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LAY ABSTRACT 

 

The use of cannabis by pregnant women and women of reproductive age has 

increased considerably during the past decades, particularly in developed countries. 

This thesis evaluated the impact of delta-9-tetrahydrocannabinol (THC), the 

psychoactive component of cannabis, on ovarian health and function, with a focus 

on gestational exposure. Our results suggest that cannabis use during pregnancy 

may have detrimental effects on the offspring’s reproductive health, as prenatal THC 

exposure resulted in altered ovarian follicle dynamics, decreased vascularization 

and increased follicular apoptosis that could lead to subfertility or premature 

reproductive senescence. These alterations were associated with changes in 

epigenetic mechanisms that regulate important growth factors in the ovary. In 

addition, cannabis use during adulthood may be involved in the progression of 

gynaecological disorders such as ovarian hyperstimulation syndrome, polycystic 

ovary syndrome and ovarian cancer. More studies are necessary in order to fully 

understand the effects of cannabis on female reproductive health. 
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ABSTRACT 

 

As cannabis use increases, it is important to understand its impact on human health. 

Particularly, the effect of cannabis constituents on female reproductive health and the 

long-term effects on the offspring, when used during pregnancy, are not fully understood. 

The goal of this thesis was to address this knowledge gap by evaluating the impact of 

delta-9-tetrahydrocannabinol (THC), the psychoactive component of cannabis, on 

ovarian health and function, focusing on the long-term effects of prenatal exposure and 

the underlying mechanisms. Gestational THC exposure resulted in altered follicle 

dynamics, decreased vascularization and increased follicular apoptosis in the adult rat 

ovary. These alterations were associated with changes in ovarian miRNA and mRNA 

expression, as well as altered protein levels of important regulating factors. Specifically, 

prenatal THC exposure increased the expression of miR-122-5p and decreased the 

expression of its target gene insulin-like growth factor 1 receptor (IGF-1R), involved in the 

regulation of folliculogenesis, angiogenesis, and granulosa cell proliferation and 

apoptosis. Reduced vascularization in THC-exposed ovaries was also associated with 

decreased expression of the angiogenic factor vascular endothelial growth factor (VEGF) 

and its receptor (VEGFR-2), as well as increased expression of the antiangiogenic factor 

thrombospondin 1 (TSP-1). The differential expression of these important factors, along 

with the decreased vascularization and increased follicular apoptosis may partially explain 

the follicle dynamics observed in prenatally THC-exposed rats at 6 months of age, as they 

had accelerated folliculogenesis with follicular development arrest, which could lead to  

premature reproductive senescence. The direct impact of THC on rat ovarian explants 

and granulosa cells was also evaluated, revealing similarities and differences between 
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the in utero, ex vivo and in vitro models. Taken together, our results indicate that 

cannabis constituents have the ability to alter key pathways in the developing ovary 

that may lead to detrimental effects on female reproductive health and fertility. 
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PREFACE 

 

This thesis is prepared in the “sandwich” format as outlined in the “Guide for the 

preparation of Master’s and Doctoral Theses” available through the School of 

Graduate Studies at McMaster University. Chapter 1 consists of a general 

introduction for the entire body of work. Sections of this chapter have been published 

in a review article (doi.org/10.3390/ijms22168576). Chapters 2, 3 and 4 consist of 

reprints of original research articles, all published at the time of thesis submission. 

Chapter 5 includes a general discussion, limitations and future directions of this 

research project. The author of this thesis is also the first author of all four published 

articles included.  
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CHAPTER 1: INTRODUCTION 

Cannabis 

Prevalence of cannabis use 

Cannabis, which is the generic term that denotes several preparations of the plant 

Cannabis sativa, is the most widely used illicit drug in the world, with around 4% of 

the global population (aged 15 to 64) consuming it [1]. Cannabis use has increased 

considerably during the last decades, particularly in developed countries, in which 

there is a growing tendency towards the legalization of its use for both medicinal and 

recreational purposes [1]. In fact, in 2018 Canada became the first developed nation 

to legalize cannabis for recreational use.  

Legalization of recreational cannabis use has potential risks such as increased 

availability and social acceptance, decreased perception of harm of use, as well as 

diversification of cannabis products that may increase interest in use [2]. Since 

legalization of recreational cannabis use in Canada is still relatively recent, there is 

limited research examining the outcomes and implications of this policy change. 

However, a study that evaluated data from four different Canadian population-based 

sources (The National Cannabis Survey, The Canadian Cannabis Survey, The 

Canadian Student Tobacco, Alcohol and Drugs Survey and The Centre for Addiction 

and Mental Health Monitor) reported a slight increase in the prevalence of cannabis 

use following legalization (2017 to 2020) [3]. Likewise, a study that assessed the 

prevalence of cannabis use among college students (19.6±2.4 years old) in Colorado 

(United States), where recreational cannabis has been available for people over 21 
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since 2014, revealed a significant increase in the number of people who have 

consumed cannabis after legalization, regardless of their age [2]. 

Recent estimates suggest that 15 to 25% of Canadians over the age of 15 use 

cannabis [4,5].  The use of cannabis is estimated to be 2-fold higher in Canadians 

aged 16 to 24 when compared to those aged 25 or older [4]. Similarly, around 7.8% 

of the population aged 15 to 64 in Western and Central Europe reported past-year 

cannabis use in 2019, with a similar difference in usage in younger (aged 15 to 34) 

people. In the United States, in addition to the number of cannabis users, the 

frequency of use and quantity of cannabis consumed have also increased 

dramatically during the past decade [1].  

Cannabis use during pregnancy 

The legalization of cannabis may have a negative impact on the general public’s 

perception of the risks and benefits of this drug and its constituents. This is especially 

concerning considering that the use of cannabis during pregnancy has also 

increased significantly in developed countries, particularly among younger women 

[6–8], whose perception of cannabis as a harmful drug has decreased over the past 

decade [1,9]. A study by Ko and colleagues revealed that 70% of pregnant and non-

pregnant women in the United States believe that there is little to no harm in using 

cannabis once or twice per week [9]. Moreover, a longitudinal prospective study in 

the United Kingdom discovered that 48% of women who used cannabis in the year 

prior to their pregnancy continued to smoke throughout gestation [10]. 



Ph.D. Thesis                                                                                                                      McMaster University 
Annia A. Martínez-Peña                                                                      Medical Sciences Graduate Program 

3 
 

Studies that have investigated the prevalence of cannabis use in developed countries 

revealed that approximately 4-7% of women reported using cannabis during pregnancy 

[7,8,11,12]. A retrospective cohort study assembled from the Better Outcomes 

Registry & Network (BORN) (Ontario, Canada) database reported a 61% increase 

in the overall prevalence of cannabis use during pregnancy between 2012 and 2017. 

Prevalence was highest among women aged 15–24 years old, who reported an 

increase in usage from 4.9% in 2012 to 6.5% in 2017 [6]. Another study that 

evaluated cannabis use during pregnancy in Ontario after legalization (2019) 

reported that 11% of women (aged 19 to 41 years) consumed cannabis at some 

point during pregnancy, including the time before they were aware they were 

pregnant, and 4% continued to consume cannabis after knowing they were pregnant 

[13]. In addition, 65% of the women who continued to use cannabis during pregnancy 

did so at least once a week [13]. In the United States, the 2019 National Survey on 

Drug Use and Health revealed that approximately 5.4% of pregnant women reported 

using cannabis during the past month [8]. Data from the Screening for Pregnancy 

Endpoints (SCOPE) study, which includes nulliparous women with singleton 

pregnancies between 2004 and 2011 from Australia, New Zealand, Ireland, and the 

United Kingdom, revealed that self-reported cannabis use during pregnancy was 

approximately 4% [7]. Additionally, given that most of these studies rely solely on 

self-report, it is likely that these data underestimate actual prevalence of cannabis 

use during pregnancy [14,15].  
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Cannabis is typically used for its antiemetic properties in mitigating pregnancy-

related nausea and vomiting, more commonly during the first trimester [16–18]. In 

some cases, cannabis is also used to relieve pain and to aid with disorders such as 

anxiety and depression throughout pregnancy [19]. In spite of this, there are currently 

limited studies that evaluate the long-term effects of prenatal cannabis exposure on 

the offspring’s health. 

Furthermore, there is conflicting information available to the public regarding the 

risks and benefits of cannabis use during pregnancy. While most obstetricians and 

gynaecologists do not recommend the use of cannabis during pregnancy [20,21], if 

pregnant women do not feel comfortable discussing health risks of cannabis use with 

their healthcare providers or if they are dissatisfied with the quality of the information 

they receive, it is likely that they resort to alternative sources of information [22]. 

Indeed, a recent study that analyzed posts containing the words “cannabis” and 

“pregnancy” on the social media platform Twitter discovered that 36% of these posts 

addressed the safety of cannabis use during pregnancy, while 2.7% discussed the 

use of cannabis to alleviate pregnancy-related symptoms [23]. In addition, although 

most Canadian dispensaries (93%) recommend against the use of cannabis during 

pregnancy [24], a study in Colorado revealed that almost 70% recommended 

treatment of morning sickness with cannabis products, mostly based on personal 

opinion [25]. Thus, health practitioners and communication planners should be 

encouraged to discuss the risks of cannabis use, with patients and the general public 
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respectively, in order to prevent the spread of misinformation from the media and 

non-healthcare-related sources [23].  

Cannabis composition and potency 

The cannabis plant contains more than 500 compounds from several chemical 

classes including cannabinoids (phytocannabinoids), mono- and sesquiterpenes, 

sugars, hydrocarbons, flavonoids, steroids, nitrogenous compounds, amino acids, 

and simple fatty acids [26,27]. Among these, the phytocannabinoid delta-9-

tetrahydrocannabinol (THC) is one of the most studied constituents, as it is the major 

cannabinoid present in most cannabis products and it is known for its psychoactive 

properties [28,29].  

Although THC is normally hydroxylated and oxidized to its non psychoactive 

metabolite (THC-COOH) in the liver, with prolonged exposure THC can accumulate 

in lipid storage compartments and slowly be released back into the blood stream 

[30]. This redistribution, along with a significant enterohepatic circulation, contributes 

to a long terminal half-life for THC in plasma, reported to be greater than 4.1 days in 

chronic cannabis users [31]. Furthermore, it is known that THC efficiently crosses 

the placental barrier and can be detected in cord blood and fetal tissue when 

cannabis is used during pregnancy [32]. 

In addition to the growing prevalence of cannabis use, the concentration of THC has 

also increased considerably in cannabis and cannabis products during the last few 

decades [1,33–35]. In Canada, the percentage of THC in dried cannabis has 
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increased from an average of 3% in the 1980s to an average of 15% in 2018, with 

some strains containing as much as 30% [36]. The percentage of THC in cannabis 

that was seized as part of law enforcement activities has increased fourfold in the 

United States between 1995 and 2018, and almost doubled in Europe between 2002 

and 2018 [1]. Despite this trend, the percentage of adolescents who consider regular 

use of cannabis to be harmful decreased significantly over the same period of time 

[1]. 

The endocannabinoid system 

The most studied mechanism of action of THC and other cannabinoids in the human 

body is through their interaction with the endocannabinoid system (ECS) [26,37]. 

The ECS is comprised of cannabinoid receptors, such as the G‐protein‐coupled 

cannabinoid receptors 1 and 2 (CB1 and CB2, respectively), endogenous 

cannabinoids that include 2-arachidonoyl glycerol and anandamide (2-AG and AEA, 

respectively), as well as the enzymes involved in their synthesis and degradation 

(i.e., NAPE-PLD, FAAH, MAGL, DAGL) [38,39]. It is known that THC and other 

cannabinoids can bind to and activate the cannabinoid receptors, which modulate 

several different signaling pathways including the inhibition of adenylyl cyclase 

activity and therefore intracellular cyclic adenosine monophosphate (cAMP) levels 

and PKA phosphorylation [40]. While ECS components were first identified in the 

nervous and immune systems, there is increasing evidence that demonstrates their 

peripheral role in endocrine and reproductive health [38,41,42].  
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The ECS and female reproduction 

Components of the ECS have been located throughout the female reproductive tract, 

including the ovary [43,44], fallopian tubes [45], myometrium [46] and endometrium 

[47]. Studies have shown that the ECS is involved in the regulation of reproductive 

processes such as fertilization, implantation, embryonic development and placental 

growth [42,48–50]. Although the physiological implications of the ECS ligand-

receptor interactions are not completely understood, it has been suggested that they 

are also linked to the hypothalamic-pituitary-gonadal (HPG) axis, the opioid, 

GABAergic, dopaminergic, noradrenergic, serotonergic, cholinergic, prostaglandin 

and glucocorticoid systems [51,52]. While it is clear that disruption of the HPG axis 

can lead to negative reproductive outcomes, the dysregulation of other systems, 

such as the prostaglandin and glucocorticoid systems, that have a profound 

interaction with components of the reproductive system, may also have an indirect 

impact on reproductive health [53–56]. 

The ECS and the developing fetus 

The ECS also plays a crucial role in fetal development, from embryo implantation to 

neurodevelopment and peripheral organogenesis [50,57–60]. In mice, components 

of the ECS, such as CB1, CB2, NAPE-PLD and FAAH, have been detected as early 

as the one-and two-cell stages of embryonic development [61,62]. AEA-CB1 

signaling is involved in preimplantation embryo development, blastocyst activation 

and implantation [63,64]. Endocannabinoids have also been detected in fetal tissue, 

with levels of 2-AG being much higher than those of AEA [65]. While concentrations 
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of AEA gradually increase throughout development until reaching maximal 

concentrations in adulthood [65], fetal levels of 2-AG are similar to those observed 

in young and in adult brains. Collectively, the evidence suggests that ECS 

component expression and activity must be tightly regulated from very early stages 

of development and throughout pregnancy [66]. Therefore, dysregulation of the ECS 

due to exogenous compounds such as THC may lead to negative impacts on the 

offspring’s health. 

Cannabis and female reproductive health 

To date there are limited studies on the effects of cannabis on female reproductive 

health [67]. However, it is generally believed that cannabis may have a negative 

impact on human fertility and pregnancy [68], as its use has been associated with 

altered luteinizing hormone levels [69], menstrual cycle dysregulation and ovulatory 

issues [70,71], fewer and poorer quality oocytes, as well as lower pregnancy rates 

by in vitro fertilization (IVF)[72].  

Animal studies have shown that THC alone can disrupt the HPG axis. In both male 

and female rats, exposure to THC lowered gonadotropin releasing hormone (GnRH) 

concentrations in the hypothalamus [73,74]. Studies with primates and rodents have 

reported an inhibition of luteinizing hormone (LH) production, as well as a significant 

decrease in ovulation as a result of THC exposure [75–77]. THC has also been 

shown to affect prenatal development, increasing the number of resorptions and 

decreasing fetal weight [78–81]. 
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In addition, it has been proposed that THC may also have a direct effect on the 

gonads. Indeed, THC has been shown to inhibit progesterone and estradiol 

production in rat isolated Graafian follicles [82], as well as progesterone production 

in rat luteal cells in vitro [83]. In a study using rat granulosa cells, THC inhibited the 

follicle stimulating hormone (FSH)-enhanced accumulation of estrogen and 

progesterone, as well as the increase in LH receptors. The authors proposed that at 

least part of this inhibition was due to a post-cAMP mechanism of action, since they 

determined that THC inhibits pregnenolone biosynthesis and 3β-hydroxysteroid 

dehydrogenase (3β-HSD) activity [84]. In another study with rat granulosa cells, 

however, THC exhibited a concentration dependent inhibition of the FSH-mediated 

cAMP accumulation necessary for ovulation [85], pointing out the possible existence 

of diverse mechanisms of action for this compound.  

Effects of cannabis use during pregnancy 

Overall, reports about the effects of cannabis use during pregnancy in humans are 

conflicting [12]. While many researchers have demonstrated that prenatal cannabis 

use is associated with an increased risk of stillbirth [86,87], preterm birth [7,86,88], 

small for gestational age [88–90], low birth weight [91–93], and increased admission 

to neonatal intensive care units [88,90], others have reported no association 

between prenatal cannabis use and adverse pregnancy or neonatal outcomes [94–

96]. As with all drugs of abuse, clinical research on cannabis use during pregnancy 

has been limited to epidemiologic and retrospective studies, since there are no 

controlled human experiments due to ethical considerations. Inconsistent 
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conclusions from maternal cannabis studies in humans could therefore be a result 

of confounding variables related to socio-demographics, sample size, maternal 

nutrition, poly-substance use, cannabis potency as well as frequency and duration 

of use.  

A recent review by Singh and colleagues concluded that studies on the effects of 

prenatal cannabis use in humans are very heterogeneous with respect to study 

design, study population, data sources and other covariates, which precluded the 

meaningful pooling of data [12]. The authors pointed out the need for quantification 

of cannabis exposure by gestational age or frequency, toxicological data rather than 

self-reported cannabis use, as well as harmonisation in the reporting of pregnancy 

outcomes in order to have a better understanding of the effects of prenatal cannabis 

use [12]. On the other hand, the use of animal and in vitro models offers an 

alternative to evaluate the effects of gestational cannabis exposure with greater 

control over experimental conditions, allowing a deeper comprehension of the 

underlying mechanisms. 

Long-term effects of prenatal cannabis exposure 

In addition to the effects observed during pregnancy and immediately after birth, 

prenatal exposure to cannabis may also result in long-term alterations in the 

offspring’s health, as the developing organs are particularly sensitive to exogenous 

compounds [97]. While investigations into the long-term effects of cannabis 

exposure are limited, most of the research effort has focused on the long-term 
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neurobehavioural effects of prenatal cannabis exposure. In humans, major 

prospective longitudinal studies have found that cannabis-exposed offspring had 

diminished verbal and memory skills at 3 to 4 years of age [98,99], increased 

impulsivity and hyperactivity, as well as decreased concentration, IQ score, and 

verbal reasoning at 6 or 10 years of age [100,101]. As young adults (18 to 22 years 

of age), cannabis-exposed offspring presented with alterations in response inhibition 

and altered neural functioning during visuospatial working memory processing, as 

assessed by functional magnetic resonance imaging (fMRI) [102,103]. Interestingly, 

rodent studies have also shown impaired learning, attention and memory skills as a 

result of prenatal exposure to both THC and a synthetic CB1 agonist, pointing out 

the role of the ECS in these long-term effects [104]. 

Although the effects of cannabis on other physiological aspects of the developing 

fetus have received less attention, animal studies have suggested that prenatal 

cannabinoid exposure may result in long-lasting metabolic, cardiovascular and 

reproductive abnormalities in the offspring [102,105–109].  

The developing ovary 

The ovary is one of the major organs involved in female reproductive and endocrine 

health, as it is responsible for the development and release of mature oocytes 

(folliculogenesis and ovulation), as well as the regulation of the menstrual/estrus 

cycle and other sexual characteristics through the synthesis and secretion of 

endocrine factors, such as steroid hormones [38,110]. Since the establishment of 
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the ovarian primordial follicle pool, which is critical for the long-term reproductive 

capacity of female mammals, takes place during in utero development, adverse 

prenatal conditions may have negative impacts on the offspring’s reproductive health 

later in life [111,112].  

Impact of adverse prenatal conditions on reproductive health 

It is known that adverse prenatal conditions, such as maternal undernutrition, 

hormonal imbalance or exposure to exogenous chemicals, have the potential to alter 

ovarian development, with major implications for reproductive health and fertility 

[113]. Alterations in ovarian development that affect the establishment of the ovarian 

reserve (primordial follicle pool), for example, have been implicated in premature 

ovarian failure [114]. 

In humans, low birth weight (LBW), commonly associated with maternal 

undernutrition and smoking [115], has been linked to early pubertal onset [116,117], 

lower ovulation rates [118], poor pregnancy outcomes [119] and early menopause 

[120]. Studies with rodents confirmed that fetal nutrient restriction leads to reduced 

birth weight, and that LBW offspring enter puberty early and have increased ovarian 

oxidative stress as well as a premature loss of follicles as adults [121].  

Altered hormone levels in utero also have an impact on the developing fetus. Animal 

studies have shown that prenatal exposure to an excess of androgens results in 

ovarian alterations similar to those observed in polycystic ovary syndrome later in 

life (PCOS) [122]. Furthermore, rats that were prenatally exposed to the synthetic 
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glucocorticoid dexamethasone had reduced ovarian volumes and a lower number of 

primordial and primary follicles at postnatal days 16 and 38 [123].  

Prenatal exposure to exogenous compounds has also been linked to detrimental 

effects on reproductive health. Female mice exposed in utero to the endocrine 

disruptor benzo(a)pyrene (BaP) had a significant reduction in the number of 

developing follicles at 10 weeks of age [124]. In a similar study, adult rats that were 

perinatally exposed to bisphenol-a (BPA), another known endocrine disruptor, had 

a significant decrease in the number of growing follicles, largely at the expense of 

primary follicles, suggesting an inhibition of primordial follicle recruitment [125]. 

Gestational exposure of mice to an environmentally relevant phthalate mixture 

resulted in decreased hormone levels, as well as increased primordial and 

decreased pre-antral follicles, suggesting an effect on follicle development, which is 

critical for ovulation [126]. 

Cannabinoids and the developing ovary 

It has previously been shown that THC exposure during pregnancy leads to placental 

insufficiency and symmetrical fetal growth restriction in rats [78]. It is known that 

placental insufficiency can cause severe malnutrition of the fetus, and that the 

preferential blood flow to vital organs may impact the development of other organs. 

Indeed, studies have suggested that fetal growth restriction due to placental 

insufficiency negatively affects ovarian development and reproductive aging both in 

humans and rats [127,128]. 
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In addition, it is possible that THC may have a direct impact on the developing ovary. 

The expression of CB1 and CB2 has been detected in both male and female gonads, 

with detection as early as embryonic day 11.5 (E11.5) in mice [107]. Exposure to a 

CB2 agonist (JWH133) has been shown to induce activation of the meiotic program 

in both male and female gonads in vitro. While gonocytes became arrested at early 

stages of prophase I, oocytes showed accelerated meiosis along with an increase in 

Ser-139-phosphorylated histone variant H2AX (γ-H2AX)-positive pachytene and 

diplotene cells and terminal deoxynucleotidyl transferase-mediated dUTP 

fluorescein nick-end labeling (TUNEL)-positive cells, suggesting that DNA double-

strand breaks were not correctly repaired, leading to oocyte apoptosis [107]. 

Administration of the same agonist to pregnant females resulted in a significant 

reduction of primordial and primary follicles in ovaries from newborn mice, as well as 

a diminished reproductive capacity as adults [107]. In a similar study, prenatal 

exposure to the synthetic CB1/CB2 agonist WIN55212, resulted in a decrease in 

ovarian reserve at 90 days of age. The same decrease was not observed following 

co-administration with a CB1 inverse agonist (SR141716), suggesting that the 

effects of WIN55212 may be CB1-mediated. Interestingly, prenatal exposure to 

SR141716 alone resulted in an increase in the ovarian reserve compared to the 

vehicle group [109]. These studies suggest that perturbances of the fetal 

endocannabinoid system can result in negative reproductive outcomes later in life. 
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Fetal programming 

The analysis of epidemiological data has led to the conclusion that adverse 

conditions during prenatal development may be associated with an increased risk of 

the development of diseases later in life [129,130]. One of the theories that attempts 

to explain this association states that while the fetus adapts to adverse intrauterine 

conditions by favouring the development of organs that ensure survival, this 

reprogramming has harmful long-term effects on the other organs, particularly as the 

offspring ages [131]. Although it was originally thought that prenatal stressors might 

lead to changes in the genetic sequence or single nucleotide polymorphisms, there 

is accumulating evidence that indicates that alterations in epigenetic mechanisms 

may be the primary risk factor in these disorders [132,133]. 

Epigenetic mechanisms 

The term “epigenetics” defines all meiotically and mitotically heritable changes in 

regulatory components of gene expression that are not coded in the DNA sequence 

itself [134]. The three major epigenetic mechanisms are DNA methylation, histone 

modifications and regulation by non-coding RNA [135]. From these, the most 

extensively studied mechanism is the methylation and demethylation of cytosine 

nucleotides, commonly those adjacent to guanosine, in the promoter region of genes 

[135]. In general, hypomethylation of the cytosine bases in CpG islands in the 

promoter sequence increases gene expression, and hypermethylation results in 

decreased gene expression [135].  
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Histones are a family of basic proteins that associate with DNA in the nucleus and 

help condense it into chromatin. Post-transcriptional modifications of histone 

terminal tails, such as methylation, acetylation, phosphorylation and ubiquitination, 

alter chromatin structure and status, and subsequently regulate gene expression 

[136]. Generally, the acetylation of histones marks transcriptionally active regions, 

whereas hypoacetylated histones are found in transcriptionally inactive regions. 

Histone methylation, on the other hand, can be a marker for both active and inactive 

chromatin regions [134]. 

Among many different non-coding RNA molecules, microRNAs (miRNAs) have 

emerged as essential players in post-transcriptional gene regulation. They are small, 

single-stranded RNA molecules with a length of approximately 21 to 25 nucleotides 

[137]. Mature miRNAs regulate gene expression by binding to the 3’-UTR region and 

promoting mRNA cleavage or translational inactivation [138]. A single miRNA may 

have multiple mRNA targets, and a single mRNA transcript may be regulated by 

several different miRNAs [138]. 

Epigenetic alterations in the ovary 

As several studies have discovered alterations in epigenetic regulation as a result of 

prenatal stressors, both in humans and animals, these changes are thought to be 

responsible for the long-term observable effects [139]. In particular, diverse animal 

studies have reported alterations in different epigenetic mechanisms in the ovary as 

a result of adverse prenatal conditions including maternal undernutrition, altered 
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hormone levels as well as exposure to endocrine disruptors and pollutants such as 

pesticides and heavy metals [140–144].  

Gestational exposure of female rats to BPA, a known endocrine disruptor, resulted 

in an increased expression of miRNA-224 and aromatase in ovarian granulosa cells 

in adulthood, along with elevated estradiol and decreased FSH levels in serum [141]. 

Perinatal exposure of rats to methoxychlor (MXC), another known endocrine 

disruptor, led to significant changes in the DNA methylation patterns in the ovaries 

[145]. Several loci involved in the regulation of ovarian processes were 

hypermethylated both at postnatal day (PND) 7 and PND60, and the expression of 

a portion (25%) of those genes was reduced [145]. The hypermethylated and 

downregulated genes at both time points included Cyp1b1, Hras, Hsd17b7, Igf1r, 

Max, and PI3kr1, which are involved in the regulation of estrogen metabolism, 

folliculogenesis, and ovulation [145].  

On the other hand, gestational exposure of mice to the insecticide chlordecone (CD) 

resulted in delayed puberty, a decreased number of primordial follicles and an 

increased number of atretic follicles. These changes were associated with altered 

gene expression (Esr2, Inhba, Inha and Smad4), as well as reduced H3K4me3 

(histone H3 trimethylation) and H4ac (histone H4 acetylation) in fully grown oocytes 

of CD-exposed ovaries [140].  

The exposure of rats to dexamethasone from gestation day (GD) 9 to GD20 resulted 

in a decrease in ovarian aromatase expression, serum estradiol and altered follicle 
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dynamics in 8-week-old offspring (F1 generation). The downregulation of 

miRNA320a-3p in F1 ovaries was associated with the upregulation of its target 

Runx2, as well as with increased binding of Runx2 to the aromatase gene promoter 

region. Interestingly, these changes were also present in ovaries from F2 and F3 

generations, when F1 females were mated with vehicle-treated males [146].  

A study that used dihydrotestosterone-induced prenatally androgenized (PNA) mice 

as a model for PCOS reported a total of 3432 mRNAs and 16 miRNAs that were 

differentially expressed in the ovaries of these animals when compared with controls. 

After identifying miRNA-mRNA interactions, the authors confirmed the 

downregulation of miR-106a-5p and miR-155-5p, as well as the upregulation of 

target genes (Stat3, Gsk3b, Nr1h3 and Cd28) involved in the regulation of insulin 

resistance, inflammation and immune response, all related to PCOS. Interestingly, 

miR-106a-5p and miR-155-5p were also downregulated in granulosa cells from 

patients with PCOS [144]. 

Taken together, these studies demonstrate that adverse prenatal conditions, such 

as exposure to chemical insults, have the potential to disrupt epigenetic mechanisms 

including miRNA expression in the ovary, which in turn is associated with altered 

ovarian function later in life. 

Cannabis exposure and epigenetic changes 

Several studies have shown that cannabis and its constituents (i.e., THC and 

cannabidiol) have the ability to induce epigenetic changes such as altered DNA 
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methylation, microRNA (miRNA) expression and histone modifications in multiple 

tissues, resulting in long-lasting effects [147–156].  

A study that evaluated follicles from patients undergoing IVF treatment revealed that 

cannabis use, determined by the presence of phytocannabinoids in follicular fluid, 

was associated with a significant decrease in the expression of the de novo 

methylating enzyme DNMT3b [157]. This effect was confirmed by exposing control 

granulosa cells to THC in vitro [157]. Along with the decrease in DNMT3b, THC-

exposed granulosa cells had a significant decrease in global DNA methylation [157]. 

On the other hand, treatment of the human granulosa cell line KGN with a specific 

CB1 agonist (ACEA) after stimulation with FSH, resulted in a decreased expression 

of miR-23a, miR-24, miR-181a and miR-320a, which are involved in the regulation 

of ovarian processes such as CYP19 (aromatase) expression and estradiol release 

[158]. 

In addition, it has been shown that prenatal exposure to cannabis results in 

epigenetic alterations associated with adverse health outcomes in the offspring. 

Gestational cannabis exposure has previously been shown to reduce dopamine 

receptor D2 (DRD2) expression in the ventral striatum (nucleus accumbens (NAc)), 

a key reward region, in the human fetal brain. To explore the underlying 

mechanisms, the authors established a prenatally THC-exposed rat model and 

evaluated NAc from neonatal and adult offspring. Interestingly, the expression of 

Drd2 was significantly decreased in NAc of both neonatal and adult offspring as a 

result of prenatal exposure to THC. Chromatin immunoprecipitation revealed an 
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increase in the repressive 2meH3K9 (dimethylated lysine 9 on histone 3) mark and 

a decrease in 3meH3K4 (trimethylated lysine 4 on histone 3), a mark of 

transcriptional activity, at the Drd2 gene locus in NAc from prenatally THC-exposed 

adults. Prenatally THC-exposed adults also exhibited increased sensitivity to opiate 

reward, consistent with the reduced Drd2 expression in their NAc [147]. 

Taking these studies into account, it has been proposed that gestational cannabis 

exposure may cause epigenetic changes in the developing fetus which could lead to 

adverse effects on the offspring’s health later in life [97]. However, little is known 

about the possible long-term effects of prenatal cannabis exposure on the epigenetic 

regulation of the reproductive system. 
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HYPOTHESIS 
 

Considering that the rodent embryo expresses the cannabinoid receptors to which 

THC is known to bind to, and that gestational exposure to THC has previously been 

shown to result in intrauterine growth restriction, the central hypothesis of this thesis 

was that prenatal exposure to delta-9-tetrahydrocannabinol would result in 

significant alterations in ovarian health and function during adulthood, and that 

changes in epigenetic regulation would underlie these alterations. 

 

 

OBJECTIVES 
 

The specific objectives of this thesis were: 

1. To assess the effect of prenatal exposure to THC on ovarian follicle dynamics 

and vascularization in adult rat offspring. 

2. To assess the effect of prenatal exposure to THC on ovarian miRNA profile 

in adult rat offspring. 

3. To evaluate the effect and mechanism of action of THC on VEGF and the 

prostanoid pathway in rat granulosa cells. 
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CHAPTER 2: GESTATIONAL EXPOSURE TO Δ9-THC IMPACTS OVARIAN 

FOLLICULAR DYNAMICS AND ANGIOGENESIS IN ADULTHOOD IN WISTAR 

RATS 

 

This chapter is a reprint of the original article with the same title, published in  Journal 

of Developmental Origins of Health and Disease, 2020 December;12(6):865-869 

(doi: 10.1017/S2040174420001282). Author list: Martínez-Peña AA, Lee K, Petrik 

JJ, Hardy DB, and Holloway AC. Copyright and licensing can be found in Appendix 

A. 

 

While it has been suggested that cannabis affects adult female fertility, little is known 

regarding the long-term impact of gestational cannabis exposure on ovarian 

development. Since ovarian primordial follicle assembly takes place during this time 

and largely determines the long-term reproductive capacity of female mammals, 

exposure to exogenous chemicals during this sensitive window may have persistent 

effects throughout the lifespan. Given that THC efficiently crosses the placental 

barrier and that the human and rodent embryo express the cannabinoid receptors to 

which it binds to from very early stages of development, this compound could have 

direct effects on the developing ovary. In addition, prenatal THC-exposure has been 

shown to result in placental insufficiency and symmetrical fetal growth restriction, 

two conditions that are known to negatively affect ovarian development in humans 

and rats. Taking all of this into account, we hypothesized that prenatal exposure to 

THC would have direct and/or indirect effects on fetal ovarian development that 

would manifest during adulthood. 
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Abstract  

With the legalization of marijuana (Cannabis sativa) and increasing use during 

pregnancy, it is important to understand its impact on exposed offspring. Specifically, 

the effects of Δ-9-tetrahydrocannabinol (Δ9-THC), the major psychoactive 

component of cannabis, on fetal ovarian development and long-term reproductive 

health are not fully understood. The aim of this study was to assess the effect of 

prenatal exposure to Δ9-THC on ovarian health in adult rat offspring. At 6 months of 

age, Δ9-THC-exposed offspring had accelerated folliculogenesis with apparent 

follicular development arrest, but no persistent effects on circulating steroid levels. 

Ovaries from Δ9-THC-exposed offspring had reduced blood vessel density in 

association with decreased expression of the pro-angiogenic factor VEGF and its 

receptor VEGFR-2, as well as an increase in the anti-angiogenic factor 

thrombospondin 1 (TSP-1). Collectively, these data suggest that exposure to Δ9-

THC during pregnancy alters follicular dynamics during postnatal life, which may 

have long-lasting detrimental effects on female reproductive health. 

Introduction  

Marijuana (Cannabis sativa) is the most widely cultivated, trafficked, and abused 

illicit drug in the world.1 In recent years, the use of cannabis during pregnancy in 

North America has increased considerably, particularly among younger women.2 

Indeed, recent estimates suggest that approximately 3%–7% of pregnant women in 

North America use cannabis.2 An integrative review concluded that women who 

used cannabis during pregnancy believed that there were no significant risks to the 
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mother or fetus.3 In fact, it is not uncommon for women to use cannabis to treat 

pregnancy-related nausea and vomiting.3  

While it has been shown that cannabis negatively affects female fertility in adults,4 

little is known regarding the long-term influence of maternal exposure to cannabis 

on ovarian development in the offspring. Given that Δ-9-tetrahydrocannabinol (Δ9-

THC) efficiently crosses the placental barrier and can be detected in cord blood and 

fetal tissue,3 this compound could have direct effects on ovarian development. Since 

ovarian primordial follicle assembly takes place during this time and largely 

determines the long-term reproductive capacity of female mammals, exposure to 

exogenous chemicals during this sensitive window may have persistent effects 

throughout the lifespan.5 In addition, cannabinoid receptors 1 and 2 (CB1 and CB2), 

which bind to cannabinoids such as Δ9-THC, are expressed in the human and rodent 

embryo from very early stages of development.6,7 The preimplantation mouse 

embryo has been shown to express both receptors from the two-cell stage, and CB1 

and CB2 have been detected in the ectoplacental cone from gestational day (GD) 8 

in the rat.6 A recent study reported that in utero treatment with a selective CB2 

agonist influenced oocyte reserve and reduced the reproductive capacity of mice.8  

We have previously shown that Δ9-THC exposure during pregnancy leads to 

placental insufficiency and symmetrical fetal growth restriction.9 It is known that 

placental insufficiency can cause severe malnutrition of the fetus, and that the 

preferential blood flow to vital organs may impact the development of other organs. 

Indeed, studies have suggested that fetal growth restriction due to placental 
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insufficiency negatively affects ovarian development both in humans and rats.10,11 In 

one of these studies, a significantly lower number of primordial follicles were 

observed in intrauterine growth restricted animals at postnatal day (PND) 20. 

Interestingly, no differences were observed in follicle density at PND40, suggesting 

that compensatory mechanisms occurred during the prepubertal window. In addition, 

the expression of genes involved in cellular processes such as proliferation, 

apoptosis, and metabolism was affected at all ages evaluated, potentially implying 

long-term genetic alterations.10 Taking all of these studies into account, we 

hypothesized that prenatal exposure to Δ9-THC would adversely affect ovarian 

function in adult rats. 

Methods  

All procedures were performed in accordance with the guidelines of the Canadian 

Council of Animal Care. Pregnant Wistar rats were purchased from Charles River 

(La Salle, St. Constant, QC, Canada) and throughout the experimental procedure 

were maintained at 22 °C on a 12:12-h light–dark cycle with access to food and water 

ad libitum. Dams were randomly assigned to receive a daily intraperitoneal (IP) 

injection of either vehicle (1:18 cremophor:saline; n = 5) or 3 mg/kg Δ9-THC (Sigma-

Aldrich, St Louis, MO, USA; n = 6) from GD6 to GD22 as previously described.9 This 

dose results in maternal blood concentrations (8.6–12.4 ng/ml) comparable to those 

detected after moderate marijuana smoking in adults (13–63 ng/ml), as well as in 

aborted fetal tissue (4–287 ng/ml) after maternal cannabis use.12–14 Moreover, it has 

been previously demonstrated that 3 mg/kg Δ9-THC per day does not cause fetal 
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demise, alterations in litter size, gestational length, or maternal weight gain.9 Dams 

were allowed to deliver normally and litters were randomly culled to four female pups 

and four male pups each. Offspring were then euthanized at 6 months of age by IP 

pentobarbital overdose. Blood was drawn by cardiac puncture for quantification of 

estrogen (Biovision, Milpitas, CA, USA), progesterone (Cusabio, Wuhan Huamei 

Biotech Co., Wuhan, China), and free testosterone (R&D Systems, Minneapolis, MN, 

USA) by ELISA. The ovaries were collected, fixed in 10% formalin, and embedded 

in paraffin for histological analysis.  

Paraffin-embedded ovaries were serially sectioned (8 μm) and stained with 

hematoxylin–eosin to carry out follicle quantitation and morphometric analysis. Every 

10th section was analyzed and follicles were counted and classified as primordial, 

transitioning, primary, secondary, antral, and atretic as previously described.15 The 

area of each section was measured using an Olympus IX81 microscope and Infinity 

Analyze software, and the total number of each type of follicle was normalized to the 

total area analyzed from each ovary.  

Immunohistochemistry (IHC) was performed to assess the expression of the pro-

angiogenic factor vascular endothelial growth factor (VEGF) and its receptor 

(VEGFR-2), as well as the anti-angiogenic factor thrombospondin 1 (TSP-1) in 

ovarian sections. Immunofluorescence was also performed to determine the levels 

of the endothelial marker CD31. For IHC, tissues were deparaffinized using reagent-

grade xylene and subjected to a series of decreasing ethanol concentrations for 

rehydration. Endogenous peroxidase activity was quenched through a 10-minute 
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incubation period in 3% hydrogen peroxide followed by antigen retrieval using citrate 

buffer with Tween 20. To reduce nonspecific binding of antibodies, samples were 

blocked in 5% bovine serum albumin (with 0.02% sodium azide) for 10 min at room 

temperature. Sections were exposed to the following primary antibodies overnight at 

4 °C: anti-VEGF (Abcam; 1:600); anti-VEGFR-2 (Cell Signaling; 1:400); anti-TSP-1 

(Abcam; 1:100). Slides were then incubated in anti-mouse or anti-rabbit (Sigma; 

1:100) biotinylated secondary antibody for 2 h at room temperature followed by 

Extravidin (Sigma, 1:50) for 1 h at room temperature. Antigens were visualized using 

3,30 -Diaminobenzidine Tetrahydrochloride (DAB; Sigma) and tissues were 

counterstained with hematoxylin. Slides were imaged using bright-field microscopy, 

and the percentage of immunopositive tissue was quantified using morphometry 

software (ImagePro Plus, Media Cybernetics, Rockville, MD, USA). For 

immunofluorescence, tissues were deparaffinized and rehydrated as above. Slides 

were exposed to 0.2% sodium borohydride in PBS for 12 min and 5% bovine serum 

albumin for 15 min to reduce nonspecific binding. Sections were then stained with 

anti-CD31 (Abcam; 1:25) overnight at 4 °C. The following day, tissue samples were 

stained with secondary antibody (Alexa Fluor594nm, red). Slides were 

counterstained and cured using Prolong Gold anti-fade mounting medium. 

Representative images (n = 4/ovary) were obtained and image analysis was 

conducted using Metamorph imaging software (Molecular Devices, San Jose, CA, 

USA).  
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For hormone levels, follicle quantitation, IHC, and immunofluorescence, one female 

offspring per dam were included in the statistical analysis. A Student’s t-test was 

performed between vehicle (n = 5) and Δ9-THC-exposed (n = 6) animals for each 

outcome measure. Data are presented as the mean plus the standard error of the 

mean and a p-value of less than 0.05 was considered statistically significant. 

Results  

Since sex steroids are known to play a crucial role in the regulation of ovarian 

function and follicular development, at 6 months of age, blood was collected from 

Δ9-THC-exposed offspring for hormone quantification. No differences were found in 

the levels of circulating estrogen (vehicle: 57.92 ± 2.53 pg/ml; Δ9-THC: 61.11 ± 2.86 

pg/ml; intra-assay CV: 4.99%), progesterone (vehicle: 94.12 ± 15.48 ng/ml; Δ9-THC: 

87.76 ± 7.52 ng/ml; intra-assay CV: 10.6%), or testosterone (vehicle: 3.26 ± 0.65 

ng/ml; Δ9-THC: 3.46 ± 0.74 ng/ml; intra-assay CV: 7.25%).  

When the ovaries from adult offspring were examined, Δ9-THC-exposed animals had 

significantly more transitioning follicles/area unit (Fig. 1c). However, this difference 

did not persist in later stages of follicle development (Fig. 1d–g). Additionally, there 

was a significant increase in the percentage of TSP-1-positive granulosa cells, as 

well as a significant decrease in the percentage of VEGF and VEGFR-2-positive 

granulosa cells in ovaries from Δ9-THC-exposed offspring. Consistent with this shift 

to an anti-angiogenic phenotype, a significant decrease in ovarian blood vessel 

density, assessed by CD31 levels, was also detected (Fig. 2). 
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Discussion  

Given that the rodent embryo expresses the cannabinoid receptors from very early 

stages of development, and that gestational Δ9-THC exposure has been shown to 

result in intrauterine growth restriction, we suspected that prenatal exposure to this 

compound may have direct and/or indirect effects on fetal ovarian development that 

could manifest during adulthood.  

We have previously reported that fetal exposure to Δ9-THC resulted in placental 

insufficiency culminating in symmetrical fetal growth restriction in the animals used 

in this study;9 this growth restriction is similar to what has been reported in humans 

following maternal cannabis use.3 Interestingly, studies indicate that low birth weight 

may be a risk factor for earlier age at menopause in women.16 Since the age at which 

menopause occurs is thought to be a reflection of both the size of the initial follicle 

pool, as well as the rate of oocyte loss,17 factors that affect either or both of these 

parameters may lead to premature reproductive aging.  

With this in mind, we assessed ovarian follicle dynamics of prenatally Δ9-THC-

exposed rats at 6 months of age. Female rats that were exposed to Δ9-THC during 

fetal development had a significant increase in the number of transitioning 

follicles/area unit. This could be a result of an increase in the activation of dormant 

primordial follicles, similar to what has been reported in other models of in utero 

insults.15 Since this difference was not observed in later stages of follicle 

development (i.e., primary, secondary, and antral), it is possible that a significant 
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portion of the transitioning follicles did not continue to develop. It has previously been 

suggested that primordial follicles that are prematurely recruited into the growing 

pool are subsequently lost, resulting in no net loss or gain of developed follicles.15 In 

support of this hypothesis, we did not observe any differences in the levels of 

circulating estradiol, progesterone or testosterone, or in the number of developed 

follicles, which are largely responsible for the synthesis of steroid hormones. 

However, the increase in transitioning follicles may lead to a premature loss of the 

primordial follicle pool and therefore early reproductive senescence,18 although this 

remains to be confirmed.  

Since ovarian follicle development is largely dependent on angiogenesis,19 ovarian 

sections that were not used for follicle dynamics evaluation were used to assess 

levels of pro and anti-angiogenic proteins. It has previously been reported that 

cannabis and Δ9-THC exposure during pregnancy contributed to reduced blood 

vessel formation in human and rodent placenta, suggesting that this compound has 

anti-angiogenic effects.9,20 Moreover, early life insults, which result in reduced birth 

weight have been reported to reduce ovarian vascularization.21 Similarly, in the 

current study, ovaries from Δ9-THC-exposed animals had reduced blood vessel 

density in association with decreased expression of the pro-angiogenic factor VEGF 

and its receptor VEGFR-2, and increased expression of the anti-angiogenic factor 

TSP-1. TSP-1 is a potent inhibitor of VEGF signaling, and VEGF and TSP-1 are 

inversely expressed throughout folliculogenesis, with VEGF levels increasing and 

TSP-1 decreasing as follicle progression occurs.22 While primordial follicles rely on 
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the stroma for nutrient delivery, after activation and development of a primary follicle, 

endothelial cells are recruited from neighboring blood vessels so that follicular 

development can proceed.23 Therefore, the increase in TSP-1 and decrease in 

VEGF and VEGFR-2 could, at least in part, underlie the follicle dynamics observed 

in Δ9-THC-exposed animals, since a significant decrease in ovarian blood vessel 

formation could result in follicular development arrest after stages that rely solely on 

the stroma.  

On the other hand, in vitro treatment of immortalized rat granulosa cells with TSP-1 

has been demonstrated to increase the expression of pro-apoptotic factors,22 while 

VEGF-VEGFR-2 signaling appeared to have opposing effects.24 The increase in 

TSP-1 and decrease in VEGF and VEGFR-2 observed in this study could therefore 

manifest as increased apoptosis (atresia), and ultimately a loss of developing 

follicles. Although we did not observe a statistically significant increase in the number 

of atretic follicles in the Δ9-THC-exposed animals at 6 months of age (p = 0.197), 

this may be a reflection of the small sample size (n = 6). Alternatively, it is possible 

that the deficits in angiogenesis may manifest more clearly as increased follicle 

atresia and depletion of the follicle reserve as the animal ages. Thus, to further 

investigate the effects of gestational exposure to Δ9-THC on adult reproductive 

health, it would be prudent to monitor the ovarian follicle reserve at a more advanced 

age, closer to that at which rats typically experience reproductive senescence (9–12 

months of age). Additionally, it would be of great interest to assess the fertility of 
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these animals, since it is possible that not only the number but also the quality of the 

oocytes could be affected.  

In conclusion, at 6 months of age, animals that were exposed to Δ9-THC in utero had 

accelerated folliculogenesis with apparent follicular development arrest, as well as 

decreased blood vessel density. These results suggest for the first time that the 

popular use of cannabis during pregnancy may have long-term effects on ovarian 

development in the offspring, which may negatively impact postnatal reproductive 

health. 
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Figures and tables 

 

Fig. 1. Number of (a) total, (b) primordial, (c) transitioning, (d) primary, (e) secondary, 

(f) antral, and (g) atretic follicles per area unit in vehicle (n= 5) and prenatally Δ9 -

THC-exposed (n = 6) rat ovaries. Mean + SEM. Student’s t-test; *p < 0.05. 
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Fig. 2. Expression of thrombospondin 1 (TSP-1), vascular endothelial growth factor 

(VEGF), vascular endothelial growth factor receptor 2 (VEGFR-2), and CD31 in 

vehicle (n = 5) and prenatally Δ9 -THC-exposed (n = 6) rat ovaries. Mean + SEM. 

Student’s t-test; *p < 0.05.  
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CHAPTER 3: PRENATAL EXPOSURE TO DELTA-9-TETRAHYDROCANNABINOL 

(THC) ALTERS THE EXPRESSION OF MIR-122-5P AND ITS TARGET IGF1R IN THE 

ADULT RAT OVARY. 

 

This chapter is a reprint of the original article with the same title, published in 

International Journal of Molecular Sciences, 2022 July; 23(14), 8000 

(doi.org/10.3390/ijms23148000). Author list: Martínez-Peña AA, Lee K, Pereira M, 

Ayyash A, Petrik JJ, Hardy DB, and Holloway AC. Copyright and licensing can be 

found in Appendix A. 

 

It has been shown that adverse prenatal conditions such as maternal undernutrition, 

hormonal imbalance and exposure to exogenous chemicals have the potential to 

alter ovarian development, with major implications for reproductive health. There is 

accumulating evidence that indicates that alterations in epigenetic mechanisms may 

be responsible for the increased risk of diseases as a result of prenatal stressors. 

Furthermore, THC and CB1 activation have been shown to affect DNA methylation 

and miRNA expression in the ovary, while prenatal THC-exposure resulted in altered 

histone modifications and gene expression in the adult rodent brain. Considering the 

long-term observable effects of gestational THC exposure in adult rat ovaries 

described in chapter 2, and that acute and in utero exposure to THC has been shown 

to affect epigenetic mechanisms, we hypothesized that prenatal exposure to THC 

resulted in significant changes in the ovarian miRNA profile, and that these changes 

were responsible for the observable alterations in the adult offspring. 
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Abstract  

As cannabis use during pregnancy increases, it is important to understand its effects 

on the developing fetus. Particularly, the long-term effects of its psychoactive 

component, delta-9-tetrahydrocannabinol (THC), on the offspring’s reproductive 

health are not fully understood. This study examined the impact of gestational THC 

exposure on the miRNA profile in adult rat ovaries and the possible consequences 

on ovarian health. Prenatal THC exposure resulted in the differential expression of 

12 out of 420 evaluated miRNAs. From the differentially expressed miRNAs, miR-

122- 5p, which is highly conserved among species, was the only upregulated target 

and had the greatest fold change. The upregulation of miR-122-5p and the 

downregulation of its target insulin-like growth factor 1 receptor (Igf1r) were 

confirmed by RT-qPCR. Prenatally THC-exposed ovaries had decreased IGF-1R-

positive follicular cells and increased follicular apoptosis. Furthermore, THC 

decreased Igf1r expression in ovarian explants and granulosa cells after 48 h. As 

decreased IGF-1R has been associated with diminished ovarian health and fertility, 

we propose that these THC-induced changes may partially explain the altered 

ovarian follicle dynamics observed in THC-exposed offspring. Taken together, our 

data suggests that prenatal THC exposure may impact key pathways in the 

developing ovary, which could lead to subfertility or premature reproductive 

senescence. 
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Introduction  

The use of cannabis, which is the generic term that denotes several preparations of 

the plant Cannabis sativa, has increased considerably in recent decades [1]. The 

increase in cannabis use has been more prominent in developed countries, where 

there is a growing tendency towards legalization, and specifically among the younger 

population, whose perception of cannabis as a harmful drug has decreased over the 

past decade [1]. Regarding cannabis use during pregnancy, several studies have 

confirmed that consumption during gestation has also increased during the last 

decades [2–4]. Ko and colleagues reported that 70% of pregnant and nonpregnant 

women in the US believe that there is little to no harm in using cannabis once or 

twice per week [5], and a longitudinal prospective study discovered that 48% of 

women in the UK who used cannabis in the year prior to their pregnancy continued 

to smoke throughout gestation [6]. Despite advice against its use during pregnancy 

[7], cannabis is often used to mitigate pregnancy-related symptoms such as pain, 

nausea and vomiting [8–10]. Studies that have investigated the prevalence of 

cannabis use in developed countries revealed that approximately 4–7% of women 

reported using cannabis during pregnancy [3,4,11,12]. However, given that most 

studies rely solely on self-reporting, it is likely that these data underestimate the 

actual prevalence of cannabis use during gestation [13,14].  

Many researchers have demonstrated that prenatal cannabis use is associated with 

an increased risk of stillbirth [15,16], preterm birth [4,15,17,18], being small for 

gestational age [17–20], low birthweight [17,21–23], increased admission to 
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neonatal intensive care units [18,20] and death within one year of birth [17]. In 

addition, prenatal exposure to cannabis may also result in long-term alterations in 

the offspring’s health [24]. Considering that delta-9-tetrahydrocannabinol (THC), the 

psychoactive component of cannabis [25], efficiently crosses the placental barrier 

and can be detected in cord blood and fetal tissue [26], this compound could have 

direct effects on the developing organs, which are particularly sensitive to exogenous 

chemicals [27,28]. It is known that adverse prenatal conditions are associated with 

an increased risk of disease later in life, and it has been proposed that while the 

fetus adapts to these adverse conditions by favoring the development of organs that 

ensure survival, this reprogramming has harmful long-term effects on other organs, 

including the ovaries [29]. Indeed, it has been shown that prenatal conditions such 

as maternal undernutrition, hormonal imbalance or exposure to exogenous 

chemicals have the potential to alter ovarian development, with major implications 

for reproductive health and fertility later in life [30].  

Studies have suggested that prenatal cannabinoid exposure results in long-lasting 

neurobehavioural, metabolic, cardiovascular and reproductive abnormalities in 

offspring [31–38]. Given that these effects are observed long after exposure, one of 

the proposed mechanisms is that cannabis may cause epigenetic changes in the 

developing fetus [24]. Alterations in epigenetic regulation can be a consequence of 

exposomes, including environmental factors (e.g., nutrition and oxygen levels) 

and/or exogenous compounds (e.g., drugs), which results in heritable phenotypic 

changes without affecting the DNA sequence [39]. Indeed, several studies have 
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shown that cannabis constituents (i.e., THC and cannabidiol) have the ability to 

induce epigenetic changes such as altered DNA methylation, histone modifications 

and microRNA (miRNA) expression in multiple tissues, resulting in long-lasting 

effects [40–48].  

MiRNAs are small, endogenous, noncoding single-stranded RNA molecules with a 

length of approximately 22 to 24 nucleotides, which act as posttranscriptional 

regulators of gene expression [49,50]. Mature miRNAs can regulate gene 

expression through different mechanisms, including mRNA cleavage and 

translational inactivation [51]. Given that miRNAs can bind to the 3′-UTR region with 

partial sequence homology, a single miRNA may have multiple mRNA targets, and 

a single mRNA transcript may be targeted by several different miRNAs [52]. MiRNAs 

are involved in the regulation of several cellular processes, including differentiation, 

proliferation, apoptosis and hormone biosynthesis and secretion [53,54]. In the 

ovary, miRNAs play an important role in steroidogenesis, oocyte maturation, 

ovulation, luteinization, follicular development and atresia, and their dysregulation 

has been associated with disorders such as polycystic ovary syndrome (PCOS), 

premature ovarian failure (POF) and ovarian cancer [55,56].  

A previous study from our research group revealed that prenatal exposure of rats to 

THC resulted in altered ovarian follicle dynamics and vascularization in the adult 

offspring [57]. Considering that miRNAs are involved in the regulation of key ovarian 

processes, and that cannabis constituents have been shown to affect miRNA 

expression, the aims of this study were to assess the effect of prenatal exposure to 
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THC on the ovarian miRNA profile and to determine the possible impact of these 

changes on ovarian health and function. 

Materials and Methods 

Animals  

Pregnant Wistar rats were purchased from Charles River (La Salle, St. Constant, 

QC, Canada) and maintained at 22 °C at Western University Animal House Facility 

on a 12:12 h light:dark cycle with access to food and water ad libitum throughout the 

experiment. All animal experiments were done based on the approved animal use 

protocol by the subcommittee of the Canadian Council of Animal Care, Western 

University (AUP# 2019-126) in accordance with the ARRIVE guidelines 

(https://arriveguidelines.org, accessed on 16 July 2022). Dams were randomly 

assigned to receive a daily intraperitoneal (IP) injection of either vehicle (1:18 

cremophor:saline) or 3 mg/kg THC (Sigma-Aldrich, St Louis, MO, USA) from 

gestation day (GD) 6 to GD22. This dose has been shown to result in maternal blood 

concentrations (8.6–12.4 ng/mL) comparable to those detected after moderate 

cannabis smoking in adults (13–63 ng/mL), as well as in aborted fetal tissue (4–287 

ng/mL) after maternal cannabis use [82–84]. We have previously demonstrated that 

3 mg/kg THC per day does not cause fetal demise, alterations in litter size or 

gestational length, or maternal weight gain [85]. Dams were allowed to deliver 

normally, and litters were randomly culled to four female pups and four male pups 

each. At 6 months of age, prenatally THC-exposed offspring were euthanized by IP 

pentobarbital overdose. Per female, one ovary was fixed in 10% formalin and 
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embedded in paraffin for histological analysis, while the other ovary was flash frozen 

in liquid nitrogen to evaluate miRNA and mRNA expression. 

Nanostring Analysis  

To determine the effect of gestational THC exposure on the miRNA profile in adult 

rat ovaries, RNA was extracted from the ovaries of THC-exposed offspring with the 

use of a mirVana™ miRNA isolation kit (Thermo Fisher Scientific, Waltham, MA, 

USA). RNA quality was assessed using a 2100 Bioanalyzer (Agilent, Santa Clara, 

CA, USA), obtaining RNA integrity numbers that ranged from 7.4 to 9.3. The Rat 

v1.5 miRNA Assay (Nanostring Technologies, Seattle, WA, USA) was used to 

determine the expression levels of 420 biologically relevant rat miRNA targets 

according to the manufacturer’s instructions. Results were analyzed with the use of 

nSolver® analysis software and ROSALIND®. A statistically significant effect was 

considered to be a fold change of ≥1.5 or ≤−1.5 and a p value < 0.05. 

miRNA Real-Time Quantitative PCR  

In order to confirm the results obtained with the Nanostring assay, the expression of 

the miRNA target with the greatest fold change (miR-122-5p) was evaluated by real-

time quantitative PCR (RT-qPCR). For this, the miRCURY™ LNA miRNA PCR 

Assay system (Qiagen N.V., Hilden, Germany) was used. Complementary DNA 

(cDNA) was synthesized from the extracted RNA with the use of a miRCURY™ LNA 

RT kit (Qiagen). The cDNA was then amplified and detected with the use of a 

miRCURY™ LNA SYBR® Green PCR kit (Qiagen) and a CFX384 Touch™ Real-
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Time PCR Detection System (Bio-Rad Laboratories, Hercules, CA, USA). RT-qPCR 

results were analyzed with the 2 −∆∆CT method [86] using RNU5G snRNA and miR-

191-5p as internal references (Table 2). These reference genes were chosen based 

on previous studies and showed the lowest variation between vehicle and THC-

exposed samples when analyzed using RefFinder [87–89]. 

Immunohistochemistry  

Paraffin-embedded ovaries were sectioned (8 μm) and deparaffinized using reagent-

grade xylene, and subjected to a series of decreasing ethanol concentrations for 

rehydration. Endogenous peroxidase activity was quenched through a 10-min 

incubation period in 3% hydrogen peroxide, followed by antigen retrieval using 10 

mM sodium citrate buffer with Tween 20 (0.05%) for 12 min. To reduce nonspecific 

binding of antibodies, samples were blocked with 5% bovine serum albumin (with 

0.02% sodium azide) for 10 min at room temperature. Sections were exposed to 

either rabbit polyclonal anti-IGF-1R (Abcam, Cambridge, UK; 1:400) or anti-cleaved 

caspase-3 (Cell Signaling Technology, Danvers, MA, USA; 1:300) overnight at 4 °C. 

Slides were then incubated with biotinylated anti-rabbit secondary antibody (Thermo 

Fisher Scientific; 1:100) for 2 h at room temperature followed by Extravidin (Sigma-

Aldrich; 1:50) for 1 h at room temperature. Antigens were visualized using 3,3′-

diaminobenzidine tetrahydrochloride (DAB; Sigma-Aldrich), and tissues were 

counterstained with hematoxylin. Slides were imaged using bright-field microscopy 

at 200x magnification. The percentage of immunopositive follicular cells was 

quantified by the same individual, who was blinded to the treatment group until all 
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the data had been collected, with the use of an integrated morphometry software 

(MetaMorph Inc., Nashville, TN, USA). The average of 5 fields of view/ovary was 

used to calculate the percentage of immunopositive cells. 

Ovarian Explant Culture  

For ex vivo experiments, ovaries were collected from nulliparous Wistar rats (268.09 

± 2.96 g) and transferred to sterile D-PBS (Corning Inc., New York, NY, USA). In a 

biosafety cabinet, ovaries were trimmed of fat, washed with D-PBS and cut into four 

equal pieces using a sterile blade. Each piece was transferred to a single well in a 

24-well plate containing DMEM/F12 media with L-glutamine (Corning) supplemented 

with 10% fetal bovine serum (FBS) and 2% penicillin/streptomycin (Thermo Fisher 

Scientific). After 24 h of culture, explants were exposed to vehicle or 3 μM THC for 

48 h, changing the media daily. This concentration of THC was based on a 

pharmacokinetic study that reported similar levels in the serum of cannabis users 

[90]. 

Cell Culture  

For in vitro experiments, spontaneously immortalized rat granulosa cells (SIGCs) 

were cultured in DMEM/F12 media with L-glutamine (Corning Inc.) supplemented 

with 10% fetal bovine serum (FBS) and 2% penicillin/streptomycin. As with ex vivo 

experiments, cells were cultured with either vehicle or 3 μM THC for 48 h after 

confirming this concentration had no effect on cell viability (data not shown). 
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RNA Isolation and RT-qPCR  

To evaluate gene expression, total RNA was extracted from THC-exposed ovary 

explants and SIGCs. Briefly, samples were homogenized in TRIzol™ reagent 

(Thermo Fisher Scientific) by sonication, and RNA was extracted by precipitation 

with isopropanol and subsequent ethanol washes. RNA concentration and purity 

were assessed using a NanoDrop™ One micro-UV/vis spectrophotometer (Thermo 

Fisher Scientific), and cDNA was synthesized with the use of a High capacity cDNA 

reverse transcription kit (Thermo Fisher Scientific). 

In order to confirm the effects of miRNA dysregulation, the online databases 

miRTarBase 

(https://mirtarbase.cuhk.edu.cn/~miRTarBase/miRTarBase_2022/php/index.php, 

accessed on 16 July 2022) and TargetScan (https://www.targetscan.org/vert_80/, 

accessed on 16 July 2022) were used to select validated target genes involved in 

essential ovarian processes. With this in mind, the expression of the validated miR-

122-5p target insulin-like growth factor 1 receptor (Igf1r) was determined. In addition, 

given that both miR-122-5p and IGF-1R are involved in the regulation of apoptosis 

[58,66], and that alterations in follicle dynamics were previously observed in the 

prenatally THC-exposed ovaries [57], the expression of the apoptotic marker 

caspase-3 was evaluated.  

For the ovaries from prenatally THC-exposed offspring, the ovary explants and the 

SIGCs, RT-qPCR was performed using PerfeCTa SYBR® Green FastMix 
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(Quantabio, Beverly, MA, USA) and the CFX384 Touch™ real-time PCR detection 

system (Bio-Rad). RT-qPCR results were analyzed with the 2 -∆∆CT method using 

beta-2-microglobulin (B2m) and hypoxanthine phosphoribosyltransferase 1 (Hprt1) 

as internal references (Table 3). 

Statistical Analysis  

For in vivo assessments, one female offspring per dam was included in the statistical 

analysis. For ex vivo and in vitro assessments, results from 5 independent 

experiments are presented. The Nanostring assay results were analyzed with the 

use of nSolver® and ROSALIND® analysis software, considering a fold change ≥ 

1.5 and a p-value < 0.05 as statistically different. For miRNA and mRNA RT-qPCR, 

as well as for immunohistochemical evaluation, statistical analyses were performed 

using SigmaPlot®. A Student’s t-test was performed to determine statistically 

significant differences (p < 0.05) between vehicle and THC-exposed samples. 

Results 

Gestational Exposure to THC Alters miRNA Profile in Adult Rat Ovaries  

The differential expression of miRNA targets in adult rat ovaries as a result of 

gestational exposure to THC is shown in Figure 1. Of the 420 miRNAs evaluated by 

the Nanostring assay, prenatal exposure to THC altered the expression of 12 miRNA 

targets (fold change ≥ 1.5, p < 0.05). 

From the 12 differentially expressed miRNAs, 11 were downregulated (miR-154-5p, 

miR-214-5p, miR-3552, miR-18a-5p, miR-296-3p, miR-874-3p, miR-211-5p, miR-
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20b-3p, miR-598-3p, miR-330-5p and miR-190b-5p) and only miR-122-5p was 

upregulated (Table 1). For this reason, along with the fact that it exhibited the 

greatest fold change in expression, miR-122-5p (miR-122) was chosen for further 

evaluation. 

Prenatal THC-Exposure Increases Ovarian miR-122-5p Expression in Adult 

Offspring  

In order to confirm the increase in miR-122 in the prenatally THC-exposed ovaries, 

the expression of this target was assessed by RT-qPCR. As shown in Figure 2B, 

RT-qPCR results revealed that miR-122 was significantly upregulated in the ovaries 

from THC-exposed offspring, similar to the results obtained with the Nanostring 

assay (Figure 2A). 

Gestational Exposure to THC Decreases Igf1r Expression in the Adult Ovary  

Changes in miRNA expression may affect the expression of their target genes [51]. 

Given that gestational THC-exposure resulted in a significant increase in miR-122, 

the online databases TargetScan and miRTarBase were used to determine validated 

miR-122 target genes involved in the regulation of ovarian processes. Insulin-like 

growth factor 1 receptor (Igf1r) was identified as a key ovarian miR-122 target based 

on its role in steroidogenesis, folliculogenesis, angiogenesis, cell proliferation and 

apoptosis [58,59]. Real-time qPCR revealed that prenatal exposure to THC 

significantly decreased the relative expression of Igf1r in the ovary, as well as the 

percentage of IGF-1R-positive follicular cells, as determined by 

immunohistochemistry (IHC) (Figure 3). 
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Prenatal Exposure to THC Increases Follicular Apoptosis in the Adult Ovary  

It has previously been established that IGF-1/IGF-1R signaling plays an essential 

role in follicular growth and atresia, mostly by regulating granulosa cell proliferation 

and apoptosis [58]. Considering that gestational exposure to THC resulted in a 

significant decrease in IGF-1R, the expression of the apoptotic marker caspase-3 

was evaluated. As shown in Figure 4, while there were no changes in the steady-

state mRNA expression of Casp3, gestational exposure to THC significantly 

increased the percentage of cleaved caspase-3-positive ovarian follicular cells. 

Acute Exposure to THC Decreases Expression of Igf1r in the Ovary  

In order to determine if THC had a direct effect on the expression of Igf1r in the 

ovaries, ex vivo and in vitro models were used. While it is possible to observe short-

term effects of direct THC exposure on gene expression in both models, the use of 

ovarian explants represents a microenvironment and cell diversity that more closely 

resemble in vivo conditions. On the other hand, the use of an immortalized cell line 

provides information on the effect of the compound on that specific cell type. Ovarian 

explants and spontaneously immortalized rat granulosa cells were cultured and 

exposed to 3 μM THC for 48 h. As observed in Figure 5, exposure to 3 μM THC 

significantly decreased the relative expression of Igf1r in the ovary explants (Figure 

5A) and the granulosa cells (Figure 5B). 
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Discussion  

As the use of cannabis during pregnancy increases, it is important to understand the 

possible effects of its constituents on the developing fetus. The present study 

examined the effect of gestational exposure to THC on the miRNA profile in adult rat 

ovaries, as a proposed mechanism through which THC-induced changes in miRNA 

expression could influence the altered ovarian follicle dynamics and vascularization 

previously observed in these offspring [57]. Prenatal exposure to THC resulted in the 

differential expression of 12 miRNA targets, as determined by a Nanostring assay 

that evaluated the expression of 420 biologically relevant rat miRNAs. While there 

are several studies that report in vivo alterations of miRNA expression as a 

consequence of direct exposure of primates and rodents to THC [60–62], work from 

our group has also shown that gestational exposure to THC resulted in altered 

miRNA profiles in the liver of adult rat offspring [37]. Similarly, in this study we report 

an altered miRNA profile in the ovaries of THC-exposed female offspring.  

Of the 420 miRNAs included in the Nanostring assay, miR-122-5p (miR-122) was 

the only upregulated target, as well as having the largest fold-change compared to 

the controls. As miR-122 is a highly conserved miRNA among multiple species, 

including rat and human [63], this target was chosen for further evaluation. RT-qPCR 

confirmed the upregulation of miR-122 in the prenatally THC-exposed ovaries. There 

is growing evidence that suggests miR-122 is involved in the regulation of cell 

proliferation, differentiation, migration and apoptosis [64,65]. A recent study revealed 

increased expression of miR-122 in atrophic chicken ovaries compared to healthy 
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ones [63]. Flow cytometry revealed that granulosa cell apoptosis was significantly 

decreased by a miR-122 inhibitor, while treatment with a miR-122 mimic increased 

apoptosis and caspase-3 protein levels in vitro [63]. Similarly, Zhang and colleagues 

recently reported increased granulosa cell apoptosis in a rodent model of primary 

ovarian insufficiency following treatment with a miR-122 mimic, while a miR-122 

inhibitor reduced granulosa cell apoptosis [66]. Furthermore, Menon and colleagues 

observed that miR-122 plays an important role in the regulation of the luteinizing 

hormone receptor mRNA binding protein (LRBP) during FSH-induced follicular 

growth, and therefore may impact folliculogenesis and ovulation [67,68].  

To evaluate the effects of the upregulation of miR-122 in the ovaries, the online 

databases TargetScan and miRTarBase were used to identify validated miR-122 

targets involved in the regulation of ovarian processes. The validated miR-122 target 

insulin-like growth factor 1 receptor (Igf1r) was selected for further evaluation. 

Studies have reported that miR-122 can directly bind to and decrease Igf1r transcript 

in vitro [69–71]. Moreover, IGF-1R has been shown to play a role in the regulation 

of folliculogenesis, ovulation, angiogenesis and granulosa cell proliferation and 

apoptosis [58,72]. IGF-1R is a receptor tyrosine kinase that, among other functions, 

activates the AKT pathway, linked to prevention of apoptosis, and the ERK pathway, 

which is associated with growth and proliferation [73]. IGF-1R expression has been 

detected in most structures of the rodent ovary, including the stroma, oocytes, 

corpus luteum and theca cells, with the strongest staining found in granulosa cells 

[58]. Gestational exposure to THC significantly decreased mRNA expression of Igf1r 
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and the percentage of IGF-1R-positive follicular cells in the ovaries. These results 

are in accordance with the observed increase in miR-122 and with studies that have 

reported the downregulation of Igf1r as a result of miR-122 overexpression [69– 71]. 

Furthermore, the decrease in Igf1r expression appears to be directly attributable to 

the effect of THC on the ovary, as this compound significantly decreased the relative 

expression of Igf1r in ovary explants and spontaneously immortalized rat granulosa 

cells (SIGCs) exposed to 3 μM for 48 h. Considering the key role of IGF-1R in the 

ovary [58,59], it is possible that a similar mechanism may partially explain the 

adverse reproductive outcomes such as an increased risk of infertility due to 

ovulatory abnormalities [74], fewer and poorer quality oocytes and lower pregnancy 

rates by in vitro fertilization (IVF) [75] that have been reported in adult cannabis 

users.  

Protein levels of IGF-1R have been shown to be reduced in granulosa cells from 

patients with PCOS and ovarian tissue of PCOS rat models [76]. This reduction was 

linked to decreased AKT phosphorylation and increased caspase-3 activity, 

suggesting that increased granulosa cell apoptosis plays a role in the abnormal 

folliculogenesis and anovulation in PCOS [76]. It has also been shown that 

knockdown of Igf1r in granulosa cells results in a lack of response to FSH in vitro, 

and that inhibiting IGF-1R activity in vivo prevents eCG-induced follicular growth [72]. 

Moreover, Baumgarten and colleagues demonstrated that female mice with a 

conditional Igf1r knockdown in granulosa cells were sterile, with small ovaries lacking 

antral follicles, even after stimulation with gonadotropin [58]. Accordingly, these 
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animals failed to ovulate after a superovulation protocol, and their granulosa cells 

expressed significantly lower levels of preovulatory markers [58]. Similar to what has 

been observed in PCOS models, ovaries with reduced IGF-1R had impaired AKT 

activation, as well as increased levels of caspase-3-dependent apoptosis in follicles 

transitioning from the primary to the large secondary stages [58]. The authors 

concluded that the lack of IGF-1R signaling in the granulosa cells resulted in 

increased apoptosis and failure to respond to FSH, which in turn led to the complete 

arrest of folliculogenesis and the subsequent loss of fertility. In the present study, in 

addition to reduced Igf1r expression, THC-exposed offspring had an increased 

percentage of cleaved caspase-3-positive follicular cells in the ovaries, suggesting 

an increase in apoptosis. In addition, IHC revealed that cleaved caspase-3 was 

predominantly expressed in granulosa cells, which could suggest increased 

granulosa cell apoptosis, an important factor of follicular atresia [77].  

The reduction in Igf1r expression may also help explain the altered follicle dynamics 

in the ovaries of THC exposed offspring previously reported by our group [57]. In the 

same cohort of animals, we observed that ovaries from THC-exposed offspring had 

a significant increase in transitioning follicles without any differences in later stages 

of follicular development, suggesting a portion of the follicles did not continue to 

develop. While this was partially attributed to the reduced blood vessel formation in 

these ovaries, it is possible that the increased apoptosis revealed in the present 

study also contributed to the impaired follicular development. The reduced 

vascularization of these ovaries was associated with a decrease in VEGF and 



Ph.D. Thesis                                                                                                                      McMaster University 
Annia A. Martínez-Peña                                                                      Medical Sciences Graduate Program 

55 
 

VEGFR2 expression and an increase in TSP-1. This is interesting considering it has 

been shown that activation of IGF-1R results in increased VEGF expression and 

secretion in bovine luteal cells [78]. Additionally, it has been demonstrated that in 

vitro treatment of immortalized rat granulosa cells with TSP-1 increases the 

expression of pro-apoptotic factors [79], while VEGF-VEGFR2 signaling appears to 

have the opposite effect [80]. It was therefore proposed that the dysregulation of 

these factors could manifest as increased apoptosis (atresia) and ultimately a loss 

of developing follicles [57]. Although there were no statistically significant differences 

in the number of atretic follicles in the THC-exposed ovaries (p = 0.197), this could 

be a reflection of the small sample size. It is also possible that the increase in 

apoptosis may manifest more clearly as follicle loss as the animal ages. Indeed, a 

rodent model with granulosa cell-specific silencing of Vegf revealed a decrease in 

Igf1r expression and increased granulosa cell apoptosis [81]. According to the 

authors, these animals were subfertile, and the effect seemed to be greater as the 

mice aged [81]. It would therefore be of great interest to continue monitoring the 

ovarian follicle reserve as the animals approach reproductive senescence and to 

assess the THC-exposed offspring’s fertility, since the observed effects may have 

an impact on other reproductive aspects such as oocyte quality. 
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Conclusions  

We have previously shown that prenatal exposure to delta-9-tetrahydrocannabinol 

(THC), the psychoactive component of cannabis, resulted in altered follicle dynamics 

and vascularization in the adult rat ovary. In this study, we propose that gestational 

exposure to THC altered miRNA expression in the ovary, which in turn affected 

ovarian health in adulthood. Particularly, prenatal THC exposure resulted in a 

significant increase in the expression of miR-122-5p and a significant decrease in 

the expression of its validated target gene insulin-like growth factor 1 receptor (Igf1r). 

Importantly, decreased IGF-1R expression has been linked to increased apoptosis 

and abnormal folliculogenesis, both of which have been observed in the THC-

exposed offspring. Taken together, these data suggest that prenatal THC-exposure 

may impact key pathways in the developing ovary that could lead to subfertility or 

premature reproductive senescence. As the use of cannabis during pregnancy 

increases, it is important to understand the safety of this drug and its constituents, 

as well as the possible long-term effects on the offspring’s endocrine and 

reproductive health. 
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Figures and tables 
 

 

 

Figure 1. Volcano plot representation of differential miRNA expression as a result of 

gestational exposure to THC in adult rat ovaries. The dotted lines represent the fold 

change (≥1.5 or ≤-1.5) and p-value (<0.05) cutoff values selected to determine 

statistical difference. 
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Figure 2. Differential expression of miR-122-5p (miR-122) in adult rat ovaries 

prenatally exposed to THC analyzed with (A): Rat v1.5 miRNA assay (Nanostring 

Technologies, Seattle, USA), nSolver® and ROSALIND® analysis software, and (B): 

miRCURY™ LNA miRNA PCR assay system (Qiagen, Hilden, Germany) and 

SigmaPlot® (mean + SEM; N = 5, * p < 0.05). 
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Figure 3. (A). Relative expression of Igf1r in prenatally THC-exposed adult rat 

ovaries. (B). Percentage of IGF-1R-positive ovarian follicular cells in prenatally THC-

exposed adult rat ovaries. (C). IGF-1R protein levels in prenatally THC-exposed 

adult rat ovaries (mean + SEM; N = 5, * p < 0.05). 
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Figure 4. (A). Relative expression of Casp3 in prenatally THC-exposed adult rat 

ovaries. (B). Percentage of cleaved caspase-3-positive ovarian follicular cells in 

prenatally THC-exposed adult rat ovaries. (C). Cleaved caspase-3 protein levels in 

prenatally THC-exposed adult rat ovaries (mean + SEM; N = 5, * p < 0.05). 
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Figure 5. (A). Relative expression of Igf1r in rat ovary explants exposed to 3 μM 

THC for 48 h. (B). Relative expression of Igf1r in spontaneously immortalized rat 

granulosa cells exposed to 3 μM THC for 48 h (mean + SEM; N = 5, * p < 0.05). 
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Table 1. List of differentially expressed miRNA targets in the adult rat ovary as a 

result of prenatal THC exposure. 
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Table 2. Primer sequences for miR-122-5p, RNU5G and miR-191-5p. 

 

 

Table 3. Primer sequences for Igf1r, Casp3, B2m and Hprt. 
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CHAPTER 4: DELTA-9-TETRAHYDROCANNABINOL INCREASES VASCULAR 

ENDOTHELIAL GROWTH FACTOR (VEGF) SECRETION THROUGH A 

CYCLOOXYGENASE-DEPENDENT MECHANISM IN RAT GRANULOSA CELLS. 

 

This chapter is a reprint of the original article with the same title, published in 

Reproductive Toxicology, 2022 August;111:59-67 (doi: 

10.1016/j.reprotox.2022.05.004). Author list: Martínez-Peña AA, Petrik JJ, Hardy 

DB, and Holloway AC. Copyright and licensing can be found in Appendix A. 

 

Cannabis use has been associated with altered gonadotropin levels, menstrual cycle 

dysregulation, ovulatory issues, fewer and poorer quality oocytes, as well as lower 

pregnancy rates by IVF in women. Animal studies demonstrated that THC alone can 

disrupt the HPG axis and decrease ovulation. In addition, THC has been shown to 

have a direct impact on the ovaries, interfering with gonadotropin response and 

steroid hormone production. Furthermore, in vitro experiments have suggested that 

THC has anti-angiogenic effects on several different cell types. Taking into account 

that prenatal THC-exposure had a significant impact on the expression of VEGF in 

ovarian granulosa cells (Chapter 2), and that the in vitro model used in chapter 3 

showed similar results to those observed after in utero exposure, we hypothesized 

that direct exposure to THC would affect VEGF production in granulosa cells. The 

second and third objectives of this chapter were to determine the functional 

consequences and mechanistic pathways associated with these alterations. 
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Abstract 

While the effects of delta-9-tetrahydrocannabinol (THC), the psychoactive 

component of cannabis, have been studied extensively in the central nervous 

system, there is limited knowledge about its effects on the female reproductive 

system. The aim of this study was to assess the effect of THC on the expression and 

secretion of the angiogenic factor vascular endothelial growth factor (VEGF) in the 

ovary, and to determine if these effects were mediated by prostaglandins. 

Spontaneously immortalized rat granulosa cells (SIGCs) were exposed to THC for 

24 h. Gene expression, proliferation and TNFα-induced apoptosis were evaluated in 

the cells and concentrations of VEGF and prostaglandin E2 (PGE2), a known 

regulator of VEGF production, were determined in the media. To evaluate the role 

of the prostanoid pathway, cells were pre-treated with cyclooxygenase (COX) 

inhibitors prior to THC exposure. THC-exposed SIGCs had a significant increase in 

VEGF and PGE2 secretion, along with an increase in proliferation and cell survival 

when challenged with an apoptosis-inducing factor. Pre-treatment with COX 

inhibitors reversed the THC-induced increase in both PGE2 and VEGF secretion. 

Alterations in granulosa cell function, such as the ones observed after THC 

exposure, may impact essential ovarian processes including folliculogenesis and 

ovulation, which could in turn affect female reproductive health and fertility. With the 

ongoing increase in cannabis use and potency, further study on the impact of 

cannabis and its constituents on female reproductive health is required. 
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Introduction  

Cannabis, which is the generic term that denotes several preparations of the plant 

Cannabis sativa, is the most widely used illicit drug in the world [96]. The use of 

cannabis has grown considerably during the last decades, particularly among 

developed countries, in which there is a tendency towards the legalization of 

medicinal and recreational cannabis use [96]. Recent estimates suggest that 15–

27% of Canadians over the age of 15 use cannabis [84,85].  

In addition to the growing prevalence of cannabis use, the concentration of the 

psychoactive phytocannabinoid delta-9- tetrahydrocannabinol (THC) [67] in 

cannabis has increased considerably in the last few decades [11,25,26,68,96]. 

According to Health Canada, the percentage of THC in dried cannabis has increased 

from around 3% in the 1980s to an average of 15% in 2018, with some strains 

containing as much as 30% [39]. Over the past decade, the perception of cannabis 

as a harmful drug has decreased, particularly amongst adolescents [96]. Moreover, 

70% of pregnant and non-pregnant women in the US believe there is little to no harm 

using cannabis once or twice per week [17,52,87], despite the advice of obstetricians 

and gynaecologists [93] and considering that there are limited studies on the effect 

of cannabis on female reproductive health [18]. While some studies have found no 

significant associations between cannabis consumption and female reproductive 

health and fertility [10,49,98], others have associated its use with altered luteinizing 

hormone levels [69], menstrual cycle dysregulation and ovulatory issues [48,72], 

fewer and poorer quality oocytes, as well as lower pregnancy rates by in vitro 
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fertilization (IVF) when compared to non-cannabis users [50], pointing out the need 

for more studies in this area. Since clinical studies are limited by several factors such 

as ethical considerations and difficulty adjusting for confounding variables related to 

socio-demographics, sample size, poly-substance use, cannabis potency, frequency 

and duration of use, which may affect the observable data, the use of animal and in 

vitro models represent a useful strategy to address the effects of THC on 

reproductive health.  

A previous study from our research group revealed that prenatal exposure to THC 

resulted in altered follicle dynamics and inhibited ovarian vascularization in the adult 

rat offspring [61]. Reduced blood vessel density in these ovaries was associated with 

a decreased expression of the angiogenic factor vascular endothelial growth factor 

(VEGF) and an increased expression of the anti-angiogenic factor thrombospondin 

1 (TSP-1) in granulosa cells. In the ovary, angiogenesis is involved in several 

processes including folliculogenesis, antrum formation, follicular rupture, ovulation, 

and corpus luteum formation [1,89, 91]. VEGF is well established as a major 

regulator of ovarian angiogenesis, since blocking its action within the ovary disrupts 

follicle rupture, oocyte release, and subsequent luteal function [44,99]. Additionally, 

as follicles mature, VEGF expression in granulosa and theca cells increases, and 

VEGF protein in follicular fluid rises [100,40,41]. VEGF expression is regulated by a 

number of factors including cyclooxygenase (COX) derived prostanoids (i.e., 

prostaglandins). This is of great interest considering prostaglandins have a vital role 

in angiogenesis during implantation and decidualization by regulating VEGF 
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expression [63]. In addition, it has been suggested that the ability of the ovulatory 

gonadotropin surge to stimulate angiogenesis is mediated by prostaglandin E2 

(PGE2) [94]. Moreover, several in vitro and in vivo studies have reported changes in 

prostaglandin synthesis as a result of THC exposure [13,15,7]. Given that prenatal 

exposure to THC resulted in altered expression of VEGF in granulosa cells, and that 

THC has been shown to affect prostaglandins, which may in turn influence VEGF 

expression, our goal was to assess the direct effect of THC on VEGF production in 

granulosa cells and to determine if these changes were prostaglandin-mediated. 

Materials and methods  

Cell culture  

Spontaneously immortalized rat granulosa cells (SIGCs) were cultured in 

DMEM/F12 media with L-glutamine (Corning Inc., New York, USA) supplemented 

with 10% fetal bovine serum (FBS) and 2% Penicillin/Streptomycin. For initial 

treatments, cells were cultured with vehicle or 15 μM THC for 6 and 24 h. This 

concentration was based on a pharmacokinetic study which reported similar levels 

in the serum of cannabis users [5]. For experiments with COX-1 and COX-2 

inhibitors, cells were pretreated for one hour with either 1 μM SC-560 (a COX-1 

inhibitor; Cayman Chemical Company, Michigan, USA) in dimethyl sulfoxide 

(DMSO), or 5 μM SC-236 (a COX-2 inhibitor; Sigma-Aldrich, Missouri, USA) in 

ethanol, and then exposed to 15 μM THC for 24 h. The final concentrations of vehicle 

in the media were 0.1% DMSO in the COX-1 inhibitor experiment and 0.086% 
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ethanol in the COX-2 inhibitor experiment. For all in vitro assessments, the results 

of 5 individual experiments are presented.  

RNA isolation and quantitative real-time PCR  

Treated cells were harvested with TRIzol® Reagent (Thermo Fisher Scientific, 

Massachusetts, USA) and total RNA was extracted by precipitation with isopropanol 

and subsequent ethanol washes. RNA concentration and purity were assessed 

using a NanoDrop One Micro-UV/ Vis Spectrophotometer (Thermo Fisher Scientific) 

and cDNA was synthesized from 4 μg of total RNA using a High capacity cDNA 

Reverse transcription kit (Thermo Fisher Scientific). Gene expression was evaluated 

by RT-qPCR using PerfeCTa SYBR® Green FastMix (Quantabio, Massachusetts, 

USA) and the CFX384 Touch™ Real-Time PCR Detection System (Bio-Rad 

Laboratories, California, USA). Given that our previous study revealed changes in 

VEGF protein in granulosa cells as a result of THC exposure, the main target gene 

in the present study was vascular endothelial growth factor A (Vegfa). In order to 

assess different pathways responsible for the regulation of Vegfa expression, the 

anti-angiogenic factor thrombospondin 1 (Thbs1) was evaluated in addition to 

assessing regulators of prostaglandin biosynthesis. Prostaglandin-endoperoxide 

synthase 1 and 2 (Ptgs1 and Ptgs2, respectively) represent the rate-limiting step 

enzymes in prostaglandin synthesis, which has also been shown to affect Vegf 

expression [81]. RT-qPCR results were analyzed with the 2-ΔΔCt method [54] using 

beta-2-microglobulin (B2m) and hypoxanthine phosphoribosyltransferase 1 (Hprt1) 
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as internal references. The forward and reverse primer sequences can be found in 

Table 1.  

Protein isolation and western blotting  

SIGCs were cultured as described above with either vehicle or 15 μM THC for 24 h. 

Protein was extracted using lysis buffer containing 50 mM HEPES, 150 mM NaCl, 

100 mM NaF, 10 mM sodium pyrophosphate, 5 mM EDTA, 250 mM sucrose, 1 mM 

DTT and 1 mM sodium orthovanadate, with 1% Triton X-100 and one tablet of 

cOmplete™ Protease Inhibitor Cocktail (Roche, Basil, Switzerland) per 50 mL. 

Protein concentration was determined using a Pierce BCA Protein Assay Kit 

(Thermo Fisher Scientific). Samples were then normalized and denatured at 95 ◦C 

for 5 min. 40 μg of total protein from each sample were subjected to SDS-PAGE 

using a 10% separating gel and then transferred to a PVDF membrane. Membranes 

were blocked with 5% BSA for one hour before incubating with either rabbit 

polyclonal anti-VEGFA (1:1000 dilution; Abcam, Cambridge, UK), mouse 

monoclonal anti-thrombospondin 1 (1:500 dilution; Santa Cruz Biotechnology Inc., 

Texas, USA) or rabbit polyclonal anti-alpha tubulin (1:1000 dilution; Abcam) 

overnight in a cold room. After three washes with TBS-T, membranes were 

incubated with either HRP-conjugated goat anti-rabbit (1:10000 dilution; Abcam) or 

goat anti-mouse (1:10000 dilution; Abcam) antibodies for one hour. Membranes 

were washed as described above and protein was detected by chemiluminescence 

using a ChemiDoc Imaging System (Bio-Rad Laboratories). Densitometric analysis 

was performed using ImageJ® and VEGF and TSP-1 bands were normalized to α-
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tubulin, after confirming THC exposure had no effect on the expression of this 

protein.  

Extracellular VEGF and PGE2 quantification  

Media from THC-exposed SIGCs was collected and extracellular concentrations of 

VEGF and PGE2 were determined by enzyme-linked immunosorbent assays (Rat 

VEGF ELISA kit, Abcam; PGE2 ELISA kit, Abcam; PGE2 ELISA Kit, Enzo Life 

Sciences Inc., New York, USA) according to the manufacturer’s instructions.  

Detection of apoptosis and proliferation  

SIGCs were seeded in a 96-well plate and cultured as described above. At 

approximately 70% confluency, the media was replaced with serum-free DMEM/F12 

with 2% Penicillin/Streptomycin for 24 h. Cells were then cultured with 15 μM THC, 

100 ng/mL TNFα (Sigma-Aldrich) or both in serum-free media for another 24 h. In 

order to detect apoptotic cells, the CellEvent™ Caspase-3/7 Green Detection 

Reagent (Thermo Fisher Scientific) was added to each well. Cells were then 

incubated at 37 ◦C for 30 min and fluorescence intensity was determined with a 

Synergy H1 microplate reader (Agilent, California, USA).  

In order to determine the effects of THC exposure on cell proliferation, SIGCs were 

cultured on sterile glass coverslips with vehicle or 15 μM THC for 24 h. Cells were 

fixed with neutral buffered formalin 10% for 1 h at room temperature and stored at 

4◦C. Cells were permeabilized using 0.2% Triton X-100, washed with PBS and 

blocked with 5% BSA at room temperature. Proliferation was detected using anti-
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phosphorylated histone H3 antibody (1:400; Abcam) diluted in 5% BSA overnight at 

4◦C. Coverslips were then incubated with secondary anti-rabbit antibody (1:100; 

Sigma-Aldrich) for 1 h at room temperature. Cells were counterstained with DAPI 

and imaged using an Eclipse E600 research microscope (Nikon Corporation, Tokyo, 

Japan). The percentage of proliferating cells was calculated as the number of 

phospho-histone H3 (PHH3)-positive cells compared to the total number of DAPI-

positive cells. Immunopositive cell counts were conducted manually by the same 

individual, who was blinded to the treatment group until all proliferation data had 

been collected. Cell counts were conducted using integrated morphometry software 

(MetaMorph Inc., California, USA) and the average of 5 fields of view/coverslip was 

used to calculate the percentage of immunopositive cells.  

Statistical analysis  

After checking for normal distribution and equal variance, a one-way ANOVA was 

used to determine differences between the means of multiple experimental groups. 

In case a difference between means was detected (p < 0.05), a post-hoc Tukey test 

was performed. A student T test was performed to determine statistical differences 

between the means of two experimental groups. 

Results  

THC increases VEGF expression and secretion in granulosa cells  

While there were no significant changes in the steady-state mRNA expression of 

Vegfa after 6 h of exposure to THC, there was a significant increase after 24 h (Fig. 
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1A). Similarly, at 24 h, THC exposure significantly increased VEGF secretion (Fig. 

1C) and while the intracellular VEGF protein levels were increased, this did not reach 

statistical significance (p = 0.07) (Fig. 1B).  

THC protects granulosa cells from TNFα-induced apoptosis and increases 

proliferation  

It has previously been shown that VEGF has cytoprotective effects not only on 

endothelial cells, but on granulosa cells as well. In an experiment in which 

spontaneously immortalized rat granulosa cells were serum-deprived and treated 

with the apoptosis-inducing factor TNFα, the addition of exogenous VEGF reduced 

apoptosis and the presence of activated caspase-3 [40]. Since exposure to THC 

increased VEGF in the SIGCs, we hypothesized that this exposure would have 

similar cytoprotective effects on these cells. As seen in Fig. 2, the addition of TNFα 

to serum-deprived SIGCs increased the activated caspase-3/7 signal compared to 

SIGCs exposed to THC. However, when serum-deprived SIGCs were cultured in the 

presence of both THC (15 μM) and TNFα (100 ng/mL), the TNFα-induced increase 

in activated caspase-3/7 was blocked, suggesting that THC has a cytoprotective 

effect on these cells.  

In addition, VEGF has been shown to induce proliferation in endothelial and 

granulosa cells [22,46,6]. As seen in Fig. 3, exposure to THC increased the 

percentage of proliferating SIGCs, as determined by the expression of the 

proliferation marker PHH3.  
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THC-induced increase in VEGF production is not TSP-1 mediated  

One of the mechanisms through which granulosa cells regulate VEGF levels is the 

production of the anti-angiogenic factor thrombospondin 1 (TSP-1). In fact, TSP-1 

has been shown to reduce VEGF expression, inhibit ovarian angiogenesis and 

induce follicle atresia [36,37]. Since TSP-1 directly binds to VEGF, resulting in its 

internalization and degradation through the low-density lipoprotein receptor related 

protein (LRP-1) [42], we hypothesized that the THC-induced increase in VEGF could 

be related to a decrease in TSP-1. However, there were no significant changes in 

the mRNA or protein levels of TSP-1 in the THC-exposed SIGCs (Fig. 4), suggesting 

the increase in VEGF is independent from TSP-1 regulation.  

THC increases PGE2 secretion in granulosa cells  

Prostaglandin E2 (PGE2) has been suggested to play an important role in 

gonadotropin-induced angiogenesis in the ovary [94], and it has been clearly 

demonstrated that PGE2 can induce VEGF expression in several in vitro models 

such as ovarian cancer cells [35], luteal endothelial cells [81] and luteinized 

granulosa cells [23]. In addition, THC has been shown to increase PGE2 secretion in 

some in vitro models [12, 78]. In order to assess the effect of THC on this signaling 

pathway, the concentration of PGE2 was determined in media from THC-exposed 

SIGCs and the mRNA expression of Ptgs1 and Ptgs2, the rate-limiting enzymes 

involved in PGE2 synthesis, was determined.  
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As depicted in Fig. 5, exposure to THC for 24 h did not significantly alter the steady-

state mRNA levels of either Ptgs1 or Ptgs2 (Figs. 5B,5C). However, THC exposure 

resulted in a significant increase in PGE2 secretion (Fig. 5A) from granulosa cells. 

The levels of PGE2 in the media were significantly correlated with VEGF secretion 

in the same cells (r = 0.85; N = 5, p = 0.0019).  

Prostaglandins mediate THC-induced increase in VEGF secretion  

To determine if the increase in VEGF secretion was causally related to increased 

PGE2 production, SIGCs were pretreated with either a specific COX-1 or COX-2 

inhibitor (SC-560 or SC-236, respectively) prior to exposure to THC. Since these 

enzymes represent the rate limiting step in the prostaglandin synthesis pathway, 

blocking their activity results in a general decrease in prostaglandin synthesis. As 

seen in Fig. 6C, pre-treatment with both COX inhibitors blocked the THC-induced 

increase in PGE2 secretion.  

While neither of the COX inhibitors on their own altered Vegf expression or blocked 

the THC-induced increase in Vegfa gene expression (Fig. 6A), concurrent treatment 

with either COX-1 or COX-2 inhibitor prior to THC exposure, did block the THC-

mediated increase in VEGF secretion (Fig. 6B). Collectively, these results suggest 

that the THC-induced increase in VEGF secretion is at least partially mediated by 

prostaglandins, and that this regulation is not at the gene expression level.  
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Discussion  

As the use and potency of cannabis and cannabis derived products increase, it is 

important to understand the effects of this drug and its components on human health. 

While many studies have looked at the effects of cannabis on the nervous system, 

its effects on other peripheral cannabinoid-targets, such as the female reproductive 

system, have received less attention, despite concerns that exposure to cannabis 

may adversely affect reproductive health [32,66]. Results from this study indicate 

that THC exposure had profound effects to stimulate mRNA expression and 

secretion of VEGF from granulosa cells. While some studies have observed 

cannabinoid-induced anti-angiogenic effects, most of these have assessed other 

cannabinoids, such as the non-psychoactive cannabidiol (CBD) or the synthetic 

cannabinoids JWH-133 and WIN-55,212–2 [9,83], which have different affinity and 

potency at the CB1 and CB2 cannabinoid receptors, relative to THC [2]. Studies with 

in vitro exposure models more similar to the present one in terms of THC 

concentration and exposure time, have obtained results that agree with our 

observations. For example, a study in which human trophoblast cells (BeWo) were 

exposed to 15 μM THC for 24 h, reported an increase in VEGF expression [55]. 

Similarly, a recent study with human colorectal cancer cells (HCT116) also reported 

an increase in VEGF secretion after exposure to THC [58].  

While an increase in the secretion of angiogenic factors is a necessary part of follicle 

development, angiogenesis, ovulation and luteolysis, all of these processes are 

tightly regulated during the ovarian cycle [1]. VEGF expression, for example, 
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increases in granulosa cells as the follicle develops, and is thought to play an 

important role in follicle recruitment into the ovarian cycle and selection of the 

dominant follicle, which will in turn ovulate [104,22,64]. Therefore, dysregulation of 

the synthesis and secretion of angiogenic factors, such as the THC-induced increase 

in VEGF we observed, could result in alterations in ovarian function. Indeed, it has 

been shown that exogenous VEGF increases the number of small, preantral follicles 

formed and accelerates follicle growth in rats [19]. TSP-1 null mice are subfertile and 

have altered ovarian morphology associated with increased vascularization and 

disrupted follicle dynamics [42]. Since secretion of VEGF from granulosa cells 

increases significantly in response to the LH surge, prior to ovulation, an increase in 

this factor as a result of external stimuli may impact this process [82,86]. 

Interestingly, cannabis use has been associated with menstrual cycle and ovulatory 

disorders [48,72], and animal studies suggest that THC may exert a direct inhibitory 

effect on folliculogenesis and ovulation [24]. 

In addition to the possible disturbances of the ovarian cycle, dysregulation of VEGF 

has been linked to reproductive disorders such as ovarian hyperstimulation 

syndrome (OHSS) [28]. This disorder is associated with multiple follicle development 

and is more common in patients undergoing IVF, as it is enhanced by the surrogate 

LH surge [47]. In fact, elevated concentrations of VEGF in follicular fluid have been 

related to decreased conception rates in assisted reproductive technologies [33,60]. 

Similarly, cannabis use has also been associated with lower pregnancy rates by IVF, 

as well as less and poorer quality oocytes [50]. Moreover, increased VEGF levels 
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have been linked to other disorders such as endometriosis [30,34] and polycystic 

ovary syndrome (PCOS) [77].  

Secreted VEGF can bind to its receptors on endothelial cells and induce several 

processes such as differentiation, survival, migration and proliferation [102]. 

However, VEGF can also act in an auto and paracrine way, affecting the granulosa 

cells that produce it in a comparable manner. Since THC exposure resulted in an 

increase in secreted VEGF from SIGCs, we assessed the effect of this compound 

on proliferation and apoptosis in these cells. THC exposure increased the 

percentage of proliferating SIGCs, assessed by the expression of the proliferation 

marker PHH3, and conferred a cytoprotective effect on the cells when challenged 

with the pro-apoptotic factor TNFα. These results are consistent with the literature, 

since VEGF has been shown to increase proliferation and reduce activated caspase-

3 and apoptosis in early antral follicles and rat granulosa cells [40,46].  

Given that granulosa cell proliferation supports the progression of follicle growth and 

maturation after recruitment, and that apoptosis is one of the mechanisms underlying 

follicular atresia, through which the dominant follicle is selected, these events must 

be tightly regulated in order to maintain the proper balance between the cyclical 

growth and regression of follicles [62]. As with VEGF, the THC-induced increase in 

proliferation and decrease in apoptosis observed in our study could therefore 

interfere with folliculogenesis and ovulation, as it has previously been suggested in 

clinical and animal studies with cannabis and THC, respectively [48,72,24]. 

Additionally, increased proliferation and decreased apoptosis may be involved in 
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ovarian pathologies such as PCOS and cancer [20,53]. Das and co-workers 

observed that there were significantly more proliferating and significantly less 

apoptotic granulosa cells in patients with PCOS. The authors demonstrated that 

granulosa cells from anovulatory PCOS follicles had lower activated caspase-3 

levels compared to granulosa cells from healthy ovulatory follicles [20]. Increased 

proliferation and decreased apoptosis are also often associated with cancer [53]. In 

accordance, VEGF and its receptors have been shown to be overexpressed in 

granulosa cell tumours (GCT) [29], and the use of an anti-VEGF antibody was 

proven to slow tumour development by inhibiting proliferation in a GCT rodent model 

[95]. To our knowledge, there are no studies that address the effect of THC on the 

etiology of these conditions. However, it is possible that the THC-mediated increase 

in VEGF, along with the increase in proliferation and the decrease in apoptosis of 

granulosa cells, may contribute to the progression of these pathologies in cannabis 

users.  

The influence of THC on proliferation and apoptosis has been widely studied in 

several different models, obtaining contrasting results. While some report an 

increase in proliferation and a decrease in apoptosis [21, 43,90] similar to our 

observations, others report the opposite effects [101,103,65]. These contradictory 

observations may be a result of the differential expression of cannabinoid receptors 

[3]. For example, in a study in which a tumour grade-dependent expression of CB1 

was observed in human ovarian tumours, the authors suggested that cannabinoids 

have opposing effects on non-cancerous cells (such as SIGCs), in which they may 
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activate proliferative pathways, versus cancerous cells, in which they promote anti-

proliferative and apoptotic events [70]. Indeed, several studies that report anti-

angiogenic, anti-proliferative and pro-apoptotic effects of THC do so in cancer cell 

lines or tissues such as brain and immune cells, which are typically rich in CB1 and 

CB2 [8,71]. In addition, granulosa cells have been shown to express not only the 

canonical cannabinoid receptors CB1 and CB2, but also the non-canonical receptors 

GPR55 and TRPV1, which are associated with different signaling pathways and 

downstream cascades than CB1 and CB2 [27,57,97].  

To elucidate the mechanism behind the THC-induced increase in VEGF expression 

and secretion in the granulosa cells, two pathways were evaluated. Since the anti-

angiogenic factor thrombospondin 1 (TSP-1) has been shown to be a key regulator 

of VEGF in the ovary [42], we suspected that reductions in the expression of this 

protein might be responsible for the increase in VEGF after THC exposure. However, 

no significant changes were observed in mRNA or protein levels of TSP-1 in the 

THC-exposed SIGCs, suggesting that the increase in VEGF is not related to altered 

expression of TSP-1. Interestingly, although we previously demonstrated altered 

follicle dynamics in adult rat ovaries as a result of prenatal exposure to THC, we also 

observed a decrease in the percentage of granulosa cells expressing VEGF and an 

increase in the percentage of granulosa cells expressing TSP-1 [61]. This suggests 

that THC affects different regulatory mechanisms, depending on the direct or indirect 

interaction with the tissue, as well as the time and window of exposure.  
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Prostaglandins have also been proposed as angiogenic regulators in the ovary, and 

several in vitro models have demonstrated the direct influence of PGE2 on VEGF 

expression [56,81,94]. To determine if THC influenced the prostanoid synthesis 

pathway, the expression of the prostaglandin biosynthetic enzymes PTGS1 (COX-

1) and PTGS2 (COX-2) was determined, and PGE2 concentrations were measured. 

While there were no significant changes in the expression of either Ptgs1 or Ptgs2, 

THC exposure resulted in a significant increase in PGE2 secretion after 24 h. The 

THC-induced increase in PGE2 secretion by granulosa cells may affect several 

ovarian processes. As previously mentioned, since secretion of both VEGF and 

PGE2 increases significantly from granulosa cells as a response to the LH surge 

prior to ovulation [86], an increase in these factors due to external stimuli may result 

in alterations in this process [75]. Excessive PGE2 synthesis may also cause 

inflammatory damage in the ovary [76]. In addition, PGE2 has been linked to PCOS, 

since granulosa cells from patients with this condition secrete greater levels of PGE2 

than healthy controls [74]. On the other hand, epithelial ovarian cancers overexpress 

biosynthetic prostaglandin enzymes and prostaglandin receptors [79], and it has 

been shown that exposure of epithelial ovarian cancer cells to PGE2 stimulates 

proliferation and reduces apoptosis in vitro [73]. Interestingly, Takeda and co-

workers reported that the THC-induced proliferation of human breast cancer cells 

(MCF-7) was diminished by PTGS inhibition and enhanced by the addition of 

arachidonic acid, the precursor of prostaglandins and a product of endocannabinoid 

metabolism [90].  
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The effect of THC on the prostaglandin signaling pathway appears to be largely 

tissue dependent. Several studies have reported a THC-induced increase in PGE2 

in in vivo models, such as the rodent brain [16,45,7], and in vitro models, such as 

human lung fibroblast cells [12], trabecular meshwork cells [78] and nonpigmented 

ciliary epithelium cells [80]. Other studies, however, have reported a THC-induced 

decrease in PGE2 [4,15]. In fact, it is not uncommon for cannabis to be used to 

relieve symptoms associated with inflammation [59].  

While in the present study we observed an increase in PGE2 output in the absence 

of any changes in the expression of Ptgs1 or Ptgs2, it is possible that there were 

alterations in other enzymes involved in prostaglandin synthesis or degradation, 

and/or changes in their substrate levels. Indeed, Burstein and colleagues suggested 

that the induction of PGE2 secretion by THC was mediated through the activation of 

phospholipase A2 (PLA2), which hydrolases membrane phospholipids into 

arachidonic acid [14]. Furthermore, in a study with bovine endothelial cells, inhibition 

of PLA2 diminished the glucose-induced elevation of PGE2 and VEGF, as well as 

VEGF-induced proliferation [38].  

In order to determine if the increase in VEGF was a consequence of increased PGE2 

output, SIGCs were treated with specific COX-1 and COX-2 inhibitors in combination 

with THC exposure. While neither of the COX inhibitors affected Vegf gene 

expression on their own, nor did they block the THC-induced increase in Vegf 

expression, both inhibitors were able to block the THC-mediated increase in VEGF 

secretion. These results suggest that the increase in VEGF secretion as a response 
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to THC exposure is prostaglandin-mediated, and that this regulation is not at the 

gene expression level. Similar to our observations, a study with human airway 

smooth muscle cells (HASM) reported a concentration-dependent increase in VEGF 

secretion as a result of exposure to the pro-inflammatory mediator bradykinin (BK). 

A non-specific COX inhibitor (indomethacin) and a COX-2 specific inhibitor (NS-398) 

reduced PGE2 synthesis and blocked the increase in VEGF secretion. In 

accordance, treatment of HASM with PGE2 also resulted in a concentration-

dependent increase in VEGF secretion, and the addition of arachidonic acid 

increased both VEGF and PGE2 production, an effect that was blocked by 

indomethacin. Since BK treatment increased VEGF secretion without changing 

VEGF mRNA levels, the authors suggested a post-transcriptional regulatory 

mechanism [51]. In the present study, treatment of granulosa cells with COX 

inhibitors in combination with THC resulted in an increase in Vegf gene expression, 

but not in an increase in VEGF secretion, while treatment with COX inhibitors on 

their own significantly decreased VEGF secretion without changing Vegf gene 

expression. Therefore, these results also suggest a COX mediated post-

transcriptional regulatory mechanism of VEGF secretion. In addition, although it is 

clear that both COX inhibitors reversed the THC-mediated increase in VEGF 

secretion compared to the vehicle group, it is plausible that this effect was 

counteracted rather than abolished, given that treatment with inhibitors alone 

significantly decreased VEGF secretion. However, more experiments are needed in 

order to fully elucidate the underlying regulatory mechanisms.  
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Conclusions  

While there are several limitations to a short-term in vitro study such as the present 

one, exposure of ovarian granulosa cells to delta-9- tetrahydrocannabinol resulted 

in significant changes in the expression and secretion of important regulating factors, 

as well as alterations in cell survival and proliferation. THC-induced increase in 

VEGF and PGE2 secretion, as well as the increased proliferation and decreased 

apoptosis, may have an impact on essential ovarian processes such as 

folliculogenesis and ovulation, which may in turn affect female fertility. In addition, 

considering increased levels of VEGF and PGE2 have been associated with 

gynecological disorders such as polycystic ovary syndrome, endometriosis, ovarian 

hyperstimulation syndrome and ovarian cancer, it is possible that chronic THC 

exposure may play a role in these conditions. Given the increasing use of cannabis 

by reproductive age women and the uncertainties regarding its impact on 

reproductive health, more studies are urgently required.  
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Figures and tables 

 

 

Fig. 1. A. Relative expression of Vegfa in spontaneously immortalized rat granulosa 

cells (SIGCs) exposed to 15 µM THC for 6 and 24 h (h). B. Intracellular VEGF protein 

levels relative to α-tubulin in SIGCs exposed to 15 µM THC for 24 h. C. Extracellular 

VEGF concentrations in media from SIGCs exposed to 15 µM THC for 24 h 

(Mean+SE; N = 5, *p < 0.05). 
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Fig. 2. Activated caspase-3/7 in spontaneously immortalized rat granulosa cells 

(SIGCs) exposed to 15 µM THC, 100 ng/mL TNFα or both (THC + TNFa) for 24 h 

(Mean+SE; N = 5, *p < 0.05). 
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Fig. 3. Percent of proliferating spontaneously immortalized rat granulosa cells 

(SIGCs) exposed to 15 µM THC for 24 h (Mean+SE; N = 5, *p < 0.05). 
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Fig. 4. A. Relative expression of Thbs1 in spontaneously immortalized rat granulosa 

cells (SIGCs) exposed to 15 µM THC for 24 h. B. Intracellular TSP-1 protein levels 

relative to α-tubulin in SIGCs exposed to 15 µM THC for 24 h (Mean+SE; N = 5). 
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Fig. 5. A. Concentration of PGE2 in media from spontaneously immortalized rat 

granulosa cells (SIGCs) exposed to 15 µM THC for 24 h. B. Relative expression of 

Ptgs1 in SIGCs exposed to 15 µM THC for 24 h. C. Relative expression of Ptgs2 in 

SIGCs exposed to 15 µM THC for 24 h (Mean+SE; N = 5, *p < 0.05). 
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Fig. 6. A. Relative expression of Vegfa in spontaneously immortalized rat granulosa 

cells (SIGCs) exposed to 15 µM THC (THC), 1 µM SC-560 alone (SC-560) or in 

combination with THC (SC-560 +THC), 5 µM SC-236 alone (SC-236) or in 

combination with THC (SC-236 +THC) for 24 h. B. Concentration of VEGF in media 

from SIGCs exposed to THC, SC-560, SC-560 +THC, SC-236 or SC-236 +THC for 

24 h. C. Concentration of PGE2 in media from SIGCs exposed to THC, SC-560, 

SC560 +THC, SC-236 or SC-236 +THC for 24 h (Mean+SE; N = 5, *p < 0.05). 
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Table 1. Forward and reverse primer sequences for Vegfa, Thbs1, Ptgs1, Ptgs2, 

B2m and Hprt1. 
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CHAPTER 5: CONCLUSIONS AND FUTURE DIRECTIONS 

Summary of the work 

The overall goal of this thesis was to evaluate the impact of cannabis constituents 

on ovarian health and function, with a focus on the long-term effects of prenatal 

exposure and the underlying molecular mechanisms. The main findings of this 

research project are that gestational exposure to delta-9-tetrahydrocannabinol 

(THC), the psychoactive component of cannabis, resulted in altered follicle 

dynamics, decreased vascularization and increased follicular apoptosis in the adult 

rat ovary. These alterations were associated with changes in the ovarian miRNA 

profile, as well as with altered gene expression and protein levels of important factors 

involved in the regulation of ovarian processes.  

Specifically, prenatal THC exposure increased the expression of miR-122-5p and 

decreased the expression of its validated target gene insulin-like growth factor 1 

receptor (Igf1r), which plays an important role in the regulation of ovarian 

steroidogenesis, folliculogenesis, angiogenesis, and granulosa cell proliferation and 

apoptosis [159]. Prenatally THC-exposed ovaries also had increased follicular 

apoptosis, determined by the presence of cleaved caspase-3. The reduced 

vascularization in prenatally THC-exposed ovaries, on the other hand, was 

associated with a decrease in the percentage of granulosa cells expressing the 

angiogenic factor vascular endothelial growth factor (VEGF) and its receptor 

(VEGFR-2), as well as an increase in the percentage of granulosa cells expressing 

the antiangiogenic factor thrombospondin 1 (TSP-1). The differential expression of 
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these important growth factors in the ovary, along with the decreased vascularization 

and increased follicular apoptosis may partially explain the altered follicle dynamics 

observed in prenatally THC-exposed rats at 6 months of age, as they had 

accelerated folliculogenesis with follicular development arrest.  

In addition, the direct impact of THC on ovarian explants and spontaneously 

immortalized rat granulosa cells was also evaluated, revealing both similarities and 

differences between the in utero, ex vivo and in vitro models. This suggests that 

while the ovary appears to be a target for THC, it is likely that this compound exerts 

its effects through different molecular mechanisms depending on the direct or 

indirect interaction with the tissue, as well as the concentration, time, window and 

duration of exposure.  

Alterations in ovarian follicular dynamics 

Considering that the rodent embryo expresses the cannabinoid receptors CB1 and 

CB2, to which THC is known to bind to, and that gestational exposure to THC has 

previously been shown to result in intrauterine growth restriction [78,160], we 

suspected that prenatal exposure to this compound may have direct and/or indirect 

effects on the developing ovary that could manifest during adulthood.  

In female mammals, primordial germ cells arise from the yolk sac and migrate 

through the primitive gut into dorsal mesentery and then laterally to the gonadal 

ridges, where they proliferate as oogonia and subsequently enter meiosis. Later in 

development, somatic cells, that will eventually differentiate into granulosa cells, 
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closely associate with oogonia, that will enlarge and develop into oocytes, and 

together they form primordial follicles [161]. These primordial follicles are the 

reproductive units of the ovary, and they remain dormant until being recruited into 

the growing pool via a process known as activation [162,163]. Folliculogenesis 

describes the progression of small primordial follicles into large preovulatory follicles. 

Upon activation, primordial follicles transition into primary follicles, when granulosa 

cells surrounding the oocyte become cuboidal and undergo extensive proliferation. 

Primary follicles then grow into secondary follicles, which consist of an oocyte 

surrounded by multiple granulosa cell layers, basal lamina and a theca cell layer. 

This is followed by the formation of a fluid-filled antral follicle which can then release 

the mature oocyte from the ovary in a process known as ovulation [164]. The vast 

majority of the follicles that are recruited into the growing pool undergo endocrine 

controlled apoptosis (atresia), regardless of the developmental stage [165,166]. 

In the present study, exposure of rats to THC from gestation day (GD) 6 to GD22 

resulted in altered ovarian follicular dynamics in the adult offspring. At 6 months of 

age, prenatally THC-exposed rats had a significant increase in the number of follicles 

transitioning from the primordial stage to the primary stage, which could be a result 

of an increase in the activation of the dormant primordial follicle pool. The activation 

of primordial follicles is a complex but orchestrated process regulated by multiple 

factors and pathways, both in the oocytes and the granulosa cells [167]. At the 

earliest stages, the oocyte-intrinsic factor FOXO3 plays a role as a suppressor of 

primordial follicle activation. Phosphorylation of FOXO3 by the PI3K-AKT pathway 
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suppresses its transcriptional function, while dephosphorylation by PTEN does the 

opposite. Therefore, PTEN-mutant mice have increased oocyte activation [167,168]. 

Upstream of PI3K, the granulosa cell-expressed KITL binds to its oocyte-expressed 

receptor KIT to initiate primordial follicle activation [167,168]. In granulosa cells, the 

mTOR kinase complex 1 (mTORC1) is involved in oocyte activation, and the 

deficiency of its inhibitor TSC1 induces the premature awakening of dormant oocytes 

[168]. Other factors, such as FOXL2, Sohlh1, NOBOX, BMP4, bFGF and Lhx 8 are 

also involved in the regulation of primordial follicle activation [167]. Sohlh1-deficient 

ovaries, for example, show defects in the primordial to primary follicle transition 

[168]. In later stages, the secretion of growth differentiation factor 9 (GDF9) and bone 

morphogenetic protein 15 (BMP15) regulate granulosa cell proliferation. Therefore, 

GDF9 and BMP15 deficient mice show a block in follicular development beyond the 

primary one-layer follicle stage, with BMP-15 deficient mice having a milder 

phenotype [168]. Interestingly, ovaries from prenatally THC-exposed animals have 

a significant decrease in GDF9 and BMP15 expressing follicular cells 

(Supplementary figure 1), which could be associated with the apparent follicular 

development arrest beyond this stage. These different signaling pathways and 

regulating factors remain to be explored in the prenatally THC-exposed animals, as 

changes in their expression or activity could help elucidate the mechanisms behind 

the apparent increase in follicle activation. 

Beyond the molecular mechanisms regulating primordial follicle activation, however, 

it has previously been suggested that primordial follicles that are prematurely 
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recruited into the growing pool are subsequently lost, resulting in no net loss or gain 

of developed follicles [169]. In support of this hypothesis, we did not observe any 

differences in the levels of circulating estradiol, progesterone or testosterone, or in 

the number of developed follicles, which are largely responsible for the synthesis of 

steroid hormones. In fact, we found no significant differences in the number of 

follicles of any of the later stages of development (primary, secondary or antral), 

suggesting that a significant portion of the transitioning follicles did not continue to 

develop. Considering the stage at which folliculogenesis seemed to diminish, it is 

possible that the conditions were not appropriate for the transitioning follicles to 

continue to grow [170]. This could be related to insufficient nutrients, oxygen or an 

imbalance between hormones and/or growth factors. Indeed, prenatally THC-

exposed ovaries had decreased vascularization, along with a decrease in VEGF, 

VEGFR-2 and IGF-1R, as well as an increase in TSP-1, all important factors involved 

in the regulation of angiogenesis and folliculogenesis. Gestational exposure to THC 

has previously been shown to impair placental vascularization, suggested to be the 

main cause of the fetal growth restriction observed in THC-exposed rodents 

[78,171]. Interestingly, the glucose transporter GLUT1, known to be regulated by the 

IGF1/IGF1-R pathway, was also decreased in THC-exposed placenta [78,172], 

suggesting other fetal tissues may present similar phenotypes. In addition to the 

follicular developmental arrest, prenatally THC-exposed offspring had increased 

granulosa cell apoptosis, an important factor of follicular atresia [173]. Although there 

were no statistically significant differences in the number of atretic follicles in the 

THC-exposed ovaries (p = 0.197), this could be a reflection of the small sample size. 
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It is also possible that the increase in apoptosis may manifest more clearly as follicle 

loss as the animal ages [174]. 

As it is generally accepted that the total population of primordial follicles within the 

postnatal mammalian ovary will decrease gradually until the cessation of 

reproductive function is reached [175], factors that accelerate the depletion of the 

primordial follicle pool result in a shorter reproductive lifespan and premature ovarian 

failure [176,177]. Therefore, the increase in transitioning follicles, along with the 

follicular development arrest and increased follicular apoptosis observed in the 

prenatally THC-exposed animals could lead to a premature loss of the primordial 

follicle pool and early reproductive senescence. Additionally, considering that the 

primordial germ cells of these animals were also exposed to THC during gestation, 

it is not only possible that the quality of the oocytes may have been affected, but also 

that these effects may be transmitted to their offspring. Indeed, it has been shown 

that in utero insults can result in diminished ovarian health and function in adulthood, 

and that these alterations can be transmitted to the next generations, most likely 

through changes in epigenetic mechanisms [146]. It would therefore be an important 

next step to assess the fertility and reproductive lifespan of prenatally THC-exposed 

animals, as well as ovarian health and function in their offspring. 

Changes in epigenetic regulation 

Considering that alterations in prenatally THC-exposed offspring were observed at 

6 months of age, which is long after the exposure to THC ceased, we hypothesized 
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that THC might have affected the regulation of epigenetic pathways in the ovaries. 

Indeed, prenatal THC exposure altered the expression of 12 out of the 420 evaluated 

miRNAs, with 11 of them being downregulated and only miR-122-5p (miR-122) being 

upregulated. As miR-122 is highly conserved among species and had a much higher 

fold-change when compared to controls, this target was chosen for further evaluation 

[178]. While the down-regulation of Igf1r, a validated target for miR-122, was an 

interesting and consistent observation that might be involved in the altered follicle 

dynamics, apoptosis and vascularization observed in these ovaries, other miR-122 

targets remain to be explored. For example, the miR-122 validated target genes 

serum response factor (Srf), mitogen-activated protein kinase 3 (Mapk3) and B-cell 

lymphoma 9 protein (Bcl9) are also involved in the regulation of important ovarian 

processes, such as cellular response to gonadotropins, and granulosa cell 

proliferation and apoptosis [178–181]. Indeed, it has been shown that 

overexpression of miR-122 significantly inhibited chicken granulosa cell proliferation, 

as well as decreasing the expression of its target gene Mapk3 [178]. Interestingly, 

prenatally THC-exposed ovaries had a non-statistically significant (p=0.051) 

decrease in Mapk3 expression (Supplementary figure 2). However, given the small 

p value, it is still worth evaluating MAPK3 protein levels, as well as a proliferation 

marker in the prenatally THC-exposed ovaries. In addition, using a primary ovarian 

insufficiency (POI) mouse model, Zhang and colleagues demonstrated that miR-122 

promoted granulosa cell apoptosis by targeting Bcl9 [179]. As prenatally THC-

exposed ovaries had increased follicular apoptosis, it would be relevant to assess 
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Bcl9 expression. The evaluation of other miR-122 targets may provide further insight 

into the pathways affected by in utero THC exposure.  

Moreover, given the significant impact of prenatal THC exposure on the expression 

of miR-122 in the ovary, it is possible that the expression of this miRNA is also 

affected in other tissues. It was previously thought that miR-122 was liver-specific, 

as it accounts for a significant portion of all the hepatic miRNA population [180]. In 

the same cohort of animals as the present study, prenatally THC-exposed male 

offspring exhibited increased visceral adiposity and higher hepatic triglycerides at 6 

months of age [182]. This is relevant considering that miR-122 plays a crucial role in 

the regulation of cholesterol and fatty acid metabolism in the adult liver [183]. Indeed, 

it has been shown that inhibition of miR-122 reduced total cholesterol and 

triglycerides in plasma of healthy mice, and decreased liver steatosis and triglyceride 

accumulation in high-fat diet mice [184]. In the same study, miR-122 inhibition was 

associated with a decrease in hepatic fatty-acid synthesis rate, along with reduced 

expression of genes involved in fatty-acid synthesis including FASN, ACC1, ACC2, 

SCD1 and ACLY, suggesting that miR-122 plays a significant role in promoting lipid 

synthesis in the adult liver [184]. Interestingly, prenatally THC-exposed rats had 

augmented expression of ACC1 and SCD1 at 3 weeks of age [182]. While the THC-

induced metabolic alterations were associated with decreased expression of miR-

203a-3p and miR-29a/b/c in this study [182], it is also possible that prenatal THC-

exposure resulted in an increased expression of miR-122, similar to what was seen 

in the ovary, and that this dysregulation is implicated in the increased visceral 



Ph.D. Thesis                                                                                                                      McMaster University 
Annia A. Martínez-Peña                                                                      Medical Sciences Graduate Program 

130 
 

adiposity and hepatic triglycerides. This hypothesis is currently being evaluated by 

our research group. 

Furthermore, it is important to note that alterations in different epigenetic pathways 

are not mutually exclusive; namely, although changes in miRNA expression were 

detected in prenatally THC-exposed animals, alterations in DNA methylation 

patterns or histone modifications may also be present. In fact, it is possible that the 

overexpression of miR-122 itself may be regulated by other epigenetic mechanisms 

[185]. For example, it has been shown that the promoter region of miR-122 is 

hypermethylated in human hepatocellular cancer cells (HCC) when compared to 

human primary hepatocytes [186], and treatment of HCC with a DNA methylation 

inhibitor (5-Aza-CdR) significantly increases the expression of miR-122 [185]. In 

addition, the upregulation of miR-122 may also affect the expression of other 

epigenetic factors such as enzymes involved in DNA or histone modification, 

including the histone methyltransferase G9a [187]. Therefore, and taking into 

account that gestational THC exposure has previously been shown to affect histone 

modifications in the adult rat brain [147], it would be relevant to assess the effects of 

prenatal THC exposure on DNA methylation and histone modifications. 

Direct effects of THC on the ovary 

In order to elucidate the direct effects of THC on the ovary, ex vivo and in vitro 

models were used. Considering the impact of THC on IGF-1R in the prenatally 

exposed ovaries, the expression of Igf1r was evaluated in rat ovarian explants and 
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spontaneously immortalized rat granulosa cells (SIGCs). Similar to what was seen 

in the prenatally THC-exposed ovaries, THC reduced the expression of Igf1r in both 

the ovarian explants and SIGCs. The IGF-1R plays a key role in the ovary, as it is 

involved in the regulation of ovarian steroidogenesis, folliculogenesis, angiogenesis 

and granulosa cell proliferation and apoptosis [159,188]. Mice with a conditional 

granulosa cell knockdown of Igf1r are sterile, with small ovaries lacking antral 

follicles, unable to ovulate and unresponsive to gonadotropins [159]. Indeed, it has 

previously been shown that IGF-1R inactivation reduces gonadotropin-induced 

follicle growth in rats, and that selective inhibition of IGF-1R activity in rat granulosa 

cells prevents the FSH-induced expression of Cyp19 and Cyp11a1, both involved in 

steroidogenesis and important markers of granulosa cell differentiation and follicle 

growth [189]. The authors proposed that FSH amplifies basal IGF-1R signaling, and 

that the interaction between the endocrine effect of FSH and the autocrine actions 

of IGF-1 might play an essential role in follicle growth and dominance [189]. For this 

reason, it would be interesting to evaluate if exposure to THC impacts granulosa cell 

response to FSH, either by assessing the expression of differentiation markers, AKT 

activation or steroid hormone production. This could provide information that might 

help explain the adverse reproductive outcomes reported in adult cannabis users 

such as an increased risk of infertility due to ovulatory abnormalities [71], fewer and 

poorer quality oocytes, as well as lower pregnancy rates by in vitro fertilization (IVF) 

[72].  
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Moreover, as blood vessel density and granulosa cell expression of VEGF were also 

significantly affected by gestational THC exposure, the expression of Vegfa was 

evaluated in spontaneously immortalized rat granulosa cells (SIGCs) cultured with 

THC. Interestingly, exposure to THC increased the expression and secretion of 

VEGF in rat granulosa cells, contrary to what was seen in the prenatally exposed 

adult ovaries. As expected with the increase in VEGF, THC-exposed granulosa cells 

also had increased proliferation and cell survival when challenged with the 

apoptosis-inducing factor TNFα. Given that these alterations were not associated 

with changes in TSP-1 production, and that it has been clearly demonstrated that 

prostaglandin E2 (PGE2) plays an important role in gonadotropin-induced 

angiogenesis and in the regulation of VEGF expression in the ovary [56,190–192], 

the prostanoid pathway was evaluated. THC exposure increased secretion of PGE2 

without affecting the expression of COX1 and COX2, the rate-limiting enzymes 

involved in prostanoid synthesis. Pre-treatment of SIGCs with COX inhibitors, prior 

to THC exposure, blocked the THC-induced increase in PGE2 and VEGF secretion, 

without affecting Vegfa expression.  

These results were interesting considering that cannabinoids and cannabis in 

general are thought to be anti-angiogenic, anti-proliferative and anti-inflammatory 

[171,193–196]. Nevertheless, it is important to note that these effects seem to 

depend on the cannabinoid used and specific tissue type. For example, Blázquez 

and colleagues reported the anti-angiogenic effects of the synthetic cannabinoids 

WIN-55,212–2 and JWH-133 in mouse glioma [197]. However, these synthetic 
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cannabinoids have a higher affinity and potency at the CB1 and CB2 receptors, 

relative to THC [198]. In addition, not only is the brain a tissue known to be rich in 

CB1 [199], but it has also been shown that there is an overexpression of cannabinoid 

receptors in cancerous tissue when compared to its healthy counterpart [193,200]. 

Several studies that report anti-angiogenic, anti-proliferative and pro-apoptotic 

effects of THC do so in cancer cell lines or tissues such as brain and immune cells, 

which are typically rich in CB1 and CB2 [193,196]. Indeed, in a study in which a 

tumour grade-dependent expression of CB1 was observed in human ovarian 

tumours, the authors suggested that cannabinoids have opposing effects on non-

cancerous cells, in which they may activate proliferative pathways, versus cancerous 

cells, in which they promote anti-proliferative and apoptotic events [200].  

Granulosa cells have been shown to express not only the canonical cannabinoid 

receptors CB1 and CB2, but also the non-canonical receptors GPR55 and TRPV1, 

which are associated with different signaling pathways and downstream cascades 

than CB1 and CB2 [158,201,202]. For example, the activation of GPR55 by one of 

its natural agonists, lysophosphatidylinositol (LPI), has been associated with 

angiogenesis and endothelial cell proliferation in ovarian cancer [203]. Therefore, it 

is possible that THC exerts its effects on VEGF and PGE2 production through a 

different mechanism than by binding to and activating the canonical CB1 and CB2 

receptors in the SIGCs. In support of this hypothesis, when SIGCs were pretreated 

with CB1 and CB2 antagonists (1 μM Rimonabant hydrochloride and 0.1 μM 

SR144528, respectively) for 1 hour prior to THC exposure, the THC-induced 
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increase in Vegfa expression was not blocked (Supplementary figure 3). 

Additionally, these effects were seen after exposure to 15 μM THC, a concentration 

that has been shown to increase VEGF expression in human trophoblast cells [204] 

and that is 5 times higher than the concentration of THC that downregulated Igf1r 

and had no effect on Vegfa (i.e., 3 μM), suggesting different concentrations of this 

compound may activate different pathways. Taking this into account, it would be 

relevant to repeat this experiment using specific antagonists for other cannabinoid 

receptors, such as GPR55, in order to determine the mechanism through which THC 

enhances Vegfa expression in the SIGCs.  

Overall, results from this thesis suggest that in utero exposure to THC may have 

detrimental effects on ovarian health in adulthood that could lead to subfertility and/or 

early reproductive senescence, and that these effects are regulated by changes in 

epigenetic mechanisms. On the other hand, THC exposure in adulthood may 

interfere with folliculogenesis and ovulation, and/or be involved in the progression of 

gynaecological disorders such as ovarian hyperstimulation syndrome, polycystic 

ovary syndrome and ovarian cancer [72,205–216]. It is possible to conclude that 

THC affects different regulatory mechanisms, depending on the concentration, the 

direct or indirect interaction with the tissue, as well as the time and window of 

exposure. It is still clear, however, that exposure to THC had a profound impact on 

several key pathways that regulate ovarian function. Some of these pathways (e.g., 

regulation of apoptosis) are also important for the maintenance of tissue function in 

other organs, highlighting the need to explore the effects of fetal exposure to THC in 



Ph.D. Thesis                                                                                                                      McMaster University 
Annia A. Martínez-Peña                                                                      Medical Sciences Graduate Program 

135 
 

other organs and systems, although this remains to be evaluated. Given the 

increasing use of cannabis by pregnant women and women of reproductive age, 

more studies are required in order to have a better understanding of the effects of 

cannabis and its constituents on female reproductive health and fertility. 

Limitations 

While several important conclusions can be drawn from this body of work, there are 

still limitations and further questions which remain to be explored. The 

standardization of cannabis exposure, for example, continues to be a challenge. All 

of the studies presented in this thesis evaluated the effects of delta-9-

tetrahydrocannabinol (THC) alone. However, THC is rarely consumed on its own [4]. 

As mentioned, the cannabis plant contains over 500 compounds from several 

different chemical classes, and these compounds may interact with each other and 

possibly act through different mechanistic pathways in the body [217,218]. 

Of particular concern is the non-psychoactive phytocannabinoid cannabidiol (CBD), 

as it is increasingly being advocated as a therapeutic resource for several conditions 

ranging from neurological, psychiatric and psychological disorders [219–222], to 

posttraumatic stress disorder [223], opioid use disorder [224], social anxiety/stress 

[225,226] and insomnia [227], as well as other physiological conditions such as 

ulcerative colitis/inflammation [228,229], nausea and emesis [230]. It is therefore not 

surprising that CBD is increasingly being used by pregnant women as an apparently 

safer alternative to treat pregnancy-related symptoms [231]. Although little is known 
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regarding the effect of CBD on female reproductive health, studies suggest that this 

phytocannabinoid may affect the homeostasis of the endocannabinoid system [232], 

as well as the process of decidualization, through which the endometrium becomes 

receptive to embryo implantation [217,233]. Moreover, adequate data on the 

developmental risks associated with the use of CBD in pregnant women is currently 

insufficient [231]. Animal studies have shown that perinatal exposure to high 

concentrations of CBD (150 or 250 mg/kg/day) resulted in increased embryofetal 

mortality, as well as decreased growth, delayed sexual maturation, 

neurobehavioural changes and adverse effects on male reproductive organ 

development and fertility [234]. More studies are needed in order to assess the 

potential effects of CBD on female reproductive health and its impact on the 

developing fetus when used during pregnancy. 

Furthermore, while the use of three different experimental models in this thesis 

provides greater insight into the effects of THC on the ovary and allows the study of 

different mechanistic pathways, each of these models comes with its own 

advantages and limitations. For example, ex vivo and in vitro models facilitate the 

evaluation of direct exposure of the tissue and cells to the compound, with greater 

control over experimental conditions. The use of ovarian explants represents a 

microenvironment and cell diversity that more closely resemble in vivo conditions, 

while the use of spontaneously immortalized granulosa cells provides information on 

the effect of THC only on this specific cell type. However, both of these models 

represent short-term exposure and may not reflect the impact of long-term cannabis 
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or THC exposure on the ovary. In addition, cannabis is more commonly smoked or 

ingested [4] and ovarian exposure is a mixture of the parent compound as well as 

metabolites, an effect which is not accounted for in these models. Finally, THC and 

other cannabis components reach other organs and systems that could indirectly 

affect the ovary. In particular, it has been shown that cannabis and THC can alter 

components of the HPG axis, such as levels of gonadotropin releasing hormone 

and/or gonadotropins, which could impact ovarian function [69,73–77].  

The in utero exposure model, on the other hand, allows the evaluation of the long-

term effects of THC on the developing ovary. Although this model is closer to human 

prenatal cannabis exposure, there are other limitations to be considered. In the 

animal model described in this thesis, a single dose of THC was administered by IP 

injection. Since cannabis strains differ in THC content, and the amount and 

frequency of consumption vary widely from user to user [4], a large dose range would 

be necessary in order to encompass all of human exposure. In addition, the ovaries 

from prenatally THC-exposed offspring were evaluated at a single time point, limiting 

the knowledge about the effects that could have been observed prior to or after that 

point. Therefore, there are still questions regarding the affected pathways in the 

neonatal and prepubertal stages, as well as the potential loss of follicles and 

premature reproductive senescence in later stages of life.  

Despite these limitations, the use of several models and techniques allowed the 

assessment of different reproductive parameters, pathways and regulating 

mechanisms affected by delta-9-tetrahydrocannabinol in the ovary. The data 
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obtained in this thesis represents a significant contribution to the literature regarding 

the developmental and reproductive toxicological properties of cannabis and its 

constituents. 
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SUPPLEMENTARY FIGURES 

 

 

 

Figure 1. Percentage of GDF9 and BMP15-positive ovarian follicular cells in 

prenatally THC-exposed adult rat ovaries (Mean+SEM; N=5, *p<0.05). 
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Figure 2. Relative expression of Mapk3 in prenatally THC-exposed adult rat ovaries 

(Mean+SEM; N=5). 
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Figure 3. Relative expression of Vegfa in spontaneously immortalized rat granulosa 

cells (SIGCs) exposed to 15 μM THC, 1 μM Rimonabant hydrochloride and 0.1 μM 

SR144528 (CB1+CB2 antagonists), or all three compounds (Antagonists + THC) for 

48 h (Mean+SEM; N=6, *p<0.05). 
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