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Lay Abstract  

 

Three-dimensional (3D) tissue models refer to mini-organs grown in labs that exhibit many 

features of human tissues. Specifically, 3D models can replicate organ structures, which is 

essential to their function. However, analyzing these structures can be challenging due to 

limitations with current image analysis tools that are not suited for complex morphologies. To 

address this limitation, this work focuses on the application of deep learning techniques instead. 

Deep learning models can learn to identify objects within images and can be trained to recognize 

the complex structures from bright-field images directly. In this work, we apply deep learning to 

analyze miniature lung and colon tissues. We demonstrate that these analysis tools can 

successfully capture changes in the structure of these organ models and apply them for use in 

several biological studies.       
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Abstract  

 

Three-dimensional (3D) tissue models, like organoids and spheroids, have been used to 

recapitulate many characteristics of human tissues. In particular, 3D tissue models can mimic 

key structural features of the native tissue. However, analyzing the morphology of 3D tissue 

models is limited by current image analysis tools that extract features like size, contours and 

texture which cannot fully describe the exhibited morphologies. Instead, deep learning 

techniques, which can identify objects from images directly can be used to make this type of 

analysis possible. In this work, we focus on applying deep learning to analyze the 3D tissue 

morphologies in brightfield images for the first time. Specifically, we developed and validated 

deep learning models to analyze important structures exhibited by lung spheroids or colon 

organoids. Deep-LUMEN is a custom deep learning model that can analyze the polarization of 

lung spheroids. We validated Deep-LUMEN by assessing how the extracellular matrix affects 

spheroid polarization and how the drug cyclosporin disrupts spheroid assembly. By analyzing the 

morphological features of lung spheroids, we found that cyclosporin can induce toxic effects at 

much lower concentrations than expected. This work also presents D-CryptO, a deep learning-

based tool that can be used to analyze the structural maturity of colon organoids. D-CryptO 

analyzes the opacity and the presence of budding structures to assess tissue maturation. We 

validated D-CryptO by analyzing colon organoid morphology during prolonged culture and 

short-term perturbation with external stimuli. Additionally, we further applied it to assess 

organoid morphology following treatment with several chemotherapeutic drugs. Using D-

CryptO, we gained insights into potential mechanisms of drug-induced toxicity. Together, these 

models demonstrate that deep learning is a viable technique to analyze 3D tissue morphology 

and it can be applied in a broad range of biological studies to gain useful insights into tissue 

physiology.  
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Chapter 1: Introduction 

 

 

The use of cellular models has been instrumental to understand cell physiology in vivo. 

Specifically, 2D cell culture has been extensively used to understand cell biology. These 

models consist of cells grown on a flat, adherent substrate. While convenient to use and more 

robust, drug responses, gene expression, and cell shape are inconsistent with in vivo tissues, 

which limits the number of insights that can be gained from these experiments. 1 This also 

affects the development of new drugs and therapies. For example, many new drugs are 

recalled in the later stage of clinical trials due to unanticipated toxicity effects.2 As a result, 

focus has shifted to creating three-dimensional (3D) tissue models that can better mimic tissue 

responses in vivo. These studies have shown that characteristics like cell proliferation, gene 

and protein expression levels, and drug effects more closely match human tissues.  

 

A key aspect that 3D models recapitulate is the structure of tissues in vivo, which cannot be 

modelled using 2D culture. For example, epithelial tissues are essential components of organs 

that provide a barrier to the environment and have specific structures suited for their 

function.3 Spheroids are 3D models that can be derived from a broad range of cell types and 

can self-assemble into polarized structures, which are a common feature of many epithelial 

tissues, and have been used to study tissue polarization. Previously, spheroids have been used 

to model the kidney, the liver, and the intestinal epithelium.4–6 Spheroids can also form 

disorganized structures with disrupted cell polarity, making them suitable models to study 

cancers or other disorders affecting cell polarity like ciliopathies.7 Organoids are alternative 

tissue mimics, which are derived from stem cells or progenitor tissue, and exhibit organ-

specific morphologies.8 For example, organoids have modelled the regions of the brain, the 

crypt-villus axis in the small intestine, the crypts in the colon, and the nephron of the kidney.9–

12 
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While these morphologies are observable in bright-field images, techniques to analyze and 

distinguish between them are limited. Analysis can be done manually or through software 

tools that can extract image features like texture and contours.13,14 However, these features do 

not accurately describe the morphologies of the 3D models. Additionally, the differences 

between the morphologies may not be discernible with these parameters. To address these 

constraints, deep learning, which is a computer vision technique, could be used. Deep learning 

models can identify objects within images directly from raw images by learning from a set of 

training examples.14 These models are composed of convolutional neural networks which can 

learn complex, abstract, and biologically relevant features within images. They can also learn 

the important features that distinguish one morphology from another. Despite these 

capabilities, deep learning has been previously applied to 3D tissue models for segmentation, 

detection, and for the replacement of immunofluorescent stains.15–17 However, deep learning 

hasn’t been applied for the analysis of 3D tissue morphology.  

 

In this work, the objective is to use deep learning to analyze tissue morphologies directly from 

brightfield images. Specifically, the aims of this project are to (1) identify the unique 

morphologies present in 3D models (2) develop custom deep learning networks to analyze 

these morphologies and (3) validate the custom models. The following chapters present the 

analysis of the morphology in lung spheroids and colon organoids with custom deep learning 

models. Furthermore, the deep learning models are validated by assessing how perturbations 

to the cell culture environment influence 3D tissue morphology. Overall, the papers presented 

follow the same framework but have different literature reviews and methods since different 

3D tissue models were used. In both papers, the same instrument was used to acquire images 

and compile the dataset.  
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Chapter 2: Application of deep learning to lung spheroids  

 

 

Spheroids refer to an assembly of cells that have cell-cell and cell-matrix interactions. As a 

result, spheroids can exhibit cell polarization, and have been used to model the liver, intestine, 

kidney and have also been used to study tumour biology.4–6,18 Spheroids have served as useful 

models to understand polarity, lumen development, and tissue structural disruptions.7,19 Deep 

learning analysis of spheroids has been previously applied to analyze polarity in fluorescent 

images, to analyze spheroid viability following drug treatment, and for spheroid 

segmentation.17,20,21 However, deep learning hasn’t been used to analyze spheroid structure 

from brightfield images.  

 

In the following paper, we describe the application of deep learning to analyze the 

morphology and specifically, the polarization of lung spheroids.22 To do this, we cultured 

lung spheroids and acquired images to create a dataset with examples of the morphologies of 

interest. Next, we developed Deep-LUMEN, an object detection model, by training models 

with our custom dataset. Finally, we validated Deep-LUMEN by assessing how (1) the 

extracellular matrix impacts spheroid polarization and (2) the drug, cyclosporin disrupts cell 

polarization. In this work, we first demonstrated that deep learning could be applied for tissue 

morphological analysis. We showed that we can train an accurate deep learning model by 

creating a custom dataset and using transfer learning approaches. Additionally, we 

demonstrated that Deep-LUMEN could successfully detect changes in morphology. 

Furthermore, we showed the importance of analyzing morphology as we can gain insights 

into factors, such as toxic drug effects, that affect spheroid assembly. Several authors 

contributed to this work and their contributions are outlined on page 17. The work from 

reference 22 was reproduced with permission from the Royal Society of Chemistry. 
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Significance of the work:  

Deep learning has been applied for the first time to autonomously detect subtle morphological 

changes in 3D multi-cellular spheroids, such as spheroid polarity, from brightfield images in a 

label-free manner. The technique has been validated by detecting changes in spheroid 

morphology in response to changes in extracellular matrices and drug treatments.  

 

 

 

Abstract 

Three-dimensional (3D) tissue models such as epithelial spheroids or organoids have become 

popular for pre-clinical drug studies. However, different from 2D monolayer culture, the 

characterization of 3D tissue models from non-invasive brightfield images is a significant 

challenge. To address this issue, here we report a Deep-Learning Uncovered Measurement of 

Epithelial Networks (Deep-LUMEN) assay. Deep-LUMEN is an object detection algorithm 

that has been fine-tuned to automatically uncover subtle differences in epithelial spheroid 
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morphology from brightfield images. This algorithm can track changes in the luminal structure 

of tissue spheroids and distinguish between polarized and non-polarized lung epithelial 

spheroids. The Deep-LUMEN assay was validated by screening for changes in spheroid 

epithelial architecture in response to different extracellular matrices and drug treatments. 

Specifically, we found the dose-dependent toxicity of Cyclosporin can be underestimated if the 

effect of the drug on tissue morphology is not considered. Hence, Deep-LUMEN could be used 

to assess drug effects and capture morphological changes in 3D spheroid models in a non-

invasive manner.  

Introduction 

Advances in biological research rely on the use of effective in vitro culture systems. By far, the 

most commonly used approach is to culture primary cells or cell lines on 2D surfaces in a multi-

well plate. However, it is generally recognized that the flat and hard plastic substrates 

commonly used are not representative of the cellular environment found in organisms. For 

instance, studies have shown that epithelial cells on monolayer culture have compromised 

integrin function leading to a higher frequency of chromosome mis-segregation during 

proliferation(1). On the contrary, growing cells within a natural extracellular matrix that permits 

self-organization in 3D can significantly improve chromosome segregation fidelity(1). Both 

primary chondrocytes and hepatocytes have also been shown to lose their normal phenotype 

rapidly once removed from the body and when placed in 2D culture(2, 3). Issues like these 

significantly limit the potential of 2D culture systems to predict the cellular responses of real 

organisms.  

Recognizing these challenges, 3D tissue culture with tissue-specific architecture, mechanical 

and biochemical cues, and cell-cell communication could help reduce the gap between cell-

based assays and physiological tissues(4). Stem-derived organoids or 3D spheroids are self-
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organized multi-cellular tissue grown in 3D hydrogel matrices. Within this 3D environment, 

cells can sense a substrate that more closely resembles native extracellular matrices and have 

the freedom to remodel and form 3D organ-specific structures. 3D cancer spheroids have been 

shown to outperform 2D cell monolayers in drug screening(5). Various organ-specific 

organoids from the kidney(6), colon(7), brain(8), and liver(9) have shown sophisticated tissue 

functions that would be impossible to replicate in 2D. For these reasons, 3D spheroid and 

organoid cultures are fast becoming the ideal model systems for in vitro drug testing and 

biological research.  

Despite these advantages, there are barriers to using 3D models for pre-clinical drug testing. 

High-throughput screening has been optimized for monolayer culture for decades. 3D tissue 

models often lack automated workflows for analysis with fast processing times9. More 

importantly, characterizing 3D tissue morphological changes in response to drug treatments, 

even though it can provide highly relevant physiological information that cannot be easily 

derived from 2D culture, is challenging. Conventional imaging processing techniques, mostly 

suitable for 2D cultures, fall short in accurately characterizing complex 3D features that are not 

a simple description of the area, size, or shape, which can be more easily defined. In addition, 

the 3D environment presents artifacts like overlapping tissues, out of focus tissues, varying light 

conditions, tissue heterogeneity, or even supporting tissues like vasculatures, which all present 

significant challenges to conventional imaging processing techniques. 

Deep learning could overcome these challenges by circumventing the need to arbitrarily define 

multiple parameters for any given set of images as in the conventional imaging processing 

technique. Specifically, convolutional neural networks (CNNs) are a class of deep learning and 

are mainly used for image analysis. CNNs recognize patterns from large training datasets, 

emulating the learning process inherent to our brain; hence it does not require any parameter 

tuning and runs autonomously. A truly myriad of applications has been explored using this 
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technology. For spheroid and organoid analysis, machine and deep learning have been 

previously used to (1) localize spheroids and organoids in 3D cultures and determine their 

diameter(10-12) and (2) to segment spheroids(11). Although epithelial spheroid polarity has 

been classified by deep learning, this analysis was done on fluorescent images(13).  Deep 

learning has yet to be applied to detect subtle changes in 3D multi-cellular tissue morphology, 

such as spheroid polarity, from brightfield images in a label-free manner.  

Utilizing Tensorflow Object Detection API(14), here we present an open-source algorithm, 

Deep-Learning Uncovered Measurement of Epithelial Networks (Deep-LUMEN), which has 

been trained by a large dataset to enable users to detect changes in the luminal structure of 3D 

spheroids automatically. The formation of the lumen is an indication of proper cell polarization, 

and its disruption is a significant phenotypic change in many tissues. In this validation study, 

we first trained Deep-LUMEN to classify the polarity of spheroids directly from brightfield 

images. Then, we validated this algorithm by tracking how spheroid morphology changes in 

response to different types of extracellular matrices and drug treatment.  

Results 

Lung alveolar spheroid generation  

Lung alveolar epithelial cells (A549), when embedded in a 3D hydrogel matrix (such as 

Matrigel or Fibrin gel), can proliferate and self-organize into a 3D spheroid over time. 

However, influenced by the culture environment, only a fraction of the population will self-

organize into spheroids with a hollow lumen, which is the correct morphology of lung alveoli. 

Therefore, tracking this morphological feature could allow us to predict the changes in the 

health and function of the lung alveolar epithelium in response to environmental cues and drug 

treatment (Figure 1a). Utilizing this self-assembly process, we developed the lung spheroid 

models by casting single-cell suspension in Matrigel  in standard 384-well plates (Figure 1b). 
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The high-throughput 384-well plate, coupled with a high-content image cytometer, allowed us 

to automate the image acquisition process and collect thousands of brightfield images. Images 

were taken at different planes (spaced 50 m apart) through the z-axis to capture all the 

spheroids in the scanned volumetric space (Figure 1c). 

Training dataset generation 

We created a custom training dataset containing 4000 images (14,993 examples of no lumen 

and 2,351 examples of lumen spheroids). Out of focus spheroids were omitted from each image 

to avoid double-counting. Any abnormal morphologies or monolayer formations were also 

omitted (Figure 1d). Bounding boxes were drawn around the in-focused spheroids and 

categorized accordingly. A spheroid was categorized as “lumen” if there was a prominent indent 

in the center of the spheroid. Otherwise, the spheroid was given a “no lumen” classification. 

Immunofluorescent staining confirms that lumen formation is directly correlated to this indent 

feature from brightfield images and also correlates to cell polarization and the proper 

organization of the lung alveolar cells. Stronger F-actin staining was seen on the apical side of 

the luminal spheroid, while disorganized spheroids showed intense F-actin staining on both 

basal and apical sides (Figure 1d, Supplementary Figure 1). It’s important to note that even 

though the immunofluorescent staining validated our assumption, the immunofluorescent assay 

is terminal. On the contrary, Deep-LUMEN classification from brightfield images is non-

invasive and continuous. In addition, changes in spheroid morphology can be automatically 

assessed for each image present in the z-stack, providing a characterization of spheroid 

morphology through the entire hydrogel (Figure 1e). The full training dataset, including the 

images and annotations, are publicly available at https://osf.io/g2a7r/ 

Model optimization 



M.A.Sc. Thesis – L. Abdul; McMaster University – Biomedical Engineering 
  

9 
 

After training, the performance of the algorithms were then tested on a set of one-hundred and 

ninety-seven new images. The models outputted bounding boxes around spheroids along with 

the classification and the confidence probability. Furthermore, the algorithms learned to omit 

out-of-focus spheroids and spheroids of abnormal shape (Figure 2a). To get the best results, 

we tested five different pre-trained models and fine-tuned them on our lung spheroid dataset(15-

18). Out of the five models (Model 1-5, Figure 2b), Faster R-CNN with ResNet101 (Model 5) 

performed the best. When tested with a new test-set (197 new images) it had a 73% mean 

average precision (Figure 2d) along with the fewest false positives and false negatives (Figure 

2c). To further improve this model’s performance, we then added additional data augmentation 

options to generate Model 6. When tested with the test-set images, Model 6 (Faster R-CNN 

ResNet101 with data augmentation) had a 83% mean average precision (Figure 2e), detected 

the highest number of “lumen” and “no lumen” spheroids, and had a lower rate of false positives 

and false negatives (Figure 2c). Therefore, this Model 6 was used at the end and is referred to 

as Deep-LUMEN. Overall, the analysis and classification of spheroids using Deep-LUMEN 

were more than 20 times faster than manual labeling (Figure 2f). Additionally, Deep-LUMEN 

outputs confidence scores for each of its predictions. We observed that the score corresponded 

with the extent of lumen development. For the non-polarized spheroids, the confidence 

decreases when an indentation is present. For the polarized spheroids, the confidence increases 

as the indentation becomes larger and the lumen is more well-defined (Figure 2g). This 

observation indicates that it could be possible to further stratify the stages of spheroid lumen 

development based on the confidence score.  

Spheroid morphological changes in response to extracellular matrices 

We then used Deep-LUMEN to assess the morphological changes of lung spheroids in response 

to different extracellular matrices (ECM). Lung alveolar epithelial spheroids were embedded in 

four different hydrogel conditions and cultured for 12 days in a standard 384-well plate (Figure 
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3a). In all conditions, the alveolar epithelial cells started to proliferate, and the diameter of the 

spheroids increased over time (Figure 3b). There were no significant differences between the 

different groups. However, the percentage of polarized spheroids (spheroids containing a 

lumen) in 10 mg/mL fibrin on Day 8 was significantly lower than in the Matrigel condition 

(Figure 3c). This suggests an interplay of signals between the Matrigel and the epithelial cells 

allowing for the formation of the lumen by guiding epithelial polarization. It is well known that 

laminin, a major component of the basement membrane and also abundant in Matrigel are 

integral for guiding cells to develop the polarity required for lumen formation(19). Therefore, 

we found Matrigel to be optimal for lung spheroid culture. The unique aspect of this study is 

that we were able to make this conclusion by analyzing just the brightfield images with Deep-

LUMEN in a completely non-invasive manner. It is also clear that we would not be able to 

capture this effect should we have solely focused on quantifying spheroid diameters using 

conventional image analysis methods.   

Spheroid morphological changes in response to drug treatment  

Lastly, we examined how drug treatment could affect lumen formation in the lung alveolar 

spheroids. Cyclosporin A (CsA) is an immunosuppressant medication used after organ 

transplantation(20) and for other autoimmune conditions such as rheumatoid 

arthritis(21), psoriasis(22), etc. However, at higher dosages, it is known to be toxic to kidney 

or liver cells. Many studies have shown that a dosage above 10 M (around 100 M) is required 

to observe a significant toxic effect from CsA on liver or kidney epithelial cells in vitro(23, 24). 

Here we tested CsA over a wide concentration range from 0.01 to 10 M (Figure 4a). We 

found that at 10M the ability of the cells to self-organize into a hollow alveolar spheroid is 

already compromised, even though there is no significant effect on the size and number of lung 

spheroids due to CsA which indicates the drug is yet to compromise cell viability (Figure 4 b-
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d). While spheroids will, by default, develop more lumens over time, the group treated with 

10M CsA failed to form more luminal spheroids and resulted in a drastic decrease in luminal 

spheroid count compared to the control three days after drug administration (Figure 4e). This 

suggests that the effective toxicity of CsA could be much lower than initially expected. This 

further highlights the need to examine higher-level tissue morphological changes in addition to 

the more obvious toxicity effect on cell viability and growth in drug testing.  

Discussions 

Object detection and classification, primarily based on subtle changes in morphological 

features, is a challenging task but needed if we want to fully explore the benefits of 3D models 

in biological research. In this study, we hope to lay the groundwork to help further apply 

machine learning to analyze more complex tissue models. Specifically, we showed that by 

offering a closer look at the changes in tissue morphology, deep learning could help improve 

the sensitivity of tissue models to drug treatments.  

Because the Deep-LUMEN algorithm was not just localizing the spheroids, it’s important to 

note that the collection of z-stacked brightfield images and the ability to eliminate out-of-focus 

spheroids is critical for avoiding double counting and for accurately classifying the spheroids, 

as out-of-focus spheroids will not contain sufficient morphological details to allow accurate 

characterization. The z-stack scanning capability is a common feature in most high-content 

cytometers used for high-throughput screening. Also, the Deep-LUMEN program does not 

require any preprocessing on the images, and both spheroid detection and classification occur 

in a single step to streamline the analysis process. Given the fast analysis speed, it’s possible to 

integrate the Deep-LUMEN analysis in real-time during image acquisition and under live view 

to guide image selection.  
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Lumen formation is a gradual process in which a smaller lumen appears first and then gradually 

enlarges. Although we didn’t quantify the size of the inner lumens of our spheroids over time, 

we did notice that the degree of confidence automatically provided by the Deep-LUMEN 

algorithm seems to correlate with the extent of lumen development. Freshly formed lumens 

with small luminal diameters are often given a confidence of around 85%, while well-developed 

lumens are assigned a confidence of about 99%. This indicates that even more minute 

differences in tissue morphology could be discernable. In future studies, rather than limiting 3D 

model characterization to a two-category classification, additional characteristic parameters, 

where the gradual change in tissue morphology is transformed into a range of quantifiable 

values, could be further explored.  

Limitations 

The accuracy of our trained model could be further improved with additional training images. 

However, because much more images can be analyzed with Deep-LUMEN compared to manual 

analysis, our current level of accuracy didn’t impact the outcome of our experimental analysis, 

where we can successfully capture the effect of drugs and matrix. Finally, in this study we have 

only used one type of image cytometer for image acquisition. Image contrast and the filter used 

could vary between different image cytometers. In future studies, it would be interesting to see 

if models trained using training images collected from one cytometer can be used for images 

collected from a different cytometer even when the tissue culture platform is the same. This 

feature will impact the feasibility of distributing a trained model to different labs with very 

different imaging infrastructures. 

Conclusions 

We have developed a deep learning model, called Deep-LUMEN, that can be used to detect 

morphological changes in lung epithelial spheroids. We demonstrated that it is possible to 
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develop object detection programs to recognize subtle changes in 3D tissue morphology in 

response to ECMs and drug treatment. We envision this approach could help accelerate the 

transition to 3D tissue models for high-throughput drug screening by making the image analysis 

process less invasive and more informative.  

Materials and Methods 

Cell Culture 

A549 cells purchased from Cedarlane labs (Cat# PTA-6231) were cultured in Hams F12K 

media (Cedarlane labs, Cat# 302004), supplemented with 10% of Fetal Bovine Serum (Wisent 

Bioproducts, Cat# 098-150), 1% of Penicillin-Streptomycin solution (100X) (Wisent 

Bioproducts, Cat# 450-201-EL) and 1% of HEPES solution (1M) (Wisent Bioproducts, 330-

050-EL). Cells were cultured until 90% confluence in T75 flasks (5% CO2, 37 C). The A549 

cells used for all the experiments were between passage 2-5. Before cell seeding, all cells were 

strained using 40m cell strainers to remove any cell clumps and get a uniform single-cell 

suspension. 

Lung spheroid culture 

To generate lung spheroids, A549 cells were mixed with growth-factor reduced Matrigel 

(Corning, Cat# CACB356231) at a seeding density of 0.1 million cells/ml. 25 µL of this mixture 

was cast onto one well of a standard 384-well plate (VWR, Cat# 10814-226). For ECM 

optimization experiments, the cells were also suspended in Fibrin gel. To prepare the fibrin gel, 

125 l of fibrinogen gel aliquot was mixed with 25 L of thrombin (1.5 U/ml) before gel 

casting. Both fibrinogen and thrombin stock solutions were prepared as per the supplier’s 

guidelines (Sigma Aldrich, Cat# F3879-1G, T6884-100UN). Similar to Matrigel condition, 

0.1 million cells/ml were suspended in different concentrations of Fibrin gel (2 mg/ml, 5 mg/ml, 
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and 10 mg/ml), and 25 L of the final gel mixture was cast into each well. The spheroid culture 

was maintained for up to 10 days in 5% CO2  and 37C. Culture media was changed every two 

days. 

Immunofluorescent staining of lung spheroids 

Cultured lung spheroids were first washed with 1X PBS to remove residual culture media. The 

tissue was then fixed with 10% Formalin solution overnight in 4oC. The fixative was removed, 

and the tissue was washed three times with 1X PBS and blocked overnight in 4oC with 10% 

Fetal Bovine Serum. The tissue was then stained with F-actin conjugate antibody (Cedarlane 

Labs, Cat#20553-300) along with DAPI (Sigma Aldrich,  Cat#D9542-5MG) and incubated 

overnight in 4oC. Both antibodies were diluted at 1:200 ratio in PBS with 2% (v/v) FBS. After 

antibody incubation, the samples were washed in PBS overnight and imaged using an image 

cytometer.  

TensorFlow Object Detection API Configuration 

Image annotations were created using the labeling program. For each image, boxes were drawn 

around the spheroids and categorized accordingly. The annotations were converted into .xml 

files containing the bounding box coordinates and the class name for each labeled spheroid. A 

label map that assigns an integer to each class was also created in a .pbtxt file. Through the use 

of helper scripts, the annotations were converted into the TFRecord File format. From the 

TensorFlow detection model zoo, the pre-trained models were downloaded along with their 

corresponding configuration files. For model 3, 4, and 5: the following changes were made to 

the configuration file. The number of classes field was set to 2 and the image dimensions field 

was set to match the images’ dimensions (1224  904 pixels). For model 1, and 2, the number 

of classes was set to 2 and the image dimensions were set to 612 x 452 pixels and 640 x 640 
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pixels respectively. Finally, for all models, training was set to 200,000 steps. The location of 

the pre-trained model, the datasets, and the label maps were set. 

Model training was conducted using Google Colaboratory. The training was executed on either 

a Nvidia K80, T4, P4, or P100 GPU, which was randomly assigned with each connection to the 

Google Colaboratory GPU backend. For model 6, the following data augmentation options were 

added: random_adjust_brightness, random_adjust_contrast, random_adjust_hue, 

random_distort color, random_vertical_flip, and random_rotation90. The final lung spheroid 

training dataset consisted of 3617 images, the validation set consisted of 391 images and the 

test set contained 197 images.  

Image Acquisition  

Lung spheroids were fixed following eight to ten days of culture. The Cytation 5 Cell Imaging 

Multi-Mode reader (BioTek Instruments) was used to take z-stack images of the spheroids 

with a 50 µm step size. Brightfield images were captured under 4X magnification. To capture 

spheroids from the entire well, images from four different regions of each well were acquired. 

One well produced 128 total images in .tiff formats. The .tiff images were renamed and 

simultaneously converted into RGB and .jpg format using a macro script on ImageJ. For 

fluorescent images and their corresponding brightfield images, the magnification used was 10X.  

Drug administration studies 

Cyclosporin A was purchased from Sigma Aldrich (Cat# 30024-25MG). The drug stock 

solutions were prepared as per the manufacturer’s instructions. The drug was dissolved in 

Dimethyl sulfoxide (DMSO) (Sigma Aldrich, Cat# D2650-5X5ML) to get a concentration of 

25 mg/mL and was then sterile-filtered using a syringe with a filter insert (VWR, Cat# 

CA28145-501). This solution was diluted 1000 times in culture media to achieve a final DMSO 
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concentration that was lower than 0.1%. Serial dilutions were performed in culture media to get 

the four concentrations: 10, 1, 0.1, and 0.01 µM. Cyclosporin A was administered for seven 

days. The drug solutions were refreshed every other day. Z-stack images of 4X magnification 

were taken every day using Cytation 5 Cell Imaging-multi mode reader.  

Quantification analysis 

To evaluate the models based on the number of class instances detected, 197 new test images 

were chosen and annotated. These served as the ground-truth detections. The detections from 

each trained model were outputted on these new test images. A detection was considered 

“correct” if the spheroid was labeled in the ground-truth annotation, and the label matched the 

ground-truth classification. To measure time to output detections, a human annotator and the 

model were timed labeling 25 images. The mean Average Precision (mAP) at a 50% 

intersection of union, using the Pascal VOC performance metrics, was used to measure 

accuracy. To obtain mAP, a test set was created and each model was analyzed with this test set. 

To measure the effect of extracellular matrices on spheroid diameter, at least six in-focus 

spheroids from each condition on day 1, 6, and 10 of culture were measured using ImageJ. To 

determine the effect of CsA on spheroid diameter, the x-axis bounding box coordinates for all 

detections above a 50% score confidence were outputted and subtracted from each other. This 

was done for at least three wells. To assess the effect of CsA on the total number of spheroids 

and the percentage of lumen spheroids, the width of the bounding boxes were filtered by class 

and extracted for three independent samples.  

Statistical Analysis  

All data are expressed as mean ± standard deviation. Statistical tests conducted were either one-

way ANOVA, two-way ANOVA, or one-way ANOVA on ranks followed by the Holm-Sidak 

or Dunn’s method. For one-way and two-way ANOVA, requirements of normality and equal 
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variance were met. Results were considered significant when a p-value of less than 0.05 was 

obtained. 

Data Availability  

All the trained models and the datasets can be downloaded from https://osf.io/g2a7r/  
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Figures 

 
 

Figure 1. Differential formation of hollow lung alveolar spheroids. a, Illustration of lung 

epithelial cells proliferating and assembling into either hollow or solid spheroids in a 3D matrix. 

b, Tissue culture setup where 25L of Matrigel embedded with cells are cast in standard 384-

well plates. c, acquired z-stack transmission-light images. d, Example scenarios of lung 

spheroids seen from the collected images. Corresponding fluorescent images stained for F-actin 

(red) and DAPI (blue) of lung spheroids with or without a lumen (representative images from 

n=6 samples). Scale bar, 50 m. e, z-stack acquisition allows for spheroid morphology 

assessment throughout entire hydrogel. Spheroids on different focal planes were detected with 

developed Deep-LUMEN algorithm from z-stack images and then labeled with different colors 

for visualization. 
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Figure 2. Optimization of model performance. a, Detection output of Deep-LUMEN 

following fine-tuning with custom dataset. Bright-field images were obtained by taking 4X z-

stack images of lung spheroids cultured in Matrigel. Scale bar, 500 m. b, Models used and 

their corresponding Model number. c, Confusion matrix for each trained model outlining the 

true positives, the true negatives, the false positives and the false negatives. Assessment of 

accuracy was performed on 197 new test images. d, mAP metric for each fine-tuned model.  e, 

Comparison of model 5 performance with and without data augmentation. Model 6 (model 5 

with data augmentation) was chosen as the final model and will be referred to as Deep-LUMEN. 

e, Comparison of the time required to localize and classify spheroids in 25 images between 

Deep-LUMEN (on a GPU) and human annotators. g, Deep-LUMEN’s confidence scores reflect 

the extent of lumen formation.  
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Figure 3. Spheroid morphological changes in response to extracellular matrices a, 

Assembly of lung alveolar epithelial cells into spheroids in different ECM conditions. b, 

Quantification of the diameter of spheroids in different ECM conditions (n= 6 to 18 spheroids). 

No significant differences were found. Statistical significance was determined using one-way 

ANOVA on ranks with Dunn’s method. c, Quantification of the percentage of spheroids with 

the presence of lumen using Deep-LUMEN in 10 mg/ml fibrin and Matrigel (n=3). Statistical 

significance was determined using one-way ANOVA with the Holm-Sidak method. 

*p < 0.05, **p < 0.01, ***p < 0.001. 
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Figure 4. Validation of Deep-LUMEN with drug administration. a, Cyclosporin A 

administration timeline. Cyclosporin A was administered on the sixth day of lung spheroid 

culture for a period of seven days. b, Comparison of detections in control versus 10 M drug-

treated conditions. Deep-LUMEN was used to detect polarized and non-polarized spheroids 

following drug administration. Bright-field images were acquired by taking z-stack images of 

spheroids under 4X magnification (n = 3). Scale bar, 500 m. c, Average diameter of spheroids 

following drug administration (n = 3). Bounding box coordinates of detections above a 50% 

score confidence were outputted to measure the diameter. Statistical significance was 

determined through a one-way ANOVA test followed by the Holm-Sidak method. Line 

indicates a p-value < 0.05. d, Percent change in the number of spheroids following a period of 

drug administration. Quantification was done by outputting detections that had at least a 50% 

score confidence. Statistical significance was determined through a two-way ANOVA test 

followed by the Holm-Sidak method. Line indicates a p-value < 0.05. e, Proportion of the lumen 

class of spheroids over the period of drug administration (n = 3). Quantification of lumen 

spheroids was obtained by filtering detections with at least a 50% score confidence that were 

of the lumen class. Statistical significance was determined through a one-way ANOVA test 

followed by the Holm-Sidak method. Line indicates a p-value < 0.05.  
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differences in epithelial spheroid morphology from brightfield images.  This algorithm can 

track changes in the luminal structure of 3D spheroids and distinguish between polarized and 

non-polarized lung epithelial spheroids. Deep-LUMEN could open new possibilities for 

assessing drug effects in 3D tissue models or be further expanded to conduct more complex 

phenotypic screens. 
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Supplementary Figure 1. Immunofluorescent staining of polarized and non-polarized 

lung spheroids. a-b, Fluorescent staining of (a) polarized spheroids referred to as “lumen” 

(representative images n = 6 samples) and (b) non-polarized spheroids referred to as “no 

lumen”. Spheroids were stained for F-actin (red) and  DAPI (blue). Scale bar, 50 m.  
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Chapter 3: Application of deep learning to colon organoids 

 

Organoids, which are derived from stem cells, develop into complex structures that mimic the 

structure and function of the native organ. First cultured in 2011, colon organoids exhibit key 

features of the colon epithelium in vivo including the expression of colon-specific cells and 

the crypt domains.11 Colon organoids have been used to understand stem cell differentiation, 

drug toxicity, and colon pathophysiology. 23–26 However, deep learning-based methods to 

analyze colon organoids are minimal. In other organoid types, deep learning has been used to 

detect organoids, replace immunofluorescent stains, develop alternative cell viability assays, 

and for organoid segmentation.15,16,27–29 However, colon organoid morphology hasn’t been 

analyzed using deep learning techniques.  

 

In this work, we developed D-CryptO, a tool to analyze the structural maturity of colon 

organoids directly from brightfield images. To do this, we created a new dataset for the 

morphologies of interest and used transfer learning techniques to train models with different 

architectures. Using the best-performing model, we validated it in several ways. We assessed 

(1) how colon organoid morphology changes over prolonged culture (2) how short-term 

forskolin stimulation affects organoid morphology and (3) how chemotherapeutic drugs 

disrupt organoid morphology. This work presents a second demonstration that deep learning 

can be used for 3D tissue morphology analysis. We also showed that despite having more 

complex and heterogeneous morphologies relative to spheroids, deep learning could detect 

structural changes. The validation studies also demonstrate that D-CryptO can be applied to 

analyze morphology in a broad set of cases. Finally, this work showed the significance of 

analyzing colon organoid morphology as we gained insights into potential mechanisms of 

drug-induced toxicity. Several authors contributed to this work and their contributions are 

outlined on page 47.  
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Stem cell-derived organoids are a promising tool to model native human tissues as they 

resemble human organs functionally and structurally compared to traditional monolayer cell-

based assays. For instance, colon organoids can spontaneously develop crypt-like structures 

similar to those found in the native colon. While analyzing the structural development of 

organoids can be a valuable readout, using traditional image analysis tools makes it 

challenging because of the heterogeneities and the abstract nature in organoid morphologies. 

To address this limitation, we developed and validated a deep learning-based image analysis 
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tool, named D-CryptO, for the classification of organoid morphology. D-CryptO can 

automatically assess the crypt formation and opacity of colorectal organoids from brightfield 

images to determine the extent of organoid structural maturity. To validate this tool, changes 

in organoid morphology were analyzed over long-term organoid passaging and short-term 

forskolin stimulation. To further demonstrate the potential of D-CryptO for drug testing, 

organoid structures were analyzed following treatments with a panel of chemotherapeutic 

drugs. With D-CryptO, subtle variations in how colon organoids responded to the different 

chemotherapeutic drugs were detected, which suggest potentially distinct mechanisms of 

action. This tool could be expanded to other organoid types, like intestinal organoids, to 

facilitate 3D tissue morphological analysis. 

 

 

1. Introduction 

 

Monolayer cell-based assays are an invaluable tool for studying cellular functions in vitro. 

However, these models do not accurately recapitulate in vivo tissue responses. This is largely 

because monolayer cell models do not exhibit tissue-specific architecture and lack the 

appropriate 3D cellular microenvironment. Stem cell-derived organoids that can 

spontaneously differentiate and self-assemble into 3D tissues with structures that resemble 

many features of the native organ have emerged as alternative in vitro models.[1] For instance, 

colon organoids have been widely used as large intestine models due to their structural and 

functional similarity. [2] An important feature of the colon epithelium is the crypt, which are 

epithelial invaginations that renew the intestinal lining every 3-5 days. [3] The organization of 

the crypt is crucial for the regeneration of the epithelium in vivo. Stem cells at the base of the 

crypt are protected from continuous mechanical and chemical stressors, and as a result, can 

proliferate and differentiate to regenerate the epithelium. Similarly, colon organoid 

morphology reflects the structure and organization of the native colon crypts by exhibiting 



M.A.Sc. Thesis – L. Abdul; McMaster University – Biomedical Engineering 
  

30 
 

budding structures which contain the stem cells that give rise to colon-specific cells. [4,5] 

Therefore, analyzing organoid morphology can provide insights into colon physiology and 

pathophysiology in vivo. 

 

Qualitative analysis of colon organoid morphology, specifically the opacity and budding of 

organoids has largely been used to assess the maturity of colon organoids. Colon organoids 

that are more transparent, have thinner walls, and are cystic are indicative of an earlier 

differentiation state.[6] On the other hand, colon organoids have reached a more differentiated 

state when they are more opaque due to the thickening of the epithelial wall. Differentiated 

colon organoids also exhibit more budding structures that resemble the colon crypt which is 

the stem cell niche that controls colonocyte renewal and homeostasis.[2] Previously, the 

presence of budding within small intestinal organoids has been used to optimize the 

extracellular matrix, to study stem cell differentiation, and to understand the mechanics of 

epithelial folding. [3,7–9] Analysis of budding has also been used to study diseases. For 

example, colon organoids from individuals with inflammatory bowel disease or tumour-

derived organoids had lower rates of budding structures.[10,11] However, to assess these 

morphological differences, previous work used manual analysis or relied on traditional image 

analysis that use imperfect parameters such as eccentricity to describe organoid shapes.[12–14]   

 

To facilitate the morphological analysis of organoids with abstract features that are not easily 

defined by traditional image analysis parameters, a type of computer vision called deep 

learning can be applied. Deep learning refers to an automated method of computer-based 

image recognition that relies on using pre-existing data to make predictions on new image 

instances.[15] Traditional computer recognition techniques rely on manual feature extraction to 

distinguish between the categories of interest. With deep neural networks, both feature 

extraction and classification are done automatically without any input from the user. This 
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provides several advantages. First, colon organoid features are learned directly from the 

images without the need for manual feature extraction. Second, analysis of the structures is 

not limited to using shape descriptors, so organoid morphology can be characterized despite 

the high heterogeneity of colon organoid structure. Third, automatic image analysis can 

improve the throughput of morphological analysis. Finally, these models could be trained to 

correctly classify between categories despite imaging artifacts. Artificial neural networks have 

been previously used to detect and count intestinal organoids and replace immunostaining and 

cell viability assays. [16–19] However, deep learning has yet to be applied for the morphological 

characterization of any type of organoids.  

  

Hence, we used deep learning to characterize the morphological structure of organoids by 

developing an analysis tool, D-CryptO, to classify between transparent and opaque organoids, 

as well as spherical and budding organoids. Collectively, these features reveal the structural 

maturity and health of colon organoids. To validate our deep learning model, we analyzed 

changes in colon organoid morphologies in (1) long-term organoid passaging, (2) short-term 

forskolin stimulation, (3) a drug screening study with a panel of six chemotherapeutic drugs, 

and (4) a dose response study to doxorubicin. We found that morphological analysis allowed 

us to capture variations in how colon organoids responded to the different chemotherapeutic 

drugs, which provide insights into the potential mechanisms of drug toxicity.  

 

 

2. Results 

 

2.1. Colon organoid culture and morphological characteristics 

Colorectal organoids, derived from primary colon tissue, were embedded in Matrigel, and 

cultured for a period of 7 days in a 24-well plate (Figure 1a-b). The primary tissue contains 

adult stem cells which proliferate and differentiate to form the colon organoids in vitro. We 
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observed a spectrum of morphologies from these colon organoids. Organoids differed in their 

opacity as well as the extent of budding (Figure 1c). Colonospheres are transparent with 

little-to-no budding. On the other hand, colonoids are more mature organoids that are opaque 

with significant number of budding structures.[20,21] As the proliferating stem cells 

differentiate into organ-specific cells, opacity increases due to changes in epithelium 

thickness. [7] We also observed organoids that exhibited some characteristics of both 

colonospheres and colonoids. For example, some organoids were spherical and opaque while 

other organoids had buds and were transparent. Hence, using the parameters of both opacity 

and budding could give an indication of the structural maturity of the organoids grown in 

vitro.  

 

 
 

Figure 1. Morphological heterogeneity of colon organoids. a, Illustration of primary cells 

embedded in Matrigel that self-assemble into colonospheres and develop into colonoids. b, 

Organoids embedded in 50L of Matrigel  in a standard 24-well plate. c, Representative 

images of organoids exhibiting varying levels of opacity and budding. Scale bar, 200 m 
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2.2 Dataset creation and model training  

To analyze these parameters using deep learning, we first created two custom datasets using 

images of individual organoids. The first dataset consisted of examples of budding and 

spherical organoids. The second dataset contained examples of opaque and transparent 

organoids (Figure 2a). The dataset for opacity contained 1021 images of opaque organoids 

and 1457 images of transparent organoids. The dataset for the budding feature contained 1081 

images of budding organoids and 1395 images of non-budding organoids. These datasets were 

further split into training, validation, and test datasets. We made the full training dataset 

publicly accessible at the open science framework data repository: https://osf.io/42r3g/. Next, 

we fine-tuned six pre-trained deep neural network models (ResNet152V2, XCeption, 

InceptionResNetV2, VGG-16, VGG-19, ResNet50) for each parameter using the custom 

datasets.[22–26] These models were selected either because they had higher speeds or performed 

more accurately on the ImageNet dataset. We implemented these transfer learning approaches 

using the Keras framework with the Tensorflow backend.[27] For opacity, both XCeption and 

VGG-16 performed with an accuracy of 98% on the test set. For budding, both ResNet152V2 

and XCeption performed with an accuracy of 90.87% on the test set. XCeption, a 

convolutional neural network model, was chosen as the final model since it performed most 

accurately for both parameters (Figure 2b). To understand which regions of the organoid 

were used for classification, heat maps were outputted to highlight important locations 

(Figure 2c). For the opacity model, the center of the organoid is important for distinguishing 

between opaque and transparent organoids. For the budding model, the edges of the organoids 

are used to distinguish between budding and spherical organoids. For opacity, there was a 

lower rate of false positives and negatives compared to budding (Figure 2d, e). This could be 

due to the lower heterogeneity in the opacity of organoids compared to the budding 

morphologies. Nonetheless, accuracy was above 85% for both parameters and both models 

https://osf.io/42r3g/
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had low rates of false negatives. Together, these trained models were combined to become D-

CryptO for analyzing colon organoid morphology and determine the extent of colon organoid 

maturation. Lastly, we showed D-CryptO can successfully capture the extent of differences in 

morphology in both budding and opacity characteristics, with a prediction score that reflects 

where the organoid falls on the spectrum of budding or opacity (Figure 2f, g).  
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Figure 2. D-CryptO training and testing. a, Image analysis workflow. b, Accuracy of 

trained models on test set following transfer learning.  c, Heatmaps identifying which parts of 

the image were more important for organoid classification (red indicate higher importance 

and blue indicate lower importance). d, Confusion matrix for the opacity feature of D-CryptO. 

e, Confusion matrix for the budding feature of D-CryptO. f, Organoid distribution based on 

D-CryptO predictions for opacity and budding. g, Representative D-CryptO organoid 

classification prediction score and corresponding brightfield images. 
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2.3 Morphological changes of organoids over long term organoid expansion and 

passaging  

To validate D-CryptO, we used it to analyze organoid morphology in a number of different 

case studies. While colon organoids are a valuable tool for biological applications, there is a 

lot of variability in morphology within a single Matrigel dome. This can hinder 

reproducibility of experimental results over long-term culture. We analyzed opacity and 

budding to determine variability in morphology over prolonged culture (Figure 3a,b). First, 

we analyzed organoids after thawing them directly into a 24-well plate and culturing them for 

5 days. The average percentage of opaque organoids was 21.4  2.9% while the average 

percentage of budding organoids was 74.5%  2.1%. Average organoid diameter was 271.4 

μm  14.4 μm. Next, we passaged the organoids and repeated the analysis. While there was 

greater variability in different wells, there wasn't a significant difference in opacity, budding 

and diameter following passaging (Figure 3c,d,e). This demonstrates that organoids remain 

robust following one passage, but further analysis is required to see how a greater number of 

passages impacts organoid morphology. Nonetheless, D-CryptO could be used to analyze 

colon organoid culture to assess organoid morphology over time non-invasively.  
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Figure 3. Organoid morphological changes over long-term passaging and short-term 

forskolin stimulation. a, Brightfield images of organoids cultured over two weeks. Scale bar, 

500 m. b, Timeline of organoid culture. Organoids were thawed and cultured for 1 week and 

were subsequently passaged.  c-e, Quantification of the percentage of opaque organoids, 

percentage of budding organoids and diameter of organoids (n=3-4) on day 5 and 10. f, 

Brightfield images of organoids during forskolin stimulation. Scale bar (top), 2000 m. Scale 

bar (bottom), 100 m. g, Timeline of forskolin treatment. h-j, Quantification of the 

percentage of opaque organoids, budding organoids, and diameter of organoids following 60 

and 120 minutes of forskolin treatment (n=3). *p < 0.05, **p < 0.01, ***p < 0.001. 

 

 

2.4 Morphological changes of organoids to short term exposure of external stimuli  

Next, we used D-CryptO to assess changes in organoid morphology during short-term 

perturbation. Colon organoids were thawed and embedded in Matrigel in a 24-well plate and 

cultured for a period for 10 days. We applied 10 µM of forskolin, a small molecule that 

activates the cystic fibrosis transmembrane conductance regulator (CFTR), for a period of 2 

hours (Figure 3f,g). The CFTR channel is essential for ion transport and mucus production in 

the colon. In healthy organoids that have a functional CFTR channel, forskolin treatment 

results in the opening of the channel, the movement of chloride ions through the CFTR 
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channel, and the subsequent flux of water into the organoid. As a result, the organoid swells. 

However, forskolin treatment in organoids with mutations in the CFTR channel do not exhibit 

this response.[28] Using D-CryptO, we analyzed changes in opacity and budding in response to 

forskolin. The percentage of opaque organoids significantly decreased following 60 and 120 

minutes of forskolin treatment since water was accumulating within the organoid lumen 

(Figure 3h). Budding also increased slightly after 120 minutes (Figure 3i). This could be due 

to the budding domains of the organoids becoming more apparent following forskolin 

stimulation. Diameter also increased following forskolin stimulation, as expected due to 

organoid swelling (Figure 3j).   

 

2.5 Morphological changes of organoids in response to drug treatments  

Chemotherapeutic drugs have been shown to induce gastrointestinal toxicity in vivo which 

can affect treatment outcomes.[29] We used D-CryptO to assess the effect of different 

clinically approved chemotherapeutics at a single dosage on colon organoid morphology. We 

thawed colon organoids directly into a 384-well plate and applied 6 chemotherapeutic drugs  

at a concentration of 50 µM to the organoids following 4 and 10 days of culture (Figure 4a). 

This concentration is higher than maximum recommended plasma clinical concentrations or 

has been previously shown to have toxic effects in colon organoids.[29,30] WHEN comparing 

the docetaxel and cisplatin-treated organoids to the control, there wasn’t any significant 

difference in the percentage of opaque and budding organoids or in the diameter of the 

organoids, which is an indication that these drugs did not have a toxic effect at this 

concentration (Figure 4d,f). Under fluorouracil treatment, opacity and budding of organoids 

was not affected, but the diameter was significantly decreased (Figure 4e). This could 

indicate that fluorouracil inhibited organoid growth. This similar morphological change and 

effect was also seen in the organoids treated with chlorambucil (Figure 4i). Organoids treated 

with erlotinib exhibited different effects. The percentage of opaque organoids increased, the 
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percentage of budding organoids decreased, and the diameter decreased (Figure 4g). This 

could indicate that erlotinib prevented stem cell proliferation and differentiation, which 

affected organoid assembly. Doxorubicin treatment resulted in a significantly higher 

percentage of opaque and budding organoids, and organoid diameter decreased (Figure 4h). 

When examining the images, it was more apparent that budding did not actually increase, but 

that there was a higher percentage of non-viable and dissociating organoids, which were 

falsely classified as organoids containing budding features. This morphological change could 

indicate that doxorubicin induced toxicity in colon organoids and triggered cell apoptosis. 

Therefore, by analyzing all three organoid morphological parameters, budding, opacity and 

diameter holistically, we can gain new insights into the potential mechanisms of drug-induced 

toxicity.  
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Figure 4. Chemotherapeutic drug-induced morphological changes in organoids. a, 

Timeline of organoid culture and drug treatment. b, An outline of drug-induced effects on 

organoid opacity (O), budding (B), diameter (D), and potential mechanisms of action. Arrows 
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with dashed lines indicate a non-significant difference compared to day 10 control. c, 

Brightfield images of organoids in the non-treated condition and quantification of the changes 

in opacity, budding, and diameter of organoids following 10 days of culture (n=4). d-i, 

Organoid brightfield images (4× magnification) and quantification of the changes in opacity, 

budding, and diameter on days 0, 4, and 10 and comparison of day 10 values to the day 10 no 

treatment control values (C) following treatment with (d) docetaxel (n=4), (e) fluorouracil 

(n=4), (f) cisplatin (n=4), (g) erlotinib (n=4), (h) doxorubicin (n=4), and (i) chlorambucil 

(n=3). Scale bar, 500 m. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 

 

3. Discussion 

Analyzing the structural complexity within organoids can provide valuable insights.  

So far deep learning methods have mainly been used to detect, segment or track organoids. 

[12,17] We developed a deep-learning based method, D-CryptO, to characterize the complex 

structural morphology of organoids for the first time. As a result, the extent of organoid 

maturity can be analyzed automatically without the use of invasive analyses such as 

immunofluorescent staining. We validated this tool by analyzing changes in organoid 

morphology in prolonged culture, in short-term perturbation with forskolin, and in 

chemotherapeutic drug screening to assess drug toxicity. D-CryptO provides a number of 

advantages over existing organoid analysis workflows. First, despite the high inter-organoid 

heterogeneity, D-CryptO accurately categorized organoid opacity and budding. Second, D-

CryptO uses brightfield images that allows for non-destructive organoid analysis. Lastly, 

since D-CryptO makes classifications on single organoids, image analysis can easily be done 

on organoids grown in a 24-well plate or be scaled up to a 384-well plate as we have shown. 

D-CryptO can also be further expanded to monitor each organoid's development overtime at 

single organoid resolution as they transition from colonospheres to colonoids.[12,31]   

 

Despite the advantages of D-CryptO, there are some limitations. First, organoids treated with 

cytotoxic compounds were identified as having increased budding structures. This is possibly 

due to cell death aggregations having a similar morphological outline to budding organoids. 

To address this, D-CryptO can be specifically trained to identify non-viable and dissociating 
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organoids. Furthermore, blurry organoids or overlapping organoids, although part of the 

training dataset, were occasionally misclassified. The training dataset could be increased to 

improve classification accuracy. Finally, D-CryptO was specifically trained to assess crypt 

structures of colon organoids, but it is unclear whether D-CryptO can be applied to organoids 

from other organoids like the small intestine. While many other types of organoids do also 

exhibit budding features, more transfer learning might be needed for morphological 

assessment of other types of organoids.[32]  

 

 

4. Conclusion 

Colon organoid morphology exhibits key features of the colon epithelium in vivo and could 

provide information on colon physiology and pathophysiology. In this work, we developed D-

CryptO, a deep learning tool to automatically analyze colon organoid structure. Specifically, 

D-CryptO can analyze the opacity and the presence of budding within colon organoids to 

assess the extent of tissue maturation and differentiation. To validate D-CryptO, we used it to 

analyze colon organoid morphology in several cases. We analyzed changes in organoid 

morphology over long-term organoid culture, during short-term exposure to forskolin, and in 

a drug screen with a panel of chemotherapeutic drugs. By using D-CryptO to analyze 

organoid structure following drug treatment, we gained insights into the potential mechanisms 

by which the drugs induced toxic effects. D-CryptO can help facilitate the analysis of colon 

organoid morphology to better understand tissue physiology in vivo, assess drug effects, and 

develop therapies.  

 

 

5. Methods  

 

Colon organoid culture: Patient-derived colorectal organoids were acquired from the 

University Health Network (UHN) Princess Margaret Living Biobank in Toronto Canada.  
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Approval for the use of these organoids were obtained from the Hamilton Integrated Research 

Ethics Board under the project number, 5982-T. Organoids were derived from a 69-year-old, 

female patient. Organoids were cultured by thawing frozen vials and embedding them into 

growth-factor reduced Matrigel. 50µL of Matrigel and the organoids were casted into a 24-

well plate. Organoids were maintained using Intesticult human organoid growth media 

purchased from Stemcell Technologies (Cat #06010) supplemented with Rock Inhibitor. For 

experiments in a 384-well plate, organoids were thawed directly and embedded in 25µL of 

Matrigel. Organoids used in these experiments were between passage 18-19. 

 

Image acquisition: Brightfield images of colorectal organoids were acquired using a Cytation 

5 cell imaging multi-mode reader (BioTek® Instruments). Both image montages and z-stacks 

were captured at 4×magnification. Acquired images were then converted into the png and rgb 

format.   

 

Dataset creation: A set of image montages composed of 35 images were obtained from 

organoids cultured in a 24-well plate. Each organoid within the image was labelled using 

labelImg, and its coordinates were used to automatically crop each organoid. Organoids were 

then sorted into separate datasets. For the opacity dataset, if the organoid had a thin 

epithelium, or a clear lumen it was classified as transparent. If the organoid had a thicker 

epithelium or did not have a clear lumen, it was classified as opaque. The opacity training 

dataset consisted of 816 opaque organoids and 1165 transparent organoids. The opacity 

validation dataset consisted of 101 opaque organoids and 144 transparent organoids. The 

opacity test dataset contained 104 opaque organoids and 148 transparent organoids. Images 

were randomly split into the datasets with a ratio of 80:10:10. For the budding dataset, if an 

organoid had a clear protrusion it was classified as a budding organoid. If an organoid was 
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mainly spherical, it was classified as non-budding. The budding training dataset contained 

979 images of budding organoids and 1245 images of non-budding organoids. The budding 

test set had 102 images of budding organoids and 150 images of non-budding organoids. The 

budding validation set was created automatically using Keras with a validation split of 20%. 

The raw data set can be found at https://osf.io/42r3g/.  

 

Model architecture and selection: Six pre-trained models were selected for transfer learning: 

ResNet152V2, XCeption, InceptionResNetV2, VGG-16, VGG-19, and ResNet50. These 

models were selected based on their performance on the ImageNet dataset as well as their 

speed. Additionally, these models have different architectures. VGG-16 contains 16 layers, 

consisting of convolutional layers and max-pooling layers, followed by a densely connected 

classifier. VGG19 has a similar architecture but consists of 19 layers. ResNet50 contains 50 

layers and uses residual connections to reduce the problem of vanishing gradients and 

improve accuracy. ResNet152V2 also incorporates residual connections but is a deeper model 

with 152 layers. XCeption uses depthwise separable convolutions to generate a model with 

fewer parameters and increase performance. InceptionResNetV2 contains 164 layers and 

combines the Inception architecture, which includes different convolutional filter sizes and 

incorporates the residual connections of the ResNet architecture.  

 

Model configuration and training: Keras (version 2.8.0) and python 3.7 was used to configure 

and train all models. First, all images were preprocessed into a tf.data.Dataset. Image size for 

all models was set to (150 pixels, 150 pixels), the batch size was set to 32 and image pixels 

were normalized to values between 1 and -1. For the opacity feature of D-CryptO, both 

feature extraction and fine-tuning were conducted. To do this, each of the 6 models with 

different architectures (ResNet152V2, XCeption, InceptionResNetV2, VGG-16, VGG-19, 

and ResNet50) were first instantiated and the pre-trained weights were loaded into them. All 

https://osf.io/42r3g/
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layers in the pretrained models were frozen and a new classifier was added which included a 

dropout layer (dropout rate of 0.2) and a dense layer with 2 nodes and the softmax activation 

function. The model was then trained for 20 epochs using the Adam optimizer, the categorical 

cross entropy loss function, and the categorical accuracy metric to assess model performance. 

To further improve model performance for opacity, the models were fine-tuned by unfreezing 

all layers and the model was retrained at a low learning rate of 1 × 10-5 for 10 epochs with the 

same loss function and accuracy metric used for feature extraction. For the budding feature of 

D-CryptO, only feature extraction as described earlier was performed. All budding models 

were trained for 20 epochs and model performance was monitored using the precision metric. 

All training was done using GPU accessed through Google Colab. Data augmentation was 

used in all training pipelines to improve model performance by increasing the dataset 

available to train the model and reducing overfitting. The following data augmentation 

functions were applied: random flip, random rotation, and random zoom.   

 

Forskolin treatment: Forskolin was purchased from STEMCELL Technologies (Cat# 72112). 

A stock solution of 10mM was prepared following manufacturer instructions. The 10mM 

stock solution was diluted to 10µM in 1×PBS (Cat#: 14190144). Colorectal organoids were 

cultured in a 24-well plate for a period of 7-10 days. Forskolin was administered for a period 

of 2 hours. Brightfield montage images at 4× magnification were taken every 15 minutes 

using the Cytation 5 cell imaging-multi mode reader. 

  

Chemotherapeutic drug screen: Drugs were acquired from the NIH National Cancer Institute 

at stock concentration of 10mM diluted in DMSO. Drugs were diluted 200× in Intesticult 

Medium to achieve a concentration of 50µM. Colon organoids were thawed and embedded in 

25µL of Matrigel in a 384 well plate. Following 4 days of culture, drugs were applied. Drug 



M.A.Sc. Thesis – L. Abdul; McMaster University – Biomedical Engineering 
  

46 
 

solutions were renewed every other day. Z-stack montages were acquired every other day 

using a Cytation 5 cell imaging-multi mode reader. 

 

Quantification analysis: Individual organoids within image montages were detected using 

OrgaQuant[17] or had boxes drawn around them manually using the SuperAnnotate software. 

To assess changes in budding and opacity, all predictions by the final trained models were 

outputted to a CSV file. For opacity, any organoids which had classification score of greater 

than 50% was classified as opaque. For budding, any organoids which had a classification 

score of greater than 50% was classified as budding. The change in budding and opacity was 

assessed in at least 3 independent samples. To measure diameter, the x coordinates from the 

bounding boxes of the detected organoids were used. Diameter was obtained from at least 3 

independent samples. Confusion matrices and the organoid distribution dot plot were plotted 

using the Matplotlib library.  

 

Statistical analysis: All results are plotted as mean ± standard deviation. Normality and equal 

variance were tested for using GraphPad. A p value < 0.05 was considered statistically 

significant in all experiments. At least three independent samples were used for all 

experiments. For data in Figures 3h-j, statistical significance was determined using a one-

way repeated measurement ANOVA followed by Dunnett’s test. Statistical significance for 

Figures 3c-e was assessed using an unpaired two-tailed t-test. For Figure 4, statistical 

significance was assessed using a one-way repeated measurement ANOVA followed by 

Dunnett’s test. Statistical significance for changes in diameter following treatment with 

Erlotinib (Figure 4g) and the changes in opacity in the organoids treated with doxorubicin 

(Figure 4h) were assessed using the Friedman test followed by Dunn’s test. Statistical 

significance between day 10 opacity, budding, and diameter values to day 10 control values 

was determined using a two-tailed unpaired t-test. Statistical significance in the opacity of the 
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organoids to the day 10 control in the organoids treated with doxorubicin was assessed using 

the Mann-Whitney test. 

 

Data availability  

All the trained models and the datasets can be downloaded from: https://osf.io/42r3g/ 
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This work focuses on the development and validation of D-CryptO, a deep learning-based 

image analysis tool that can be used to analyze colon organoid structural maturity directly 

from brightfield images. D-CryptO can detect changes in organoid morphology over 

prolonged culture, during short-term perturbation, and following chemotherapeutic drug 

treatment. 
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Dose-dependent changes in organoid morphology 

  

To further validate D-CryptO, we used it to assess the dose-dependent response of 

doxorubicin on opacity and budding following treatment at various concentrations. 

Doxorubicin is a chemotherapeutic that inhibits DNA and RNA synthesis and induces 

apoptosis.30 We applied doxorubicin at concentrations of 50 µM, 5 µM, 0.5µM, 0.05 µM, and 

0.005 µM (Figure S1a). For opacity, the concentration at which 50% of organoids became 

opaque was 3.6 µM (Figure S1b). For budding, the concentration at which 50% of the 

organoids still had budding structures was 39.8 µM (Figure S1c). It is important to note that 

budding did not increase with higher dosages of doxorubicin. Instead, the percentage of non-

viable organoids increased which was classified under the budding category. For diameter, the 

concentration at which 50% of the organoids had a reduction in diameter was 0.5 µM (Figure 

S1d). Each parameter was impacted at different concentrations, indicating the importance of 

monitoring these features to assess drug toxicity.  
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Supplementary Figure 1. Dose-dependent changes in organoid morphology. a, 

Brightfield images of organoids taken on Day 0 and Day 10 of drug treatment with 

doxorubicin at 5 different concentrations. Scale bar, 500 m b, The percentage of opaque 

organoids following 10 days of treatment with increasing concentrations of doxorubicin. c, 

The percentage of budding organoids following 10 days of treatment with increasing 

concentrations of doxorubicin. d, The change in diameter following 10 days of treatment with 

increasing concentrations of doxorubicin.  
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Chapter 4: Conclusion  

 

The work in the preceding chapters demonstrates the application of deep learning to analyze the 

morphology within three-dimensional tissue models. Specifically, the second chapter focuses on 

the detection and classification of morphologies within lung spheroids. When lung spheroids 

were cultured in vitro, they either self-assembled into polarized spheroids, with apical-basal 

polarity (referred to as “lumen”) or into disorganized spheroids that did not exhibit polarity 

(referred to as “no lumen”). To apply deep learning to analyze the polarization of lung spheroids, 

a custom dataset containing examples of the two distinct spheroid structures was compiled and 

several pre-trained object detection models were trained on this dataset. The highest performing 

model was named Deep-LUMEN and was validated in two ways. First, we assessed how the 

extracellular matrix affects the ability of spheroids to assemble into polarized structures. The 

percentage of spheroids with polarized structures grown in Matrigel™ was significantly higher 

than those grown in different concentrations of fibrin. Second, we used Deep-LUMEN to study 

how the drug cyclosporin, which has previously been shown to induce cell toxicity, disrupts 

spheroid assembly. Even though spheroids were treated with a cyclosporin concentration that 

was sub-toxic, there was a significantly lower percentage of spheroids with lumens. Within these 

studies, three main conclusions were drawn. First, we showed that Deep-LUMEN can be used to 

accurately distinguish between the morphologies of interest. Second, we showed the importance 

of analyzing morphology. In both validation studies, although the spheroid structure was 

disrupted, the traditional parameters of diameter or the number of spheroids remained unaffected. 

Finally, we demonstrated that deep learning could facilitate the analysis of spheroid polarization.   
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Similarly, in the third chapter, deep learning was applied to analyze the complex morphology of 

another type of three-dimensional tissue model called an organoid. Colon organoids, which are 

derived from stem cells, can self-assemble into variable morphologies. Organoids differed in the 

extent of their budding and exhibited a range of opacities. The level of opacity and budding 

indicate the structural maturity of the organoid. To apply deep learning to assess organoid 

structural maturation, a dataset was created for the opacity feature (opaque or transparent 

organoids) and for the budding feature (spherical or budding organoids). Next, several pre-

trained classification models were fit to the custom dataset and the model that performed with 

the greatest accuracy was called D-CryptO. D-CryptO was validated by analyzing colon 

organoid morphology over long-term culture. The analysis showed that there wasn’t any 

significant variation in organoid morphology over time which can help improve the 

reproducibility of organoid studies. Additionally, D-CryptO could successfully capture changes 

in opacity and budding following short-term stimulation with forskolin. Furthermore, D-CryptO 

was validated by analyzing changes in morphology following treatment with chemotherapeutics 

to gain insights into the mechanisms of drug-induced toxicity. Overall, in this chapter, we 

demonstrated that deep learning could be applied to analyze more complex morphologies and we 

showed that we can apply our custom deep learning model in several cases.  

 

Both chapters demonstrate that deep learning can be a valuable method to analyze three-

dimensional tissue morphologies. This work is the first demonstration of analyzing the 3D 

structure using custom deep learning models. It can facilitate the analysis of other 3D tissue 

models so that greater insights into tissue physiology in vivo can be gained. In the work 

presented, both deep learning models and the custom datasets were made publicly available. 
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Some limitations of this method include the need for a large dataset which may not be possible 

for other types of tissue models. However, innovative techniques like data augmentation and the 

generation of new images with generative adversarial networks are also techniques that can be 

used to artificially increase the dataset.30 Second, imaging artifacts like overlapping or blurry 

structures can reduce the accuracy of the models. Third, the work presented here did not use 

multiple instruments for imaging. Further studies should be done to assess the model accuracy 

across different instruments.  

 

Future work could focus on adding a tracking feature to the deep learning models. Tracking can 

be used to monitor the assembly of 3D tissue models from a single cell to more complex 

morphologies. As a result, greater insights could be gained into the stages of morphological 

development and how external stimuli affect tissue assembly. Furthermore, these models could 

be packaged into interfaces that make them more accessible to individuals without programming 

experience. Nonetheless, the tools developed in this work permit tissue morphological analysis 

directly from images, in a non-destructive and high-throughput manner. They can be further 

developed to facilitate the structural analysis of other 3D tissues or be expanded for use in high-

throughput drug screening pipelines.  
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