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Abstract 

Industry and researchers are investigating both battery electric vehicles (BEVs) and 

fuel cell hybrid vehicles (FCHV) for the future of sustainable passenger vehicle technology. 

While BEVs have clear efficiency advantages, FCHVs have key benefits in terms of 

refueling time and energy density.   

This thesis first proposes the concept of a fuel cell range extended vehicle (FCREV) 

that uses Whole-Day Driving Prediction (WDDP) control, which uses driver destination 

inputs to determine whether the planned driving trips that day will exceed the useable 

battery energy capacity. If so, the fuel cell is turned on at the start of the day. The benefit 

of WDDP control is that a smaller, lower cost fuel cell can be used to greatly extend the 

driving range, since the fuel cell can charge the battery during both driving and parked 

periods of the day. Furthermore, this research proposes a fast analytical optimization 

algorithm for designing a WDDP-FCREV to maximize range on a given drive cycle for a 

set cost. The results show an optimized WDDP-FCREV can greatly exceed the range of a 

same-cost BEV, by 105% to 150% for no H2 refueling and by 150% to 250% when H2 

refueling is allowed every 4 hours.  
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1.  Introduction 
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1.1 Background and Motivations 

In the race towards a sustainable electrified transportation system, much debate has 

focused on the future propulsion system of passenger vehicles: batteries or fuel cells? The 

main benefits of battery electric vehicles (BEVs) are the higher grid-to-wheels efficiency 

and the convenience of at-home overnight electric charging. Conversely, a fuel cell hybrid 

vehicle (FCHV) powered with hydrogen created by electrolysis (using electricity from the 

grid) can have nearly half the grid-to-wheels efficiency as BEVs, once the electrolyzer [1], 

compressor [2], and fuel cell [3] losses are considered. The fact that BEVs are nearly twice 

as efficient as FCHVs supports the position of many automotive manufacturers focused 

heavily on BEVs, such as Tesla, GM, BYD, and Ford.  

However, BEVs have challenges such as limited range, long charge times, and large 

costly batteries. Since most people drive less than 50 km on an average day [4], a moderate-

sized battery with a reasonable cost can provide the required range, and vehicles can 

conveniently charge with Level 2 charging (up to 19 kW [5]) at home overnight. However, 

on days when driving needs go far above the average, BEV drivers must carefully consider 

driving range, find available charging stations, and must either interrupt their trip with long 

charge times or use fast charging, which can worsen battery health [6] and lower charging 

efficiency [7]. Driving range can be extended by using very large BEV batteries, but this 

increases vehicle cost and mass, and midday charging may still be required for very long-

distance driving days. 

FCHVs offer a zero-tailpipe emission alternative to BEVs, with the advantages of 

higher energy density, which leads to long driving ranges, and faster refueling times [8]. 
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When hydrogen is compressed to 700 bar, as is common in automotive applications [9], its 

energy density is 120 MJ/kg [10] compared to 0.9 MJ/kg for a modern automotive lithium-

ion battery [11]. With hydrogen refueling times on par with those of gasoline [8], 

investment in the hydrogen refueling infrastructure remains a critical challenge to 

widespread FCHV adoption. Automotive manufacturers such as Toyota and Hyundai have 

focused heavily on polymer electrolyte membrane fuel cells, resulting in the Toyota Mirai 

and the Hyundai Nexo [12] passenger FCHVs. However, heavy-duty transport trucks are 

prime candidates for hydrogen-powered fuel cells because their high energy needs and 

demanding drive cycles are well satisfied by the high energy density, long range, and fast 

refueling times of hydrogen [13]. Thus, there is increasing interest from manufacturers to 

develop fuel cell trucks, including Hyundai, who launched the world’s first mass-produced 

fuel cell transport truck, XCIENT, in 2020 [14], and Nikola Motor, who announced a North 

American hydrogen fuel cell commercial truck program in March 2021 [15].  

To support the increase of fuel cell heavy-duty transport trucks in the coming years, 

an increase in hydrogen refueling stations is crucial [16], [17], ideally using hydrogen 

created by electrolysis using renewable energy, since renewable energy sources like wind 

and solar often require energy storage due to their variable nature [8], [18]. This thesis 

proposes that the anticipated proliferation of hydrogen stations along highways to support 

heavy-duty transport can be leveraged as well for the passenger vehicle segment, which is 

the focus of this thesis. By adding a relatively small range-extending fuel cell to a passenger 

BEV, which is the fuel cell range extender vehicles (FCREVs), drivers can easily make use 
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of these highway hydrogen stations on long-distance driving days, while continuing to use 

convenient at-home overnight charging on average driving days.  

Determination of a long-distance driving day can be made using the driver’s 

planned destinations for the day input into the vehicle navigation system. Using standard 

navigational maps, the planned distance can be calculated, and historical vehicle energy 

consumption can be multiplied by the planned distance to get an approximate energy 

requirement for the day, which is then compared to the available energy in the battery at 

the start of the day (usually fully charged overnight). This estimate can be improved if 

connected traffic data is available, indicating the speed limits for each road segment, which 

can be used to refine the estimated vehicle energy consumption. This energy estimate is 

practically achievable with today’s standard navigation and on-board computing systems, 

as opposed to the precise second-by-second drive cycles required for some optimization-

based control strategies. 

1.2 Contributions 

This thesis proposes a unique control strategy and an optimization algorithm for a 

passenger FCREV that combines the best features of BEVs (high grid-to-wheels efficiency 

and convenient at-home charging for most driving days) and FCHVs (longer range and fast 

refueling times), but without the need for extensive hydrogen fueling infrastructure within 

cities.  

The first contribution of this research is the proposal of a new simple and elegant 

paradigm for FCREVs using Whole-Day-Driving Prediction (WDDP) control with the 

consideration of parked times. In this control strategy where on long-distance driving days, 
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the fuel cell should be turned on at the start of the driving day, and remain running during 

parked times to charge the battery. This is possible from a safety standpoint because of the 

zero harmful tailpipe emissions from fuel cells, in contrast to internal combustion engine 

range extenders. By allowing the fuel cell much more time to provide energy in the day, 

the fuel cell size can be decreased, lowering the cost of the vehicle, and making it cost-

comparable to a long-range BEV. On a long-distance driving day, the small fuel cell should 

provide constant power to extend fuel cell lifetime, and only be turned off temporarily if 

the battery reaches full SOC. On a normal driving day, the fuel cell stays off all day.  

Optimizing the component sizes (battery, fuel cell, and hydrogen tank) of a WDDP-

FCREV requires consideration of the full-day drive cycle, and the commonly-used analysis 

on short standard drive cycles will not suffice because the amount of parked time in 

between trips will affect the daily driving range. Thus, the second contribution of this thesis 

is the proposal of an analytical design optimization algorithm which can quickly identify 

the optimal plant and control parameters of a WDDP-FCREV to maximize range on a given 

full-day drive cycle for a set component cost. This approach is highly accurate and 

accelerates the optimization process by 20 thousand times compared to running the full 

model in Simulink Accelerator mode.  

The combination of these two contributions leads to FCREV designs that can 

achieve significantly longer range compared to a baseline BEV (Chevrolet Bolt) for the 

same energy storage cost. The cost constraint is a defining feature of the research, which 

keeps the component sizes to reasonable values in the optimization search. Thus, the thesis 
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contributions have valuable practical implications for the future design of long-range 

emission-free passenger vehicles. 

1.3 Publications 

The research for this thesis has resulted in the following publication:  

J. Dong and J. Bauman, " Maximizing Driving Range for Fuel Cell Range Extender 

Vehicles with Fixed Energy Storage Costs," IEEE Trans. on Transportation Electrification, 

accepted in August 2022.  

1.4 Outline of the Thesis 

This thesis is organized into six chapters. Chapter 1 has given a comparison between 

BEVs and FCHVs, as well as motivation for FCREVs. Chapter 2 reviews the current 

research on control strategies for FCHVs and FCREVs, especially the advantage of WDDP 

control strategy applied to FCREVs.  

Chapter 3 introduces general design considerations of WDDP-FCREVs, including 

the proposed WDDP-FCREV control flow, fuel cell lifetime and other important 

component parameters. Chapter 3 also describes detailed vehicle modeling of the BEV and 

WDDP-FCREV created in MATLAB/Simulink, along with validation of the BEV model 

to experimental logged data.  

Chapter 4 presents the proposed design optimization algorithm and compares the 

algorithm-calculated range results to those of the full vehicle model, to validate that the 

approximations have only a minor impact on the accuracy of the results. 
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Chapter 5 demonstrates the detailed optimization results from implementing the 

algorithm on a WDDP-FCREV with various case studies. This chapter presents the range 

results with optimal component sizing combination on both customized drive cycle and 

real-world drive cycles. In addition, it also provides optimization results regarding to cost, 

accessory load and multiple drive cycles. In this chapter, a range comparison to BEV fast-

charging with the same refueling/re-charging time is investigated on real-world long drive 

cycles. Lastly, Chapter 6 gives the summary and suggestions for future work. 
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Chapter 2 

 

2. Review of Fuel Cell Range Extender 

Vehicle Control Strategy 
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2.1 Control Strategies of FCHVs  

The FCHVs that are investigated by most research are powered primarily by 

hydrogen stored in on-board tanks, with batteries and possibly ultracapacitors used to 

accept regenerative braking energy and provide high power peaks. The defining feature of 

FCHVs is that the battery does not plug in to charge from the grid so all traction power 

ultimately comes from hydrogen. With regards to optimal sizing, [19] proposes an 

analytical optimization method for designing a fuel cell-battery-ultracapacitor powertrain 

and [20] uses grey wolf optimization to find optimal sizes of the fuel cell, battery, and 

ultracapacitor for standard drive cycles. With regards to control of FCHVs, both rule-based 

[21], [22] and optimization-based [23] – [25] energy management strategies (EMSs) have 

been proposed. In both cases, common goals are to determine fuel cell, battery, and possibly 

ultracapacitor power profiles to improve fuel economy and smooth the fuel cell power to 

extend its lifetime. Fuzzy control algorithms are often proposed for practical 

implementation of these strategies due to their simplicity and low-computational cost [26] 

– [28].  

2.2  Control Strategies of FCREVs  

This thesis focuses on passenger fuel cell range extender vehicles, which have a 

lager battery that charges from the grid and a smaller fuel cell. Due to the fundamental 

difference in operation, the process of optimally designing a FCREV is much different than 

that for a FCHV, and the control strategy has more flexibility due to the larger battery. 

Prior research on FCREV control generally assumes fixed battery and fuel cell 

sizes, and uses either a charge-depleting/charge-sustaining (CD/CS) [29], [30] or blended 
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[31], [32] EMS. Reference [29] focuses on optimizing the CD/CS EMS for a FCREV with 

a 16 kWh battery (to achieve 100 km electric range) and a 32 kW fuel cell. Only battery 

power is used to propel the vehicle until the battery depletes to 30% state-of-charge (SOC) 

in CD mode, then a genetic algorithm is used to optimally split the fuel cell and battery 

power in CS mode. However, the genetic algorithm approach requires the precise drive 

cycle ahead of time and is time-consuming, so is not well-suited to real-time 

implementation. Similarly, [30] has a 30 kW fuel cell range extender and uses CD/CS 

control with only the battery providing power until its SOC reaches 30%. For CS mode, 

[30] proposes a two-stage controller to minimize hydrogen consumption and extend fuel 

cell lifetime by smoothing fuel cell power. Since rapidly changing fuel cell load may cause 

fuel starvation, flooding, membrane drying, and pressure imbalance, which can shorten fuel 

cell lifetime, a steadier fuel cell power and with less on/off switching is recommended to 

maximize lifetime [30].  

With a blended EMS strategy, [31] does not consider electric-only mode, so does 

not fully explore the possibilities of FCREVs. For a 24.5 kWh battery and 8 kW fuel cell, 

[31] proposes a nonlinear control strategy with the goal to extend the fuel cell lifetime. The 

results show that with this smaller fuel cell, it is best to run the fuel cell at constant or near-

constant power to improve fuel cell longevity. Reference [32] also proposes a blended 

strategy, where the goal is to optimally balance fuel cell lifetime and vehicle energy 

consumption while ensuring the battery SOC reaches its minimum level of 30% at the end 

of the drive cycle. This study uses a 12.8 kWh battery and a 30 kW fuel cell. Total driving 
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distance is acquired from the navigation system/driver, and then a vehicle speed prediction 

algorithm is used to predict expected speed based on historical data.  

FCREV sizing studies such as [33] and [34] also use the CD/CS control strategy. 

Reference [33] aims to find the optimal battery and fuel cell sizes on one standard drive 

cycle using CD mode until the battery reaches 30% SOC. Then, for CS mode, [33] uses 

Pontryagin’s Minimum Principle to solve the global optimization problem of the power 

split between the fuel cell and battery, where the goal is to minimize hydrogen use. The 

exact drive cycle must be known ahead of time so this is not a real-time strategy. The 

component size search space is large (e.g., considering fuel cell sizes from 20 kW to 100 

kW), and the resulting optimal sizes (30 kWh battery, > 50 kW fuel cell) are large, 

indicating a high-cost vehicle. Reference [34] sets the battery size to 29 kWh for a ~50 km 

electric range of an urban logistics FCREV. The goal is to find the optimal fuel cell size 

considering energy and component costs. For the typical case of relatively expensive 

hydrogen, [34] uses the CD/CS strategy (CD mode to 20% SOC), where the CS mode 

control decisions are made using convex programming, which requires knowledge of the 

entire drive cycle in advance. Fuel cell sizes of 21 kW – 45 kW are found to be optimal for 

different drive cycles, though maximum driving range over the day is not considered. 

All prior research on FCREV control and sizing considers only the target drive 

cycle, and does not consider making use of the parked times that occur in between driving 

times in real-world vehicle usage. Furthermore, most studies use CD/CS control, meaning 

the battery is mostly depleted before the fuel cell starts providing power. For these two 

reasons, prior designs must employ relatively large fuel cells to provide enough power over 
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a short period of time so that the added fuel cell energy makes a meaningful impact on the 

daily range – this increases the vehicle cost. 

2.3 Whole-Day Driving Prediction Control Strategy  

A similar Whole-Day Driving Prediction (WDDP) control concept was proposed 

by the authors in [35] for application with plug-in hybrid electric vehicles (PHEV) using 

internal combustion engines. The small engine can be decided if to be turned on based at 

the start of day trip based on the driver’s whole-day trip plan.  

However, there are two fundamental differences with now applying WDDP to 

FCREVs: (i) PHEVs cannot have the engine running while parked due to emissions, so 

have a smaller window of time to provide power in the day, which changes the component 

sizing optimization process, and (ii) Range is not a concern for PHEVs since the gas tank 

can hold a lot of chemical energy and gas stations are ubiquitous, so the focus of [35] was 

to reduce vehicle cost compared to BEVs. However, the range of FCREVs can be a concern 

on a long-distance driving day, so the focus of this study is to maximize total range to 

longer than that of a reference BEV while keeping the vehicle cost equal (or lower). 

 



 

22 

 

Chapter 3 

 

3. FCREVs Using WDDP Control Strategy 
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3.1 General Design Considerations 

The main benefit of using the WDDP control strategy in a FCREV is that since the 

fuel cell turns on at the start of a long-distance driving day, there will be more time to 

charge the battery from the fuel cell, and thus more extended range can be obtained from a 

smaller sized fuel cell, reducing vehicle cost. The proposed WDDP energy management 

strategy is to turn the fuel cell on at constant power (which is determined in the offline 

optimization process) at the start of a long-distance driving day – this strategy is simple and 

easily implementable, and will maximize range, which is a driver’s primary concern on 

long-distance driving days. Fig 3-1 shows the flow diagram of the proposed WDDP-

FCREV control, which would run in real-time in the vehicle.  

 
Start of driving day: Driver inputs planned destinations 

for whole day (assume battery fully charged overnight, 

H2 tank full to prepare for next long-distance day)

Vehicle calculates estimated energy required (Ereq) for 

day using maps and historical vehicle energy 

consumption (and connected traffic data if available).

Ereq > Ebatt,useable?

Once vehicle starts driving, turn fuel cell on at 

constant power. The fuel cell can power the motor  

and/or charge the battery.

Yes

No

Fuel cell stays 

off. Vehicle 

drives on battery 

power all day.

 Regular driving day 

 Long-distance driving day 

If battery becomes fully charged again during day, turn 

fuel cell off until SOC drops again due to driving.

During day, refill H2 tank if station is accessible.

 

Figure 3- 1: Proposed WDDP-FCREV control flow that runs online in the vehicle 
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Furthermore, this strategy aligns well with extending fuel cell lifetime compared to 

a fuel cell in a typical FCHV, which experiences dynamic load changes, frequent start-stop 

cycles, and idling. Reference [36] performs comprehensive automotive fuel cell lifetime 

testing and determines that 56% of deterioration occurs due to dynamic load changes, 33% 

due to start-stop cycling, 6% for high power load, and 5% for idling. While high power 

loads will occur for both the WDDP-FCREV and the typical FCHV, the other deterioration 

factors are reduced or eliminated with the proposed WDDP-FCREV since the fuel cell is 

off most days, runs at a constant power when on, and does not idle. On a long-distance 

driving day, the fuel cell would only turn off midday (i.e., have an additional start-stop 

cycle in a day) if the battery SOC reaches its maximum. 

While the WDDP-FCREV online control strategy summarized in Fig 3-1 is 

straightforward and simple to implement in a vehicle, the achievable driving range will 

depend heavily on the vehicle design stage which occurs offline – this is the focus of the 

proposed optimization algorithm in this thesis. Fig 3-2 shows the proposed FCREV system 

diagram, including the most important parameters to optimize in the offline design process: 

energy capacity of the battery in kWh, Ebatt, fuel cell rated power in kW, Pfc, and mass of 

hydrogen (H2) in kg that can be stored in the tank, mH2. A DC/DC boost converter is 

required after the fuel cell to boost the relatively low voltage of the small fuel cell to that 

of the high voltage traction battery. Using a smaller fuel cell allows the use of a smaller 

DC/DC converter, further reducing cost. This research uses cost as the main design 

constraint, so the total cost of the battery, fuel cell, DC/DC converter, and H2 tank in the 

FCREV is fixed, and can be set equal to the battery cost in the compared BEV – then driving 
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range is compared to quantify the FCREV extension over the BEV for the same cost. Thus, 

there are two degrees of freedom in the component design space: Ebatt and Pfc, since once 

these are selected, the size of the H2 tank, mH2, is set based on the cost. There is also one 

degree of freedom in the control design space: the constant % of rated fuel cell power that 

the fuel cell operates at when on, Rfc. 

 

Figure 3- 2: Proposed FCREV system diagram with component design parameters 

bolded 

 

Though a full Simulink-based vehicle model, as described in the next sections, can 

be used to analyze these three degrees of design freedom, the simulation time is 

prohibitively long on long-distance driving cycles to allow a full investigation of the design 

space. For example, the full vehicle model takes about one minute to run a 700 km full day 

drive cycle in Accelerator mode for a single component/control specification. If 50 battery 
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sizes are considered with 50 fuel cell sizes and 5 fuel cell rated powers, this equates to 208 

hours of simulation time for a single drive cycle. Investigating other drive cycles would 

multiply this time accordingly. Thus, the proposed analytical optimization algorithm that 

can be used to investigate the same design space in under 40 seconds. The full Simulink 

vehicle model described in this section is important to validate the accuracy of the results 

from the algorithm, as discussed in Chapter 3. 

3.2 BEV Vehicle Model and Validation 

A Chevrolet Bolt BEV model is created in MATLAB/Simulink according to the 

vehicle parameters shown in Table 3-1. Fig 3-3 shows a block diagram of the forward-

looking BEV model, which at a high level consists of a driver block, controller block, and 

vehicle plant. The driver block is modeled as a proportional-integral closed loop controller 

to adjust the vehicle torque request to ensure the vehicle model follows the specified drive 

cycle. The controller block sends the calculated torque commands to the motor (positive 

torque for propelling and negative torque for regenerative braking) and wheel (negative 

torque for friction braking). 

The vehicle plant (within the dashed box) is created using standard vehicle 

modeling equations. Equation (3-1) shows the vehicle speed at the next simulation step, 

vchas(t+1), is determined by the force out of the wheel block and the aerodynamic losses, 

where ρair is the air density (1.23 kg/m3). The force out of the wheel is calculated by (3-2) 

using the torque into the wheel (in_wheel), the friction braking torque (friction_brake), and the 

rolling resistance losses, where rwheel is the wheel radius and g is the gravitational constant. 

The torque into the wheel is calculated by (3-3), where rfd is the final drive ratio and ηfd is 
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the final drive efficiency. The battery current is calculated by (3-4) as the sum of the motor 

current and the electrical accessory current, where ηmotor is the motor efficiency map based 

on motor speed and torque (tuned to align with experimentally logged data) and Pelec_access 

includes the power draw for controllers, lights, windshield wipers, heating/air conditioning, 

etc. 

 

Figure 3- 3: Block diagram of BEV model 

TABLE 3-1: Chevrolet Bolt Vehicle Model Parameters 

Parameter Symbol Value Reference 

Vehicle Mass (kg) m 1616 + 80 driver [37] 

Drag Coefficient Cd 0.32 [38] 

Rolling Resistance 1 µ1 0.006 [39] 

Rolling Resistance 2 µ2 0.0001 [39] 

Frontal Area (m2) A 2.4211 [37] 

Tire Size  215/50R17 [37] 

Final Drive Ratio rfd 7.05 [37] 

Battery Size (kWh) Ebatt 60 [37] 
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The battery model uses the battery current from (3-4) and an initial SOC value to 

calculate the battery SOC and the battery terminal voltage of the next simulation step, as 

shown in (3-5) and (3-6). In (3-5), Capbatt is the useable battery capacity in Ah. In (3-6), 

the battery terminal voltage (Vbatt) is calculated using either the battery charging or 

discharging internal resistances (Rchg, Rdischg) and the open circuit voltage (Vbatt_ocv), which 

are all a function of SOC. 

11
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Four real-world logged drive cycles of the Bolt are used to validate the model. The 

logged data contains vehicle speed, battery voltage, current, and SOC, air 
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conditioning/heating power, road altitude, and ambient temperature, and is measured with 

a commercially available CANbus datalogger. The logged air conditioning/heating power 

is fed into the model on each cycle, since this power use is specific to each trip, as set by 

the driver. For each drive cycle, the simulated starting SOC is set to the logged SOC at the 

start of the cycle. 

The first step is to create and validate the battery model, since the battery is a critical 

component of the BEV. The battery model parameters are first estimated/extracted from 

the experimental data. Fig 3-4 shows these estimated pack parameters as a function of 

battery SOC. The Chevrolet Bolt has a 60 kWh battery, but only a portion of this represents 

useable energy, since the battery is never allowed to fully deplete so as to lengthen its 

lifetime. Analysis of the logged data indicates 89.2% of the energy in the battery is useable, 

which is about 53.5 kWh. To validate the BEV battery model, the experimentally-logged 

current is fed into the battery model, and the resulting simulated battery terminal voltage 

and SOC are compared to the experimental voltage and SOC. Positive battery current 

represents discharging the battery (propelling the vehicle) and negative battery current 

represents charging the battery (from regenerative braking). Fig 3-5 shows the experimental 

current, experimental and simulated voltage, and experimental and simulated SOC for drive 

cycle #3, which shows excellent agreement between experimental and simulated values, 

especially considering the simple battery model does not account for temperature effects in 

the battery (due to lack of data), which are present in the real battery. 

Since the ambient temperature was not included as a factor in the battery validation 

process, there was no temperature data fed into the whole BEV model validation. The 
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average ambient temperatures of the 4 logged drive cycles used for validation are  2.9 °C, 

6.3°C, 20 °C and 9 °C[fill in], thus this battery model is calibrated to work well in this 

range, between 3°C and 20 °C  .around. The BEV model is considered to work in a 

moderate temperature, such as 20°C degree, in this research. Further data would be needed 

to extend the battery model to work well in very high or very low temperatures. However, 

it is necessary to consider how the temperature affect battery SOC performance once the 

experimental data is substantively available.   

 

Figure 3- 4: Estimated/extracted battery pack parameters for the Chevrolet Bolt 

based on logged drive cycles 
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(a) 

 

 
(b) 

 
(c) 

Figure 3- 5: Chevrolet Bolt battery model validation: (a) measured experimental 

current which is fed into battery model, (b) resulting simulated battery voltage 
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compared with experimental voltage, (c) resulting simulated battery SOC compared 

with experimental SOC 

 

After the battery model is validated, the battery subsystem is added to the rest of 

the vehicle model for validation of the entire model. Fig 3-6 shows the four validation drive 

cycles, with the simulated speed matching closely to the experimental speed. Fig 3-7 

compares the simulated battery SOC to the experimentally-logged battery SOC for each 

cycle. Table 3-2 summarizes the vehicle energy use difference between the model and the 

real vehicle, showing that all modeled results are within +/- 2.3% of the real vehicle, 

indicating a highly accurate BEV model. 
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Figure 3- 6: Experimental and simulated drive profile for four validation drive 

cycles 

 

 

Figure 3- 7: Experimental battery SOC vs. simulated battery SOC for four 

validation drive cycles 

 

TABLE 3-2: Vehicle Model Energy Usage Validation 

Drive Cycle 

Experimentally          

Measured Energy 

(kWh/km) 

Simulated Energy 

(kWh/km) 

Model Error 

(%) 

# 1 0.1975 0.1997 1.11 

# 2 0.2079 0.2031 -2.31 

# 3 0.1641 0.1627 -0.87 

# 4 0.1593 0.1603 0.66 
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3.3 FCREV Vehicle Model  

The validated Chevrolet Bolt model is then modified to create the FCREV model, 

as shown in Fig 3-8. The fuel cell and associated DC/DC converter are connected to the 

high voltage bus, and the fuel cell can power the inverter/motor while driving and/or charge 

the battery. 

 

Figure 3- 8: Block diagram of FCREV model 

 

In the battery block, the battery required current (Ibatt) is the sum of the required 

motor current (Iin_motor) and the required electrical accessory current minus the current from 

the DC/DC converter connected to the fuel cell when it is turned on (Ifc_dcdc), as shown in 

(3-7). Iin_motor is positive for propelling and negative for regenerative braking. Equation (3-

7) shows that during propelling, current from the fuel cell DC/DC converter will go directly 

to the motor, and the battery will provide any additional current required. If the current 

from the fuel cell-DC/DC converter system is greater than the required motor current, the 

fuel cell system current supplies all required current to the motor and the excess fuel cell 
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system current charges the battery (negative Ibatt). The electrical accessory current equals 

the electrical accessory power (Pelec_access) divided by the battery terminal voltage, Vbatt. 

This vehicle electrical accessory load powers necessities like controllers, lights, windshield 

wipers, and heating/air conditioning. In this research, Pelec_access is set to 700 W to represent 

a small/moderate average accessory load, which has some low heating or air conditioning 

on for a portion of the trip. The voltage of the DC link connecting the battery and inverter 

is equal to Vbatt, which will vary slightly over a drive cycle as the battery SOC changes and 

as the power into or out of the battery changes. 

_

_ _

elec access

batt in motor fc dcdc

batt

P
I I I

V
= + −                                     (3 - 7) 

Detailed experimental test results of the 2017 Toyota Mirai, obtained by Argonne 

National Laboratory [3], are used to model the efficiencies of the solid polymer electrolyte 

fuel cell and fuel cell DC/DC converter. The fuel cell is run at various steady power levels 

in 22 °C ambient temperature conditions to generate the efficiency curve and hydrogen is 

stored at 700 bar [3]. The DC/DC converter has a switching frequency of 9.55 kHz [3].  

Since the rated power size of the fuel cell and converter changes in different optimization 

runs in this research, the efficiencies from [3] are presented as a function of operating power 

as a percent of rated power, as shown in Fig 3-9. The fuel cell DC/DC converter efficiency, 

ηdcdc, is shown by the red curve in Fig 3-9, and the fuel cell efficiency, which includes losses 

of the compressor and pumps, is shown by the blue curve. In each optimization run, the 

DC/DC converter rated power size is set to be equal to that of the fuel cell, and the 
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efficiency is set based on the fuel cell operating power for that run. The fuel cell operating 

power, Pfc-op, is equal to the rated fuel cell power, Pfc, multiplied by the % of rated power 

operation, Rfc. Thus, Ifc_dcdc is calculated by (3-8). 

 

Figure 3- 9: Fuel cell system efficiency and fuel cell DC/DC converter efficiency over 

operating rated power [3] 

 

_

fc op dcdc fc fc dcdc

fc dcdc

batt batt

P R P
I

V V

 −
= =                                     (3 - 8) 

In this study, it is important to consider different fuel cell operating rates (Rfc) 

because using a higher rate such as 100% makes full use of the fuel cell cost, but exhibits 

lower efficiency at all times. If a lower operating power such as 60% or 80% is used, fuel 

cell efficiency is higher all day, but a larger fuel cell must be purchased to get the same net 

output power. Equation (3-9) uses ηfc, from Fig 3-9, to calculate the hydrogen used over 
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the day, where tend is the ending time of the day. The lower heating value (LHVH2) of 

hydrogen is set at 1.2 108 J/kg [10]. 
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In this study, the battery energy capacity of the FCREV is varied between 30 kWh 

and 50 kWh, and the same 89.2% “useable” factor from the Bolt is applied. Thus, for every 

studied capacity, Ebatt, the actual useable energy is Ebatt,useable = 0.892Ebatt. When the 

battery is scaled to different capacities, it is assumed the Vbatt_ocv-SOC curve remains 

constant, which physically means the number of cells in series remains the same. Thus, 

reducing the energy capacity represents reducing the number of battery cells in parallel. 

When this is done, the battery internal resistance is also scaled larger with a smaller Ebatt, 

to correctly reflect the fact that a smaller battery with the same terminal voltage is 

composed of less battery cells in parallel, and thus exhibits a higher pack resistance 

compared to a larger battery. All changing component masses are accounted for, according 

to the values in Table 3-3, with linear scaling assumed. 

TABLE 3-3: Component Mass in the 60 kWh Vehicle Model  

Component Mass (Unit) Reference 

Battery 440 (kg) [37] 

DC/DC Converter 6.4 (kW/kg) [40] 

Fuel Cell System 0.659 (kW/kg) [41] 

Hydrogen Tank 17.5 (kg/kg of H2) [42] 
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 Chapter 4 

 

4. Proposed Optimization Algorithm For 

WDDP-FCREVs 
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The optimization of hybrid vehicle design has been studied extensively, and numerous 

heuristic algorithms have been suggested [43], [44] which rely on a full vehicle simulation, 

but the simulation time is long and they can get trapped in local minims [45]. Some attempts 

have been made to overcome this obstacle, such as scripting only a portion of the vehicle 

model [46], which requires some approximations but accelerates the optimization process 

greatly. This thesis proposes an analytical algorithm that considers energy use and battery 

SOC for each driving trip or parked time within a day’s driving schedule, rather than 

second-by-second calculations.  

4.1 Proposed Offline Optimization Algorithm 

The proposed algorithm is used offline during the vehicle design process to 

determine the component sizes (Ebatt, Pfc, mH2) and constant fuel cell power rate (Rfc) that 

provide the longest driving range for a given long-distance driving profile (i.e., one whole 

driving day including driving and parked times). Since the second-by-second vehicle 

simulations in Simulink take a considerable amount of time to run, the entire algorithm 

process is instead scripted as calculations which are much faster, so a simple exhaustive 

search of the three variables (Ebatt, Pfc, Rfc – mH2 is dependent on Ebatt and Pfc) can be used 

in the optimization process. The main input required is the average energy consumption 

(kWh/km) of each driving trip in the day for a corresponding BEV – this can be obtained 

from a single Simulink simulation or by using EPA ratings for standard cycles. The 

algorithm then steps through each driving trip and parked segment starting at the beginning 

of the day, with the assumption that it is a long-distance driving day, since this is the focus 

of the algorithm. Thus, the fuel cell is assumed to be on and generating power from the 
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beginning of the first driving trip. On each driving trip, there is a change in battery energy 

from the traction/accessory energy used and the fuel cell energy generated – the algorithm 

calculates this change in energy for each driving trip. Similarly, there is a change in battery 

energy during each parked segment, but this is a net increase in energy if the fuel cell has 

been on and generating power for the whole parked segment, which will be the case unless 

the battery SOC reaches it maximum or the hydrogen tank becomes depleted. Thus, the 

algorithm steps through each driving trip and parked segment, adding or subtracting the 

battery energy change for each one to determine when the battery useable energy will be 

depleted. When the battery is depleted within a driving trip, linear approximation is used 

to find the point within that trip where the battery fully depletes, which indicates the range. 

Fig 4-1 shows an example full-day test drive cycle with a total range of 704 km. 

This customized drive cycle is created by “sewing” together driving trips from a real-world 

driving dataset of 100 logged drivers from Toronto, Canada. Alternatively, test cycles can 

be created by sewing together standard cycles such as UDDS, HWFET, and US06. This 

customized test cycle is composed of 16 trips (driving segments) and 15 parked segments 

in between the trips. The driving trip segments and parked segments are defined by the key-

on and key-off signals in the logged data, and thus a trip segment can include stopped times 

such as waiting at a red light. For the algorithm, the required drive cycle extracted 

information is: (1) each trip time in hours (tT1, tT2, tT3, …), (2) each parked time in hours 

(tP1, tP2, tP3,…), (3) the average velocity of each trip segment (v1, v2, v3,…), and (4) the 

average BEV energy consumption of each trip segment (c1, c2, c3,…), where the BEV is 

chosen to have the same main vehicle parameters as the planned FCREV, such as the 
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Chevrolet Bolt in this study. The energy consumption of the ith trip, ci, can be obtained from 

the simulation of a full BEV model, or from EPA ratings for standard drive cycles (UDDS, 

HWFET, US06, etc.). 

Though using the BEV energy consumption for each trip segment is reasonable, the 

accuracy of the results can be slightly improved by adjusting each ci slightly based on the 

new vehicle mass for each combination of Ebatt, Pfc, and mH2 for the FCREV. This can be 

accomplished using a two-dimensional look-up table with mass and average vehicle speed 

as inputs, where the table gives a % increase or decrease in ci for each case, compared to 

the baseline BEV ci. To generate this table in this study, shown in Fig 4-2, the BEV 

Simulink model was simulated on 40 real world logged trips (with a mix of city and 

highway trips) with varying vehicle masses. The Bolt BEV baseline mass is 1696 kg 

(including 80 kg driver weight). As expected, the % of energy use reduction with a smaller 

vehicle mass is lower at high speeds (highway driving) than at low speeds (city driving) 

because there is less F=ma force required at cruising highways speeds, which is largely 

dependent on mass, compared to stop-and-go city driving. It is useful to note that many 

combinations of battery/fuel cell/tank sizes in the FCREV have lower mass than the 

baseline 440 kg 60 kWh battery in the BEV. Thus, one potential advantage of a FCREV is 

lower mass leading to lower energy consumption, which is accounted for in the algorithm 

using Fig 4-2, and is reflected in the optimization results. 
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Figure 4- 1: A real-world logged test drive cycle for use in the analytical algorithm 

 

  

Figure 4- 2: Percentage of energy consumption increase with change in vehicle mass 

In addition to the drive cycle extracted parameters, the algorithm also requires the 

cost of each component, which is scaled linearly as component sizes change. The costs used 

in this study are summarized in Table 4-1. The total cost, Ctotal, is set as a fixed input to the 

algorithm, so the longest range FCREV design can be found for a given cost by calculating 

the range for all variables of interest. For example, if Ctotal for the FCREV hybrid 

components is desired to be equal to the 60 kWh battery cost of the BEV Bolt, Ctotal = 
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$9360. In this study, Ebatt is stepped at intervals of 0.1 kWh between 30 kWh and 50 kWh 

and Pfc is stepped at intervals of 0.1 kW between 6 kW and 22 kW. The battery lower bound 

of 30 kWh is selected because is allows the vehicle to complete the whole day’s driving 

needs with battery electric power on 97% of the logged driving days (1802 out of 1858 

days). The hydrogen tank capacity is set based on the remaining cost from the optimization 

problem defined in (4-1). The algorithm is run for % of operating fuel cell power, Rfc, of 

between 50% and 100%, stepping in intervals of 5%. The goal is to find the maximum 

range, R, within the given constraints in (4-1).  

  
2max ( , , , )batt fc H fcR E P m R                                      (4 - 1) 

s.t. 
2 tan( )total batt batt fc fc dcdc H kC E C P C C m C= + + +  

30 50battkWh E kWh   

6 22fckW P kW   

0.5 1fcR   

TABLE 4-1: Component Costs 

Component Name Cost (Units) Reference 

Battery Cbatt 156 ($/kWh) [47] 

Fuel cell system Cfc 45 ($/kW) [48] 

DC/DC converter Cdcdc 45 ($/kW) [49] 

Hydrogen tank Ctank 472.86 ($/H2 kg) [50] 

 

To calculate the daily range, R, the algorithm considers two cases: (1) the hydrogen 

tank is full at the start of the day and no refueling is possible during the day, and (2) the 

hydrogen tank is full at the start of the day and hydrogen refueling occurs every trefuel hours, 
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where trefuel is a user input to the algorithm. In both cases, the battery is assumed fully 

charged at the start of the day from overnight charging the night before. The algorithm 

calculations are first described for the no refueling case below, and then are expanded for 

the refueling case. 

First, the time that the fuel cell can run from the start of the first trip, tfc_total, is 

calculated based on the hydrogen flow rate (QH2 in kg/h) as shown in (4-2) and (4-3).  
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Then a loop is run to calculate the change in energy, ΔE, of the battery after each 

trip segment and each parked segment. The change in battery energy for driving trip i, ΔETi, 

is given by (4-4) where tTi_fc_on is the time the fuel cell is on during this trip based on the 

amount of hydrogen left in the tank, and if the battery is fully charged. For example, tTi_fc_on 

will equal tTi if there is enough hydrogen remaining to power the fuel cell for the entire trip 

i and the battery does not become fully charged; otherwise, tTi_fc_on will be less than tTi 

according to one or both of these constraints. Similarly, the change in battery energy during 

parked segment i, ΔEPi, is given by (4-5), where tPi_fc_on is the time the fuel cell is on during 

this parked segment based on the remaining hydrogen and battery SOC. Thus, tPi_fc_on can 

be equal to or less than the time duration of parked segment i, tPi. 
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_ _( )Ti i i Ti fc op dcdc Ti fc onc v t P t− = − +                                (4 - 4) 

_ _Pi fc op dcdc Pi fc onE P t− =                                          (4 - 5) 

The ΔETi and ΔEPi values are used to find the cumulative change in battery energy 

from the start of the day to the end of the kth driving trip, ΔEend,Tk, as shown in (4-6). 

Equation (4-6) considers k-1 parked segments because only k-1 parked segments have 

occurred prior to the kth trip. 

1

,

1 1
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end Tk Ti Pi
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= =

 =  +                                       (4 - 6) 

The algorithm then checks which is the first trip to have cumulative battery energy 

use, ΔEend,Tk, greater than the useable battery energy, Ebatt,useable. The battery will deplete at 

some point in this trip, and thus driving range is determined in this trip. The algorithm 

estimates the range within this trip, say trip k, using the ratio of remaining battery energy 

for use in this trip to the total energy needed for the trip, as shown in (4-7). Thus, the 

algorithm assumes a constant energy consumption rate, ck, over the trip, which is a required 

approximation to speed up the calculation time so significantly. In (4-7), di is the distance 

of trip i, which is calculated using the drive cycle extracted parameters of trip average 

velocity and trip time, shown in (4-8). 
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i i Tid v t=                                                      (4 - 8) 

In the refueling case, the algorithm checks if the hydrogen tank can be refueled at 

the beginning of each trip segment and parked segment. Once the accumulated total driving 

and parking time passes trefuel, the tank is set to full again, and the range calculation 

considers the extra hydrogen added. If the whole day’s trip (maximum range) can be 

achieved for various size combinations, the algorithm can decrease the initial vehicle cost, 

Ctotal, and run the loop again to find those component combinations which still meet the 

maximum range requirement, but at a lower vehicle cost. Thus, the scripted algorithm can 

find the optimal component size and fuel cell control that meets the driving range needs 

and has the lowest cost. The algorithm is implemented as a MATLAB script. Fig 4-3 

summarizes the algorithm steps at a high level to find the maximum range for a given total 

cost, Ctotal. Fig 4-4 shows the detailed steps to calculate range for both the refueling case 

and the non-refueling case. Overall, the algorithm uniquely allows for a fast estimation of 

total range on any test drive cycle, meaning all combinations of battery size, fuel cell size, 

and fuel cell operating power can be quickly considered in an exhaustive search. The fast 

calculation speed of the algorithm allows more design loops of interest to be run, such as 

changing Ctotal or changing the vehicle accessory power, as will be illustrated in Chapter 5. 
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Read the drive profile: v1,  vn; c1,  cn; 

tT1,  tTn; tP1,  tPn.

Set algorithm inputs: total cost Ctotal, refuel time 

tH2,refuel (for refueling case).

Generate all combinations of component sizes 

(Ebatt, Pfc, calculate tank size mH2) based on (4-1).

Calculate driving range R for each combination 

using (4-2)–(4-8), as shown in Fig 4-4. 

Finished calculating R for all 

combinations of Ebatt, Pfc, mH2, Rfc? 

Optimization process complete: choose 

maximum R to get highest range for Ctotal.

Yes

No

 

Figure 4- 3: High-level summary of proposed offline optimization for FCREV design 
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Start

Refueling case ?

Initialize Ebatt_usable, 

 Eend, tfc_left, tH2_refuel.

Start the trip: Ti (loop).

Calculate  ETi (4-4),

 Eend, update tfc_left.

Update tfc_left.

Reach refueling time ? 

 Eend  > Ebatt ?

Calculate range using (4-

7).

Parking Segment: Pi,

Find tpi_fc_on,

Calculate  Epi,

Update  Eend, tfc_left.

No

Yes

Yes

No

Initialize Ebatt_usable, 

 Eend, tfc_left.

Start the trip: Ti (loop).

Has H2 run out ?

Find tTi_fc_on.

Calculate  ETi (4-4), 

 Eend, update tfc_left.

 Eend  > Ebatt ?

Calculate range using (4-

7).

No

Yes

No

Yes

No

Yes

Has H2 run out ?

No

Find tTi_fc_on.

Yes

Parking segment: Pi,

Find tpi_fc_on,

Calculate  Epi,

Update  Eend, tfc_left.

 

Figure 4- 4: Detailed steps for calculating range in the algorithm for each 

combination of component and control options 
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4.2 Algorithm Validation 

To validate the accuracy of the proposed algorithm, the full Simulink model of the 

WDDP FCREV is run on the drive cycle in Fig 4-1 with larger component step sizes for 

both no refueling and refueling cases. Fig 4-5 shows the battery SOC for the simulated Bolt 

BEV with 60 kWh battery, the simulated FCREV with WDDP strategy, and the algorithm-

scripted FCREV with WDDP strategy, where both FCREV cases use a 30 kWh battery, a 

9 kW fuel cell running at 100% power, and no hydrogen refueling. Fig 4-5 shows the large 

range extension that is possible using a small 9 kW fuel cell with the WDDP control 

strategy compared to a BEV of the same cost. Fig 4-5 also shows that the simulated FCREV 

SOC aligns closely with the much faster algorithm-based FCREV SOC calculations, which 

occur at the end of each driving or parked segment. 

Fig 4-6 shows the percentage error of driving range between the simulated FCREV 

model and the algorithm FCREV for the no refueling case, where the battery step size is 5 

kWh, the fuel cell step size is 1 kW, and Rfc = 100%. The results for the refueling case are 

very similar to those shown in Fig 4-6. The % range error between the scripted algorithm 

and full simulation is generally very small, usually less than 1%, and less than 3.6% for all 

component size combinations. The general accuracy of the algorithm over the whole search 

space is very high and gives reliable results. 
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Figure 4- 5: Battery SOC comparison between simulated vehicle models and 

scripted algorithm 

 

 

Figure 4- 6: Absolute value of percentage difference between driving range resulting 

from full vehicle model and algorithm (no refueling, 100% fuel cell power) 
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Chapter 5 

 

5. Design Optimization Results 
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5.1 Customized Drive Cycle Optimization Results 

For the customized drive cycle shown in Fig 4-1, the Bolt BEV model achieves 280 

km of range with a 60 kWh battery for an energy storage cost of $9360. For the same cycle 

and cost, the optimization algorithm is run for battery size 30 kWh to 50 kWh (in steps of 

0.1 kWh), fuel cell size 6 kW to 22 kW (in steps of 0.1 kWh) and fuel cell operating power, 

Rfc, from 50% to 100%, in 5% steps. All investigated values of Rfc had at least one 

component size combination that could complete the full cycle range of 704 km. Thus, an 

optimal WDDP-FCREV can drive 424 km further than the compared BEV on this cycle 

(with the same energy storage cost), which is a 151% increase in range. Since the full cycle 

can be achieved by any value of Rfc, the most preferrable Rfc is that which gives the largest 

number of component combinations that meet the full range, indicating it can easily achieve 

the driving range for a variety of component sizes. In this case, the optimal Rfc = 75% for 

the no refueling scenario, and these algorithm results (driving range in km) for the WDDP-

FCREV are shown in Fig 5-1(a). For this case, the full driving range is achieved for fuel 

cell sizes from 11 kW to 16 kW and battery sizes 30 kW to 33 kW. For example, one 

optimal point in this plot is a 12 kW fuel cell, a 31 kWh battery, and a 7.3 kg hydrogen 

tank. For comparison, Fig 5-1(b) shows the results for Rfc = 100%, where the optimal 

component sizes are a 9 kW fuel cell, a 30 kWh battery, and a 8.2 kg hydrogen tank. The 

higher fuel cell efficiency at 75% of rated power means there is a more efficient use of on-

board hydrogen energy, so a smaller tank can be used, but a larger fuel cell is required.  

 For the refueling case, where trefuel is set to 4 hours, Fig 5-2(a) shows the optimal 

Rfc value is 100% as it gives the largest number of component combinations that can meet 
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the full range, though lower values can also meet the full range. For example, a 9 kW fuel 

cell, 30 kWh battery, and 8.2 kg tank can meet the full range, as can a 14 kW fuel cell, 45 

kWh battery, and 2.3 kg tank. This shows a much smaller tank can be used since the vehicle 

can refuel part-way through the day. Fig 5-2(b) shows another example with Rfc = 60%, 

where the range can still easily be met by a variety of component sizes, but a larger fuel 

cell is generally needed.  

 
(a) 

 
(b) 

Figure 5- 1: Algorithm range results (in km) for no refueling: (a) 75% fuel cell 

power (optimal); (b) 100% fuel cell power (for comparison) 
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(a)  

 

 
(b)  

Figure 5- 2: Algorithm range results (in km) for refueling: (a) 100% fuel cell power 

(optimal); (b) 60% fuel cell power (for comparison) 
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5.2 Real-World Drive Cycle Optimization Results 

The customized drive cycle was used with the scripted algorithm to show how a 

designer can create various test drive cycles by sewing together the desired drive cycles 

and parking segments. In this subsection, the algorithm is tested using the three longest 

real-world driving cycles from a logged dataset of 100 drivers in Toronto, Canada, where 

each driver was logged for 2 to 6 weeks using a CANbus datalogger. These cycles are 

“worst case scenarios” for a WDDP-FCREV since there is very little parked time, 

especially early in the cycle, which is crucial for fuel cell recharging of the battery. Fig 5-

3 shows these three longest cycles, with daily ranges of 966 km, 943 km, and 801 km, all 

of which have a significant amount of highway driving.  

 

Figure 5- 3: Real-World drive cycles 

 



M.A.Sc. Thesis - Jingting Dong                                              McMaster University - ECE 

56 

 

Table 5-1 shows the maximum range achieved on the three real-world cycles for Rfc 

from 85% to 100%, as the lower Rfc values did not perform as well on these more aggressive 

cycles. For Cycles 1 and 2, the optimal Rfc is 90%, and for Cycle 3 it is 100%, leading to 

the general conclusion that on more aggressive high-speed cycles, a high Rfc around 90% 

to 100% is optimal, for the given fuel cell efficiency curve. The optimal FCREV without 

refueling is unable to complete the full range for the 3 cycles, whereas the optimal FCREV 

with 4-hour refueling can complete the full range on Cycles 2 and 3, and is unable to 

complete Cycle 1. However, when comparing to the BEV simulated range on these cycles 

(shown in the first column), Table 5-1 shows that for the same cost, the WDDP-FCREV 

can increase range by 100% to 120% with no hydrogen refueling in the day and by 144% 

to 245% if hydrogen refueling is assumed every 4 hours. These range increases are 

significant and could be an important factor in encouraging driver uptake of zero-emission 

vehicles.   

Figs 5-4 and figure 5-5 show the optimal component sizing results for Cycle 1 with 

Rfc = 90% for the no refueling and refueling cases, respectively. For both cases, an optimal 

sizing combination is an 18.4 kW fuel cell, 30 kWh battery, and 6.4 kg hydrogen tank. It is 

useful to have a larger fuel cell on these higher speed cycles since the average power 

demands are higher. Figs 5-6 and figure 5-7 show the optimal component sizing results for 

Cycle 2 with Rfc = 90% for the no refueling and refueling cases, respectively. On Cycle 2, 

the ability to refuel makes a large difference, increasing range from 591 km to 940 km. An 

optimal sizing combination for both cases is an 18 kW fuel cell, 30 kWh battery, and 6.5 

kg hydrogen tank. Figs 5-8 and figure 5-9 show the optimal component sizing results for 
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Cycle 3 with Rfc = 100%. The optimal sizes are around 18 kW fuel cell and 30 kWh battery 

for the no refueling case, but the refueling case has a much larger variety of sizes that allow 

the full 801 km range to be achieved, including a 15 kW fuel cell, 36 kWh battery, and a 

5.1 kg hydrogen tank. It is useful to note that these results are somewhat different than 

those for the customized drive cycle (with lower speeds and more parked time), where an 

18 kW fuel cell was far from optimal for the no refueling case, and a smaller fuel cell 

around 11 to 15 kW was preferred, to allow for a larger hydrogen tank within the fixed 

cost. This highlights the importance of using the fast algorithm on a wide variety of cycles, 

to fine-tune the optimal design for the expected cycles. 

TABLE 5-1: Maximum Simulated WDDP-FCREV Range on Real-World Cycles 

Drive Cycle Rfc 

Max Range  

(km)     

 (no refueling) 

Max 

Increase  

over BEV  

(no 

refueling) 

Max Range 

(km) 

(refueling) 

Max 

Increase 

over BEV 

(refueling) 

Cycle #1=966km 

BEV range=272km 

100% 593.10 

119% 

658.91 

144% 
95% 594.72 663.93 

90% 594.90 663.97 

85% 594.16 661.49 

Cycle #2=943km 

BEV range=273km 

100% 589.90 

117% 

943.00 

245% 
95% 591.27 943.00 

90% 591.61 943.00 

85% 591.44 943.00 

Cycle #3=801km 

BEV range=272km 

100% 556.50 

105% 

801.00 

194% 
95% 556.45 801.00 

90% 555.27 801.00 

85% 553.45 801.00 
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Figure 5- 4: Algorithm range results (in km) for Cycle 1 (no refueling, Rfc = 90%) 

 

               

Figure 5- 5: Algorithm range results (in km) for Cycle 1 (refueling, Rfc = 90%) 
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Figure 5- 6: Algorithm range results (in km) for Cycle 2 (no refueling, Rfc = 90%) 

 

          

Figure 5- 7: Algorithm range results (in km) for Cycle 2 (refueling, Rfc = 90%) 
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Figure 5- 8: Algorithm range results (in km) for Cycle 3 (no refueling, Rfc = 100%) 

 

       

Figure 5- 9: Algorithm range results (in km) for Cycle 3 (refueling, Rfc = 100%) 
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Fig 5-10 shows the simulated battery SOCs for three cases on Cycle 2: full vehicle 

BEV model, full vehicle WDDP-FCREV model, and algorithm WDDP-FCREV, where the 

FCREV is refueled every 4 hours and has a 30 kWh battery, 18 kW fuel cell, and Rfc = 

100%. These results further validate that the optimal size/control parameters found using 

the algorithm give similar range results as the full vehicle model. The green circles 

represent the “calculation points” in the algorithm (at the end of each driving or parked 

segment) to highlight the fact that even though the algorithm SOC (green) does not always 

track the full simulated SOC (red) due to averaging over each segment, the calculation 

points are quite accurate and lead to the correct daily driving range. 

 

Figure 5- 10: Battery SOC comparison between simulated vehicle models and 

algorithm on real-world Cycle 2 (WDDP-FCREV has 30 kWh battery, 18 kW fuel 

cell, Rfc = 100%) 

 

5.3 Optimization Sensitivity to Cost  

The fast speed of the proposed optimization algorithm makes it useful to examine 

optimal results for a variety of cost scenarios. This subsection presents results for two cost 

sensitivity studies: i) some component costs are increased by 50%, and ii) total energy 

storage cost is reduced below that of the BEV. 
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Since the optimization algorithm is constrained by component costs, and costs can 

vary in different scenarios (such as different purchase quantities or reductions in the future), 

an additional optimization is run for the customized drive cycle where the fuel cell and 

dc/dc converter costs are increased by 50% compared to those in Table IV. Fig 5-11 shows 

the no refueling range results for the optimum Rfc, 85%. The optimal WDDP-FCREV with 

50% higher fuel cell and dc/dc converter costs achieves a maximum range of 697 km with 

a 30 kWh battery, 10 kW fuel cell, and a 7.0 kg H2 tank. This design nearly completes the 

full 704 km cycle, and drives 417 km (149%) farther than the baseline BEV. Compared to 

the results in Fig 5-1(a) with the original costs, the optimal fuel cell size has moved from a 

wide range of 11 kW to 15 kW down to 10 kW.  

 
Figure 5- 11: Algorithm range results (in km) for no refueling case where fuel cell 

and dc/dc costs are increased by 50% (Optimal Rfc = 85%) 
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If the entire WDDP-FCREV energy storage cost is reduced to a fraction of the 

original BEV energy storage cost of $9360, the algorithm can be used to investigate the 

range achievable with an optimal WDDP-FCREV vehicle that is lower cost than the 

baseline BEV. Fig 5-12 shows this result for the three real-world logged cycles with 

standard component costs, where the algorithm loops are run at 70% to 100% of the BEV 

cost in steps of 1%. Each point on the plot is for the optimal battery size, fuel cell size, and 

fuel cell operating power for that cost, so this plot represents many different component 

and control results. Each cycle is represented by a unique color and since the BEV ranges 

on these cycles are within 1 km of each other, the average BEV range (272 km) is 

represented by the black horizontal line for comparison (at the usual 100% BEV cost). 

For Cycle 1 (blue lines), since the cycle has near-constant high-speed driving at the 

start of the day, the battery depletes so quickly that the vehicle doesn’t have a chance to 

refuel hydrogen before the battery is depleted; thus, the refuel and no refuel maximum 

ranges are the same. The optimal WDDP-FCREV range equals that of the BEV when the 

WDDP-FCREV energy storage cost is 73% that of the BEV, or $6833. Thus, this type of 

analysis can help the designer balance the competing goals of reducing cost and increasing 

range. For example, on Cycle 1, for 90% of the BEV cost, the WDDP-FCEV achieves a 

455 km range, which is a 69% increase over the BEV at 100% cost. For Cycle 2 (red lines), 

the optimal WDDP-FCREV at 74% of the BEV cost equals the BEV range. For this case, 

Fig 5-12 shows that if the WDDP-FCREV cost is set to 90% or higher, significant gains in 

range can be achieved in the refueling case, with a 733 km range achievable at 90% cost 

and a 940 km range achievable at 100% cost. For Cycle 3 (green lines) the optimal WDDP-
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FCREV range equals the BEV range when the WDDP-FCREV energy storage cost is 78% 

that of the BEV. Also, the WDDP-FCREV refueling case can complete the whole cycle 

(801 km) if the cost is 92% that of the BEV. Thus, the fast optimization script is useful to 

perform cost sensitivity analyses. 

 

Figure 5- 12: Optimal WDDP-FCREV range results for energy storage costs 70% to 

100% of the BEV cost 

 

5.4 Optimization Sensitivity to Accessory Load  

The preceding results used a 700 W accessory load, which is a low-to-moderate 

load. This section investigates the optimal WDDP-FCREV designs and ranges achieved on 

real-world Cycle 2 if the average accessory loads are increased to 1200 W and 2000 W, 

representing moderate loads which include some heating or air conditioning. The baseline 

BEV model is also run again with these higher accessory loads to obtain the BEV range 
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achievable for each case. Fig 5-13 shows optimal component sizing results for the no 

refueling 2000 W load case, at the optimal fuel cell power of Rfc = 90%. For this case, the 

maximum range achieved by the WDDP-FCREV is 554 km with an 18 kW fuel cell, 30 

kWh battery, and 6.5 kg tank, compared to the BEV range of 257 km. Fig 5-14 shows the 

trend of range decreases for each type of vehicle (BEV, optimal WDDP-FCREV without 

refueling, and optimal WDDP-FCREV with refueling) as vehicle accessory loads increase 

from 700 W to 2000 W. The results show that similar range increases can be expected at 

these higher loads as those at the lower original load of 700 W, with no refueling range 

gains around 115% and refueling range gains around 250%. 

 

Figure 5- 13: Algorithm range results (in km) for no refueling case with accessory 

loads = 2000 W and optimal Rfc = 90% 
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Figure 5- 14: Maximum achievable range on real-world Cycle 2 with 700W, 1200W, 

2000W vehicle accessory loads 

 

5.5 Comparison to BEV Fast-Charging  

A main advantage of hydrogen refueling over BEV fast-charging is that hydrogen 

refueling can be completed in about 5 minutes [51], which is similar to what drivers are 

accustomed to for refueling gasoline-powered vehicles, and which does not materially 

interrupt the trip, assuming a H2 filling station is available on the route. It is well-known 

that if a BEV is charged for long enough (say 20 to 60 minutes or more, depending on the 

charging power and battery size) and often enough, it could continue driving as long as 

needed. Hence, this subsection investigates the effect of BEV fast-charging on range for 

the 5 minute interval of H2 refilling, to enable direct comparison with the WDDP-FCREV. 

The investigation considers the 3 real-world drive cycles, 50/100/150 kW fast-charging 

power levels, and refueling intervals (trefuel) of 2 and 4 hours. The battery I2R losses during 
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fast-charging are accounted for according to the battery internal resistance shown in Fig 3-

4. 

 The simulated results are shown in Fig 5-15. For the no refuel/recharge case, only 

a single BEV range value is given (green bar). The results show that short 5 minute 

recharges for BEVs, even at 150 kW every 2 hours, do not have a significant impact on 

range compared to the long ranges achieved by the WDDP-FCREV. For Cycles 1 and 2, 

the BEV recharges every 4 hours have no effect on the range because the battery has been 

fully depleted before the 4-hour mark, so the vehicle is unable to reach the recharge point. 

For all cycles, the WDDP-FCREV can complete the entire range when refueling every 2 

hours is possible. The underlying benefit of the WDDP-FCREV is the large amount of 

energy stored in the vehicle at the start of the day, and this cannot be compensated for by 

short fast-charging events by the BEV. The results show that, for the common charging 

powers studied, BEVs need to rely on significantly longer charging times to attempt to 

complete the same distance in a day as the optimized WDDP-FCREV, which can interrupt 

trips and inconvenience drivers. 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 5- 15: BEV fast-charging results compared to WDDP-FCREV for (a) Cycle 1, 

(b) Cycle 2, and (c) Cycle 3 
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5.6 Optimization for Multiple Drive Cycles 

The WDDP-FCREV analysis has thus far focused on one customized drive cycle 

and 3 real-world logged drive cycles. The proposed analytical design optimization 

algorithm gives fast and accurate results for the optimal fuel cell size, battery size, H2 tank 

size, and fuel cell percentage power level for the target drive cycle. However, in the real 

design process, one optimal design must be selected in the design phase to work well with 

a wide variety of potential drive cycles. Thus, this subsection proposes a simple method to 

determine the optimal design for a large set of n drive cycles.  

Equation (4-7) calculates the driving range, R, for a single combination of Ebatt, Pfc, 

mH2, and Rfc. After an exhaustive search through all viable combinations of these 

parameters, a matrix of R values is obtained, called Rmatrix, which is the basis for Fig 5-1 

and other similar figures. The dimensions of Rmatrix are the number of Ebatt options × the 

number of Pfc options, and a different Rmatrix is generated for each value of Rfc in the 

exhaustive search. It is proposed that if the design must optimize for n drive cycles, an 

Rmatrix should be generated for each cycle, then all resulting matrices should be added 

together (assuming the matrix dimensions are held constant) to get Rmatrix,total, which is the 

total range achievable for each design over the n drive cycles, as shown in (5-1). Then, the 

highest range value from Rmatrix,total is selected and the corresponding values of Ebatt, Pfc, 

mH2, and Rfc are found to be the optimal design leading to this maximum range over the n 

cycles.  
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This process is illustrated using the 20 cycles with the highest daily range from the 

set of real-world logged driving data (the 3 longest cycles are the Cycle 1, 2, and 3 analyzed 

in prior subsections). The no-refueling case is considered for this example, though the same 

method can be applied for the refueling case. The daily driving distance of these 20 cycles 

is summarized in Fig 5-16, and the total distance of these 20 cycles is 8,536.9 km. Table 5-

2 shows the top range result for each Rfc from 85% to 100%. All four top results have total 

range within 5.2 km (or 0.07%) of each other, though the bolded row with Rfc = 90% gives 

the highest range of 7,544.9 km with a 30 kWh battery, 19.2 kW fuel cell, and 6.2 kg H2 

tank. The Rmatrix,total for Rfc = 90% is shown in Fig 5-17, where the maximum range is around 

Pfc = 19.2 kW. Thus, the proposed process can be used to find an optimal design for a wide 

variety of drive cycles. 

 
Figure 5- 16: Daily distance of 20 longest real-world drive cycles used for finding a 

single optimal design 
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TABLE 5-2: Optimal WDDP-FCREV Design for 20 Real-World Cycles 

Rfc 
Max Range 

(km) 

Ebatt 

(kWh) 

Pfc 

(kW) 

mH2 

(kg) 

100% 7539.7 30 17.4 6.6 

95% 7544.4 30 18.3 6.4 

90% 7544.9 30 19.2 6.2 

85% 7542.9 30 20.3 6.0 

 

 

Figure 5- 17: Rmatrix,total for Rfc = 90% for the 20 longest real-world drive cycles 
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Chapter 6 

 

6. Conclusions and Future Work 
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6.1 Summary and Conclusions 

This thesis has firstly proposed the concept of the WDDP-FCREV, where the range-

extender fuel cell is turned on at the start of a long-distance driving day to maximize the 

time it can charge the battery, which occurs during driving and parked times. This thesis 

gives a review of control strategies for FCHVs and FCREVs in Chapter 2. Chapter 2 also 

compares the differences between applying WDDP control strategy to PHEVs or FCREVs. 

In Chapter 3, a Chevrolet Bolt BEV model in MATLAB/Simulink is introduced at 

a high level and validated through real-world logged drive cycles. The model energy 

differences compared to real-world measured energy are under 2.31%. The FCREV model 

is modified based on Chevrolet Bolt model by adding fuel cell system, which contains fuel 

cell, high-pressure hydrogen tank and dc/dc inverter using a series drivetrain.  

In Chapter 4, a fast-analytical design optimization algorithm is proposed and 

validated to find the optimum combination of fuel cell, battery, and hydrogen tank size, as 

well as fuel cell operating power, for a selected test drive cycle and a fixed cost. The 

proposed optimization algorithm speeds up the investigation of the design search space by 

20 thousand times, from hundreds of hours to a few seconds, with a very limited impact on 

accuracy. The fast speed of the algorithm allows the designer to investigate many different 

test drive cycles, and perform important sensitivity analyses, for example, by varying 

accessory loads or component costs, since future costs can be uncertain. The proposed fast 

analytical algorithm is also validated on the customized long-distance drive cycle for both 

no refueling and refueling cases by comparing battery SOC and driving range with 

simulated FCREV model in Chapter 4.  
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Chapter 5 shows the optimization results of the customized drive cycle and real-

world drive cycles. For the considered real world drive cycles and component costs, an 

optimized WDDP-FCREV with the same cost as the Bolt BEV can achieve 105% to 150% 

longer range than the BEV when H2 refueling is not considered and 150% to 250% longer 

range than the BEV when H2 refueling is allowed every 4 hours from the start of the driving 

day. These results have important real-world implications for the future design of long-

range emission-free passenger vehicles, as these longer ranges are highly desirable for 

drivers. Alternatively, the energy storage cost of a WDDP-FCREV could be reduced to 

about 75% of that of a BEV, while achieving the same range as the BEV. Compared to fast-

charging BEVs, this thesis shows that WDDP-FCREV has a significant advantage in total 

drive range when it comes to 5-minute refueling/re-charging. Various optimization studies 

based on driving range, vehicle cost, drive cycles are investigated in the Chapter 5. 

6.2 Suggested Future Work 

The proposed optimization algorithm in this thesis is investigated in the passenger 

vehicle, and it can be extended to other electrified transportation applications, such as taxis 

and delivery trucks. There are certain long-period routes scheduled for delivery trucks, 

which can be optimized offline in the algorithm with the lowest energy system cost. The 

proposed optimization algorithm can be used to design FCREVs in a variety of 

applications, with variations in drive cycles, component costs, and auxiliary loads.  

The WDDP strategy can be further investigated for real-time range prediction to 

determine the best time to turn on the fuel cell, perhaps somewhat later than the start of the 

day. Although this adds complexity to the real-time control, an investigation may show 
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whether any potential fuel savings from this concept are significant enough to warrant the 

extra complexity. Real-time traffic data can be collected and considered to re-compare new 

estimated energy usage to current usable energy once the routes are changed based on 

updated traffic information. The original proposed WDDP strategy is simple, robust, and 

will maximize range on long-distance driving days, which is an important requirement for 

drivers. However, by expanding the WDDP strategy to update energy use in real-time, 

hydrogen fuel use could conceivably be reduced. 
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