temporal resolution captured fast enough to characterize the active tissue’s
changing hemodynamic state.

Using the fact that differences in susceptibility will cause a difference in the spin dephasing,
we can satisfy the first criteria.[52] The relative increase in the fraction of oxygenated hemoglobin
in active muscle tissue will reduce spin dephasing, relative to areas of inactivity, which will
cause an increase in the transverse relaxation time known as T2*.[52] Therefore by employing a
sequence with a T2* weighting this will promote image contrast through the BOLD effect. An
image weighting is determined by two major factors, echo time (TE) and repetition time (TR).
A T2* weighted image is achieved by having a relatively long TR and long TE. For BOLD
muscle imaging, TE values are typically between 30-120ms.[53] This study uses a TE=35ms,
which falls into this range. The TR value chosen is dependent on the specific image sequence
used, such as echo-planar imaging (EPI) or fast gradient/spin echo.
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The second condition of having sufficient temporal resolution is met using high speed imaging
sequences. One such is EPI, as it can acquire a single image in 20ms. This is possible because
it only uses one radio-frequency (RF) excitation pulse to obtain all of the spatial-encoding
information.[54] Furthermore, EPI is intrinsically T2* weighted as uses only one RF excitation,
unlike a conventional sequence which has many, therefore there is no repetition time and thus
an infinitely long TR.[54] The major variation in EPI sequences in BOLD studies, aside from
the TE value, is the method of RF excitation either through gradient echo (GE) or spin echo
(SE). The most popular is GE-EPI as it can achieve a high functional contrast to noise ratio
while still maintaining high temporal resolution. [55] Typically SE-EPI is not as commonly used
as the rephasing accentuates the static dephasing effects in the field inhomogeneities around
larger vessels.[55] But, at higher field strengths this effect is reduced and SE-EPI can have a
better spatial specificity in comparison to GE-EPI.[55]

2.4 Complex Representation

2.4.1 The Fractal Dimension

Definition

Many objects in nature possess complexity in either their structural organization or in how
they operate functionally. This extends to the human body which is known to be an inherently
complex system structurally and functionally. Interestingly complexity which remains constant
over differing scale is seen in pathology, such is in tumor boundaries or their vascular patterns.
[56] One such metric used to describe this behaviour is the fractal dimension (FD), which is
a measure of the self-similarity and complexity of a system in either the spatial or temporal
domain.[56]–[59]

Fractal geometry described by Mandelbrot improved the characterization of natural struc-
tures and shapes, which contributed to our improved understanding of complex systems and
chaos in nature. [57] The fractal geometry is different from the conventional euclidean geom-
etry that we use to describe space, as unlike the Euclidean dimension, objects are no longer
required to have an integer spatial dimension. [57] This non-integer dimension characterization
is obtained by using a "self-similarity" outlook. For instance a fractal object is self-similar as it
would have the same geometric properties when examined at any level of magnification/scale.
[57] If self-similarity is preserved over a changing scale then an object can be quantified as
more complex. For instance the koch snowflake, which shows iterative addition of symmetrical
edges, demonstrates the self-similarity and complexity relation as a function of scale, as shown
in Fig. 2.2. With in increase in the number of edges the perimeter of the shape (a one dimen-
sional measure) gets more complex, and since the edges are symmetrical in appearance, the
self-similarity is preserved. Therefore the fractal dimension will scale from 1 to 2 as perimeter
is a 1D measure of geometry.

Another way to interpret the self-similarity complexity relation is looking at information
gained over variable measurement scale. If we take the edge length of the single line in Fig. 2.2
to be L when measuring the perimeter depending on the length of the ruler whether it is greater
than or less than L we will get the same measurement for the line. This also holds for the first
snow flake in Fig. 2.2. Whereas in the second snow flake in Fig. 2.2 if the ruler is of length
L we will not be able to actually measure the length of the edges which are L/4. Therefore
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Figure 2.2: Demonstration of relationship between complexity and self-
similarity using a Koch snowflake example.

we are gaining more information the system as the measurement unit gets smaller, meaning
we require more information to accurately represent the system, implying it is complex. The
complexity between snow-flake one and two vastly different yet the self-similarity is maintained
while changing scale, indicating how we can use self-similarity on a changing scale to provide
insight into complexity.

This can also be used in the time domain to describe the signal complexity. Instead of using a
length metric to understand the fractal dimension described through a "self-similarity" outlook,
in the time domain we can use the metric of variance. If the variance of a signal changes as a
function of scale then we can model it as a complex signal. For instance, if complexity increases
as the scale gets smaller then we get more information about a signal as the scale decreases
and it requires finer measurement windows to be accurately represented and is thus complex.
A self-similar time series over changing scale will require finer measurement windows to be
more accurately represented, so it also encompasses complexity measures in the time series.
Some other key features of fractal time series are encompassed in its statistical properties
as it may have a skewed probability distribution. Its complexity can also be demonstrated
through a frequency representation with a power spectrum with a baseline of 1/frequency. [60]
Additionally, the time series can be locally or globally self-similar and may show statistical
dependence over a short or long range. [60]

Basis for Use

The human body is an inherently complex system in terms of both its organization and op-
eration, so it is best to describe it through a complex metric, such as the FD. Geometrically,
the human circulatory system shows scale independent self-similarity in its branching patterns
from arteries, to arterioles, to microvasculature, and through the venous system. Additionally,
the FD has been used to describe the complexity of both healthy and diseased vascular geom-
etry. One such instance is where patients with cerebral arteriovenous malformations showed
an increased FD in their affected hemisphere.[59] Furthermore, the temporal complexity of the
circulatory system has been investigated through fractal characterization of the arterial time se-
ries waveform. The arterial waveform has been shown to be complex, displaying self-similarity,
and its fractal description having clinical utility.[61] For instance, cardiovascular disorders can
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be identified through arterial stiffening and hypertension, which have been related to changes
in central pulse pressure. [61] Interestingly, decreases in arterial time series FD correlated with
increased central pulse pressure, providing a powerful diagnostic measure.[61] Likewise, the
BOLD signal, which is a relative temporal measure of perfusion and metabolism, via the ratio
of deoxy- to oxy-hemoglobin, has been readily characterized via the FD metric. fMRI BOLD
signal complexity has been used to differentiate healthy subjects from those with Alzheimer’s
disease [62] and mild traumatic brain injury [63], and the level of consciousness in those with
disorders of consciousness [64]. In addition, geometrically the muscle fibre also shows a degree
of power-scaled self similarity when scaling down the levels from the muscle belly, to muscle
fascicle, to muscle fibre, to myofibril. The fractal organization of both the muscle and circula-
tory system and its prominent use of FD in the fMRI literature suggests a plausible relevance
in describing the differing vascular profiles of muscle fibres through the skeletal muscle BOLD
signal. This rationale is why it was chosen to be employed as a means to describe muscle in the
work contained in this thesis.

2.4.2 The Phase Space

Definition

The phase space is a method to describe non-linear systems and it is particularly of interest
in describing the muscle activation, which it why it has been used in EMG studies. [65] More
specifically, it it known that muscle operation is non-linear as its activation threshold is non-
linear due to variable discharge threshold depending on specific motor neuron, and since the
recruitment of motor units is non-linearly related to force output. [65], [66] The phase space
reconstruction technique is well described by EMG researchers Chen and Wang and is as follows:
"The basic idea of phase space reconstruction is that evolution of any state component of a system
depends on other interacting components within the same system so the information of these
related components is hidden under the evolution of the component. In order to reconstruct a
“equivalent” high dimensional space that the system embeds in, we need only to investigate the
component by utilizing some time-delay data of observed time series as new coordinate for the
phase space. By repeating the process, the “equivalent” phase space can be obtained. The process
is called time-delay embedding." [65]

The phase space is then created by plotting the temporal function against its delay. The
phase space time-delay can be found using the C-C method, using principle component anal-
ysis, or the method of delays to select components in a joint or independent approach, . [67]
Alternatively, the phase space can be represented by using the temporal derivative to represent
the system delay. When performing a voxel-wise analysis the embedding dimension computed
may vary at each voxel, therefore the temporal derivative computation of the phase space would
present more stability and it is the method used in this work.

Basis for Use

The muscle BOLD phase space describes muscle activity state/state-transitions over time. If the
phase space is examined at rest the expectation is that the temporal signal would oscillate/re-
volve around a single state, the null state, which is theoretically shown in Fig. 2.3. Using this
inference one can characterize the oscillation around the stable rest-state to describe biological
factors such as stability or activity distribution. For instance, variability of deviation from the
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oscillatory path would provide insight into muscular stability which could be hypothesized to
show twitches or muscular activation at rest. The spread/distribution of the oscillation from
the zero point would provide insight on range of activity or perfusion to the muscle at rest.
The phase space is more conventionally used to examine state/state-changes, with a theoretical
muscle BOLD phase space when transitioning from rest to contraction shown in Fig. 2.4. Here a
change in amplitude in the BOLD time-series indicating muscle activation would be illustrated
by a new state in the phase plane (i.e. oscillation around a new center). Now conventional
muscle BOLD measures such as time to peak and hyperemic peak value would be conveyed
in the phase space as relative difference in state location and center point of active state re-
spectively. Therefore the phase space conveys the conventional measures of the time-domain
analysis of the muscle BOLD signal while also presenting novel insights. Through performing
a block design paradigm, alternating between rest and active states, the phase space could
provide novel insight into state transitions and fatigue over time. Most importantly it could
provide insight into an activation gradient of muscle, as if more than two states are observed
in the phase plane, then this suggests activation is not a binary process. Thus, the complex
representation of muscle BOLD through using the phase space could more readily characterize
the signal compared to conventional time-domain analysis.

Figure 2.3: Theoretical Phase Space of a muscle at rest.

Figure 2.4: Theoretical Phase Space of a muscle during activity when transition
between rest to active during one example contraction.
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Chapter 3

Literature Review

3.1 Muscle BOLD Studies
As the primary method of non-invasive assessment of muscle function in the thesis it is impera-
tive to review the existing literature on muscle BOLD (mBOLD). To limit the scope the Boolean
search term was used in PubMed to return relevant studies ("muscle BOLD" OR " mBOLD")
NOT ("rat" OR "animal"). Scope was focused on human muscle BOLD investigations through
the above term.

Although muscle BOLD studies specify that they used mBOLD they do not use the con-
ventional BOLD examination seen in neural activation studies where the BOLD time course is
correlated with an ideal hemodyanmic response function (HRF) based on the paradigm block
length. Some studies which use mBOLD employ a framework similar to what is described as
muscle functional MRI (mfMRI). mfMRI examines differing transverse relaxation times at the
pre- versus post- state as a function of changing stimuli (i.e. exercise or proximal vessel oc-
clusion). The transverse relaxation time T2* can be found from using multi-echo echo planar
imaging sequence. Then relaxation times can be found foe a particular voxel by performing a
least-square fit of mono-exponential decay of the signal intensities as a function of the increasing
echo time, S=I0*exp(TE/T2*).[45] This technique does not require concurrent exercise to be
performed, which can mitigate the affect of motion artifact. Additionally, the muscle BOLD
response is characterized by its time to peak (time to peak BOLD response), hyperemic peak
value (maximum BOLD response value), peak area, and peak width. [46], [50], [51] This anal-
ysis requires concurrent exercise and BOLD imaging, which is more reflective of the muscle’s
functional state during exercise, as opposed to the previous analysis which uses a pre and post
muscle assessment to provide outlook. In saying this, the correlation with the ideal HRF for
muscle BOLD in the instance of a block design is still a valid measure of activation, but it
presents the drawback of requiring multiple exercise blocks to be performed during concurrent
MRI, whereas the previous techniques could be performed with one stint of high intensity ex-
ercise. As such, the described mBOLD studies must be looked at with a different lens then
the conventional neural BOLD/fMRI studies that predominate the literature. For a very com-
prehensive review of mBOLD in terms of paradigm best practices, metrics to describe BOLD
time courses, and confounding factors of the mBOLD signal such as age, relative fitness, fibre
type and drug ingestion, the following should be referenced [45]. For instance differences due
to age have be linked to increased vascular rigidity, and muscle differences (which vary in their
fibre type ratios) due to perfusion, oxygenation uptake and capillary density variations.[45]
Another review, that has more of a clinical outlook, describes the usefulness of mBOLD in
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examining vascular diseases, such as peripheral arterial occlusive disease, diabetes mellitus, and
chronic compartment syndrome. [33] To examine blood-flow affects due to disease/disorder it
is conventional to use ischemia and/or reactive hyperemia paradigms, which involves occluding
blood-flow to a proximal artery to the imaging slice (conventionally with a pressure cuff) then
observing the return to normal blood flow. One work that employed this framework revealed
diabetic and obese individual’s had an altered blood-volume status. [33]

Similar to the previously discussed reviews, one study on mBOLD investigated a multitude of
factors that affect vasomodulation such as varying oxygenation induced state, exercise induced
changes, and the ingestion of vaso-dilating/constricting supplements. [68] To test these factors
a combination of 6 scanning acquisitions were used that were pre- or post exercise with either
ingesting nothing, caffeine, or an antihistamine. [68] The mBOLD scans were collected with
4 90s cycles of normoxia then 45s with hyperoxia in order to modulate the BOLD amplitude
while in a resting-state. [68] As an overarching review the BOLD signal was modulated at
rest via partial oxygenation pressure changes, with exercise producing a significant increase
in the absolute BOLD signal in the soleus and gastrocnemius with no substance ingested.
[68] Finally, a differing relation was seen in the gastrocnemius and soleus due to substance
ingestion, with caffeine increasing gastrocnemius BOLD amplitude, with no soleus change, and
the antihistamine decreased soleus BOLD amplitude, but did not affect the gastrocnemius. [68]
This work has set the foundation for substance regulation before experimentation and suggests
fibre type differences in the muscle can contribute differences in the BOLD signal, which is also
explored in Chapter 8.

Some foundational work in mBOLD during hyperemia and ischemia, was explored at different
field strengths and was attempted to be automated due to its vast use throughout the mBOLD
literature. One study examined the validity of using paradigms that induce ischemia/hyperemia
and the corresponding change in muscle recorded via mBOLD at differing field strengths.[69]
Eight healthy volunteers experienced temporary vascular occlusion at the thigh, using a com-
pression cuff, and fat-saturated multi-echo gradient-echo EPI images were taken prior to and
post occlusion using a 1.5T and 3T magnet.[69] The differences in relaxation time quantified
via R2 measures were assessed for all participants in the gastrocnemius and soleus muscles.[69]
The change in relaxation time increased, in both muscles and -emia conditions, at higher field
strength and ranged from 1.6 to 2.2 greater at 3T.[69] Therefore, this work suggests higher
field strength magnets should be used for exploratory muscle studies that require improved pre
and post hyperemia/ischemia state discrepancy. The concern of higher field strengths causing
significant extravascular BOLD effects, that would affect skeletal muscle transverse relaxation
time computation, was proven to be a non-concern [70], indicating higher field strengths are
ideal. Due to the vast effort of examining state induced differences in muscle relaxation using
multi-echo mBOLD one group tried to make an automated framework to examine reactive hy-
peremia. [71] Using a multi-echo EPI mBOLD acquisition the ROIs of the soleus, gastrocnemius
and tibialis anterior muscles were examined. [71] A gamma-variate sigmoidal function was fitted
to derive the time to peak, hyperemic peak value, peak area, and peak width metrics. [71] The
derived values based off the model versus the actual data were highly correlated, but presented
the benefit of removing the operator dependence which was observed. [71] This study shows
the possibility of an automated, and hence scalable, assessment of functional muscle behaviour.

Some studies focused on the effects of occlusion on muscle perfusion/metabolism as character-
ized through the mBOLD signal while operating at high field strengths, due to the foundational
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work in [69]. One group used 8 participants where thigh-specific vascular cuff was used to in-
duce hyperenemia prior to imaging of the calf muscle with a 3T or 7T magnetic respectively.[72]
They employed a change in relaxation time framework to facilitate comparisons between field
strengths R2* rate constants were calculated as R2* = 1/T2*. [72] Notably, mean preocclusion
R2* and the change in R2* value was greater at 7T. [72] With the added benefit of 7T magnets
already providing improved SNR this study demonstrated the feasibility of performing muscle
investigations at high field strengths, which is conventionally used for neural imaging. Another
study which performed high field muscle imaging examined maximal plantar-flexion contrac-
tion and its corresponding change in signal amplitude in the soleus.[73] The maximal amplitude
was found by fitting a ninth order polynomial to derive a line of best fit, time-to-peak signal
was determined by identifying the inflection in the derivative of the line of best fit.[73] The re-
sults demonstrated increased pre-contractile signal amplitude from 0.3–7.0%, with heterogenity
across the seven subjects.[73] This work had the contribution of showing difference in mBOLD
signal amplitude at high field strength and the variance contribution that can be expected from
participant biological variability.

Furthermore, the use of mBOLD to examine skeletal muscle micro-circulation abnormali-
ties has been translated to the clinical population who experience systemic sclerosis. Using a
multi-echo mBOLD acquisition in calf, metrics of minimal and maximal hemoglobin oxygen
saturation and time to peak (TTP), were derived after cuff-induced ischemia followed by reac-
tive hyperemia. [74] The result showed when comparing patients to healthy controls that there
were functional deficits in the calf, that were more pronounced in the gastrocnemius, as demon-
strated through increased oxygenation desaturaion during ischemia and impaired oxygenation
during hyperemia in patients. [74] The work demonstrates the utility in the mBOLD signal
in examining microcirculation abnormalities, which is its hypothesized point of origin. This
research group further continued their exploration into systemic sclerosis by trying to correlate
their previous impactful mBOLD findings with transcutaneous oxygen pressure measures.[75]
To measure transcutaneous oxygen pressure an electrode was placed on the skin adjacent to the
upper portion of the lateral gastrocnemius ensuring scars and veins were avoided. [75] The high
correlation between the transcutaneous oxygen pressure and T2* decay curve demonstrated the
ability of the metrics to convey similar information. [75] The same group using the same research
subjects examined mBOLD and skin laser Doppler flowmetry (LDF) relationship for those with
systemic sclerosis. [76] LDF operates on the principle of the moving blood inducing a doppler
frequency shift and was measured in the same location as the MR images. [76] The metrics
from the mBOLD and LDF were 93% and 94% correlated for the healthy and patient groups
respectively, demonstrating how it is a comparable measure to mBOLD and transcutaneous
oxygen pressure.[76]

Additionally, mBOLD was used to examine skeletal muscle micro-circulation abnormalities
another clinical population of those experiencing peripheral arterial occlusive disease (POAD).
One study used mBOLD to examine the use of percutaneous transluminal angioplasty of the
superficial femoral artery to improve blood-flow in the calf. [77] Notably post procedure the
maximum T2* was increased, time-to-peak was decreased and T2* end value was decreased. [77]
These results in combination suggest increased perfusion, with more rapid onset, and less resid-
ual blood remaining after hyperemia, which are all beneficial, demonstrating the validity of the
technique. Another group took this work in a different direction and examined POAD patients
compared to healthy age matched controls.[78] Using the conventional single-shot multi-echo
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planar imaging of the calf with pressure cuff induced ischemia, they observed group differences
in transverse relaxation value. [78]

Reactive hypermia was also used to explore age induced differences in muscle function.[79]
Once again a multi-echo T2*-weighted single-shot multi-echo EPI sequence was used used for
imaging, with metrics such as hyperemia peak value and time to peak being quantified, this time
in a healthy versus elderly comparison.[79] Temporary vascular occlusion was induced at the level
of the thigh with imaging performed in the calf of the 11 elderly and 17 younger volunteers.[79]
The functional recovery of muscle was impaired in the elderly with a faster ascension to a lower
peak blood flow, and delayed return to equilibrium compared to the younger population. [79]
The impact on age and muscle function was also explored using maximal plantar flexion exercise
induced hyperemia. [80] Functional images were acquired continuously for 4 min, where once
every 30s 1s maximal voluntary contraction dorsiflexion was performed.[80] BOLD amplitude
was negatively correlated to age and the longer time to peak BOLD amplitude was inferred
to be due to impaired blood flow kinetics. [80] Additionally, using hyperemia provoked by a
cuff-compression technique and recording multi-echo mBOLD in the calf, smokers were also
seen to have impaired muscle blood flow response. [81]

Some studies go one step further than solely mBOLD and are multi-technique studies. One
such variation is when studies combine blood flow related measures via mBOLD and metabolic
profiles via muscle spectroscopy. One study examined the metabolic profile of the gastrocnemius
and soleus muscle by observing the phosphocreatine (PCr) spectral peak roll off, and the dif-
ference in perfusion by using change in T2 * maps, from mBOLD acquisitions.[82] 15 Fontaine
stage II patients, and 18 healthy controls performed a plantar-flexion paradigm at a rate of
1Hz and data were acquired in synchrony with motion.[82] Notably, gastrocnemius and soleus
R2* at end-recovery was not significantly different from one another or between groups, but
gastrocnemius had increased hyperemic BOLD amplitude and slower PCr recovery in patients.
[82] This study contributed insight into the mitochondrial energy profile with BOLD measures
in a relatively concurrent approach, demonstrating the necessity for multi-technique MRI stud-
ies. Another study that investigated the muscle BOLD/PCr relationship instead focused on the
effect of electrical muscular stimulation on their interconnection. [83] Electrodes for stimulation
were placed at the motor points of the superior and inferior heads of the medial gastrocnemius
muscles and stimulation functional and spectral data were compared to rest. [83] Stimulation
increased the BOLD signal amplitude in the gastrocnemius and soleus during EMS but did not
significantly affect the PCr peak. [83] These results indicate that the regularity of contraction
induced by stimulation has a greater affect on the perfusion profile of muscle and less of an
effect on the mitochondrial metabolic profile. Another group has looked at the effect of muscle
activation during plantar-flexion of varying weight, using the multi-modal approach of muscle
BOLD and near infrared spectroscopy (NIRS).[84] During a 14-min period MRI EPI single
acquisitions for 789ms while resting were followed by a delay of 2211ms where plantar-flexion
was performed, with a similarly employed paradigm for NIRS acquisition.[84] Interestingly the
BOLD signal amplitude and oxygen saturation measured from NIRS decreased with the onset
of 2kg exercise, even more so when the weight was increased to 6kg.[84] This observation of
decreased BOLD signal amplitude has not been commonly observed in the literature, so the
results must be taken with caution.
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3.2 Non-invasive MR Biopsy Studies
To have the ability to non-invasively characterise skeletal muscle fibre composition would be
clinically valuable to those with neuromuscular disease in order to address two of the major
draw-backs with biopsy. The first is it would alleviate patient pain and further damage of the
already deteriorating muscles, associated with biopsy.[25] The second, which can be addressed
with MRI as it allows for entire muscle cross sections to be examined, is the subsampling
inaccuracy of the chosen biopsy samples. As such, researchers have attempted to address the
problem of developing a non-invasive biopsy replacement using MRI, but have had little success.

The current non-invasive MR alternative is using muscle carnosine levels measured in the
gastrocnemius via hydrogen spectroscopy (1H-MRS), where increased levels were found in the
FT fibres of young, experienced, and ex-athletes.[27] The study consisted of 83 controls, 15 young
track-and-field athletes, 51 elite athletes and 14 ex-athletes. The results showed that compared
to the reference population power athletes had approximately 30% higher and endurance athletes
had approximately 20% lower carnosine levels. [27] Although this result is encouraging, 1H-MRS
is highly sensitive to B0 field homogeneity and lipids, as inhomogeneities can lead to spectral
broadening that can obscure metabolites such as carnosine. Therefore, the results are highly
dependent on voxel placement and require previous anatomical knowledge to properly avoid fat
in voxel selection. Thus, the dependence on voxel placement only mitigates the variance caused
by biopsy muscle subsampling. Furthermore, some muscular disorders cause fat to replace
wasting muscle tissue, so the findings on the ideal athlete population may not transition well
to the clinical population.[20]

Another proposed MR method used measures of maximum muscle contractile force, strength,
and volume to estimate muscle composition.[28] This is proposed with the ideology that the
relative power of fast-twitch fibres would be greater than that of slow-twitch for a given cross-
sectional area. The maximal contractile force and contractile strength was measured by per-
forming plantar flexion.[28] The estimate of muscle volume for the gastrocnemius and soleus
was found through obtaining structural, T1-weighted, MR images and segmenting compart-
ments based on tissue boundaries.[28] Soleus biopsy was followed by staining of histological
samples, with anti-MHC II to isolate fast versus slow twitch fibres, the percent area of type-II
fibres in the histological sample was used as an estimate the relative percent area for the en-
tire muscle body.[28] The results showed that maximum contractile force normalised by soleus
muscle volume and strength correlated with percentage area of type-II fibres, indicating that
the normalised force metric could serve as a histology replacement.[28] This result is very en-
couraging, but the question must be asked about validity of using a force metric normalization
as there is a contribution from other muscles in the triceps surae during muscle contraction.
In addition, it has the draw back of the extensive data collection procedure requiring a dy-
namometer for force measurement, and a reflective marker camera system to determine ankle
orientation.[28] With three maximum voluntary contractions as specific joint angles, followed
by three isokinetic contractions at seven different angular velocities respectively the detailed set
up and long protocol make it infeasible to replace biopsy.

Consequently, there is still a need for a non-invasive muscle biopsy alternative that is not
dependent on regional selection, like the 1H-MRS technique, and does not require extensive
set-up and time, like the forced based technique. The previous two MR techniques attempt to
differentiate between muscle fibre type by leveraging metabolic differences between fibre types
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[27] and their differences in contractile unit strength/rate of firing [28]. This still leaves the
differences in perfusion, which come as a consequence of the spectrum of anaerobic to aerobic
metabolism of muscle fibres, as a viable differentiator. The current work employs the metric of
temporal fractal dimension, to detail BOLD signal complexity, to provide insight on the impact
of the differing vascular organisation and perfusion for respective fibre types, as detailed in
Chapter5 and Chapter 8.

3.3 BOLD and Phase Space Studies
The phase space is a method to describe non-linear systems and it is particularly of interest
in describing the muscle activation, which it why it has been used in EMG studies. To the
author’s knowledge it has yet to be used to describe muscle activity state/state-transitions over
time through the BOLD signal. In saying this, it has been used in a limited capacity to assess
the non-linearity of neural activity via the BOLD imaging acquisitions, which is the closest
parallel that can be used as reference in the present work. Here the distinction between muscle
BOLD and neural BOLD studies signified by using the convention to call neural BOLD studies
functional (fMRI).

Currently the use of fMRI and the phase space is limited to healthy cohorts, with the ma-
jority of the literature focusing on exploratory science and not to clinical translation. One
study has focused on examining the non-linearity of the resting-state fMRI signal [85]. The
spatiotemporal lyapunov exponent, which is a metric to describe the chaotic nature of a sys-
tem, was calculated for resting-state fMRI and pure correlated noise to estimate system non-
linearity. The results demonstrated that resting-state fMRI does not fully resemble noise, so
the fMRI flucations may be an inherent model of basal neural activation. [85]. Additionally,
the phase space representation of fMRI was used to as demonstrate how activation is achieved
by transition from the resting-state critical point via a cascade process. [86] This was achieved
through examining phase space transitions of resting-state fMRI data. [86] The phase space
has also been used to examine the resting-state with the outlook of examining the connectivity
of resting-state networks. [87] This study instead of using the conventional linear correlation
technique to examine network connectivity, used phase synchronization between brain regions as
characterized by a new metric "correlation between probabilities of recurrence". Notably phase
synchronization was decreased between networks when comparing resting to an anesthetized
state, indicating the validity of this metric and the phase space to examine neural deficiencies.
[87] Similarly, resting-state fMRI phase space has been able to differentiate neural deficits in
concussed compared to healthy children through investigating neural activity dispersion. The
observed increase in resting-state neural activity dispersion in healthy compared to concussed
brain, with a regional dependency, suggests healthy children could have an improved ability to
transition from dispersed to focused neural activity during tasks. This work at the time of this
thesis is currently being prepared for publication. Interestingly, another group has created a
metric which they term, temporal coherence mapping, by correlating the transition states of the
fMRI resting-state phase space.[88] This metric is used to understand how the brain activity in
the present will affect future activity. [88] The final study of note was an exploratory analysis
of the fMRI phase space during a simple fingering tapping motor task paradigm as opposed to
at rest. [89] This work showed that the phase space where the active and resting states could be
readily separated was a more functionally active region, which was validated through compar-
ison with the activation shown via correlation with the ideal hemodynamic response function.

23

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/msbe


Master’s of Applied Science in Biomedical Engineering - Joshua E. McGillivray;
McMaster University - School of Biomedical Engineering

Additionally, the work showed how the phase space separability is sensitive to hand-dominance
and thus could quantify brain state organization as an activation metric, as opposed to pure
amplitude metrics. This work informed the exploration into muscle activation during a simple
ankle flexion paradigm as detailed in Chapter9.

3.4 Muscle MRI and EMG Studies
Their have been numerous investigations of muscle using MRI and EMG due to their comple-
mentary pairing, as MRI has high spatial resolution and EMG high temporal resolution. As
such, muscle MRI is often used to collect spatial information regarding muscle architecture and
EMG used to collected functional information through the electrical activation profile during
contraction. This thesis uses both EMG and rapid muscle BOLD imaging, which has good
temporal resolution with at TR=110ms, to gain simultaneous functional information on mus-
cle, as opposed to complementary spatial and functional information conventionally explored.
Despite the difference in utility in the MRI acquisition to the existing literature, a coverage of
muscle MRI, primarily used for static information, and EMG still provides relevant backing of
this work. To limit scope animal and infant studies are excluded from discussion. The coverage
is roughly broken down by anatomical location.

To begin muscle MRI and EMG has been used to assess muscle function and its innervation
in the upper limb. One study explored the use of EMG and T2-mapping of the biceps brachii
to examine muscle fatigue.[90] They used the metric of integrated root mean squared EMG
(IEMG), and the increase in IEMG as the fatigue metric.[90] IEMG was determined by taking
the l-s integral of the EMG and multiplying by the square root of 2. Mirroring the IEMG
measure, T2 increased as a function of relative resistance when either concentric or eccentric
actions were performed, indicating that T2 value could be used to indicate muscle fatigue. [90]
More recently, the technique of graphical signal processing was extended to similar investigation
of the biceps while measuring surface EMG and using MRI to examine changes in T2 time as a
function of exercise. [91] Using a novel approach to define EMG origins, the muscle activation
patterns of four subjects performing four isometric tasks are estimated using a resistive network
for the given MRI morphology. [91] Without going into much detail, 90% the activation of
the surface EMG was able to be explained by the muscle models derived through solving an
inverse problem. [91] Additionally, MRI and EMG have been paired to examine the effects
of deinnervation on muscle.[92] In this study population the primary point of affliction was
impairment to the upper limb with 30% of subjects having upper extremity peripheral nerve
injury, 20% in the lower limb and 44% having lumbar radiculopathy.[92] Notably an increase
in spontaneous EMG activity directly correlated with increased signal on STIR MRI, which
indicates deinnervation.[92] This showed the utility in using STIR to assess deinnervation in the
muscle.[92] Another study also was in agreement with the secondary findings in this study in
regards to the usefulness of MRI and EMG to assess radiculopathy. [93] Muscle deinnervation
assessment through MRI and EMG is not of primary interest of the current study, but if further
information is desired these additional sources can be referenced [94]–[96] .

The next region to be discussed is the core/back. One study examined muscle functional
MRI (mfMRI), which is the difference in T2 value when comparing prior to post exercise state,
and EMG of the lumbar back muscles.[97] This work demonstrated that there is a linear re-
lationship between increase in exercise intensity and T2 value increase, which also held for
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increased EMG amplitude, as a function of exercise. [97] This work has the primary contribu-
tion of demonstrating the linear relationship of mfMRI and EMG with exercise intensity and
the validity of accessing lumbar activity using each technique in isolation. [97] Furthermore,
one study used structural MRI to investigate cross-sectional area increases in core muscle tone
and the corresponding EMG response after a 4 week exercise paradigm. [98] The EMG activity
increased in the rectus abdominis, which correlated with the increases in muscle tone in the
core muscles, indicating the strengthening paradigm increased muscle functional output. [98]

The final area of discussion, which is of utmost relevance to this thesis is EMG and MRI
studies that focus on the lower limb. The first study of note is one that investigated the ac-
tivation of triceps surae, consisting of the soleus and two gastrocnemius muscle bellies, using
mfMRI and EMG. [99] The study consisted of 6 males and used mfMRI to examine the differ-
ences in the T2 transverse relaxation times at rest and immediately after exercise, while EMG
was recorded during exercise. [99] EMG was recorded from the middle of the gastrocnemius
medialis and lateralus, soleus and tibialis anterior muscle bellies, with the reference on the thigh
bone. [99] The exercise consisted of three separate trials which increased in weighting of, bilat-
eral, unilateral and unilateral with an additional 15% of body weight standing calf-raises. [99]
The results showed that mfMRI signals and integrated EMG activity correlate with workload
in individual triceps surae muscles, but less so in the lateral gastrocnemius. [99] This work al-
though with non-concurrent MRI/EMG demonstrates the utility of functional muscular imaging
in the leg. Another study also used mfMRI and EMG to examine the lower leg, but instead
investigated the effect of knee angle upon plantar flexion. [100] This study used two separate
groups who were height and weight matched who performed identical protocols while assessing
muscle activation with MRI or EMG respectively. [100] The exercise paradigm consisted of dy-
namic plantar flexion at 25% maximal voluntary contraction for 2 minutes while the knee was
extended (0° flexion), flexed (90°), and partially flexed (45°).[100] The EMG electrodes were
placed on the two gastrocnemius bellies, soleus, and tibilias anterior, with comparison of T2
changes from the MRI also in these muscles. [100] The muscles groups with significant increases
in T2 after exercise corresponded with the EMG increases in mean amplitude and were, the
medial/lateral gastrocnemius (0° flexion), soleus (90° flexion), soleus and lateral gastrocnemius
(45° flexion). [100] [100] This work signified the dependence of subject leg orientation during
functional imaging of the lower leg when examining regional activation.

Furthermore, the mfMRI and EMG has been used to examine leg function in elite cyclists,
with the intended outlook of examining muscle activation homogeneity. [101] 8 professional
cyclists performed cycling on an electrically braked cycle ergometer with concurrent EMG, in
eight muscles of the right lower limb (i.e. hamstrings, quadriceps, gastrocnemius and tibialis
anterior), and respiration measurement.[101] Before cycling with constant workload increases
or after 3 hours of recovery, an MRI session was used to examine differences in transverse
relaxation times of muscles in the quadriceps. [101] Interestingly, the study showed that the
EMG activation patterns and T2 value increases across muscles were varied based on cyclist even
with similar maximal oxygen consumption and training volume. [101] This work demonstrates
the heterogeneity of muscle recruitment among subjects in a uniform subject group, so multi-
subject studies such as this one will be heavily affected by subject biological variability. Another
study of interest, is one that examined hamstring function during hip extension using not only
the combination of mfMRI and EMG, but also muscle cross sectional area measures through
MRI. [102] MRI and EMG tests were performed separately with MRI acquisitions occurring at
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rest, immediately after, 2 and 7 days after the exercise. [102] Six males underwent the exercise
protocol consisting of 5 sets of 10 repetitions of the hip extension while EMG was recorded
for the biceps femoris long head, semitendinosus, and semimembranosus muscles. [102] The
results showed that the the integrated EMG values, normalized by MVC iEMG, increased in
the biceps femoris long head and semimembranosus, and were significantly higher than in the
semitendinosus. [102] Additionally, immediately post exercise the semimembranosus showed
increases in T2 value and cross sectional area. [102] This work was the first to investigation hip
flexion using this novel technique and showed how the cross sectional area of muscle changes
after exercise. Similarly, another study examined hamstring function, but with the use of a
knee flexion instead of hip extension exercise paradigm. [103] In order to investigate fatigue
effects, EMG of the hamstring was recorded for 7 males who performed eccentric knee flexion
exercise. [103] Prior to and post exercise mfMRI images and the maximum isometric knee
flexion torque was captured.[103] As expected based on previous literature the T2 values when
comparing pre to post exercise were significantly increased in the bicep femoris, semitendinosus,
and semimembranosus muscles. [103] But interestingly, post exercise the circumferences of bicep
femoris, semitendinosus, and semimembranosus muscles increased showing similar results to
[102]. Additionally, the average EMG decreased in all muscle groups from the first to fifth set
of exercise, which could suggest extreme neuromuscular fatigue. [103] This work provided novel
insight into the EMG at extreme fatigue compared to minimal fatigue where the correlation
with mfMRI T2 value increases goes from being positively correlated to negatively correlated.

The final study of note, that may be arguably the most important is the work performed in a
Master’s thesis exploring the use of concurrent BOLD and EMG. [104] This work demonstrated
the feasibility of collecting concurrent muscle BOLD and EMG of the lower leg, which set the
foundation for the work explored in this thesis in Chapter 11. This focus of the previous work was
on the feasibility of the development of the MRI compatible EMG and denoising architecture.
[104] The exercise was performed in two stints with either 30% or 50% MVC and consisted
of plantar flexion during simultaneous EMG acquisition, which was not performed by other
studies. Two EMG electrodes were placed on the right medial gastrocnemius and reference
on the ankle. In addition to demonstrating concurrent muscle BOLD/EMG feasibility, the
work performed a small investigation into the relation of muscle contractile strength and BOLD
time to return to rest. It showed a correlation between increased relative muscle effort and
an increase in time to return to rest. These results although profound are extended upon in
this work. The true novelty in this work is providing non-static functional information about
muscle with concurrent EMG measures, as opposed to the static measures used in the mfMRI
studies. Additionally these mfMRI studies only occur pre and post exercise providing little to
no dynamic information about the muscle behaviour.
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Chapter 4

Research Hypothesis, Objective and
Aims

4.1 General Objective
Use a novel complex representation of muscle BOLD and EMG to understand and quantify
muscle behaviour during rest and simple lower limb exercise paradigms.

4.2 General Hypothesis
If muscle at rest and during activation is described through the complex metrics of the fractal
dimension and phase space organization, then this will lead to novel insights on muscle structure
and will more accurately describe the process of muscle activation gradient.

4.3 Specific Objectives
The general objective can be broken down into three major objectives:

1. Use the fractal dimension to differentiate between muscles in the lower leg

• This objective would inform the development of a non-invasive biopsy alternative

2. Use the phase space to gain insight into muscle activation state

• This objective would describe muscle activation using a gradient, which is important
in describing muscle function in healthy versus diseased populations

3. Use a saturation band to gain insight into arterial inflow effects

• This objective would describe how a saturation band could be relevant in noise sup-
pression, which is important to more accurately describe muscle activation

4. Use the concurrent EMG and BOLD signal to relate perfusion and electrical activation

• This objective would show the importance to MRI compatible EMG systems and if
it is worth developing for clinical use
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4.4 Specific Hypotheses
1. Use the fractal dimension to differentiate between muscles in the lower leg

If a bi-fractal representation of the temporal BOLD signal is used to describe muscles with
varying twitch fibre profiles then the gastrocnemius, soleus, and anterior group will show
differing fractal dimensions, due to muscle fibre dependent perfusion differences.

2. Use the phase space to gain insight into muscle activation state
If the phase space is used to examine muscle during a lower limb exercise paradigm then it
will demonstrate that muscle activation is a gradient by identifying more than two states.

3. Use a saturation band to gain insight into arterial inflow effects
If a saturation band is placed superior to the imaging slices then the effect of arterial
in-flow will be reduced, leading to less noise in the data and improved muscle activation
assessment.

4. Use the concurrent EMG and BOLD signal to relate perfusion and electrical activation
If muscle fatigue is observed with EMG then the BOLD centroid, describing perfusion
rate, and the BOLD area under the curve, describing perfusion magnitude, will increase.

4.5 Specific Aims
1. General Development

• Design and construct a MRI compatible ankle flexion ergometer to allow for simple
lower leg exercise paradigms

• Design and build a MRI compatible EMG circuit that will interface with the MR
compatible ECG leads and record data for later analysis

2. Protocol

• Implement an optimal bracing technique to reduce head, torso and excess lower limb
motion to limit motion artifact

• Design a protocol to allow for the use of an MRI compatible ankle flexion ergometer
while restricting EMG lead motion and subsequent noise effects

3. Data Collection/Analysis

• Record concurrent EMG and muscle BOLD to achieve high spatial and temporal
resolution of muscular activity

• Reduce the distortion effects of EMG on MR images, that cannot be addressed by
the study protocol, with post-processing noise reduction algorithms

• Improve the quality of the EMG data, which is degraded due to the eddy currents
caused by the static magnetic field, with noise reduction algorithms

4. Physiological Measures

• Determine the spatial temporal muscle activation characteristics using the high tem-
poral and spatial resolution of EMG and BOLD MRI respectively
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• Determine the effect of muscle fatigue during exercise on EMG and muscle BOLD
recordings

• Determine muscle differences based on perfusion

• Describe muscle activation patterns using complex measures to provide novel insight
relative to the binary active/in-active representation
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Chapter 5

Pilot Study

5.1 Declaration
Please note that this section was written by Joshua Ethan McGillivray (JEM) with intent to
publish. As such, there was collaboration with Alejandro Amador (AA). This work will be used
for a first author publication for JEM with AA as a secondary author. AA is responsible for
the spectroscopy data collection/analysis portion of this pilot study. This included writing the
spectroscopy data collection/analysis/results section and generating the spectroscopy figure 5.1.

5.2 Abstract

5.2.1 Background

Magnetic resonance imaging (MRI) solutions to replace muscle biopsy have had limited success.
They attempt to differentiate fibre type by metabolism and contractile unit firing strength/rate
differences, leaving perfusion differences as an unexplored viable differentiator. The prominent
use of the fractal dimension in the functional MRI literature suggests its potential to isolate
fibre types based on the differing vascular profiles.

5.2.2 Purpose

To investigate the use of non-invasive magnetic resonance imaging techniques via metrics of
metabolism and blood flow to characterize muscle fibre profiles.

5.2.3 Methods

Eight male subjects (4 endurance/slow-twitch: 4 power/fast-twitch athletes), were grouped
based on their physical activity habits. Activity groupings were confirmed using proton magnetic
resonance spectroscopy to determine the tibialis anterior carnosine metabolic profile. Resting-
state muscle blood oxygen level-dependent (BOLD) images were collected, and soleus, gastroc-
nemius, and anterior muscles were manually segmented for their differing fibre type profiles.
Voxel-wise normalized and segmented BOLD time-series bifractal dimension was computed us-
ing the scaled windowed variance approach, with linear detrending. The bifractal dimension was
computed by estimating the slope by fitting two lines, components 1 and 2, to the non-saturated
portion of the log-log plot for a given voxel and segment, then averaging across segments.
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5.2.4 Results

Higher relative carnosine levels were observed in fast-twitch compared to slow-twitch partici-
pants, confirming predicted activity-induced fibre differentiation. The median bifractal dimen-
sion followed the trend of soleus > gastrocnemius > anterior muscles. Across subjects, the
bifractal dimension for each muscle was significantly different with component 1 and 2 p-values
of 5.43e-7 and 1.41e-5. Regardless of muscle or component, significant differences, all p val-
ues p<0.01, were seen when comparing between groups for each muscle respectively. Variable
component discriminability was observed with component 1 being influenced by fast-twitch and
component 2 by slow-twitch fibres.

5.2.5 Conclusion

Median voxel bifractal dimension differentiated soleus, gastrocnemius, and anterior muscles
within subjects, and based on activity groupings, with a larger fractal dimension indicating a
higher slow-twitch fibre density.

5.3 Introduction
Research in sport has allowed humans to push the boundaries of possibility by developing opti-
mal training paradigms by investigating factors that affect muscle such as nutrition, metabolism,
and mechanics.[105], [106] The fundamental contractile unit of muscle, muscle fibres, can be
broadly grouped into three types: type I (slow-twitch oxidative (STO)), type IIA (fast-twitch
oxidative (FTO)) and type IIB (fast-twitch glycolytic (FTG)). They are classified based on
their rate of shortening, which is directly correlated with myosin ATPase activity, perfusion,
and primary metabolic pathway [36]. Research shows that habitual endurance exercise training
reduces the volume of fast-twitch fibres and increases slow-twitch fibre volume on the order of
20% [107]. These findings were enabled by performing, muscle biopsies, which identifies fibre
type ratios, provides insight into muscle health and performance by allowing for comparison to
known muscle norms [24]. Biopsy, although useful, is invasive and leads to muscle damage that
stunts training, thus preventing its adoption despite its benefit of dynamic muscle fibre profile
assessment as a function of training.

Currently, magnetic resonance imaging (MRI) has provided preliminary solutions to replace
muscle biopsy. Through using MRI, entire muscle cross-sections can be non-invasively exam-
ined, which removes the inaccuracy of the subsampling error due to the chosen biopsy samples
by providing a larger distribution of muscle fibres. One MRI alternative uses muscle carno-
sine levels, heavily involved in muscle cell homeostasis during contraction [108], measured via
hydrogen magnetic resonance spectroscopy (1H-MRS), where increased levels were found in
the fast-twitch fibres of young, experienced, and ex-athletes in the gastrocnemius muscle [27].
Although this result is encouraging, 1H-MRS is highly sensitive to B0 field homogeneity and
lipids, leading to results that are variable and highly dependent on voxel placement. Another
proposed biopsy replacement uses measures of maximum muscle contractile force and strength
during plantar flexion and structural MR images to estimate muscle volume [28]. The results
showed that maximum contractile force normalized by soleus muscle volume and strength cor-
related with the percentage area of type-II fibres, indicating that the normalized force metric
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could serve as a histology replacement [28]. Regrettably, the extensive data collection proce-
dure requiring a dynamometer for force measurement, and a reflective marker camera system
to determine ankle orientation limits the technique’s reproducibility and consequent adoption
[28].

The previous two MR techniques differentiate between muscle fibre types by leveraging
differences in metabolism [27], [109] and in contractile unit firing strength/rate [28], leaving
perfusion differences as an unexplored viable differentiator. Functional magnetic resonance
imaging (fMRI) employs the blood oxygenation level-dependent (BOLD) effect to non-invasively
provide insight into the blood flow and metabolic profiles of tissues, such as brain and skeletal
muscle, in both healthy and diseased populations [24], [32], [45]. Furthermore, fMRI BOLD
signal complexity has been used to differentiate healthy subjects from those with Alzheimer’s
disease [62] and mild traumatic brain injury [63]. In both instances the differentiating metric is
the fractal dimension (FD), which is a measure of the self-similarity and complexity of a system
in either the spatial or temporal domain [58], [59]. Since muscle BOLD signal is hypothesized
to originate from the microvasculature and it is known that type I and II fibres have differing
perfusion demands, this suggests that the muscle BOLD signal could characterize muscle fibre
profiles [24], [47]. The fractal organization and scale-independent self-similarity of both the
muscle and circulatory system, and the prominent use of FD in the fMRI literature and in neural
imaging research suggest that the temporal FD of the skeletal muscle BOLD signal could isolate
for fibre type based on the differing vascular profiles. This non-invasive MRI-based metric could
monitor the dynamic changes in fibre type as a function of training, which could revolutionize
the development of training plans for power/endurance athletes alike, pushing the boundaries
of sport.

5.4 Methods

5.4.1 Subjects

Eight athletic male subjects (n=8, age 26±2.4yr, height 178±5.6cm, weight 71±9.2kg) were
recruited and consented to participation in the HREB-approved research protocol. Recruit-
ment numbers and population were limited due to compliance with hospital COVID-19 safety
protocols. All subjects were preliminarily grouped into endurance and power sport groupings.
The four endurance athletes were all long-distance runners, and power athletes participated in
weightlifting, hockey, soccer, and fencing based on recommendations from the literature [110].
Preliminary groupings were made on the basis of fibre profile differentiation due to habitual
activity performance [107]. Therefore, endurance compared to power athletes should show a
greater relative amount of STO fibres. Similar to the work in [27], where increased levels of
carnosine were correlated with higher fast-twitch fibre density, the relative carnosine concentra-
tion in participant’s tibialis anterior served as a quantitative confirmation of the hypothesized
activity-based groupings. After performing this combination of quantitative and qualitative
assessments on all participants, four showed fast-twitch characteristics and four slow-twitch,
which is summarized in Tab. 5.1.
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Table 5.1: Summary of participant muscle composition classification. Classifica-
tion decisions made based on the agreement of the activity grouping and relative
tibialis anterior carnosine concentration. The eight preliminary participants were
grouped into two groups of four for subsequent analysis.

Subject Primary Exercise Activity Group Relative Carnosine
Concentration

Primary Muscle
Fibre Type Estimate

1 Distance Running Endurance 0.0035 Slow-twitch
2 Weightlifting Power 0.0145 Fast-twitch
3 Hockey Power 0.0145 Fast-twitch
4 Distance Running Endurance 0.0047 Slow-twitch
5 Soccer Power 0.0080 Fast-twitch
6 Distance Running Endurance 0.0077 Slow-twitch
7 Distance Running Endurance 0.0070 Slow-twitch
8 Fencing Power 0.0113 Fast-twitch

5.4.2 Functional and Spectroscopy Data Acquisition

Participants lay on the scanner bed for 30min prior to collecting images of the right lower leg.
This allowed for the normalization of muscle compartment size, which changes with contraction
and blood flow in the legs, shown to affect the skeletal muscle BOLD signal and metabolism,
which significantly differs during rest [111], [112]. A 16-channel transmit/receive extremity
coil and GE Discovery MR750 3T MRI scanner were used. Padding was positioned under
the legs and feet, and a Velcro strap was positioned across the scanning bed to brace the
legs and limit movement, which can profoundly affect relatively lower resolution functional
images and lead to poor MRS spectra quality due to inhomogeneous excitation. An anatomic
reference was collected from proton density-weighted, fat-suppressed images (0.625x0.625x4mm,
15 slices, 1mm spacing, TE/TR/flip=30/3000ms/111deg). The anatomic reference was used to
guide the voxel of interest (VOI) positioning to avoid large fat septa or other muscle groups.
1H-MRS (PRESS sequence, VOI=20x20x20mm3, TE/TR=30/1500ms, 256 averages, CHESS
water suppression) data from a VOI in the tibialis anterior muscle were acquired. For functional
image collection (2.5x2.5x10mm, no slice spacing, TE/TR/flip=35/109ms/70deg, 2434 volumes)
two thick slices were collected to adequately sample the muscle while minimizing the repetition
time (TR). Minimizing TR was essential to improve temporal resolution. If the sampling rate
is too low there will be temporal smoothing of a possibly highly variable signal, thus masking
its fractal complexity.

5.4.3 Spectroscopy

Data Preprocessing

1H-MRS raw data were preprocessed using the Tarquin software package [113]. Data was tran-
sient averaged, eddy-current corrected using an unsuppressed water acquisition, and frequency
and phase-corrected with reference to the water peak located at 4.65ppm, followed by a 2x
zero-filling and Fourier transformed. Finally, preprocessed data were exported for an in-house
carnosine quantification analysis.
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Data Analysis and Statistics

The carnosine proton MRS peaks are located on the higher side of the spectrum, giving rise
to two resonance peaks at 8ppm (C2) and 7ppm (C4), which come from the imidazole protons
of the carnosine molecule. The unpopulated higher side of the proton spectrum isolates the
carnosine peaks from most of the peaks often present in 1H-MRS of skeletal muscle, such as
lipids or creatine, showing little to no overlap with other metabolites as seen in the 1H-MRS
sample spectrum in Fig. 5.1(top). This feature makes metabolite integration, followed by a
metabolite ratio computation, a reliable and straightforward quantification method [114], using
the water peak at 4.65ppm as an internal concentration reference. 1H-MRS quantification
analysis was performed with an in-house program using MATLAB. First, the carnosine (at
8ppm) and water (at 4.65ppm) peaks were extracted from each participant’s spectrum with a
frequency window, centered at the corresponding frequency shift, with ±0.3ppm and ±0.2ppm,
respectively, corresponding to twice the average FWHM of each peak[115]. The carnosine
spectral window was detrended to account for the macromolecules and baseline of the spectra
[116]. Finally, the absolute proton spectroscopy spectra of carnosine and water were integrated
within the frequency window to account for baseline correction inaccuracy, followed by a ratio
of carnosine vs. water for each participant. A t-test statistical analysis was performed, grouping
the carnosine metabolite ratio by type of muscle fibres.

5.4.4 Functional

Data Preprocessing

Using the FMRIB Software Library, resting-state functional images were motion corrected,
and the gastrocnemius [slow-twitch/fast-twitch dense], soleus [slow-twitch dense] and anterior
muscles (tibialis anterior, peroneus and extensor longus groups) [fast-twitch dense] were man-
ually segmented, using the high-resolution anatomical reference, for their differing twitch fibre
profiles[117]. The first and last 193 volumes were truncated due to the short repetition time
not satisfying the Ernst angle condition and motion considerations respectively [118]. BOLD
time series were normalized by dividing by the first time point, to account for coil sensitivity
and proximity signal amplitude dependence. The remaining normalized 2048 volumes were
segmented into four 512-point windows, which provided an ideal base for fractal computation.

Data Analysis and Statistics

The temporal fractal dimension of the BOLD signal analysis, was modeled based on previous
explorations of characterizing the temporal fractal signal through scaled windowed variance
methods with detrending [119]. To facilitate computation of how the variance changes as a
function of window size on a log-based scale the fractal time series is truncated to be of length
of base two, 2n. Iteratively the signal is segmented into w windows of varying length where w =
(2n/2m) for integer values of m such that m greater than or equal to 1 and less than or equal to
n-1. For each window the baseline is corrected by fitting the slope of a line from the window start
to end point and subtracting it from the given windowed time course [119]. Baseline correction
is required due to BOLD time series baseline drift caused by gradient mechanical vibrations and
heating, which affect shim quality and the effective voxel specific resonant frequency in echo
planar imaging acquisitions [63]. For all w windows for a given window size 2m, the standard
deviation for the given baseline corrected window is computed. The mean standard deviation
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of all w windows for a window size of 2m is computed and stored. This is performed iteratively
for all window sizes. To characterize the hypothesized exponential change in variability as a
function of window size the average standard deviation is plotted against an increasing window
size on a log-log scale. The fitted slope of this plot yields an estimate of the hurst exponential
[119], which is related to the temporal fractal dimension (FD) through FD+H=1. To estimate
these slopes, first the non-saturated portion of the plot was identified. We expect the slope of
the log-log plot of variability as a function of window size to saturate as temporal variability
appears invariable at large window sizes [120]. To employ a bi-fractal representation the slope
estimates for each component are made by performing a linear fitting in the non-saturated
portion of the plot between the smallest window size to the midpoint for component one and
from the window midpoint to endpoint for component two. The decision to employ a bi-fractal
representation was based on the original hypothesis of slow and fast twitch fibres having differing
blood-flow complexity and some preliminary observations of two differing slopes during mono-
fractal dimension fitting.

Analysis was performed on a voxel-wise basis due to the concern of significant effects being
obscured by averaging. If the BOLD time series of all voxels within a given muscle of interest
were averaged this would reduce the variance in the temporal signal. The reduced variance
could limit the discrimination power of the temporal FD metric, which describes signal variance
as a function of time scale. Consequently, as specifically detailed above, the voxel-wise BOLD
time-series bi-fractal dimension was computed using the scaled windowed variance approach,
with linear detrending, removing scanner-induced low-frequency variations [119]. For each voxel
the segment-wise FD was computed over each of the four respective 512-point windows, then
averaged across segments. Averaging the four FD measures across four-time windows improved
voxel FD measure reliability, as the error associated with each linear slope FD estimate is
reduced through the average. The alternative of averaging the four temporal windows and then
computing the FD was undesirable as it would reduce temporal variation and the power of the
FD metric. Furthermore, since temporal variability appears invariable at large window sizes,
FD measures would be unreliable without segmentation [120]. A window size of 512 points was
chosen to strike a balance between having a long enough window to have a sufficient number of
points for linear fitting and enough statistical points for averaging.

Prior to performing any statistical analysis all bi-FD distributions for a given participant,
component and muscle were tested for normality. All bi-FD voxel distributions were negatively
skewed. Temporal complexity FD increases from one (non-complex) to two (purely complex) are
non-linear, which could lead to the observed non-normal FD distribution. Post log transform
correction distributions still failed Jarque-Bera normality tests, therefore Wilcoxon rank sum
tests were used to examine within participant differences and Kruskal-Wallis to test within and
between group differences.

5.5 Results

5.5.1 Spectroscopy Data - Metabolic Differences

The primary interest of this study was to examine the use of a bifractal model of the BOLD signal
to characterize muscle twitch fibre profiles, which was achieved by comparing the soleus [slow-
twitch], gastrocnemius [mixed-twitch], and anterior muscles of the lower leg [fast-twitch]. Muscle
differences were examined on a participant level, but also through primary fibre type groupings.
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These groupings can aid in removing the biological variability contributions through using the
knowledge that performing endurance/power activities habitually will lead to predicted changes
in muscle fibre type distributions.. A total of eight proton spectra were collected, showing an
average linewidth quality of 14.5±1.7Hz. To ensure that the ratio reflects solely the behaviour
of carnosine, a t-test was performed on the water peak integration between FT and ST groups,
showing no statistical difference (p=0.09) between them. The power/fast-twitch compared to
the endurance/slow-twitch groupings had significantly higher relative carnosine levels (p < 0.05)
as seen in Fig. 5.1(bottom).

Figure 5.1: Illustration of the pathway from spectral data acquisition to relative
carnosine estimate. The top image shows a sample hydrogen magnetic resonance
spectrum after preliminary processing with no water suppression and labeled the
creatine peaks (C2,C4). The bottom image shows resulting creatine approxima-
tion through an integration of the detrended spectrum while using water as a
reference. The plot shows clear separation between predicted fast and slow twitch
dominant participants from original activity grouping.

5.5.2 Functional Data - Perfusion Differences

Between Subject Analysis

When comparing across all subjects, there was a significant difference in the complexity of
blood-flow depending on the muscle group. When comparing across muscles, significance levels
were of similar order for both components, component 1 p < 0.0001 and component 2 p < 0.0001
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Tab. 5.3. Furthermore, the median bifractal dimension was used, due to the non-normality of
the fractal distributions, to assess if there was a trend with fractal dimension and density of
particular fibre type. For both components the median FD across all subjects showed a trend
of soleus > gastrocnemius > anterior muscles, as seen in Fig. 5.2. With significant differences
between muscles across the entire subject cohort, further investigation for differences between
activity groupings, within activity groupings and on a single participant basis were performed.

Figure 5.2: Comparison of median fractal dimension (FD) and median average
deviation scaled by the square root of the sample number. Comparisons separated
by component and activity grouping. Within activity grouping the FD trend is
soleus > gastrocnemius > anterior group.

Between Activity Group Analysis

Comparisons were performed between the endurance/slow-twitch and power/fast-twitch grouped
for each muscle respectively. Since habitual exercise induces fibre type differentiation, the same
muscle would have different fibre type ratios for each group. Comparisons were performed by
using ranked sum tests for each component of the fractal dimension for each muscle individu-
ally, and are summarized in Tab. 5.2. Significant differences are seen when comparing muscles
between groups for all muscles and both components. Notably, component 1 relative to 2 shows
greater differences between the groups in gastrocnemius and soleus and a smaller difference in
the anterior muscle. The soleus and gastrocnemius containing more slow-twitch fibres than the
anterior group suggests that the components’ difference in discrimination could be related to
fibre type, but this observation needs to be further explored.
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Table 5.2: Summary of participant muscle blood-flow complexity differences.
Comparisons were performed by testing differences between muscles for each com-
ponent respectively, using different sets of participants. Kruskal-Wallis classifica-
tion was employed due to skewed distribution of fractal dimension data. Across
all participants there are differences between muscles. More significant differences
are seen when examining the slow-twitch participants relative to the fast-twitch
participants regardless of component.

Comparisons Bi-fractal Dimension Component 1 P Value (Ranked Sum Test)
Gastrocnemius 6.655e-40
Soleus 1.812e-28Group Differences

(Fast vs. Slow Twitch) Anterior Group 4.404e-5
Comparisons Bi-fractal Dimension Component 2 P Value (Prob. >Chi-sq)

Gastrocnemius 0.0126
Soleus 0.00995Group Differences

(Fast vs. Slow Twitch) Anterior Group 2.584e-5

Interestingly, for component 1 the FD of endurance/slow-twitch > power/fast-twitch group,
but for component 2 the trend was reversed. This in combination with the variable muscle
discriminability depending on component suggests a sensitivity to fibre type and/or particular
activity grouping. Therefore, to remove the component sensitivity effect, the average of the two
components was taken. This showed not only that the complexity was soleus > gastrocnemius >
anterior muscles but also endurance/slow-twitch > power/fast-twitch group. The observations
based on the activity groupings suggest a larger median fractal dimension corresponds to a
higher slow-twitch fibre density and variable component fibre type sensitivity.

Within Activity Group Analysis

Since significant differences were found between muscles and there were differences between the
muscles depending on the activity the participant performed, the next level of comparison was
finding differences within a group of athletes who perform similar exercise. Differences between
muscles were then assessed for participants in each activity grouping, and are summarized in
Tab. 5.3. Endurance athletes had significant differences between their gastrocnemius, soleus and
anterior grouping, whereas power athletes only showed marginally or non-significant differences.
This suggests a greater variability in fast-twitch athlete fibre type distributions leading to less
significant group-based conclusions.

Median muscle fractal dimensions were computed for each activity grouping for each compo-
nent separately and are shown in in Fig. 5.2. When looking within a particular activity grouping
the FD showed a trend of soleus > gastrocnemius > anterior muscles (in Fig. 5.2). This is in line
with the behaviour observed across all subjects and suggests a larger median fractal dimension
corresponds to a higher slow-twitch fibre density.
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Table 5.3: Summary of participant muscle blood-flow complexity differences.
Comparisons were performed by testing differences between muscles for each com-
ponent respectively, using different sets of participants. Kruskal-Wallis classifica-
tion was employed due to skewed distribution of fractal dimension data. Across
all participants there are differences between muscles. More significant differences
are seen when examining the slow-twitch participants relative to the fast-twitch
participants regardless of component.

Comparisons Bi-fractal Dimension Component 1 P Value (Prob. >Chi-sq)
All Participants 5.430e-7
Slow-twitch Group 1.948e-9

Muscle Differences
(Gastrocnemius Vs. Soleus
Vs. Anterior Group) Fast-twitch Group 0.0545
Comparisons Bi-fractal Dimension Component 2 P Value (Prob. >Chi-sq)

All Participants 1.411e-5
Slow-twitch Group 4.507e-6

Muscle Differences
(Gastrocnemius Vs. Soleus
Vs. Anterior Group) Fast-twitch Group 0.2042

Subject-wise Analysis

The previous between and within group analyses demonstrated variable component sensitiv-
ity. To reduce biological variability contributions of subjects between and within a particular
endurance or power group, a subject-wise analysis was performed to isolate for fibre type sen-
sitivity effects. To further specify fibre type sensitivity, we used gastrocnemius comparisons, as
its mixed fibre type ratio would be skewed to that of the predominant fibre type grouping. To be
stated explicitly the fast-twitch group’s mixed fibre type gastrocnemius should have a relatively
higher density of fast-twitch fibres than for the slow-twitch group. Thus, when comparing mus-
cles for the fast-twitch group, its’ increased FT fibre content would make discrimination between
fast-twitch muscles more difficult and slow-twitch muscles less difficult were compared to the
slow-twitch group. Therefore muscle comparisons to identify fibre type sensitivity were achieved
through performing subject-wise, ranked-sum muscle comparison tests for each component re-
spectively. The p-values for each muscle comparison were averaged according to predominant
muscle fibre type grouping to reduce subject-specific biological variability and the important
comparisons are summarized in Tab. 5.4.

There are four key observations that suggest component specific fibre type sensitivity. The
first is that component 1 has the best accuracy for the most dissimilar slow-twitch group’s
gastrocnemius versus anterior muscle comparison. The second is that for the fast-twitch group,
which have the most dissimilar gastrocnemius versus soleus muscles, component 2 has the best
discrimination. This not only demonstrates that the hypothesized greatest muscle differences
are most easily differentiated, but also that one component is better than the other. The
third observation is that, when comparing the gastrocnemius versus soleus, which are more
similar for endurance/slow-twitch group, component 1 can significantly distinguish the two
muscles, whereas component 2 cannot, with a non-significant p-value. The final observation is
that, when comparing the gastrocnemius versus anterior muscles, which are more similar for the
power/fast-twitch group, component 1 cannot significantly distinguish the two muscles, whereas
component 2 can find a difference between the muscles with marginal significance. Therefore,
the slow-twitch group focused comparison showed component 1 > component 2 discriminability
and the fast-twitch group focused comparison was component 2 > component 1. Based on the
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knowledge that similar muscle profiles should show decreased discriminability this suggests that
component 1 is influenced by fast-twitch and component 2 by slow-twitch fibres.

Table 5.4: Summary of activity grouping averaged single subject ranked sum
test p-values for muscle bifractal dimension component 1 (comp1) and 2 (comp2).
Comparisons were chosen to isolate for similar muscle comparisons on the basis
of predominate twitch fibre groups.

Gastrocnemius Vs. Soleus Gastrocnemius Vs. Anterior GroupPrimary Twitch
Fibre Group Component 1 Component 2 Component 1 Component 2
Slow 0.0403 0.346 0.0029 0.0730
Fast 0.0824 0.0097 0.116 0.0774

5.6 Discussion
Our results show skeletal muscle of the lower leg was able to be well characterized non-invasively
through two MRI techniques. The first technique used spectroscopy in the tibialis anterior and
a normalization method to determine relative carnosine levels, which allowed for placement of
participants into predominant fibre type groupings. Proton spectroscopy is readily available
in clinical settings and does not require additional hardware as is the case for phosphorus
imaging, which is predominantly used for muscle imaging. Additionally, this normalization
technique requires no external reference to quantify the carnosine concentration, which makes
it more suitable in a clinical setting. The practicality of this spectroscopy method to provide
an estimate of fibre type makes it a feasible and attractive alternative as a preliminary fibre
typing assessment that could be used clinically or in the exercise science space.

The second technique used the temporal fractal dimension of the skeletal muscle BOLD sig-
nal to determine differences between muscles at a participant and activity grouping level. This
leveraged the known differences in muscle fibre type perfusion to classify muscle fibre profiles via
the complexity of the blood flow signal within a given volume. Specifically, the fractal dimen-
sion differentiated soleus, gastrocnemius, and anterior muscles when looking across subjects, on
a single subject basis and based on endurance/power activity groupings. Greater complexity
(larger fractal dimension) corresponded to increased relative slow-twitch fibre density. To find
the direct relationship of complexity value to fibre type, biopsy samples would be required to
corroborate specific complexity values. Additionally, it was shown that the two components
of complexity had a fibre type sensitivity. Specifically, component 1 being influenced by fast-
twitch and component 2 by slow-twitch fibres. Fibre type sensitivity that is variable for each
component is an important observation as this means initial predominate activity classification,
created using spectroscopy verification or other methods, can now be used to inform the decision
on which complexity component to be used. Choosing a particular complexity component to im-
prove differentiation between muscles and hence fibre type would improve personalized analysis
for fibre type classification assessments. This indicates that muscle BOLD FD characterization
could non-invasively provide information on muscle fibre type ratios, possibly replacing the need
for muscle biopsy. With further refinement of this novel metric, it could provide greater insights
than biopsy as it would allow for fibre type assessment in a larger subset of muscles, and would
alleviate the subsampling variance associated with biopsy since with MRI entire muscle cross
sections can be examined.
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The primary limitation of our research pertains to our participants. One limitation per-
taining to our participants, which is currently being addressed, is the gender imbalance of
our study. Female athlete recruitment is the current focus, and it is required to validate our
promising technique. Additionally, due to COVID-19 safety protocols, a limited subset of the
general population could be recruited, which led to some heterogeneity in our athletes. The
fast-twitch group had athletes from a variety of sport disciplines whereas the slow-twitch were
all long distance runners. The heterogeneous fast-twitch population may have contributed to
the increased variability in the fast-twitch athlete grouping comparison, leading to lower sta-
tistical significance and less confidence in the novel technique proposed. For instance, soccer
requires both power and endurance in the lower limb. In saying this, the fact that a small non-
heterogeneous study still showed such encouraging results shows the promise of the technique.
Another limitation of our study is based on the fact that our MRI scanner does not allow for
multiband image acquisition. Without multiband, the fastest two-slice acquisition was limited
to the implemented TR of 109ms, which could ideally be halved with a multiband sequence.
Therefore, we could be undersampling the temporal BOLD signal which could artificially reduce
variance measures that are used in the computation of the fractal dimension. Practically this
is only a research-based limitation, as most clinical MRIs do not have multiband imaging and
our techniques would be well suited for their use.

Our research also holds a lot of weight clinically as a non-invasive replacement for muscle
biopsy, which is the gold-standard diagnostic for those with neuromuscular disorders such as
muscular dystrophy and myopathy [20], [24]. Remarkably, the global prevalence of neuromus-
cular disease is estimated to be 0.1 – 0.3%, which is comparable to that of Parkinson’s [21].
A non-invasive biopsy replacement would alleviate patient pain and further damage of the al-
ready deteriorating muscles, associated with biopsy [25]. It could also improve on the current
non-invasive clinical alternative non-fibre specific electromyography, which showed diagnostic
accuracy on the order of 70% in comparison to 90% for biopsy [25]. Therefore, the combina-
tion of the two MRI metrics of relative carnosine concentration and muscle blood-flow signal
complexity shows promise to act as a non-invasive biopsy replacement. Specifically, carnosine
would be used to identify predominant fibre type, which would seed the selection of the relevant
complexity component to perform muscle fibre type profiling using the BOLD signal complexity.

An MR-based non-invasive muscle fibre type assessment tool would remove the associated
biopsy subsampling variance contribution, allow for sampling of any muscle and reduce the
associated harm to the individual undertaking the assessment. This advancement enables re-
searchers to examine muscle fibre profiles without associated participant harm so more studies
with larger participant bases can be used to inform neuromuscular disorder diagnosis. Addi-
tionally, it will promote research in elite athletics, as there will no longer be the reservation to
damage their muscle during training. The ability to dynamically monitor fibre type profiles in a
variety of muscle groups and over the entire body would be invaluable to the sports community
to develop the optimal training programs. This work sets the foundation and can inform the
development of the MR non-invasive biopsy alternative to benefit both exercise scientists and
clinicians alike.
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Chapter 6

Development of a MRI Compatible
Erogmeter and Electromyograph

6.1 Building an MRI Compatible Ergometer
The original intent of my thesis was to image the brain during cycling exercise and assess
functional activation in the brain as a function of fatigue with concurrent EEG and EMG
measures, this required a cycle ergometer with dynamic weighting. The combination of the
inability to use the LODE ergometer and the dysfunctional state of the MRI compatible EEG
caused my research focus shift to muscle imaging. With motion artifact being one of the
largest difficulties in MRI when imaging the lower leg, isometric, as opposed to isokinetic,
contraction is used. It is used for the reason that the muscle will be relatively stable during
rest and contraction, and only when shifting between rest and contraction states will there be
gross motion artifact. Therefore this limits the amount of data that needs to be discarded
throughout the scan duration. The ergometer was designed with this in mind, as a cycle
ergometer would no longer be suitable for lower-leg imaging due to the gross motion of the
lower leg during pedaling. Therefore an ergometer needed to be designed to allow for simple
isometric and possible isokinetic contraction paradigms through ankle flexion. To remain broad
in its application the ergometer would be able to placed in the scanner so the participant is
either head first (for neural scans) or foot first (for lower leg imaging) so it could be used for
other studies in the lab.

6.1.1 Design Plan

The description for the original designed ergometer was more extensive than the implemented
design and is elaborated on below. The ergometer will use weights to provide resistance against
dorsi-/planter-flexion. Weights will vary in either 0.5- or 1-pound increments and will consist of
lead blocks. The weights will be attached to a rope that will loop around a hook that attaches
to a pedal acting on a pendulum. Using a wooden frame that will sit on the scanner bed, foot
flexion will move the weight by pulling on the rope which is situated on a pulley. The rope
will be hooked on the pedal on different sides for plantar- or dorsi- flexion to provide resistance
in opposite directions, respectively. A participant’s forefoot will interface the front face of the
pedal and press down on the pedal with the ball of the foot for plantarflexion exercise. A
participants forefoot will interface the back face of the pedal and press the pedal with the top of
the forefoot for dorsiflexion exercise. The pedal suspended from the top of the wooden frame will
remain constant length and a prop placed under the calf to account for differing foot size. The
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weighting will vary between participants in order to get relatively similar efforts. Weightings
will be scaled based on initial maximal voluntary contraction (MVC) measures.

Figure 6.1: Original AutoCAD model of weighted ankle flexion device. Left
image is the pedal in weighted dorsiflexion orientation and right image is weighted
plantar flexion orientation

6.1.2 Design Considerations

General Considerations

1. The ergometer must be able to be positioned at both the foot or head of the scanner bed

• Having the weighted pedals at the foot of the table would allow for the head coil to
be used for neural imaging studies

• Having the weighted pedals at the head of the table would allow for the leg coil to
be used for muscular imaging studies

2. Small enough to place on the scanning table

3. Light enough to be able to transport from storage to the scanner room with ease

• This could be achieved by having the ergometer in multiple parts

4. Avoid metals when possible and stick to wood and plastics

• Ferromagnetic materials must be avoided all together

• Non ferromagentic materials will still experience translational forces and torque
within the bore, so they should be avoided

• Metal will heat up in the magnet so any metal used should be well away from par-
ticipant interfaces

5. Need to be able to perform plantar- and dorsi-flexion

• Allows one to examine different muscles depending on the direction of ankle flexion

6. Need to have possibility to perform flexion of both ankles either both at once or one in
isolation
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• This is imperative to fMRI paradigms where unilateral and bilateral activation can
be compared

7. Need to have weighted ankle flexion

• This is imperative to simulate more realistic scenarios of muscle activation

• This would allow for comparison other studies which use simple flexion or cycling
ergometers

8. Need to be able to vary the weighting based on participant weight and activity level

• This is imperative to ensure that the relative effort is comparable across participants

• Resistance bands or sand/lead weights could be viable options to provide resistance

9. Need to quantify exertion, ideally via force based measurements

• Force sensing resistors – simple way to compute force

• Strain gauge – deformation of beam (i.e., aluminum)

• Load cell – higher level version of strain gauge method

• Optical based – can record lengthening of resistance bands

• Ultrasound based – can record resistance band lengthening

Force Measurement Considerations

It should be noted despite consideration the forced basic metrics were not implemented and
only a static weight was used. A force plate option by measuring the deformation of aluminium
plates was deemed invalid. The eddy current induction in the moving metal through the field
would yield inaccurate readings. An ultrasound distance measurement to determine weight
displacement was also rendered infeasible. This is because the ultrasound sensor pulse rate
operated in the same frequency bandwidth as the RF, causing inaccurate readings. This was
not of primary concern as the weighting system could be used as an estimate of force produc-
tion. This provides relative information of a force measurement, which does not specific the
contribution from each muscle in the lower leg individually.

MRI Bore Restrictions

To perform ankle flexion concurrently with muscle imaging the ergometer needed to fit within
the bore of the MRI as the lower-leg would be placed at the magnet iso-center. The ankle flexion
system thus had to fit within the bore of the GE Discovery 750MR. The general dimensions
of the bore were measured and can be seen in the sketch below, Fig. 6.2. It should be noted
that the padding at the base of the bore can be removed to allow for a greater available height
for the ergometer. The major restriction posed by placing the ergometer in the bore is the
height restriction, as there needs to be enough clearance for the pedals, the pulley system, and
the non-forefoot portion of the participant’s foot, which will not be interfacing the pedal. The
difficulty with designing within a circular bore is that the width at a particular height is related
to the curvature of the circle. The relation for the height is width are illustrated in Fig. 6.3.
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Figure 6.2: Sketch of primary in bore dimensions of GE Discovery 750MR

Figure 6.3: Sketch of primary in bore dimensions of GE Discovery 750MR and
relation to height and width constraints
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With this in mind, the major constraint on the width and height restrictions are in relation
to the foot sizing. The ergometer must be designed so the pedals are large enough for the
forefoot to rest on them (for plantar flexion movement), while still having a large enough gap
for the leg to pass underneath so the top of the foot can press on the pedal (for doriflexion
movement). The need for these sizing specification as well as the relative foot orientation for
each ankle flexion movement can be seen in Fig. 6.1. Additionally, foot width influences pedal
width as if you want two adjacent pedals this affects the frame width.

To accommodate the sizes differences in feet amount participants the pedals were designed
in the range of size 5 women’s to size 12 men’s shoes. Using a standard US sizing chart and
known relationships between foot height and width [121] the following constraints/conclusions
were made.

• Total foot length can be gathered from a sizing chart

• Maximum foot width is 61.8% of foot length

• Based on instep height location, approximately 45% of foot is usable (i.e. can interface
with the pedal)

• Based off instep height and my approximations 35-40% of foot length is “ankle thickness”
(i.e. the portion of the leg which needs to pass under the pedal in dorsiflexion)

Table 6.1: Foot length and width approximations to inform pedal design speci-
fications.

Foot Size Foot Length Foot Width Useable Foot Length Ankle Thickness
Women’s 5 22 cm 14 cm 10 cm 9 cm
Men’s 12 29 cm 18 cm 13 cm 12 cm

Using these constraints the pedal dimensions were approximated using the inferences from
Tab. 6.1. Therefore, we can determine the minimum pedal width should be 18cm, the force
sensitive part of the pedal should be approximately 13cm long, length from the top of the force
sensitive part of the pedal to the scanner bed is 29cm, the gap between the bottom of the pedal
and scanner bed is 12cm. In case of small women’s foot can provide prop to reach the pedal.
Also with these measures all feet will have ankle clearance if remove 6cm padding layer for
larger feet/legs.

Frame and Pedal Sizing

Given the bore height and width restrictions and the relative pedal sizing requirements, as
detailed above, the frame to hold the pedals for the ergometer was designed. The drawings
detail all the frame and pedal dimensions such that they would fit on the MRI table and
within the bore. This design was modeled in Inventor, Fig. 6.6, and constructed at home with
a very limited tool set. 8 custom pulley’s were ordered from Grainger Canada Item number
WWG4FRX2 for $46. Various lumber sizing of planks, brass screws, wooden dowel’s, wood
glue, and aluminum bars for the axles were sourced from Home Depot to make the pedal frame.
Plywood sheets, also bought from home depot, were used to make the table for the ergometer
to interface. Due to the inflation of lumbar prices the Home Depot bill totaled $302.
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Figure 6.4: Sketch of ergometer pedal housing design, page 1
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Figure 6.5: Sketch of ergometer pedal housing design, page 2
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Figure 6.6: AutoCAD model of ergometer pedal housing design

6.1.3 Design of Interfacing Table

The pedal housing of the ergometer needed to be interfaced with the MRI table, otherwise while
pushing against the pedal the housing would simply slide in the direction of the pedal push. To
address this issue the pedal box was interfaced to a wooden board, where the patient would lie,
by placing dowels in all the outer housing legs, which had insertion points in the wooden board.
This would ensure the housing would not move translationally relative to the wooden board.
This wooden board was then interfaced with the MRI scanner bed. By removing the plastic
coverings on the table, as seen in Fig. 6.7, a uniform pattern of table inlets was revealed. Wood
joists where made to match the inlet size and spacing and were attached to the underside of the
wooden plank. Now the wooden plank would not move translationally relative to the scanner
bed and thus the whole ergometer was secured.

6.1.4 Weight Boxes and Pulley’s

To allow for weighted flexion a small housing was created to hold the lead weights. One box was
made for each pedal respectively to provide the option of unilateral or bilateral flexion. The
box was designed to fit in the same channel as the pedals (in the frame) and to be able to hold
up the lead scuba weights that were available for use. The pedal box and pulley mechanism
can be seen on the right hand side of Fig. 6.7. To interface the weight box and pedal dowels
were used to act as hooks, one interfacing with the pedal, the other with the weight box, with
fishing line connecting the dowels. Fishing line purchased was specified at 100lb line and was
pre-stretched. This was done to ensure the force used to push against the pedal was not lost in
stretching the rope and instead resulting in the movement of the pedal box.
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Figure 6.7: Built ergometer pedal housing design and wooden participant bed.
Left image shows wood participant bed interfacing with the MRI table (cover
removed), middle image shows ergometer housing and wood bed interfacing, and
right image shows the pulley mechanics in the plantar-flexion orientation

Figure 6.8: Pre-scan set up with participant in position for right leg plantar
flexion paradigm on built ergometer pedal housing and wooden participant bed.

6.1.5 Validation of Design

Spacing/Size Testing

Prior to using the ergometer for imaging some initial tests were completed. Visual sizing tests
ensured that the erogmeter fit within the bore, without (Fig. 6.7) and with a participant
(Fig. 6.7). The figures show that the ergometer fit within the bore and a 6ft participant fit
comfortably on the scanning bed which proved the sizing was adequate.
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Table 6.2: Metrics computed best on resting-state fMRI scans of a phantom
to assess ergometer distortion effects Abreviations SNR = signal to noise ratio,
SFNR = signal to flucation noise ratio, RDC = residual decorrelation.

Trial Mean
Ghost

Max
Ghost SNR SFNR Percent

Fluctuation
Percent
Drift RDC

No
Ergometer 1.6371 3.82 264.15 270.71 0.0653 -0.3997 6.2045

Ergometer
No
Movement

1.6877 5.29 280.10 275.98 0.0668 -0.4093 5.6387

Ergometer
With
Movement

1.6798 4.16 288.39 268.12 0.1127 -0.1533 3.3397

Quality Assurance Testing

In addition to testing the sizing criteria some preliminary quality assurance (QA) was performed.
The quality assurance was performed while the placing the ergometer in the position for neural
fMRI protocols, with the pedal positioned at the foot of the table, refer to (Fig. 6.9). From
referencing previous literature that indicated a cycle ergometer distorted functional readings so
much that they could not discern activation patterns [122], it was determined that a simple test
to see if the ergometer distorted fMRI data was used as a QA metric. To ensure the QA was
as standardized the same protocol was employed that is conventionally performed at the IRC,
which is modeled after the work entitled “Report on a Multicenter fMRI Quality Assurance
Protocol” [123]. To test if the ergometer had a significant effect on the fMRI quality of the
system, three separate fMRI runs, each consisting of 17minutes of scanning, were completed,
the first without Woody (the ergometer), the second with Woody and the third with Woody
while my hands were pushing the pedals (to see if the movement of lead weights in a magnetic
field and the resulting eddy current effect caused any distortion). The analysis outlined in the
[123] was performed in Matlab by modifying a script provided by the IRC lead Norm Konyer.
This script was used as a base to then perform QA and the comparison of the QA between the
three testing states. Metrics comparing signal fluctuations, signal to noise ratio and ghosting
were determined through the methodology from [123] and are summarised in Tab. 6.2. Based
on the suggestions in [123] no major deviations from the expected normal fMRI behaviour were
observed from the tabulated metrics. Additionally difference plots between the three states of
no ergometer, ergometer with and without movement were compared for the major metrics, as
seen in Fig. 6.2. From looking at the differences images no major indications of distortion were
seen when looking at the raw image, fluctuations or residuals other than at the boundary of the
phantom. This would not be of major concern as this is the boundary of the phantom which is
subject to higher levels of variation based on the need to reshim between acquisitions to change
the ergometer orientation. The difference in odd and even images as seen in the bottom left of
Fig. 6.2 did appear to be completely random but did not raise significant concerns.
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Figure 6.9: QA Set-up. Left image with the HNS coil containing the 3T cylin-
drical phantom. Middle image showing the central slices of the phantom used
for analysis. Right image showing the foot pedals positioned at the foot of the
scanner bed for a fMRI scan.

Figure 6.10: QA difference plots of phantom central slice assessing key metrics
from [123]. Top left image shows difference images from the raw images. Bottom
left shows the difference image from the average of even and odd images. Top
right shows the noise fluctuation image. Bottom right shows the residuals after
detrending image.
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Preliminary Foot Tapping Experiment

For a final validation step a single subject simple foot tapping experiment was performed to
see if regional activation could be visualized while using the ergometer. This was done due
to previous literature that indicated a cycle ergometer distorted functional readings so much
that they could not discern activation patterns [122]. Therefore as a proof of the ability to see
activation within the brain during lower leg exercise the participant did a simple plantar flexion
paradigm. The paradigm consisted of 20s blocks of alternating between rest and plantar flexion
for a total of 4min. The participant was queued to change states by using an external stimulus
of changing the room lighting. Isometric contraction during exercise was employed to limit
participant motion. One trial was performed alternating between flexion and rest for the left
leg and a separate for the right leg respectively. To visualize activation a very simple analysis
framework was used. Raw fMRI images were examined in the hypothesized motor region to see
if they showed increased neural activation during periods of isometric contraction, as seen in
Fig. 6.11. A simple correlation analysis using a simulated hemodynamic response function in
AFNI was used to identify active regions in the motor cortex and cerebellum. As can be seen
from the quick analysis pipeline in Fig. 6.11, there was contralateral activation in the motor
cortex and ispilateral activation in the cerebellum during the left foot plantar flexion paradigm.
This simple test confirmed the ergometer did not cause significant fMRI distortions unlike [122],
so it was deemed valid to proceed with use.

Usability Conclusion

It should be noted that ergometer use and its effects on muscle imaging as not as commonly
assessed, which can be due to the fact that novel ergometer systems are made at specific research
sites. Additionally when doing lower limb exercises the effect of motion artifact is much more
significant when imaging the leg than brain, which is why muscle imaging is less rigorously
studied and ergometer induced variation thus less reported. As such, a fMRI assessment of
activation in the brain ensured a more standardized QA protocol that had comparable results.
Although this is not directly related to muscle imaging it verified that the ergometer caused no
significant distortions in neural activation patterns. This provided some validation in using the
ergometer prior to completing the muscle imaging research that was to follow.
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Figure 6.11: Simple Left foot isometric plantar flexion analysis. Showing from
top to bottom unprocessed fMRI image, sample fMRI voxel signal from the motor
cortex, ideal hemodynamic response function for given block design, correlation
maps between hemodynamic response function and voxel-wise signal (red showing
significant correlation and blue significant anticorrelation P<0.0001).
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6.2 Building an MRI Compatible Electromygraph
EMG is conventionally used to assess functional muscle activity due to its high temporal res-
olution. The combination of functional MRI and surface EMG would enable an improved
understanding of muscle activity due to the complementary nature of the imaging modalities.
The surface EMG has a temporal resolution on the order of 0.2ms (using a sampling frequency
of 5000Hz in this instance) but poor spatial resolution limited by the orientation of the set of
MR compatible carbon electrodes which are spaced approximately 7cm apart. This spacing was
necessary to allow for the placement of imaging slices in between electrodes, as if they are in the
slice plane they can induce image distortion. The low spatial resolution of EMG is accounted
for through BOLD imaging with the voxel size of 2.5x2.5x10mm. This high spatial resolution
comes at the cost of temporal resolution of 110ms. Additionally, muscle activation between
the two modalities is relatable as contraction will be denoted by increased electrical amplitude
in the EMG recording and increased BOLD signal amplitude. Therefore the improved spatial
temporal resolution of muscle activation and the relatability of the modalities demonstrated the
value in using this dual modality approach. This dual modality approach although beneficial
has not been extensively explored due to the difficulties with designing an EMG circuit in an
MRI environment. The associated challenges were overcome and the methods to do so are
described below.

6.2.1 Design Considerations

1. EMG frequency Bandwidth 20-500Hz [124]

• Motion artifact occurs at frequencies <15Hz so need to exclude these frequencies

• Relevant EMG components can be up to 1000Hz, depending on factors such as elec-
trode surface area and the spacing between electrodes, but need to employ more
stringent bandwidth with highly noise MR environment

2. EMG Amplitude 0.1–2mV [125]

• With surface EMG amplitude on this order the front end gain must be between
50,000 and 2,500 so the final signal is within a 5V range and can be more easily
digitized by an ADC

3. Electrode Material

• Conventional AgCl electrodes cannot be used due to heating and eddy current affects
associated with the electrodes.

• Cardiac MR ECG electrodes, which are carbon based, can be used as an alternative.

– These electrodes will require a specific interfacing cable with carbon leads to
mitigate impedance differences that would introduce a DC offset in the signal.
The leads will also need to be high impedance to reduce the current draw to the
amplifiers in the RF MRI environment.

4. Sampling rate of >5000Hz

• To have an accurate representation of a signal in time the Nyquist criteria states the
necessity to sample x10 the maximum signal frequency
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6.2.2 Design Plan

The preliminary EMG front end design, system design, and the rationale for stage selection
is indicated below. The implemented values for the gain stage and cut-off frequencies for the
associated filtering stages differed due to component availability. A block diagram of the EMG
design can be seen below in Fig. 6.12.

Figure 6.12: Block design for EMG system data acquisition set-up. Specifica-
tions are ideal and vary from implemented design due to component availability.

Stage 0 – Supply/Ground

The implemented system the Analog Discovery’s ±5V supplies were used to save the need to
constantly buy batteries. The virtual ground for the circuit was used to act as isolation, in
the case that batteries are used provide power to the circuit this would allow for isolation. A
rail splitter circuit was used to provide the virtual ground. It consists of two matched resistors
and capacitors, used to smooth ripple, fed into a unity gain op-amp to provide isolation. After
trial and error, it was found that relatively small capacitors were required to limit ground
fluctuations.

Stage 1 – Electrodes

The electrodes that will be used are expired CONMED cardiac carbon-based electrodes, [126],
from St. Joseph’s Hospital. These electrodes are MRI compatible and are connected to the
analog front end via a high impedance wire to reduce the relative noise contribution. This is
necessary due to the high noise MR environment. The high impedance wire connects to a 9-pin
serial output, which will feed into the analog front end.

Stage 2 – Head Stage

The purpose of the head stage is to use a differential amplifier (LT1920), with a large common
mode rejection ratio, to receive a low noise differential input. A relatively large gain of 50 was
used because the typical amplitude of surface EMG is on the order of 100uV – 1mV. Due to the
high MRI noise environment two active electrodes will be used and feed into the amplifier as
the differential inputs and the non-active electrode as the amplifier reference. The two active
electrodes and non-active reference electrode will be placed in close proximity as the noise
contribution of the MRI gradients is spatially dependent. The active electrodes will be placed
on the muscle belly and the reference on the bone at the midpoint between the active electrodes
to reduce gradient induced differences being amplified in the signal.
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Stage 3 – High Pass Filter(HPF) One

The purpose of the HPF is to remove the DC offset introduced into the differential signal. A
second order active Butterworth filter is used in a Sallen-Key implementation. Unity gain is
used as the high frequency noise in the signal has yet to be removed. In the noise ridden MR
environment this noise could saturate the amplifier if anything greater than unity gain is used.
An active filter was chosen as a passive HPF can introduce amplitude reductions, which is
undesired with the low amplitude surface EMG signal. The desired cut off frequency for the
system was 20-25Hz, but based of the available components the implemented cutoff frequency
may vary. This will ensure that motion artifact, which falls in the bandwidth of 0-15Hz, is
sufficiently suppressed with the relatively slow roll off in the implemented second order filter.

Stage 4 – Low Pass Filter(LPF) One

The purpose of the first LPF is to remove the MRI induced high frequency noise. A second
order active Butterworth filter is used in a Sallen-Key implementation. A cut-off frequency of
500Hz is employed as this is the higher frequency limitation related to rate of contraction of
muscle fibres at the route of the EMG signal. In the noise ridden MR environment this noise
could saturate the amplifier if anything greater than unity gain is used. The noise is caused by
the spatially and rapidly changing magnetic fields induced by the gradient switching that will
cause induced electrical fields at the electrode sites. Additionally, the radio frequency excitation
pulses will also cause high frequency noise to be picked up on the electrodes which will have
amplitudes greater than that of unamplified EMG signal.

Stage 5 – High Pass Filter(HPF) Two

The purpose of the second HPF is to remove the DC offset and motion artifact that still remains
in the signal after now removing the higher amplitude MRI induced high frequency noise. A
second order active Butterworth filter is used in a multi-feedback topology implementation.
This topology allows for a non-unity gain, which in this case is chosen to be -10. Although
this gain is moderate any amplitude increase can help the remaining function of the front-end
circuit. A gain of 10 was chosen as it is theorized that the first second order lowpass filter
will not adequately attenuate all of the MRI induced high frequency noise. Thus, a moderate
gain is used as to not saturate the amplifier prior to further high frequency noise reduction. An
active filter was chosen as a passive HPF can introduce amplitude reductions, which is undesired
with the low amplitude surface EMG signal. The desired cut off frequency for the system was
20-25Hz, but based of the available components the implemented cutoff frequency may vary.
This will ensure that motion artifact, which falls in the bandwidth of 10-15Hz, is sufficiently
suppressed with the relatively slow roll off in the implemented second order filter.

Stage 6 – Low Pass Filter(LPF) Two

The purpose of the second LPF is to remove the MRI induced high frequency noise. This
LPF filter is directly cascaded with the LPF following, which will make the filter roll of faster.
A second order active Butterworth filter is used in a Sallen-Key implementation. A cut-off
frequency of 500Hz is employed as this is the higher frequency limitation related to rate of
contraction of muscle fibres at the route of the EMG signal. A unit gain is employed due to the
concern that the higher frequency components have not been fully attenuated.

57

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/msbe


Master’s of Applied Science in Biomedical Engineering - Joshua E. McGillivray;
McMaster University - School of Biomedical Engineering

Stage 7 – Low Pass Filter(LPF) Three

The purpose of the third LPF is to participant in a cascade with the previous LPF to improve
the roll of off the filter to act as a fourth order filter. This improved roll off will more effectively
remove the MRI induced high frequency noise. A second order active Butterworth filter is used
in a Sallen-Key implementation. A cut-off frequency of 500Hz is employed as this is the higher
frequency limitation related to rate of contraction of muscle fibres at the route of the EMG
signal. A conservative gain of two is employed due to the concern that the higher frequency
components have not been fully attenuated and with the knowledge that larger gain stages will
follow.

Stage 8 – Variable Gain

The purpose of the inverting variable gain stage is to serve to invert the waveform to its positive
orientation to compensate for the second high pass filter found in stage five. The variable gain
component is controlled via a switchable resistor and is used to act as a final means to increase
the amplitude of the now ideally denoised EMG signal, which has been bandpass filtered in the
range of approximately 20-500Hz. This final amplification is used to improve the representation
of the recorded signal by expanding the range for the ADC used, serving to minimize the
digitization error. A block capacitor will be used prior to the gain stage in order to remove any
DC component that could have been amplified by the 1000 times gain to this point. A dip
switch with varying resistor value at end connection point, to each of the 10 switches, allows
for a set of finite gains to be specified. This will allow for variable gain based on muscle (which
varying in contractile amplitude) and proximity of the electrodes to the excitation coil (i.e.
when the electrodes are on the leg under the leg coil the artifact amplitude will be greater than
when using the head coil). Finite gain settings are preferred over a potentiometer to ensure
more standardized gain across trials. The maximum gain orientation was specified for bicep
contraction outside the MRI, as this is a strong muscle in a low noise environment. The minimum
gain was specified for tibialis anterior plantar flexion within the MRI during a functional scan
with a leg coil, as this is a weak muscle in a high noise environment.

Stage 9 – Data Transmission

The data from the analog front end must be digitized prior to transmission. Originally the
data was going to be converted and transmitted using the ESP32 microcontroller, which has
an snslog to digital converter (ADC) with a sampling rate of 6kHz. This was done in an effort
to keep the patient isolated as the microcontroller would not be connected to an outlet. After
preliminary testing it was found that the 6kHz sampling of this microcontroller was limited to
the transmission rate which was bottle necked when using either MATLAB, the Arduino IDE,
or processing (a data acquisition environment for Arduino’s). The best presented alternative
was to use the National Instruments USB-6221 ADC, which has up to 10k sampling rate for a
specific channel.

Stage 10 – Data Acquisition

The data from the ADC must be saved. To facilitate this, a simple Labview data acquisition
script was created to allow for a single channel acquisition at 5000Hz (ten times greater than
the front-end cut-off frequency to satisfy the Nyquist criteria to have adequate temporal signal
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representation). The script was designed with the knowledge that it must be able to operate
during a high demand acquisition with a fast sampling rate of 5000Hz for a long duration of
5min. This would mean for every 5min EMG recording session 1,500,000 samples would be
saved. Two major points of consideration when designing the script to allow for this high rate
of sampling while still saving the data are the file format to save the data, and the choice of
continuous versus discrete sampling framework. Conventionally, for simplicity, files to record
column-wise timing and signal amplitude for a single channel would be recorded in a csv format.
Through experimentation it was found that saving large files as a csv was not possible due to the
larger memory overhead associated with saving in this format. The memory overhead caused
either non-uniform sampling at a rate less than 5000Hz or truncation of the data set at around
100,000 samples. Thus data needed to be saved as a .lvm file to allow the acquisition of data at
this rapid rate. Additionally, the number of samples sitting in current memory (using continuous
sampling mode in the DAC module) also had to be modified based on the original ADC tool
provided with labview. The number of samples before temporary memory refresh needed to be
increased to the sampling rate of 5000. This removed the memory allocation errors that were
received prior to making this change. The simple graphical script that achieved this sampling
can be seen below in Fig. 6.13.

Figure 6.13: Single channel labview acquisition script for EMG. Sampling was
done continuously, 5000 number of sample per window, at a sampling rate of
5000Hz

6.2.3 Circuit Design

To build the above analog front end the circuit components were computed and based on
component availability a circuit that closely matched to the above specifications was made.
Some sample calculations for the computation of the component values can be seen in Fig. 6.14.
The circuit design was then modeled in a program called EasyEDA, as can be seen in Fig. 6.15.
From there the designed circuit was converted to a PCB schematic and the etching design
for the wire traces done manually to avoid overlap and adequate spacing to avoid capacitive
coupling. The PCB was ordered and then soldered in the coil lab in the IRC. The designed and
constructed PCB are shown in Fig. 6.15.
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Figure 6.14: Sample calculations used to find the components of the high and
low pass filter using a 2nd Order Sallen Key implementation .

Figure 6.15: EMG analog front end circuit diagram with implemented compo-
nent values.
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Figure 6.16: EMG designed and constructed PCB. Note the analog discovery
power supply, the electrode leads go to high impedance MRI compatible cardiac
ECG cables and the DAC leads to the National Instruments USB-6221 box.
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6.2.4 Safety Testing

Temperature/SAR Testing - Phantom

To ensure the EMG system was safe, the specific absorption rate (SAR) and temperature were
recorded during a variety of different sequences. If the temperature increase was too great, then
the system would not have been able to be used for participant scanning. The temperature was
tested under difference sequences, which would have different levels of RF, as higher levels of
RF would cause more energy to be absorbed and greater relative heating. This would be worse
with heavier patients as their ability to dissipate heat is impaired. The first tests were done on a
phantom to ensure the system was safe. The system consisted of the EMG, with 3 carbon fibre
electrodes connected to a cardiac MR high impedance cable. The electrodes have been cleared
for cardiac MR studies, so little to no temperature increase during scanning was expected.
The temperature under each of the electrodes was measured using optical temperature probes
that were fed into the magnet room. The temperature was recorded on an old PC that was
sitting outside the magnet room. For all MRI scanning, the GE Medium Flex Leg Coil was
used so that the RF was more closely deposited on the electrodes. The set up is shown in the
figure below (Fig. 6.17) The temperature was tested and SAR (W/kg/10s) recorded under the
following scanning conditions (using the leg coil for all):

Figure 6.17: The 12 cm diameter by 25 cm long vendor-provided QA/QC cylin-
drical phantom containing dimethyl silicone fluid, gadolinium, and colorant. To
study potential RF heating effects, electrodes (Conmed ClearTrace Radiotranslu-
cent ECG Electrode) were placed on the phantom, in a similar orientation to that
when used on muscle (two active electrodes along the calf muscle plane and the
reference on the shin in the lengthwise midpoint between electrodes) . An optical
temperature probe (ReFlex-4 RFX273A, Neoptix, Quebec, Canada) was placed
under each of the electrodes, respectively.

1. Spectroscopy scan

• There is not a lot of expected heating as k-space is not rasterized quickly and there
are not a lot of RF excitations

• Parameters: Press TR/TE 1500/30ms, NEX 8, averages 256, VOI 2x2x2 FOV 24cm
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2. BOLD functional scan

• Uses EPI so expect more heating. But only one RF pulse is played per TR=1s so
heating should not be significant.

• Parameters: TR/TE 1000/35ms, flip angle 90deg, slices 15, thickness 4mm, spacing
5mm, FOV 18cm, matrix 64x64, NEX 1

3. FEISTA scan

• During FEISTA scan (worst case condition). The FEISTA sequence is known to
have relatively high SAR. By maximizing the number of excitations and slices this
can cause heating. The FEISTA sequence was run on the order of 16min, as the
longest expected scan in the paradigm was to last for 8min. Double the time and
high SAR sequence is an optimal sequence to test the safety for simple functional or
spectroscopy scans.

• Parameters: FEISTA TR/TE 5.1/2ms flip angle 90deg, slices 15, thickness 5mm,
spacing 5mm, FOV 26cm, matrix 256x256, NEX 64, Receiver bandwidth 125kHz

Figure 6.18: Electrode temperature over time for two active electrodes and
reference using Spectroscopy, BOLD and FEISTA (from left to right) sequences
and the GE medium Flex leg coil.

Table 6.3: The SAR difference from the first and maximum time point for two
active electrodes and reference for the different sequences and the GE medium
Flex leg coil, using a phantom.

Sequence Phantom Weight (lb) Maximum SAR (W/kg/10s)
PRESS 5 0.4
BOLD 5 0.3
FEISTA 5 2.4

The increase in SAR and temperature over time was of no significant safety concern (SAR
less than 4W/kg/10s and less than a 2 degree temperature change) so testing amongst
the research team followed.

Temperature/SAR Testing - Human Subject

The following test, after passing the original phantom test, was to test the system on a human
subject. In this case it was tested on lab mate Alex Amador, prior to a research participant.
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The exact same set-up and scanning conditions were followed from the above phantom case,
with the difference that the electrodes were situated on Alex’s calf. This means that the baseline
temperature will change from room temperature ( 22°C) to body temperature ( 37°C). Also,
the temperature change may vary as the RF absorption is dependent on the medium. As can
be seen in the table and plots below, the temperature and SAR did not significantly change
(to a dangerous level) over the scan time course, so it was reasonable to proceed to tests with
research participants. It should be noted one of the temperature probes was not recording but
data should suffice as proof. Having two active electrodes was somewhat redundant above.

Figure 6.19: Electrode temperature over time for one active electrode and refer-
ence using a Spectroscopy, BOLD and FEISTA (from left to right) sequence and
the GE medium Flex leg coil.

Table 6.4: The SAR difference from the first and maximum time point for two
active electrodes and reference for the different sequences and the GE medium
Flex leg coil, using a human subject.

Sequence Subject Weight (lb) Maximum SAR (W/kg/10s)
PRESS 170 0.2
BOLD 170 0.1
FEISTA 170 0.8

6.2.5 Circuit Testing

Out of Bore Testing

To begin the EMG analog front end was tested in the less stringent environment, which was
outside of the MR environment. To test each stage respectively a frequency sweep was done to
test the gain and filtering characteristics. When each stage was ensured to be performing as
expected, meaning it had the desired gain in the pass band frequency bandwidth, and the input
sinusoidal amplitude was attenuated by 3dB at the cut-off frequency, then the entire system
was tested. The EMG front end was tested by performing simple contraction of the tibialis
anterior through ankle flexion. The results are shown in Fig. 6.20), with a frequency sweep and
contractions using variable gain settings. The frequency sweep shows the low amplitude below
25Hz and after 500Hz which is the bandwidth of the entire front end. Additionally, the lower
gain setting was tested as it is preferred when transitioning to the MR environment where the
signal from the gradient switching could saturate the amplifiers. With good performance of the
front end observed more stringent tests in the MR environment followed.
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Figure 6.20: Frequency (left) and time domain tests (right) of EMG front end
in non-MR environment. The data was collected during simple tibialis anterior
contraction.

In Bore Testing - Gradient Artifact

The purpose of this test was to see if there was

1. A spatial dependence of the gradient artifact (i.e. relative leg positioning in the bore)

2. If their was a gradient artifact dependence based on the positioning of the electrode triad
(i.e. the position of the electrodes relative to each other on the leg)

This was completed by using the same cylindrical phantom and electrode positioning as above,
while recording the gradient artifacts using an fMRI sequence with body coil excitation. It
should be noted that the entire phantom had to be coated in gel to reduce the baseline from
the impedance mismatch between the phantom and electrodes. To achieve the first objective
the phantom was placed at the isocenter of the magnet, followed by two position variations

1. The phantom at isocenter in the x,y,z directions

2. The phantom at isocenter then moved to the right to get closer to the bore wall

3. The phantom at isocenter then moved to the left to get closer to the bore wall

As can be seen from the figure below (Fig. 6.20) no significant differences in gradient ampli-
tude based on spatial position were observed.

To achieve the second objective, the phantom was placed at the isocenter of the magnet and
the electrode positions relative to each other on the phantom changed, as can be seen in the
diagram in (Fig. 6.22). It should be noted when moving the reference there was not significant
change in amplitude of the artifact. When changing the difference in distance between the
electrodes the gradient artifact changed in amplitude. Therefore a standard electrode spacing
between the active electrodes was employed to ensure that the artifact suppression was consistent
across trials.
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Figure 6.21: Plot of the gradient artifact when the phantom was position at
the isocenter, and left and right of it respectively. No significant differences in
gradient amplitude were observed.

Figure 6.22: Plot of the gradient artifact when the phantom was position at
the isocenter, electrodes were positioned in four orientation (left hand image).
The entire gradient artifact and the peaks using a 2.5V, 0.05s spacing threshold
shown. Increased spacing caused differences in gradient amplitude.

66

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/msbe


Master’s of Applied Science in Biomedical Engineering - Joshua E. McGillivray;
McMaster University - School of Biomedical Engineering

In Bore Testing - Muscle Contraction Trials

With the behaviour of the EMG system verified outside of the MRI environment, and the
gradient artifact spatial dependence investigated, the next feasible test was assess the EMG
performance during contraction in the MR environment. Due to the fact that it is a complex
system, a series of tests were performed to verify that it was functioning as anticipated.

The first test was to examine the recorded EMG signal while in a less noisy orientation. This
involved placing the electrodes on the bicep and scanning using a fMRI BOLD protocol while
using the head coil. In this case the artifact would be less present than if the electrodes were
positioned on the leg directly under the GEM medium Flex coil. Also, it should be noted that
the fMRI sequence has a TR of 2s which will make the gradient artifacts appear less frequently.
As can be seen in (Fig. 6.23), the EMG signal can be seen despite the heavy presence of the
gradient artifact. The frequency spectrum of this signal is heavily dominated by the gradient
artifact and its harmonics, but when examined more closely the EMG signal is present in the
expected 20-500Hz bandwidth. To ensure the data was usable, a preliminary denoising test
using EEGlab’s implementation of the artifact subtraction (will be explained in detail later)
was used on the bicep data. As can be seen in the figure (Fig. 6.24) the EMG signal can be
isolated from the noise at the cost of reduced amplitude due to the template subtraction.

Figure 6.23: The time series and frequency spectrum of the EMG signal during
a bicep contraction while scanning using a fMRI protocol with the head coil.
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Figure 6.24: The time series of the EMG signal after artifact removal during a
bicep contraction while scanning using a fMRI protocol with the head coil.

The next test was to examine the recorded EMG signal while in the most difficult orientation.
This involved using the GEM Medium Flex Coil and scanning the lower leg using a BOLD
sequence. The closer proximity of the coil during scanning and the shorter TR (one artifact
occurs per TR) makes the denoising process more difficult. This more difficult implementation
was the desired orientation for the study protocol. Numerous trials were performed in this
orientation with little success when it came to denoising the signal. With the rapid TRs on the
order of 100-250ms it is difficult to see the EMG signal within the raw data without doing any
denoising. But the EMG performing well in the bicep orientation means that the system was
suitable to be used in the MR environment. The two major differences that were present in this
case is the proximity of the coil to the electrodes, and the reduction in the TR, which went from
2s to 0.11s. Since changing the leg coil was not a valid solution, the TR of the BOLD sequence
was slowed from 0.11s t0 0.25s. This was chosen to still allow for a good temporal resolution
to examine functional activation in the leg while reducing the frequency of gradient artifacts
by a factor of 2.3. With this slower TR time the EMG was able to be denoised and the data
was usable. The cleaned EMG signal and the baseline in the MR room during a simple ankle
flexion paradigm, with electrodes positioned on the tibialis anterior, can be seen in Fig. 6.25.
These positive results meant the concurrent BOLD and EMG could be recorded.

Figure 6.25: The time series of the EMG signal after artifact removal during
ankle flexion and tibilias anterior contraction while scanning using a BOLD pro-
tocol with a TR of 250ms and the GEM Flex leg coil.
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Chapter 7

Data Acquisition and Processing

7.1 Declaration
Please note all data was collected by Joshua E. McGillivray (JEM), with the assistance of Alejan-
dro Amador (AA) and Thaejaesh Sooriyakumaran (TS). All data preprocessing was performed
by JEM.

7.2 Subjects
Ten males and one female subject (n=11, age 25.7±2.2years, height 175±8.9cm, weight 73.5±11.1kg,
MVC weight 15.1±3.91kg, weighted used 40.1±1.1%MVC) were recruited and consented to
participation in the HREB-approved research protocol. Participant information can be seen in
Tab. 7.1. Recruitment numbers and population were limited due to compliance with hospital
COVID-19 safety protocols. Only subjects within the lab and hospital environment were able
to be recruited for this study, as limited ethics approval was obtained. Mainly male subjects
were recruited due to a limited female population availability. With this large gender imbalance
the recruitment of more female participants would strengthen conclusions, as it would be more
robust against biological variability. Unfortunately, of the eleven males that underwent the
protocol one was excluded from analysis due do excessive motion.

The physical activity habits of all subjects was assessed in order to make preliminary en-
durance and power sport groupings, similar to as was employed above in Chapter 5. This was a
very relative grouping, as the subjects recruited were not athletes but rather healthy individuals
who performed semi-regular fitness activities. Three participants were long distance runners
(endurance group), two were former soccer players (endurance/power group), four participated
in either weightlifting, hockey, fencing, swimming (power group) or two in no sport (ambiguous
grouping). Preliminary groupings were made on the basis of fibre profile differentiation due to
habitual activity performance. [107] Therefore, endurance compared to power athletes should
show a greater relative amount of slow-twitch fibres. Due to the heterogeneity of the subject
sample no activity based groupings could be made, so it was more beneficial to examine the re-
sults over the entire population where a significant result would be looked upon more favourably
due to the heterogeneous sample.
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Table 7.1: Summary of participant age, weight, height and maximum voluntary
contraction (MVC) characteristics. Used weight indicates the isometric plantar
flexion weight during the experimental protocol.

Subject Sex Age (years) Height (cm) Weight (kg) MVC (kg) Weight Used
(% MVC)

1 Male 25 178 65 15.4 41.56
2 Male 24 175 83 19.1 40.83
3 Male 26 180 75 14.9 40.27
4 Male 25 180 84 16.8 41.66
5 Male 27 180 77 21.0 39.52
6 Female 27 160 62 7.8 41.03
7 Male 25 178 75 19.3 40.41
8 Male 25 162 54 15 40.00
9 Male 22 186 92 11.6 38.79
10 Male 31 179 76 13.1 38.93
11 Male 26 170 65 11.6 38.79

7.3 Experimental Design
The data collection protocol was designed in order to collect information that would give a
comprehensive outlook on muscle behaviour while staying within a reasonable time frame. This
was done as if the scan time was too long participants would be more likely to move and less
likely to volunteer for the study. Below is a list of all the scans in the muscle investigation
protocol that was designed by JEM with the assistance of AA. As such, some of the scans
pertain to the use of AA for use in his Master’s thesis. A rationale behind the use of each scan
is provided, and the specifications for the relevant scans provided in a later section.
Protocol Scans:

1. 3 Plane Localizer

• Used to identify the leg location within the bore.

2. 3 Plane Localizer (larger field of view)

• Used to identify the electrode positions on the leg. This provided reference to the
positioning of the slices for the anatomic reference. It is also required to improve the
ASSET calibration (which samples multi-channel coil sensitivity profiles to improve
acquisition speeds) of the imaging volume.

3. Proton density weighted, Fat-suppressed images

• This high resolution anatomic image provides information on tissue boundaries, vas-
cular position, and fat deposits to allow for manual muscle segmentation/masking.

4. Hydrogen Spectroscopy

• Provides information on muscle metabolism. As seen in Chapter 5 muscle carnosine
can be used for fibre type profiling to group participants based on activity habits.
This was not used in this thesis due to the lack of athletic cohort, but will be the
subject of AA research.
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5. Magnetization Transfer

• Provides information on free/bound water and the movement of water in muscle.
Water movement can be linked to glycolosis and muscle metabolism, this will be
explored in the thesis of AA.

6. Short TR (110ms) Muscle BOLD at Rest

• Provides information on the functional activity in muscle at rest. This is captured
to examine the use of a complexity representation of the BOLD signal to perform
non-invasive muscle fibre type identification as done in Chapter 5.

7. Short TR (110ms) Muscle BOLD at Rest with a SAT Band

• Provides information on the functional activity in muscle at rest. The SAT band
was placed superior to the imaging slices to see if this reduced arterial noise inflow
effects, and had a significant affect on the data.

8. Diffusion Tensor Imaging at Rest

• Provides information on the structure of the muscle fibres in the leg. This was used to
provide reference to the structural integrity of muscle fibres before and after exercise.
This will be explored in the research by AA.

9. B1 Field Map at Rest

• Provides information on the spatial excitation within the imaging volume, while
using the leg imaging coil. This correction map is only required for specific analysis
metrics, such as peak BOLD amplitude, that are more conventionally used.

10. B0 Field Map at Rest

• Provides information on the magnitude of the magnetic field, spatially, within the
imaging volume. This correction map is required for all analysis types and is used
to correct the resting-state functional scans.

11. Magnetization Transfer - Pre-Exercise

• Used to establish the state of free/bound water and the movement of water in muscle
prior to exercise. Water distribution in the muscle prior to and post exercise will be
explored by AA.

12. Short TR (110ms) Muscle BOLD Block Design

• The block design consists of 66s rest, followed by 66s of isometric weighted plantar
flexion, and is repeated four times. An exercise window of 66s was chosen to allow
for a 512 point sample window to enable fractal dimension analysis. Equal rest to
activity was chosen to reduce fatigue and to also have this 512 point sample window
for analysis. This scan provides information on the functional activity in muscle
during exercise and during the fatigued rest state. This is captured to examine the
use of a complexity representation of the BOLD signal to perform non-invasive muscle
fibre type identification as during a fatigued rest-state where their will be increased
blood-flow relative to pure rest. It was also collected to examine activation state for
phase space analysis.
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13. Magnetization Transfer - Post-Exercise

• Used to establish the state of free/bound water and the movement of water in muscle
after exercise. Water distribution in the muscle prior to and post exercise will be
explored by AA.

14. Diffusion Tensor Imaging Post Exercise

• Provides information on the structure of the muscle fibres in the leg. This was used
to examine differences in the structural integrity of muscle fibres after exercise. This
will be explored in the research by AA.

15. Short TR (110ms) Muscle BOLD Block Design with SAT band

• The block design consists of 66s rest, followed by 66s of isometric weighted plantar
flexion, and is repeated four times. The window duration was chosen to remain
consistent with the previous block design. Therefore activation differences with and
without the SAT band could be observed to assess its role in reducing arterial inflow
effects.

16. Short TR (250ms) Muscle BOLD Block Design with a EMG

• The block design consists of 30s rest, followed by 30s of isometric weighted plantar
flexion, and is repeated five times. The window length was decreased from above, as
512 sample blocks were not required, and it still exceeded the minimum 16s block
length to adequately represent the hemodynamic response. The TR was increased
to enable slice artifact removal in the EMG, as detailed above. This scan provided
information on the electrical and blood-flow profile of the anterior muscle in lower
leg.

17. B1 Field Map Post-Exercise

• Provides information on the spatial excitation within the imaging volume while using
the leg imaging coil. Since the muscle compartment will change size after exercise
another correction map is required. This correction map is only required for specific
analysis metrics, such as peak BOLD amplitude, that are more conventionally used.

18. B0 Field Map Post-Exercise

• Provides information on the magnitude of the magnetic field, spatially, within the
imaging volume. Since the muscle compartment will change size after exercise an-
other correction map is required. This correction map is required for all analysis
types and is used to correct the block design functional scans.

7.4 Experimental Preparation and Set-up

7.4.1 Prior to Examination

All prospective subjects were briefed on the experiment, and the potential benefits/risks associ-
ated with participating in the non-invasive MRI/EMG based muscle assessment study. Ethics
consent was obtained from all subjects prior to an examination. Subjects then underwent pre-
liminary screening for MRI compatibility through the use of an MRI screening form provided
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by the St. Joseph’s MRI staff. If subjects both consented, and were MRI compatible, they
underwent maximum voluntary contraction (MVC) testing to determine the weight required
to have a standardized effort across participants. The MVC test was most often performed a
day prior to MRI scanning, with three cases with 3hrs rest prior, to minimize the impact of
the fatigue caused by a maximal effort on the functional observations. The test consisted of
single leg weighted ankle plantar flexion where the participant needed to lift the box, filled with
weights, 2 inches above the ground. This is the maximal distance the box with weights could
be moved when the ergometer was in the MRI bore, so this set the limitation of effort. The
weight the participant had to push was incrementally increased until they could no longer raise
the box to the two inch ground clearance. During MVC trials subjects were visually monitored
to ensure no additional muscle recruitment causing artificially high MVC trials were recorded.
From the available lead weights, which are MRI safe, the closest combination to 40% MVC was
chosen for the exercise paradigm. This relative low level of weight was chosen to not induce
high levels of fatigue through the experimental protocol, as their was multiple bouts of exer-
cise totaling 11min and 20s of isometric contraction, with an equal duration of rest. Prior to
the MRI examination participants were instructed to not consume alcohol [127], caffeine [128],
or perform strenuous exercise for 24 hours before scanning due to their known effects on the
vascular system and BOLD signal.

7.4.2 Examination Day

On the day of the exam, subjects were also required to rest for 30min while lying supine to
allow for blood flow normalization in the legs, which impacts muscular imaging. [111] During
the initial portion of this rest period the subject’s right leg was prepared for the non-invasive
assessment using MRI and EMG. To improve impedance matching between the skin and MRI
compatible EMG electrodes the skin underwent the following preparation, as can be seen in Fig.
7.1. The shin of the right leg was cleaned with an alcohol wipe to remove any oils sitting on the
skin. Then an abrasive gel was used to remove any dead skin cells on the surface, which are the
highest impedance layer of the skin. The subject was then informed to perform plantar- and
dorsi-flexion to palpate the insertion point of the tibialis anterior. Below the bony protrusion
of the tibia at the insertion point of the muscle, with sufficient spacing so none of the electrode
pad touched the bone, the top electrode was placed on the tibialis anterior muscle belly. The
second active electrode was placed 7cm, center to center, from the top electrode within the
tibialis anterior muscle belly. This 7cm allow for sufficient space for the imaging slices to be
placed in between the electrodes, and it was maintained constant due to the affects of gradient
artifact spacing previously discussed. The reference electrode was then placed 3.5cm inferior to
the top electrode, and medial such that it was on the tibial shaft. This ensured the reference
was equally spaced between the active electrodes and was on bone, which would remain as a
constant reference regardless of ankle flexion state. A 7cm spacing was chosen to allow for a
sufficient distance between electrodes for the imaging slices to be placed within. The electrodes
will cause signal distortions in the surrounding regions and thus need to be avoided. The
shielded box that contained all EMG components was placed outside the 5 Gauss line to limit
RF that could contaminate the EMG recordings. The box was also placed offline from the bore
as it was observed that this reduced some of the RF exposure to the circuit. Additionally, this
reduced the RF that the recording laptop was exposed to. This was important as if too high
levels of stray RF was received at the laptop USB input the power supply or DAC would lose
connection to the laptop.
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Figure 7.1: EMG preparation materials and set-up. Alcohol wipes, abrasive
gel, carbon based MRI compatible MRI electrodes and electrode positioning on a
sample participant.

During the first 15min of the rest period, prior to the electrode set-up, the MRI scanner
bed was prepared. The ergometer was placed on the scanner bed by first removing the table
covering to allow for the ergometer base to interface with the scanner bed. The box of the
ergometer was placed on the ergometer table base. The GEM Flex coil TR switch box was
placed in the empty space behind the left leg foot pedal (since the left leg remained at rest the
whole time), and the flex coil connector fed under the ergometer table. Padding was placed
in the notches where the feet were placed to ensure the mid-foot of the participant lay within
the middle of the pedal. Sand bags were placed on either side of the flex coil to limit lower leg
motion both translationally and rotationally. A Velcro scrap ran across the scanner bed over
the participant’s lower leg within the coil, which when strapped down prevented vertical lifting
of the leg during exercise. Additionally padding was placed under the hamstrings to ensure they
would not remain in constant flexion to keep the foot well positioned to interface the pedal.
Additional padding was placed under the lower back and head to ensure patient comfort, which
would mitigate any unnecessary motion. This set-up can be seen in Fig. 7.2.

After the scanner bed and electrode set-up, approximately 20min into the rest period, the
participant was transferred to the MRI scanner bed through the use of an MRI compatible
wheelchair. The participant was not allow to weight bear on their right (imaging) leg at any
time during the transfer. The participant was then given a MRI compatible mask, ear plugs,
over ear protection, and a panic ball to communicate distress during scanning. The EMG
electrode leads were taped down to the electrodes to ensure contact was maintained. The high
impedance cardiac lead cable was unwound and taped to the floor to ensure no loops formed in
the cable, as loops within a time varying magnetic field would induce a current in the cables.
The EMG baseline amplitude was observed to assess the quality of lead connections. The leg
coil was then closed and the participant’s leg was braced. The participant was then asked if
anything was uncomfortable prior to land marking the coil position and putting them in the
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MRI scanner. The power to the EMG circuit was then killed by disconnecting the laptop, to
only be connected during the EMG acquisition. The MRI scanning session then began once a
total time of 30min of rest was achieved. The scan time totaled approximately 1hr including
shimming and scan execution.

Figure 7.2: A sample of pictures showing relevant images of a sample partici-
pant MRI set-up. The MRI compatible wheelchair, EMG box position, lower leg
bracing, and subject positioning on the scanning table are shown.

7.5 Data Acquisition
The specific parameters pertaining to the scans above that are used in this thesis can be found
below. Note for all functional scans and the B0 and B1 field maps the slice location, and where
applicable the SAT band location, was copied to ensure region consistency.

1. Proton density weighted, Fat-suppressed images

• Voxel Size = 0.625x0.625x4mm

• Number of slices = 15 (1mm spacing)

• TE/TR/flip angle = 30/3000ms/111deg

2. Short TR (110ms) Muscle BOLD at Rest

• Voxel Size = 2.5x2.5x10mm

• Number of slices = 2 (no spacing)

• TE/TR/flip angle = 35/110ms/70deg, 2434 volumes

3. Short TR (110ms) Muscle BOLD at Rest with a SAT Band

• Voxel Size = 2.5x2.5x10mm
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• Number of slices = 2 (no spacing)

• TE/TR/flip angle = 35/110ms/70deg, 2434 volumes

• 50mm thick SAT band flush with superior slice

4. B1 Field Map at Rest

• Voxel Size = 2.5x2.5x10mm, Number of slices = 2 (no spacing)
Default GE Parameters

• TE/flip angle = 6.2ms/15deg

• # TEs per scan = 1, BLS Pulse Type = Adiabatic 2ms

5. B0 Field Map at Rest

• Voxel Size = 1.25x1.25x10mm, Number of slices = 2 (no spacing)
Default GE Parameters

• TR/flip angle = 100ms/20deg

• # TEs per scan = 1, B0 Field Mapping Range = 200Hz

6. Short TR (110ms) Muscle BOLD Block Design

• Voxel Size = 2.5x2.5x10mm

• Number of slices = 2 (no spacing)

• TE/TR/flip angle = 35/110ms/70deg, 4800 volumes

7. Short TR (110ms) Muscle BOLD Block Design with SAT band

• Voxel Size = 2.5x2.5x10mm

• Number of slices = 2 (no spacing)

• TE/TR/flip angle = 35/110ms/70deg, 4800 volumes

• 50mm thick SAT band flush with superior slice

8. Short TR (250ms) Muscle BOLD Block Design with a EMG

• Voxel Size = 2.5x2.5x10mm

• Number of slices = 2 (no spacing)

• TE/TR/flip angle = 35/250ms/70deg, 2400 volumes

• The EMG signal was sampled at a rate of 5000Hz with a system gain of 2448

9. B1 Field Map Post-Exercise

• Voxel Size = 2.5x2.5x10mm, Number of slices = 2 (no spacing)
Default GE Parameters

• TE/flip angle = 6.2ms/15deg

• # TEs per scan = 1, BLS Pulse Type = Adiabatic 2ms
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10. B0 Field Map Post-Exercise

• Voxel Size = 1.25x1.25x10mm, Number of slices = 2 (no spacing)
Default GE Parameters

• TR/flip angle = 100ms/20deg

• # TEs per scan = 1, B0 Field Mapping Range = 200Hz

7.6 Data Preprocessing

7.6.1 Functional Images

The focus of this thesis was on functional muscle imaging using BOLD and EMG. As such, after
collecting the data using the parameters above it needed to be preprocessed prior to analysis.
The preprocessing of the functional data was scripted in Bash, and can be found in the appendix,
and used the tools from FSL[117] and AFNI[129]. The preprocessing was mainly automated,
but required some work on a participant-wise basis.

The first step of the process was converting the dicom images exported from the scanner to
nifti files, so they could be recognized by the tools such as FSL and AFNI. This was achieved
by using the dcm2niix() function where the specific path of the dicom images must be specified
and a nifti file created by concatenating the images in both the spatial and temporal dimension.
The specific series path where the data were contained remained relatively constant between
participants but needed to be modified if any errors occurred during a scan, which would offset
the series numbering for the remaining scans. After all scans were converted to nifti files and
followed a standard naming convention then underwent motion and field map correction. All
resting-state functional scans were motion corrected by spatially aligning all time points in the
resting-state scan without and with the SAT band to the first time point of the first resting-
state scan. The resting-state scans were then corrected for static field variations from using
the magnitude of the main magnetic field, spatially, within the imaging volume, by using the
B0 map collected after rest. The block design functional scans were also motion corrected by
spatially aligning all time points to the first time point of the first resting-state scan. This would
allow for one common mask of muscle regions for the resting-state and block design functional
scans to be made, allowing for a relevant comparison between scans. The block scans were
then corrected for static field variations from using the magnitude of the main magnetic field,
spatially, within the imaging volume, by using the B0 map collected after exercise, to take into
account the changing size of muscle compartments post exercise. Both the motion and field
map correction were achieved by using the flirt tool in FSL[117].

Other common corrections, such as B1 field map correction, were not employed as the abso-
lute BOLD intensity was not required in any of the newly developed analysis metrics. Addition-
ally, no spatial or temporal filtering was applied to the data. Spatial filtering was not used as
metrics were derived on a voxel-wise basis, so the spatial blurring could lead to not statistically
independent voxel wise observations. Non-independent observations are more of a concern when
developing new metrics, thus to ensure the results were not being confounded by the filtering
it was not employed. Additionally, temporal filtering was avoided, as once again its influence
on the newly derived metrics could confound or obscure results. Specifically, in the functional
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studies the relative variance of the data is observed, to quantify the fractal dimension, so tem-
poral filtering would inherently decrease variance which was undesired. Also it was verified that
temporal filtering was not required to see activation, as high levels of HRF correlation, during
the block design scans, in hypothesized active region of the tibialis anterior (during plantar
flexion) were observed with no filtering. It is considered best practice to perform the minimal
amount of preprocessing required to not unduly influence the results to show significance which
is not innately there.

The final step of the preprocessing pipeline involved manual muscle segmentation. This was
achieved by using FSL. Turning FSL into editor mode and specifying the display space to be in
the BOLD scan resolution, the anatomic reference was used to manually trace out the muscle
masks by drawing the regions of interest voxel by voxel. When drawing these masks the first
consideration was to avoid the tissue boundaries between muscles, which would not be reflective
of muscle activity. It should be noted that due to the use of the foot pedals, and the height
of the coil, the lower leg lay on a slight declined angle. This meant that the tissue boundary
between muscles found in the anatomic reference slices (4mm thick) changed position through
the length of the functional slice (10mm thick). Therefore a conservative mask boundary was
required to make sure the functional voxels did not lie on a tissue boundary in any of the
anatomic reference slices. Second, the major blood vessels, including a minimum of one voxel in
each direction in the surrounding areas, were avoided due to the pulsatility artifact propagating
to the surrounding regions. Third, the minor blood vessels were inspected for a pulsatility
artifact through using the resting-state fMRI timeseries as reference, and only avoided if the
artifact was visible. Masks were made for the gastrocnemius [slow-twitch/fast-twitch dense],
soleus [slow-twitch dense] and anterior muscles (tibialis anterior, peroneus and extensor longus
groups) [fast-twitch dense] for their differing twitch fibre profiles. These muscles are also heavily
involved in ankle plantar flexion so are relevant to exploration in all aspects of the study. It
should be noted that the tibialis posterior was not included in the anterior compartment because
although it is a fast-twitch predominate muscle, it is surrounded by the three major arterial
venous pairs of the pernoa, anterior and posterior tibial. Therefore the BOLD data from this
muscle would contain heavy amounts of pulsatility artifact, which would affect both the resting-
state and block design studies. Fig. 7.2 shows some of the sample data for one participant that
is used to perform motion and field map correction, as well as manual muscle segmentation /
mask creation. Any specific preprocessing steps relevant to the analysis techniques that were
developed is covered in their respective sections.
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Figure 7.3: This shows the sample data from one Block design trial for a single
participant. It shows the anatomic, functional and field map images, as well as
the segmented muscles for this specific participant.

7.6.2 Electromyography

In addition to the filtering that is performed by the analog front end, as described in the
development section above, the EMG data needed to be cleaned to be suitable for analysis.
The EMG data were collected by labview and saved as an LVM file at a sample rate of 5000Hz.
This data was imported to MATLAB to be cleaned through the use of an in-house script. To
import the data the open source script downloaded off the Mathworks website lvm_import.m
is used. To perform the denoising portion the EEGLab [130] was used. EEGLab requires an
EEG structure, generally output by the commercially used MRI compatible EEG systems, to
determine when the slice triggers during the MRI acquisition occur. From a series of experiments
using the TTL pulse output by the MRI scanner, during EPI acquisitions, it was determined
that the slice triggering remained stable over time, as can be seen in Fig. 7.4. Therefore
with the used TR=250ms and a 2 slice acquisition an artifact would be expected every 125ms.
Therefore, the triggers did not need to be recorded for every EMG trial, but rather a trigger
timing structure file could be created using the same format required by EEG lab, while knowing
the first slice trigger would appear at the start time of the EMG recording. This was achieved
using the function eventTable.m originally written by AA and modified for use by JEM.

With the slice timing file created, the EMG data then underwent denoising by first using the
EEGLab function FASTR. FASTR will create an artifact template and perform subtraction of
the slice artifacts induced by the MRI gradient traversal. The algorithm consists of four main
steps, slice timing trigger alignment, local slice artifact template subtraction, PCA residual
removal and adaptive noise cancelling (ANC). A comprehensive explanation of these four steps
can be found in section 3.3.3 in the following reference [104]. The main parameters that can be
modulated for the FASTR algorithm are the low-pass filter cutoff, the degree of upsampling,
the averaging window size to create the artifact template, and the ANC process, where the
ANC will suppress noise that is above the low pass filter cutoff specified. The upsampling
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Figure 7.4: This shows sample EMG data during the resting state of one par-
ticipant. The repetitive and stable nature of the gradient triggers allowed for the
creation of a slice timing file to facilitate a simple denoising procedure

recommended by EEG is to use a factor to get to 20kHz, in order to sufficiently represent the
high frequency gradient artifact. A factor of 10 was used to get a sampling rate of 50kHz to
exceed this requirement. A window of 4 artifacts per window was used instead of the standard
30 artifacts per window. This was chosen as FASTR is primarily used for EEG where they
specify the window length should be decreased if there is a lot of participant motion causing
spikes in the data. The EMG bandwidth is 20-500Hz compared to an EEG bandwidth of roughly
0.1-70Hz, so the rapid onset of the EMG spikes means a smaller window is preferred for artifact
template creation. Additionally if the window length is too long the rest and active states, which
are vastly different in amplitude, will overlap which can confound the artifact template that is
created. To test the optimal window length the SNR of the EMG recordings was assessed by
iterating through varying window sizes. SNR was computed by rectifying the EMG signal, then
computing the ratio of the signal summed squared magnitude to the noise summed squared
magnitude, while reporting in decibels. The benefit of this window length of 4 artifacts per
window can be seen clearly in Fig. 7.5. The other factor that could be modified was the use of
the ANC. Through employing the same SNR testing framework it was determined that when the
participant had a noisy baseline signal ANC was able to improve the SNR, as is seen in Fig. 7.6.
It should be noted the ANC cuttoff threshold was changed from 70Hz to 500Hz to increase the
suitably for use with EMG. But after examining the frequency spectrum of the EMG data with
and without ANC, it was seen that the ANC caused suppression of the frequency components
in the bandwidth of 0-70Hz, even though not specified to, and it has a more aggressive 500Hz
cuttoff. Therefore the ANC was not used to clean the data. Additional filtering to improve data
quality was performed after FASTR as the high frequency components should initially remain in
the data to create a more accurate artifact template prior to its removal. The filtering included
a 60Hz notch filter (from any noise introduced from the electronics brought into the room),
HPF cuttoff at 20Hz and LPF cuttoff at 500Hz. All EMG trials were inspected visually to
determine the success of the denoising procedure.
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Figure 7.5: This shows sample EMG data that is cleaned using FASTR of
different window lengths follwed by additional filtering with a 60Hz notch filter,
HPF cuttoff at 20Hz and LPF cuttoff at 500Hz.

Figure 7.6: This shows sample EMG data that is cleaned using FASTR with
and without ANC followed by additional filtering with a 60Hz notch filter, HPF
cuttoff at 20Hz and LPF cuttoff at 500Hz.
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Chapter 8

Determining Relative Skeletal
Muscle Fibre Composition

8.1 Introduction
The rationale behind the exploration into determining skeletal fibre muscle composition is well
explored in Chapter 5. However this investigation into the use of a bi-fractal dimension de-
scription of the muscle BOLD signal, to perform muscle fibre type profiling, takes a different
approach. Firstly, this cohort of participants is a subset of non-athletes who will be hypothe-
sized to present less differentiated muscles due to reduced muscle tone. This will make fibre type
classification more difficult than in the athletes as used in the pilot in Chapter 5. Additionally,
the encouraging results from this pilot lead to the extended exploration of this technique using
a fatigued rest paradigm. Originally, the muscle fibres were differentiated using 4 512point win-
dows while a participant was purely at rest. An exploration at rest was chosen as the relative
perfusion differences between slow-twitch and fast-twitch muscle fibres were the driving factor
with the differences in the muscle BOLD signal, and exercise would cause a non-uniform increase
in blood flow across the muscle which could confound the results. However it was hypothesized
that if the fractal dimension of the muscle was assessed using the 4 resting-state blocks of 512
point length within an exercise paradigm the differentiation between muscle groupings would
be easier. This was made on the basis that post-exercise blood volume increases in the mus-
cle would increase the amplitude of the BOLD signal, meaning it would be less likely to be
contaminated by noise. The windows of rest between exercise stints would not be as impacted
by regional increases in blood-flow that are dependent on the particular exercise performed.
Therefore this chapter investigates a non-athlete subject group, with the same methodology
employed in Chapter 5, either during a pure rest or fatigued resting state. This will provide
insight on whether the method is robust across a less ideal population and whether a pure rest
or fatigued rest is the optimal paradigm.

8.2 Methods

8.2.1 Data Acquisition and Preprocessing

The paradigm design, rationale, parameters for MRI data acquisition, and fundamental prepro-
cessing steps are outlined in Chapter 7. The data which was used in this particular analysis
was the motion and field map correction functional data from the BOLD resting-state scan and
from the BOLD plantar flexion block design.
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8.2.2 Data Analysis

The frame work to use a bi-fractal representation to determine muscle fibre type is covered in
detail in Chapter 5, so only a brief overview of the data analysis will be covered. The BOLD
resting-state data where the leg was purely at rest, underwent truncation to 2048 volumes,
which made it suitable for fractal dimension analysis, accounts for the required relaxation due
to violating the Ernst condition and reduces motion artifact. The BOLD voxel time series
was then normalized to the first time point to account for variations in the excitation and
sensitivity profiles of the coil channels. The BOLD time series was then segmented into 4
512 time point segments, where the bi-fractal dimension was computed for each window using
the scaled windowed variance approach, with linear detrending. The bi-fractal dimension was
computed by estimating the slope by fitting two lines, components 1 and 2, to the non-saturated
portion of the log-log plot for a given voxel and segment, then averaging across segments. The
same process was applied with the BOLD plantar flexion block design data, with the additional
step of segmenting the time series into the relevant window of the fatigued resting-state, between
the stints of exercise. All 66s windows which correspond to 600 time points were truncated to 512
point windows, of suitable length for fractal dimension analysis, by discarding the first and last
44 time points for each rest and active block respectively. This was done as when transitioning
between active and rest states for multiple reasons such as the gross motion causing spikes in
the BOLD time course, to allow the muscle compartments (which change orientation between
states) sufficient time to normalize, and to allow for the participant to reach a stable ankle
flexion position. Then the 4 512 resting-state segments from the plantar flexion block design
were used in the bi-fractal analysis. The same steps as indicated above were performed. The
voxel BOLD series was normalized by the first time point (which is valid as the block design
paradigm begins with rest), followed by computing the bifractal dimension for each window
using the scaled windowed variance approach, with linear detrending, and averaging across all
windows. The next step was to identify the voxels that were within a specific muscle by using
the manually created masks for reference. The three masks covering the gastrocnemius, soleus
and anterior group (tibialis anterior, peroneus and extensor longus groups), were created for the
muscle’s varying twitch fibre type profiles. This was performed for each participant and muscle
respectively and the voxel timeseries was stored for later analysis.

Due to the non-athletic cohort of subjects, they could not be grouped into predominate fibre
type groupings, as was examined previously in Chapter 5, which limits comparisons to solely
between muscle differences. To begin all bi-FD distributions for a given participant, component,
and muscle were tested for normality. All bi-FD voxel distributions were negatively skewed, even
post log transform correction. Therefore Wilcoxon rank sum tests were used to examine within
participant muscle differences. The soleus and gastrocnemius were compared to assess slow-
twitch differentiability and the gastrocnemius and anterior group for fast-twitch differentiability.
Individuals were tested for differences in the fractal dimension between muscles with tests for
each component respectively, and for the pure rest and fatigue rest states. Since the intent was
to compare between muscles, within a given participant, the multiple pair-wise comparisons
for a given participant needed to be accounted for to not artificially report significance. With
performing two tests for each muscle and with two resting-states per participant, bonferroni
correction for multiple comparison requires the P<0.05 threshold to be corrected to p<0.0125.
Additionally, for each resting-state acquisition respectively, a Kruskal-Wallis test was used to
test between muscle differences, for each bi-fractal dimension component, while using all subjects
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to account for biological variability factors. With the intent to compare between the three muscle
groups, every voxel belonging to a particular muscle (including all participants) is used for the
statistical comparison between muscles. Therefore to correct for the reported p-values with
these comparisons, the muscle with the largest number of voxels needed to be used to scale
the significance threshold. When concatenating all participant data the number of voxels per
muscle group was: gastrocnemius 5081 voxels, soleus 4438 voxels and anterior group 3107 voxels.
Therefore for the Kruskall-Wallis muscle comparison tests the p<0.05 threshold was corrected
to p<9.84e-6. This was followed by multiple comparison testing to investigate specific muscle
differences, which took into account this correction factor. Finally, to examine the differences
between paradigms of pure rest compared to fatigue rest a Kruskal-Wallis test was used for
each muscle and component.

8.3 Results
To assess the ability of the bi-fractal dimension of the muscle BOLD signal to determine fibre
type differences, the participant biological variability effect was first removed by performing
participant specific muscle comparisons. Tab. 8.1 provides a summary of the p-values for the
ranked sum muscle comparison tests for each participant for each component and resting-state
separately. When examining the pure resting-state data it can be seen when comparing the
gastrocnemius (mixed fibre type) and soleus (slow twitch fibre type) that 6/11 participants
show significant differences between muscles, surviving multiple comparisons, for component 1
and 7/11 for component 2. When comparing the gastrocnemius (mixed fibre type) and anterior
group (fast twitch fibre type) 8/11 participants show multiple comparison corrected significant
differences for both component 1 and component 2. When examining the differences between
muscles during the fatigued resting-state the number of participants that showed significant
differences, surviving multiple comparisons, for the gastrocnemius vs. soleus was 6/11 for
component 1 and 6/11 for component 2. For the gastrocnemius vs. anterior group the number
of participants surviving multiple comparison correction was 9/11 for component 1 and 5/11
for component 2. Therefore when examining the differences on a individual participant level
the fatigue rest-state did not significantly affect the gastrocnemius vs. soleus comparison, but
performed worse for the anterior group vs. gastrocnemius comparison.

Subsequent to the individual participant analysis, the group analysis for each respective
component was undertaken to account for biological variability factors. Since Kruskal-Wallis
test can only test one-way comparisons 4 separate tests were run, one per component and
resting-state, and are summarized in the Tab. 8.2. For both components and both states of rest,
significant differences were found when comparing the soleus, gastrocnemius and anterior group.
Notably, the differences between muscles were more significant during the fatigued resting-state
for both components. When performing multiple comparisons, regardless of resting-state or
component, the soleus fractal dimension was significantly greater than both the gastrocnemius
and anterior group, but the gastrocnemius and anterior group did not significantly differ in their
fractal dimension. The results are summarized in Fig. 8.1, where notably the difference between
the soleus and the fast-twitch predominate muscles increases during the fatigued resting-state.
This observation explains the increased significance seen in the Kruskal-Wallis tests.

Finally, the investigation into the differences in the fractal dimension of the BOLD signal
during pure and fatigued rest showed significant results. When comparing between the pure
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Table 8.1: P-value Summary, p<0.0125 multiple comparison significance thresh-
old, for the ranked sum muscle comparison tests for each participant, component
and resting-state separately.

Pure Resting State Ranked Sum PValues Fatigued Resting State Ranked Sum P Values
Soleus Vs.
Gastrocnemius

Gastrocenmius Vs.
Anterior Group

Soleus Vs.
Gastrocnemius

Gastrocenmius Vs.
Anterior Group

Subject Comp1 Comp2 Comp1 Comp2 Comp1 Comp2 Comp1 Comp2
1 1.25e-11 1.26e-13 2.72e-08 1.51e-15 8.07e-15 1.32e-07 1.48e-19 3.23e-12
2 7.74e-06 0.000408 2.15e-08 9.06e-07 0.171 0.0590 0.255 0.779
3 0.686 0.907 0.583 0.0557 0.515 0.377 0.00651 0.244
4 0.916 0.0363 1.66e-06 0.378 0.00568 0.722 6.41e-06 0.273
5 1.60e-10 3.85e-05 5.41e-12 1.15e-07 0.0628 6.23e-11 0.000592 3.09e-12
6 0.0357 9.03e-05 0.0299 1.56e-05 4.02e-11 0.0180 7.93e-40 0.00628
7 0.825 1.18e-16 0.0246 3.24e-16 0.188 2.85e-14 0.553 0.351
8 7.94e-05 1.11e-08 0.0110 0.000406 1.32e-06 2.21e-17 1.69e-07 5.58e-19
9 1.69e-21 3.43e-08 1.12e-09 0.0251 1.24e-37 1.12e-27 1.58e-33 7.38e-34
10 0.124 0.146 5.45e-09 5.27e-15 7.04e-14 0.000215 2.36e-11 0.551
11 0.00313 0.0640 0.000451 0.00150 0.0166 0.678 0.000434 0.121
Mean 0.236 0.059 0.105 0.0419 0.0874 0.0742 0.1686 0.212

and fatigued resting-state the fractal dimension decreased during the fatigued state for the
gastrocnemius, soleus, and anterior group, all with a significant of p<1e-7. The box plot results
from the Kurskal-Wallis test are summarized in Fig. 8.2, which show the decreased fractal
dimension during fatigued rest. In addition, the distribution of the fractal dimension measures
appears larger during fatigued rest.

Table 8.2: Summary of the p-values, corrected significance threshold p<9.84e-6,
for Kruskal-Wallis tests for differences between muscles when using all partici-
pants.

Comparisons Bi-fractal Dimension Component 1 Pvalue (Prob. >Chi-sq)
Muscle Differences
(Soleus vs. Gastrocnemius Pure Resting-State 3.31e-36

vs. Anterior Group) Fatigued Resting-State 9.98e-48
Comparisons Bi-fractal Dimension Component 2 Pvalue (Prob. >Chi-sq)
Muscle Differences
(Soleus vs. Gastrocnemius Pure Resting-State 4.68e-37

vs. Anterior Group) Fatigued Resting-State 2.26e-43
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Figure 8.1: Multiple comparison tests of differences between muscles using a
ranked sum comparison, which does not assume a normal distribution. Compar-
isons are performed for each component and resting-state separately, with the
soleus showing strong significant differences between the fast-twitch muscles.

Figure 8.2: This shows the box plots from the Kruskal-Wallis comparisons
between the resting-state acquisitions. Decreases in the fractal dimension, were
significant, and are seen when comparing pure to fatigued rest.
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8.4 Discussion
The discussion of the significance of the results of using the BOLD bifractal dimension to
differentiate between muscle fibres, and its clinical significance, is well covered in the discussion
in Chapter 5. Therefore the focus of this discussion will be comparing the results seen in Chapter
5, and the effect of using a fatigued resting-state. When compared to the pilot study results both
participant groups showed significant differences when comparing muscles when including all
participants. While saying this, in the pilot study with the athlete cohort larger differences were
seen between the mixed fibre type gastrocnemius and fast-twitch anterior group. In addition the
fractal dimension of muscle groupings followed the order of soleus > gastrocnemius > anterior
group, which suggests that a larger fractal dimension corresponds to greater slow-twitch fibre
density. When examining the pure-rest fractal dimension relation with the non-athletes the
order of muscle fractal dimension for component 1 was soleus > gastrocnemius > anterior group,
and component 2 soleus > anterior group >gastrocnemius. Although for component 2 this is
contrary to the trend seen in more athletic group, no significant differences were seen between
the gastrocnemius and anterior group in the non-athlete cohort, so the relative magnitude in
the fractal dimension between these muscles cannot be reliably assessed. Encouragingly, in
both cohorts of subjects the fractal dimension of the soleus was greater than other two more
fast-twitch predominant muscles, suggesting a larger fractal dimension corresponds to a greater
density of slow-twitch fibres. The current results with the non-athletic cohort indicate that the
fibre type profiles of non-athletes is less differentiated than athletic individuals, but this would
have to be corroborated with biopsy results. The less well developed muscles in the lower-leg
in this cohort, although non-ideal is more reflective of the clinical population. Therefore if
this novel bi-fractal dimension tool were to be translated to clinical implementation it must be
refined to allow for the differences between the anterior muscles and gastrocnemius to be more
readily identified on a global population basis.

The next point of discussion is the effect of using a fatigued resting-state as opposed to
a pure resting-state in differentiating muscle fibre type profiles. To begin, when examining
the differences on a individual participant level the fatigued rest-state did not significantly
affect the gastrocnemius vs. soleus comparison, but performed worse for the anterior group
vs. gastrocnemius comparison. This was in-contrast to when examining results over the entire
subject population where the differences between muscles was more pronounced during the
fatigued resting-state. This was seen by the larger significant differences found in Tab. 8.2
and the larger separation between the soleus and other muscle groupings seen in the multiple
comparisons in Fig. 8.1. This could be caused by the larger variation in the fractal dimension
measures, as seen in the boxplot graphs when comparing the two different states of rest (Fig. 8.2).
The larger variation in the group fractal dimension measures within each muscle, could attribute
to the worse gastrocnemius and anterior muscle classification seen on an individual participant
basis. Therefore on an individual subject basis the fatigue rest-state is comparable to pure
rest and when looking at trends over the subject population it performs better. The worse
classification performance could be due to participant biological variability, which would have
to be confirmed by muscle biopsy. Therefore the marginally worse classification accuracy could
be more reflective of the ground truth, as when looking at trends over groups the fatigue resting-
state does perform better. This statement should be taken with caution, as without biopsy as
a validation of participant specific muscle fibre type ratios a definitive conclusion cannot be
made. Regardless, in future work where biopsy is required to validate the bi-fractal muscle
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BOLD metric to perform muscle fibre typing, both the pure and fatigued-resting state should
be examined as neither shows superiority while currently using hypothesized muscle fibre type
ratio estimation based off of normative data.

The final point of discussion is the decrease in the fractal dimension measure when comparing
the pure to fatigued rest state. This showed across all muscles and components. This indicates
that as a function of fatigue the relative complexity of the BOLD signal decreases. Since
the BOLD signal is related to metabolism and perfusion this implies that as a function of
fatigue perfusion complexity decreases. To state this differently this indicates that as a function
of fatigue muscle perfusion and metabolism becomes more regular or structured. Therefore
this result suggests that as a function of fatigue muscle perfusion becomes less random and
more structured in order to meet the increasing demands of the muscle. This results shows
parallels to decreases in neural BOLD complexity during task has been described through
decreased randomness in neural activity when compared to rest [131]. Therefore, a decrease in
BOLD signal complexity, or blood flow complexity may be a metric of fatigue. To the author’s
knowledge this is the first investigation that has shown the decrease in mBOLD complexity as
a function of fatigue. With further investigation this could be used to understand the relative
difference in perfusion as a function of fatigue, which could be imperative in assessing diseased
muscle dysfunction in disease, as muscle dysfunction is associated with rapid fatigue onset.
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Chapter 9

Determining Muscle Activation
State

9.1 Introduction
The focal point of this thesis to provide a more comprehensive understanding of muscle through
novel measures and a more complex representation of the inherently complex functional and
structural composition of muscle. As such, this section uses a phase space representation of
muscle activation to more accurately characterize muscle behaviour. The phase space describes
a signal’s state/state-transitions over time. The phase space provides novel insight instead of
the conventional temporal BOLD analysis techniques, such as correlation with an ideal response
function, its time to peak, hyperemic peak value, peak area, and peak width. [46], [50], [51]. The
phase space representation of the BOLD signal has shown promise in classifying neural activation
patterns, as seen through my abstract presented at ESMRMB 2021 entitled Functional Magnetic
Resonance Imaging Analysis Revisited: A Model Free Approach [89]. This work showed that
during a simple finger tapping block design paradigm that phase space separability metric
agrees with hemodynamic response function correlation activation patterns, yet is model free.
Specifically, a phase space where the active and resting states could be readily separated was a
more functionally active region. Additionally, the work showed how the phase space separability
was sensitive to hand-dominance, and thus could show activation as a gradient due to brain
state organization and not, subject specific amplitude. This work laid the foundation for the
use of the phase space to assess muscle activation, through using a phase space separability
metric. Additionally, it was hypothesized that a phase space analysis would provide insight
into the activation of muscle and whether or not it was a binary classification of active during
contraction and inactive during rest. As was discussed in Chapter 3, the phase space has not
been used commonly in BOLD imaging, with the primary focus of examining neural process
non-linearity. Therefore to the author’s knowledge this phase space approach to quantifying
BOLD muscular activity is unprecedented.

9.2 Methods

9.2.1 Data Acquisition and Preprocessing

The paradigm design, rationale, parameters for MRI data acquisition, and fundamental prepro-
cessing steps are outlined in Chapter 7. The data which were used in this particular analysis was
the motion and field map correction functional data from the BOLD plantar flexion block design
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without the SAT band. This was chosen as this was the longest exercise paradigm without a
SAT band, thus it would be more likely to show fatigue provides insight into differing mus-
cle activation characteristics. The non saturation band acquisition was also chosen, as a SAT
band for muscle BOLD acquisitions is not conventionally used, so any conclusions on muscle
activation did not want to be confounded by the use of a SAT band.

9.2.2 Data Analysis

To assess muscle activation using the novel outlook of the phase space, the analysis was per-
formed by writing a set of scripts in MATLAB. The first step involved segmenting the voxel
time-series to reduce the influence of motion artifact. To facilitate comparison with the previ-
ous analysis techniques the window lengths were chosen to remain consistent. All 66s windows
which correspond to 600 time points were truncated to 512 point windows, of suitable length
for fractal dimension analysis, by discarding the first and last 44 time points for each rest and
active block respectively. Once again this was done to reduce gross motion BOLD spikes, to
allow for muscle compartment size and participant ankle position normalization. The next step
was to identify the voxels that were within a specific muscle by using the manually created
masks for reference. The three masks were consistent from the previous investigations covering
the gastrocnemius, soleus and anterior group. The phase space for all relevant voxels that fell
within muscle masks was created by using the time-series and its temporal derivative. This
method was preferred over plotting the time-series against a latent term. This is because the
latent term requires a metric of determination, such as principal component analysis. Therefore
the latent term may vary across voxels, whereas the derivative computation would remain con-
stant which is preferable for the voxel-wise analysis employed. With the outlook to use phase
space metrics to quantify muscle activation, an activation reference was required. Thus, for all
participants, and all voxels within muscle masks, the correlation between the voxel time series
and the ideal activation function was computed. This ideal activation was a boxcar function,
with block lengths of 512 points, where the resting-state was given an amplitude of zero and
active state an amplitude of one. The correlation with the ideal hemodynamic response func-
tion (HRF) served as the activation reference, or ground truth, prior to finding activation using
novel phase space approaches. The first means in which activation was assessed in the phase
space is by assessing the phase space separability. Phase space separability into active versus
rest states was assessed with a linear discriminant classifier. For a given voxel phase space, a
linear boundary between the time points in the four rest blocks and time points during the four
plantar flexion (active) blocks was generated using the MATLAB function MdlLinear(). Then
the separability of the phase space into rest and active states was determined by assessing the
classification accuracy of this linear boundary. Voxels that had a high degree of separability
between the active and rest states would have high classification accuracy. Voxels that were
agonists (well correlated with the activation function with a positive correlation coefficient) and
antagonists (well correlated with the activation function with a negative correlation), would
both appear to have a high phase space separability. As such, the absolute correlation of the
HRF activation was compared to the phase space separability to see if both metrics came to the
same conclusion on the regions of activation in the muscle. Fig. 9.1, shows a comparison of the
absolute HRF correlation and the phase space separability classification accuracy for a partic-
ipant, where the mappings look remarkably similar. This observation was assessed by finding
the correlation between the absolute HRF correlation value and phase space separability clas-
sification accuracy at every voxel for each participant and muscle respectively, as summarized
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in Tab. 9.1.

Figure 9.1: This shows a subject’s activation maps using (top) an absolute ideal
HRF correlation with a boxcar model versus the model independent (bottom)
phase space separability metric. The absolute correlation ranges from 0 to 1 and
phase space separability from 0.5 to 1 where 1 is perfectly separated resting and
active states. Both maps show the involvement of agonist and antagonist regions,
with a great similarity.

Next, the phase space was plotted at voxels that had a high correlation with ideal hemody-
namic response function and a high phase space separability, to determine if the phase space
could provide novel insight into the activation state of muscle. Fig. 9.2, shows two example
voxels with high activation. The conclusions that were made from the initial plots seeded the
further analysis and will be explained in further detail in the results section. But in short, the
initial plots showed that both agonist and antagonist active muscle regions had multiple states,
and provided insight into muscle fatigue.

Subsequently, to test if the anecdotal evidence of muscle showing multiple states during
exercise held over all participants and regions, a clustering analysis was done. The first step of
this analysis was to find the optimal number of clusters that a given voxel phase space possessed.
This was achieved using k-means classification and the silhouette metric to determine decision
validity. Since the block design consisted of 8 blocks, 4 during rest and 4 during plantar flexion,
the maximum number of states/clusters the phase space would show is 8. Therefore, for a given
voxel time-series, a k-means approximation was generated for a range from 2 to 8 clusters.
The silhouette coefficient was then found for all data points, for a particular cluster number
variation, to assess the degree of separation between clusters. Silhouette coefficients range from
[-1 1] where being near 1 indicates the sample is far away from the neighboring clusters, 0
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Figure 9.2: This shows the phase space of two voxels that were confirmed to
be highly active during exercise (i.e. had high correlation with the ideal HRF
and also high phase space separability). This was used in order to visualize the
number of clusters and the distribution of the clusters over time. Both voxels
show multiple state clusters, and a fatigued rest state more closely approaching
the active state, during the simple plantar-flexion paradigm

indicates the sample is close to the decision boundary between two neighboring clusters, and
-1 the sample might have been assigned to the wrong cluster. The silhouette coefficients were
averaged for all time points to assess the degree of separation using a given number of clusters.
An example of a multi cluster phase space can be seen in the bottom image in Fig. 9.3, which
is indicated by a large positive silhouette score. The number of clusters in a voxel phase space
was then chosen by selecting the number of clusters that lead to the largest average silhouette
coefficient, but if the optimal number of clusters was 2 and silhouette coefficient was less than
0.75 this suggested low state separation, and the region was assigned to one cluster. The
rationale behind this threshold can be seen in an example silhouette plot (Fig. 9.3), where what
appears to be a single cluster would be classified as have two clusters if this threshold was not
employed. The optimal number of phase space clusters was determined on a voxel-wise basis
for all participants and muscles respectively. To see if the number of clusters was related to
muscle activation, the correlation between the relative activation of the muscle, via the HRF
correlation, and the number of phase space clusters was computed for all participants and
muscles separately.

The final point in this analysis was to assess the other observation when plotting the differ-
ent rest and active blocks, where the resting-state approached the active state due to fatigue
(Fig. 9.2). The analysis was performed for each participant, and all their voxels within the three
muscle groupings, separately. For voxels that were determined to be active, having an absolute
correlation of greater than 0.75, and were multi-state, had more than two states, three phase
space centroids were computed. The centroids were of the mean of all active blocks, of the first
resting-state block, and the final resting-state block. The distance from the initial resting-state
to the active cluster and from the final rest-state block to the active cluster was computed. The
percent of voxels within a muscle that had the final resting-state closer to the active cluster, was
computed. If the participant’s muscle had more than 10 voxels that were active and multi-state,
providing a reliable behaviour estimate, they were included in the average across muscles.
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Figure 9.3: This shows the phase space which have multiple states and their
corresponding silhouette plots to decide the optimal cluster number. Top left: a
case where due to low separation between the resting and active state the phase
space is assigned to one cluster. Top right: a clear two cluster system indicated
by a high silhouette score. Bottom: A four cluster system with two rest and
active states, the high silhouette score indicates the significance in the four cluster
observation.

9.3 Results
To assess if the phase space separability could be used as a model free approach to quantify
muscular activation, the absolute correlation of the HRF activation was compared to the phase
space separability to see if both metrics came to the same conclusion on the active regions
in the muscle. The results in Tab. 9.1 show the clear similarity between the metrics, where
the correlation between metrics in their decision of activation ranged from 92.44% to 98.51%.
The very high correlation between the two metrics means that the phase space separability can
reliably quantify muscular activation, while presenting the advantage of not requiring correlation
with an ideal HRF, which is dependant on the chosen HRF model.

The next point of discussion are the results gained from the voxel visualization, a sample of
which is seen in Fig. 9.2, which shows two example voxels with high activation. The key features
to note is firstly that based on the correlation sign, which indicates if the muscle within the
voxel is a agonist or antagonist, the relative position of the active cluster compared to the origin
(left vs. right) changes. Therefore although the absolute correlation is previously compared to
the separability, the correlation sign could be recovered by finding the relative cluster position
in comparison to the origin. Additionally, the voxel phase spaces’ show multiple clusters, where
the resting blocks are shown in blue and active blocks in red, in the colour phase space plots.
These plots show more than 2 clusters (i.e. one for active and one for rest), which illustrates
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Table 9.1: Summary of correlation between the absolute HRF correlation value
and phase space separability classification accuracy for each participant and mus-
cle respectively.

Correlation between muscle activation metrics
of the absolute correlation with the ideal HRF
and the phase space separability

Subject Gastrocnemius Soleus Anterior Group
1 96.89% 92.75% 97.74%
2 96.76% 97.15% 98.51%
3 96.59% 97.26% 97.47%
4 97.16% 96.34% 96.99%
5 97.63% 97.02% 97.07%
6 96.06% 95.90% 96.24%
7 92.44% 96.93% 96.13%
8 97.59% 97.67% 95.40%
9 96.11% 97.21% 95.58%
10 96.54% 94.13% 96.58%
11 94.27% 94.87% 96.82%

that an active muscle region is not solely active or inactive. In addition to this, when examining
the resting-state blue clusters, on a block by block basis, the initial resting-state block, where
no exercise is performed, appears the furthest away from the active block clusters in red. The
other three resting blocks appearing closer to the active state then the initial resting block
suggests that as the muscle fatigues it more closely approaches the active state. This result
was profound, and it was verified visually in other participant muscles before performing a
multi-state activation and resting-state fatigue analysis.

The results of the multi-state activation assessment showed that voxels within the muscle
showed multiple states, with a regional dependency. This can be seen through a sample par-
ticipant’s absolute correlation map and the map showing the number of states within a given
voxel phase space (Fig. 9.4,). When assessing if the number of states within a particular voxel
was correlated to the degree of activation no significant correlation was found. Additionally,
when comparing if their was a correlation between relative voxel activation and if the voxel had
single, dual, or multi-state (all number of clusters from 3-8 stated as one term) their was also
no significant correlation.

The final point of investigation was if the final resting-state more closely approached the
active state than the initial resting-state, where no prior exercise had been performed. The
percentage of voxels where the final state was closer to the active state than the initial state is
summarized in Tab. 9.2. While there is some variability amongst participants, when looking at
the means averaged across participants for each muscle a trend is present. The resting-state at
the end of the block design is closer to the active state then the initial rest in the multi-state
voxels 50.11% of the time in the gastrocnemius, 61.89% of the time in the soleus and 74.66%
of the time in the anterior group. This indicates that as the muscle fatigues it more closely
approaches the active state.
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Figure 9.4: This shows a subject’s voxel-wise activation maps using (top) an
absolute ideal HRF correlation with a boxcar model versus the optimal number
of states determined by performing kmeans clustering (bottom). The optimal
number of states is chosen by silhouette analysis and must remain between 1-8
due to the 8 block exercise paradigm. This shows the muscle activation and how
it relates to the number of blood-flow states.

9.4 Discussion
The phase space representation of the BOLD which has not been readily explored proved to
be insightful when examining muscle behaviour. Similar to the findings in [89], there was
a high degree of similarity between the activation mappings via the absolute correlation of
the HRF when compared to the phase space separability. The similarity between the metrics
was strong, where the correlation between metrics in their decision of activation ranged from
92.44% to 98.51%. This suggests that although these metrics are closely related they are not
identical, therefore the phase space separability may provide novel activation insight compared
to the conventional HRF correlation metric. Although the novel insights from the phase space
separability as an activation metric was not explored, this result still will have a profound affect.
Firstly, the phase space separability could be used as a model free approach to quantify muscular
activation. The HRF model used will affect the correlation with the BOLD time-course, so a
solution that does not assume a specific model is advantageous. Additionally, muscle activation
which can be quantified by the amplitude of the BOLD signal, is highly dependant on the B0
and B1 field homogeneity which will affect amplitude measures. This phase space separability
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Table 9.2: Summary of the percentage of voxels where final was closer than
initial resting-state to active phase space clusters for each participant and muscle
respectively.N/A indicates participant did not have 10 multi-state highly active
(correlation >0.75) voxels.

Percentage of voxels where final was closer than
initial resting-state to active phase space clusters

Subject Gastrocnemius Soleus Anterior Group
1 52.94% 55.00% 68.75%
2 56.75% 58.33% N/A
3 71.67% 57.69% 80.00%
4 50.00% N/A N/A
5 59.02% 42.86% 83.87%
6 23.53% 69.23% 54.54%
7 42.86% 80.00% 86.11%
8 16.67% 80.00% N/A
9 52.00% 88.89% 85.71%
10 N/A N/A N/A
11 75.76% 25.00% 63.64%
Mean 50.11% 61.89% 74.66%

metric does not rely on amplitude and is a relative measure, which could be more robust in the
case of field inhomogeneities within the imaging volume.

The next major point of discussion is the result from performing a multi-state activation
and resting-state fatigue analysis. The novel finding is that the muscle BOLD phase space
presents more than two clusters in some regions. This suggests that muscle activation cannot
simply be binned into an active or inactive state. This means that our understanding of muscle
activation needs to be completely reevaluated. The multi-state activation indicates one of three
possibilities, one is that throughout the state of exercise muscle does not return to its initial
resting-state as we fatigue. The second possibility is that throughout the state of exercise muscle
does not reach the same active state as we fatigue. The third option is a combination of the
previous two, where both the resting and active state changes position as a function of fatigue.
This third option, based off the initial visualization of the muscle phase space plots, appears to
be the most common, but this still needs to be validated with rigorous investigation.

Building on this new found multi-state activation of muscle BOLD, more interesting findings
were observed when examining if the fatigued resting-state more closely approached the active
state then when at pure rest. When examining active multi-state voxels, and averaging across
participants, this was true for 50.11% of the time in the gastrocnemius, 61.89% of the time
in the soleus and 74.66% of the time in the anterior group. This indicates the final fatigued
resting-state of muscle is closer to the active state then when at pure rest. This suggests that
as the muscle fatigues it more closely approaches the active state. Although the high levels of
fatigue are not expected in the anterior group during plantar-flexion, it can be hypothesized
that fatigue is caused by the slight dorsi-flex position of the foot while it is resting against the
pedal. This finding although impactful, needs to be further validated due to the heterogeneity
of the results across subjects. This heterogeneity could be in part due to the fact that not all
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subjects experienced high enough levels of fatigue for this pattern to be present. The block
design was not initially designed to elicit high levels of muscle fatigue as it consisted of equal
rest to plantar-flexion blocks performed at 40% MVC. Therefore a block design with shortened
rest blocks, and increased weight for the plantar-flexion, could be used to increase fatigue and
validate this finding of fatigued muscle approaching its active state. To conclude, the phase
space analysis of muscle BOLD activation provided a novel non-model dependent approach to
quantify muscle activation, identified that muscle activation is not a binary process, and that
when compared to muscle purely at rest, fatigued muscle at rest appears more similar to its
contracted state.
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Chapter 10

Determining SAT Band Effects on
Muscle BOLD

10.1 Introduction
In this thesis the main outlook is to improve our description and understanding of muscle
through the use of novel metrics. As such, this section explores the novel use of a saturation
band placed superior to the muscle BOLD imaging slices, as in Fig. 10.1. This was done in an
effort to reduce the affect of the pulsatility artifact that can be caused due to arterial in-flow.
The pulsatile nature of the arterial BOLD signal can propagate to surrounding voxels, causing
periodic spiking in the data which could obscure muscle activation. The amplitude of the arterial
BOLD signal can be larger than that found in the muscle tissue as it is highly oxygenated, and
has relatively less deoxy-hemoglobin, which induces spin dephasing and signal loses. Therefore
as specified in the data acquisition section, to saturate arterial spins a 50mm SAT band was
placed flush with the top imaging slice to reduce the arterial signal contributions. The decreased
arterial signal intensity due to the SAT Band can be seen visually in the peroneal, anterior and
posterior tibial arteries in Fig. 10.1. By comparing activation patterns during an identical
exercise paradigm the relative affect of the SAT band on muscle activation classification could
be assessed. To the author’s best knowledge the use of a SAT band to reduce arterial in-flow
effects in muscle BOLD imaging during exercise has never been explored. With the potential
of this technique to reduce noise contributions, muscle activation could be more accurately
quantified, which promotes a more comprehensive understanding of muscle BOLD.

10.2 Methods

10.2.1 Data Acquisition and Preprocessing

The paradigm design, rationale, parameters for MRI data acquisition, and fundamental prepro-
cessing steps are outlined in Chapter 7. The data which was used in this particular analysis
was the motion and field map correction functional data from the BOLD plantar flexion block
design both with and without the SAT band.

10.2.2 Data Analysis

To assess if there were differences in muscle activation with and without the SAT band a
simple analysis was performed using the script SATBandAnalysisActivation.m. The first step

98



Master’s of Applied Science in Biomedical Engineering - Joshua E. McGillivray;
McMaster University - School of Biomedical Engineering

Figure 10.1: This shows sample placement of the SAT band superior to the
imaging region. It also shows the reduced intensity in the peroneal, anterior and
posterior tibial arteries due to the SAT band.

involved segmenting the voxel time-series to reduce the influence of motion artifact. To facilitate
comparison with the previous analysis techniques the window lengths were chosen to remain
consistent. All 66s windows which correspond to 600 time points were truncated to 512 point
windows, of suitable length for fractal dimension analysis, by discarding the first and last 44
time points for each rest and active block respectively. The next step was to identify the voxels
that were within a specific muscle by using the manually created masks for reference. The three
masks were consistent from the previous investigations covering the gastrocnemius, soleus and
anterior group (tibialis anterior, peroneus and extensor longus groups). This was performed for
each participant and muscle respectively and the voxel timeseries was stored for later analysis.

The relative activation for each voxel was computed by assessing the correlation between the
voxel time series and the ideal activation function. This ideal activation was a boxcar function
where the resting-state was given an amplitude of zero and active state an amplitude of one.
The correlation with the ideal hemodynamic response function (HRF) for the given paradigm
was computed at all voxel locations for each muscle, participant and SAT band variation. The
correlation was quantified using a correlation coefficient ranging from -1 to 1, where -1 indicates
perfect anticorrelation (the region was active during the rest period), 0 indicates no correlation
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(the activation is not related to ankle flexion) and 1 indicates perfect correlation (the region
is active during the active period). To assess activation preliminarily, the voxel-wise absolute
correlation for each SAT band was plotted. The absolute correlation was used as it describes
how active a voxel is, as the muscle agonist and antagonist pair would show positive and
negative correlation respectively, even though they are both essential for contraction. A sample
participant’s correlation comparison can be seen in Fig. 10.2.

After verification of activation in relevant muscle regions, the activation differences due to
the SAT band placement was assessed through using multiple one-sided t-tests. The first set of
t-tests was performed by comparing each muscle group for each participant respectively. For
each voxel in a muscle grouping the correlation with the SAT band is subtracted from the
correlation without the SAT band. A subtraction of correlations is required to perform a valid
voxel wise comparison between metrics that is not influenced by the overall correlation average
over the entire muscle. If a single sided t-test comparing these subtracted correlations has a
non-zero mean then this implies that the activation maps differ either in magnitude or sign of
correlation. To isolate solely for the magnitude of correlation difference between the differing
SAT band conditions the absolute correlation was subtracted voxel-wise as described above,
and a single sided t-test was used for each muscle and participant respectively.

Since differences were found between activation maps after using the SAT band, two compar-
isons were used to assess if the SAT band reduced noise to improve active/in-active classification
accuracy. The first comparison compared the ability of the SAT band to improve classification
accuracy at very active, correlation magnitudes of >75%, or inactive, correlation magnitudes
of <25%, states. This was completed by identifying all voxels in the No SAT band data that
had correlation of <0.25 or >0.75 and comparing to the SAT band correlation. The number of
voxels where the with SAT band outperformed the no SAT band was tallied based on muscle
and participant. Outperforming was defined as improving classification accuracy, which was
when the SAT band acquisition had increased correlation for the active voxels and decreased
correlation for the inactive voxels, relative to the standard no SAT band acquisition. The sec-
ond comparison compared the ability of the SAT band to improve classification accuracy at the
borderline active state, where arterial noise would have the greatest effect. This was completed
by identifying all voxels in the standard No SAT band data that had correlation of >0.4 and
<0.5 or >0.5 and <0.6 and comparing to the SAT band correlation. Once again the the number
of voxels where the with SAT band outperformed the no SAT band was tallied based on muscle
and participant. Similarly in the >0.45 and <0.5 window, decrease in accuracy indicates a
more definite inactive decision, and in the window from >0.5 and <0.55 an increase in accuracy
indicates a more definitive active decision. The percentage of voxels where the SAT band ac-
quisition outperformed the no SAT band was tallied for each of the three muscle regions for all
participants individually. Then this percentage was averaged across participants for each muscle
to provide insight into how the SAT band affected activation classification in each muscle.

10.3 Results
The first notable result can be seen when examining a sample participant’s correlation com-
parison can be seen in Fig. 10.2. Visually activation (high correlation values with the ideal
activation function) can be seen in the tibialis anterior, exstensor hallicus longus, and in the
medial gastrocnemius and soleus, which are all involved in plantar flexion as either an agonist or
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antagonist. Comparatively, with the SAT band acquisition greater regions of activation can be
seen, this corresponds well to the significant differences seen for participant 7 (row 7, columns
4-6) in Tab. 10.1.

Figure 10.2: This shows the activation maps of one participant with (top) and
without (bottom) the SAT band. Activation is assessed using the absolute corre-
lation with a binary boxcar hemodynamic response function for the given block
design with 4 periods of rest and 4 periods of plantar-flexion exercise. Abso-
lute correlation is used to show both agonist and antagonist regions involved in
plantar-flexion. Notably the activation map using the SAT band acquisition dif-
fers.

As specified above, the visual investigation of the activation differences was corroborated
through the use of muscle specific t-tests for differences in correlation induced by the SAT band.
The results of these single sided t-tests for the difference in activation and absolute activation are
summarized in Tab. 10.1. For each participant 6 comparisons are performed (3 muscles and two
correlation conditions), therefore to account for these multiple comparisons using bonferonni
correction the significance threshold should be adjusted from P<0.05 to P<0.00833. Each
participants data is statistically independent in this instance so no correction needs to be made
for performing comparisons for all subjects. When examining the difference in the activation
due to the SAT band, all participants show significant differences in at least one muscle, and
7/11 showing significant differences in two or more muscles. Furthermore, when examining
the difference in the magnitude of activation due to the SAT band, 9/11 participants show
significant differences in at least one muscle, and 4/11 showing significant differences in two
or more muscles. This suggests that the primary differentiating factor between the activation
differences is due to the magnitude of activation not the sign.
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Table 10.1: Summary of the p-values, corrected significance threshold
P<0.00833, for the single sided t-tests performed for each muscle and each partic-
ipant respectively. The two metrics of comparison were the voxel-wise correlation
and absolute correlation differences for the with and without SAT band acquisi-
tions.

Subject
P Value HRF Correlation Differences
With and Without SAT Band

P Value HRF Correlation Differences
With and Without SAT Band

Gastrocnemius Soleus Anterior Group Gastrocnemius Soleus Anterior Group
1 0.2246 0.0016 0.0544 0.5202 0.0012 0.0088
2 0.0389 1.338e-5 0.0090 0.8444 0.3715 0.3632
3 2.632e-5 0.0337 7.372e-5 8.9279e-5 0.1868 0.2955
4 7.0439e-8 0.3539 4.998e-20 6.2080e-9 0.5506 0.0254
5 2.697e-22 1.031e-8 1.555e-12 3.4769e-32 0.0387 8.204e-5
6 9.671e-6 5.990e-9 0.050 0.5757 0.3562 0.0105
7 3.919e-7 0.1892 2.798e-4 4.8308e-15 3.276e-7 9.8145e-5
8 0.7787 6.539e-7 4.944e-10 0.0789 0.0418 5.9818e-6
9 8.4868e-8 2.652e-12 0.8794 0.2511 0.1359 5.7358e-4
10 3.488e-11 0.0301 3.530e-10 4.2142e-28 1.3030e-50 3.5669e-33
11 3.285e-6 0.3443 0.8738 1.471e-16 4.115e-22 0.0671

Table 10.2: Summary of the average number of voxels within a muscle group,
averaged across participants, where the SAT band improved classification. The
classification at relatively confident and boundary decisions was assessed.

Correlation Window
Percentage of Activation Classification
Improvement With vs. Without SAT Band
Gastrocnemius Soleus Anterior Group

High Confidence Correlations
(<0.25) OR (>0.75)) 31.58% 34.75% 36.89%

Boundary Condition Correlations
(>0.45 AND <0.5) OR (>0.5 AND <0.55)) 67.36% 67.23% 71.92%

The comparisons testing the relative active/in-active classification power with and without
the SAT band yielded interesting results, which are summarized in Tab. 10.2. The first area
of interest is if the SAT band increased the classification accuracy at relatively simple decision
points, where the standard non-SAT correlations were extremely high or low. The SAT band
did not improve the activation classification accuracy at these extreme values. On the other
hand, when the SAT band was used to look at activation around the boundary correlations,
where the voxel could be active or inactive, the activation classification was improved. The
SAT band decreased the correlation for voxels in the range of 0.45-0.5 correlations, which are
borderline inactive, and increased the correlation for voxels in the range of 0.5-0.55, which
are borderline active. When averaging for all participants the percentage of voxels where the
accuracy increased using the SAT band was gastrocnemius = 67.4%, soleus = 67.2%, anterior
group = 71.92%. The percent improvement for individual participant’s reached as high as 94.2%
meaning that the SAT band can have profound improvement for some individuals.
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10.4 Discussion
There has been very little exploration of the effects of saturation bands in the use of muscle
BOLD imaging, with only one abstract to date [132]. The work examined resting-state muscle
BOLD signal after intense exercise, with the major conclusion that the BOLD signal recovery
characteristics, described through the heights of recovery curves, do not appear to be affected
by SAT bands. This work although insightful does not provide insight into how the SAT band
affects muscle BOLD during exercise, which was explored in this work. The results show that
when using a SAT band there is a significant difference in the activation profiles of muscle
when using a correlation based analysis. This was presented with some heterogeneity across
participants and when comparing muscles. This variance could be due to differing muscle tone
and recruitment between participants. None the less, all participants showed significant dif-
ferences in their activation, which was primarily caused by varying amplitude of activation.
Although this result is interesting it does not provide any information on whether these activa-
tion differences are related to reduction of arterial in-flow affects. This was directly addressed
by assessing classification accuracy improvements when using a SAT band at areas that are
heavily influenced by noise, borderline active states. Through referring to Tab. 10.2, it can be
clearly seen that classification accuracy was improved by the SAT band when assessing if a
voxel was borderline active or inactive. In contrast, when looking at voxels that were extremely
active or inactive the SAT band did not increase the confidence in the decision of this state.
This suggests that the SAT band is aiding in suppressing arterial in-flow noise, due to the im-
proved classification in the nosiest state (correlation of 0.5) where a decision is hard to make.
In addition, the SAT band can be linked to noise reduction as it does not artificially improve
classification confidence overall, as this effect is not seen at high states of activity/inactivity.
The significant difference in activation profiles, in combination the evidence of improved acti-
vation classification in the presence of uncertainty, indicates that a SAT band placed superior
to BOLD imaging slices could improve data reliability. This result is important to drive the
exploration of muscle activation profiles with more certainty. It also has clinical utility as [132]
demonstrated that BOLD signal recovery during rest is not hindered by SAT bands and this
work indicates that the SAT band improves muscle BOLD activation classification, so the SAT
band could be used for both resting-state and active muscle BOLD imaging. The placement of
a SAT band flush to the superior imaging slice would not be a difficult modification to existing
clinical protocols and is relatively simple to standardize, so its adoption would be beneficial to
clinicians.
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Chapter 11

Concurrent Muscle BOLD and EMG

11.1 Introduction
In this thesis the main outlook is to improve our description and understanding of muscle
through the use of novel metrics. As such, this section explores the novel use of muscle BOLD
and EMG of the lower leg to investigate activation coherence and fatigue. BOLD and EMG
studies are conventionally limited to the exploration of EMG with neural BOLD activation
profiles. This is due to the fact that producing a MRI compatible EMG system is difficult,
and that muscular imaging during activity paradigms is a challenge due to gross motion of the
imaging volume. For those that undertake the task of constructing an MRI compatible EMG,
with in house denoising techniques, it is more feasible to investigate neural activation as the
head will move less than the contracting limb during simple exercise paradigms. Feasibility
of collecting concurrent muscle BOLD and EMG of the lower leg was demonstrated in [104].
This to the author’s knowledge is the only work that investigates muscle BOLD and EMG, and
was focused more on feasibility, with a small exploration into the relation of muscle contractile
strength and BOLD time to return to rest. Thus, the current work allows for novel insight into
muscle behaviour, as its functional output is derived from the surface EMG, which measures the
activation of muscle on the motor unit level, which can be linked to its demand with functional
MRI, that will describe the metabolic/perfusion differences in the muscle at a millimeter reso-
lution. Investigation into the relative muscle activation and the coherence of muscle perfusion
and metabolic demand, is one exploration that will be covered. Additionally, fatigue which is
conventionally derived through EMG has not been related to differences in perfusion/metabolic
demand due to the lack of concurrent measure of muscle activation and perfusion. To address
this lack of knowledge novel metrics of fatigue from the muscle BOLD signal were derived and
validated by corroborating EMG fatigue measures.

11.2 Methods

11.2.1 Data Acquisition and Preprocessing

The paradigm design, rationale, parameters for MRI data acquisition, and fundamental prepro-
cessing steps are outlined in Chapter 7. The MRI data used in this particular analysis were the
motion and field map correction functional data from the BOLD plantar flexion block design
both with concurrent EMG. The EMG data is the data that were cleaned as also outlined in
Chapter 7.
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11.2.2 Data Analysis

To assess if the interrelation between muscle BOLD, which conveys information on muscle
blood oxygenation, flow and volume, to muscle EMG, which conveys information on muscle
fibre contraction rate and amplitude, a simple analysis was performed.

The first step of analysis involved aligning the BOLD and EMG acquisitions. For the MRI
acquisition 5min 5s of data were collected with only the final 5min saved. This was done to
allow for normalization of BOLD signal intensity due to the reduced flip angle not satisfying the
Ernst angle condition. The EMG acquisition which started at the start of the BOLD acquisition
would have a 5s offset from the BOLD data. But due to complications with the MRI (the new
GE update caused these errors) the initial number of images discarded by the scanner ranged
between 3-5s (i.e. the total scan time ranged between 5min 3s - 5min 5s). Therefore to align
the time series the final 5min of the EMG data were aligned with the saved 5min of MRI data.

With the time series aligned the EMG and BOLD data was then segmented to account for
the motion artifacts that would contaminate the muscle BOLD signal. Motion artifacts will
cause spikes in the muscle BOLD signal, which impacts measures of activation. Therefore, the
first and last 2.5s (10 time points) were truncated for each rest and active block respectively.
The block length of 25s was of sufficient length to observe a BOLD response, as block lengths
of as little as 10s have been shown to be optimal in assessing BOLD activation. [133] This
truncation is also important for the EMG data as the gradient artifact removal is hindered
at the initial and final time points in the 5min acquisition due to the inability to do sufficient
window averaging. Additionally, it was observed that when a participant was transitioning from
a plantar-flexed to resting state they would not simply let their foot relax, but rather dorsi-flex
then relax. Dorsi-flexion also will engage the anterior muscle compartment, which causes a
large amplitude spike in the EMG during the rest period. This is not of primary concern for
the BOLD data due to longer time course of the hemodynamic system in the leg, on the order
of seconds as opposed to the EMG’s milliseconds, to respond to increase blood flow in response
to this action. Therefore in the EMG the initial dorsi-flexion spike could contaminate resting
baseline measures by inaccurately increasing its amplitude. Therefore this 2.5s window time
not only aids with the slice artifact removal but allows the participant some time to reach stable
ankle flexion or rest position.

With the BOLD and cleaned EMG truncated to a suitable length the block design now
consisted of 25s rest followed by 25s of plantar-flexion, which was repeated 5 times. To ver-
ify whether there was sufficient muscle activation captured from the the muscle BOLD, the
voxel-wise time-series correlation with the ideal activation function was computed. This ideal
activation was a boxcar function with 25s blocks, where the resting-state was given an ampli-
tude of zero and active state an amplitude of one. The activation in the anterior compartment
was visualized, as it should be involved in plantar-flexion in a limited capacity as it is primarily
a dorsi-flexor. The spatial activation in the anterior compartment and the EMG muscle activa-
tion was visualized for each participant prior to performing analysis, as can be seen in Fig. 11.1.
Attention should be placed on the agonist and antagonist voxels which can be determined by ex-
amining the EMG amplitude and BOLD amplitude relations. Agonist voxels will have increases
in the BOLD signal that correlates with the EMG or the ideal activation function (appearing
as yellow in the top correlation mapping). Whereas the antagonist voxels, will have increases
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in the BOLD signal that is anticorrelated with the EMG or the ideal activation function (ap-
pearing as blue in the top correlation mapping). This means that the agonist and antagonist
voxels represent muscle fibres that contract or relax respectively, to cause plantar-flexion.

Figure 11.1: Comparison of muscle activation using EMG and BOLD measures.
Left: The EMG recording is compared to an agonist (top) and antagonist(bottom)
voxel BOLD signal time course to demonstrate how the electrical and metabolic
profiles are related during muscle activation. Right: activation maps, in the ante-
rior lower leg, of one participant performing plantar-flexion. Activation is assessed
using the correlation with a binary boxcar hemodynamic response function. The
relative activation maps (top) show the strongly active agonist (yellow) and an-
tagonist regions (blue), whereas the absolute activation maps (bottom) show both
strongly active agonist/antagonist regions in yellow.

With verification of muscle activation both metabolically and functionally, the relationship
of this activation was explored. To quantify how active the anterior muscles were with the EMG
acquisition the metric of signal to noise ratio (SNR) was used. SNR was computed by rectifying
the EMG signal, then computing the ratio of the signal summed squared magnitude to the
noise summed squared magnitude, while reporting in decibels. Noise was considered as the rest
periods. The SNR provides insight into the increase in amplitude of the EMG during activity in
comparison to rest. To quantify how active the anterior muscles were with the BOLD acquisition
the metric of the magnitude of correlation, with the ideal activation function, was used. The
absolute correlation was found for all voxels within the anterior compartment and then averaged
to yield one correlation value for the entire compartment. The absolute correlation shows the
relative activation of both agonist and antagonist voxels, which are both involved in muscle
activation. These metrics were generated for each participant individually. The correlation
between the EMG SNR and BOLD absolute correlation for the anterior compartment was
assessed using all participants.

The next area of examination was into the fatigue state of the muscle, which is conventionally
investigated using EMG. The two metrics of fatigue that are conventionally used with EMG,
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the centroid frequency and root mean squared (RMS), were computed for each window for all
participant acquisitions. Participants were then identified to be experiencing muscle fatigue
by fitting a linear approximate to both metrics over time. If the participant had a decreasing
centroid frequency, negative slope, and increasing RMS, positive slope, they were experiencing
muscle fatigue during the trial. Fig. 11.2. shows a fatigued participant’s sample EMG centroid
and RMS over time. With a trial of only 5min, equal rest to recovery periods, and only 40%
MVC, high levels of muscle fatigue were not expected. However since the plantar-flexion exercise
stint occurred post two other exercise blocks, some fatigue could be present. After examining
the previous EMG SNR values, participants 8, and 10 were discarded from the fatigue analysis
as they had an SNR of 1.15dB and 1.82dB respectively, which is on the order of 100,000 times
less than the average participant EMG SNR of 6.43dB. Fatigue was observed in 7/9 of the
participants with viable EMG data, which were included for further analysis.

These known EMG metrics of fatigue over time were then compared to newly created hypoth-
esized metrics of fatigue from the muscle BOLD signal. Four metrics were derived and inves-
tigated, with the knowledge that the BOLD signal conveys information on muscle metabolism
and perfusion. The first metric was the area under the curve (AUC) of the BOLD signal.
This metric provides insight into the blood volume in a region as a function of time. It was
derived by finding the area under the curve during each rest and active window respectively.
The second metric was change in BOLD AUC over time. This provides insight into the change
in muscle metabolism/perfusion when transitioning between rest and active states. The metric
was derived by finding the difference in the BOLD AUC of the current block from the previous
block. The third metric was the BOLD centroid frequency. This metric would provide insight
into the primary rate of vascular perfusion, which can be related to changing vascular patency
over time. It was computed by finding the spectral centroid in all windows. The final metric
was the change in the BOLD centroid frequency. This metric would provide insight into the
change in rate of vascular perfusion between rest and active states.The metric was derived by
finding the difference in the BOLD centroid of the current block from the previous block.

To ensure that only the spatial regions in the muscles that were related to activation were
assessed all three metrics were evaluated for only active agonist and antagonist voxels. Agonist
voxels were identified as having correlations of >75% and antagonists as having correlations of
<-75% with the ideal activation function. The four metrics were then averaged for all agonist
and antagonist voxels respectively. Therefore for all 7 participants who experienced fatigue they
each had the following fatigue metrics, with one value per rest/active window, EMG centroid,
EMG RMS, BOLD AUC for agonist voxels, BOLD AUC for antagonist voxels, BOLD AUC
change for agonist voxels, BOLD AUC change for antagonist voxels, BOLD centroid for agonist
voxels, BOLD centroid for antagonist voxels, BOLD centroid change for agonist voxels, BOLD
centroid change for antagonist voxels. The correlation between each EMG fatigue metric and
BOLD metrics was assessed by comparing the metric values across time, using all participants.

11.3 Results
Prior to investigating the results into the relation between the relative muscle activation between
the BOLD and EMG acquisition and the hypothesized novel metrics of fatigue using the BOLD
signal, the validity of the time series segmentation needs to be explored. By removing the
initial and final 2.5s of the EMG signal, which as discussed would be profoundly affected by the
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Figure 11.2: This shows a participant who is experiencing muscle fatigue. This
is characterized by a decrease in the EMG centroid frequency and increase in the
root mean squared over time. This conclusion was made by assessing the sign of
the fitted slope (shown in purple) and if the participant was fatiguing they were
included in the fatigue analysis.

dorsi-flexion compensation when transitioning from activity to rest, the SNR increased. This
can clearly be seen with the two participants, P1 and P5, referenced in the initial preprocessing
steps outlined in Chapter 7, who had the following SNR improvements; P1 9.13 -> 13.55dB
and P5 7.60 -> 10.88dB.

Table 11.1: Summary of the EMG SNR, which conveys difference between ac-
tivation during activity, and the average correlation of all anterior muscle voxels
with the ideal activation function. These metrics indicate relative muscle activa-
tion during exercise.

Subject EMG SNR BOLD Absolute
Correlation Coefficient

1 13.55dB 0.7099
2 4.70dB 0.4965
3 9.57dB 0.7061
4 9.98dB 0.4671
5 10.88dB 0.6162
6 4.12dB 0.4523
7 7.75dB 0.7427
8 1.15dB 0.5691
9 2.68dB 0.5478
10 1.83dB 0.3503
11 4.51dB 0.6369
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The next point of discussion is the relation between the electrical and metabolic activation
in the anterior compartment. This was quantified by the metrics of EMG SNR and the BOLD
average voxel absolute correlation with the ideal activation function, and is summarized in
Tab. 11.1. Notably, the correlation between the two metrics was 56.12%, which indicates a
marginal positive correlation. This indicates a larger difference in the electrical activation of
muscle between rest and active states, will result in an increase in how coherently the muscle
fibres are perfused.

The final point of discussion is the exploration of the correlation between the known EMG
fatigue metrics to the hypothesized BOLD fatigue metrics, to uniquely describe muscle fatigue
using the BOLD signal. The correlation between each BOLD fatigue metric and EMG fatigue
metric is summarized in Tab. 11.2. The first set of correlations that displayed interesting findings
were the correlations of the novel BOLD change in AUC fatigue metric. The correlation of the
EMG RMS and BOLD change AUC for the agonist = 0.6457 and antagonist = -0.6499. These
strong correlations indicate as the RMS increases with fatigue the change in amplitude between
rest/active increases for the agonist, whereas the trend is opposite for the antagonist. This
suggests that BOLD AUC, which is a metric of perfusion/metabolism, increases relative to
rest as a function of fatigue to agonist regions and decreases to antagonist muscles. This is in
line with the shunting of blood to metabolically active regions (agonists) instead of less active
regions (antagonists) as a function of need with exercise. Additionally, the correlation between
the EMG Centroid BOLD and change AUC for the agonist = -0.3484 and antagonist = 0.2235.
Although these are relatively weak correlations, the opposite correlation sign when comparing to
EMG Centroid and RMS measures is encouraging as we know that as the RMS value increases
with fatigue the centroid frequency decreases. In addition the agonist and antagonist voxels
once again differ in their correlation sign which indicates that as one increases, its rate of
perfusion/metabolism, the other decreases. The AUC correlation did not yield any significance,
which indicates that the absolute value of muscle perfusion/metabolism does not inform fatigue,
but rather the relative change in perfusion. Additionally, the BOLD centroid metric did not
show any correlation with the EMG fatigue measures, suggesting the rate of BOLD signal change
does not seem to be influenced by fatigue. The change in the BOLD centroid showed a weak
correlation with the EMG RMS for the antagonist = 0.3278 and a smaller correlation with the
agonist = 0.1936. This suggests the change in the rate of perfusion/metabolism in antagonists
will increase with fatigue, but remain relatively constant in agonists. This statement cannot be
made with much confidence, and higher fatigue states should be captured before validating or
invalidating this conclusion on perfusion/metabolism rates.

11.4 Discussion
There has been very little exploration of the effects of concurrent muscle BOLD and EMG of
the lower leg, with only one thesis to date [104]. The work firstly demonstrated that a MRI
compatible EMG and a denoising framework can be developed from scratch. This current work
extended upon this by quantifying the relationship between of muscle activation via EMG and
relative muscle perfusion/metabolism via the BOLD signal. The positive correlation between the
level of muscle activation difference between rest and contraction and the amount of perfusion
over the entire muscle, suggests that muscle output is directly related to the degree of muscle
perfusion. This relationship although seemingly intuitive, has not been corroborated using
concurrent measures, but rather via EMG and muscle BOLD in isolation. This finding thus sets
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Table 11.2: Summary of the correlation between the EMG fatigue metrics of
the centroid frequency and root mean squared (RMS) with the newly developed
BOLD fatigue metrics. Notably the change in BOLD AUC shows correlation with
the EMG fatigue metrics.

Correlation Coefficients Between Muscle EMG and BOLD Fatigue Metrics
EMG Fatigue Metric

Contraction Type BOLD Fatigue Metric EMG Centroid EMG RMS

Active Agonist Voxels
(Correlation >0.75)

BOLD AUC 0.0750 0.2441
BOLD AUC Change -0.3484 0.6457
BOLD Centroid 0.1050 -0.0500
BOLD Centroid Change -0.0354 0.1936

Active Antagonist Voxels
(Correlation <-0.75)

BOLD AUC 0.2160 -0.0261
BOLD AUC Change 0.2235 -0.6499
BOLD Centroid -0.1259 0.1360
BOLD Centroid Change -0.0153 0.3278

the foundation for the use of either the EMG or BOLD modality in isolation with the ability to
infer what is happening both metabolically and functionally, at the level of the motor unit. The
additional insight provided by this work is into a novel metric of muscle fatigue. Although this
paradigm was not explicitly designed for muscle fatigue, 7 of the eligible participants showed
muscle fatigue. Since EMG and muscle BOLD have rarely been paired, metrics to describe
muscle fatigue using BOLD are difficult to derive. The use of EMG fatigue metrics during the
concurrent measurement of the BOLD signal allowed for direct knowledge that the muscle was
fatiguing, so the fatiguing muscle BOLD signal could be examined for measures of such. The
results showed that the EMG RMS was strongly correlated (R=0.65) with change in the BOLD
area under the curve change. Additionally, the agonist and antagonist regions showed opposite
trends, where the agonist regions increased and antagonist regions decreased in the change in the
BOLD AUC as fatigue increased. This suggests that with increases in fatigue agonist muscle will
increase its relative level of perfusion over time, and that antagonists will decrease in perfusion
overtime. This is inline with the relation shunting of blood based on metabolic need. Not only
this, but it provides the additional insight that there is not only a difference in how the blood
is shifted to active or inactive regions, but how over time the relative perfusion discrepancy
between these regions changes. Additionally the use of the change in BOLD AUC overtime
with an exercise paradigm can be used as a novel measure of muscle fatigue during BOLD
imaging. A metric to measure muscle fatigue using MRI, which has excellent spatial resolution,
provides the ability to identify how muscle regionally fatigues as a function of time. This could
be imperative in assessing muscle function in disease, as muscle dysfunction is associated with
rapid fatigue onset. Additionally, the ability to non-invasively use measures of muscle BOLD
to examine fatigue could be used to assess how muscle fatigue varies throughout rehabilitation
paradigms. To conclude, the concurrent recording of muscle BOLD and EMG is not only
feasible, can be used to examine the functional and metabolic profiles of muscle, and arguably
most importantly has provided insight into novel a BOLD fatigue metric that should be further
explored and translated to clinical use.
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Chapter 12

Discussion

12.1 Integration of Results
The results and discussion from the pilot study, (Chapter 5) and additional investigations into
muscle function (Chapters 8-11), while relevant in isolation can be integrated to generate a
broader outlook on muscle behaviour. The first major point of discussion is Chapter 10, and
the use of the superior SAT band to null the arterial spins. This data was collected with the
intent to investigate noise reduction and its ability to reduce arterial noise. The results showed
that there was improved discrimination between the active or inactive state of a voxel when
using a SAT band. Significantly, this improvement in classification was seen at the decision
boundary, but not in voxels that were already highly active or inactive. This suggests that
SAT band does not arbitrarily increase activation classification, but only improves it in regions
where noise profoundly affects the decision. These results suggest that a SAT band to reduce
arterial noise should be employed in all muscle imaging studies. To limit the scope of this thesis,
and to ensure that the SAT band was not confounding the results, all other investigations were
performed on BOLD acquisitions with no SAT band. But the profound results in this Chapter
10 indicate that all of the analysis in this work should be repeated with the SAT band acquisition
data.

Additionally, regional activation mapping is a point of intersection between these analysis
techniques. The voxel-wise correlation of the BOLD time series with the ideal hemodynamic
response function (HRF), which has an amplitude of 0 at rest and 1 during contraction, served
as an activation reference for all studies. The use of the phase space separability, with larger
separability between active and rest states as an indicator of muscle activation, proved to be
a model free approach that closely resembled the conventional ideal HRF correlation. This is
suggested by the results in Tab. 9.1, which show the high correlations between conventional
and phase space activation mapping’s for all participant and muscles. While the phase space
served as a novel activation determination metric, that was not dependent on the form of the
ideal HRF chosen, the SAT band activation mapping showed larger differences to what is seen
with this common activation reference of the ideal HRF with no SAT band. As can be seen in
Tab. 10.1, when using the same activation reference as in the phase space separability analysis,
activation profiles differed when using the SAT band. The noise suppression properties of the
SAT band and the high correlation between phase space separability and ideal HRF correlation
suggest that a combination of the two techniques would be the optimal technique to generate
activation maps in muscle. Using a SAT band and the phase space degree in separation between
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the active and resting-state, would provide a model independent solution that is robust to the
noise associated with arterial inflow effects.

Finally, fatigue is another intersection of the analysis techniques that should be discussed,
with fatigue effects being observed in the bi-fractal dimension, phase space, and concurrent
BOLD/EMG analysis. To begin, the bi-fractal dimension analysis in Chapter 8, showed a de-
crease in the fractal dimension measure across all muscles and components when comparing
the pure to fatigued rest state. This indicates that as a function of fatigue the relative com-
plexity of the BOLD signal decreases. Since the BOLD signal is related to metabolism and
perfusion, this implies that as a function of fatigue muscle perfusion and metabolism becomes
more regular or structured. The phase space analysis (Chapter 9) also presented insight into
muscle fatigue when examining the state of the initial pure rest and fatigued rest to the active
state. When examining active multi-state voxels and averaging across participants and muscles
the fatigued rest state was closer to the active state 62.15% of the time. This suggests that as
the muscle fatigues it more closely approaches the active state. The concurrent BOLD/EMG
investigation (Chapter 11) also provided insight into muscle fatigue observations through the
BOLD signal. Using the EMG metric of fatigue, increasing root mean squared as a function of
exercise duration, a strong correlation with change in the BOLD area under the curve change
was observed in agonist (R=0.65) and antagonist (R=-0.65) regions. This suggests that with
increases in fatigue agonist muscle will increases its relative level of perfusion over time and
that it will decrease in antagonists overtime. These results taken in combination suggest that
as a function of fatigue, muscle perfusion/metabolism will become more regular, show relative
increases, and more closely resemble contracted muscle while at rest.

12.2 Limitations
I would be remiss not to discuss some of the limitations of the current work. The first major
limitation of this work was the experimental population. In a study on understanding mus-
cle through the development of novel metrics an ideal population would be athletes, either
endurance or power, as they have good muscle tone and a low body fat percentage. These
athletes would have well defined muscle boundaries, increased perfusion which is especially im-
portant due to the use of BOLD imaging throughout, and less epidural fat which attenuates
the surface EMG signal as an additional impedance layer. Unfortunately, due to more stringent
recruitment procedures and limited MRI access as a non-essential worker, due to the COVID-19
pandemic the subject sample was done out of convenience consisting of other graduate students.
Additionally, this limited experimental population lead to a gender imbalance within the study.
This reduces the generalizability of the result, and a crucial next step would be to gender bal-
ance the study. By recruiting more women the work would be more robust against biological
variability. This would also have the added benefit of increasing the subject sample size which
would provide more statistical power to the results if they held at the existing level.

A second major limitation pertains to the image acquisition. Functional images were acquired
at a rapid rate with a TR=110ms, which was the fastest that the scanner would allow. Without
multi-band functionality, which allows for increased acquisition speeds due to simultaneous slice
excitation given sufficient spacing between slices, only two slices were acquired at this rate. This
meant to get a sufficient coverage of the leg to get an accurate representation of the leg, and to
increase signal levels, a 1cm slice thickness was used instead of the conventional thickness on
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the order of 3-4mm. The loss of spatial resolution in the slice direction is not ideal, but when
muscle fibre lengths can be on the order of 5-7.5cm long in the lower leg this is not of primary
concern. [134] The more significant limitation of our study is based on sampling rate of the
sequence being inadequate. Therefore, we could be under sampling the temporal BOLD signal,
which could artificially reduce variance measures that are used in the computation of the fractal
dimension. Practically, this is a research-based limitation as most clinical MRI’s do not have
multiband imaging and our techniques would be well suited for their use.

A third limitation of this study pertains to the tools available for muscle MRI analysis. Cur-
rently there is no openly accessible tool to allow for MRI analysis of the lower limb. Specifically,
there is no atlas for muscle belly’s in the leg, unlike the numerous brain atlases developed and
available on software packages such as FSL [117] and AFNI [129]. This meant that in order to
segment the muscles in the lower leg such as the soleus, gastrocnemius, and tibialis anterior,
manual masks needed to be created using an anatomic reference. The anatomic reference allows
for segmentation into major muscle compartments and to avoid large visibly apparent blood
vessels, but tissue boundaries and smaller blood vessels are not always visible. Thus, manual
muscle mask definition is subject to human error. Additionally, it is a time consuming process
which means that the muscle analysis is not well scalable to large datasets without investing
sufficient time into segmenting the muscle bellies. In saying this, this is still the current stan-
dard in the literature. The creation of a muscle atlas for segmentation of the lower limb into the
major muscle groups would allow this work to be scalable to mass datasets and for clinical use.
Another software based limitation is associated with the lack of development of noise correction
techniques for muscle imaging. For instance software such as FSL has tools to perform eddy
current correction for distortion due to EPI sequence acquisition, but this tool is optimized
for use on the brain and could not be used on the muscle. The effects of eddy currents were
mitigated by performing field map correction and time course normalization where applicable
but the data could still serve to benefit from eddy current correction amongst other denoising
techniques.

12.3 Future Work
The work detailed in the thesis above, in regards to understanding muscle behaviour through the
non-invasive methods of EMG and MRI, although extensive is not all encompassing and can be
expanded upon. The first major point of action in the future would be to address the limitations
discussed above. To reduce the gender bias of the existing study, female participants need to be
recruited. Additionally, athletes from a power and endurance background should be recruited
too, as the ideal test ground for this exploratory muscle study. This is because they would have
more well differentiated muscle groupings, promoting ease of comparison, and less peripheral
fat, leading to improved EMG data. In terms of addressing the imaging speed limitation, this
would be addressed through discussions with GE to enable the multi-band functionality to be
used on the GEM lower leg flex coil, as it currently is only enabled on multi-channel headcoils
(as was verified by speaking with GE reps and performing my own trials). To address the
limitation in regards to the software analysis tools, or lack thereof, a preliminary muscle atlas
could be developed. Through collecting high resolution anatomical images, using the parameters
employed in this work, one leg could be acquired in approximately 5min. Due to the relative
symmetry of the leg, both the left and right leg of the participant could be captured, and one leg
simply transposed in order to create two sample points for one participant. With the averaging
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of the leg and through scanning enough participants this would allow an atlas to be generated.
Therefore a single detailed segmentation of the new atlas could be completed and all new studies
spatially transformed into the common space to perform the muscle segmentation. Additionally,
a collaboration could be done with the researchers, such as Mark Jenkins of the FSL team, to
modify their existing eddy current architecture to also encompass muscle imaging.

After addressing the limitations of the work there are many feasible extensions of the work,
as this is a foundational study on exploring muscle through a novel complex representation.
One such extension is to further examine the non-invasive muscle fibre type differentiation
with the muscle bi-fractal dimension. The temporal bi-fractal dimension representation showed
excellent differentiation power in an athlete group (Chapter 5) and in a non-athlete group in
this work. It would be of interest to examine the bi-fractal dimension using a power spectrum
representation similar to that employed in [63]. This could either serve as a confirmative measure
or provide novel insights with information found in the frequency instead of the time domain.
By using a frequency representation of the data it is also possible to try to segment the data
into fractional Gaussian noise versus Brownian motion, which is an advantage over the time
domain metric. Thus there is merit in performing a frequency based fractal dimension approach
in future work. Arguably more importantly it is necessary to perform biopsy as a confirmatory
measure to the non-invasive fractal dimension metric. Histological samples of muscle fibres in
the tibialis anterior, gastrocnemius, and soleus would allow for more accurate assessment of
muscle fibre types, as opposed to the use of muscle fibre type norms, which are good estimates
[37] of the relative fibre type composition but are not participant specific. Additional ethics
would be required to perform biopsy sampling of the lower leg as this means the experiment
is transitioning a from non-invasive to invasive approach of assessing muscle fibre type profiles.
In saying this, in the leg muscle biopsy is conventionally performed in the quadriceps [44], so
either the imaging study would need to transition to imaging the quadriceps, or a skilled biopsy
professional would be needed to sample the muscles of lower leg. Preferably the biopsy of the
lower leg would be used due to the varying spectrum of the twitch profiles in the lower leg (in
order of fast twitch predominance: tibialis anterior > gastrocnemius > soleus).

One such extension is related to refining the exercise paradigm to accentuate fatigue affects.
The existing paradigm used a block design with rest and active periods of approximately 60s
with contractions at the level of 40% MVC. This was chosen to allow for the ideal window
length for the fractal dimension analysis and equal duration of rest and exercise blocks. In the
future increasing the weight to 70-80% MVC would be of interest to introduce fatigue. This
would provide novel insight into the fatigue state of muscle, with the hopes of providing insight
into the multi state muscle representation, and novel BOLD fatigue metric outlined above. The
preliminary evidence of the resting-state approaching the active state of the muscle as a function
of fatigue could be more readily confirmed with higher fatiguing exercise.

Another avenue of future work is through modifying the EMG acquisition. Currently the
EMG was acquired by placing electrodes over the tibialis anterior during plantar flexion. This
specific exercise not only activates the anterior muscle compartment but also the lateral gastroc-
nemius so electrodes placed at this site could be of interest to examine muscles that generate
more force. This measurement could be done by changing the placement of the electrodes using
the current set-up or through using a multi-channel EMG system. Additionally, although the
framework for denoising the EMG, through modifying the EEG based FASTR technique, was
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validated and yielded good results it could be further improved. The existing denoising tech-
nique through FASTR does not take into account the dependence of gradient artifact amplitude
based on electrode position, that was shown through preliminary tests of the EMG suitability.
More extensive tests could be completed on mapping the EMG gradient artifact depending on
position within the bore and this information could be used to inform the artifact template
generation and subsequent removal to improve upon the signal to noise ratio of the EMG sig-
nal. The extremely noisy environment of the MRI when recording EMG could benefit from this
improved artifact template creation leading to improved SNR.

The last extension that will be discussed is to examine the differences in functional imaging
with and without a SAT band more in depth. A preliminary analysis of the imaging with and
without the SAT band, which is 50mm and proximal to the slice location, show decreased vessel
noise and consequently differences in activation in the lower leg. Although these findings are
unprecedented there are still numerous options to explore the benefit of using a SAT band in
muscle BOLD imaging. One such analysis would be to examine the fractional Gaussian noise,
through the use of the power spectral representation of the muscle BOLD signal, during rest
with and without the SAT band to see if there is a reduction of said noise. In addition to this,
SAT band placement and the affect on the resulting data needs to be explored more in depth.
The SAT band was placed flush to the top imaging slice of the two slices. The relative spacing
between the SAT band and the proximal imaging slice and its affect on noise suppression needs
to be tested to find the optimal spacing to attain the best noise suppression. Finally, a SAT
band was placed anterior to the imaging slices in the lower leg in an effort to reduce the inflow
effects of the arteries, but no SAT band was placed below the leg to reduce the venous inflow
affects. This was done as the venous blood is de-oxygenated will have a lower BOLD signal
amplitude and should not be of primary concern. In saying this, it is still an assumption that
needs to be tested and proven which could only be done by placing a SAT band posterior to the
imaging slice to reduce venous inflow effects either in isolation or in combination with a SAT
band anterior to the slices reducing arterial inflow affects.

12.3.1 Clinical Implications

Although the future directions listed above are important to further the understanding of muscle
the most important future direction is translation to clinical use. What is most easily translated
to having clinical utility is the non-invasive muscle fibre type representation. I believe the
further exploration in confirming the non-invasive biopsy metric with the biopsy samples has the
potential to yield the most clinical utility as it could improve muscular disorder diagnosis. The
multi-state representation of the muscle could show clinical utility in more accurately describing
muscle fatigue or grading its function when comparing healthy to diseased skeletal muscle. This
means muscle activation could be more accurately and non-invasively assessed which would allow
for the assessment of muscle function or dysfunction to grade muscle injury, quantify disease
state or assess functional improvements in muscle activation over the course of rehabilitation
plans. Thirdly, further exploration of SAT band placement and its noise suppression properties
across all muscle groups in the lower leg could have an impact on how muscle BOLD imaging is
performed clinically. Suppressing noise in functional data is advantageous to more accurately
characterize behaviour and it is a simple modification to existing clinical functional scans. If
the SAT noise suppression investigations proved robust it would not be difficult to promote
adoption of using a SAT band due to its ease of use with the current scanning architecture.
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Finally, the BOLD change in amplitude between contraction states over time could also be used
as a fatigue metric to non-invasively investigate muscle wasting. The techniques and metrics
explored in this thesis, although one step removed, with some additional exploration could show
excellent clinical utility, which was the desired outlook of this work.

12.4 Conclusion
To provide a very brief overarching summary this thesis provided novel insight into the functional
behaviour of muscle. Through using the BOLD imaging of the lower leg, at rest and during a
variety of weighted plantar-flexion paradigms at 40% maximal voluntary contraction, a variety
of novel analysis techniques provided insight on muscle. The first technique of examining muscle
blood-flow complexity at rest using a bi-fractal dimension representation was able to determined
differences between muscle fibre types, which means it could replace the currently invasive
techniques that find muscle fibre type distribution to determine muscle disease state. The
second exploratory technique of using the phase space to define the state of the BOLD signal
over time provided two key findings. The first, that the amount of separation of the active and
rest state in the phase space can be used to determine regions of muscle activation, without
relying on a model which will introduce bias into the measure. The second, was that during
exercise muscle blood flow appeared to change between two or more states, and that the fatigued
muscle more closely approaches the active state. The third technique, of using a saturation
band proximal to the imaging region to mitigate the arterial in-flow effects, was successful
in doing so, as it improved the classification of muscle activation in the regions of highest
uncertainty when the affects of arterial noise would be expected to be the largest. The final
outlook on muscle behaviour involved using EMG measures of fatigue, collected through an
in-house EMG acquisition and analysis framework, to develop novel metrics of fatigue based off
of the BOLD signal. Concurrent BOLD and EMG of the anterior compartment of the lower
leg during a plantar-flexion block design, demonstrated that the change in blood-flow between
rest and contracted states is an excellent indicator of muscle fatigue. The bi-fractal analysis,
phase space muscle outlook, proximal SAT band placement, and novel BOLD fatigue metric
all warrant further investigation as they all serve to better improve clinical magnetic resonance
imaging. Therefore, I was able to achieve my goal of performing medical imaging research that
some day could have clinical implications, and I can be happy with the thesis put before you.
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