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Lay Abstract 

 

In adults, major depressive disorder (depression) is one of the most common psychiatric 

illnesses. Recent data suggests that there are more than 4.1 million Canadians who currently 

suffer from depression.  Depression is commonly treated using selective serotonin reuptake 

inhibitor (SSRI) antidepressants.  While these antidepressants do help manage depressive 

symptoms, they can also cause unwanted side effects including a build-up of fat in the liver, 

leading to fatty liver disease. The goal of my research is to understand the link between 

SSRI use and the development of fatty liver disease.  This thesis investigates the effects of 

fluoxetine (Prozac®), a commonly used SSRI antidepressant, on molecular pathways that 

can lead to the development of fatty liver disease. An understanding of the molecular 

changes with SSRI treatment may lead to the development of strategies to prevent the 

harmful effects of SSRI antidepressants on the liver. 
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Abstract 

 

This thesis aims to investigate fluoxetine, a widely prescribed SSRI antidepressant, for its 

role in the pathogenesis of NAFLD and uncover novel mechanisms by which it may 

contribute to drug-induced steatosis. We demonstrated that increased hepatic lipid 

accumulation was mediated, in part, via elevated serotonin production.  The inhibition of 

hepatic serotonin synthesis prevented lipid accumulation in fluoxetine-treated hepatocytes 

demonstrating a causal role for serotonin in fluoxetine-induced hepatic steatosis. 

Interestingly, in several studies, serotonin signaling has been shown to impact 

prostaglandin biosynthesis. As prostaglandins have been implicated in the development of 

NAFLD, and fluoxetine has previously been shown to alter the production of 

prostaglandins I assessed the role of prostaglandins in fluoxetine-induced hepatic lipid 

accumulation.  Fluoxetine treatment increased mRNA expression of prostaglandin 

biosynthetic enzymes, increased production of prostaglandin 15-deoxy-Δ12,14PGJ2 (PPARG 

agonist), and elevated PPARG targets involved in fatty acid uptake. Fluoxetine-induced 

lipid accumulation, 15-deoxy-Δ12,14PGJ2 production, and the expression of PPARG 

lipogenic genes were attenuated with a PTGS1 specific inhibitor. Taken together these 

findings suggested that fluoxetine-induced lipid accumulation was mediated via PTGS1 

and its downstream product 15-deoxy-Δ12,14PGJ2. Given that Pparg was elevated following 

fluoxetine treatment, and PPARG regulates microRNA involved in hepatic lipid 

accumulation, my final project focused on PPARG’s role in altered miRNA expression. 

Indeed, fluoxetine treatment increased the miRNA expression of miR-122, an effect that 

was attenuated when fluoxetine treatment was combined with the PPARG antagonist 

GW9662, suggesting a fluoxetine-PPARG-miR122 axis contributing to hepatic steatosis.  

While these studies have only been performed in vitro, an understanding of the molecular 

changes associated with SSRI treatment may lead to the development of strategies to 

prevent the increased risk of adverse metabolic outcomes associated with the use of SSRI 

antidepressants.  
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1 Chapter 1: Introduction 

 

1.1 Major Depressive Disorder (MDD) 

 

In adults, major depressive disorder (MDD) is the most prevalent psychiatric disorder and 

one of the leading causes of disease burden (K. Smith, 2014; World Health Organization, 

2001). The World Health Organization estimates that MDD affects nearly 350 million 

individuals worldwide and that by 2030, depression will have become the world’s leading 

cause of disability as measured by disability-adjusted life years (World Health 

Organization, 2017). MDD is characterized in the Diagnostic and Statistical Manual of 

Mental Disorders-5 (DSM-V) by symptoms of sadness or anhedonia in addition to at least 

five other depressive symptoms including altered eating patterns, apathy, restlessness, 

altered sleeping patterns, fatigue, feelings of worthlessness, excessive or inappropriate 

guilt, diminished ability to concentrate, indecisiveness, and/or recurrent thoughts of death. 

These symptoms must exist for a minimum of two weeks and cause significant impairment 

in functioning (American Psychiatric Association & American Psychiatric Association, 

2013). The lifetime prevalence of MDD is approximately 15%–20%, with the prevalence 

of MDD twice as high for women as it is for men (G. Li et al., 2018). MDD is a significant 

burden to both the individual and society, resulting in impairments in work productivity, 

family responsibilities, and education as well as increased rates of morbidity and mortality 

(Lépine & Briley, 2011; Sheehan et al., 2017; Zuckerman et al., 2018). In Canada, has been 

reported that 11.3% of people aged 15 and older had symptoms consistent with depression, 

but this percentage could be much higher since many cases of depression are 

underdiagnosed by primary health care providers (Government of Canada, 2013; 

VanItallie, 2005). The annual economic burden of mental illness in Canada was estimated 

to be upwards of $50 billion CAD (Government of Canada, 2007; K.-L. Lim et al., 2008). 

Even though MDD has a profound impact on quality of life, after decades of research, the 

pathophysiology of MDD remains elusive (Das et al., 2019; Zuckerman et al., 2018). 

 

1.2 Pathology of Depression & Etiology: The Various Hypotheses of MDD 

  

Despite the substantial prevalence and impact of MDD, its etiology remains uncertain.   The 

familial contribution to MDD is predicted to range between 30–40% while environmental 

factors, such as maternal stress, child abuse, neglect, social stress, prenatal infection, 

traumatic events, and endocrine abnormalities, account for the remaining 60–70% (Fava & 

Kendler, 2000; Horowitz & Zunszain, 2015; Larrieu & Sandi, 2018; Laugharne et al., 2010; 

Y.-L. Lin & Wang, 2014; Nemeroff, 2016; Sperner-Unterweger, 2015; Sullivan et al., 

2000; Takahashi et al., 2018; Verdolini et al., 2015; Weinstock, 2017). In pursuit of 

identifying a candidate gene underlying the pathogenesis of MDD, 1500 publications have 

assessed variants of over 200 gene targets (Kendall et al., 2021). Genes involved in 

monoamine synthesis, such as serotonin  (tryptophan hydroxylase) and dopamine (tyrosine 

hydroxylase), and monoamine metabolism (catechol-O-methyl transferase) were all once 

regarded as potential candidates, however, most of these studies were largely 
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underpowered, did not correct for population stratification, and the reported significance 

levels were not greater than what would be expected by chance (Flint & Kendler, 2014; 

Tamatam et al., 2012). More recently, genome-wide association studies using large sets of 

samples, including thousands of patients with different forms of MDD and tens of 

thousands of patients in meta-analyses, have failed to identify any specific loci responsible 

for a predisposition for MDD (Border et al., 2019; Shadrina et al., 2018; Thompson et al., 

2014; Wray et al., 2018). This led authors to suggest that MDD is a complicated multifactor 

heterogeneous psychiatric disorder influenced by many genes and their interactions in gene 

networks and with the environment (Shadrina et al., 2018). Several theories, including 

hypotheses pertaining to increased inflammation, decreased neurogenesis, hyperactive 

hypothalamus-pituitary-adrenal (HPA) axis or impaired neurotransmission have been 

suggested to explain MDD onset (Bao et al., 2008; Cobb et al., 2013; Hodes et al., 2015; 

Sheline et al., 1996; Swaab et al., 2005).  

 

1.2.1 Elevated Inflammation and MDD 

 

While it is unclear whether inflammation plays a causal role in the development of 

depression, elevated levels of pro-inflammatory cytokines present in the brain and 

circulating in the cerebrospinal fluid of depressed individuals have led to speculation that 

inflammation is involved in the development of MDD (Capuron & Miller, 2011; Felger & 

Lotrich, 2013; Maes, 1999; Martinez et al., 2012).  Pro-inflammatory cytokines produced 

by innate immune cells including interleukin-1, interleukin-6, tumor necrosis factor-

alpha, and acute-phase C-reactive protein (CRP) produced by hepatocytes, have all been 

reported to be elevated in individuals with MDD, nonetheless at levels much lower than 

in individuals diagnosed with an infection or autoimmune disease (Dowlati et al., 2010; 

Howren et al., 2009; Lindqvist et al., 2017). In addition, inflammation can lead to the 

activation of the kynurenine pathway of tryptophan metabolism, resulting in an 

accumulation of neurotoxic metabolites such as quinolinic acid which have been 

hypothesized to contribute to the pathogenesis of MDD (Dantzer et al., 2011; Lindqvist et 

al., 2017; Öztürk et al., 2021) 

 

1.2.2 Hyperactive Hypothalamus–Pituitary–Adrenal axis and MDD 

 

The hypothalamic-pituitary-adrenal (HPA) axis is directly affected by chronic stress and 

perturbations in this axis have been thought to be associated with the development of MDD. 

Dysfunction of the HPA axis has been considered a hallmark of depression, as 

neuroendocrine studies effectively demonstrated HPA axis overactivity in individuals with 

MDD (Mello et al., 2003). The HPA axis regulates the secretion of glucocorticoids, such 

as cortisol; nearly 40-60% of people with MDD have hypercortisolemia (Keller et al., 2017; 

Murphy, 1991). Hypercortisolemia can be caused by chronic stress and involves a 
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prolonged excess of serum levels of cortisol as a result of abnormalities in the HPA axis 

culminating in abnormal glucocorticoid receptor (GR) signaling and glucocorticoid 

resistance (Dean & Keshavan, 2017; Ignácio et al., 2019; Meijer et al., 2018; Nemeroff, 

1996). Furthermore, glucocorticoid neurotoxicity has been implicated in the decreased 

volume in the hippocampus, driving some of the structural and functional changes observed 

in depressed individuals (L. Dai et al., 2019; Sapolsky, 2000). 

 

1.2.3 Neurodegeneration and MDD 

 

The ‘neurotrophin hypothesis’ of depression suggests that decreased levels of neurotrophic 

factors lead to decreased neurogenesis, driving some of the structural and functional 

changes observed in depressed individuals (L. Dai et al., 2019; Sapolsky, 2000). One of the 

major neurotrophic factors, brain-derived neurotrophic factor (BDNF) is involved in 

synaptic plasticity and neurogenesis; both of which are decreased in individuals with MDD 

(Colucci-D’Amato et al., 2020; Duman, 2002; Emon et al., 2020). Some studies have even 

suggested that antidepressants alleviate depressive symptoms via their action on BDNF.  

Indeed there is evidence from animal and clinical studies that have shown that 

antidepressant exposure can upregulate the expression and activity of BDNF in the 

hippocampus (de Foubert et al., 2004; B.-H. Lee & Kim, 2010; Russo-Neustadt et al., 

1999).  Additionally, dysfunctional glutamatergic and GABAergic neurotransmission, as 

observed in individuals with MDD has also been shown to decrease neuronal plasticity, 

along with abnormalities in excitatory and/or inhibitory neurotransmission leading to 

aberrant functional brain connectivity patterns (Barnes et al., 2020; Lener et al., 2017; 

Sarawagi et al., 2021). Neuroimaging studies have suggested that MDD may have a basis 

in abnormal structure, connectivity, or function of certain brain regions (S. Ayyash et al., 

2021; Y.-K. Kim, 2016; World Health Organization, 2017).  However, there remain 

substantial inconsistencies in the literature regarding the role of structural changes in the 

pathophysiology of MDD due to the plethora of different neuroimaging techniques, 

analysis toolboxes, scanning parameters, insufficient sample sizes, and different 

medications that may influence the results (Bani-Fatemi et al., 2018; G. Li et al., 2018). At 

this time, the predominant hypothesis of MDD suggests that impaired monoamine 

neurotransmission plays a central role in the pathophysiology of MDD (Nobis et al., 2020). 

 

1.2.4 Impaired Neurotransmission and MDD and a focus on the ‘Monoamine 

Hypothesis’ 

 

The most widely accepted theory for depression is the monoamine hypothesis of MDD.  In 

this paradigm, it is hypothesized that insufficient levels of monoamine neurotransmitters 

(serotonin, norepinephrine, dopamine) in the central nervous system lead to the 

development of MDD (Boku et al., 2018; Hasler, 2010). Based on this initial theory of 
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depression which was postulated in the 1960s, several antidepressants were designed, 

resulting in the development of tricyclic antidepressants and monoamine reuptake 

inhibitors (Shadrina et al., 2018). The monoamine hypothesis is the most accepted 

hypothesis for the etiology of MDD, a view that has dominated the field for several decades 

(Nagy et al., 2020; Sahli et al., 2016). This hypothesis has been extensively studied, with a 

specific interest in serotonergic signaling (Artigas, 2013; Nestler et al., 2002; Nestler & 

Hyman, 2010) In the brain, serotonin is synthesized from tryptophan and is enzymatically 

converted to 5-hydroxy-L-tryptophan (5-HTP) by the rate-limiting enzyme tryptophan 

hydroxylase 2 (Tph 2) (Fidalgo et al., 2013). 5-HTP is then converted into serotonin and 

stored primarily in vesicles (Lubberink & Eriksson, 2020). At the nerve terminals, serotonin 

stored in synaptic vesicles is released by an exocytotic mechanism into the synaptic cleft 

upon membrane depolarization; this serotonin subsequently binds to the serotonergic 

receptors on the post-synaptic neuron (Del-Bel & De-Miguel, 2018; Leon-Pinzon et al., 

2014). Serotonin in the synaptic cleft is taken back into the presynaptic neuron via the 

serotonin transporter (SERT) and oxidized by monoamine oxidase to its metabolite 5-

hydroxyindoleacetic acid (Ruddick et al., 2006). Individuals with MDD are believed to 

have lower levels of monoamines such as serotonin in the post-synaptic cleft. In this regard, 

antidepressants that target the serotonin transporter (i.e., selective serotonin reuptake 

inhibitors), are believed to reduce the ability of SERT to remove serotonin from the 

synaptic cleft which results in sustained effects of serotonin signaling (D. J. David & 

Gardier, 2016; Torres-Sanchez et al., 2012). 

 

1.3 Antidepressants 

 

Current antidepressant drugs can be divided into five major categories: selective serotonin 

reuptake inhibitors (SSRIs), tricyclic antidepressants (TCAs), serotonin-norepinephrine 

reuptake inhibitors (SNRIs), monoamine oxidase inhibitors (MAOIs), and multimodal 

antidepressants (e.g. bupropion and vortioxetine) (Sangkuhl et al., 2011). These 

medications remain widely prescribed to treat a variety of illnesses including but not limited 

to MDD, anxiety, obsessive-compulsive disorder, eating disorders, sleep problems, 

smoking cessation, and most recently, the antidepressant fluvoxamine has shown efficacy 

in the treatment of COVID-19 (Agius & Bonnici, 2017; Lenze et al., 2020; Reis et al., 2021; 

Shefet et al., 2011; Skånland & Cieślar-Pobuda, 2019; Terevnikov et al., 2017). Although 

these pharmacotherapies all pose potential side effects, this thesis focuses on SSRI 

antidepressants primarily. 

 

1.3.1 SSRI Pharmacotherapeutic Mechanism of Action 

 

Antidepressants that target the serotonin transporter (i.e., selective serotonin reuptake 

inhibitors), reduce the ability of the SERT transporter to remove serotonin from the 
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synaptic cleft (D. J. David & Gardier, 2016). This increases the bioavailability of serotonin 

at the receptors on the postsynaptic neurons, allowing this neurotransmitter to exert its 

mood-alleviating effects (Ruddick et al., 2006). Many patients treated with SSRIs 

experience a lag phase of approximately 6 weeks until clinical efficacy is 

observed(Machado-Vieira et al., 2010). While the molecular mechanisms of SSRI actions 

are slowly being unraveled, there still exists a large gap between our understanding of the 

causes of MDD and the therapeutic effect of SSRIs as this class of antidepressants appears 

to target other pathways thought to be important in MDD, for instance, their role in 

promoting BDNF activity and expression (Joshi, 2018; B.-H. Lee & Kim, 2010, p.). 

 

1.3.2 Prevalence of Antidepressant use 

 

Antidepressants are a pharmacological treatment primarily used for the first-line treatment 

of MDD but have also been a widely prescribed treatment for other psychiatric illnesses 

and off-label uses (Lochmann & Richardson, 2019; Schneider et al., 2019; St-Amour et al., 

2020; Wong et al., 2017). Nearly half of all antidepressant prescriptions were prescribed to 

treat illnesses other than MDD, with off-label prescriptions representing between 15–30% 

of all antidepressant prescriptions (Wong et al., 2016, 2017). This increase in the 

prescription of antidepressants in recent years is a growing trend that is prevalent 

worldwide (Chien et al., 2007; Ilyas & Moncrieff, 2012; National Center for Health 

Statistics (US), 2011; A. J. Smith et al., 2008). Antidepressants are among the top five 

prescription medications used by Canadians, with reports that the prevalence of 

antidepressant use in Canada ranges from 10 to 17% of adults reported using an 

antidepressant medication in the past year (Patten et al., 2015; Samuel et al., 2021; St-

Amour et al., 2020). The prevalence of prescription of these drugs is also on a rise, as  

Canadian Primary Care Sentinel Surveillance Network Study found that between 2006 and 

2012 the incidence of prescription of antidepressants in primary care did not rise, although 

the prevalence of antidepressant prescriptions increased from 9.2% to 12.8% (Morkem et 

al., 2015). Generally, patients with MDD are initially treated with a single antidepressant 

drug; this first-line treatment often involves an SSRI such as fluoxetine (Papakostas et al., 

2018). A cross-sectional analysis of a nationally representative sample of Canadian adults 

found of the available antidepressants, SSRIs were the most commonly used class of 

medication  (St-Amour et al., 2020).  Indeed, SSRIs are the most widely prescribed class 

of antidepressants and in Canada, as in other countries, SSRIs account for more than half 

of all prescriptions for MDD (Samuel et al., 2021; A. J. Smith et al., 2008; Trifirò et al., 

2013; Wemakor et al., 2014). Furthermore, there has been a growing prevalence of SSRI 

usage among Canadian youth evidenced by a 39% increase in SSRI prescriptions written 

by pediatricians between 2005 to 2009, with fluoxetine being the most commonly 

prescribed and recommended drug of its class, accounting for nearly one-third of all SSRI 

use in Canadian youth (D. Lam et al., 2013). Approved by the FDA in 1987, fluoxetine 

(known by the trade name Prozac) rapidly became the most prescribed SSRI and 

psychotropic drug worldwide (Leo, 1996; Pinna, 2015; A. J. Smith et al., 2008; Trifirò et 



Ph.D. Thesis – A. Ayyash; McMaster University – Medical Science 

6 
 

al., 2013; Wemakor et al., 2014). However, recently there has been growing concern 

surrounding the side effects of these antidepressant medications, specifically pertaining to 

the associated metabolic consequences (Khawam et al., 2006). 

 

1.4 Depression and Metabolic Dysfunction 

 

Metabolic syndrome is characterized by abdominal obesity, elevated triglycerides, blood 

pressure, fasting glucose, and low high-density lipoprotein (HDL) cholesterol (Wurtman, 

1993). There exists a bidirectional relationship between MDD and metabolic syndrome, 

however, the factors underlying this association remain to be entirely elucidated (Hasan et 

al., 2015; Kan et al., 2013; Mezuk et al., 2008; A. Pan et al., 2010; A. Pan, Sun, et al., 2012; 

Renn et al., 2011; Rotella & Mannucci, 2013). A meta-analysis using data from both cross-

sectional and cohort studies found that the development of new-onset MDD was highly 

associated with the presence of the metabolic syndrome (OR= 1.27; 95% CI 1.07-1.51) (A. 

Pan, Keum, et al., 2012). It has been suggested that factors related to metabolic syndromes, 

such as obesity-related stigma and increased activation of pro-inflammatory pathways may 

act as contributors to the development of new-onset MDD (Shea et al., 2021).  On the other 

hand, MDD has been independently associated with diabetes mellitus and obesity, 

suggesting that MDD may lead to the development of metabolic syndrome (A. Pan, Keum, 

et al., 2012). A recent systematic review found that affective disorders, including MDD, 

can double the risk of metabolic syndrome (Ghanei Gheshlagh et al., 2016). In addition, 

markers of metabolic syndrome increased with increasing severity of depression, an effect 

which was independent of age, smoking status, socioeconomic factors, and lifestyle 

(Kinder et al., 2004), supporting the hypothesis that there is a biological link between MDD 

and development of metabolic syndrome (Skilton et al., 2007). Links between MDD and 

poor health-related behaviors such as inadequate dietary and exercise habits are among the 

possible mediators of this association (Bica et al., 2017). Given the relationships between 

MDD and metabolic syndrome, it is plausible that similar positive associations may exist 

between MDD and non-alcoholic fatty liver disease (NAFLD), with studies revealing that 

MDD may lead to the development of NAFLD. NAFLD is considered to be the hepatic 

manifestation of metabolic syndrome as there is a strong relationship between hepatic fat 

accumulation and insulin resistance which is thought to be a key driver of metabolic disease 

(Khan et al., 2019; Kitade et al., 2017; K. Lee et al., 2013; Watt et al., 2019),  

 

1.4.1 Non-Alcoholic Fatty Liver Disease (NAFLD) 

 

NAFLD is classified as a range of diseases varying from simple hepatic steatosis (ie excess 

accumulation of triglycerides within hepatocytes) to inflammatory non-alcoholic 

steatohepatitis (NASH) with different levels of fibrosis. These hepatic changes, such as 

steatosis, inflammation, and fibrosis, occur in the absence of other known etiologies of 

https://www.sciencedirect.com/topics/medicine-and-dentistry/non-alcoholic-fatty-liver-disease
https://www.sciencedirect.com/topics/medicine-and-dentistry/metabolic-syndrome
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hepatic injury such as significant alcohol consumption and viral hepatitis (Chalasani et al., 

2012). In accordance with the ‘two-hit’ hypothesis of NAFLD, the progression from a 

healthy liver to steatohepatitis occurs in a stepwise fashion beginning with the development 

of steatosis which leads to hepatic inflammation. As steatosis persists, the increased 

inflammation may develop into inflammation, fibrosis, and even cirrhosis of the liver 

(Purohit et al., 2010). Hepatic steatosis, the initiating step of NAFLD, can be a result of one 

or more mechanisms including diminished fatty acid oxidation; elevated transport of fatty 

acids from the peripheral organs to the liver; elevated de novo fatty acid synthesis, and 

reduced transport of fatty acids from the liver to the general circulation and peripheral 

organs (Cimini et al., 2017; Mallat et al., 2011). An estimated 25% of Canadians currently 

have NAFLD, making it the most common liver disease in Canada (Morris, 2014). With 

the growing prevalence of obesity, the incidence of  NAFLD is also on the rise (Glasgow 

et al., 1997) yet there is a lack of treatment options for this disease (Younossi et al., 2016). 

Examining exogenous compounds’ contributions to hepatic steatosis (‘first hit’ of NAFLD) 

is important as it may prove useful in preventing the subsequent inflammation, fibrosis, and 

even cirrhosis of the liver associated with severe NAFLD (Cholankeril et al., 2017; Mallat 

& Lotersztajn, 2008).  

 

1.4.2 Bidirectional Relationship Between MDD and NAFLD? 

 

Although there appears to be a consistent association between MDD and metabolic 

syndrome, the nature of an association between NAFLD and MDD is less clear.  Some 

studies suggest that there is a strong positive association between NAFLD and MDD 

whereas other studies report no association at all (K. Lee et al., 2013; Q. Ma et al., 2021; 

Tomeno et al., 2015; Weinstein et al., 2011). Some studies suggest NAFLD may be a major 

contributor to MDD (Labenz et al., 2020; Weinstein et al., 2011; J. Xiao et al., 2021; 

Youssef et al., 2013). For example, Weinstein and colleagues utilized clinical and self-

reported data from patients with chronic liver disease and reported that patients with 

NAFLD had a 27.2% prevalence of MDD, a percentage that eclipses the prevalence of 

MDD in the control population (2%−5%) (Weinstein et al., 2011). Using a database of 567 

patients with biopsy-confirmed NAFLD, Youssef et al. examined this association further 

and discovered a dose-dependent relationship between the severity of depressive symptoms 

and the degree of histological severity of NAFLD, after adjustment for potential 

confounding factors (Youssef et al., 2013). This finding was further supported by a recent 

study involving a Korean population, which found a positive relationship between the 

severity of NAFLD and depression, supporting the notion that advanced stages of NAFLD 

potentially had a stronger association with depression, even after adjusting for confounding 

factors(Jung et al., 2019).  A 10-year retrospective follow-up study by Labenz et al. 

assessed the incidence of depression in 19,871 NAFLD patients and discovered a 

significant association between MDD and NAFLD (HR: 1.21, 95% CI: 1.14–1.26, p < 

0.001)(Labenz et al., 2020). The 10-year incidence of MDD after controlling for variables 

including diabetes and obesity was 18.2% in individuals without NAFLD, but 21.2% in 

patients with NAFLD (p < 0.001), suggesting an elevated incidence of MDD in patients 
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with NAFLD independent of these comorbidities (Labenz et al., 2020). Additionally, a 

meta-analysis and systematic review aimed at assessing this association found a 15% 

prevalence of depression in NAFLD patients with a significantly heightened risk of 

development of MDD in patients with NAFLD (OR: 1.29, 95% CI: 1.02–1.64, p = 0.03) 

(J. Xiao et al., 2021). Alternatively, population-based analysis of 10,231 adult patients with 

chronic liver disease, data obtained from the National Health and Nutrition Examination 

Survey (NHANES 2005–2010), found that MDD was not associated with NAFLD after 

controlling for confounders including components metabolic syndrome, which is in 

contrast to the notion of NAFLD being a mediator of MDD (K. Lee et al., 2013). This led 

authors to suggest that other studies that have found this association to have potentially 

been influenced by the difficulty of carefully controlling for other components of metabolic 

syndrome such as type 2 diabetes or obesity (Carta et al., 2007; K. Lee et al., 2013). 

 

While MDD is prevalent in patients with NAFLD, some studies have shown that MDD can 

mediate the onset and development of NAFLD (Shao et al., 2021). Compared with non-

depressed patients, patients with subclinical MDD were 2.1 times more likely to display 

excessive hepatocyte lipid accumulation, while patients with clinical MDD were 3.6 times 

more likely to display excessive hepatocyte lipid accumulation (Youssef et al., 2013). This 

finding was supported by a more recent study conducted on data from U.S. adults between 

2007 to 2016, which found that MDD patients were 1.6 to 2.2 times more likely to have 

NAFLD, relative to those without MDD, further supporting the possibility of MDD 

mediating the progression of NAFLD (D. Kim et al., 2019). Although numerous clinical 

and epidemiological studies have reported a potential association between MDD and 

NAFLD, the psychiatric medications used to treat MDD may also pose an independent risk 

factor for the development of MDD, thus adding a layer of complexity to the MDD-NAFLD 

paradigm (Shea et al., 2021). 

 

1.4.3 Are Antidepressants the missing link between MDD and metabolic disease 

 

It has been well documented in the literature that SSRI use can contribute to the 

development of adverse metabolic outcomes including weight gain, type 2 diabetes, and 

NAFLD, effectively limiting patient adherence to therapy (Deuschle, 2013; Joshi, 2018; A. 

Pan, Sun, et al., 2012; Rubin et al., 2008). While weight gain or loss in MDD can be the 

result of disordered eating, significant weight gain during the acute phase of treatment or 

weight gain that continues despite achieving full remission of depressive symptoms is to 

be expected to be a side effect of antidepressant treatment (Fava & Kendler, 2000). 

Approximately 2% of fatty liver disease cases are estimated to be drug-induced, mostly 

associated with prolonged intake of medications (Farrell, 2002; Pavlik et al., 2019; 

Rabinowich & Shibolet, 2015; Satapathy et al., 2015).  Although the relationship is 

complex, there is a substantial body of evidence suggesting some classes of antidepressants 

may increase weight in a significant proportion of patients, with some suggesting that 

increased antidepressant usage may be a driving force for the obesity pandemic (S. H. Lee 

et al., 2016; Serretti & Mandelli, 2010). While SSRI use has been associated with weight 

https://www.sciencedirect.com/topics/medicine-and-dentistry/nutrition-physiology
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loss during acute treatment, several studies have indicated that long-term use, extending 

beyond six months of treatment, was associated with weight gain (S. H. Lee et al., 2016). 

For example, the Hordaland Health Study analysis demonstrated a link between the use of 

SSRIs and abdominal obesity (OR = 1.40, 95% CI = 1.08 to 1.81) in 461 subjects (Raeder 

et al., 2006; Skilton et al., 2007). Further, nearly half of all patients taking SSRI 

antidepressants experience significant weight gain (Olfson & Marcus, 2010). Additionally, 

studies examining mean weight gains in participants after 6 to 12 months of SSRI therapy 

have shown an average increase of 15 lbs (6.75 kg), 24 lbs (10.80 kg), and  21 lbs (9.45 kg) 

for people taking sertraline,  paroxetine and for fluoxetine respectively (Ferguson, 2001; 

Raeder et al., 2006; Sussman & Ginsberg, 1998). In addition to weight gain, SSRI use has 

been associated with an increased risk of new-onset diabetes. A systematic review and 

meta-analysis found that adults with any use of antidepressants, including SSRIs and TCAs, 

were more likely to develop new-onset diabetes compared with those without any use of 

antidepressants (OR = 1.5, 95% CI 1.08-2.10; HR = 1.19, 95% CI 1.08-1.32) (Bhattacharjee 

et al., 2013; Derijks et al., 2008; Khoza & Barner, 2011; Yoon et al., 2013).   Taken together 

these studies provide a strong basis to support the hypothesis that SSRI use may play a role 

in the development of hallmarks of metabolic syndrome (Deuschle, 2013; Labenz et al., 

2020; A. Pan, Sun, et al., 2012; Rubin et al., 2008).  

 

Similarly, there is increasing evidence to suggest that SSRI antidepressant use is associated 

with an increased risk of NAFLD.  A recent population-based study utilizing The Health 

Improvement Network database, the largest medical database in the United Kingdom, was 

used to identify incident NAFLD (n = 19,053) in patients between 1986 and 2017 (Shaheen 

et al., 2021). After adjusting for age, sex, socio-economic status, and comorbidities, 

Shaheen and colleagues found that antidepressant usage was more common in patients with 

NAFLD (40.8%), relative to the general population (11%) (Abbing-Karahagopian et al., 

2014; Heald et al., 2020; Shaheen et al., 2021). Although there is a paucity of evidence in 

clinical literature, animal and cell culture studies suggest that SSRIs can cause increased 

hepatic steatosis (X.-M. Feng et al., 2012; Xiong et al., 2014). SERT knockout animal 

models are similar to those exposed to SSRIs in that in these models there is attenuated 

serotonin uptake from the synaptic cleft (D. J. David & Gardier, 2016) which is similar to 

the mechanism of action of SSRI antidepressants. Chen et al. demonstrated that SERT 

knockout mice had hepatic steatosis independent of food intake, with pronounced hepatic 

steatosis in 6-month-old SERT knockout mice fed a normal diet (X. Chen et al., 2012). 

Studies have also reported that in vivo administration of SSRIs leads to excess lipid 

accumulation in the liver (Carvalho et al., 2016; Wilde et al., 1993). Similarly, treatment of 

hepatic cell lines with fluoxetine has resulted in an increase in hepatic lipid accumulation 

through the promotion of lipogenesis and reduction of lipolysis (X.-M. Feng et al., 2012; 

Xiong et al., 2014). These findings, among others, prompted further research into the 

mechanism by which SSRIs may be contributing to the pathogenesis of NAFLD (Shaheen 

et al., 2021; Youssef et al., 2013).  
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1.5 Rationale 

 

MDD is a prevalent disorder that is predicted to be the second leading cause of disease 

burden worldwide by the year 2030 (World Health Organization, 2017). Pharmacotherapy 

continues to be the leading treatment for MDD, with SSRIs being the most prescribed 

(Samuel et al., 2021; A. J. Smith et al., 2008; Trifirò et al., 2013; Wemakor et al., 2014). In 

fact, SSRI use has been associated with metabolic dysfunction and NAFLD, an association 

that requires further exploration (Deuschle, 2013; Labenz et al., 2020; A. Pan, Sun, et al., 

2012; Rubin et al., 2008; Shaheen et al., 2021). NAFLD progression occurs in a stepwise 

fashion beginning with the development of steatosis, an excess accumulation of 

triglycerides within hepatocytes. As steatosis persists, it can lead to increased inflammation 

which in its later stages leads to fibrosis, and even cirrhosis of the liver (Purohit et al., 

2010). Current estimates suggest that nearly 25% of Canadians currently suffer from 

NAFLD, making it the most common liver disease in Canada (Morris, 2014). This thesis 

aims to investigate fluoxetine, a widely prescribed SSRI antidepressant, for its role in the 

pathogenesis of NAFLD and uncover novel mechanisms by which it may contribute to 

drug-induced steatosis.  Of particular interest was the effects of fluoxetine on the regulation 

of peripheral serotonin signaling pathways.  Interestingly, serotonin (5-HT) produced in 

peripheral tissues is an important regulator of metabolism and energy storage by promoting 

insulin secretion and hepatic de novo lipogenesis as well as by decreasing lipolysis in 

adipose tissue (Yabut et al., 2019). It has been suggested that SSRIs can inhibit SERT 

function in metabolically active tissues, thus leading to prolonged serotonin effects 

including increased liver gluconeogenesis, decreased hepatic glucose uptake, increased 

hepatocyte lipid storage, and progression of NAFLD (Yabut et al., 2019). Furthermore, 

exposure to SSRIs have previously been shown to disrupt the central serotonergic system 

resulting in elevated neuronal serotonin content in vitro, as well as elevated serotonin 

biosynthetic enzyme activity and protein expression in vivo (S. W. Kim, 2002). Also of 

importance, activation of serotonin receptor signaling pathways may also contribute to 

NAFLD. The 5-HT2 receptors are a receptor family comprised of three subtypes (5-HT2A, 

5-HT2B, 5-HT2C subtypes), all of which are structurally distinct but functionally conserved 

(Julius et al., 1990; Locker et al., 2006). It has recently been shown that peripheral serotonin 

acts via the 2A serotonin receptor (5-HT2A) to up-regulate the expression of lipogenic 

proteins resulting in hepatic steatosis  (Choi et al., 2018; Niture et al., 2018; L. Wang, Fan, 

et al., 2020). Among the subtypes of 5-HT receptors, liver-specific 5-HT2A knockout mice 

showed a reduction in liver size, weight, and lipid accumulation, as indicated by 

histological data, NAFLD activity score, and hepatic triglyceride concentrations, without 

affecting systemic energy homeostasis (Choi et al., 2018) These 5-HT2A receptors are G 

protein-coupled receptors and are recognized for being coupled to the phospholipase A2 

(PLA2) signaling pathway, stimulating the release of the second messenger, arachidonic 

acid (AA) from membrane phospholipids (Felder et al., 1990; Qu et al., 2003). Arachidonic 

acid serves as a precursor to several biologically active acid lipids, including 

prostaglandins, leukotrienes, and thromboxanes (Calder, 2020). The prostaglandins are 

especially important as increased levels of certain prostaglandins are associated with 
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NAFLD (Chung et al., 2014; Kumar et al., 2020; Maciejewska et al., 2020; Qin et al., 2015). 

Some of these prostaglandins, such as 15d-PGJ2 are endogenous PPARG ligands, and 

PPARG acts as a master regulator of lipid homeostasis in hepatocytes. We aimed to further 

explore the influence of fluoxetine on PPARG with a focus on epigenetic mechanisms 

linking PPARG activation to changes in miRNA signatures and mRNA expression of 

lipogenic gene targets. Interestingly, the PPARG pathway has been shown to influence 

several miRNAs, many of which have been shown to be altered by fluoxetine treatment 

and NAFLD (Baudry et al., 2010a; Craig et al., 2014; Launay et al., 2011; Miao et al., 

2018). An understanding of the molecular changes associated with SSRI treatment may 

lead to the development of strategies to prevent the harmful effects of SSRI antidepressants 

with regard to NAFLD. 

 

1.6 Hypothesis 

 

The overall hypothesis of this thesis is that the SSRI fluoxetine induces hepatic lipid 

accumulation. 

 

1.7 Objectives 

 

1.7.1 Objective 1  

 

The first objective of this Ph.D. thesis was to determine whether a model SSRI, fluoxetine, 

could affect hepatic lipid accumulation in vitro via changes in peripheral serotonin 

production. At the time of undertaking this project, there were no studies to our knowledge 

addressing the effects of fluoxetine on hepatic serotonin production. Based on emerging 

evidence suggesting that peripheral serotonin production may be instrumental to the 

pathophysiology of NAFLD, and the use of SSRI antidepressants has been linked to hepatic 

lipid accumulation and NAFLD, we aimed to investigate if the SSRI fluoxetine was linked 

to altered serotonin signaling which may in part, contribute to hepatic lipid accumulation. 

I hypothesized that SSRIs could alter serotonin production and induce changes in hepatic 

lipid accumulation in hepatocytes. 

 

1.7.2 Objective 2 

 

In objective 1, I identified that in hepatic cells exposed to the SSRI antidepressant, 

fluoxetine resulted in increased hepatic lipid accumulation, which may in part be linked to 

elevated serotonin production. Since peripheral serotonin acts via the 5-HT2A receptor, an 

effect has been shown to result in an up-regulation of the expression of lipogenic proteins 

resulting in hepatic steatosis. Activation of the 5-HT2A receptor has been shown to activate 

phospholipase A2 (PLA2) to release the second messenger, arachidonic acid which is a 
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primary substrate for prostaglandin synthesis (Basselin et al., 2005; Choi et al., 2018; Felder 

et al., 1990; Niture et al., 2018; Qu et al., 2003; L. Wang, Fan, et al., 2020). Although 

arachidonic acid serves as a precursor to several biologically active acid lipids, including 

prostaglandins, leukotrienes, and thromboxanes, I explored the prostaglandin pathway 

further due to the literature that implicates prostaglandins in the progression of NAFLD 

(Calder, 2020; Chung et al., 2014; Kumar et al., 2020; Maciejewska et al., 2020; Qin et al., 

2015). ‘15-deoxy-Δ12,14-prostaglandin J2’ (15d-PGJ2) acts as a potent endogenous ligand 

for peroxisome proliferator-activated receptor γ (PPARG) and may play a crucial role in 

the fluoxetine-induced lipid accumulation (Álvarez-Almazán et al., 2017; Fujitani et al., 

2010; J. Li et al., 2019). PPARG serves as a ligand-dependent transcription factor that plays 

a pivotal role in the regulation of lipid utilization and storage, which are likely to contribute 

to the development of NAFLD (Yamazaki et al., 2011). In this chapter, I investigated the 

role of altered prostaglandin signaling in SSRI-induced hepatic lipid accumulation.  I 

hypothesized that SSRIs could alter serotonin production and induce changes in hepatic 

lipid accumulation in hepatocytes. 

 

1.7.3 Objective 3 

 

In objective 2, I demonstrated that SSRI-induced lipid accumulation was mediated by 

prostaglandin-endoperoxide synthase 1 (Ptgs1), which was linked to elevated 15-deoxy-

Δ12,14PGJ2, and resulted in increased expression of Pparg and its downstream targets. My 

next objective explored the influence of fluoxetine exposure on lipid accumulation via a 

miRNA-PPARG pathway. Of particular interest were miRNAs that are altered by 

fluoxetine exposure but are also central to the progression of NAFLD. Fluoxetine has been 

shown to alter miRNA signatures and has recently been implicated in its role in the 

progression of liver steatosis, inflammation, fibrosis, and cirrhosis (Soto-Angona et al., 

2020) We performed a literature review and selected the primary miRNA candidates to 

investigate in fluoxetine treated hepatocytes. Interestingly, miR-122 has been recently 

shown to be regulated by the transcription factor PPARG, which has been shown in our 

earlier chapter to be altered by fluoxetine exposure (A. Ayyash & Holloway, 2021b). In 

this chapter, I further examined the effects of fluoxetine treatment on the expression of 

miRNAs linked to NAFLD. I hypothesized that the ability of fluoxetine to cause lipid 

accumulation in hepatocytes is mediated, in part, via changes in the expression of miRNA 

which regulate lipogenic genes.  
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2 Chapter 2 

Fluoxetine-induced Hepatic Lipid Accumulation is Linked to Elevated Serotonin 

Production. 
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2.1 Abstract  

 

Fluoxetine, a commonly prescribed selective serotonin reuptake inhibitor antidepressant, 

has been shown to increase hepatic lipid accumulation, a key factor in the development of 

non-alcoholic fatty liver disease.  Interestingly, fluoxetine has also been reported to 

increase peripheral serotonin synthesis. As emerging evidence suggests that serotonin may 

be involved in the development of non-alcoholic fatty liver disease we sought to determine 

if fluoxetine-induced hepatic lipid accumulation is mediated via altered serotonin 

production.  Fluoxetine treatment increased lipid accumulation in association with 

increased mRNA expression of tryptophan hydroxylase 1 (Tph1, serotonin biosynthetic 

enzyme) and intracellular serotonin content. Serotonin alone had a similar effect to increase 

lipid accumulation.  Moreover, blocking serotonin synthesis reversed the fluoxetine-

induced increases in lipid accumulation.  Collectively, these data suggest that fluoxetine 

induced lipid accumulation can be mediated, in part, by elevated serotonin production.  

These results suggest a potential therapeutic target to ameliorate the adverse metabolic 

effects of fluoxetine exposure. 

Keywords: Selective Serotonin Reuptake Inhibitor (SSRI), Fluoxetine, Steatosis, Non-

Alcoholic Fatty Liver Disease (NAFLD), de novo Lipogenesis, Serotonin, Metabolic 

Disorder 
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2.2 Introduction: 

 

In Canada, it has been reported that 11.3 % of people aged 15 and older had symptoms 

consistent with depression, with approximately one-third of individuals reported taking 

antidepressants to manage symptoms (Patten et al., 2015). Pharmacotherapy is the leading 

option for treatment and management of moderate to severe depression, with a marked 

increase of nearly 500% in the percentage of adults taking antidepressants between 1988 

and 2008 (National Center for Health Statistics (US), 2011). In particular, selective 

serotonin reuptake inhibitors (SSRIs) have been the leading class of antidepressants drugs 

prescribed in Canada (A. J. Smith et al., 2008). While SSRIs are effective at managing 

depression in many patients, they have also been implicated in the development of adverse 

metabolic outcomes including weight gain, type 2 diabetes and non-alcoholic fatty liver 

disease (NAFLD) (De Long, Stepita, et al., 2015). 

 

NAFLD is characterized by excess accumulation of lipid in the liver in the absence of 

excessive alcohol intake (Chalasani et al., 2012). An estimated 25% of Canadians currently 

suffer from NAFLD, making it the most common liver disease in Canada (Morris, 2014). 

NAFLD has the potential to progress into more serious illnesses such as nonalcoholic 

steatohepatitis (NASH), cirrhosis and fibrosis of the liver, and ultimately, hepatocellular 

carcinoma. This poses a significant clinical and economic burden as the rising rate of 

NAFLD is compounded with the lack of treatment (Younossi et al., 2016). There is now 

considerable evidence that long-term SSRIs use may lead to an increased prevalence of 

metabolic disturbances including the hepatic lipid accumulation which is characteristic of 

NAFLD. Indeed, animal experiments and cell culture studies have demonstrated that 

exposure to the commonly prescribed SSRI antidepressant fluoxetine significantly 

increases hepatic lipid accumulation (De Long et al., 2017; X.-M. Feng et al., 2012; Lu et 

al., 2020; S. Pan et al., 2018a; Xiong et al., 2014). The mechanisms by which fluoxetine 

can induce hepatic lipid accumulation have not been fully elucidated but may involve its 

ability to modulate peripheral serotonin signaling.  Emerging evidence suggests that 

serotonin production in the periphery may be instrumental to the pathophysiology of 

NAFLD (Choi et al., 2018; Crane et al., 2015; Yabut et al., 2019); peripheral serotonin has 

been reported to act via the 2A serotonin receptor (HTR2A) to up-regulate the expression 

of lipogenic proteins and increase hepatic steatosis  (Choi et al., 2018; Niture et al., 2018; 

L. Wang, Fan, et al., 2020). SSRIs including fluoxetine have been shown to increase 

serotonin synthesis in association with an increase in the expression of tryptophan 

hydroxylase 1 (Tph1), the rate-limiting enzyme in the synthesis of peripheral serotonin 

(Abumaria et al., 2007; Baik et al., 2005; S. W. Kim et al., 2002). However, no study has 

ascribed fluoxetine-induced changes in hepatic lipid accumulation to altered serotonin 

production.  Therefore, the goal of this study was to test the hypothesis that fluoxetine 

exposure contributes to excess hepatic lipid accumulation via increased serotonin 

production.  
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2.3 Materials and Methods: 

 

2.3.1 Cell Culture Maintenance and Treatment 

H4-II-E-C3 hepatoma cells were grown in Corning™ Dulbecco's modified Eagle's medium 

(DMEM) (Corning, NY) supplemented with 10 % heat-inactivated fetal bovine serum 

(Hyclone, South Logan, UT), 2% L-glutamine, 100 U/mL penicillin, and 100 μg/mL 

streptomycin (Gibco, Long Island, NY) at 37 °C in a humidified atmosphere of 95 % O2 

and 5 % CO2.  

 

All cell treatments were made in supplemented DMEM as described above. When H4-II-

E-C3 cells reached 80% confluence, they were treated for 6 and 24 h with 10 μM fluoxetine 

hydrochloride (Toronto Research Chemicals, North York, ON) to investigate its effect on 

lipid accumulation and serotonin synthesis (N = 5 independent experiments). Significant 

lipid accumulation has previously been shown in mouse liver at 6 and 24 h following a 

single dose of fluoxetine (10 mg/kg or 25 mg/kg) (Feng et al., 2011). Elevated lipid 

accumulation was also observed in primary mouse hepatocytes following a 24 h exposure 

to 10μM fluoxetine (X.-M. Feng et al., 2012; Xiong et al., 2014).  Based on these results 

we selected 6 h of treatment to determine any early changes in gene expression and 24 h as 

a timepoint where we expected to see lipid accumulation based on prior in vitro studies. 

(X.-M. Feng et al., 2011, 2012; Xiong et al., 2014). Next, cells were treated for 24h with 

500μM of serotonin hydrochloride (MilliporeSigma, Burlington, MA), a dose previously 

shown to promote steatosis in other liver cancer cell lines, to investigate the effects of 

serotonin on lipid accumulation (Niture et al., 2018). To examine the contribution of 

serotonin production in fluoxetine-induced lipid accumulation, cells were treated for 24 h 

with 10μM fluoxetine ± 50 μM para-chlorophenylalanine (4-Chloro-DL-phenylalanine; 

PCPA) (Sigma-Aldrich), an inhibitor of tryptophan hydroxylase, the rate-limiting enzyme 

for serotonin synthesis (Koe & Weissman, 1966) to assess changes in lipid accumulation 

and intracellular serotonin synthesis.  

 

2.3.2 Quantitative Real-Time PCR 

To determine changes in gene expression in each experiment, we assessed steady-state 

mRNA expression of fatty acid synthase [Fasn;  Forward 5′-GAG-TCC-GAG-TCT-GTC-

TCC-CGC-TTG-A, Reverse GCC-GTG-AGG-TTG-CTG-TTG-TCT-GTA-G,], and 

tryptophan hydroxylase 1 [Tph1; Forward 5′-TGG-CTA-TCG-GGA-AGA-CAA-CG-3', 

Reverse 5′-GGA-CGG-CTG-GAA-AAC-CCT-GT-3'] as markers of lipid accumulation 

and serotonin synthesis respectively using real-time quantitative PCR. After treatment, 

cells were washed with phosphate-buffered saline (PBS), and total RNA was extracted 

using TRIzol reagent (Invitrogen, Carlsbad, CA). RNA concentrations were determined 

using the NanoDrop OneTM Microvolume UV-Vis Spectrophotometer (Thermo Scientific, 

Waltham, MA). Complementary DNA (cDNA) was made from 2 μg of mRNA using the 

High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA) as 

per the manufacturer’s instructions. The resulting cDNA was a template for qPCR, which 

was carried out using PerfeCTa® SYBR® Green FastMix® (Quanta Biosciences, 
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Gaithersburg, MD) on the CFX384 Touch™ Real-Time PCR Detection System (Bio-Rad 

Laboratories, Hercules, CA). The PCR cycling settings included polymerase activation 

(95 °C for 10 m), followed by 40 cycles of denaturing (95 °C for 15 s), and 

annealing/elongation (60 °C for 1 m). Levels of gene expression were generated using the 

Ct method (Livak & Schmittgen, 2001) and normalized using the geometric means of 

three reference genes  Glyceraldehyde 3-phosphate dehydrogenase [GAPDH; Forward 5′-

TGG-AGT-CTA-CTG-GCG-TCT TCA-C-3', Reverse 5′-GGC-ATG-GAC-TGT-GGT-

CAT-GA-3'], Beta-actin [ACTB; Forward 5′-CAC-AGC-TGA-GAG-GGA-AAT-3', 

Reverse 5′-TCA-GCA-ATG-CCT-GGG-TAC-3'] and [RPS18; Forward 5′-GCG-ATG-

CGG-CGG-CGT-TAT-3', Reverse 5′-AGA-CTT-TGG-TTT-CCC-GGA-AGC-3']. 

2.3.3 Lipid Staining and Quantification 

To assess the effects of our cell treatments on lipid accumulation, cells were fixed with 

10% formaldehyde followed by staining with Oil Red O (Sigma-Aldrich) solution for 20 

m and then washed with water as previously described (Ramírez-Zacarías, Castro-

Muñozledo, and Kuri-Harcuch, 1992). The samples’ absorbance was measured at 510 nm 

in a plate reader (Synergy™ H4 Hybrid Microplate Reader, BioTek Instruments, Winooski, 

VT, USA). 

 

2.3.4 Intracellular serotonin content 

To determine effects of fluoxetine ± PCPA on intracellular serotonin content, at the end of 

the treatment period cells were pelleted by centrifugation (2000 rpm for 5 m), re-suspended 

in RIPA lysis buffer (15mM Tris–HCl, 1%(v/v)Triton X 100, 0.1% (w/v) SDS, 167 nM 

NaCl, 0.5% (w/v) sodium deoxycholic acid), with Complete Mini EDTA-free protease 

inhibitor cocktail tablets (Roche Applied Science) followed by sonication (Misonix 2000, 

Qsonica LLC., Newtown, CT) at 7Hz for 15s. Intracellular serotonin concentrations were 

determined using a commercially available ELISA kit according to the manufacturer’s 

instructions (Cat# BA E-8900, Serotonin: LDN, Nordhorn, Germany). Absorbance was 

measured at 450 nm (Synergy™ H4 Hybrid Microplate Reader, BioTek Instruments, 

Winooski, VT).   

 

2.3.5 Statistical Analysis 

All statistical analyses were conducted using SigmaPlot (v.11.2, Systat Software, San Jose, 

CA). Data were tested for outliers (Grubbs’ test), normality, and equal variance. 

Comparisons among the two groups were analyzed using Student’s t-tests. Comparisons 

among multiple groups were analyzed using One-Way Analysis of Variance (ANOVA) 

followed by the Bonferroni multiple comparisons test. When normality or equal variance 

failed, the Mann-Whitney Rank Sum Test or Student-Newman-Keuls One-Way ANOVA 

on Ranks were used to determine significance. All data are presented as mean ± SEM and 

were considered significant when P ≤ 0.05. 
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2.4 Results: 

 

After 24 h, cells exposed to 10µM fluoxetine had significantly increased lipid accumulation 

in association with increased mRNA expression of fatty acid synthase, a key marker of de 

novo lipogenesis (Figure 1A & 1B). Treatment with exogenous serotonin for 24 h 

significantly increased both lipid accumulation (Figure 1C) and mRNA expression of Fasn 

(Figure 1D). At this same dose, fluoxetine significantly increased expression of Tph1 at 

both 6 and 24 h (i.e. prior to measurable lipid accumulation) and intracellular serotonin 

synthesis was significantly increased at 24 h (Figure 2) suggesting fluoxetine-induced lipid 

accumulation may be mediated, in part, via increased serotonin production.  To confirm 

that increased serotonin production mediates fluoxetine’s effects on lipid accumulation, 

cells were treated with fluoxetine ± PCPA.  Fluoxetine significantly increased intracellular 

serotonin content and lipid accumulation whereas co-treatment with PCPA attenuated 

fluoxetine-induced increases in serotonin and lipid accumulation (Figure 3).  
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2.5 Discussion: 

 

Depressive disorders are frequently managed with long-term use of SSRI antidepressant 

medications, including the commonly prescribed SSRI fluoxetine.  However, there is 

increasing evidence from clinical studies, animal experiments, and cell culture studies that 

SSRIs can cause perturbations in lipid metabolism which may lead to metabolic disease 

with long term use (X.-M. Feng et al., 2012; Fjukstad et al., 2016; S. Pan et al., 2018a; 

Xiong et al., 2014).  Cell-based studies have shown that exposure to fluoxetine increased 

lipid accumulation in association with increased expression of key components of de novo 

lipogenesis in primary hepatocytes (X.-M. Feng et al., 2012; Xiong et al., 2014). Similarly 

in this study, we observed an increase in lipid accumulation and steady-state mRNA 

expression of fatty acid synthase, a key enzyme in de novo lipogenesis (Maier et al., 2006; 

Rendina & Cheng, 2005), following exposure to fluoxetine.  These results are consistent 

with an observed increase in hepatic triglyceride content and fatty acid synthase protein 

expression in mice treated for four weeks with fluoxetine (Pan et al., 2018) however the 

mechanism(s) remain to be fully elucidated.  

It is well established that exposure to SSRIs can disrupt the central serotonergic system 

resulting in alterations in brain serotonin content (Kroeze et al., 2012).  However, more 

recently exposure to SSRIs has also been shown to alter peripheral serotonin levels (S. W. 

Kim et al., 2002).  Peripheral serotonin, which accounts for 95% of circulating serotonin, 

is primarily synthesized in the gastrointestinal tract, but all of the key components of the 

serotonergic pathway including the plasma membrane serotonin transporter, serotonin 

receptors and tryptophan hydroxylase (Tph1; the rate-limiting enzyme for peripheral 

serotonin production) have been identified in the liver (Choi et al., 2020; Kyritsi et al., 

2020; Y. Nagao et al., 2011).  Importantly, serotonin has been shown to increase lipid 

accumulation and the expression of lipogenic enzymes, including fatty synthase, in hepatic 

cells (Niture et al., 2018). In rats with experimentally induced fatty liver, serum serotonin 

levels were positively correlated with a NAFLD activity score; a similar correlation was 

observed in humans with NAFLD (L. Wang, Fan, et al., 2020). Moreover, pharmacological 

inhibition or genetic deletion of Tph1 in vivo has been reported to reduce hepatic lipid 

accumulation (Crane et al., 2015; Namkung et al., 2018). Therefore, we hypothesized that 

the ability of fluoxetine to increase hepatic lipid accumulation may be mediated in part via 

increased hepatic serotonin production. We observed a significant increase in the 

expression of Tph1 following 6 and 24 h of treatment.  The increase in Tph1 expression at 

6 h preceded any measurable changes in lipid accumulation, however by 24 h there was a 

significant increase in both lipid accumulation and intracellular serotonin content.   

We hypothesized that an increase in serotonin could lead to increased lipid accumulation. 

Indeed, consistent with what has been reported in Hep-G2 and SK-Hep-1 liver cells (Niture 

et al., 2018), treatment of H4-II-E-C3 hepatoma cells with serotonin in this study resulted 

in a significant increase in lipid accumulation and expression of fatty acid synthase. To 

confirm that increased serotonin can be causally related to fluoxetine-induced lipid 

accumulation, we treated cells with PCPA, an inhibitor of serotonin synthesis.  PCPA 
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treatment abolished the fluoxetine-induced increase in serotonin synthesis and lipid 

accumulation suggesting that hepatic serotonin production is mechanistically linked to the 

lipid perturbations reported following fluoxetine exposure.  Interestingly, the tricyclic 

antidepressant amitriptyline has also been reported to increase hepatic steatosis (Kampa et 

al., 2020) and serotonin release (Nagayasu et al., 2013); these data suggest that 

perturbations in serotonin synthesis or signaling may play a role in the metabolic deficits 

associated with the use of tricyclic antidepressants (Dortland et al., 2010). While our study 

suggests that hepatic serotonin production is important for fluoxetine-induced hepatic lipid 

accumulation, Choi et al. (2018) reported that Tph1 was not expressed in murine liver. 

Conversely, Wang et al. (2020) reported Tph1 mRNA expression in the liver but did not 

find any increase in hepatic Tph1 expression in association with increased serum serotonin 

concentrations and elevated hepatic triglycerides in a mouse model of NAFLD.  However, 

as Wang et al. (2020) only measured Tph1 mRNA expression after 50 days on a steatogenic 

diet it is possible that changes in hepatic serotonin synthesis are an earlier event in the 

development of steatosis.  Alternatively, it is possible that the relationship between 

increased serotonin production and fluoxetine-induced lipid accumulation is unique to this 

class of medications and does not extend to diet-induced models of NAFLD.  In the present 

study, we demonstrated that hepatic lipid accumulation following fluoxetine treatment is 

mediated, in part, via increased serotonin production. Although it has been shown that 

serotonin can act through its receptor, HTR2A, to increase hepatic steatosis, there is 

evidence in other cell lines that fluoxetine decreases HTR2A expression (Koura et al., 

2019).  Moreover, fluoxetine has also been reported to inhibit the activity of other 

monoamine transporters, including the dopamine (SLC6A3) and norepinephrine (SLC6A2) 

transporters (Owens et al., 2001; Zwartsen et al., 2017). Dopamine agonists have been 

shown to cause dysregulated hepatic lipid accumulation and both dopamine and 

epinephrine induce an inflammatory response in liver cells (Aninat et al., 2008), a key 

component of NAFLD (Chalasani et al., 2012). Therefore, although our results suggest a 

key role for increased serotonin production underlying fluoxetine-induced hepatic lipid 

accumulation, it may also involve changes in expression of serotonin receptors or signaling 

by other monoamines.  Further studies are warranted to identify targets of intervention for 

the treatment or prevention of NAFLD in people using antidepressants and reduce the 

adverse metabolic consequences associated with this class of medications.  
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2.8 Figures:  

 

Figure 1. (A) Lipid accumulation was determined by Oil Red O staining following 

treatment with fluoxetine, for 6 and 24 h. (B) Relative mRNA expression of enzyme Fas 

following 24 h treatment with 10μM fluoxetine.  ***, P ≤ 0.001 vs. control group calculated 

via Student’s T-test. (C) Lipid accumulation was determined by Oil Red O staining 

following 24 h of treatment with Serotonin (5-HT). *, P ≤ 0.05 vs. control group calculated 

via Student’s T-test. (D) Relative mRNA expression of key hepatic lipogenic enzyme Fas 

following 24 h of treatment with 5-HT. ***, P ≤ 0.001 vs. control group calculated via 

Student’s T-test. All data presented as mean ± SEM, (n = 4-5 independent experiments).  
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Figure 2. (A) Measurement of rate-limiting enzyme Tph1 relative mRNA expression in 

H4-II-E-C3 treated with 10μM fluoxetine, for 6 and 24 h. *, P ≤ 0.05 vs. control group 

calculated via Student’s T-test. (B) Intracellular serotonin was quantified at these same 

doses 24 h post-treatment using commercially available serotonin ELISA as per the 

manufacturer’s instructions (LDN, Nordhorn, Germany). P ≤ 0.05 vs. control group 

calculated via Student’s T-test. All data are represented as mean ± SEM, (n = 4-5 

independent experiments).  
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Figure 3. (A) Lipid accumulation was quantified in H4-II-E-C3 cells treated for 24 h with 

50 μM PCPA, 10 μM Fluoxetine, and co-treated with 50 μM PCPA and 10 μM Fluoxetine. 

Different superscript letters indicate a significant difference P ≤ 0.05 compared to other 

treatment groups. Significance was calculated by a one-way ANOVA, followed by the 

Bonferroni multiple comparisons test. (B) Intracellular serotonin was determined using 

commercially available serotonin ELISA as per the manufacturer’s instructions (LDN, 

Nordhorn, Germany) following 24 h treatment above. Bars with the same superscript are 

not statistically different, whereas different superscript letters indicate a significant 

difference compared to other treatment groups P ≤ 0.05. Statistical significance assessed 

by a Student-Newman-Keuls One-Way ANOVA on Ranks. All data represented as mean 

± SEM, (n = 4-5 independent experiments). 
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3.1 Abstract: 

 

Major depressive disorder and other neuropsychiatric disorders are often managed with 

long-term use of antidepressant medication. Fluoxetine, an SSRI antidepressant, is widely 

used as a first-line treatment for neuropsychiatric disorders. However, fluoxetine has also 

been shown to increase the risk of metabolic diseases such as non-alcoholic fatty liver 

disease. Fluoxetine has been shown to increase hepatic lipid accumulation in vivo and in 

vitro. In addition, fluoxetine has been shown to alter the production of prostaglandins which 

have also been implicated in the development of non‐alcoholic fatty liver disease. The goal 

of this study was to assess the effect of fluoxetine exposure on the prostaglandin 

biosynthetic pathway and lipid accumulation in a hepatic cell line (H4-II-E-C3 cells). 

Fluoxetine treatment increased mRNA expression of prostaglandin biosynthetic enzymes 

(Ptgs1, Ptgs2, Ptgds), PPAR gamma (Pparg), and PPAR gamma downstream targets 

involved in fatty acid uptake (Cd36, Fatp2, and Fatp5) as well as production of 15-deoxy-

Δ12,14PGJ2 a PPAR gamma ligand. The effects of fluoxetine to induce lipid accumulation 

was attenuated with a PTGS1 specific inhibitor (SC-560), whereas inhibition of PTGS2 

had no effect. Moreover, SC-560 attenuated 15-deoxy-Δ12,14PGJ2 production and 

expression of PPAR gamma downstream target genes. Taken together these results suggest 

that fluoxetine-induced lipid abnormalities appear to be mediated via PTGS1 and its 

downstream product 15d-PGJ2 and suggest a novel therapeutic target to prevent some of 

the adverse effects of fluoxetine treatment.  

 

3.2 Short abstract: 

 

The use of SSRI antidepressants has been linked to adverse metabolic outcomes, including 

non-alcoholic fatty liver disease. This study aimed to further investigate the mechanism by 

which the SSRI fluoxetine contributes to elevated hepatic lipid accumulation. Fluoxetine 

treatment caused an increase in 15-deoxy-Δ12,14PGJ2 and mRNA expression of key 

components of the prostaglandin biosynthetic pathway.  Fluoxetine-induced lipid 

accumulation was blocked with the selective Ptgs1 inhibitor, SC-560. Taken together these 

results suggest the altered prostaglandin production is a key mediator of fluoxetine-induced 

lipid accumulation. 
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3.3 Introduction: 

 

Major Depressive Disorder (MDD) is a prevalent and often recurrent illness affecting 

nearly 350 million individuals worldwide and is predicted to be the leading cause of 

disability by 2030  (Longfei et al., 2015; World Health Organization, 2017). A global 

burden of disease study saw a 49.86% percent increase in incident cases of depression 

worldwide from 1990 to 2017 (Q. Liu, He, et al., 2020), with the financial burden of MDD 

in 2010 exceeding USD 210.5 billion in the United States alone (Greenberg et al., 2015; R. 

W. Lam et al., 2016). MDD can be attributed to biochemical, structural, and functional 

abnormalities in the brain (S. Ayyash et al., 2021; Y.-K. Kim, 2016; World Health 

Organization, 2017). In particular,  it has been speculated that MDD results from the 

dysregulation of monoaminergic transmission, with an emphasis on the serotonergic 

systems, a view that has dominated the field of MDD research for the past 60 years 

(Dell’Osso et al., 2016; Sahli et al., 2016) Thus, antidepressants that aim to modulate 

serotonin signaling, which includes selective serotonin reuptake inhibitors (SSRIs) have 

become front-line pharmacotherapies in the treatment of MDD (Joshi, 2018).   

  

While SSRIs such as fluoxetine are efficacious at managing MDD, they have also been 

implicated in the development of adverse metabolic outcomes including weight gain, type 

2 diabetes, and non-alcoholic fatty liver disease (NAFLD) (De Long, Stepita, et al., 2015; 

Deuschle, 2013; A. Pan, Sun, et al., 2012; Rubin et al., 2008). NAFLD is classified as a 

range of diseases varying from simple hepatic steatosis to inflammatory non-alcoholic 

steatohepatitis (NASH) with different levels of fibrosis (Chalasani et al., 2012). These 

illnesses are observed in the absence of other known etiologies of hepatic injury such as 

significant alcohol consumption and viral hepatitis (Chalasani et al., 2012). Steatosis can 

be identified by excess accumulation of triglycerides within hepatocytes. Hepatic steatosis 

can be a result of one or more mechanisms including elevated de novo fatty acid synthesis; 

diminished fatty acid oxidation; elevated transport of fatty acids from the peripheral organs 

to the liver; and reduced transport of fatty acids from the liver to the general circulation and 

peripheral organs (Cimini et al., 2017; Mallat et al., 2011). Animal experiments have shown 

that fluoxetine treatment resulted in a significant increase in hepatic lipid accumulation; a 

hallmark of NAFLD (X.-M. Feng et al., 2012; Lu et al., 2020; Xiong et al., 2014). The 

accumulation of hepatic lipid is often associated with an inflammatory response which 

includes increased expression of the 2-series prostaglandins, a subgroup of eicosanoids, 

which includes PGD2, PGE2, PGF2A, and PGI2 (Weixuan Wang, Zhong, & Guo, 2021).  

 

Prostaglandins are converted from arachidonic acid catalyzed by the rate-limiting enzyme 

prostaglandin-endoperoxide synthase 1 (PTGS1) and prostaglandin-endoperoxide synthase 

2 (PTGS2), also known as cyclooxygenase 1 (COX-1) and cyclooxygenase 2 (COX-2) 

respectively. Interestingly, in a rat model of diet-induced obesity, a PTGS2 selective 

inhibitor suppressed the development of NAFLD (Hsieh et al., 2009; Martín-Sanz et al., 

2017). In contrast, Wang et al. suggested that PTGS1 but not PTGS2 mediates NAFLD 

progression (W. Wang et al., 2018). One of the cyclooxygenase-derived prostaglandins of 
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interest is prostaglandin D2 (PGD2).  The PGD2 metabolite 15-deoxy-Δ12,14PGJ2 (15d-PGJ2) 

functions as a potent endogenous ligand and agonist for peroxisome proliferator-activated 

receptor gamma (PPARG) (Álvarez-Almazán et al., 2017; Forman et al., 1995). In 

hepatocytes, PPARG is a central regulator of lipid metabolism, targeting genes involved in 

de novo lipogenesis and free fatty acid uptake (Skat‐Rørdam et al., 2019); PPARG 

expression was found to be significantly elevated in the liver of obese rats and involved in 

the development of NAFLD (Edvardsson et al., 2006; Gavrilova et al., 2003; Matsusue et 

al., 2008; Pettinelli & Videla, 2011; Schadinger et al., 2005). Importantly the inhibition of 

cyclooxygenase suppressed hepatic steatosis by suppressing the production of 15d-PGJ2 

and the subsequent expression of PPARG (Tsujimoto et al., 2016). While there is a paucity 

of literature examining fluoxetine’s effect on the expression or activity of cyclooxygenase 

enzymes, other SSRIs have been shown to alter the expression and activity of these rate-

limiting enzymes. For example, the SSRI vortioxetine has been shown to inhibit the activity 

of both PTGS1 and PTGS2, while fluvoxamine significantly decreased the expression of 

PTGS2 (Marčec & Likić, 2021; Naji Esfahani et al., 2019; Talmon et al., 2020). Notably, 

The SSRI fluoxetine has been shown to increase the protein expression of PTGS1 and 

PTGS2, elevate the cerebrospinal fluid concentration of 15d-PGJ2 and increase secretion 

of 15d-PGJ2 from raphe serotonergic neurons (Launay et al., 2011a; Salem Sokar et al., 

2016; Simplicio et al., 2015). Therefore, the goal of this study was to test the hypothesis 

that increases in hepatic prostaglandin production underlie increased fluoxetine-induced 

lipid accumulation in vitro. 
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3.4 Materials and Methods:  

 

3.4.1 Cell Culture Maintenance and Treatment 

H4-II-E-C3 hepatoma cells (ATCC CRL-1600, Manassas, VA) were grown in Corning™ 

Dulbecco's modified Eagle's medium (DMEM; Corning, NY) supplemented with 10 % 

fetal bovine serum (Hyclone, South Logan, UT), 2% L-glutamine, 100 U/mL penicillin, 

and 100 μg/mL streptomycin (Gibco, Long Island, NY) at 37 °C in a humidified atmosphere 

of 95 % O2 and 5 % CO2. All cell treatments were made in supplemented DMEM as 

described above. When H4-II-E-C3 cells reached 80% confluence, they were treated with 

10 μM fluoxetine hydrochloride (Toronto Research Chemicals, North York, ON; cat. 

F597100; N = 5 independent experiments) to assess lipid accumulation and involvement of 

the prostaglandin biosynthetic pathway as described below. The 10 μM concentration of 

fluoxetine and 24 h time point used has been shown to result in increased lipid accumulation 

in the H4-II-E-C3 (A. Ayyash & Holloway, 2021a) and primary rat hepatocytes (X.-M. 

Feng et al., 2012; Xiong et al., 2014). 

 

3.4.2 Lipid accumulation 

Following 24 h of fluoxetine treatment cells were fixed with 10% formaldehyde followed 

by staining with Oil Red O (Sigma-Aldrich, St. Louis, MO) solution for 20 m and then 

washed with water as previously described (A. Ayyash & Holloway, 2021a; Ramírez-

Zacarías et al., 1992a). Absorbance was measured at 510 nm in a plate reader (Synergy™ 

H4 Hybrid Microplate Reader, BioTek Instruments, Winooski, VT).  

 

3.4.3 Prostaglandin synthesis and PPAR activation 

Cells were treated for 24 h with 10 μM fluoxetine hydrochloride as described above. We 

assessed changes in the relative mRNA expression of Ptgs1 (encodes prostaglandin-

endoperoxide synthase 1; cyclooxygenase-1; COX1), Ptgs2 (encodes prostaglandin-

endoperoxide synthase 2; cyclooxygenase-2; COX2), Ptgds (encodes prostaglandin D2 

synthase), Pparg, and the downstream PPARG targets involved in fatty acid uptake [cluster 

of differentiation 36 (Cd36), fatty acid transport protein 2 (Fatp2), fatty acid transport 

protein 5 (Fatp5)] using quantitative real-time PCR (Gao et al., 2020; Pettinelli & Videla, 

2011; Videla & Pettinelli, 2012; Yamazaki et al., 2011).  After treatment, cells were washed 

with phosphate-buffered saline (PBS), and total RNA was extracted using TRIzol reagent 

(Invitrogen, Carlsbad, CA). RNA concentrations were determined using the NanoDrop 

OneTM Microvolume UV-Vis Spectrophotometer 10 (Thermo Scientific, Waltham, MA). 

Complementary DNA (cDNA) was made from 2 μg of mRNA using the High Capacity 

cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA) as per the 

manufacturer’s instructions. The resulting cDNA was a template for qPCR, which was 

carried out using PerfeCTa® SYBR® Green FastMix® (Quanta Biosciences, 

Gaithersburg, MD) on the CFX384 Touch™ Real-Time PCR Detection System (Bio-Rad 

Laboratories, Hercules, CA). The PCR cycling settings included polymerase activation (95 

°C for 10 m), followed by 40 cycles of denaturing (95 °C for 15 s), and 

annealing/elongation (60 °C for 1 m). Levels of gene expression were generated using the 

double delta-Ct method (Livak & Schmittgen, 2001) and normalized using the geometric 
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means of two reference genes glyceraldehyde 3-phosphate dehydrogenase (Gapdh) and 

beta-actin (Actb).   

 

3.4.4 Fatty acid uptake 

To determine the effect of fluoxetine on fatty acid uptake, H4-II-E-C3 cells were grown to 

80% confluence, treated for 1 h with 10 μM fluoxetine hydrochloride (Toronto Research 

Chemicals, cat.  F597100) and 0.15 μM insulin (positive control; Sigma-Aldrich, cat. 

I0516). Fatty acid uptake was determined using a commercially available fatty acid uptake 

assay kit according to the manufacturer’s instructions (Biovision, cat. K408-100). (N = 10 

independent experiments). 

 

3.4.5 Does blocking prostaglandin output prevent fluoxetine-induced lipid 

accumulation? 

To determine whether blocking prostaglandin production would influence SSRI-induced 

lipid accumulation, cells were treated with fluoxetine (10 µM) ± indomethacin, a non-

selective inhibitor of both COX isoforms (Raji et al., 2017).  Cells were treated for 24 h 

with the following: 1) Vehicle, 2) indomethacin (50 μM; Sigma-Aldrich, cat. I7378), 3) 

indomethacin +fluoxetine, and 4) fluoxetine. Cells were cultured as described above, and 

indomethacin was added to the treatment wells for 1 h prior to the addition of fluoxetine. 

After 24 h, cells were stained for lipid accumulation using Oil Red O or collected for 

quantitative real-time PCR.  To further elucidate whether changes in hepatic lipid 

accumulation were mediated by PTGS1 or PTGS2, cells were treated with either the 

selective PTGS1 inhibitor, SC-560 (Cayman Chemical, Ann Arbor, MI; cat. 70340) or the 

selective PTGS2 inhibitor NS-398 (Cayman Chemical, cat. 70590). Cells were treated for 

24 h with either 1) Vehicle, 2) SC-560 (1 μM), 3) SC-560 +fluoxetine and 4) fluoxetine or 

1) Vehicle, 2) NS-398 (10 µM), 3) NS-398+fluoxetine and 4) fluoxetine. For all treatments 

with an inhibitor,  the inhibitor was added to the respective wells for 1 h prior to the addition 

of fluoxetine. After 24 h, cells were stained for lipid accumulation using Oil Red O as 

described above.  

 

3.4.6 Mechanisms of PTGS1 inhibition on fluoxetine-induced lipid accumulation 

Because the PTGS1 but not PTGS2 inhibitor was able to prevent fluoxetine-induced lipid 

accumulation, we treated cells with fluoxetine ± SC-560 for 24 h using the same protocol 

described above.  After 24 h, media was saved for 15-deoxy-Δ12,14-PGJ2 quantification 

(as described below) and cells were collected for quantitative real-time PCR of genes 

involved in prostaglandin production [cyclooxygenase-1 (Ptgs1), cyclooxygenase-2 

(Ptgs2), prostaglandin D2 synthase (Ptgds)], regulation of hepatic lipid metabolism 

[peroxisome proliferator-activated receptor gamma (Pparg)], and fatty acid uptake [cluster 

of differentiation 36 (Cd36), fatty acid transport protein 2 (Fatp2), fatty acid transport 

protein 5 (Fatp5)]. Primer sequences are supplied in Table 1. 
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3.4.7 15-deoxy-Δ12,14-PGJ2 ELISA 

The concentration of prostaglandin 15-deoxy-Δ12,14-PGJ2 was quantified from media 

collected 24 h post-treatment with fluoxetine ± SC-560 using a commercial ELISA per the 

manufacturer's protocol (Enzo Life Sciences, Switzerland; cat. ADI-900-023). 

 

3.4.8 Statistical Analysis  

All statistical analyses were conducted using SigmaPlot (v.11.2, Systat Software, San Jose, 

CA). Data were tested for outliers (Grubbs’ test), normality, and equal variance. 

Comparisons among the two groups were analyzed using Student’s t-tests. Comparisons 

among multiple groups were analyzed using One-Way Analysis of Variance (ANOVA) 

followed by the Bonferroni multiple comparisons test. When normality or equal variance 

failed, the Mann-Whitney Rank Sum Test or Student-Newman-Keuls One-Way ANOVA 

on Ranks were used to determine significance. All data are presented as mean ± SEM and 

were considered significant when P ≤ 0.05 

 

3.5 Results: 

 

3.5.1 Lipid accumulation, prostaglandin biosynthetic pathway, and fatty acid uptake 

 

After 24 h, cells exposed to 10 µM fluoxetine had significantly increased lipid 

accumulation (Figure 1). We also observed a significant increase in expression of Ptgs1, 

Ptgs2, Ptgds, and Pparg (Figure 3). Treatment with 10 µM fluoxetine resulted in a 

significant increase in fatty acid uptake following 1 h of treatment (Figure 2).  

 

3.5.2 Role of prostaglandin synthesis on fluoxetine-induced lipid accumulation 

 

Given the elevated mRNA expression of Ptgs1 and Ptgs2 observed (Figure 3), we aimed 

to elucidate whether changes in hepatic lipid accumulation were related to the elevated 

prostaglandin synthesis. Cells were treated with three different inhibitors for PTGS1 and/or 

PTGS2. We first used a non-selective PTGS1 and PTGS2 inhibitor, indomethacin, and 

found that indomethacin treatment attenuated hepatocyte lipid accumulation (Figure 4A). 

Similarly, the selective PTGS1 inhibitor, SC-560 also attenuated fluoxetine-induced lipid 

accumulation (Figure 4C) whereas the selective PTGS2 inhibitor, NS-398 did not reduce 

fluoxetine-induced increases in lipid accumulation (Figure 4B). These findings suggested 

that PTGS1 inhibition was central to attenuating fluoxetine-induced lipid accumulation in 

these cells. Next, we treated cells with the Selective PTGS1 inhibitor, SC-560 with and 

without fluoxetine as described above to assess 15d-PGJ2 output and PPARG downstream 

target genes.  Fluoxetine treatment caused a significant increase in 15d-PGJ2 output; an 

effect which was attenuated by the addition of SC-560 (Figure 5 A). The expression of 

PTGDS, PPARG, and downstream PPARG targets involved in fatty acid uptake was also 

attenuated with the combined treatment with SC-560 and fluoxetine (Figure 5 B-F).  
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3.6 Discussion: 

 

MDD affects nearly 16% of the global population, and the prevalence continues to rise 

(Kessler et al., 2003; Q. Liu, He, et al., 2020). SSRI antidepressants are commonly used for 

the treatment of MDD in children, adolescents, and adults (DeFilippis & Wagner, 2014; 

Joshi, 2018). In particular, fluoxetine remains one of the most commonly prescribed and 

recommended drugs in its class (Bachmann et al., 2016; D. Lam et al., 2013; Rossi et al., 

2004). However, there is now considerable evidence that long-term treatment with SSRIs 

leads to an increased prevalence of metabolic disturbances (Skilton et al., 2007). Long‐term 

SSRI use is associated with increased weight gain, dyslipidemia, and new‐onset type 2 

diabetes (Ferguson, 2001; Jerrell, 2010; Raeder et al., 2006; Sussman & Ginsberg, 1998; 

Yoon et al., 2013). Moreover, animal and cell culture experiments have shown that 

fluoxetine exposure increases hepatic triglyceride content and lipid accumulation; 

hallmarks of NAFLD (A. Ayyash & Holloway, 2021a; De Long, Barry, et al., 2015; X.-M. 

Feng et al., 2012; Lu et al., 2020; S. Pan et al., 2018b; Xiong et al., 2014). While the 

mechanisms by which fluoxetine leads to hepatic steatosis are not fully elucidated, there is 

evidence that altered prostaglandin production may be a key mediator of fluoxetine-induced 

lipid accumulation. 

Both prostaglandin biosynthetic enzymes (i.e. PTGS1 and PTGS2) have been identified as 

having an important role in the development of NAFLD, as increased prostaglandin 

production contributes to the dysregulation of lipid metabolism (Feingold et al., 1992; 

Forman et al., 1995; Hsieh et al., 2009; W. Wang et al., 2018; Yokota et al., 2002). Indeed, 

the 2-series prostaglandins, PGD2, PGE2, and PGF2A, have been shown to play an important 

role in hepatic lipid accumulation and inflammatory processes involved in NAFLD 

(Björnsson et al., 1992; Henkel et al., 2012; Nassir et al., 2013; Pérez et al., 2006; W. Wang 

et al., 2021). These prostaglandins act to substantially diminish the secretion of very-low-

density lipoprotein apolipoprotein B (VLDL-apoB), effectively promoting steatosis in 

primary hepatocytes (Björnsson et al., 1992; Nassir et al., 2013; Pérez et al., 2006). 

Diminished VLDL-apoB leads to impaired cellular triglyceride recycling and decreased 

transport of triacylglycerol and cholesterol to the circulation, contributing to hepatic 

steatosis (Pérez et al., 2006; M. Yang et al., 2020). Furthermore, PGE2 acts synergistically 

with insulin to increase the incorporation of glucose into triglycerides in hepatocytes  

(Najjar & Perdomo, 2019; Pérez et al., 2006). In this study, we have shown that fluoxetine 

induced hepatic lipid accumulation in association with upregulated mRNA expression of 

Ptgs1 and Ptgs2. These results are consistent with a previous study which reported that 

fluoxetine markedly enhanced the expression of PTGS1 and PTGS2 in gastric tissue (Salem 

Sokar et al., 2016). PTGS1 and PTGS2 are involved in the conversion of arachidonic acid 

to Prostaglandin H2 (PGH2), an important precursor of other downstream prostaglandins 

(M. Nagao et al., 2013). While PTGS1 is expressed abundantly in many tissues, the 

expression of PTGS2 is often elevated in response to a stimulus such as inflammation 

(Martín-Sanz et al., 2010). The PTGS1 enzyme is constitutively expressed and prefers 

coupling and co-localization at perinuclear membrane or ER, with thromboxane synthase, 

prostaglandin F synthase, and two other prostaglandin D synthases (PTGDS) isozymes, 
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generating thromboxane A2, PGF2A, and PGD2, respectively (Hanna & Hafez, 2018). 

PTGS2, the inducible isoform, prefers coupling with prostaglandin I synthase and 

prostaglandin E synthase,  producing PGI2 and PGE2, respectively (Hanna & Hafez, 2018). 

Based on our inhibitor studies it appears that PTGS1 and not PTGS2 is involved in 

fluoxetine-induced lipid accumulation. 

In the current study, the PTGS1/PTGS2 inhibitor indomethacin and the PTGS1 specific 

inhibitor SC-560 attenuated fluoxetine-induced lipid accumulation, whereas the PTGS2 

specific inhibitor NS-398 showed no effect (Figure 4).   Interestingly, fluoxetine treatment 

has previously been shown to increase the protein expression of PTGS1, but not PTGS2, 

in the rat aorta (Simplicio et al., 2015). In a variety of other tissues,  fluoxetine has been 

shown to display anti-inflammatory activity, reducing the activity and expression of 

PTGS2, and inhibiting the production of the downstream prostaglandin PGE2 (Branco-de-

Almeida et al., 2012; Kannen et al., 2011; C.-M. Lim et al., 2009; D. Liu et al., 2011). Since 

the biosynthesis of PGE2 is primarily regulated by PTGS2, and inhibition of PTGS2 via 

NS-398 did not reduce fluoxetine-induced lipid accumulation (Figure 4 B), it suggests that 

PGE2 is not critical for fluoxetine-induced lipid accumulation (Branco-de-Almeida et al., 

2012). However, the observed upregulation of PTGS2 may play a vital role in the 

progression of hepatic fibrogenesis or hepatocarcinogenesis, neither outcome which was 

assessed in this study (Martín-Sanz et al., 2010; Motiño et al., 2016; H. Yang et al., 2020). 

Consistent with our results, there is some evidence from rodent models of NAFLD which 

suggests that PTGS1 plays a central role in the development of hepatic steatosis 

(Sztolsztener et al., 2020; W. Wang et al., 2018). In a recent study,  rodents fed a high-fat 

diet to induce NAFLD saw a marked increase in hepatic expression of PTGS1 protein, with 

no changes in PTGS2 expression (Sztolsztener et al., 2020). Similarly, Wenzhe et al. (2018) 

reported that in rodents with high-fat-diet-induced NAFLD, PTGS1 protein expression was 

dramatically upregulated in fatty liver tissues, while PTGS2, was only slightly elevated (W. 

Wang et al., 2018). At low doses, the inhibitors aspirin and genistein reduced hepatic lipid 

accumulation, an effect the authors proposed as a result of PTGS1 inhibition  (W. Wang et 

al., 2018).  

Arachidonic acid is converted to PGH2 by PTGS1 and PTGS2, followed by conversion by 

specific prostaglandin synthases (e.g., PTGDS, PGES, PGFS, and PGIS) into the 2-series 

prostaglandins, PGD2, PGE2, PGF2A, and PGI2 respectively (Álvarez-Almazán et al., 2017; 

Fujitani et al., 2010). Current evidence suggests that PGD2 plays a central role in NAFLD 

by promoting hepatic lipid accumulation (Tsujimoto et al., 2016; W. Wang et al., 2021). 

Indeed, the PGD2 metabolite, 15d- PGJ2 has been reported to be elevated in rodent models 

of NAFLD (Tsujimoto et al., 2016; W. Wang et al., 2021). Consistent with PTGS1 

activation in SSRI-induced lipid accumulation, we observed an increase in Ptgds and the 

PGD2 metabolite, 15d-PGJ2, with fluoxetine treatment; an effect which was attenuated by 

treatment with the PTGS1 selective inhibitor SC-560. Similarly, fluoxetine has been 

reported to increase the cerebrospinal fluid concentration of 15d-PGJ2 and secretion of 15d-

PGJ2 from raphe serotonergic neurons (Launay et al., 2011a). 15d-PGJ2 is a potent 

endogenous ligand of the nuclear receptor PPARG (Álvarez-Almazán et al., 2017; Fujitani 
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et al., 2010; Harris & Phipps, 2002; Kumar et al., 2020; Launay et al., 2011a) which may 

explain, in part, the increased lipid accumulation following fluoxetine treatment. 

PPARG serves as a ligand-dependent transcription factor that plays a pivotal role in the 

regulation of lipid synthesis and uptake, which are likely to contribute to the development 

of NAFLD (Yamazaki et al., 2011). PPARG activation in hepatic stellate cells and 

macrophages seems advantageous in protecting against NAFLD and NASH promotion, 

whereas PPARG has proven to be steatogenic in hepatocytes, promoting the deposition of 

intracellular lipids (Larter et al., 2008; Matsusue et al., 2003; Skat‐Rørdam et al., 2019; Y.-

L. Zhang et al., 2006). In addition, hepatocyte-specific knockout of PPARG attenuated 

hepatic steatosis in high-fat diet-fed mice (Morán-Salvador et al., 2011). 15d-PGJ2 is an 

endogenous PPARG ligand and has been shown to increase both PPARG activity and 

expression in hepatocytes (J. Li et al., 2019; Maggiora et al., 2010).  In our study, fluoxetine 

increased the expression of Pparg and its downstream targets Cd36, Fatp2, and Fatp5 

(Figure 5 C - F).  The uptake of fatty acid by the liver is facilitated by CD36, FATP2, and 

FATP5; these transporters, therefore, play an important role in maintaining intracellular 

fatty acid homeostasis (Wilson et al., 2016).  In humans, NAFLD patients tend to have 

elevated expression of CD36 and fatty acid transport proteins (FATP2 & FATP5) (Fabbrini 

et al., 2009; Greco et al., 2008; Nassir et al., 2013). In animal models, CD36 expression 

was 5-fold higher in livers with steatosis than in healthy livers (Nassir et al., 2013).  In our 

study, the upregulation of the PPARG target genes occurred in association with increased 

fatty acid uptake suggesting that fluoxetine-activated PPARG signaling pathways influence 

hepatic lipid accumulation.  Importantly the fluoxetine-induced increase in 15d-PGJ2, 

Pparg, and its downstream targets (Cd36, Fatp2, Fatp5) was attenuated by the PTGS1 

selective inhibitor SC-560.   

Results from this study have shown that the SSRI fluoxetine led to elevated lipid 

accumulation in association with increased expression of key components of prostaglandin 

synthesis.  The effects of fluoxetine to induce lipid abnormalities appear to be mediated via 

PTGS1 and its downstream product 15d-PGJ2; a PPARG ligand. Future studies should aim 

to investigate how other arachidonic acid metabolites might also be involved in fluoxetine-

induced lipid accumulation and inflammatory processes involved in NAFLD (Q. Li et al., 

2020; Maciejewska et al., 2015; Marchix et al., 2020; W. Wang et al., 2021). An assessment 

of targets of intervention for the treatment and prevention of SSRI-induced hepatic lipid 

accumulation is also warranted, as it may prove useful in the prevention of subsequent 

inflammation, fibrosis, and even cirrhosis of the liver associated with severe NAFLD 

(Cholankeril et al., 2017). Given the high prevalence of MDD and the increasing use of 

SSRIs to treat a variety of conditions ranging from anxiety to obsessive-compulsive 

disorder, these results may have significant implications to improve the adverse metabolic 

associated with SSRI use (Lochmann & Richardson, 2019). 
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3.8 Tables: 

 

Table 1.  Real‐time PCR Rattus norvegicus primers used in the study 

Gene Forward primer Reverse Primer Genebank 

accession # 

Gapdh TGGAGTCTACTGGCGT

CTTCAC 

GGCATGGACTGTG

GTCATGA 

NM_017008.4 

Actb CACAGCTGAGAGGGA

AAT 

TCAGCAATGCCTGG

GTAC 

NM_031144.3 

Ptgs1 TACCCACCTTCCGTAG

AACAG 

CAGATCGTGGAGA

AGAGCATCA 

NM_017043.4 

Ptgs2 TTCCAAACCAGCAGGC

TCAT 

AAAAGCAGCTCTG

GGTCGAA 

NM_017232.3 

Ptgds GCTTCCACTCCCTCTC

AGTG 

GGAACGCGTACTC

ATCGTAGT 

NM_013015.2 

Pparg ACCTCAGGCAGATTGT

CACAG 

GCAGAGGGTGAAG

GCTCATA 

NM_013124.3 

Cd36 GTACTCTCTCCTCGGA

TGGC 

TGCATGAACAGCA

GTATCTGAG 

NM_031561.2 

Fatp2 TTGAAACCTTCGCCAC

AGGA 

TCCACGTTTGCTTC

TCTGCT 

NM_031736.2 

Fatp5 TCGAATGCTGACTCCC

CTTG 

TGTTTGTCCCTCAC

AGGCTC 

NM_024143.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.ncbi.nlm.nih.gov/nucleotide/NM_017008.4?report=genbank&log$=nucltop&blast_rank=2&RID=KHGVYACB01R
https://www.ncbi.nlm.nih.gov/nucleotide/NM_031144.3?report=genbank&log$=nucltop&blast_rank=1&RID=KHGXEUX801R
https://www.ncbi.nlm.nih.gov/nucleotide/NM_017043.4?report=genbank&log$=nucltop&blast_rank=3&RID=KHGYS5SV01R
https://www.ncbi.nlm.nih.gov/nucleotide/NM_017232.3?report=genbank&log$=nucltop&blast_rank=14&RID=KHH0805G01R
https://www.ncbi.nlm.nih.gov/nucleotide/NM_013015.2?report=genbank&log$=nucltop&blast_rank=3&RID=KHH1X27901R
https://www.ncbi.nlm.nih.gov/nucleotide/NM_013124.3?report=genbank&log$=nucltop&blast_rank=3&RID=KHH3FWAN01R
https://www.ncbi.nlm.nih.gov/nucleotide/NM_031561.2?report=genbank&log$=nucltop&blast_rank=3&RID=KHH7P25D01R
https://www.ncbi.nlm.nih.gov/nucleotide/NM_031736.2?report=genbank&log$=nucltop&blast_rank=1&RID=KHHE9X6501R
https://www.ncbi.nlm.nih.gov/nucleotide/NM_024143.2?report=genbank&log$=nucltop&blast_rank=1&RID=KHHCRVSY01R
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3.9 Figures: 

 

 

Figure 1. Lipid accumulation was determined by Oil Red O staining following treatment 

with fluoxetine for 24 h. **, P ≤ 0.01 vs. control group calculated via Student’s T-test. All 

data represented as mean ± SEM, (n = 5 independent experiments).   
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Figure 2. Fatty acid uptake in H4-II-E-C3 treated with 10 μM fluoxetine and 0.15 μM 

insulin ***, P ≤ 0.001 vs. control group calculated via one-way ANOVA, followed by the 

Bonferroni multiple comparisons test. All data represented as mean ± SEM, (n = 10 

independent experiments). 
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Figure 3. Relative mRNA expression of (A) Ptgs1, (B) Ptgs2, (C) Ptgds and (D) Pparg in 

H4-II-E-C3 treated with 10 μM fluoxetine, for 24 h. *, P ≤ 0.05 vs. control group calculated 

via Student’s T-test.**, P ≤ 0.01 vs. control group. All data represented as mean ± SEM, (n 

= 4-5 independent experiments). 
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Figure 4. Lipid accumulation was determined in H4-II-E-C3 cells by Oil Red O staining 

following 24 h treatment with fluoxetine plus (A) the non-selective PTGS1 and PTGS2 

inhibitor indomethacin (50 μM) (B) the selective PTGS2 inhibitor NS-398 (10 μM) and 

(C)   the selective PTGS1 inhibitor SC-560 (1 μM). Outcome measures between control 

and treatments were analyzed using a one-way ANOVA (α = 0.05) **, P ≤ 0.01 vs. control 

group and ***, P ≤ 0.001 vs. control group Data represent mean ± SEM. (n = 9-10 

independent experiments). 
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Figure 5. (A) 15d-PGJ2 output in media following 24 h treatment with fluoxetine with 

and without the selective PTGS1 inhibitor SC-560 (1 μM).  Relative mRNA expression 

of (B) Ptgds, (C) Pparg, and PPARG targets involved in fatty acid uptake including (D) 

Cd36, (E) Fatp5 and  (F) Fatp2 in H4-II-E-C3 cells following 24 h treatment with 

fluoxetine with and without the selective PTGS1 inhibitor SC-560 (1 μM). Outcome 

measures between control and treatments were analyzed using a one-way ANOVA (α = 

0.05). *, P ≤ 0.05 vs. control group, **, P ≤ 0.01 vs. control group, and ***, P ≤ 0.001 

vs. control group followed by the Bonferroni multiple comparisons test. Data represent 

mean ± SEM. (n = 4-5 independent experiments). 
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4.1 Introduction 

 

Major Depressive Disorder (MDD) is a complex, costly, and common psychiatric disorder, 

affecting nearly 322 million people or 4.4% of the population worldwide (Kessler et al., 

2005; World Health Organization, 2017). With a lifetime prevalence of approximately 

13%, MDD is the leading cause of disability worldwide, is among the leading causes of 

disease burden globally, and is associated with significant morbidity and mortality (J. 

Alonso et al., 2004; Bromet et al., 2011; Emslie et al., 2005; Greenberg et al., 2015; Pundiak 

et al., 2008). Several lines of evidence from clinical studies in humans suggest that altered 

serotonergic neurotransmission might contribute to the pathophysiology of MDD (Cowen, 

2008; Sharp & Cowen, 2011; K. A. Smith et al., 1997). Thus, selective serotonin reuptake 

inhibitors (SSRIs), antidepressant drugs which act to enhance serotonergic 

neurotransmission, have been the first-line pharmacotherapy for the treatment of MDD 

(Clevenger et al., 2018; T. Kato et al., 2018; Thaler et al., 2012). Notably, there is increasing 

evidence that SSRIs can cause perturbations in lipid metabolism which may lead to 

metabolic disease with long-term use (Feng et al., 2012; Fjukstad et al., 2016; S. Pan et al., 

2018a; Xiong et al., 2014). In particular, SSRIs may be contributing to aberrant hepatic 

lipid accumulation, an association that requires further exploration (A. Ayyash & 

Holloway, 2021a, 2021b; Deuschle, 2013; Labenz et al., 2020; A. Pan, Sun, et al., 2012; 

Rubin et al., 2008; Shaheen et al., 2021).  

Cell culture, animal, and clinical studies have demonstrated that SSRIs, including 

fluoxetine, have been linked to altered epigenome and microRNA (miRNA) expression 

(Baudry et al., 2010a; Hansen & Obrietan, 2013a; Launay et al., 2011a; Miao et al., 2018b). 

Other studies have shown that epigenetic changes, in particular, altered miRNA expression 

may underlie altered hepatic lipid homeostasis (Y. Y. Feng et al., 2014; Hanin et al., 2018a; 

W. Liu et al., 2015; F. Xiao et al., 2014; Zarfeshani et al., 2015). Epigenetic alterations 

refer to changes in gene expression that are not caused by DNA sequence variation and 

include processes such as histone modification, DNA methylation, non-coding RNAs 

(ncRNAs), and chromatin remodeling (Saavedra et al., 2016; Torres-Berrío et al., 2019). 

These regulatory mechanisms are fundamental for diverse cellular functions, including 

transcription of messenger RNA (mRNA), miRNA expression, and regulation of 

physiological and pathological processes (Saavedra et al., 2016).  miRNA are small non-

coding RNAs, ~22 nucleotides in length,  that can modulate gene expression at the post-

transcriptional level by targeting mRNAs and inhibiting their translation or promoting their 

degradation (Ambros, 2004; Hammond, 2015). Importantly, miRNAs have recently been 

implicated for their role in the progression of liver steatosis, inflammation, fibrosis, and 

cirrhosis (Bala et al., 2009; Szabo & Bala, 2013; Szabo & Csak, 2016). 

Micro-RNA-122 (miR-122) is the most abundant miRNA in the liver, comprising 70% of 

the total liver miRNAs pool, and plays a fundamental role in liver lipid metabolism (Deng 

et al., 2014; Esau et al., 2006; Laudadio et al., 2012; H. Xu et al., 2010). A study by Esau 

et al. demonstrated that inhibition of miR-122 in both normal and high-fat-fed mice with 

an antisense oligonucleotide was associated with a significant reduction in hepatic steatosis 



Ph.D. Thesis – A. Ayyash; McMaster University – Medical Science 

58 
 

and plasma cholesterol levels, uncovering an unexpected role for miR-122 in the regulation 

of hepatic lipid metabolism (Esau et al., 2006). Furthermore, a cross-sectional study 

reported that levels of miR-122 were higher in the serum of participants with NAFLD, with 

serum levels of miR-122 correlating with the severity of liver steatosis in both sexes (men: 

healthy vs mild  NAFLD P < 0.001, mild NAFLD vs severe NAFLD P = 0.047, women: 

healthy vs mild NAFLD P = 0.002, mild NAFLD vs severe NAFLD P = 0.035) (Yamada 

et al., 2013).  

Inhibition of miR-122 was accompanied by a reduction in hepatic sterol and fatty-acid 

synthesis rates, stimulation of hepatic fatty-acid oxidation, and a significant decrease in the 

mRNA levels of many key genes that regulate lipid metabolism, including fatty acid 

synthase (Fasn), acetyl-CoA carboxylase 2 (Acc2), Stearoyl-CoA desaturase-1 (Scd1), and 

ATP citrate synthase (Acly) (Esau et al., 2006). This finding was further confirmed by other 

studies which found that miR-122 targets genes that regulate cholesterol and lipid 

metabolism, and inhibition of miR-122 led to indirect downregulation of FASN and 

decreased accumulation of intracellular triglycerides (Baffy, 2015; Cermelli et al., 2011; 

H.-Y. Lin et al., 2020; Long et al., 2019; J.-L. Torres et al., 2018). For example, the 

flavonoid silibinin was shown to reduce hepatic miR-122 expression both in vivo and in 

vitro, and co-treatment with palmitic acid, miR-122 mimic and silibinin resulted in a 

reduction of triglyceride content, reduced mRNA and protein expression of FASN and 

ACC and an increased mRNA and protein expression of carnitine palmitoyl transferase 1A 

(CPT1A)(L. Yang et al., 2021). Similarly, pharmacological inhibition of miR-122 in mice, 

resulted in reduced levels of plasma cholesterol, increased hepatic fatty acid oxidation, and 

decreased synthesis of hepatic fatty acid and cholesterol (Li, 2012). Further, silencing of 

miR-122 in HFD-fed mice reduced hepatic steatosis and miR-122 deficient mice had lower 

serum cholesterol, low-density lipoprotein (LDL), triglyceride, and high-density 

lipoprotein (HDL) levels (Szabo & Csak, 2016). Additionally, treatment of hepatocytes 

with free fatty acids elevated the expression levels of major lipogenic genes, such as sterol 

regulatory element-binding protein 1 (Srebp1), Fasn, Scd1, Acc1 and Apolipoprotein AV 

(ApoA5); however, their expression was suppressed by a miR-122 inhibitor (Long et al., 

2019).  

There is also evidence that miR-122 expression may be altered following exposure to SSRI 

antidepressants. For example, Fang et al., (2020) compared the serum exosome miRNA 

profile in rats subjected to stress + vehicle and rats subjected to stress + fluoxetine and 

found that miR-122 was expressed at significantly higher levels in the fluoxetine-treated 

animals relative to controls and was the miRNA with the most significantly altered p-value 

(P = 5.44 E-08)  following fluoxetine treatment (Fang et al., 2020). It has also been 

suggested that miR-122 may be involved in the toxicological response to environmental 

contaminants, including fluoxetine (Disner et al., 2021). Interestingly, previous research 

from our group found that fluoxetine treatment led to a significant increase in steady-state 

mRNA expression of PPAR gamma (Pparg) in rat hepatoma cells, along with a concurrent 

increase in PPARG target genes involved in hepatic lipid accumulation (Ayyash & 

Holloway, 2021b). In hepatocytes, PPARG is a central regulator of lipid metabolism, 

targeting genes involved in de novo lipogenesis and free fatty acid uptake (Skat‐Rørdam et 
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al., 2019); PPARG expression was found to be significantly elevated in the liver of obese 

rats and involved in the development of NAFLD (Edvardsson et al., 2006; Gavrilova et al., 

2003; Matsusue et al., 2008; Pettinelli & Videla, 2011; Schadinger et al., 2005). 

Interestingly, PPARG was found to be associated with sites in the miR-122 gene promoter, 

and the binding of PPARG agonists enhanced miR-122 gene transcription in human 

hepatocellular carcinoma cells (Song et al., 2013). Knockdown of  PPARG decreased miR-

122 levels, conversely, overexpression of PPARG increased miR-122 expression thus 

supporting the hypothesis that in hepatocytes miR-122 expression is positively regulated 

by PPARG (Song et al., 2013). Given the link between PPARG and miR-122 and the fact 

that fluoxetine increased the expression of PPARG target genes, I hypothesized that 

fluoxetine exposure would alter miRNA signatures in hepatic cells which would contribute, 

in part, to increased lipid accumulation.  To address this question, I first assessed the effects 

of fluoxetine treatment on the expression of the PPARG-regulated miRNA, miR-122, then 

employed a literature search strategy to identify miRNAs that have been shown to 

upregulated in NAFLD as well as having been differentially expressed following fluoxetine 

exposure.  

 

4.2 Objective A: Investigating the effects of fluoxetine on miR-122 expression 

 

4.2.1 Objective A: Rationale 

In order to investigate the link between PPARG and miR-122 following fluoxetine 

treatment, the miRNA expression of miR-122 and mRNA expression of Pparg and the 

miR-122 target gene, Prkra were examined. To further determine whether fluoxetine could 

be altering miR-122 expression via a PPARG mediated pathway, hepatocytes were treated 

with PPARG antagonist GW9662 ± 10 µM fluoxetine, and relative miRNA expression of 

miR-122 was examined. 

 

4.2.2 Objective A: Experimental Methods 

 

4.2.2.1 Cell culture maintenance and treatment 

H4-II-E-C3 hepatoma cells were grown in Corning™ Dulbecco's modified Eagle's medium 

(DMEM) (Corning, NY) supplemented with 10 % heat-inactivated fetal bovine serum 

(Hyclone, South Logan, UT), 2% L-glutamine, 100 U/mL penicillin, and 100 μg/mL 

streptomycin (Gibco, Long Island, NY) at 37 °C in a humidified atmosphere of 95 % O2 

and 5 % CO2. All cell treatments were made in supplemented DMEM as described above.  

When H4-II-E-C3 cells reached 80% confluence, they were treated for 24 h with vehicle 

or 10 μM fluoxetine hydrochloride (Toronto Research Chemicals, North York, ON), a dose 

previously shown to increase lipid accumulation in this cell line (A. Ayyash & Holloway, 

2021a; X.-M. Feng et al., 2011; Xiong et al., 2014). Cells were then collected for either 

miRNA or mRNA isolation.  
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To determine whether fluoxetine could be altering miR-122 expression via a PPARG 

mediated pathway, cells were treated with fluoxetine in the presence of the selective 

PPARG antagonist GW9662, Briefly, cells were grown as above and treated with 1) 

vehicle, 2) 10 µM GW9662 ± 10 µM fluoxetine, 3) 10 µM fluoxetine. This concentration 

of GW9662 was selected based on other studies which had reported that it could block 

PPARG-mediated signaling in hepatocytes (H.-J. Lee et al., 2009; Ou et al., 2017; Tay et 

al., 2010). Cells were also treated with rosiglitazone (10 µM), a known PPARG agonist as 

a positive control (Jarrar & Lee, 2021; K. Kim et al., 2009; L. Ma et al., 2012).  

 

4.2.2.2 miRNA extraction and cDNA synthesis 

Following 24 h treatment, the cell-culture medium was aspirated, and cells were washed 

with phosphate-buffered saline (PBS) (N = 5 independent experiments). Cells were then 

directly lysed with the addition of 450 µl of Buffer RLT, before being collected into a 

microcentrifuge tube.  miRNA was extracted from the lysate using the miRNeasy 

Tissue/Cells Advanced Mini Kit (Cat# 217604, Qiagen, Toronto, ON) according to the 

manufacturer’s instructions. The miRCURY LNA RT Kit (Cat# 339340, Qiagen) was then 

used to synthesize cDNA from the miRNA. Reactions were performed using the iCycler 

Thermocycler (Bio-Rad, Mississauga ON) for 60 min at 37°C followed by 5 min at 95°C 

to allow cDNA synthesis. These cDNA samples made from extracted miRNA were diluted 

with RNAse-free water at a 1:60 dilution before quantification.  

 

4.2.2.3 Quantification of miRNA-122 expression 

To determine the effect of fluoxetine treatment on the expression of miR-122 we used real-

time quantitative PCR (RT_qPCR) and miRCURY LNA SYBR Green PCR Kit (Cat# 

339346, Qiagen) and rat-validated commercial primers (Qiagen; Table 1). RT-qPCR was 

completed using CFX384 Touch™ Real-Time PCR Detection System (Bio-Rad 

Laboratories, Hercules, CA). The PCR cycling settings included polymerase activation (95 

C for 2 m), followed by 40 cycles of denaturing (95 C for 10 s), and annealing/elongation 

(56 C for 1 m). Levels of miRNA expression were calculated using the Ct method and 

normalized using the geometric means of two reference miRNAs (Livak & Schmittgen, 

2001). Reference miRNAs were selected based on those reported in the literature and the 

analysis tool ‘RefFinder’; this tool combines the results from three commonly used 

programs for selecting ideal housekeepers (GeForce, BestKeeper, NormFinder). We 

selected miR-191 and miR-16 as the ideal housekeepers for this experiment. Use of these 

housekeepers has been reported in other studies of miRNA expression in liver tissues and 

cells  (Albracht-Schulte et al., 2019; Auguet et al., 2016b; Hoekstra et al., 2012; Karimi-

Sales et al., 2021; Lardizábal et al., 2012; Millán et al., 2019; Soubeyrand et al., 2021). 

 

4.2.2.4 microRNA-122 target prediction and target mRNA expression  
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To reveal miRNA target genes that may be dysregulated by the fluoxetine‐induced 

alteration in miRNA expression we used target prediction software followed by 

experimental confirmation of altered mRNA expression of these targets. The online miRNA 

database miRTarBase 2020 ( http://miRTarBase.cuhk.edu.cn/) was selected as the most 

suitable for this study as it provides up-to-date, comprehensive information on 

experimentally validated miRNA–target interactions (H.-Y. Huang et al., 2020). Using this 

information, we assessed changes in the relative mRNA expression of Prkra, a validated 

target of miR-122. Primer sequences for mRNA targets and housekeeping genes are 

provided in Table 2. 

 

4.2.2.5 mRNA extraction and cDNA synthesis 

Cells were treated for 24h with fluoxetine (10µM) or vehicle as described above (N=5 

independent experiments).  After 24h, media was removed, cells were washed with with 

phosphate-buffered saline (PBS), and total RNA was extracted using TRIzol reagent 

(Invitrogen, Carlsbad, CA). RNA concentrations were determined using the NanoDrop One 

TM Microvolume UV-Vis Spectrophotometer (Thermo Scientific, Waltham, MA). 

Complementary DNA (cDNA) was made from 2 μg of mRNA using the High Capacity 

cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA) as per the 

manufacturer’s instructions. The resulting cDNA made from the extracted mRNA was then 

diluted at a 1:10 dilution with RNAse-free water before quantification.  

 

4.2.2.6 Quantification of validated miR-122 target gene 

The resulting cDNA was a template for RT-qPCR, which was carried out using PerfeCTa® 

SYBR® Green FastMix® (Quanta Biosciences, Gaithersburg, MD) on the CFX384 

Touch™ Real-Time PCR Detection System (Bio-Rad Laboratories, Hercules, CA). The 

PCR cycling settings included polymerase activation (95 °C for 10 m), followed by 40 

cycles of denaturing (95 °C for 15 s), and annealing/elongation (60 °C for 1 m). Levels of 

gene expression were calculated using the Ct method and normalized using the 

geometric means of two reference genes glyceraldehyde 3-phosphate dehydrogenase 

(Gapdh) and beta-actin (Actb) (Livak & Schmittgen, 2001). 

 

4.2.2.7 Statistical Analysis 

All statistical analyses were conducted using SigmaPlot (v.11.2, Systat Software, San Jose, 

CA). Data were tested for outliers (Grubbs’ test), normality, and equal variance. 

Comparisons among the two groups were analyzed using Student’s t-tests. Comparisons 

among multiple groups were analyzed using One-Way Analysis of Variance (ANOVA) 

followed by the Bonferroni multiple comparisons test. When normality or equal variance 

failed, the Mann-Whitney Rank Sum Test or Student-Newman-Keuls One-Way ANOVA 

on Ranks were used to determine significance. All data are presented as mean ± SEM and 

were considered significant when P ≤ 0.05. 

http://mirtarbase.cuhk.edu.cn/
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4.2.3 Objective A: Results 

 

4.2.3.1 Role of PPARG in Fluoxetine induced upregulation of miR-122  

The expression of miRNA-122 in the H4-II-E-C3 hepatocytes was significantly elevated 

following 24 h treatment with fluoxetine (Figure 1A). Moreover, the expression of the 

validated mRNA target of miR-122, Prkra was also significantly decreased following the 

same treatment (Figure 1B), as had previously been demonstrated (H.-Y. Huang et al., 

2020). Given that miR-122 has been reported to be positively regulated via PPARG 

activation (Yarushkin et al., 2017), we tested the ability of the known PPARG agonist, 

rosiglitazone, to increase miR-122 expression. Indeed, as predicted, rosiglitazone treatment 

caused a significant increase in miR-122 expression (Figure 2A). To examine whether the 

increase in miR-122 expression following fluoxetine treatment was linked to activated 

PPARG, cells were treated with fluoxetine ± a selective PPARG antagonist, GW9662. 

While fluoxetine treatment caused a significant upregulation of miR-122, this effect was 

attenuated with the addition of GW9662 (Figure 2B) such that the expression of miR-122 

in the fluoxetine + GW9662 treatment group was not significantly different from controls.  

 

4.3 Objective B: Discovery of miRNA involved in the pathogenesis of NAFLD and 

altered as a result of fluoxetine treatment  

 

4.3.1 Objective B: Rationale 

Results demonstrating fluoxetine’s increase in miR-122 prompted us to explore other 

candidate miRNA that may have also been altered following treatment with the SSRI and 

play a role in the progression of NAFLD. To further test our hypothesis, we began by 

employing a literature review to identify other potential candidate miRNAs to investigate 

those that have been reported to be dysregulated with both SSRI treatment and NAFLD.  

 

4.3.2 Objective B Experimental Methods: Identifying common miRNA targets between 

SSRI exposure and NAFLD 

 

4.3.2.1 SSRIs exposure and altered miRNA 

A literature search was conducted in NCBI using MeSH to search for articles with the 

following terminology as a major topic in the headings: “Serotonin Uptake Inhibitors 

[Pharmacological Action]” OR "Serotonin Uptake Inhibitors" AND “MicroRNAs”. We 

searched between the years 2010 and 2022 as the first relevant article on the topic was 

published in 2010.  Our search strategy is outlined in Appendix 1. We identified a total of 

38 publications using this search strategy. Records were screened to remove reviews (n=2), 

systematic reviews, meetings, letters, books, documents, and non-english texts (n=2), 

resulting in a remaining total of 34 full-text articles to be assessed for eligibility by AA. 

Studies that did not investigate altered miRNA expression as a direct result of SSRI 
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treatment were excluded. After excluding studies that were deemed irrelevant or not 

directly related, a total of 25 studies met the eligibility criteria. All of the studies selected 

show statistically significant differences in the expression level of specific miRNAs 

between cases and controls. 202 miRNAs were reported to be differentially expressed in 

the 25 studies that compared SSRI treatment with either healthy or depressed controls 

(Appendix 2).  

 

4.3.2.2 NAFLD and miRNA 

A literature search was conducted in NCBI using MeSH to search for articles with the 

following terminology as a major topic in the headings: “Non-alcoholic Fatty Liver 

Disease” AND “MicroRNAs”. We searched between the years 2013 and 2022 as the first 

relevant article on the topic was published in 2013. We identified a total of 280 publications 

using this search strategy. Our search strategy is outlined in Appendix 3. Records were 

screened to remove reviews (n=31), systematic reviews (n=3), meetings, letters, books, 

documents, and non-English texts (n=9), resulting in a remaining total of 237 full-text 

articles to be assessed for eligibility by AA, CR and SJ. Studies that did not investigate 

altered miRNA expression as a direct result of NAFLD were excluded. Studies designed to 

alter the expression of miRNA and examine changes in pathogenesis of NAFLD rather than 

to investigate miRNAs which were altered in animals/humans with NAFLD were also 

excluded. After applying our exclusion criteria, a total of 168 studies met the eligibility 

criteria. All of the studies selected show statistically significant differences in the 

expression level of specific miRNAs between cases and controls. 160 miRNAs were 

reported to be differentially expressed in the 168 studies that compared NAFLD to controls 

(Appendix 4).  

When comparing the miRNAs which were altered with SSRI exposure or NAFLD, we 

identified a total of 54 miRNAs which were differentially expressed in both conditions 

(Figure 3). A comprehensive list of these shared miRNA targets is provided in Table 3.   

 

4.3.2.3 Final miRNA target selection and quantification 

Two investigators reviewed the results separately and each independently identified 2 

miRNAs as potential targets based on the following criteria, in no particular order of 

importance: (i) the number of studies that reported a miRNA as differentially expressed, 

(ii) the number of studies that reported a miRNA as differentially expressed in the same 

direction, (iii) the degree to which the miRNA has been reported to be expressed in the 

liver, (iv) the reported implication of the miRNA in NAFLD progression and/or lipid 

accumulation in the liver, (v) the function of the miRNA and/or the function of the 

miRNA’s target messenger RNA(s) (mRNA). A third independent investigator examined 

the presented rationale for each potential miRNA target, and it was determined that all 

presented miRNA targets would be experimentally investigated. One of the miRNA targets 

were duplicated by the independent investigators, therefore a total of 3 miRNAs were 

chosen: miR-21, miR-29a*, and miR-34a (Appendix 5).  
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miR-34a has been suggested to modulate lipid metabolism and is highly expressed in 

patients with steatosis, NASH, and in experimental animal models of NAFLD (Baffy, 2015; 

Ding et al., 2015a). miR-29a* may be involved in mitigating hepatic lipid accumulation 

associated with NAFLD progression, as miR-29a* transgenic mice fed a high-fat diet 

revealed that an overexpression of miR-29a* reduced fat accumulation in the liver (H.-Y. 

Lin et al., 2020; Mattis et al., 2015; Su et al., 2018). miR-21 has previously been implicated 

for its role in hepatic lipid accumulation and activation of the NLRP3 Inflammasome (Kong 

et al., 2019; Ning et al., 2017; Sun et al., 2017; Xue et al., 2019). A cross-sectional 

investigation revealed miR-21 was elevated in the liver and plasma of patients with 

NAFLD, while another study found a significant increase in miR-21 in mice treated with 

fluoxetine (Yamada et al., 2013; T. Zhang et al., 2020). Importantly, activation of the 

NLRP3 inflammasome has been shown to contribute to the progression of NAFLD to its 

more severe stages, including NASH (Mridha et al., 2017; Wan et al., 2016). As such, 

changes to key components of the NLRP3 inflammasome were also investigated in the 

hepatocytes following treatment with fluoxetine. 

Following selection of these 3 target miRNAs, the expression of the selected candidate 

miRNAs (miR-21, miR-29a*, miR-34a) was determined via RT-qPCR following 24 h 

fluoxetine treatment as described above. Assessment of changes in the relative mRNA 

expression of the miR-21 validated target, Tiam1, along with Casp1, Asc, Nlrp3 and Il-1b 

(key components of the NLRP3 inflammasome) were also determined via RT-qPCR as 

outlined above. 

4.3.3 Objective B: Results 

 

4.3.3.1 Exploration of Fluoxetine induced alterations in miRNA’s related to pathogenesis 

of NAFLD  

We measured the relative expression of miR-21, miR-29a* and miR-34a in H4-II-E-C3 

following 24 h treatment with 10µM fluoxetine. While there were no significant changes 

in the expression of miR-29a* and miR-34 (Figure 4 A&B), miR-21 was significantly 

upregulated and the steady-state mRNA expression of miR-21’s validated target Tiam1 was 

significantly decreased (Figure 4 C&D).  

 

 

4.3.3.2 Fluoxetine induced hepatic inflammasome response may be mediated by 

increased miR-21  

Previously, our lab demonstrated that fetal and neonatal exposure to fluoxetine led to the 

development of mild to severe NASH, increased inflammation and significantly elevated 

mRNA expression of core components of the NLRP3 inflammasome in the livers of adult 

offspring ( De Long, Barry, et al., 2015; De Long et al., 2017). Given miR-21’s importance 

in activation of the NLRP3 inflammasome (Sun et al., 2017; Xue et al., 2019), mRNA 

targets relevant to NLRP3 activation, Casp1, Asc, Nlrp3 and IL-1B were further explored 

(Figure 5). H4-II-E-C3 cells had a significant increase in the expression of Casp1, Nlrp3 

and Il-1b following 24 h treatment with 10µM fluoxetine. 
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4.4 Discussion  

 

Although miRNAs have been implicated as having a role in a myriad of physiological 

processes and pathologies, including cancer, cardiovascular and metabolic diseases, the 

specific roles of these miRNAs in disease pathophysiology are still largely unknown. 

miRNA arise from long hairpin pri-miRNA structures that are initially cleaved into pre-

miRNA and subsequently cleaved into mature miRNA (Hansen & Obrietan, 2013b; Torres-

Berrío et al., 2019). Mature miRNA binds to the incomplete complementary regions of the 

3’ untranslated region of mRNA within the RNA-inducing silencing complex, thus 

repressing mRNA translation or inducing deadenylation and degradation of mRNA 

(Hansen & Obrietan, 2013b; Torres-Berrío et al., 2019). miRNA expression can be 

regulated by some mRNAs, and each miRNA can regulate hundreds of mRNAs; this 

signifies the highly coordinated system by which protein translation can be regulated 

(Hansen & Obrietan, 2013b; Torres-Berrío et al., 2019).  

In recent years the role of miRNAs in MDD pathophysiology, synaptic plasticity, and gene 

regulation critical to signaling pathways involved in MDD has gained increasing attention 

(Issler et al., 2014; Saavedra et al., 2016; Torres-Berrío et al., 2019). In addition, there is 

now increasing evidence that demonstrates that antidepressants used for the treatment of 

MDD can also affect miRNA expression in multiple tissues (Craig et al., 2014b; Oved et 

al., 2012a). Indeed, in our literature review, we identified 202 miRNAs that had been 

altered following exposure to SSRI antidepressants (Appendix 2). Given the link between 

exposure to SSRI antidepressants and increased hepatic lipid accumulation found in our 

studies (A. Ayyash & Holloway, 2021a, 2021b), the aim of this objective was to investigate 

miRNA changes in a model of fluoxetine-induced hepatic lipid accumulation especially 

since there are numerous studies which have reported changes in the miRNA profile 

associated with NAFLD (Appendix 1).  

Results from this study have shown that treatment with the SSRI fluoxetine led to elevated 

miR-122 expression in H4-II-E-C3 cells.  The effects of fluoxetine to induce lipid 

abnormalities appear to be mediated via PPARG (A. Ayyash & Holloway, 2021b), which 

directly regulates the expression of miR-122 (K. Song et al., 2013). Indeed, treatment with 

the PPARG agonist rosiglitazone has been reported to directly increase miR-122 expression 

in mouse and human hepatocytes (K. Song et al., 2013; Yarushkin et al., 2017); a result 

confirmed in this study. Previously, we demonstrated that the SSRI fluoxetine increased 

mRNA expression of Pparg, the key transcriptional regulator that drives lipogenesis, and 

its downstream targets in the same cell line (A. Ayyash & Holloway, 2021b) suggesting 

that fluoxetine can act as a direct PPARG agonist. Further support to suggest that fluoxetine 

can act as a direct PPARG agonist comes from in silico binding experiments which 

demonstrate that fluoxetine (-8.1 kcal/mol) and the known PPARG agonist rosiglitazone (-

7.9 kcal/mol) and antagonist GW9662 (-7.8 kcal/mol) have similar binding energies to 

PPARG (Jamshed and Holloway, unpublished data). A threshold of −7.0 kcal/mol works 

well to discriminate between putative specific and nonspecific binding with PPARG, with 

the greatest binding energies having the most negative value (Chang et al., 2007). 
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To examine whether upregulated miR-122 expression following fluoxetine treatment was 

linked to PPARG activation, we investigated if treatment with a known selective PPARG 

antagonist (GW9662) could block the effect of fluoxetine to increase miR-122 expression. 

Indeed, treatment with GW9662 significantly attenuated miR-122 expression (Figure 2). 

The exact mechanism by which the inhibition of miR-122 leads to a downregulation of 

genes involved in hepatic steatosis is not clear, with one possibility suggesting that miR-

122 negatively regulates SIRT1 (Esau et al., 2006, Long et al., 2019). As SIRT1 is a 

transcriptional inhibitor of lipogenic genes, inhibition of SIRT1 by overexpression of miR-

122  could result in increased transcription of lipogenic genes. Interestingly SIRT1 has been 

reported to be altered in MDD (Kishi et al., 2010) and by fluoxetine exposure (Sharma et 

al., 2021), however, whether or not SIRT1 is involved in a miR-122-fluoxetine-lipid 

accumulation pathway remains to be determined.  

Clinical studies have also demonstrated that miR-122 has been correlated with the severity 

of NAFLD; targets of miR-122 also include genes involved in fibrosis and inflammation 

which may contribute to non-alcoholic steatohepatitis (NASH) and hepatic fibrosis (Farrell 

et al., 2012; Y. Liu, Song, et al., 2020; Yamada et al., 2013). Interestingly, based on our 

literature review we identified miR-21 as a miRNA that has been shown to be upregulated 

in NAFLD and is altered with SSRI exposure, and is associated with activation of the 

NLRP3 inflammasome (Table 3) (Ning et al., 2017; Yamada et al., 2013; Y. Zhang et al., 

2020a). Importantly, activation of the NLRP3 inflammasome has been shown to contribute 

to the progression of NAFLD to its more severe stages, including NASH (Mridha et al., 

2017; Wan et al., 2016) and we have previously reported that fetal and neonatal exposure 

to fluoxetine in a rat model resulted in increased hepatic expression of NLRP3 

inflammasome components and lipid accumulation in the adult offspring (De Long et al., 

2017). In the current study, the expression of miR-21 was significantly upregulated by 

fluoxetine exposure. Consistent with an increased miR-21 expression we also saw a 

significant decrease in its validated target gene, Tiam1 (Figure 4 C&D), and an upregulation 

of the mRNA expression of the inflammasome components Casp1, Nlrp3, and Il-1b (Figure 

5 A, 5 C, and 5 D). While further studies are required to examine this association, our 

results do suggest the presence of a fluoxetine-miR-21-NLRP3 inflammasome axis which 

may underlie the increased risk of lipid accumulation and inflammation associated with 

SSRI antidepressant use (De Long et al., 2017; Miao et al., 2018a; Xue et al., 2019; Zhao 

et al., 2021). Taken together the results of this study have demonstrated that fluoxetine 

exposure can significantly alter the expression of miRNAs in hepatic cells. Importantly, the 

2 miRNAs which were increased by this exposure (i.e. miR-122 and miR-21) have been 

shown to play key roles in lipid accumulation and inflammation; key aspects of NAFLD.  

While the exact mechanisms by which fluoxetine can affect the expression of these 

miRNAs remains unknown, this study provides proof of concept that the effects of 

fluoxetine to affect hepatic lipid accumulation may be mediated, in part, via changes in the 

epigenome. 
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4.6  Tables and Figures 

 

4.6.1 Tables: 

 

Table 1.  Real‐time PCR miRNA primers used in the study, all validated in Rattus 

norvegicus. 

 

Mature miR Primer Sequence (5’-3’) GeneGlobe 

ID 

Accession # 

hsa-miR-16 UAGCAGCACGUAAAUAUUG

GCG 

YP00205702 MIMAT0000069 

hsa-miR-21 UAGCUUAUCAGACUGAUGU

UGA 

YP00204230 MIMAT0000076 

hsa-miR-29a* UAGCACCAUCUGAAAUCGG

UUA 

YP00204698 MIMAT0000086 

hsa-miR-34a UGGCAGUGUCUUAGCUGGU

UGU 

YP00204486 MIMAT0000255 

hsa-miR-122 UGGAGUGUGACAAUGGUG

UUUG 

YP00205664 MIMAT0000421 

hsa-miR-191 CAACGGAAUCCCAAAAGCA

GCUG 

YP00204306 MIMAT0000440 
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Table 2.  Real‐time PCR Rattus norvegicus mRNA primers used in the study. 

 

Gene Forward primer Sequence 

(5’-3’) 

Reverse Primer Sequence 

(5’-3’) 

Genebank 

accession # 

Actb CACAGCTGAGAGGGA

AAT 

TCAGCAATGCCTGGGTA

C 

NM_031144.3 

Asc TGGTTTGCTGGATGCT

CTGT 

CACGAACTGCCTGGTAC

TGT 

NM_172322.1 

Casp1 AACACCCACTCGTACA

CGTC 

TGAGGTCAACATCAGCT

CCG 

NM_012762.3 

Gapdh TGGAGTCTACTGGCGT

CTTCAC 

GGCATGGACTGTGGTCA

TGA 

NM_017008.4 

Il-1b GCAGTGTCACTCATTG

TGGC 

AAGAAGGTGCTTGGGTC

CTC 

NM_031512.2 

Nlrp3 CACAACTCACCCAAGG

AGGA 

ACAGGCAACATGAGGGT

CTG 

NM_0011916

42.1 

Prkra GTGCCCACTTTCACCTT

CAG 

TGCTTCGCCAGCTTCTTA

CT 

XM_0329035

31.1 

Tiam1 AGGTGAGACCCCGATG

GA 

ATACTGAGGCTGGAGAT

GGTG 

NM_0011005

58.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.ncbi.nlm.nih.gov/nucleotide/NM_031144.3?report=genbank&log$=nucltop&blast_rank=1&RID=KHGXEUX801R
https://www.ncbi.nlm.nih.gov/nucleotide/NM_172322.1?report=genbank&log$=nucltop&blast_rank=5&RID=AAHWRKF7013
https://www.ncbi.nlm.nih.gov/nucleotide/NM_012762.3?report=genbank&log$=nucltop&blast_rank=2&RID=AAHU4BR601R
https://www.ncbi.nlm.nih.gov/nucleotide/NM_017008.4?report=genbank&log$=nucltop&blast_rank=2&RID=KHGVYACB01R
https://www.ncbi.nlm.nih.gov/nucleotide/NM_031512.2?report=genbank&log$=nucltop&blast_rank=1&RID=AAJ3J4RC01R
https://www.ncbi.nlm.nih.gov/nucleotide/NM_001191642.1?report=genbank&log$=nucltop&blast_rank=10&RID=AAJ1RD5R013
https://www.ncbi.nlm.nih.gov/nucleotide/NM_001191642.1?report=genbank&log$=nucltop&blast_rank=10&RID=AAJ1RD5R013
https://www.ncbi.nlm.nih.gov/nucleotide/XM_032903531.1?report=genbank&log$=nucltop&blast_rank=91&RID=16FM7JGB016
https://www.ncbi.nlm.nih.gov/nucleotide/XM_032903531.1?report=genbank&log$=nucltop&blast_rank=91&RID=16FM7JGB016
https://www.ncbi.nlm.nih.gov/nucleotide/NM_001100558.2?report=genbank&log$=nucltop&blast_rank=7&RID=16FYGRR3013
https://www.ncbi.nlm.nih.gov/nucleotide/NM_001100558.2?report=genbank&log$=nucltop&blast_rank=7&RID=16FYGRR3013
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Table 3.  Comprehensive list of miRNA altered in the literature as a result of both NALFD 

and following SSRI exposure. 

 

 

 

 

 

 

 

 

 

miRNA Altered as a Result of NAFLD and SSRI Treatment 

miR-1 miR-140 

miR-9 miR-144 

miR-15b miR-145 

miR-16 miR-146b 

miR-17 miR-150 

miR-20b miR-155 

miR-21 miR-181a 

miR-22 miR-182 

miR-22* miR-183 

miR-221 miR-185 

miR-23b* miR-192 

miR-26a miR-194 

miR-27a* miR-200a* 

miR-27b* miR-200b* 

miR-29a* miR-205 

miR-29b miR-206 

miR-29b* miR-212 

miR-29c* miR-214* 

miR-30b miR-218 

miR-30d miR-328 

miR-34a miR-335 

miR-92a miR-361 

miR-103 miR-378* 

miR-128 miR-451a 

miR-130b miR-486 

miR-132 miR-505 

miR-139 miR-1290 
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4.6.2 Figures: 

 

 

 

 

 

 

 

 

 

Figure 1: (A) Measurement of miR-122 relative miRNA expression in H4-II-E-C3 treated 

with 10 μM fluoxetine (n = 4-5), for 24 h. (B) H4-II-E-C3 were treated with 10µM 

fluoxetine for 24h and expression of the validated mRNA target of miR-122, Prkra was 

examined (n = 4-5). Outcome measures between control and treatment were analyzed using 

Student's t-test (α = 0.05) * P ≤ 0.05, ** P ≤ 0.01. Data represents mean ± SEM.  
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Figure 2: (A) Relative miRNA expression of miR-122 in H4-II-E-C3 treated with 10 μM 

Rosiglitazone for 24 h was quantified (n = 4-5). Statistical significance between control 

and 10µM Rosiglitazone was assessed via Student’s T-test *, P ≤ 0.05. (B) Relative miRNA-

122 expression was determined in H4-II-E-C3 cells treated for 24h with 10 µM GW9662, 

co-treated with 10 µM fluoxetine + 10 µM GW9662, and 10μM fluoxetine alone (n = 4-5). 

Outcome measures between control and treatments were analyzed using a one-way 

ANOVA (α = 0.05).  **, P ≤ 0.01 vs. control group, followed by the Holm-Sidak multiple 

comparisons test. Data represent mean ± SEM.  
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Figure 3. Venn Diagram representing the amount of overlapping expressed microRNAs in 

association with SSRI treatment and NAFLD. 
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Figure 4: H4-II-E-C3 were treated with 10 µM fluoxetine for 24 h and relative expression 

of the candidate miRNAs (A) miR-29a*, (B) miR-34a and (C) miR-21 were determined (n 

= 4-5). (D) Quantification of miR-21’s validated mRNA target, Tiam1 expression in H4-

II-E-C3 treated with 10 µM fluoxetine for 24 h (n = 4-5). Outcome measures between 

control and treatment were analyzed using Student's t-test (α = 0.05) * P ≤ 0.05, Data 

represents mean ± SEM. 
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Figure 5: H4-II-E-C3 were treated with 10 µM fluoxetine for 24 h and relative mRNA 

expression of (A) Casp1, (B) Asc, (C) Nlrp3 and (D) Il-1b was determined (n = 4-5). 

Outcome measures between control and treatment were analyzed using Student's t-test (α 

= 0.05) * P ≤ 0.05, ** P ≤ 0.01. 
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4.7 Appendix  

 

 

 

 

Appendix 1. Flow chart to identify studies of miRNA changes with SSRI exposure. 
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Appendix 2.  Comprehensive list of miRNA altered following exposure to SSRIs 

miRNA Altered Reference 

miR-1 (Min et al., 2019) 

miR-7a (Miao et al., 2018a; W. Song et al., 2019) 

miR-9 (Miao et al., 2018a) 

miR-10b (W. Song et al., 2019) 

miR-15a (Yrondi et al., 2020) 

miR-15b (Yrondi et al., 2020) 

miR-16 (Baudry et al., 2010; Fiori et al., 2017, p. 

1202; Launay et al., 2011; Lin et al., 2018; 

Miao et al., 2018) 

miR-17 (Yrondi et al., 2020) 

miR-19a* (Craig et al., 2014a) 

miR-20a (Yrondi et al., 2020) 

miR-20b (Yrondi et al., 2020) 

miR-20b* (Oved et al., 2012b) 

miR-21 (Miao et al., 2018a) 

miR-21* (Oved et al., 2012b) 

miR-22 (Bocchio-Chiavetto et al., 2013) 

miR-22* (Miao et al., 2018a) 

miR-22b (Craig et al., 2014a) 

miR-23a* (Miao et al., 2018a) 

miR-23b* (Miao et al., 2018a) 

miR-25 (Yrondi et al., 2020) 

miR-25* (Min et al., 2019; Yrondi et al., 2020) 

miR-26a (Bocchio-Chiavetto et al., 2013; Maffioletti 

et al., 2017) 

miR-26b (Bocchio-Chiavetto et al., 2013; Miao et 

al., 2018) 

miR-27a* (Yrondi et al., 2020) 

miR-27b* (Miao et al., 2018a) 

miR-28c (Miao et al., 2018a) 

miR-29a* (Miao et al., 2018a) 

miR-29b (Bocchio-Chiavetto et al., 2013) 

miR-29b* (Miao et al., 2018a) 

miR-29c* (Miao et al., 2018a; Oved et al., 2013) 

miR-30a (Miao et al., 2018a; Yrondi et al., 2020) 

miR-30b (Miao et al., 2018; Yrondi et al., 2020; 

Oved et al., 2012) 

miR-30b* (Oved et al., 2012b) 

miR-30c-1* (M. Kato et al., 2022; Yrondi et al., 2020) 

miR-30d (Bocchio-Chiavetto et al., 2013; Miao et 

al., 2018) 
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miR-32* (W. Song et al., 2019) 

miR-34a (Kuang et al., 2018; Lo Iacono et al., 2021) 

miR-34c (Bocchio-Chiavetto et al., 2013) 

miR-92a (Yrondi et al., 2020) 

miR-92b* (Miao et al., 2018a) 

miR-93 (Yrondi et al., 2020) 

miR-103 (Bocchio-Chiavetto et al., 2013) 

miR-103* (Miao et al., 2018a) 

miR-103a* (Yrondi et al., 2020) 

miR-103b (Yrondi et al., 2020) 

miR-106a (Yrondi et al., 2020) 

miR-106b (Bocchio-Chiavetto et al., 2013) 

miR-106b* (Yrondi et al., 2020) 

miR-107* (Miao et al., 2018a) 

miR-124 (Y. Fang et al., 2018) 

miR-126a* (Miao et al., 2018a) 

miR-128 (Bocchio-Chiavetto et al., 2013) 

miR-129* (Miao et al., 2018a) 

miR-130b (Bocchio-Chiavetto et al., 2013) 

miR-132 (Bocchio-Chiavetto et al., 2013; Fang et al., 

2018; Miao et al., 2018) 

miR-132* (Miao et al., 2018a) 

miR-133b (Miao et al., 2018a) 

miR-135 (Fiori et al., 2017) 

miR-135a (Y. Liu et al., 2017) 

miR-139 (Miao et al., 2018a) 

miR-140 (Craig et al., 2014a) 

miR-140* (Bocchio-Chiavetto et al., 2013; Miao et 

al., 2018a; Yrondi et al., 2020) 

miR-144 (Min et al., 2019) 

miR-145 (Yrondi et al., 2020) 

miR-146b (Oved et al., 2012b) 

miR-148 (Min et al., 2019) 

miR-148a* (Oved et al., 2012b) 

miR-148b* (Yrondi et al., 2020) 

miR-149* (Miao et al., 2018a) 

miR-150 (Miao et al., 2018a) 

miR-151 (Miao et al., 2018a) 

miR-151* (Oved et al., 2012b) 

miR-151a (Yrondi et al., 2020) 

miR-154 (Miao et al., 2018a) 

miR-155 (J. Dai et al., 2020; X. Wang et al., 2018) 
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miR-181a (Miao et al., 2018a) 

miR-181a* (W. Song et al., 2019) 

miR-181c (Craig et al., 2014a) 

miR-181c* (Oved et al., 2012b) 

miR-182 (Yrondi et al., 2020) 

miR-183 (Bocchio-Chiavetto et al., 2013; C.-C. Lin 

et al., 2018) 

miR-185 (Yrondi et al., 2020) 

miR-185* (Yrondi et al., 2020) 

miR-186 (Miao et al., 2018a) 

miR-191 (Bocchio-Chiavetto et al., 2013) 

miR-191* (Yrondi et al., 2020) 

miR-192 (Oved et al., 2012b) 

miR-193a (Craig et al., 2014; Oved et al., 2012) 

miR-194 (Oved et al., 2012b) 

miR-195 (X. Huang et al., 2021) 

miR-195a (Miao et al., 2018a) 

miR-200a* (W. Song et al., 2019) 

miR-200b* (Yrondi et al., 2020) 

miR-203a* (W. Song et al., 2019; Tsoporis et al., 2022) 

miR-205 (Craig et al., 2014a) 

miR-206 (Oved et al., 2012b) 

miR-210 (Craig et al., 2014a) 

miR-210* (Yrondi et al., 2020) 

miR-212 (C.-C. Lin et al., 2018; Oved et al., 2012b) 

miR-212* (Miao et al., 2018a) 

miR-214* (W. Song et al., 2019) 

miR-218 (Miao et al., 2018a) 

miR-221 (Oved et al., 2013) 

miR-221* (Kuang et al., 2018) 

miR-222* (Yrondi et al., 2020) 

miR-300* (Miao et al., 2018a) 

miR-301a (Craig et al., 2014a) 

miR-324 (Yrondi et al., 2020) 

miR-326 (Y. Zhang et al., 2015, p. 2) 

miR-328 (Oved et al., 2012b) 

miR-328* (Miao et al., 2018a; Yrondi et al., 2020) 

miR-329* (Miao et al., 2018a) 

miR-331 (Yrondi et al., 2020) 

miR-335 (Bocchio-Chiavetto et al., 2013; J. Li et al., 

2015) 

miR-341 (Miao et al., 2018a) 
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miR-342* (Miao et al., 2018a) 

miR-346 (Miao et al., 2018a) 

miR-361 (Bocchio-Chiavetto et al., 2013) 

miR-363 (Oved et al., 2012b) 

miR-363* (Oved et al., 2012b) 

miR-374b (Bocchio-Chiavetto et al., 2013) 

miR-378* (Oved et al., 2012b) 

miR-411* (Miao et al., 2018a) 

miR-425* (Oved et al., 2012b) 

miR-433* (Miao et al., 2018a) 

miR-451a (Kuang et al., 2018; Min et al., 2019) 

miR-457b (Craig et al., 2014a) 

miR-466 (Oved et al., 2012b) 

miR-466m (Miao et al., 2018a) 

miR-466m* (Miao et al., 2018a) 

miR-483 (M. Kato et al., 2022) 

miR-485* (Miao et al., 2018a; Oved et al., 2012b) 

miR-486 (Bocchio-Chiavetto et al., 2013; Oved et 

al., 2012b) 

miR-489 (Mundalil Vasu et al., 2016) 

miR-494 (Bocchio-Chiavetto et al., 2013) 

miR-500 (Oved et al., 2012b) 

miR-500a* (Yrondi et al., 2020) 

miR-501* (Oved et al., 2012b) 

miR-502* (Bocchio-Chiavetto et al., 2013; Oved et 

al., 2012b; Yrondi et al., 2020) 

miR-505 (Bocchio-Chiavetto et al., 2013; Yrondi et 

al., 2020) 

miR-532 (Yrondi et al., 2020) 

miR-550* (Oved et al., 2013) 

miR-551b* (Miao et al., 2018a) 

miR-572 (Mundalil Vasu et al., 2016) 

miR-574* (Bocchio-Chiavetto et al., 2013) 

miR-584 (Yrondi et al., 2020) 

miR-589 (Bocchio-Chiavetto et al., 2013; Yrondi et 

al., 2020) 

miR-625 (Oved et al., 2012b) 

miR-629 (Bocchio-Chiavetto et al., 2013; Oved et 

al., 2012b) 

miR-629* (Oved et al., 2012b) 

miR-653 (W. Song et al., 2019) 

miR-660 (Min et al., 2019; Yrondi et al., 2020) 

miR-663a (Mundalil Vasu et al., 2016) 
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miR-664 (Bocchio-Chiavetto et al., 2013; Oved et 

al., 2013) 

miR-669f (Miao et al., 2018a) 

miR-671* (Oved et al., 2012b) 

miR-739 (Craig et al., 2014a) 

miR-744 (Yrondi et al., 2020) 

miR-758 (Miao et al., 2018a) 

miR-766 (Oved et al., 2012b) 

miR-770 (Bocchio-Chiavetto et al., 2013) 

miR-1301* (Yrondi et al., 2020) 

miR-1202 (Fiori et al., 2017) 

miR-1246 (Oved et al., 2013) 

miR-1249 (M. Kato et al., 2022) 

miR-1263 (Oved et al., 2013) 

miR-1290 (Oved et al., 2013) 

miR-1903 (Miao et al., 2018a) 

miR-3095* (Miao et al., 2018a) 

miR-3151 (M. Kato et al., 2022) 

miR-3158 (Yrondi et al., 2020) 

miR-3158* (Yrondi et al., 2020) 

miR-3168 (Yrondi et al., 2020) 

miR-3178 (Oved et al., 2013) 

miR-3195 (Oved et al., 2013) 

miR-3962 (Miao et al., 2018a) 

miR-3963 (Miao et al., 2018a) 

miR-4315 (Oved et al., 2012b) 

miR-4534 (M. Kato et al., 2022) 

miR-5099 (Miao et al., 2018a) 

miR-5121 (Miao et al., 2018a) 

miR-6215 (W. Song et al., 2019) 

miR-6360 (Miao et al., 2018a) 

miR-6769* (M. Kato et al., 2022) 

miR-6769a* (M. Kato et al., 2022) 

miR-6807 (M. Kato et al., 2022) 

miR-6896* (Miao et al., 2018a) 

miR-7081 (Miao et al., 2018a) 

miR-7109 (M. Kato et al., 2022) 

miR-7111* (M. Kato et al., 2022) 

miR-7235* (Miao et al., 2018a) 

miR-7661* (Miao et al., 2018a) 
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Appendix 3. Flow chart to identify studies of miRNA changes with NAFLD. 
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Appendix 4.  Comprehensive list of miRNA altered as a result of NALFD 

 

 

miRNA Altered Reference 

let-7d (López-Pastor et al., 2021) 

let-7e (Y.-J. Zhang et al., 2017) 

miR-1 (F. Jiang et al., 2020) 

miR-9 (Ao et al., 2016; H. Liu et al., 2021) 

miR-15b (Du et al., 2015) 

miR-16 (X.-L. Liu et al., 2016; Pillai et al., 2020; D. 

Zhang et al., 2016) 

miR-17 (Leti et al., 2015; Ye, Lou, et al., 2018; Ye, 

Zhang, et al., 2018, p. 17) 

miR-19a (Pirola et al., 2015) 

miR-19b (Pirola et al., 2015) 

miR‐20a (Ando et al., 2019; Ye, Lou, et al., 2018; Ye, 

Zhang, et al., 2018, p. 17) 

miR-20b (Y. H. Lee et al., 2021; Ye, Zhang, et al., 2018, 

p. 17) 

miR-21 (Alhasson et al., 2018; Becker et al., 2015; 

Dattaroy et al., 2015; Lendvai et al., 2014; H. 

Lin et al., 2022; J. Liu et al., 2018; X.-L. Liu et 

al., 2016; Pillai et al., 2020; Pourhoseini et al., 

2015; Rodrigues et al., 2017; Salman et al., 

2022; C. Sun et al., 2015; Takeuchi-Yorimoto 

et al., 2016; X.-M. Wang et al., 2019; H. Wu et 

al., 2016; X. Zhang et al., 2021) 

miR-21a (Escutia-Gutiérrez et al., 2021) 

miR-22 (Z. Yang et al., 2021, p. 22) 

miR-22* (H. Lin et al., 2022; López-Pastor et al., 2021) 

miR-23b (H. Li et al., 2021) 

miR-23b* (Y.-J. Zhang et al., 2017) 

miR-26a (Ali et al., 2018; Q. He et al., 2017; H. Xu et 

al., 2021) 

miR-26b (López-Pastor et al., 2021) 

miR-27a (Ando et al., 2019; Teimouri et al., 2020) 

miR-27a* (H. Lin et al., 2022; D. Zhang et al., 2016) 

miR-27b (J. Zhang et al., 2021) 

miR-27b* (López-Pastor et al., 2021; Tan et al., 2014) 

miR-29a (Jampoka et al., 2018; H.-Y. Lin et al., 2019; J. 

Liu et al., 2018; M.-X. Liu et al., 2017) 

miR-29a* (Cui et al., 2022) 
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miR-29b (Z. He et al., 2019; X. Jin et al., 2017) 

miR-29b* (Bissoondial et al., 2021; Nie et al., 2018) 

miR-29c (H. Wang et al., 2017) 

miR-29c* (Braza-Boïls et al., 2016; D. Zhang et al., 

2016) 

miR-30a* (D.-R. Wang, Wang, et al., 2020) 

miR-30b (L.-L. Dai et al., 2019; Latorre et al., 2017) 

miR-30c (J. Fan et al., 2017; Zarrinpar et al., 2016) 

miR-30d (H. Wang et al., 2017) 

miR-31 (Leti et al., 2015) 

miR-31a (D. Zhang et al., 2016; Y. Zhang et al., 2020b) 

miR-33 (Ghareghani et al., 2018; J. H. Pan et al., 2021; 

Pang et al., 2017; D. Zhang et al., 2016) 

miR-33a (Erhartova et al., 2019; Karimi-Sales et al., 

2018; Lendvai et al., 2014; Vega-Badillo et al., 

2016) 

miR-33b* (Auguet et al., 2016a) 

miR-34a (Braza-Boïls et al., 2016; Ding et al., 2015b; 

X.-Y. Guo et al., 2018; Y. Guo et al., 2016; 

Harrison et al., 2020; Karimi-Sales et al., 2018; 

J. Liu et al., 2018; X.-L. Liu et al., 2016; 

López-Pastor et al., 2021; Pang et al., 2017; 

Pillai et al., 2020; Salman et al., 2022; Salvoza 

et al., 2016; Simão et al., 2019; L. F. Torres et 

al., 2019; L. Wang, Sun, et al., 2020; Y. Xu et 

al., 2015, 2021) 

miR-34a* (Zarrinpar et al., 2016) 

miR-92a (Di Mauro et al., 2016) 

miR-96 (El-Derany & AbdelHamid, 2021; H. Zhang et 

al., 2020; Y. Zhang et al., 2020b) 

miR-99a (Estep et al., 2015) 

miR-99a* (Zhu et al., 2018) 

miR-99b (Estep et al., 2015) 

miR-100 (Estep et al., 2015; Smolka et al., 2021) 

miR-101* (Meroni et al., 2019) 

miR-103 (X. Wang & Wang, 2018) 

miR‐103a* (Soronen et al., 2016) 

miR-122 (Akuta et al., 2016; Auguet et al., 2016a; 

Becker et al., 2015; Brandt et al., 2018; Braza-

Boïls et al., 2016; Chai et al., 2020; Clarke et 

al., 2014; Csak et al., 2015; Escutia-Gutiérrez 

et al., 2021; Jampoka et al., 2018; H. Jiang et 
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al., 2021, p.; S.-S. Jin et al., 2022a; Kalaki-

Jouybari et al., 2020; Latorre et al., 2017; 

Lendvai et al., 2014; J. Liu et al., 2018; X.-L. 

Liu et al., 2016; Long et al., 2019, p. 1; López-

Pastor et al., 2021; Miyaaki et al., 2014; Naderi 

et al., 2017; J. H. Pan et al., 2021; Pang et al., 

2017; Panzarin et al., 2022; Pillai et al., 2020; 

Pirola et al., 2015; Povero et al., 2014; Salman 

et al., 2022, p. 1; Salvoza et al., 2016; Tan et 

al., 2014; Yamada et al., 2015; L. Yang et al., 

2021; Ye, Zhang, et al., 2018, p. 17; Zarrinpar 

et al., 2016; B. Zhang et al., 2014; D. Zhang et 

al., 2016) 

miR-122* (Bissoondial et al., 2021) 

miR-124* (G. Wang, Zou, et al., 2020) 

miR-125b (Cai et al., 2020; Pirola et al., 2015; Q. Zhang 

et al., 2021) 

miR-126 (Di Mauro et al., 2016) 

miR-127 (Okamoto et al., 2016) 

miR-128 (Teimouri et al., 2020) 

miR-128* (Y.-J. Zhang et al., 2017) 

miR-129 (Y. Wang et al., 2021) 

miR-129b (H. Jiang et al., 2021) 

miR-130a (J. Liu et al., 2019) 

miR-130b (X. Liu et al., 2020) 

miR-130b* (B. Guo et al., 2022; Y.-J. Zhang et al., 2017) 

miR-132 (Hanin et al., 2018b; Zong et al., 2020) 

miR-134 (Tryndyak et al., 2016) 

miR-135a (H. Jiang et al., 2021) 

miR-136 (Okamoto et al., 2016; X. Wang & Wang, 

2018) 

miR-138 (L. Wang et al., 2022) 

miR-139 (S.-S. Jin et al., 2022b; Latorre et al., 2017) 

miR-140 (Y. Sun et al., 2019) 

miR-141 (Yousefi et al., 2020) 

miR-142 (Teimouri et al., 2020; Zhou et al., 2020) 

miR-144 (Vega-Badillo et al., 2016) 

miR-144* (Zhu et al., 2018) 

miR-145 (D. Zhang et al., 2016) 

miR-146 (X. Jin et al., 2017) 

miR-146a (X. Chen et al., 2019; Du et al., 2015; Y. Y. 

Feng et al., 2014; K. Li et al., 2020) 
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miR-146b (Y. Y. Feng et al., 2014; S. He et al., 2018; 

Latorre et al., 2017; Leti et al., 2015; X.-L. Liu 

et al., 2016; López-Pastor et al., 2021) 

miR-148a (X. Wang & Wang, 2018) 

miR-149 (An et al., 2017; S. Chen et al., 2020; Z. Chen 

et al., 2020; J. Xiao, Lv, et al., 2016) 

miR-150 (Di Mauro et al., 2016; Leti et al., 2015; H. Lin 

et al., 2022; Zhuge & Li, 2017) 

miR-152 (Y. Y. Feng et al., 2014) 

miR-153 (Teimouri et al., 2020) 

miR-155 (H. Lin et al., 2022; L. Wang et al., 2016; Y. 

Zhang et al., 2020b) 

miR-181a (R. Huang et al., 2019) 

miR-181b (López-Pastor et al., 2021; Y. Wang et al., 

2017) 

miR-182 (Leti et al., 2015; Nie et al., 2018; H. Zhang et 

al., 2020; Y. Zhang et al., 2020b) 

miR-183 (Leti et al., 2015; H. Zhang et al., 2020) 

miR-185 (X.-C. Wang et al., 2014) 

miR-188 (Y. Liu, Zhou, et al., 2020; Riaz et al., 2021) 

miR-190b (M. Xu et al., 2018) 

miR-192 (Becker et al., 2015; Y. Lin et al., 2017; J. Liu 

et al., 2018; X.-L. Liu et al., 2016, 2017, p. 1; 

X.-L. Liu, Pan, et al., 2020; Pirola et al., 2015; 

Povero et al., 2014; Tan et al., 2014) 

miR-193* (Y. Zhang et al., 2020b) 

miR-194 (López-Pastor et al., 2021; L. F. Torres et al., 

2019; D. Zhang et al., 2016) 

miR-199a (Y. Li et al., 2020; B. Zhang et al., 2014) 

miR-200 (X. Chen et al., 2018; Y. Wang, Zeng, et al., 

2020) 

miR-200a (Y. Y. Feng et al., 2014) 

miR-200a* (D. Zhang et al., 2016) 

miR-200b (Y. Y. Feng et al., 2014) 

miR-200b* (Zhu et al., 2018) 

miR-200c (Y. Y. Feng et al., 2014) 

miR-200c* (T.-T. Zhang et al., 2022; Zhu et al., 2018) 

miR-203* (Du et al., 2015) 

miR-205 (Y. Hu et al., 2019) 

miR-206 (X. Chen, Tan, et al., 2021; H. Wu et al., 2017) 

miR-211 (Y.-J. Zhang et al., 2017) 

miR-212 (J. Xiao, Bei, et al., 2016) 
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miR-214* (D.-H. Lee et al., 2021, p. 214) 

miR-218 (J. He et al., 2019) 

miR-219a (Leti et al., 2015) 

miR-221 (Lendvai et al., 2014) 

miR-222 (J.-J. Wang et al., 2019; Z.-X. Xu et al., 2022, 

p. 608) 

miR-223 (Di Mauro et al., 2016; Y. He et al., 2019, 

2021; Hou et al., 2021) 

miR-223* (Y. Zhang et al., 2020b) 

miR-224 (Lendvai et al., 2014; Leti et al., 2015) 

miR-291b* (Pang et al., 2017) 

miR-328 (H. Wang et al., 2017) 

miR-331* (Zarrinpar et al., 2016) 

miR-335 (G.-H. Fan et al., 2021; Y. Zhang et al., 2020b) 

miR-361 (Z. Zhang et al., 2018) 

miR-367 (D.-D. Li et al., 2017) 

miR-370 (Panzarin et al., 2022) 

miR-375 (Y. Guo et al., 2016; Lei et al., 2018; Pillai et 

al., 2020; Pirola et al., 2015) 

miR-375* (López-Pastor et al., 2021) 

miR-376c (López-Pastor et al., 2021) 

miR-378 (Okamoto et al., 2016) 

miR-378* (Leti et al., 2015) 

miR-379 (Okamoto et al., 2016, 2020) 

miR-380 (X. Chen, Ma, et al., 2021) 

miR-409* (Okamoto et al., 2016; Tryndyak et al., 2016) 

miR-410 (Tryndyak et al., 2016) 

miR-411 (Okamoto et al., 2016) 

miR-421 (Cheng et al., 2016) 

miR-422a (Latorre et al., 2017) 

miR-423 (W. Yang et al., 2017, p. 2) 

miR-451 (Gan et al., 2019; Hur et al., 2015; Karimi-

Sales et al., 2018)  

miR-451a (Y.-J. Zhang et al., 2017) 

miR-486 (Al Azzouny et al., 2021) 

miR-488 (X. Wang & Wang, 2018, p. 3) 

miR-495 (Okamoto et al., 2016; Tryndyak et al., 2016) 

miR-504-3p (H. Jiang et al., 2021) 

miR-504* (Y.-J. Zhang et al., 2017) 

miR-505 (J. Liu et al., 2018; X. Wang & Wang, 2018) 

miR-506 (X. Chen et al., 2019, p. 1; Q. Xu et al., 2015) 
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miR-552* (L. Fan et al., 2021) 

miR‐576 (Soronen et al., 2016) 

miR-590 (Hanson et al., 2019; Leti et al., 2015) 

miR-599 (L. Kong et al., 2022) 

miR-650  (Matboli et al., 2021) 

miR-669b* (Y.-J. Zhang et al., 2017) 

miR-741* (Nie et al., 2018) 

miR-871* (Y. Zhang et al., 2020b) 

miR-873 (Fernández-Tussy et al., 2019) 

miR-881* (Y. Zhang et al., 2020b) 

miR‐892a (Soronen et al., 2016) 

miR-1205 (Matboli et al., 2021) 

miR-1290 (Tan et al., 2014) 

miR-1296 (Yu et al., 2019) 

miR-3666 (Mittal et al., 2020) 
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Appendix 5. Flow chart of the literature review to identify overlapping differentially 

expressed microRNAs in association with SSRI treatment and NAFLD. 
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5 Chapter 5: Discussion  

 

5.1 Summary of the work  

 

The goal of this dissertation was to contribute to the literature regarding adverse metabolic 

side effects of SSRI antidepressant use with a particular focus on NAFLD. I aimed to 

delineate the mechanism by which SSRI exposure could lead to hepatic metabolic 

disturbance, with an emphasis on its contribution to steatosis and dysregulated lipid 

homeostasis. Overall, I have demonstrated using in vitro cell culture models that the SSRI 

fluoxetine can cause excess hepatocyte lipid accumulation an effect which was mediated 

by elevated serotonin (chapter 2) and prostaglandin production (chapter 3). I also found 

that fluoxetine’s ability to cause hepatic lipid accumulation appears to be mediated, in part, 

via PPARG (chapters 3 & 4) and changes in miRNA expression.  

 

5.2 The Two-Hit Hypothesis and NAFLD 

 

An estimated 25% of Canadians currently suffer from NAFLD, making it the most common 

liver disease in Canada (Morris, 2014). With the growing prevalence of obesity, the 

incidence of  NAFLD is also on the rise (Glasgow et al., 1997). This poses a significant 

clinical and economic burden as the rising rate of NAFLD is compounded with the lack of 

treatment (Younossi et al., 2016). NAFLD is classified as a range of diseases varying from 

simple hepatic steatosis to inflammatory non-alcoholic steatohepatitis (NASH) with 

different levels of fibrosis. These illnesses are observed in the absence of other known 

etiologies of hepatic injury such as significant alcohol consumption and viral hepatitis 

(Chalasani et al., 2012). The initial stage of NAFLD, known as nonalcoholic fatty liver 

(NAFL) is defined by steatosis, which is the presence of lipid droplets (LDs) in ≥5% of 

hepatocytes (Reeder & Sirlin, 2010). This can be identified by excess accumulation of 

triglycerides within hepatocytes. Hepatic steatosis can be a result of one or more 

mechanisms including elevated de novo fatty acid synthesis; diminished fatty acid 

oxidation; elevated transport of fatty acids from the peripheral organs to the liver; and 

reduced transport of fatty acids from the liver to the general circulation and peripheral 

organs (Cimini et al., 2017; Mallat et al., 2011).  In accordance with the ‘two-hit’ hypothesis 

of NAFLD, the progression from a healthy liver to NASH occurs in a stepwise fashion 

beginning with the development of steatosis which leads to hepatic inflammation (Paschos 

& Paletas, 2009). As steatosis persists, the increased inflammation may develop into 

inflammation, fibrosis, and even cirrhosis of the liver (Purohit et al., 2010). As such, 

examining exogenous compounds’ contributions to hepatic steatosis (‘first-hit’ of NAFLD) 

is important as it may prove useful in preventing the subsequent inflammation, fibrosis, and 

even cirrhosis of the liver associated with severe NAFLD (Cholankeril et al., 2017; Mallat 

& Lotersztajn, 2008). While many research studies focus on environmental pollutants or 

ubiquitous contaminants and their role in the development of NAFLD, medication use has 

also been associated with liver damage and the development of NAFLD (S. David & 
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Hamilton, 2010).  Importantly, psychotropic medication use has commonly been associated 

with hepatotoxicity (Telles-Correia et al., 2017).  There is evidence from clinical studies 

that depressed individuals are more likely to have NAFLD than non-depressed individuals 

(D. Kim et al., 2019).  Although this association may be due to the underlying pathology of 

MDD, it is also possible that this relationship is influenced by the drugs used to treat MDD.  

SSRIs are the first-line medication for MDD treatment (Israel-Elgali et al., 2021; Yuan et 

al., 2020; Zai, 2021) and there is now a growing body of evidence from clinical studies, 

animal experiments, and cell culture studies that SSRIs can cause perturbations in lipid 

metabolism which may lead to metabolic disease with long term use (Beigi et al., 2022; X.-

M. Feng et al., 2012; Fjukstad et al., 2016; S. Pan et al., 2018a; Xiong et al., 2014) 

 

It is well documented in the literature that steatosis precedes NASH under most 

circumstances (Mashek, 2021). This thesis aimed to examine how the SSRI fluoxetine 

contributes to the ‘first-hit’ of NAFLD.  In doing so, this thesis uncovered novel 

mechanisms by which the widely prescribed SSRI antidepressant fluoxetine contributed to 

drug-induced steatosis.  

 

5.3 NAFL & Hepatic Steatosis 

 

5.3.1 Fluoxetine-induced steatosis is mediated by serotonin  

 

In Chapter 2 I found that fluoxetine treatment caused excess hepatic lipid accumulation via 

altered peripheral serotonin production (A. Ayyash & Holloway, 2021a). To date, this is 

the only study addressing the effects of fluoxetine on hepatic serotonin production. 

Treatment of H4-II-E-C3 hepatoma cells with serotonin in this study resulted in a 

significant increase in lipid accumulation and expression of fatty acid synthase, which was 

consistent with what has been reported in Hep-G2 and SK-Hep-1 hepatic cell lines (Niture 

et al., 2018). Additionally, PCPA treatment abolished the fluoxetine-induced increase in 

serotonin synthesis and lipid accumulation suggesting that hepatic serotonin production 

was mechanistically linked to the lipid perturbations reported following fluoxetine 

exposure (A. Ayyash & Holloway, 2021a). Interestingly, inhibiting peripheral serotonin 

synthesis or signaling has been suggested to be a potential avenue for treating obesity, type 

2 diabetes, and NAFLD (Yabut et al., 2019). Although our results from this chapter 

suggested a pivotal role for increased serotonin production underlying fluoxetine-induced 

hepatic lipid accumulation, it may also involve changes in the expression of serotonin 

receptors or signaling by other monoamines, as has previously been shown (Owens et al., 

2001; Zwartsen et al., 2017). 

 

5.3.2 Fluoxetine elevates prostaglandin production, PPARG, and Steatosis 

 

In Chapter 3, I demonstrated that fluoxetine treatment led to a significant increase in hepatic 

production of the PGD2 prostaglandin metabolite 15d-PGJ2.  15d-PGJ2 acts as a potent 
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endogenous ligand for PPARG and was crucial to SSRI-induced hepatic lipid accumulation 

(A. Ayyash & Holloway, 2021b). This study also found that fluoxetine induced hepatic 

lipid accumulation in association with an elevated mRNA expression of the PPARG 

downstream targets involved in fatty acid uptake (Cd36, Fatp2, and Fatp5) (A. Ayyash & 

Holloway, 2021b). Importantly, the effects of fluoxetine to induce lipid accumulation was 

attenuated with a PTGS1 specific inhibitor (SC-560), which also attenuated 15-deoxy-

Δ12,14PGJ2 production and expression of PPARG downstream target genes (A. Ayyash 

& Holloway, 2021b). My findings that both serotonin and prostaglandins are involved in 

fluoxetine-induced steatosis are consistent with studies demonstrating that serotonin 

signaling and prostaglandin production are interrelated. For example, activation of the 5-

HT2A receptor by serotonin can stimulate the release of AA from membrane phospholipids 

through the activity of cPLA2 (Choi et al., 2018; Felder et al., 1990; Niture et al., 2018; Qu 

et al., 2003).  AA serves as the precursor to several biologically active acid lipids, including 

prostaglandins, leukotrienes, and thromboxanes.  In my thesis, I only explored the effects 

of fluoxetine treatment on prostaglandin synthesis as there is considerable literature that 

implicates prostaglandins in the progression of NAFLD (Calder, 2020; Chung et al., 2014; 

Kumar et al., 2020; Maciejewska et al., 2020; Qin et al., 2015). However, AA is also the 

substrate for the production of other eicosanoids including thromboxane A2 which has also 

been reported to be involved in the development of hepatic steatosis (Q. Li et al., 2020; 

Maciejewska et al., 2015; Marchix et al., 2020; Nanji et al., 1997; W. Wang et al., 2021).  

 

5.3.3 Fluoxetine altered miRNA and Steatosis 

 

In Chapter 3 I found that gene targets of PPARG activation were upregulated following 

fluoxetine exposure. To follow up on this finding Chapter 4 explored the link between 

PPARG activation to changes in miRNA signatures. Of particular interest was miR-122 

which is regulated by PPARG and is central to the progression of NAFLD (Akuta et al., 

2016; Long et al., 2019; K. Song et al., 2013). I found that fluoxetine treatment increased 

miR-122 expression an effect which was attenuated by treatment with the selective PPARG 

antagonist (GW9662). These results as well as in silico binding data strongly suggest that 

fluoxetine can act as a PPARG agonist. This hypothesis is also supported by the observation 

that the increase in miR-122 following fluoxetine treatment is similar to that seen with the 

known PPARG agonist rosiglitazone.  However, there remain questions about the exact 

mechanism by which fluoxetine and miR-122 interact to result in increased hepatic lipid 

accumulation. Interestingly, several other miRNAs have been shown to be altered by 

fluoxetine treatment and play a role in the pathogenesis of NAFLD (Baudry et al., 2010a; 

Craig et al., 2014; Launay et al., 2011; Miao et al., 2018). In chapter 4, I attempted to 

identify miRNAs that could be involved in the observed increase in lipid accumulation 

following fluoxetine treatment.  I found that miR-21 and its validated mRNA target Tiam1 

were significantly altered following fluoxetine treatment. Future studies should extend this 

observation to investigate the mechanism by which fluoxetine-induced increases in miR-

21 expression can contribute to hepatic steatosis.  Previous studies found that miR-21 
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promotes hepatic lipid accumulation by interacting with several lipogenic factors, such as 

sterol regulatory element-binding protein, 3-hydroxy-3-methylglutaryl-co-enzyme A 

reductase and fatty acid-binding protein 7 (T. Zhang et al., 2020). Additionally, hepatocyte-

specific knockout of miR-21 in mice has been shown to improve steatosis through 

upregulation of multiple miR-21 target pathways relating to lipid metabolism (Baffy, 2015; 

Wu et al., 2016a).  

 

5.3.4 Is fluoxetine a PPARG agonist? 

 

Results from chapters 3 and 4 strongly suggested a pivotal role of PPARG in fluoxetine-

induced hepatic steatosis (A. Ayyash & Holloway, 2021b). Future studies should aim to 

better understand whether fluoxetine binds to PPARG directly and activates downstream 

signaling pathways or if fluoxetine exposure is acting indirectly to activate PPARG 

signaling via the production of 15d-PGJ2, a known PPARG ligand, or a combination of 

these two mechanisms.  I have shown that fluoxetine exposure resulted in the upregulation 

of the PPARG ligand 15d-PGJ2 suggesting an indirect effect of fluoxetine with respect to 

PPARG activation (Álvarez-Almazán et al., 2017; A. Ayyash & Holloway, 2021b; Fujitani 

et al., 2010; J. Li et al., 2019). However, in silico docking simulations suggest a direct effect 

of fluoxetine. These docking experiments found that fluoxetine binds to PPARG with 

greater binding energy than a known PPARG agonist (i.e. rosiglitazone) and antagonist (i.e. 

GW9662) (Jamshed and Holloway, unpublished data). To confirm whether or not 

fluoxetine is a direct agonist of PPARG, the in silico docking experiments would need to 

be confirmed via ligand binding activity assays. 

  

5.3.5 Does fluoxetine exposure alter hepatic lipid composition?  

 

In hepatocytes, triacylglycerols, cholesteryl esters, and other neutral lipids are stored in 

liposomes around the central nucleus or within organelles called LDs, which are subject to 

expansion and an increase in abundance as a result of excess lipid accumulation(Scorletti 

& Carr, 2022). In this thesis, hepatic lipid accumulation was examined using a commonly 

used technique known as ‘Oil Red O’ (ORO) staining  (A. Ayyash & Holloway, 2021a, 

2021b). ORO remains a robust, commonly used semiquantitative method for examining 

lipid staining in vitro, as it stains neutral lipids but not biological membranes (Ramírez-

Zacarías et al., 1992b).  Although ORO staining is frequently used as an accurate method 

for measuring hepatic steatosis both in mouse and human liver biopsies, this technique is 

not without its shortcomings (Catta-Preta et al., 2011; Levene et al., 2012). Specifically, 

ORO can be used to semi-quantitatively compare the abundance, localization, and size of 

the LDs, but the different lipid species within LDs cannot be characterized using this 

technique (Mehlem et al., 2013). The fat-soluble ORO dye is only capable of staining the 

most hydrophobic and neutral lipids, such as cholesterol esters, diacylglycerols, and 
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triglycerides, whereas polar lipids including phospholipids, sphingolipids, and ceramides 

are left unstained (Fowler & Greenspan, 1985; Mehlem et al., 2013, 2013). Lipotoxicity is 

characterized by the accumulation of harmful lipid species, such as triglycerides, 

cholesterol, ceramides, diacylglycerols, and lysophosphatidyl choline species leading to 

chronic inflammation and progression from hepatic steatosis to NASH (M. S. Han et al., 

2008; Ibrahim et al., 2011; Luukkonen et al., 2016; Mauer et al., 2017; Perry et al., 2014).  

Due to ORO’s selective staining of neutral lipids, lipotoxic lipid species such as ceramides 

that may be contributing to the development of NASH are left unmeasured (Andrés-

Manzano et al., 2015; Neuschwander-Tetri, 2010). To address this limitation, more recent 

studies have been integrating the use of high-performance liquid chromatography-mass 

spectrometry (HPLC-MS), gas chromatography-mass spectrometry (GC-MS), 

fluorescence microscopy, or commercially available enzymatic kits to quantify the total 

amount of triglycerides and other lipid species (Fuchs et al., 2010; Yen et al., 2010; Y. 

Zhang et al., 2013). Importantly, other studies investigating the metabolic consequences of 

exposure to antidepressants including fluoxetine, have made use of more advanced 

lipidomic analysis techniques such as LC-MS/MS.  These studies have reported that 

concentrations of many different lipid molecules were markedly changed following 

fluoxetine treatment (L. H.-W. Lee et al., 2009; Pinto et al., 2022; S.-S. Xue et al., 2020). 

These more advanced lipidomic analysis techniques may provide unique insight into 

fluoxetine-induced steatosis, particularly since the results in Chapter 3 suggested that 

fluoxetine treatment resulted in altered prostaglandin production, yet the production of 

other eicosanoids derived from AA such as lipoxins, leukotrienes, and thromboxanes was 

not investigated. 

 

5.4 A Further Delve into Fluoxetine & NAFLD – Examining NASH 

 

5.4.1 Second hit & NASH 

 

NAFLD severity is often measured in histological sections using the NAFLD activity score, 

which evaluates progression based on hepatic scores for ballooning, steatosis, and lobular 

inflammation (Kleiner & Brunt, 2012; Satapathy et al., 2015). The aforementioned two-hit 

hypothesis posits that the ‘first hit’ of hepatic steatosis increases the vulnerability of the 

liver to injury mediated by ‘second hits’, such as inflammatory cytokines/adipokines, 

oxidative stress, and mitochondrial dysfunction which in turn lead to NASH and/or fibrosis 

(Day, 2006; Dowman et al., 2010). If left untreated, inflammation and fibrosis in the liver 

are further exacerbated via activation of Kupffer cells, recruitment of circulating immune 

cells, and subsequent activation of hepatic stellate cells ultimately leading to fibrogenesis 

(Bence & Birnbaum, 2020; Hart et al., 2017; Heymann & Tacke, 2016; Kazankov et al., 

2019). Throughout this thesis, I focused primarily on the contribution of fluoxetine to 

excess hepatocyte lipid accumulation, however, a more comprehensive examination of 

SSRI’s contribution to NAFLD should examine the role and mechanism by which 

fluoxetine contributes to hepatic inflammation.  
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5.4.2 Fluoxetine, lipotoxicity, and NASH  

 

The specific lipid species responsible for promoting hepatocyte inflammation and NASH 

pathogenesis is of considerable debate (Farrell et al., 2018). According to lipidomic 

analysis, the liver contains the following lipid categories: fatty acyls, glycerolipids, 

glycerophospholipids, sphingolipids, sterol lipids, and prenol lipids, some of which are 

more lipotoxic in the hepatocyte than others (Fahy et al., 2005, 2009). Previous research 

from our lab demonstrated that fetal and neonatal exposure to fluoxetine resulted in 

NAFLD, with significantly elevated levels of  hepatic triglycerides and hepatic cholesterol 

in exposed offspring relative to controls  (De Long, Barry, et al., 2015). Triglycerides are 

the most prevalent lipid that accumulates in the liver leading to steatosis and is significantly 

elevated in the liver of NAFLD patients when compared to control subjects (Magkos et al., 

2012; Thomas et al., 2005). Studies have also suggested that the delivery of excess FFA to 

the liver or the generation of other lipotoxic species within the liver can result in hepatocyte 

injury and inflammation (Marra & Svegliati-Baroni, 2018; Sharma et al., 2015).  

 

5.4.2.1 Fluoxetine-induced serotonin and NASH  

 

In chapter 2, I demonstrated that fluoxetine treatment led to a significant increase in hepatic 

serotonin production (A. Ayyash & Holloway, 2021a). In addition to serotonin’s role as a 

regulator of metabolism and energy storage by promoting insulin secretion, hepatic de novo 

lipogenesis, and decreasing lipolysis in adipose tissue, serotonin acts as a proinflammatory 

agent (H. Wu et al., 2019; Yabut et al., 2019). It has been suggested that peripheral 5-HT 

plays a pivotal role in inflammatory conditions of the gut, allergic airway inflammation, 

and rheumatoid arthritis (Shajib & Khan, 2015). Interestingly, serotonin has recently been 

reported to result in the progression of NASH via the liver HTR2A/PPARγ2 Pathway (Choi 

et al., 2018; Niture et al., 2018; L. Wang, Fan, et al., 2020). Additionally, serotonin 

mediates oxidative stress and mitochondrial toxicity in a murine model of NASH, an effect 

that was related to the reactive oxygen species generated from serotonin degradation by 

monoamine oxidase A (Nocito et al., 2007). Moving forward, future research should aim 

to examine hepatic oxidative stress and related inflammatory markers that may be linked 

to fluoxetine-induced elevated serotonin production.   

 

5.4.2.2 Fluoxetine elevated inflammatory prostaglandins  

 

In Chapter 3, I examined the importance of the rate-limiting enzymes in the prostaglandin 

synthesis pathway, Ptgs1, and Ptgs2, for their role in hepatic steatosis and identified the 

importance of Ptgs1 in fluoxetine-induced lipid accumulation. Importantly, prostaglandins 

are key components of the inflammatory response, and the literature suggests that increased 

levels of certain prostaglandins are associated with NAFLD (Chung et al., 2014; Kumar et 

al., 2020; Maciejewska et al., 2020; Qin et al., 2015). AA serves as a precursor to several 

biologically active eicosanoids including prostaglandins, thromboxanes, lipoxins, 

prostacyclin, leukotrienes, hydroxyeicosatetraenoic acids (HETEs), and 



Ph.D. Thesis – A. Ayyash; McMaster University – Medical Science 

106 
 

epoxyeicosatrienoic acids (EETs) (Bieren, 2017). Many of these eicosanoids are pro-

inflammatory and leukotrienes, EETs, HETEs, prostacyclin, and other prostaglandins have 

been implicated in the progression of NASH and more severe NAFLD  (Banaszczak et al., 

2020; J. Fan et al., 2004, 2004; Gai et al., 2018; Hardwick et al., 2013; Kumei et al., 2018; 

S. Li et al., 2021; K. Ma et al., 2017; Maciejewska et al., 2020; Raffaele et al., 2019; Schuck 

et al., 2014; X. Wang et al., 2019; Wells et al., 2016). Notably, it has been reported that 

chronic treatment with the SSRI fluoxetine resulted in enhanced PLA2 expression, as well 

as altered expression of some eicosanoids (B. Li et al., 2009; Ramadan et al., 2014; Yaron 

et al., 1999). Therefore, future studies should evaluate the effects of fluoxetine exposure on 

the production of a wider range of eicosanoids to determine if other classes of these 

bioactive molecules are also involved in the hepatic steatosis and inflammation observed 

following fluoxetine exposure (Higgins & Lees, 1984; Maciejewska et al., 2020). 

 

5.4.2.3 Fluoxetine induced miR-21 and NASH  

 

A growing body of literature implicates epigenetic modifications including but not limited 

to DNA methylation, histone modifications, and activity of miRNAs to the progression of 

NASH (Buzzetti et al., 2016). Results from Chapter 4 suggest a significant increase in the 

expression of miR-21 following fluoxetine treatment, a result that was supported by other 

research (Baudry et al., 2010c; Craig et al., 2014b; Launay et al., 2011a; Miao et al., 2018b). 

Importantly, it has been suggested that miR-21 may play an important role in the 

inflammatory response (Madhyastha et al., 2021; Nakamura et al., 2015; Sheedy, 2015; Shi 

et al., 2019). Interestingly, miR-21 is well documented to be involved in hepatic fibrosis as 

well, a component of more severe NAFLD, via the TGF-B1/SMAD and  SPRY2/ 

HNF4A/ERK1 signaling pathways (K. Wu et al., 2016; F. Yang et al., 2016; J. Zhao et al., 

2014). In the liver, it is well documented that fluoxetine causes hepatic inflammation via 

several mechanisms including but not limited to elevated oxidative stress and increased 

pro-inflammatory cytokines such as IL-1β, a component of the NLRP3 inflammasome 

(Elgebaly et al., 2018; Karimi-Sales et al., 2021; Mohamed Kamel, 2021). The 

inflammasome is activated by danger-associated molecular patterns (DAMPs), which 

include products of de novo lipogenesis, such as saturated fatty acids (Csak et al., 2011). 

Further, activation of the NLRP3 inflammasome has been shown to contribute to the 

progression of NAFLD to its more severe stages, including NASH (Mridha et al., 2017; 

Wan et al., 2016). In Chapter 4, the expression of miR-21 was significantly upregulated by 

fluoxetine exposure; upregulation of this miRNA has been associated with activation of the 

NLRP3 inflammasome (Ning et al., 2017; Yamada et al., 2013; Y. Zhang et al., 2020a). I 

also found increased expression of related inflammasome components Casp1, Nlrp3, and 

Il-1b.  Moreover, work from our group has previously reported that fetal and neonatal 

exposure to fluoxetine in a rat model resulted in increased hepatic expression of NLRP3 

inflammasome components and lipid accumulation in the adult offspring (De Long et al., 

2017).  Taken together these results suggest that fluoxetine activates a miR-21-NLRP3 

inflammasome pathway, but this remains to be confirmed using miRNA silencing 

experiments or inhibition of the inflammasome. 
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Interestingly, there is no consensus in the literature with regards to fluoxetine being an 

inflammatory or an anti-inflammatory agent (Abdel-Salam et al., 2004; Alboni et al., 2016; 

Coccaro et al., 2015; Creeden et al., 2021; Duda et al., 2017; D. Liu et al., 2011). In the 

brain, fluoxetine appears to have anti-inflammatory effects, being touted as a 

neuroprotective agent (Caiaffo et al., 2016; H.-M. Hu et al., 2018). Conversely, fluoxetine 

causes hepatic inflammation, as previous research has demonstrated that fetal and neonatal 

exposure to fluoxetine resulted in elevated expression of pro-inflammatory cytokines Tnfα 

and Il-6, both of which have been elevated in serum and hepatic samples from patients and 

animal models of NASH (De Long, Barry, et al., 2015; Haukeland et al., 2006; Klover et 

al., 2005; Tarantino et al., 2009). Future investigations into the development of NASH 

cannot comprehensively be completed without a more appropriate model that incorporates 

the inflammatory response of activated Kupffer cells and macrophages, which play a 

central role in exacerbating liver inflammation (Mridha et al., 2017). 

 

5.5 Limitations of the model 

 

In this thesis, I used a cell line to investigate the molecular mechanisms by which fluoxetine 

could increase hepatic lipid accumulation.  Although these cell models are a convenient 

robust tool for pharmacological research due to their ease of use, availability, and ability to 

scale up for high throughput experiments, however, they come with significant limitations 

including the fact that NAFLD involves multiple cell types in the liver which are not 

modeled using a single cell line (Allen et al., 2005; Müller & Sturla, 2019). Moreover, 

adipose tissue function, the gut microbiome, and other risk factors such as metabolic 

disorders, genetics, and drug and environmental exposures are also important contributors 

to the pathogenesis of the NAFLD: effects that cannot be modeled using a single cell line  

(Safari & Gérard, 2019; Tamura & Shimomura, 2005; Vanni et al., 2010). Recently hepatic 

3D organoid models, including 3D co-cultures with hepatocytes and Kupffer cells or 

stellate cells, have been developed to examine the development of NAFLD. These 3D 

models provide cell-cell relationships that more closely replicate the in vivo tissue structure 

(Gamboa et al., 2021; Jensen & Teng, 2020; Leite et al., 2016; Panwar et al., 2021). 

Alternatively, animal models address some of the major drawbacks of in vitro cell line 

research but these models also cannot fully account for the continuous interplay of several 

risk factors including overnutrition and/or an inappropriate dietary pattern, inadequate 

energy expenditure due to a sedentary lifestyle and genetic susceptibility observed in a 

clinical population of NAFLD (Kanuri & Bergheim, 2013). Animal models of NAFLD can 

be broadly categorized as diet-induced, genetic or a combination both (Santhekadur et al., 

2018). Commonly used genetic animal models of NASH are the ob/ob (leptin deficient) 

and db/db (leptin receptor deficient) mice, the Zucker fa/fa rat, and several transgenic or 

conditional knockout mice (Santhekadur et al., 2018). Future research of fluoxetine’s effect 

on NAFLD, should aim to make use of these models and examine its role on hepatic 

inflammation and NASH (Friedman et al., 2018). This will also allow for a more 

comprehensive understanding of fluoxetine’s effect on altered lipids as levels of 

triglycerides, total cholesterol, HDL and LDL/VLDL cholesterol and free fatty acids can 

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/microbiome
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/metabolic-disorder
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/metabolic-disorder


Ph.D. Thesis – A. Ayyash; McMaster University – Medical Science 

108 
 

be determined in serum and hepatic samples using commercially available kits, as well as 

full lipid profiling (i.e., lipidomics) of serum samples using reversed-phase LC-MS (Fuchs 

et al., 2010).  

 

5.6 An innovative way to rethink NAFLD 

 

The “two-hit” hypothesis of NAFLD was formulated by Day and James in 1998, yet more 

recently the multiple-hit hypothesis has been proposed (Buzzetti et al., 2016; Day & James, 

1998; Yilmaz, 2012). The multiple-hit hypothesis posits that the underlying mechanism for 

the development and progression of NAFLD is complex and multifactorial and does not 

necessarily begin at steatosis and then develop into NASH in a step-wise fashion (Buzzetti 

et al., 2016; Peng et al., 2020). There are multiple parallel factors, including the 

gut microbiome, gut-liver axis, insulin resistance, hormones secreted from the adipose 

tissue, and hyperlipidemia all of which can act synergistically in genetically predisposed 

individuals resulting in changes to energy homeostasis and systemic inflammation both of 

which can extend to NAFLD progression (C. Alonso et al., 2017; Buzzetti et al., 2016). In 

the liver, NASH is characterized by dysfunctional unfolded protein response, endoplasmic 

reticulum (ER) stress, activation, enhanced wound response, and activation of the 

inflammasome and apoptotic pathways (Guy et al., 2012; J. Han & Kaufman, 2016; Puri et 

al., 2008; Szabo & Petrasek, 2015). Although these manifestations of NASH are most 

commonly due to hepatic steatosis and lipotoxic lipids, several other factors can contribute 

to NASH and lead to these adverse outcomes, including epigenetic changes such as DNA 

methylation and histone methylation/acetylation (Juanola et al., 2021). Importantly, the 

comorbid state of MDD has been associated with more severe histological liver steatosis, 

and its widely prescribed pharmacological treatment option, fluoxetine has also been 

implicated in contributing to NAFLD (A. Ayyash & Holloway, 2021a, 2021b; De Long et 

al., 2017; Elgebaly et al., 2018; X.-M. Feng et al., 2011; Mohamed Kamel, 2021; S. Pan et 

al., 2018a; Tomeno et al., 2015).  

 Recent advances in our understanding of NAFLD have also led to an attempt to 

redefine this disease to a name that reflects the knowledge that currently exists about the 

metabolic dysfunction associated with NAFLD (Byrne & Targher, 2015). Furthermore, 

there has been a recent push to redefine NAFLD from being a disease defined by exclusion 

to one of inclusion (Eslam, Sanyal, et al., 2020). As such Eslam et al. recently proposed 

renaming the disease metabolic-associated fatty liver disease (MAFLD) as it is a more 

encompassing, overarching term that better defines this multisystem disorder (Byrne & 

Targher, 2015; Eslam, Sanyal, et al., 2020). This new and improved definition puts 

dysmetabolism and fat accumulation in the liver, the primary driver of disease progression, 

at the epicenter of the disease, and does not require the exclusion of alcoholic liver disease 

or viral hepatitis (Dongiovanni et al., 2018; Eslam, Newsome, et al., 2020; Nasr et al., 

2020). MAFLD can be diagnosed in patients based on observed hepatic steatosis and the 

presence of any one of the following three conditions, including diabetes mellitus, obesity, 

https://www-sciencedirect-com.libaccess.lib.mcmaster.ca/topics/biochemistry-genetics-and-molecular-biology/microbiome
https://www-sciencedirect-com.libaccess.lib.mcmaster.ca/topics/medicine-and-dentistry/adipose-tissue
https://www-sciencedirect-com.libaccess.lib.mcmaster.ca/topics/medicine-and-dentistry/adipose-tissue
https://www-sciencedirect-com.libaccess.lib.mcmaster.ca/topics/medicine-and-dentistry/homeostasis
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or evidence of metabolic dysregulation (S. Lin et al., 2020). Importantly, the contribution 

of pharmacotherapies, including SSRI antidepressants, to liver disease can be better 

explored using the construct of MAFLD where the effects of SSRI exposure on multiple 

metabolic pathways should be explored.  

5.7  Conclusion  

 

Given the high prevalence of MDD and the increasing use of SSRIs for both on-label and 

off-label use, the results of this thesis may have significant implications to improve our 

understanding of metabolic adversities associated with the use of these SSRIs (Skånland & 

Cieślar-Pobuda, 2019; Wong et al., 2017). While the data in this dissertation suggests that 

SSRI use can lead to metabolic perturbations associated with NAFLD, I am not advising 

individuals with MDD to discontinue medication as the benefits of therapy may outweigh 

any metabolic risk.  Additionally, while this study consistently demonstrated hepatic lipid 

accumulation following fluoxetine treatment the same cannot be said for all SSRIs as this 

association may be unique to this medication and may not extend to other drugs in the class. 

That being said, the results of this thesis do identify significant metabolic liability 

associated with SSRI use and do identify potential molecular pathways which might be 

potential targets for therapeutic interventions to prevent fluoxetine-induced lipid 

accumulation.  
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such third party materials; without a separate license, User may not use such third 

party materials via the License. 

• 9)Copyright Notice.Use of proper copyright notice for a Work is required as a 

condition of any License granted under the Service. Unless otherwise provided in 

the Order Confirmation, a proper copyright notice will read substantially as follows: 



Ph.D. Thesis – A. Ayyash; McMaster University – Medical Science 

188 
 

"Used with permission of [Rightsholder's name], from [Work's title, author, 

volume, edition number and year of copyright]; permission conveyed through 

Copyright Clearance Center, Inc." Such notice must be provided in a reasonably 

legible font size and must be placed either on a cover page or in another location 

that any person, upon gaining access to the material which is the subject of a 

permission, shall see, or in the case of republication Licenses, immediately adjacent 

to the Work as used (for example, as part of a by-line or footnote) or in the place 

where substantially all other credits or notices for the new work containing the 

republished Work are located. Failure to include the required notice results in loss 

to the Rightsholder and CCC, and the User shall be liable to pay liquidated damages 

for each such failure equal to twice the use fee specified in the Order Confirmation, 

in addition to the use fee itself and any other fees and charges specified. 

• 10)Indemnity.User hereby indemnifies and agrees to defend the Rightsholder and 

CCC, and their respective employees and directors, against all claims, liability, 

damages, costs, and expenses, including legal fees and expenses, arising out of any 

use of a Work beyond the scope of the rights granted herein and in the Order 

Confirmation, or any use of a Work which has been altered in any unauthorized 

way by User, including claims of defamation or infringement of rights of copyright, 

publicity, privacy, or other tangible or intangible property. 

• 11)Limitation of Liability.UNDER NO CIRCUMSTANCES WILL CCC OR 

THE RIGHTSHOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, 

CONSEQUENTIAL, OR INCIDENTAL DAMAGES (INCLUDING WITHOUT 

LIMITATION DAMAGES FOR LOSS OF BUSINESS PROFITS OR 

INFORMATION, OR FOR BUSINESS INTERRUPTION) ARISING OUT OF 

THE USE OR INABILITY TO USE A WORK, EVEN IF ONE OR BOTH OF 

THEM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 

In any event, the total liability of the Rightsholder and CCC (including their 

respective employees and directors) shall not exceed the total amount actually paid 

by User for the relevant License. User assumes full liability for the actions and 

omissions of its principals, employees, agents, affiliates, successors, and assigns. 

• 12)Limited Warranties.THE WORK(S) AND RIGHT(S) ARE PROVIDED "AS 

IS." CCC HAS THE RIGHT TO GRANT TO USER THE RIGHTS GRANTED 

IN THE ORDER CONFIRMATION DOCUMENT. CCC AND THE 

RIGHTSHOLDER DISCLAIM ALL OTHER WARRANTIES RELATING TO 

THE WORK(S) AND RIGHT(S), EITHER EXPRESS OR IMPLIED, 

INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF 

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. 

ADDITIONAL RIGHTS MAY BE REQUIRED TO USE ILLUSTRATIONS, 

GRAPHS, PHOTOGRAPHS, ABSTRACTS, INSERTS, OR OTHER PORTIONS 

OF THE WORK (AS OPPOSED TO THE ENTIRE WORK) IN A MANNER 

CONTEMPLATED BY USER; USER UNDERSTANDS AND AGREES THAT 

NEITHER CCC NOR THE RIGHTSHOLDER MAY HAVE SUCH 

ADDITIONAL RIGHTS TO GRANT. 
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• 13)Effect of Breach.Any failure by User to pay any amount when due, or any use 

by User of a Work beyond the scope of the License set forth in the Order 

Confirmation and/or the Terms, shall be a material breach of such License. Any 

breach not cured within 10 days of written notice thereof shall result in immediate 

termination of such License without further notice. Any unauthorized (but 

licensable) use of a Work that is terminated immediately upon notice thereof may 

be liquidated by payment of the Rightsholder's ordinary license price therefor; any 

unauthorized (and unlicensable) use that is not terminated immediately for any 

reason (including, for example, because materials containing the Work cannot 

reasonably be recalled) will be subject to all remedies available at law or in equity, 

but in no event to a payment of less than three times the Rightsholder's ordinary 

license price for the most closely analogous licensable use plus Rightsholder's 

and/or CCC's costs and expenses incurred in collecting such payment. 

• 14)Additional Terms for Specific Products and Services.If a User is making one 

of the uses described in this Section 14, the additional terms and conditions apply: 

o a)Print Uses of Academic Course Content and Materials (photocopies for 

academic coursepacks or classroom handouts).For photocopies for 

academic coursepacks or classroom handouts the following additional terms 

apply: 

▪ i) The copies and anthologies created under this License may be 

made and assembled by faculty members individually or at their 

request by on-campus bookstores or copy centers, or by off-campus 

copy shops and other similar entities. 

▪ ii) No License granted shall in any way: (i) include any right by User 

to create a substantively non-identical copy of the Work or to edit or 

in any other way modify the Work (except by means of deleting 

material immediately preceding or following the entire portion of the 

Work copied) (ii) permit "publishing ventures" where any particular 

anthology would be systematically marketed at multiple institutions. 

▪ iii) Subject to any Publisher Terms (and notwithstanding any 

apparent contradiction in the Order Confirmation arising from data 

provided by User), any use authorized under the academic pay-per-

use service is limited as follows: 

▪ A) any License granted shall apply to only one class (bearing 

a unique identifier as assigned by the institution, and thereby 

including all sections or other subparts of the class) at one 

institution; 

▪ B) use is limited to not more than 25% of the text of a book 

or of the items in a published collection of essays, poems or 

articles; 
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▪ C) use is limited to no more than the greater of (a) 25% of 

the text of an issue of a journal or other periodical or (b) two 

articles from such an issue; 

▪ D) no User may sell or distribute any particular anthology, 

whether photocopied or electronic, at more than one 

institution of learning; 

▪ E) in the case of a photocopy permission, no materials may 

be entered into electronic memory by User except in order to 

produce an identical copy of a Work before or during the 

academic term (or analogous period) as to which any 

particular permission is granted. In the event that User shall 

choose to retain materials that are the subject of a photocopy 

permission in electronic memory for purposes of producing 

identical copies more than one day after such retention (but 

still within the scope of any permission granted), User must 

notify CCC of such fact in the applicable permission request 

and such retention shall constitute one copy actually sold for 

purposes of calculating permission fees due; and 

▪ F) any permission granted shall expire at the end of the class. 

No permission granted shall in any way include any right by 

User to create a substantively non-identical copy of the Work 

or to edit or in any other way modify the Work (except by 

means of deleting material immediately preceding or 

following the entire portion of the Work copied). 

▪ iv) Books and Records; Right to Audit. As to each permission 

granted under the academic pay-per-use Service, User shall maintain 

for at least four full calendar years books and records sufficient for 

CCC to determine the numbers of copies made by User under such 

permission. CCC and any representatives it may designate shall have 

the right to audit such books and records at any time during User's 

ordinary business hours, upon two days' prior notice. If any such 

audit shall determine that User shall have underpaid for, or 

underreported, any photocopies sold or by three percent (3%) or 

more, then User shall bear all the costs of any such audit; otherwise, 

CCC shall bear the costs of any such audit. Any amount determined 

by such audit to have been underpaid by User shall immediately be 

paid to CCC by User, together with interest thereon at the rate of 

10% per annum from the date such amount was originally due. The 

provisions of this paragraph shall survive the termination of this 

License for any reason. 
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o b)Digital Pay-Per-Uses of Academic Course Content and Materials (e-

coursepacks, electronic reserves, learning management systems, 

academic institution intranets).For uses in e-coursepacks, posts in 

electronic reserves, posts in learning management systems, or posts on 

academic institution intranets, the following additional terms apply: 

▪ i) The pay-per-uses subject to this Section 14(b) include: 

▪ A)Posting e-reserves, course management systems, e-

coursepacks for text-based content,which grants 

authorizations to import requested material in electronic 

format, and allows electronic access to this material to 

members of a designated college or university class, under 

the direction of an instructor designated by the college or 

university, accessible only under appropriate electronic 

controls (e.g., password); 

▪ B)Posting e-reserves, course management systems, e-

coursepacks for material consisting of photographs or 

other still images not embedded in text,which grants not 

only the authorizations described in Section 14(b)(i)(A) 

above, but also the following authorization: to include the 

requested material in course materials for use consistent with 

Section 14(b)(i)(A) above, including any necessary resizing, 

reformatting or modification of the resolution of such 

requested material (provided that such modification does not 

alter the underlying editorial content or meaning of the 

requested material, and provided that the resulting modified 

content is used solely within the scope of, and in a manner 

consistent with, the particular authorization described in the 

Order Confirmation and the Terms), but not including any 

other form of manipulation, alteration or editing of the 

requested material; 

▪ C)Posting e-reserves, course management systems, e-

coursepacks or other academic distribution for 

audiovisual content,which grants not only the 

authorizations described in Section 14(b)(i)(A) above, but 

also the following authorizations: (i) to include the requested 

material in course materials for use consistent with Section 

14(b)(i)(A) above; (ii) to display and perform the requested 

material to such members of such class in the physical 

classroom or remotely by means of streaming media or other 

video formats; and (iii) to "clip" or reformat the requested 

material for purposes of time or content management or ease 

of delivery, provided that such “clipping” or reformatting 

does not alter the underlying editorial content or meaning of 
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the requested material and that the resulting material is used 

solely within the scope of, and in a manner consistent with, 

the particular authorization described in the Order 

Confirmation and the Terms. Unless expressly set forth in 

the relevant Order Conformation, the License does not 

authorize any other form of manipulation, alteration or 

editing of the requested material. 

▪ ii) Unless expressly set forth in the relevant Order Confirmation, no 

License granted shall in any way: (i) include any right by User to 

create a substantively non-identical copy of the Work or to edit or in 

any other way modify the Work (except by means of deleting 

material immediately preceding or following the entire portion of the 

Work copied or, in the case of Works subject to Sections 14(b)(1)(B) 

or (C) above, as described in such Sections) (ii) permit "publishing 

ventures" where any particular course materials would be 

systematically marketed at multiple institutions. 

▪ iii) Subject to any further limitations determined in the Rightsholder 

Terms (and notwithstanding any apparent contradiction in the Order 

Confirmation arising from data provided by User), any use 

authorized under the electronic course content pay-per-use service is 

limited as follows: 

▪ A) any License granted shall apply to only one class (bearing 

a unique identifier as assigned by the institution, and thereby 

including all sections or other subparts of the class) at one 

institution; 

▪ B) use is limited to not more than 25% of the text of a book 

or of the items in a published collection of essays, poems or 

articles; 

▪ C) use is limited to not more than the greater of (a) 25% of 

the text of an issue of a journal or other periodical or (b) two 

articles from such an issue; 

▪ D) no User may sell or distribute any particular materials, 

whether photocopied or electronic, at more than one 

institution of learning; 

▪ E) electronic access to material which is the subject of an 

electronic-use permission must be limited by means of 

electronic password, student identification or other control 

permitting access solely to students and instructors in the 

class; 
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▪ F) User must ensure (through use of an electronic cover page 

or other appropriate means) that any person, upon gaining 

electronic access to the material, which is the subject of a 

permission, shall see: 

o a proper copyright notice, identifying the 

Rightsholder in whose name CCC has granted 

permission, 

o a statement to the effect that such copy was made 

pursuant to permission, 

o a statement identifying the class to which the material 

applies and notifying the reader that the material has 

been made available electronically solely for use in 

the class, and 

o a statement to the effect that the material may not be 

further distributed to any person outside the class, 

whether by copying or by transmission and whether 

electronically or in paper form, and User must also 

ensure that such cover page or other means will print 

out in the event that the person accessing the material 

chooses to print out the material or any part thereof. 

▪ G) any permission granted shall expire at the end of the class 

and, absent some other form of authorization, User is 

thereupon required to delete the applicable material from any 

electronic storage or to block electronic access to the 

applicable material. 

▪ iv) Uses of separate portions of a Work, even if they are to be 

included in the same course material or the same university or 

college class, require separate permissions under the electronic 

course content pay-per-use Service. Unless otherwise provided in 

the Order Confirmation, any grant of rights to User is limited to use 

completed no later than the end of the academic term (or analogous 

period) as to which any particular permission is granted. 

▪ v) Books and Records; Right to Audit. As to each permission granted 

under the electronic course content Service, User shall maintain for 

at least four full calendar years books and records sufficient for CCC 

to determine the numbers of copies made by User under such 

permission. CCC and any representatives it may designate shall have 

the right to audit such books and records at any time during User's 
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ordinary business hours, upon two days' prior notice. If any such 

audit shall determine that User shall have underpaid for, or 

underreported, any electronic copies used by three percent (3%) or 

more, then User shall bear all the costs of any such audit; otherwise, 

CCC shall bear the costs of any such audit. Any amount determined 

by such audit to have been underpaid by User shall immediately be 

paid to CCC by User, together with interest thereon at the rate of 

10% per annum from the date such amount was originally due. The 

provisions of this paragraph shall survive the termination of this 

license for any reason. 

o c)Pay-Per-Use Permissions for Certain Reproductions (Academic 

photocopies for library reserves and interlibrary loan reporting) (Non-

academic internal/external business uses and commercial document 

delivery).The License expressly excludes the uses listed in Section (c)(i)-(v) 

below (which must be subject to separate license from the applicable 

Rightsholder) for: academic photocopies for library reserves and interlibrary 

loan reporting; and non-academic internal/external business uses and 

commercial document delivery. 

▪ i) electronic storage of any reproduction (whether in plain-text, PDF, 

or any other format) other than on a transitory basis; 

▪ ii) the input of Works or reproductions thereof into any 

computerized database; 

▪ iii) reproduction of an entire Work (cover-to-cover copying) except 

where the Work is a single article; 

▪ iv) reproduction for resale to anyone other than a specific customer 

of User; 

▪ v) republication in any different form. Please obtain authorizations 

for these uses through other CCC services or directly from the 

rightsholder. 

Any license granted is further limited as set forth in any restrictions included 

in the Order Confirmation and/or in these Terms. 

o d)Electronic Reproductions in Online Environments (Non-Academic-

email, intranet, internet and extranet).For "electronic reproductions", 

which generally includes e-mail use (including instant messaging or other 

electronic transmission to a defined group of recipients) or posting on an 

intranet, extranet or Intranet site (including any display or performance 

incidental thereto), the following additional terms apply: 
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▪ i) Unless otherwise set forth in the Order Confirmation, the License 

is limited to use completed within 30 days for any use on the 

Internet, 60 days for any use on an intranet or extranet and one year 

for any other use, all as measured from the "republication date" as 

identified in the Order Confirmation, if any, and otherwise from the 

date of the Order Confirmation. 

▪ ii) User may not make or permit any alterations to the Work, unless 

expressly set forth in the Order Confirmation (after request by User 

and approval by Rightsholder); provided, however, that a Work 

consisting of photographs or other still images not embedded in text 

may, if necessary, be resized, reformatted or have its resolution 

modified without additional express permission, and a Work 

consisting of audiovisual content may, if necessary, be "clipped" or 

reformatted for purposes of time or content management or ease of 

delivery (provided that any such resizing, reformatting, resolution 

modification or “clipping” does not alter the underlying editorial 

content or meaning of the Work used, and that the resulting material 

is used solely within the scope of, and in a manner consistent with, 

the particular License described in the Order Confirmation and the 

Terms. 

• 15)Miscellaneous. 

o a) User acknowledges that CCC may, from time to time, make changes or 

additions to the Service or to the Terms, and that Rightsholder may make 

changes or additions to the Rightsholder Terms. Such updated Terms will 

replace the prior terms and conditions in the order workflow and shall be 

effective as to any subsequent Licenses but shall not apply to Licenses 

already granted and paid for under a prior set of terms. 

o b) Use of User-related information collected through the Service is governed 

by CCC's privacy policy, available online at 

www.copyright.com/about/privacy-policy/. 

o c) The License is personal to User. Therefore, User may not assign or 

transfer to any other person (whether a natural person or an organization of 

any kind) the License or any rights granted thereunder; provided, however, 

that, where applicable, User may assign such License in its entirety on 

written notice to CCC in the event of a transfer of all or substantially all of 

User's rights in any new material which includes the Work(s) licensed under 

this Service. 

o d) No amendment or waiver of any Terms is binding unless set forth in 

writing and signed by the appropriate parties, including, where applicable, 

the Rightsholder. The Rightsholder and CCC hereby object to any terms 
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contained in any writing prepared by or on behalf of the User or its 

principals, employees, agents or affiliates and purporting to govern or 

otherwise relate to the License described in the Order Confirmation, which 

terms are in any way inconsistent with any Terms set forth in the Order 

Confirmation, and/or in CCC's standard operating procedures, whether such 

writing is prepared prior to, simultaneously with or subsequent to the Order 

Confirmation, and whether such writing appears on a copy of the Order 

Confirmation or in a separate instrument. 

o e) The License described in the Order Confirmation shall be governed by 

and construed under the law of the State of New York, USA, without regard 

to the principles thereof of conflicts of law. Any case, controversy, suit, 

action, or proceeding arising out of, in connection with, or related to such 

License shall be brought, at CCC's sole discretion, in any federal or state 

court located in the County of New York, State of New York, USA, or in 

any federal or state court whose geographical jurisdiction covers the 

location of the Rightsholder set forth in the Order Confirmation. The parties 

expressly submit to the personal jurisdiction and venue of each such federal 

or state court. 
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0.00 USD 

Terms and Conditions 

TERMS AND CONDITIONS 

This copyrighted material is owned by or exclusively licensed to John Wiley & Sons, Inc. 

or one of its group companies (each a"Wiley Company") or handled on behalf of a society 

with which a Wiley Company has exclusive publishing rights in relation to a particular 

work (collectively "WILEY"). By clicking "accept" in connection with completing this 

licensing transaction, you agree that the following terms and conditions apply to this 

transaction (along with the billing and payment terms and conditions established by the 

Copyright Clearance Center Inc., ("CCC's Billing and Payment terms and conditions"), at 

the time that you opened your RightsLink account (these are available at any time 

at http://myaccount.copyright.com). 

 

Terms and Conditions 

• The materials you have requested permission to reproduce or reuse (the "Wiley 

Materials") are protected by copyright. 

• You are hereby granted a personal, non-exclusive, non-sub licensable (on a stand-

alone basis), non-transferable, worldwide, limited license to reproduce the Wiley 

Materials for the purpose specified in the licensing process. This license, and any 

CONTENT (PDF or image file) purchased as part of your order, is for a one-

time use only and limited to any maximum distribution number specified in the 

license. The first instance of republication or reuse granted by this license must be 

completed within two years of the date of the grant of this license (although copies 

prepared before the end date may be distributed thereafter). The Wiley Materials 

shall not be used in any other manner or for any other purpose, beyond what is 

granted in the license. Permission is granted subject to an appropriate 

acknowledgement given to the author, title of the material/book/journal and the 

publisher. You shall also duplicate the copyright notice that appears in the Wiley 

publication in your use of the Wiley Material. Permission is also granted on the 

understanding that nowhere in the text is a previously published source 

acknowledged for all or part of this Wiley Material. Any third party content is 

expressly excluded from this permission. 

• With respect to the Wiley Materials, all rights are reserved. Except as expressly 

granted by the terms of the license, no part of the Wiley Materials may be copied, 

modified, adapted (except for minor reformatting required by the new 

Publication), translated, reproduced, transferred or distributed, in any form or by 

any means, and no derivative works may be made based on the Wiley Materials 

http://myaccount.copyright.com/
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without the prior permission of the respective copyright owner.For STM 

Signatory Publishers clearing permission under the terms of the STM 

Permissions Guidelines only, the terms of the license are extended to include 

subsequent editions and for editions in other languages, provided such 

editions are for the work as a whole in situ and does not involve the separate 

exploitation of the permitted figures or extracts, You may not alter, remove or 

suppress in any manner any copyright, trademark or other notices displayed by the 

Wiley Materials. You may not license, rent, sell, loan, lease, pledge, offer as 

security, transfer or assign the Wiley Materials on a stand-alone basis, or any of 

the rights granted to you hereunder to any other person. 

• The Wiley Materials and all of the intellectual property rights therein shall at all 

times remain the exclusive property of John Wiley & Sons Inc, the Wiley 

Companies, or their respective licensors, and your interest therein is only that of 

having possession of and the right to reproduce the Wiley Materials pursuant to 

Section 2 herein during the continuance of this Agreement. You agree that you 

own no right, title or interest in or to the Wiley Materials or any of the intellectual 

property rights therein. You shall have no rights hereunder other than the license 

as provided for above in Section 2. No right, license or interest to any trademark, 

trade name, service mark or other branding ("Marks") of WILEY or its licensors is 

granted hereunder, and you agree that you shall not assert any such right, license 

or interest with respect thereto 

• NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR 

REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY, 

EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE 

MATERIALS OR THE ACCURACY OF ANY INFORMATION CONTAINED 

IN THE MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY 

IMPLIED WARRANTY OF MERCHANTABILITY, ACCURACY, 

SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR PURPOSE, 

USABILITY, INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH 

WARRANTIES ARE HEREBY EXCLUDED BY WILEY AND ITS 

LICENSORS AND WAIVED BY YOU. 

• WILEY shall have the right to terminate this Agreement immediately upon breach 

of this Agreement by you. 

• You shall indemnify, defend and hold harmless WILEY, its Licensors and their 

respective directors, officers, agents and employees, from and against any actual 

or threatened claims, demands, causes of action or proceedings arising from any 

breach of this Agreement by you. 

• IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU 

OR ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY 

SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR 

http://www.stm-assoc.org/copyright-legal-affairs/permissions/permissions-guidelines/
http://www.stm-assoc.org/copyright-legal-affairs/permissions/permissions-guidelines/
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PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN 

CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING 

OR USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION, 

WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, 

TORT, NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, 

WITHOUT LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, 

DATA, FILES, USE, BUSINESS OPPORTUNITY OR CLAIMS OF THIRD 

PARTIES), AND WHETHER OR NOT THE PARTY HAS BEEN ADVISED 

OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION SHALL 

APPLY NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE 

OF ANY LIMITED REMEDY PROVIDED HEREIN. 

• Should any provision of this Agreement be held by a court of competent 

jurisdiction to be illegal, invalid, or unenforceable, that provision shall be deemed 

amended to achieve as nearly as possible the same economic effect as the original 

provision, and the legality, validity and enforceability of the remaining provisions 

of this Agreement shall not be affected or impaired thereby. 

• The failure of either party to enforce any term or condition of this Agreement shall 

not constitute a waiver of either party's right to enforce each and every term and 

condition of this Agreement. No breach under this agreement shall be deemed 

waived or excused by either party unless such waiver or consent is in writing 

signed by the party granting such waiver or consent. The waiver by or consent of a 

party to a breach of any provision of this Agreement shall not operate or be 

construed as a waiver of or consent to any other or subsequent breach by such 

other party. 

• This Agreement may not be assigned (including by operation of law or otherwise) 

by you without WILEY's prior written consent. 

• Any fee required for this permission shall be non-refundable after thirty (30) days 

from receipt by the CCC. 

• These terms and conditions together with CCC's Billing and Payment terms and 

conditions (which are incorporated herein) form the entire agreement between you 

and WILEY concerning this licensing transaction and (in the absence of fraud) 

supersedes all prior agreements and representations of the parties, oral or written. 

This Agreement may not be amended except in writing signed by both parties. 

This Agreement shall be binding upon and inure to the benefit of the parties' 

successors, legal representatives, and authorized assigns. 

• In the event of any conflict between your obligations established by these terms 

and conditions and those established by CCC's Billing and Payment terms and 

conditions, these terms and conditions shall prevail. 
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• WILEY expressly reserves all rights not specifically granted in the combination of 

(i) the license details provided by you and accepted in the course of this licensing 

transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment 

terms and conditions. 

• This Agreement will be void if the Type of Use, Format, Circulation, or Requestor 

Type was misrepresented during the licensing process. 

• This Agreement shall be governed by and construed in accordance with the laws 

of the State of New York, USA, without regards to such state's conflict of law 

rules. Any legal action, suit or proceeding arising out of or relating to these Terms 
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