
Optimization of Large-Scale Single Machine and Parallel Machine Scheduling

Large-Scale Single Machine and Parallel Machine Scheduling

in the Steel Industry

with Sequence-Dependent Changeover Costs

by

Che Lee, B.Ch.E

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree

Master of Applied Science

McMaster University

© Copyright by Che Lee, August 2022

MASTER OF Applied Science (2022) McMaster University

(Chemical Engineering) Hamilton, Ontario, Canada

TITLE: Large-Scale Single Machine and Parallel Machine Scheduling

in the Steel Inudstry with Sequence-Dependent Changeover Costs

AUTHOR: Che Lee, B.Ch.E

(University of Minnesota Twin Cities, United States)

SUPERVISOR: Dr. Christopher L.E. Swartz

NUMBER OF PAGES: xii, 116

ii

ABSTRACT

Hundreds of steel products need to be scheduled on a single or parallel machine in a steel

plant every week. A good feasible schedule may save the company millions of dollars

compared to a bad one. Single and parallel machine scheduling are also encountered often

in many other industries, making it a crucial research topic for both the process system

engineering and operations research communities.

Single or parallel machine scheduling can be a challenging combinatorial optimization prob-

lem when a large number of jobs are to be scheduled. Each job has unique job characteristics,

resulting in different setup times/costs depending on the processing sequence. They also

have specific release dates to follow and due dates to meet.

This work presents both an exact method using mixed-integer quadratic programming, and

an approximate method with metaheuristics to solve real-world large-scale single/parallel

machine scheduling problems faced in a steel plant. More than 1000 or 350 jobs are to

be scheduled within a one-hour time limit in the single or parallel machine problem, re-

spectively. The objective of the single machine scheduling is to minimize a combined total

changeover, total earliness, and total tardiness cost, whereas the objective of the parallel

machine scheduling is to minimize an objective function comprising the gaps between jobs

before a critical time in a schedule, the total changeover cost, and the total tardiness cost.

The exact method is developed to benchmark computation time for a small-scale single

machine problem, but is not practical for solving the actual large-scale problem. A meta-

heuristic algorithm centered on variable neighborhood descent is developed to address the

large-scale single machine scheduling with a sliding-window decomposition strategy. The

algorithm is extended and modified to solve the large-scale parallel machine problem. Sta-

tistical tests, including Student’s t-test and ANOVA, are conducted to determine efficient

solution strategies and good parameters to be used in the metaheuristics.

iii

ACKNOWLEDGEMENTS

I wish to express my deepest gratitude to Dr. Christopher Swartz for his teaching and

continued support over the last two years. I would not be where I am today, and this thesis

would not have been possible without his encouragement and guidance.

Additionally, this research is in collaboration with ArcelorMittal Dofasco. I would like to

extend my sincere thanks to Dr. Tyler Homer for his invaluable insights on the problems

encountered and solution strategies developed in this work. My sincere thanks also goes

to Vit Vaculik and Doug Bell who presented me the research problem and provided me

with data to investigate it. This thesis would not have been possible without their valuable

feedback.

I would also like to thank my colleagues in the McMaster Advanced Control Consortium for

going through the research adventure together, and am grateful for the financial assitance

recieved from the McMaster Department of Chemical Engineering.

Lastly, this thesis is dedicated to my parents, Pin Lee and Chi-Ling Chen, and my brother,

Keifer Lee. I would not be where I am today and pursue the goals I have without their love

and unconditional support.

Che Lee

August 2022

iv

Table of Contents

1 Introduction 1

1.1 Motivation and Research Objectives . 1

1.2 Main Contributions . 3

1.3 Thesis overview . 4

2 Literature Review 6

2.1 Scheduling Problems in Steel Industry . 6

2.1.1 Solution Methodologies for Planning and Scheduling in Steel Industry 7

2.1.2 Production Planning vs. Production Scheduling 8

2.1.3 Classification of Production Scheduling Problems 10

2.2 Exact Methods for Production Scheduling 11

2.2.1 Classification of SMSP and PMSP in the PSE Literature 11

2.2.2 Mathematical Models for SMSP and PMSP 13

2.3 Metaheuristics for Production Scheduling 14

v

2.3.1 Metaheuristics vs. Heuristics . 14

2.3.2 Metaheuristics for Solving SMSPs and PMSPs 15

3 Single Machine Scheduling 18

3.1 Problem Statement . 19

3.1.1 Problem Details . 19

3.1.2 Mathematical Formulation . 21

3.1.3 Solution Representation in Metaheuristics 26

3.1.4 Evaluating a Solution in Metaheuristics 26

3.1.5 Feasibility of a solution . 27

3.2 Algorithm Components in the Proposed Solution 28

3.2.1 Greedy Constructive Heuristic to Obtain an Initial Solution 28

3.2.2 Variable Neighborhood Descent . 33

3.3 Methods to Speed Up VND . 39

3.3.1 Sliding-Window VND . 39

3.3.2 Multiprocessing . 45

3.4 Computational Results and Discussion . 47

3.4.1 MIQP vs. Metaheuristics . 47

3.4.2 Performance of iGCF . 50

3.4.3 Sequential Sliding-Window VND vs. direct VND 54

vi

3.5 Chapter Summary . 71

4 Parallel Machine Scheduling 73

4.1 Problem Statement . 73

4.1.1 Problem Details . 74

4.1.2 Solution Representation . 75

4.1.3 Evaluation of a Solution . 76

4.2 Algorithm Components . 78

4.2.1 Initialization: Greedy Constructive Heuristic 79

4.2.2 Improvement: Variable Neighborhood Descent 84

4.2.3 Overall Algorithm for Solving LS-PMSP 92

4.3 Computational Results and Discussion . 93

4.3.1 Design of Experiment . 94

4.3.2 Characteristics of Input Datasets . 96

4.3.3 Overview of the Experimental Results 99

4.3.4 Sorted vs. Unsorted Input Sequence 102

4.3.5 Intra-VND First or Inter-VND First 103

4.3.6 Examples of the Algorithm Solutions 105

4.4 Chapter Summary . 108

4.4.1 Future Work . 108

vii

5 Conclusions and Recommendations 110

5.1 Conclusions . 110

5.2 Recommendations for Further Work . 111

References 113

viii

List of Figures

2.1 Planning and scheduling in supply chain management (Maravelias [2012]). . 9

3.1 Illustration of iGCF algorithm. 32

3.2 Illustration of the sliding-window decomposition method. 41

3.3 Flowchart of the swVND algorithm. 47

3.4 iGCF algorithm’s performance on 10 replicates for each of the 3 datasets. . 53

3.5 Design of experiment for comparing sequential swVND with different param-

eters and with direct VND. 56

3.6 Illustration of p-value for two-sample t-test. 58

3.7 Figures of improvements made by sequential swVND and direct VND for

each of 10 replicates per dataset. 61

3.8 Box plots for Rate I, Rate IS, Convergence I, and Convergence IS for each

dataset. 63

3.9 Interaction plots for Rate I and Rate IS for each dataset. 68

4.1 Illustration of parallel machine problem. 75

4.2 Visualization of the solution x. 75
ix

4.3 Illustration of GCH: part 1. 82

4.4 Illustration of GCH: part 2. 83

4.5 Illustration of PMS algorithm . 94

4.6 Illustration of sorted random sequence versus unsorted random sequence. . 95

4.7 Illustration of design of experiment for investigating PMS performance. . . 95

4.8 Characteristics of the two input datasets. 97

4.9 Algorithm performance for d1 unsorted A, d1 sorted A, and d1 sorted B. . 100

4.10 Algorithm performance for d2 unsorted A, d2 sorted A, and d2 sorted B. . 101

4.11 Boxplots for comparing converged values and times between unsorted A and

sorted A. 102

4.12 Boxplots for comparing converged values and times between sorted A and

sorted B. 104

4.13 An example of the PMS solution results for d1. 106

4.14 An example of the PMS solution results for d2. 107

x

List of Tables

3.1 Example of an artificial input data. 27

3.2 Comparing MIQP with swVND-SMS for LS-SMSP with 10 jobs. 49

3.3 Comparing MIQP with swVND-SMS for LS-SMSP with 30 jobs. 49

3.4 iGCF performance on 3 actual datasets. 51

3.5 Design of experiment for swVND. 54

3.6 Design of experiment for dataset 1 where n is equal to 1169. 55

3.7 p-values (corrected if applicable) of one-way repeated measures ANOVA for

Rate I, Rate IS, Convergence I, and Convergence IS for 3 different datasets. 64

3.8 p-values (corrected by step-down method using Bonferroni adjustments) of

post hoc tests (pair-wise multiple comparisons) for Rate I for 3 different

datasets. 66

3.9 p-values (corrected by step-down method using Bonferroni adjustments) of

post hoc tests (pair-wise multiple comparisons) for Rate IS for 3 different

datasets. 67

3.10 p-values of two-way repeated measures ANOVA for Rate I for 3 different

datasets. 69

xi

3.11 p-values of two-way repeated measures ANOVA for Rate IS for 3 different

datasets. 70

4.1 p-values of t-test on unsorted A and sorted A for d1 and d2. 102

4.2 p-values of paired t-test on sorted A and sorted B for d1 and d2. 104

xii

Chapter 1

Introduction

1.1 Motivation and Research Objectives

Steel manufacturing plants may need to sequence and process hundreds of steel products

every week. Generating a feasible schedule that can minimize earliness, tardiness, and

changeover costs of these products can save the company tremendous costs. A large portion

of steel products after casting and hot rolling processes typically needs to be further refined

by pickling, cold rolling, galvanizing, or even more processes. We consider a process of this

type involving a single or parallel machine that processes hundreds of products a week, where

single and parallel machine scheduling are also encountered often in many other industries.

Scheduling these large-scale products on these machines becomes a challenging optimization

problem because many types of sequence-dependent changeover costs are involved and each

product has its own due date to meet.

The complex sequence-dependent cost relationship comes from the fact that each product

has its unique product characteristics, and processing products with dissimilar product

characteristics consecutively may require a long setup time and tear machine parts more

often, resulting in a high changeover cost. Different product characteristics also weigh

differently in a changeover cost. For example, products are categorized into a small number

1

2

of “product families” based on their special operation requirement on the machine, which

can lead to a high changeover cost if two products come from different product families are

processed consecutively.

Besides the above-mentioned changeover costs, the due date of a product is another impor-

tant product characteristic that affects the total cost of a schedule. Neither processing a

product too early nor too late is desired. If a product gets processed early, the inventory

might be too full to accommodate it; if a product gets processed late, the customer service

will be compromised. Thus, processing these products close to their due dates without be-

ing late is crucial, and the cost for earliness or tardiness of a product is high. Furthermore,

a product cannot be processed before its arrival date. Doing so will lead to an infeasible

schedule, so the optimization method needs to generate not only a low-cost but a feasible

schedule within an hour for practical industrial implementation.

The large-scale single or parallel machine scheduling problem studied in this research can

be approached by optimization methods like mathematical optimization or metaheuristics.

Mathematical optimization is an exact method that models the optimization problem with

specific mathematical formulation. This model can be solved by a modern solver such as

Gurobi to optimality, which provides the exact information on lower and upper bounds of

a solution during the solving process. However, an exact method might not solve our large-

scale scheduling problems in a reasonable time. For the actual industrial problem size that

involves hundreds of products to be scheduled, mathematical optimization is not a practical

method to solve the actual problem.

On the other hand, metaheuristics are approximate methods that can find a sufficiently

good, if not optimal, solution for a complex optimization problem faster than mathematical

programming in general (Bianchi et al. [2009]). They are distinguished from heuristics by

their generalizability, where a metaheuristic can be applied to solve different types of the

optimization problems while a heuristic method may be specifically designed to solve one

type of optimization problem (Talbi [2009]). Metaheuristics are also highly scalable, once

the method is programmed, to increased problem sizes through techniques such as parallel

3

computing.

The goal of this research is to develop efficient metaheuristic algorithms to generate a feasible

and high-quality schedule for the large-scale single/parallel machine scheduling problem

within a one-hour limit for pratical implementation in industry. An exact method using

mixed-integer quadratic programming is also developed for the single machine problem for

comparison with metaheuristics, and statistical analysis such as t-test and ANOVA are

conducted to analyze the peformance of metaheuristics.

1.2 Main Contributions

The main contributions of our research are as follows:

1. Exact methods for benchmarking other solution approaches. A rigorous

mathematical model that can solve the smaller scale of our single machine schedul-

ing problem to optimality is constructed. Although it is not practical for industrial

applications due to its slowness for solving a large-scale problem, the exact method

can benchmark the optimality against the performance of other methods such as a

metaheuristic for solving a small-scale problem.

2. Metaheuristics for efficient single machine scheduling. Metaheuristic algo-

rithms centered on variable neighborhood descent Hansen et al. [2010] are applied

and developed to address our large-scale single machine scheduling problem. In par-

ticular, a sliding-window decomposition strategy is developed within the metaheuris-

tics and combined with multiprocessing techniques for solving the large-scale problem

efficiently.

3. Metaheuristics for efficient parallel machine scheduling. The algorithms we

develop to solve the single machine problem are modified and extended to solve our

large-scale parallel machine scheduling problem. Unique features designed for ad-

dressing parallel machines are developed in the metaheuristics to search for a good

4

solution systematically and efficiently.

4. Statistical methods for analyzing algorithm performance. The statistical

methods centered on t-test and ANOVA are conducted to explore good parameters

for our metaheuristic algorithm and compare the effectiveness of different solution

strategies within the algorithm.

1.3 Thesis overview

Chapter 2 – Literature Review

An overview of research on single machine and parallel machine scheduling is pro-

vided. First, planning and scheduling in the steel industry are reviewed and the

research scope is narrowed down to production scheduling. Classification on single

and parallel machine scheduling within production scheduling then is provided. Last,

research on this topic from both the process system engineering community focusing

on exact methods and the operations research community focusing on metaheuristics

is reviewed.

Chapter 3 – Single Machine Scheduling

This section describes our research to solve the real large-scale single machine schedul-

ing problem faced in a steel plant. The details of the problem setups are provided.

A mixed-integer quadratic programming model is developed to solve a small scale of

the problem to optimality. A metaheuristic algorithm is developed along with decom-

position and multiprocessing techniques to solve the large-scale problem efficiently.

Statistical analysis such as ANOVA is provided to determine good parameters for the

algorithm.

Chapter 4 – Parallel Machine Scheduling

5

This section extends the methodologies developed in the previous chapter to address

another real large-scale parallel machine scheduling problem faced in the steel plant.

Extra features for parallel machines are added to the metaheuristic algorithm to search

for a good and feasible solution systematically and efficiently. Results of the algorithm

performance and schedule quality are provided along with the statistical analysis such

as t-test to determine a better solution strategy within the algorithm.

Chapter 5 – Conclusions and Recommendations

Conclusions on efficient performance of the developed metaheuristics from this re-

search for solving the large-scale single and parallel machine scheduling problems are

given. Multiple research directions for improving the solution strategies further along

with the mindset of the continuous update of the solution strategies with the modern

computing power is provided.

Chapter 2

Literature Review

The intent of this chapter is to provide a literature review relevant to the single machine

and parallel machine scheduling problems we are addressing in this research. We start by

reviewing planning and scheduling in steel manufacturing and classifying our single and

parallel machine scheduling problems from a broader context of production scheduling. We

then extend the scope from the steel industry to general industry, and review the important

research and their methodologies for solving a single and/or parallel machine scheduling

problem. In particular, we focus on the contributions to this research area from both the

process systems engineering (PSE) community and operations research (OR) community.

2.1 Scheduling Problems in Steel Industry

In this section, we describe the importance and the challenges of scheduling in steel manufac-

turing, and classify the single and parallel machine problems we are focusing on from other

types of production scheduling problems. For steel manufacturing, the reader is directed to

the two papers, one for reviewing the planning and scheduling systems for integrated steel

production by Tang et al. [2001], and the other for describing the integrated steelmaking

processes and demonstrating a powerful solution for scheduling such complex integrated

6

7

production by Okano et al. [2004].

A modern steel plant contains a highly integrated production system connecting the up-

stream to downstream steel manufacturing processes (Tang et al. [2001]). The primary

steelmaking, or the more upstream processes in steel production, involve the processes such

as continuous casting and hot strip mill, while the finishing lines, or the more downstream

processes in steel manufacturing, includes the processes such as cold mill, annealing, and

galvanizing (Okano et al. [2004]). Planning and scheduling of such integrated steel produc-

tion is very challenging because different processing constraints and objectives in different

stages of the manufacturing process have to be met, and often these objectives may conflict

with one another. However, the reduction of production cost, energy, and environmental

pollution can be significant by proper planning and scheduling in the steel industry as in

other industries such as electronics, but the amount of research devoted to planning and

scheduling in the steel industry is relatively less compared to those industries (Tang et al.

[2001]).

2.1.1 Solution Methodologies for Planning and Scheduling in Steel In-

dustry

According to Tang et al. [2001], some of the main strategies for addressing steel production

planning and scheduling are as follows:

1. Mathematical optimization: a mathematical programming formulation that models

the constraints and objectives of the problem can be constructed. The mathematical

model then is passed to a solver such as Cplex or Gurobi to find an optimal solution.

2. Intelligent Search: a metaheuristic algorithm such as a genetic algorithm, simulated

annealing, or tabu search is applied to find a good and feasible solution in a reasonable

amount of time for practical implementation in industry.

3. Human-machine coordination: an experienced human scheduler interacts with a com-

puter system back and forth to iteratively improve the quality of a schedule.

8

4. Multi-agents methods: multiple models and algorithms, each of them is called an

agent, work cooperatively to search for good and feasible solutions where the best

solution out of them can be determined.

Each method above has its own advantages and disadvantages. For example, mathematical

optimization such as mixed-integer linear programming (MILP) is able to find an optimal

solution to a scheduling problem, but it may take too long to find the optimal solution to

a large-scale problem for real applications in industry. Compared to mathematical opti-

mization, intelligent search is able to search for a good and feasible solution to a large-scale

optimization problem in a short amount of time and is suitable to be implemented in in-

dustry, but the solution cannot be guaranteed to be optimal and the quality of the solution

is uncertain. For many industrial applications, finding a good and feasible solution instead

of an optimal solution within a reasonable time is sufficient (Tang et al. [2001]).

In this research, we focus on the first two methods and especially the intelligent search with

metaheuristics for generating practical solutions to two real-world large-scale scheduling

problems faced by a steel company. In particular, we focus on the research on production

scheduling instead of production planning where the difference between the two will be

discussed in the following section.

2.1.2 Production Planning vs. Production Scheduling

Production planning and scheduling are interconnected in the context of supply chain man-

agement, as illustrated in Figure 2.1 reproduced from the paper for classification of chem-

ical production scheduling by Maravelias [2012]. Specifically, the inputs to a production

scheduling problem and the types of the production scheduling problem are determined

by production planning decisions (Harjunkoski et al. [2014]). For example, depending on

the planning system used in a manufacturing company, the release dates of the raw ma-

terials in a scheduling problem can be determined by procurement planning, and the due

dates of the products in the scheduling problem can be determined by demand planning

Harjunkoski et al. [2014]. In other words, we can think of production planning as a mas-

9

ter problem to production scheduling, where the upper level decisions made in production

planning such as the types, quantities, and timing (e.g. release dates and due dates) of the

products to be made are inputs to production scheduling for making lower-level decisions

such as assignment and sequencing of the products, i.e., assigning these products to which

machines with what processing orders and timing of executing these processing orders.

Scheduling

Optimization & Control

Production Planning

M
at

er
ia

ls
 R

eq
u

ir
em

en
t

P
la

n
n

in
g

D
is

tr
ib

u
ti

o
n

 P
la

n
n

in
g

D
em

an
d

 P
la

n
n

in
g

D
em

an
d

Figure 2.1: Planning and scheduling in supply chain management (Maravelias [2012]).

In this research, we narrow down the scope to production scheduling without worrying

about how the upper-level decisions have been made in production planning. In particular,

we focus on solving the two specific types of the production scheduling problems, single

machine and parallel machine scheduling, which can be classified in both the PSE and OR

communities and encountered in not just steel industry but also many other manufacturing

industries. We will briefly describe the different types of the production scheduling problems

and highlight our interests of the specific types of the problems in the next section.

10

2.1.3 Classification of Production Scheduling Problems

A scheduling problem can be described by a three-field notation α/β/γ, where α stands

for the machine environment such as a single machine or parallel machine, β describes the

details of the processing characteristics such as whether the setup time and cost are involved,

and γ defines the objective function of the scheduling problem (Graham et al. [1979]). There

are more machine environments than single or parallel machine that could be encountered in

production scheduling. We introduce some of the key machine environments in this section

using the context of discrete manufacturing.

In discrete manufacturing, “job” is the term used to describe an object that cannot be

split to be scheduled, “machine” stands for the resource for a job to be assigned to, and

the number of “steps” refers to the number of stages or operations a job needs to go

through to be made (Maravelias [2012]). Using this terminology, some of the main machine

environments encountered in a scheduling problem are as follows:

1. Single machine: only one machine is considered in the scheduling problem. Every job

considered in this problem has to be processed on the single machine.

2. Parallel machine: each job has to be processed on one of the M machines. So far,

only one step is involved for each job in either the single or parallel machine problem.

3. Flow shop: each job has to go through the same series of M machines to be made, so

there are M steps with the same specific order of the machines for each job to follow.

4. Job shop: there are M machines in total in this problem. Each job needs to follow a

predetermined route of m machines (m ≤M) to be made, where a job may re-visit a

machine more than once in its route.

5. Open shop: M machines in total are involved this problem. Each job needs to go

through m machines (m ≤M) to be made, but the route of m machines for each job

is not fixed and can be decided by a scheduler.

11

More complex machine environments could exist in a scheduling problem and the reader is

directed to the paper for classifying production scheduling problems by Maravelias [2012]

for more details. In this research, the machine environments we focus on are the single

machine and parallel machine that are encountered often in steel industry and in many

other industries. We will review how the PSE and OR communities address these types

of problems with different processing characteristics (β) and objective functions (γ) in

the following sections, and delve into the specific setup of the single machine and parallel

machine problems we are solving in this research in Chapter 3 and 4.

2.2 Exact Methods for Production Scheduling

In the PSE community, exact methods, or mathematical optimization, are studied exten-

sively to solve different types of production scheduling problems with different mathematical

models. A review on the classification of the scheduling problems and optimization mod-

els for short-term batch scheduling can be found in Méndez et al. [2006], and a review on

the industrial applications of production scheduling models and methods is given in Har-

junkoski et al. [2014]. Based on these papers, we classify a general single or parallel machine

problem following the classification used in the PSE community in this section. In the rest

of this thesis, we use “SMSP” to refer to a single machine scheduling problem and “PMSP”

to refer to a parallel machine scheduling problem. After giving examples of different math-

ematical models developed to solve different scheduling problems, we point out the unique

challenges faced in our specific large-scale SMSP and PMSP being solved in this research,

where we use LS-SMSP and LS-PMSP to refer to our specific large-scale single and parallel

machine problems in the rest of this thesis.

2.2.1 Classification of SMSP and PMSP in the PSE Literature

Following the classification of scheduling problems defined by Méndez et al. [2006], a SMSP

can be classified as a single-stage single-unit sequencing problem. It is a batch process where

12

batching (size and number of batches (jobs)) and assignment (which unit a batch (job) is

assigned to) decisions have been predetermined prior to sequencing. The only decisions left

to be made in a SMSP is to find the right sequence of the batches to minimize the objective.

It is worth mentioning that a “batch” in the PSE literature basically refers to a “job” in

the OR literature, and for the scheduling problems we consider in this research, a batch or

a job cannot be mixed or split in a SMSP or PMSP.

A PMSP can be classified as a batch process with single stage that contains parallel units.

Similar to a SMSP, the batching decisions have been made prior to a PMSP. However,

assignment decisions need to be determined in addition to sequencing decisions in a PMSP,

that is, each batch needs to be decided to be assigned to which unit with what order (timing

of processing the batch on the unit).

Different mathematical models have been developed to solve scheduling problems with dif-

ferent α/β/γ in the PSE literature. Since a single machine or parallel machine is the basic

unit forming a more complex production environment, a mathematical formulation devel-

oped for solving a more complex machine environment, for example, a multi-stage process,

can be modified to solve a SMSP or PMSP given that the β and γ of the problems are

similar.

However, it does not mean that solving our LS-SMSP and LS-PMSP with mathematical

optimization is easy, since the processing characteristics (β) and objective function (γ) of

our problems are complex to model due to the considerations of setup time/cost, earli-

ness/tardiness, and arrival (release) date of a job. Also, the number of jobs to be sched-

uled in our problems is large (≥ 1000 jobs for LS-SMSP and ≥ 350 jobs for LS-PMSP).

We will describe some of the key mathematical formulations that could model a general

SMSP/PMSP and discuss their applicability to our LS-SMSP/LS-PMSP in the following

section. The specific problem setups of our LS-SMSP and LS-PMSP will be discussed in

detail in Chapters 3 and 4.

13

2.2.2 Mathematical Models for SMSP and PMSP

Following the PSE literature, one could try modeling a SMSP using mixed-integer linear

programming (MILP) with time-slot based formulation (Pinto and Grossmann [1995]) or

general-precedence based formulation (Mendez et al. [2001]; Cóccola et al. [2014]). Due

to the fact that more than 1000 jobs or 350 jobs are to be sequenced in LS-SMSP or

LS-PMSP, one may apply MIP-based decomposition methods (Kopanos et al. [2010]) or

combine MILP with heuristics (Roslöf et al. [2002]) in an attempt to solve such a large-

scale problem. However, building these MILP models is not trivial, since one has to tailor

a model to make sure it includes the sequence-dependent features between jobs, earliness

or tardiness of each job, and the job-availability hard constraint. Moreover, even with the

help of the decomposition or heuristics, MIP-based methods may still be too slow to solve

LS-SMSP because more than 1000 jobs are to be sequenced, and the computation efforts of

the MIP would typically increase with the number of jobs being modeled.

To deal with the challenging scheduling problems faced in steel industry, researchers have

tailored their optimization methods to approach specific scheduling problems in steel man-

ufacturing. A decomposition and aggregation strategy utilizing MILP and LP that first

partitions the jobs into groups of similar job properties, sequences the jobs in each group

respectively, and aggregates these groups with a fast improvement strategy in the end can

be found in Harjunkoski and Grossmann [2001]. In their problem, about 100 jobs are con-

sidered to be scheduled across 4 serial stages, where the first stage consists of 2 parallel

machines while the rest of the stages consists of a single machine.

Another novel algorithm using MILP with decomposition methods to address scheduling of

the batch annealing process, which can be considered as a multipurpose batch plant with

re-entrant flows in the parallel units, is proposed by Moon and Hrymak [1999]. A maximum

of 24 jobs and 29 shared units are considered in their work, where each job has to go through

a series of stages, and the objective is to minimize the makespan while meeting complex

constraints. From the above examples, one may notice that different optimization strategies

have been customized to approach specific scheduling problems in the steel industry, but

14

the structure of these problems is quite different from our LS-SMSP/LS-PMSP. Although

no multiple stages and units are involved in LS-SMSP/LS-PMSP, it needs to sequence more

than 1000 or 350 jobs with complex sequence-dependent relationships within a reasonable

time. This imposes a different aspect of difficulty than a multi-stage multi-machine problem

with a small number of jobs.

In this work, we applied and modified a unit-specific general precedence mathematical

formulation proposed by Kopanos et al. [2009] to model our LS-SMSP and compare the

exact method with the intelligent search. The details of the mathematical model, problem

statements of LS-SMSP, and comparison between the exact method and intelligent search

can be found in Chapter 3.

2.3 Metaheuristics for Production Scheduling

In this section, we start by giving the definitions of metaheuristics and comparing it with

heuristics to distinguish the two terms. Then, we review papers for solving different types

of SMSPs and PMSPs using metaheuristics in the OR community, highlight the difference

between their problems and our LS-SMSP/LS-PMSP, and point out the need of our research.

2.3.1 Metaheuristics vs. Heuristics

The reader is directed to a book for classification, design, and implementation of a vari-

ety of metaheuristics by Talbi [2009] for this section. The intelligent search methods we

focus on applying to solve our challenging LS-SMSP and LS-PMSP are metaheuristics,

which are extensively studied in the OR community to address a variety of scheduling prob-

lems. Metaheuristics represent a family of approximate methods and are algorithms that

can generate good feasible solutions to challenging optimization problems faced in science

and engineering in a reasonable time (Talbi [2009]). Unlike exact methods, the solutions

generated by metaheuristics are not guaranteed to be optimal, and unlike approximation

algorithms, metaheuristics cannot prove how close their solutions are to the optimal one

15

(Talbi [2009]). However, obtaining an optimal solution to a challenging optimization prob-

lem faced in industry is often unrealistic, so metaheuristics that can generate acceptable

solutions in a reasonable time are gaining significant interest (Talbi [2009]).

Compared to heuristics, metaheuristics are upper-level methodologies that can be used as a

template to address different kinds of optimization problems and help to design underlying

heuristics to solve a specific problem (Talbi [2009]). In other words, metaheuristics can be

viewed as a more generalizable intelligent search method than heuristics where the latter is

usually designed for solving a specific problem and hard to transfer to solve another problem

directly.

2.3.2 Metaheuristics for Solving SMSPs and PMSPs

SMSPs and PMSPs with different variations in the problem setup (β and γ) have been ad-

dressed by a variety of metaheuristics in the OR literature, where a comprehensive survey

on scheduling problems with setup times/costs can be found in Allahverdi [2015]. We are

particularly interested in the processing characteristics (β) – setup times/costs involved in

a SMSP/PMSP since these features are practical for industrial applications and encoun-

tered in our LS-SMSP/LS-PMSP. We review some key literature applying metaheuristics

to address SMSPs/PMSPs with setup times or costs in this section.

For single machine scheduling, Kirlik and Oguz [2012] proposed a general variable neigh-

borhood search algorithm to solve a SMSP with sequence-dependent setup times where the

objective is to minimize the total weighted tardiness. The maximum number of jobs to be

considered in their work was 85. Sioud et al. [2012] proposed a hybrid genetic algorithm to

solve a SMSP with sequence-dependent setup times where the objective is to minimize the

total tardiness. We abbreviate their SMSP as SMSP-MTT since their goal is to minimize

the total tardiness for later reference. The number of jobs to be considered in the au-

thors’ work was also up to 85. Wang and Tang [2010] proposed a hybrid metaheuristic that

combines scatter search and variable neighborhood search to solve a prize-collecting SMSP

with sequence-dependent setup times. The problem is motivated from practical production

16

scheduling in the steel industry, where there are too many jobs to be processed within a

shift on a machine so a scheduler has to select a subset of jobs to be processed and maximize

the productivity of the machine. The maximum number of jobs considered in their work is

180.

For parallel machine scheduling, Avalos et al. [2014] proposed an efficient multi-start algo-

rithm to solve the unrelated (processing time of a job can vary on different machines) PMSP

with sequence and machine-dependent setup times. They applied a constructive heuristic

to form an initial solution and utilized variable neighborhood descent algorithms that con-

sist of inter and intra-machine movements to improve an initial solution. In addition, they

proposed an acceptance criterion to guide the search and explore a neighborhood efficiently.

The maximum number of jobs and machines to be considered in their work are 250 and 30,

respectively. Lin et al. [2013] applied an ant colony optimization (ACO) algorithm to solve

the unrelated PMSP where the objective is to minimize total weighted tardiness. They

designed a machine reselection step and incorporated a local search technique in their ACO

algorithm and found that it improved the algorithm performance significantly. The maxi-

mum number of jobs and machines to be considered in the authors’ work are 100 and 10,

respectively.

Many other metaheuristics have been applied to solve SMSPs/PMSPs with different vari-

ations in the problem setup, but to the best of our knowledge, no literature has addressed

SMSPs with the problem size as large as ours (≥ 1000 jobs for LS-SMSP), and with the

sequence-dependent setup costs and times, tardiness, earliness, and availability hard con-

straint. Similarly, the unique problem setup and objective function encountered in our

LS-PMSP have not been addressed in the literature. Since the SMSP-MTT is NP-hard, our

more complex LS-SMSP and LS-PMSP are also NP-hard. In addition, a one-hour time limit

is imposed to solve LS-SMSP by our industrial partner, so the algorithm developed has to

return the best solution it can find within this time frame for practical implementation in

the steel plant. We thus will focus on applying metaheuristics instead of exact methods to

approach LS-SMSP, where the details of the problem statements, methodologies, and com-

putational results are given in Chapter 3. We also extended the methods we developed for

17

LS-SMSP to address LS-PMSP, where the unique problem setup, metaheuristic algorithms,

and computational performance can be found in Chapter 4.

Chapter 3

Single Machine Scheduling

In a steel manufacturing plant, oftentimes hundreds of jobs are required to be processed

on a single machine within a week. A good processing sequence of these jobs can save

the company millions of dollars compared to a bad one. However, sequencing these jobs

is a challenging combinatorial optimization problem that we are addressing in this work

because (1) the problem size is large (>1000 jobs), (2) many types of sequence-dependent

setup costs/times between jobs are involved, (3) earliness and tardiness of jobs need to

be considered, and (4) an availability hard constraint that forces jobs not to be processed

before their arrival dates exists. We will use LS-SMSP as the abbreviation to refer to our

large-scale single machine scheduling problem in this thesis.

In this chapter, we propose an algorithm centered around variable neighborhood descent

(VND) with a sliding-window decomposition strategy, which we abbreviate as swVND to

solve LS-SMSP within a one-hour limit. VND is one of the basic variations of variable

neighborhood search (VNS) introduced by Mladenović and Hansen [1997] where the idea

is to systematically change the neighborhoods during the local search to find a good local

optimum. Different from VNS that involves randomness by perturbing the current solution

before a local search, VND is deterministic and conducts a local search without any random

perturbations. We chose VND over VNS for solving LS-SMSP because the problem size

is so large (>1000 jobs) that even finding a local optimum within the one-hour time limit

18

19

is computationally expensive. Given such limited time, we prefer putting all the time to

search for a local optimum with respect to multiple neighborhoods than splitting time to

perturb the solution early in the hope of landing at a better local optimum later.

The rest of the chapter is organized as follows. Section 3.1 gives the detailed problem

statement on LS-SMSP. Section 3.2 explains the algorithm components supporting swVND,

and Section 3.3 demonstrates the implementation of swVND. Computational results and

statistical analysis of the proposed algorithm on the real data provided by our industrial

partner are given in Section 3.4. Finally, Section 3.5 concludes this chapter.

3.1 Problem Statement

In this section, we start by describing the details of the challenges faced by LS-SMSP in

Section 3.1.1, and present a mathematical formulation to model our problem in Section

3.1.2. We then describe the solution representation of LS-SMSP in metaheuristics and how

to evaluate and determine the feasibility of a solution in Sections 3.1.3, 3.1.4, and 3.1.5.

3.1.1 Problem Details

Setup Costs and Times

As mentioned in the beginning of this chapter, one of the key characteristic of LS-SMSP

is that many types of sequence-dependent setup costs/times between jobs are involved.

The complex sequence-dependent cost relationship comes from the fact that each job has

its unique job attributes, and processing jobs with dissimilar attributes consecutively may

require a long setup time and tear machine parts more often, resulting in a high setup cost.

Some job attributes are continuous, such as the dimensions of a product being processed;

others are discrete, such as either activating a specific tool (marked as 1) or not (marked

as 0) when processing this job. Different attributes weigh differently in a changeover cost.

20

In addition, jobs are categorized into a small number of “job families” based on their

special operation treatment on the single machine. Two jobs belong to different job families

processed consecutively will lead to a huge setup cost and time since a long cleanup or

maintenance will be required for such a transition. The penalty for the job family setup

cost is the highest among all types of setup costs.

In this paper, we can assume that the setup costs and times between jobs have been pre-

computed before solving the optimization problem. They are saved in two two-dimensional

matricies, one for setup costs and the other for setup times. In each 2D matrix, the rows and

columns are ordered by job identifier number (ID), i.e., setup cost matrix[0, 1] represents

the setup cost between job 0 and job 1 if job 1 is processed right after job 0.

Time-Related Costs

Besides the above-mentioned setup costs, due date is another job attribute that can lead to

time-related costs like earliness or tardiness of a job based on when the job gets processed.

If a job gets processed earlier than its due date (earliness), the inventory might be too full to

accommodate it; if it gets processed later than its due date (lateness), the customer service

will be compromised. Thus, processing these jobs close to their due dates without being

late is crucial, and the cost for earliness or tardiness of a job is high.

Arrival Dates

Another important job attribute is the arrival date of a job which imposes the availability

hard constraint to the scheduling problem: a job cannot be processed before its arrival

date. The impact of the availability constraint to the problem will be discussed in detail in

Section 3.1.5.

For simplicity and confidentiality reasons, only the following job attributes will be discussed

in this paper: job family, job size, processing time, tool activation, due date, and arrival

date. All of these job attributes are deterministic and their values are specified in the input

21

data before solving the scheduling problem.

3.1.2 Mathematical Formulation

In this section, we model our single-machine scheduling problem following the unit-specific

general precedence (USGP) mathematical formulation proposed by Kopanos et al. [2009]

with modifications to tailor their general formulation that is applicable to parallel machines

to fit our unique single-machine problem. The resulting mathematical formulation is in a

form of mixed-integer quadratic programming (MIQP). We will start by introducing the

nomenclature used to model our problem, describe the assumptions made in this model,

and explain each constraint in the model.

Nomenclature:

Subscripts

i, i′: job ID

f : job family ID

Sets

I: set of jobs

If : set of jobs that belong to job family f (If ⊆ I)

Parameters

n: number of jobs to be scheduled

sci,i′ : setup cost between job i and job i′

sti,i′ : setup time between job i and job i′

pti: processing time of job i

di: due date of job i

adi: arrival date of job i

M : a very large number

22

Binary variables

Xi,i′ : general precedence relationship, i.e., whether job i′ is processed after job i (Xi,i′ = 1)

or before job i (Xi,i′ = 0)

Seqi,i′ : immediate precedence relationship, i.e., whether job i′ is processed right after job i

(Seqi,i′ = 1) or not (Seqi,i′ = 0)

δTi : whether job i is processed later than its due date (δTi = 1) or not (δTi = 0)

Non-negative continuous variables

Ci: completion time of job i

Ei: earliness of job i

Ti: tardiness of job i

Fi: whether job i is the first job to be processed in the sequence (Fi = 1) or not (Fi = 0)

Posi,i′ : position difference between job i and job i′. Auxiliary variables used to determine

Seqi,i′

Model Assumptions

1. A no-wait policy that forces a job to be processed right after the completion time of

its immediate predecessor plus the setup time between these two consecutive jobs is

enforced in our scheduling problem. In other words, a solution generated by either

MIQP or metaheuristics cannot contain any gaps in the schedule except for the setup

times between any two consecutive jobs.

2. Continuing the concept of the first assumption, the first job in the sequence must be

processed at time 0 of the scheduling time horizon to avoid any gaps other than the

setup times in the schedule.

3. An upper-level algorithm will preprocess the data such that the input data in the

scheduling problem does not contain jobs that arrive so late that a solver cannot find

a feasible solution following the no-wait policy discussed above. Those very late jobs

relative to the current scheduling time horizon will be considered in a separate solution

23

batch and solved with an appropriate new starting time in their new scheduling time

horizon.

4. All the parameters in the model are deterministic and not stochastic.

5. A job can be considered as a batch that cannot be split.

6. A job will not be interrupted once it starts being processed.

Model Constraints

Arrival-Time Constraints. A job can only be processed after its arrival time, so its

completion time must be greater than or equal to its arrival time plus its processing time.

Ci ≥ adi + pti ∀i ∈ I (3.1)

Earliness and Tardiness Constraints. A job is either processed earlier or later than its

due date if its completion time is not equal to its due date. Since Ei and Ti are non-negative

and the objective of this problem involves minimizing the earliness and tardiness costs, Ei

or Ti of a job will be kept at 0 if it is processed later or earlier than its due date, respectively.

Ei ≥ di − Ci ∀i ∈ I (3.2)

Ti ≥ Ci − di ∀i ∈ I (3.3)

In addition, a base penalty is added in the objective function whenever a job is processed

late, so we can use δTi to indicate if job i is processed late and multiply the base penalty

with δTi in the objective function to activate the base penalty when δTi = 1. Constraints

3.4 and 3.5 are used to assign the right values to δTi . If job i is processed late, δTi = 1 so its

tardiness is positive and constraint 3.5 becomes redundant. Similarly, if job i is processed

early, δTi = 0 so constraint 3.4 becomes redundant and constraint 3.5 forces its tardiness to

be zero.

Ti ≥ −M(1− δTi) ∀i ∈ I (3.4)

24

Ti ≤MδTi ∀i ∈ I (3.5)

Sequencing Constraints. The sequencing constraints between jobs i and i′ can be ex-

pressed in constraint 3.6. The big-M constraint is activated when the global sequencing

binary variable Xi,i′ equals to 1, meaning job i′ is processed after but not necessarily imme-

diately after job i. The constraint is redundant if job i′ is processed before job i (Xi,i′ = 0).

Furthermore, if job i′ is processed immediately after job i, i.e., the immediate sequencing

binary variable Seqi,i′ equals to 1, then the sequence-dependent setup time between jobs i

and i′ (sti,i′) is considered in the sequencing constraint. It is otherwise excluded because

Seqi,i′ = 0.

Ci′ ≥ Ci + sti,i′Seqi,i′ + pti′ −M(1−Xi,i′) ∀i, i′ ∈ I, i ̸= i′ (3.6)

Zero-wait Constraints. Constraint 3.7 ensures that job i′ starts to be processed right

after job i is done plus the setup time between them without any additional delay, if the

immediate sequencing binary variable Seqi,i′ equals to 1. It is redundant when Seqi,i′ = 0.

Ci′ ≤ Ci + sti,i′Seqi,i′ + pti′ +M(1− Seqi,i′) ∀i, i′ ∈ I, i ̸= i′ (3.7)

For processing the first job in the sequence right at the beginning of the scheduling time

horizon without any delay (assumption 2 in Section 3.1.2), constraints 3.8 and 3.9 are

implemented. Constraint 3.8 utilizes the fact that
∑

i ̸=i′ Seqi,i′ = 0 only if job i′ is the first

job in the sequence, since no other jobs are sequenced before job i′ in this case. Thus, Fi′

equals to 1 only if job i′ is the first job in the sequence, and the big-M constraint 3.9 that

forces the first job to be processed right at the beginning of the scheduling time horizon is

activated only if Fi equals to 1.

Fi′ = 1−
∑
i ̸=i′

Seqi,i′ ∀i′ ∈ I (3.8)

Ci′ ≤ pti′ +M(1− Fi′) ∀i ∈ I (3.9)

Global Precedence Constraints. Constraint 3.10 ensures that if job i′ is processed after

job i (Xi,i′ = 1), then job i′ is not processed before job i (Xi′,i = 0) and vice versa.

Xi,i′ +Xi′,i = 1 ∀i, i′ ∈ I, i < i′ (3.10)

25

Immediate Precedence Constraints. Kopanos et al. [2009] observe that
∑

i′′ ̸=[i,i′](Xi,i′′−

Xi′,i′′) = 0 only if jobs i and i′ are sequenced consecutively. Following this fact, constraint

3.11, constraint 3.12, and auxiliary variables Posi,i′ are developed to determine Seqi,i′ .

Posi,i′ equals to 0 only if Xi,i′ = 1 and
∑

i′′ ̸=[i,i′](Xi,i′′ −Xi′,i′′) = 0, i.e., job i′ is not only

processed after job i but immediately processed after job i. Constraint 3.12 then forces

Seqi,i′ equal to 1 when Posi,i′ = 0, meaning that job i′ is immediately processed after job i.

Posi,i′ =
∑

i′′ ̸=[i,i′]

(Xi,i′′ −Xi′,i′′) +M(1−Xi,i′) ∀i, i′ ∈ I, i ̸= i′ (3.11)

Posi,i′ + Seqi,i′ ≥ 1 ∀i, i′ ∈ I, i ̸= i′ (3.12)

In addition, constraints 3.13 and 3.14 ensure Seqi,i′ equals to 0 when job i′ is not immediately

processed after job i. Constraint 3.13 enforces that at most one of the jobs other than job

i can be immediately processed after job i. It does not use the equal sign since no job is

processed after the last job in the sequence, i.e.,
∑

i′ ̸=i Seqi,i′ = 0 for the last job in the

schedule. Lastly, constraint 3.14 ensures that given n jobs to be sequenced on a single

machine, in total there are n− 1 connections between the consecutive jobs in this sequence.

∑
i′ ̸=i

Seqi,i′ ≤ 1 ∀i ∈ I (3.13)

∑
i ̸=i′

∑
i′ ̸=i

Seqi,i′ = n− 1 (3.14)

Objective Function

The objective function in our problem involves minimizing a combination of sequence-

dependent setup costs, earliness costs, and tardiness costs with predetermined coefficients

for each term in the equation. The quadratic terms in earliness and tardiness costs intend

to penalize the very early or very late jobs more. Although the penalty coefficients are

confidential and the exact numbers can not be reported, they are just constants tailored for

a specific application and do not affect the general solution strategies – the exact method

26

and the metaheuristics that we are presenting in this thesis.

min
∑
i ̸=i′

∑
i′ ̸=i

Seqi,i′sci,i′+
∑
i∈I1

(α1Ei+α2E
2
i)+

∑
i∈I2,3,4

(α3Ei+α4E
2
i)+

∑
i∈I

(β1δTi+β2Ti+β3T
2
i)

(3.15)

3.1.3 Solution Representation in Metaheuristics

In our metaheuristics algorithm, a solution (x) to the LS-SMSP problem is represented as

a permutation vector of n jobs (x = {x1, ..., xk, ..., xn}) where n represents the number of

jobs to be sequenced and xk is the job to be processed in the kth order. This representation

can be easily coded in many programming languages and manipulated by metaheuristics.

The convention for specifying the first position in the vector will stick to 1 instead of 0 in

this chapter.

3.1.4 Evaluating a Solution in Metaheuristics

Given a candidate solution x represented as a permutation vector of n jobs, one can calculate

the objective function value of x, f(x), explicitly. This evaluation of a sequence x will be

performed many times in metaheuristics, so we give it a special attention in this section.

We will outline one of the possible ways to program such a task below.

An artificial input dataset can be illustrated in Table 3.1. In each row in Table 3.1, the

value in the first column represents the job ID number while the rest of columns in the row

represents the job attribute values for that job. The parameters used in the MIQP model

such as the n × n setup cost matrix and setup time matrix are constructed based on this

data and can be assume to be pre-computed before solving the scheduling problem.

These parameters are also utilized to evaluate a solution x in metaheuristics. For the

total setup cost of a sequence (
∑

i ̸=i′
∑

i′ ̸=i Seqi,i′sci,i′ in Equation 3.15), one can sequence

through the vector x and sum over the setup costs between consecutive jobs by utilizing

the setup cost matrix in programming. For the total tardiness and earliness of a sequence

27

Table 3.1: Example of an artificial input data.

Job ID Job Family Processing Time Due Date Arrival Date Size Tool Activation

1 3 100 1000 0 20 1

2 3 150 1200 150 15 1

3 1 90 1100 200 22 0

4 2 200 2000 0 10 0

5 1 250 500 0 25 1

...

1169 2 100 700 0 20 0

(
∑

i∈I1(α1Ei + α2E
2
i) +

∑
i∈I2,3,4(α3Ei + α4E

2
i) +

∑
i∈I(β1δTi + β2Ti + β3T

2
i) in Equation

3.15), first we can calculate the start time and completion time of each job in x. The first

job in the sequence always start at time 0, and its completion time is simply its processing

time. We then can sequence through the jobs in the vector x one by one and compute a

job’s start time by adding the setup time between the job and its immediate predecessor to

the completion time of the latter. The completion time of a job is simply the start time of

the job plus the processing time of the job.

Once we compute all the start and completion times of all the jobs in x, the earliness or

tardiness of a job is simply its due date minus its completion time or its completion time

minus its due date, depending on which value is larger. By summing the total setup costs

and total earliness and tardiness of a sequence, we obtain the objective function value.

3.1.5 Feasibility of a solution

Although a solution x is represented as a permutation vector, not every permutation of

n jobs is feasible. Following the calculation of start times in the previous section, if any

start time of a job in the sequence is smaller than its arrival date, i.e., si < adi, then such

sequence is infeasible no matter how good its objective function value is.

As assumption 3 in section 3.1.2 describes, the input data will not include any job that has

28

a very late arrival date that makes no feasible permutation exist. Those very late-arrival

jobs will be considered in the future week’s scheduling. How the upper-level algorithm sorts

out very late jobs is not the focus of this work, but in general, the input data does not

include any job whose arrival date is later than 50 percent of the total processing times of

the current batch of jobs, so we can make sure that most of the permutations are feasible.

The algorithm we present in the next section will also show how it is likely to return a

feasible solution given that no arrival date of a job is unreasonably high in a dataset.

3.2 Algorithm Components in the Proposed Solution

Metaheuristics usually start with an initial solution to begin the improvement process to

approach a local or global optimum. A good initial solution may help metaheuristics find

a good solution in a shorter time. Section 3.2.1 shows an efficient way to obtain a good

initial solution to LS-SMSP. A good initial solution thus can be further improved by the

VND metaheuristic explained in section 3.2.2.

3.2.1 Greedy Constructive Heuristic to Obtain an Initial Solution

In our work, we apply a fast heuristic to construct a good and feasible initial solution for

metaheuristics to further improve on. The constructive heuristic we apply follows the main

concepts in the constructive step of the solution strategy introduced by Kopanos et al.

[2010] with some modifications. In their paper, the authors use mixed-integer programming

to carry out this task, while we use computer programming to perform the similar task

instead for the sake of the solution speed. In addition, we tailor this method to deal with

the feasibility issue caused by the arrival times of the jobs in our problem, so the revised

algorithm generates both a good and feasible initial solution. We will call this modified

constructive heuristic ”greedy constructive heuristic with feasibility guaranteed (GCF)”

throughout this work.

Two vectors, one named “wait list” and the other named “current sequence” are used

29

in GCF to construct an initial solution. Initially, wait list contains randomly permutated

n jobs and current sequence is empty. GCF then removes jobs from the “wait list” one

at a time, and inserts them to a good position in “current sequence” while keeping the

relative positions of remaining jobs in “current sequence” the same. The good insertion

position for the job is determined by iteratively inserting it to a feasible position in the

“current sequence”, computing the corresponding sequence value and updating the best

sequence and best value obtained so far, and proceeding with the position that leads to the

best sequence value out of all possible insertions.

GCF is greedy in a sense that when a job is removed from the wait list and being in-

serted into the current sequence, it keeps the relative positions of the previous jobs in

the current sequence the same without going through other possible permutations in the

current sequence which may lead to a better sequence value at this stage. This saves a

lot of computation time and constructs a good initial solution efficiently. It leaves the rest

of the improvements by searching for more good possible permutations to metaheuristics,

which will be covered in the next section.

In addition, GCF guarantees that the output sequence will be feasible. Every time a

job is removed from the wait list and inserted to a position in the current sequence, the

algorithm first checks the feasibility of the resulting sequence following the calculation of the

start and completion times of each job and the comparison of the start time with arrival date

introduced in Section 3.1.4. Therefore, the job can only be inserted to a feasible position

in current sequence, and if none of the positions in current sequence is feasible for the

job at this point, it is simply added back to the end of the wait list. This way, when the

previously infeasible job is removed from the wait list again, the current sequence that

has been constructed is much longer, and there will likely be feasible positions for the job

to be inserted into.

GCF terminates when the wait list is empty, meaning that all of the jobs have been removed

from the wait list and the current sequence contains n jobs at this point. Since GCF is

fast to run and a different initial sequence passed to GCF may lead to a different quality

30

of the output, we can simply pass the output of GCF to GCF to run it again, and repeat

this process until the new output is no longer improved by GCF. We call this second phase

of the algorithm iterative GCF (iGCF), since we simply use a while loop to wrap GCF to

further improve the initial solutions. The pseudo code for Algorithm GCF BestInsertion

that determines the best insertion position for a job to be inserted into the current sequence

is shown in Algorithm 1, and for Algorithm GCF which iteratively removes jobs from the

wait list and applies Algorithm GCF BestInsertion to insert them to the current sequence

until the wait list is empty is shown in Algorithm 2. Finally, the pseudo code for Algorithm

iGCF that iteratively applies Algorithm GCF until it cannot improve a solution further is

shown in Algorithm 3.

Algorithm 1: GCF BestInsertion

1 Function GCF BestInsertion(job, current seq):

2 best val←M ; // M is a very large value

3 best seq ← [];

4 for k ← 1 to Length(current seq)+1 do

5 insert job to kth position in current seq;

6 if Feasible(current seq) then

7 val← Evaluate(current seq);

8 if val < best val then

9 best val← val;

10 best seq ← Copy(current seq);

11 end

12 end

13 remove job from current seq;

14 end

15 if best seq == [] then // if no feasible position exists

16 return current seq

17 end

18 return best seq

31

Algorithm 2: GCF

1 Function GCF(wait list):

2 current seq ← [];

3 while wait list ! = [] do

4 job← Remove(wait list); // Remove the 1st element out of wait list

5 current seq old← Copy(current seq);

6 current seq ← GCF BestInsertion(job, current seq);

7 if current seq == current seq old then

8 insert job to the end of wait list;

9 end

10 end

11 return current seq

Algorithm 3: iGCF

1 Function iGCF(wait list):

2 current seq ← GCF(wait list);

3 current val← Evaluate(current seq);

4 new seq ← GCF(current seq);

5 new val← Evaluate(new seq);

6 while new val < current val do

7 current seq ← new seq;

8 current val← new val;

9 new seq ← GCF(current seq);

10 new val← Evaluate(new seq);

11 end

12 return current seq

An example to illustrate the iGCF algorithm is shown in Figure 3.1. Given a randomly

permuted sequence ordered as job IDs [012] as input to iGCF, at the beginning of the

algorithm current sequence is empty and wait list contains [012]. First, we remove job

32

0 from the wait list and insert it to current sequence. Assuming job 0 is available to be

processed at time 0, current sequence now has job 0 while wait list contains [12]. Next,

we remove the first job in the updated wait list which is job 1 out of wait list, and try to

insert it before or after job 0 in current sequence. Unfortunately, job 1 has an arrival date

that is later than the processing time of job 0, so neither [01] nor [10] in current sequence

would be a feasible schedule. In this case, we simply place job 1 at the end of wait list, and

consider other jobs that might be available to be processed earlier in the schedule. Now,

current sequence contains job 0 while wait list contains [21].

Figure 3.1: Illustration of iGCF algorithm.

Next, we remove the first job in the updated wait list which is job 2 out of wait list and

try to insert it to all possible positions in current sequence. Assuming job 2 is available to

be processed at time 0, we now have two possible orders in current sequence: either [20] or

[02]. Assuming [20] gives us a lower objective value than [02], the algorithm proceeds with

[20] as current sequence and [1] as wait list. We now remove the last job in wait list and

insert it to current sequence while keeping the relative order of jobs in current sequence,

job 2 before job 0, the same. Although job 1 is not available to be processed in the first two

positions in the current sequence because of its arrival date, it now has the third option

which is to be processed at the end of current sequence where it is available by the time

job 2 and 0 are both processed. At the end of GCF, a feasible and good initial solution is

33

constructed, but further improvement by GCF can still be possibly made. We then put the

resulting current sequence that contains [201] as input to GCF and see if the output of the

second-time GCF is better than the previous output, [201]. We repeat this process until

the solution is no longer improved by GCF, in which case we return the best solution we

have obtained so far as the iGCF output. At the end of iGCF, a feasible and good initial

solution for further improvement by other metaheuristics is obtained.

3.2.2 Variable Neighborhood Descent

After an initial solution is obtained by iGCF, we apply the metaheuristic variable neighbor-

hood descent to further improve the solution. As stated in the Introduction section, VND

is a deterministic version of VNS where the idea is to systematically change the neighbor-

hoods during the local search to find a local optimum. The details of VND, VNS, and other

variants can be found in Hansen et al. [2010] and Hansen et al. [2017], and the applica-

tion of VNS to a single-machine scheduling problem that has a smaller problem size and

simpler model compared to our problem is well-presented in Kirlik and Oguz [2012]. We

will rephrase the core concepts relating to VND from the above-mentioned papers in this

section for readers who are not familiar with VND.

The general form for a combinatorial optimization problem can be formulated asmin{f(x)|x ∈

X ⊆ S}, where S represents a finite set of the solution space, X represents the set of all of the

feasible solutions, x represents a feasible solution, and f(x) represents the objective function

value of x. A solution x∗ ∈ X is a global optimum to this problem if f(x∗) ≤ f(x), ∀x ∈ X.

In VND, a finite set of neighborhood structures Nk (k = 1, ..., kmax) is pre-selected, where

Nk(x) denotes the set of solutions in the kth neighborhood of x. A solution x′ ∈ X is

defined as a local minimum with respect to Nk if no solution x in Nk(x
′) is better than

x′, i.e., f(x) ≥ f(x′) ,∀ x ∈ Nk(x
′) ⊆ X. VND moves toward such x′ by applying a local

search heuristic with systematic changes of the neighborhoods.

A local search heuristic generally starts with an initial solution x, searches for a descent

34

direction within a predefined neighborhood structure Nk(x), and follows that descent di-

rection to move toward a local minimum. It repeats this process until no descent direction

can be found so a local minimum is reached. A common way to choose a descent direction

in a local search is to follow the steepest direction in a neighborhood Nk(x), also referred

as best improvement and its algorithm is given in Algorithm 4.

Algorithm 4: Best improvement local search (Hansen et al. [2010]).

1 Function Best Improvement(x, k):

2 repeat

3 x′ ← x;

4 x← argminy∈Nk(x′)f(y);

5 until f(x) ≥ f(x′);

6 return x

More than a best-improvement local search, VND involves a procedure to change the neigh-

borhood structures systematically to guide the search process and find a better local min-

imum. A generic approach that sequentially changes the neighborhood structures is given

in Algorithm 5. Function NeighborhoodChange compares the new solution x′ with the

current solution x in the kth neighborhood structure. If the solution is improved (line

2), the current solution is updated (line 3) and k is reset to 1 for starting with the first

neighborhood structure for finding the next improvement on the updated solution (line 4).

Otherwise, the next neighborhood structure being searched is updated to (k + 1) in the

hope of finding an improved solution in the new neighborhood structure that could not be

found in the previous neighborhood structure (line 6).

Algorithm 6 shows the VND algorithm. Starting with an initial solution x, VND finds

the best neighbor (steepest descent) in Nk(x) (line 4) and resets the neighborhood to the

initial neighborhood if the solution improves, or proceeds to the next neighborhood if no

improvement is made (line 5). It differs from a typical local search heuristic in a way that it

systematically explores many neighborhood structures (kmax ≥ 1) where most local search

heuristics involve only one neighborhood structure (kmax = 1). Since different neighborhood

35

Algorithm 5: Sequential changes in neighborhood structures (Hansen et al.

[2010]).

1 Function Neighborhood Change(x, x’, k):

2 if f(x′) < f(x) then

3 x← x′;

4 k ← 1;

5 else

6 k ← k + 1;

7 end

8 return x, k

structures are visited in VND, its local minimum with respect to these neighborhoods should

be closer or equal to the global minimum than a local minimum with respect to only one

neighborhood.

Algorithm 6: Variable neighborhood descent (Hansen et al. [2010]).

1 Function VND(x, kmax):

2 k ← 1;

3 repeat

4 x′ ← argminy∈Nk(x)f(y);

5 x, k ← Neighborhood Change(x, x’, k);

6 until k = kmax;

7 return x

Neighborhood Structures

Kirlik and Oguz [2012] have showed that the choices of the neighborhood structures and

the order of the neighborhood structures affect the quality of a converged solution by VND

to their single-machine scheduling problem. In our work, the two simple but effective

neighborhood structures we apply to solve the LS-SMSP problem are: (1) insertion, and

36

(2) swap.

The insertion neighborhood is composed of all the feasible solutions from all the possible

insertion moves that can be made on the current solution, where an insertion move removes

the job at position k1 and inserts it to the position k2 in the sequence as shown in Algorithm

7.

Algorithm 7: An insertion move (adapted from Kirlik and Oguz [2012]).

1 Function InsertionMove(x, k1, k2):

2 xnew ← Copy(x);

3 Remove job at position k1 in xnew;

4 Insert the removed job to position k2 in xnew;

5 return xnew

The best and feasible solution (best neighbor) in the current insertion neighborhood can

be found by iterating through all the possible and feasible insertion moves that can be

made on the current solution (Algorithm 8), which is essentially line 4 in function V ND

(Algorithm 6). Line 7 in Algorithm 8 shows that we are able to sort out the infeasible

solutions found by insertion moves based on the feasibility rule discussed in Section 3.1.5.

Note that the algorithms presented here are simply one of the many possible ways to find

the best neighbor in an insertion neighborhood. They may be modified to complete the

same task more computation or memory efficiently in a programming language.

37

Algorithm 8: The best and feasible insertion move (adapted from Kirlik and Oguz

[2012]).

1 Function BestFeasible InsertionMove(x):

2 xbest ← x;

3 best← Evaluate(x);

4 for k1 ← 1 to n do

5 for k2 ← 1 to n do

6 xnew ← InsertionMove(x, k1, k2);

7 if Feasible(xnew) then

8 temp← Evaluate(xnew);

9 if temp < best then

10 xbest ← xnew;

11 best← temp;

12 end

13 end

14 end

15 end

16 return xbest

Similarly, the swap neighborhood contains all the feasible solutions from all the possible

swap moves applied to the current solution, where a swap move swaps the jobs at positions

k1 and k2 as shown in Algorithm 9.

Algorithm 9: A swap move (adapted from Kirlik and Oguz [2012]).

1 Function SwapMove(x, k1, k2):

2 xnew ← Copy(x);

3 swap the jobs at positions k1 and k2 in xnew;

4 return xnew

Following the same strategy used in Function BestFeasible InsertionMove, Algorithm 10

shows one way to find the best and feasible neighbor in the swap neighborhood.

38

Algorithm 10: Best and feasible swap move (adapted from Kirlik and Oguz

[2012]).

1 Function BestFeasible SwapMove(x):

2 xbest ← x;

3 best← Evaluate(x);

4 for k1 ← 1 to n do

5 for k2 ← 1 to n do

6 xnew ← SwapMove(x, k1, k2);

7 if Feasible(xnew) then

8 temp← Evaluate(xnew);

9 if temp < best then

10 xbest ← xnew;

11 best← temp;

12 end

13 end

14 end

15 end

16 return xbest

39

The time complexity for finding a best neighbor in either the insertion (Algorithm 8) or

swap (Algorithm 10) neighborhood is O(n2), so finding the next best neighbor repeatedly

when n is large is computationally expensive. Since the goal is to search for the best possible

solution within one hour, methods that can speed up VND to find a better solution for the

large-scale scheduling problem in a shorter time are valuable. Two methods we applied

to speed up VND are ”sliding-window” decomposition and multiprocessing, which will be

introduced in the next section.

3.3 Methods to Speed Up VND

3.3.1 Sliding-Window VND

The main idea of sliding-window VND (swVND) is that unlike VND which spends much

time to find a best neighbor from the complete sequence with n jobs, swVND finds a good

neighbor from the smaller search space at the beginning and systematically increases the

search space to find better moves when no better solution can be found in the previous

smaller search space. It reduces the search space by imposing an imaginary window with

a prespecified size on the search space, where we only conduct VND in this window, i.e.,

the jobs in this window can only be reinserted or swapped with other jobs in this window

while no move is done on any jobs outside of this window. Once the solution can no longer

be improved by applying VND to this window, we slide the window with a prespecified

number of positions to the right (toward the end of the sequence), and re-apply VND in the

slid window that contains a new range of positions in the sequence. The process repeats

until the slid window hits the end of the sequence and the VND converges within this last

window, which we call it one pass of sliding window. Then, we move the window to the

beginning of the sequence and repeat the improvement process again, until no improvement

can be made within a pass of swVND. At this point, the swVND algorithm terminates and

we say that the solution has converged w.r.t. swVND.

To explain the above concepts more concretely, we will use Figure 3.2 and Algorithm 11 - 13

40

to go through an example of swVND application. The two parameters used in swVND are

window size (win size) that controls the size of the window and slide size (slide size) that

controls the number of positions we slide the window toward the end of the sequence when no

improvement can be made by VND in the previous window. In the Figure 3.2 example, the

300-job sequence is improved by swVND with the two parameters set as win size = 100 and

slide size = 80. Algorithm 11 first computes all the start and end positions of the sliding

window (line 2 in Algorithm 13). In this case, the four window start and end positions

using the notation [start, end] are: [1, 100], [81, 180], [161, 260], [241, 300], so Algorithm

11 will return win start list = [1, 81, 161, 241] and win end list = [100, 180, 260, 300] given

the inputs x, win size = 100, and slide size = 80. Then, the improvement process starts

(Algorithm 12 and line 3 in Algorithm 13).

In the first pass of swVND, we start by applying VND to the window that contains the

jobs from position 1 to position 100 (line 5 in Algorithm 12). This means that the jobs

in the current window can be reinserted or swapped in the window depending on which

neighborhoods are used in VND, but the jobs out of the current window do not get to move

at all. In addition, the quality of a move made in the window is based on the evaluation of

the full-length sequence corresponding to such move, so a best move found in the current

window is the move that improves the value of the full-length sequence the most, not

partial sequence. Following the VND concepts discussed in Section 3.2.2 and putting it into

the context of swVND, an improvement made to the solution is based on the best move

found in the current window, where the best move found in the current window [1, 100] is a

relatively good move in the full-length sequence [1, 300]. Therefore, we can think of swVND

as a improvement method to proceed with a good move instead of a best move w.r.t. the

full-length search space. Also, the order of the jobs in the current window will keep being

improved following each best move until no more improvement can be made within that

window. At that point, the solution has converged w.r.t. VND applied to that window, or

we simply say that VND has converged in that window.

Once the solution is no longer improved by VND in window [1, 100], we slide the window

toward right by 80 positions and apply VND to the new window [81, 180]. We can see that

41

Figure 3.2: Illustration of the sliding-window decomposition method.

position 81 to 100 (the color-filled area in the rectangle in Figure 3.2) are reconsidered in the

new window, where the rationale is that jobs at the end of the previous window (position

81 to 100) may be better off being moved to other positions in the new window (position

101 to 180), so the slide size is set to 80 instead of 100 which would be the same length of

the window size. Next, we repeatedly slide the window toward right and apply VND to the

new window when VND has converged in the previous window, until the window reaches

the end position of the solution (window [241, 300] in this case) and VND has converged

in this last window. Up to this point, we have done one pass of swVND which is line 3 of

Algorithm 13 or Algorithm 12. However, the whole improvement process has not yet been

done since we can move the window to the start of the sequence again (the long backward

arrow in Figure 3.2 and the line 4 while loop in Algorithm 13) and repeat a new pass of

swVND until the full sequence can no longer be improved by any pass of swVND. At this

point, Algorithm 13 terminates and we say that the solution is converged w.r.t. swVND

with the parameters win size = 100 and slide size = 80.

42

Algorithm 11: Get lists of window sizes and slide sizes.

1 Function GetWinList(x,win size, slide size):

2 n← Length(x);

3 win start list← [];

4 win end list← [];

5 start← 1;

6 end← start+ win size− 1;

7 win start list.append(start);

8 win end list.append(end);

9 while end < n do

10 start = start+ slide size;

11 end = start+ win size− 1;

12 if end > n then

13 end = n;

14 end

15 win start list.append(start);

16 win end list.append(end);

17 end

18 return win start list, win end list

Algorithm 12: One pass of swVND.

1 Function swVND 1pass(x,win start list, win end list):

2 for i← 1 to Length(x) do

3 start = win start list(i);

4 end = win end list(i);

5 x′ ← apply V ND on jobs located from “start” to “end” positions in x;

6 x← x′;

7 end

8 return x’

43

Algorithm 13: swVND.

1 Function swVND(x,win size, slide size):

2 win start list, win end list = GetWinList(x, win size, slide size);

3 x′ = swVND 1pass(x, win start list, win end list);

4 while Evaluate(x’) < Evaluate(x) do

5 x← x′;

6 x′ ← swVND 1pass(x, win start list, win end list);

7 end

8 return x’

There are a couple of reasons why swVND may be well-suited to solve our LS-SMSP prob-

lem. First, swVND speeds up the improvement process by taking a good move instead

of the best move that may otherwise take too long to find if we apply VND directly to

a large-size sequence, so it can reach a better solution within a limited time. Take the

Figure 3.2 case study for example. Given 300 jobs to be sequenced, instead of spending

∼ 3002 computations for finding one best move in a large search space by direct VND on

the complete sequence, we can spend ∼ 1002 computations for finding one best move in a

smaller search space in swVND which is a good move with respect to the complete sequence.

The computation difference may not seem significant in the Figure 3.2 example, but the

average actual problem size for LS-SMSP is more than 1000 jobs. In that case, spending

∼ 10002 computations for finding a best move among 1000 jobs is much more expensive

than spending ∼ 1002 computations for finding a best move among 100 jobs. This is the

key that makes swVND improve the solution fast.

In addition, the initial solution obtained by iGCF may have jobs located at relatively

suitable region already. We may simply move jobs nearby their original locations to improve

the solution efficiently without the need to move these jobs very far away from there original

locations to achieve this. Therefore, spending time to find a best move in the full search

space in the early improvement phase might be time-consuming and inefficient. Instead, a

sliding-window that starts by searching a smaller serach space and then can systematically

44

increase the search space to find a better move might be beneficial for finding a good solution

in a limited time.

The way that swVND increases the search space for finding a better move when no im-

provement can be made in the previous smaller search space is by enlarging the parameters

win size and slide size in swVND when the solution is converged w.r.t. swVND with previ-

ous smaller parameters. For example, given 1169 jobs to be sequenced which is one of the ac-

tual case studies provided by our industrial partner, we can systematically increase swVND

parameters by setting up two parameter lists, i.e., window list = [400, 800, 1169] and

slide list = [200, 400, 0]. We first apply swVND with win size = 400 and slide size = 200

to improve the initial solution obtained by iGCF. Once the solution converges w.r.t. swVND

with this setting, we increase the search space by doubling the parameters and apply swVND

with win size = 800 and slide size = 400 to the previous converged solution for further

improvement. Once the solution converges again, since doubling the window size here

(800 ∗ 2 = 1600 > 1169) would basically contain all 1169 jobs, we set the last window size

to be 1169. In this case, slide size should be equal to 0 because there is no need to slide

the window if the window contains the full sequence.

Also, when we reach the point where we apply swVND with win size = n, slide size = 0 to

a solution, it means we now apply VND directly to n jobs. When the solution is converged

w.r.t. swVND with win size = n, slide size = 0, it is also a converged solution w.r.t.

VND on n jobs. Based on our experiments , we found that a series of swVND that starts

from a small window size and ends with a full-length window size, which we call sequential

swVND, improves the solution more efficiently than applying VND directly to the full length

sequence, which we call direct VND in this chapter. Since our LS-SMSP problem imposes

a time limit to the solving process and the goal is to find a solution as good as possible by

any methods within this time limit, the improvement efficiency is the key aspect when we

consider which method we should apply to improve the solution. Sequential swVND turns

out to be a good method to solve LS-SMSP, where the details of the experimental results

and discussion can be seen in Section 3.4.3.

45

3.3.2 Multiprocessing

The computation work for finding a best move in a window in swVND or for finding a best

move in the full-length sequence in VND (O(n2)) can be completed faster by distributing the

work to multiple cores in a computer and processing the distributed work simultaneously,

also known as multiprocessing in computing. In our algorithm, we apply multiprocessing to

find a best neighbor when win size or n is large. More sophisticated strategies to parallelize

VNS-related algorithms can be found in Davidović and Crainic [2013].

A simple example to show the idea of multiprocessing is described as follows. Given n = 800

and a 8-core computer for finding a best neighbor in a neighborhood, instead of doing

∼ 800 × 800 computations to search for all possible neighbors on a single core, the total

number of the computations can be divided into the eight different cores where each core only

processes ∼ 100×800 computations simultaneously. For example, the first core computes all

the possible insertions from the first 100 out of 800 jobs, and the second core computes all the

possible insertions from the next 100 out of 800 jobs, and so on. When all the computations

are done, each core outputs each best solution found during the computing, and the best

solution out of the eight solutions simply is the best neighbor in the neighborhood. This

multiprocessing technique can be implemented in swVND and VND, and the performance

can be scaled with a computer with different number of CPUs.

However, multiprocessing can be less efficient than single-core processing when the number

of computations is small due to the overhead in multiprocessing. The exact amount of over-

head time may vary from different hardware, programming language, and operating system

that a user uses. Based on the performance of our computer, we activate multiprocessing

when win size ≥ 100 in swVND or n ≥ 100 in VND.

Finally, after introducing swVND and multiprocessing where the two methods make the

improvements done by VND on a solution more efficient, we illustrate the complete algo-

rithm which we call swVND-SMS for solving LS-SMSP in Figure 3.3. We can see that

from this flowchart, if the number of jobs to be sequenced (n) is less than 400, we simply

apply VND instead of swVND to improve the initial solution obtained by iGCF since the

46

problem size in this case is not large. However, a typical problem faced by our industrial

partner contains more than 1000 jobs. In this typical case, we apply sequential swVND

for efficient improvements followed by direct VND, if time allows, for final refinements to

solve the problem instead. In swVND, we only use insertion neighborhood and not swap

or other neighborhoods for the sake of speed improvement, but it does not mean that if

one would like to implement our algorithm, swap or other customized neighborhoods in

swVND cannot be included. A similar concept is applied to VND. We only use insertion

and swap neighborhoods in direct VND, but one can add more neighborhoods to improve

the solution further given a longer computation time limit. Last, the typical time limit

required for the on-site implementation is 1 hour for LS-SMSP, so when it comes to the

actual implementation, we can set a timer in swVND-SMS and return the best solution we

have found so far when the time limit is reached even if the solution has not converged by

that time.

47

Figure 3.3: Flowchart of the swVND algorithm.

3.4 Computational Results and Discussion

3.4.1 MIQP vs. Metaheuristics

In this section, we compare the performance of MIQP with the performance of our swVND-

SMS algorithm (Figure 3.3) on some test data. We will use “MIQP” to refer to the same

48

mathematical formulation introduced in Section 3.1.2 which we use to solve the test prob-

lems. Each test dataset is limited to only 10 or 30 jobs which is much less than the typical

actual dataset that contains more than 1000 jobs, because we found that MIQP cannot

solve our LS-SMSP problem with just 30 jobs in a reasonable time already, let alone letting

it solve the problem with more than 30 or even 1000 jobs. In addition, each test dataset

is generated by randomly selecting 10 or 30 jobs from the actual dataset provided by the

industrial partner which contains 1169 jobs, following the same ratio of the number of

available jobs at time 0 to the number of late-arrival jobs in the actual dataset. In order to

avoid the cases where some randomly selected jobs have very late arrival dates so that no

feasible solution can be found by the solver (discussed in Section 3.1.2), we revise the arrival

dates of late-arrival jobs in the test data so that no jobs will arrive later than 50% of the

total job processing time. In this study, 10 samples are generated for the 10-job case and 5

samples are generated for the 30-job case. Following the flowchart illustrated in Figure 3.3,

for solving the test problems that involve only a small number of jobs, our swVND-SMS

algorithm applies VND right after iGCF without swVND since the improvement process

can be achieved by direct VND fast enough and the scale of the problem is small enough

that does not require decomposition.

The experiments in this subsection were conducted on Windows 10 Pro 64-bit with an

Intel Core i7-10700 CPU (8-core) and 16GB RAM. The MIQP model was programmed in

Gurobi Python API and solved by Gurobi 9.5. The swVND-SMS algorithm was coded in

Python with NumPy and Numba packages where the latter acts as a Python just-in-time

compiler that compiles computational heavy functions coded with NumPy in machine code

and makes our metaheuristic algorithm run faster. The details of Numba can be found

in Lam et al. [2015]. The computational results from the two methods are summarized in

Table 3.2 and 3.3.

The %Diff values in Table 3.2 and 3.3 are computed by the following equation:

%Diff = (swV ND−SMS Objective)−(MIQP Objective)
MIQP Objective

A positive %Diff means that the swVND-SMS algorithm converges to a worse solution than

49

Table 3.2: Comparing MIQP with swVND-SMS for LS-SMSP with 10 jobs.

Sample MIQP swVND-SMS

Obj. Val. Run Time (sec) %Gap Obj. Val. Run Time (sec) %Diff

1 29,329.3 8.2 0 29,329.3 0.003 0

2 13,330.9 53.7 0 14,128.6 0.003 5.98

3 26,929.4 10.8 0 37,126.4 0.002 37.9

4 25,289.2 5.6 0 25,289.2 0.003 0

5 30,579.0 4.6 0 30,977.8 0.002 1.3

6 32,480.7 6.1 0 32,480.7 0.001 0

7 31,359.9 6.0 0 31,760.4 0.002 1.28

8 25,110.0 43.9 0 25,110.0 0.003 0

9 27,208.9 8.9 0 31,208.0 0.004 14.7

10 31,806.1 6.1 0 32,606.9 0.002 2.52

Average - - - - - 6.36

Table 3.3: Comparing MIQP with swVND-SMS for LS-SMSP with 30 jobs.

Sample MIQP swVND-SMS

Obj. Val. Run Time (sec) %Gap Obj. Val. Run Time (sec) %Diff

1 86,562.0 7200 90 33,358.0 0.02 -61.5

2 97,315.0 7200 85 41,105.3 0.02 -57.8

3 149,969.4 7200 95 65,954.5 0.02 -56.0

4 68,579.6 7200 88 39,771.3 0.04 -42.0

5 95,034.7 7200 83 60,424.9 0.04 -36.4

Average - - - - - -50.7

the MIQP solution, and a negative %Diff means that swVND-SMS algorithm converges to

a better solution than the MIQP solution. According to Table 3.2, MIQP is able to find the

optimal solution to the LS-SMSP problem with 10 jobs within a minute since the %Gap

values are 0 for all of the 10 samples. This also means that %Diff directly reflects how far

a swVND-SMS solution is away from the optimal solution in the 10-job case study. The

50

worst case for the swVND-SMS algorithm is sample 4, where the solution from swVND-SMS

prematurely converges at a value 37.9% worse than the optimal value. However, swVND-

SMS is able to find the optimal solutions from 4 out of the 10 samples, and on average

a solution obtained from swVND-SMS is just 6.36% worse than the optimal solution with

more than 1000 times faster solution speed than MIQP.

It is worth noting that we only apply insertion and swap neighborhoods in swVND-SMS

since the algorithm is already hard to converge with respect to just the 2 neighborhoods

within the time limit when solving the actual large-scale problem. If we were to apply more

neighborhoods in VND or introduce a stochastic search step before the local search step in

VND, i.e., applying VNS instead of VND, the revised metaheuristics may find a even better

solution for the 10-job case study given a long enough solution time. Here, we would just

like to show that with 2 simple but effective neighborhoods used in VND, we are able to

find a good solution to to the test problems efficiently.

From Table 3.3, we can see that MIQP is not able to solve or find a good solution to our

LS-SMSP problem with just 30 jobs within a reasonable amount of time. We capped the

time limit in MIQP to 2 hours and compare the solutions obtained from 2-hr MIQP with

the ones from swVND-SMS. The results show that the solutions found by swVND-SMS

that takes less than 0.05 seconds to converge are 50.7% better than the solutions obtained

by 2-hr MIQP on average. In addition, swVND-SMS solutions are all better than the 2-hr

MIQP solutions for all 5 samples. This again shows the effectiveness of our algorithm for

solving the LS-SMSP problem. Given the actual LS-SMSP problem size is more than 1000

jobs which is much greater than the test problems that only contain 10 or 30 jobs, we have

shown that MIQP is not an effective way to address our large-scale problem compared to

the metaheuristics method.

3.4.2 Performance of iGCF

For the remaining subsections in Section 3.4, all the experiments were run on the same

computer described in Section 3.4.1 but on a different operating system - WSL2 with Linux

51

Ubuntu 20.04.3 where the algorithms are still coded in Python utilizing Numpy and Numba

packages. We switched to Linux operating system for running experiments associated with

swVND-SMS since some parts of the algorithm utilize the multiprocessing technique and

we found that Python multiprocessing ran faster on Linux OS than on Windows OS.

Three actual datasets with different numbers of jobs to be scheduled and different distri-

butions of job characteristics depending on the daily operation were extracted from the

database system in the steel plant and provided by our industrial partner for running the

rest of the experiments in Section 3.4. Specifically, dataset 1 (d1) contains 1169 jobs which

is the typical problem size they face in the plant, dataset 2 (d2) contains 787 jobs which

is on the lower-end of the problem size, and data 3 (d3) contains 1414 job which is on the

high-end of the problem size.

In order to determine the performance of iGCF algorithm where the algorithm output

depends on an input that is a random permutation of a full-length sequence given a dataset,

replication is required in the experiment to draw the statistical results. Thus, 10 replicates

for each of the 3 datasets were conducted, where each replicate started with a randomly

permuted sequence followed by the iGCF algorithm. The statistical results including mean

and standard deviation (std) of iGCF performance for the 3 different datasets are reported

in Table 3.4, and the improvement process made by each iteration in the iGCF algorithm

for each replicate is plotted in Figure 3.4.

Table 3.4: iGCF performance on 3 actual datasets.

Data # n Randomly Permuted Sequence After iGCF Time (sec)

(mean ± std) (mean ± std) (mean ± std)

d1 1169 13,222,630 ± 291,881 146,292 ± 11,977 60 ± 20

d2 787 7,738,739 ± 210,234 94,824 ± 8,468 17 ± 5

d3 1414 13,268,300 ± 214,357 133,134 ± 8,888 93 ± 22

Given dataset 1 for example, a randomly permuted sequence has an average objective value

on the order of 107 as shown in Table 3.4. After iGCF, the objective is improved to an order

52

of 105 which means the algorithm is able to improve a random solution by 2 magnitude in

just a minute on average. The efficient improvement made by iGCF is consistent across all

of the 3 datasets, where the time it takes for the algorithm to terminate scales with the

number of jobs to be sequenced given a dataset.

In Figure 3.4, the three columns of plots starting from left to the right are plots for d1,

d2, and d3. Here, we use “r” to represent the replicate number for the specific dataset.

For example, “d1-r1” represents the replicate 1 in dataset 1. A blue dot in each sub-plot

indicates the objective value of the solution constructed by GCF in each iteration in iGCF.

The algorithm terminates when a GCF step results in a poorer objective function value

(orange dots in the plots). The final solution is then taken from the previous iterate which

yielded a lower objective function value. We can see that for any cases, the first solution

returned by GCF can be further improved by GCF again. In many cases, the iterative GCF

helps to improve the solution a couple of more times until a worse solution compared to the

previous ones is found (orange dot), which shows that iGCF is an efficient way to construct

a good initial solution for metaheuristics to refine the solution further.

53

Figure 3.4: iGCF algorithm’s performance on 10 replicates for each of the 3 datasets.

54

3.4.3 Sequential Sliding-Window VND vs. direct VND

In this subsection, we compare sequential sliding-window VND with direct VND by design-

ing and conducting statistical experiments. We first introduce the design of experiments,

and then we present the statistical analysis on the experimental results.

Design of Experiments

To compare swVND with VND, we first analyze swVND with its parameters. As described

in Section 3.3, two parameters win size and slide size are used in the swVND algorithm,

and a user can specify a series of window and slide sizes, which we call them window list

and slide list to execute sequential swVND. Therefore, window list and slide list can be

thought of as the two parameters to sequential swVND. Since there are infinite combinations

of these two parameters and it would be impossible to test all of them, we applied a design of

experiment concept where we define a low and high value for each parameter, and conduct

experiments for testing the combination of the low and high parameters that are summarized

in Table 3.5.

Test # Parameter 1 Parameter 2

(window list) (slide list)

t1 -1 (low) -1 (low)

t2 -1 (low) +1 (high)

t3 +1 (high) -1 (low)

t4 +1 (high) +1 (high)

Table 3.5: Design of experiment for swVND.

According to Table 3.5, the four tests, t1 to t4, assign the sequential swVND method with

different designed parameters where “-1” represents the low value while “+1” represents

the high value. Given the number of jobs to be sequenced in a dataset, the low value of

window list means we start with win size = 50 as an input to swVND, and double that

55

amount each time the current swVND converges until the doubled size exceeds the total

number of jobs n, in which case we assign n as the final win size in window list. For the

high value of window list, we start with win size = 400 directly and double it until the

win size is larger than n, the same as the logic applied to the low value case.

For the second parameter slide list, the low value of slide list is set to slide size =

current win size
2 unless the current win size is equal to n, in which case there is no need

to slide the window that contains full search space further so we simply assign 0 as the final

slide size in slide list. A concrete example of the design for the low and high parameter

values is given for dataset 1, shown in Table 3.6. The same strategy for setting up the

parameters is applied to dataset 2 and 3.

Test # window list slide list

t0 [n] [0]

t1 [50, 100, 200, 400, 800, n] [25, 50, 100, 200, 400, 0]

t2 [50, 100, 200, 400, 800, n] [50, 100, 200, 400, 800, 0]

t3 [400, 800, n] [200, 400, 0]

t4 [400, 800, n] [400, 800, 0]

Table 3.6: Design of experiment for dataset 1 where n is equal to 1169.

From Table 3.6, we can see that an extra test case, t0, is included in the experimental

design. t0 is simply the test case for direct VND, where we can view it as a special case of

sequential swVND in a way that its starting win size is directly equal to n and slide size

is equal to 0. Following such an experimental design and conducting appropriate statistical

experiments, we are able to compare the parameter effects within the sequential swVND

method and compare the performance of sequential swVND with direct VND at the same

time.

Specifically, we outline the detailed experiments we conducted in Figure 3.5. Given dataset

1 for example, 10 different randomly permuted sequences were first generated followed by

iGCF to acquire the 10 different initial solutions as described in Section 3.4.2. Each initial

56

solution then can be further improved by 5 different methods: t0 to t4 that we just discussed.

In the first stage of the improvement process by t0 to t4, only the insertion neighborhood

(I) was applied in each method. Once a test method was converged, the second-stage

improvement process by VND with insertion and swap neighborhoods (I+S) was applied

to further refine a solution. The same experimental design was applied to dataset 2 and 3

where each dataset had 10 replicates for the statistical experiments.

Figure 3.5: Design of experiment for comparing sequential swVND with different parameters

and with direct VND.

What we were interested in comparing here was the following:

1. The performance of VND versus the performance of sequential swVND in the first

stage of the improvement process.

2. How the parameters window list and slide list in sequential swVND affected its per-

formance, and whether there were any interactions involved between the two param-

eters.

3. Whether the different methods applied in the first stage of the improvement process

affected the overall outcome which includes the second stage of the improvement

process.

4. Whether the above results found from one dataset held for another.

57

We will answer these questions in the remaining subsections by showing the results and

statistical analysis that we conducted.

Background of Statistical Tests Applied in this Work

In this section, we give a brief introduction to the statistical tests that we applied to analyze

our experimental results and the most relevant statistics knowledge for the readers who are

not familiar with this area. This section is based on the book for statistics for engineers

and scientists by Walpole et al. [2012], and paper for reviewing Student’s t-test, analysis

of variance, and covariance by Mishra et al. [2019]. We will rephrase the most relevant

concepts from these literature sources below.

• Two-sample t-test: A two-sample t-test compares whether the two population

means are significantly different. The null hypothesis states that the two means are

the same (H0 : µ1−µ2 = 0), while the alternative hypothesis states that the two means

are different (H1 : µ1 − µ2 ̸= 0). A t-distribution based on the null hypothesis can be

drawn and shown in Figure 3.6. A t-statistic can be computed based on the average

and standard deviation of each sample, using a formula based on on the relationship

between the two samples, such as whether the two population variances are equal

and whether the observations are paired. Based on this t-statistic, the probability of

obtaining a value of t as large as or larger than the computed t (the shaded areas in

the t-distribution shown in Figure 3.6), also known as the p-value, can be calculated.

The smaller the p-value, the less likely the null hypothesis is true and the larger the

difference between the two means. A common way to judge if the mean difference is

significant is to see if the p-value is less than 0.05. If this is the case, we are 95%

confident that the difference between the two means are statistically significant.

58

0

H0: 𝜇1 − 𝜇2 = 0

p/2 p/2

t-statistic

H1: 𝜇1 − 𝜇2 ≠ 0

Figure 3.6: Illustration of p-value for two-sample t-test.

• Analysis of Variance (ANOVA): ANOVA compares the means of three or more

groups. The statistical concept used in ANOVA is similar to the one applied in a

two-sample t-test where the latter is limited to comparing the two means. Instead of

calculating a t-statistic and obtaining the p-value from the t-distribution as a two-

sample t-test does, ANOVA calculates a f -statistic based on the averages and standard

deviations of the groups and obtains the p-value from the F-distribution under a

specific null hypothesis. Depending on the number of factors (independent variables)

involved in an experiment, ANOVA can be categorized into one-way ANOVA and

two-way ANOVA.

– One-Way ANOVA: The one-way ANOVA involves only one factor with k

(k ≥ 3) different groups. If the p-value of a one-way ANOVA test is significantly

small, we are confident that out of all the group means, at least one pair of

the means are significantly different from each other. However, to determine

which pairs of the groups have significantly different means, a post-hoc test, also

called multiple comparisons, needs to be conducted (Walpole et al. [2012]). A

post-hoc test is similar to conducting multiple pair-wise t-test with adjustments

59

to reduce the errors from multiple comparisons, making the computed p-values

more conservative.

– Two-Way ANOVA: The two-way ANOVA involves two factors (independent

variables) and the goal is to see whether there are interactions between these

factors affecting the outcomes of the dependent variable. We can determine

whether the interaction between the two factors are significant, and whether a

factor affects the outcomes of the dependent variable significantly, by observing

the computed p-values for them.

After providing the background to these statistical tests, we now proceed by showing the

results of statistical analysis on our experiments where the nuances within each statistical

test will be discussed further in the following sections.

Results: One-Way ANOVA with Repeated Measures

The improvement made by t0 to t4 in the first-stage process and VND (I+S) in the second-

stage process for each replicate in each dataset can be seen in Figure 3.7. Each column

of the plots in Figure 3.7 from left to right represent 10 replicate plots for d1, d2, and

d3. Take “d1-r1” (first replicate in dataset 1) subplot in this figure for example. All

of the test cases start with the same initial solution constructed by iGCF, so the plot is

basically the continuation of the “d1-r1” plot in Figure 3.4. The black solid line indicates the

improvement made by t0 (direct VND) in the first-stage improvement process, while other

solid lines with specific colors indicate the improvement made by t1 to t4 (sequential swVND

with specific parameters) in the first-stage improvement process. A circle on a colored solid

line represents a converged value with respect to the current win size and slide size in the

sequential swVND method. The dashed lines after the solid lines regardless of their colors

represent the improvement made by the second-stage common improvement method - VND

with insertion and swap neighborhoods.

We can see that the comparison of the performance made by different test methods in a

replicate of a dataset does not necessarily hold for another replicate from the same dataset.

60

For example, the “d1-r1” subplot in Figure 3.7 shows that t1 (blue line) improves the initial

solution more efficiently than t0 (black line) in this case since the objective value of the blue

line goes down much quicker than the black line and the blue line converges at a value lower

than the black line in the end. However, in the “d1-r3” subplot we can see the comparison

is different in this case: the black line (t0) is below the blue line (t1) by the end of the

convergence of the blue line, so t0 actually improves the initial solution more efficiently

for this replicate. The reason for this comparison difference is that a different randomly

permuted sequence passed as an input into the our overall algorithm, swVND-SMS, would

lead to a different output. In some cases one method or parameter setting used in swVND-

SMS may outperform another, but what we want to generalize is whether in most of the

cases one method or a specific parameter setting outperforms other methods, and that is

why running experiments with multiple replicates and conducting statistical analysis on the

results are required in our study.

61

Figure 3.7: Figures of improvements made by sequential swVND and direct VND for each

of 10 replicates per dataset.

62

In particular, the four metrics we used to compare the performance between t0 to t4 are:

rate of improvement in the first-stage process (Rate I), rate of improvement including the

first and second stage processes (Rate IS), convergence value of the first-stage improvement

process (Convergence I), and the convergence value of the second-stage improvement process

(Convergence IS). Rate I and Rate IS are calculated as follows:

Rate I = (Objective of initial solution constructed by iGCF)−(Objective of stage1 converged solution)
(timestamp of stage1 convergence)−(timestamp of iGCF convergence)

Rate IS = (Objective of initial solution constructed by iGCF)−(Objective of stage2 converged solution)
(timestamp of stage2 convergence)−(timestamp of iGCF convergence)

The comparison of each of four metrics among t0 to t4 given a dataset can be visualized

in a box plot shown in Figure 3.8. As before, each column of plots represents the plots for

a dataset. Here, each row of plots represents the box plots of a specific metric across the

3 different datasets. The colors used in a box plot are consistent with the colors used to

represent t0 to t4 in Figure 3.7. For example, the black color represents the t0 results. It is

also worth noting that the dots with the diamond shape in a box plot represent the outliers

that differ significantly from the rest of the data in the test.

Simply by inspection of Figure 3.8, we can observe some obvious trends. For example, t0

appears to have lower improvement rates (both Rate I and Rate IS) on average compared

to the rest of the methods and this observation is consistent across the three datasets,

since the black boxes are lower than the colored boxes in box plots for Rate I and Rate IS.

On the other hand, it seems that there are no significant differences of Convergence I and

Convergence IS among the 5 tests for each dataset, since the populations of the tests, or the

spreads of the boxes are across each other in these plots. Based on these two observations,

we can suspect that in general, the sequential swVND has a better improvement rate than

direct VND with no significant difference in the converged values in the end, which implies

the former improves a initial solution more efficiently than the latter. In fact, we applied

one-way ANOVA with repeated measures to support our observations.

63

Figure 3.8: Box plots for Rate I, Rate IS, Convergence I, and Convergence IS for each

dataset.

64

The statistics software we applied to conduct statistical tests is the open-source Python

library: Pingouin (Vallat [2018]). Using its function for conducting one-way repeated mea-

sures ANOVA, we acquired a p-value or a corrected p-value for each statistical test, where

the correction was based on, for example, whether the assumption of equal variances of dif-

ferences between the groups were violated in ANOVA so the Greenhouse-Geisser correction

may be applied to make a p-value more conservative. Thus, the p-values we report in our

statistical tests are the corrected p-values, if applicable, for being the more conservative of

statistical test.

The reason we applied one-way repeated measures ANOVA here was because this statistical

test helped us to identify whether there was a significant difference between the means of

the test groups. If the p-value of the test is less than 0.05, it means there is at least one

group that has a mean different than another statistically significantly at 95% confidence

level (Walpole et al. [2012]). In addition, the term “repeated measures” here means that the

same subject is measured under different test conditions, i.e., the same replicate of initial

solution constructed by iGCF is improved by different test methods (t0 to t4) where each

resulting outcome is measured. It is different from the ordinary one-way ANOVA where

different test methods use different random replicates for running the experiment. The

results of one-way repeated measure ANOVA for the four metrics we are focusing on for the

3 different datasets can be summarized in Table 3.7.

Dependent Variable d1 d2 d3

(p-value) (p-value) (p-value)

Rate I 0.000001 0.0006 0.000007

Rate IS 0.000002 0.002 0.004

Convergence I 0.90 0.60 0.023

Convergence IS 0.63 0.73 0.36

Table 3.7: p-values (corrected if applicable) of one-way repeated measures ANOVA for Rate

I, Rate IS, Convergence I, and Convergence IS for 3 different datasets.

From Table 3.7, we can see that the p-values of one-way repeated measures ANOVA for

65

Rate I and Rate IS for all of the three datasets are all much lower than 0.05. This means

that we are 95% confident that the mean difference of Rate I or Rate IS among the 5

test methods in any one of the three datasets is statistically significant. This statistical

analysis supports the observation we made before where we saw that t0 had obviously lower

Rate I and Rate IS distributions than other test methods in Figure 3.8. In addition, we

can see that the p-values of one-way repeated measures ANOVA for Convergence I and

Convergence IS for all of the three datasets are all much higher than 0.05, except for the

case of Convergence I for dataset 3. This means that we are 95% confident that there is no

statistically significant difference between the means of Convergence I and Convergence IS

among the 5 test methods in any one of the three datasets, except for the case of Convergence

I for dataset 3. For dataset 3, although there is statistical significance in the mean difference

in Convergence I among the 5 test methods, there is still no statistically significant difference

in the means of the overall convergence value (Convergence IS) among the 5 test methods.

Combining the two facts where there is significant difference in the improvement rates but

no significant difference in the final converged values between the 5 test methods, we can

determine whether a test method is superior than another by simply comparing its average

improvement rate with another. If a method has a better average improvement rate while

converging at approximately the same objective as another method, it is a more efficient

method to improve the solution quality. Based on the information we have so far, we can

conclude that sequential swVND with parameters listed in t1 to t4 improves an initial

solution constructed by iGCF more efficiently than direct VND. However, we have not been

able to tell whether a particular parameter setting in sequential swVND is better than

another. We will answer this question by conducting post-hoc tests and two-way repeated

measures ANOVA described in the next subsections.

Results: Post-hoc Tests

If an ANOVA test is found to be significant, post-hoc tests, or pair-wise multiple compar-

isons, can be applied to find out which pairs of test groups have significantly different means

of the dependent variable Walpole et al. [2012]. There are different methods for conducting

66

post-hoc tests. Here, we chose the Bonferroni method according to Mishra et al. [2019]

for one-way repeated measures ANOVA. Given a pair of test groups, if the p-value of the

post-hoc tests is less than 0.05, we are 95% confident that the two means from these groups

are significantly different. The post-hoc tests we use here follows the two-sided hypothesis,

meaning if the p-value is significant, the means of the pair of the groups are significantly

different. However, the two-sided hypothesis cannot tell us which mean is larger out of the

pair. Fortunately, we can use the box plots in Figure 3.8 to justify which mean is larger

than the other. The corrected p-values from post hoc tests for Rate I and Rate IS for the

3 datasets are summarized in Table 3.8 and Table 3.9. Since the one-way repeated mea-

sures ANOVA for Convergence I and Convergence IS are mostly found to be insignificant,

post-hoc tests are not useful for these dependent variables.

Group A Group B d1 d2 d3

(p-value) (p-value) (p-value)

t0 t1 0.00016 0.014 0.0025

t0 t2 0.0042 0.020 0.044

t0 t3 0.00022 0.041 0.018

t0 t4 0.00048 0.041 0.024

t1 t2 0.0031 0.041 0.0025

t1 t3 0.16 0.029 0.041

t1 t4 0.0023 0.020 0.0022

t2 t3 0.023 0.24 0.041

t2 t4 0.33 0.081 0.68

t3 t4 0.0034 0.11 0.025

Table 3.8: p-values (corrected by step-down method using Bonferroni adjustments) of post

hoc tests (pair-wise multiple comparisons) for Rate I for 3 different datasets.

67

Group A Group B d1 d2 d3

(p-value) (p-value) (p-value)

t0 t1 0.0032 0.033 0.077

t0 t2 0.010 0.0064 0.30

t0 t3 0.000006 0.010 0.019

t0 t4 0.000084 0.15 0.22

t1 t2 1 0.54 1

t1 t3 1 0.32 1

t1 t4 0.42 0.15 0.22

t2 t3 1 0.54 1

t2 t4 1 0.22 1

t3 t4 0.053 0.54 0.088

Table 3.9: p-values (corrected by step-down method using Bonferroni adjustments) of post

hoc tests (pair-wise multiple comparisons) for Rate IS for 3 different datasets.

From Table 3.8, we can see that t0 has the mean of Rate I that is significantly different from

the means of t1 to t4, since the corrected p-values for these pairs are much less than 0.05

and the statement holds for all of the 3 datasets. Again, this supports our observation from

Figure 3.8 where t0 has apparent lower distributions of Rate I than the rest of the tests.

Therefore, sequential swVND in general has a faster improvement rate in the first-stage

improvement process than direct VND.

Following the same interpretation for Rate I, from Table 3.9, we can see that t0 has the

means of Rate IS that is significantly different from the means of t1 to t4 for d1, from t1

to t3 for d2, from t1 and t3 for d3. Although not all of the post hoc tests support the idea

where the improvement rate including first and second stage improvement process of direct

VND is different from that of sequential swVND, from the box plots in Figure 3.8 we can

still observe that in general t0 has lower distributions of Rate IS than the rest of the tests.

In summary, post hoc tests assist us to confidently describe that direct VND has a different

68

improvement rate than sequential VND. To further investigate which parameter setting

in sequential swVND makes it improve a solution more efficiently, the two-way repeated

measures ANOVA can be applied to t1 to t4 for drawing statistical conclusions.

Results: Two-Way ANOVA with Repeated Measures

Before we conduct two-way repeated measures ANOVA, we can use interaction plots (3.9) to

visualize how the two parameters used in sequential swVND affect the improvement rates.

In an interaction plot, the x-axis shows the first parameter, window list, and the y-axis

shows the mean of a dependent variable, i.e, either Rate I or Rate IS in our case. The “-1”

represents low value while “1” is high value of a parameter, following the same notation

used in Table 3.5. The blue line in an interaction plot indicates the outcomes from a low

value of slide list, while the orange line in an interaction plot indicates the outcomes from

a high value of slide list.

Figure 3.9: Interaction plots for Rate I and Rate IS for each dataset.

For any interaction plot in Figure 3.9, if we fix window list as -1 or 1, a lower slide list

gives us a higher mean of Rate I or Rate IS since the blue line is above the orange line. In

addition, if we only focus on either the blue or orange line on an interaction plot, a lower

window list gives us a higher mean of Rate I or Rate IS. Combining these two observations,

69

the interaction plots give us an impression that, on average, a lower window list and lower

slide list used in sequential swVND improve a solution more effectively than sequential

swVND with the high values of the parameters. We now apply two-way repeated measures

ANOVA to support this idea.

Instead of analyzing the effect of one independent variable on a dependent variable like

what one-way ANOVA does, two-way ANOVA analyzes how two independent variables

affect a dependent variable, and whether there is any interaction between the two indepen-

dent variables affecting the dependent variable Mishra et al. [2019]. Since the same initial

solution constructed by iGCF is improved by 5 different methods where the outcomes are

measured, this concept is classified as repeated measures and we use two-way repeated mea-

sures ANOVA to analyze how window list and slide list affect Rate I and Rate IS. The

way to interpret the results of this statistical test is based on the p-value, similar to one-way

repeated measured ANOVA that we described earlier. The p-values of two-way repeated

measures ANOVA for Rate I and Rate IS for 3 datasets are summarized in Table 3.10 and

3.11 below.

Source d1 d2 d3

(p-value) (p-value) (p-value)

window list 0.062 0.00044 0.015

slide list 0.0000001 0.0096 0.00013

window list * slide list 0.22 0.013 0.023

Table 3.10: p-values of two-way repeated measures ANOVA for Rate I for 3 different

datasets.

70

Source d1 d2 d3

(p-value) (p-value) (p-value)

window list 0.46 0.037 0.72

slide list 0.039 0.069 0.039

window list * slide list 0.77 0.52 0.76

Table 3.11: p-values of two-way repeated measures ANOVA for Rate IS for 3 different

datasets.

From Table 3.10, we can see that the p-values for window list and slide list are mostly

less than 0.05 for all the 3 datasets except for the p-value of window list for d1 which

has the value 0.062, a bit higher than 0.05. This means that we are quite confident that

the parameters window list and slide list both affect the improvement rate in the first-

stage improvement process significantly based on the statistical test. The window list *

slide list in this table represents whether there is interaction between the two parameters,

for example, when window list is small, small slide list may lead to better improvement

rate but when window list is large, magnitude of slide list may not affect the improvement

much. The p-values for window list * slide list for d2 and d3 are less than 0.05 while for

d1 is more than 0.22, meaning there could be interaction between the two parameters. This

result can be supported by seeing the trends in interaction plot in Figure 3.9. We can see

that for Rate I interaction plots for d2 and d3, the distance between blue and orange lines

is larger when window list is -1 and is smaller when window list is 1. On the other hand,

the distance between the blue and orange lines do not change much for Rate I interaction

plot for d1. Overall, with visualization from interaction plots and ANOVA, we can say that

the lower window list and lower slide list lead to better improvement rate in the first stage

of the improvement process.

The similar analysis can be conducted from Table 3.11. For the improvement rate in-

cluding first and second stage of the improvement process (Rate IS), slide list affects the

outcome significantly while window list may have less influence based on their p-values

from the ANOVA test. In addition, there is no interaction between the two parameters in

71

this case, since the p-values for the interaction are all much above 0.05 across the three

datasets. Therefore, the slide list parameter in sequential swVND affects both the first-

stage and overall improvement rates significantly while the window list parameter in se-

quential swVND has more influence on the first-stage improvement rate than the overall

improvement rate.

Recommendation of Parameters Used for Sequential swVND

Combining the facts from the observations made by visualization and analysis based on

ANOVA tests, we conclude that sequential swVND with t1 to t4 parameters improve

the same initial solution more efficiently than direct VND on average. Within sequential

swVND, a low window list that progress from smaller to larger win size and a low slide list

that slides half of the current window make the algorithm improve an initial solution more

efficiently on average. Overall, for solving a problem like LS-SMSP, we recommend apply-

ing sequential swVND with t1 parameters following iGCF to improve a constructed initial

solution further.

3.5 Chapter Summary

This chapter addresses a challenging but practical single machine scheduling problem en-

countered in steel manufacturing that has the following properties: (1) it is large scale

where more than 1000 jobs are to be scheduled, (2) sequence-dependent setup costs and

times are involved, (3) earliness or tardiness of a job due to the difference between its due

date and scheduled starting time is considered, and (4) a hard constraint where no jobs

can be processed before their arrival dates is enforced. The solver is only given one hour to

output the best solution it can find by then for practical implementation in industry.

We propose an algorithm where its core is based on variable neighborhood descent and

modify it for solving our problem, where we refer to the modified method as sliding-window

VND. The algorithm first applies an iterative greedy constructive heuristic to form a fea-

72

sible initial solution efficiently. The initial solution then is further improved by sequential

swVND starting with a small window size and progressing to a larger window size. The

converged solution by sequential swVND is further improved by VND with insertion and

swap neighborhoods. The multiprocessing technique is used in swVND when the window

size is large and in VND when the number of jobs to be sequenced is large. The results from

visualization and ANOVA statistical tests show that sequential swVND outperforms direct

VND on average, where we recommend a set of parameters used in sequential swVND to

make the algorithm more efficient. The proposed algorithm is also readily parallelizable.

Chapter 4

Parallel Machine Scheduling

In this chapter, we introduce a parallel machine scheduling problem faced in the steel

industry and propose an algorithm to address such a problem. Section 4.1 describes the

specific problem structures of the parallel machine problem we are trying to solve. Section

4.2 demonstrates the algorithm components we propose to address the problem. Section 4.3

shows the performance with statistical analysis of our algorithm. Section 4.4 summarizes

the chapter and provides the possible research directions to improve our methods.

4.1 Problem Statement

In this section, we start by describing the details of the parallel machine scheduling problem

that we study in this research (Section 4.1.1), and then we discuss how we present a solution

to this problem in Section 4.1.2. Last, we dive into how to evaluate a solution step-by-step

in Section 4.1.3.

73

74

4.1.1 Problem Details

For the large-scale parallel machine scheduling problem (LS-PMSP) that we study in our

research, there are n jobs to be processed on m machines. Each job has a unique identifier

number and is prespecified to be processed on a specific machine or a set of machines. Each

of the jobs also has unique job characteristics: job family number, processing time, arrival

date, and due date.

Job family number represents how a job will be processed on a machine and decides the

setup cost and time of the two consecutive jobs. If the two consecutive jobs have the

same job family number, there will not be any setup cost and time associated with this

kind of transition. If the two consecutive jobs have different job family numbers, there

will be specific setup cost and time assigned to such a transition depending on the number

difference since the machine now has a downtime for the changeover where workers have to

be assigned for the machine clean-up and a specific cost is associated with it. Knowing the

job family numbers for each job given a dataset, we can compute a n×n setup cost matrix

and n×n setup time matrix where for example, sc[1, 2] and st[1, 2] indicates the setup cost

and time between job 1 and 2. These matricies will be utilized in computing an objective

function value of a schedule for a machine.

In LS-PMSP, each job comes with a prespecified processing time which is the same regardless

of which machine the job is assigned to. They also have specific arrival dates depending on

their upstream processes, so a job cannot be processed before its arrival date. Based on the

customer requirement, each job has its own due date to meet. Processing a job earlier than

its due date does not cause earliness cost in LS-PMSP, but processing a job later than its

due date introduces a tardiness cost in LS-PMSP.

A simple illustration of LS-PMSP is shown in Figure 4.1 below. In this example, 6 jobs are

to be scheduled on 2 machines. Jobs 1 and 2 can only be processed on machine 1, jobs 3

and 4 can only be processed on machine 2, and jobs 5 and 6 are flexible jobs that they can

be processed on either machine 1 or 2. At the end of the scheduling algorithm, it returns a

good processing order (sequence/schedule) of jobs for each machine as the solution to the

75

scheduling problem. A solution carries an objective function value, or the total cost of the

schedule that sums up the cost of each schedule for each machine. We will explain how a

solution is represented in LS-PMSP and how an objective function value is calculated for a

solution in the following subsections.

Figure 4.1: Illustration of parallel machine problem.

4.1.2 Solution Representation

A solution to LS-PMSP is represented as x = {S1, S2, ..., SM} where x is a master array

that contains M arrays (M indicates the total number of machines), and Sm is an array of

jobs following the specific processing order for machine m. Continuing the example shown

in Figure 4.1, the solution x in this example and the recovered schedule for x are illustrated

in Figure 4.2 below.

Figure 4.2: Visualization of the solution x.

From Figure 4.2, we can see that the solution to this scheduling problem is represented

76

as x = {S1, S2}, or specifically x = {[2, 5, 1], [3, 4, 6]}. This means the solution suggests

that machine 1 should process a set of jobs following the order [2,5,1] and machine 2 should

process process the other set of jobs following the order [3,4,6]. The actual schedule following

these job processing orders for each machine can also be computed, that is, the processing

start time and end time of each job in the schedule can be calculated following the solution

x.

An example of visualizing the solution x is shown in the right schematic in Figure 4.2. Here,

we can see that there are multiple gaps between the processing times of the jobs in this

schedule. When computing a start time of a job, our algorithm sets the start time as early

as possible so a job will be immediately processed right after the previous job if there is no

setup time between them and its arrival date is earlier than the end time of the previous

job. The algorithm does not intentionally introduce any gaps in the schedule. Thus, these

gaps can be introduced by either the job family difference between the two consecutive

jobs processed on the same machine, or the late arrival date of a job that constrains it to

be processed at a earlier time. For example, both job 2 and 5 and job 3 and 4 belong to

different job families, so there is a setup time involved for each of their changeovers causing

the gaps in the schedule. In addition, job 6 has a arrival date that is much later than the

processing end time of job 4, so a large gap exists between these two jobs. One of the

major objectives for solving LS-PMSP is to reduce the gaps before the critical time, T , in

a schedule as much as possible, which we will elaborate more in the next subsection.

4.1.3 Evaluation of a Solution

The quality of a solution x can be evaluated in a programming language easily. The cost

of a solution x = {S1, S2, ..., SM} basically sums up each of the cost of the sub-schedules

(Sm) for each machine, where the cost of a sub-schedule for a machine consists of the three

parts: the sum of the costs of the gaps before the critical time T , the sum of the setup

costs between the consecutive jobs, and the sum of the tardiness costs of the jobs on this

machine. The objective of LS-PMSP is to search for a solution x that minimizes the total

77

cost of a schedule.

For the gap cost of a schedule, it is assumed to be equivalent to the gap time before the

critical time T where other costs of a schedule such as setup cost or tradiness cost are scaled

based on a unit of gap cost. We only consider the gap cost that is before the critical time T

because for our application, a new batch of jobs will come to the system and rescheduling

with the new jobs and the remaining jobs from the previous batch occurs after time T .

In other words, we only care about filling in as many jobs as possible to our machines to

avoid machine downtime early and not care so much about the later gaps because the new

batch of jobs will arrive in the middle of the schedule to fill in the later gaps during the

rescheduling.

Continuing our previous example where x = {[2, 5, 1], [3, 4, 6]}, we now demonstrate the

calculation of the objective function value of such a solution assuming the start times and

end times of each job on each machine have been computed by programming. Assuming

the critical time T = 80, only job 6 has a arrival date that is 100 while the rest of the jobs

arrive at time 0, and given the setup time and setup cost matrices (they do not have to be

symmetrical) precomputed from the input datasets as follows:

sti,i′ =



0 20 20 20 0 20

20 0 20 20 40 60

20 20 0 20 0 10

20 20 20 0 0 20

0 40 0 0 0 0

20 60 40 20 0 0


, sci,i′ =



0 5 5 5 0 5

5 0 5 5 10 15

5 5 0 5 0 10

5 5 5 0 0 5

0 10 0 0 0 0

5 15 10 5 0 0


We can walk through the calculation of the objective value of x step-by-step with the help

of visualization of x in Figure 4.2 as follows:

1. Gap costs before T : for machine 1, the gap cost between job 2 and 5 caused by the

setup time is st2,5 = 40. Also, a gap exists between the end time of the last job on

machine 1 and the critical time T , and let us say that this gap is T − end time1 =

80 − 70 = 10. For machine 2, the gap cost between job 3 and 4 caused by the setup

78

time is st3,4 = 20. Although job 6 arrives and is processed later than T and there is

a big gap between job 4 and 6, we only consider the gap cost before T , saying such

the gap cost is T − end time4 = 80− 50 = 30.

2. Setup costs: the sum of the setup costs for machine 1 is sc2,5 + sc5,1 = 10 + 0 = 10,

and the sum of the setup costs for machine 2 is sc3,4 + sc4,6 = 20 + 20 = 40.

3. Tardiness cost: assume all the 6 jobs have very late due date to meet, so the schedule

generated by the solution x does not lead to any tardiness cost for either sub-schedule

of a machine.

4. Total cost of x: the cost of S1 is gap costs + setup costs + tardiness cost = (40 +

10) + 10 + 0 = 60. The cost of S2 is gap costs + setup costs + tardiness cost =

(20+ 30)+ 40+ 0 = 90. By summing the costs of all the sub-schedules, the total cost

of x is cost of S1 + cost of S2 = 60 + 90 = 150.

The exact value of T and the coefficients for calculating setup time and cost matrices that

affects the gap cost, setup cost, and tardiness cost vary from application to application and

are confidential. The problem setup of the objective and the arrival-date hard constraint

in LS-PMSP makes the scheduling optimization problem unique compared to, for example,

the common makespan minimization problem, but it is practical in an industrial setting.

The methods that we applied and developed in our research are also generalizable and

can be applied to other parallel machine scheduling problems with different objectives and

constraints.

4.2 Algorithm Components

We extend the algorithm we developed to solve the large-scale single machine scheduling

problem (Chapter 3) to address the large-scale parallel machine scheduling problem faced

by our industrial partner. The solution process for solving LS-PMSP can be broken down

into initialization and improvement phases. In the initialization phase, we tailor the greedy

79

constructive heuristic applied to the single machine problem (Algorithm 2) to deal with the

parallel machine problem which constructs an initial solution efficiently. Next, we apply

the iterative two-stage improvement process to further improve the initial solution obtained

by the greedy constructive heuristic, where in each iteration, the first-stage improvement

is done by intra-machine VND and the second-stage improvement is done by inter-machine

VND. We will describe the initialization and improvement phases in detail in Section 4.2.1

and 4.2.2 respectively.

4.2.1 Initialization: Greedy Constructive Heuristic

The concept of greedy constructive heuristic (GCH) discussed in Section 3.2.1 can also be

applied to the parallel machine problem, where a good and feasible initial solution can be

constructed from a randomly permuted job sequence efficiently. The pseudo code for the

GCH algorithm for the parallel machine problem is shown in Algorithm 14 below. We

will walk through how GCH for LS-PMSP works and give a concrete example with the

illustration of a figure in this subsection.

80

Algorithm 14: Greedy constructive heuristic.

1 Function GCH(x,waitlist):

2 M ← Length(x);

3 new vals← an array of M zeros;

4 new seqs← an array of M empty arrays;

5 while waitlist ! = [] do

6 job← Remove(waitlist);

7 for m← 1 to M do

8 if Feasible(job, m) then

9 insert job to the best position in x[m];

10 new vals[m]← Evaluate(x);

11 new seqs[m]← Copy(x[m]);

12 remove job from x[m];

13 else

14 new vals[m]← a very large value;

15 end

16 end

17 best m← argminm(new vals);

18 x[best m]← new seqs[best m];

19 end

20 return x

In Algorithm 14, line 1 shows the two inputs to GCH, where initially x is an array of M

empty arrays and waitlist is an array that contains all the job IDs to be sequenced with

any possible order. waitlist could be an array of randomly permuted job IDs or an array

of job IDs presorted by any kinds of preferences. The idea of GCH is to iteratively remove

the job located at the first position in current waitlist (line 5 and 6), and insert it to the

current best and feasible position in x (line 7 to 18) until waitlist is empty. By that time,

x contains good and feasible processing orders for each machine and is returned by GCH

(line 20).

81

Specifically, in line 7 we iterate through every machine sequence in x, and whenever the

job removed from the waitlist is feasible to be assigned to machine m (line 8), we insert it

to the best position in that sequence (line 9) that leads to the lowest sequence cost while

keeping the relative order of the rest of the jobs in that sequence the same. We then save

the total cost of updated x (line 10) and save a copy of the updated machine sequence

(line 11) for later reference. Next, we remove the job that was just inserted to the current

machine sequence (line 12) before we try inserting it to the next machine sequence in x and

see if that could lead to a lower total cost of the schedule. If the removed job is not feasible

to be assigned to machine m, we simply save a very large value to the mth position in the

storage array (line 14), so when we compare which machine is best for the removed job to

be assigned to (line 17), the infeasible machine(s) are not comparable. In line 18, we update

the machine sequence that is the most suitable for the current removed job to be inserted

to. Then we continue the loop, remove the next job from waitlist (line 5 and 6), and repeat

the same procedure for inserting the removed job to the current best and feasible position

in x.

An example illustrating how GCH works for a parallel machine scheduling problem with 5

jobs to be sequenced on 2 machines is shown in Figures 4.3 and 4.4. For the illustration

purpose, input waitlist contains job IDs that happen to be ordered from 1 to 5. Job 1 and

2 can only be assigned to machine 1, job 3 and 4 can only be assigned to machine 2, and

job 5 is a flexible job that can be assigned to either machine. At the beginning of GCH,

solution x is an array that contains 2 empty arrays because there are 2 machines to be

considered in this problem.

82

x = [S1, S2]

Ex: 5 jobs to be sequenced on 2 machines

waitlist = [1, 2, 3, 4, 5]

m1 m2 m1 or 2

[] []

Iteration 1. job = 1, waitlist = [2, 3, 4, 5]

S1 = [] S2 = []

infeasible

S1 = [1]

Iteration 2. job = 2, waitlist = [3, 4, 5]

S1 = [1] S2 = []

infeasible

S1 = [1, 2]

21 vs. 12

Iteration 3 & 4.

S1 = [1, 2] S2 = [3, 4]

…

infeasible

Figure 4.3: Illustration of GCH: part 1.

At the first iteration shown in Figure 4.3, job 1 is removed from waitlist and inserted to

sequence 1 (processing sequence of machine 1). The algorithm does not allow job 1 to be

inserted to sequence 2 because it is not feasible. It simply proceeds with S1 = [1] and

empty S2 to the next iteration. At the second iteration, job 2 is removed from waitlist

and inserted to sequence 1 without considering sequence 2 since such an assignment is not

feasible. In sequence 1, job 2 can be either inserted before or after job 1. The algorithm

proceeds with the best insertion which leads to the lowest total cost of x. In this case,

S1 = [1, 2] has a lower cost than S1 = [2, 1], so x is updated to be x = [[1, 2], []] after

the second iteration. The third and fourth iterations are similar to the first and second

iterations, with the difference that job 3 and 4 can only be assigned to machine 2 instead

of machine 1. Let us say that S2 = [3, 4] has a lower cost than S2 = [4, 3], so x is updated

to be x = [[1, 2], [3, 4]] after the fourth iteration.

83

Iteration 5. job = 5, waitlist = []

S1 = [1, 2] S2 = [3, 4]

S1 = [1, 2, 5]

512 vs. 152 vs. 125 534 vs. 354 vs. 345

S2 = [3, 4, 5]

total cost

S1 : [1, 2, 5] + s2: [3, 4] S1 : [1, 2] + S2 : [3, 4, 5]

total cost

Best job insertion is determined by lowest total cost

S1 : [1, 2, 5], S2 : [3, 4], waitlist: []

Figure 4.4: Illustration of GCH: part 2.

Finally, we remove job 5 from waitlist in the fifth iteration as shown in Figure 4.4. Job 5

is a flexible job, so it can be assigned to either machine 1 or 2. The algorithm first inserts

it to the best position in sequence 1 while keeping the relative order of the rest of the jobs

in sequence 1 the same. That is, job 5 can be inserted before job 1, between job 1 and 2,

or after job 2, but there will not be a combination such as [5,2,1] to be considered here,

since the algorithm is “greedy” and keeps the relative order, job 1 before job 2, the same

when finding a best insertion position for job 5. Let us say that out of the three possible

insertions of job 5 to sequence 1, S1 = [1, 2, 5] leads to the lowest cost of the sequence, so the

algorithm will save the updated S1 and compute and save the total cost of x = [[1, 2, 5], [3, 4]]

for later comparison. After recovering x to be its status at the beginning of iteration 5, i.e.,

x = [[1, 2], [3, 4]], the algorithm now tries to insert job 5 to sequence 2. Following the same

logic, the algorithm finds the best insertion of job 5 into sequence 2 to be S2 = [3, 4, 5], so

it saves the updated S2 and computes and saves the total cost of x = [[1, 2,], [3, 4, 5]] for

comparison. Last, by comparing the cost of x = [[1, 2, 5], [3, 4]] and x = [[1, 2,], [3, 4, 5]],

let us say the former has a lower total cost than the latter, so the algorithm updates x to

be x = [[1, 2, 5], [3, 4]]. Since waitlist now is empty, the algorithm terminates and returns

84

updated x.

The time complexity of GCH is O(n2) since finding a best insertion position costs O(n) and

we repeat it n times for n jobs in waitlist. This shows that GCH is an efficient algorithm

for constructing an initial solution to LS-PMSP.

4.2.2 Improvement: Variable Neighborhood Descent

An initial solution constructed by GCH can be further improved by other metaheuris-

tics. Having seen the success of applying variable neighborhood descent (VND) to improve

a solution for the large-scale single machine scheduling problem (Chapter 3), we extend

the VND-based metaheuristic to improve the solution for our large-scale parallel machine

scheduling problem. The details of how VND works can be found in Section 3.2.2.

There are many different ways to design the neighborhoods and neighborhood order used in

VND, or even coupled VND with other heuristic for solving a parallel machine scheduling

problem. For example, Avalos et al. [2014] show that a two-stage improvement process where

the first stage applies inter-machine movements with insertion and swap neighborhoods

followed by intra-machine refinements with a local search method, and the second stage

applies a composite movement that involves an insertion or swap move between machines

followed by intra-machine optimization refinements, improves the solution efficiently for

their parallel-machine scheduling problem.

For our LS-PMSP, we break down the improvement process by VND into two stages. The

first stage applies intra-machine VND with insertion and swap neighborhoods on each ma-

chine for efficient individual improvements, and there are no interactions between machines

in this stage. The second stage applies inter-machine VND with inter-insertion and inter-

swap neighborhoods between machines for further improvements to the solution, and no

movement within an individual machine in this stage. We then repeat this two-stage im-

provement process until the solution can be no longer improved by these methods. The

details of the methods applied in each stage are described in the following subsections.

85

Intra-machine VND

In VND algorithm (Algorithm 6), a series of neighborhoods to be searched for have been

pre-defined and during each iteration, and the algorithm looks for the “best neighbor” in

the current neighborhood to improve the solution (line 4). Unlike single machine scheduling

where the neighborhoods are limited to the movements within the single machine, neigh-

borhood structures that involve interaction between machines can also be considered in

parallel machine scheduling for further improvement when no improvement can be made

by the intra-machine movements. Therefore, the series of neighborhoods to be consid-

ered in VND for LS-PMSP should include a combination of intra-machine movements and

inter-machine movements. To distinguish the two types of neighborhood structures, we

split the holistic VND for LS-PMSP into two parts: an intra-machine VND that includes

only the intra-machine neighborhoods and an inter-machine VND that includes just the

inter-machine neighborhoods.

For intra-machine VND, the two neighborhoods considered here are simply the intra-

machine insertion and intra-machine swap neighborhoods that we introduced earlier in

single machine scheduling, where the algorithms for finding a “best neighbor” in these

neighborhoods (line 4 in Algorithm 6) have been shown in Algorithm 8 and 10. In intra-

machine VND, we iterate through each machine sequence in solution x and apply VND with

intra-insertion and intra-swap neighborhoods to improve each machine sequence separately.

This process can be thought of as applying single machine VND to each individual machine

in solution x. Once solution x can no longer be improved by intra-machine VND, we pro-

ceed with inter-machine VND for the second-stage improvement which will be discussed in

the next subsection.

The time complexity for finding a best move from the insertion or swap neighborhood

from one of the parallel machines is O(n2
m), where nm represents the number of jobs on

the mth machine. It is much less than O(n2), which is the time complexity for finding

a best insertion or swap move from a single machine that combines all the jobs from the

parallel machines. Note that if we split the total n jobs to M parallel machines and find

86

a best insertion or swap move for each machine, the total computation cost would be

O(n2
1) + O(n2

2) + ... + O(n2
M) <= O(n2), which is still less than finding a best move from

a single machine containing all the jobs, if n ̸= M ̸= 1. This implies that intra-VND

will actually run faster with more parallel machines being considered, given the same total

number of jobs n to be sequenced on these machines. We will see such efficient algorithm

performance in Section 4.3.

Inter-machine VND

In inter-machine VND, two neighborhoods, inter-insertion and inter-swap neighborhoods,

are utilized in the algorithm. To find a best neighbor (move) in the inter-insertion neigh-

borhood which considers all the possible inter-insertions between all the machines, we first

discuss how to pick the best job from one machine and insert it to the best position in the

other machine during inter-insertion movements between just the two machines. We call

such an interaction between the two machines as finding the best inter-insertion sub-move

(“sub-move” indicating interaction between only the two machines and not all the possi-

ble machines). The algorithm for finding a best inter-insertion sub-move between the two

machines can be seen in Algorithm 15.

87

Algorithm 15: Best inter-insertion sub-move.

1 Function Best InterInsertion SubMove(S1, S2):

2 best S1, best S2 ← Copy(S1), Copy(S2);

3 best val← Evaluate(S1)+ Evaluate(S2);

4 for i← 1 to Length(S1) do

5 if Feasible(S1[i], S2) then // if job S1[i] can be assigned to S2

6 for j ← 1 to (Length(S2)+ 1) do

7 remove S1[i] from S1, insert it to jth position in S2;

8 temp val← Evaluate(S1)+ Evaluate(S2);

9 if temp val < best val then

10 best S1, best S2 ← Copy(S1), Copy(S2);

11 best val← temp val;

12 end

13 remove S2[j] from S2, insert it to ith position in S1;

14 end

15 end

16 end

17 return best S1, best S2

The inputs to Algorithm 15 are the two arrays, S1 and S2, containing the current processing

orders of the two machines. In line 2 and 3, we save the current machine sequences and the

cost of the two machine sequences. We then iterate through the jobs in the first machine

sequence (line 4), and if the job from S1 is feasible to be assigned to the other machine

(line 5), we then iterate through the positions in the other machine (line 6) for seeking cost

improvement from inter-insertions. If an inter-insertion leads to a better cost of the solution

(line 9), we update the the current best sequences and their total cost (line 10 and 11). By

the end of the iterations, we find the best job to be picked from S1 to be inserted to the

best position in S2, if there is any, and return the updated sequences (line 17).

We can now apply Algorithm Best InterInsertion SubMove to each pair of machines (the

order of machines within a pair matters), and compare these best inter-insertion sub-moves

88

from these matches to decide the best inter-insertion move from the current inter-insertion

neighborhood. Algorithm 16 below demonstrates the details to complete such the task.

Algorithm 16: Best inter-insertion move.

1 Function Best InterInsertionMove(x):

2 best x← Copy(x);

3 best val← Evaluate(x);

4 for m1 ← 1 to Length(x) do

5 for m2 ← 1 to Length(x) do

6 if m1 ! = m2 then

7 old S1, old S2 ← Copy(x[m1]), Copy(x[m2]);

8 x[m1], x[m2]← Best InterInsertion SubMove(x[m1], x[m2]);

9 temp val← Evaluate(x);

10 if temp val < best val then

11 best x← Copy(x);

12 best val← temp val;

13 end

14 x[m1], x[m2]← old S1, old S2;

15 end

16 end

17 end

18 return best x

The input to Algorithm Best InterInsertionMove is the current solution x to be improved

(line 1). We first save the current x and its cost as the current best solution and cost for

later comparison (line 2 and 3). We then iterate through all the possible pairs of the

machine sequences in x where the order of the sequences matters (line 4 and 5). During

each iteration, we apply Algorithm Best InterInsertion SubMove to find the best inter-

insertion between the two machines (line 8). If the improvement from the current pair of

the machines is better than the current best value, we update the current best solution and

value (line 10 to 13). At the end of the algorithm, we find the best inter-insertion move in

89

the current inter-insertion neighborhood, if there is any, and return the updated solution x

(line 18).

Just like intra-VND with insertion and swap neighborhoods, in inter-VND when a solu-

tion can no longer be improved by the inter-insertion neighborhood, a further improve-

ment is sought from the inter-swap neighborhood. This switch is controlled by function

Neighborhood Change in VND (line 5 in Algorithm 6). To find a best neighbor in the

inter-swap neighborhood, it follows the similar procedure for finding a best inter-insertion

move, where we start by considering finding the best inter-swap sub-move between the

two machines and apply such the technique to every pair of the machines in x to deter-

mine the best inter-swap move in the current inter-swap neighborhood. The algorithms for

Best InterSwap SubMove and Best InterSwapMove can be found in Algorithm 17 and

18 below.

90

Algorithm 17: Best inter-swap sub-move.

1 Function Best InterSwap SubMove(S1, S2):

2 best S1, best S2 ← Copy(S1), Copy(S2);

3 best val← Evaluate(S1)+ Evaluate(S2);

4 for i← 1 to Length(S1) do

5 if Feasible(S1[i], S2) then // if job S1[i] can be assigned to S2

6 for j ← 1 to Length(S2) do

7 if Feasible(S2[j], S1) then // if S2[j] can be assigned to S1

8 swap S1[i] with S2[j];

9 temp val← Evaluate(S1)+ Evaluate(S2);

10 if temp val < best val then

11 best S1, best S2 ← Copy(S1), Copy(S2);

12 best val← temp val;

13 end

14 swap S2[j] with S1[i];

15 end

16 end

17 end

18 end

19 return best S1, best S2

91

Algorithm 18: Best inter-swap move.

1 Function Best InterSwapMove(x):

2 best x← Copy(x);

3 best val← Evaluate(x);

4 for m1 ← 1 to (Length(x)− 1) do

5 for m2 ← (m1 + 1) to Length(x) do

6 old S1, old S2 ← Copy(x[m1]), Copy(x[m2]);

7 x[m1], x[m2]← Best InterSwap SubMove(x[m1], x[m2]);

8 temp val← Evaluate(x);

9 if temp val < best val then

10 best x← Copy(x);

11 best val← temp val;

12 end

13 x[m1], x[m2]← old S1, old S2;

14 end

15 end

16 return best x

For Best InterSwap SubMove, one major difference from Best InterInsertion SubMove

worth mentioning is that since an inter-swap move swaps the two jobs from their current

positions in the two machines, when we try out such an movement we need to check whether

both jobs are feasible to be assigned to their counterpart machines (line 5 and 7 in Algorithm

17). In addition, when we apply function Best InterSwap SubMove to each pair of the

machines in x to find the best inter-swap move, the order of the machines being considered

in a pair does not matter (line 4 and 5 in Algorithm 18) because between the two machines,

swapping job a in the first machine with job b in the second machine is the same as swapping

job b in the second machine with job a in the first machine. Other than these nuances, the

inter-swap algorithms work in a similar fashion as the inter-insertion algorithms.

The time complexity for finding a best inter-insertion move or best inter-swap move is also

capped at O(n2), and should be less than that for most of the cases since:

92

1. Not every job is feasible to be assigned to another machine, so many inter-insertion

or inter-swap moves can be reduced.

2. Within an inter-insertion or inter-swap neighborhood, a job will not consider any

intra-insertion or intra-swap move on the machine it is currently assigned to.

3. Finding a best inter-swap move has even less computation cost than finding a best

inter-insertion move since swapping job a in the first machine with job b in the second

machine is the same as swapping job b in the second machine with job a in the first

machine and we do not have to swap a pair of jobs twice.

These again show that sequencing n jobs on M (M > 2) parallel machines with intra-VND

or inter-VND should be faster than sequencing n jobs on a single machine with VND. The

results of algorithm performance for intra-VND and inter-VND can be seen in Section 4.2.2.

4.2.3 Overall Algorithm for Solving LS-PMSP

After discussing the algorithm components, GCH, intra-VND, and inter-VND, we now

propose an overall algorithm, PMS, for solving our large-scale parallel machine scheduling

problem shown in Algorithm 19 below. The inputs to PMS (line 1) are x which initially

is an array of M empty arrays (M stands for the number of machines to be considered),

and waitlist which is an array that contains the total number of the jobs to be sequenced

with any possible processing order. During the initialization phase, we first apply GCH to

construct a good and feasible initial solution (line 2). Then, in the improvement phase,

we repeatedly apply a two-stage improvement process where the first stage uses intra-VND

and the second-stage uses inter-VND to improve x further, until no more improvements

can be made by the either method (line 3 to 9). Last, the algorithm returns the converged

solution with respect to intra-VND and inter-VND (line 10) as the solution to LS-PMSP.

The performance of PMS can be found in the next section.

93

Algorithm 19: PMS

1 Function PMS(x,waitlist):

2 x← GCH(x, waitlist);

3 x← intra VND(x);

4 x′ ← inter VND(x);

5 while Evaluate(x’) < Evaluate(x) do

6 x← x′;

7 x← intra VND(x);

8 x′ ← inter VND(x);

9 end

10 return x′

4.3 Computational Results and Discussion

In this section, we introduce the two questions we are trying to answer and the design of

experiments for finding these answers in Section 4.3.1. We analyze the 2 actual industrial

datasets received from our industrial partner and consider whether different input dataset

characteristics lead to different experimental results in Section 4.3.2. Finally, in Section

4.3.4 and 4.2.2 we analyze the results from our experiments with the support of statistical

analysis to answer the two questions we were trying to answer at the beginning.

The experiments in this section were conducted on an Intel Core i7-10700 CPU and 16GB

RAM under WSL2 with Linux Ubuntu 20.04.3 where the algorithms are implemented in

Python with Numpy and Numba packages.

94

4.3.1 Design of Experiment

Sorting an Input Sequence for PMS

As shown in Figure 4.5 below, Algorithm PMS can take any possible sequence that contains

all the jobs to be scheduled as an input waitlist and return an improved solution to LS-

PMSP. Although the algorithm is deterministic, that is, given the same inputs it will always

return the same output solution x′, starting with different waitlist may lead to different

solution qualities. We are interested in the robustness of PMS, i.e., how the algorithm

performs with different inputs.

Figure 4.5: Illustration of PMS algorithm

In addition, we are interested in whether sorting input waitlist would lead to a better

solution statistically. In particular, the sorting we do here follows the order of the machine

number of the jobs from low to high, that is, waitlist contains the jobs starting from the

machine-1 jobs (jobs that can only be assigned to machine 1), followed by machine-2 jobs,

and so on. The last group of the jobs in a sorted waitlist would be the flexible jobs that

can be assigned to any machines. Note that the jobs within the same machine group can be

randomly ordered, so our sorting still introduces randomness to an input to the algorithm.

The left waitlist shown in Figure 4.6 below illustrates the sorting concept. On the other

hand, the right waitlist in the figure demonstrates a randomly permuted sequence without

sorting. The idea of sorting is for GCH to process the jobs that can only be assigned to a

specific machine first before considering the flexible jobs. This may or may not lead to a

95

better converged solution on average after the improvement phase by VND-based methods.

Figure 4.6: Illustration of sorted random sequence versus unsorted random sequence.

To find out whether sorting helps improve the solution quality, a statistical experiment can

be conducted to draw a conclusion. Figure 4.7 below illustrates the design of experiment.

Given an input dataset “d1”, we can generate 10 random sorted waitlist and 10 random

unsorted waitlist. Each replicate goes through the PMS algorithm and has an objective

value of the converged solution and the time it takes for the algorithm to converge. We

then can conduct t-test on these results and draw a statistical conclusion.

Figure 4.7: Illustration of design of experiment for investigating PMS performance.

96

Intra-VND or Inter-VND First in Improvement Phase

In addition to sorting, we are interested in investigating whether starting intra-VND or

inter-VND first during the improvement phase affects the converged solution quality. The

concept is also shown in Figure 4.7, where method A represents that we apply intra-VND

first followed by inter-VND during the iterative two-stage improvement phase, and method

B represents the improvement order that is the other way around. To compare these two

methods, we can generate 10 sorted random sequences as 10 different replicates, where each

replicate is improved in two ways: one by GCH and method A and the other by GCH

and method B. We then can conduct paired t-test on these results to draw a statistical

conclusion.

To summarize, the two questions we are trying to answer from our experiments are:

1. Whether sorting waitlist improves a solution quality or converged time.

2. Whether starting intra-VND first (method A) or inter-VND first (method B) leads to

a better solution quality or converged time.

We are given 2 actual datasets from our industrial partner to conduct these experiments,

where the characteristics of these two datasets will be discussed in the next subsection.

4.3.2 Characteristics of Input Datasets

The characteristics of the two input datasets, where we use “d1” and “d2” to refer to the

first and the second dataset, are summarized in the histogram plots in Figure 4.8. The left

column of histograms are for d1 characteristics while the right column of histograms are for

d2 characteristics in this figure. d1 has 492 jobs and d2 has 395 jobs to be scheduled. The

units for arrival date, due date, and processing time are confidential, but the features from

these distributions can be analyzed.

97

Figure 4.8: Characteristics of the two input datasets.

98

One of the main differences between the two datasets is the arrival date distribution. For

d1, it does not have many jobs available to be sequenced at the early time (most of the

jobs arrive later than 2 units of the arrival date). Recall that in LS-PMSP, one of the main

objectives is to fill in the gaps in the early schedule. If not many jobs are available at the

early time to be processed, we can expect to see some big gaps in the schedule created from

the solution. On the other hand, d2 has most of the jobs available to be processed at the

starting time of the schedule. Therefore, we expect to see that the schedule created from

the solution for d2 would be packed in the early time. Examples of the schedules recovered

from our solutions for d1 and d2 will be shown in the later subsection.

In terms of the due date distribution, both datasets have many jobs that are already due

at the starting time of the scheduling horizon, so processing these jobs early will lead to

a lower cost of a schedule. The distribution of the processing times of the jobs for each

dataset also shows that some jobs take longer to process than another.

For the distribution of the machine number assignment for each dataset, we use machine

number to indicate which machine a job can be assigned to. There are only 2 parallel

machines to be considered in these datasets. If a job is labeled with machine number 0,

it means the job is a flexible job that can be assigned to either machine 1 or 2. From the

machine number distributions, d1 has about 62% of flexible jobs and d2 has about 42%

flexible jobs, and d1 has fewer machine-1 jobs than d1.

In terms of the job family number distribution, we can see that both datasets have a wide

spread of the jobs that belong to different job families. Recall that in LS-PMSP, job family

number indicates a specific set of the processing requirements for a job, and processing

jobs with different job family numbers consecutively will lead to a specific setup cost and

time. A good schedule returned by our algorithm in general should have a small number of

transitions of the job family numbers in a sequence, which can be seen in the examples of

the schedules shown in the later subsection.

99

4.3.3 Overview of the Experimental Results

As discussed in Section 4.3.1, three methods based on the PMS algorithm are tested to

see if any of them leads to a better algorithm performance: unsorted A, sorted A, and

sorted B. For each method, we generate 10 replicates for each of the 2 datasets. For each

dataset, the 10 inputs from the replicates for unsorted A are different from the 10 inputs

for sorted A, since the former uses a sorted random waitlist as the input and the latter uses

an unsorted random waitlist as the input. On the contrary, each replicate in sorted A and

sorted B starts with the same sorted random waitlist but is improved by either method

A (intra-VND + inter-VND) or method B (inter-VND + intra-VND) in the improvement

phase of the algorithm.

The plots of the algorithm performance for each replicate of each method in d1 are shown

in Figure 4.9, and these plots for d2 are shown in Figure 4.10. In each figure, the left

column of the plots represents the unsorted A, the middle column of the plots is for sorted

A, and the right column of the plots is for sorted B. The black dot in a plot indicates the

improvement made by GCH, the blue dots are improvements made by intra-VND, and the

red dots are improvements made by inter-VND. For unsorted A or sorted A methods, we

can see the blue dots occur before the red dots in a plot, meaning the algorithm applies

intra-VND before inter-VND in the improvement phase. For sorted B method, the red dots

occur before the blue dots in a plot since the algorithm applies inter-VND before intra-VND

in the improvement phase.

Having generated these results, we can apply statistical analysis on the converged values

and converged times to compare the performance between the three methods, which will be

discussed in the following subsections.

100

Figure 4.9: Algorithm performance for d1 unsorted A, d1 sorted A, and d1 sorted B.

101

Figure 4.10: Algorithm performance for d2 unsorted A, d2 sorted A, and d2 sorted B.

102

4.3.4 Sorted vs. Unsorted Input Sequence

The performance comparison between the unsorted A and sorted A methods for each dataset

can be visualized in the boxplots shown in Figure 4.11. In addition, the p-values for the two-

tailed t-test that compares the two means of the methods for the two dependent variables,

converged value and converged time, for each dataset are shown in Table 4.1. If a p-value

is lower than 0.05, it means that we are 95% confident that the difference between the two

means are statistical significant.

Figure 4.11: Boxplots for comparing converged values and times between unsorted A and

sorted A.

Dependent Variable d1 d2

(p-value) (p-value)

Converged Value 0.017 0.86

Converged Time 0.024 0.43

Table 4.1: p-values of t-test on unsorted A and sorted A for d1 and d2.

103

From the left column of the boxplots in Figure 4.11, we can see that sorting waitlist helps

the PMS algorithm converges faster with a better converged value than the unsorted method

for dataset 1 on average, since a distribution of d1-sorted-A is significantly lower than a

distribution of d1-unsorted-A. The interpretation from the boxplots is also supported by

the p-values shown in Table 4.1, where both the p-values for converged value and time for

d1 are less than 0.05.

For the d2 results, shown in the right column of the boxplots in Figure 4.11, the two

distributions from the two methods are across each other for both the dependent variables.

According to their p-values which are much greater than 0.05 as shown in Table 4.1, it

suggests that there is no significant difference between the two means. Therefore, sorting

waitlist does not improve the algorithm significantly for the second dataset.

However, we can see that between d2-unsorted-A and d2-sorted-A, the latter appears to

have a lower minimum converged value than the former out of the 10 replicates, and both

the methods have fast converged time (less than a minute) for solving LS-PMSP with 395

jobs. If we were to implement a multi-start algorithm where we repeatedly run the PMS

algorithm with different inputs when one is converged until the time limit is reached, then

the method that could generate a solution with the lowest cost than another within the

time limit is best suited to solve the problem. That is, if sorting waitlist helps to find a

solution with a lower cost in the long run, it is better to sort an input sequence than not

sort it, even if the average solution qualities between the two methods might be the same.

Overall, we recommend a sorted waitlist in terms of the machine number of the jobs for

solving our LS-PMSP based on our experiment on the two datasets. We now compare the

sorted A method and sorted B method in the next subsection.

4.3.5 Intra-VND First or Inter-VND First

Figure 4.12 and Table 4.2 below show the boxplots for the comparison between the sorted

A and sorted B methods and the associated p-values, following the same arrangement of a

104

figure and table in the previous subsection.

Figure 4.12: Boxplots for comparing converged values and times between sorted A and

sorted B.

Dependent Variable d1 d2

(p-value) (p-value)

Converged Value N/A 0.17

Converged Time 0.054 0.011

Table 4.2: p-values of paired t-test on sorted A and sorted B for d1 and d2.

There is no clear difference between the sorted A and sorted B methods in terms of converged

values and times just by observing the boxplots shown in Figure 4.12. In fact, for dataset 1

d1-sorted-A and d1-sorted-B have the same distribution of the converged values. From the

second and third columns of the plots in Figure 4.9, we can also see that for each replicate,

although d1-sorted-A and d1-sorted-B apply intra-VND and inter-VND first respectively,

they end up with the same converged solution within different converged times.

From Table 4.2, we notice that there is no need to apply paired t-test to converged value

105

of d1 since d1-sorted-A and d1-sorted-B have the same set of converged values, and the

p-value for converged value for d2 is much higher than 0.05. This means that, for both

datasets, the converged values between sorted-A and sorted-B methods are not significantly

different. However, for the converged time d1 has a p-value 0.054 that is slightly higher

than 0.05 and d2 has a p-value 0.011 that is less than 0.05. The paired t-test suggests

that the two means of the converged times between the two methods are quite different.

Based on the boxplots for the converged time shown in Figure 4.12, we can also notice that

d1-sorted-A or d2-sorted-A appear to have a lower mean than d1-sorted-B or d2-sorted-B.

Therefore, we can confirm that starting with intra-VND first instead of inter-VND first

leads to a similar converged value as the other method but it converges faster on average.

In addition, from the upper-right boxplot in 4.12, we see that d2-sorted-A appears to have

a lower minimum converged value than d2-sorted-B based on the 10-replicate experiment.

Following the same reason for the future usage of the multi-start algorithm mentioned in the

previous subsection, sorted-A method is better than sorted-B method from this perspective.

Overall, we recommend to use sorted A method that sorts waitlist following the machine

number of the jobs and applies intra-VND first then inter-VND in the improvement phase

to solve our LS-PMSP.

4.3.6 Examples of the Algorithm Solutions

Given the job processing order for each machine contained in a solution returned by the

PMS algorithm, we can recover a schedule for LS-PMSP following these orders and analyze

the distributions of the job characteristics in a machine sequence such as the job family

number and arrival date distributions. An example of the solution results for d1 obtained

from one of the replicates of d1-sorted-A is shown in Figure 4.13 below.

106

Figure 4.13: An example of the PMS solution results for d1.

From Figure 4.13, the first row of plots are for the job family number distributions in

machine 1 and machine 2 following the processing orders of the jobs contained in a solution

returned by the PMS algorithm. We can see that not many transitions of the job family

number occur in S1 and S2 because a transition would cause an increase in the objective

function value.

The second row of the plots in 4.13 is for the arrival date distribution of the jobs in a

machine sequence. We can see that the algorithm schedules the jobs that arrive early first

before sequencing the late-arrival jobs in a machine since the arrival date of a job is a hard

107

constraint in LS-PMSP and if a job arrives late, it simply cannot be used to fill in the gap

in a schedule that is earlier than its arrival date. Recall that d1 does not have many jobs

available to be processed at the early time of the scheduling horizon. This leads to some

big gaps in the Gantt Chart as seen at the bottom of Figure 4.13.

For d2, an example of the solution results obtained from one of the replicates of d2-sorted-A

is shown in Figure 4.14 below. We again see that the number of transitions of the job family

number is small to ensure a low-cost schedule. The main difference from d1 where d2 has

most of the jobs available at the early time of the scheduling horizon also leads to a Gantt

Chart that looks much more packed and has fewer big gaps.

Figure 4.14: An example of the PMS solution results for d2.

108

Although both d1 and d2 solutions have big gaps in the later time of the schedule, this

is not a major concern because rescheduling occurs at the critical time T in the current

schedule, where a new batch of the jobs will come to the system to be sequenced with the

remaining jobs from the previous batch. This ideally should lead to the current schedule

always being packed with the jobs before T if most of the jobs considered in the current

scheduling arrive before T , and therefore, minimizing the gaps before T in a schedule.

4.4 Chapter Summary

In this chapter, we introduce a practical large-scale parallel machine scheduling problem,

abbreviated as LS-PMSP, faced by our industrial partner and propose an algorithm named

PMS to solve such a problem. The objective of LS-PMSP is to minimize a combination

of the gaps before a critical time T in a schedule, the total changeover cost of the jobs

in each machine, and the total tardiness cost of the jobs in each machine. The PMS

algorithm consists of two parts. It first applies a greedy constructive heuristic (GCH)

algorithm to construct a good and feasible initial solution, then applies an iterative two-

stage improvement process with intra-machine VND (intra-VND) and inter-machine VND

(inter-VND). We also conducted experiments on the 2 actual datasets provided by our

industrial partner. Combined with the statistical analysis, we found out that a sorted

random sequence that follows the machine number of the jobs as an input to the PMS

algorithm, and starting intra-VND instead of inter-VND first in the improvement process,

helps to generate a better solution. The PMS algorithm proposed in this chapter is a good

starting point to solve LS-PMSP efficiently. There are multiple research directions that can

be taken to potentially improve the solution procedure even further.

4.4.1 Future Work

A variety of research directions can be taken to address LS-PMSP are:

109

1. Adding more neighborhood structures in intra-VND and inter-VND to improve a solu-

tion further. From our current work, we only apply (inter-)insertion and (inter-)swap

neighborhoods in inter-VND and intra-VND. However, more complex neighborhood

structures can also be implemented in the PMS algorithm to explore more possible

improvements.

2. A multi-start algorithm combined with multiprocessing to improve Algorithm PMS.

We mentioned in Section 4.3.4 that since our PMS algorithm runs efficiently to solve

LS-PMSP with about 500 jobs given an input. If a time limit allows, we can restart

the algorithm with different inputs to acquire multiple outputs and return the best

one within the time limit.

3. The performance of rescheduling every critical time T would be interesting to inves-

tigate.

4. Given an input dataset with a specific set of characteristics, machine learning tech-

niques might be applied and recommend that a specific order of the neighborhood

structures might address a type of dataset better.

5. A scheduling problem with more than 2 parallel machines to be considered would be

interesting to be investigated with our PMS algorithm. It is designed in a way that it

can address a parallel machine problem with more than 2 machines but we have only

investigated a 2-machine problem so far.

6. One can compare our VND-based PMS algorithm with other metaheuristics, or even

combine them as hybrid-metaheuristics if it solves the problem better. In addition,

an exact method using mathematical programming could be developed to address

the specific problem structure of LS-PMSP and compare its performance against that

using metaheuristics.

Chapter 5

Conclusions and Recommendations

5.1 Conclusions

The main conclusions to be drawn from this thesis are as follows:

1. Single Machine Scheduling – An efficient metaheuristic algorithm that applies an

iterative greedy constructive heuristic to form an initial solution and uses VND-based

metaheuristics with a sliding-window decomposition feature to improve an initial solu-

tion further is developed to solve the real-world large-scale (≥1000 jobs) single machine

scheduling problem in steel industry efficiently. A MIQP model based on the unit-

specific general precedence formulation is developed to solve a small-scale instance of

the single machine problem and benchmark the metaheuristics performance. The re-

sults show that the MIQP model is not able to find an optimal solution in a reasonable

time with only 30 jobs to be sequenced on the single machine, so it is not practical

to apply it to solve the actual large-scale problem with more than 1000 jobs to be

scheduled. In addition, our metaheuristic algorithm that takes less than 0.05 seconds

to solve a 30-job problem is able to find a good converged solution with a solution

quality that is 50.7% better on average than the solution obtained from MIQP that

is set to run for two hours and still far away from convergence. Statistical tests such

110

111

as ANOVA are conducted, and the results show that our metaheuristic algorithm

that utilizes VND with a sliding-window decomposition technique improves a solution

more efficiently than original VND algorithm. Based on the statistical analysis, a

good set of parameters to use in the metaheuristic algorithm to solve the large-scale

single machine problem more efficiently is also recommended.

2. Parallel Machine Scheduling – A real-world large-scale (≥ 350 jobs) parallel ma-

chine scheduling problem faced in a steel plant that involves sequence-dependent setup

times/costs, due dates, and release dates of jobs is addressed in this research. The

problem poses a unique but practical objective that minimizes the gaps between jobs

before a critical time in a schedule, the total changeover cost of the jobs, and the total

tardiness cost of the jobs. A metaheuristic algorithm extended from the one used

to solve the large-scale single machine problem (Chapter 3) is developed to solve the

parallel machine problem efficiently. The first part of the algorithm utilizes a greedy

constructive heuristic to form a good feasible initial solution fast, and the second part

of the algorithm applies VND with intra and inter-machine movements iteratively to

improve an initial solution further. Statistical tests like the t-test are applied and

show that sorting an input data based on the machine number of the jobs, and apply-

ing intra-machine movements ahead of inter-machine movements, help the algorithm

to solve the parallel machine problem more efficiently.

5.2 Recommendations for Further Work

Further avenues to explore for solving the single or parallel machine scheduling are:

1. Stochastic Search – The metaheuristic algorithms we have developed so far are

deterministic, that is, given the same initial solution it will return the same solution.

However, randomness can be added to a metaheuristic such as a perturbation move

applied during the search in hope that a solution can jump out of an local optimum

to seek for a global optimum, which may improve an algorithm further.

112

2. Hybrid Metaheuristics – Our single-state metaheuristic algorithm that starts with

one initial solution and returns one improved solution can be combined with other

population-based metaheuristics such as genetic algorithm to form a hybrid meta-

heuristic that balances the intensification and diversification during the intelligent

search.

3. Parallelization of Metaheuristics – Depending on the computing resources for ac-

tual implementation, different parallelization techniques can be applied to our meta-

heuristics to find a better solution within the time limit. For example, a multi-start

algorithm that utilizes multiple cores to start with different initial solutions and re-

turns the best of the best solutions from each core when the time limit is reached, can

be implemented in a production system.

4. Machine Learning and Reinforcement Learning – Artificial intelligence tech-

niques are suitable to be supplemented to metaheuristics in a variety of ways. For

example, machine learning can be applied to recommend a specific set of parameters

used in a metaheuristic based on the input dataset characteristics to generate a better

solution following the customization. In addition, research on reinforcement learning

is increasing, and it might be a promising method to solve a single or parallel machine

scheduling problem effectively.

List of References

Allahverdi, A. (2015). The third comprehensive survey on scheduling problems with

setup times/costs. European Journal of Operational Research, 246(2), 345–378.

Avalos, O., Ángel Bello, F., and Alvarez, A. (2014). Efficient metaheuristic al-

gorithm and re-formulations for the unrelated parallel machine scheduling problem with

sequence and machine-dependent setup times. The International Journal of Advanced

Manufacturing Technology, 76, 1705–1718.

Bianchi, L., Dorigo, M., Gambardella, L. M., and Gutjahr, W. J. (2009). A

survey on metaheuristics for stochastic combinatorial optimization. Natural Computing,

8, 239–287.

Cóccola, M. E., Cafaro, V. G., Méndez, C. A., and Cafaro, D. C. (2014). Enhanc-

ing the general precedence approach for industrial scheduling problems with sequence-

dependent issues. Industrial & Engineering Chemistry Research, 53(44), 17092–17097.

Davidović, T. and Crainic, T. G. (2013). Parallelization strategies for variable neigh-

borhood search. Technical report CIRRELT-2013-47, .

Graham, R., Lawler, E., Lenstra, J., and Kan, A. (1979). Optimization and approx-

imation in deterministic sequencing and scheduling: a survey. In Hammer, P., Johnson,

E., and Korte, B. (Eds.), Discrete Optimization II, Vol. 5 of Annals of Discrete Mathe-

matics, pp. 287–326. Elsevier.

Hansen, P., Mladenovic, N., and Perez, J. A. M. (2010). Variable neighbourhood

search: methods and applications. Annals of Operations Research, 175, 367–407.

113

114

Hansen, P., Mladenović, N., Todosijević, R., and Hanafi, S. (2017). Variable

neighborhood search: basics and variants. EURO Journal on Computational Optimiza-

tion, 5(3), 423–454.

Harjunkoski, I. and Grossmann, I. E. (2001). A decomposition approach for the

scheduling of a steel plant production. Computers & Chemical Engineering, 25(11),

1647–1660.

Harjunkoski, I., Maravelias, C. T., Bongers, P., Castro, P. M., Engell, S.,

Grossmann, I. E., Hooker, J., Mendez, C., Sand, G., and Wassick, J. (2014).

Scope for industrial applications of production scheduling models and solution methods.

Computers and Chemical Engineering, 62, 161–193.

Kirlik, G. and Oguz, C. (2012). A variable neighborhood search for minimizing total

weighted tardiness with sequence dependent setup times on a single machine. Computers

& Operations Research, 39(7), 1506–1520.

Kopanos, G. M., Láınez, J. M., and Puigjaner, L. (2009). An efficient mixed-integer

linear programming scheduling framework for addressing sequence-dependent setup issues

in batch plants. Industrial & Engineering Chemistry Research, 48(13), 6346–6357.

Kopanos, G. M., Mendez, C. A., and Puigjaner, L. (2010). MIP-based decomposition

strategies for large-scale scheduling problems in multiproduct multistage batch plants: A

benchmark scheduling problem of the pharmaceutical industry. European Journal of

Operational Research, 207, 644–655.

Lam, S. K., Pitrou, A., and Seibert, S. (2015). Numba: A llvm-based python jit

compiler. In Proceedings of the Second Workshop on the LLVM Compiler Infrastructure

in HPC, LLVM ’15, New York, NY, USA. Association for Computing Machinery.

Lin, C.-W., Lin, Y.-K., and Hsieh, H.-T. (2013). Ant colony optimization for unre-

lated parallel machine scheduling. The International Journal of Advanced Manufacturing

Technology, 67(1-4), 35–45.

115

Maravelias, C. T. (2012). General framework and modeling approach classification for

chemical production scheduling. AIChE Journal, 58(6), 1812–1828.

Mendez, C. A., Henning, G. P., and Cerda, J. (2001). An MILP continuous-time

approach to short-term scheduling of resource-constrained multistage flowshop batch fa-

cilities. Computers and Chemical Engineering, 25, 701–711.

Mishra, P., Singh, U., Pandey, C., Mishra, P., and Pandey, G. (2019). Application

of student’s t-test, analysis of variance, and covariance. Annals of Cardiac Anaesthesia,

22(4), 407–411.

Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Computers &

Operations Research, 24(11), 1097–1100.

Moon, S. and Hrymak, A. N. (1999). Scheduling of the batch annealing process —

deterministic case. Computers & Chemical Engineering, 23(9), 1193–1208.

Méndez, C. A., Cerdá, J., Grossmann, I. E., Harjunkoski, I., and Fahl, M.

(2006). State-of-the-art review of optimization methods for short-term scheduling of

batch processes. Computers & Chemical Engineering, 30(6), 913–946.

Okano, H., Davenport, A. J., Trumbo, M., Reddy, C., Yoda, K., and Amano,

M. (2004). Finishing line scheduling in the steel industry. IBM Journal of Research and

Development, 48(5.6), 811–830.

Pinto, J. M. and Grossmann, I. E. (1995). A continuous time mixed integer linear

programming model for short term scheduling of multistage batch plants. Industrial &

Engineering Chemistry Research, 34(9), 3037–3051.

Roslöf, J., Harjunkoski, I., Westerlund, T., and Isaksson, J. (2002). Solving a

large-scale industrial scheduling problem using milp combined with a heuristic procedure.

European Journal of Operational Research, 138, 29–42.

Sioud, A., Gravel, M., and Gagné, C. (2012). A hybrid genetic algorithm for the

single machine scheduling problem with sequence-dependent setup times. Computers &

Operations Research, 39(10), 2415–2424.

116

Talbi, E. (2009). Metaheuristics: From Design to Implementation. John Wiley.

Tang, L., Liu, J., Rong, A., and Yang, Z. (2001). A review of planning and scheduling

systems and methods for integrated steel production. European Journal of Operational

Research, 133(1), 1–20.

Vallat, R. (2018). Pingouin: statistics in python. The Journal of Open Source Software,

3(31), 1026.

Walpole, R. E., Myers, R. H., Myers, S. L., and Ye, K. (2012). Probability and

statistics for engineers and scientists. Pearson Prentice Hall.

Wang, X. and Tang, L. (2010). A hybrid metaheuristic for the prize-collecting single ma-

chine scheduling problem with sequence-dependent setup times. Computers Operations

Research, 37(9), 1624–1640.

	Introduction
	Motivation and Research Objectives
	Main Contributions
	Thesis overview

	Literature Review
	Scheduling Problems in Steel Industry
	Solution Methodologies for Planning and Scheduling in Steel Industry
	Production Planning vs. Production Scheduling
	Classification of Production Scheduling Problems

	Exact Methods for Production Scheduling
	Classification of SMSP and PMSP in the PSE Literature
	Mathematical Models for SMSP and PMSP

	Metaheuristics for Production Scheduling
	Metaheuristics vs. Heuristics
	Metaheuristics for Solving SMSPs and PMSPs

	Single Machine Scheduling
	Problem Statement
	Problem Details
	Mathematical Formulation
	Solution Representation in Metaheuristics
	Evaluating a Solution in Metaheuristics
	Feasibility of a solution

	Algorithm Components in the Proposed Solution
	Greedy Constructive Heuristic to Obtain an Initial Solution
	Variable Neighborhood Descent

	Methods to Speed Up VND
	Sliding-Window VND
	Multiprocessing

	Computational Results and Discussion
	MIQP vs. Metaheuristics
	Performance of iGCF
	Sequential Sliding-Window VND vs. direct VND

	Chapter Summary

	Parallel Machine Scheduling
	Problem Statement
	Problem Details
	Solution Representation
	Evaluation of a Solution

	Algorithm Components
	Initialization: Greedy Constructive Heuristic
	Improvement: Variable Neighborhood Descent
	Overall Algorithm for Solving LS-PMSP

	Computational Results and Discussion
	Design of Experiment
	Characteristics of Input Datasets
	Overview of the Experimental Results
	Sorted vs. Unsorted Input Sequence
	Intra-VND First or Inter-VND First
	Examples of the Algorithm Solutions

	Chapter Summary
	Future Work

	Conclusions and Recommendations
	Conclusions
	Recommendations for Further Work

	References

