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Abstract 

The introduction of electric autonomous Unmanned Arial Vehicles (UAVs) in cities is 

considered the ultimate disruptive sustainable technological solution due to the promised 

speed, affordability, and significant greenhouse gas (GHG) emission reductions. The 

integration of UAVs into the future smart city fabric offers a wide range of applications. In 

particular, UAVs are ideal for last-mile operation, which is expected to reduce delivery 

costs, GHG emissions, and delivery time compared to light trucks and other traditional 

delivery methods. As UAVs operate in the city airspace, and with the current generation of 

older cities, several technological challenges arise with the anticipated proliferation of 

heterogeneous UAV fleets in low-altitude airspace of dense urban areas. Being a fairly new 

disruptive technology with no real-world operation data, the literature only considers a few 

of the system design parameters and often disregards the impact of other essential 

parameters such as Kinematics and airspace policies. This leads to significant uncertainty 

in the estimated UAV energy consumption, ranges, and emissions yielding inaccurate 

conclusions regarding the full system design predilections. Therefore, an effective UAV 

system design should strive to understand the broad spectrum of parameters’ impacts to 

optimize the integration and operation. Towards that end, this research aims at investigating 

the different UAV system design parameters and their intertwined impacts on operation 

efficiency to obtain accurate system optimization results. The research utilized several 

datasets for the delivery demand and digital-twin city model data of Toronto, Ontario, 

Canada. The research employed a state-of-the-art flexible energy use model for UAVs 

calibrated to experimental measurements to generate a minimum-energy trajectory along 
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with several proposed novel airspace discretization, trajectory optimization, and charging 

infrastructure allocation optimization models. In this respect, this dissertation quantified 

the impact of airspace policies, discretization, and trajectory generation on the energy 

consumption of UAVs. Furthermore, it unveiled the operation uncertainties and their 

implications on the cost, emissions, and allocated charging infrastructure demand. Unlike 

the UAV literature, our research included all system design parameters and their impact on 

the performance metrics. The dissertation also proposes a novel combined airspace 

discretization and trajectory generation algorithm for optimal UAV energy consumption, 

airspace capacity maximization, airspace traffic control, and off-grid solar charging station 

allocation. For instance, it is found that UAV deployment with carefully tailored airspace 

policies in delivery could reduce GHG emissions in the freight sector by up to 35% 

compared to EVs. Furthermore, the research highlighted how building integrated 

photovoltaic BIPV upgrades with associated buildings can eliminate GHG emissions and 

significantly reduce the decarbonization price through associated savings and excess 

generated electricity. Overall, this research presents a unique contribution to the knowledge 

of UAV research for practitioners, policymakers, and academia. 
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CHAPTER 1 

1 Introduction 

1.1 Background and motivation 

As cities are growing exponentially across the globe, in 2014, the United Nations expected 

the world population to reach 10.1 billion by 2100 (European Parliament, 2014). In 2015 

all the United Nations member states adopted the 2030 agenda for sustainable development, 

a blueprint for peace and prosperity for people and the planet. At the heart of the agenda, 

there are 17 sustainable development goals (SDGs) supported by strategies that improve 

health and education, reduce inequality, and spur economic growth while tackling climate 

change and preserving the oceans and forests (UN, 2015).  

As the earth is limited in space and resources, the concept of a smart city emerged to 

allow population growth coupled with high quality of life through efficient and cost-

effective technological solutions. Hence, it can be argued that smart cities are the result of 

combining the SDGs strategies to achieve resilient communities that maximize the 

integration between humans and technologies (Mohammed et al., 2014). In this regard, 

autonomous integrated systems are one of the most featured technologies in every vertical 

of a smart city, such as robotic manufacturing, robotic construction, and transportation 

systems (Shakhatreh et al., 2019; Khan et al., 2018). These integrated robotic systems 

significantly minimize time, cost, and redundancy while maximizing efficiency and 

operating on clean, renewable energy sources. In particular, the most striking example of 

such integrated technologies is unmanned aerial vehicles or systems (UAVs or UAS or 

drones).  



Mohamed ElSayed  McMaster University 

Ph.D. Thesis  Dept. of Civil Engineering 

20 

In the past decade, growing interest in many consumer-oriented commercial activities 

has expanded the scope and scale of UAV applicability in a multi-varied smart city 

environment (Chen and Chen, 2020; Sharma et al., 2020). UAVs can provide and sustain 

critical services related to smart cities. Moreover, UAV operations in smart cities can help 

achieve the broader scope of SDGs concerning improving residents’ quality of life. The 

integration of UAVs into the smart city fabric offers a wide range of applications. Several 

studies have surveyed UAV applications in smart cities through use case scenarios, such as 

Ren et al. (2022), Mohamed et al. (2020), and Al-Turjman (2020). The applications can be 

summarized in eight categories: merchandise delivery, infrastructure planning, and 

inspection, crowd management, natural disaster management, health emergencies, smart 

transportation, and civil security and safety. This clearly illustrates the significant role and 

contributions of UAVs in fulfilling SDGs in smart cities and societies.  

Along the same lines, transportation is responsible for approximately 25% of 

greenhouse gas (GHG) emissions in Canada and globally (Natural Resources Canada, 

2020), and much of this is attributed to motorized road transportation. Urban areas are often 

associated with a higher percentage of GHG emissions due to their demographic weight, 

reduced speeds, and traffic congestion (Urban Mobility Task Force, 2020). And as the 

concept of smart cities is trying to gain wider attention by providing a sustainable chain of 

end-user services. UAVs are heavily explored for permanent integration within resilient 

smart cities for their versatility and promised GHG emissions reduction (Stolaroff et al., 

2018). Although other technologies, such as electric vehicles (EVs), have been evolving in 

parallel, the versatility of UAV usage has increased the demand as a critical enabler for 
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smart sustainable transportation by offering a cost-effective solution for almost everything 

(Ren et al., 2022). The COVID-19 pandemic has further fueled this acceleration in UAV 

demand. Autonomous UAVs were essential for touchless delivery of supplies, food, and 

most importantly, medical supplies and test kits for emergencies to save lives.  

In particular, UAVs are ideal for last-mile operation, which is expected to reduce 

delivery costs, emissions, and delivery time compared to light trucks and other traditional 

delivery methods (Stolaroff et al., 2018). Courier express parcel (CEP) delivery is expected 

to follow the e-commerce progression with a projected market share of 75%. The rapid 

growth rates (5.0%) between 2013 to 2017 motivated companies like Amazon, Google, and 

DHL to develop and test UAVs for parcel delivery (Heutger and Kückelhaus, 2014; Nieva 

and Rosenblatt, 2014). Teal Group forecasted that UAV spending would surpass triple over 

the next decade, with cumulative worldwide expenditures exceeding $88.3 billion (Teal 

Group, 2019).  

As UAVs operate in the city airspace, and with the current generation of older cities, 

several technological challenges arise with the anticipated proliferation of heterogeneous 

UAV fleets in low-altitude airspace of dense urban areas (Lemardelé et al., 2021). These 

technological challenges are often equated to the paradigm shift created with the 

introduction of automobiles by Henry Ford in the early 20th century. Being a fairly new 

disruptive technology with a lack of real-world usage data, the various UAV system design 

parameters pose several uncertainties regarding viability and performance if the system is 

to be applied in the real world. The different correlations between these UAV system design 

parameters, which are the focus of this research, are summarized in Figure 1-1. 
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Figure 1-1 Design parameters correlation to performance metrics. 

Considering all the design parameters, first, the speed of UAV travel. The optimal 

energy consumption would allow the UAV to consume the least amount of energy while 

travelling the maximum distance possible (Stolaroff et al., 2018). Second, the UAV 

kinematics refers to the UAV hardware or specifications ‘architecture’ that allows the UAV 

to carry the required payload and traverse the assigned trajectory safely. Third, the 

limitations implied by the applicable UAV policies. The current UAV policies globally 

include a minimum clearing distance around public and private property (e.g., people, 

buildings, and structures), also, both a minimum and maximum flight altitude limitation 

(Stöcker et al., 2017). These limitations determine the allowable airspace volume for 

operation. Fourth, is the autonomous operation which dictates accounting for externalities 
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such as weather conditions, no-fly zones (NFZs), and safety requirements. Understanding 

the intercorrelations between these different design parameters is key for operating 

agencies and policymakers. In other words, by fixing all other parameters and studying 

each considering the others, these parameter correlations induce four uncertainties: energy 

consumption, airspace discretization, policy, and charging infrastructure uncertainties. 

1.1.1 Energy uncertainty  

The UAV energy requirements determine the key performance metrics of range, cost, and 

emissions (Zhang et al., 2021). Electric UAVs use much less energy per kilometer travelled 

compared to a ground vehicle. However, given the UAVs’ relatively limited payload 

capacity and the essentiality of onboard components (such as cameras, sensors, and 

transported products), maintaining the overall weight of the UAV sacrifices the size of the 

onboard batteries, which in turn decreases the range of UAVs (Stolaroff et al., 2018). 

Consequently, requiring extra launching locations, depots, and charging stations. This 

increases the delivery time dramatically rendering it impractical for full replacement of 

ground transport as well as impacting the environmental performance negatively by 

increasing operational emissions (Figliozzi, 2017; Kuby and Lim, 2005). Significant 

advancements in UAV technologies promise increased energy efficiency, battery energy 

storage, lighter airframes, and improved power-to-weight ratio for DC motors. However, 

these improvements are not expected to reflect substantially on the existing performance in 

the near future (Merkert & Bushell, 2020; Morbidi et al., 2016).  

Collectively, the current literature mainly offers two types of energy consumption 

estimations as recently reviewed (Zhang et al., 2021). First, several optimization models 
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that propose UAV or truck-UAV delivery systems incorporate the energy consumption 

only indirectly as a fixed limitation on UAV coverage (range limit) (Kitjacharoenchai et 

al., 2019; Chiang et al., 2019; Murray and Chu, 2015). Second, incorporating energy 

consumption models based on the UAV kinematics (Stolaroff et al., 2018; Figliozzi, 2017; 

Kirschstein, 2020; Murray and Raj, 2020; Poikonen and Golden, 2020; Dorling et al., 

2016). With the wide variation in the parameters considered in these UAV energy 

consumption models, the results obtained are widely divergent for identical delivery 

operations, leading to significant uncertainty in the estimated UAV ranges, emissions, and 

required charging infrastructure. Furthermore, all the suggested models ignore the variation 

in airspace policies, hence, failing to obtain a realistic energy use model that can be applied 

in a real-life operation within the legal UAV regulations. An accurate estimation of UAV 

energy consumption based on all parameters ensures feasible as well as efficient operating 

decisions for full UAV adoption. 

1.1.2 Airspace discretization uncertainty 

On the other end, the accurate estimation of the UAV operations’ energy consumption and 

GHG emissions relies on the operational logistics, namely, the fleet size and the number of 

charging stations infrastructure to achieve full coverage. Both logistical estimates rely on 

the UAV trajectory simulations integrating all design parameters. In this respect, significant 

research has been conducted combining some of the UAV variables and design parameters 

to achieve energy-efficient trajectories. For instance, trajectory planning algorithms and 

optimization heuristics, also, as advancements in older solving techniques such as graph 

traversal/ search methods and routing algorithms (Coutinho et al., 2018). Trajectory 
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planning itself can be defined as finding a kinematically viable solution to the problem of 

UAV routing. In this case, the solution domain is a discretized airspace that takes into 

consideration all the different design parameters. 

Most trajectory planning, routing algorithms, and heuristics rely on graph-solving 

methods. Hence, the traditional Cartesian method in airspace discretization has been widely 

adopted (Kopardekar, 2016; Dill and Young, 2016). After the airspace volume is 

transformed into a Cartesian point cloud, geofencing is applied. A geofence is a virtual 

static or dynamic (changing) perimeter applied to any given airspace either in positive 

(keep-in), or negative (keep-out). The keep-in geofence is the allowable airspace volume 

for trajectories. While the keep-out is a volumetric restriction to certain extents where 

UAVs are not allowed to fly. Each discretization method produces a different type of 

solving domain, hence, limiting the applicability of a trajectory solver. This 

interdependency between discretization and solving techniques to simulate the 3D 

trajectories of autonomous UAVs in a replica of a real-life operational environment while 

integrating all design parameters relies on the existence of an adequate computational tool 

(Yao et al., 2015). This tool must enable highly detailed airspace 3D model discretization 

integrating all design parameters. 

Since all platforms capable of comparing different discretization and trajectory 

planning permutations are proprietary; all studies presented in the literature depended on 

an assumed/generalized flight pattern, averaged speed profile, and 2D Euclidean distance 

rather than applying the energy model in real-life contexts. Unlike 2D path planning, 

trajectory planning in 3D environments utilized in these simulation platforms has great 
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potential to yield better UAV energy consumption. However, the computation complexity 

increases exponentially with dynamic and kinematic constraints integration. Therefore, it 

can be confidently argued that the wide variation in energy consumption estimates in the 

autonomous UAV literature is a result of integrating certain variables and UAV design 

parameters in each of the proposed models, different UAV types being modeled, and a 

variety of assumed operations (Zhang et al., 2021; Murray and Chu, 2015; Barmpounakis, 

2016). Thus, current research has not reached a consensus on a unified standard for airspace 

discretization, and therefore existing models fall short of providing realistic energy 

assessment frameworks in light of combined airspace discretization and UAV policy 

impacts. The impact of airspace discretization on the airspace capacity, safety, and 

operational efficiency is a current chronic uncertainty in UAV research requiring adequate 

investigation in correlation with all design variables. 

1.1.3 Policy uncertainty 

Autonomous UAVs fly through public airspace to deliver goods in close proximity to users 

and property. In this respect, different considerations exist and can be classified into safety, 

security, privacy, and noise. First, massive fleets of UAVs operating in highly dense cities 

raise serious safety issues since UAV accidents such as severe lacerations, eye loss, and 

soft tissue injuries or property damage can occur (Foina et al., 2015; D’Andrea, 2014). The 

damage can be caused by the crashing of a UAV due to a technical malfunction (e.g., 

battery life or severe weather impact) or inadequate maintenance of equipment, or mid-air 

collisions due to airspace interference and congestion (Wanke et al., 2005; Song et al., 

2008; Nesbit et al., 2017). This is in addition to the expected liability hazards such as 
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automobile accidents due to distraction from low-flying UAVs. Second, UAV onboard 

communication and GPS navigation modules are vulnerable to security breaches due to 

their unencrypted nature, which makes them easily spoofed (Vattapparamban et al., 2016; 

Altawy & Youssef, 2016). Furthermore, signal jamming is another possible attack, UAVs 

can be hijacked causing the loss of control of the UAV’s communication system 

jeopardizing security. Third, given their data collection abilities, sensors, and high-

precision onboard cameras, UAVs can be perceived as remotely controlled surveillance 

equipment (Rao et al., 2016) as they can be hacked to collect personal data or track 

individuals using wireless localization techniques. Furthermore, the proximity to public 

operations causes pedestrians to feel uncomfortable or dwellers to feel that their privacy is 

being invaded (Khan et al., 2018). Fourth, due to their proximity, UAV rotors’ noise has 

been suggested as a major barrier to public acceptance of UAV operations in urban areas 

(Torija et al., 2020). 

Therefore, the integration of UAVs in the transportation sector represents a regulatory 

challenge (Nesbit et al., 2017; Mohamed, N. et al., 2018). Given these challenges and the 

traditional concepts of city security, liability, and aviation airspace regulations, the need to 

regulate UAV operation pushed international, federal, and local governments to navigate 

unchartered territories, with boundaries of civil regulatory authority over UAVs ill-defined 

(Dung & Rohacs 2018). Reacting to that, in 2006, the International Civil Aviation 

Organization (ICAO) declared the need for international harmonized terms and principles 

to guide the civil use of UAVs (ICAO, 2015). Although such regulation does exist for 

commercial planes, it is not the case for UAVs, where regulations only started in five 
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countries (Stöcker et al., 2017). Some countries had already developed UAV regulations, 

such as the United Kingdom and Australia, being among the first. The imposed UAV 

operational restrictions were based on proximity to population and man-made structures. 

While these regulations alone can control leisure UAV use, however, heterogenous fleet 

operation with projections of massive volumes of UAVs is too large for the current Air 

Traffic Control (ATC) structure to handle (Barr et al., 2017; Foina et al., 2015). 

As with the case of any disruptive technology, regulatory research has focused on the 

safety and social impacts of UAV technology. This resulted in a significant variation in the 

policies adopted by different countries and regions. This variation ranged from restrictive 

use of UAVs in some countries to very lean policies, as in the case of some European 

countries. Accordingly, this created a variation associated with the permissible flight limits 

and obstacle avoidance, resulting in significant variance in UAVs’ operation design 

parameters (Stöcker et al., 2017). Several studies in the literature compare the regulations 

and policies theoretically (Hodgkinson, and Johnston, 2018). However, the correlations and 

impacts of these airspace policies on the other variables such as energy consumption, 

airspace discretization, and charging infrastructure requirements have not been quantified 

or studied with the required depth (Outay et al., 2020). The policy uncertainty is a 

cornerstone in UAV research as it defines the legal path to proceed into real-life 

comprehensive operation. 

1.1.4 Charging infrastructure uncertainty 

Logistically, UAVs are ideal for last-mile operations as companies utilize heterogeneous 

fleets of small and low flying-altitude UAVs with a payload limit of two kilograms (Foina 
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et al., 2015; D’Andrea, 2014). According to Amazon, this will cover 86% of the demand 

in cities at a service coverage range of 16 kilometers (Gross, 2013). This economic viability 

dictates that the central sorting depot has to service an urban area of a circle with an 

approximate radius of 16 kilometers. Otherwise, extra warehousing and depots will be 

needed, rendering the UAV operation economically and environmentally less appealing 

than EVs (Aurambout et al., 2019). Therefore, to achieve the 16 kilometers service range, 

a UAV-based system will require more charging infrastructure sites distributed across the 

serviced region (Nemer et al., 2020; Stolaroff et al., 2018). Furthermore, the dependence 

on the local power grids for this operational infrastructure would still increase the initial 

and operational emissions, primarily if electricity is generated from coal or natural gas 

(Figliozzi, 2017; Kuby and Lim, 2005). It has been deemed that the continued reduction in 

the carbon intensity of the electricity system, coupled with energy efficiency upgrades in 

associated buildings, is a crucial challenge to realizing the full potential benefits of UAVs 

in smart cities (Stolaroff et al., 2018). 

To that end, the literature has considered the UAV recharging problem. However, all 

UAV charging infrastructure allocation studies accounting for energy consumption 

presented depend on an assumed/generalized flight pattern, averaged speed profiles, and 

Euclidean distance (or 2D obstacle avoidance models). These design parameters are highly 

critical for the energy calculation/estimation and can result in over or underestimation of 

required charging station spatial allocations when applied in real-life 3D environments. 

Furthermore, it has been thoroughly noted that the policy-induced airspace structure and 

operation restrictiveness can influence the capacity, safety, and efficiency of UAV 
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operations (Bauranov and Rakas, 2021). It can be concluded that there is a lack of 

quantitative studies considering broader systemic impacts of the different UAV design 

parameters on a network level such as the charging infrastructure. Studying the intertwined 

impacts of energy consumption, airspace discretization, and UAV policies on the charging 

infrastructure allocation is an essential step toward resolving the infrastructure uncertainty 

and the optimization of a UAV full-coverage independent system. Ultimately, a UAV 

system coupled with an independent (off-grid) renewable-energy-based electricity 

generation profile is considered the silver bullet solution to this intertwined last-mile 

delivery challenge. 

Given the aforementioned uncertainties, the work presented in this dissertation focuses 

on studying the intertwined correlations and quantifying the impacts of each UAV system 

design parameter on the system as a whole. The upgrade of the associated buildings is also 

investigated for a zero-emission operation. 

1.2 Research objectives 

The primary goal of this dissertation is to inform the UAV system design and optimization 

through a correlation impact analysis study of different design parameters and variables in 

a digital-twin model replicating real-life operations. In particular, the models developed 

herein integrate airspace policies, UAV kinematics, and airspace discretization. 

Additionally, the influence of upgrading associated buildings on the total system emissions. 

The research investigates the different UAV system design parameters sequentially by 

fixing the other parameters to answer each of the four uncertainties. Thereafter, the research 
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proposes a holistic off-grid autonomous UAV system solution based on the optimal 

parameters. As such, the following objectives were identified: 

1. Propose a flexible UAV energy consumption model to accurately estimate the 

operational energy consumption via experimentally verified real-world flights. 

2. Assess the environmental impact of autonomous UAVs in last-mile operation 

through the quantification of energy/ GHG emissions trade-offs across different 

UAV policies. 

3. Illustrate an open-source framework for wide-scale autonomous UAV simulations 

accounting for externalities (e.g., NFZs and weather updates) via a dynamically 

updated digital-twin model. This model enables the identification of viable airspace 

volumes in densely populated 3D environments based on the airspace policy/ 

regulations. 

4. Assess the significant impact of airspace planning (airspace discretization and 

respective trajectory planning methods) on the overall energy demand of UAVs. 

5. Assess the change in charging infrastructure spatial allocation, system energy 

demand, and their trade-offs across different UAV policies for full coverage. 

6. Develop a robust comprehensive algorithm that allows autonomous Advanced 

Aerial Mobility (AAM) operation within civil airspace accommodating 

heterogenous sizes, types, and speeds of UAV fleets while ensuring abidance to 

respective airspace regulations, maximizing airspace capacity, and optimizing UAV 

traffic.  
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7. Propose a zero-emission optimal charging station allocation framework via solar 

BIPV associated-building retrofit achieving full city coverage and complete 

independence from the utility grid. 

1.3 Dissertation organization 

This section summarizes the content of each of the six chapters in the dissertation as 

follows: 

• Chapter 1: Provides the background and motivation of the work presented in this 

dissertation, research objectives, and an overview of the dissertation organization. 

• Chapter 2: Addresses Objectives 1 and 2 by estimating the CO2e emissions for 

UAVs under different policies compared to diesel and electric ground delivery 

modes. The chapter also investigates the energy uncertainty by developing a 

flexible UAV energy consumption model to accurately estimate the operational 

energy consumption via experimentally verified real-world flights. This chapter 

first synthesizes the international UAV flight regulations and classifies them into 

three groups representing varying degrees of policy strictness. Second, utilizing 

real-world delivery demand data, full-day parcel-delivery operations of a three-digit 

postal code area in both urban and rural contexts are simulated for UAVs and 

ground delivery modes. 

• Chapter 3: Addresses Objectives 1, 3, and 5 by assessing the impact of airspace 

planning and discretization on the energy consumption of autonomous UAVs. In 

this chapter, we answer the airspace discretization uncertainty via a novel open-

source comprehensive UAV autonomous programming framework and a digital-
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twin model to simulate real-world three-dimensional operation. Additionally, this 

chapter introduces the framework which integrates airspace policies, UAV 

kinematics, and autonomy to accurately estimate the operational energy 

consumption via an experimentally verified energy model. In the chapter, in a 

simulated case study, airspace is discretized by both, a traditional Cartesian method 

and a novel dynamic 4D discretization (Skyroutes) method. This allows comparing 

different routing and trajectory planning algorithms for ten missions. 

• Chapter 4: Addresses objectives 4 and 5 by evaluating the impact of different UAV 

airspace policies on UAV energy consumption and the charging station allocation 

in last-mile parcel delivery applications. This chapter unveils the impact of UAV 

policies on the required infrastructure in parcel-delivery applications and examines 

the optimization of the full-coverage UAV system under the policy uncertainty. In 

this chapter, first, the international UAV flight regulations are synthesized and 

classified into three groups representing varying degrees of strictness. Second, 

assuming autonomous operations and the specific size of quadrotor UAVs, we 

utilize an experimentally verified flexible energy model and demand data to 

simulate 3D trajectories of UAV missions in a digital-twin model. Third, we 

propose a novel optimization model and solution algorithm to minimize the 

allocated charging stations. 

• Chapter 5: Addresses Objectives 1 and 6 by proposing a novel autonomous AAM 

logistical system for high-density city centers. This chapter provides a 

comprehensive solution for the energy consumption, policy, and airspace 
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discretization uncertainties for UAVs. As a first step to replicate the real-world 

environment, we illustrate in deeper detail a real-time 3D geospatial mining 

framework for LiDAR data to create a dynamically updated digital-twin model. 

Second, we further illustrate the proposed robust city airspace dynamic 4D 

discretization method (Skyroutes) for autonomous UAVs utilizing dual geofencing 

that was introduced in chapter 3. The chapter also utilizes an hourly trip generation 

model to create 1,138 trips in two scenarios comparing the Cartesian discretization 

to our proposed algorithm, thereafter performance is compared in the real 3D 

environment of Toronto, Canada. 

• Chapter 6: Addresses Objectives 1 and 7 by developing an integrated multi-

objective charging infrastructure coverage optimization model that integrates UAV-

based operations with solar energy harnessing from building envelops. The model 

presented in this chapter maximizes UAVs’ coverage range and minimizes the total 

cost of energy and decarbonization. In this chapter, we utilized the flexible energy 

use model for UAVs calibrated to experimental measurements to generate a 

minimum-energy trajectory presented in chapters 2 and 5. We also utilized the 

origin-destination (O-D) demand model geo-referenced in a digital-twin to replicate 

real-world operation. Overall, 12,532 simulated daily missions in a large-sized city 

are simulated. The chapter provides an understanding of how we can tackle the last-

mile operations via UAVs and BIPV to present a zero-emission solution. 

• Chapter 7: presents a summary of this dissertation, the conclusions, and suggestions 

for future work. 
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It is worth mentioning that chapters 2 and 3 represent standalone manuscripts that have 

already been published/accepted as peer-reviewed journal articles. Chapters 4, 5, and 6 also 

represent standalone manuscripts that have already been submitted for publication in peer-

reviewed journals. These chapters cooperatively describe a cohesive research body; 

however, some overlap might exist for the completeness of each standalone manuscript 

(chapter). The following figure describes the sequential structure of the dissertation and 

compiles how the objectives associated with each chapter are attained. 
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Figure 1-2 The structure of the dissertation 
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CHAPTER 2 

2 The Impact of Airspace Regulations on Unmanned Aerial Vehicles in Last-Mile 

Operation 

Preamble 

This chapter addresses the first two objectives of the dissertation (Figure 2-1). First, it 

estimates the CO2e emissions for UAVs under different policies compared to diesel and 

electric ground delivery modes, therefore, investigating the UAV policy uncertainty. 

Second, the chapter also examines the energy uncertainty by developing a flexible UAV 

energy consumption model to accurately estimate the operational energy consumption via 

experimentally verified real-world flights. 

 

Figure 2-1 Regulatory criteria correlation to performance metric 
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2.1 Abstract  

Utilizing autonomous unmanned aerial vehicles (drones) in the last-mile delivery of parcels 

is regarded as the ultimate disruptive technology, that might significantly reduce the GHG 

emissions in the freight sector. This study estimates the CO2e emissions for UAVs under 

different policies compared to diesel and electric ground delivery modes. First, the 

international UAV flight regulations are synthesized and classified into three groups 

representing varying degrees of policy strictness. Second, utilizing real-world delivery 

demand data, full-day parcel-delivery operations of a three-digit postal code area in both 

urban and rural contexts are simulated for UAVs and ground delivery modes. The results 

show that in general, UAVs produce significantly lower emissions compared to ground 

delivery per parcel-km and up to 35% compared to electric vehicles. However, UAV 

emissions are highly dependent on the fuel mix used in electricity generation. In urban 

contexts, UAV policy strictness can increase GHG emissions by up to 400%. 

2.2 Introduction 
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Battery-operated Unmanned Aerial Vehicles (UAVs) represent an affordable and 

sustainable aerial transportation system that is expected to significantly minimize the 

carbon footprint in cargo transport and parcel delivery (Mahony & Kumar, 2012; Colomina 

et al., 2014). In particular, UAVs are ideal for last-mile operation, which is expected to 

reduce delivery costs, emissions, and delivery time compared to light trucks and other 

traditional delivery methods. However, the viability of UAV operation hinges on the 

development of regulatory frameworks and civil flight policies. Our study aims at 

investigating the interlinked airspace regulations and their effect on environmental impact 

and the viability of UAV last-mile operations, which currently represent an understudied 

area. Furthermore, the study quantifies the GHG emissions, across different policies, 

resulting from daily last-mile operations through a developed simulation-based framework 

that could be readily applied to any UAV type and built context. 

Courier express parcel (CEP) delivery is expected to follow the e-commerce 

progression with a projected market share of 75%. The rapid growth rates (5.0%) between 

2013 and 2017 motivated companies like Amazon, Google, and DHL to develop and test 

UAVs for parcel delivery (Heutger and Kückelhaus, 2014; Nieva and Rosenblatt, 2014). 

Teal Group forecasted that UAV spending would surpass triple over the next decade, with 

cumulative worldwide expenditures exceeding $88.3 billion (Teal Group, 2019).  

However, companies anticipate a reduction in transportation costs, especially in urban 

operations, where they utilize fleets of small and low-altitude UAVs in densely populated 

cities. In such a context, autonomous UAVs fly through public spaces to deliver goods 

(Foina et al., 2015; D’Andrea, 2014). In this respect, UAV accidents such as severe 
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lacerations, eye loss, soft tissue injuries, or property damage represent a major roadblock. 

This is in addition to the expected liability hazards such as automobile accidents due to 

distraction from low-flying UAVs and noise (Torija et al., 2020), or accidents resulting 

from a UAV’s interference with aircraft, or airspace congestion. Therefore, the integration 

of UAVs in the transportation sector represents a challenge (Nesbit et al., 2017; Mohamed, 

N. et al., 2018). 

Reacting to that, in 2006, the International Civil Aviation Authority (ICAO) declared 

the need for international harmonized terms and principles to guide the civil use of UAVs 

(ICAO, 2015). Although such regulation does exist for commercial planes, it is not the case 

for UAVs, where regulations only started in five countries (Stöcker et al., 2017). However, 

some countries had already developed UAV regulations, such as the United Kingdom and 

Australia, being among the first. However, as with the case of any disruptive technology, 

regulatory research has focused on the safety and social impacts of UAV technology. This 

resulted in a significant variation in the policies adopted by different countries and regions. 

This variation ranged from restrictive use of UAVs in some countries to very lean policies, 

as in the case of some European countries. Consequently, this created a variation associated 

with the permissible flight limits and obstacle avoidance, resulting in significant variance 

in UAVs’ mission characteristics. While an abundance of research exists on overcoming 

technical limitations and the improvement of battery energy storage, however, the 

assessment of the environmental consequences that various UAV regulations will cause is 

scarce to a great extent.  
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Ample articles are considering the environmental impacts of different delivery modes 

and show significant GHG reductions associated with UAVs (Goodchild & Toy, 2018). 

That said, the literature falls short of quantifying the impacts of the varying regulations on 

the environmental assessment of UAVs' last-mile delivery methods. Put another way, the 

GHG emissions are very sensitive to the UAV flight policy, and it could be confidently 

argued that UAVs will have different GHG footprints associated with different policies.  

Although several studies in the literature compare the regulations and policies 

theoretically (Hodgkinson, and Johnston, 2018), they don’t focus on the impact of flight 

regulations on GHG emissions. We are aware of no studies addressing the intertwined 

regulatory challenges and their effect on the viability and environmental impact of 

disruptive transportation modes. This gap in the existing literature highlights the potential 

contributions of the present study. 

The primary focus of this study is to assess the environmental impact of autonomous 

UAVs in last-mile operation through the quantification of energy/emissions trade-offs 

across different UAV policies. To achieve this aim, 1) we develop an origin-destination (O-

D) model for UAV last-mile CEP delivery operations, including network, fleet, and routing. 

2) We focus the analysis on industrial copters, but also include an initial estimate for a 

ground delivery equivalent for comparison. 3) We develop a flexible energy use model for 

multi-rotor UAVs that are calibrated to measurements from representative UAV flights. 4) 

We characterize the Well to Wheel (WTW) GHG emissions and energy impacts of 

parcel/parcel delivery by UAVs compared to the current ground-based delivery system and 

across different UAV policies. Overall, the quantitative analyses are based on simulating 
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UAV operations for three scenarios adopted from existing international regulations for both 

rural and urban contexts.  

After this introduction, a literature review focusing primarily on UAV last-mile 

delivery and pertinent international regulatory and policy research is presented in section 

2. Section 3 introduces the study methodology, which includes the UAV energy 

consumption model as well as the developed O-D matrix delivery model. Furthermore, the 

case study and the three developed scenarios are detailed in Section 3. Section 4 reports on 

the simulation results, while Section 5 presents the discussion and conclusions. 

2.3 Literature review 

From a holistic perspective on forming a concrete base for studying the impact of 

regulations on GHG emissions for UAVs, a literature review is conducted for both subjects; 

UAV policies and GHG quantification. It should be noted that the search on the 

environmental impacts of delivery UAVs, returned a limited number of publications. While 

this specific correlation is understudied, however, due to the commonalities, results and 

methodologies could assist the present study. 

2.3.1 Environmental Impact of UAVs in Transportation 

UAVs may not be the ultimate answer to all transportation challenges; however, they offer 

environmental benefits, higher last-mile efficiency, reduction of road accidents, and faster 

deliveries, as discussed in the literature (Murray & Chu, 2015; Ranieri et al., 2018). 

However, being a new technology with yet little operational usage in the transportation 

industry, there is an abundance of UAV research on overcoming technical limitations and 

on the improvement of battery energy storage. According to Amazon, 86% of deliveries 



Mohamed ElSayed  McMaster University 

Ph.D. Thesis  Dept. of Civil Engineering 

50 

are under the two-kilogram limit, which was applied to their Prime Air UAV design, this 

limits the range of Prime Air drones to 16 kilometers (Gross, 2013). While range limitation 

challenges are valid, solutions are constantly being explored, for instance, recent research 

suggested means to further extend this range without adding GHG emissions by utilizing 

solar energy (Elsayed and Mohamed, 2019). Several publications exist on proving the 

realistic viability of UAVs for last-mile delivery (Aurambout et al., 2019).  

Another stream of publications studies UAV utilization in the last-mile delivery 

problem from the transportation operational perspective. Several articles studied the 

environmental impacts of UAV last-mile delivery and conducted comparisons against 

traditional means. Murray & Chu (2015) developed routing and scheduling optimization 

models for truck-aided UAV delivery, which have been further explored by Ha et al. (2018) 

to minimize operational costs. Along the same lines, Tavana et al. (2017) optimized truck 

scheduling problems to cater to last-mile UAV delivery. Other articles study the Vehicle 

Routing Problem (VRP), for instance, Poikonen et al. (2017) and Yurek et al. (2018), to 

minimize the delivery time by optimizing the truck’s VRP. Similarly, Chiang et al. (2019) 

propose a mixed-integer linear green routing model for UAVs for last-mile parcel 

deliveries. They develop a validated genetic algorithm and find that optimizing UAV 

delivery routing would reduce energy and GHG emissions. 

Although research on comparisons between delivery trucks and UAVs or truck-aided 

UAVs and developing logistics optimization algorithms is increasing, less work has been 

done to accurately model UAV-based last-mile transportation systems. Most literature 

assumes ground delivery Vehicle-Kilometers Traveled (VKT) under congestion-free, 
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uninterrupted conditions. However, this assumption is unrealistic compared to real-world 

situations and biased in favor of ground transportation. Road congestion, especially in 

dense urban centers, increases GHG emissions significantly.  

In the last few years, few studies attempted to investigate in more detail the 

environmental impact of UAVs’ last-mile delivery implementation. D’Andrea (2014) 

examined the energy use of UAVs using assumptions for lift-to-drag ratio, headwind, 

payload, and speed to estimate the operational costs for delivery. Their model provided a 

worst-case energy consumption. However, the estimates depended on very specific 

assumptions that might not accommodate the real-world variables. Wang (2016) argued 

that despite the sheer number of publications in this area, the common limitation is that 

previous studies fall short in accommodating a real-world estimation for GHG associated 

with parcel delivery through UAVs. Figliozzi (2017) developed a GHG quantitative model, 

by adding an estimate for the vehicle phase and comparing results to alternative green 

vehicles such as tricycles or EVs. Furthermore, they added the diesel van payload and the 

number of stops to the estimation framework. The study concludes that albeit for small 

payloads, UAVs are more CO2e efficient compared to traditional diesel vans on a per-

distance basis and utilizing a van grouping delivery strategy reduces the van CO2e 

emissions. 

In continuation, Goodchild & Toy (2018) compared UAV delivery against vehicle-

mile travelled by trucks, utilizing GIS data and numerical emission standards based on 

speed, distance, and vehicle year model. The study suggests that UAVs can significantly 

decrease CO2e emissions only when the service zones are near depots or have fewer 
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recipients or both. Their study provides important insight. However, similar to the work of 

Figliozzi (2017), the calculations of Goodchild & Toy (2018) are based on averaged 

distances and assumed energy utilization model, UAV flight Kinematics, obstacle 

avoidance, and policies were not considered. On the other hand, a study by Choi and 

Schonfeld (2017) modelled the impact of battery capacity on payloads and flight ranges. 

They echoed a different conclusion, where UAV deliveries are more viable with high 

customer density from energy consumption and economic standpoints. 

More recently, Stolaroff et al. (2018) provided a comprehensive calculation of GHG 

emissions of UAV last-mile delivery. Their calculation is based on averaged travel distance 

and a flexible energy use model for multi-rotors that has been calibrated to real-world 

flights. They concluded that the realization of GHG reductions by UAVs is mainly affected 

by UAV size, payload limitation, and the number of extra warehouses to be served. They 

noted that the environmental impacts of UAVs are inversely related to the flight distance, 

where longer flight results in a higher GHG emission per parcel delivered. They further 

illustrated their findings through a hypothetical coverage map for the city of San Francisco, 

defining the UAV service area by a circle around each depot with a radius equal to the 

UAV return trip range. According to the authors, being based on the Euclidean Distance 

(ED), the model yields rough estimates only. They also recommend studying the impact of 

regulations and policies on respective UAV performance.  

Similarly, Koiwanit (2018) performed a life-cycle assessment study on UAV delivery 

in Thailand using CML2001 simulation. They converted life-cycle inventory data into 

environmental impacts. Their results concluded that UAV delivery is one of the most 
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environmentally friendly modes of transport compared to a myriad of alternative scenarios. 

Kirschstein (2020) presented a GHG/ energy comparison between drone-based and ground-

based parcel delivery services. In their study, they conclude that EVs produce lower GHG 

emissions in most studied cases, and UAVs are only competitive in rural settings with large 

travel distances and low customer density. However, their UAV model was based on an 

assumed UAV delivery process and flight pattern that they coined as the “idealized UAV 

delivery flight pattern.” That said, it could be argued that the developed flight pattern is 

highly assumptive and generalized, especially it falls short in reflecting an actual UAV 

obstacle-navigation within real-world 3D simulation contexts. 

In conclusion, from the literature, several important messages are highlighted:  

▪ Regarding UAV GHG emissions estimates compared to other modes, a set of 

contradictory conclusions were presented. This is due to the discrepancies in 

assumptions and the utilized energy estimation model for UAVs. 

▪ All studies presented depend on an assumed/generalized flight pattern, averaged 

speed profile, and Euclidean distance. These parameters are extremely critical for 

the energy calculation/estimation and can result in over or underestimation. 

▪ Most studies presented fall short of addressing road congestion and delivery time 

reduction for last-mile delivery, which indirectly impacts the overall environmental 

assessment models.  

Another critical factor that is not considered before in previous studies is the impact of 

UAV regulations on their environmental performance, viability, and operation. Most 

publications are highly generalized where there is no mention of the regulations applicable 
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for their simulation or experimentation. In contrast, assumptions are often made (Watts et 

al., 2012). Hence, the present literature is limited in quantifying the economic and 

environmental impacts/benefits associated with UAVs across different regulatory 

scenarios. 

Therefore, it is imperative to study the environmental impacts of UAVs associated with 

different policies and regulations to better guide the introduction of UAVs in the 

transportation industry. Our study contributes to the field of UAV environmental impact 

analysis by addressing the aforementioned points. 

2.3.2 UAV Flight Policies 

To date, UAV regulations have been mentioned and referenced in a myriad of studies and 

publications worldwide. UAV regulations could be classified into technical and theoretical. 

While theoretic literature on the UAVs started in the 1960s, when the term ‘Remotely 

Piloted Vehicle’ (RPV) was used, which was later redefined as Unmanned Aerial Vehicles 

(UAV) in the 1980s (Mirza et al., 2016). However, earlier literature before 2010 explained 

the regulatory basis for larger UAVs comparable to piloted aircrafts. Therefore, such 

regulations do not apply to the current smaller UAV technologies (Clarke, 2014). 

Furthermore, these studies are mainly interested in exploring the legal frameworks, 

policies, and regulations without studying their actual impact. Therefore, we focus the 

review on more recent studies. 

The major driving parameters from regulatory criteria are bundled as administrative 

and operational. As shown in Figure 2-1, the policy basis is adopted from Stöcker et al. 

(2017), further synthesized, summarized in six main sub-criteria, respective variables, and 
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correlated performance metrics. Administrative policies regulate the procedures of flight 

permissions, pilot licenses, and data collection. Although these policies indirectly impact 

the UAV fleet operation and viability. However, given autonomy, assumed fleet size, and 

UAV specifications viable for last-mile delivery, operational policies are the main 

determinant in regulating fleet operation. Operational policies ensure the safe use of 

airspace, outlining essential flight instruments, and collision avoidance mechanisms. Figure 

2-1 highlights the parameters associated with the operational policies. These parameters, 

being flight speed, travelled distance, and maximum flight altitude, are accepted in the 

literature as the key elements to assess the environmental impact of UAVs (Stolaroff et al., 

2018; Figliozzi, 2017). Consequently, two metrics have been favoured to estimate and 

compare the environmental impact and energy demand required per kilometer, or per 

kilogram of the delivered parcel; both are converted into GHG emissions or CO2-

equivalents. 

The literature on operational regulation can be bundled in theoretic comparisons and 

application-based. For instance, Clarke (2014) identifies the gaps in national and 

international UAV regulations considering behavioral privacy in one publication, and 

liability and public safety in another (Clarke and Moses, 2014). Morales et al. (2015) 

proposed several options for Colombian UAV policies through the comparison of six 

different national regulations. More recently, Stöcker et al. (2017) compared and analyzed 

all national regulatory frameworks through a synthesis of current regulations. Their 

findings conclude that although all regulations have a common goal, however, there are 

distinct variations in all the compared variables. However, from a holistic regulation 
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variation impact perspective, cross-citations and inter-disciplinary studies are rare (Stöcker 

et al., 2017).  

For the line-of-sight operation, almost all countries have flexible boundaries that allow 

UAVs weighing up to 25 kg, travel speeds approaching 45 m/s, and onboard requirements 

that are already by default on all industrial-grade UAVs. While for a fleet operation, beyond 

visual line-of-sight (BVLOS) and utilizing controlled airspace for autonomous operation, 

they require special permission in all UAV policies. Aside from this, only flight limitations 

can be analyzed into several sub-criteria. Therefore, some countries adopt stricter 

operational regulations in selected criteria and leaner regulations in the rest. 

Table 2-1 presents three categories of regulations adopted for each criterion. These 

categories can be summarized as; 1) minimum horizontal or lateral distance from people 

and property, 2) maximum allowable flight height or altitude which is usually adopted from 

the ICAO recommendations within the range of 100 meters, 3) some countries define 

additional no-fly zones (NFZ) or clearing distance in case of a highway, military areas or 

congested areas such as public plazas, 4) minimum clearing distance from airports, 

aerodromes, and airstrips, although special authorization might be possible on a case-by-

case basis. Most countries impose specific numeric values for minimum or maximum 

clearance distance. However, some UAV policies do not specifically mention some 

regulatory criteria. Alternatively, general terms like congested areas, as well as crowds of 

people, are stated. In this study, such cases will be categorized as lean or unrestricted. 
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Table 2-1 Synthesized categories of variance in regulatory operational limitation 

Category 

 Regulatory Operational Limitation 

Criteria 
Distance from 

airports or strips 

Distance from property and 

people 

Distance from 

congested areas 

or highway 

Maximum altitude 

Lean or 

unrestricted  

(Scenario 1) 

NFZ Restricted over crowds 100 m 130 ~ 155 m 

The Netherlands, 

Austria, Germany, 

Japan, Malaysia, 

UK, China, France 

US, Spain, Malaysia, France, 

Germany, China, Austria, 

Italy, Netherlands 

Germany France, Nigeria, Austria, 

Italy, Colombia, Japan, 

Chile 

Average 

(Scenario 2) 

2 ~ 5 Km 30 m 150m 100 ~ 122 m 

Austria, Italy, Chile, 

Colombia, Canada 

Canada, Australia, Chile, 

Japan 

UK UK, Spain, Australia, 

Malaysia, US, Canada, 

Netherlands, China 

Strict 

(Scenario 3) 

8 ~ 10 Km 50 m Not Allowed ≤ 100 m 

US, Spain, South 

Africa, Rwanda 

UK, South Africa, Colombia, 

Rwanda 

Canada, 

Australia 

Germany, Rwanda 

Sources: Appendix A.1 

In a nutshell, there is a dire need for quantifying the economic and environmental 

impacts in terms of energy and infrastructure costs besides the GHG emissions reduction 

that the UAV technology promises for the industry. This is not to exclude other regulatory 

aspects; rather, it is geared to guide the policy evaluations and modifications to proactively 

assess the impacts of UAV legislation. The uncertainty linked with creating UAV policies 

stems from the rapid technological developments of UAVs. This is echoed in most recent 

studies, as they have been advocating that future research periodical evaluative frameworks 

on the economic viability and environmental impact of different UAV regulations are 

critical for the further development of robust UAV policies (Custers, 2016; Stolaroff et al., 

2018). 

In this respect, the presented study provides an original contribution to the intertwined 

UAV policy/ emissions relationship. We first develop an integrated model to analyze and 

quantify the environmental impact and energy demand of different UAV policies and 

regulations for parcel delivery. The environmental/energy assessment is illustrated through 
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the comparison of simulating three scenarios adopted from existing international 

regulations for both rural and urban contexts. In addition, a ground transportation model is 

developed, as a reference model, to showcase the benefits of UAVs under different policies. 

2.4 Methodology 

The study adopts a three-step sequential methodological approach Figure 2-2. Each step 

is detailed in the following sub-sections.  

Figure 2-2 The developed Methodology 
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2.4.1 Parcel Demand Modelling 

The simulation of a full-day last-mile delivery requires access to demand data. However, 

real-life georeferenced delivery demand data is protected under privacy laws. Literature 

either tests different numbers (Goodchild & Toy, 2018) or assumes an industry-given 

average (Figliozzi, 2017). Given the origin as the selected depots, destination modelling 

can be adopted from statistical prediction models that have been used in trip generation 

models and proved a high level of accuracy and robustness (Fagnant and Kockelman, 

2014).  

In this study, we assume that the number of deliveries follows a Poisson-distribution 

with a mean variation based on real-world population density, which is utilized as an input 

for the generation algorithm to simulate a one-day last-mile operation. It is a discrete 

probability distribution, also known as “the law of improbable events”, developed by 

Simeon Denis Poisson. The Poisson distribution is commonly used in demand modelling 

since parcel demand is considered an activity that statically will occur at a certain rate over 

a period of time. The probability of X occurrences is given by: 

P(X) = 
𝜆𝑛𝑒−𝜆

𝑥!
 

(1-1) 

Assuming the parcel delivery over time t, and expected number of deliveries per day n, 

equation (1) can be rewritten as, 

P(n;t) = 𝑒−𝜆𝑡 
(𝜆𝑡)𝑛

𝑛!
 (1-2) 
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Where t, is the time interval (one day), n is the expected number of daily deliveries, and e 

is Euler’s number, equal to 2.71828. The probability of n occurrences in the interval t is 

given by, 

 = t (1-3) 

Where  is the expected number of deliveries taken from the estimated 0.08 parcel per 

person per day above, the final equation is expressed as, 

P(n) =𝑒−𝜇 
𝜇𝑛

𝑛!
; for n = 0, 1, 2…. (1-4) 

The probability of one parcel based on this Poisson distribution and the occupant 

density overlaid map is coded in Python within our simulation toolbox, and the resultant 

O-D matrix is the base for both UAV and Ground delivery simulations in all policy 

combinations. 

2.4.2 Modeling UAV Routing, Energy Consumption, and GHG Emissions  

2.4.2.1 UAV 3D Routing 

Considering the solving domain for UAVs, first, the 3D GIS city data with overlaid O-D 

matrix is imported to the solving algorithm. The algorithm requires a solvable graph, 

including the origin and destination points presented as a 3D graph in Figure 2-3. 

Depending on the simulated policy scenario, a dynamic solving mesh populates the 3D 

model according to the relevant restrictions such as distance from airports or airstrips, 

property and people, congested area or highway, and maximum allowable flight altitude. 

Hence, only the allowable airspace is populated with a dynamic Cartesian grid or mesh 

(waypoint vertices), excluding all obstacles, and non-accessible areas. This ensures that if 
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the solving algorithm converges with a solution (shortest path), the output mission plan 

abides by the simulated set of regulations. 

  
(A) Cross Sectional View (B) 3D View 

Figure 2-3 Point cloud mesh deployed in the study area 

While most literature utilizes ED, which leads to erroneous estimates (Hong et al., 

2018), other research utilizes Euclidean Shortest Path (ESP) methods, which are 

significantly more accurate. However, ESP algorithms yield solutions based on continuous 

two-dimensional space. Given both the obstacle-rich environment of the dense urban 

simulation case study and the strict scenario of simulated flight regulations, ESP algorithms 

will fail to find 3D feasible paths that consider non-holonomic differential constraints (Li 

et al., 2014). Furthermore, as in the case of 3D graph searching algorithms, this combination 

tends to create tight urban canyons where the spacing between buildings is less than the 

tolerance of the solution mesh, this may lead to redundant or invalid solutions (Yang et al., 

2016). Consequently, most graph search algorithms would fail to converge. However, 

algorithms that explore several non-optimal routes can easily detect invalid solutions and 

optimize the valid ones.  
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Routing algorithms are out of the scope of this study. We utilize an A-star modified 

Rapidly Exploring Random Tree (RRT) planning algorithm (RRT star) presented by 

Karaman and Frazzoli (2010). It is selected as it does not rely much on environmental 

representation. Furthermore, it is appropriate for online implementation for its high time 

efficiency and ability to handle dynamic and static threats (Yang et al., 2016). RRT, created 

by LaValle and Kuffner (2001), is a variant of an early sampling-based motion planning 

method by Kavraki et al. (1996), by growing a random search tree. The tree branches out 

in a highly dimensional environment between ‘starting vertex’ qdepot and ‘destination for 

ith delivery vertex’ qdest, to search for possible vertices from the starting vertex towards the 

destination with bias along the direct connector vector. This becomes the point populated 

domain, and the function is simplified as follows: 

�̇�𝑡 = 𝑓 (𝑞𝑡 − 1, �̇�t − 1, 𝑣t) 

𝐷𝑡 = ℎ (𝑞𝑡 , 𝑣i) 

(1-5) 

(1-6) 

Where �̇�𝑡∈ Q is the initiation point vector; �̇�t∈ U is the destination vector; vt is a 

random process disturbance appropriately determined; Dt is the measurement vector and qi 

is a random vertex of the qt tree. A line segment ‘edge’ is interpolated between the new 

vertex and the last tree vertex in the list. With each iteration, a new edge and vertex are 

added to the path and the tree list expands till the destination vertex becomes a part of the 

tree.  

The A-star algorithm is utilized to overcome the high memory consumption and the 

large size of the solving mesh. On one hand, it ensures the solving tree is only considering 

the most relevant areas of the point cloud tree. On the other hand, it transforms the search 



Mohamed ElSayed  McMaster University 

Ph.D. Thesis  Dept. of Civil Engineering 

63 

into a function of the potential waypoints qfree vertices confined along the direct path, in 

addition to a closed list of all the visited vertices and a simple cost equation for solving as 

follows: 

𝑇𝑖 = 𝐶𝑖 + 𝐸𝑖 (1-7) 

Where i is the vertex call number in the RRT; Ti is the total cost (path length to 

minimize from qdepot to qdest); Ci is the current ith cost from qint to current vertex; Ei is the 

estimated cost of ith vertex from the current vertex to the qdest destination vertex. The 

algorithm is written and compiled in Python. 

2.4.2.2 UAV Energy Consumption and GHG Emissions 

To calculate the energy consumed by UAV motion per each delivery mission within the 

simulation platform, the quadrotor physics that governs the motion is integrated. UAV 

power to counter wind and drag forces is directed by the flight controller to the number of 

rotors to sustain the thrust necessary for the UAV motion. The needed thrust by all rotors 

equals drag force and countering the force of gravity to the whole weight of the UAV, 

including the parcel when loaded, is given by: 

T  =( mparcel +  mUAV ) . g +  Fd (1-8) 

Where mparcel, and mUAV are masses of payload and UAV; g is the gravitational constant 

and equals 9.81 (m/s2), and Fd is the total drag force. Assuming all UAV rotors are brushless 

identical electric motors. Also assuming (�̇�) as the time derivative for the yaw, pitch, and 

roll angles of the body frame (ф, θ, Ψ) T, the angular velocity (v) is defined as a rotational 
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axial vector, and (M) is the matrix of rotation within both body and inertial frames of the 

UAV given by Luukkonen (2011), both can be obtained by: 

v = [

1 0 - 𝑠𝜃

0 𝑐𝜑 𝑐𝜃𝑠𝜑

0 - 𝑠𝜑 𝑐𝜃𝑐𝜑

] θ̇ ,    θ̇ ≠ v 

M = [

𝑐𝜑𝑐𝜓 - 𝑐𝜃𝑠𝜑𝑠𝜓 - 𝑐𝜓𝑠𝜑 - 𝑐𝜑𝑐𝜃𝑠𝜓 𝑠𝜃𝑠𝜓

𝑐𝜃𝑐𝜓𝑠𝜑 + 𝑐𝜑𝑠𝜓 𝑐𝜑𝑐𝜃𝑐𝜓 - 𝑠𝜑𝑠𝜓 - 𝑐𝜓𝑠𝜃

𝑠𝜑𝑠𝜃 𝑐𝜑𝑠𝜃 𝑐𝜃

] 

(1-9) 

 

(1-10) 

Where c and s are the cosine and sine functions of the respective angle. From equations 

(1-8) and (1-10), the linear motion can be deducted: 

𝑚𝑜𝑡𝑖𝑜𝑛 ẋ𝑖 = [
0
0

−𝑚𝑡𝑔
] + 𝑀 .  𝑇 +  Fd 

(1-11) 

where ẋi is the path of UAV, M is the matrix of rotation, mt is the combined mass of 

UAV and parcel; Fd is the drag force. While the actual mission will entail limited rotation 

in the yaw and roll angels, they have been included in the simulation for precision. 

However, it is crucial to minimize lateral motion that could jeopardize flight stability and 

payload integrity. Hence, drag force and pitch angle (in the direction of travel) are the main 

motions allowed in case of steady flight and are calculated by: 

𝜃 = 𝑡𝑎𝑛−1 (
 Fd

(𝑚𝑈𝐴𝑉)𝑔
)           (1-12) 

𝐹𝑑 = ∑ 1/2𝑖 𝜌𝑎𝑣𝑎
2𝐶𝐷𝐴          (1-13) 

𝐶𝐷 = (
2𝑚𝑔∗𝑡𝑎𝑛 (𝜃)

𝜌𝑎𝑣𝑎
2𝐴

)           (1-14) 
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Where ρair is the density of air; va is the airspeed, CD is the drag coefficient of the UAV, 

calculated during every timestep for the UAV in the simulation via (1-14), and A is the area 

of the UAV perpendicular to the motion vector. CD values for battery and parcel are 

reported in Table 2. From eq.s (1-8) to (1-14), thrust is calculated. An approximate lift-to-

drag ratio of 3 is used to ease the calculations following Lohn, (2017) and D’Andrea, 

(2014). Fd is calculated based on a set of unloaded flight simulations of combinations 

between different pitch angles (𝜃) and flying velocities up to 20 m/s (va).  

However, the power consumed is dependent on the UAV specs, including rotors 

number and size, following the conservation of momentum law and assuming operation 

under steady wind conditions, the minimum loft power is adapted from Hoffman et al. 

(2007), given by: 

𝑃𝑚𝑖𝑛 =T . 𝑣 

𝑣 = 𝑣L 𝑠𝑖𝑛𝜃 + 
2𝑇

𝜋𝑛𝑎2𝜌𝑎√(𝑣𝐿 cos𝜃)2 +(𝑣𝐿 sin𝜃+𝑣)2 
 

(1-15) 

(1-16) 

Where T is the motor thrust (Newton); vL is the loft velocity at hovering idle air 

position; v is the induced velocity for motion in a direction; n is the number of rotors, taken 

as four in this case; a is the area covered by each rotor (m2). The formulas given are coded 

in python to mimic the motion of a UAV and provide the total energy in (kWh) for every 

timestep for each mission, given the power and time. Table 2-2 outlines the assumptions 

and design parameters commonly used for input adopted from Amazon UAVs (Lohn, 

2017). 
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Table 2-2  UAV design parameters used to calculate energy efficiency 

Symbol Description Value 

w Headwind-to-airspeed ratio 3/8 at each speed* 

𝑝𝑎𝑣𝑖𝑜𝑛𝑖𝑐𝑠 Computing and sensing power 0.1 kW* 

CD_parcel Drag coefficient of parcel 2.2** 

CD_battery Drag coefficient of battery 1** 

v velocity 10- 20 m/s** 

𝑛𝑟𝑜𝑡𝑜𝑟𝑠 Number of DC brushless rotors 4* 

𝑟𝑟𝑜𝑡𝑜𝑟 Length of rotor blades (radius) 0.15 m* 

𝑣𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 Vertical velocity 10 km/h 

𝜌𝑎𝑖𝑟 Air density (assumed average) 1.225 kg/m3 

ℎ𝑈𝐴𝑉 Flight altitude Depending on Scenario 

𝑚𝑎𝑣𝑖𝑜𝑛𝑖𝑐𝑠 Avionics mass 0.4* 

𝑚𝑎𝑖𝑟𝑓𝑟𝑎𝑚𝑒 Airframe mass fraction 30%* 

𝑚𝑠𝑦𝑠𝑡𝑒𝑚𝑠 Systems mass fraction 15%* 

𝑚𝑚𝑎𝑟𝑔𝑖𝑛 Design mass margin 10%* 

𝑚𝑝 Mass of parcel 2.25 kg 

* Lohn, 2017 

** Stolaroff et al. 2018 

To verify that the calculated energy consumption through our simulation aligns with 

real-world experimental results, we compare the energy consumption output of our model 

given the same input parameters for an experimentally verified model from the literature. 

For a loaded quadcopter, Stolaroff et al. (2018) experimentally tested a quadcopter with a 

0.5 kg payload to estimate the operational energy use. Their results were derived from 

measurements of 1073 real-world flight segments in outdoor tests in moderate wind speed 

and random averaging orientations. They test a range of flight velocities up to 20 m/s. To 

verify the presented model, we input a straight-line flight path in the simulation model and 

extrapolate results at varying velocities. Results illustrated in Figure 2-4 show high 

agreement at lower velocities, with a 5% discrepancy at higher velocities due to 

discrepancies in model assumptions. 

At flight velocities over 3 m/s, translational lift increases the power efficiency 

significantly. While the speed profile will vary based on the path geometry and the status 
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of the UAV (loaded or unloaded), to achieve the best energy efficiency, velocities are 

maintained above 10 m/s and below 20 m/s whenever possible to maintain the viable route 

while capitalizing battery utilization. Given the assumption that lithium-ion battery 

charge/discharge efficiency is 90% (DJI, 2019), this outlines the energy loss between 

charging the battery versus the actual power that the battery would deliver. Furthermore, to 

calculate the precise GHG impact, we include the energy loss in transmission and 

distribution for our final calculation. The energy loss due to charging or transmission and 

distribution will vary depending on the studied area; however, the proposed model is 

generically applicable. 

Figure 2-4 Experimental verification of calculation model. 

With respect to the emission model, the estimation for the total WTW emissions for 

UAVs entails two phases of emissions, first, during the mission, also commonly known as 

Battery-to-Propeller (BTP), which is negligible since the efficiency of power transfer is 

almost 100%. Second, Generation-to-Battery (GTB), which is the GHG emitted due to the 

utilization of grid electricity to charge the UAV’s battery that differs by province, city, 

region, time of the day, and season depending on the fuel mixes, auxiliary generation 

sources, and corresponding emissions. 

0

100

200

300

400

500

0 5 10 15 20E
n
er

g
y
 c

o
n

su
p

ti
o

n
 p

er
 d

is
ta

n
ce

 

(J
/m

)

Flight Velocity at timestep (m/s)

Stolaroff et. al Loaded UAV model



Mohamed ElSayed  McMaster University 

Ph.D. Thesis  Dept. of Civil Engineering 

68 

The energy use is estimated per timestep and the GHG emissions are calculated 

through the following equation: 

∑𝐸𝑖

𝑛

𝑖=1

 × 𝑓𝑘𝑊ℎ  × 52.66 (10−3)  
(1-17) 

Where Ei is the energy required by the UAV for each segment i of the simulated 

mission route, fkWh is a conversion factor from Joules to kWh = 1/3.6 x 106 (kWh/Joule). 

For the single customer at a time model, the mass of the UAV is determined by the model 

(see Table 2-2), and the payload mass is assumed to be fully loaded at the maximum 

allowable payload outbound from the depot to the demand location, then an empty UAV 

return to the depot. 

2.4.3 Modeling Ground Transport’s Routing, Energy Consumption, and GHG 

Emissions 

2.4.3.1 Ground Transport Routing 

UAVs are limited on payload; hence they are assumed to perform a single delivery 

mission at a time. In contrast, ground transport vehicles are capable of a much larger 

payload. Hence, they are capable of performing several deliveries along a planned route. 

Delivery addresses must be arranged as stops along the shortest viable delivery route to 

optimize the operation and minimize energy consumption. For ground delivery, the road 

network layer is imported to the 3D GIS model. The road network acts as the solving 

domain or the available links between the delivery nodes and the depot. 

While several Continuous approximation models are utilized in the literature to model 

the average distance travelled to serve the delivery missions (Daganzo, 2005), they present 

an approximation rather than a high precision result. Having the depot and customers’ 
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locations from the O-D matrix overlaid on the 3D GIS model for both simulation zones, a 

Traveling Salesman Problem (TSP) can be formulated as an integer linear program. In this 

study, we utilize the Dantzig-Fulkerson-Johnson (DFJ) formulation, which is widely 

accepted for its robustness (Velednitsky, 2017). First, the delivery customers or qdest are 

labeled with the numbers 1, …, n, and the path-belonging for the binary arc variables sij 

can be expressed as: 

𝑠𝑖𝑗 = {
1 
0

                from node 𝑞𝑖 to 𝑞𝑗

otherwise
 

(1-18) 

Take 𝑐𝑖𝑗 to be the distance from the node 𝑞𝑖 to the node 𝑞𝑗. Then TSP can be written 

as the following integer linear programming problem: 

min∑ ∑ 𝑐𝑖𝑗𝑠𝑖𝑗

𝑛

𝑗≠𝑖,𝑗=1

𝑛

𝑖=1

 

Subject to: 

0 ≤  𝑠𝑖𝑗 ≤ 1  𝑖, 𝑗 = 1,… , 𝑛; 

∑ 𝑠𝑖𝑗 = 1𝑛
𝑖=1,𝑖≠𝑗   𝑗 = 1,… , 𝑛; 

∑ 𝑠𝑖𝑗 = 1𝑛
𝑗=1,𝑗≠𝑖   𝑖 = 1,… , 𝑛; 

∑ ∑ 𝑠𝑖𝑗 ≤ |𝑄| − 1𝑗∈𝑄𝑖∈𝑄  ∀𝑄 ⊊ {1,… , 𝑛}, |𝑄| ≥ 2 

(1-19) 

 

 

(1-20) 

(1-21) 

(1-22) 

(1-23) 

The constraint in (1-23) ensures no sub-loops within the middle mesh vertices qrand, to 

guarantee a single route rather than the amalgamation of sub-routes. To solve the TSP, we 

utilize a Genetic Algorithm (GA) coded in Python. The algorithm tests random potential 

solutions keeping the shortest 10 mutations for the next generation of solutions. The 
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algorithm converges after a few generations for all missions with the near-optimal solution 

for the shortest possible route, starting from the depot and visiting every customer in the 

optimal sequence, eventually returning to the depot. The results of the simulation are 

available in Appendix A.2. 

2.4.3.2 Ground Transport Energy Consumption and GHG emissions 

To calculate the energy consumption, the simulation platform interacts locally with 

Google Maps API through the Mosquito plugin (Smuts, 2019). The simulation specifies 

the start position at the depot address and the destinations in the shortest route sequence. 

Subsequently, the Geocoding API cross-references the geocodes of these positions. Finally, 

Google maps route the mission and provide the estimated average speed expected based on 

the midday live traffic information when deliveries are normally performed. An extra five-

minute idle time is added per delivery location to allow the operator a time window to 

successfully place the delivered parcel. 

Similar to UAVs, WTW emissions for ground delivery are estimated for two processes. 

Well-to-Tank (WTT), which are the emissions during fuel extraction, production, and 

distribution. And Tank-to-Wheel (TTW), which are the emissions produced during 

operation due to fuel combustion. The total energy consumption in liters of diesel for a 

combined mission AEi for road segments 1, …, n can be given as a summation function of 

travel speed as follows: 

𝐴𝐸𝑖 = ∑𝜂𝐷𝑖𝑒𝑠𝑒𝑙

𝑛

𝑖=1

 × 𝑑𝑖 
(1-24) 
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Where ηDiesel is the vehicle energy consumption in diesel/ gas liters per km for the 

averaged travel speed for segment i., and d is the respective distance under a specific 

average travel speed for segment i. For a class 4 commercial vehicle comparable to a last-

mile delivery city van or walk-in truck, the energy efficiency is conservatively estimated at 

7.3 MJ/km for diesel-operated vehicles and 2.44 MJ/km for EVs (Sharpe & Muncrief, 

2015). The total GHG estimate for all road segments 1, …, n is calculated using: 

∑ 𝐶𝑂2

𝑛

𝑑𝑖=1

𝑒 =  𝐴𝐸𝑖  × (𝐸𝑊𝑇𝑇 + 𝐸𝑇𝑇𝑊)  
(1-25) 

Where CO2e is the ground delivery equivalent carbon dioxide emissions per unit of 

fuel consumed in kg CO2e; AEi is the total energy consumption in liters of diesel calculated 

in (24); EWTT is the emissions of the WTT phase in kg CO2e/liter, and ETTW is the emissions 

of the TTW phase in kg CO2e/liter. Using the Argonne National Laboratory’s GREET 

model (Argonne National Laboratory, 2014), WTT and TTW emissions are estimated at 

0.22 kg CO2e/liter and 2.7 kg CO2e/liter, respectively. Furthermore, the idling time 

emissions are estimated at 3.18 L/hr. 

2.5 Case study 

The proposed method can be applied to any context, however, in this study, Canada is 

chosen as the study area as it gears up for a critical phase of developing UAV integration 

policies, which will pave the way for real-life applications (Canada Gazette, 2019). With 

the geographic and urban expansion, the Greater Toronto Area (GTA) possesses the most 

complex urban structure to test the UAV policies. The congested, dense city center (old 

Toronto), the proximity of airfields, and highways, the contrastingly sparse rural setting, 
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and the availability of high-definition 3D GIS data made this study area a suitable and 

appropriate choice. In this study, a real-life operation is simulated in both cases, urban and 

rural. 

For the road network, buildings, and geo-data, the current open-source GIS data of the 

municipal division of the city of Toronto (Toronto.ca, 2019) are imported into ArcGIS. 

Furthermore, Open Street Map (OSM) data is overlaid, referencing the 3D model to the 

existing ArcGIS model in precision. 

In this study, we adopt the annual delivery given by Canada post of an estimated 30 

parcels annual per person (Canada Post, 2019), where 0.08 parcels are delivered daily (300 

deliveries for the case study area). Furthermore, for reference, these numbers fall within 

the ranges reported in the literature; for instance, UPS delivers approximately 20 million 

parcels per day (UPS, 2017). Given the US population is 320 million, while 75 percent of 

deliveries were within the US, and at an approximate 54 percent market share of the total 

parcel delivery service market (UPS: 54 percent; FedEx: 30 percent; and the U.S. Postal 

Service (USPS): 16 percent), it is deductible that an estimated 0.05 parcels are delivered 

per person per day in the US. 

The existing Canada Post dispatch center for last-mile delivery of parcels is maintained 

without adding extra warehousing to mitigate the added environmental and economic 

impacts. The data for postal code area M5H (Old Toronto) is selected for the city-center 

dense case study Figure 2-5 A, while postal code area L9V (Orangeville, ON) is selected 

for the rural low-density case study Figure 2-5 B. These addresses were chosen because 

they possess centrally geographically located operational Canada Post depots for last-mile 
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delivery distribution with road and airspace access. The selected depots receive the 

designated parcels at a provider-dictated hub-and-spoke model from the central Canada 

Post sorting facility. Thereafter, recipients in each designated service range are assigned by 

the three-digit postal code for last-mile delivery during operation hours (9 am to 7 pm). 

  

(A) Urban case study (B) Rural case study 

Figure 2-5 Maps for the case study areas (urban & rural) 

The roof area is sufficient for multiple UAV pads; however, specific takeoff and landing 

operation scheduling is out of the scoop of this study. Considering operational limitations 

previously illustrated in the methodology, Figure 2-6 shows the weather conditions in the study 
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area where operations for comparable UAV sizes and specifications will suffer minimal service 

interruptions annually.  

Figure 2-6 Outdoor Ambient air Temperature and Wind speed condition. (Source: Weather 

Canada) 

Emissions in Ontario are retrieved from the Ontario Power Generation (OPG), 

according to Intrinsik Corp. (2016). Table 2-3 outlines the amount of GHG expressed as 

gram CO2 equivalents per kilowatt-hour (g CO2e/kWh) for each power source and the 

weighed total for the province of Ontario. For Canada, the World Bank reports an electric 

power transmission and distribution loss (% of output) of 8.86 % in 2014. This means that 

for every 1 kWh of UAV charge, an estimate of 1.1886 kWh is generated at the grid power 

source. By adjusting the losses due to battery charge and discharge added to transmission 

and distribution loss, this rate is precisely estimated at 52.66 g CO2e/kWh. 
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Table 2-3 Resource-specific GHG emission rates for operation and maintenance (source: 

Intrinsik, 2016) 

Resource GHG Emissions per Energy Production (g CO2e/kWh) Percentage Total 

Hydroelectric 0 24.5 0 

Nuclear 0.15 60 0.09 

Wind 0.74 5 0.04 

Solar 6.15 0.5 0.03 

Gas/ Oil 525 10 52.5 

  100 52.66 g CO2e/kWh 

2.6 Results 

2.6.1 Results of the O-D Parcel Demand Model 

A base-case scenario operation model was conducted, using the average daily demand as 

outlined in the methodology section utilizing six-digit postal code data and the associated 

geocoded information (Figure 2-7 A). Subsequently, the overlay of population density 

maps based on the Canadian Census 2016 (Figure 2-7 B), serves as the basis for O-D 

mission simulation. Results of the O-D generation for both rural and urban case studies are 

reported in Table 2-4. In addition, Figure 2-7 C, and F show the Poisson generated demand 

customer points in red, Figure 2-7 D, E, G and H show the origin depot in blue and the ED 

in green lines to the destinations of all missions for ground and air delivery simulations, 

respectively. Furthermore, the generated demand points in 7D, 7G, 7E and 7H are pulled 

and amalgamated to the nearest roof (in red) for a valid UAV air delivery location and a 

building ground address for a ground delivery point respectively. 

Table 2-4 Results of the O-D parcel demand model. 

Parameter Urban Rural 

Service area 750,000 m2 600,000,000 m2 

Poisson λ parameter 88 6-digit allocations 142 6-digit allocations 

Average distance from depot (min, max) 209.5 (57.2, 400.2) m 4125.6 (52.2, 18184.4) m 

Average distance between destinations 46.2 m 1107.5 m 

Mission count (deliveries) 300 300 

Lengthiest route ED 400.25 m 18,184.42 m 

AM peak 9 AM–10 AM 11 AM–12 AM 
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PM peak 4 PM–6:30 PM 6 PM–7 PM 

Merged destinations to nearest 20 m 118 245 

 

  
(A) Three-digit postal code map of the case study area (B) Overlay census data for the case study area 

   

(C) Poisson Point Demand 

generation in the urban case study 
(D) Ground deliveries in the urban 

case study 
(E) Air deliveries roof projection in 

the urban case study showing ED 

(F) Poisson Point Demand 

generation in the rural case study 
(G) Ground deliveries in the rural 

case study 
(H) Air deliveries roof projection in 

the rural case study showing ED 
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Figure 2-7 O-D matrix generation results for all deliveries in the urban and rural case studies. 

2.6.2 UAV Policy Impact on GHG Emissions 

Based on the generation results from the O-D model and using the three policy 

scenarios discussed in the literature, full-day operation simulations were performed. The 

overall results (Figure 2-10) show several trends for both urban and rural case studies 

considering both total GHG emissions and routing geometry. 

Comparing our results to the ED (Table 2-5), which is the most frequent UAV distance 

measure yielded the following: first, for the urban case study, only lean regulations would 

result in comparable estimates (only in very few cases where routing does not encounter 

obstacles) to those based on ED in the literature, or to 2D Euclidean shortest path (ESP) 

estimates. This raises valid concerns about the utilization of 2D ED or ESP as a 

representable distance measure for predicting UAV energy/GHG emissions. In addition, 

3D kinematic simulations show that average and strict regulations resulted in lengthier 

routes; hence, higher GHG emissions. Results for the rural case study show the same trends, 

with higher rates up to an increase of 35%. Second, results for the urban case study, under 

average and strict regulations show a significant number of failed missions, 2.33%, 

and 75%, respectively. These missions will not be viable due to inaccessibility within the 

urban situation in adopting average or strict policies.  

Table 2-5 Flight distance results statistics 

Simulation Scenario for Mission Length Estimates Urban Rural 

ED-based   

 Mean mission route length (Standard deviation) 231.91 m (70.51)  4145.36 m (5111.90)  

Lean regulations   

 Mean mission route length (Standard deviation) 266.39 m (80.55) 4193.04 m (5120.31) 
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Average regulations   

 Mean mission route length (Standard deviation) 383.45 m (156.51) 4241.59 m (5121.51) 

Strict regulations   

 Mean mission route length (Standard deviation) 647.67 m (314.19) 4280.70 m (5122.01) 

Considering the impact of policy variation on UAV environmental performance, the 

results for the WTW total GHG emissions in urban and rural case studies are illustrated in 

Figure 2-8 and Figure 2-9, respectively. For the Urban case study, the results show higher 

rates of GHG emissions estimation compared to lean policies, an increase of up 

to 160% and 400% for average and strict regulations, respectively. While in the rural case 

study, the discrepancies in GHG emissions estimates between the three simulated policies 

are almost negligible (0 to 5%). 

 

Figure 2-8 Total GHG emissions in the urban case study (Note: zero value means failed mission). 
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Figure 2-9 Total GHG emissions in the rural case study. 

 

(A) Urban case study: total emissions vs emissions per mission 
 

(B) Rural case study: total emissions vs emissions per mission 
Figure 2-10 Illustrated total GHG emissions results’ statistics. 
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Furthermore, considering the feasible route geometries and their correlation to GHG 

emissions, the illustration in Figure 2-11 shows results for some simulated missions. For 

the urban case study, first, average and strict regulations produce a uniform path (in X, Y, 

and Z) as compared to lean policies where hard maneuvers can be observed to navigate 

sharp turns and hard angles of the urban context. Second, UAV routes utilize paths above 

wide streets where the regulations can be respected, which generates a linear, smooth path 

where higher flight velocities are maintained, which in turn decreases the GHG emissions 

per unit distance (despite a lengthier overall path). Third, each mission follows a unique 

speed and route profile depending on the destination and viable air space according to the 

simulated policy (Figure 2-11 D), which results in a significant case-by-case variation of 

energy demand and emissions due to the change in wind profile, resistance, and flight 

kinematics (Vertical/ horizontal motion and hovering). For the rural case study, the 

differences in the generated route geometry are almost negligible since the only resulting 

difference is in the lengthier VTOL distances. The results of the flight geometry (Figure 

2-11 D), highlight that the developed idealized UAV delivery flight pattern by Kirschstein 

(2020) is not feasible for all missions, hence shouldn’t be utilized/generalized for 

estimating UAV GHG emissions. 
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(A) Lean altitude and lean distance 

from property and people 
(B) Lean altitude and the average 

distance from property and people 
(C) Lean altitude and strict distance 

from property and people 

 

(D) UAV altitude along selected missions under different policies from takeoff to depot return 

Figure 2-11 Shortest viable route geometry results for all deliveries in urban case study across 

three regulation scenarios for the lateral distance restrictions parameter only 
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has the furthest distance and highest destination altitude delivery missions. These scenarios 

are subsequently combined to form nine (each 20 by 15) matrices presented in Figure 2-12, 

where each cell entry represents the total CO2e emissions of a UAV delivering the 

maximum allowable payload parcel to the designated demand location. 

The scenarios are organized vertically in groups of threes, where the bottom three 

represent lean maximum altitude policies, then average altitude ending by the top three 

matrices for strict maximum altitude policies. Furthermore, within every three matrices, the 

bottom represents emissions’ results for lean horizontal distance from public property and 

buildings, and the distance becomes more strict going up. 

The illustrated results for the rural case study in Figure 2-13 are similar in order. 

However, only three matrices are presented, representing horizontal distance policies 

arranged to ascend from bottom to top while maximum altitude change did not yield 

different results. All results are presented in a heatmap illustration where blue represents 

low emissions and red represents high relative emissions, and black cells represent failed 

delivery missions. 

The results show several trends for both urban and rural contexts. First, as a rule, UAVs 

will emit significantly more CO2e under more strict policies specifically with further 

deliveries as compared to lean and average policies. The degree of redness (more GHG) 

increases with the decrease of allowable flight altitude. Also, with a higher minimum 

allowable distance from obstacles (going up in the matrix), for the same distance from the 

depot, the missions get deeper in red (more GHG). 
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Second, the increase in emissions is not linear with either the distance or the altitude. 

However, it can be exponential in some cases, especially with the rural case study, due to 

the dependency on the mission distance parameter. This contradicts the existing literature, 

where a linear relationship was argued to represent all cases and contexts. The maximum 

variance of GHG between all missions was 97.1%. However, policy-based variance, ceteris 

paribus, contributed to a variance of 69% from lean to strict regulation. 

Another important trend noticed is the increase of failed missions from 2.33% up to 

75% with the increase in regulation strictness. This is mainly attributed to the 

inaccessibility in narrow urban canyons at a stricter maximum allowable horizontal 

distance from the property. The simulation subtracts obstacles and their respective 

minimum allowable proximity buffer from the solvable domain of the routing algorithm. 

Furthermore, missions are more prone to failure with higher destination altitudes when 

combined with stricter maximum allowable flight altitude, which eradicates legally viable 

airspace above high buildings en-route from depot to customers. 
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(A) Maximum Flight Altitude <100 m 

 

(B) Maximum Flight Altitude 100~122 m 
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(C) Maximum Flight Altitude 150 m 

Figure 2-12 GHG emissions matrices for the urban case study. 
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Figure 2-13 GHG emissions matrix for the rural case study (Note: Max flight altitude policy 

change yields the same results in the rural case study). 
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impacts compared to ground delivery by diesel-operated van/truck. Given specific 

mission circumstances, the impact can reach up to a 95% reduction in GHGs in 

urban postal codes and a 99% reduction in rural postal codes. 

▪ Considering EVs, UAVs show only a slightly lower environmental impact in the 

urban case study; however, 30% more GHG emissions in the rural case study. These 

results come in line with the previous research (Kirschstein, 2020) and expectations 

for the rural case study due to the higher VKT combined with an empty return for 

UAVs. 

While UAVs carry a single parcel per mission and return empty, ground delivery vans 

carry considerably more parcels, which yields lower VKT. This depends on urban density, 

street network design, zoning, and user demand. For instance, in the urban case study, for 

ground delivery, the total VKT was 16.98 km for the 300 parcels, an average of 17.66 

parcels per km, compared to the VKT of 238 km for the same number of parcels in the case 

of UAVs, an average of 1.2 parcels per km. However, despite the low VKT for ground 

modes, on average, UAV utilization contributes to a lower environmental impact compared 

to both diesel and EV vans by 77.3% and 67%, respectively. 

To conclude, although research implies that a mixed system of UAVs and ground 

delivery would perform best by emitting the disadvantages of each mode (Goodchild & 

Toy, 2018), results of this study show that under lean and average flight regulations, 

environmental benefits of a full UAV system would surpass a combined system, especially 

in urban settings. However, with the necessity of operation under extreme weather 

conditions, a combined system such as suggested by Murray & Chu (2015) presents a viable 
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solution. 

 

Figure 2-14 GHG emissions per parcel. 
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slow for maneuvers or hard turns and tends to speed up in straight lines. This leads to an 

average variation of 0.5 g CO2e per travelled kilometer.  

 

Figure 2-15 GHG emissions per distance. 

It should be noted that GHG emissions estimation results are expected to vary more 

significantly with higher emission fuel mixes used for electricity generation in other 

provinces and jurisdictions. For instance, Stolaroff et al. (2018) reported a 54% reduction 

in GHGs in the case of California (398.7 g CO2e/kWh). However, with a higher carbon 

electricity mix in Missouri (834.61 g CO2e/kWh), the GHG reductions decrease to 23%. 

This indicates that even in high carbon-intense electricity grids, the UAV GHG reductions 

will still stand competitively against Diesel trucks due to the high difference in g CO2e per 

parcel reported in Figure 2-14. 
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2.8 Conclusion 

This study has presented a novel simulation-based framework to precisely assess the real-

world impact of UAV flight regulations and policies on the energy demand, operation 

viability, and CO2e emissions of UAVs' last-mile transport operations in urban and rural 

contexts. Furthermore, the study compared UAV emissions for the same operation against 

diesel and electric ground modes of delivery. In general, results and discussion support the 

hypothesis that UAV utilization in first/last-mile transportation operations can significantly 

reduce operational GHG emissions, even under strict aviation regulations. Given the 

significant share of last-mile operations in the total GHG emissions by the transportation 

sector totaling 24 percent of the overall national emissions in Canada, this study will 

significantly aid Canada in meeting its share of the global GHG emissions along with other 

considerable electrification processes such as in transit (Mahmoud et al., 2016) and electric 

vehicle (Mohamed et al. 2016). Together, transportation electrification and UAV 

integration would indeed help with the reduction target to stay within the 1.5°C or 2°C 

warming thresholds, which has been coined by scientists as key to the future safety of the 

planet. 

For urban contexts, flight regulations impacted the UAV operation significantly. Strict 

regulations lead to isolated urban areas or patches of the service zones that become 

inaccessible through the air due to the restrictions of proximity to public property or 

buildings. In viable missions, the UAV flight path increases significantly to travel around 

inaccessible urban canyons and obstacles, which leads to increased CO2e emissions up 

to 400% compared to lean regulations. However, the flight path geometry contributes to the 
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flying velocity, hence, decreasing the overall energy consumed per distance travelled. Strict 

regulations add a limitation to the UAV service range and require additional warehouses. 

For rural contexts, flight regulations have limited to no impact on the UAV operation due 

to the rarity of obstacles or public property, leading to only a lengthier VTOL, which has a 

limited impact on the overall flight emissions. 

Compared to ground delivery, real-world data simulations show that UAVs are 

averaging 1000-fold more CO2e efficient than diesel ground delivery modes. And only 

around 30% more efficient in case of electric ground delivery modes under some 

conditions. Furthermore, UAVs realize the advantage of decreasing congestion caused by 

traditional ground delivery and shifting the tailpipe emissions and associated pollution 

impacts from residential contexts to remote power generation plants. In general, UAVs 

have the upper edge in lifecycle emissions compared to vans, where UAVs do not require 

road and infrastructure maintenance. 

Given all these merits of UAV delivery, the technological advances in batteries and 

efficiency will allow UAVs to outperform environmentally by extending their range with 

heavier payloads onboard combined with the rapid decarbonization of grid electricity. 

UAVs are posing as a better environmental alternative place additional safety and 

regulatory concerns/ uncertainties, especially in high-density areas. This study provided a 

novel method to study the intricate predicaments between policies and environmental 

impacts. While literature presents several path optimization green algorithms to amend 

UAV flight paths for better energy efficiency, these algorithms only target a very limited 

consumption margin based on path geometry or UAV velocity, hence, applicable only after 
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a major policy is selected, such as the alternatives presented in this study. All system 

decisions need to be simulated on large-scale operations to quantify the trade-offs between 

public and payload safety, GHG emissions, system requirements, and delivery speed. For 

instance, choosing a strict flight regulation would allow higher safety and acceptable GHG 

emission improvements. However, it will significantly increase extra warehousing 

requirements. For instance, in almost all cases with failed deliveries, an added warehouse 

or charging depot along the route would result in doubling the range, hence, successful 

missions. As the results show a failure of 75% in the case of strict regulations, this means 

an estimate of two extra warehouses for the study area, i.e. a 200% increase in warehousing. 

Future research includes the study of the urban settings impacts, for instance, the 

change in building density versus the variation between different policies. Furthermore, in 

this study, the proximity of highways or airports was partially ineffective based on urban 

design and geographical location. However, in other cases where strict flight regulations 

do not allow UAV flights near highways or airports, the impact should be further 

investigated on case to case basis. EV shows huge potential in most delivery operations 

compared to UAVs based on the Canadian average electricity mix with emissions around 

50 g CO2e /kWh. 

This study started with the objective of quantifying the GHG reduction by UAV 

transport under different flight regulations. Revising flight regulations and policies are of 

critical importance to realizing the environmental benefits of UAVs in delivery and other 

applications. The results of this study should be incorporated as a possible solution for 

specific cities or rural areas as part of a further integrated decision support system and 
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policy evaluation. This will help experts and local authorities develop, evaluate and 

facilitate appropriate freight and last-mile UAV delivery policy/ plans for cities. 

Furthermore, it presents an accurate quantitative analysis tool of the environmental impact 

of GHG and energy requirements. Although the study limitation with CFD affects energy 

consumption estimates, however, the discrepancy requires a complicated CFD simulation, 

which can be computationally intensive. Future studies should expand the work under 

different weather conditions. 
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2.10 Appendix A 

2.10.1 Appendix 1: Sources for international regulations: 

Australia: Australian Government Civil Aviation Safety Authority, “Flying 

Drones/Remotely Piloted Aircraft in Australia,” August 13, 2017. 

Austria: Austro Control, “Betrieb von unbemannten Luftfahrzeugen–Drohnen,” 

Canada: Transport Canada, “Part IX – Remotely Piloted Aircraft Systems,” July 26, 2019. 

Chile: Global Drone Regulations Database, “Chile,” Last update / March 2, 2017. 
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China: Civil Aviation Administration of China (CAAC), "Regulations on the Registration 

and Management of the Real-name System of Civil Unmanned Aerial Vehicles", May\ 17, 

2017. 

Colombia: https://uavsystemsinternational.com/pages/colombia-drone-laws. 

France: Legifrance, “Decree of 17 December 2015 on the Use of Airspace by Aircraft 

Operating on Board,” JORF n°0298, December 24, 2015. 

Germany: Luftfahrt Bundesamt, “Die neue EU – Drohnen - Regulierung”, March 5, 2019. 

Italy: ENAC, “Remotely Piloted Aerial Vehicles,” Revision 3, March 24, 2017. 

Japan: Ministry of Land, Infrastructure, Transport and Tourism, Civil Aviation Bureau, 

“Japan’s Safety Rules on Unmanned Aircraft (UA)/Drones,” December 10, 2015. 

Malaysia: Department of Civil Aviation, Aeronautical Information Services, “Unmanned 

Aerial Vehicle (UAV) Operations in Malaysian Airspace,” February 18, 2008. 

Netherlands: https://www.government.nl/topics/drone/rules-pertaining-to-recreational-

use-of-drones 

Rwanda: Rwanda Civil Aviation Authority, “Unmanned Aircraft Operations in Rwanda,” 

Feb 2019. 

South Africa: South African Civil Aviation Authority, “Remotely Piloted Aircraft 

Systems,” 2017. 

Spain: Agencia Estatal De Seguridad Aerea (AESA), December 29, 2017. 

United Kingdom: Civil Aviation Authority, “Unmanned Aircraft and Drones,” 2015. 

https://uavsystemsinternational.com/pages/colombia-drone-laws
https://www.government.nl/topics/drone/rules-pertaining-to-recreational-use-of-drones
https://www.government.nl/topics/drone/rules-pertaining-to-recreational-use-of-drones
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US: Federal Aviation Regulations. 

2.10.2 Appendix 2: Travelling Salesperson Solution for Ground Deliveries 

 

(A) Urban case study TSP solution for 

ground delivery 

 

(B) Rural case study TSP solution for ground 

delivery 
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CHAPTER 3 

3 The Impact of Airspace Discretization on the Energy Consumption of Autonomous 

Unmanned Aerial Vehicles (Drones) 

Preamble 

This chapter focuses on the first, third, and fourth objectives of the dissertation (Figure 

3-1). The chapter assesses the impact of airspace planning and discretization on the energy 

consumption of autonomous UAVs, which investigates the intertwined airspace 

discretization and policy uncertainties. In this chapter, we propose a novel open-source 

comprehensive UAV autonomous programming framework and a digital-twin model to 

simulate real-world three-dimensional operation. Additionally, this chapter introduces the 

framework which integrates airspace policies, UAV kinematics, and autonomy to 

accurately estimate the operational energy consumption via an experimentally verified 

energy model, further enhancing the answer to the UAV energy uncertainty provided in 

chapter 2. 
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Figure 3-1 Regulatory criteria correlation to performance metrics. 
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3.1 Abstract 

Promising massive emissions reduction and energy savings, the utilization of autonomous 

unmanned aerial vehicles (UAVs) in last-mile parcel delivery is continuously expanding. 

Yet, the limited UAV range deters their widescale adoption to replace ground modes in 

transportation. Moreover, real-world data on the impact of different parameters on the 
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operation, emissions, and the energy consumption is scarce. This study aims at assessing 

the impact of airspace planning and discretization on the energy consumption of 

autonomous UAVs. We utilize a novel open-source comprehensive UAV autonomous 

programming framework and a digital-twin model to simulate real-world three-

dimensional operation. The framework integrates airspace policies, UAV kinematics, and 

autonomy to accurately estimate the operational energy consumption via an experimentally 

verified energy model. In the simulated case study, airspace is discretized by both, a 

traditional Cartesian method and a novel dynamic 4D discretization (Skyroutes) method. 

This allows comparing different routing and trajectory planning algorithms for ten 

missions. The results show a variation in the energy consumption by up to 50%. The results 

show the criticality of airspace discretization and planning on UAV charging infrastructure 

design, greenhouse gas emissions reduction, and airspace management.  

3.2 Introduction and Background 

Autonomous aerial electric mobility solutions promise a significant reduction in operation 

costs and response time compared to a delivery truck while eliminating greenhouse gas 

(GHG) emissions [1]. Aside from entertainment, photogrammetry, remote sensing, and 

movie making, autonomous unmanned aerial vehicles (UAVs) are being utilized in a 

variety of civil and military tasks. These include exploration, surveillance, land mapping, 

patrolling, and most recently transportation & emergency management [2–4]. 

The UAV energy requirements determine the key performance metrics of range, cost, 

and emissions [5]. That said, UAVs’ relatively small size limits their payload capacity, 

sacrificing the size of the onboard batteries, which in turn decreases the range of UAVs [6]. 
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Consequently, requiring extra launching locations, depots, and charging stations. This 

increases the delivery time dramatically rendering it impractical for full replacement of 

ground transport as well as impacting the environmental performance negatively by 

increasing operational GHG emissions [7,8]. Significant advancements in UAV 

technologies are not expected soon [9]. Hence, obtaining the most energy-efficient UAV 

trajectory while avoiding obstacles and maintaining payload integrity has been highlighted 

by the literature as the biggest challenge to adopting a fully autonomous UAV system 

[5,10]. 

Collectively, the current literature mainly offers two types of estimations as recently 

reviewed [11]. First, several optimization models that propose UAV or truck-UAV de-

livery systems incorporate the energy consumption only indirectly as a fixed limitation on 

UAV coverage (range limit) [12–14]. Second, incorporating energy consumption models 

based on the UAV kinematics [1,6,7,15–18]. 

With the variation in the parameters considered in these UAV energy consumption 

models, the results obtained are widely divergent for identical delivery operations, leading 

to significant uncertainty in the estimated UAV ranges and emissions [19]. An accurate 

estimation of UAV energy consumption based on all parameters ensures feasible as well as 

efficient operating decisions for full UAV adoption. To focus on these different parameters, 

Figure 3-1 summarizes the different correlations between all parameters.  

Considering all the design parameters, first, the speed of UAV travel. The optimal 

energy consumption would allow the UAV to consume the least amount of energy while 

travelling the maximum distance possible [6]. This relies solely on the geometrical 
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configuration of the trajectory. A stable straight-line trajectory allows a higher speed, while 

changes in the roll and/or pitch angles require extra thrust and lower speeds, therefore 

consuming more energy. Second, the UAV kinematics refers to the UAV hardware or 

specifications ‘architecture’ that allows the UAV to carry the required payload and traverse 

the assigned trajectory safely. Third, the limitations implied by the applicable UAV 

regulations. The current UAV regulations globally include a minimum clearing distance 

around public and private property (e.g., people, buildings, and structures), also, both a 

minimum and maximum flight altitude limitation [20]. These limitations determine the 

allowable airspace volume for operation, hence, impacting the geometrical configuration 

of the trajectory. Fourth, is the autonomous operation which dictates accounting for 

externalities such as weather conditions, no-fly zones (NFZs), and safety requirements. 

On the other end, the accurate estimation of the UAV operations’ energy consumption 

and GHG emissions relies on the operational logistics, namely, the fleet size and the 

number of charging stations infrastructure to achieve full coverage. Both logistical 

estimates rely on the UAV trajectory simulations integrating all design parameters. 

In this respect, significant research has been conducted combining some of the UAV 

variables and design parameters to achieve energy-efficient trajectories. For instance, 

trajectory planning algorithms and optimization heuristics, also, as advancements in older 

solving techniques such as graph traversal/ search methods and routing algorithms [21]. 

Trajectory planning itself can be defined as finding a kinematically viable solution to the 

problem of UAV routing. In this case, the solution domain is a discretized airspace that 

takes into consideration all the different design parameters. 
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Most trajectory planning, routing algorithms, and heuristics rely on graph-solving 

methods. Hence, the traditional Cartesian method in airspace discretization has been widely 

adopted [22,23]. After the airspace volume is transformed into a Cartesian point cloud, 

geofencing is applied. A geofence is a virtual static or dynamic (changing) perimeter 

applied to any given airspace either in positive (keep-in), or negative (keep-out). The keep-

in geofence is the allowable airspace volume for trajectories. While the keep-out is a 

volumetric restriction to certain extents where UAVs are not allowed to fly. 

Each discretization method produces a different type of solving domain, hence, 

limiting the applicability of a trajectory solver. This interdependency between 

discretization and solving techniques to simulate the 3D trajectories of autonomous UAVs 

in a replica of a real-life operational environment while integrating all design parameters 

relies on the existence of an adequate computational tool [24]. This tool must enable highly 

detailed airspace 3D model discretization integrating all design parameters. 

A few studies aimed at establishing a multi-objective autonomous UAV simulation 

platform as highlighted in Table 3-1. Since all platforms capable of comparing different 

discretization and trajectory planning permutations are proprietary; all studies presented in 

the literature depended on an assumed/generalized flight pattern, averaged speed profile, 

and Euclidean distance rather than applying the energy model in real-life contexts. 

Therefore, it can be confidently argued that the wide variation of energy consumption 

estimates in the autonomous UAV literature is a result of integrating certain variables and 

UAV design parameters in each of the proposed models, different UAV types being 

modeled, and a variety of assumed operations [11,14,19,25]. Thus, current research has not 
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reached a consensus on a unified standard for UAV energy consumption, and therefore 

existing models fall short of providing realistic energy assessment frameworks. 

Table 3-1 UAV integrated simulation platforms available in the literature. 

Software/ Author  
Trajectory 

Planning 
Kinematics Externalities  Case study 

OCP [26] 
Non- Algorithm 

based (IMU, GPS) 
Fixed model  None 

Computer 

Simulation 

Piccolo Ground Station 

[27] 

Not publicly 

available 

Adjustable onboard 

controller 
Wind Speed Real-world 

Berkeley UAV Platform 

[28] 
Piccolo integration 

Piccolo model-

based 
None Real-world 

UAV hardware/software 

architecture [29] 
Flight Computer 

Base station 

dependable 
Ambient sensors Theoretical model 

ROS-Based Approach [30] 
Tabu Search with 

GA optimization 

Adjustable based 

on UAV type 

Live Camera Feed 

data 
Lab Simulation 

Location and Routing 

Problem for UAVs [31] 

Integer linear 

program (ILP), ant 

colony 

optimization 

None None 
Computer 

Simulation 

Dynamic UAV-based 

traffic [32] 

Least Squares 

Monte Carlo 
None Wind Speed 

Computer 

Simulation 

Unlike 2D path planning, trajectory planning in 3D environments utilized in these 

simulation platforms has great potential to yield better UAV energy consumption. 

However, the computation complexity increases exponentially with dynamic and kinematic 

constraints integration. Over the past decade several proposed algorithms were 

implemented in 3D environments including Visibility Graph [33]; randomly sampling 

search algorithms such as rapidly-exploring random tree (RRT) [34] and Probabilistic 

Roadmap [35]; optimal search algorithms like the Dijkstra's algorithm [36], Astar [37], and 

Dstar [37]; and bio-inspired planning algorithms. Many comparisons on the energy 

efficiency indices of trajectories converged by different algorithms can be found in the 
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literature such as in [38]. However, this study is the first to consider airspace discretization 

which precedes and determines the applicable algorithms. 

The key contributions of this paper are to:  

1. Propose a flexible energy consumption model, based on the work in [1,6]. First, 

analytically simplified expressions for quadcopter kinematics and dynamics are deduced, 

and Newton-Euler equations are used to derive differential equations for stabilization and 

control. The energy modelling accuracy is experimentally verified by real-life flight data. 

2. Illustrate an open-source framework for autonomous UAV simulations. The 

framework utilizes a real-time 3D geospatial mining framework for LiDAR data to create 

a dynamically updated digital-twin model. This model enables the identification of viable 

airspace volumes in densely populated 3D environments based on the airspace policy/ 

regulations. It also accounts for externalities (e.g., NFZs and weather updates). 

3. Assess the impact of two types of air-space discretization and their respective 

trajectory planning methods on the overall energy consumption of ten UAV missions. First, 

a traditional Cartesian discretization method with geofencing paired with the Dijkstra and 

Astar modified RRT algorithms. The classic and deterministic Dijkstra is utilized as the 

most widely accepted benchmarking algorithm for comparison [39]. While the Astar 

modified RRT algorithm overcomes the computational complexity of both pure RRT and 

Astar algorithms representing one of the best energy optimal trajectory-finding methods 

[40]. Second, a novel dynamic 4D discretization ‘Skyroutes’ method proposed by the 
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authors, Skyroutes is a combined discretization and trajectory planning algorithm based on 

disturbed fluid path networks. 

Combined, the overarching aim is to highlight the significant impact of airspace 

planning (discretization and trajectories) on the energy demand of UAVs. 

3.3 Materials and Study Area 

3.3.1 Study area  

Toronto City is one of the biggest urban centers in Canada with a population density of 

4,334.4 P/Km2 [41]. The city has an annual average of 40.9 days of snow with an 

accumulation of 122 cm snow blanket. During those severe weather periods, several roads 

are inaccessible making it challenging to deliver via ground transport. In specific, the old 

city of Toronto has been selected as the case study area since it is one of the most 

challenging areas due to the dense high-rise buildings and airfields (Figure 3-2 A). Toronto 

provides an ideal testbed for comparing several potential UAV traffic network and 

infrastructure design methodologies. The most obstacle-rich section within Toronto is 

selected for this study, covered in clusters 50 and 51, the East York patch, with an 

approximate area of 3.16 Km2, presented in Figure 3-2 B. 
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Figure 3-2 The study area (A - left) Macroscale Toronto city map showing all airfields.; (B - 

right) Study area in old Toronto [42,43]. 

3.3.2 Materials 

In this study, the city is divided into clusters or volumetric patches according to several 

parameters including urban density and maximum land area. A central supply depot holding 

sufficient delivery UAVs is allocated at the core of each assigned coverage zone ‘city 

patch’.  

We utilize open-source map platforms, namely OpenStreetMap (OSM), which 

includes most 2D data layers for the study area [44]. The OSM is integrated with a 3D GIS 

model and LiDAR data collected by the municipal division of the city of Toronto [45]. The 

resultant model is utilized in the simulations as shown in Figure 3-5. 

UAV flight stability relies considerably on the core weather conditions, namely, 

ambient air temperature, wind speed, counter-flight wind gusts, rainfall, and snowfall. The 

climate data provided by the government of Canada is utilized in the simulations. As 

presented in Figure 3-3, the city of Toronto’s air temperature is always below 35 degrees 

Celsius, which is a favorable flight temperature for most UAV types. On the other hand, 
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wind speeds may exceed the recommended safe limit of 34 Km/h, however, the simulation 

framework is designed to suspend operations at this limit. In addition, flights during 

extreme rain and snow (over 30 mm precipitation) are also suspended. Figure 3-4 shows 

days where precipitation is recorded, this is updated hourly online via meteorological data. 

 

 

Figure 3-4 Total rainfall and snowfall in Toronto city. 
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Figure 3-3 Outdoor Ambient air Temperature and Wind speed condition. 
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Figure 3-5 3D digital-twin showing a zoom-in on the Toronto city hall. 

For task assignment (TA), a digital-twin mining framework similar to neural networks 

is proposed and illustrated in Figure 3-6, after the data source is given, the autonomous 

UAV mission allocation loop within the framework is provided with two coordinate points 

(latitude, longitude, and altitude), the demand destination (DEM), and the nearest available 

UAV’s depot location, respectively for each mission.  

3.4 Methods 

Nomenclature 

V Voltage (V) 

P Power consumption (W) 

v Angular velocity (RPM) 

M Matrix of rotation 

FB Body frame 

FI Inertial frame 

I Electric current (amp) 

CΤ Torque proportionality constant 

Figure 3-6 Proposed digital-twin mining framework. 
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The 

operational framework consists of four sequential processes as shown in Figure 3-7. In the 

first process, the system obtains two streams of input for a set of variables through an online 

connection. The first stream of input relates to mission planning and TA that includes the 

coordinates for both the UAVs' initial takeoff and destination for each mission solved by 

the TA algorithm. Subsequently, these locations are transformed from the latitude, 

longitude, and altitude format to a Cartesian (x, y, and z) relative coordinates system within 

the digital-twin model.  

CP Back electromotive force constant 

T Thrust 

vL Loft air velocity (m/s) 

a area (m2) 

F Force (N) 

M Mass (kg) 

I Inertia (kg. m2) 

V̂ Approximation value for point xi 

qint UAV initial takeoff location point 

qdem Demand location point within referenced mesh 

qfree Obstacle free point cloud vertices 

qrand A random point cloud vertex 

Ti Total cost function 

Ci Current cost function 

Ei Estimate cost function 

Dt Measurement vector 

Tamb  Outdoor ambient air temperature (°C) 

Ws Average wind velocity (m/s) 

Greek Letters 

ψ Roll angle (degrees) 

θ Pitch angle (degrees) 

ф Yaw angle (degrees) 

ρair Air density (kg/m3) 

β Radius of virtual vertex sphere (m) 
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Figure 3-7 Autonomous UAV simulation framework illustration. 

The second stream of input relates to the digital-twin model loading. Subsequently, it 

is interpreted into physical obstacles and available airspace volume as a part of the 

computational memory optimization procedure. The digital-twin model is regularly 

updated to account for any real-time change, such as demolition, building construction 

equipment like cranes, and NFZs. The second process starts by computing two airspace 
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discretization methods for the airspace volume in the digital-twin model. First, the 

Cartesian point cloud method, and second, the Skyroutes segmental domain. 

The third process is mission trajectory planning. The process starts when the system 

has acquired all needed input and the airspace within the digital-twin model is discretized. 

Depending on the selected algorithm/ heuristic, the framework loads the matching 

discretization that would provide the appropriate solution domain whether it’s the Cartesian 

graph or the segmental domain. The routing starts from the initial UAV location through 

the most energy-efficient possible trajectory towards the destination within the given 

constraints. The procedure loops back after each iteration of solutions to the first input 

process for queued missions, this ensures that each UAV is assigned its own flight 

trajectory without interference. 

The fourth process is the final system output at the end of the procedure; the framework 

visualizes the missions’ trajectories and outputs the sequential waypoints’ coordinates. 

Coding Platform: to allow additions and modifications to the framework, the open-

source XML code is free and open to public use. We utilize Python and C# languages 

coupled with Rhinoceros [46], which is a capable visualization platform. Python allows 

automated processing of several data sets including digital-twin city model data, UAV 

kinematic model, and weather data with practical robust performance. 

Airspace Discretization: In a dense urban context, spacing between tall buildings can 

be less than three meters wide. Applying a tight point cloud (waypoint vertices) leads to a 

computationally challenging graph-solving problem due to the significantly large size of 
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the solving domain. On the other hand, a wider point cloud results in less available solutions 

and more unutilized tight airspace volumes. To solve this challenge, we adopt a dynamic 

discretization technique, which is similar in concept to computational fluid dynamics 

(CFD) meshing in building simulations [47]. The dynamic mesh accommodates and 

changes according to the model space, in narrow spaces or around obstacles, the mesh gets 

tighter (i.e., the spacing between graph vertices gets smaller) and vice versa, in wider or 

obstacle-free areas, the mesh spacing gets wider as illustrated in Figure 3-8 B. 

  

(A) CFD meshing (B) Dynamic discretization. 

  

(C) Cross Sectional View (D) 3D View 

Figure 3-8 Cartesian discretization deployed in the study area. 

UAV Kinematics: To simulate the UAV motion, first, the quadrotor physics that 

governs the motion is coded. Mainly, the power is divided over rotors that define the way 
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the UAV moves and responds. Such forces, torque, and thrusts determine the UAV energy 

consumption. Assuming all rotors are brushless identical electric motors and (θ̇) is the time 

derivative for the yaw, pitch, and roll angles of the body frame (ф, θ, Ψ) T, the angular 

velocity (v) is defined as a rotational axial vector, and (M) is the matrix of rotation within 

both body and inertial frames of the UAV [48], both can be obtained by: 

v = [

1 0 - 𝑠𝜃

0 𝑐𝜑 𝑐𝜃𝑠𝜑

0 - 𝑠𝜑 𝑐𝜃𝑐𝜑

] θ̇ ,    θ̇ ≠ v, (3-1) 

M = [

cφcψ - cθsφs
ψ

- cψsφ - cφcθsψ sθsψ

cθcψsφ+cφsψ cφcθcψ - sφsψ - cψsθ

sφsθ cφsθ cθ

]  , (3-2) 

Torque production and voltage are given by: 

𝜏 =C𝜏 ( I - Iidle ), (3-3) 

V =I . R  + Cpv, (3-4) 

where τ is the torque (N. m); Cτ is a constant of torque; I is the electric current input 

(ampere); Iidle is the current at an idle rotor. V is the rotor voltage feed (volts); R is the coil 

resistance (ohm); v is the localized angular rotor velocity ‘rotational speed’ in RPM, and 

Cp is the proportionality constant of back electromotive force. 

We can obtain the power for low-resistance motors via: 

P =
 Cp

C𝜏
 v . 𝜏         = F 

𝑑𝑥

𝑑𝑡
, (3-5) 
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where P is the motor power consumption to maintain the UAV flight (Watt). Since the 

system is assumed in this study to operate only under steady wind conditions, it is 

deductible: 

P =T . 𝑣L, (3-6) 

where T is the motor thrust (Newton); 𝑣L is the loft velocity at idle air position. Knowing 

that the thrust of the rotors is proportional to the square of angular velocity it can be 

deducted: 

𝑇 =  Cv
2 (

 Cp√2 .  𝑎 .  𝜌air

 Ct
 .  𝑣)

2

= C [
0
0

∑𝑣𝑖
2
], (3-7) 

where ρair is the density of air and equals an assumed average of 1.225 kg/m3 in this case; 

a is the area covered by each rotor (m2). The overall constant is appropriately valued and 

denoted by C for ease of calculation and coding 

To code the equations in the modeling platform all-controlling forces must be included 

in the matrix, hence, by deriving the rotational motion equations based on Euler’s equation: 

𝜏 =  (I  �̇� + v) . (I v), (3-8) 

where �̇� is the angular velocity vector and I is the inertia. From the rotor matric M that was 

given previously in equation (3-2), the linear motion can be deducted: 

𝑚𝑜𝑡𝑖𝑜𝑛 ẋ𝑖 = [
0
0

−𝑚𝑔
] + 𝑀 .  𝑇 +  Fd, (3-9) 
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where ẋi is the path of the UAV, g is the acceleration due to gravity and equals 9.81 (m/s2); 

m is the mass, and Fd is the drag force. From (3-8) and (3-9), assuming the quadcopter is 

symmetric about both the x and y-axis, the equation can be reduced into a simplified inertial 

matrix as: 

v̇ = [

v̇𝑥

v̇𝑦

v̇𝑧

] =  
(𝜏-𝑣 .  (𝐼𝑣))

I
, (3-10) 

I = [

I𝑥𝑥 0 0

0 I𝑦𝑦 0

0 0 I𝑧𝑧

] , (3-11) 

by solving equations (3-10) and (3-11), the final formula can be expressed as: 

v̇ = [

𝜏𝜑 I𝑥𝑥
-1

𝜏𝜃 I𝑦𝑦
-1

𝜏𝜓 I𝑧𝑧
-1

]  − 

[
 
 
 
 
I𝑦𝑦 - I𝑧𝑧

I𝑥𝑥
v𝑦v𝑧

I𝑧𝑧 - I𝑥𝑥

I𝑦𝑦
v𝑥v𝑧

I𝑥𝑥 - I𝑦𝑦

I𝑧𝑧
v𝑥v𝑦]

 
 
 
 

, (3-12) 

The energy consumption 𝐸𝑐  from the onboard batteries is cumulated with each 

timestep depending on the velocity along the UAV mission trajectory as follows: 

𝐸𝑐 =
𝑃𝑑𝑡𝑟

𝜂v
, (3-13) 

where 𝜂 is the battery-to-propeller (BTP) and motor power transfer efficiency; 𝑑𝑡𝑟 is the 

trajectory segment length. The total energy consumption 𝐸𝑐
𝑇 by each UAV for the entire 

mission trajectory in kWh is calculated by: 

𝐸𝑐
𝑇 = 𝑓𝑘𝑊ℎ𝐸𝑐, (3-14) 
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where  𝑓𝑘𝑊ℎ is a conversion factor from Joules to kWh (𝑓𝑘𝑊ℎ =
1

3.6×106). The calculation 

model was experimentally verified against real-life UAV flights in [1]. 

Trajectory Planning: we utilize three trajectory planning algorithms. The first two, 

are both graph search algorithms, hence, Cartesian discretization is utilized as the solving 

domain. 

First, for the Dijkstra, the UAVs are assumed in an n-dimensional Euclidean space. 

The UAVs are restricted by global constraints; hence, it can be deducted by utilizing 

LaValle’s method: 

𝑥 ̇ (t ) = 𝑢 (t );  𝑥(0) = 𝑞int, (3-15) 

where u is a control signal, u: [0, tf] → U, U ⊂ Sn, and x (t) ∈ qfree = Sn / qob, where qob is a 

set in the case study boundary of the selected patch; and qfree is the available free Cartesian 

points; the geometry sets (n-1) represent the built environment obstacles. To find u that 

avoids obstacles and gives the shortest available route for the UAV from qint (UAV mission 

initiation location) to qdem (UAV destination): 

𝑢 = 𝐹 (𝑥); 𝑥(0) = 𝑞int ; 𝑥 ̇ (t) = 𝐹 (𝑥 (t)), (3-16) 

where 𝐹 (𝑥 (t)) is a vector-valued function. By applying a cost function to satisfy the 

shortest distance objective according to Bellman’s equation, it can be deducted: 

𝑉(𝑥)= lim
𝛽→0

inf inf
ℎ∈𝑆(𝛽)

{𝑉(𝑥 + ℎ) + ‖ℎ‖}, (3-17) 
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where S (β) is a sphere created at (0, 0) of radius β; point (0, 0) is assumed the origin point 

of the point cloud ‘mesh vertices’ with reference to actual coordinates qd = {xi ∈ qfree | 1≤ i 

≤ N}. By excluding all mesh vertices included within obstacle boundaries, qfree becomes 

the remnant mesh for solving.  By applying a linear interpolation approximation to (3-16): 

V̂(𝑥) =V̂ (∑  𝛼𝑖
𝑖∈𝑃

𝑥𝑖)  ≜  ∑  𝛼𝑖
𝑖∈𝑃

V̂𝑖, (3-18) 

where V̂ is an approximation at point qi, αi ≥ 0; this can be put in a final formula: 

V̂ (𝑥𝑖)= min
𝑃∈𝑁(𝑖)

 inf
𝑥∈𝑥𝑃𝑖

{V̂ (𝑥) + ‖𝑞𝑖 − 𝑞‖}, (3-19) 

Second, whereas in a typical RRT the whole model space is populated with a point 

cloud and is considered for the solution. However, the Astar transforms the search into a 

function of the range of vertices confined along the direct path between qint and qdem, this 

becomes the point populated domain, and the function is formulated as follows: 

�̇�𝑡 = 𝑓 (𝑞𝑡 − 1, �̇�t − 1, 𝑣t), (3-20) 

𝐷𝑡 = ℎ (𝑞𝑡 , 𝑣i), (3-21) 

where �̇�𝑡∈ Q is the initiation point vector; �̇�t∈ U is the destination vector; vt is a random 

process disturbance appropriately determined; Dt is the measurement vector and qi is a 

random component of the qt tree. 

Similar to the Dijkstra algorithm, the Astar algorithm contains an open list of the 

potential waypoints qfree vertices, in addition to a closed list of all the visited vertices and a 

simple cost equation for solving as follows: 
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𝑇𝑖 = 𝐶𝑖 + 𝐸𝑖, (3-22) 

where the subscript i stands for the vertex call number in the RRT; Ti is the total cost (path 

length to minimize from qint to qdem) similar to equation (3-16); Ci is the current ith cost 

from qint to current vertex; Ei is the estimated cost of ith vertex from the current vertex to 

the qdem destination vertex. 

Third, unlike the Dijkstra and the Astar modified RRT algorithms, the novel Skyroutes 

algorithm depends on segmental discretization. The UAV flight trajectories are considered 

as lanes parallel to and above the existing street network based on fluid computation. To 

model the built environment obstacles of the case study within the numerical derivation, a 

unified simple formula is utilized to model all obstacles in the digital-twin: 

F (q) = (
𝑥 −𝑥int

𝑎
)
2𝑑

+ (
𝑦 −𝑦int

𝑏
)
2𝑒

+ (
𝑧 −𝑧int

𝑐
)
2𝑓

, (3-23) 

where q = (x, y, z) is defined as the UAV inertial frame location coordinates within the 

Cartesian referencing system; the six parameters (a, b, c, d, e, and f) describe the simplified 

geometrical volume of obstacles. The orthogonal grid of UAV lanes is modeled by: 

V (q) =  (
𝑣(𝑥int−𝑥dem)

𝑑(𝑞)
,
𝑣(𝑦int−𝑦dem)

𝑑(𝑞)
,
𝑣(𝑧int−𝑧dem)

𝑑(𝑞)
)
𝑇
, (3-24) 

d(q) =  √(𝑥int − 𝑥dem)2 + (𝑦int − 𝑦dem)2 + (𝑧int − 𝑧dem)2, (3-25) 

where d (q) is the distance between qint the UAV initial takeoff location and qsos the 

destination. 
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Depending on the elevation (z component) of UAV flight lanes and the number of 

obstacles (Bobs) breaching this height plane in the study area, the streamlined grid of UAV 

lanes is modified to avoid the obstacles through the matrix M (q): 

M(q) =  𝐵obs
n(q).  n(q)𝑇 

|𝐹(𝑞)|
1

𝜌(𝑞) .  n(q) .  n(q)𝑇  

+ 
t(q).  n(q)𝑇 

|𝐹(𝑞)|
1

𝜎(𝑞) .  ‖t(q)‖ .  ‖n(𝑞)‖  

, (3-26) 

where n (q) is the normal vector to the UAV trajectory; t (q) is the tangential vector to the 

UAV trajectory; ρq and σq are the orientation of tangential velocity functions. The finalized 

UAV trajectory waypoints are obtained by the recursive integration in the following 

formula: 

{𝑞}t+1 =  {𝑞}t +  M(q) . V(q) . ∆t, (3-27) 

where (qt) is the UAV location (xt, yt, zt) at time t. The algorithm in pseudocode is as 

follows: 

Algorithm 1: Pseudocode for the Skyroutes Algorithm 

1: Initialize: function Disturbed Fluid (Grid, source): 

2: 
Initialization input // assigned UAV location as initial vertex, input qint vertex in 

the point cloud. 

3: 
Initialization input // demand location as destination vertex, input qdem vertex in 

the point cloud. 

4: 
plane [Q]: = (clone origin plane x, y, new elevation Z) // Construct plane on elevation 

Z. 

5: 

Create Grid [G1]:= true; for {var x = 0; x < grid size x}; {var y = 0; y < grid size y} // 

Assign a streamline grid of polylines in both x and y directions of plane Q with 

equal spacing. 

For all geometry in model space compute Bounding Box; Boolean, True if the geometry 

collides// Test all model geometry for collision with the plane Q. 

6: Previous vertex in optimal path from source // previous[v]: = undefined. 
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7: Get Tangents (T1, T2, Tx) // Interpolate tangent Points. 

8: 

Point new T1 = T1 + vPerp * offset distance; Point new Tx = Tx + vPerp * offset distance; 

Interpolate curve (new T1, new Tx) // Offset set lines S to number of x, y lines in Grid 

[G1]. 

9: 
Break existing Grid [G1] and weld new interpolated curves, then new deformed 

grid [G2]. 

10: End for. 

11: Set grid paths [G2] as path search list and each path as (P1, P2, Px). 

12: 
For all qint, qdem assign path u // Assign the shortest set of paths as route [u] for 

each mission from qint to qdem. 

13: 
Remove u from G2 // When a path is assigned to a UAV mission trajectory, remove it 

from the search list [G2]. 

14: End for 

15: Output visualizes trajectories. 

16: End Function. 

3.5 Results 

For the assessment simulation missions, the missions’ locations, assumptions for external 

conditions, UAV specs, and other computational parameters are outlined in Table 3-2. The 

ten missions illustrated are designed to assess the impact of different discretization 

methods. In addition, two sub-objectives are tested through the ten missions. 

▪ Scenario 1- The first two sets of missions 1 and 2; and 3, 4, 5, and 6 share almost 

identical take-off and demand destinations, these missions are assigned to compare 

the resultant trajectory and energy consumption of UAVs performing simultaneous 

missions on the same path while maintaining a collision-free trajectory. 

▪ Scenario 2- Missions 7, 9, and 10 are assigned to test complex urban obstacle 

avoidance with a variation in urban blocks, building envelope complexity, 

geometric shapes, and sizes. 
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It should be noted that several parameters are held consistent across all scenarios to 

facilitate an adequate comparison between the discretization methods and the associated 

trajectory planning. 

Table 3-2 Main parameters for simulation missions. 

 

 

Element 

  

 

Settings 

Tested Algorithm   

 

Unit 

Base Model Dijkstra A*Modified 

RRT 

Skyroutes 

    

1-Outdoor 

environment 

Hourly ambient air 

temperatures Tamb in 

fig. 2 

Mean air velocity is 

taken as Ws = 20   

 

 

Km/h 

 

2-Routing 

parameters 

Type of trajectory =  

Distance between 

vertices =  

Tolerance = 

 

 

3D waypoints 

2 

15 % 

3D waypoints 

2 

10 % 

Splines 

1 

5 % 

 

m 

 

Kinematic viscosity =  

Minimum Air 

maneuverability = 

Air-specific heat 

capacity Cp =  

Air density ρa =  

Acceleration due to 

gravity ga =  

15.11 x 10-6 m2/s 

m 

J/kg 

K 

kg/m3 

m/s2 

 2 0.5 1 

1006 

1.2 

9.81 

3-UAV specs Maximum operation air temperature Tmax = 40 

Size of UAV = 75 x 75 x 50, All four rotors are assumed operational 

UAV mass including payload = 2.5 

°C 

Cm 

Kg 

4-Processing 

power 

Processor: Intel Core I5 CPU with single-core utilization of 2.20 GHz 

Memory: 6 GB 
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Missions Location/ Address Ground Transport route 

equivalent* 

Missions 1, 2 

and 3 

Take-off Toronto City Hall, 100 Queen St W, Toronto, ON M5H 

2N2 

2.7 Km; 11 Min at 11:00 

am 

Destination Scotiabank Arena, 40 Bay St, Toronto, ON M5J 2X2 

Missions 4, 5 

and 6 

Take-off 67 Front St E, Toronto, ON M5E 1B5 1.0 Km; 7 Min at 11:00 am 

Destination Full Circle Sculpture, 140-, 152 Victoria St, Toronto, ON 

M5C 3G5 

Mission 7 Take-off Union Station, 65 Front St W, Toronto, ON M5J 1E6 1.0 Km; 6 Min at 11:00 am 

Destination St. James Park, 120 King St E, Toronto, ON M5C 1G6 

Mission 9 Take-off LCBO corporate office, 55 Lake Shore Blvd E, Toronto, 

ON M5E 1E5 

1.5 Km; 8 Min at 11:00 am 

Destination Union Station, 65 Front St W, Toronto, ON M5J 1E6 

Mission 10 Take-off Rogers Centre, 1 Blue Jays Way, Toronto, ON M5V 1J1 3.1 Km; 15 Min at 11:00 

am Destination Ryerson University, 350 Victoria St, Toronto, ON M5B 

2K3 

*Equivalent ground transport routes are computed based on the shortest travel distance available 

The results for the compared trajectory planning simulations for the ten missions are 

presented in Figure 3-9. All three algorithms have successfully converged into full 

trajectories (in red) while avoiding obstacles and reaching the demand destinations. The 
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results illustrate significant geometrical variations in the generated trajectories between 

Cartesian-based solutions in A (Dijkstra) and B (Astar Modified RRT) as compared to the 

Skyroutes in C. 

(A) Dijkstra Algorithm (B) A* Mod RRT 

Algorithm 
(C) Skyroutes 

Figure 3-9 Results for assigned missions’ trajectory planning in the study area layout, scale 

1:4000. 

Figure 3-10 and Figure 3-11 highlight that the UAV maneuvers requiring changes in 

horizontal angle (pitch and roll) along the converged trajectories are significantly less for 

the Skyroutes algorithm. As for the vertical angle change, the Dijkstra solutions illustrate 

minimized change in the UAV pitch angles along the trajectory compared to the Astar 

modified RRT. However, the Skyroutes trajectories eliminate the pitch change along the 

trajectory except for initial ascend and end descend. This occurs as the take-off and landing 

are above or below the regulatory minimum flight altitude of 30m. 

Regarding the compared airspace discretization methods, on one hand, the Cartesian-

based solutions utilize the entire free air space volume as the allowed flight zone. However, 

this method populates airspace pockets in tight urban canyons with vertices that form 
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isolated patches that can’t be connected to form feasible trajectories, hence, consuming 

extra computational memory. 

On the other hand, segmental discretization omits this redundancy by only discretizing 

connected airspace, which would yield a feasible solution while saving computational time 

and memory. Furthermore, for Cartesian-based solutions A (Dijkstra) and B (Astar 

Modified RRT), the results show that a denser solving domain (i.e., more dense 

discretization) resulted in a smoother flight trajectory, however, significantly increased the 

solution time, and required more computing memory. This is not the case for the Skyroutes 

method, where the trajectory tends to be a straight line for most parts of the missions, hence, 

the waypoint density can be increased to one-meter intervals with no significant 

computational power required. 

S
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angle profile 

(B) Mission 1 trajectory vertical angle 
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S
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n
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(C) Mission 4 trajectory horizontal 

angle profile 
(D) Mission 4 trajectory vertical angle 

profile 

Figure 3-10 Resolved UAV trajectory variables for scenarios 1 and 2. 
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(B) A* Modified RRT Algorithm 

   

(C) Skyroutes 

Figure 3-11 Zoomed-in trajectory solutions visualizations comparison. 

The resulting geometrical variation of the trajectories holds the key to answering this 

energy consumption research query. The utilized airspace discretization determines the 

solving method/ algorithm/ heuristic, which in turn leads to significant variation in the 

UAV trajectory characteristics. First, is the variation in trajectory length; for Cartesian-

based algorithms A and B, the converged trajectories are up to 10% lengthier as compared 
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to 2D Euclidean shortest path ESP (Figure 3-12). The Dijkstra algorithm produces slightly 

shorter trajectories relative to the Astar modified RRT algorithm due to the nature of non-

deterministic solutions in RRTs. The converged trajectories by algorithm C (Skyroutes) are 

lengthier by up to 52%. 

Second, the differences in trajectory geometry noted in the results leading to additional 

UAV maneuvers reflect on the kinematics of the UAVs. Since specific thrust only depends 

on the velocity change across the trajectory. The UAV rotors allow the execution of these 

mid-air maneuvers by changing the thrust to adjust bearing and velocity. Figure 3-13 

illustrates the change in the UAV thrust for mission one across the three compared 

trajectory planning solutions. The trajectories converged by the Dijkstra and the modified 

Astar RRTs show continuous thrust fluctuations throughout the trajectory length, therefore 

consuming more power from the onboard batteries. However, the Skyroutes trajectories 

show a change in thrust only at the angled corners along the trajectory, and a constant thrust 

along the smooth segments of the generated trajectory. Although the trajectories converged 

by Skyroutes are lengthier, the more regular geometrical form allows for a higher constant 

UAV speed and less thrust demand, consequently, consuming up to 50% less energy as 

compared to the Dijkstra and Astar modified RRT solutions (Figure 3-14).  

Figure 3-13 UAV Thrust comparison for mission one. 
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Figure 3-14 Energy demand compared to ESP averaged estimates for all missions. 

While the literature has capitalized solely on the length of the converged trajectory as 

the sole determinant of the UAV energy consumption, the results prove that this is 

misleading and significantly inaccurate. 

Integrating the kinematic model into the framework allowed for a precise estimate of 

the energy consumption along the converged trajectories. The trajectory’s geometrical 

configuration that maximizes UAV velocity/ speed can eventually overrule the impact of 

increased trajectory length, ultimately leading to lower overall energy consumption. The 

airspace discretization has a significant impact on the UAV energy consumption by broadly 

determining the characteristics of resultant trajectories. 

3.6 Discussion and Conclusions 

This study has presented a novel simulation-based framework to precisely assess the real-

world impact of civil airspace discretization on the energy demand of UAVs in 

transportation operations in dense urban contexts. Furthermore, the study compared the 
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characteristics of converged trajectories in correlation to the overall energy consumption 

and quality of the solution. 

Unlike previous attempts in the literature, the proposed framework integrated all the 

four subdomains impacting the UAV design parameters in a single model. These include 

applicable airspace policies, kinematics, autonomy, and externalities. In general, the results 

and discussion support the hypothesis that realizing the energy efficiency benefits of a fully 

autonomous UAV operation is highly sensitive to airspace discretization. The proposed 

framework can be further developed to function as a planning tool that aids experts, air 

control planners, and legislators in designing a UAV system that will achieve the 

environmental benefits of GHG emissions reduction. 

The digital-twin integration proved robustness for an accurate trajectory planning 

ability within the framework, specifically where tight urban situations required a highly 

detailed 3D model for the obstacles to navigate the missions safely while allowing 

comparing a variety of discretization and trajectory planning techniques while applying 

airspace regulations and externalities. 

For dense urban contexts, airspace discretization impacted the converged UAV 

trajectories significantly. As it relates to the trajectory length, first, traditional Cartesian 

discretization allowed the utilization of efficient solving algorithms like the Dijkstra and 

the Astar modified RRTs in the digital-twin 3D environment. The converged trajectories 

illustrated a slight variation from the ESP estimates. Second, the proposed Skyroutes 

discretization converged trajectories illustrated a wider variation as compared to ESP. All 
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results show that ESP estimations in the literature would yield inaccurate and unrealistic 

estimates of energy consumption, hence, utilization range. 

That said, the trajectory length variance failed to give precise predictions for the overall 

UAV energy demand as the flight trajectory geometry determines the active navigational 

velocity, in turn, dictating a change in thrust. In general, the Skyroutes solutions show 

significantly better results compared to the Cartesian-based solutions (Dijkstra and Astar 

modified RRTs). The simple geometrical configuration of the Skyroutes trajectories gives 

a uniform solution of straight lines which translates into a uniform thrust without the need 

for excessive maneuvers. Although the converged Skyroutes trajectories are on average 

25% lengthier than the Dijkstra and Astar modified RRTs trajectories, the added length is 

compensated for with the minimized change in thrust yielding up to 50% less overall energy 

consumption. However, this variation does not apply to missions executed in less dense 

contexts of the study area, and indeed more simulation environments (e.g., varying degrees 

of obstacle density) are required to generalize the results. 

The results also show that the optimal airspace design parameters can only be tailored 

to each study area on a case-by-case basis. Due to the sensitivity of the energy performance 

to the city airspace characteristics, a permutation simulation analysis of varying design 

parameters is inevitable to reach the energy-optimal discretization. The proposed 

framework can successfully achieve this goal. Furthermore, serve in the charging 

infrastructure optimization goals. The reduced energy consumption and charging station 

network would yield a significantly extensive coverage and decrease GHG emissions. The 
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results of this study should be incorporated as a possible solution for specific cities or rural 

areas as part of a further integrated decision support system and policy evaluation. 

Lastly, it should be noted that the range of UAVs was not considered in our study as a 

constraint in the proposed simulations and it was assumed that the flying range of UAVs is 

sufficient to perform all missions. Therefore, we recommend that future studies should 

adopt the framework to address the different limitations of UAV integration in sustainable 

smart cities. 
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CHAPTER 4 

4 The Impact of Civil Airspace Policies on the Full Adoption of Autonomous 

Unmanned Aerial Vehicles 

Preamble 

This chapter addresses the fourth and fifth objectives of this dissertation (Figure 4-1) by 

evaluating the impact of different UAV airspace policies on UAV energy consumption and 

the charging station allocation in last-mile parcel delivery applications. This chapter unveils 

the intertwined correlation between UAV policy, airspace discretization, and infrastructure 

uncertainties. Building on the objectives achieved in chapters 2 and 3, this chapter examines 

the optimization of the full-coverage UAV system under policy uncertainty. First, the 

international UAV flight regulations are synthesized and classified into three groups 

representing varying degrees of strictness. Second, assuming autonomous operations and a 

specific size of quadrotor UAVs, we utilize the experimentally verified flexible energy 

model and demand data to simulate 3D trajectories of UAV missions in a digital-twin 
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model. Third, we propose a novel optimization model and solution algorithm to minimize 

the allocated charging stations.  

The submitted manuscript included in this chapter is: 

Elsayed, M., Foda, A., Mohamed, M. The impact of civil airspace policies on the full 

adoption of autonomous unmanned aerial vehicles. Submitted to the Transportation 

Research Part A: Policy and Practice. YTRA-D-22-00861 

The manuscript was submitted in June 2022. Mohamed Elsayed is the main contributor and 

first author of this manuscript. The co-authors’ contributions include developing the 

optimization model, guidance, supervision, and manuscript editing. 

  

Figure 4-1 Regulatory criteria and design parameters in correlation to performance metrics. 
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4.1 Abstract 

This study evaluates the impact of different UAV airspace policies on UAV energy 

consumption and the charging infrastructure allocation in last-mile parcel delivery 

applications. First, the international UAV flight regulations are synthesized and classified 

into three groups representing varying degrees of strictness. Second, assuming autonomous 

operations and a specific size of quadrotor UAVs, we utilize an experimentally verified 

flexible energy model and demand data to simulate 3D trajectories of UAV missions in a 

digital-twin model. Third, we propose a novel optimization model and solution algorithm 

to minimize the allocated charging stations. The results show that the maximum and 

minimum altitude limitations lead to an increase of 52% for the required charging stations. 

While minimum horizontal clearing distance leads to an increase in the required charging 

stations up to 75%. The results also highlight that airspace policies are sensitive to the urban 

context and landscape, where no unified policy combination will fit all. 

4.2 Introduction and background 

Globally, greenhouse gas (GHG) emissions have been increasing with the exponential 

growth of cities (European Parliament, 2014). Specifically, transportation accounted for 

around one-fifth (21%) of the global emissions (Climatewatch, 2022). In 2015, all the UN 

member states adopted the 2030 agenda setting 17 sustainable development goals (SDGs), 

including policies tackling climate change (UN, 2015). In this respect, electric mobility, 

coupled with autonomy, has been deemed the ultimate solution in every vertical of the 

SDGs (Shakhatreh et al., 2019; Khan et al., 2018). Moreover, while policies around the 

globe have adjusted for electric vehicles (EVs) as they steadily gain market share, other 
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modes of transportation have not received equal attention (Mohamed et al., 2018; Ferguson 

et al., 2018). 

In particular, unmanned aerial vehicles (UAVs) or drones expanded from military use 

to various civil applications (Chen and Chen, 2020; Sharma et al., 2020). Promising a 

significant speed of service and massive reductions in GHG emissions (Elsayed and 

Mohamed, 2020a), UAV applications can be classified into six categories: infrastructure 

planning and inspection, crowd management, natural disaster management, health 

emergencies, civil security & safety, and most prominently smart transportation/delivery 

(Ren et al., 2022; Lewis et al., 2021; Mohamed et al., 2020; Al-Turjman, 2020). With the 

exponential growth of e-commerce and same-day delivery services, battery-operated UAVs 

have been primed to reduce delivery costs, emissions, and delivery time compared to 

ground delivery modes such as EVs (Mahony & Kumar, 2012; Colomina and Molina, 

2014). 

Logistically, UAVs are ideal for last-mile operations as companies utilize 

heterogeneous fleets of small and low flying-altitude UAVs with a payload limit of two 

kilograms (Foina et al., 2015; D’Andrea, 2014). According to Amazon, this will cover 86% 

of the demand in cities at a service coverage range of 16 kilometers (Gross, 2013). This 

economic viability dictates that the central sorting depot has to service an urban area of a 

circle with an approximate radius of 16 kilometers. Otherwise, extra warehousing and 

depots will be needed, rendering the UAV operation economically and environmentally 

less appealing than EVs (Elsayed and Mohamed, 2020c; Aurambout et al., 2019). 

Furthermore, the trade-off between battery size and payload capacity significantly 
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decreases the UAV fleet coverage range (Elsayed and Mohamed 2020b). Therefore, to 

achieve the 16 kilometers service range, a UAV-based system will require more charging 

infrastructure sites distributed across the serviced region (Nemer et al., 2020; Stolaroff et 

al., 2018). Hence, from a transportation operations logistics perspective, the system can be 

seen as twofold, the UAV architecture and the charging infrastructure. 

The anticipated proliferation of heterogeneous UAV fleets in low-altitude civil 

airspace is a technological transformation with several design challenges (Almulhem, 

2020; Nesbit et al., 2017; Cohen and Jones, 2020, Al Haddad et al., 2020). Assuming 

autonomy, UAVs pose possible liability hazards such as mid-air collisions or private and 

public property damage. Furthermore, there is a risk of accidents resulting from a UAV’s 

interference with an aircraft or airspace congestion (Lemardelé et al., 2021). Therefore, 

some countries, such as the United Kingdom and Australia, started developing UAV flight 

policies, and the international civil aviation organization (ICAO) declared in 2006 the need 

for international harmonized terms and principles to guide the civil use of UAVs (ICAO, 

2015). 

However, these early policies focused mainly on implementing the UAV technology’s 

safety and social impacts. This led to a significant variation from restriction to lenience in 

the policies adopted by different countries and regions. Accordingly, this created a variation 

associated with the permissible flight limits and obstacle avoidance, resulting in significant 

variance in UAVs’ operation design parameters (Stöcker et al., 2017). However, the 

correlations and impacts of these policy-related design parameters on the performance 

metrics have not been quantified or studied with the required depth to proceed into real-life 
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comprehensive operation (Outay et al., 2020). Figure 4-1 summarizes the different 

regulatory criteria and design parameters correlated to performance metrics. 

From a system-wide design perspective, the ultimate goal would be reaching the 

optimal UAV energy consumption allowing the UAVs to consume the least amount of 

energy while travelling the maximum distance possible to achieve the targeted coverage 

(Stolaroff et al., 2018). This would yield better performance metrics by reducing GHG 

emissions, reducing costs, and achieving safe operations. 

As illustrated, the operational limitations within the regulatory criteria dictate specific 

airspace policies and UAV flight limitations. Globally, these limitations include a minimum 

clearing distance around public and private property (e.g., people, buildings, and structures) 

and a minimum and maximum flight altitude limitation (Stöcker et al., 2017). In other 

words, these limitations determine the allowable city airspace volume for UAV operation. 

The correlations between UAV policy boundaries and the performance metrics have 

been studied by Elsayed and Mohamed (2020a). They found that the change in the UAV 

operable airspace volume significantly impacted the UAV trajectories' geometrical 

configuration in dense urban contexts. These geometrical implications resulted in UAV 

operational speed limitations leading to extra energy consumption in most cases and 

eventually resulting in failed delivery missions. 

From a technical perspective, recent improvements in the UAV technologies have 

allowed the current refined UAV designs to improve energy efficiency significantly. 

However, the UAV technology improvements are not expected to leap significantly soon 
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(Morbidi et al., 2016; Thibbotuwawa et al., 2018). The correlation between the UAV 

operational speed and energy consumption based on the UAV kinematics will not gain 

significant improvements. Therefore, the only energy determinantal factors with room for 

improvements are trajectory optimization and operational logistics planning (Goerzen et 

al., 2010; Zhang et al., 2021). Both depend on the UAV policies and regulations. 

Although several studies in the literature theoretically compare the UAV policies and 

operational limitations (Hodgkinson and Johnston, 2018), they do not investigate their 

quantitative impacts on energy consumption and system design. We know no studies 

addressing the intertwined regulatory challenges and their effect on the infrastructure 

design for UAVs as a disruptive transportation mode. This gap in the existing literature 

highlights the potential contributions of the present study. 

As such, the primary focus of this study is on the energy consumption and charging 

infrastructure allocation and their trade-offs across different UAV policies. Our primary 

research questions are:  

-      What is the impact of UAV policies on their energy consumption? 

-      What is the impact of UAV policies on the required infrastructure in parcel-

delivery applications? 

To achieve this aim and address the research questions, 1) we utilize an origin-

destination (O-D) model for UAV last-mile delivery operations with demands spatially 

distributed over a large-scale metropolitan area (Elsayed and Mohamed, 2020a). 2) We 

limit the impact of other design variables by assuming autonomous operations and a unified 
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size of quadrotor UAVs. 3) We utilize a flexible energy use model for multi-rotor UAVs 

calibrated to measurements from representative UAV flights (Elsayed and Mohamed, 

2020a; Stolaroff et al., 2018). 4) We simulate real-life operations and 3D trajectories of 

UAV missions in a digital-twin case study city model across different permutations of UAV 

policies. 5) We propose an optimization model with an objective function to minimize the 

number of spatially allocated charging stations from a pool of viable candidate sites while 

achieving full demand coverage. 6) We propose a novel solution algorithm to allow the 

convergence of the optimal solution with a reasonable computational time. 

Overall, the quantitative analyses are based on simulating UAV operation for nine 

combinations adopted from the existing international civil airspace policies for limitations 

on both minimum horizontal clearance and minimum/ maximum altitude. 

After this introduction, a brief literature review focusing primarily on optimal UAV 

energy consumption, coverage, and pertinent international policy research are presented in 

section 2. Section 3 introduces the study methodology, including the proposed optimization 

model and solving algorithm. Furthermore, the case study and the nine developed policy 

combinations are detailed in section 3. Section 4 reports the simulation results, while 

sections 5 and 6 present the discussion and conclusions. 

4.3 Literature Review 

4.3.1 Optimal UAV energy consumption 

A precise, per mission, energy consumption is vital to estimate the coverage of a UAV 

system. Zhang et al. (2021) presented a recent comprehensive literature review on all the 

range estimates resulting from utilizing different UAV energy consumption models. The 
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literature can be categorized into two types of energy consumption estimates, indirect 

incorporation of range limitations (Kitjacharoenchai et al., 2019; Chiang et al., 2019; 

Murray and Chu, 2015); and an energy consumption model incorporation based on UAV 

kinematics (Elsayed and Mohamed, 2020a; Stolaroff et al., 2018; Figliozzi, 2017; 

Kirschstein, 2020; Raj and Murray, 2020; Poikonen and Golden, 2020; Dorling et al., 

2016). 

Given the wide variation in the considered design parameters for each energy 

estimation model, the results are widely divergent for identical delivery operations, leading 

to significant uncertainty in the estimated UAV range coverage (Elsayed and Mohamed, 

2020c). That said, by fixing the multi-rotor UAV size and payload weight (approximately 

two kilograms) reasonable for last-mile operations (Barmpounakis et al., 2016; Vanian, 

2017; Wells and Stevens, 2016), UAV energy consumption is generally considered a 

function of a UAV’s flying speed as illustrated in Figure 4-2. 

  

Figure 4-2 Correlation between UAV speed profiles and optimum energy consumption. 
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At lower speeds (<10 m/s), the power consumption decreases linearly with increasing 

speed. While at higher speeds (<20 m/s), the power consumption increases nonlinearly with 

speed (Stolaroff et al., 2018; Raj and Murray, 2020). Therefore, while the distance traveled 

per unit time increases with speed, the endurance based on the remaining battery charge of 

the UAV decreases with speed. It is worth noting that the wide discrepancy occurs at low 

speeds and higher speeds across different models. For instance, the models based on energy 

consumption for drone hovering (like the Dorling et al., 2016 model) may provide a better 

consumption estimate at low airspeeds. While, at higher speeds, they cannot capture the 

increased parasite drag that grows to dominate the energy consumption. 

It can be inferred that, in general, the UAV’s range is an increasing function of the 

speed at lower speeds and a decreasing function at higher speeds. Moreover, although there 

is no clear consensus in the literature on the optimal flight speed for maximized energy 

efficiency when the results are compared, we can infer a clear acceptable agreement on 

maintaining a variable speed with an average of 10 to 20 m/s flying speed zone (marked in 

light blue) as illustrated in Figure 4-2. 

This is determinantal in the context of UAV delivery systems, as the allocation and 

number of charging stations will differ significantly as the range of a UAV on a single 

charge changes. Some researchers argue that maintaining the highest possible UAV speeds 

(also known as maximum-range speeds) would maximize the service range (Liu et al., 

2017; Choi and Schonfeld, 2017). However, maintaining this high speed is only attainable 

in straight-line trajectories as changes in the roll and/or pitch angles require extra thrust and 

lower speeds to avoid overshooting from the trajectory. 
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Therefore, it can be confidently argued that UAV speed depends on the geometry of 

the trajectory. This geometry is heavily reliant on the allowable airspace volume by the 

applicable UAV policies (Elsayed and Mohamed, 2020c). When more obstacles are present 

along the mission trajectory, the trajectory will incur added maneuvers to avoid a collision. 

The airspace policies can multiply this impact by adding a horizontal clearance distance 

from buildings, hence, creating narrow air volumes between adjacent buildings along the 

mission trajectory. 

4.3.2 UAV flight policies 

This UAV policy literature could be classified as either technical or theoretical. The earliest 

appearance of theoretical literature was in the 1960s when the term ‘Remotely Piloted 

Vehicle’ (RPV) was used. Later in the 1980s, UAV was adopted (Mirza et al., 2016). 

Specifically, the literature before 2010 laid out the regulatory basis for larger UAVs 

inherited from larger piloted aircraft, making them inadequate for current smaller UAV 

technologies (Clarke, 2014). For instance, the ICAO classifies airspace based on provided 

air traffic services and flight requirements into controlled and uncontrolled airspace, using 

seven classes (A, B, C, D, E, F, and G). Classes A, B, C, D, and E are controlled, while 

Classes F and G are uncontrolled. Each airspace class contains a set of rules detailing 

aircraft operations and how air traffic control (ATC) must interact with the occupying 

aircraft (ICAO Annex 11, 2018). Since UAV operations are expected to occur in all 

airspace classes except Class A, current airspace-based operations are unlikely to be 

feasible without a drastic and expensive overhaul in all aspects (Thipphavong et al., 2018). 
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It is more likely that UAV operations will be conducted within a separate, newly created 

airspace with a new set of policies, limitations, and standards (Jang et al., 2017). 

Therefore, we focus the review here on more recent relevant studies. As illustrated in 

Figure 4-1, the major varying parameters from regulatory criteria are synthesized as 

administrative procedures and operational limitations (Stöcker et al., 2017). Administrative 

procedures regulate the management of low-altitude civil airspace usage. These include 

pilot license applications, insurance administration, and user/ equipment registration. 

Hence, they are mainly not applicable when assuming autonomy on a large scale. 

Operational limitations are the main determinant in regulating, coordinating, and 

controlling operations in this case since they ensure the safe use of airspace by outlining 

the essential policies and flight limitations. 

The literature on operational limitations is exclusively theoretic comparisons (Stöcker 

et al., 2017). For example, Clarke (2014) and Clark & Moses (2014) identified the gaps in 

national and international UAV regulations considering behavioral privacy, liability, and 

public safety. Morales et al. (2015) compared six Colombian national UAV policies. 

Similarly, Stöcker et al. (2017) compared and analyzed national regulatory frameworks 

worldwide. In general, the findings in all these studies conclude that although all policies 

have a common goal, there are distinct variations in all the compared regulatory design 

variables, which will impact the UAV operations significantly. 

Considering the policy variables, and in the case of autonomous UAVs for 

transportation operations, almost all countries have flexible boundaries that allow UAVs to 

operate beyond visual line-of-sight (BVLOS) under certain conditions. UAVs under special 
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permission have to weigh less than 25 kgs, travel at speeds below 45 m/s, and possess the 

onboard navigational requirements. Aside from that, countries adopt significantly different 

levels of strictness or lenience. Table 4-1 presents three categorical levels of limitation on 

design parameters adopted for each criterion. 

These categories can be summarized as 1) minimum horizontal or lateral distance from 

people and property and minimum allowable flight altitude except for the take-off and 

landing locations; 2) maximum allowable flight altitude, which is usually adopted from the 

ICAO recommendations within the range of 100 meters; 3) some countries define 

additional no-fly zones (NFZ) or clearing distance in case of highways, military areas, or 

congested areas such as outdoor venues; 4) minimum clearing distance from airports, 

aerodromes, and airstrips, although special authorization might be possible on a case-by-

case basis. While most countries define specific numeric values for the instances where 

policies are applicable, certain national UAV policies do not quantitatively define their 

policies. Alternatively, general terms like congested areas, as well as crowds of people, are 

stated. In this study, such cases will be categorized as lean or unrestricted. 

Table 4-1 Synthesized categories of variance in operational policy limitation. 

Category 

 

Regulatory Operational Limitation design parameters 

Criteria Distance from 

airports or strips 

Distance from property 

and people/ minimum 

altitude 

Congested 

area or 

highway 

Maximum altitude 

Lean or 

unrestricted 

NFZ Restricted over crowds  130 ~ 155 m 

The Netherlands, 

Austria, Germany, 

Japan, Malaysia, UK, 

China, France 

US, Spain, Malaysia, France, 

Germany, China, Austria, 

Italy, Netherlands 

Canada, 

Germany 

France, Nigeria, 

Austria, Italy, 

Colombia, Japan, 

Chile 

Average 2 ~ 5 Km away 30 m 150m 100 ~ 122 m 

Austria, Italy, Chile, 

Colombia, Canada 

Canada, Australia, Chile, 

Japan 

UK UK, Spain, Australia, 

Malaysia, US, 

Canada, Netherlands, 

China 

Strict 8 ~ 10 Km away 50 m Not Allowed ≤ 100 m 
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US, Spain, South 

Africa, Rwanda 

UK, South Africa, Colombia, 

Rwanda 

Australia Germany, Rwanda 

Sources: Appendix A1 

The regulatory operational limitations are executed in the city’s airspace discretization 

and, consequently, trajectory planning to ensure user compliance. At the same time, 

trajectory planning itself can be defined as finding a kinematically viable solution to the 

problem of UAV routing. In this case, the solution domain is a discretized airspace that 

considers all the policy operational limitations. While the UAV as an autonomous system 

relies mainly on a sense and avoid mechanism in dense urban contexts, several studies 

propose airspace zonal separation, reducing noise in urban residential blocks (Bauranov 

and Rakas, 2021). The most adopted method is applying a geofence, which is a virtual static 

or dynamic (changing) spatial envelope applied to any given airspace either in positive 

(keep-in) or negative (keep-out) following the horizontal, altitude, and NFZs limitations. 

The keep-in geofence is the allowable airspace volume for UAV trajectories. In contrast, 

the keep-out is a volumetric restriction to the extent where UAVs are not allowed to fly. 

In conclusion, from the literature, several vital messages are highlighted:  

- Regarding UAV energy consumption estimates, contradictory conclusions were 

presented in the literature (Zhang et al., 2021). This is due to the discrepancies in 

kinematic models and the assumption of free-flight airspace operation without 

accounting for the impact of airspace policies on the resulting UAV trajectories 

rendering them unfeasible in real-life operation (Bauranov and Rakas, 2021). 

- All UAV charging infrastructure allocation studies accounting for energy 

consumption presented depend on an assumed/generalized flight pattern, averaged 
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speed profiles, and Euclidean distance (or 2D obstacle avoidance models). These 

design parameters are highly critical for the energy calculation/estimation and can 

result in over or underestimation of required charging station spatial allocations when 

applied in real-life 3D environments (Elsayed and Mohamed, 2020a; 2020c). 

- It has been thoroughly noted that the policy-induced structure and restrictiveness of 

airspace can influence the capacity, safety, and efficiency of UAV operations 

(Bauranov and Rakas, 2021). However, there is a lack of quantitative studies 

considering broader systemic impacts on a network level, such as the charging 

infrastructure. 

Therefore, the present study contributes to addressing these gaps. In particular, we 

contribute to quantifying the economic and energy demand impacts/benefits associated 

with fully adopting autonomous UAVs across different regulatory policies. 

In doing so, we fix all UAV-system parameters while alternating policies (horizontal 

and vertical permissible boundaries). Then, we compare the generated impacts on a full-

coverage autonomous delivery UAV system to highlight the energy and the infrastructure 

associated with each policy combination.  

4.4 Methodology 

The study adopts a five-step sequential methodological approach illustrated in Figure 4-3. 

The main components utilized in this study are highlighted in red borders. Other 

components are included to portray the entire system, yet these are not within the scope of 

the present study. 
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Figure 4-3 Methodological framework. 

4.4.1 Case study, energy consumption, and demand modeling  

We compile a digital twin for the simulated city in the first step. GIS data and city archive 

models are imported from respective online repositories and overlaid upon the 

OpenStreetMap (OSM, 2021), which acts as the base map. After that, the model is updated 

with the live Light Detection and Ranging (LiDAR) data to incorporate building details. 

The digital-twin city model is dynamically updated for real-time changes and disruptions, 

such as demolition, building construction (including cranes and construction aids), 

temporary No-Fly Zones, and extreme weather disruptions. 
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The second step allows the inclusion of different flight policies. In this study, we have 

synthesized different international UAV policies and summarized the most energy-critical 

limitations: minimum horizontal or lateral distance from people and property; and the 

minimum/ maximum allowable flight altitude. These limitations were classified in Table 1 

into three categories. We formulate nine permutations to assess each limitation's impact 

(Table 4-2). 

Table 4-2 UAV policy permutations for simulation. 

Policy Minimum and Maximum Altitude 

 Category Lean Average Strict 

M
in

im
u

m
 

H
o

ri
zo

n
ta

l 

C
le

a
ri

n
g

 

D
is

ta
n

ce
 Lean Permutation 1 (P1) Permutation 2 (P2) Permutation 3 (P3) 

Average Permutation 4 (P4) Permutation 5 (P5) Permutation 6 (P6) 

Strict Permutation 7 (P7) Permutation 8 (P8) Permutation 9 (P9) 

The policy permutations are applied via geofencing in each simulation iteration using 

the digital-twin model in the first step. Through a keep-out geofence, all geometry 

(including the policy permutation buffer) is interpreted as physical obstacles, subtracted 

from the operable civil airspace. Then only the airspace volume falling within the allowable 

flight altitude range in each policy is considered for the discretization step. This also allows 

the application of a road pricing framework such as the one proposed by Merkert et al. 

(2021). 

In the third step, we generate the delivery demand data since real-life georeferenced 

data is protected under privacy laws. Given the origin as the selected central depot, 

destinations and number of deliveries follow a Poisson distribution with a mean variation 

based on real-world population density from the respective census data shown in Figure 
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4-4 A (Elsayed and Mohamed, 2020a). This method has proved to have high accuracy and 

robustness in transportation demand modelling (Fagnant and Kockelman, 2014). In the 

simulations, the generation algorithm distributes the demand for one-day last-mile 

operation spatially in the digital twin resulting in the O-D matrix. As for the candidate 

charging station locations, we filter the 3D GIS data within the digital twin and select all 

public buildings with sufficient roof area for the charging stations and an overall height 

close to the lowest UAV allowable cruising altitude (30 m). 

The fourth step prepares the model for simulations. We utilize the Skyroutes algorithm 

adopted from Elsayed and Mohamed (2022) to produce a discretized airspace. The resultant 

segmental domain is produced by a hierarchical tree partitioning and divides the viable 

airspace into UAV lanes. It should be noted that using the same discretization model 

(Skyroutes) enables cross-comparing the impact of each policy. The same could be carried 

out using a Cartesian grid discretization. 

Based on the output from the four steps, the fifth step estimates the energy consumption 

of all UAV missions via an experimentally verified kinematic model adopted from Elsayed 

and Mohamed (2020a) and Stolaroff et al. (2018). The energy model assumptions are 

outlined in Table 4-3. The energy-optimal trajectories are converged after routing all O-D 

missions in the digital twin. Subsequently, matrices are generated to allow the process of 

the solution heuristic in determining the minimum number and allocation of the charging 

stations based on the targeted coverage. The optimization objective function, constraints, 

and heuristic are explained in the following subsection. 
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Table 4-3 UAV design parameters used to calculate the energy consumption. 

Symbol Description Value 

v velocity Averaged at 10- 20 m/s 

mTotal Total loaded UAV mass (including 2kg payload) 4.2 kg 

𝑃𝑏 Specific power of the battery 0.35 kW/kg 

𝜂 BTP and motor power transfer efficiency 0.7 

𝑁𝑟𝑜 Number of DC brushless rotors 4  

𝑅𝑟𝑜 Rotor blades’ radius 0.15 m 

𝑣𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 Vertical velocity during take-off and landing 10 km/h 

𝜌𝑎 Air density (assumed average) 1.225 kg/m3 

ℎ𝑈𝐴𝑉 Maximum flight altitude outside destination air zone Policy determined 

𝑚𝑎𝑣𝑖𝑜𝑛𝑖𝑐𝑠 Avionics mass 0.4 

𝑚𝑎𝑖𝑟𝑓𝑟𝑎𝑚𝑒 UAV airframe mass fraction 30% 

𝑚𝑠𝑦𝑠𝑡𝑒𝑚𝑠 Onboard systems’ mass fraction 15% 

𝑚P Mass of parcel 2 kg 

While the proposed method can be applied to any case study, here, Toronto, Canada, 

is chosen for the study simulations as the country gears up for a critical phase of developing 

UAV integration policies (Government of Canada, 2017). Furthermore, the city of Toronto, 

with its dense downtown featuring tall buildings (Figure 4-4 B), represents a comparative 

context for most dense metropolitan cities around the globe. 

For the case study, the existing Canada Post dispatch depot for last-mile delivery is 

maintained without adding extra warehousing to mitigate the added environmental and 

economic impacts. This central depot receives the designated parcels at a provider-dictated 

hub-and-spoke model from several Canada Post sorting facilities. The central depot is used 

in this study to dispatch all delivery parcels for the entire city via UAVs. The objective is 

to extend the range of UAVs by allocating the minimum number of charging stations. 
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(A) Case study census data (B) Case study digital-twin model 

Figure 4-4 Case study, city of Toronto. 

4.4.2 Optimization model 

The proposed model aims to determine the optimal locations and number of UAV charging 

stations to extend the coverage range. The objective is to minimize the number of UAV 

charging stations to cover all the spatially distributed demand locations hence reducing the 

system infrastructure cost and GHG emissions. Through this process, we can determine the 

impact of UAV policies on the resultant allocations. To realize this, for each policy 

permutation (𝑝) from Table 4-2, the energy consumption for each portion of the trajectory 

between a hub/ station to the following station/ destination ‘hop’ is estimated using the 

high-resolution UAV kinematic model. This trajectory optimization method ensures that 

the UAV range estimation is accurate at each considered charging station or demand 

location. 

Substantial research investigates the charging allocation optimization problem. 

Solutions included route optimization (Sundar and Rathinam, 2014); vehicle routing with 

traveling salesman problems (Yu et al., 2018; Dorling et al., 2017); a mixed-integer 

allocation model using Euclidean shortest path (ESP) planar-space routing, and range-
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restricted flow refueling locations (Hong et al., 2018; Hong and Murray, 2013); a maximum 

coverage capacitated facility allocation problem (Chauhan et al., 2019). However, our 

proposed model considers a 3D trajectory and kinematic energy model for each UAV 

mission across the nine policy permutations. 

The UAV charging network can be abstracted as a directed graph 𝐺(𝑉, 𝐸). Let 𝑉 

donate the charging stations and demand locations, and 𝐸 represent the set of trajectories 

between them. Let 𝐽 be the set of candidate charging station locations. The depot(s) set 𝑊 

of the charging network is a subset of 𝐽 (𝑊 ⊂ 𝐽). Also, 𝑥𝑗 is a binary decision variable that 

denotes whether the location 𝑗 ∈ 𝐽 is selected to build a charging station on or not. Let 𝐼 

present a set of demand locations identified by the Poisson demand model. 

As the energy consumption is a function of the UAV's total weight, for each mission, 

two different UAV states are implemented in the model, loaded and unloaded. Firstly, the 

terminal delivery range ‘final hop’ is when the UAV state of charge (SoC) is sufficient to 

deliver the payload from the last visited charging station or depot to the demand point and 

return unloaded to a charging station or depot. The set 𝐷𝑖
𝑝
  is calculated for every demand 

location 𝑖 and contains the numbers and sequential rankings of the candidate locations of 

charging stations 𝑗 that cover each demand point 𝑖 in the policy permutation 𝑝. Secondly, 

the en-route flight range ‘hop’ is when the UAV energy is insufficient to achieve a final 

delivery trajectory from charging station location 𝑗 to the demand point 𝑖 and returns 

unloaded in policy permutation 𝑝. Therefore, the set 𝑅𝑗
𝑝
 is estimated for every location 𝑗 

and contains the numbers and sequential rankings of the other candidate locations of 
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charging stations that could be reached by a fully loaded one-way flight trajectory from the 

location 𝑗 in policy permutation 𝑝. It is worth noting that the model will be solved for each 

policy permutation 𝑝 in a separate iteration and the sequential rankings in both 𝐷𝑖
𝑝
 and 𝑅𝑗

𝑝
is 

based on the kinematic energy consumption simulations of the optimal 3D trajectories 

converged in the digital-twin. 

To ensure the connectivity of the obtained optimal charging system and that the 

trajectories between the selected candidate charging stations will lead to the depot(s), the 

nonnegative integer variable 𝑦𝑗𝑗′ is utilized. 𝑦𝑗𝑗′ indicates the path flow from the charging 

station location 𝑗 to the location 𝑗′, and it is estimated by the concept of cumulative 

topological connectedness that builds towards a root node (Hong et al., 2018). 

Given the complexity of the model, the formulation is made under the following four 

assumptions.  

(1) The maximum payload weight is used for all loaded missions. 

(2) One demand point is served on each mission.  

(3) The locations of the depot(s) 𝑊 are predefined (refer to section 3.1). 

(4) The UAV's batteries are fully charged (SoC= 100%) before leaving any charging station 

en route.   

The mathematical formulation of the proposed model is detailed as follows: 

Minimize ∑ 𝑥𝑗𝑗∈𝐽  (4-1) 
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Subject to  

∑ 𝑥𝑗 ≥ 1𝑗∈𝐷𝑖
𝑝                                                      ∀𝑖 ∈ 𝐼 (4-2) 

∑ 𝑦𝑗𝑗′𝑗′∈𝑅𝑗
𝑝  ≤ (𝑆 − 1)𝑥𝑗                                   ∀𝑗 ∈ 𝐽          (4-3) 

∑ 𝑦𝑗𝑗′𝑗′∈𝑅𝑗
𝑝  −   ∑ 𝑦𝑗′𝑗𝑗′∈𝑅𝑗

𝑝 ≥ 𝑥𝑗                      ∀𝑗 ∈ 𝐽\𝑊                   (4-4) 

∑ 𝑦𝑗𝑗′𝑗′∈𝑅𝑗
𝑝  −   ∑ 𝑦𝑗′𝑗𝑗′∈𝑅𝑗

𝑝 ≤ 𝑥𝑗 − 𝑆               ∀𝑗 ∈ 𝑊                   (4-5) 

𝑥𝑗 = 1                                                                ∀𝑗 ∈ 𝑊                                                                                 (4-6) 

𝑥𝑗 ∈ {0,1}𝑈                                                          ∀𝑗 ∈ 𝐽 (4-7) 

          𝑦𝑗𝑗′ ∈ 𝕫≥0                                                          ∀𝑗, 𝑗′ ∈ 𝐽 (4-8) 

For each airspace policy permutation 𝑝, the model’s objective function (4-1) minimizes 

the number of required charging stations. Constraint (4-2) ensures the full coverage for all 

the demand locations 𝐼. This constraint explains that every demand location 𝑖 should be 

covered by at least one charging station from the terminal delivery range coverage set 𝐷𝑖
𝑝

. 

Constraints (4-3, 4-5) are developed to guarantee connectivity in the optimized UAV 

charging network. In Constraint (4-3), two cases are emphasized; first, if a candidate 

charging station location 𝑗 has any outflow to another location in the set 𝑅𝑗
𝑝
, then location 

𝑗 must be selected in the final solution network. Second, if the candidate location 𝑗 is not 

selected, then there is no potential flow out from location 𝑗 to any other location in 𝑅𝑗
𝑝
. In 

this constraint, 𝑆 is a large number and could be taken as the total number of charging 
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station candidate locations (𝑆 = |𝐽|). In this case, 𝑆 − 1 value will equal the number of the 

other candidate locations other than 𝑗, which also equals the maximum available flow 

through location 𝑗. 

Constraint (4-4) works in two directions; first, if a charging station is allocated on 

location 𝑗, then the outflow from location 𝑗 to the locations in the set 𝑅𝑗
𝑝
 must be greater 

than the inflow to location 𝑗 from other stations that location 𝑗 is in their set 𝑅𝑝 by at least 

one. Second, if location 𝑗 is not selected for a charging station allocation, there is no need 

for outflow. These two concepts in Constraint (4-4) are applied to all the candidate charging 

stations except the depot(s). In Constraint (4-5), the depot(s) are only allowed to have 

outflow less than the inflow. 

Constraint (4-6) indicates that the depot(s) are selected also as charging stations 

because they are considered the root nodes of the UAV charging network. Constraints (4-

7) and (4-8) impose the binary property of the 𝑥𝑗 variable for all 𝑗 ∈ 𝐽 and the nonnegative 

integrity to the 𝑦𝑗𝑗′ variable for all 𝑗, 𝑗′ ∈ 𝐽, respectively. 

The model explained in Equations (4-1 to 4-8) aims to minimize the number of 

charging stations for a UAV charging network while satisfying the full coverage of all the 

demand locations. However, for partial coverage of the demand points, the same model in 

Equations (4-1 to 4-8) is modified. This modified partial coverage model represents the 

case of designing a UAV charging network that minimizes the number of selected charging 

stations to cover only a 𝑘% of the total demand points 𝑁𝐷. And therefore, a new decision 
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variable 𝑧𝑖 is added to indicate whether the demand location 𝑖 ∈ 𝐼 is covered or not. The 

partial coverage model is formulated as follows: 

Equation (4-1)  

Subject to  

Equations (3-8)  

∑ 𝑥𝑗 ≥ 𝑧𝑖𝑗∈𝐷𝑖
𝑝                                                      ∀𝑖 ∈ 𝐼 (4-9) 

∑ 𝑧𝑖 ≥ 𝑘𝑖∈𝐼 𝑁𝐷   (4-10)  

𝑧𝑖 ∈ {0,1}                                                           ∀𝑖 ∈ 𝐼 (4-11) 

Constraint (4-2) in the full coverage model is replaced by Constraint (4-9) in the partial 

coverage model to indicate that the demand location 𝑖 is only covered if there is at least one 

charging station allocated at location 𝑗 ∈ 𝐷𝑖
𝑝
. Constraint (4-10) ensures that the targeted 

demand coverage percentage is satisfied. And finally, Constraint (4-11) imposes the binary 

property of the variable 𝑧𝑖 for all 𝑖 ∈ 𝐼. 

4.4.3 Solution algorithm 

The proposed full coverage model integrates several complex subroutines such as the 

shortest path, two different UAV flight states, a full-coverage approach, and the charging 

network connectivity. And in the simulated large-size UAV delivery network, there is a 

substantial number of trajectories (links) that connect the candidate charging station 

locations. Therefore, the combined model is considered a large-scale complex integer 

programming problem that is difficult to solve with a relatively small optimality gap using 
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a commercial solver in a reasonable time. Here, we propose a new solution algorithm to 

handle this complex problem. 

Our proposed solution algorithm utilizes the Gurobi solver to handle the resulting 

small-scale subroutines during the iterations, the shortest path between two single nodes 

package in MATLAB, the r-interchange heuristic approach to generate a new solution at 

each iteration, and the simulated annealing criteria to escape local optima (Kirkpatrick, 

1984). The proposed solution algorithm steps are described as follows: 

Step 0 (Initialization) 

We initiate the iteration count 𝑚 = 0. Then select the policy permutation 𝑝 and input 𝐷𝑖
𝑝
 

and 𝑅𝑗
𝑝
 for every demand location 𝑖 ∈ 𝐼 and candidate charging station location 𝑗 ∈ 𝐽, 

respectively. Let the set 𝐽�̅� contain the candidate charging stations locations that are 

restricted to be selected in iteration 𝑚 (𝑥𝑗 = 1, 𝑗 ∈ 𝐽�̅� ) and 𝐽𝑚 contains the locations that 

are restricted to be removed from the candidate locations pool in iteration 𝑚 (𝑥𝑗 = 0, 𝑗 ∈

𝐽𝑚). Initiate 𝐽0̅ = ϕ and 𝐽0 = 𝜙.  

Step 1 (Solve without connectivity) 

The model is solved without the connectivity constraints and variables using Gurobi solver 

in this step. Therefore, the new problem is formulated as follows: 

𝑋𝑚 = argmin ∑𝑥𝑗

𝑗∈𝐽

 

Subject to 
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∑ 𝑥𝑗 ≥ 1𝑗∈𝐷𝑖
𝑝                                                      ∀𝑖 ∈ 𝐼 

𝑥𝑗 = 1                                                                ∀𝑗 ∈ 𝑊 ∪ 𝐽�̅�                                                                                  

𝑥𝑗 = 0                                                                ∀𝑗 ∈ 𝐽𝑚                                                                                  

𝑥𝑗 ∈ {0,1}                                                          ∀𝑗 ∈ 𝐽\(𝑊 ∪ 𝐽�̅� ∪ 𝐽𝑚) 

This is a small-scaled integer programming problem that is solved in a reasonable time 

using the Gurobi solver and the obtained solution 𝑋𝑚 satisfies the full coverage, however, 

without connectivity between the stations.  

Step 2 (Solve shortest path problems) 

To demonstrate a connected network for the charging stations resulting from Step 1 (𝑋𝑚), 

the shortest path problem from every location 𝑗 ∈ 𝑋𝑚 to the depot 𝑊 through the candidate 

charging stations is solved using the MATLAB function (shortestpath) which is based on 

the real energy-efficient trajectories translated into the equivalent of links with the cost 

(distance) representing the energy demand of the real simulated trajectory. Therefore, 

|𝑋𝑚| − 1 shortest-path problems are solved, and all the unique identifiers of charging 

stations are sifted without repetition in a modified solution �̂�𝑚. The obtained solution from 

this step ensures full demand coverage and network connectivity. However, it could 

potentially be not optimal as it may include extra stations because of the different 

trajectories from the stations in 𝑋𝑚 to the depot.  

Step 3 (Solve with connectivity) 
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The proposed model is solved using Gurobi in this step with a modification of the 𝐷𝑖
𝑝
 and 

𝑅𝑗
𝑝
 sets to include only the identifiers of the charging stations in �̂�𝑚. The new sets are 

called 𝐷𝑖
𝑝,𝑚

and 𝑅𝑗
𝑝,𝑚

. In other words, the model is optimized with only the candidate 

charging stations in �̂�𝑚 to reduce the number of considered stations while still maintaining 

both the full coverage and the charging network connectivity. The problem in this step is 

formulated as follows: 

�̃�𝑚 = argmin ∑ 𝑥𝑗𝑗∈�̂�𝑚   

Subject to 

∑ 𝑥𝑗 ≥ 1𝑗∈𝐷𝑖
𝑝,𝑚                                                      ∀𝑖 ∈ 𝐼 

∑ 𝑦𝑗𝑗′𝑗′∈𝑅𝑗
𝑝,𝑚  ≤ (𝑆 − 1)𝑥𝑗                                   ∀𝑗 ∈ �̂�𝑚           

∑ 𝑦𝑗𝑗′𝑗′∈𝑅𝑗
𝑝,𝑚  −   ∑ 𝑦𝑗′𝑗𝑗′∈𝑅𝑗

𝑝,𝑚 ≥ 𝑥𝑗                    ∀𝑗 ∈ �̂�𝑚\𝑊                   

∑ 𝑦𝑗𝑗′𝑗′∈𝑅𝑗
𝑝,𝑚  −   ∑ 𝑦𝑗′𝑗𝑗′∈𝑅𝑗

𝑝,𝑚 ≤ 𝑥𝑗 − 𝑆             ∀𝑗 ∈ 𝑊                   

𝑥𝑗 = 1                                                                   ∀𝑗 ∈ 𝑊                                                                                 

𝑥𝑗 ∈ {0,1}                                                             ∀𝑗 ∈ �̂�𝑚 

          𝑦𝑗𝑗′ ∈ 𝕫≥0                                                             ∀𝑗, 𝑗′ ∈ �̂�𝑚 

Step 4 (Simulated annealing acceptance criteria) 

We compare the current solution from Step 3 (�̃�𝑚) in iteration 𝑚 against the previous 

iteration 𝑚 − 1 (�̃�𝑚−1) (Note: in iteration 𝑚 = 0, the previous solution of the model 
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contains all the candidate charging station locations). Subsequently, we apply the simulated 

annealing acceptance criteria. If the new solution is accepted, then 𝐽�̅�+1 = 𝑋𝑚 ∩ �̃�𝑚 and 

𝐽𝑚+1 = 𝑋𝑚/𝐽�̅�+1 to produce another solution in the next iteration. If the new solution is 

rejected, the r-interchange heuristic algorithm is utilized to randomly replace 𝑟 stations in 

𝑋𝑚\𝑊 ; and update 𝐽�̅�+1 = 𝑋𝑚 ∩ �̃�𝑚 and 𝐽𝑚+1 = 𝑋𝑚/𝐽�̅�+1 to change the search area in 

the feasible region.  

Step 5  

The iteration count is updated (𝑚 + 1 → 𝑚) and we loop back to Step 2. And the loop is 

repeated until the termination criteria are satisfied. 

It is noted that the solution for the partial coverage model will undergo the same 

procedure while replacing Equation (4-2) with Equation (4-9) and adding Equations (4-10 

to 4-11) to the subroutines in Step 1 and Step 3. 

The proposed optimization model provides a novel contribution to the existing 

literature. In particular, the model relies on the actual energy consumption for each delivery 

mission and incorporates the actual flight trajectory. That said, the optimization model 

should be seen as a tool to accurately assess the impact of UAV policies on energy 

consumption and UAV-system configuration. The latter is our main focus. 

4.5 Results 

4.5.1 O-D Demand Model 

A daily base-case scenario operations model was conducted, using the average daily 

demand outlined in the methodology section utilizing forward sortation area (FSA) data 
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and the associated geocoded information (Figure 4-5 A). Results of the O-D generation and 

candidate charging station location filtration for the case study are reported in Table 4-4. 

In addition, Figure 4-5 B shows the Poisson generated demand customer points in green, 

the single-origin depot in blue, and the candidate charging station locations in red for all 

policy permutations’ simulations, respectively. 

Table 4-4 Results of the O-D mission demand model. 

Parameter Case Study 

Service area 630.2 km² 

Poisson λ parameter 103 FSA allocations 

Average round distance from depot (min, max) 3,440.62 (65.81, 6,133.9) m 

Average distance between destinations 46.2 m 

Mission count (deliveries) 5,536 

Candidate charging station locations 1275 

Total UAV trajectory distance traveled 43,128,000 m 

AM peak 9 AM–10 AM 

PM peak 4 PM–6:30 PM 

 

 

(A) Three-digit FSA code map of the case study area (B) O-D (blue-green) and candidate charging station 

(red) sites for the case study area 

Figure 4-5 O-D matrix generation results for all deliveries in the case study. 

4.5.2 Solution performance and full coverage results 

Full-day operations for 5,536 demand destinations covering the entire case study area were 

simulated across the nine policy permutations discussed in the methodology. The location 

of a single distribution depot was selected based on the most central geographic location to 
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ensure the best coverage. The central depot is assumed to have its charging station, to 

realize the optimization model assumption that the UAVs leave the depot fully charged. 

The digital-twin model filtered 1275 sites conforming to the determinants to be considered 

candidates for charging stations. Obstacles for this case study included NFZs, round public 

venues, and one airport. 

The simulation results are based on a UAV with a diagonal wheelbase of 643 mm and 

a weight of approx. 3.80 kg, with a payload weight of approx. 2.34 kg. The UAVs are 

assumed to carry only one LiPo battery with 6000 mAh capacity. This provides a maximum 

flight time of 13min on a single charge at a maximum flight speed of 61.2 km/h and light 

wind gust. A full charge takes ~30 minutes for the UAV to add another full maximum range 

at the maximum charging power of 180 W. The kinematic model is implemented in Python 

3.10, the solution algorithm is implemented in MATLAB, and the Gurobi solver with a 

0.01% relative optimality gap on a computer with an Intel i5 CPU with four physical cores 

and 16 GB memory. The integer programming IP has up to 184987 variables and 8086 

constraints. 

To illustrate the efficiency of the proposed solution algorithm, we run a comparative 

test run against the Gurobi solver on a smaller scale of partial coverage problems. Table 

4-5 compares the solution quality (in terms of allocated stations) and computing time of the 

solutions using the Gurobi solver and the proposed solving algorithm for achieving up to 

50% coverage of the demand under policy permutation. While the converged solution 

quality in both is equal, the computing time of the proposed solution algorithm is 

significantly lower. For the Gurobi solver, the computing time increases dramatically as 
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the coverage problem increases in complexity (problem scale). For instance, the solutions 

were attainable in a reasonable time up to a 40% coverage. After that, the optimal solutions 

with a low relative optimality gap were challenging to obtain. 

Table 4-5 Solution computing time and quality. 

Coverage 

percentage 
Gurobi solver  Proposed solution algorithm 

Station 

allocations 

Computing time 

(seconds) 

 Station 

allocations 

Computing time 

(seconds) 

10% 4 557.16  4 64.51 

20% 6 4547.05  6 108.47 

30% 7 52499.03  7 273.02 

40% 9 635051.24  9 416.20 

50% \  \   13 497.58 

For the full coverage solution, Figure 4-6 shows the spatial illustration of the charging 

station allocations for the policy permutations of converging 26 stations (Figure 4-6 A) and 

9 converging 58 stations (Figure 4-6 B). The coverage range of the allocated stations is 

presented in Green, illustrated as an airspace sphere, while the consumption was derived 

based on the energy-efficient trajectories presented in Red. For all policy permutations, the 

allocated stations (including the depot) can serve 100% of the total demand. 
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(A) Case study with policy permutation p1 

 
(B) Case study with policy permutation p9 

Figure 4-6 Simulation results for full coverage after applying UAV policy permutations 1 and 9. 

From the illustrations, several trends can be observed. First, for the entire operating 

fleet, the minimum daily traveled trajectory length is 3440.62m (~3.44 km). This is slightly 

beyond the most optimistic expected range of the off-shelf payload-capable UAVs, ranging 

between ~400m and ~ 3km. In this case study, the maximum daily traveled trajectory length 
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is considerably greater at 6133.9m (~6.13 km). However, on average, most missions require 

less than 4 km of range (72%), and nearly all require less than 5.5 km of range (94%). 

Second, the number of charging station allocations increased by the decrease in the 

coverage ability due to the increased energy consumption. It can be observed how the 

maximum/minimum altitude limitations compacted the entire operations in a tighter range 

rather than several levels of trajectory lanes. Along the same lines, the stricter minimum 

horizontal distance clearance increased the trajectory length on most missions, illustrated 

by the denser traffic of UAV trajectories around the blocks and at intersections (Figure 4-6 

B). This is prevalent especially in the areas with taller buildings, therefore ceteris paribus, 

demanding more frequent charging hops illustrated by the increased number of green 

spheres in the same comparable area. 

Third, the ability of the proposed optimization model to account for the high-resolution 

discrepancies in energy consumption can be observed in the spacing of allocated stations 

and the morphology of the resultant network. In Figure 4-6 A, the stations close to the 

NFZs, such as the airport and the lake, are closer to each other than the areas with low-rise 

buildings and less infiltration to the flight altitude. 

4.6 Policy Impacts and Discussion 

Considering the impact of policy variation on the UAV charging station allocation, the total 

number of stations required for the full coverage in the case study is illustrated in Table 

4-6. The results show that the stricter policies in both directions increase the total number 

of charging stations. While the increase of strictness in altitude limitations leads to an 
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increase in the total allocated charging stations up to 52%, the impact of minimum 

horizontal clearing distance strictness leads to a significantly higher increase in the total 

allocated charging stations up to 75%. Furthermore, on the system level, the impacts of the 

nine policy categories on the required number of charging stations are significant. 

Table 4-6 Simulation results for full coverage for all UAV policy permutations. 

Policy permutation 
P

1 
P2 P3 P4 P5 P6 P7 P8 P9 

Total allocated charging stations 26 29 35 31 37 39 38 51 58 

Percentage increase (P1 is the 

reference) 
- 

112

% 

135

% 

119

% 

142

% 

150

% 

146

% 

196

% 

223

% 

The significant impact of the horizontal clearing distance on the UAV energy 

consumption in urban contexts with higher percentages of tall buildings has been 

investigated by Elsayed and Mohamed (2020a). While the strictness of this specific policy 

adds to the trajectories’ length in most cases, in other cases, the burden of circulating a city 

block to mitigate a geofence necessitates the allocation of an extra charging station to 

complete the mission. This is also evident in areas where the streets are wide, the 

application of a stricter minimum clearing distance subtracts from the width of the street to 

allow for buildings’ NFZ buffer. This narrows down the number of lanes for UAV usage 

and restricts the UAVs from traversing at speeds between 10 m/s and 20 m/s, which in turn 

increases the UAV energy consumption leading to extra charging demand. To better 

visualize the impact of the minimum horizontal clearing distance policy, we illustrate the 

results in Figure 4-7 for each minimum/maximum altitude policy category. 
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Figure 4-7 The impact of minimum horizontal clearing distance policy on full coverage. 

At the mission level, each mission trajectory follows a unique speed and route profile 

depending on the destination and viable air space according to the simulated policy 

permutation. This results in a significant case-by-case variation of energy consumption due 

to the change in wind profile, resistance, and flight kinematics (Vertical/ horizontal motion 

and hovering). However, the higher minimum flight altitude policies (higher lower bound) 

lead to lengthier vertical take-off and landing (VTOL) distances, especially for low altitude 

destinations in low-rise buildings or houses with gabled roofs unsuitable for UAV landing. 

Similarly, lower maximum altitude policies (lower upper bound) add extra traffic load on 

the lower-altitude UAV lanes instead of utilizing higher-altitude lanes. This air traffic also 

decreases the traversing UAV speed adding extra energy demand, which translates into 

more charging station allocation. 
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The energy demand results of full coverage for each policy premutation are aggregated 

in Table 4-7. It is noted that as the number of allocated stations increases, the total traveled 

distance can exhibit a fluctuating behavior between increasing and decreasing. This is 

because the objective function is to minimize the overall number of allocated charging 

stations even if a percentage of the missions will have to take a lengthier trajectory as the 

example mission 18 presented in Figure 4-8. 

Table 4-7 Aggregated energy demand for all UAV policy permutations. 

Policy permutation P1 P2 P3 P4 P5 P6 P7 P8 P9 

Total energy demand 

(kWh) 
3,109.9 3062.9 3,551.8 3,050.9 2968.1 2887.6 2924.1 3205.4 3576.4 

Total travelled 

distance (min., max.) 

(km) 

24,061.2 

(0.1, 7.5) 

25,678.

2 (0.1, 

7.3) 

31054.8 

(0.1, 

8.7) 

27383.2 

(0.1, 

8.1) 

28574.1 

(0.1, 

8.9) 

32845.3 

(0.1, 

9.4) 

30470.8 

(0.1, 

9.6) 

31857.5 

(0.1, 

9.7) 

33870.6 

(0.1, 

9.9) 

Average energy 

demand per distance 

(kWh/km) 

0.12924 0.11928 0.11437 0.11141 0.10387 0.08791 0.09596 0.10061 0.10559 

 

  
(A) Mission ID 18 trajectory under policy permutation 

1. 
(B) Mission ID 18 trajectory under policy permutation 9. 

Figure 4-8 Difference between trajectory lengths for mission ID 18 under UAV policy 

permutations 1 and 9. Charging stations (Blue), mission trajectory (Red). 
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As observed from the system configuration and the energy demand results, the 

relationship between policy category (e.g., lean/lean) and the resultant system is not linear. 

To further confirm this, Figure 4-9 illustrates the results for partial coverage under policy 

permutation P9 (Strict minimum horizontal clearance and strict altitude). 

The results show that a network of 7 stations covers 30% of the total demand in the 

study area. Additional ten stations double the coverage of demand. The increase in coverage 

is almost linear with small increments till the 80% coverage marker. Beyond that, the 

number of added stations per increment of demand coverage increases exponentially. For 

instance, seven added stations are required to increase the coverage from 80% to 90%, 

which is the same number of stations required to cover 30% of the demand. This is due to 

the high density of conurbation around the central depot with tall buildings where every 

allocated station adds coverage to a dense city block. As we move further away from the 

central depot, the density and height of buildings decrease significantly, leading to 

exponential correlation.  

In general, from the simulation results, the following trends can be deducted: 
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- The number of allocated UAV charging stations is directly proportional to the 

restrictiveness of the applied UAV policies. Nevertheless, it is not a linear 

relationship. 

- The minimum horizontal clearing distance UAV policies show a more significant 

impact on the charging station allocation as compared to the minimum and 

maximum allowable flight altitude policy. The impact ranges from a 52% increase 

in allocated charging stations to a 75% increase in the study area due to the altitude 

limitations vs the horizontal clearance distance respectively. 

- While the impact of these policies is more severe in dense urban contexts with a 

large portion of relatively tall buildings (heights taller than the allowable UAV 

operations altitude), the impact is less severe in less dense areas featuring lower 

building heights (overall heigh lower than the minimum flight altitude of 30m). 

To conclude, although research implies that a hybrid system of UAVs and ground 

delivery modes would perform best by cross-eliminating the disadvantages of each mode 

(Goodchild & Toy, 2018), the results of this study show that under the appropriate flight 

policies, a full coverage low-impact UAV independent system is feasible. 

Furthermore, future UAV charging station optimization models must account for 1) 

the varied UAV energy consumption rate per unit travelled distance per trip and 2) the 

impact of the adopted UAV policy on the generated results. The results of our study show 

that the assumptions depend on several uncertainties and can cast significant estimation 
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discrepancies, especially in fleet operations and depending on the complexity and 

uniqueness of the case study city. 

The results also show that there is no single optimal set of UAV policies that would 

lead to an optimal overall system "One model fits all" instead of a hybrid policy model. For 

instance, applying leaner policies can minimize the need for charging station allocation in 

dense downtown areas. However, stricter policies can be applied outside the city center 

depending on the city block density and building heights. 

4.7 Conclusions 

This study has presented a novel simulation-based framework to accurately assess the real-

world impact of UAV flight policies and regulations on UAV energy consumption and the 

charging infrastructure allocation to extend the range of UAVs' last-mile transport 

operations in a dense urban context. In general, results and discussion support the 

hypothesis that UAV utilization in first/last-mile transportation operations is attainable for 

full demand coverage even under strict airspace policies. Several regulative challenges 

must be examined under uncertainty and overcome for wide real-world adoption. 

It is evident that urban obstacles such as buildings and miscellaneous city landscapes 

prevent UAVs from flying in a straight-line path. Moreover, to achieve air traffic safety 

and optimality, UAVs have to maneuver around these obstacles at a safe distance. The 

geometry of the trajectory forces the UAVs to decrease speed, hover, and perform angular 

kinematic adjustments, which accelerate the depletion of the limited onboard battery SoC. 

This dictates the need for stations to recharge their batteries en-route to relay UAVs to the 

next station or destination. The UAV must be able to complete the mission without running 
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out of charge and return to a charging station for the return trajectory. The process is even 

further complicated as the flying range of the unloaded UAV is considerably longer than 

when carrying a payload. 

Given these logistical requirements, this study proposed the charging station allocation 

model for optimizing the site selection and the total number of charging stations allocated 

to achieve the full demand coverage using the minimal number of UAV charging stations. 

The innovative IP model draws on features of several subroutine models to formulate this 

problem, including the obstacle-avoiding energy-efficient trajectory optimization, UAV 

kinematic model, demand generation model, an integrated digital-twin extraction, and 

policy geofencing simulation model. 

Overall, this study provided a novel method to study the intricate predicaments 

between different applicable airspace policies and infrastructure requirements impacts. The 

current literature presents several trajectory optimizations and recharging infrastructure 

allocation algorithms for better performance. However, these algorithms either target a 

limited consumption margin based on trajectory geometry and UAV velocity or assumed 

ESP paths, hence, applicable only after the UAV policy is selected, such as the alternatives 

presented in this study. 

The vast discrepancies presented in the results of this study dictate that, realistically, 

all airspace policy decisions need to be simulated on large-scale real-world operations to 

quantify the trade-offs between public and payload safety, infrastructure cost, system 

requirements, and delivery speed. Furthermore, the results highlight that the chosen 
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airspace policies are highly sensitive to the urban operational context and landscape where 

no unified policy combination will fit as a global solution. 

For instance, a strict flight policy would allow higher safety and energy efficiency 

improvements. However, it will significantly increase charging station requirements. 

Furthermore, different policies have unique implications on the charging infrastructure; 

maximum and minimum altitude limitations lead to an increase in the total allocated 

charging stations up to 52%, while minimum horizontal clearing distance leads to an 

increase in the total allocated charging stations up to 75%. 

This study started with the objective of quantifying the added charging infrastructure 

demand under different flight policies for full demand coverage. The results reinforced the 

notion that revising, and tailor-fitting flight policies are critical to realizing the full coverage 

of UAVs in delivery and other applications without sacrificing safety or privacy. That said, 

the results of this study should be incorporated as a possible solution for specific cities as 

part of a further integrated decision support system and policy evaluation framework. This 

will help experts and local authorities develop, evaluate, and facilitate appropriate freight 

and last-mile UAV delivery policy for cities. Furthermore, it presents an accurate 

quantitative analysis tool of the infrastructure allocation and energy requirements. 

This study raises other questions and dilemmas, such as whether UAVs should be 

adopted anywhere regardless of the urban morphology? Or instead, utilized in dense urban 

contexts where a few charging stations can cover more demand? Should other special 

considerations be integrated into the policy decisions? Should we start the real-world 

application by enforcing leaner policies to encourage the early adoption of UAVs or rather 
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stricter policies? Each of these alternatives has implications for the cost/economic, 

environmental, and logistical viability of fully autonomous UAV delivery systems. While 

our initial model cannot answer all these questions, it is essential to test permutations and 

scenarios to estimate how these different technologies would perform in a real-world spatial 

setting. Perhaps the most obvious next step is the evaluation of grid-connected charging 

stations vs off-grid renewable energy sourced charging stations. These questions point 

toward model extensions worth developing in future studies. 

Future research includes the study of the impacts of urban settings, for instance, the 

change in building density versus the variation of policies under various discretization 

methods. Furthermore, in this study, the proximity of highways or airports was partially 

ineffective based on urban design and geographical location. However, in other cases where 

strict flight regulations do not allow UAV flights near highways or airports, the impact 

should be further investigated on a case-to-case basis. Similarly, although wind gusts affect 

energy consumption estimates, the discrepancy requires a complex computational fluid 

dynamics (CFD) simulation, which can be computationally intensive. Future studies should 

expand the work under stochastic weather conditions. 
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4.9.1 Appendix 1: Sources for international regulations: 

Australia: Australian Government Civil Aviation Safety Authority, “Flying 

Drones/Remotely Piloted Aircraft in Australia,” August 13, 2017. 

Austria: Austro Control, “Betrieb von unbemannten Luftfahrzeugen–Drohnen,” 

Canada: Transport Canada, “Part IX – Remotely Piloted Aircraft Systems,” July 26, 2019.  

Chile: Global Drone Regulations Database, “Chile,” Last update / March 2, 2017. 

China: Civil Aviation Administration of China (CAAC), "Regulations on the Registration 

and Management of the Real-name System of Civil Unmanned Aerial Vehicles", May 17, 

2017. 

Colombia: Castro, Pablo, “Colombia: A Pioneer in Drone Regulation. . . But in the Worst 

Way Possible,” PetaPixel, September 20, 2017. 

France: Legifrance, “Decree of 17 December 2015 on the Use of Airspace by Aircraft 

Operating on Board,” JORF n°0298, December 24, 2015. 

Germany: Luftfahrt Bundesamt, “Die neue EU – Drohnen - Regulierung”, March 5, 2019. 

Italy: ENAC, “Remotely Piloted Aerial Vehicles,” Revision 3, March 24, 2017. 

Japan: Ministry of Land, Infrastructure, Transport and Tourism, Civil Aviation Bureau, 

“Japan’s Safety Rules on Unmanned Aircraft (UA)/Drones,” December 10, 2015. 

Malaysia: Department of Civil Aviation, Aeronautical Information Services, “Unmanned 

Aerial Vehicle (UAV) Operations in Malaysian Airspace,” February 18, 2008. 

Netherlands: https://www.government.nl/topics/drone/rules-pertaining-to-recreational-

use-of-drones 

Rwanda: Rwanda Civil Aviation Authority, “Unmanned Aircraft Operations in Rwanda,” 

Feb 2019. 
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South Africa: South African Civil Aviation Authority, “Remotely Piloted Aircraft 

Systems,” 2017. 

Spain: Agencia Estatal De Seguridad Aerea (AESA), December 29, 2017. 

United Kingdom: Civil Aviation Authority, “Unmanned Aircraft and Drones,” 2015. 

US: Federal Aviation Regulations 

EUROCONTROL. http://www.eurocontrol.int/articles/national-rpasregulations 

Joint Authorities for Regulation of Unmanned Systems (JARUS). http://jarus-

rpas.org/regulations 

Collaborative wiki, Global UAV Regulations Database. 

https://droneregulations.info/index.html 

UVS International. http://uvs-info.com/index.php/european-matters/regulation-monitor-

europe/european-mattersregulation-monitor-europe-open-access 

http://dronerules.eu/en/ 
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CHAPTER 5 

5 Robust Digital-Twin Airspace Discretization and Trajectory Optimization for 

Autonomous Unmanned Aerial Vehicles 

Preamble 

This chapter addresses objectives one and six of the dissertation (Figure 5-1). The chapter 

addresses the energy uncertainty by illustrating a comprehensive airspace planning solution 

that resolves the discretization uncertainty in light of policy uncertainty, therefore 

optimizing the entire UAV operation regardless of the applied policy strictness. To achieve 

that, the chapter proposes a novel autonomous Advanced Aerial Mobility (AAM) logistical 

system for high-density city centers. As a first step to replicate the real-world environment, 

we illustrate in deeper detail a real-time 3D geospatial mining framework for LiDAR data 

to create a dynamically updated digital-twin model. Second, we further illustrate the 

proposed robust city airspace dynamic 4D discretization method (Skyroutes) for 

autonomous UAVs utilizing dual geofencing that was first introduced in chapter 3. The 

chapter also utilizes an hourly trip generation model to create 1,138 trips in two scenarios 

comparing the Cartesian discretization to our proposed algorithm, thereafter performance 

is compared in the real 3D environment of Toronto, Canada. 
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Figure 5-1 Regulatory criteria correlation to performance metrics. 

The submitted manuscript included in this chapter is: ElSayed, M., & Mohamed, M. Robust 

digital-twin airspace discretization and trajectory optimization for autonomous unmanned 

aerial vehicles. Under review in the Journal of Air Transport Management. JATM-D-21-

00544. 

The manuscript was submitted in October 2021. Mohamed Elsayed is the main 

contributor and first author of this manuscript. The co-author’s contributions include 

guidance, supervision, and manuscript editing. 

5.1 Abstract 

The infiltration of heterogeneous fleets of autonomous Unmanned Aerial Vehicles (UAVs) 

in smart cities is regarded as a technological transformation often equated to the paradigm 

shift created in automobiles by Henry Ford in the early 20th century. The consumerization 
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of city air space includes infrastructure creation of roads, traffic design, capacity estimation, 

and trajectory optimization. This study proposes a novel autonomous Advanced Aerial 

Mobility (AAM) logistical system for high-density city centers. First, we propose a real-

time 3D geospatial mining framework for LiDAR data to create a dynamically updated 

digital twin model. This enables the identification of viable airspace volumes in densely 

populated 3D environments based on the airspace policy/ regulations. Second, we propose 

a robust city airspace dynamic 4D discretization method (Skyroutes) for autonomous UAVs 

to incorporate the underlying real-time constraints coupled with externalities (e.g., No-Fly 

Zones (NFZ) and weather updates), legal, and optimal UAV operation based on kinematics. 

An hourly trip generation model was applied to create 1,138 trips in two scenarios 

comparing the Cartesian discretization to our proposed algorithm. The results show that the 

AAM enables a precise airspace capacity/cost estimation, due to its detailed 3D generation 

capabilities. The AAM yielded up to a 10% increase in airspace capacity based on a circle 

packing method as compared to Cartesian discretization. Furthermore, the generated UAV 

trajectories are 50% more energy/ GHG emissions efficient and significantly safer. The 

proposed framework is an operating model not only capable of planning the civil airspace 

precisely and efficiently but also coordinates heavy UAV traffic of heterogeneous fleets 

and evaluates public policies related to UAVs in transportation. 

5.2 Introduction 

According to the United Nations, the world population is expected to reach 10.1 billion by 

2100, cities are growing exponentially across the globe (European Parliament, 2014). 

Given the limited space and resources, the concept of a smart city emerged, which is 
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designed for the optimum usage of space and supplies along with an efficient distribution 

of resources. Smart cities are, by default, designed to achieve resilient communities that 

maximize the integration between humans and robotics (Mohammed et al., 2014). 

Accordingly, the use of autonomous systems is considered a dire need to enable cities’ 

resilience and to cope with the economic, social, and environmental disruptions arising 

from expansions and increased population density. This has been highlighted recently with 

the novel coronavirus (COVID-19) pandemic, which necessitated quarantining and city 

lockdowns worldwide. 

Autonomous systems’ integration in cities is featured in several applications such as 

robotic manufacturing, robotic construction, and autonomous transportation systems. 

Unmanned Aerial Vehicles or Systems (UAVs or UAS) or ‘drones’ are utilized in a variety 

of civil and military tasks such as cargo transport, emergency management, and search and 

rescue missions (Khan et al., 2018; Shakhatreh et al., 2019). 

This technological transformation is often equated to the paradigm shift created in 

automobiles by Henry Ford in the early 20th century. In other words, the creation of roads, 

traffic design, and planning can apply to the consumerization of city air space. While UAV 

applications are relatively easier in rural areas, however, several challenges arise with the 

anticipated proliferation of heterogeneous UAV fleets in low-altitude airspace of dense 

urban areas given the characteristics of cities and the definition of relevant decision 

variables (Lemardelé et al., 2021). These challenges can be bundled according to the 

elements of the autonomous UAV system, the UAV itself, and the city airspace as the 

hosting infrastructure. 
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As it relates to the UAV, and to maintain the overall weight of the UAV, a trade-off is 

inevitable between the onboard power source, processing unit, and sensors essential for 

autonomy, and the transported payload limits and/or the flight range. This trade-off 

decreases the practicality of the whole independent UAV system (BinJunaid et al., 2016). 

Significant advancements in UAV technologies promise increased energy efficiency, 

lighter airframes, and improved power-to-weight ratio for DC motors. However, these 

improvements are not expected to reflect substantially on the existing performance in the 

near future (Merkert & Bushell, 2020; Morbidi et al., 2016). Therefore, research has 

depended on developing routing algorithms or trajectory planning and optimization 

heuristics to tackle current UAV limitations (Chen et al., 2021). Most relevant to low 

altitude airspace management (LAAM) applications is a UAV Routing and Trajectory 

Optimization Problem (RTOP), where a fleet of UAVs visits a set of waypoints (missions) 

assuming UAV kinematics (position, velocity, and acceleration), and dynamic (forces and 

moments) constraints. This represents half of the solution since it depends on the presence 

of a viable discretized airspace that respects all other constraints. 

Considering city airspace challenges, different variables exist. First, massive fleets of 

UAVs operating in highly dense cities raises serious safety issues as huge damage can be 

sustained to pedestrians and public or private property. This damage can be caused by the 

crashing of a UAV due to a technical malfunction or mid-air collisions due to airspace 

interference and congestion (Truong & Choi, 2020; Song et al., 2008; Nesbit et al., 2017). 

Second, UAV onboard communication and GPS navigation modules are vulnerable to 

security breaches due to their unencrypted nature, which makes them easily spoofed 
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(Vattapparamban et al., 2016; Altawy & Youssef, 2016). Third, given their data collection 

abilities, sensors, and high-precision onboard cameras, UAVs can be perceived as remotely 

controlled surveillance equipment (Rao et al., 2016) as they can be hacked to collect 

personal data or track individuals using wireless localization techniques. Fourth, the 

proximity to public operations causes pedestrians to feel uncomfortable or dwellers to feel 

that their privacy is being invaded (Khan et al., 2018). 

Given these challenges and the traditional concepts of city security, liability, and 

aviation airspace regulations, the need to regulate UAV operation pushed international, 

federal, and local governments to navigate unchartered territories, with boundaries of civil 

regulatory authority over UAVs ill-defined (Nesbit et al., 2017; Dung & Rohacs 2018). 

Currently, several countries have imposed UAV operational restrictions based on proximity 

to population and man-made structures. While these regulations alone can control leisure 

UAV use, however, heterogeneous fleet operation with projections of massive volumes of 

UAVs is too large for the current Air Traffic Control structure to handle (Barr et al., 2017; 

Foina et al., 2015). 

Reacting to that, two types of research exist, one group focusing on enabling safe urban 

airspace operation through geofencing and airspace discretization or air traffic control. The 

other group works on developing routing algorithms or path/ trajectory planning heuristics 

for conventional Cartesian airspace. While some of the previous research considers some 

of the aforementioned challenges/ parameters, others fall short in providing comprehensive 

applicable frameworks/ solutions (Shakhatreh et al., 2019; Khan et al., 2018). The adoption 

of UAVs in autonomous transportation within smart cities hinges on the development of a 
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full city aerial-infrastructure framework for operation (airspace discretization and 

geofencing), navigation (trajectory planning), and traffic control of swarms of UAVs 

running on robotic operation systems (ROS) (Coutinho et al., 2018). This framework must 

consider all challenges raised by previous studies across all parameters before proceeding 

into a real-life execution phase. 

In this respect, the present study develops a novel autonomous Advanced Aerial 

Mobility (AAM) system for high-density city centers. The AAM system integrates a 

digital-twin city-airspace discretization, planning, and trajectory optimization algorithm for 

heterogeneous UAV fleets. 

To the best of the authors’ knowledge, this is the first study to integrate live updated 

precision digital models with airspace planning for exterior complex urban environments. 

An extensive review of the most recently developed methodologies integrating GPS data 

and LADAR for UAV pose estimation and trajectory is provided by Vaidis (2019), and the 

latest LiDAR 3D processing techniques by Wang et. al. (2018). This is also, the first study 

addressing the intertwined city airspace regulatory challenges and the multiple parameters 

for efficient UAV operation within digital-twin models. The primary aim of this study is to 

develop a novel comprehensive algorithm that allows autonomous AAM operation within 

civil airspace. The model depends on dynamically-updated real-time LiDAR data to 

simulate the actual civil airspace and converge energy-efficient pre-planned obstacle-

avoiding trajectories instead of active path planning for each UAV. The proposed system 

solves both airspace planning and UAV control/navigation challenges by accommodating 
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variable UAV sizes, types, and speeds. Furthermore, ensuring abidance to respective 

airspace regulations and maximizing capacity. 

To achieve this aim, the present study,  

1) Develops a real-time 3D geospatial mining framework for geo-referenced allocation of 

trips and UAV task assignment based on LiDAR data to create a digital twin model.  

2) Proposes a novel city airspace dynamic 4D discretization method (Skyroutes) for UAVs 

based on legal regulations incorporating real-time constraints coupled with external factors. 

The discretization converges a network of keep-in lanes allocated outside the keep-out 

geofence (dual geofencing).  

3) Utilizes a flexible energy use model for multi-rotor UAVs based on the kinematics and 

dynamic operational capabilities and calibrated to measurements from representative 

experimental UAV flights (Elsayed and Mohamed, 2020b).  

4) Develops a dynamic trajectory optimization method tailored for the proposed 

discretization method coupled with a novel 3D lane change and compares the efficiency of 

the solution to the existing algorithms in the literature. 

5) The developed models are applied to a real-world case study to computationally simulate 

UAV transportation operations delivery applications.  

In this study, after presenting the airspace discretization model, we formally define the 

UAV routing and trajectory optimization based on quadcopter kinematics and dynamics. 

We utilize Newton-Euler-derived differential equations to simulate the operation of UAV 

brushless DC motors. Thereafter, we utilize a complementing simplified real-time Dynamic 
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Programming (DP) arc-routing method to determine the minimum Snap and energy 

trajectory for a fleet of UAVs visiting a set of arcs between origin locations and 

destinations. In this respect, the presented study provides an original contribution to the 

AAM challenge. 

After this introduction, a literature review focusing primarily on different approaches 

to UAV-city-integration through civil air-space discretization and UAV trajectory planning 

research is presented in section 2. Section 3 introduces the study methodology, while 

sections 4 and 5 include the Digital-twin model and the proposed urban airspace 

discretization derivation model respectively. The modified energy-optimal trajectory 

planning and UAV task assignment framework are detailed in Section 6. Section 7 reports 

on the case study, the results, and the discussion, while conclusions are presented in Section 

8. 

5.3 Literature review 

Currently, UAVs’ operation is limited below the flying altitude of commercial aircraft to 

avoid collision potential. Globally, this can be generally defined as zero to 150 m over the 

ground level (Stöcker et al., 2017). Although autonomous UAV mission control can be 

performed onboard with the reliance on sensors, GPS, and computation. However, in 

proximity to buildings and in case of severe weather conditions, UAVs are prone to loss of 

GPS signal or sensor failure jeopardizing the efficiency and stability of the entire network 

(Luo et al. 2013; Masiero et al. 2015). Hence, off-board preloaded mission planning 

maximizes safety, utility, and reliability, and mitigates the need for onboard multiple 
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sensors saving weight for payload and decreasing costs. Autonomous operations within 

densely built-up areas could interfere with UAVs (Department of Transport, 2017). 

In response to that, earlier research on LAAM recommended the development of a 

unified urban airspace system or ‘urban air mobility,’ to manage the safe operation of 

UAVs within low-altitude civilian airspace. For instance, in 2006, the International Civil 

Aviation Organization (ICAO) declared the need for international harmonized terms and 

principles to guide the civil use of UAVs (ICAO, 2015). Later in 2020, the term Advanced 

Aerial Mobility (AAM) was coined by NASA denoting the ecosystem incubating the 

emergence of these disruptive technologies in both urban and rural contexts (National 

Academies of Sciences, Engineering, and Medicine, 2020). The published report outlines 

a vision for the city airspace and air traffic management environment. 

The main concept is to establish a national framework through a unified infrastructure 

with levels of complexity for all manned and unmanned aerial vehicles of any size or type 

to control traffic, separation, and flight trajectories. The airspace traffic network is to be 

based on data sharing and utilized as a nationally controlled utility provided for various 

mobility operators similar to current ground road networks (National Academies of 

Sciences, Engineering, and Medicine, 2020). To that end, the economic, social, and 

regulatory success of the system is dependent on addressing some fundamental challenges 

which can be summarized as follows:  

▪ Safety & security: any AAM must ensure the safety of public and private property 

and users such as collision avoidance, limiting extreme proximity, and mitigating 

street level drivers’ visual distraction. In addition, including cybersecurity against 
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communications signal hacking besides other system vulnerabilities in extreme 

weather conditions and disruptive events (Cheung et al., 2021; Zhi et al., 2020). 

▪ Environmental impacts: this entails minimizing or eliminating GHG emissions, 

noise, and impact on wildlife (Elsayed and Mohamed, 2020 b). 

▪ Flexibility & resilience: the system’s ability to recover quickly from unexpected 

events and limit the cascading impact. Furthermore, the ability of the system to 

evolve with the emergence of newer UAV technologies, software, and operational 

concepts (Rajendran & Srinivas, 2020).  

▪ Regulation: develop standardized national policies to govern the operation and 

allow insurance and tax or toll collection. 

▪ Social acceptance: being a disruptive technology with a social stigma, experimental 

real-world operations, and scenario-based analyses can convince the users that the 

urban obtrusiveness risk is acceptable, and efficient to overcome cost barriers. 

To tackle these challenges, over the last decade ample research has aimed to provide 

solutions or guidelines, that can be bundled into two groups according to the targeted study 

area, airspace planning research and UAV navigation and control research. 

5.3.1 Urban Airspace Planning 

The concept of airspace planning as explained from the AAM perspective and challenges 

is new to the research community (National Academies of Sciences, Engineering, and 

Medicine, 2020). However, a substantial part of this area is commonly researched under 

the UAV Traffic Management (UTM) keyword, where ample literature exists (Majumdar 
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et al., 2002; Krozel et al., 2007). With that said, only literature on obstacle-rich lower urban 

airspace is considered in this review rather than obstacle-free higher-altitude airspace. 

The most researched concept of separating flyable airspace from obstacles in UTM is 

known as Geofencing (Kopardekar et al., 2016). Geofence is a virtual perimeter applied 

statically or dynamically in a real-world application in positive (keep-in) or negative (keep-

out). While the keep-in geofence is a 3D volume to maintain, the keep-out is applying 

volumetric restriction to certain extents. With current UAV regulations generally including 

a minimum distance or protection boundary around static objects (e.g., people, buildings, 

and structures) and altitude limit (Stöcker et al., 2017), keep-out is the most deployed and 

researched methodology (Dill et al., 2016). 

Urban airspace planning depends on two factors, namely the quality of the 3D 

environment model and the geofencing technique utilized. The accuracy of estimating the 

real-time state of UAVs is highly dependent on digitally replicating the real-world 

environment. This relies primarily on the collected surrounding sensor data. Literature has 

mainly depended on 3D GIS, Digital Surface Model (DSM), or Google’s 3D city data for 

their system simulations (Hoekstra et al., 2015; Salleh et al., 2017; Salleh et al., 2018). 

While 3D maps provide viable results, they fall short to include details and dynamic 

changes to the real-world environment. The missing details and changes include 

transmission towers, utility poles, power lines, construction equipment including cranes, 

and street-level vegetation. 

The integration of airspace planning and geofencing has been studied under various 

discretization morphologies (Salleh et al., 2017; Salleh et al., 2018; Clothier et al., 2011; 
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Kopardekar, 2014; Johnson et al., 2017). Most comprehensively, Hoekstra et al. (2015) 

illustrate all the discretization morphologies (Figure 5-2). In all morphologies, on‐board 

avionics implement the preloaded regulation and specific flight plan autonomously, and the 

flight trajectory is governed through the geofence. 

(A) Layered 

discretization 

 

(B) Tubed 

discretization 

(C) Zonal 

discretization 

(D) Full mix 

discretization 

Figure 5-2 Different airspace discretization morphologies. (Source: Hoekstra et al., 2015) 

Another stream of studies targeting specific challenges exists in the literature. 

Although they do not provide holistic solutions, however, their conclusions and 

recommendations are exceptionally valuable for building on the objective of this study. 

D’Souza et al. (2016) tested the flight deviation from the planned path due to wind 

disturbances. Their study concluded that PID controller stabilization can decrease the 

minimum lateral distance from buildings up to 5 meters. Similarly, Johnson et al. (2017) 

tested applying several minimum lateral distance alternatives to the ability of UAVs to 

detect and avoid buildings. Their results showed poor detection capabilities with narrow 

urban corridors. Recently, Cho & Yoon (2018) compared three scenarios for the case study 



Mohamed ElSayed  McMaster University 

Ph.D. Thesis  Dept. of Civil Engineering 

211 

of Seoul city, namely keep-out, keep-in, and dual geofencing. They concluded that keep-in 

exhibited more robust behavior than keep-out. The study recommended integrating both 

geofencing methods while applying dynamic parameters given the geospatial complexity 

and flight purposes. More recently, Torija et al. (2020) compared a series of audio-visual 

scenarios for UAV operations in cities to investigate the impacts of UAV noise. They 

concluded that the UAV operations along busy roads might aid in the mitigation of the 

overall community noise impact. 

Overall, the concept of AAM has been mirrored globally in numerous studies with the 

aim of establishing a comprehensive UAV airspace discretization framework. However, 

most research has focused on the integration of one or two challenges rather than addressing 

all challenges. 

Table 5-1 Urban airspace planning literature. presents a summary of the most relevant 

literature outlining the solutions and recommendations for each challenge. Although 

several other studies address the same topic, the following limitations were applied in the 

filtration process. 1) The oversimplification of the problem, makes the solutions less robust 

for city-scale applications. 2) Proprietary restrictions that prohibit the open collaboration 

on developing, integrating, and testing the suggested solutions (Foina et al., 2015). 3) 

Solutions not targeted for autonomy and beyond visual line-of-sight (BVLOS), since 

solutions for piloted systems are significantly different and not viable (Atkins, 2014). 

 



Mohamed ElSayed  McMaster University 

Ph.D. Thesis  Dept. of Civil Engineering 

212 

Table 5-1 Urban airspace planning literature. 

Project/ Author(s)  Safety & security 
Environmental 

impacts  

Flexibility & 

resilience 
Regulation  Social acceptance 

Metropolis project  

(Hoekstra et al., 2015) 

Full mix, layered, 

zonal, and tubed. 

Optimal route 

geometry 

Flow 

management, 

separation, and 

conflict 

avoidance 

Considers only 

average 

regulation 

strictness 

Presenting 

alternative 

scenarios 

Limited static airspace planning in two models. Exclusive limitation of operation within obstacle-free 

airspace decreases mission range for smaller UAVs and increases mission time for emergency 

applications. 

Singapore’s TM-UAS 

(Salleh et al., 2017; 

Salleh et al., 2018) 

 

Full mix 

(AirMatrix), over 

buildings, and 

roads 

N/A 
Flight and risk 

management 

Varying degrees 

of regulation 

Presenting 

alternative 

scenarios 

Limited static waypoint concept. Limited route optimization and flexibility with UAV types and sizes 

given only constant speed or random speed optimization limitation in traffic control.  

Australia’s Smart Skies 

project  

(Clothier et al., 2011) 

Automated 

separation 

management 

system 

N/A 
Sense-and-Act 

Systems 

Local current 

regulation 
N/A 

Limited model details. Limited route planning and optimization capabilities through the developed 

Mobile Aircraft Tracking System (MATS). 

NASA UTM 

 (Kopardekar, 2014; 

Johnson et al., 2017) 

 

Collision 

avoidance  
N/A 

Contingency 

management and 

re-routing 

FAA regulation 
Public safety 

illustration 

Limited multi-modal airspace discretization and modification. 

5.3.2 UAV flight navigation and control 

Given a fleet of UAVs and a volume of designed urban airspace, the actual navigation and 

mission control can be described as a series of complex mathematical problems. First, the 

NP-hard UAV Task Assignment (TA) problem refers to optimally assigning missions to a 

set of UAVs based on mission constraints (Khamis et al., 2015). While TA shares similar 

characteristics with Vehicle Routing Problem (VRP), there are a few key differences 

(Darrah et al., 2013; Hu et al., 2015). Unlike VRP, TA allows multiple stops, heterogeneous 

fleet operation, and mission sub-tours. The output for both VRP and TA is a pairing 

between a set of O-Ds, and assigned vehicles along with a set of waypoints. 

Second, to connect these waypoints and form a UAV flyable path, the problem is 

known as Path Planning (PP). PP is defined as the process of constructing a geometric path 

from a starting point to an endpoint given a 2D or 3D domain. While PP can include the 
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impact of wind or other constraints, the problem formulation is extensively simplified to 

be solved heuristically (Rathinam & Sengupta, 2007). In a real-world application, it is 

imperative to couple the generated path with UAV constraints, kinematics, and dynamics 

(Zhang et al., 2012). In this respect, the integration of kinematics and dynamics with routing 

is known as optimal motion (trajectory) planning or Trajectory Optimization (TO). Closely 

related to the Optimal Control (OC) problem, TO leverages motion equations to model the 

spatiotemporal changes of the UAV system while minimizing a scalar performance index 

such as flight time or fuel consumption (Betts, 1998). A detailed literature review of the 

research focused on these problems can be found in Coutinho et al. (2018). They conclude 

that on one hand, the UAV routing and task assignment literature have mostly neglected 

complex UAV constraints. On the other hand, TO research has fallen short in integrating 

other noise and safety challenges. 

Research about integrated routing and trajectory optimization is scarce (Coutinho et 

al., 2018), however, there are ample studies discussing different methods for UAV 

navigation and mission control. Literature can be classified based on methodology into 

three major groups. 1) Mixed-Integer Linear Programming and exact algorithms (such as 

branch and bound or Euclidean minimum spanning tree), where an optimal solution is 

guaranteed; 2) Metaheuristics such as Evolutionary algorithms, Particle Swarm 

Optimization, and Ant Colony, where a solution is not guaranteed; 3) Heuristics that 

includes merging different heuristics or special cases of algorithms such as hybrid Tabu 

Search-Simulated Annealing (Moshref-Javadi et al., 2020). Several other methods are 

presented in the literature without belonging to a specific group. To focus on relevant 
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literature, we only present in Table 5-2 Relevant UAV 3D routing and trajectory 

optimization literature. studies that can perform combined routing and trajectory 

optimization independent of urban airspace planning. Therefore, obstacle avoidance (static 

or dynamic) and 3D environment operation are imperative capabilities (Shen et al., 2020). 

Table 5-2 Relevant UAV 3D routing and trajectory optimization literature. 

Method/ Author(s)  Method Application 

Simulation/ 

Experimental 

verification 

Trajectory optimization 

of multiple quad-rotor 

UAVs in collaborative 

assembling task (Chen et 

al., 2016) 

Genetic algorithm 
Uncapacitated Multi UAV 

trajectory optimization 
Simulation 

No real-time applicability for heterogeneous fleet/swarm operation. No wind consideration 

3D off-line path 

planning for aerial 

vehicle using distance 

transform technique 

(Jaishankar & Pralhad, 

2011) 

Multi-criteria decision analysis Off-line path planning Simulation 

No real-time applicability for heterogeneous fleet/swarm operation. Limited UAV dynamics 
accountability and lacking wind consideration 

A heuristic mission 

planning algorithm for 

heterogeneous tasks with 

heterogeneous UAVs 

(Wang et al., 2015) 

Heuristic algorithm 
Mission planning for 

heterogeneous tasks 
Simulation 

No real-time applicability and wind consideration. Limited UAV dynamics accountability 

3D multi-constraint 

route planning for UAV 

low-altitude penetration 

based on multi-agent 

genetic algorithm (Wu et 

al., 2011) 

Genetic algorithm 
Mission multi-constraint route 

planning 
Simulation 

No real-time applicability for heterogeneous fleet/swarm operation. Limited UAV dynamics 
accountability and lacking wind consideration 

Distributed pseudolinear 

estimation and UAV 

path optimization for 3D 

target tracking (Xu et 

al.,2017) 

Gradient-descent algorithm 
UAV path optimization for 3D 

target tracking 
Simulation 

No real-time applicability for heterogeneous fleet/swarm operation and wind consideration 

Online path planning for 

UAV using an improved 

differential evolution 

algorithm (Zhang et al., 

2011) 

Differential Evolution Algorithm Online path planning for UAV Simulation 

No real-time applicability and wind consideration. Limited UAV dynamics accountability 

Trajectory planning for 

unmanned aerial 

vehicles in complicated 

urban environments: A 

control network 

approach (Lin et al., 

2021) 

control network and Dubins curve 

Algorithm 

A two-stage control network 

approach 

Simulation 

No applicability for huge-scale cities, the control network could contain billions of links and it may 

cause the path-finding problem computationally burdensome/ Over-simplification of the city model 

3D path planning and 

real-time collision 

resolution of multirotor 

drone operations in 

complex urban low-

altitude airspace (Zhang 

et al., 2021) 

3D voxel jump and Markov 

decision process 

Autonomous drone collision-free 

path planning 

Simulation 

Originated from the classical 2D grid map JPS method considers only diagonal or straight directions/ 

Over-simplification of the city model 
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To that end, while limitations of case-by-case studies in the literature can be addressed, 

all routing and trajectory optimization methods presented utilize a Cartesian discretization 

rather than incorporating a discrete airspace planning and discretization component leading 

to a full-mix airspace concept. In this concept, airspace is unstructured and UAV traffic is 

fully dependent on onboard sensing, self‐regulation, and obstacle avoidance under 

stochastic conditions. Although the full-mix airspace concept allows for maximum speed 

and freedom, given heterogeneous fleet operation, it severely limits the energy efficiency, 

and airspace capacity, as well as jeopardizes system‐wide safety. Hence, a full-mix concept 

fails to address the aforementioned AAM challenges (Elsayed and Mohamed, 2020 b). 

5.4 Model Overview 

The study proposes a novel three-step sequential methodological approach (Figure 

5-3). Each step is detailed in the following sub-sections. A brief overview is given below. 

In the first process, a digital-twin for the simulated case study is built. GIS data and 

city archive models are imported and updated with live Laser Detection and Ranging 

(LiDAR) data according to a loop with a selected timestep. The digital city model is actively 

updated for real-time changes and disruptions, such as demolition, building construction 

(including cranes and construction aids) or temporary No-Fly Zones, and extreme weather 

disruptions. Subsequently, the system obtains two streams of input for a set of variables 

through an online connection. The first stream of input relates to mission planning that 

includes the location of the UAVs’ initial origin and destination locations for each trip. The 

second stream of input relates to the area-specific flight regulations adopted. Namely, 

minimum horizontal or lateral distance from people and property, and maximum allowable 
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flight height or altitude which is usually adopted from the ICAO recommendations within 

the range of 100 meters. Using a keep-out geofence, all geometry (including regulatory 

buffer) is interpreted into physical obstacles, thereafter, subtracted from the operable civil 

flight space. 

The second process starts by sorting the heterogeneous input UAV sizes based on 

weighed mission/trip urgency and applying our proposed novel Skyroutes algorithm to 

produce a discretized airspace. Discretization is outputted either as a point cloud domain 

by Cartesian partitioning or a segmental domain by hierarchical tree partitioning. This 

triggers the third process for task assignment, routing, and trajectory optimization. The 

fourth process is the final system output including the maximum airspace capacity. At the 

end of the procedure, the framework visualizes the UAV trajectories and provides the 

trajectories’ sequential waypoints’ coordinates. An active loop is initiated between the 

UAV proportional–integral–derivative (PID) controller to correct the trajectory navigation 

as the real-world operation progresses.  
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Figure 5-3 The developed methodology. 

Nomenclature 

𝑂 Set of solid obstacles in LiDAR data 𝑢 solid boundary points u ∈ ∂O 

𝜕𝑂 Solid boundaries of obstacle s matrix points s ∈ S 

cO Indicator function of 𝑂 f  Field points 

�⃗⃗� 𝜕𝑂(𝑢) Inward surface vector normal at point u o Octree nodes o ∈ ϐ 

�̃�(𝑓0) Gaussian smoothing filter e Mesh polygons counter 

S Oriented batch matrix points  h Polygon vertices counter h ∈ w 

�̂�  Surface Patch at point s �̂� Total number of trajectory vertices 
 

Vector field  𝑖̂ Trajectory vertices counter 

Ñ Vector Divergence operator q Trajectory vertices 
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ϐ Octree notation γ Total number of lanes 

Fo Associated node function at o k Destination section counter 
 

Gradient field indicator function  v Angular velocity  

Ω(s) Octa closest depth nodes 
 

Angle time derivative  
 

Trilinear interpolation weights 
 

Torque 

δo Flight policy buffer distance (minimum 

clearance) 

Cτ  Constant of torque 

�̂�  Polygon center projection I Electric current input 

𝜐′ Polygon surface sample V Rotor voltage feed  

wmin Minimum point on the polygon R Coil resistance  

�̿�  Minimum normal vector to the tangent 

polygon plane 

Cp Proportionality constant  

�̂�  Mesh base point P Power consumption  

Ꞙ UAV viable airspace volume 
 

rotor thrust  

Q Rotation matrix vL Loft velocity  

ωi Weighing variable ρair Density of air  
 

3 * 1 translation vector a Area covered by each rotor 

N Matrix of B-spline basis functions  C Overall constant  

�̅�  Matrix of curvature degrees 
 

Angular velocity vector 

g Acceleration due to gravity 
 

Inertia 

βmin Minimum flight altitude  Fd Drag force 

βmax Maximum flight altitude  
 

Mass 

FUB Urban block airspace  
 

Horizontal flight angle in the roll axis 

FHDR High-density routes airspace  
 

Reference lane curvature 

�̌�  Polygon segment 
 

Target lane change longitudinal distance  

𝑞𝑜𝑏𝑠 Obstacle geometrical center  
 

Maximum UAV lateral acceleration  

D(q)  Lane disruption function  δH Lane proximity for horizontal policy  

Bobs Effective matrix of obstacles  p (q)  Perpendicular vector to the UAV path 

�̃�  Initial lane vector flight velocity t (q)  Tangential vector to the UAV trajectory  

�̿�  Traversing UAV velocity MA Matrix of rotation within both body and 

inertial frames  

M Model mesh ф, θ, 

ψ 

Pitch, Roll, and Yaw angles  

δV Lane proximity for vertical policy 

parameter 

  

5.5 City Digital-Twin Model 

Detailed spatial information infrastructure is crucial for the AAM system, however, it 

should be lightweight enough for the Ground Control System (GCS) and Central Control 

System (CCS) to handle in real-time. Given the number of details in urban environments 
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and spatial approximation of object-based 3D information pose significant challenges to 

computational power and time. In this study, we only require a level of tolerance < 1m 

excluding take-off and landing, which is a function of onboard sensors and under slow 

flight speeds. 

The city is divided into small bands using a 3D clustering method proposed by Youn 

et. al. (2018) to maintain the memory consumption and computational power within viable 

limits. Their UAV 3D clustering proposes a 20-level grid division. Having equal division 

possesses two challenges, first, the obstacle details are not equal comparing urban to rural 

contexts, which leads to computing memory unbalance. Second, the synchronization 

between this independent classification versus existing addressing and the GPS positioning 

system adds a layer of computationally demanding processing. We modify their clustering 

system via 3-digit postal code classification to ease the geo-referencing with existing 

census population density for trip generation (Figure 5-4). Further explanation of this 

partitioning scheme is beyond the scope of this study. 
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Figure 5-4 Overlay of 3D data sourcing, Blue (municipal), Green (postal), Black (lidar). 

For each selected airspace planning zone, first, DSM is imported and overlaid to the 

OpenStreetMap (OSM) which acts as the base map that includes the vector data for 

precision 3D GIS alignment. The GIS map includes most data layers such as streets, zones, 

functions, and property outlines. Second, to Incorporate vertical building façade details 

(windows and balconies), the municipal open-data environment is imported, scaled, and 

georeferenced in the simulation model. Finally, most recent real-life LiDAR data is merged 

into the model for interpolation and updates to make sure the digital-twin model can truly 

reflect the reality once UAVs are deployed on a large scale. 

Since LiDAR data are characterized by noisy patterns due to errors and the complexity 

of surfaces, these datasets require further processing to be used for discretization. A variety 

of 3D extraction algorithms is discussed in the literature (Wang et. al., 2018). For the 

purpose of airspace planning and navigation for UAVs, there is no need for distinction 

between urban elements such as buildings and trees., (i.e., the objective is to avoid all 
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obstacles). In this study, we modify a Freeform objects reconstruction algorithm via the 

Poisson method proposed by Kazhdan et. al. (2006) instead of a topographical or building 

extraction algorithm. The Poisson method is widely popular due to its scalability and 

efficiency where it can reconstruct freeform objects fast and with reasonable accuracy 

(Wang et. al., 2018). The solution equations (1-4) are outlined in the appendix as they are 

auxiliary to the research question. 

At this point, we have attained realistic iso-surfaces to construct a mesh of the existing 

real-world city environment. However, to comply with regulations, the horizontal distance 

or protection boundary around objects must be added to the obstacles model. Therefore, the 

model is shifted by a distance δo to offset obstacle meshes outward according to the 

applicable flight regulative distance. This is a direct application of the mathematical 

problem known as a constant-distance offset (CDO) or specifically, Minkowski sums for 

3D geometries. Since the dataset contains complex non-convex polygons, we overcome 

this by utilizing a modified 3D scaling algorithm to shift each boundary representation 

(Brep)/ mesh face with the exact policy enforced distance. The Minkowski sum of two 

geometry sets 𝐴 and 𝐵 is defined as 𝐴 ⊕ 𝐵 =  {𝑎 +  𝑏 | 𝑎 ∈  𝐴, 𝑏 ∈  𝐵}. If we take 𝐴 to 

be the arbitrary input mesh and 𝐵 a sphere of the given radius equal to policy-driven value 

δo centered at the origin, then an offset surface is defined as the boundary of their 

Minkowski sum. The detailed mathematical formulation for solid offsetting can be found 

in the work of Rossignac & Requicha (1986). 
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Given the city’s complex highly detailed polygonal mesh, each obstacle boundary O 

with Brep/ mesh faces interpolates polygons ∫ �̅�𝑜
𝑒

𝑜
 = (𝑥, 𝑦, 𝑧) = [(𝑥1,  𝑦1, 𝑧1), (𝑥1, 𝑦1, 𝑧1), . . 

., (𝑥𝑤,  𝑦𝑤, 𝑧𝑤)]. The new shifted faces are prescribed by a set of vertices, υ'' = (𝑥′′, 𝑦′′, 𝑧′′). 

However, the new offset boundaries’ sum can include parts of spheres, cylinders, and 

prisms corresponding to vertices, edges, and faces of the mesh, respectively. To have closed 

Brep suitable for Boolean operations, the union of these different elements is essential. For 

the octree with depth ϐ De, the octree root cell is initialized as the bounding box of the 

offset surface. 

To optimize memory for this model size, we further discretize these bounding boxes 

into smaller voxels that are merged into a unified surface later. The voxel layer is divided 

into overlapping tiles to ensure a tight surface. For a maximum octree refinement (𝜘) and 

a grid of tiles (grid), the voxel grid is ((2 𝜘 − 1) 𝑔𝑟𝑖𝑑 +  1)3. To eliminate invalid self-

intersecting geometries in tight urban canyons Figure 5-5 A, we use a filtration condition 

where the invalid surface polygons are removed when they do not have a neighbor polygon 

with 𝛿𝑜 ≤ minimum offset distance. Remaining polygons are processed utilizing a modified 

Dual Contouring Algorithm (Bischoff et al., 2005). The modified method is adjusted for 

model processing to optimize computational power and eliminate noise. In Rhinoceros 

modelling the obstacle boundary 𝑂 for each polygon 𝑒, the minimum normal vector to the 

tangent polygon plane �̿�, center projection 𝜐, and the surface sample projection �̂�′  are 

given by: 

�̿�𝑇 = �̿�𝑇  𝑤𝑚𝑖𝑛 + 𝛿𝑜  −  𝛿𝑚𝑖𝑛 (5-5) 
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�̂�′ =  �̂�  +  �̿� (�̿�𝑇(𝑤𝑚𝑖𝑛 − �̂�)  +  𝛿𝑜  −  𝛿𝑚𝑖𝑛) (5-6) 

where 𝛿𝑚𝑖𝑛 is the minimum offset distance; 𝑤𝑚𝑖𝑛 is the minimum offset distance point on 

polygon. 

To guarantee the generated cells lie on the surface, a smoothing mesh function is 

utilized. For the final generated offset mesh M, a relaxation force pulls every vertex 𝜐ℎ  in 

the mesh vertices towards 𝜐′while offset force pulls 𝜐 towards 𝜐′′ as follows: 

𝜐′ =  
1

𝑤
 ∑ 𝜐ℎℎ  

𝜐′′ = �̂�  + 𝛿𝑜  
𝜐 − �̂�

‖ 𝜐 − �̂� ‖
 

(5-7) 

 

(5-8) 

where �̂� is the base point on mesh 𝑀 with the minimum distance to 𝜐ℎ. These mesh 

relaxation techniques allow the inclusion of tight urban geometries, which could 

significantly impact the airspace capacity. Furthermore, it allows better applicability for 

other keep-in geofences that we are not using in the study such as the shape method by 

Edelsbrunner et al. (1983). 

The smoothed mesh helps with the adoption of a novel dynamic meshing technique 

similar to CFD in building simulations (ElSayed, 2016). The dynamic mesh accommodates 

and changes according to the model space, in self-intersecting geometries or around 

obstacles, the mesh gets stricter (i.e., the spacing between graph vertices gets smaller) and 

vice versa in wider or obstacle-free areas where the mesh spacing gets wider as illustrated 

in Figure 5-5 B, C. This Cartesian meshing will be explained in section 6 for graph-based 

solvers. 
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Figure 5-5 (A) Self-intersecting urban mass, Grey (original geometry), Red (offset geometry). (B) 

CFD meshing (Source: Ansys). (C) Dynamic meshing illustrated on urban mass after smoothing. 

To proceed with airspace planning, we create a virtual box with the bottom as the 3D 

model ground surface, side boundaries taken from the simulated city patch, and the top 

constructed at the maximum flight altitude (βmax) given from the simulated policy. A 

Boolean subtraction process subtracts the entire 3D model with an offset value of the 

minimum horizontal distance from the property as the δo offset value from the airspace 

boundary virtual box. The resultant volume (Ꞙ) is the UAV motion viable airspace. 

To keep the 3D model updated, loop 1 is performed within a predetermined timestep 

to input the updated LiDAR data with any significant changes that might cause disruption. 

Data is processed in (5-1 to 5-8), thereafter, the airspace discretization model is updated. 

In this study, we utilize a combination between variance estimation model-driven and point 

cloud-based Iterative Closest Point (ICP) methods to align the geometry of two roughly 

pre-registered, partially overlapping, rigid, noisy 3D point sets (Chetverikov et al., 2005). 

The code is written in Python. 
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Given the stored city model mesh set M and the new LiDAR dataset M*, for each point 

𝜐ℎ
∗∈  M*, we allocate the closest complementing point(s) 𝜐ℎ in M. Consequently, we 

compute the incremental transformation using a weighted least-squares function given by 

(Zhang, 1994) as: 

𝑚𝑖𝑛(𝑄,�⃗� ) ∑ 𝜔ℎℎ   ‖𝑀ℎ − (𝑄𝑀∗
ℎ + �⃗� )‖

2
 (5-9) 

where Q is a rotation matrix, �⃗�  is the translation vector. The weighing variable 𝜔ℎ is set to 

zero if the Euclidean distance (ED) between 𝜐ℎ
∗

 and 𝜐ℎ defined as (dh ≜ d (𝜐ℎ
∗ , 𝜐ℎ)) is larger 

than the maximum tolerance threshold δmax set to 1 meter in this study. This determines the 

motion in existing elements of the model such as limited movement of urban elements 

(trees, scaffolds, and construction equipment). However, new elements in the LiDAR data 

that fall within the boundary of (Ꞙ) are added as identified obstacles O undergoing the 

process in (1-8) to be integrated with the new mesh set M. 

5.6 Airspace discretization model description 

In this section, the proposed airspace discretization method is formally explained. A brief 

explanation of the UAV flight trajectory dynamics is presented in Section 5.6.1. The novel 

airspace discretization model morphology is discussed in Section 5.6.2. The proposed keep-

in geofence and geometrical disruption of UAV flight trajectories (Skyroutes algorithm) 

are discussed in Section 5.6.3. 
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5.6.1 Dynamic trajectory properties 

In this study, we utilize two different airspace discretization methods, namely, segment-

based and Cartesian-based. While segmental discretization includes a path geometrical 

optimality component, Cartesian-based paths are, by default, generated as a set of straight-

line segmented polyline paths. The complexity of the geometry depends on the mission 

initiation and destination locations, flight policy, and the characteristics of the obstacles to 

be evaded. Since UAVs propagate along a continuous trajectory, a hard-angled segmented 

flight path is not feasible or may lead to overshooting from the keep-in geofence. Similarly, 

the integration between both types of generated paths in a single flight plan requires a viable 

geometric transition. 

In the literature, this problem was tackled by Bézier curves to reform the generated 

flight path (Koyuncu et al., 2010). However, common generating algorithms of Bézier 

curves can tend to be computationally inefficient (Liu and Lü, 2010). In this study, 

interpolated fit-point ‘cubic’ splines are adopted for computational efficiency. The method 

is based on the B-spline interpolation function and UAV motion equations. A B-spline with 

fit point transitions from Cartesian point cloud reference is utilized to reform vertex to 

curve transition (Figure 5-6 B). For the UAV, the generated path is a B-spline rather than 

a set of straight-line segments polyline. Although for Cartesian discretization, most optimal 

trajectory generation algorithms (Table 5-2) adopt their methodologies to generate the most 

energy-efficient trajectories. However, this base B-spline method is needed as the shortest 

path for optimization in some methods. The curve equation for path correction is given by: 
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C̅(𝑞) = ∑  

�̂�

�̂�=0

𝑁�̂�,𝑑𝑒𝑔(𝑞)�̅��̂� 

(5-10) 

where �̂� is the number of vertices along the trajectory; N is the matrix of B-spline basis 

functions for vertices 𝑞�̂� to 𝑞�̂�+1; the degree of curvature is determined by (𝑑𝑒𝑔) based on 

the UAV kinematics, the detailed iterative process is outside the scope of this study; and �̅��̂� 

is the matrix of curvature degrees for vertices 𝑞�̂� to 𝑞�̂�+1. 

  

(A) Inertial and body frames, and Euler angles φ, θ, 

and ψ 

(B) Vertex transition vs curve transition path 

Figure 5-6 Quadcopter motion dynamics. 

5.6.2 Airspace discretization morphology 

The four different airspace discretization morphologies are discussed in the literature and 

summed up in section 2.1, Figure 5-2. In Elsayed and Mohamed (2020 b, 2020 c), the 

impact of airspace regulations and flight path geometry/ trajectory on energy consumption 

and GHG emissions was illustrated, however, the study results showed the challenge of 

failed missions. In this study, we overcome the mission failure and inviable trajectories by 

proposing a novel logistic dynamic discretization morphology that combines the 

advantages of each discretization method and eliminates the disadvantages. 

Starting with city obstacle mesh M, the city’s viable airspace can be divided into two 

volumetric sets FHDR and FUB. FHDR can be defined as High-density routes (HDR) airspace 
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where all missions connecting different city blocks will have to navigate to comply with 

the flight regulations. This is illustrated in Figure 5-7 A, and it is the volume mostly aligning 

with the city's major road network starting from minimum flight altitude (βmin) up to 

maximum flight altitude (βmax). This volume is obstacle-free with a minimum clearance 

distance of (δo) from the nearest obstacle. FHDR is further discretized in section 5.6.3 into a 

hybrid model between Layers, zones, and tubes. 

In comparison, FUB can be defined as Urban block (UB) airspace illustrated in Figure 

5-7 B. It is the air volume above buildings aligning with city urban blocks specifically 

between major roadways. The airspace starts from a minimum clearance distance of (δo) 

from the obstacles (buildings and others). Similar to FHDR, it extends up to the maximum 

flight altitude (βmax). Origins and destinations without major road access will only have 

access to the airspace through the air volume above these blocks to access the FHDR 

network. 

   

(A) FHDR High-density routes airspace (B) FUB Urban block (UB) airspace 
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(C) Rolling horizon airspace discretization framework 

Figure 5-7 Proposed discretization morphology. 

Given the size of the discretized model and complexity of the details, especially the 

number of geometrical intersecting features, computational complexity grows quickly with 

the number of obstacle patches  O and the timestep t. The greatest challenge of all is the 

enforcement of the geofence constraints simultaneously with the UAV constraints, to 

ensure safe operations. These constraints also become increasingly difficult to process as 

the 3D urban model consumes the memory allocation, and the UAV mission demand 

increases, thereby creating more potential conflicts. To reduce the computational 

complexity and maximize memory usage, we adopt a commonly used strategy to dissect 

the problem through a rolling horizon framework (Figure 5-7 C). Rolling horizon has been 

applied to solve a variety of time-dependent optimization problems in aerial transport such 

as aircraft scheduling (Samà et al., 2013). 

Instead of discretizing the entire city obstacle mesh M, we divide the set into a series 

of subproblems, each defined by initial coordinates qo ∈ Ꞙ and a rolling processing window 

{qi , qi+} where [ ≪ Fedge]. We ensure overlapping in the solution by reiterating the last 

section {qi , qi+ η} where [η ≪ ] after a subproblem converges. This overlap reduces the 

possibility of redundant or invalid solutions and guarantees accounting for all obstacles. 
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The rolling horizon method is illustrated in Figure 5-7 C, where solid rectangles represent 

the ongoing discretization process at the current timestep, and grey zones highlight the 

converged solutions saved in the memory. 

Given the FHDR cross-section at Jo such as in Figure 5-7 A & B, we construct a 

polygonal vertical surface and contour it horizontally and vertically to dimensions �̂� and �̂�  

respectively, where {�̂� ≤ (Street width) – (2 x δo)} and {�̂� ≤ βmax - βmin}. (�̂�) will determine 

the maximum allocation of UAV lanes horizontally, and (�̂�) will determine the maximum 

allocation of lanes vertically. Equations (5-11 to 5-13) for contouring are illustrated in the 

appendix. We can utilize the maximum area of each inscribed polygon for UAV lanes. This 

ensures maximum capacity and avoids the formation of bottlenecks, which will require 

further lane traffic management and will decrease the traveling speed and energy 

utilization. 

Whether the payload is confined in the UAV frame or suspended by a wire, during the 

UAV motion around the pitch, roll, and yaw angles, the payload will swing with motion, 

especially with aggressive maneuvers. It is crucial to reduce the payload oscillation to avoid 

damage and guarantee safe operation. Hence, we design the UAV keep-in geofence to 

account for the payload motion as illustrated in Figure 5-8. 

In cross-section, the UAV lane can be considered a circle with a radius r. Assuming an 

FHDR airspace volume with dimensions �̂� and �̂� starting from cross-section Jo to Jk, we can 

consider the horizontal lanes as lofted cylinders. Hence, a typical cylinder packing problem 

is used. In 2D, this problem is equivalent to the circle packing problem where the aim is to 
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maximize the airspace capacity of lanes (circles) while maintaining the minimum radius r 

such as in Birgin et al. (2005). To maximize the lane airspace capacity, given 𝛾 lanes of 

radius r and polygonal FHDR airspace, we utilize a nonlinear optimization model to solve 

the problem as follows:  

min∑∑max(0,4𝑟2 − 𝑑�̃��̃�
2 )

2

𝛾

�̃�>�̃�

𝛾

�̃�=1

 

               𝑠. 𝑡.     𝑟 ≤ 𝑥�̃� ≤ �̂�  − 𝑟,  𝑖̃ = 1,… , 𝛾, 

                          𝑟 ≤ 𝑦�̃� ≤ �̂� − 𝑟,  𝑖̃ = 1,… , 𝛾. 

(5-14) 

 

(5-15) 

 

By equating the objective function to zero, if the lanes fit in the cross-section, the solver 

terminates and inscribes the circles.  

 

Figure 5-8 Payload motion within the circular keep-in geofence. 

Given the centers of circles in (5-11 to 5-15), UAVs start at j; and jk is the destination. 

We can extrapolate the keep-in geofence volumetric tubes with vector flight velocity �̃� . 

Where q = (x, y, z) is defined as the initial location coordinates for UAV aligned with the 
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center of circular keep-in geofence number (𝑖̃) within the Cartesian referencing system. The 

orthogonal geofence grid of UAV pathways (lanes) is modeled by: 

�̃� (𝑞) =  (
�̿�(𝑥 − 𝑥𝑘)

√(𝑥 − 𝑥𝑘)
2 + (𝑦 − 𝑦𝑘)

2 + (𝑧 − 𝑧𝑘)
2
,

�̿�(𝑦 − 𝑦𝑘)

√(𝑥 − 𝑥𝑘)
2 + (𝑦 − 𝑦𝑘)

2 + (𝑧 − 𝑧𝑘)
2
,

�̿�(𝑧 − 𝑧𝑘)

√(𝑥 − 𝑥𝑘)
2 + (𝑦 − 𝑦𝑘)

2 + (𝑧 − 𝑧𝑘)
2
)

𝑇𝑟

 (5-16) 

At flight velocities over 3 m/s, translational lift increases the power efficiency 

significantly. While the speed profile will vary based on the path geometry and the status 

of the UAV (loaded or unloaded). To achieve the best energy efficiency, constant �̿� speeds 

are maintained above 10 m/s and below 20 m/s to maintain the viable route while 

capitalizing battery utilization. 

Figure 5-9 shows the proposed morphology combining layered, zonal, and tubed 

discretization. For each flight bearing (eastbound, westbound, northbound, and 

southbound) the lanes are superimposed (layered) for two objectives; 1) avoid the potential 

intersection, 2) allow empty space above and below the keep-in geofence for lane merging 

on left and right turns. The layers are shown in yellow and green depending on the flight 

direction. Furthermore, the tubes (circular lane keep-in geofence) are represented in blue 

and red depending on the vector of flight direction. The arrows in Figure 5-9. represent the 

heading of vector lane velocity �̃� which is organized to allow slower �̿� speeds on the 

rightmost and leftmost lanes and highest �̿� speeds towards the middle. The zones 

represented in magenta are the individual property buffer acting as ‘ramps’ for UAVs 

taking off / landing from the street level or balconies/ terraces. These zones are NFZs except 

for authorized UAVs. 
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Figure 5-9 Proposed hybrid layered, zonal, and tubed discretization. 

While the proposed framework can function at this level efficiently, section 5.6.3 

illustrates the geometrical modification based on UAV kinematics, which is essential with 

each digital twin model update and in case of disruption or complex geometrical street grids 

with obstacle protrusions. 

5.6.3 Robust Skyroutes Algorithm 

To model the lane disruption, we describe obstacles as attractive fields through a function. 

Obstacles in mesh M registered after the smoothing process in (5-9) can be expressed here 

as a finite set of welded simplified volumes in Cartesian planning space (x, y, z), each with 

a geometrical center at qobs = (xobs, yobs, zobs), and axial dimensions (𝑥𝛿 , 𝑦𝛿 , 𝑧𝛿). The obstacle 

function becomes: 

𝐹(𝑞) = (𝑥 −𝑥obs
𝑥𝛿

)
2
+ (𝑦 −𝑦obs

𝑦𝛿
)
2
+ (𝑧 −𝑧obs

𝑧𝛿
)
2
        (5-17) 

where q = (x, y, z) is defined as the UAV inertial frame location coordinates within the point 

cloud referencing system. While the proposed method is based on the artificial potential 

field (APF) method by (Chen et al., 2016) in modeling the disruption, however, the 
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proposed method is more robust with a single solution rather than a local optimum. The 

disruption function D(q) and the modified vector flight velocity �̅� at any timestep can be 

determined utilizing the effective matrix of obstacles (𝐵𝑜𝑏𝑠 ) in obstacle boundary set (𝑢; 

where 𝑢 ∈  O) impacting the UAV lanes as follows: 

D (q) =  𝐵𝑜𝑏𝑠 −

 [
𝜕𝐹(𝑞)

𝜕𝑥
,
𝜕𝐹(𝑞)

𝜕𝑦
,
𝜕𝐹(𝑞)

𝜕𝑧
]
Tr

.  [
𝜕𝐹(𝑞)

𝜕𝑥
,
𝜕𝐹(𝑞)

𝜕𝑦
,
𝜕𝐹(𝑞)

𝜕𝑧
]

|F(𝑞)|

𝛿𝑉 exp 

(

 
 

1−
1

√(𝑥𝑢−𝑥)2+(𝑦𝑢−𝑦)2+(𝑧𝑢−𝑧)2 .√(𝑥−𝑥𝑘)
2
+(𝑦−𝑦𝑘)

2
+(𝑧−𝑧𝑘)

2

)

 
 

−1

.  [
𝜕𝐹(𝑞)

𝜕𝑥
,
𝜕𝐹(𝑞)

𝜕𝑦
,
𝜕𝐹(𝑞)

𝜕𝑧
].  [

𝜕𝐹(𝑞)

𝜕𝑥
,
𝜕𝐹(𝑞)

𝜕𝑦
,
𝜕𝐹(𝑞)

𝜕𝑧
]
Tr

+

 
[
𝜕𝐹(𝑞)

𝜕𝑦
,−

𝜕𝐹(𝑞)

𝜕𝑥
,0]

Tr
.  [

𝜕𝐹(𝑞)

𝜕𝑥
,
𝜕𝐹(𝑞)

𝜕𝑦
,
𝜕𝐹(𝑞)

𝜕𝑧
] 

|𝐹(𝑞)|

𝛿𝐻 exp 

(

 
 

1−
1

√(𝑥𝑢−𝑥)2+(𝑦𝑢−𝑦)2+(𝑧𝑢−𝑧)2 .√(𝑥−𝑥𝑘)
2
+(𝑦−𝑦𝑘)

2
+(𝑧−𝑧𝑘)

2

)

 
 

−1

 .  ‖[
𝜕𝐹(𝑞)

𝜕𝑦
,−

𝜕𝐹(𝑞)

𝜕𝑥
,0]

Tr
‖ .  ‖[

𝜕𝐹(𝑞)

𝜕𝑥
,
𝜕𝐹(𝑞)

𝜕𝑦
,
𝜕𝐹(𝑞)

𝜕𝑧
]
Tr

‖  

     

�̅� (𝑞) = �̃� (𝑞) D (q) 

(5-18) 

 

 

 

 

(5-19) 

where the lane trajectory angle to the obstacle is denoted by δV for the vertical policy 

parameter and δH for the horizontal policy parameter. 

Lemma 1. Assuming the perpendicular and tangential vectors form a right angle, and 

𝑝 (𝑞) 𝑇𝑟 . �̅�  (𝑞) = 0. It indicates that the trajectory lanes can avoid obstacles [Bobs] within 

legally allowed tolerances [𝛿𝑚𝑖𝑛]. 

Lemma 2. �̅� (𝑞)  . �̃� (𝑞)
𝑇𝑟  ≥ 0, which indicates that the trajectory can successfully reach 

the segment destination [Jk]. 

Lemma 3. �̅� ∝  𝛿𝑉  It indicates that the magnitude of the repulsive and tangential trajectory 

velocity is directly proportional to the lane proximity horizontal and vertical policy 

parameters. i.e., following the edge of the boundary of the effective matrix of obstacles Bobs 

precisely is inversely proportional to the proximity of the lane to the avoided obstacles. 
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Theorem 1. If Lemma 1 is satisfied, Lemma 2 is satisfied, and Lemma 3 is satisfied for 

any obstacle set in mesh M, we can guarantee the feasibility of UAV traffic lanes and 

trajectories. 

L.1. Proof. Suppose the perpendicular vector of the UAV trajectory is p (q), and the 

tangential vector to the UAV trajectory t (q) at point 𝑞𝑖 on the surface of a single obstacle 

within mesh M is perpendicular to the following from eq. (5-17) and (5-18) stand true: 

 𝐹(𝑞) =1 

D (q) =  𝐵obs −
 [
𝜕𝐹(𝑞)

𝜕𝑥
,
𝜕𝐹(𝑞)

𝜕𝑦
,
𝜕𝐹(𝑞)

𝜕𝑧
]
Tr

.[
𝜕𝐹(𝑞)

𝜕𝑥
,
𝜕𝐹(𝑞)

𝜕𝑦
,
𝜕𝐹(𝑞)

𝜕𝑧
]

[
𝜕𝐹(𝑞)

𝜕𝑥
,
𝜕𝐹(𝑞)

𝜕𝑦
,
𝜕𝐹(𝑞)

𝜕𝑧
].  [

𝜕𝐹(𝑞)

𝜕𝑥
,
𝜕𝐹(𝑞)

𝜕𝑦
,
𝜕𝐹(𝑞)

𝜕𝑧
]
Tr + 

[
𝜕𝐹(𝑞)

𝜕𝑦
,−

𝜕𝐹(𝑞)

𝜕𝑥
,0]

Tr
.  [

𝜕𝐹(𝑞)

𝜕𝑥
,
𝜕𝐹(𝑞)

𝜕𝑦
,
𝜕𝐹(𝑞)

𝜕𝑧
] 

 ‖[
𝜕𝐹(𝑞)

𝜕𝑦
,−

𝜕𝐹(𝑞)

𝜕𝑥
,0]

Tr
‖ .  ‖[

𝜕𝐹(𝑞)

𝜕𝑥
,
𝜕𝐹(𝑞)

𝜕𝑦
,
𝜕𝐹(𝑞)

𝜕𝑧
]
Tr

‖  

 

Therefore, 𝑝 (𝑞) 𝑇𝑟 . �̅� (𝑞) = 𝑝 (𝑞) 𝑇𝑟 . �̃� (𝑞). D (q) =  �̃�(𝑞). (p (q) 𝑇𝑟 − p (q) 𝑇𝑟 +

p (q)  𝑇𝑟.  t (q) . p (q) 𝑇𝑟

 ‖t (q)‖ .  ‖p (q)‖  
 ) = 0 

(5-20) 

 

(5-21) 

 

(5-22) 

From (5-22) we can deduce that with the absence of a value for the perpendicular 

component, the UAV trajectory using the artificial potential field generated path will not 

intersect with the obstacle mesh. Figure 5-10 shows the generated trajectory avoiding a 

concave tight obstacle trap area.  

 

Figure 5-10 Lemma 1trajectory avoiding concave obstacle trap areas [Bobs] within legally 

allowed tolerances. 
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L.2. Proof. Given the mission’s distance between takeoff and landing (J and Jk) is 

relatively short, theoretically �̅� ≈ �̃� , applying these yields: 

�̅� (𝑞) . �̃� (𝑞)
𝑇𝑟

 = �̃� (𝑞)
𝑇𝑟

. �̃� (𝑞). D (q) 

= ‖�̃� (𝑞)‖
2
 

(

 
 
 
 

1 −
(cos𝛼)2

|F(𝑞)|

𝛿𝑉 exp 

(

 
 

1−
1

√(𝑥𝑢−𝑥)2+(𝑦𝑢−𝑦)2+(𝑧𝑢−𝑧)2 .√(𝑥−𝑥𝑘)
2
+(𝑦−𝑦𝑘)

2
+(𝑧−𝑧𝑘)

2

)

 
 

−1

)

 
 
 
 

+  

[
𝜕𝐹(𝑞)

𝜕𝑦
,−

𝜕𝐹(𝑞)
𝜕𝑥

, 0]
Tr

.  [
𝜕𝐹(𝑞)

𝜕𝑥
,
𝜕𝐹(𝑞)

𝜕𝑦
,
𝜕𝐹(𝑞)

𝜕𝑧
] 

 |𝐹(𝑞)|
𝛿𝐻 exp (1−

1

√(𝑥𝑢−𝑥)2+(𝑦𝑢−𝑦)2+(𝑧𝑢−𝑧)2 .√(𝑥−𝑥𝑘)2+(𝑦−𝑦𝑘)2+(𝑧−𝑧𝑘)2
)

−1

‖[
𝜕𝐹(𝑞)

𝜕𝑦
, −

𝜕𝐹(𝑞)
𝜕𝑥

, 0]
Tr

‖ .  ‖[
𝜕𝐹(𝑞)

𝜕𝑥
,
𝜕𝐹(𝑞)

𝜕𝑦
,
𝜕𝐹(𝑞)

𝜕𝑧
]
Tr

‖  

 

(5-23) 

 

 

Taking α is the deviation angle between the vector flight velocity vl and the obstacle 

perpendicular vector to the UAV trajectory. While F(q) ≥ 1 and (cos 𝛼)2 ≤ 1 we can 

deduct: 

1 −  (𝑐𝑜𝑠 𝛼)2

|𝐹(𝑞)|

𝛿𝑉 exp 

(

 1−
1

√(𝑥𝑢−𝑥)2+(𝑦
𝑢
−𝑦)

2

+(𝑧𝑢−𝑧)2  .√(𝑥−𝑥𝑘)
2+(𝑦−𝑦

𝑘
)

2

+(𝑧−𝑧𝑘)
2

)

 

−1 ≥ 0; 

[
𝜕𝐹(𝑞)

𝜕𝑦
,−

𝜕𝐹(𝑞)

𝜕𝑥
, 0]

Tr

.  [
𝜕𝐹(𝑞)

𝜕𝑥
,
𝜕𝐹(𝑞)

𝜕𝑦
,
𝜕𝐹(𝑞)

𝜕𝑧
] ≥ 0 

∴ �̅� (𝑞) . �̃� (𝑞)𝑇𝑟  ≥ 0 

(5-24) 

 

 

 

(5-25) 

 

(5-26) 

From (5-26) we can deduce that the UAV trajectory will successfully reach the segment 

destination [Jk].  

L.3. Proof. The vector flight velocity �̅�  at any timestep which was explained in (5-19) can 

be rewritten as: 
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�̅�  (𝑞) = �̃� (𝑞)D (q) 

�̅�  (𝑞) = �̃� (𝑞) −
 p (q) 𝑇𝑟.  �̃� (𝑞)

|𝐹(𝑞)|𝛿𝑉 (𝑞)−1
.   p (q) 𝑇𝑟.  p (q)

 p (q) + 
 p (q) 𝑇𝑟.  �̃� (𝑞)

|𝐹(𝑞)|𝛿𝐻 (𝑞)−1
.    ‖t (q)‖ .  ‖p (q)‖

 t (q)    

 

(5-27) 

Similar to the disruption function in (5-18) three terms are described; �̃� (𝑞) can be 

explained as the attractive velocity given by the maximum UAV allowed speed by the 

applicable civil flight regulation policy; the second term [
 p (q) 𝑇𝑟.  �̃� (𝑞)

|𝐹(𝑞)|𝛿𝑉 (𝑞)−1
.   p (q) 𝑇𝑟.  p (q)

 p (q)] is 

the APF repulsive velocity; [
 p (q) 𝑇𝑟.  �̃� (𝑞)

|𝐹(𝑞)|𝛿𝐻 (𝑞)−1
.    ‖t (q)‖ .  ‖p (q)‖

 t (q)] is the APF tangential velocity. 

The concept behind controlling the trajectory is to avoid off-shooting and reduce the 

risk factor (ξ), this is defined as the possibility of a UAV derailing from the designated lane 

or trajectory, hence risking potential collision or traffic disruption. Figure 5-11 shows a 

UAV failing to maintain trajectory due to path infeasibility or kinematic incompatibility. 

 
 

(A). UAV failing to maintain lane trajectory (B). UAV following lane trajectory 

Figure 5-11 Trajectory overshooting mitigation. 

To achieve the maximum speed on a feasible path while ensuring a consistent keep-in 

geofence, either the speed is reduced leading to time/energy consumption inefficiencies 

(Elsayed and Mohamed, 2020 c), or the trajectory is modified. Different combinations of 

𝛿𝑉  𝑎𝑛𝑑 𝛿𝐻 are tested such as in Figure 5-12. As illustrated, the produced trajectory shows 
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that the magnitude of the repulsive and tangential trajectory velocity is directly proportional 

to the lane proximity horizontal and vertical policy parameters. 

  

(A). UAV Lane trajectory options (B). Different combinations of 𝛿𝑉 and 𝛿𝐻  

Figure 5-12 Skyroutes trajectory options. 

Based on the numerical formula, an algorithm is developed for trajectory propagation 

dynamics. This algorithm is capable of solving both, the discretization and trajectory 

planning problems in a three-dimensional environment. The algorithm has a unique two-

step procedure. Firstly, the algorithm builds ‘sky routes’ which form the potential UAV 

pathways on the applicable policy-allowed elevation. Secondly, the algorithm detects the 

buildings and physical obstacles within the city digital twin model and through a 

reformation disruption matrix, vertical and horizontal tangential deformations are imposed 

on the matrix. By modifying the original orthogonal trajectories to avoid all obstacles, and 

maintain a dynamically viable route, a modified traffic grid is obtained. The algorithm in 

pseudocode is presented as follows: 

Algorithm 1 Pseudocode for the Robust Skyroutes Algorithm  

1: Initialize: function Skyroutes (Grid, Obstacles, O-D Matrix) // for all missions 
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2: Input: O,  O, qint, qend, Q, ∀�̂� ⊂  O, 𝛿𝑉 , 𝛿𝐻 , βmin , δo 

3: 
Initialization input // Destination location as destination vertex, input qend vertex in the point 

cloud. 

4: Initialization input // assigned UAV location as initial vertex, input qint vertex in the point cloud. 

5: Initialization input // Obstacles O with 3D boundary  O 

6: Output: Solution obtained by SKYROUTES: �̅� (𝑞) *  

7: Initialization 

8: 
Obtain  �⃗⃗� 𝜕𝑂(𝑝)and �̃�(𝑞) and �⃗� (𝑞) and ̃ by solving the Freeform objects reconstruction using 

equations (1–4). 

9: Set t = 1.  

10: Loop 1 

11: While t ≤ T −; j ≤ jk // updating the digital twin utilizing new LiDAR dataset D. 

12: for each polygon in obstacle set O do  

13: 𝑂𝑁= (clone origin face x, y, new elevation Z) // Construct faces on elevation Z. 

14:         �̿�𝑇 = �̿�𝑇   𝑤𝑚𝑖𝑛 + 𝛿𝑜  −  𝛿𝑚𝑖𝑛 // Calculate Tangent 

15:  �̂�′ =  �̂�  + �̿� (�̿�𝑇(𝑤𝑚𝑖𝑛 − �̂�) + 𝛿𝑜  −  𝛿𝑚𝑖𝑛) // Process offset 

16: end for 

17: for each 𝜐, ∀𝜐ℎ∈𝑒 do //apply relaxation force for Mesh M 

18:         𝜐′ =  
1

𝑤
 ∑ 𝜐ℎℎ  // Step 1 smoothing function 

19:        𝜐′′ = �̂�  + 𝛿𝑜  
𝜐 − �̂�

‖ 𝜐 − �̂� ‖
 // Step 2 smoothing function 

20: end for 

21: Set final state for Mesh M. 

22: 
for each 𝜐ℎ

∗  in M  ∀𝜐ℎ
∗  ∈  M* // apply transformation using a weighted least-squares 

function. 

23: if di ≜ d (𝜐ℎ
∗ , 𝜐ℎ) ≥ δmax  

24: 𝑚𝑖𝑛(𝑄,�⃗� ) ∑ 𝜔ℎℎ   ‖𝑀ℎ − (𝑄𝑀∗
ℎ + �⃗� )‖

2
 

25: else 

26: if Onew ≠ O ∀Onew ∈ FHDR   Onew  

27:  Onew ∈ O; apply the process in (5-1 to 5-8) to obtain the final state for Mesh M. 

28: end if 

29: end if 

30: Use final state for Mesh M. 

31: end for 

32: end while 

33: End Loop 1 

34: Main Loop 

35: 

for each Ji ; ∀Jo ≤ Ji ≤ Jk do // construct a polygonal vertical surface �̂� . �̂� 

            min∑ ∑ max(0,4𝑟2 − 𝑑�̃��̃�
2 )

2𝛾
�̃�>�̃�

𝛾
�̃�=1  ∀𝑟 ≤ 𝑥𝑖 ≤ 𝐴 − 𝑟;  𝑟 ≤ 𝑦𝑖 ≤ 𝐵 − 𝑟 
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36: 

if qint and/ or qend ∉ FHDR; qint and/ or qend ∈ FUB do set qio = qint, qik = qend // determine 

nearest points qo and qk on generated routes corresponding to each trip function and UAV 

size to the origin and destination locations qio, qik 

37: Initiate RRT sequence (qio, qo); (qik, qk); T.add (qio, qik); qn ← qio; qik 

38: 
While (DISTANCE (qn, qo); (qn, qk) > dlimit) do // Limit d to remaining UAV 

charge. 

39: qk = TRAND qrand () // nearest vertex within the tree T 

40: qnear = T. NEAREST (qt) 

41: qn = EXTEND (qnear, qk, expansion_time) // connect segment 

42: If qn != NULL  

43: qn.setParent(qnear) 

44: T.add (qn) 

45:  end if 

46: return trajectory for first and last pairs (qio, qo); (qik, qk) step 49 to add 

47: end while 

48: end if 

49: 

Compute modified �̅� (𝑞) based on D (q), 𝛿𝑉 , 𝛿𝐻 ∀qo, qk= (x, y, z), qi ∈ Q // calculate 

trajectories for all assigned UAVs, 𝛿𝑉 , 𝛿𝐻  are determined for each lane based on speed and 

geometry in sec 6. 

50: end for 

51: Output computed Skyroutes and RRT trajectories to assigned UAV trips by order of the queue. 

52: End Function. 

5.7 Trip generation, Cartesian Routing, and UAV Energy Consumption 

To test the operability and assess the efficiency of the proposed algorithm, a high-traffic 

load operation duration has to be simulated. An urban transportation simulation requires 

access to the specific location demand data. However, real-life georeferenced demand data 

is protected under different privacy laws. In this study, we model the origin and destination 

trips by adopting a realistic approximation from statistical prediction models that have been 

used in trip generation models and proved a high level of accuracy and robustness (ElSayed 

and Mohamed, 2020b). 

To generate a heterogenous trip generation in terms of UAV size and trip nature 

(package delivery, flying taxi, or ambulance), we assume that the model follows a Poisson 

distribution. The Poisson distribution is commonly used in various transportation demand 

modelling since it is considered an activity that will occur at a constant rate over a duration 
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of time (Fagnant & Kockelman, 2014). The mean variation is based on the simulation area 

census population density. The trip generation equations (5-28 to 5-31) are outlined in the 

appendix for reference. The density map and the probability generation algorithm based on 

this Poisson distribution are coded in Python and overlaid on the city digital twin model. 

The resultant O-D matrix is the base for the TA. UAVs are assumed to start the trip by 

Vertical Takeoff (VTO) from the roof of the origin building mesh and end the trip by 

Vertical Landing (VL) at the destination roof. To link the transportation tasks among 

generated O-D geolocations on the city digital twin model mesh generated in section 5, an 

area allocation and UAV assignment planning process is applied, however, TA does not 

fall within the scope of this study. 

To assess the robustness of the proposed algorithm in this study, a single serving 

coverage area is considered, and each UAV is assigned one trip per timestep. Multiple 

randomized trip objectives, payload, duration, and travel distance determine the UAV size. 

The city digital twin is divided into clusters or volumetric patches according to several 

parameters including urban density and maximum building-footprint area. While for traffic 

and lane management, a first-come-first-serve queuing protocol is implemented. A full 3D 

GIS mining framework similar to neural networks is proposed and illustrated in Figure 

5-13. After the digital twin data is processed, the autonomous UAV trip generation and TA 

allocation loop are provided with pairs of coordinate points (latitude and longitude) via a 

GPS link. The trips are generated based on the pre-explained Poisson distribution randomly 

to produce the full range of trip length and route complexity. The Skyroutes algorithm 
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routes the trip and blocks the allocated lane segment [�̅�  (𝑞)] at the utilized timestep T for 

other UAV trips. 

 

Figure 5-13 Proposed 3D GIS mining framework. 

The UAV lane trajectories resulting from the algorithm depend on 𝛿𝑉 , 𝛿𝐻  values. 

These values are determined for each lane based on lane designated speed, hence the 

resulting geometry as discussed by ElSayed and Mohamed (2020 b; 2020c). To reach the 

optimal energy consumption and speed, the UAV motion is simulated based on quadrotor 

physics. Mainly, the power is divided over rotors that define the way the UAV moves and 

responds, such forces, torque, and thrusts are the keys to UAV motion. 

While UAV flight dynamics differ by airframe type, the main variants are fixed-wing 

and multi-rotor. Unlike fixed-wing UAVs, a multirotor possesses more than two rotors with 

hovering capabilities such as quadrotors and hexarotors. For Quadcopters, a multirotor is 

controlled by altering the relative speed of each rotor to adjust the thrust and torque 

produced by each propeller opposing drag vector about the center of rotation. The four 

propellers are positioned at the corners of a square chassis, as a pair of rotating blades. The 

motion equations are explained in the appendix (Eqs. 5-32 to 5-46). 
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The calculated energy consumption in Eqs. (5-35 to 5-40) aligns with real-world 

experimental results given the same input parameters for an experimentally verified model 

for a loaded quadcopter from the literature in Stolaroff et al. (2018) and ElSayed and 

Mohamed (2020b). Results illustrated in Figure 5-14 show high agreement at lower 

velocities, with a 5% discrepancy at higher velocities due to discrepancies in model 

assumptions. 

 

Figure 5-14 Experimental verification of calculation model. 

At flight velocities over 3 m/s, translational lift increases the power efficiency 

significantly. While the speed profile will vary based on the path geometry and the status 

of the UAV (loaded or unloaded), to achieve the best energy efficiency velocities are 

maintained above 10 m/s and below 20 m/s in the generated lanes to maintain the viable 

route while capitalizing battery utilization. 

Although the Skyroutes algorithm creates the main trajectories, the last trip leg in the 

local traffic zones FUB operates under a full-mix airspace pattern. Due to the low traffic 

density, this airspace hardly needs regulation, the Cartesian discretization is utilized to find 

the first/last leg of a trajectory using any of the literature’s solving algorithms. In this study, 
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we utilize a modified Random Reduction Tree (RRT). A basic RRT works through three 

functional procedures, firstly the ‘generation’, which finds by calculation a path between 

qint ‘starting vertex’ and qend ‘destination’ vertex which is obtained by growing a random 

search tree. The tree branches out in a highly dimensional environment to search for 

possible vertices from the starting vertex towards the destination with bias along the direct 

connector vector. Secondly, ‘the expansion’, a random vertex qrand is picked and a line 

segment ‘edge’ is interpolated between the new vertex and the last tree vertex in the list. 

With each iteration, a new edge and vertex are added to the path and the tree list expands 

till the destination vertex becomes a part of the tree. This leads to the third and final process 

‘the termination condition’. 

Although highly successful, this basic calculation method becomes memory-

consuming. Moreover, the convergence rate is relatively slow in cases of complicated path 

planning where the chance of collision is significantly high in an obstacle-rich environment 

such as our case study. Utilizing the A-star algorithm approach, in this case, amends this 

downfall and ensures the solving tree is only considering the most relevant areas of the 

point cloud tree. Whereas in a typical RRT the whole model space is populated with a point 

cloud and is considered for the solution. On the other hand, the Astar transforms the search 

into a function of the range of vertices confined along the direct path between qint and qsos, 

this becomes the point populated domain, and the function is formulated as follows: 

�̇�𝑡 = 𝑓 (𝑞𝑡 − 1, �̇�t − 1, 𝑣t)                                                                        (5-47) 

𝐷𝑡 = ℎ (𝑞𝑡 , 𝑣i)                                                                                         (5-48) 
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where �̇�𝑡∈ Q is the initiation point vector; �̇�t∈ U is the destination vector; vt is a random 

process disturbance appropriately determined; Dt is the measurement vector and qi is a 

random component of the qt tree. 

Similar to the Dijkstra algorithm, the Astar algorithm contains an open list of the 

potential waypoints qfree vertices, in addition to a closed list of all the visited vertices and a 

simple cost equation for solving as follows: 

𝑇𝑖 = 𝐶𝑖 + 𝐸𝑖                                                                                             (5-49) 

where the subscript i stands for the vertex call number in the RRT; Ti is the total cost (path 

length to minimize from qint to qend) similar to equation (5-15); Ci is the current ith cost 

from qint to current vertex; Ei is the estimated cost of ith vertex from the current vertex to 

the qend destination vertex. To simplify the solution and solving time, the algorithm is also 

written and compiled in Python. 

5.8 Case study, results, and discussion 

A case study of a real 3D urban area in the densest section of the City of Toronto, one of 

the biggest urban centers in North America, was used to test the model and algorithm. With 

a population density of 4,149.5 p/km2, occupied by various commercial, residential, and 

infrastructure buildings, the area represents a typical example of a mixed-use urban center. 

The area is covered in clusters 50 and 51, East York Patch, with an approximate area of 

3.16 km2. It features dense high-rise buildings and airfields, which can be complex for other 

discretization methodologies Figure 5-16 B. 
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Figure 5-15 (A) Macro scale GTA census map (Source: City of Toronto). (B) Aerial image of the 

study area (marked in red) and city context (Source: Google earth). 

Based on the Canadian census population density maps (Figure 5-15 A), a base-case 

scenario operation model was conducted as outlined in the methodology section on six 

downtown three-digit postal code areas and the associated geocoded information. Only 

local trips within the study area are modeled given the UAV range limitations on a single 

charge roundtrip. Results of the daily O-D Poisson generation are reported in Table 5-3, 

while peak-hour (5 pm) trips (around 1138 trips) are visualized in Figure 5-16 A. The ED 

is shown in green lines for UAV trips. 

Table 5-3 Results of the O-D trip demand model. 

Discretization Method Cartesian & Proposed Skyroutes 

Service area 3,663,251 m2 

Poisson λ parameter six 3-digit allocations 

Average trip distance (min, max) 811.26 (24.32, 2059.35) m 

Average ED between destinations (spread) 52.1 m 

Mission count (trips) 1138 

Longest route ED 2059.35 m 

AM peak 9 AM–10 AM 

PM peak 4 PM–6:30 PM 
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Figure 5-16 (A) O-D points (in Red) ED of peak-hour trips (in Green). (B) Study Area in old 

Toronto showing height distribution of structures in the airspace. 

5.8.1 Geofencing results compared to Cartesian discretization. 

In the case study, the airspace between 30m and 150m (100m for strict regulations) is 

considered for UAV traffic. We performed the Skyroutes discretization and Cartesian 

discretization for comparison. 

Starting with city obstacle mesh M, the airspace was first divided into the two 

volumetric sets FHDR and FUB described in the methodology section. Then, the Skyroutes 

morphology at 𝛿𝐻 = 1 yielded 40 levels of keep-in lanes flowing along the FHDR shown in 

Figure 5-17 B. Similarly, the airspace was discretized into a three-dimensional regular grid 

of 3 m and 5m for strict regulations, resulting in a 440×360×40 α-ball Cartesian grid in a 

dual geofence Figure 5-17 A. 

Dual Geofence 

U (150; 3; 3) 

Proposed Skyroutes 

U (150; 3; 3) 
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U (100; 5; 3) U (100; 5; 3) 

  

Skyroutes lanes                    α-ball                      FUB  

Discretization Method Cartesian Skyroutes 

βmax (min, max) 30, 150 30, 150 

δo (min, max) 1, 21 1, 21 

r (min, max) 1, 21 1, 21 
 

Figure 5-17 (A) Cartesian grid discretization, keep-in (Red), Keep-out (Blue). (B) Skyroutes 

discretized airspace, lanes (Blue), FUB (red). 

To compare the results across both methods, we use a utilization factor U (βmax; δo; r) 

for Cartesian discretization, where (δo) is the minimum clearance distance from the nearest 

obstacle; and r is the keep-in radius for UAVs; (βmax) is the maximum flight altitude dictated 

by the applicable flight policy. For the Skyroutes algorithm, O-Ds without major road 

access utilize the FUB for the first/last leg of the trip connecting to the lanes. Figure 5-17 B 

highlights the results of maximized utilization of airspace with lean flight policies, the α-

ball utilization coverage in 3D is U (100; 5; 3) = 88.1% and U (150; 3; 3) = 93.1%, 

respectively. This is due to the added airspace volumes in the Cartesian discretization, the 
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same utilization gains are reflected in the Skyroutes algorithm results as the maximum 

flight altitude βmax increases, hence adding more lanes for UAVs. 

These results highlight several observations, first, the benefits of using the Mesh M 

generated from LiDAR point cloud (lines 1 to 33 in Skyroutes algorithm) as a more precise 

tool in airspace capacity estimation as compared to other 2D methods in the literature where 

capacity is calculated by a series of horizontal 2D slicing planes. Second, the benefits of 

the dual (keep-in and keep-out) geofencing technique allow higher control to apply airspace 

flight policies and NFZs. 

While the airspace utilization increases significantly in both discretization methods 

with leaner flight policies (5% for Cartesian and 10% for Skyroutes), however, the 

Cartesian discretization shows higher sensitivity to the δo value, as compared to the 

Skyroutes method, which relies heavily on the βmax. The proposed Skyroutes algorithm 

shows a higher level of robustness in eliminating the inconsistency of airspace utilization 

variance with altitude through a linear behaviour compared to an exponential behaviour in 

the Cartesian morphology. By eliminating bottlenecks as UAVs propagate in lower 

airspace for main trajectories in the FHDR, the exponentially higher estimates of utilization 

in FUB indicate higher UAV traffic above buildings. 

This proves the substantial benefits of using the Skyroutes algorithm over the Cartesian 

method in airspace capacity estimation that further aligns with the AAM civil airspace 

safety and privacy objectives. 
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 (A) Cartesian discretization airspace capacity matrix. 

 

 (B) Proposed Skyroutes discretization airspace capacity matrix 

Discretization Method Cartesian Proposed Skyroutes 

βmax (min, max) 30, 150 30, 150 

δo (min, max) 1, 21 1, 21 

r (min, max) 1, 21 1, 21 

Total airspace capacity (min, max, std. deviation) 2, 2928940, 614713 15, 3003324, 631581 
 

Figure 5-18 Discretization airspace capacity matrices. 

Similarly, Figure 5-18 shows the results of airspace capacity utilization and loss in 

terms of different βmax at variable values for δo and r. The results’ matrix heatmaps show 
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the robustness of the proposed methodology in estimating airspace capacity with extreme 

precision. Overall, the effect of geofencing was most restrictive in the lower altitude levels, 

when βmax ≤ 60 due to the high-density obstacles. However, the impact on Cartesian 

discretization is significantly more severe compared to the impact on Skyroutes 

discretization. Also, generally, it can be noticed in all altitudes and across different δo and 

r combinations, the Skyroutes discretization yields a higher airspace capacity. This is due 

to the advantage of using the cylinder/circle packing subroutine equations (5-14, 15) to fit 

more lanes as compared to the Cartesian division. 

Furthermore, due to the island effect in Cartesian discretization, if an airspace patch 

has less than 25 m (this is dominant in lower altitudes with higher δo and r combinations) 

of travel range, the entire discretized patch is not considered in the capacity estimation. 

This is not the case for Skyroutes since the lane discretization is performed in 3D, which 

sometimes allows only a narrow path in higher altitudes to utilize this entrapped discretized 

airspace void in lower altitudes. The matrices presented in Figure 5-18 can guide 

policymakers in finding the regulation combinations to achieve the desired level of civil 

airspace utilization and to evaluate the operational feasibility based on trade-offs between 

βmax, δo, and r. 

Airspace utilization and loss matrices prove more efficient and robust in airspace 

capacity estimation as compared to 2D graphs and curves. Matrices highlight the severe 

impact of higher δo and r combinations ≥ 10 meters in lower airspace levels βmax ≤ 60. This 

highlights the sensitivity to altitude in tighter urban scenarios such as urban centers and 
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high-rise downtown areas. It also highlights the flexibility of dual geofencing (keep-in and 

keep-out) in determining safe airspace utilization. Whereas higher airspace altitude βmax ≤ 

60 shows a slightly greater advantage to Cartesian discretization over Skyroutes, results 

show a 10% increase in airspace capacity estimation as the free-mix airspace model is 

applicable. In general, digital-twin volumetric 3D approach shows the robust capability to 

assess airspace capacity with different policy permutations.  

5.8.2 Air traffic safety and hazard mitigation performance 

In this section, we present the differences in airspace safety and hazard mitigation between 

Cartesian and Skyroutes discretization. While noise reduction is illustrated by visualizing 

the UAV trajectories around the study area, safety is defined by a risk factor (ξ), which is 

the proximity of the UAV trajectories to moving obstacles and other UAV trajectories or 

the possibility of the UAV derailing from the designated lane or trajectory. Figure 5-19 

shows Cartesian and Skyroutes discretization airspace UAV trajectories at 5 pm for the 

study area. To assess the robustness of the proposed algorithm, we utilize the modified 

RRT* as well as several relevant UAV 3D routing and trajectory optimization literature 

from Table 5-2 for each UAV trip and only use the most efficient results for the Cartesian 

method. 



Mohamed ElSayed  McMaster University 

Ph.D. Thesis  Dept. of Civil Engineering 

253 

 

(A) Cartesian discretization airspace trip trajectories 5 pm. 

 
(B) Proposed Skyroutes discretization airspace trip trajectories 5 pm. 

Figure 5-19 Discretization airspace trip trajectories. 
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The results show several trends, first, the significant difference in noise reduction, as 

UAV trajectories avoid the utilization of airspace above urban blocks in Skyroutes 

trajectory optimization versus the Cartesian trajectories. This is with the exception of take-

off and landing (last leg) performed as part of the TO task and amalgamated to the total 

given mission trajectory to avoid the outlined accident risk. Second, the Skyroutes results 

show a significant airspace order as compared to Cartesian methods due to the aggressive 

use of the airspace above urban blocks FUHD to achieve the shortest trajectory possible. The 

proposed algorithm regulates all trajectories in the FHD volume mostly aligning with the 

study area’s major road network starting from the minimum flight altitude (βmin) up to the 

maximum flight altitude (βmax). 

Further, Figure 5-20 shows the results of cross trajectory proximity for both 

discretization methods. Skyroutes algorithm shows a significant reduction in the instances 

of cross trajectory proximity where trajectories are in closer proximity (distance between 

trajectories at any point is < 3m or intersecting) at a critical time window ≤ 30 seconds. The 

lane geometrical design and timestep queuing method allows optimizing the trajectories by 

spacing them whenever possible mitigating multiple trajectory collision. Along the same 

lines, Figure 5-22 shows the significant reduction in the trajectory of Euler transformations 

(explained in Figure 5-6) which ensures the integrity of the payload within the keep-in 

geofence and reduces the risk factor (ξ) of UAV derailing from the designated trajectory. 
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Discretization Method Cartesian Proposed Skyroutes 

UAV Trips at 5 pm 1138 1138 

Cross trajectory proximity (ξ) (min, max, std. 

deviation) 
1, 92, 21.0 1, 54, 7.2 

 

Figure 5-20 Cross trajectory proximity results. 

5.8.3 Kinematic and energy efficiency 

The results show up to 30% lengthier trajectories (in 8.2% of the cases), and up to 10% 

increase for the rest of the trajectories for the Skyroutes discretization as compared to 

Cartesian discretization, Figure 5-21. This increase in route length comes from the 

instances where origins or destinations are deep in the congested areas of the airspace or 

from the need for multiple lane changes due to the queue. However, the overall energy 

consumption is up to 50% lower in more than 60% of the trips for the proposed Skyroutes 

discretization and trajectory optimization algorithm. This is due to the consistency of the 

trajectory as stretches of straight lines in the keep-in lanes allow UAVs to maintain the 

maximum efficient speed of 20m/s without the need for deceleration on maneuvers as in 

the case with the Cartesian trajectories. This is illustrated in Figure 5-22 as the total change 
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in Euler angles along the UAV trajectories. Less change in trajectory angular motion means 

a significant reduction in rotor torque changes allowing the UAVs to travel a longer 

distance at the optimal discharge rate and decreasing the depletion of charge (ElSayed and 

Mohamed, 2020c). 

 

Discretization Method Cartesian Proposed Skyroutes 

Total trajectory length (min, max, std. deviation) 92.1, 1995, 394.1 102.1, 2000.8, 412.9 
 

Figure 5-21 Total trajectory length results. 
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Total change in Euler angles (min, max, std. 

deviation) 
0.2, 152.7, 23.4 0, 60.4, 10.3 

 

Figure 5-22 Total change in Euler angles along UAV trajectories results. 

5.9 Conclusions and future studies 

In this study, we proposed a novel autonomous Advanced Aerial Mobility (AAM) system 

for high-density city centers that dynamically discretizes the viable airspace into UAV 

trajectories. By incorporating the city’s digital-twin model through interpolating LiDAR 

data and a dual keep-in and keep-out geofence, our method expands the functionality 

beyond airspace capacity assessment to test different flight policies and measure the 

tradeoffs between them. Furthermore, the proposed algorithm converges energy-efficient 

UAV trajectories while minimizing the safety hazards and sound pollution. 

Since UAVs are assumed to be automatically piloted by an embedded mission control 

system, in a heterogenous fleet situation or a multi-user traffic control narrative, the 

onboard flight controller on each UAV requires a pre-planned trajectory with multiple 

contingencies (alternative routing) for specific mission assignment and teamwork logistics. 

This highlights the benefits of the proposed Skyroutes with multiple lanes rather than a full-

mix airspace morphology. 

In the hypothetical case of a complex urban scenario, we demonstrated that the digital-

twin model is crucial for the precision and safety of pre-planned UAV trajectories. The 

proposed Skyroutes algorithm was able to identify narrow urban corridors and maximize 

the airspace capacity by up to a 10% increase in severely restricted airspace by connecting 

isolated airspace volumes through a circle packing sub-routine as compared to Cartesian 

discretization, which was unable to tackle this challenge efficiently. A case study of 
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Toronto city center, Canada illustrated the robust capabilities of the proposed algorithm in 

a real 3D environment. 

The Cartesian airspace discretization allows the applicability of a variety of trajectory 

optimization algorithms in a full-mix airspace morphology, while the Skyroutes capitalizes 

on the energy-efficient trajectories and regulates the airspace traffic management through 

combining several airspace morphologies. For Cartesian discretization, on the one hand, a 

tight mesh (waypoint vertices) results in a slower and more complicated graph-solving task 

due to the significantly large size of the solving domain. On the other hand, a wider mesh 

results in fewer available solutions and more unutilized tight spaces within the dense city 

urban form where the spacing between the towers can be less than three meters wide. The 

application of the dynamic meshing method in digital-twin models shows the agility of 

capturing urban details, where building protrusions, setbacks, construction tools (such as 

cranes), and other architectural features such as street vegetation and landscape elements 

within the urban setting are taken into consideration. This allows the solving algorithm to 

diminish collision chances and relieve the reliance on onboard sensors. Also, utilize tight 

spacing within the study area while avoiding the probability of algorithm’s solution errors 

that could cause obstacle collisions. The Skyroutes discretization is more adaptive and can 

deliver significantly higher airspace usability coupled with more challenging capabilities, 

especially in highly restrictive airspace. 

The proposed Skyroutes algorithm successfully demonstrated the ability to analyze the 

flight policy combinations in the case study. The precision in estimating the airspace 
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capacity showed high sensitivity to the variables, which suggests that the current approach 

that relies on 2D or Cartesian discretization measures needs further evaluation for effective 

urban UAV operations. The proposed algorithm illustrated the difference in safety and 

energy efficiency of the converged trip trajectories. The results also show significant 

improvements over Cartesian discretization, the overall energy exerted by UAVs to 

overcome a lengthier trajectory is outweighed by lower torque changes, lower energy 

consumption, and lower noise levels avoiding urban airspace over inhabited areas. 

Furthermore, reduced cross-trajectory proximity and the proposed lane change sub-routine 

allows higher coordination and safety by providing alternate routing in case of disruptive 

events. 

One of the possible limitations of the proposed algorithm is the universal applicability 

to any urban scenario. Since the urban density and city morphology adds limitations for 

every unique situation. If a civil authority seeks a specific flight policy that can apply to all 

cases of diverse geospatial complexity to operate autonomous civil UAV flights, it can 

either be prone to higher risk factors or severely restrict the viable airspace and UAV 

size/type choice. While the proposed method can efficiently determine the adequate policy 

combination (βmax; δo; r), simulations are inevitable for precise results. In addition to 

evaluating the airspace usability, our approach generates a crucial dataset to model civil 

airspace in 3D. Identifying the continuity of trajectories will be necessary for structured 

urban airspace design and path planning. This will strategically serve developers, planners, 

and decision-aiding authorities such as the Model Aeronautics Association of Canada 

(MAAC) to operationalize UAVs in the near future. The integration of smart, sustainable, 
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and autonomous robotics for transportation in smart cities represents a silver bullet solution 

for the aforementioned challenges. In the future, we plan to add more uncertainties such as 

wind dynamics to add robustness to the proposed airspace discretization algorithm and 

increase energy efficiency. 

5.10 Appendix A 

5.10.1 Appendix 1 

Given the set of solid obstacles O with 3D solid boundary  O, the gradient of the smoothed 

indicator function is calculated through smoothing the surface normal field at points f by: 

(O. �̃�   )(𝑓0) =  ∫ �̃�𝑢(𝑓0)𝜕𝑂
�⃗⃗� 𝜕𝑂(𝑢)𝑑𝑢   (5-1) 

where O is the indicator function of O; �⃗⃗� 𝜕𝑂(𝑢) is the inward surface vector normal at 

point 𝑢 ∈  O; �̃�(𝑓0) is a Gaussian smoothing filter translating 𝑝𝑜𝑖𝑛𝑡 𝑓0 𝑡𝑜 𝑝𝑜𝑖𝑛𝑡 𝑢. Since 

surface geometry is unknown, we can approximate the surface integral over surface patches 

�̂� using discrete summation from the set of oriented batch matrix points S (s ∈ S  ) to divide 

 O, the value at point sample 𝑠. 𝑢 is scaled by the area of �̂�: 

(O. �̃�   )( 𝑓) ≈∑ |�̂�|𝑠∈𝑆 �̃�𝑠.𝑢(𝑓)𝑠. �⃗⃗� ≡ �⃗� (𝑓) (5-2) 

Now that we have the vector field �⃗�  created, for the point cloud data we use an adaptive 

“crawling” octree (a data tree with three branches) from each sample point both to represent 

the implicit function and to solve for the least-squares approximate solution, first the 

divergence operator is used: 
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̃ = �⃗�  (5-3) 

then, we use the positions of the sample points to define an octree ϐ with an associated unit-

integral node function Fo for each node o ∈ ϐ. Applying this to the product of (5-2) we can 

get an approximation to the gradient field indicator function by: 

�⃗� (𝑓) ≡∑ ∑ 𝛼𝑜,𝑠𝑜∈𝛺(𝑠)𝑠∈𝑆 𝐹𝑜(𝑓)𝑠. �⃗⃗� ; for each 𝛺(𝑠)Euclidean closest node in tree 

depth to s.u 

(5-4) 

where 𝛼𝑜,𝑠, are the trilinear interpolation weights for the nodes; 𝛺(𝑠) are the eight set-depth 

nodes closest to point sample s.u. Assuming constant batch areas and having an acceptable 

approximation for the defined vector field �⃗� , we can extract the iso-surfaces from the 

indicator function, we utilize an adaptation of the Marching Cubes method to octree 

representations (Shekhar et. al., 1996; Lorensen & Cline, 1987). The method source code 

is available in C language by Paul Bourke (2020). 

5.10.2 Appendix 2 

The generation algorithm calculates the probability of X occurrences by: 

P(X) = 
𝜆𝑛𝑒−𝜆

𝑥!
 

(5-28) 

assuming the transportation demand over time interval t (one day), and expected number 

of daily trips n, e is Euler’s number, equal to 2.71828. We can rewrite equation (5-1) and 

extrapolate the probability of n occurrences in the interval t by, 

P(n;t) = 𝑒−𝜆𝑡 
(𝜆𝑡)𝑛

𝑛!
 (5-29) 

 = t (5-30) 



Mohamed ElSayed  McMaster University 

Ph.D. Thesis  Dept. of Civil Engineering 

262 

where  is the expected number of trips taken from the estimated 0.08 parcel per person 

per day above, the final equation is expressed as, 

P(n) =𝑒−𝜇 
𝜇𝑛

𝑛!
; for n = 0, 1, 2…. (5-31) 

5.10.3 Appendix 3 

For the polygonal surface of the radius �̆� with �̆� sides, each segment Š can be described by: 

�̌� = {(�̆�, �̆�) ∈ ℝ2, 𝑎�̆� + 𝑏�̆� = 𝑐, �̆�0 ≤ �̆� ≤ �̆�1, �̆�0 ≤ �̆� ≤ �̆�1} 

 

𝑓𝑛(�̆� + 𝑖̆�̆�) = |�̆��̌��̆� − |�̆�||−(�̆�𝑠𝑖𝑛(𝜋/�̆�) − |�̆�|)| + |�̆� − �̆�𝑐𝑜𝑠(𝜋/�̆�)| 

∏𝑓𝑛 (𝑒−
2�̆��̆�π

�̆� (�̆� + 𝑖̆�̆�))

�̆�−1

�̆�=0

= 0 

(5-11) 

 

(5-12) 

 

 

(5-13) 

 

5.10.4 Appendix 4 

The quadrotor UAV moves based on the body frame or rotor axes vectors in the x, y, and 

z directions, which deviates from the inertial frame defined by gravity in the negative z-

direction as shown in Figure 5-6. All rotors are assumed to be brushless identical electric 

motors, (θ̇) is the time derivative for the pitch, roll, and yaw angles of the body frame (ф, 

θ, ψ) T. The angular velocity (v) is defined as a rotational axial vector, and (MA) is the 

matrix of rotation within both body and inertial frames of the UAV (Luukkonen, 2011), 

accordingly, both can be obtained by (ElSayed and Mohamed, 2020c): 

𝑣 = [

1 0 - sθ

0 cφ cθsφ

0 - sφ cθcφ

] θ̇ ,    θ̇ ≠ 𝑣                                                             (5-32)  

MA = [

𝑐𝜑𝑐𝜓 - 𝑐𝜃𝑠𝜑𝑠𝜓 - 𝑐𝜓𝑠𝜑 - 𝑐𝜑𝑐𝜃𝑠𝜓 𝑠𝜃𝑠𝜓

𝑐𝜃𝑐𝜓𝑠𝜑 + 𝑐𝜑𝑠𝜓 𝑐𝜑𝑐𝜃𝑐𝜓 - 𝑠𝜑𝑠𝜓 - 𝑐𝜓𝑠𝜃

𝑠𝜑𝑠𝜃 𝑐𝜑𝑠𝜃 𝑐𝜃

]                                        (5-33) 
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The torque production and voltage are given by: 

𝜏 =C𝜏 ( I - Iidle )                                                                                                       (5-34)  

 V =I . R  + Cp𝑣                                                                                                        (5-35)  

Where τ is the torque (N. m); Cτ is a constant of torque; I is the electric current input 

(ampere), and Iidle is the current at an idle rotor. V is the rotor voltage feed (volts); R is the 

coil resistance (ohm); v is the localized angular rotor velocity ‘rotational speed’ (RPM), 

and Cp is the proportionality constant of back electromotive force. We can obtain the power 

for low-resistance motors via: 

P =
 Cp

C𝜏
 v . 𝜏       = F 

𝑑𝑥

𝑑𝑡
                                                                                                    (5-36) 

Where P is the rotor power consumption to maintain the UAV flight (Watt). Since the 

system is assumed in this study to operate only under steady wind conditions, it is 

deductible: 

P =𝑇ℎ . 𝑣L                                                                                                (5-37) 

Where Th is the rotor thrust (Newton); vL is the loft velocity at idle air position. Knowing 

that the thrust of the rotors is proportional to the square of angular velocity it can be 

deducted: 

𝑇ℎ =  Cv
2 (

 Cp√2 .  𝑎 .  𝜌air

C𝜏
 .  𝑣)

2

= C [
0
0

∑𝑣𝑖
2
]                                                   (5-38)  
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Where ρair is the density of air and equals an assumed average of 1.225 kg/m3 in this case; 

a is the area covered by each rotor (m2). The overall constant is appropriately valued and 

denoted by C for ease of calculation and coding. To apply the motion equations, all 

controlling forces must be included in the matrix, hence, by deriving the rotational motion 

equations based on Euler’s equation: 

   𝜏 =  (𝐼𝑛  �̇� + v) . (𝐼𝑛 v)                                                                         (5-39) 

Where �̇� is the angular velocity vector; 𝐼𝑛 is the inertia. From the rotor matrix M that was 

given previously in equation (33), the linear motion can be deducted: 

𝑚𝑜𝑡𝑖𝑜𝑛 ẋ𝑖 = [
0
0

−𝑚𝑔
] + MA .  𝑇ℎ +  Fd                                                                 (5-40)  

Where ẋi is the path of UAV, g is the acceleration due to gravity and equals 9.81 (m/s2); m 

is the mass and Fd is the drag force. From (5-39) and (5-40), assuming the quadcopter is 

symmetric about both the x and y-axis, the equation can be reduced into a simplified inertial 

matrix as: 

�̇� = [

�̇�𝑥

�̇�𝑦

�̇�𝑧

] =  
(𝜏-𝑣.(𝐼𝑣))

𝐼𝑛
                                                                                               (5-41) 

𝐼𝑛 = [

𝐼𝑥𝑥 0 0

0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

]                                                                                       (5-42) 

By solving equations (5-41) and (5-42), the final formula can be expressed as: 



Mohamed ElSayed  McMaster University 

Ph.D. Thesis  Dept. of Civil Engineering 

265 

�̇� = [

𝜏𝜑 𝐼𝑥𝑥
-1

𝜏𝜃 𝐼𝑦𝑦
-1

𝜏𝜓 𝐼𝑧𝑧
-1

]  − 

[
 
 
 
 
𝐼𝑦𝑦 - 𝐼𝑧𝑧

𝐼𝑥𝑥
𝑣𝑦𝑣𝑧

𝐼𝑧𝑧 - 𝐼𝑥𝑥

𝐼𝑦𝑦
𝑣𝑥𝑣𝑧

𝐼𝑥𝑥 - 𝐼𝑦𝑦

𝐼𝑧𝑧
𝑣𝑥𝑣𝑦]

 
 
 
 

                                                                  (5-43) 

The formula in (5-43) is coded in python to mimic the motion of a UAV and provide 

the exact power to dispatch in each propeller along the trajectory. The motion dynamics are 

also applied when a lane change is required, firstly the virtual reference lane from the 

Skyroutes algorithm is set as input, then a lane-change maneuver is applied similar to EVs. 

An adaption of the lateral dynamics (Ackermann, 1993) the motion can be described by: 

𝑑

𝑑𝑡
[
 
 
 
𝑦𝑓

�̇�𝑓

𝑦𝑟

�̇�𝑟 ]
 
 
 
= [

0 1 0 0
𝑎21 𝑎22 −𝑎21 𝑎24

0 0 0 1
𝑎41 𝑎42 −𝑎41 𝑎44

] [

𝑦𝑓

�̇�𝑓

𝑦𝑟

�̇�𝑟

] + [

0 0
𝑏21 𝑏22

0 𝑏32

𝑏41 𝑏22

] [
𝜎𝑓

𝜌ref 
] 

(5-44) 

Where 𝜎𝑓 is horizontal flight angle in the roll axis, 𝜌ref  is reference lane curvature from 

𝛿𝑉 , 𝛿𝐻 , aij and bij are the pitch and roll UAV parameters, 𝑦𝑓 and 𝑦𝑟 are lateral displacement 

of the UAV from the onboard gyro to the reference lane, respectively. To describe the 

lateral position as a function of the UAV longitudinal position for a lane change, the 

polynomial takes a closed form with a continuous curvature, 

𝑦(𝑥) = 2𝑟 {10 (
𝑥

𝑑
)
3

− 15 (
𝑥

𝑑
)
4

+ 6(
𝑥

𝑑
)
5

} 
(5-45) 

𝑑𝑙 = 𝑣√
2𝑟

ẋ𝑚𝑎𝑥
{60 (

𝑥𝑚

𝑑𝑙
) − 180 (

𝑥𝑚

𝑑𝑙
)
2

+ 120 (
𝑥𝑚

𝑑𝑙
)
3

} 

(5-46) 

Where y, x, r and 𝑑𝑙 are the lateral position, longitudinal position, lane radius, and the target 

lane change longitudinal distance respectively. The virtual reference lane is modeled by 
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substituting the required d and r into equation (5-45). To optimize the trajectory that does 

not exceed the UAV’s lateral acceleration limit, the point of maximum curvature (xm) based 

on the trajectory tangents t (q) is computed. Equation (5-46) determines the appropriate 

𝛿𝑉 , 𝛿𝐻 based on the overall lane change distance d and the maximum UAV lateral 

acceleration (ẋ𝑚𝑎𝑥) by differentiating y(x) and substituting it. 
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CHAPTER 6 

6 Autonomous Drone Charging Station Planning Through Solar Energy Harnessing 

for Zero-Emission Operations 

Preamble 

This chapter focuses on the first and seventh objectives of the dissertation (Figure 6-1). The 

chapter builds on and complements chapter 5 by developing an integrated multi-objective 

charging infrastructure coverage optimization model to answer the charging infrastructure 

uncertainty after having presented solutions for the other three uncertainties (energy, 

discretization, and policy) in the previous chapter. The proposed optimization model 

integrates UAV-based operations with solar energy harnessing from building envelopes to 

maximize UAVs’ coverage range and minimize the total cost of energy and 

decarbonization. In this chapter, we utilized the flexible energy use model for UAVs 

calibrated to experimental measurements to generate a minimum-energy trajectory 

presented in chapters 2 and 5. We also utilized the origin-destination (O-D) demand model 

geo-referenced in a digital-twin from the same chapters to replicate real-world operation. 

Overall, 12,532 daily missions in a large-sized city are simulated. The chapter provides an 

understanding of how we can tackle the last-mile operations via UAVs and BIPV to present 

a zero-emission solution. 
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Figure 6-1 Regulatory criteria correlation to performance metrics. 

The publication included in this chapter is: Elsayed, M., Foda, A., Mohamed, M. 

Autonomous drone charging station planning through solar energy harnessing for zero-

emission operations. Sustainable Cities and Society, 104122. 

https://doi.org/10.1016/j.scs.2022.104122. 

The manuscript was submitted in May 2022. Mohamed Elsayed is the main 

contributor and first author of this manuscript. The co-authors’ contributions include co-

developing the optimization model, guidance, supervision, and manuscript editing. 
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6.1 Abstract 

The introduction of Unmanned Arial Vehicles (UAVs) in smart city operations is 

considered a sustainable technological solution due to the promised significant greenhouse 

gas emission reductions. This study developed an integrated multi-objective charging 

infrastructure coverage optimization model that integrates UAV-based operations with 

solar energy harnessing from building envelopes. This model maximizes UAVs’ coverage 

range and minimizes the total cost of energy and decarbonization. The model is based on a 

flexible energy use model for UAVs calibrated to experimental measurements to generate 

a minimum-energy trajectory. We also developed an origin-destination (O-D) demand geo-

referenced in a digital-twin model to replicate real-world operation. Overall, 12,532 

simulated daily missions in a large-sized city are modelled. The results show that the 

proposed system can eliminate GHG emissions. Furthermore, the system can significantly 

reduce the decarbonization price through associated savings and excess generated 

electricity. The proposed approach demonstrates avenues to advance smart cities and 

capitalize on renewable energy. 

6.2 Introduction and Background 

As cities are growing exponentially across the globe, in 2014, the United Nations expected 

the world population to reach 10.1 billion by 2100 (European Parliament, 2014). In 2015 

all the United Nations member states adopted the 2030 agenda for sustainable development, 

a blueprint for peace and prosperity for people and the planet. At the heart of the agenda, 

there are 17 sustainable development goals (SDGs) supported by strategies that improve 
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health and education, reduce inequality, and spur economic growth while tackling climate 

change and preserving the oceans and forests (UN, 2015). 

As the earth is limited in space and resources, the concept of a smart city emerged to 

allow population growth coupled with high quality of life through efficient and cost-

effective technological solutions. Hence, it can be argued that smart cities are the result of 

combining the SDGs strategies to achieve resilient communities that maximize the 

integration between humans and technologies (Mohammed et al., 2014). In this regard, 

autonomous integrated systems are one of the most featured technologies in every vertical 

of a smart city, such as robotic manufacturing, robotic construction, and transportation 

systems (Shakhatreh et al., 2019; Khan et al., 2018). These integrated robotic systems 

significantly minimize time, cost, and redundancy while maximizing efficiency and 

operating on clean, renewable energy sources. In particular, the most striking example of 

such integrated technologies is unmanned aerial vehicles or systems (UAVs or UAS or 

drones). 

In the past decade, growing interest in many consumer-oriented commercial activities 

has expanded the scope and scale of UAV applicability in a multi-varied smart city 

environment (Chen and Chen, 2020; Sharma et al., 2020). UAVs can provide and sustain 

critical services related to smart cities. Moreover, UAV operations in smart cities can help 

achieve the broader scope of SDGs concerning improving residents’ quality of life. The 

integration of UAVs into the smart city fabric offers a wide range of applications. Several 

studies have surveyed UAV applications in smart cities through use case scenarios, such as 

Ren et al. (2022), Mohamed et al. (2020), and Al-Turjman (2020). The applications can be 
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summarized in eight categories: merchandise delivery, infrastructure planning, and 

inspection, crowd management, natural disaster management, health emergencies, smart 

transportation, and civil security/ safety. This clearly illustrates the significant role and 

contributions of UAVs in fulfilling SDGs in smart cities and societies. 

Today, the concept of smart cities is trying to gain wider attention by providing a 

sustainable chain of end-user services. UAVs are heavily explored for permanent 

integration within resilient smart cities for their versatility and ability to save lives during 

disruptive events. Although other technologies, such as electric vehicles (EVs), have been 

evolving in parallel, the versatility of UAV usage has increased the demand as a critical 

enabler for smart city applications by offering a cost-effective solution for almost 

everything (Ren et al., 2022). The COVID-19 pandemic has further fueled this acceleration 

in UAV demand. Autonomous UAVs were essential for touchless delivery of supplies, 

food, and most importantly, medical supplies and test kits for emergencies to save lives 

with an emissions reduction of up to 35% compared to EVs (Elsayed and Mohamed, 2020a; 

2020c). Thus, the adoption of UAV technology among various civilian, commercial, and 

government services leaped ahead from the experimental stage to the implementation stage 

rapidly. 

As UAVs operate in the city airspace, and with the current generation of older cities, 

several technological challenges arise with the anticipated proliferation of heterogeneous 

UAV fleets in low-altitude airspace of dense urban areas (Lemardelé et al., 2021). This 

technological challenge is often equated to the paradigm shift created with the introduction 

of automobiles by Henry Ford in the early 20th century. In other words, the equivalent of 
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creating infrastructure and traffic planning can apply to the consumerization of city 

airspace. Electric UAVs use much less energy per kilometer travelled compared to a ground 

vehicle. However, UAVs are limited in their payload capacity. Therefore, there is a 

necessary trade-off to increase the payload essential for the UAV to perform the intended 

task (such as cameras, sensors, or transported products) by reducing the size of the onboard 

battery, which in turn decreases the range of the UAV fleet coverage (Stolaroff et al., 2018). 

Due to UAV’s limited range, a UAV-based system will require numerous charging 

infrastructure sites distributed across the serviced region. However, the dependence on the 

local power grids for this operational infrastructure would still increase the initial and 

operational Greenhouse gas (GHG) emissions, primarily if electricity is generated from 

coal or natural gas (Figliozzi, 2017; Kuby and Lim, 2005). It is clear that the continued 

reduction in the carbon intensity of the electricity system, coupled with energy efficiency 

upgrades in associated buildings, is a crucial challenge to realizing the full potential 

benefits of UAVs in smart cities (Stolaroff et al., 2018). Therefore, a UAV system coupled 

with an independent (off-grid) renewable-energy-based electricity generation profile is 

considered the silver bullet solution to this intertwined challenge (Elsayed and Mohamed, 

2020a). 

In this study, we address some fundamental questions associated with the wide 

adoption of UAVs in smart cities:  

1) What is the total cost of decarbonization via a renewable-energy-based UAV fleet,  

2) Can we harness building envelope solar exposure energy to sustain UAVs’ 

operation, and  
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3) What is the potential GHG emissions reduction of such a UAV system?  

In this respect, we contribute to smart city design at large and focus on UAV system 

optimization. We develop a novel multi-objective coverage optimization model for UAV 

integration in smart city operations. The model addresses the intertwined UAV en-route 

charging, GHG emissions elimination, flight policies, solar energy harnessing, and 

kinematic-based 3D optimal trajectory challenges and their effect on the system viability 

for a fully autonomous UAV system. The model is developed in a digital twin of a large 

real-world metropolitan. We are aware of no studies addressing this gap in the existing 

literature, which signifies our contributions. 

The primary focus of this study is the optimal allocation of recharging stations while 

achieving full city coverage and complete independence from the utility grid. To achieve 

this aim, 1) we develop an origin-destination (O-D) model for two levels of UAV 

operations, including network, fleet, and routing. 2) We utilize a 3D geospatial mining 

framework to geo-reference the generated UAV trips in a digital-twin model based on 

LiDAR data to replicate real-life operations. 3) We adopt a flexible energy use model for 

multi-rotor UAVs calibrated to experimental measurements from representative UAV 

flights to calculate the energy demand throughout the trajectories (Stolaroff et al., 2018; 

Figliozzi, 2017). 4) We apply a novel minimum-energy trajectory algorithm, ‘Skyroutes,’ 

avoiding all obstacles following the local civil aviation regulations. 5) We identify potential 

recharging stations’ candidate sites based on annual solar exposure, area, and building 

typology. 6) We propose a multi-objective optimization model to meet the demands of 
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spatially distributed customers by assigning the minimum number of solar recharging 

stations to mitigate the service range restriction. 

Our model objectives are maximizing the UAV coverage range and minimizing the 

total cost of energy and decarbonization. We simplify the multi-objective optimization 

problem to a single optimization problem using the Relaxed Interactive Sequential Hybrid 

Optimization Technique (RI-SHOT) (El-sobky et al., 2018). Then we use Gurobi solver to 

handle the obtained optimization problem. Lastly, 8) we characterize the realistic overall 

GHG emissions for the entire UAV charging network serving the case study compared to 

grid-connected charging stations. The analyses are based on simulating the daily operations 

comprised of 12,532 UAV missions for a large-sized metropolitan city. 

6.3 Related Work 

The search on the UAV range limitation, coverage, and solar infrastructure allocation 

returned a limited number of publications. However, ample research exists addressing these 

challenges partially. Several studies target UAV technology and trajectory optimization, 

while others target logistical strategies and infrastructure planning. It is worth noting that 

no research addressed solar recharging of UAVs to offset the GHG emissions completely. 

This specific correlation is understudied; however, results and methodologies could assist 

the present study due to the commonalities. This section conducts a literature review on 

UAV energy efficiency, smart city charging allocation techniques, and range extension 

optimization problems. 
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6.3.1 UAV energy efficiency 

The duality of range and energy consumption uncertainty dictates the inclusion of several 

parameters. The ultimate goal is to accurately estimate the UAV energy consumption and 

serviceability range/ coverage, which solely depends on the UAV hardware and the 

expected/ planned UAV trajectory. 

Recent literature on UAV technologies has reported significant improvements toward 

energy-efficient operation and refined UAV designs. Improvements include mass reduction 

via carbon-fiber light airframes, battery charge capacity improvements in the lithium-ion 

polymer (LiPo) batteries, and power-to-weight ratio improvements in brushless DC motors. 

That said, the UAV technology improvements are not expected to leap significantly 

anytime soon (Morbidi et al., 2016; Thibbotuwawa et al., 2018). Therefore, the only energy 

determinantal factors with massive room for improvements are trajectory optimization or 

operational planning (Goerzen et al., 2010; Zhang et al., 2021). 

Although autonomous UAVs can depend on onboard sensors for navigation, barriers 

such as high-rise buildings, cranes, and no-fly zones (NFZs) impact the UAV operation 

heavily, leading to added energy requirements for hard maneuvers and idle hovering along 

the trajectory (Elsayed and Mohamed, 2020a). Having a pre-planned trajectory mitigates 

such risks. However, the trajectory generated from motion planning depends mainly on 

four factors (Yuan et al., 2021): 1) UAV kinematics, given different types and sizes 

(Stolaroff et al., 2018; Figliozzi, 2017), 2) The externalities such as temperature and wind 

speed and direction (Wang et al., 2016), 3) The flight policy applicable depending on the 

area of operation, daytime, and UAV type (ElSayed and Mohamed, 2020b), and 4) The 

precision of the simulated environment, real-time geographic information system (GIS) 



Mohamed ElSayed  McMaster University 

Ph.D. Thesis  Dept. of Civil Engineering 

287 

integration (Coutinho et al., 2018). To that end, plenty of research exists addressing these 

dependencies, and a recent comprehensive literature review has been presented by (Zhang 

et al., 2021). 

Operational planning and optimization research investigates various customizations of 

tools and methods to improve energy consumption and extend the service range. For 

example, Aloqaily et al. (2022) developed a UAV-supported vehicular network solution 

that considers UAVs' power and coverage limitations for smart cities. Another stream of 

research suggests a multi-modal approach that would combine ground vehicles with UAVs 

to extend service range, such as the study by Murray and Chu (2015). Similarly, Cocchioni 

et al. (2014) investigated a charging process by interacting between the unmanned ground 

vehicle (UGV) and UAVs. They utilize a mobile charging station to boost charge UAVs in 

the service area. Another solution suggested optimizing the ground delivery powertrain 

consumption to reduce the UAV traveled route (Park et al., 2017). While these methods are 

successful to a great extent, partial dependency on ground modes significantly increases 

GHG emissions (especially the manufacturing phase) and the total costs. In the meantime, 

it decreases the speed and adds redundancy on a logistical operation level (Stolaroff et al., 

2018). In conclusion, even with multiple parameter optimization, the service range could 

only be extended by up to 30% (Sundar and Rathinam, 2014). 

6.3.2 Charging allocation and coverage optimization 

Range limitation is chronic for all types of electric vehicles. A significant portion of 

sustainable and smart city research has focused on proposing solutions for this challenge. 

The literature can be classified into three methods: 
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Coordination and scheduling to achieve optimality: this method mainly emphasizes 

facilitating the increasing load due to EV charging by maximizing the utilization of existing 

infrastructure with zero or little new reinforcement to the power grid. This method has been 

highly successful for ground EVs. For instance, Kasani et al. (2021) propose an efficient, 

coordinated charging method for plug-in hybrid EVs to minimize grid overloading and 

voltage issues. Another solution based on an improved genetic algorithm (GA) is proposed 

by Li et al. (2021) to locate public charging stations (CSs) by considering the investment 

of CS operators and the travel costs of EV owners. That said, in the case of UAVs, there is 

little to no existing charging infrastructure; hence, this method will still require new 

infrastructure planning to apply such strategies in operation to maximize the coverage. 

Battery swapping stations (BSS): several studies have proposed extending the range 

by single or multiple stops for battery swapping or manual plugging-in. This method proved 

high efficiency for smaller ground vehicles such as scooters (Lin et al., 2021) and EV taxis 

(Sayarshad and Mahmoodian, 2021). However, in the case of UAVs, the need for human 

operators increases the operational costs and adds significant time loss (Ha et al., 2018). 

Grid-connected infrastructure allocation: the infrastructure allocation problem was 

considered in the literature on fossil fuel and later for alternative fuel vehicles by 

minimizing recharging facilities’ locations. For instance, the flow refueling model 

identifies the locations of potential refueling stations to maximize the origin-destination 

(O-D) flow while taking into account the vehicle range and utilizing road networks for 

optimal routing (Yu et al., 2018). The concept can be simplified into two steps. First, 

finding the vehicle trajectory while avoiding all obstacles ‘routing’. Second, solving a 
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minimization function to reduce the refueling sites while maximizing the operation and 

coverage. The second step can entail changing the optimal (shortest) routes yielded from 

the first step while minimizing the overall cost. 

With the rise of vehicle electrification, the infrastructure allocation problem was 

considered for EVs in sustainable cities. Among the recent examples, Aljand et al. (2018) 

proposed a generalized methodology to assess the optimal placement of EV charging 

stations. Their optimization is done using a novel heuristic optimization technique called 

quantum binary lightning search algorithm to minimize line loading, voltage deviation, and 

circuit power loss. Xu et al. (2018) proposed a multi-criteria group decision-making 

framework with linguistic information to deal with the EVCS sitting in Tianfu. Several 

literature reviews were presented to summarize the differences and implementation, such 

as in Metais et al. (2020) and Zhou et al. (2022). 

Similar methods were also applied in the literature for UAVs (Lozano-Pérez and 

Wesley, 1979). However, the problem is significantly more complicated since there is no 

assumed network of roads for path solving. Moreover, the change in potential recharging 

station locations would significantly change flight trajectories, yielding different energy 

demands (ElSayed and Mohamed, 2020b). Hence, we focus on autonomous en-route 

charging for UAVs to extend service range. This is done through contact-based charging 

utilized by in-ground autonomous robots, such as vacuum cleaners (Augugliaro et al., 2014; 

Silverman et al., 2003; Valenti et al., 2007). Several studies can be found proposing 

different successful designs for this type of contact charging, such as a station for 

autonomous charging located at a fixed point allowing multiple UAVs to be charged 
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simultaneously using a bottom contact plate (Leahy et al., 2015; Mulgaonkar, 2012). 

However, due to the UAV frame design and vertical takeoff and landing (VTOL) 

limitations, the contact surface area is a significant challenge, and short-circuit problems 

may occur due to misalignments during landing. 

Alternatively, wireless power transfer (WPT) or wireless energy transfer (WET) 

technology allows efficient proximity charging within a range of two meters (Junaid et al., 

2016; Karalis et al., 2008; Kurs et al., 2007; Simic et al., 2015; Yan et al., 2020). Given its 

omnidirectional characteristic, it eliminates the requirement for high precision in UAV 

landing and eases the design and control complexity while reducing cost (Griffin and 

Detweiler, 2012; Leonard et al., 2014 ). There has been substantial research on wireless 

remote recharging methods. Proposed approaches included the utilization of laser beaming 

(Chen et al., 2015) and the power lines’ electromagnetic field (Lu et al., 2018; Wang and 

Ma, 2016). The research successfully designed and tested WPT charging stations, 

increasing the efficiency and simplifying the designs (Chen et al., 2019; Rohan et al., 2018; 

Song et al., 2018; Yang et al., 2019). It is concluded that utilizing a global position system 

(GPS) sensor and image-based closed-loop target detection for precise landing on the 

charging pad represents a cost-effective outdoor charging station for UAVs with 

autonomous landing capability (Junaid et al., 2017). 

That said, the challenge remains in allocating and minimizing the total number of 

required chargers to extend the range of the fleet for full coverage. Sundar and Rathinam 

(2014) proposed a solution that examines route optimization to obtain the minimum cost of 

refueling per UAV by utilizing the existing recharging facilities as gateways. Both Dorling 
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et al. (2017) and Yu et al. (2018) proposed another solution that adopts a vehicle routing 

problem with two traveling salesman problems (TSPs) having range restrictions to perform 

multiple returns to the depot for new deliveries while swapping batteries or utilizing 

unlimited stationary recharging allocations. This approach yields either a significantly large 

number of required recharging stations or a substantial UAV fleet size, making the UAV 

system uneconomic. 

Alternatively, other solutions assume a given number of available charging stations 

and propose a mixed-integer allocation model to maximize coverage using Euclidean 

shortest path (ESP) planar-space routing and range-restricted flow refueling locations 

(Hong et al., 2018; Hong and Murray, 2013). Similarly, assuming a given set of UAVs and 

potential charging facility locations, a maximum coverage capacitated facility allocation 

problem is solved in Chauhan et al. (2019) to make several one-to-one trips to the demand 

locations until the battery range is met without en-route recharging. 

The limitations of these solutions vary from scalability, such as assuming only one 

depot (Dorling et al., 2017) for both launching and recharging, hence, not addressing the 

UAV range restriction; too heavy reliance on a 2D obstacle avoidance model and ESP 

problem-solving yielding an unfeasible trajectory for the UAVs based on the kinematics of 

motion (Asano, 1985; ElSayed and Mohamed, 2019; Hong and Murray, 2013). The results 

differ severely from the actual operation, and the 2D solutions ignore the applicable local 

civil flight policies (ElSayed and Mohamed, 2020b). It could be confidently argued that 

autonomous UAVs will have a different range associated with different flight policies 

(Elsayed and Mohamed, 2020a). Moreover, it does not consider the charging energy source 
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within a decarbonization SDGs framework. Table 6-1 presents a summarized comparison 

between these previous works. 

Table 6-1 Charging station coverage problem literature synthesis. 

Study/ 

Author(s)  
Problem Description Objectives 

Routing 

Algorithm 

Energy 

Consumption 

Model 

Solution 

Algorithms 

Algorithms for 

Routing an 

Unmanned 

Aerial 

Vehicle in the 

presence of 

Refueling 

Depots (Sundar 

and Rathinam, 

2014) 

- UAVs path planning 

problem. 

- Fixed refulling 

locations. 

- Multi-mission in one 

trip. 

Minimize the total fuel 

cost under reaching all 

targets constraint. 

- 2D Euclidean 

shortest path 

(ESP) 

algorithm. 

- No obstacles-

avoiding route. 

Linear function 

in the travel 

distance 

1) 

Approximation 

algorithm. 

2) Construction 

heuristic 

algorithm. 

3) Improvement 

of heuristic 

algorithm. 

4) CPLEX. 

Vehicle Routing 

Problems for 

Drone Delivery 

(Dorling et al., 

2017) 

- Two multi-trip drone 

mission routing 

problems by battery 

swapping in only one 

depot.  

- Multi-mission in one 

trip, no range 

extension.  

 

1) Minimize costs 

subject to a defined 

time limit. 

2) Minimize the 

mission time subject to 

a budget constraint.  

- 2D ESP 

algorithm 

- Constant speed 

- No obstacles-

avoiding route. 

- Linear 

approximation 

function in 

payload and 

battery weight, 

and distance. 

- validated by 

experiments. 

1) Simulated 

annealing 

heuristic 

algorithm. 

2) CPLEX. 

Algorithms for 

Routing of 

Unmanned 

Aerial Vehicles 

with Mobile 

Recharging 

Stations (Yu et 

al., 2018) 

- Two generalized 

TSPs (GTSPs).  

- Multi-mission in one 

trip.  

1) recharging using 

multi stationary 

charging stations. 

2) recharging using a 

single mobile charging 

station. 

Minimize the total 

travelling time. 

- 2D ESP 

algorithm. 

- No obstacles-

avoiding route. 

- Linear 

function in 

travel time (1% 

per second) 

1) GLNS solver 

for GTSP. 

2) Concorde 

solver for TSPs.  

A range-

restricted 

recharging 

station coverage 

model for drone 

delivery service 

planning (Hong 

et al., 2018) 

- Allocation model to 

support spatially 

configuring a system 

of recharging stations 

for commercial drone 

delivery service. 

- One mission for each 

trip. 

Maximize the coverage 

of demand locations 

within a restricted 

number of available 

charging stations. 

- 2D ESP 

algorithm. 

- obstacles-

avoiding route. 

- Predefined 

constant drone 

fly range (3.3 

km delivery 

range, 5 km 

recharging 

range) 

1) Spatial 

heuristic 

solution 

algorithm. 

2) Gurobi solver  

Maximum 

coverage 

capacitated 

facility location 

problem with 

range 

constrained 

drones 

(Chauhan et al., 

2019) 

- Maximum coverage 

facility location 

problem with drones 

assigning.  

- Multi one-to-one 

missions for every 

drone from each 

facility. 

- No recharging system 

Maximize the coverage 

of demand locations 

within a restricted 

number of facility 

locations. 

- 2D ESP 

algorithm. 

- No obstacles-

avoiding route. 

- A linear 

function of the 

drone, parcel, 

battery weights 

and fly distance.  

1) Greedy 

heuristic 

algorithm. 

2) Three-stage 

heuristic (3SH) 

algorithm. 

Drone routing 

with energy 

function: 

Formulation and 

exact algorithm 

(Cheng et al., 

2020) 

- A multi-trip drone 

routing problem 

- No recharging system 

 

 

Minimize the travel and 

energy cost under time 

window constraints 

- 2D ESP 

algorithm. 

- No obstacles-

avoiding route. 

- Nonlinear 

function of 

payload and 

travel distance. 

- Branch and cut 

algorithm with 

Gurobi 
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Study/ 

Author(s)  
Problem Description Objectives 

Routing 

Algorithm 

Energy 

Consumption 

Model 

Solution 

Algorithms 

Research on 

UAV Delivery 

Route 

Optimization 

Based on 

Improved 

Adaptive 

Genetic 

Algorithm 

(Bian, 2021) 

- A distribution route 

optimization model 

with the shortest total 

mission time 

- No recharging system 

- Multi-mission in one 

trip.  

 

- Minimize the total 

mission time 

- 2D ESP 

algorithm. 

- No obstacles-

avoiding route. 

- constant - GA 

6.3.3 Renewable energy charging allocation for sustainable cities 

The increased adoption of EV’s use and the dependency on grid-connected charging causes 

different adverse impacts on the power grid (Dulău and Bică, 2020). Examples of such 

impact are higher power demand, an increase of the short-circuit currents, potential 

violations of the voltage level regulated limits, and the reduction of the lifespan of the 

power equipment (e.g. transformers). This has shifted the research community’s efforts to 

target renewable energy resources for charging infrastructure allocation. 

In this case, the studies presented aim to achieve a multi-objective optimization goal; 

reduce the number of allocated charging stations while maximizing the utilization of 

renewable energy resources under uncertainty of generation. For instance, Amini et al. 

(2017) propose a two-stage approach for the allocation of EV parking lots and distributed 

renewable resources in the power distribution network. They solve the formulated 

optimization problem utilizing GA and particle swarm optimization (PSO). Mozafar et al. 

(2017) propose a simultaneous approach for the optimal allocation of renewable energy 

sources and electric vehicle charging stations in smart grids based on an improved GA-

PSO algorithm. Their model combines the stochastic nature of renewable energy sources 

and electric EVs load demand. Sa'adati et al. (2021) propose a capacitated deviation flow 

refueling location model coupled with mixed-integer linear programming. In their study, 
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the optimal location and capacity of fast-charging stations and renewable energy sources 

are simultaneously determined, while deviation paths and uncertainties of renewable 

energy sources are considered. Ramadhani et al. (2021) perform a probabilistic load flow 

analysis by modelling the variability of electric vehicle mobility, household load, 

photovoltaic system generation, and the adoption of the photovoltaic system and electric 

vehicles in society. Their study proves that the smart charging scheme improves the low 

voltage distribution system performance and increases the correlations between network 

nodes. Dang et al. (2021) propose a multi-criteria decision-making framework for island 

photovoltaic charging station site selection. 

While literature is abundant on ground vehicles and ships, UAVs have had less share 

of this focus. Compared to ground vehicles, the average UAV range is 3 km, which is 

significantly lower. And given that they operate in the airspace, the solutions proposed for 

ground solutions are hardly transferable. However, UAVs represent a better candidate for 

such an approach in renewable energy charging allocation. UAVs are mainly utilized in 

dense urban centers, characterized by heavy conurbation of high- and mid-rise 

condominiums and office buildings. Most of these buildings possess highly glazed 

envelopes and unutilized roof areas (ElSayed and Mohamed, 2019). With significantly 

higher window-to-wall ratios and thermal bridging, highly glazed building envelopes are 

the main factor in increasing heating and cooling energy loads (Hachem and Elsayed, 

2016). Upgrading these building envelopes by deploying building-integrated photovoltaics 

(BIPV) and allocating UAV recharging stations on their roofs would represent a dual green 

solution. 
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The environmental benefits of reducing energy consumption in upgraded buildings are 

coupled with generating clean electricity required for the UAV charging functions. This is 

also an economic advantage as the energy is generated at no extra cost and the surplus can 

be sold back to the grid in residential (ElSayed, 2016) and commercial buildings (Bigaila 

et al., 2016). Furthermore, independence from the charging grid adds extra robustness to 

the entire autonomous operating system in case of power grid overloads or failure. The 

authors are unaware of existing studies considering this specific correlative multi-objective 

approach. 

In conclusion, from the literature, several important messages are highlighted:  

▪ Regarding UAV recharging, although research on the design aspects of 

autonomous WPT charging systems is generally increasing, less work has been 

presented to investigate the logistics of such proposed recharging station 

allocation, such as the impacts of the varying flight regulations (e.g., proximity to 

buildings and maximum permissible altitude). 

▪ The proposed UAV charging solutions depend on the existing local power grid 

rather than net/near-zero emissions sources to realize the full SDGs’ 

decarbonization target (Merkert and Bushell, 2020).  

▪ Solutions presented in the literature do not account for systematic vulnerability 

due to the added electricity demand load on the power grid. Risking a system-wide 

failure would paralyze the entire operations in the serviced area. 

▪ All research on UAV charging allocation and planning depended on 2D routing or 

ESP, which yields non-practical results (ElSayed and Mohamed, 2020b). There is 
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a literature gap in addressing the precise estimate of UAV operational energy 

based on real-life trajectories to inform charging station allocation. 

The present study builds on previous works to address the problem of charging station 

allocation for an autonomous UAV parcel delivery system. The overarching objective is to 

propose net-zero-emission UAV delivery systems that sustainably integrate renewable 

energy sources. 

6.4 Methodology 

6.4.1 Operational demand modeling 

Since UAV applications are mostly in theoretical ideation phases, the real-life operational 

demand is unknown. However, e-commerce has accelerated the application of delivery via 

UAVs, especially in the last-mile. The operation’s real-world datasets are unavailable due 

to privacy concerns. However, UAV research utilizes assumed numbers based on the 

industry average (Figliozzi, 2017; Goodchild and Toy, 2018). Typically, random networks 

are characterized by the absence of extreme values, hence, they exhibit a Poisson 

distribution (Giret et al., 2018). Statistically generated O-D matrices proved a high level of 

accuracy and robustness (Fagnant and Kockelman, 2014).  

In this study, we assume that the number of demand points follows a Poisson 

distribution with a mean variation based on census population density. Parcel delivery can 

be regarded as a statistical occurrence happening at a certain rate over a period of time per 

person. Poisson distribution mean  is the expected number of deliveries taken from the 

statistical real-world rate delivery parcel per person per day.  Following “the law of 

improbable events”, The probability of k occurrences is given by: 
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𝑃(𝑘) =
𝑒−𝜇𝜇𝑘

𝑘!
          𝑘 ≥ 0                                                 (1) 

The probability algorithm of demand delivery based on this Poisson distribution and 

the census density overlaid map, in Figure 6-2, is coded in C# language. The demand 

generation output for a one-day last-mile operation converges a 3D spatially generated O-

D matrix, which then acts as the base for UAV operation. 

  

(A) Census Map (B) Digital-Twin 
Figure 6-2 Census Density Overlaid Map and Digital-Twin Model. 

6.4.2 UAV energy consumption 

Multiple factors impact the UAV’s energy consumption, mainly frame design, externalities 

(e.g., operating environmental conditions), UAV kinematics, and logistical operations. To 

precisely estimate the GHG emissions, the energy consumption per delivery mission must 

be estimated in the simulation platform. The list of variables utilized in our study is detailed 

in Table 6-2. Furthermore, we adopt the average civil aviation policies/regulations (Elsayed 

and Mohamed, 2020a), these include a minimum distance of 30 m from obstacles and a 

maximum flight altitude within 100 ~ 122 m.  

Table 6-2 UAV design parameters used to calculate the energy consumption. 

Symbol Description Value 

v velocity 10- 20 m/s 

mTotal Total loaded UAV mass (including 6 kg payload) 10 kg 
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𝑃𝐵 Specific power of the battery 0.35 kW/kg 

𝜂 BTP and motor power transfer efficiency 0.7 

𝑁𝑟𝑜 Number of DC brushless rotors 4  

𝑅𝑟𝑜 Rotor blades’ radius 0.15 m 

𝑣𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 Vertical velocity during VTOL 10 km/h 

𝜌𝑎 Air density (assumed average) 1.225 kg/m3 

ℎ𝑈𝐴𝑉 Maximum flight altitude outside destination air zone 120 m 

𝑚𝑎𝑣𝑖𝑜𝑛𝑖𝑐𝑠 Avionics mass 0.4 

𝑚𝑎𝑖𝑟𝑓𝑟𝑎𝑚𝑒 UAV airframe mass fraction 30% 

𝑚𝑠𝑦𝑠𝑡𝑒𝑚𝑠 Onboard systems’ mass fraction 15% 

𝑚𝑝 Mass of parcel 2 lb 

These variables are used in a component modelling approach based on the flight forces. 

The model is detailed in Appendix I. The elaborated model builds on the works of Stolaroff 

et al. (2018) while applying it to simulated trajectories via PYTHON to obtain the estimated 

energy consumption in 3D. 

Assuming UAVs serve a single customer per trip, the mass of the UAV is determined 

by the model, and the UAV is assumed to be fully loaded at the maximum allowable limit 

for on-going flights, while it is assumed to return empty to the depot. 

6.4.3 UAV routing 

UAV trajectories are generated using the ‘Skyroutes’ algorithm. This algorithm is based on 

the numerical derivation method, which has several optimization properties, in addition to 

its high efficiency and speed when coupled with fluid dynamic system equations. To 

translate the built environment obstacles 𝐹 of the case study, a simple unified formula is 

utilized for all buildings: 

𝐹(𝑞) = (
𝑥−𝑥𝑖𝑛𝑡

𝑘
)
2𝑛

+ (
𝑦−𝑦𝑖𝑛𝑡

𝑙
)
2𝑜

+ (
𝑧−𝑧𝑖𝑛𝑡

𝑚
)
2𝑝

                                                  (6-2)                              

where 𝑞 = (𝑥, 𝑦, 𝑧) is defined as the UAV inertial frame location coordinates within 

the referencing system; the six parameters (k, l, m, n, o, and p) describe the shape and size 
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of each obstacle patch from the mesh. For instance, if k = l = m, and n = 1, o = 1, p = 1, the 

patch of the obstacle intervening with the trajectory is a sphere, while if k = l and m = 1, o 

= 1, 0 < p < 1, the part of the obstacle is conical. 𝑞𝑖𝑛𝑡 = (𝑥𝑖𝑛𝑡 , 𝑦𝑖𝑛𝑡 , 𝑥𝑖𝑛𝑡) are the initial 

coordinates of the UAV at the beginning of the calculated segment of the trajectory. The 

calculation formula assumes an orthogonal grid network of UAV trajectories at a certain 

height visualized as ‘Skyroutes’. This network of vector flight velocity trajectories 𝑉(𝑞) is 

modelled by: 

𝑉(𝑞) = (
𝑣(𝑥𝑖𝑛𝑡−𝑥𝑑𝑒𝑠)

𝑑(𝑞)
,
𝑣(𝑦𝑖𝑛𝑡−𝑦𝑑𝑒𝑠)

𝑑(𝑞)
,
𝑣(𝑧𝑖𝑛𝑡−𝑧𝑑𝑒𝑠)

𝑑(𝑞)
)
𝑇

                                               (6-3) 

𝑑(𝑞) = √(𝑥𝑖𝑛𝑡 − 𝑥𝑑𝑒𝑠)
2 + (𝑦𝑖𝑛𝑡 − 𝑦𝑑𝑒𝑠)

2 + (𝑧𝑖𝑛𝑡 − 𝑧𝑑𝑒𝑠)
2                               (6-4) 

where 𝑑(𝑞) is the distance between 𝑞𝑖𝑛𝑡 the UAV location and 𝑞𝑑𝑒𝑠 the destination 

point at each trajectory segment end. 

Depending on the elevation (𝑧 component) of UAV flight trajectory and the number of 

building blocks 𝐵𝑜𝑏𝑠 breaching this height plane in the study area, the UAV trajectory is 

modified to avert a collision with the building and obstacles through the disruption matrix 

𝐷𝑀(𝑞): 

𝐷𝑀(𝑞) = 𝐵𝑜𝑏𝑠 −
�̅�(𝑞).�̅�(𝑞)𝑇

|𝐹(𝑞)|

1
𝛿𝑉 .�̅�(𝑞).�̅�(𝑞)𝑇

+
�̅�(𝑞).�̅�(𝑞)𝑇

|𝐹(𝑞)|
1

𝛿𝐻 .   ⃦�̅�(𝑞)  ⃦.   ⃦�̅�(𝑞)  ⃦

                                  (6-5)          

where �̅�(𝑞) is the normal vector to the UAV path; �̅�(𝑞) is the tangential vector to the 

UAV path; 𝛿𝑉  and 𝛿𝐻  are the vertical and horizontal orientation of tangential velocity 

functions. The finalized UAV path vertices feed is obtained by the recursive integration by 

the following formula: 

𝑞𝑡+1 = 𝑞𝑡 + 𝐷𝑀(𝑞). 𝑉(𝑞). Δ𝑡                                                                                     (6-6) 
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where 𝑞𝑡 is the UAV location at time 𝑡; Δ𝑡 is the timestep. 

6.4.4 GHG emissions 

We estimate the total equivalent of the well-to-wheel (WTW) emissions for UAVs by 

adding the energy emissions in two phases: well-to-tank (WTT) and tank-to-wheel (TTW). 

This entails the emissions intensity of electricity. Therefore, the emissions values in 

Ontario, Canada, are utilized for the case study (Table 6-3). The total weighed-per-source 

GHGs are expressed in gram CO2 equivalents per kilowatt-hour (g CO2e/kWh) after 

adjusting for a 10% loss from lithium-ion battery charge/discharge efficiency and electric 

power transmission and distribution loss of 8.86% (OECD/IEA, 2018). 

Table 6-3 Resource-specific GHG emissions for operation and maintenance (Corp., 2016). 

Resource 
GHG Emissions per Energy Production (g 

CO2e/kWh) 
Percentage Total 

Hydroelectric 0 0.24 0 

Nuclear 0.15 0.60 0.09 

Wind 0.74 0.05 0.04 

Solar 6.15 0.005 0.03 

Gas/ Oil 525 0.10 52.5 

Charging and 

transmission energy 

loss 

 1 
52.66 g 

CO2e/kWh 

6.4.5 Electricity harness from Photovoltaics 

We utilize BIPV building envelope upgrades for selected charging locations to generate 

electricity. The energy yield from Photovoltaics (PVs) is determined by the annual solar 

exposure. Our simulation model utilizes weather data to simulate the annual solar exposure 

for the selected study area. The electric power generated (generation efficiency) varies by 

the type/ technology of panels (monocrystalline, polycrystalline, and thin-film solar 

panels). However, the electricity generated from the PV panels per 𝑤/𝑚2(𝐸𝐺) decreases 

with the increase of PV cells temperature (𝑇𝑝) as follows: 
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𝐸𝐺 = 𝐼𝑠(𝛽𝑇𝑝 + 𝛾)                                  (6-7) 

where 𝐼𝑠 is the incident solar radiation (W/m2); 𝛾 is a PV calibration constant; 𝛽   is the 

temperature correction constant (𝐶𝑜). Temperature 𝑇𝑝 is taken as the ambient temperature 

from the case study’s weather file. The emissions value for solar power is given in Table 

3. The calculation model is coded in python to mimic the trajectories of UAVs and provide 

the total energy consumption in (kWh) for every timestep for each trip to determine the 

charging intervals. 

6.4.6 Coverage and decarbonization cost optimization formulation 

The proposed multi-objective optimization model aims at meeting the spatially distributed 

demand through the optimal allocation of UAV recharging stations to overcome the UAVs’ 

range limitation. Therefore, the optimization objectives are 1) maximizing UAVs' coverage 

while 2) minimizing the total cost of energy and decarbonization (higher solar energy 

harness and fewer charging stations). These objectives are conflicting. For example, if we 

maximize coverage, the number of required charging stations, the charging infrastructure 

cost, and GHG emissions will also increase. Accordingly, the charging stations' allocation 

model must consider the flight range (accurate UAV energy consumption model); 3D 

routing algorithm; sufficient solar-generated energy in every selected charging station; and 

charging stations’ coverage. 

Given the complexity of the model, there are several assumptions and parameters 

considered. 

Assumption 1: One parcel is delivered (one demand) on each trip and the parcel weight is 

taken as the maximum payload weight. 
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Assumption 2: Predefined depot location (the model does not select the depot’s location; 

the model provides the optimal locations of the charging stations connected to the depot). 

The central depot is assumed as that used for truck delivery.  

Assumption 3: The demand locations are identified by the last-mile demand model. The 

output of this model is utilized as the coefficient �̅�𝑖 of the demand location 𝑖 and is 

equivalent to the probability of receiving at least one parcel in a day multiplied by the 

number of customers in the location from the census data. 

Assumption 4: The candidate locations for the charging stations are restricted to buildings 

with sufficient roof space for the WPT stations, and buildings with a height close to the 

lowest cruising altitude of 30 m.  

Assumption 5: The potential solar harness area (building envelope) is expressed as 

coefficient �̅�𝑗 of the candidate charging station location 𝑗 in the optimization model. This 

coefficient will contribute to selecting buildings with the minimum acceptable envelope 

area and highest solar harness profiles to reduce the cost of BIPV upgrade investment.  

Assumption 6: UAVs are assumed fully charged when they leave the charging station 

(SoC=100%).  

Assumption 7: The UAV’s flight range is estimated according to the UAV 3D minimal 

energy trajectory model. As the energy consumption rate varies for loaded and unloaded 

UAVs, two different flight scenarios are implemented. The first scenario (final delivery 

range) is when UAVs have sufficient energy to transport the parcel from the charging 

station/depot to the destination (loaded) and return to the charging station/depot (unloaded). 

This final delivery range is estimated in every demand location 𝑖. The set 𝐷𝑖 for every 
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demand, location 𝑖 consists of the number of potential charging stations 𝑗 that can cover 

this demand 𝑖 within the final delivery range.  

While the second scenario (one-way flight range) is when the UAVs’ energy cannot 

satisfy a final delivery trip. Therefore, the UAV must utilize several charging stations 

before making the final trip to the demand location. The one-way flight range is calculated 

at every candidate charging station location 𝑗 and the set 𝑅𝑗 consists of the numbers of 

potential charging stations that are covered by a full-loaded one-way flight range from a 

candidate charging station location 𝑗. 

The mathematical formulation of the proposed model is detailed as follows: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓1̅ = ∑ �̅�𝑖�̅�𝑖𝑖∈𝐼                                   (6-8) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓2 = ∑ �̅�𝑗�̅�𝑗𝑗∈𝐽                                   (6-9) 

Subject to  

∑ �̅�𝑗 ≥ �̅�𝑖𝑗∈𝐷𝑖                                           ∀𝑖 ∈ 𝐼                  (6-10) 

∑ �̅�𝑗 ≤ 𝑆𝑗∈𝐽                                                  (6-11) 

∑ �̅�𝑖 ≥ 𝑃𝐷𝑖∈𝐼 𝑁𝐷                                                     (6-12) 

∑ 𝑧�̅�𝑗′𝑗′∈𝑅𝑗  ≤ (𝑆 − 1)�̅�𝑗                         ∀𝑗 ∈ 𝐽                                     (6-13) 

∑ 𝑧�̅�𝑗′𝑗′∈𝑅𝑗  −   ∑ 𝑧�̅�′𝑗𝑗′∈𝑅𝑗 ≥ �̅�𝑗             ∀𝑗 ∈ 𝐽\𝑊                                  (6-14) 

∑ 𝑧�̅�𝑗′𝑗′∈𝑅𝑗  −   ∑ 𝑧�̅�′𝑗𝑗′∈𝑅𝑗 ≤ �̅�𝑗 − 𝑆      ∀𝑗 ∈ 𝑊                                  (6-15) 

�̅�𝑗 = 1                                                    ∀𝑗 ∈ 𝑊                 (6-16) 

�̅�𝑖 ∈ {0,1}                                             ∀𝑖 ∈ 𝐼                  (6-17) 

�̅�𝑗 ∈ {0,1}                                               ∀𝑗 ∈ 𝐽                  (6-18) 



Mohamed ElSayed  McMaster University 

Ph.D. Thesis  Dept. of Civil Engineering 

304 

𝑧�̅�𝑗′ ∈ 𝕫≥0                                 ∀𝑗, 𝑗′ ∈ 𝐽                             (6-19) 

The model has two conflicting objective functions. The first objective function 

presented in Equation (6-8) is to maximize coverage. This objective function equals the 

summation of the product of each demand location coefficient �̅�𝑖 and the decision variable 

whether customer 𝑖 will be covered or not (�̅�𝑖). 

The second objective function in (6-9) is to minimize the charging stations’ upgrade 

cost. It is formulated as the summation of the product of each charging station envelope 

area having the highest solar harness profile �̅�𝑗 and the decision variable whether a charging 

station will be built on site 𝑗 or not (�̅�𝑗). Where 𝐼 is the set of numbers of customer locations 

and 𝐽 is the set of numbers of potential charging stations’ locations. 

Constraint (6-10) illustrates covered/serviceable locations. This constraint explains 

that the customer location 𝑖 is covered if there are any of the charging stations in the final 

delivery range coverage set 𝐷𝑖. While constraint (6-11) limits the number of charging 

stations to be allocated to a maximum number 𝑆. 𝑆 includes the depot as it is considered a 

charging station. Constraint (6-12) limits the minimum acceptable customer coverage 

percentage from the total available customers. 𝑃𝐷 indicates the minimum percentage of the 

total number of customers 𝑁𝐷 that should be covered. 

𝑧�̅�𝑗′ in constraints (6-13) – (6-15) are nonnegative integer variables indicating the path 

flow from charging station site 𝑗 to site 𝑗′. The path flow ensures that a feasible link from 

site 𝑗 to site 𝑗′ can lead to the depot. Flow on these paths can be calculated by the concept 

of cumulative topological connectedness that builds towards a root node. For example, if a 

charging station site 𝑗 is not required as a recharging stop (tree end nodes) by any other 
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station then the flow in the link between station 𝑗 and station 𝑗′ which is a step forward to 

the depot will be  𝑧�̅�𝑗′ = 1 (the station j + zero dependent stations). In another case, if a 

charging station site 𝑗 is considered as a recharging stop for 𝑄 sites, then  𝑧�̅�𝑗′ = 𝑄 + 1 (the 

station 𝑗 + 𝑄 dependent sites). The 𝑄 sites can be directly linked to the station 𝑗 or indirectly 

by linking to other stations under some of them. 

Constraint (6-13) works in two directions; first, if a potential charging station site 𝑗 has 

any outflow to a site in the set 𝑅𝑗, then a charging station must be allocated there. Second, 

if there is no charging station allocation at site 𝑗, then there is no possibility for flow from 

site 𝑗. 

In constraint (6-14), 𝑊 is the set of the number of depots and 𝑆 is the maximum number 

of potential charging station sites. Therefore, 𝑆 − 1 value can be the number of other 

potential sites rather than site 𝑗. This value is the maximum flow through site 𝑗. Constraint 

(6-14) indicates that if a charging station is to be allocated at site 𝑗, then the outflow from 

site 𝑗 to the sites in the set 𝑅𝑗 must be greater by at least one compared to the flow into site 

𝑗 from other stations that site 𝑗 is in their 𝑅 set. Also, constraint (6-14) indicates that if no 

charging station is to be allocated at potential site 𝑗, then there is no need for outflow as the 

outflow should go to another charging station site from the set 𝑅𝑗. These concepts are 

applied to all potential charging stations except the depot(s). Constraint (6-15) makes an 

exception for the root node, fixed at the depot(s), allowing it to have outflow less than the 

inflow. 

Constraint (6-16) ensures that the depots’ locations are always selected as predefined 

charging stations. Constraints (6-17) and (6-18) illustrate that the variables �̅�𝑖 and �̅�𝑗 are 
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binary for all values of 𝑖 and 𝑗 respectively. Constraint (6-19) imposes the nonnegative 

integrity on the variable 𝑧�̅�𝑗′ for all 𝑗, 𝑗′. 

6.4.7 Solution Algorithm 

Multi-objective programming (MOP) is considered a multi-objective integer linear 

problem (MOILP) when all variables are integer, and both the objectives and the constraints 

functions are linear. The integer variables can either be binary or take a general integer 

value. The proposed model in this study is formulated as a MOILP and outlined in 

Appendix II along with the main steps of the RI-SHOT adopted from (El-sobky et al., 2018) 

with the Gurobi solver (Appendix A2 – Algorithm 1).   

6.5 Digital Twin Model Construction  

Utilizing the discussed methods, we follow a five-step sequential process to generate a 

digital-twin of the case study. In the first step, we process system input data, which includes 

the LiDAR city model and UAV central warehouse and delivery destinations (the O-D 

Matrix). Given the highly detailed nature of city models, processing a large-scale 3D model 

with acceptable precision poses significant computational challenges (Elsayed and 

Mohamed, 2020a). However, 3D simulations (rather than the traditional 2D adopted in the 

literature) are crucial to eliminating significant discrepancies in energy demand considering 

a full-scale autonomous UAV operation. 

Second, for the city airspace planning, the vector data from the 3D GIS model is used 

for alignment, digital surface model (DSM) is imported and overlaid to the open  street  map 

(OSM). Acting as the base map for the 3D model, the 3D GIS model includes exact real-

world data layers like streets, NFZs, usage functions, and property outlines (Figure 6-3 A). 
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Then, detailed vertical structures including façade morphology are imported, aligned, 

scaled, and geo-referenced to the base simulation model using the municipal 3D open-data 

environment (Figure 6-3 B). Finally, the most recent LiDAR data is merged into the model 

for interpolation and updates, this becomes the city’s digital-twin model. 

  

(A) case study city OSM model (B) case study municipality data model 

(contributors, 2021) 
Figure 6-3 Case study digital-twin model generation. 

The LiDAR data are by default raw and characterized by noisy patterns. The noise is 

generated due to calibration errors and the complexity of city elements’ surfaces, therefore 

requiring further processing. Accordingly, we utilize a freeform objects reconstruction 

Poisson algorithm (Kazhdan et al., 2006), which is widely adopted due to its scalability, 

precision, and computational efficiency where it can reconstruct geometrical shapes rapidly 

and with acceptable accuracy (Wang et al., 2018). 

Third, a layer is added for the 3-digit postal code classification for the geo-referencing 

with the latest census population density for trip generation (O-D matrix). Subsequently, 
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the locations are transformed from latitude and longitude format to a Cartesian (𝑥, 𝑦, and 

𝑧) relative coordinates system, which is cross-referenced to the digital-twin model. 

Fourth, we identified utilizable air space. A virtual box is created around the entire 

digital-twin model with the bottom representing the ground surface, and the top 

representing the maximum flight altitude βmax from the respective applicable flight policy. 

A Boolean geometric process subtracts the digital-twin 3D city model after the offsetting 

operation performed at the 𝛿𝑜  offset value from the airspace boundary virtual box to comply 

with the applicable flight regulations/ policies such as the minimum vertical and horizontal 

obstacle clearance distance. The resultant air volume 𝐹 is the UAV motion viable airspace 

for simulations. 

The UAV trajectory generation is performed according to the UAV kinematics. From 

this step, two matrices are generated: demand and charging. To validate our proposed 

energy model, we compare the estimated energy consumption by the model against 

respective realistic consumption from experimental UAV trajectories. In specific, we used 

UAV energy consumption profile (different cruising speeds) data from 1073 real-world 

flight segments. The experimental outdoor tests were completed in moderate winds (up to 

7 m/s) at random orientation to the direction of travel (Stolaroff et al., 2018). However, 

previous studies suggest that large-sized UAVs exhibit fewer discrepancies from the 

utilized energy consumption model with higher wind speeds (Elsayed and Mohamed, 
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2020a). In general, the validation process indicates a high level of accuracy for our 

proposed energy consumption model (Figure 6-4). 

 

Figure 6-4 Experimental verification of calculation model. 

Lastly, hourly solar exposure profiles for 1275 candidate sites meeting the required 

constraints were aggregated into solar harness profiles through a simulation procedure. 

Figure 6-5 illustrates the solar harness profile results for a section of the case study. 

  
(A) annual average solar irradiance (B) hourly electricity generation profiles 

for different BIPV façade geometries (Hachem 

and Elsayed, 2016) 
Figure 6-5 Solar harness profiles for a section of the case study of Toronto. 
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The outcome of the data preparation (base model) is illustrated in Figure 6-6. In this 

base model, the demand distribution points are in green, the potential charging stations are 

in light red, and the daily operation routes of UAVs are in dark red. 

For the case study of Toronto, the daily number of trips simulated is 12532, with a total 

distance traveled of 43,128,000 m. For the entire fleet, the average daily VKT is 3440.62m, 

which is well beyond the expected range of UAVs, at 0.25 and 1.5 miles (~400m and ~ 

3km), respectively. That said, in this case study, the maximum daily VKT is considerably 

greater for the serving fleet (6133.9m (~6.15 km)). However, most vehicle days require 

<2.4854 miles (<4 km) (72%), and nearly all require <3.41754 miles (<5.5 km) (94%). 

On all operation days, UAVs have ample opportunity for depot charging, with an 

average of 13 off-shift dwell hours (7 pm to 8 am) per day. This is scheduled for the entire 

fleet to mitigate operational noise during the nighttime within the city airspace. For 

reference, the first phase of simulations is based on a UAV equivalent to the DJI 600 PRO 

with an arm span of 1.668 m and a weight of 10 kg, with a payload weight of 6 kgs. The 

UAVs are assumed to carry only two batteries with 5700 mAh capacity each, this provides 

a maximum range of ~2 km on a single charge at a maximum flight speed of 65 km/h and 

light wind gust. A full charge takes ~100 minutes for the UAV to add 1.25 miles (~2 km) 

of range charging at standard 100 W.  
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Figure 6-6 Base model simulation for the case study of Toronto. 

Table 6-4 Summary of the base model. 

Parameter Base Model 

Number of Trips (deliveries) 12,532 

Total Distance Traveled (round trip) 43,128,000 m 

Average round distance from depot in VKT (min, max) 3,440.62 (65.81, 6,133.9) m 

6.6 Results 

Without allocating charging facilities to accommodate en-route charging, a significant 

portion of return delivery trips fails. Therefore, in this study, we tested two strategies to 

support stand-alone UAV last-mile delivery service by extending the range and fulfilling 

100% of the demand utilizing UAVs. The first strategy is referred to as ‘grid connected’ 

with uncoordinated WPT en-route charging whenever the State of Charge (SoC) of the 

onboard battery drops below 50%. The charging takes place at the nearest available 

charging station with full dependency on the grid. The second strategy is ‘off-grid 

optimized’, which demonstrates the extent to which the number of charging stations can be 



Mohamed ElSayed  McMaster University 

Ph.D. Thesis  Dept. of Civil Engineering 

312 

reduced by delaying the en-route recharging per UAV to the extent possible (maximum 

>20% SoC) to combine more recharging sessions per station as compared to requiring extra 

charging stations. This strategy maximizes the load for each station and demonstrates the 

potential to generate the demand energy from BIPV. The results of the two strategies are 

presented in Table 6-5. 

Table 6-5 Summary of full-coverage optimization and decarbonization. 

Parameter Grid Connected 
Solar-powered (BIPV 

upgrade) 

Number of Trips (deliveries) 12,532 12,532 

Total Distance Traveled (round trip) 43,128,000 m 45,245,200 m 

Average Round Distance from Depot (min, max) 
3,440.62 (65.81, 6,133.9) 

m 
3,440.62 (65.81, 6,133.9) m 

Total Charging Energy Consumption 808.65 kWh 983.22 kWh 

Total Number of Charging Stations N/A 92 

Total Area of BIPV N/A 50,434 m2 

Total Energy Generation (per floor envelope 

upgrade) 
N/A 20,616.33 kWh 

Total Excess Energy Generation (assuming one-

floor upgrade) 
N/A 19,633.11 kWh 

Total Building Energy Consumption Reduction 

(per floor after upgrade) 
N/A 7,109.26 kWh 

Total GHG emissions 42583.71 g CO2e/ day -1,281,050.44 g CO2e/ day 

Energy Cost (including savings for 30-year life 

cycle) 
1,151,113.27 CAD$ 1,151,113.27 CAD$ 

For the first scenario (grid-connected), the total number of charging stations is not 

optimized since the target here is to assess the lowest GHG emissions. The optimization to 

decrease the total number of charging stations, in this case, would increase the traveled 

distance by UAVs, hence increasing the GHG emissions. The first strategy simulations 

yielded 42583.71 g CO2e of GHG emissions at a total energy consumption of 808.65 kWh 

for the entire daily operations of the case study. 
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For full coverage, the optimal solution yielded 92 stations at a total energy 

consumption of 983.22 kWh for the entire daily operations. This is 21% higher than the 

first strategy due to the added travel distance to accommodate more UAVs on fewer stations 

without compromising the total coverage. Despite the higher UAV energy requirements, 

staggered trips produce lower aggregate peak loads with unmanaged charging (1.18 kW for 

ten UAVs) because fewer UAVs are likely to be at the charging station at any time. The 

optimization strategy ensures full coverage regardless of the simulated O-D trips, any UAV 

trip from one end of the case study area crossing to the other end can ‘hop’ between the 

proposed off-grid charging stations. Hence, eliminating the need for added warehouses and 

distribution depots which further eliminates the associated GHG emissions (Stolaroff et al., 

2018). Figure 6-7 illustrates the coverage air volume represented by semi-transparent 

orange spheres with the respective charging stations at their centers. Under this strategy, 

UAV charging power levels per charge stop vary greatly, 0.03–0.15 kW per vehicle, 
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depending on the trajectory and SoC, but are still in line with that of current off-shelf UAV 

technology.  

 

Figure 6-7 Optimized charging coverage map for the case study of Toronto. 

Furthermore, we developed the Pareto front in Figure 6-8. The lowest point on the 

curve represents the solution with the minimal BIPV cost of the upgrade (14 recharging 

stations) satisfying the minimum coverage threshold (50.024%). The highest point on the 

curve represents the maximum demand coverage of 100% satisfying the maximum 

allocation of charging stations (92 stations). During the iterative solving process, the Pareto 

optimal solutions are illustrated on the curve. Since our priority is to maximize the 
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coverage, we intensified the search within the upper bounds of the solution range. 

 

Figure 6-8 Pareto optimal front. 

6.7 Discussion and Conclusion 

In this study, we started by considering UAV integration in smart sustainable cities to 

achieve the SDGs objectives set out by the UN. While the UAV integration can serve 

multiple purposes, the required charging infrastructure is essential in all cases to extend the 

coverage. For illustration, we explored the potential to realize a fully autonomous last-mile 

(that is, a ≤6.2 mile (≤10 km) operating range) UAV operation coupled with the solar 

charging infrastructure planning optimization. We considered a real-world fleet operation 

in a large metropolitan city and found that the entire system can be served by UAVs with 

en-route charging stations. We simulated 12,532 delivery trips in two scenarios. In the first 

scenario, the UAVs traveled a total distance of 43,128,000 m consuming 808.65 kWh of 

charging energy connected to the local power grid yielding 42583.71 g CO2e per day. Given 

that the UAVs follow a minimum energy trajectory, this result represents the minimal 

energy consumption model for the full demand coverage. The energy consumption cost 

was calculated at current local grid rates amounting to a total of 1,151,113.27 CAD$. 
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We assessed a second scenario by maximizing the demand coverage while minimizing 

the total number of charging stations. However, in this scenario, we proposed upgrading a 

portion of the charging stations’ associated building envelopes with the highest energy 

harness profiles from standard vertical BIPVs. We found that, despite the higher traveled 

distance, the overall energy produced by the BIPVs satisfied the UAV charging 

requirements. Given that partial floor envelope upgrades wouldn’t be aesthetically 

appealing, we only utilize a single floor envelope area of the façade. The surplus energy 

produced combined with the heating and cooling load energy savings from the building 

envelope upgrades both pay back to the initial cost while contributing to omitting 

1,281,050.44 g CO2e per day. 

We conclude that the opportunity for decarbonizing the last-mile delivery operations 

via UAVs depends on the charging network optimization. In general, as the demand 

increases, the energy requirements for charging increase, and extra charging stations are 

required. For cities with carbon-intensive energy mix grids, the benefits of decreasing 

emissions can be compromised, hence, solar charging stations can help mitigate such 

issues. In our case study, we illustrated the benefits associated with the BIPV upgrade as it 

saves approximately 25% of the energy otherwise consumed in building indoor heating and 

cooling processes. In our case study, this amounted to 7,109.26 kWh daily. Furthermore, 

due to the high energy harness profiles from the selected optimal charging stations, an 

energy surplus is utilized or rerouted to the grid. Adding the price of energy saved and the 

price of the energy surplus sold back to the grid along the 30-year life expectancy of the 

BIPV system pays back for the initial upfront cost of the system. Our calculations were 
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conservative (4.86 CAD$/ Watt). However, realistically with larger areas of upgrade the 

prices will be lower making the system even more economically sustainable as compared 

to a grid-connected charging system. 

We observed ample opportunity for a sequential upgrade (Figure 6-9) in the cases 

where the upfront investment is not viable. Decision-makers can start with a partial BIPV 

upgrade (partial UAV coverage/ hybrid truck and UAV delivery system), and as the system 

pays back, further upgrades can be made in the following years. This incremental upgrade 

will help different countries around the world to achieve the UN sustainable development 

goal of making cities and human settlements inclusive, safe, resilient, and sustainable. 

 

Figure 6-9 Pivotal Pareto optimal solutions. 

Lastly, this is the first study to present a dual-energy optimization framework that 

integrates BIPV upgrades to enhance building energy performance, reducing grid energy 

utilization while simultaneously charging UAVs for the entire last-mile operations. Under 

these circumstances, we proved the economic, environmental, and operational benefits of 
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coupling BIPV upgrades with autonomous UAV charging station allocation. Furthermore, 

presenting an independent charging autonomous delivery system that can still operate in 

case of future disruptive events, lockdowns, power grid overloads, or disasters. 

That said, the current study assumed average flight regulations. More future research 

on the impact of airspace regulations on the charging infrastructure. Furthermore, the 

operation was assumed under nominal acceptable flying weather conditions. It is also worth 

noting that results will vary for different cities with varying densities of tall buildings. 

However, the results will be applicable to most metropolitan areas with a similar urban 

structure and daylight levels, only except for a few extreme cases. 
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6.9 Appendix A 

6.9.1 Appendix 1 

The variables are used in a component modeling approach based on the flight forces. The 

thrust 𝑇 demanded is estimated to counter the gravitational force based on the UAV, the 

batteries, and the payload by: 

𝑇 = (𝑚𝑝 + 𝑚𝑈𝐴𝑉 + 𝑚𝐵)𝑔 + 𝐹𝑑                                                 (6-20) 

where 𝑚𝑝, 𝑚𝑈𝐴𝑉 , 𝑚𝐵 are masses of the payload, UAV frame, and battery; 𝑔 is the 

gravitational constant and equals 9.81 (𝑚/𝑠2); and 𝐹𝑑 is the total drag force. In the same 

way, the pitch angle (𝜃) in the steady flight can be calculated by: 

𝜃 = tan−1(
𝐹𝑑

(𝑚𝑝+𝑚𝑈𝐴𝑉+𝑚𝐵)𝑔
)                                    (6-21) 
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The drag force can be calculated integrally by adding the drag force of three 

components: the UAV frame, the payload, and the battery pack. Therefore, the total drag 

force is estimated by: 

𝐹𝑑 =
1

2
𝜌𝑎𝑣𝑎

2(𝐶𝐷
𝑈𝐴𝑉𝐴𝑈𝐴𝑉 + 𝐶𝐷

𝐵𝐴𝐵 + 𝐶𝐷
𝑃𝐴𝑃)                        (6-22) 

where 𝜌𝑎 is the density of air; 𝑣𝑎is the air speed; 𝐴𝑈𝐴𝑉, 𝐴𝐵, 𝐴𝑃 are the projected area 

(perpendicular to the ground UAV speed 𝑣) of the UAV frame, payload, and battery, 

respectively ; 𝐶𝐷
𝑈𝐴𝑉, 𝐶𝐷

𝐵, 𝐶𝐷
𝑃 are the drag force coefficient of the UAV frame, payload, and 

battery, respectively. The drag constants 𝐶𝐷
𝐵and 𝐶𝐷

𝑃 are taken from the literature for suitable 

geometrics. To calculate the drag coefficient of the UAV frame 𝐶𝐷
𝑈𝐴𝑉, we utilize the pitch 

angle 𝜃 and the motion vector perpendicular area of the loaded UAV in: 

𝐶𝐷
𝑈𝐴𝑉 =

2𝑚𝑈𝐴𝑉.𝑔.tan (𝜃)

𝜌𝑎𝑣𝑎
2𝐴𝑈𝐴𝑉

                                                         (6-23) 

The power consumption of forwarding motion 𝑃𝑐 is calculated based on UAV velocity 

𝑣 and the angle of air attack 𝜃 updated through the simulation with each timestep:   

𝑃𝑐 = 𝑇(𝑣 sin(𝜃) + �̂�)                                             (6-24) 

where �̂�  is the induced velocity required for a specific thrust and can be obtained by: 

�̂� =
(𝑚𝑝+𝑚𝑈𝐴𝑉+𝑚𝐵)𝑔

2πρa𝑁𝑟𝑜𝑅𝑟𝑜
2 √(𝑣𝑎𝐶𝑜𝑠(𝜃 ))

2
+(𝑣𝑎 sin(𝜃)+�̂�)2

                                                     (6-25) 

where 𝑁𝑟𝑜is the number of UAV rotors (four in this case of a quadrotor UAV); 𝑅𝑟𝑜is the 

radius of each rotor blade. 

Finally, the energy consumption 𝐸𝑐  is based on the conservation of momentum law 

(Hoffmann et al., 2007) as follows: 
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𝐸𝑐 =
𝑃𝑐𝑑𝑡𝑟

𝜂𝑣
                                                                (6-26) 

where 𝜂 is the Battery-To-Propeller (BTP) and motor power transfer efficiency; 𝑑𝑡𝑟 is the 

trajectory length. When the UAV is at a hovering idle air position (e.g., 𝑣𝑎 = 0), the UAV 

velocity 𝑣 will equal the loft velocity 𝑣𝐿. 

While the model allows motion in six degrees of freedom (6DOF), lateral motion is 

limited to preserve the overall flight stability and payload integrity. The total energy 

consumption 𝐸𝑐
𝑇 in each charging station can be calculated per simulation timestep for the 

total number of visiting UAVs 𝑀 by: 

𝐸𝑐
𝑇 = 𝑓𝑘𝑊ℎ ∑ 𝐸𝑐

𝑚𝑀
𝑚=1                                               (6-27) 

where 𝐸𝑐
𝑚is the energy required by the UAV 𝑚 for charging per portion of the trip upon 

arrival to the charging station; 𝑓𝑘𝑊ℎis a conversion factor from Joules to kWh (𝑓𝑘𝑊ℎ =

1

3.6×106). Assuming UAVs serve a single customer per trip, the mass of the UAV is 

determined by the model, and the UAV is assumed to be fully loaded at the maximum 

allowable limit for on-going flights, while it is assumed to return empty to the depot. 

6.9.2 Appendix 2 – Optimization model 

The model can be formulated as the following MOP: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒   F(𝐱) =[𝑓1(𝐱), 𝑓2(𝐱)],                                    (6-28) 

subject to    𝐱 ∈ 𝐹𝑅, 

where 𝐱 = {�̅�, �̅�, 𝑧̅} is the feasible solution, F(𝐱) is the objective space from equations (6-

8) and (6-9), 𝑓1(𝐱) = −𝑓1̅(𝐱), and 𝐹𝑅 is a bounded set of feasible solutions constructed by 

the Constraints (6-10)-(6-19).  
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As the objectives are conflicting, it is hard to optimize two objective functions 

simultaneously (Liu et al., 2020b). Unlike single-objective optimization problems, multi-

objective problems present a possibility of an uncountable set of solutions. Thus, the Pareto 

dominance concept is illustrated to obtain a set of Pareto optimal solutions. 

Solution 𝐱 dominates solution 𝐲 if ∀�̂� ∈ {1,2}, 𝑓�̂�(𝐱) ≤ 𝑓�̂�(𝐲) and ∃�̂� ∈

{1,2}, 𝑓�̂�(𝐱) < 𝑓�̂�(𝐲). A solution 𝐱∗ ∈ 𝐹𝑅 is said to be Pareto optimal solution or non-

dominated solution if there is no other solution 𝐲 ∈ 𝐹𝑅 dominating 𝐱∗. The set collecting 

all the Pareto optimal solutions is called Pareto optimal set, while the set collecting the 

objectives’ values of the Pareto optimal solutions is called Pareto optimal front. 

The main goal of solving MOP is to obtain the Pareto optimal front that corresponds 

to different trade-offs between objectives. To construct the Pareto optimal front, many 

algorithms were developed that could be classified mainly into two categories: classical 

methods and Metaheuristic methods (Liu et al., 2020b). Metaheuristic methods using multi-

objective algorithms can generate a Pareto optimal front by optimizing each objective 

function simultaneously (Liu et al., 2020a). 

In comparison, the classical methods scalarize the MOP into single-objective 

optimization problems (SOPs), and then algorithms for SOPs are used to handle the 

problem. The classical methods are mainly classified into two categories: non-interactive 

and interactive methods (Alves and Clímaco, 2007). This classification depends on the 

participation of the DM in the solution process. The RI-SHOT method (El-sobky et al., 

2018) is one of the interactive techniques. One of the main advantages of this method is its 

ability to vary the threshold values and/or the weights, and as such, several Pareto optimal 
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solutions of the MOP could be generated. The other main advantage is that it does not 

generate weak Pareto optimal solutions in the case of non-convex optimization problems 

(the proposed model case). By using the RI-SHOT method to scalarize the MOILP to 

SOILP, the Gurobi solver is used to handle the obtained SOILP. 

The main steps of the RI-SHOT with the Gurobi solver (Algorithm 1) used to solve 

the proposed model MOILP in Equation (28) are presented as follows: 

Algorithm 1 (RI-SHOT with Gurobi solver Algorithm) 

1.  (Compute 휀�̂� and 휀�̂̅�) 

Solve Problem (6-28) two times: first for  𝑓1(𝐱) only, and second for 𝑓2(𝐱) only 

(separately), as SOILP using Gurobi solver. 휀�̂� equal the minimum value of 

𝑓�̂�(𝐱) and 휀�̂̅� equal the maximum value of 𝑓�̂�(𝐱) in the solved two problems for 

�̂� = 1,2.  

2. (Ask the DM) 

The DM is required to select 휀�̂�𝑔𝑜𝑜𝑑
∈ [휀�̂�, 휀�̂̅�], 휀�̂�𝑏𝑎𝑑

∈ [휀�̂�, 휀�̂̅�] and 휀�̂̃� ∈

[휀�̂�𝑔𝑜𝑜𝑑
, 휀�̂�𝑏𝑎𝑑

] and to provide the number of weight vectors (in each iteration, 

how many Pareto optimal solutions are to be generated).  

3. (Generate the weighting vectors) 

The weighting vectors are generated according to the number of weights 

provided by the DM in Step (2) and using the following equation.  
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               𝑤�̂� =

(

 
 
 
 

𝑊�̂� +
1−�̂�

�̂�
𝑊�̂� 𝑖𝑓  �̂� > 1,

𝑊�̂� 𝑖𝑓  �̂� = 1,

𝑊�̂� +
1−�̂�

2−�̂�
(1 − 𝑊�̂�) 𝑖𝑓  �̂� < 1,

                                             (6-29) 

such that 𝑊�̂� = 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) and �̂� = ∑2
�̂�=1 �̂�𝑊�̂�. 

4. (Solve the I-SHOT problem using the Gurobi solver) 

Solve the following SOILP using Gurobi. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒   F(𝐱) = w1

𝑓1(𝐱)

휀1𝑏𝑎𝑑
− 휀1𝑔𝑜𝑜𝑑

+ w2

𝑓2(𝐱)

휀2𝑏𝑎𝑑
− 휀2𝑔𝑜𝑜𝑑

 

            𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑓�̂�(𝑥) ≤ 휀�̂̃�        ∀�̂� = 1,2                                            (6-30) 

                      𝐱 ∈ 𝐹𝑅 

5. (Stopping test) 

If the DM is satisfied with the generated Pareto optimal solutions set, then the 

algorithm is stopped. 

If the DM is not satisfied with the value of the two objective functions in the 

Pareto optimal solutions set, then go to Step 6. 

If the DM is satisfied with one of the two objective functions in the Pareto optimal 

solutions set, then go to step 7.  

6. (Calculate a new value of 휀�̂�𝑔𝑜𝑜𝑑
 and 휀�̂�𝑏𝑎𝑑

) 

Update 휀�̂�𝑔𝑜𝑜𝑑
 and 휀�̂�𝑏𝑎𝑑

 for �̂� = 1,2 using the following equation: 

휀𝑔𝑜𝑜𝑑
𝑛𝑒𝑤 = 휀�̂�𝑔𝑜𝑜𝑑

+
Δ �̂�

�̂�
                                                                                 (6-31)                  
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휀𝑏𝑎𝑑
𝑛𝑒𝑤 = 휀�̂�𝑏𝑎𝑑

−
Δ �̂�

�̂�
                                                                                                                                    

where Δ휀�̂� = 휀�̂�𝑏𝑎𝑑
− 휀�̂�𝑔𝑜𝑜𝑑

 and �̂� is the reduction factor. Set 휀�̂�𝑔𝑜𝑜𝑑
= 휀�̂�𝑔𝑜𝑜𝑑

𝑛𝑒𝑤  

and 휀�̂�𝑏𝑎𝑑
= 휀�̂�𝑏𝑎𝑑

𝑛𝑒𝑤  and go to Step 4.  

7. (Ask the DM) 

The DM is required to first classify the two objective functions into two classes: 

𝑓�̂�(�̂� ∈ �̂�>) which has an acceptable value,  𝑓�̂�(�̂� ∈ �̂�<), which has an 

unacceptable value in the result set of the Problem (30) in Step 4; second, to 

choose the relaxation parameter �̂� corresponding to the acceptable objective 

value.  

If �̂� ∈ �̂�>, then  휀�̂̃�𝑛𝑒𝑤
= 휀�̂̃� + �̂�,  휀�̂�𝑔𝑜𝑜𝑑

𝑛𝑒𝑤 = 휀�̂�𝑔𝑜𝑜𝑑
,  휀�̂�𝑏𝑎𝑑

𝑛𝑒𝑤 = 휀�̂�𝑏𝑎𝑑
, and 휀�̂̃�

ℎ =

휀�̂̃�𝑛𝑒𝑤
 

Else, update 휀�̂�𝑔𝑜𝑜𝑑
 and 휀�̂�𝑏𝑎𝑑

 using Equations (6-31). 

End 

Set 휀�̂�𝑔𝑜𝑜𝑑
= 휀�̂�𝑔𝑜𝑜𝑑

𝑛𝑒𝑤  and 휀�̂�𝑏𝑎𝑑
= 휀�̂�𝑏𝑎𝑑

𝑛𝑒𝑤 . 

8. (Solve the RI-SHOT problem) 

Solve the following RI-SHOT single objective integer linear programming using 

the Gurobi solver: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒   F(𝐱) = w1

𝑓1(𝐱)

휀1𝑏𝑎𝑑
− 휀1𝑔𝑜𝑜𝑑

+ w2

𝑓2(𝐱)

휀2𝑏𝑎𝑑
− 휀2𝑔𝑜𝑜𝑑

 

            𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑓�̂�(𝑥) ≤ 휀�̂̃�
ℎ             �̂� ∈ �̂�>                                                 (6-32) 

                               𝑓�̂�(𝑥) ≤ 휀�̂̃�𝑚
            �̂� ∈ �̂�< 
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                      𝐱 ∈ 𝐹𝑅 

where 휀�̂̃�𝑚
= 𝑓�̂�(𝐱) for �̂� ∈ �̂�< and 휀�̂̃� = [휀�̂̃�

ℎ, 휀�̂̃�𝑚
]. Go to Step 5. 

Repeat until the DM is satisfied with the proper Pareto set generated. 
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CHAPTER 7 

7 Summary, Conclusions, and Future Research 

7.1 Summary 

The research presented in this dissertation aimed at informing the autonomous UAV 

delivery system design and optimization through a correlation impact analysis study of 

different design parameters and variables in a digital-twin model replicating real-life 

operations. The suggested models in the literature ignore the variation in different system 

design parameters (the four uncertainties), hence, failing to obtain a realistic stand-alone 

UAV delivery system that can operate in real-life under applicable airspace policies and 

achieve the promised advantages of UAVs. An accurate estimation of UAV performance 

metrics based on all parameters ensures feasible as well as efficient operating decisions for 

full UAV adoption. 

This dissertation investigated the different UAV system design parameters 

sequentially by fixing the other parameters to answer each of the four uncertainties (Figure 

7-1) through: i) proposing a flexible UAV energy consumption model to accurately 

estimate the operational energy consumption via experimentally verified real-world flights, 

ii) assessing the environmental impact of autonomous UAV in last-mile operation through 

the quantification of energy/ GHG emissions trade-offs across different UAV policies., iii) 

illustrating an open-source framework for wide-scale autonomous UAV simulations 

accounting for externalities (e.g., NFZs and weather updates) via a dynamically updated 

digital-twin model, iv) assessing the significant impact of airspace planning (airspace 

discretization and respective trajectory planning methods) on the overall energy demand of 
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UAVs, and v) assessing the change in charging infrastructure spatial allocation, system 

energy demand, and their trade-offs across different UAV policies for full coverage.

 

Figure 7-1 Research investigations accomplished. 

To study the UAV system uncertainties, the research utilized several datasets 

modelling real-world UAV operations. First, to model the operational environment, a real-

time 3D geospatial mining framework for LiDAR data was developed to create a 

dynamically updated digital-twin model. This model processed the LiDAR data provided 

by the city of Toronto and enabled the identification of viable airspace volumes in a real-

world replica of the operational environment. Second, the research utilizes the demographic 

census data provided by Statistics Canada for the city of Toronto and the parcel demand 

data provided by Canada Post to generate real-word delivery demand data, full-day parcel-

delivery operations of a three-digit postal code area in both urban and rural contexts. Third, 
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the research synthesized the international UAV flight regulations and classified them into 

three groups representing varying degrees of policy strictness to simulate all possible 

operational policies. 

In order to fully understand the intertwined impacts of the four uncertainties, the work 

presented in this dissertation utilized a flexible UAV energy consumption model to 

accurately estimate the operational energy consumption via experimentally verified real-

world flights. First, the impact of airspace policies on UAV energy consumption was 

quantified, debunking the operational UAV energy consumption uncertainty in the 

literature due to ignoring airspace regulations or the utilization of assumed UAV kinematic 

models. Based on these findings, the research quantifies the impact of airspace 

discretization on UAV energy consumption by comparing Cartesian and segmental 

methods. The results revealed the discretization uncertainty. Thereafter, the energy-optimal 

UAV trajectory generation was simulated under different policies to quantify the impact on 

the charging infrastructure network to explain the charging infrastructure uncertainty. 

Additionally, the research developed the robust Skyroutes algorithm that allows 

autonomous AAM operation within civil airspace accommodating heterogeneous sizes, 

types, and speeds of UAV fleets while ensuring abidance to respective airspace regulations, 

maximizing airspace capacity, and optimizing UAV traffic. The research concludes and 

builds on the proposed robust Skyroutes algorithm by proposing a zero-emission optimal 

charging station allocation framework via solar BIPV associated-building retrofit achieving 

full city coverage and complete independence from the utility grid in Toronto, Ontario. 

7.2 Conclusions and contributions 
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The research presented in this dissertation provides a complete and comprehensive 

framework that can be applied to any urban or rural context to design an optimal stand-

alone autonomous UAV delivery system including the charging infrastructure and allowing 

multiple integration avenues. Furthermore, the work represents a multi-faceted assessment 

tool for developing adequate airspace utilization policies tailored to optimize efficiency, 

reduce costs, and ensure safety. 

7.2.1 Conclusions and contributions from Chapter 2 

The research, to the best of the authors’ knowledge, is the first in the UAV literature to 

precisely assess the real-world impact of UAV flight regulations and policies on the energy 

demand, operation viability, and CO2e emissions of UAVs last-mile transport operations in 

urban and rural contexts (i.e., Objective 2). The research proposed a flexible UAV energy 

consumption model to accurately estimate the operational energy consumption via 

experimentally verified real-world flights and compared the UAV emissions for the same 

operation against diesel and electric ground modes of delivery (i.e., Objective 1). 

• In general, this study's findings support the hypothesis that UAV utilization in 

first/last-mile transportation operations can significantly reduce operational GHG 

emissions, even under strict aviation regulations. 

• Together, transportation electrification and UAV integration would indeed help 

with the reduction target to stay within the 1.5°C or 2°C warming thresholds, which 

has been coined by scientists as key to the future safety of the planet.  

• For urban contexts, flight regulations impacted the UAV operation significantly. 

Strict regulations lead to isolated urban areas or patches of the service zones that 
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become inaccessible through the air due to the restrictions of proximity to public 

property or buildings. 

• In viable missions, the UAV flight path increases significantly to travel around 

inaccessible urban canyons and obstacles, which leads to increased CO2e emissions 

up to 400% compared to lean regulations.  

• The flight path geometry contributes to the flying velocity, hence, decreasing the 

overall energy consumed per distance travelled.  

• Strict regulations add an additional limitation to the UAV service range and require 

additional warehouses 

• For rural contexts, flight regulations have limited to no impact on the UAV 

operation due to the rarity of obstacles or public property, leading to only a lengthier 

VTOL, which has a limited impact on the overall flight emissions. 

• Compared to ground delivery, real-world data simulations show that UAVs are 

averaging 1000-fold more CO2e efficient than diesel ground delivery modes. And 

only around 30% more efficient in case of electric ground delivery modes under 

some conditions. 

• UAVs realize the advantage of decreasing congestion caused by traditional ground 

delivery and shifting the tailpipe emissions and associated pollution impacts from 

the residential contexts to remote power generation plants. 

• In general, UAVs have the upper edge in lifecycle emissions compared to vans, 

where UAVs do not require road and infrastructure maintenance. 
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• All system decisions need to be simulated on large-scale operations to quantify the 

trade-offs between public and payload safety, GHG emissions, system 

requirements, and delivery speed. For instance, choosing a strict flight regulation 

would allow higher safety and acceptable GHG emission improvements. However, 

it will significantly increase extra warehousing requirements. For instance, in 

almost all cases with failed deliveries, an added warehouse or charging depot along 

the route would result in doubling the range, hence, successful missions. As the 

results show a failure of 75% in the case of strict regulations, this means an estimate 

of two extra warehouses for the study area, i.e., a 200% increase in warehousing. 

7.2.2 Conclusions and contributions from Chapter 3 

The research presented a novel simulation-based framework to precisely assess the real-

world impact of civil airspace discretization on the energy demand of UAVs in 

transportation operations in dense urban contexts (i.e., Objectives 3 & 4). Furthermore, the 

study compared the characteristics of converged trajectories in correlation to the overall 

energy consumption and quality of the solution. Unlike previous attempts in the literature, 

the proposed framework integrated all the four subdomains impacting the UAV design 

parameters in a single model. These include applicable airspace policies, kinematics, 

autonomy, and externalities. 

• In general, the results show that realizing the energy efficiency benefits of a fully 

autonomous UAV operation is highly sensitive to airspace discretization. 

• The digital-twin integration proved robustness for an accurate trajectory planning 

ability within the framework, specifically where tight urban situations required a 
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highly detailed 3D model for the obstacles to navigate the missions safely while 

allowing comparing a variety of discretization and trajectory planning techniques 

while applying air-space regulations and externalities. 

• For dense urban contexts, airspace discretization impacted the converged UAV 

trajectories significantly. 

• The converged trajectories illustrated a slight trajectory length variation from the 

ESP estimates for Cartesian discretization and a wider variation for the Skyroutes. 

All results show that ESP estimations in the literature would yield inaccurate and 

unrealistic estimates of energy consumption, hence, utilization range. 

• The trajectory length variance failed to give precise predictions for the overall UAV 

energy demand as the flight trajectory geometry determines the active navigational 

velocity, in turn, dictating a change in thrust. For instance, although the converged 

Skyroutes trajectories are on average 25% lengthier than the Dijkstra and Astar 

modified RRTs trajectories, the added length is compensated for with the 

minimized change in thrust yielding up to 50% less overall energy consumption. 

• The Skyroutes solutions show significantly better results compared to the Cartesian-

based solutions (Dijkstra and Astar modified RRTs). The simple geometrical 

configuration of the Skyroutes trajectories gives a uniform solution of straight lines 

which translates into a uniform thrust without the need for excessive maneuvers. 

• The energy consumption variation does not apply to missions executed in less dense 

contexts of the study area. 
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• The optimal airspace design parameters can only be tailored to each study area on 

a case-by-case basis. Due to the sensitivity of the energy performance to the city 

airspace characteristics, a permutation simulation analysis of varying design 

parameters is inevitable to reach the energy-optimal discretization. The proposed 

framework can successfully achieve this goal and serve in the charging 

infrastructure optimization goals. 

• The reduced energy consumption and charging station network would yield a 

significantly extensive coverage and decrease GHG emissions. 

7.2.3 Conclusions and contributions from Chapter 4 

The Chapter presented a novel simulation-based framework to accurately assess the real-

world impact of UAV flight policies and regulations on UAV energy consumption and the 

charging infrastructure allocation to extend the range of UAVs' last-mile transport 

operations in a dense urban context (i.e., Objectives 2, 4, and 5). The study quantified the 

added charging infrastructure demand under different flight policies for full demand 

coverage. 

• UAV utilization in first/last-mile transportation operations is attainable for full 

demand coverage even under strict airspace policies. Several regulative challenges 

must be examined under uncertainty and overcome for wide real-world adoption.   

• Urban obstacles such as buildings and miscellaneous city landscapes prevent UAVs 

from flying in a straight-line path. Moreover, to achieve air traffic safety and 

optimality, UAVs have to maneuver around these obstacles at a safe distance. The 

geometry of the trajectory forces the UAVs to decrease speed, hover, and perform 
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angular kinematic adjustments, which accelerate the depletion of the limited 

onboard battery SoC. This dictates the need for stations to recharge their batteries 

en route to relay UAVs to the next station or destination. 

• The innovative IP model draws on features of several subroutine models to 

formulate the charging station allocation problem, including the obstacle-avoiding 

energy-efficient trajectory optimization, UAV kinematic model, demand generation 

model, and an integrated digital-twin extraction, and policy geofencing simulation 

model. 

• The vast discrepancies presented in the results of this study dictate that, realistically, 

all airspace policy decisions need to be simulated on large-scale real-world 

operations to quantify the trade-offs between public and payload safety, 

infrastructure cost, system requirements, and delivery speed. 

• The chosen airspace policies are highly sensitive to the urban operational context 

and landscape where no unified policy combination will fit as a global solution. For 

instance, a strict flight policy would allow higher safety and energy efficiency 

improvements. However, it will significantly increase charging station 

requirements. 

• Different policies have unique implications on the charging infrastructure; 

maximum and minimum altitude limitations lead to an increase in the total allocated 

charging stations up to 52%, while minimum horizontal clearing distance leads to 

an increase in the total allocated charging stations up to 75%. 
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• The most obvious next step is the evaluation of grid-connected charging stations vs 

off-grid renewable energy sourced charging stations. This was investigated in 

chapter 6. 

7.2.4 Conclusions and contributions from Chapter 5 

The research proposed a novel autonomous AAM system for high-density city centers that 

dynamically discretizes the viable airspace into UAV energy-efficient trajectories while 

minimizing the safety hazards and sound pollution (i.e., Objectives 1 and 6). To the best of 

the authors’ knowledge, this research is the first in the UAV literature to incorporate a 

digital-twin model that expands the functionality beyond airspace capacity assessment to 

test different flight policies and measure the trade-offs between them through interpolating 

LiDAR data and a dual keep-in/ keep-out geofence.  

• In the hypothetical case of a complex urban scenario, we demonstrated that the 

digital-twin model is crucial for the precision and safety of pre-planned UAV 

trajectories. The application of the dynamic meshing method in digital-twin models 

shows the agility of capturing urban details, where building protrusions, setbacks, 

construction tools (such as cranes), and other architectural features such as street 

vegetation and landscape elements within the urban setting are taken into 

consideration. This allows the solving algorithm to diminish collision chances and 

relieve the reliance on onboard sensors. Also, utilize tight spacing within the study 

area while avoiding the probability of algorithm’s solution errors that could cause 

obstacle collisions. 
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• The proposed Skyroutes algorithm was able to identify narrow urban corridors and 

maximize the airspace capacity by up to a 10% increase in severely restricted 

airspace by connecting isolated airspace volumes through a circle packing sub-

routine as compared to Cartesian discretization, which was unable to tackle this 

challenge efficiently. A case study of Toronto city center, Canada illustrated the 

robust capabilities of the proposed algorithm in a real 3D environment.  

• The Cartesian airspace discretization allows the applicability of a variety of 

trajectory optimization algorithms in a full-mix airspace morphology, while the 

Skyroutes capitalizes on the energy-efficient trajectories and regulates the airspace 

traffic management through combining several airspace morphologies. 

• For Cartesian discretization, on the one hand, a tight mesh (waypoint vertices) 

results in a slower and more complicated graph-solving task due to the significantly 

large size of the solving domain. On the other hand, a wider mesh results in fewer 

available solutions and more unutilized tight spaces within the dense city urban 

form where the spacing between the towers can be less than three meters wide. 

• The Skyroutes discretization is more adaptive and can deliver significantly higher 

airspace usability coupled with more challenging capabilities, especially in highly 

restrictive airspace. It also demonstrated the ability to analyze the flight policy 

combinations in the case study. The precision in estimating the airspace capacity 

showed high sensitivity to the variables, which suggests that the current approach 

that relies on 2D or Cartesian discretization measures needs further evaluation for 

effective urban UAV operations. 
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• The proposed Skyroutes algorithm illustrated the difference in safety and energy 

efficiency of the converged UAV trajectories. For instance, the results show 

significant improvements over Cartesian discretization, the overall energy exerted 

by UAVs to overcome a lengthier trajectory is outweighed by lower torque changes, 

lower energy consumption, and lower noise levels avoiding urban airspace over 

inhabited areas. Furthermore, reduced cross-trajectory proximity and the proposed 

lane change sub-routine allows higher coordination and safety by providing 

alternate routing in case of disruptive events. 

7.2.5 Conclusions and contributions from Chapter 6 

The research investigated the potential to realize a fully autonomous zero-emission last-

mile (that is, a ≤6.2 mile (≤10 km) operating range) UAV operation coupled with the solar 

charging infrastructure planning optimization in the city of Toronto (i.e., Objective 7). This 

research utilized the attained objectives 1 and 6 to consider a real-world fleet operation in 

a large metropolitan city and found that the entire system can be served by UAVs with en-

route charging stations. This research, as far as is known, is the first to present a dual-energy 

optimization framework that integrates BIPV upgrades to enhance building energy 

performance, reducing grid energy utilization while simultaneously charging UAVs for the 

entire last-mile operations.  

• By maximizing the demand coverage while minimizing the total number of 

charging stations coupled with upgrading a portion of the charging stations’ 

associated building envelopes with the highest energy harness profiles from 
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standard vertical BIPVs, we found that, despite the higher traveled distance, the 

overall energy produced by the BIPVs satisfied the UAV charging requirements. 

• The heating and cooling load energy savings from the building envelope upgrades 

both pay back to the initial cost while contributing to omitting 1,281,050.44 g of 

CO2e per day. 

• Due to the high energy harness profiles from the selected optimal charging stations, 

an energy surplus is utilized or rerouted to the grid. Adding the price of energy 

saved and the price of the energy surplus sold back to the grid along the 30-year life 

expectancy of the BIPV system pays back for the initial upfront cost of the system. 

• The opportunity for decarbonizing the last-mile delivery operations via UAVs 

depends on the charging network optimization. For cities with carbon-intensive 

energy mix grids, the benefits of decreasing emissions can be compromised, hence, 

solar charging stations can help mitigate such issues. 

• The BIPV upgrade saves approximately 25% of the energy otherwise consumed in 

building indoor heating and cooling processes which amounted to 7,109.26 kWh 

daily. 

• Our calculations were conservative (4.86 CAD$/ Watt). However, realistically with 

larger areas of upgrade the prices will be lower making the system even more 

economically sustainable as compared to a grid-connected charging system.  

• We observed ample opportunity for a sequential upgrade in the cases where the 

upfront investment is not viable. Decision-makers can start with a partial BIPV 
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upgrade (partial UAV coverage/ hybrid truck and UAV delivery system), and as the 

system pays back, further upgrades can be made in the following years. 

• We proved the economic, environmental, and operational benefits of coupling 

BIPV upgrades with autonomous UAV charging station allocation. Furthermore, 

presenting an independent charging autonomous delivery system that can still 

operate in case of future disruptive events, lockdowns, power grid overloads, or 

disasters. 

7.3 Overall Conclusions  

Stand-alone autonomous UAV systems prove to be a viable solution for first/last-mile 

transportation operations. UAVs can significantly reduce operational GHG emissions, 

costs, delivery time, and road congestion even under strict civil aviation policies. This 

disruptive technology can significantly aid the world in achieving several SDGs along with 

other considerable electrification processes such as in transit and electric vehicles. This will 

allow staying within the 1.5°C or 2°C warming thresholds, which have been coined by 

scientists as key to the future safety of the planet.  

This research illustrated that revising and tailor-fitting flight policies are critical to 

realizing the optimal functionality of UAVs in delivery and other applications without 

sacrificing safety or privacy. Through achieving all the intended research objectives, we 

answered all the energy consumption, airspace discretization, policy, and charging 

infrastructure uncertainties. In a nutshell, utilizing a comprehensive energy consumption 

model coupled with a dynamically-updated digital-twin model to simulate the real-world 

operation of UAVs under applicable airspace policies is essential to draw realistic 
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conclusions on UAV operations and debunk the common misconceptions shrouding the 

real-life integration of UAVs in future cities. 

7.4 Study Limitations 

The research presented in this dissertation contributes to the current UAV literature by 

providing a better understanding of the impacts associated with different system design 

parameters and variables. It is worthwhile to recognize that there are some limitations 

associated with this research.  

First, the research was conducted on specific case studies, however, the results show 

a high sensitivity to the simulation context like the change in building density versus the 

variation between different policies.  

Second, in this study, the proximity of highways or airports was partially ineffective 

based on urban design and geographical location. Second, the energy model did not 

incorporate the impact of heavy winds as a CFD model can be computationally intensive.  

Third, while UAV flight dynamics differ by airframe type, the main variants are 

fixed-wing and multi-rotor, in this research we have only focused on multi-rotors in most 

models. 

7.5 Future Work 

In the light of this contribution, various possible extensions and research questions could 

be raised. And while our study cannot answer all these questions, it is essential to test 

permutations and scenarios to estimate how these different technologies would perform in 

a real-world spatial setting. 
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• In urban cases where strict flight regulations do not allow UAV flights near 

highways or airports, the impact of the urban context should be further investigated 

on a case-to-case basis. More simulation environments (e.g., varying degrees of 

obstacle density) are required to generalize the results of this study. 

• Should UAVs be adopted anywhere regardless of the urban morphology? Or 

instead, utilized in dense urban contexts where a few charging stations can cover 

more demand? 

• The study limitation with CFD affects energy consumption estimates, future studies 

should expand the work under different weather conditions. 

• Future studies should explore the transferability of our findings to fixed-wing 

UAVs. 

• As no UAV airspace policy permutation fits all, revising flight regulations and 

policies is of critical importance to realizing the environmental benefits of UAVs 

in delivery and other applications. The results of this study should be incorporated 

as a possible solution for specific cities or rural areas as part of a further integrated 

decision support system and policy evaluation. If a civil authority seeks a specific 

flight policy that can apply to all cases of diverse geospatial complexity to operate 

autonomous civil UAV flights, it can either be prone to higher risk factors or 

severely restrict the viable airspace and UAV size/type choice. The proposed 

framework can be further developed to function as a planning tool that aids experts, 

air control planners, local authorities, and legislators in designing, evaluating, and 

facilitating appropriate freight and last-mile UAV delivery policy/ plans for cities 
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through a UAV system that will achieve the environmental benefits of GHG 

emissions reduction. 

• Should other special considerations be integrated into the UAV policy decisions? 

More importantly, should we start the real-world application by enforcing leaner 

policies to encourage the early adoption of UAVs or rather stricter policies? Each 

of these alternatives has implications for the cost/economic, environmental, and 

logistical viability of fully autonomous UAV delivery systems. 


