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Abstract
Tracking systems are already encountered in everyday life in numerous applications, but
many algorithms from the existing literature rely on assumptions that do not always
hold in realistic scenarios, or can only be applied in niche circumstances. Therefor this
thesis is motivated to develop new approaches that relax assumptions and restrictions,
improve tracking performance, and are applicable in a broad range of scenarios. In
the area of terrain-aided tracking this an algorithm is proposed to track targets using
a Gaussian mixture measurement distribution to better represent multimodal distribu-
tions that can arise due to terrain conditions. This allowed effective use in a wider
range of terrain conditions than existing approaches, which assume a unimodal Gaus-
sian measurement distribution. Next, the problem of estimating and compensating for
sensor biases is considered in the context of terrain-aided tracking. Existing approaches
to bias estimation cannot be easily reconciled with the nonlinear converted measurement
model applied in terrain-aided tracking. To address this, a novel efficient bias estima-
tion algorithm is proposed that can be applied to a wide range of measurement models
and operational scenarios, allowing for effective bias estimation and measurement com-
pensation to be performed in situations that cannot be handled by existing algorithms.
Finally, to address scenarios where converted measurement tracking is not possible or
desired, the problem of sensor motion compensation when tracking in pixel coordinates
is considered. Existing approaches compensate for sensor motion by transforming state
estimates between frames, but are only able to achieve partial transformation of the
state estimate and its covariance matrix. This thesis proposes a novel algorithm used to
transform the full state estimate and its covariance matrix, improving tracking perfor-
mance when tracking with a low frame rate and when tracking targets moving with a
nearly coordinated turn motion model. Each of the proposed algorithms are evaluated
in several simulated scenarios and compared against existing approaches and baselines
to demonstrate their efficacy.
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Chapter 1

Introduction

1.1 A Review of Some Challenges in Modern Tracking
Tracking systems are an important component of many promising technologies such as
autonomous vehicles, smart cities, and surveillance systems, among others. Although
tracking systems are already becoming an integral part of everyday life, deployed in nu-
merous practical applications, many challenges remain. In many cases, algorithms from
the existing literature are found to be effective, but they rely on assumptions that do not
necessarily hold in the real world, or they cannot be applied in a wide range of scenarios.
When these approaches can be applied and their assumptions are a good approximation
of the real world then they are effective, but this is not always the case. This thesis,
which is organized as a sandwich thesis with three different publications that address
three inter-related problems in the same tracking scenario of air-to-ground tracking, is
therefor motivated to work towards addressing these limitations, investigating the pos-
sibility of relaxing assumptions or restrictions of existing approaches that limit their use
or effectiveness is a variety of operational conditions. The applications considered are
terrain-aided tracking in varied terrain, sensor bias estimation and measurement com-
pensation, and sensor motion compensation for tracking in pixel coordinates. These
applications, the limitations of existing approaches, and novel approaches proposed in
this thesis are introduced briefly in this section.

One assumption that is frequently used (and sometimes valid) in air-to-ground track-
ing scenarios is that the terrain within the area of interest is flat, sometimes called
the flat earth assumption. This assumption is commonly used to convert bearings-only
measurements to measurements in Cartesian coordinates in the world frame of reference,
both assumed to have Gaussian distributions. When the flat earth assumption does not
hold, the accuracy of the conversion degrades. This has been partially addressed by
the use of Digital Elevation Models (DEMs) to consider terrain which is not flat during
measurement conversion, but the converted distribution is still assumed to be Gaussian
by current state of the art approaches. In practice, some terrain is peaky and the grazing
angle to targets may be low. This leads to a multimodal distribution of the target’s posi-
tion measurement due to uncertainty in the sensor’s position and orientation, as well as
errors in the DEM. Chapter 2 considers such a scenario, and proposes to instead model
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the converted measurement in Cartesian coordinates using a Gaussian mixture distri-
bution with a dynamically-estimated number of mixture components. When the flat
earth assumption holds this approach automatically falls back to the standard Gaussian
assumption (a Gaussian mixture with a single component), so it is not tied to specific
assumptions about the terrain and flight path.

Some algorithms see their performance degrade when their assumptions are less valid,
while others are strictly applicable under particular operational conditions and cannot
be applied otherwise. This is particularly prevalent in sensor bias estimation (or sensor
calibration). Standard tools such as the Kalman Filter can effectively remove zero-mean
noise from measurements through tracking, but cannot handle errors introduced by sen-
sor biases. Sensor bias estimation and compensation algorithms are therefor employed to
estimate and reduce the effects of these errors on tracking performance. Many state of the
art sensor bias estimation algorithms rely on a specific measurement model, bias model,
number of sensors, fusion architecture, full-rate synchronous communication, or have a
high computational cost. Although there exist effective algorithms, they often cannot
be applied at all outside of their niche. This is an important limitation, since practical
tracking systems often involve multiple heterogeneous sensors, may use a variety of fu-
sion architectures, have limited or unreliable communication, and limited computational
resources. It is sometimes possible to use combination of niche approaches to address
this, but this makes constructing a practical system an exercise in patchwork. It also
means that any changes to the system can require substantial effort to accommodate.
Chapter 3 proposes a flexible approach to sensor bias estimation and compensation that
can be used with minimal modification in a wide range of operational scenarios, with
a reasonable computational cost. The proposed approach allows for sensor bias estima-
tion to be performed in some scenarios where it was not previously possible, as well as
providing an option that substantially eases integration in practical complex systems.

Tracking systems often opt to track targets in the world frame of reference using con-
verted measurements (as in chapter 2) or the Extended Kalman Filter, but sometimes
this is not possible due to system limitations. For example, using a single a passive
imaging sensor where the sensor location and orientation is not known. One alternative
that is often applied is to track targets directly in pixel coordinates. This introduces the
need to compensate for sensor motion between frames. The Homography Transform is
normally used for this purpose in video tracking. In its standard form this transforma-
tion has no notion of uncertainty and can only be used to transform position points from
their location in one frame to their corresponding location in the following frame. This
is a problem if the targets are being tracked using a Kalman Filter, which maintains
target state estimates in the form of Gaussian random variables and often tracks other
state components in addition to position (such as velocity, acceleration, and turn rate).
An extension exists to apply the Homography Transform to position and velocity com-
ponents of the state estimate mean, and to the elements of the state estimate covariance
matrix corresponding to the position state components. This allows for partial transfor-
mation of the state estimate of a target being tracked using a Nearly Constant Velocity
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kinematic model. In chapter 4 a further extension is proposed to allow for the full trans-
formation of target state estimates for three common kinematic models, designed to be
readily extensible to other models. This expands on the capability of existing approaches
to transform state estimates for additional motion models, as well as allowing a more
complete transformation of state estimates for Nearly Constant Velocity models.

The remainder of this thesis is organized as follows. A brief summary of the thesis
contributions is given in section 1.2, along with a listing of the papers on which the
following chapters are based. Chapters 2 through 4 each cover the one of the problems
introduced above, in full detail. Each of these chapters includes a thorough introduction
to the corresponding problem, the limitations of existing approaches, proposed solutions,
experiments to validate the proposed approaches, and related discussions. A conclusion
is presented in chapter 5.

1.2 Thesis Contributions
The contributions of this thesis are as follows:

• A novel image processing algorithm for estimation of the number of components
of a Gaussian Mixture distribution, appropriate for use in terrain-aided tracking
(chapter 2).

• Fully describes a tracking framework for terrain-aided tracking with a Gaussian
Mixture measurement model (chapter 2).

• A novel, efficient algorithm for sensor bias estimation and bias-compensated track-
ing that can be used with a variety of sensor models, bias models, fusion architec-
tures, and communication models (chapter 3).

• A novel approach for information fusion under unknown correlation with unequal
state vectors that is less conservative than Covariance Intersection and more con-
servative than the Kalman Filter (chapter 3).

• A novel algorithm for sensor motion compensation when tracking in pixel coordi-
nates that can transform full state estimates between frames as long as the state
vector can be encoded as a series of position points and subsequently decoded,
analogous to the Homography Transform (chapter 4).

• Derivations to encode the state vectors of three common kinematic motion models
as a series of position points and subsequently decode them (chapter 4).

Chapters 2, 3, and 4 of this thesis are each based on the work done initially for a
research paper. The full citation for each is given below for reference and to give due
credit to the co-authors.
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[2] D. Schonborn, T. Kirubarajan, R. Tharmarasa, M. McDonald, and M. Bradford,
“Terrain-aided tracking using a gaussian mixture measurement model,” To be sub-
mitted to IEEE Transactions on Aerospace and Electronic Systems (July 2022),
2022.

[3] D. Schonborn, T. Kirubarajan, and R. Tharmarasa, “Sensor bias estimation and
measurement compensation for multisensor-multitarget tracking,” To be submitted
to IEEE Transactions on Aerospace and Electronic Systems (July 2022), 2022.

[4] D. Schonborn, T. Kirubarajan, and R. Tharmarasa, “Unscented homography trans-
form for low frame rate tracking in pixel coordinates,” To be submitted to IEEE
Transactions on Aerospace and Electronic Systems (July 2022), 2022.
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Chapter 2

Terrain-Aided Tracking Using a
Gaussian Mixture Measurement
Model

2.1 Introduction
The goal of target tracking is to estimate the state of a target (or multiple targets in
multi-target tracking) using sensors. Sensors capture data at the signal level, which is
processed by a detector to obtain position measurements of the targets (also known as
detections). These measurements are then processed by the tracker which initializes
and maintains estimates of the target states. Figure 2.1 shows how a terrain reference
module (used for terrain-aided tracking) can fit into such a tracking framework.

Video cameras are commonly used in air-to-ground tracking applications due to their
low cost, low size, and high accuracy. In combination with a detection algorithm, video
data can measure the position of a target accurately within the image plane, but often
times the interest is in determining the position of a target in geographic coordinates.
Geographic localization of targets presents a challenge due to the lack of range informa-
tion available from video data. One way to estimate the range for targets on the ground
is to follow the line of sight from the sensor in the direction of the measured object until
the ground location is reached based on some model of the earth’s surface [5, 6, 7, 8].
Examples of earth surface models include spherical [9, 10], ellipsoidal [10], and flat earth
models [8] as well as more complex Digital Elevation Models (DEMs) [11, 12, 13, 8].

In [14, 15] terrain data is used to assess terrain traversability and constrain target
motion to areas where terrain can be traversed. In [16, 17] terrain data, including
road network information or other classification information, is used to constrain target
motion to areas that are likely to be driven on. These approaches are all forms of terrain-
aided tracking, however this chapter focuses on air-to-ground target tracking using the
line of sight method with a surface model represented as a digital elevation matrix.
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Figure 2.1: A tracking framework with optional terrain reference mod-
ule for terrain-aided tracking

In [5], a DEM in combination with measurements of the sensor’s position and orien-
tation are used to add range information to the bearing measurement. This, in conjunc-
tion with a Kalman filter, is used to track the target. Similar strategies are employed in
[18, 19, 6, 8, 20, 21, 7, 22, 23].

Figure 2.2 illustrates the basic idea of the line of sight tracking. The line of sight
direction is measured by orientation sensors and the sensor position is measured by GPS
[5]. Starting from the sensor’s position, the line-of-sight is followed until it intersects
with the DEM [5]. The point of intersection in the DEM is used to calculate the range to
the target geometrically, and some Gaussian noise (correlated with the angular measure-
ments to the target) was assumed [5]. Derivations for the geolocation estimate and error
covariance were given for both a flat earth model and a DEM in [8]. These derivations
were based on the assumption that sources of error in the geolocation estimate are errors
in the sensor’s position, Euler angles to the target, and terrain height. These errors are
assumed to be zero-mean and Gaussian [8].

Figure 2.2: A basic example of line of sight tracking using a digital
terrain map
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A limitation to the use of DEM tracking is that the assumed distribution of the
geolocation measurement (or the augmented range measurement if tracking in spherical
coordinates) is Gaussian [5, 18, 21]. In practice, some terrains are peaky and the grazing
angle to targets may be low, leading to a multimodal distribution of the target’s position
measurement due to uncertainty in the sensor’s position and orientation, as well as errors
in the DEM [18, 24]. Figure 2.3 illustrates the practical scenario described above. Due to
the near-obstruction of line-of-sight between the sensor and the target by peaky terrain,
an error in the DEM can lead to a false estimation of the target’s position to be nearer
than its actual position. These measurement errors may lead to additional problems in
the tracking stage such as reduced track accuracy, broken tracks, track swaps, increased
confirmation latency, and formation of multiple tracks for the same target (in multi-
target tracking).

Figure 2.3: Illustration of multimodal distribution due to low grazing
angle and peaky terrain

In [6] the unscented transform and Unscented Kalman Filter (UKF) are used to par-
tially address this limitation. The distribution of the target position was estimated as
Gaussian, which is convenient for integration with existing tracking frameworks. How-
ever, it did not capture the multimodal nature of the distribution. The unscented
transform yielded an error covariance that accounted for the interaction between the
measurement errors and the varying terrain height around the target position [6]. This
is unlike the derivations from [8] which only accounted for the terrain height and its error
covariance at the measured target position (where the measurement mean intersects the
terrain surface).

CONDENSATION algorithm, a particle-based algorithm, has been suggested [18, 21]
to address the multimodal distribution issue but has not been implemented as concerns
of increased computational complexity abound when used for multiple target tracking
involving large number of particles [25]. Additionally, the CONDENSATION algorithm
requires a fully integrated tracking process which cannot fit easily into most existing
tracking frameworks.

Traditional tracking pipelines can improve terrain-aided tracking results by selecting
an appropriate flight path and avoiding conditions that cause difficulty [26]. However,
due to flight path restrictions or the requirement to track multiple targets, the approach
suffers a limitation as the optimum flight path may not be available or well-defined.

This chapter presents an algorithm that accurately tracks a target using passive,
bearing-only sensors combined with terrain information and measurements of the sensor’s
position and orientation. It addresses the limitations outlined above by presenting a
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method that is robust to conditions such as low grazing angle, difficult terrain, or having
only a low resolution DEM available. The proposed algorithm recognizes when the
target’s position is ambiguous and it does not depend on a particular target flight path.
It also allows for multi-target tracking and performs computations efficiently, suitable
for online use in realistic scenarios.

The contributions of this chapter are as follows. Firstly, an algorithm is proposed to
efficiently parameterize a Gaussian mixture measurement distribution for the purposes of
terrain-aided tracking measurements. It can be used to estimate the number of mixture
components, addressing the issue of unknown number of mixture components and allow-
ing standard methods to be used. The algorithm can also be used to cluster samples from
the measurement distribution to obtain an estimate of the distribution parameters using
simpler methods (based on the sample mean, sample covariance, and weight of each clus-
ter). Secondly, a framework that integrates the Gaussian mixture measurement model
into an existing terrain-aided tracking frameworks using components that are already
in use while requiring minimal modification. The framework can switch between the
Gaussian mixture measurement model and the standard Gaussian measurement model
when appropriate. Lastly, simulation results are presented to validate the performance
of the Gaussian mixture measurement model under difficult tracking conditions.

The remainder of the chapter is organized thus. Section 2.2 provides background on
the subject of digital elevation models, terrain-aided tracking, and multiple hypothesis
tracking. It also outlines the theoretical framework for this work. Section 2.3 presents
the mathematical context for the problem under consideration. Section 2.4 presents
the details of the proposed fast algorithm for parameterization of a Gaussian mixture
measurement distribution appropriate for use in terrain-aided tracking. In section 2.5
simulated results are presented to compare tracking performance using the proposed
measurement model against those using a Gaussian measurement model. Section 2.6
concludes this work, evaluating the significance of results from the previous section,
identifying limitations of the proposed approach, and directions for future work.

2.2 Background
To fully understand the proposed algorithms, it is essential to present background discus-
sions for digital elevation models, surface model intersections, Gaussian mixture models,
multiple hypothesis tracking, and morphological image processing.

2.2.1 Digital Elevation Model (DEM)

A Digital Elevation Model (DEM) is a database used to obtain an estimate of terrain
elevation for a given pair of geographic coordinates (latitude and longitude). DEMs have
important applications in Geographic Information Systems (GIS) [27], target tracking,
and many others. This chapter focuses on data represented by a Digital Elevation Matrix
which are compact and available for public download [11, 13].
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A Digital Elevation Matrix consists of a set of regularly-spaced "posts", each with an
estimate of the elevation at that post. Each post is associated with a geographic location
in a specified projection to enable conversions between geographic and local coordinate
system using standard methods. Between the posts, no information about the terrain
height is provided, as illustrated by figure 2.4.

Figure 2.4: A representation of a single axis of DEM data with elevation
measurements at posts, and no information in between.

The elevation at points between the posts can be approximated using bilinear in-
terpolation of the neighboring four posts. Results from [28] suggests that the bilinear
interpolation provides reasonable accuracy and computational efficiency for this purpose.
Hence, the terrain surface modelled by the DEM is a grid of bilinear patches. Equation
2.1 represents such a patch, where zW is the elevation at a point on the patch, zij are
the elevations provided by the neighboring posts with increments of i, j corresponding
to increments in the grid in the x, y directions, respectively.

(2.1)zW = wy0(wx0z00 + wx1z10) + wy1(wx0z01 + wx1z11)

The weights wx0, wx1, wy0, wy1 correspond to the distance between the point on the
surface and the neighboring posts in the x and y directions respectively for the lower
and upper posts (this is normal bilinear interpolation).

2.2.2 Surface Model Intersections

Terrain-aided tracking by line of sight is based on the intersection of the line of sight (a
ray from the sensor position in the direction of the target) and the DEM surface. Deter-
mining the first point of intersection along this ray will be required for such applications.
Since the DEM is a grid of bilinear patches, this task is divided into a grid traversing
over patches in the line of sight and checking each patch for an intersection.

Ray-Grid Intersection

In [18] the DEM is intersected by traversing the grid cell-by-cell in the x, y coordinates
starting from the cell containing the sensor until a point of intersection is found where
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the elevation in the cell is greater than the z component of the line of sight as it passes
through that cell.

In [29], a modified Bresenham Digital Differential Analyzer (DDA) algorithm was
presented to traverse a grid along a line. Their algorithm identified all cells in the grid
that intersect the line, from the starting point as illustrated in figure 2.5. The elevation
component can be rejected for intersections without an exact intersection test (if the
elevation of the ray does not pass through the elevation of the cell), otherwise an exact
test is performed [29].

Figure 2.5: An illustration of the cells identified by the modified Bre-
senham DDA algorithm.

Ray-Bilinear Patch Intersection

In [18] it was suggested to use interpolation to obtain a more precise point of intersection
within the intersecting cell, but no details about the interpolation approach or intersec-
tion algorithm were included. An efficient algorithm for intersecting rays with a bilinear
interpolated patch was presented in [30]. A patch may also have multiple intersections,
in which case the first (nearest to the sensor) represents the correct point in the line of
sight [30].

2.2.3 Gaussian Mixture Models (GMMs)

Mixture models can be used to represent a multimodal distribution as a weighted sum of
K component distributions. When the component distributions are all Gaussians, then
the distribution is called a Gaussian mixture (or a mixture of Gaussians). GMMs are
a desirable way to represent multiple hypotheses in a target tracking scenario because
they fit conveniently within the Bayesian recursive estimation framework for Multiple
Hypothesis Tracking (MHT) (see section 2.2.4). Equation 2.2 is the general definition of
a Gaussian mixture distribution, where µi, Ci are respectively the mean and covariance
of each Gaussian component distribution.

(2.2)p(x) =
K∑

i=1
ϕiN (µi, Ci)
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Various general-purpose approaches exist for estimating a GMM from a set of samples.
Two popular approaches are the K-means (KM) and Expectation Maximization (EM)
algorithms [31, 32, 33]. Both are closely related as they are center-based clustering
algorithms that involve initializing clusters and updating their centroids based on their
relationship with the samples [33]. KM algorithms cluster the samples based on their
Euclidean distance from each cluster centroid and use the mean of each cluster’s samples
to update the centroid for the next iteration, continuing until a stable configuration is
reached [32]. EM algorithms work in a similar iterative manner, but also considers the
probability of each sample’s membership to each cluster and may use a more complex
distance metric [32]. Both algorithms benefit from good cluster initialization.

KM and EM in their standard forms assume that the number of components is known.
In [33], an algorithm was proposed to learn the K value in KM and suggest a method for
evaluating the model fit with each choice of K. Their algorithm involves Kmax iterations
for the evaluation of KM. Assuming a constant number of dimensions, the computational
complexity of the KM algorithm is O(Kni) where K is the number of components, n the
number of samples, and i the number of iterations [34]. If Kmax iterations are performed
to determine K then then total computational complexity is O(K2

maxni). Note that
Kmax is the number of iterations of the entire KM/EM algorithm, each assuming a
different fixed value for K, while i is the number of iterations performed within each
algorithm run. The K2

max term arises from the fact that K varies from 1 to Kmax.
This complexity may be prohibitive for real time use in tracking applications where a
high frame rate is required and when Kmax is large. Additionally it is possible that
the resulting mixture with the best fit may involve an excessive number of components
that do not correspond well to different hypotheses in a tracking context (see section
2.4.3). Section 2.4.3 of this chapter proposes an alternative method to cluster samples
and determines a reasonable number of components to use in the context of terrain-aided
tracking.

2.2.4 Multiple Hypothesis Tracking (MHT)

In [35], it was demonstrated that Multiple Hypothesis Tracking (MHT) could be an
effective method for resolving ambiguities in visual tracking problems. With MHT, the
final decision on data association was delayed by maintaining a tree of all hypotheses
originating from a particular observation, though in practice the tree must be pruned
aggressively for MHT to remain computationally feasible. In each frame, the tree was
updated as each hypothesis is associated with new observations as well as a dummy
observation (indicating a missed detection). The most likely global hypothesis at each
frame was then formed with the constraint that each observation is either a false alarm
or associated with a single track (i.e. there are no unresolved targets).

The approaches in [35, 36, 37] all utilized MHT for multi-target tracking. Additionally
[36, 37] used MHT to resolve ambiguities with the measurement distribution (in terms
of Doppler measurements and grating lobes). The same approach will be applied in this
chapter to resolve ambiguity in terms of the Gaussian mixture measurement modes as
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well as in measurement-to-track association (for multi-target tracking) without much
modification.

Track Trees

In MHT, the track hypotheses originating from each observation are represented by
track trees, constructed per frame for every observation (detection) to consider the pos-
sibility that new targets are being observed [35]. In subsequent frames, these trees are
updated by adding hypothesis branches with increasing depth corresponding to the dif-
ferent possible association outcomes originating from the root observation of each tree.
In a particular tree, each directed path from the root to a leaf of the tree is one hypoth-
esis corresponding to the initial observation (the root). These hypotheses are each given
a track score, which is used in pruning the tracks as well as computing the global track
hypothesis [35, 36, 37]. The track tree can be pruned based on an N-scan approach and
kept to a maximum number of branches to keep computation feasible [35]. The N-scan
approach involves looking back N frames in the tree and pruning branches that are not
consistent with the current global hypothesis. The maximum size can be enforced by
keeping only the top hypotheses based on their track scores. Additional logic-based (i.e.
"M out of N") or score-based track management can be employed to confirm or terminate
tracks.

At each frame, existing hypothesis trees are updated to account for new observations
of previously-observed objects and the possibility of missed detections. New hypothesis
trees are formed to consider possible newly-detected objects [35]. For objects that have
been observed before, existing track hypotheses (in all trees) are updated by appending
a new branch for each new observation that lies within their gating region (where the
Mahalanobis distance between the observed and hypothesis predicted location is less
than a specified threshold). This is seen in equation 2.3 where dM is the Mahalanobis
distance between the predicted hypothesis (with mean µx and covariance Σx obtained
using a Kalman filter) and the observed location µy. The threshold can be adjusted to
increase or decrease the size of the gating region. This gating procedure reduces the
total number of hypotheses to consider.

(2.3)dM = (µx − µy)T (Σx)−1(µx − µy)

In [36, 37] this gating test based on Mahalanobis distance was applied for all combi-
nations of existing hypotheses with each ambiguous case (i.e. the Doppler measurement
or grating lobe) from all new measurements. A new hypothesis is formed for each com-
bination passing the test. In the standard MHT [35], each measurement generates only
one hypothesis to test per existing hypothesis, while in the formulations from [36, 37]
each measurement generates one or more hypotheses to test for each existing hypothesis.

In [36], an equation for the probability of each hypothesis is derived using Bayes’
theorem and shown below in equation 2.4. The first factor in the product correspond to
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the measurements’ likelihood (including the Doppler measurement) given the hypothe-
sized association. The second factor is the probability of the current hypothesis based
on the previous one, which includes both the measurement-to-track assignment and the
Doppler order assignment. The final factor is the probability of the parent hypothesis,
and c is a normalization constant chosen so that the sum of the probabilities for all
hypotheses is 1.

(2.4)P{Ak,l|Zk} = 1
c

p[Z(k)
∣∣∣ a(k), Ak−1,s, Zk−1] · P{a(k)

∣∣∣Ak−1,s, Zz−1} · P{Ak−1,s}

A simplified final expression is repeated in equation 2.5. The probability depends on
the number of new measurements m(k), number of associated measurements ND, number
of false alarms NNF , density of new measurements or clutter µn+f , the number of existing
targets NT GT , probability of detection PD, tracking volume V , and the likelihood of each
measurement given the hypothesis fti(·) (Kalman Filter innovation PDF).

(2.5)P{Ak,l|Zk} = ND!
c ·m(k)!µn+f · P ND

D · (1− PD)NT GT −ND · V −NNF ·
m(k)∏

i∈aT (k)
fti(ZU

i , k)

In the derivation, the Doppler distribution is assumed to be uniform so its contribu-
tion is absorbed into the normalization constant c. However in [37], some information
about the strengths of the possible grating lobes was considered. Since this distribution
is no longer uniform, an additional factor is added to the equation. This factor corre-
sponds to the weight of the lobe for the lobe hypothesis, but can also be the weight ϕi

from a Gaussian mixture component to hypothesize about different modes.

Global Hypothesis

Forming a global hypothesis is achieved by determining the most likely set of compatible
tracks based on all of the the current hypotheses. As described in [35], the formation of a
global hypothesis is equivalent to solving the Maximum Weight Independent Set (MWIS)
problem on a graph with nodes for each hypothesis and edges between nodes which are
in conflict. Solving this problem is equivalent to solving the Maximum Weight Clique
problem on the complement graph. The complement graph used in the Maximum Weight
Clique problem places edges between nodes which are compatible, instead of placing
edges between nodes which are in conflict (as in MWIS). The Maximum Weight Clique
problem can be solved using a number of different exact or approximate algorithms, and
the simulations in this chapter use the algorithm from [38]. When considering track
compatibility, a pair of tracks will be considered incompatible if they both involve the
association of the same measurement (multiple targets cannot originate from a single
measurement) [35, 36, 37].
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2.2.5 Morphological Image Processing

In [39], morphological image processing techniques were used with sparse Lidar data to
segment the data points. Their goal was to find structures (walls) in the surrounding
area but binning and segmenting the Lidar data directly using Connected Component
Labeling (CCL) led to incorrect clustering due to the sparse nature of the data points.
Sparsity was addressed by applying a dilation to the bin map before clustering using
CCL. This technique will be applied in this work.

Dilation

It expands existing pixels in a binary image with values of 1 so that their neighboring
pixels also have values of 1. The region of pixels to be considered as neighbors can be
defined by specifying a structuring element matrix [39]. By enlarging these regions in
the image, nearby regions may join one another, addressing the data sparsity issue. See
figure 2.9 to see the effects of dilation on CCL as applied in this chapter.

Connected Component Labeling (CCL)

It is used to label clusters of pixels with values of 1 in binary images that are connected.
Pixels are considered connected if a path exists between adjacent pixels with values of
1 according to some neighbor relation (usually 4-way or 8-way). Each pixel is assigned
a label such that pixels sharing the same label belong to the same connected compo-
nent. See figure 2.9 for an example of labeled connected components (with and without
dilation). A review of conventional CCL algorithms as well as a faster algorithm can be
found in [40]. This map of labels is used in [39] to cluster the data points.

2.3 System Model and Considerations
Ground point targets moving through rough terrain are tracked using a passive sensor
from an airborne platform equipped with sensors to measure its own orientation and
position. The platform is also equipped with a Digital Elevation Model (DEM) of the
tracking area. The information from these sources will be used to estimate the position
distribution of the detected object based on the method proposed in section 2.4. Con-
sideration of the assumptions, reference coordinates, scenario, sensor measurements and
target motion model are discussed below.

2.3.1 Assumptions

The sensor is assumed to be able to measure its own position and the angles to the
targets (elevation and azimuth) with zero-mean Gaussian noise. The DEM is assumed
to provide the correct elevation for a given set of geographic coordinates, though this
is not the case in reality (the effect of this assumption is investigated by considering
simulation results using multiple DEMs with varying resolution and accuracy in section
2.5).
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Multiple targets are considered in the tracking stage, but this chapter focuses on
modeling the terrain-aided detection distribution. At this stage, the targets are con-
sidered individually based on the assumption of a one-to-one correspondence between
targets and true measurements (no unresolved targets, no extended targets).

2.3.2 Reference Coordinates

The targets are tracked in the local frame of reference, that of the DEM, with units
in meters. Conversions back and forth between the local frame of reference and geo-
graphic coordinates are straightforward using standard tools (see section 2.2.1). These
conversions are necessary for practical applications, for example to bring tracking infor-
mation back to geographic coordinates for the end use application. They are used for
the simulations discussed in section 2.5.

2.3.3 Scenario

A target located at position XT is observed by a sensor located at position XS with
viewing direction vector DT (a vector in the direction of the line of sight between the
sensor and the target). Three dimensions are considered. The scenario is illustrated in
figure 2.6.

(2.6)XT = [xT , yT , zT ]T

(2.7)XS = [xS , yS , zS ]T

(2.8)DT = [xD, yD, zD]T

The target is a ground point target so its position lies on the terrain surface. The
elevation of the terrain is represented by the function zW (x, y), modeling a 3D surface
where the elevation zW at each point in the x, y plane is defined by the DEM (see section
2.2.1 for details).

2.3.4 Sensor Measurements

As assumed (see section 2.3.1), the sensor measurement probability distribution function
(PDF) is given by equation 2.9 where ZS is the sensor measurement vector and CS is
the sensor measurement noise covariance matrix. Note that the angle to the target is
measured in terms of azimuth θT and elevation φT , so the measurement noise is Gaussian
in those variables.

(2.9)ZS = [xS , yS , zS , θT , φT ]T +N (0, CS)
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Figure 2.6: An illustration of the sensor position XS , target position
XT , and direction vector from the sensor to the target DT . DT starts
from XS and extends to XT .

Intuitively the sensor is measuring the line of sight to the target. The measured
variables are combined to form the line of sight L in equation 2.10 where t is a free
parameter that moves along the line and DT is obtained through the standard spherical
to cartesian conversion.

(2.10)L = XS + tDT

Figure 2.7 shows samples from the distribution of L which represent possible lines of
sight based on the information from the sensor measurements.

Figure 2.7: Samples from the distributions of random variables related
to the line of sight from the sensor to the target.

2.3.5 Target Motion Model

The methods proposed for parameterizing the measurement distribution in this chap-
ter are not dependent on a specific target motion model, so any motion model can be
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used. A constant velocity model with process noise, chosen for its ease of implementa-
tion, is used in the simulations presented in section 2.5. The proposed method involves
a multimodal measurement model split into several Gaussian hypotheses for Multiple
Hypothesis Tracking as described in section 2.2.4. This has the effect of increasing the
number of hypotheses in the tracking stage, however each hypothesis can still be tracked
in the normal way. This approach allows for target state predictions to be evaluated in
the normal way with respect to the target motion model. Maneuvering targets could
also be handled in the same way with minor modifications to existing methods based on
IMM-MHT (such as in [41]) through the introduction of additional hypotheses generated
by each component of the measurement.

2.4 Sample-Based Terrain-Aided Measurements

2.4.1 Sample Representation

A set of n samples si are drawn from the distribution of L (equations 2.11 to 2.14). Each
sample represents a possible line of sight from the sensor to the target. Let L∗ be the set
containing these samples as in equation 2.15. These line of sight samples are visualized
in figure 2.7.

(2.11)i ∈ 1, 2, .., n

(2.12)li = xi + tdi

(2.13)xi ← XS

(2.14)di ← DT

(2.15)L∗ = {l1, l2, .., ln}

The target is assumed to be a ground point target, so the target position is the nearest
location to the sensor where the line of sight intersects with the terrain surface. Sample
points of intersection si are given by equation 2.16.

(2.16)si = xi + tidi

ti is chosen as the minimum positive t value (in front of the sensor) where the sample
line li intersects the terrain surface Xw. This is expressed as an optimization problem
in equation 2.17.
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min
t

t (2.17a)

subject to xi + tdi = Xw, (2.17b)
t > 0 (2.17c)

Recall that the world surface Xw is modelled as a grid of bilinear patches. The
algorithm presented in [30] and reviewed in section 2.2.2 can be applied to find the
point of intersection with the minimum t for each bilinear patch. Since the DEM has
a finite number of patches, it is possible in theory to find the minimum t in equation
2.17 by searching each patch in the DEM to determine all possible values of t that
meet the constraints and then selecting the smallest one. Such an approach presents
computational concerns if the DEM is large, so it is desirable to avoid searching every
patch.

Patches of interest are those that intersect the ray in the x, y coordinates, as seen in
figure 2.5. Let patch i, j be the bilinear patch between posts i, j and i+1, j +1. The x, y
coordinates of the ray starting point are converted to pixel coordinates for the purposes
of grid traversal, as in equation 2.18 where spixel is the pixel size (DEM post spacing or
resolution) in meters.

(2.18)[xpixel, ypixel] = [xlocal/spixel, ylocal/spixel]

The sample ray in pixel coordinates is then intersected with the DEM at the cell
level using the algorithm presented in [29] and described in section 2.2.2 to determine
candidate cells. Each of the candidate cells are tested for exact intersection as described
in section 2.2.2 until a true intersection is found. Since only the nearest point of inter-
section for each line is required the process stops when one is found. This method is
used for each line of sight sample li in L∗.

Each sample si represents one possible target location, in global coordinates. Let S∗

be the set containing these samples as in equation 2.19. These samples will be used to
estimate the distribution of the target position.

(2.19)S∗ = {s1, s2, .., sn}

2.4.2 Gaussian Model

Once samples S∗ of the target position are generated as in section 2.4.1, a Gaussian
approximation of the distribution can be formed. This is done by taking the sample
mean and sample covariance of S∗. The sample mean is computed by equation 2.20. The
sample covariance matrix is computed by equation 2.21 where F is a matrix with rows
corresponding to the x, y, z components of the samples and the columns corresponding
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to the samples (as in equation 2.23). This is similar to the method from [6] where the
unscented transform is used, and will be used as base for comparison.

(2.20)µp = 1
n

n∑
i=1

si

(2.21)Cp = 1
n− 1(F − 1nµT

p )(F − 1nµT
p )T

(2.22)1n = [1, 1, .., 1︸ ︷︷ ︸
n-times

]

(2.23)F = [s1, s2, .., sn]

2.4.3 Gaussian Mixture Model

Similar to the Gaussian model, the samples taken are used to approximate the measure-
ment distribution, but the distribution here is a multivariate Gaussian Mixture model.
The distribution for this model is given in equation 2.24 where K is the number of
components of the mixture model and ϕi, µi, Ci are respectively the weight, mean, and
covariance matrix corresponding to each mixture component indexed by i (see section
2.2.3).

(2.24)p(xT ) =
K∑

i=1
ϕiN (µi, Ci)

To form the Gaussian mixture distribution, it is necessary to determine the number
of components K, and then estimate the weight, mean, and covariance matrix for each
component. A method is proposed below to cluster the samples into sub-populations
for formation of a Gaussian mixture while simultaneously estimating for the number of
components K. Once the samples are clustered, the samples from each cluster will be
used to estimate the parameters for one component of the Gaussian Mixture.

Approximate Clustering and Determination of the Number of Components

The clusters can be formed by partitioning the x, y space, and each sample assigned to
a unique cluster based on its position in x, y coordinates. During the sampling process
described in section 2.4.1, a binary mask M , the same size as the DEM is produced.
When each sample is taken, the mask pixel corresponding to the DEM cell where the
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intersection occurred is set to 1. This relationship is expressed in equation 2.25. In this
equation, spixel is the sample converted to pixel coordinates, which is then floored to
yield its integer cell coordinates in the DEM.

(2.25)Mx,y =
{

1 ∃s ∈ S∗ where ⌊spixel⌋ = [x, y]
0 otherwise

Figure 2.8 shows an example of such a binary mask. While the DEM can be quite
large, most of the values in the mask will be zero for realistic measurements. To save
memory and computation time, the mask Mx,y can be represented as a sparse matrix
where only cells containing non-zero values are actually stored.

Figure 2.8: Binary mask of the DEM cells that contain points of inter-
section

A two-pass connected-component labelling algorithm is applied to this mask to cluster
the DEM cells. By using a sparse matrix representation of the mask, it is possible to
avoid iterating over the whole size of the DEM. Only mask cells with non-zero values
and their neighbors need to be considered, reducing the total computation time.

Figure 2.9: DEM cells containing points of intersection, clustered by
connected component labelling with no dilation (left) and with dilation
using a 5x5 structuring element matrix of ones (right)

Depending on the sample density and pixel size of the DEM, this may result in
a large number of clusters being formed. Having many clusters is not desirable from
a computational perspective since each cluster will form a hypothesis that must be
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considered for tracking. Hence, clusters that are close together are merged to reduce
the overall number of components. This can be achieved through binary image dilation
of the mask M before the clusters are formed, as seen in figure 2.9. Through direct
labeling, six components are found. But with dilation applied first, several components
are merged resulting in only three components. This addresses data point sparsity in
connected component labeling the same way as in [39].

Gaussian Mixture Parameterization Using Cluster Sample Mean and Sample
Covariance

After approximate clustering, each of the K components of the Gaussian mixture can be
parameterized using samples from each of the K clusters in the same method that was
used for a single Gaussian in section 2.4.2. That is, the mean and covariance for each
component are estimated using the sample mean and sample covariance for the samples
in the corresponding cluster as in equations 2.26 and 2.27.

(2.26)µi = 1
mi

mi∑
j=1

sj

(2.27)Ci = 1
mi − 1(F − 1miµ

T
p )(F − 1miµ

T
p )T

Here Fi, 1mi are defined as in section 2.4.2 (but using the samples from cluster i), mi

is the numbers of samples in each component (cluster) i, and sj is the corresponding
samples in that component with j ∈ {1, 2, .., mi}. To complete the formation of the
Gaussian mixture, it is also necessary to determine the weight for each component.
Each component is weighted according to the relative frequency of samples occurring in
that component, as in equation 2.28. This guarantees that the sample weights ϕi will
sum to 1 as is required for a mixture model.

(2.28)ϕi = mi

n

A limitation of this approach is that some of the clusters may have a small number
of samples. This increases the likelihood that the computed sample covariance matrix
is not positive-definite, resulting in a non-invertible innovation covariance matrix dur-
ing tracking. Inversion of the innovation covariance matrix is required to compute the
Kalman gain during the update stage, so clusters with a small number of samples may
be discarded. The overall chance of a singular covariance sample matrix occurring can
be reduced by increasing the number of samples used, but this may be undesirable due
to the increased computational load it would incur.
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Gaussian Mixture Parameterization Using Expectation Maximization

As identified in section 2.2.3, Expectation Maximization is a well-established algorithm
for parameterization of a Gaussian Mixture distribution. The main drawback of this
approach is that the number of components K needs to be known, or multiple param-
eterizations must be compared based on some fitment criteria to choose the best. By
first applying the algorithm proposed in section 2.4.3 to estimate the number of com-
ponents and then applying a standard EM algorithm, a parameterization appropriate
for terrain-aided tracking can be obtained. The term appropriate is used in the sense
that the resulting Gaussian mixture distribution should not have an excessive number
of components, and these components should be well-spaced so as to form relatively
distinct hypotheses for the target location. The advantages of dynamically selecting a
reasonable value for the number of components, compared with selecting a fixed value
for K that may be too large, are illustrated through experimental results in section 2.5.

2.5 Simulations
Simulations were conducted to evaluate the performance of different tracking methods
in a variety of tracking conditions. These simulations had two main objectives. Each
configuration was tested over 5000 Monte Carlo runs in a scenario with a single sensor
tracking two targets moving through rough terrain. Performance is evaluated in terms
of track accuracy, number of false tracks, track completeness, and computation time.
False alarms (uniform randomly distributed in tracking frame) and missed detections
are included.

2.5.1 Tracking Methods Compared

The baseline method uses a Gaussian distribution to model the target position measure-
ments, as described in section 2.4.2. Figure 2.10 shows a flowchart of the algorithm used
to parameterize the Gaussian measurement.

Sensor Measurement
Zs

Sampling

DEM Intersection

Sample Lines of Sight
L* 

Target Position Samples 
S* 

Sample Mean/Covariance

Target Position
Measurement (Gaussian) 

Figure 2.10: Flowchart of the algorithm to parameterize a Gaussian
terrain-aided measurement

The rest of the methods model the measurement using a Gaussian mixture distribu-
tion, but use different methods to parameterize the distribution. Two of these methods
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use the approximate clustering method (described in section 2.4.3) to estimate the num-
ber of mixture components K dynamically (denoted DK, for Dynamic K). One of
the DK approaches is the sample mean and sample covariance approach (SMC, GMM-
DK-SMC) that parameterizes the components by the cluster sample means and sample
covariances, while the other (GMM-DK-EM) uses Expectation Maximization (EM) for
this purpose. Figures 2.11 and 2.12 show flowcharts for the GMM-DK-SMC and GMM-
DK-EM algorithms, respectively.

Sensor Measurement
Zs

Sampling

DEM Intersection

Sample Lines of Sight
L* 

Target Position Samples 
S* 

Target Position
Measurement

(Gaussian Mixture) 

Sample Clustering
(Image Processing)

Cluster Sample
Mean/Covariance 

Clustered Target Position
Samples 

Figure 2.11: Flowchart of the GMM-DK-SMC algorithm to parameter-
ize a Gaussian mixture terrain-aided measurement

Sensor Measurement
Zs

Sampling

DEM Intersection

Sample Lines of Sight
L* 

Target Position Samples 
S* 

Target Position
Measurement

(Gaussian Mixture) 

Sample Clustering
(Image Processing)

Expectation Maximization

Estimated Number of
Mixture Components (K)

Figure 2.12: Flowchart of the GMM-DK-EM algorithm to parameterize
a Gaussian mixture terrain-aided measurement

The final method being evaluated (GMM-K6-EM) uses EM with six mixture com-
ponents, an over-fit of the measurement distribution under most circumstances. Figure
2.13 shows a flowchart for the GMM-K6-EM algorithm. The open source EM imple-
mentation used in these simulations is described in detail in [42]. Note that the GMM
trackers will sometimes be referred to as simply DK-SMC, DK-EM, and K6-EM for
brevity.

Figure 2.14 illustrates how each of the measurement distributions under considera-
tion compares with the distribution of the samples from the measured target position
distribution during difficult tracking conditions. Figure 2.14a shows the measurement
distribution as sample lines of sight from the sensor to each of the two targets. Fig-
ure 2.14b shows the point of intersection of each sampled line of sight with the DEM,
corresponding to samples from the distribution of the target positions. These samples
are used to parameterize the measurements used in each of the compared approaches.
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Sensor Measurement
Zs

Sampling

DEM Intersection

Sample Lines of Sight
L* 

Target Position Samples 
S* 

Target Position
Measurement

(Gaussian Mixture) 

Expectation Maximization

Assume 6 Mixture
Components (K=6)

Figure 2.13: Flowchart of the GMM-K6-EM algorithm to parameterize
a Gaussian mixture terrain-aided measurement

Figures 2.14c through 2.14f show samples from the distributions of the measurements
used in each approach, which should ideally be as similar as possible to the position
samples in figure 2.14b. In figure 2.14c a Gaussian distribution is assumed and param-
eterized according to the sample mean and sample covariance of the position samples.
These samples are a good match with the northernmost target’s position samples, but
for the southernmost target, the samples have a substantially different distribution. In
figures 2.14d and 2.14e a Gaussian mixture distribution is assumed with the number of
components determined dynamically (in this case one component for the northernmost
target, two components for the southernmost target). The difference between these two
figures is in how the parameters of each Gaussian mixture component are determined,
as described above, and the results are similar. In both of these cases the samples from
the measurement distribution for the southernmost target are a much closer match with
the position samples for this target. In figure 2.14f a Gaussian mixture distribution
with six components is assumed. This results in redundant mixture components which
overlap one another to the extent that they cannot be discerned visually. Although
the samples appear similar in these figures to those obtained from the distributions of
GMMs with fewer components, there is redundancy between components and the num-
ber of components does not accurately reflect the number of modes in the distribution.
Mixture components are considered individually during the tracking process as different
hypotheses about the measured target position, so redundancy and extra components
are not desirable.

2.5.2 DEMs of the Area Surrounding Crater Lake

Crater Lake (Oregon, USA) was selected as the simulation region because it met several
criteria. First, it contained peaky terrain needed to introduce multimodal distributions.
Additionally a high resolution DEM is publicly available for use as the terrain ground
truth [13], as well as several lower-resolution DEMs [11, 12] more typical of what might
be available for general tracking use in various locations around the world. To investigate
the effects of DEM accuracy and resolution on tracking performance, several compound
DEMs were also created to compare based on the above mentioned DEMs. All the DEMs
used are described below.
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Figure 2.14: Samples from the measurement distribution transformed
to their corresponding line of sight (a) and target position samples (b),
and from the measurement distributions assumed when using the four
different tracking methods (c through f). In each plot the true target
positions are marked in white.

DEM with 1m Resolution (Ground Truth)

Created using Lidar, this DEM has a resolution (post spacing) of 1 meter [13]. Figures
2.15 and 2.16 show QGIS [27] renderings of the high resolution DEM both in overview
to demonstrate the level of detail. This DEM is used as the ground truth due to its
significantly higher resolution. It is used to generate the true sensor and target trajec-
tories, and to determine if the sensor has a line of sight to the target. It is assumed that
the DEM with 1m resolution is close to the true terrain for the purposes of performance
evaluation. This DEM was not used for online tracking due to the associated computa-
tional load (it has a large number of cells compared with other DEMs used) and because
DEMs at 1m resolution are not currently available for many locations.

DEMs with 30m and 90m Resolution

NASA SRTM data for most of the world is publicly available with approximately 30m
and 90m resolutions [11] [12]. Due the wide availability of DEMs at these resolutions,
they will be used for the purposes of tracking. Figures 2.17 and 2.18 show QGIS [27]
renderings providing an overview of the DEMs with 30m and 90m resolutions respec-
tively.
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Figure 2.15: Challenging terrain surrounding Crater Lake visualized
using the DEM with 1m resolution

Figure 2.16: A view of the level of detail on the 1m resolution DEM of
the Crater Lake area

Corrected DEMs with 30m and 90m Resolution

Corrected DEMs were created based on each of the 30m and 90m resolution DEMs.
These corrected DEMs retained the same resolution as the models they were based on,
but the elevation at each post was corrected to match the true (1m) DEM. These DEMs
are intended to provide an upper bound on tracking performance using a DEM of that
resolution to give some idea of how much improvement can be obtained by fixing or
estimating the post heights.

2.5.3 Sensor and Target Trajectories

The sensor and the target follow an aerial and ground trajectory respectively with a
constant velocity model having independent zero-mean Gaussian process noise. The
trajectory of the target is determined using the true terrain model. Trajectories of both
types are generated independently for each Monte Carlo run.

2.5.4 Results

Performance was evaluated for all the trackers in terms of track accuracy (residual Eu-
clidean error and RMSE), track probability of detection (TPD), and number of false
tracks (NFT). An overall summary of the results (averaged over all time points in the
simulation) is given in Table 2.1. The average value in Res., RMSE, NFT and TPD
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Figure 2.17: The Crater Lake area visualized using the DEM with 30m
resolution

Figure 2.18: The Crater Lake area visualized using the DEM with 90m
resolution

in Table 2.1 is an average over all time steps, targets, and Monte Carlo runs. It con-
tains only data points where each target is tracked at the corresponding time step,
during the specific Monte Carlo run. Note, the best tracker for each metric is marked
with (b) while the worst is marked with (w). The GMM-K6-EM tracker formed fewer
tracks (both true and false) than the other trackers. It had the lowest NFT, the lowest
TPD and the highest track error metrics in all scenarios. The performance of track-
ers using a Gaussian mixture measurement model with dynamically selected number of
components (GMM-DK-SMC and GMM-DK-EM) were similar to one another across all
metrics, which is expected since they result in a very similar measurement distribution
under most conditions. These trackers outperformed the baseline Gaussian measure-
ment tracker’s track accuracy. However, for NFT and TPD, both GMM-DK-SMC and
GMM-DK-EM were similar to the baseline Gaussian measurement tracker. When using
the corrected DEMs, these trackers performed the same or better than the baseline in
the NFT and TPD metrics.

The GMM-K6-EM tracker notably has the lowest NFT in all scenarios but, consid-
ering the substantial reduction in TPD from this tracker, this reduction in false tracks
seems to be mostly due to a reduced ability to form tracks in general. With the un-
corrected DEMs, the NFT slightly increased for the GMM trackers with dynamically
selected number of components (GMM-DK-SMC, GMM-DK-EM) when compared with
the baseline which is undesirable. The increase in NFT can be explained by considering
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30m
Gaussian DK-SMC DK-EM K6-EM

Res. (m) 110.779 79.081(b) 79.312 112.403(w)
RMSE (m) 149.584 114.256(b) 114.349 151.696(w)
NFT 1.884 1.912(w) 1.908 0.840(b)
TPD 0.642 0.645(b) 0.645(b) 0.506(w)

30m (corrected)
Gaussian DK-SMC DK-EM K6-EM

Res. (m) 75.046 58.186 57.645(b) 98.854(w)
RMSE (m) 108.069 83.162 82.243(b) 138.781(w)
NFT 1.823(w) 1.820 1.808 0.845(b)
TPD 0.700 0.703(b) 0.703(b) 0.568(w)

90m
Gaussian DK-SMC DK-EM K6-EM

Res. (m) 95.037 75.937 75.146(b) 107.485(w)
RMSE (m) 130.094 107.255 105.862(b) 140.291(w)
NFT 1.852 1.871(w) 1.868 0.831(b)
TPD 0.689 0.690(b) 0.690(b) 0.547(w)

90m (corrected)
Gaussian DK-SMC DK-EM K6-EM

Res. (m) 71.507 56.742 55.213(b) 96.140(w)
RMSE (m) 102.471 83.051 80.821(b) 135.656(w)
NFT 1.820(w) 1.819 1.809 0.837(b)
TPD 0.709 0.710(b) 0.709 0.576(w)

Table 2.1: Summary of performance evaluation results for all DEMs
and measurement models.

how each of the trackers handle true detections that occur with a multimodal distribu-
tion. In these cases, the GMM trackers initialize and propagate hypotheses based on the
false mode(s) as well as the true mode, while the Gaussian tracker does so based on a
Gaussian approximation of the distribution. The modal ambiguity in the trackers using
GMM measurements is resolved using MHT. However, for some instances, a track based
on the false mode is more likely to occur, hence it will appear in the global hypothesis
instead of the track based on the true mode. In some cases, this results in the track error
being large enough that it is not associated with the truth, resulting in a false track.
Comparatively, the Gaussian measurement model may associate with the existing track
and pull it off course, and still be associated with the truth, not producing a false track.
In this way the performance penalty of misleading multimodal measurements is shifted
to the NFT metric for GMM trackers, while it is shifted to the track error metrics for
the Gaussian tracker. With the corrected DEMs the GMM-DK trackers show a slight
improvement in terms of NFT, suggesting that the problem is primarily a result of inac-
curacy in terrain elevation, which is assumed to be accurate by the proposed methods.

As expected, correcting the DEMs resulted in improved performance for all trackers
across all metrics. This suggests a direction for future work in developing a method that
alleviates the assumption of accurate terrain data to produce better performance results.
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Since a corrected DEM is not generally available, it would be desirable to obtain such
results using the uncorrected DEM. One possible approach could be implemented during
the sampling phase. Instead of sampling from just the measurement distribution, the
distribution of the terrain data could also be sampled. Care would need to be taken to
design such an approach in a way that remains computationally feasible while obtaining
reasonable coverage of the sample space.

Interestingly the performance for all trackers across all metrics was actually better
for the DEMs with 90m resolution than the ones with 30m resolution, but this may
not be the case under all tracking conditions. In the simulated scenarios, most samples
from the measured distribution that are not near the target (i.e. belonging to the false
mode for a multimodal distribution) end up on a peak located between the sensor and
the targets’ true position (see figure 2.14 for an example of this). The 90m DEMs can
reduce the prevalence of peaks (both high and low) when compared with the 30m DEMs
due to the smoothing of the area between posts that occurs, hence an improvement in
performance. If the targets were located on the peak, the 90m DEMs could potentially
reduce performance through the same smoothing effect compared with the 30m DEMs.
This underscores the situational nature of the task of choosing an optimal tracking
approach.

Figure 2.19 shows the residual error over time, while figure 2.20 shows the number of
false tracks over time. The residual error for each time step in the simulation is computed
for all targets and Monte Carlo runs. The residual error was restricted to samples that
involved the target being tracked.

At the start of the simulation period, the targets are both traveling through consistent
terrain with a sufficiently high grazing angle, resulting in a measurement distribution
that is unimodal. The GMM trackers with dynamically selected number of components
(GMM-DK-SMC, GMM-DK-EM) are equivalent to the Gaussian tracker since they have
just one component most of the time. This equivalence can be seen in their performance
results during this time period, in terms of residual error (figure 2.19) and NFT (figure
2.20). The GMM tracker with six components (GMM-K6-EM) results in a significant
overfit of the measurement distribution during this period, and the resulting performance
degradation can be seen in terms of track residual error.

At t = 100, the tracking conditions become more difficult as the targets enter peaky
terrain and are observed from a lower grazing angle, resulting in a multimodal measure-
ment distribution most of the time. During this period, the performance of the Gaussian
tracker diverges from that of the GMM trackers with dynamic selection of the number
of mixture components, which is now usually selected to be greater than one. It can
be seen that these trackers are able to maintain a more accurate track for a longer pe-
riod of time as the tracking conditions worsen when compared to the baseline Gaussian
tracker, while NFT remains largely similar. At this time, the GMM-K6-EM tracker is
less of an overfit than it was when the measurement distribution was unimodal. As such
the accuracy degradation of this tracker when compared with the GMM trackers that
dynamically select the number of components is not as significant, but is still notable.
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Figure 2.19: Residual error (meters) over time for the 4 tracking DEMs
with varying resolution and accuracy

Eventually (at t = 200) the tracking conditions become very difficult as the targets
remain in difficult terrain and also become occluded by terrain for a significant portion of
the time. During this period, all trackers struggle to maintain a consistent and accurate
track. The differences in NFT between trackers and between the different DEMs is most
interesting. Consider the period between t = 205 and t = 220, where the GMM-DK-EM
tracker maintains a lower number of false alarms than the other trackers. If the corrected
DEMs are used, this tracker can reduce NFT.

Another interesting observation can be made between t = 260 and t = 300 when
looking at the 30m DEMs. The uncorrected 30m DEM seems to be quite misleading,
resulting in a notably larger number of false tracks for all trackers when compared
with the corrected 30m DEM. The increase in false tracks is more prevalent for the
GMM trackers with dynamic selection of the number of components, which may be
overconfident in the tracks formed due to their greater leveraging on misleading terrain
data near the targets’ positions. Future work aimed at determining a terrain-aided
measurement distribution that does not assume the terrain data to be correct may help
to reduce false tracks caused by terrain elevation errors.

2.5.5 Computation Time

One of the objectives for the proposed algorithm, outlined in section 2.1, is that it
should be usable in real-time. To determine if this has been achieved, each algorithm
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Figure 2.20: Number of false tracks over time for the four trackers and
DEMs with varying resolution and accuracy

was timed during 200 Monte Carlo runs using both 30m and 90m resolution DEMs. The
timed computations included the parameterization of the terrain-aided measurement
distributions for all true detections and false alarms, as well as tracking using MHT
to resolve both association ambiguity and ambiguity among the mixture components
(where applicable). Therefor the whole online tracking process except for the detection
stage (which is assumed to have already been performed and is the same for all trackers)
has been timed. All timing was carried out using an Intel Core i7-6700HQ CPU running
on a single thread. The average computation time (wall time) for each tracker for a
simulation of 340 frames as well as the corresponding computation rate in frames per
second (FPS) are given in table 2.2.

30m
Gaussian DK-SMC DK-EM K6-EM

Time (s) 24.546 28.018 27.734 25.682
FPS 13.943 12.210 12.338 13.354

90m
Gaussian DK-SMC DK-EM K6-EM

Time (s) 15.613 17.628 16.986 16.611
FPS 23.779 20.830 21.640 22.187

Table 2.2: Summary of computation times (wall time) and rates for
each DEM resolution and tracker.
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It is expected that the GMM trackers will have longer computation time when com-
pared with the Gaussian tracker for two reasons. Firstly, computing the parameters for
the Gaussian measurement distribution is relatively straightforward, requiring only the
calculation of the sample mean and sample covariance, unlike the Gaussian mixture mea-
surements. Secondly, the Gaussian will always result in only one additional hypothesis
per measurement to consider associating with each existing track, while each Gaussian
mixture measurement may result in more than one association to consider. As expected,
the Gaussian tracker had the lowest computation time in simulations.

For the computation of the distribution parameters, both the GMM-DK-SMC and
GMM-DK-EM trackers employ the proposed image processing methods to cluster sam-
ples and estimate the number of mixture components, while the GMM-K6-EM tracker
skips this step entirely. The GMM-DK-EM and GMM-K6-EM trackers use EM to com-
pute the final mixture parameters, so it is expected that GMM-K6-EM will have an
overall lower computation time for the distribution parameters. The GMM-DK-SMC
tracker uses the cluster sample mean and sample covariance when computing the dis-
tribution parameters, which is similar to the Gaussian distribution for each cluster and
depends on the number of samples used to estimate the distribution. Therefor the com-
putation time for this step is expected to be similar to the same step of the Gaussian
distribution (not including the image processing previously mentioned).

The main factor for MHT tracking computation time is the number of hypotheses
being maintained. New measurements using the GMM trackers will generate one new
hypothesis for each mixture component to consider for each existing hypothesis. The
GMM-DK-SMC and GMM-DK-EM trackers will have one or more mixture components,
however in simulation the number of mixture components rarely exceeded two, and was
frequently one.

The GMM-K6-EM tracker always uses six mixture components. Initially, it is ex-
pected that the GMM-K6-EM tracker would take the longest time during the tracking
phase due to the greater number of hypotheses corresponding to each mixture compo-
nent, but it is also important to consider that MHT trackers use pruning to reduce the
number of hypotheses by removing those that have a low track score. Recall that in
section 2.5.4 it was noted that the GMM-K6-EM tracker formed fewer tracks overall
than all other trackers, despite the larger number of mixture components. The lower
computation time for the GMM-K6-EM tracker suggests that many of the hypotheses
generated by this tracker are quickly deemed unlikely and are pruned from the hypothesis
tree.

Examining the measured total computation time for each of the GMM trackers, the
results are largely as expected. The GMM-K6-EM tracker skips the image processing
step and forms fewer tracks, and has a lower computation time than the other GMM
trackers. The GMM-DK-EM has a lower computational time when compared with the
GMM-DK-SMC despite the fact that EM is an iterative method that depends on the
number of samples as well as the number of iterations. However the cluster sample mean
and sample covariance implementation was created for the purposes of these simulations,
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while the EM implementation is an open source implementation that is highly optimized
(described in detail in [42]). In light of this, such a result is not entirely unexpected.

Lastly, increasing the resolution of the DEM (30m post spacing compared with 90m)
is expected to result in increased computation time because more cells of the DEM need
to be traversed before reaching the point of intersection during sampling (see section
2.2.2). This expectation is consistent with the computation times observed with different
DEMs. The differences in performance between trackers can be observed on both DEMs.
If DEM resolution is very high, computational cost may become prohibitive.

2.6 Conclusion
This chapter considers the problem of terrain-aided tracking of ground targets from an
aerial platform using a sensor that provides only angular measurements of the position
of a target (such as a camera). Previous works assume the measurement distribution to
be Gaussian, which fits conveniently into most existing tracking frameworks. However,
the actual measurement distribution may be multimodal under some operational condi-
tions. To address this mismatch, this work modeled the measurement distribution as a
Gaussian mixture distribution. A framework was proposed for terrain-aided tracking of
multiple targets using Multiple Hypothesis Tracking (MHT) to resolve ambiguities both
in measurement-to-track association as well in which mode of the multimodal measure-
ment distribution best represents the location of the target.

Three different methods for computing the parameters of a Gaussian mixture mea-
surement models were considered. Two of the methods used the proposed clustering
method to estimate the number of mixture components, followed by computation of the
final distribution parameters using either cluster sample mean and sample covariance
(in GMM-DK-SMC) or EM (in GMM-DK-EM). The final method (GMM-K6-EM) as-
sumed a distribution with six components and used EM to parameterize the distribution.
These methods, including a baseline Gaussian measurement distribution, were tested us-
ing four different tracking DEMs with varying resolution and accuracy. Performance was
evaluated in terms of track accuracy (residual error and RMSE), track probability of de-
tection (TPD), and number of false tracks (NFT). GMM-DK-SMC and GMM-DK-EM
performed similarly across all metrics in all scenarios, GMM-DK-EM achieved the best
residual error and RMSE among all trackers evaluated. The GMM-DK-SMC and GMM-
DK-EM outperformed the Gaussian baseline in all evaluated categories and DEMs used
except for the NFT when using uncorrected DEMs.

The proposed methods offer improvement in track accuracy that is vital for use in
realistic tracking applications. Additionally, the improved performance achieved across
all metrics when using corrected DEMs suggests a direction for future work. The sam-
pling method could be adjusted to account for uncertainty in terrain data, may yield
better performance when applied to trackers.

33



Chapter 3

Sensor Bias Estimation and
Compensation for Practical
Multisensor-Multitarget Tracking

3.1 Introduction
In multisensor-multitarget tracking, the objective is to estimate the state (position,
velocity, etc.) of targets using information obtained from multiple sensors. These sensors
are subject to two types of measurement errors which are zero-mean noise and bias errors.
The zero-mean noise error can be removed effectively through filtering (for example,
using a Kalman Filter) [43]. The bias error which is either constant or slowly-varying
over time, not zero-mean, can not always be removed through standard filtering processes
[44]. Bias error can negatively affect estimation performance in any tracking problem
and it is particularly problematic in multisensor-multitarget tracking where association of
measurements or tracks from different sensors is required. This performance degradation
motivates the development of algorithms to estimate and compensate for bias errors prior
to fusion.

Realistic operational conditions often involve additional challenges such as using a
specific fusion architecture, time-varying measurement bias, imperfect knowledge of sen-
sor positions, highly nonlinear measurement models, heterogeneous sensors, heteroge-
neous state space, targets moving in varied terrain, reduced communication bandwidth
or unreliable communication, limitations in computation power, a large (possibly time-
varying) number of sensors, or asynchronous data updates. There are many approaches
to bias estimation found in the existing literature, some are optimal under certain con-
ditions, but most address only a few of the realistic challenges faced by many practical
systems. Furthermore, several practical methods are only applicable to certain specific
scenarios, requiring particular sensor and bias models, number of sensors, fusion archi-
tecture, substantial computational resources, synchronous communication, and/or high
communication rate. These make applications to large heterogeneous sensor networks
difficult and error-prone.
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Bias estimation and compensation methods can be broadly divided into three cat-
egories. The first category uses an augmented state vector to simultaneously estimate
the state of all targets and sensor biases. The second category formulates a pseudomea-
surement of the sensor biases that is independent of the target state. The third category
employs particle methods to estimate various states including sensor biases. Each of
these categories is reviewed below highlighting their strengths and limitations.

Several methods have been proposed to estimate sensor biases by creating an aug-
mented (or stacked) state vector and using, for example, a Kalman Filter (KF) to jointly
estimate the states of the targets and sensor biases [45, 46, 47]. These methods are fre-
quently referred to as Augmented State Kalman Filter (ASKF) methods. Under certain
conditions, these methods are able to produce an optimal solution [45, 47]. However, if
all these state variables are stacked, the result can be a very large state vector when the
scenario involves many sensors, targets, and/or bias parameters. Since the KF requires
inversion of the covariance matrix, which has computational complexity of approximately
O(n3) (where n is the state dimension), a large state vector can become computationally
prohibitive for use in a real time system [45]. Related methods have been proposed which
decouple the state vector in various ways, allowing for the use of several KFs of smaller
dimension instead of a single larger one, thereby reducing the computational load. In
[45, 48] approximations are used to decouple the augmented state, but are subject to
performance degradation. In [47] an exact formulation is proposed to decouple the aug-
mented state, allowing the use of multiple KFs for different targets, each one stacked with
the sensor bias estimates. Using their approach, the state vector of each KF still grows
with the number of sensors, becoming computationally expensive for large sensor net-
works. A two-stage approach was proposed in [46] to decouple the target states from the
sensor biases when the biases are constant, which was extended by [49] to accommodate
dynamic biases with white or coloured Gaussian noises. However, [49] also points out
that this approach is only equivalent to the ASKF under a restrictive constraint which is
not usually satisfied in practice. Additionally, most ASKF algorithms operate under the
assumption that all measurements from the sensors are available at the fusion center,
and that these measurements are synchronized in time [45, 47, 49]. Such algorithms
are therefor only applicable to time-synchronized centralized fusion networks. Exten-
sion to nonlinear systems is possible through linearization using the Extended Kalman
Filter (EKF), but these require situational derivations and are still sub-optimal [44]. For
highly nonlinear systems it may be desirable to use a robust tool such as the Unscented
Transform, which ASKF methods require substantial extension to accommodate.

Another popular approach is to formulate a pseudomeasurement of the sensor biases
independent of the target state by taking the difference between measurements or tracks
from different sensors such that the target state cancels out [50, 51, 52, 53], leaving a
noisy measurement of the sensor biases that can be used to estimate the biases directly.
The pseudomeasurement strategy has been successfully employed in various fusion ar-
chitectures [52, 51, 53, 50] and with asynchronous data rates [50, 54]. In most cases the
state vector for bias estimation is the stacked vector of the biases from the sensors used
to formulate the pseudomeasurement. Hence it is much more computationally efficient
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than the ASKF which also stacks all the target states. This state vector grows with the
number of sensors, so for large sensor networks it becomes computationally expensive.
Beyond computational load, many of these methods are limited, in that they work with
a pair of sensors [52, 51, 54], hence using them with a large sensor network is not possible
without the additional consideration of pairing sensors. Some methods, such as in [50],
present computationally efficient solutions with multiple sensors under specific circum-
stances. Another challenge with pseudomeasurement methods lies in their application
to heterogeneous sensor networks. For different sensor types (or different bias models),
different formulations are needed which often lead to different solution methodologies.
For example in [50], a system with radar sensors is considered and can be solved using
Recursive Least Squares (RLS) or a KF for constant and time-varying biases respec-
tively. In [51], a similar starting point is taken but applied to a pair of video sensors.
The resulting solution requires minimizing a nonlinear cost function using the genetic
algorithm. However in [52], an alternative method is proposed that applies approxima-
tions allowing RLS to be used. In all, highly nonlinear systems remain a challenge for
pseudomeasurement approach in a similar way as with the AKSF methods. There are
solutions that can be applied using a converted measurement model [50, 51, 52], but
requires situational modelling of the bias in the converted measurement model.

The final category of methods that have been applied to bias estimation use particle
methods such as the particle filter and methods that use a number of (usually weighted)
particles to represent the distribution of the variables of interest. These approaches are
very flexible in handling situations with nonlinear systems or non-Gaussian distributions,
but they also have drawbacks. The computational load can be substantial, especially
if the state space dimension is large, since so many particles must be used to achieve
adequate coverage. The required number of particles grows exponentially in the number
of dimensions. Several strategies can be used to reduce the sampling dimension, such
as in Rao-Blackwellised Particle Filters (RBPFs) where some of the variables of the
augmented state are marginalized out [55]. However if the number of dimensions that are
required in the state remains large (for example if there are many bias parameters), the
problem persists. Particle filters are also known to suffer from the problems of degeneracy
and sample impoverishment [56]. The degeneracy problem refers to the tendency for a
large number of particles to have near-zero weights as the filter is updated, requiring
a large amount of computational power to be spent updating particles that are not
relevant to the distribution estimate [56]. Degeneracy can be partly solved by resampling,
where samples are redrawn to have equal weights but still represent approximately the
same distribution [56]. However resampling introduces a tuning parameter to set a
degeneracy threshold when resampling should occur, and can also result in worsened
sample impoverishment [56]. Sample impoverishment refers to the problem of having
many samples which represent either very similar points or the same points, resulting
in low sample diversity. The impoverishment problem is especially prominent when
process noise is low, or zero as in the case of constant biases [56]. Approaches have been
proposed to counteract sample impoverishment by adding some artificial process noise
to static parameters [57, 58] but this solution introduces at least one additional tuning
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parameter.

Another important aspect of the sensor estimation problem is bias compensation.
Many existing works assume the bias estimate to be sufficiently accurate to correct the
bias, and treat the problem of bias compensation by adjusting the measured values,
subtracting the mean of the estimated bias [52]. In [59], a bias compensation method
accounting for the covariance of the bias estimate was proposed and found to produce
more accurate tracks when compared with the simple approach considering only the
mean, suggesting that it is not always reasonable to ignore the uncertainty of the bias
estimate during bias compensation. The method from [59] requires explicit modeling of
the cross-covariance terms in the update step and simplifies them with some approxima-
tions such as approximating the cross-covariance between the bias estimate and the state
estimate as zero. For methods that perform joint estimation of the states and biases
(such as the full ASKF), this is not an issue since these terms are maintained already.

Given the limitations of existing methods discussed above, there is a need for a uni-
fied, flexible bias estimation and measurement compensation method that can be applied
to large, heterogeneous sensor networks without significant limitations in terms of the fu-
sion architecture, the arrival of incoming data, computational feasibility, measurement
and bias model, or state space model. In this chapter, a novel algorithm for sensor
bias estimation is presented to address this need. This is the main contribution of this
chapter. The secondary contribution of this chapter is a proposed approach for fusion
under unknown correlation of unequal state vector estimates, used in the proposed al-
gorithm. The proposed approach is less conservative than Covariance Intersection and
more conservative than the Kalman Filter. Section 3.2 provides background on existing
algorithms that are used within the proposed algorithm. A mathematical formulation
of the general problem is given in section 3.3 that introduces the relevant notations and
concepts. Section 3.4 describes the proposed algorithm for bias estimation and measure-
ment compensation in detail, along with an analysis of computational complexity. An
example application with required implementation details, corresponding simulation re-
sults, and discussions are presented in section 3.5. A conclusion summarizes the findings
of this work in section 3.6.

3.2 Background

3.2.1 Multisensor-Multitarget Tracking

In multisensor-multitarget tracking problems, a number of sensors are used to track
multiple targets and estimate their state, for example, their position and velocity. In the
general case, both the number of sensors and the number of targets may be time-varying.
First, sensors measure the target state according to a measurement model. A general
model for a sensor measurement z of (true) target state x at time index k is given in
equation 3.1. The general measurement model includes a vector of bias parameters β that
may be constant or time-varying, and measurement noise w. The measurement noise is
typically assumed zero-mean with covariance R and independent of measurements (not
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auto-correlated over time) [44]. The function h maps the true measured state and bias
parameters to the measurement space.

z(k) = h(x(k), β(k)) + v(k) (3.1)

Each measurement is assumed to correspond to a single target, and each sensor is
assumed to provide, at most, one measurement for each target at a single instance in
time. These measurements are used to initialize and maintain estimates of the states of
targets over time, a process known as filtering. In addition to the measurement model,
filtering requires a model that shows how the target state evolves over time, referred to
as a state-transition model [44]. In tracking applications, the state-transition model is
often given in the form of a kinematic model. A general state-transition model is given in
equation 3.2 where f is a function that maps the target state x(k) at time k to the target
state x(k + 1) at time k + 1. The second argument to the function f indicates that the
function may be time-varying. The transition is also subject to process noise w, which
typically is assumed to be Gaussian, zero-mean with covariance Q, and independent of
time [44]. Some formulations of the state-transition model also include modeling of a
known control input which cannot be assumed to be known for non-cooperative tracking.

x(k + 1) = f(x(k), k + 1) + w(k + 1) (3.2)

In the case of independent zero-mean Gaussian noises, zero measurement bias, and
linear models for both the measurement and system, the optimal estimator (in terms
of minimum mean-squared error) is the Kalman Filter (KF) [44]. The KF can be im-
plemented efficiently using a recursive formulation, so it is very practical for online
applications. Many practical applications do not conform exactly to the optimality re-
quirements of the KF, but nonetheless it remains the most popular choice as the basis
of many tracking systems. Extensions to the KF, such as the Extended Kalman Filter
(EKF) [44] and Unscented Kalman Filter (UKF) [60], exist and have proven successful
(through numerous applications) in expanding the scope of operation of the Kalman
Filter framework. Due to the ubiquity of the KF framework, it is desirable for solutions
to various tracking problems be compatible with its use. Compatibility is often achieved
through linearization of a nonlinear measurement function (for EKF) or through a Gaus-
sian approximation of a random variable (for UKF).

When using multiple sensors, it becomes necessary to combine (or fuse) their infor-
mation. There are three main types of fusion architecture (centralized, distributed, and
decentralized) that define how information is combined from different sources. In central-
ized fusion architectures, each sensor sends all its measurements back to the central fusion
center (CFC) where information is combined at the measurement level (measurement-to-
track fusion) [61]. In practical systems, a centralized fusion architecture often presents
challenges in terms of communication bandwidth, with all sensors needing to transmit all
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measurements to the CFC to perform fusion [61]. To address the challenges of centralized
fusion, a distributed fusion architecture can be used.

In a distributed architecture, information from measurements is processed into tracks
at the local sensor node before transmission to the CFC where the tracks are combined
through track-to-track fusion [61]. Transmitting tracks instead of measurements can
relax the requirement that communication takes place at every local sensor update and
reduce overall bandwidth requirements, but introduces the challenge of fusing correlated
information [61].

In decentralized fusion architecture, there are multiple fusion centers (FCs) that can
communicate with only a subset of sensor nodes or other FCs [61]. A FC in a distributed
architecture can receive information in the form of measurements from sensor nodes or
tracks from other FCs [61]. Hierarchical architectures can also be used that perform
fusion at various levels, effectively combining different architecture types [61]. With
any fusion architecture, it is essential to estimate and compensate for sensors biases so
that the information to be fused will be consistent. The fusion architecture used will
determine what information is feasibly available at the nodes where bias estimation is
being performed, and therefore what bias estimation algorithms can be applied.

3.2.2 The Unscented Transform

First described in [60], the unscented transform (UT) can be used to approximate (as
a Gaussian random variable) the results of transforming a random variable using a
nonlinear transformation. Since its introduction, the UT has been shown to be effective
for this purpose in numerous practical scenarios with a broad scope of application [6,
62, 63]. The UT will be used in the proposed algorithm for bias estimation.

The basic approach with the UT is to draw a number of deterministic sigma points
from the distribution of the random variable, apply the nonlinear transformation to each
sigma point, and then calculate the parameters (mean and covariance) of the transformed
distribution based on the transformed sigma points. Paraphrased from [60], the UT
algorithm is described in algorithm 1. The notation (

√
A)i indicates the ith row of the

matrix square root of A. The parameter κ is used to control the spread of the sigma
points, and n is the number of dimensions in x̄.
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Algorithm 1 UnscentedTransform(x̂, f)
// Compute 2n + 1 sigma points

1: X0 = x̄
2: W0 = κ/(n + κ)
3: for each i ∈ 1 . . . n do
4: Xi = x̄ + (

√
(n + κ)Pxx)i

5: Wi = 1/(2(n + κ))
6: Xi+n = x̄− (

√
(n + κ)Pxx)i

7: Wi+n = 1/(2(n + κ))
8: end for

// Transform sigma points
9: for each i ∈ 0 . . . 2n do

10: Yi = f(Xi)
11: end for

// Compute parameters of transformed distribution
12: ȳ = ∑2n

i=0 WiYi

13: Pyy = ∑2n
i=0 Wi(Yi − ȳ)(Yi − ȳ)T

14: return ŷ = N (ȳ, Pyy)

The UT simplifies the nonlinear transformation of the random variable, as all that is
needed is to evaluate the nonlinear function f at each of the sigma points.

3.2.3 Information Fusion Under Unknown Cross-Correlation

The Covariance Intersection (CI) algorithm was proposed in [64] as an approach for
consistently fusing estimates whose correlations are unknown. The algorithm and vari-
ations have since been applied to many problems in multisensor-multitarget tracking,
especially in distributed (track-to-track) fusion where tracks from different sensor nodes
have unknown correlations [65, 66, 67]. The fused CI estimate is given by equation 3.3
[64], where estimates a, b with means ā, b̄ and covariance matrices Paa, Pbb are fused.

Pcc = (ωP −1
aa + (1− ω)P −1

bb )−1

c̄ = Pcc(ωP −1
aa ā + (1− ω)P −1

bb b̄)
(3.3)

The CI estimate is consistent for any cross-correlation matrix Pab and any ω in the
range [0, 1], given that the estimates being fused are also consistent [64]. The notion of
consistency here is that the estimated mean squared error (MSE) matrix Pcc does not
underestimate the true MSE P̄cc, as expressed in equation 3.4 from [64].

Pcc − P̄cc ≥ 0 (3.4)
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While Pab is assumed entirely unknown, ω is a free parameter that can be chosen
to optimize some criteria. Cost functions that are commonly chosen are to minimize
the determinant or the trace of Pcc, and many different optimization strategies can be
used to minimize the cost [64, 68, 69]. The CI estimate is the optimal (in the sense of
the chosen cost function) consistent estimate if the cross-correlation is entirely unknown
[68]. Furthermore the estimate is non-divergent if a fixed measure of cost is used, in the
sense that fusion never makes the estimate worse (according to the cost function) [70].
The CI algorithm is summarized in algorithm 2.

Algorithm 2 CovarianceIntersection(â, b̂, J)
// Find the parameter ω to minimize cost function J

1: ω = arg minω J, subject to 0 ≤ ω ≤ 1
// Compute CI estimate

2: c̄, Pcc = ⟨Use equation 3.3 or 3.5⟩
3: return ĉ = N (c̄, Pcc)

A more general CI equation that can be used to fuse estimates of unequal state di-
mension was discussed in [70], though it was noted that efficient optimization to find the
optimal weight ω can be more challenging. Furthermore, the proof of consistency is ex-
plicitly given, [64, 70], for CI with equal state dimensions (as in equation 3.3). As pointed
out in [71], it is also not straightforward to determine an appropriate cost function to
determine ω. Nevertheless, fusion of estimates with unequal state dimension under un-
known cross-correlation remains an area of active research, so the CI approach is worth
considering. The fused CI estimate for unequal state dimensions is given by equation
3.5 [70], where the larger-dimension state estimate ā, Paa is updated with information
from b̄, Pbb and H maps the larger state to the smaller state.

c̄ = ā+
(1− ω)PaaHT ((1− ω)HPaaHT + ωPbb)−1(b̄−Hā)

Pcc = 1
ω

(Paa−

(1− ω)PaaHT ((1− ω)HPaaHT + ωPbb)−1HPaa)

(3.5)

In [72], several alternative approaches were discussed for track-to-track fusion with
unequal state dimensions using CI. Their work presented and compared four different
methods of augmenting the smaller state so that it is the same size as the larger state,
allowing the use of CI in the form given by equation 3.3. They also compared these
approaches across different optimization methods for ω, since the augmented state will
affect the optimization problem. A similar approach also using an augmented state
is proposed in [73], with an application to bias estimation. There the authors used a
decentralized information filter (rather than CI) to update the state during fusion by
augmenting the smaller state with zero information about the missing components. In

41



Doctor of Philosophy– David Schonborn; McMaster University– Department of
Electrical and Computer Engineering

[74], a slightly different approach was used, performing CI to fuse the common states
only. They assumed that the non-common states are not affected by the incoming
information about the common state. In both cases the information about the bias is
not updated when new information about the common states is fused. None of the
approaches presented in [72, 74, 73] allow for any information to be garnered about the
non-common state components through cross-correlation with the common state, which
is a significant drawback of these approaches.

An approach related to CI, formulated in terms of a bounding covariance matrix, was
presented in [75]. This was generalized in [76] to provide a tighter bound in the case
where some maximum bound on the correlation coefficient between the estimates to be
fused is known. In [77], the covariance bound (CB) approach [75, 76] was built upon with
a specific formulation for the case of fusing state vectors with unequal dimensions. There,
a conservative bound on the joint covariance matrix was used to formulate a weighted
least squares (WLS) problem that could be solved to yield a fused state estimate of
all state components. A similar formulation was also given in [78]. The conservative
bounding joint covariance matrix from [77] is given in equation 3.6. The matrix was
given for fusing an arbitrary number of estimates where each estimate’s covariance block
was multiplied by the inverse of its weight and the sum of the weights is one [77]. Here
it is presented in a simplified form for use with just two estimates so that there can be
only one weight parameter ω.

x̄CB =
[
āT b̄T

]T
PCB =

[
1
ω Paa 0

0 1
1−ω Pbb

] (3.6)

Note that Paa and Pbb need not be the same dimension. The WLS problem is then
solved for the fused estimate c̄, Pcc as follows in equation 3.7 [77] where H is used to
map the components of each of the state estimates to the joint state consisting of all
components.

K = (HT P −1
CBH)−1HT P −1

CB

c̄ = KxCB

Pcc = KPCBKT

(3.7)

The authors in [77] did not provide details on how to compute the weighting pa-
rameters for the covariance matrices, as noted in [71] where an alternative approach
was proposed. Their approach was based on an inner ellipsoidal approximation and pro-
vided details on how to compute the required weight matrices by solving two semidefinite
programming (SDP) problems [71]. Their results showed improved performance when
compared with the CB method from [77] with equal weighting of the estimates forming
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the bounding joint covariance matrix, however a better weight selection strategy for the
CB approach can be achieved. Also, the approach in [71] does not guarantee consistency.

Other approaches for fusion under unknown correlation that leverage on a specific
problem structure to achieve promising results are available. One such approach that
has been used successfully in track-to-track fusion is sample-based reconstruction of
cross-covariances. In [79, 80], such an approach was applied with homogeneous state
vectors, and in [81, 82] it was generalized to heterogeneous states. The sample-based
reconstruction and the optimal fusion where cross-covariances are maintained rigorously
had similar performance [79, 80, 81, 82]. The drawback of these approaches is that they
require a specific correlation structure which limits their scope of application or requires
reformulation to apply to new problems.

3.2.4 Terrain-Aided Tracking

Some commonly-used sensors (such as video sensors) measure only the angle to a target,
and do not directly observe the range to the target, leaving the target state in Cartesian
coordinates not fully observable based on a measurement alone. One option to resolve
this issue when tracking ground targets is by following the measured line of sight to some
assumed model of the ground, allowing the measurements to be converted to Cartesian
coordinates prior to tracking in a converted measurement Kalman Filter framework
[26, 6]. The general line of sight approach is illustrated in figure 3.1.

Sensor

Line of sight

Ground target

True Terrain

Flat Earth Model

DEM

Figure 3.1: An illustration of the line of sight method for determining
the position of a target in Cartesian coordinates.

When terrain is relatively consistent, a flat earth model or a curved earth model
(such as WGS-84) can be appropriate which allows for convenient geometric conversions
of the measurement to Cartesian coordinates [26]. These are commonly used in bias
estimation and allow for simplification of the bias estimation problem [50, 52]. If the
terrain is varied around the tracking area and can be accepted as locally flat, then a
basic geometric measurement conversion can be applied if the elevation in the area of
the target is known [52].
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If terrain is further varied, it becomes imperative to use a digital elevation model
(DEM) to model the terrain’s features accurately. In this case, the measurement conver-
sion is complex because the shape of the terrain near the target also affects the converted
measurement distribution. This is known as terrain-aided tracking, and has been used
successfully to improve tracking results in varied terrain [5, 6, 2]. In [5], the UT is used
to transform the measurement by transforming each sigma point using a line of sight
intersection algorithm. A similar approach, using a sampling transform [2] where the
measurement distribution in Cartesian coordinates is assumed to be a Gaussian mix-
ture. The transformations in all of these approaches involve intersecting individual lines
of sight from the sensor to the target with the terrain model (see figure 3.2) and using the
points of intersection to determine the distribution of the target position in Cartesian
coordinates. The specifics of the intersection algorithm can vary depending on the DEM
format and implementation decisions. Detailed examples are in [5, 6, 2].

Figure 3.2: Illustration of terrain-aided tracking using line of sight in
DEM.

The azimuth and elevation angles from the sensor to the target are first converted into
a unit vector in the corresponding direction using the standard spherical to Cartesian
conversion. This leads to a line of the form given in equation 3.8, where X is the sensor
position, D is the unit vector in the direction of the target, and t is a free parameter
moving along the line.

L = X + tD (3.8)

All points of intersection between L and the DEM surface Xw can be found by setting
them equal, but the specific intersection point of interest is that which is in front of the
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sensor and nearest to it. Therefor t can be expressed as the solution to an optimization
problem, as in equation 3.9 [2].

min
t

t (3.9a)

subject to X + tD = Xw, (3.9b)
t > 0 (3.9c)

The solution t is found by traversing the DEM grid until the nearest point of intersec-
tion is reached [2]. The grid tracing approach from [29] is used, allowing only the cells of
the DEM in the path of the ray to be traversed, as shown in figure 3.3. As the cells are
traversed in order of increasing distance from the sensor, each is tested for intersection
at a coarse level with fast check on the bounding rectangular prism. If the coarse check
is passed, the specific shape of the cell (a bilinear interpolation of its corner elevations)
is checked for intersection using the algorithm from [30]. When a point of intersection
is found, it will be the one nearest to the sensor (see [30]) and the algorithm can be
stopped.

Figure 3.3: DEM grid traversal along a line of sight.

Although the use of a DEM can improve tracking performance when simpler terrain
models cannot adequately represent the terrain, they are not completely free of errors.
One source of error is that the DEMs commonly used for tracking applications are limited
in resolution. Computational requirements for online tracking in real time prohibit the
use of DEMs with very high resolution, which are not always available for the tracking
area of interest. The NASA SRTM data sets provide DEMs with resolutions of 30m [11]
and 90m [12] for most of the planet, so these are reasonable resolutions to assume for
practical purposes. Features of the terrain significantly smaller than the resolution of
the DEM cannot be represented. The other main source of error in DEMs is elevation
errors. Even large terrain features that can be seen given the resolution are not perfectly
known in terms of their elevation.
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3.3 Problem Formulation
Assume M(k) targets are observed by N(k) sensors at time tk. For asynchronous systems
(as considered here) it may be the case that N(k) = 1, with different sensors observing
the targets at different instances in time, globally indexed by k. The sensors may have
different measurement models which can all be modeled in the form given in equation
3.1. However, the notation in equation 3.10 is more specific to the problem.

zm
s,t(k) = hm

s (xm
s (k), xm

t (k), βs(k), vs(k)) (3.10)

The measurement zm
s,t(k) is generated by sensor s observing target t at time k. Here

xm
s (k) and xm

t (k) are the true states (in the measurement space, noted by superscript
m) of the sensor and the target, respectively. The sensor state is included explicitly here
to indicate that there may be noisy measurements that relate to the sensor as well (for
example, a GPS measurement of the sensor position). Since the measurement is already
in the measurement space, the measurement model hm

s is primarily used to model how the
true bias vector βs enters the measurement equation. This bias model is not restrictive
and the bias vector may contain additive (offset) and/or multiplicative (scaling) biases.
The measurement noise vs(k) is assumed Gaussian zero-mean with covariance matrix
Rs(k), and is assumed to be independent from other noises considered.

To accommodate heterogeneous sensor models in the measurement space, the mea-
surements are converted into Cartesian coordinates to provide a common frame of ref-
erence. In equation 3.11, the measurement conversion function hc

s is introduced, which
may be highly nonlinear. The bias estimates β̂s(k) are modelled as Gaussian random
variables and are accounted for in the conversion process. These may be constant or
time-varying based on the state-transition model of the form given by equation 3.2. The
measurement conversion function may also depend on some additional global informa-
tion zg such as road map information or terrain data (see section 3.5 for an example).
The global information can be considered to be constant (if known completely) or a
random variable (if there is some uncertainty).

zc
s,t(k) = hc

s(zm
s (k), β̂s(k), zg) (3.11)

The function hc
s must map each point in the space of its input to a unique point in

the state space. The converse need not be true (i.e. hc
s may be many-to-one). Note

that while zm
s may contain variables referring to the sensor and the target, zc

s,t contains
only the position of the target in the state space, which is commonly observed among
all sensors. Since the converted measurements zc

s,t(k) depend on the bias estimates
β̂s(k) and possibly some additional information zg, they cannot be considered to be
uncorrelated over time. In the state space, the targets are assumed to move according
to a state-transition model of the form given in equation 3.2.
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No particular fusion architecture is assumed. That is to say that a given fusion node
may receive information about a target in the form of a measurement or a track, and
received tracks may be correlated through unknown mechanisms with other tracks (such
as the track at the local node). Information may be received in an asynchronous manner.
Much of the discussion in sections 3.4 and 3.5 will be in the context of a distributed or
decentralized network, but if the network is centralized then all information is available
to reconstruct the necessary data to carry out the same operations.

The data association (measurement-to-track at the local node, and track-to-track
when performing fusion) is assumed to be known, as the association problem is beyond
the scope of this work. In practical applications, data association must be performed
online. If some targets are poorly resolved, it may be better to use only well resolved
targets in the bias estimation process.

Finally, it is assumed that some prior information about the bias of each sensor is
available (i.e. β̂s(0) is known). In practice this can be achieved with an initial mean
of 0 and covariance consistent with some known bounds on the bias values, similar to
the one-point KF initialization method from [44]. The objective is to update and refine
these bias estimates, beginning with the prior, according to information obtained from
multiple sensors. For an example of this type of problem formulation, see section 3.5.

3.4 Flexible Sensor Bias Estimation
In this section a computationally efficient algorithm is proposed to estimate the measure-
ment bias vectors in a practical scenario as described in section 3.3, without additional
assumptions that narrows the scope of application. The novelty of the proposed algo-
rithm is that it can be applied generically without significant restrictions in terms of
the measurement model, bias model, or fusion architecture. The proposed algorithm
can handle operational scenarios that restrict the use of other computationally efficient
methods.

3.4.1 Overview of the Proposed Algorithm

The strategy in the proposed algorithm can be divided into two main tasks, contained
in the shaded boxes in figure 3.4. This figure shows how an update is performed for a
single target and a single sensor. The first task, shaded box on the right, is to update
the bias estimate. The bias estimate update is accomplished by forming a joint estimate
between the target state and the bias estimate and updating the combined state using
consistent information about the target state from other sensor nodes. The second task,
shaded box on the left, is to update consistent, bias-compensated tracks for each target
at each sensor node, using only locally-sourced measurements. These will be referred to
as consistent local tracks.
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Figure 3.4: A flowchart of the proposed algorithm showing the data
flow for a sensor node update using a single target identified by t.

The consistent local tracks are updated using CI to retain their consistency despite
correlations introduced by bias compensation, without modeling these correlations ex-
plicitly. The consistent local tracks are sent to other sensor nodes. These nodes fuse the
local tracks together (excluding its own track) to form a consistent non-local track which
summarizes the information about the target gotten from other sensors. When a track-
ing estimate output is required at the local sensor, the consistent local and non-local
tracks are fused to provide it. CI is used in creating both the non-local track and the
tracking output because tracks from different sensors may be correlated through process
noise as well as the bias compensation process.

The update for the bias estimate requires forming a joint estimate of the target state
and the sensor bias which is accomplished for the instantaneous time k using the UT and
the two previous local measurements. The process is repeated at every update to capture
the current cross-correlations between the bias parameters and the target state directly at
the instant of the update, and is required because the cross-correlations depend not only
on the target state (which is tracked) but also on the sensor position (which is not tracked,
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but measured). The joint estimate is then updated using the predicted consistent non-
local track as a pseudo-measurement of sorts. Note that the joint estimate and the
consistent non-local track are correlated through the bias compensation process (the
bias estimates from each sensor use information from the same measurements). Since
these correlations are not explicitly modeled and the non-local track does not include the
bias components in the state vector, information fusion under unknown cross-correlation
with unequal state dimension is required.

Another option for updating the bias estimates is to ignore the cross-correlations and
use the standard KF update. Ignoring the cross-correlations can result in inconsistent
bias estimates, but the cross-correlations are small (in some sense) if the (true) bias
uncertainty is small relative to the measurement uncertainty and the only source of
correlations is the bias compensation process. An additional alternative for the bias
estimate update is proposed in section 3.4.3.

3.4.2 Unscented Transform for Joint Estimate Initialization

As described in section 3.2.2, the UT can be used to form a Gaussian estimate of a non-
linear transformed random variable. The UT is also used to initialize a joint estimate
of the stacked target state and bias estimate as well as to initialize target states using
various motion models. To form the Gaussian estimate, a stacked random variable con-
sisting of the most recent two sensor measurements, the previous bias estimate and any
additional global information is used as in equation 3.12. With a two-point initialization
scenario, the bias estimate from time k− 2 is used with measurements from times k− 1
and k so that the bias estimate and the measurements are not correlated (i.e. the bias is
updated once for every two measurements from the local sensor). The joint distribution
parameterized by x̄m,j

s,t , P m,j
s,t will be the input distribution from which the sigma points

are drawn for the UT.

x̄m,j
s,t =

[
z̄m

s,t(k)T z̄m
s,t(k − 1)T β̄T

s (k − 2) z̄T
g

]T

P m,j
s,t =


Rm

s (k) 0 0 0
0 Rm

s (k − 1) 0 0
0 0 Pβ(k − 2) 0
0 0 0 Pg


(3.12)

The transformation function f , to transform each of the sigma points and initialize
the track state in a joint distribution with the bias, is derived using equation 3.13.

f(Xi) =

Pi(k)
Vi(k)
Bi


Pi(k) = hc

s(Zm
i (k),Bi,Zg

i )

Vi(k) = Pi(k)− Pi(k − 1)
T (k, k − 1)

(3.13)
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In this equation, Zm
i (k), Zm

i (k−1), Bi(k−2), and Zg
i represent the most recent measure-

ment, the previous measurement, the bias estimate, and the global information, respec-
tively. The measurement conversion function hc

s is used to map the sensor measurements
to the target position in the state space while accounting for the bias uncertainty and
global information. The time index is dropped from the bias estimate to simplify the no-
tation. The bias estimate precedes any measurement used in the UT and is uncorrelated
to any of the measurement. For a CV model, the bias estimate can be used for every
other measurement. For a constant acceleration (CA) model, the bias estimate is used
every third measurement. The time between the measurements is denoted T (k, k − 1).

The resulting transformed points, Yi = f(Xi), are in the state space of the target
motion model (position and velocity for a CV model) with bias augmented. These points
are used to parameterize a Gaussian joint estimate of the target state and bias estimate,
including the cross-correlation terms. Algorithm 1 shows details about drawing sigma
points and the rest of the UT algorithm. For higher-order kinematic models, more
measurements can be used.

3.4.3 Covariance Intersection Pseudomeaurement Update

The proposed algorithm involves an update step that requires information fusion under
unknown cross-correlation with unequal state dimensions, as reviewed in section 3.2.3.
An alternative, using the KF update with a pseudomeasurement derived according to
the CI algorithm, is proposed. The result is the same estimate in common state compo-
nents as using the standard CI algorithm (with equal state dimensions on the common
components), while also updating the uncommon state components.

The prior estimate x̂ will be updated with information x̂′ to obtain the posterior
estimate x̂+, where the state components of x̂′ are a subset of the components of x̂. The
common and uncommon state components of the estimate with the larger state can be
broken down into blocks as shown in equation 3.14, with subscripts c and u respectively.
The same block decomposition applies to x̂+ with the same notation.

x̂ = N (x̄, Px)

x̄ =
[
x̄c x̄u

]T
Px =

[
Pcc Pcu

Puc Puu

] (3.14)

The CI estimate of the fused common state components x̂ci is computed using the
standard CI algorithm, as shown in equation 3.15. It is set to be equal to the posterior
update of the common state components.
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x̂ci = CI(x̂c, x̂′, trace)
= N (x̄ci, Pci)
= x̂+

cc

= N (x̄+
cc, P +

cc)

(3.15)

Starting from the above equivalence and the Kalman Filter measurement update
equations, a pseudomeasurement zeq with mean z̄eq and covariance Req is derived. The
pseudomeasurement, when used in the standard KF update, results in the same updated
(fused) target state estimate as the CI algorithm (the updated estimate of the common
state is consistent if the input estimates are consistent). The derivation begins in equa-
tion 3.16 below, where the H matrix is a selector of the common state components taking
the form H = [I0].

P + = (I − PHT (HPHT + Req)−1H)P
= (I − PHT (Pcc + Req)−1H)P

= (I − P

[
(Pcc + Req)−1

0mat

]
H)P

= (I −
[

Pcc(Pcc + Req)−1 0
Puc(Pcc + Req)−1 0

]
)P

(3.16)

Only the top-left block of the matrix in equation 3.16, pertaining to the common
states, is required to solve for Req. Considering the top-left block only after right-
multiplying P yields equation 3.17.

Pci = Pcc − Pcc(Pcc + Req)−1Pcc (3.17)

Rearranging equation 3.17 to solve for Req, the final expression for the covariance of
the pseudomeasurement is given in equation 3.18. Note that the covariance of the esti-
mate of the common state components must be invertible, as must be (P −1

cc −P −1
cc PciP

−1
cc ).

Req = (P −1
cc − P −1

cc PciP
−1
cc )−1 − Pcc (3.18)

A similar approach is used to derive z̄eq by solving the top block of equation 3.19
corresponding to the common state components. The top block of the vector yields
equation 3.20, which is rearranged to solve for z̄eq. The final expression for z̄eq is given
in equation 3.21.
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x̄+ = x̄ + PHT (HPHT + Req)−1(z̄eq −Hx̄)

= x̄ +
[

Pcc(Pcc + Req)−1

Puc(Pcc + Req)−1

]
(z̄eq − x̄c)

(3.19)

x̄ci = x̄c + Pcc(Pcc + Req)−1(z̄eq − x̄c) (3.20)

z̄eq = (I + ReqP −1
cc )(x̄ci − x̄c) + x̄c (3.21)

The measurement zeq is then used in the standard KF update to update the prior
estimate x̂. The posterior estimate x̂+ resulting from the update is equivalent to CI fusion
in the common state components. The estimate of the uncommon state components is
also updated through correlation with the common components. In this sense zeq can be
viewed as an approximately-decorrelated measurement under the assumption of unknown
correlation between the two estimates of the common state components.

3.4.4 Bias Compensation

The estimated bias can be compensated at the measurement level. The variance of
the bias estimate is also vital for data association, which must be considered prior to
bias estimation. If the variance of the bias estimate is not small the measurements
(and resulting tracks) may not be consistent with the true position of the targets, as
illustrated in figure 3.5. The result can either be missed or incorrect associations at the
measurement or track level, in addition to reduced track accuracy. At the onset of the
bias estimation process only the prior information about the bias is known, as is the case
with the proposed algorithm, and it is assumed to be zero-mean with an appropriately
large covariance (consistent with reasonable bias values). Therefore it is important for
practical purposes to consider how bias compensation can be achieved such that both
the measurements and tracks remain consistent. The following discussion will assume
that the bias estimate being used for compensation is consistent with the true bias.

In Fig. 3.5, the bias estimate covariance is not small relative to the measurement
covariance. The compensated measurement using only the mean of the bias estimate is
inconsistent with the true target position (shown with a cross), unlike the measurement
that is inflated to account for the bias estimate covariance. At the measurement level,
bias estimate covariance can be considered as a part of the UT. The bias estimate can
be included in the input distribution such that the sigma points generated will include
bias components. The effects of the bias parameters can be accounted for directly
according to the measurement model, prior to applying the measurement conversion.
The advantage of this approach is that it is achieved without additional assumptions
about the measurement conversion or bias models and only requires a known procedure
for mapping points in the joint measurement-bias space to the target position in the
state space. Such an approach also lends itself well to the formation of a joint estimate
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Figure 3.5: An example comparing confidence ellipses of measurements
that are unbiased, biased, and bias-compensated (with and without bias-
inflation).

including the bias (as is done in section 3.4.2). This converted measurement of the
target position in the state space that accounts for bias uncertainty will be referred to
as a bias-inflated measurement.

At the track level, it must be considered that the bias-inflated measurements at
different times are no longer independent from one another, since they depend on the
bias estimate which has been recursively updated from a previous time. Recall that
in [59], the correlation of bias-inflated measurements is accounted for by modelling the
cross-covariance terms explicitly (with some approximations). If it is not feasible to
model the cross-covariance terms explicitly for a given measurement and bias model, the
dependence of the bias-inflated measurements is often ignored and the KF is used to track
targets. This approach is less optimistic than ignoring the variance of the bias estimate in
bias compensation. However, it is still an approximation due to the assumption that the
measurements are independent from one another over time. If the bias estimate variance
is small, then the approximation may be acceptable since the inflated measurements can
be considered independent. But if the bias estimate variance is large (such as at the
onset of the bias estimation process), then it is important to consider this correlation so
that the tracks remain consistent. The cross-correlation can then be treated as unknown
and an approach discussed in section 3.2.3 can be employed for the update (such as
CI). It will converge slower than using the KF, but can guarantee consistency. Such
an approach is used in the proposed algorithm to maintain the consistent local tracks
(as discussed in section 3.4.5 with reference to figure 3.4). With a better knowledge of
the bias estimate, the bias estimate variance and the level of correlation between the
bias-inflated measurement shrinks. At some point, the performance trade-off between
convergence and consistency might favor switching from an assumption of unknown
correlation update to independence update.
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3.4.5 Proposed Bias Estimation Algorithm

The proposed bias estimate algorithm is described in detail in the form of pseudo-code.
The sensor node can either make local observations of targets or receive information
about targets (in the form of consistent tracks) from another sensor node. The bias
estimation process at a single sensor node s maintains the bias estimate for sensor s,
a consistent local track x̂local

t for each target t, and a consistent non-local track x̂non
t

(summarizing information received from other sensors) for each target t. The tracks
x̂non

t are from some arbitrary time in the past, noted using the time index k − τ . The
local sensor node may transmit its local consistent track to other sensor nodes at any
time (subject to practical constraints, for example the availability of a communication
channel) to be included in their (from the perspective of the other node) non-local
consistent track information.

A set of variables for all targets t is described in equation 3.22. Note that since these
equations refer to a single sensor, the subscript s is dropped from the notation. The
exception to this convention is X̂ local

s (k) in algorithm 4 where the sensor performing the
update receives information from another sensor, indexed by s to make it clear that this
is from a different sensor node.

Zm(k) = {zm
t (k)|t ∈ 1 . . . M(k)}

X̂ local(k) = {x̂local
t (k)|t ∈ 1 . . . M(k)}

X̂non(k) = {x̂non
t (k)|t ∈ 1 . . . M(k)}

(3.22)

The updates to the bias estimate β̂ and consistent local track x̂local
t for each sensor

node s occur when local measurements are made, as detailed in algorithm 3. The inputs
for this algorithm (in addition to those maintained internally) are the measurements
Zm of each target from this time k and the previous measurement time k − 1, as well
as (optionally) some global information zg such as terrain data. Note that because
two measurements are required for the update (with a CV model), the proposed update
algorithm should be done on every other measurement update. When two measurements
for a target are not yet ready, the arriving measurement can simply be queued up for
the next update. If the consistent non-local track x̂non

t is not yet initialized, the bias
update must be skipped for the corresponding target until information from another
sensor is available. Similarly, targets can be skipped in the same manner if they are not
associated with local measurements or non-local tracks. On line 8 of this algorithm, the
UT is used for initialization of the joint estimate between the target state and the bias
vector. On line 20 of this algorithm, the update operation is fused under unknown cross-
correlation with unequal state dimensions. Several alternatives for the update operation
are discussed earlier in section 3.4.5, and are compared through simulations in section
3.5.

The consistent non-local tracks x̂non
t are updated or initialized when tracks are re-

ceived from another sensor, as described in algorithm 4. The inputs are the consistent
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Algorithm 3 ProposedMeasurementUpdate
(Zm(k), Zm(k − 1), X̂ local(k − 2), X̂non(k − τ), β̂(k − 2), zg)

1: β̂(k) = β̂(k − 2)
2: for each t ∈ 1 . . . M(k) do

// Skip targets without two measurements
3: if zm

t (k) or zm
t (k − 1) not defined then

4: Store zm
t (k) for next update at time k + 1

5: continue
6: end if

// Initialize joint distribution (section 3.4.2)
7: x̂m,j

t (k) = ⟨Use equation 3.12⟩
8: x̂j

t (k) = UT (x̂m,j
t (k), f)

// Update local consistent track
9: x̂state

t (k) = ⟨Marginalize from x̂j
t (k)⟩

10: if x̂local
t (k − 1) not defined then

11: x̂local
t (k) = x̂state

t (k)
12: else
13: x̂local

t (k) = ⟨Predict from x̂local
t (k − 1)⟩

14: x̂local
t (k) = CI(x̂local

t (k), x̂state
t (k), trace)

15: end if
// Skip targets with no non-local information

16: if x̂non
t (k − τ) not defined then

17: continue
18: end if

// Update bias estimate
19: x̂non

t (k) = ⟨Predict from x̂non
t (k − τ)⟩

20: x̂j+
t (k) = ⟨Update x̂j

t (k) with x̂non
t (k)⟩

21: β̂t(k) = ⟨Marginalize from x̂j+
t (k)⟩

22: β̂(k) = CI(β̂(k), β̂t(k), trace)
23: end for
24: return β̂(k), X̂ local(k)

55



Doctor of Philosophy– David Schonborn; McMaster University– Department of
Electrical and Computer Engineering

non-local tracks X̂non(k−τ) (maintained from the previous time step) and the consistent
local tracks X̂ local

s (k) from any other sensor node s. Note that for the latter, "local" is
from the perspective of sensor s, not the sensor being updated. The local measurement
information from the sensor being updated is intentionally excluded from the consistent
non-local track.

Algorithm 4 ProposedTrackUpdate(X̂non(k − τ), X̂ local
s (k))

1: for each t ∈ 1 . . . M(k) do
// Initialize non-local consistent track for new targets

2: if x̂non
t (k − τ) not defined then

3: x̂non
t (k) = x̂local

s,t (k)
// Update non-local consistent track for existing targets

4: else
5: x̂non

t (k) = ⟨Predict from x̂non
t (k − τ)⟩

6: x̂non
t (k) = CI(x̂non

t (k), x̂local
s,t (k), trace)

7: end if
8: end for
9: return X̂non(k)

These updates may happen at any time in a practical system, depending on when
the information arrives and calling the appropriate update function for the incoming
information. The proposed algorithm requires data about a shared target from at least
one non-local sensor in order to update the bias estimates, and can only be applied in
scenarios with at least two or more sensors. When online tracking output is required, the
consistent tracks (local and non-local) maintained during bias estimation are fused for
each target using CI to account for all available information and predicted to the current
time. Alternatively, the tracking can be considered separately from bias estimation and
target state information can be bias-compensated and fused in a standard approach as
it arrives.

3.4.6 Computational Complexity

The proposed algorithm is intended for online use, so it is essential to have manageable
computational requirements. The basic operations that dominate the computational
load for this algorithm are computing matrix inversion and the square root of a matrix.
The two major existing algorithms used in the proposed algorithm (CI and the UT) use
these dominating basic operations.

Inversion of an n-by-n matrix is often considered to have computational complexity
O(n3). Although asymptotically-faster algorithms exist to invert a matrix as fast as
O(n2.373) [83], they have large constant factors that are prohibitive for practical appli-
cations unless n is very large [84]. For this discussion, the computational complexity
of matrix inversion will be considered to be cubic, though the real-time considerations
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would still apply if a near-quadratic algorithm were discovered. The complexity of find-
ing the square root of an n-by-n matrix is also O(n3) [85].

Matrix inversion is the dominating factor of the computational complexity of the CI
algorithm. For CI, a constrained optimization problem must be solved to minimize the
cost function which is (typically) a function requiring inversion (see algorithm 2). The
proposed algorithm uses the trace of the fused matrix as a cost function, and solves the
optimization problem using the bisection method, requiring a constant number of matrix
inversions (assuming the required precision to be constant). Therefore the computational
complexity of the CI algorithm to fuse two n-by-n matrices is also O(n3). It is worth
noting that the computational complexity of standard KF update is also O(n3), but
with smaller constants since solving an optimization problem is not required.

The UT involves finding the square root of the input covariance matrix, but also
involves the transformation of each sigma point according to the function f (see algo-
rithm 1). The UT does not specify what the function f is, so it must be considered as a
variable factor. Therefore the computational complexity of the UT for an input matrix
of size n-by-n is O(n3 + nf).

The proposed non-local consistent track update (algorithm 4) is effectively a standard
application of the CI algorithm. The track update for all targets at time index M
is performed whenever information is received from other sensors. The information
being fused is the target state with its dimension denoted as nx. Accordingly, the
computational complexity of the update operation for all targets is given in equation 3.23.
For most practical applications using kinematic models to track non-cooperative targets,
the target state vector does not get particularly large. In any case, the computational
complexity is similar to a standard tracking application (without bias estimation) and
is what must be expected when fusing information from other sensors.

O(ProposedTrackUpdate) = O(Mn3
x) (3.23)

The proposed measurement update (algorithm 3) performs the bias estimation and
involves both CI and the UT. CI is used to update both the local consistent track (state
vector of dimension nx), as well as the bias estimate. The dimension of the bias vector
is referred to as nβ. The UT is performed here on the joint distribution created by
stacking two measurements and the bias vector (see section 3.4.2). The dimension of the
measurement vector is denoted nm, and the dimension of the joint distribution inputted
into the UT is 2nm + nβ. The update step, line 20 of this algorithm, can be achieved
in several ways. The fusion with unequal state dimension where a joint distribution
between the target state and bias vector (dimension nx+nβ) is updated with information
about the target state (dimension nx). The computational complexities of each of these
update methods is dominated by matrix inversion in the dimension of the joint state.
Each of these operations is required for each target used in the update. Combining these
operations, the computational complexity of the proposed measurement update is given
in equation 3.24.
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O(ProposedMeasurementUpdate) =
O(M((nm + nβ)3 + (nm + nβ)f + (nx + nβ)3)) (3.24)

Neither of the complexities in equations 3.23 or 3.24 depend directly on the number
of sensors (denoted in this section without a time index as N). The number of sensors
only comes into play when algorithm 4 is called, being called once for each update from
each sensor. In this sense, the computation time of the proposed algorithm can be
considered to grow linearly with the number of sensors N . It is also important that
both of these algorithms depend linearly on the number of targets M . Comparing the
proposed approach to the ASKF operating on sensors with uniform measurement and
bias models, the full ASKF uses a state vector of dimension Mnt +Nnβ, so it has a much
larger asymptotic complexity of O((Mnt +Nnβ)3), which is cubic both in the number of
targets and in the number of sensors. Even more computationally-friendly approaches
(such as the pseudo-measurement approach) usually involve a stacked state vector that
grows with the number of sensors (or the approach is limited to two sensors), resulting in
cubic complexity in the number of sensors but linear in the number of targets. Therefor
the proposed algorithm is much more computationally efficient for scenarios with a large
number of sensors.

The proposed algorithm can be used in a standard tracking framework with the bias-
compensated converted measurements filtered using a KF and non-local tracks fused
using a standard application of the CI algorithm. Alternatively, the local consistent track
and non-local consistent tracks, which are already being maintained for bias estimation
purposes, can be fused using the standard CI algorithm. In either case, the computation
of the updates for tracking output are dominated again by matrix inversion, with cubic
complexity in the size of the state vector and linear in the number of targets.

3.5 Simulations and Discussion
To evaluate the proposed algorithm and demonstrate its effectiveness and flexibility,
simulations were conducted for terrain-aided tracking using video sensors scenario. The
proposed algorithm for bias estimation and compensation is compared against tracking
with unbiased measurements, and with bias-ignorant measurements. These comparisons,
using unbiased and bias-ignorant measurements, serve as high and low baselines respec-
tively. Several approaches for fusion under unknown cross-correlation with unequal state
vectors (applied in the context of the proposed algorithm) are also compared, as well as
the different approaches to bias compensation outlined in section 3.4.4. Two approaches
to bias-compensated tracking are compared as well. In the first, a standard KF is used
to track with the bias-compensated converted measurements. This KF approach ignores
some sources of correlation over time between the measurements and are based on local
measurements at each sensor node and the bias estimates. The second approach is to
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fuse the consistent local track and the consistent non-local track, maintained already by
each sensor node for the purposes of bias estimation, using CI. This assumes unknown
correlation between the tracks while utilizing all the information available to the sen-
sor node. For performance evaluation purposes, 500 Monte Carlo runs were conducted.
Estimation accuracy in both bias estimates and bias-compensated tracks are evaluated
using the Root Mean Square Error (RMSE) metric. Track consistency is evaluated using
chi-square tests on Average Normalized Estimation Error Squared (ANEES) metric.

3.5.1 Scenario

In each Monte Carlo run, the true target and sensor trajectories are regenerated ran-
domly according to their process noises and (static) initial conditions. To generate
realistic ground truth for the target trajectories, a high resolution DEM with a resolu-
tion of 1m (from [13]) was used. A second DEM with a resolution of 30m (from [11]) was
used during tracking, with the difference between the two DEMs representing realistic
terrain elevation errors. The true sensor biases are drawn from a distribution consistent
with the bias prior. Targets move according to a 2-dimensional nearly constant velocity
(NCV) model with their elevation fixed to the ground, while sensors move through the
air according to a nearly constant acceleration (NCA) model. Both of these models are
described in [44]. Based on the trajectories, bias, and measurement noise distributions,
noisy sensor measurements are generated randomly for each run and these are used to
estimate the sensor biases and target states.

A distributed fusion architecture with four sensors observing four targets is consid-
ered. The sensors take measurements at a rate of 10 frames per second for a period of
300 seconds. Each sensor measures their own position in three dimensions as well as
the azimuth and elevation angles to each target, subject to Gaussian zero-mean mea-
surement noise. The measurement noise standard deviations were set to 0.5 degrees
for the angular components and 3m for the positional components. In addition to the
zero-mean noise, the angular measurements are subject to additive constant biases. The
bias prior for the angular components is zero-mean with a standard deviation of 2 de-
grees. The targets are tracked using a 3-dimensional NCV model, as described in [44].
At each time step, the sensors communicate their tracks to one another after updating
their local tracks and bias estimates to mimic the realistic condition that sensors cannot
communicate this information instantaneously, and the effect is that when sensor nodes
are performing their local update they have access to information from other nodes only
from the previous time step. To illustrate the ability of the proposed algorithm to func-
tion in a fully distributed scenario with unreliable communication, simulation results are
also presented for a scenario where each sensor has a 50% chance to receive information
from each other sensor at every time step.

3.5.2 Measurement Models for Terrain-Aided Tracking

The measurement model hm
s of the form in equation 3.10, defining how the true additive

bias affects the measurement, is given below in equation 3.25.
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zm
s,t(k) = hm

s (xm
s (k), xm

t (k), βs, vs(k))

=


xs,x(k)
xs,y(k)
xs,z(k)
xt,az(k)
xt,el(k)

+


0
0
0

βaz

βel

+ vs(k)

= z̄m
s,t(k) + vs(k)

= N (z̄m
s,t(k), Rs(k))

(3.25)

The measurement conversion model is applied to transform the measurement zm
s,t(k)

and bias estimate to a converted bias-compensated measurement in the target state
space. Here the global information zg is a one-dimensional zero-mean Gaussian noise
used to represent the terrain uncertainty. The UT is used here with the joint distribution
consisting of the measurement, bias estimate, and global information as input. The
nonlinear transformation hc

s will be applied to the sigma points as in equation 3.26.

zc
s,t(k) = hc

s(zm
s (k), β̂s(k), zg)

Zc
i (k) = hc

s(Zm
i (k),Bi(k),Zg

i )
(3.26)

Bias-corrected sigma points Zm,bc
i in the measurement space are computed by sub-

tracting the bias components from the corresponding measurement components of each
sigma point, as in equation 3.27.

Zm,bc
i (k) =


Zm

i,s,x

Zm
i,s,y

Zm
i,s,z

Zm
i,t,az

Zm
i,t,el

−


0
0
0
Bi,az

Bi,el

 (3.27)

Each sigma point represents a possible line of sight from the sensor to the target.
These bias-corrected sigma points are transformed to the state space by calculating its
point of intersection with the tracking DEM, as expressed in equation 3.28.

Zc
i (k) = IntersectionPoint(Zm,bc

i (k), DEM,Zg
i ) (3.28)

The DEM intersection algorithm described in [2] is used to compute Zc
i (see section

3.2.4). The final argument to the function in equation 3.28 is the sigma point component
Zg

i , corresponding to the DEM elevation error. When each point of intersection between
the line of sight Zm,bc

i and the DEM is calculated, the entire DEM is offset by adding Zg
i
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to its elevation values. This simplified error model for the DEM is used to retain com-
putational efficiency without ignoring the errors entirely. Note that here the converted
measurements are not uncorrelated over time due to the uncertainty introduced by the
DEM.

3.5.3 Algorithm and Scenario Variation Nomenclature

The algorithm proposed in section 3.4.5 leaves several options open in terms of the
joint estimate update used to refine the bias estimate. The identifier used for each
algorithm variation will correspond to the method used in the update step, where the
standard Kalman Filter, the method proposed in section 3.4.3, Covariance Intersection
(with unequal state dimension) from [70], and Covariance Bounds from [77] will be
considered. The abbreviations KF, CIKF, CI, and CB will be used, respectively, to
identify these variations. These algorithms will also be compared with the standard
KF applied to unbiased measurements (as a high performance baseline) and biased
measurements without any bias compensation (as a low performance baseline). These
baseline approaches will be identified by UB and BI, respectively. In addition to different
algorithm variations, two scenarios are considered, one with full communication and
one with limited communication, as outlined in section 3.5.1. The identifiers for these
scenarios will be FC and LC, respectively. For example, results presented that use the
standard Kalman Filter for the joint estimate update under full communication will be
labelled KF-FC.

3.5.4 Results

Figure 3.6 show the plots of the RMSE of the bias estimates (Euclidean distance error)
over time from the algorithms and scenario variation for four different sensors. The
differences between the plots for the various sensors are attributed to the different sen-
sor locations, resulting in a different geometric relationship between the sensor, bias
parameters, and the target positions. The differently-positioned sensors vary both in
terms of their distance to the targets, and their points of view (affecting how their bias
parameters correlate with the target state). In all cases the CIKF algorithm variation
results in the lowest RMSE by the end of the simulation period, showing that the CIKF
provides an effective balance between the optimistic KF and the pessimistic CI varia-
tions. The KF variation also performs well, and has the desirable property that the bias
estimate RMSE trends consistently goes downwards over time. This trend is in contrast
to the CI variation where the error can sometimes increase before correcting itself, and
has a higher steady state error in general. The RMSE of the CIKF bias estimates also
sometimes increases before correcting itself, but the magnitude of the increase is smaller
and by the end of the simulation period this variation still achieves a lower estimation
error. The CI variation lacks confidence in its estimates, giving too much weight to new
observations, resulting in estimates which are slow to converge. The KF has the oppo-
site problem, giving too much weight to its existing estimates. The CIKF variation sits
somewhere in between. For the RMSE in bias estimate update, it is better to assume
that there is no correlation than to assume the correlation to be totally unknown. This
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is expected since the bias estimation algorithm is structured such that the correlations
are minimized. The FC scenario variations (solid lines) are also compared with the LC
scenario variations (dashed lines) to investigate the performance of the proposed algo-
rithm under limited communication. Across all sensors and algorithm variations, the LC
scenario has slightly higher bias estimation error than the FC scenario, which is due to
the delay in acquiring updates from other sensors. The results are very close between
the two scenarios for the CIKF and KF algorithm variations, demonstrating that these
proposed algorithm variations are effective even when communication is limited.
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Figure 3.6: Root Mean Square Error (RMSE) for the bias estimates β̂s

for each sensor s.

In these simulations, the data association has been assumed to be known, but in
a real world application, the converted bias-compensated measurements and the local
consistent track from each sensor will need to be associated with one another during the
bias estimation process. If this data association is to be performed reliably, both of these
should be consistent estimates. Estimate consistency is verified using chi-square tests on
the ANEES metric. The one-sided chi-square test is used here due to its similarity with
the standard gating process used in data association. Figures 3.7 and 3.8 show the results
of these tests for the converted bias-compensated measurements and the local consistent
tracks, respectively, for a single sensor and a single target. All of the proposed algorithm
variations produce bias-compensated measurements that are consistent, as been seen in
figure 3.7 by noting that the ANEES curves are within the shaded 95% acceptance
region. This figure also includes curves for the low-baseline bias-ignorant measurements
and the high-baseline unbiased measurements. The bias-compensated measurements
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show similar consistency to the unbiased measurements, while the ANEES of the bias-
ignorant measurements was so much higher such that a logarithmic scale was necessary
to see the curve. This discrepancy demonstrates the importance of the bias compensation
if consistent measurements are to be achieved. The local consistent tracks maintained by
each of the proposed bias estimation algorithm variations are also consistent according to
the ANEES test, as seen in figure 3.8. Curves for the unbiased and bias-ignorant trackers
are not included in this figure because the local consistent track is a notion introduced
in the bias compensation process (which does not occur in either the unbiased or bias-
ignorant trackers).
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Figure 3.7: Average Normalized Estimation Error Squared (ANEES) for
the converted bias-compensated measurements zc

1,1, with the chi-square
test acceptance region shaded.

In addition to bias estimation performance, it is also important to consider the
performance of bias-compensated tracking in terms of both accuracy and consistency.
The simplest approach is the standard KF framework operating on the converted bias-
compensated measurements originating from local sensor node. Figure 3.9 shows a plot
of the RMSE of these tracks for a single sensor and target, including the unbiased and
bias-ignorant trackers as a baseline. A logarithmic scale is used due to the substan-
tially higher RMSE of the bias-ignorant tracks. The lowest RMSE among the bias-
compensated tracks comes from the CIKF update algorithm, followed closely by the KF
variation, and then the CI variation. Similar to the RMSE of the bias estimates, the LC
scenarios have slightly higher error than the corresponding FC scenarios, with a slightly
more pronounced difference between the two in the CI variation. Bias-compensated
tracks using any of the proposed algorithm variations are significantly more accurate
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Local Consistent Track ANEES
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Figure 3.8: Average Normalized Estimation Error Squared (ANEES)
for the local consistent tracks x̂local

1,1 , with the chi-square test acceptance
region shaded.

than the bias-ignorant tracks, and those using the KF and CIKF variations converge to
a level of track accuracy comparable to the unbiased tracks.

Notice that the bias-compensated track according to the bias estimates from CIKF
update algorithm outperforms the unbiased tracker by the end of the simulation period.
The unbiased tracker is included as a high performance baseline, so this is initially
unexpected. As previously noted, the bias-compensated tracking application violates the
assumptions of the KF that the measurement noise is zero-mean and independent over
time (see sections 3.4.4 and 3.5.2). This violation can lead the filter to be inconsistent
and optimistic in the accuracy of its estimates. The optimism is seen clearly in figure
3.10, showing the chi-square test results for these tracks. The ANEES metric exceeds the
95% acceptance region for all trackers, even the unbiased tracker. The bias-compensated
measurements have inflated covariance relative to the unbiased measurements, partially
mitigating the optimism, but this is not a proper solution. Since the KF and CIKF
algorithm variations have ANEES values that converge to levels comparable to those of
the unbiased tracker, the majority of the dependence over time seems to be due to the
terrain errors. Modelling the terrain errors more accurately as a time-varying (location-
dependent) bias specific to individual targets may be a more appropriate solution, and
this can be considered for further work. If the proposed algorithm is used in other
applications that do not involve terrain models (for example, in stereo video or radar
applications) the correlation of measurements over time may be less of an issue.
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Figure 3.9: Root Mean Square Error (RMSE) plotted on a logarithmic
scale for the tracks from standard KF operating on bias-compensated
measurements zc

1,1.

The standard KF cannot produce consistent tracks with measurements that are not
independent over time unless this dependence is explicitly accounted for. In general
explicit modeling of correlation may not always be possible, and indeed the problem
seems likely to occur in practically all real world non-cooperative tracking applications
that rely on an imperfect terrain model. As seen in the local consistent tracks, using
CI to update the tracks instead of the KF, allows for the tracks to be maintained in a
consistent way, as long as the measurements or tracks to be fused are each consistent
themselves. The consistency is at the expense of the estimation accuracy. This can be
seen by comparing the RMSE of the local consistent tracks, shown in figure 3.11, with
that of the standard KF tracks, shown in figure 3.9. Both of these tracks use the same
measurements and bias estimates, and the tracking methods show a trade-off between
consistency and accuracy.

The local consistent tracks mentioned in the above comparison are used during bias
estimation and are not intended to be used directly as tracker output, so their consistency
is prioritized over their accuracy. If the consistent local tracks x̂local

s,t and the consistent
non-local tracks x̂nonlocal

s,t (already maintained during bias estimation) are fused using
CI, then a more accurate track can be produced that remains consistent. Examining the
RMSE of these fused tracks in figure 3.12 reveals that they are similar to the tracks from
the standard KF tracker. The chi-square test on the ANEES of these tracks confirms
that they are also consistent, as seen in figure 3.13.
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Local KF Track ANEES
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Figure 3.10: Average Normalized Estimation Error Squared (ANEES)
for the tracks from standard KF operating on bias-compensated measure-
ments zc

1,1, with the chi-square test acceptance region shaded.

The data so far has been presented for only sensor 1 and target 1 to show a high level
of detail, but similar results are seen across all sensors and targets. To demonstrate the
similarity, the RMSE of the standard KF tracks, local consistent tracks, and fused tracks
for all sensors and targets are included in figures 3.14, 3.15, and 3.16, respectively. Unlike
the more detailed plots, a linear scale is used to provide a more intuitive understanding
of the differences between the various tracks. ANEES plots for all sensors and all targets
are omitted for brevity.

3.5.5 Limitations

The proposed bias estimation algorithm is not theoretically optimal, since various corre-
lations are assumed to be unknown during the bias estimation process, or are neglected
in some algorithm variations. The bias estimate update step also requires fusion un-
der unknown correlation with unequal state dimensions. This problem is an area of
active research, so future developments here may lead to direct improvements of per-
formance in the proposed algorithm if they can be effectively applied to it. Lastly,
bias-compensated tracking involves updating tracks using measurements which have are
correlated through the bias compensation process. Although the CI algorithm has been
used in this chapter to maintain consistency, RMSE suffered as a result. Future work
may look at separating the possibly-correlated and independent components of the bias-
compensated measurements and using tools such as Split Covariance Intersection (SCI)
[86] to improve bias-compensated tracking performance.
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Figure 3.11: Root Mean Square Error (RMSE) plotted on a logarithmic
scale for the local consistent tracks x̂local

1,1 .
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Figure 3.12: Root Mean Square Error (RMSE) plotted on a logarithmic
scale for the tracks obtained by fusing the local consistent tracks x̂local
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and non-local consistent tracks x̂nonlocal

1,1 using CI.
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Fused Track ANEES
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Figure 3.13: Average Normalized Estimation Error Squared (ANEES)
for the tracks obtained by fusing the local consistent tracks x̂local

1,1 and
non-local consistent tracks x̂nonlocal

1,1 using CI, with the chi-square test
acceptance region shaded.
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Figure 3.14: Root Mean Square Error (RMSE) for the tracks from
standard KF operating on bias-compensated measurements zc

s,t.
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Figure 3.15: Root Mean Square Error (RMSE) for the local consistent
tracks x̂local

s,t .
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Figure 3.16: Root Mean Square Error (RMSE) for the tracks obtained
by fusing the local consistent tracks x̂local
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3.6 Conclusion
In this chapter, a computationally efficient algorithm for bias estimation and compen-
sation for practical multisensor-multitarget tracking was presented. The algorithm was
achieved by restructuring the estimation problem in order to avoid inconsistency and
leveraging on flexible tools such as the Unscented Transform and Covariance Intersec-
tion. Covariance Intersection was used to compile state information about a single
target and bias estimate information about a single sensor, while the Unscented Trans-
form was used to form joint estimate of the target state and bias estimate. Simulation
results of the algorithm showed low bias estimate RMSE for all sensors, consistent bias-
compensated measurements, and improved bias-compensated track RMSE comparable
to that of a tracker operating on unbiased measurements. The proposed algorithm is
suitable for improving tracking accuracy, track probability of detection, and few missed
associations.

Although the algorithm showed improvement across several measures, the challenges
in bias estimation and compensation are not completely eliminated. Further works
on performing fusion under unknown correlation with unequal state dimensions and
improving the consistency of bias-compensated tracking are needed to eliminate these
challenges.
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Chapter 4

Unscented Homography
Transform for Tracking in Pixel
Coordinates

4.1 Introduction
Imaging sensors such as visible light or infrared (IR) video cameras are frequently used in
tracking applications due to their high accuracy, high frame rate, low cost, low bulk, and
passive operation. There are a wide range of video target tracking approaches employed
in different applications and under different operational conditions. Some methods con-
vert the measured target positions to cartesian coordinates in a global frame of reference
[87, 2, 3, 88]. This usually requires information such as measurements of the sensor
position and orientation, terrain model, measurements from multiple sensors, or known
points of reference, in addition to the video measurements of the target pixel positions.
Another option is to track the targets in pixel coordinates [89, 90, 91]. Tracking in pixel
coordinates may be used when the global position of the targets is not required, or when
additional information to convert the measurements to a global reference frame is not
available.

Although tracking in pixel coordinates alleviates the need to determine the global
position of targets, it becomes necessary to account for the affects of sensor motion. The
homography transform can be used to account for sensor motion by transforming a set
of planar points from their positions in one view to their positions in another view. This
relies on the assumption that the targets lie at least approximately in the same plane.
[1]. This assumption is oftentimes accurate especially when tracking ground targets in
flat terrain, hence the homography transform is often used [92, 93, 94].

The homography transform has also been extended to transform multiple sets of
planar points, relaxing the limitation that all of the points to be transformed must
lie in the same plane [95, 96]. This was achieved by computing multiple homography
matrices that are consistent with one another, and using each matrix to transform its
corresponding set of planar points. Another limitation of the homography transform
is that it is designed to be used on sets of points, with no notion of uncertainty. This
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limits the use of the homography transform in combination with the Kalman Filter,
which most tracking frameworks are based on. The Kalman Filter maintains estimates
of target states in the form of Gaussian random variables and also estimates multiple
state variables such as velocity, acceleration, and/or turn rate, in addition to position.
This makes its integration with the homography transform nontrivial.

With a high frame rate and a relatively accurate detector, it may be sufficient to
neglect measurement uncertainty and the specifics of target motion dynamics, avoiding
the need for the Kalman Filter and therefore also avoiding this limitation. This practice
has been used effectively in practical scenarios [97, 98]. In other scenarios, there may be
non-negligible measurement or system uncertainty [99, 100], and high frame rate track-
ing many not be achievable (for example, due to a computationally-intensive detection
process [101] or a large number of tracked targets). Therefore the integration of the
Kalman filter with the homography transform remains relevant, but limited work has
been done on the subject. This problem is partially addressed in [102]. Their approach
allows for the transformation of the full mean of the target state for targets moving
according to the Nearly Constant Velocity (NCV) motion model (position and velocity),
as well as the elements of the covariance corresponding to the position components of
the state. For targets where the NCV model is sufficient, this approach provides a good
approximation of the fully-transformed state estimate with uncertainty. The limitations
of this approach are that only the position components of the covariance matrix are
transformed, and other motion models were not considered.

This chaper focuses on the problem of compensating for sensor motion in tracking
scenarios where the assumption that targets are on a nearly-planar surface applies, but
the measurement and/or system uncertainty is not negligible, and the frame rate may be
low enough to warrant the use of various target kinematic motion models. The approach
proposed in this chaper aims to address the remaining limitations of the approach from
[102], to allow for the full transformation of the mean and covariance of target state
estimates with various motion models.

The first contribution of this chaper is to outline an approach for homography trans-
formation of full target state estimates (in the form of Gaussian random variables) that
can be applied with common kinematic motion models used in tracking. The Unscented
Transform is used to handle uncertainty, reducing the problem of transforming the distri-
bution of the target state to that of transforming sigma points in the target state space.
The second contribution of this chaper is to provide specific derivations of the state
vector sigma point transformation functions for three common target kinematic motion
models, namely the nearly constant velocity (NCV), nearly constant acceleration (NCA),
and nearly coordinated turn (NCT) models.

The remainder of this chaper is organized as follows. Section 4.2 provides relevant
mathematical background related to sensor motion compensation in video tracking, prob-
abilistic tracking frameworks, target motion models, and the Unscented Transform. The
proposed solution approach, along with all mathematical details, is presented in section
4.3. The performance of this approach is evaluated in section 4.4, which provides details
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about simulations conducted for this purpose and the performance evaluation results. A
conclusion is presented in Section 4.5.

4.2 Background

4.2.1 Homography Transform

The homography transform (HT) can be used to account for camera motion between two
video frames when all targets lie within the same plane (or when this closely approximates
the true scenario). The homography maps a set of planar points from their position in the
previous frame to their corresponding position in the following frame [1]. For tracking
ground targets in flat terrain, the set of planar points is the ground plane. This is
illustrated in figure 4.1, adapted from [1].

xi xi
+

Ground plane

Image plane
(frame k) 

Image plane
(frame k+1) 

Homography
Transform

Figure 4.1: Illustration of Homography Transformation for mapping
planar points form one frame to another. This figure is adapted from [1].

The HT is defined by the 3-by-3 homography matrix H. There are several methods
for automatically estimating the homography matrix between two frames [1, 103], so the
matrix is assumed to be available (known). If the 2-dimensional image point xi, with
coordinates ξ and η, in the previous frame is expressed in homogeneous coordinates as
xh, then the homography transformation can be applied by left-multiplying the point
xh with H [1]. This is shown in equation 4.1, where the resulting point x+

h is the
homogeneous coordinate representation of the point in the following frame.

xi =
[
ξ η

]T
xh =

[
ξ η 1

]T
x+

h = Hxh

=
[
cξ+ cη+ c

]T
(4.1)
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Dividing x+
h by its third component c yields the 2-dimensional image coordinates of

the point in the following frame x+
i (equation 4.2).

x+
i =

[
ξ+ η+

]T (4.2)

The notation in equation 4.3 will be used as a shorthand for the above process
throughout this chaper when applying the homography transformation between points
in successive frames. When the planar assumption holds, this approach is effective in
transforming points to account for camera motion.

x+
i = homography(xi) (4.3)

Note that in its standard form, the HT can only be used to transform position points
and has no notion of uncertainty. In [102] this is partially addressed for the specific case
of the CV model by deriving a first-order Taylor series approximation of the transformed
position covariance and transformed velocity. The position mean was transformed using
the standard homography transform (equation 4.4).

p2 = homography(p1) (4.4)

In [102], the homography matrix H is decomposed as in equation 4.5, and the matrix
G is computed as in equation 4.6 and used to transform the velocity mean in equation
4.7.

H =
[
H1(2−by−2) h2(2−by−1)
hT

3(1−by−2) h4(1−by−1)

]
(4.5)

G = (hT
3 p1 + h4)H1 − (H1p1 + h2)hT

3
(hT

3 p1 + h4)2 (4.6)

v2 = Gv1 (4.7)

The matrix G is also used in [102] to compute the transformed covariance of the
position components P2 from the previous frame covariance P1, as in equation 4.8.

P2 = GP1GT (4.8)

Their work did not address the covariance in the velocity components of the state (nor
the velocity-position cross-covariance components) or any additional kinematic models.
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4.2.2 Kalman Filter Tracking and Target Kinematic Models

The Kalman filter (KF) [104] is used as the basis for many probabilistic tracking frame-
works in a variety of applications [100, 105, 106]. It is the optimal state estimator
(minimum mean squared error) in linear systems with Gaussian noises [44]. The es-
timate takes the form of a Gaussian distribution, as in equation 4.9. The KF is also
the underlying filter applied in the interacting multiple model (IMM) filter [44], used to
handle maneuvering targets, and in multiple hypothesis tracking (MHT), used to resolve
data association ambiguity [107]. These are not discussed in detail here and the reader
is referred to the corresponding references for more information.

x̂ = N (x̄, Px) (4.9)

The KF uses a discrete-time linear model of the target dynamics with additive zero-
mean white Gaussian process noise, as in equation 4.10. The target estimate x̂ at time
k is predicted to time k + 1 according to the system model F (k), and white Gaussian
noise with covariance Q(k) is added to account for unknown effects on the target state.
The conditional probability notation x̂(k + 1|k) indicates that this is an estimate of the
target state at time k + 1, based on the information gathered up to time k.

x̄(k + 1|k) = F (k)x̄(k|k)
Px(k + 1|k) = F (k)Px(k|k)F (k)T + Q(k)

(4.10)

The state estimate is updated recursively with new information from measurements as
they arrive. Once the state estimate has been predicted to the time of the measurement,
the update is performed as in equation 4.11.

ȳ(k) = z̄(k)−H(k)x̄(k + 1|k)
S(k) = H(k)Px(k + 1|k)H(k)T + R(k)
K(k) = Px(k + 1|k)H(k)T S(k)−1

x̄(k + 1|k + 1) = x̄(k + 1|k) + K(k)ȳ(k)
Px(k + 1|k + 1) = (I −K(k)H(K))Px(k + 1|k)

(4.11)

The measurement model H describes how the state is observed (in terms of the
measurement), and the system model F describes how the target state evolves over
time and determines which state components are tracked. The system model should
be chosen to accurately reflect the target dynamics as much as possible. This chaper
focuses on tracking in pixel coordinates, hence the measurements are assumed to be the 2-
dimensional pixel position of the target. If the measurements are not in pixel coordinates,
a different measurement model will have to be used for other applications (for example, a
range-azimuth measurement from a radar or lidar). Note that the measurement model H
is not the same as the homography matrix, which uses the same letter for its standard
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notation. The three target kinematic models discussed here are the nearly constant
velocity model, nearly constant acceleration model, and nearly coordinated turn model.

Nearly Constant Velocity Model

In the nearly constant velocity model (NCV), the state estimate consists of the target
position and velocity. The state vector of a NCV model with two spatial dimensions (in
coordinates ξ, η) is given in equation 4.12.

xNCV =
[
ξ η ξ̇ η̇

]T (4.12)

In the NCV model, the position and velocity are tracked explicitly and the process
noise is modelled by small random accelerations of the target. The corresponding state
transition and process noise covariance matrices are given in equation 4.13 [44]. An
alternative formulation of the process noise covariance can be used to model process
noise which is stronger in the direction of the target motion. This is called a directional
nearly constant velocity (DNCV) Model [108].

FNCV (T ) =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1



ΓNCV (T ) =


1
2T 2 0
0 1

2T 2

T 0
0 T


QNCV (T ) = ΓNCV σ2

NCV ΓT
NCV

(4.13)

If the measurement consists of the target position, then the corresponding measure-
ment model is given below in equation 4.14, which simply selects the position elements
of the state vector.

HNCV =
[
1 0 0 0
0 1 0 0

]
(4.14)

Nearly Constant Acceleration Model

The state vector for the nearly constant acceleration (NCA) model consists of the target
position, velocity, and acceleration. The state vector for a NCA model with two spatial
dimensions is given below in equation 4.15.

xNCA =
[
ξ η ξ̇ η̇ ξ̈ η̈

]T (4.15)
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The NCA model tracks the position, velocity, and acceleration directly, and uses
process noise to model small changes in acceleration. The corresponding state transition
and process noise covariance matrices are given in equation 4.16 [44]. As with the
NCV/DNCV models, an alternative formulation of the process noise covariance can be
used if the noise is stronger in the direction of the target acceleration, resulting in a
directional nearly constant acceleration (DNCA) Model [108].

FNCA(T ) =



1 0 T 0 1
2T 2 0

0 1 0 T 0 1
2T 2

0 0 1 0 T 0
0 0 0 1 0 T
0 0 0 0 1 0
0 0 0 0 0 1



ΓNCA(T ) =



1
2T 2 0
0 1

2T 2

T 0
0 T
1 0
0 1


QNCA(T ) = ΓNCAσ2

NCAΓT
NCA

(4.16)

Similar to the NCV model, for a measurement consisting of the target position, the
corresponding measurement model (equation 4.17) selects the measured components of
the state vector.

HNCA =
[
1 0 0 0 0 0
0 1 0 0 0 0

]
(4.17)

Nearly Coordinated Turn Model

The nearly coordinated turn (NCT) model is used to model targets moving with a nearly
constant turn rate and nearly constant speed. The state vector for a NCT model with
two spatial dimensions is given in equation 4.18, where Ω is the turn rate.

xNCT =
[
ξ η ξ̇ η̇ Ω

]T (4.18)

In the NCT model, the target position, velocity and turn rate are tracked, and the
process noise is used to model small changes to the velocity and turn rate. The cor-
responding state transition and process noise covariance matrices are given in equation
4.19 [44].
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FNCT (T ) =


1 0 sin(ΩT )

Ω −1−cos(ΩT )
Ω 0

0 1 1−cos(ΩT )
Ω

sin(ΩT )
Ω 0

0 0 cos(ΩT ) −sin(ΩT ) 0
0 0 sin(ΩT ) cos(ΩT ) 0
0 0 0 0 1



ΓNCT (T ) =


1
2T 2 0 0
0 1

2T 2 0
T 0 0
0 T 0
0 0 T


QNCT (T ) = ΓNCT σ2

NCT ΓT
NCT

(4.19)

Notice that unlike the NCV and NCA models, the NCT model is nonlinear (FNCT is
a nonlinear function of the state component Ω). This is an important distinction since
it means that the standard KF cannot be used directly to update the state estimate and
its covariance. The extended Kalman filter (EKF), based on a linearization of the state
transition model, or the unscented Kalman filter (UKF), based on a Gaussian approxi-
mation of a Gaussian random variable that has undergone a nonlinear transformation,
can be used instead of the KF. An example of the EKF applied to the NCT model can
be found in [44].

When the turn rate is zero, or nearly zero, the target is effectively following a nearly
constant velocity model. The limiting form of the NCT model should then be used. This
is given in 4.20, adapted from [44].

F Ω=0
NCT (T ) =


1 0 T 0 0
0 1 0 T 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (4.20)

The measurement model (assuming measurement of the target position only) selects
the appropriate state components, much like in the NCV and NCA models. The corre-
sponding measurement model is given in equation 4.21.

HNCT =
[
1 0 0 0 0
0 1 0 0 0

]
(4.21)

4.2.3 Unscented Transform

Consider the nonlinear transformation in equation 4.22, where x is a Gaussian random
variable.
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y = f(x)
x = N (x̄, Px)

(4.22)

The unscented transform (UT) can be used to estimate the mean ȳ and covariance
Py of the random variable y [60]. Then ŷ (equation 4.23) is a Gaussian approximation
of y.

ŷ = N (ȳ, Py) (4.23)

The UT is a very flexible and powerful tool, as the only requirement on the transfor-
mation function f is that it is possible to compute transformed points py = f(px). The
UT has been used successfully in a wide range of circumstances [63, 3, 109].

The UT works by computing a set of sigma points Xi from the distribution of x
and their corresponding weights Wi. These points are then transformed to compute
the transformed sigma points Yi = f(Xi), which are used to estimate the mean and
covariance of y. The set of 2n + 1 sigma points (where n is the dimension of random
variable x) and their weights, are computed as in equation 4.24 [60]. The notation
(
√

(n + κ)Px)i refers to the ith column of the matrix square root.

X0 = x̄ W0 = κ

n + κ

Xi = x̄ + (
√

(n + κ)Px)i Wi = 1
2(n + κ)

Xi+n = x̄− (
√

(n + κ)Px)i Wi+n = 1
2(n + κ)

(4.24)

In equation 4.24, the parameter κ controls the spread of the sigma points. Other sets
of sigma points can be used [110, 111, 112] but the approach for transforming a small,
deterministic set of points to estimate the transformed distribution parameters remains
the same. Once the transformed sigma points Yi are computed, the mean and covariance
of y are estimated as in equation 4.25.

ȳ = Σ2n
i=0WiYi

Py = Σ2n
i=0Wi(Yi − ȳ)(Yi − ȳ)T

(4.25)

4.3 Unscented Homography Transform
In this chaper, the unscented homography transform (UHT) is proposed as a method
to transform tracks for pixel-coordinate video tracking. The standard HT is used to
transform position points from the reference point of the previous frame to that of the
following frame in video tracking. The proposed UHT can be used to transform the

79



Doctor of Philosophy– David Schonborn; McMaster University– Department of
Electrical and Computer Engineering

entire state vector and its covariance and it is not limited to operating in the position
space. This makes the UHT compatible with commonly-used kinematic target motion
models, such as the NCV, NCA, and NCT models, and with the standard probabilistic
tracking framework. The UHT is used before the prediction step when updating the
KF with new measurements, with the rest of the KF tracking framework remaining
unchanged.

In the proposed approach, the UT handles the uncertainty in the target state estimate.
A set of 2Ns + 1 Sigma points Xi are computed from the distribution of the state
estimate x̂ of dimension Ns, according to the standard UT algorithm. Each sigma point,
representing one possible target state, is then encoded as a set of Nt trajectory samples
(position points) Pi,j over a short period of time. These trajectory samples can then be
transformed to the coordinate reference of the following frame using the standard HT.
Once in the appropriate reference frame, the position samples are then used to compute
the transformed sigma points (in the space of the estimated state). The standard UT
is then used to compute the transformed approximate Gaussian estimate. This process
requires defining an appropriate sigma point transformation function f (according to
the target motion model and homography matrix) for use in the UT.

4.3.1 Transformation Functions for Common Target Kinematic Mo-
tion Models

Sigma point transformation functions f used in the UHT are given for each of the
commonly-used target kinematic models. These functions are applied to transform the
sigma points Xi from the original distribution x̂ to sigma points X+

i in the transformed
distribution x̂+ by the UT. Note that the state estimate x̂ corresponds to the particular
motion model being discussed and the process noise is not considered due to the short
duration of the time periods over which the trajectory is considered (Q ≈ 0).

Nearly Constant Velocity Model

In the NCV model, two trajectory points are required to encode the position and ve-
locity of the target (Nt = 2) as four equations are required to solve for the four state
components. These points are computed and spaced over a short interval of time ϵ, as
in equation 4.26.

Pi,0 = HNCV Xi

Pi,1 = HNCV FNCV (ϵ)Xi
(4.26)

The trajectory points Pi,j are then transformed to their corresponding positions in
the following frame P+

i,j , according to the standard homography transform.

P+
i,j = homography(Pi,j) (4.27)

80



Doctor of Philosophy– David Schonborn; McMaster University– Department of
Electrical and Computer Engineering

From these transformed trajectory points, the transformed sigma points X+
i are com-

puted in the space of the estimated state, with reference to the following frame. The
position components P+

i,0 are already known, and the velocity components V+
i,0 are com-

puted according to the target motion model FNCV .

FNCV (ϵ)X+
i =

[
P+

i,1
V+

i

]

V+
i =

P+
i,1 − P

+
i,0

ϵ

X+
i =

[
P+

i,0
V+

i

] (4.28)

The sigma point transformation function used in the UT for the NCV model is defined
(according to equations 4.26 through 4.28) as in equation 4.29 below.

X+
i = fNCV (Xi) (4.29)

Nearly Constant Acceleration Model

The NCA model is similar to the NCV model, but three trajectory points are required
to encode the position, velocity, and acceleration of the target (Nt = 3) to solve for the
six state components. These trajectory points are given in equation 4.30.

Pi,0 = HNCAXi

Pi,1 = HNCAFNCA(ϵ)Xi

Pi,2 = HNCAFNCA(ϵ)FNCA(ϵ)Xi

(4.30)

After transforming the trajectory points to their positions in the following frame (as
in equation 4.27), the sigma points of the transformed state can be computed according
to the target motion model FNCA.
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FNCA(ϵ)X+
i =

P
+
i,1
V+

i,1
A+

i


FNCA(ϵ)FNCA(ϵ)X+

i =

P
+
i,2
V+

i,2
A+

i


V+

i,0 =
P+

i,1 − P
+
i,0

ϵ

V+
i,1 =

P+
i,2 − P

+
i,1

ϵ

A+
i =

V+
i,1 − V

+
i,0

ϵ

X+
i =

P
+
i,0
V+

i,0
A+

i



(4.31)

The sigma point transformation function used in the UT for the NCA model is defined
(according to equations 4.30 through 4.31) as in equation 4.32 below.

X+
i = fNCA(Xi) (4.32)

Nearly Coordinated Turn Model

The NCT model has five state components, so three trajectory points will be required
to encode the state (Nt = 3) as in equation 4.33. Note that FNCT is also a function of
the turn rate Ω which is fixed according to the value of the corresponding sigma point
component O.

Pi,0 = HNCTXi

Pi,1 = HNCT FNCT (ϵ)Xi

Pi,2 = HNCT FNCT (ϵ)FNCT (ϵ)Xi

(4.33)

These trajectory points are then transformed using the homography transform, as
with other motion models (see equation 4.27).

Converting the trajectory samples back to the state components for the NCV and
NCA models is complex due to FNCT being a nonlinear function of the turn rate. The
position components Pi,0 are known and the velocity and turn rate components (V+

i,0
and O+

i respectively) are obtained from the motion model FNCT as in equation 4.34.
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FNCT (ϵ)X+
i =

P
+
i,1
V+

i,1
O+

i


FNCT (ϵ)FNCT (ϵ)X+

i =

P
+
i,2
V+

i,2
O+

i


(4.34)

The following notation for the individual sigma point state components will be used
(equation 4.35).

P+
i,j =

[
ξi,j ηi,j

]T
V+

i,j =
[
ξ̇i,j η̇i,j

]T (4.35)

The state transition (from equation 4.34) for the individual position components is
given in equation 4.36.

ξi,1 = ξi,0 + sin(O+
i ϵ)

O+
i

ξ̇i,0 −
1− cos(O+

i ϵ)
O+

i

η̇i,0

ηi,1 = ηi,0 + 1− cos(O+
i ϵ)

O+
i

ξ̇i,0 + sin(O+
i ϵ)

O+
i

η̇i,0

(4.36)

Recall that ϵ can be chosen to be arbitrarily small (small enough to force Oiϵ to also
be small). Therefore the small-angle approximations (equation 4.37) for trigonometric
functions can be applied.

sin(θ) ≈ θ

cos(θ) ≈ 1
(4.37)

Using the small-angle approximations, equation 4.36 is simplified as in equation 4.38.

ξi,1 ≈ ξi,0 + O
+
i ϵ

O+
i

ξ̇i,0 −
1− 1
O+

i

η̇i,0

= ξi,0 + ϵξ̇i,0

ηi,1 ≈ ηi,0 + 1− 1
O+

i

ξ̇i,0 + O
+
i ϵ

O+
i

η̇i,0

= ηi,0 + ϵη̇i,0

(4.38)

This justifies the approximation of the velocity components using the same approach
as in the NCV and NCA models (equation 4.39).
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V+
i,0 ≈

P+
i,1 − P

+
i,0

ϵ

V+
i,1 ≈

P+
i,2 − P

+
i,1

ϵ

(4.39)

Consider the state transition (from equation 4.34) for the individual velocity compo-
nents, given in equation 4.40.

ξ̇i,1 = cos(O+
i ϵ)ξ̇i,0 − sin(O+

i ϵ)η̇i,0

η̇i,1 = sin(O+
i ϵ)ξ̇i,0 + cos(O+

i ϵ)η̇i,0
(4.40)

These equations can be simplified using the small angle approximations from equation
4.37, as in equation 4.41.

ξ̇i,1 ≈ ξ̇i,0 −O+
i ϵη̇i,0

η̇i,1 ≈ O+
i ϵξ̇i,0 + η̇i,0

(4.41)

This yields two options for approximating the transformed turn rate O+
i , given in

equation 4.42. As long as at least one of the velocity components is not zero, one of
these equations can be used to calculate the transformed turn rate.

O+
i ≈

ξ̇i,0 − ξ̇i,1
ϵη̇i,0

≈ η̇i,1 − η̇i,0

ϵξ̇i,0

(4.42)

The full state transformed sigma points for the NCT model are given in equation
4.43.

X+
i =

P
+
i,0
V+

i,0
O+

i

 (4.43)

The sigma point transformation function used in the UT for the NCA model is then
defined (according to equations 4.33 through 4.43) in equation 4.44.

X+
i = fNCT (Xi) (4.44)

Notice however that if both velocity components are zero, then both of the above
equations for the turn rate O+

i (equation 4.42) are undefined. If the forward direction
is unknown, there is ambiguity in the transformed turn rate even if the turn rate is

84



Doctor of Philosophy– David Schonborn; McMaster University– Department of
Electrical and Computer Engineering

known prior to transformation. Different assumed forward directions result in different
transformed turn rates, leaving the problem ill-defined. Zero-velocity targets can be
encountered in practical scenarios if a target is actually stationary or if a one-point
track initialization is used. Depending on the origin of the zero-velocity target, different
approaches can be used to address this.

For a target that is stationary, it may be possible to use the forward direction vector,
if available, to transform the turn rate. Some video detectors are able to determine the
position of the object being tracked [113]. If the forward direction vector Df is known,
then the turn rate can be transformed following a similar approach to transformation
of the velocity components. The turn is encoded by three position points which are the
position of the object Pi,0, a point along the line of the forward direction (pre-turn) Df ,
and a point along the line of the forward direction (post-turn) Dt. These points are
related to Lf and Lt in equation 4.45.

Lf = Pi,0 +Df

Lt = Pi,0 +
[
cos(Oi) −sin(Oi)
sin(Oi) cos(Oi)

]
Df

= Pi,0 +Dt

(4.45)

The encoded points are transformed using the homography transform (equation 4.27),
and the transformed pre-turn and post-turn forward direction vectors are computed as
in equation 4.46.

D+
f = L+

f − P
+
i,0

D+
t = L+

t − P+
i,0

(4.46)

The transformed turn rate is the angle between the two transformed directional vec-
tors, as in equation 4.47. Note that this approach is not strictly in agreement with the
NCT model, where the turn rate is applied to the velocity of the object rather than a
forward facing direction. The validity of its application depends on the actual target
kinematics, and whether turn rate is a meaningful concept for a stationary target.

O+
i = arccos

(
D+

f · D
+
t

|D+
f ||D

+
t |

)
(4.47)

In the scenario where zero-velocity targets occur due to a one-point track initializa-
tion, the velocity and the turn rate will be initialized to zero even for moving targets.
When the turn rate is effectively zero, and the limiting form of the kinematic model
(equation 4.20) is used, this implies that the target is travelling in a straight line. Since
the homography transformation maps lines to lines, the transformed trajectory will also
be a straight line. Therefore the position and velocity components can be computed as
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in the NCV model, and the turn rate remains zero after transformation. This does not
require a non-zero target velocity.

It is also possible that none of these scenarios apply, and that a zero-velocity target
exists with an unknown forward direction and a non-zero turn rate. According to the
definition of the NCT model, the turn rate is applied to the velocity, so a stationary
target could be given an arbitrary turn rate without affecting other state variables.
As such, the NCT model is not appropriate for use in the case of a stationary target.
However if the model is not explicitly known, for example when using an interacting
multiple model (IMM) filter, it may be desirable to have reasonable values to use even
when the model is not a good fit. In such a case, it could be assumed that the turn
rate is not significantly affected by the homography transformation and assign the pre-
transformation turn rate. Alternatively, it could be assumed that if the target is not
moving then it is also not turning, and assign a turn rate of zero.

4.4 Simulations
A simulated scenario is considered to evaluate the performance of the proposed approach
using Monte Carlo simulation. The scenario consists of three targets, each moving with
one of the motion models described in section 4.2.2, observed by a single imaging sensor
mounted on a moving platform. The sensor platform is moving with a constant velocity
model in three dimensions, and is additionally subject to zero-mean white Gaussian pro-
cess noise in its orientation angles (pitch, yaw, roll). The sensor measures the positions
of the targets in pixel coordinates, subject to zero-mean white Gaussian measurement
noise. Uniformly-distributed false detections are present, and random missed detections
occur. The parameters used in the simulations are given in table 4.1.

Simulation Parameters
Duration 20 seconds
Number of Monte Carlo Runs 200

Sensor Parameters
Sensor Resolution 1920 x 1080
Sensor FOV 100 degrees x 70 degrees
Measurement Standard Deviation 4 pixels
Probability of Detection 0.9
False Alarm Density 10−6

Motion Model Parameters
Target 1 σNCV 0.5
Target 2 σNCA 0.0071
Target 3 σNCT 0.0710
Sensor σNCV 1.0
Sensor σyaw,pitch,roll 7.0 degrees

Table 4.1: Simulation, sensor, and motion model parameters

All of the targets are tracked using an IMM estimator with a mode for each motion
model. This corresponds to an assumption that the motion model of each target is not
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known, but the family of motion models that can occur is known. Data association and
track management is handled using MHT.

4.4.1 Results

The proposed approach described in section 4.3 (labelled UHT) is compared against the
existing approach from [102] described in section 4.2.1 (labelled WB), as well as against
tracking with no sensor motion compensation (labelled NC). Performance is evaluated for
each method using the root-mean-square error (RMSE), number of false tracks (NFT),
track continuity, and computation time metrics. RMSE is evaluated for target position,
speed, and course.

Several scenarios are considered with different sensor frame rates. Frame rates of 1,
5, and 10 frames per second (FPS) are considered. Under some operational conditions,
such as limitations in computation resources, large number of targets or computation
intensive detection process, the detection and tracking process can be computationally
limiting, even if the imaging sensor itself can provide a high frame rate. Therefore, these
values for frame rate are chosen to represent different operational scenarios that might
be encountered in practice.

The simulation results for the scenario with a frame rate of 1 FPS are summarized
in Table 4.2. The values in this table are averaged over all frames during the simulation
period (and over all Monte Carlo runs). The best approach in each metric is highlighted
in bold, and the rightmost column (ratio) shows the ratio of the best performing approach
to the second best approach. This represents the magnitude of the improvement.

As expected, the NC method performs worst in all metrics, as it does not compensate
for sensor motion between frames. This demonstrates the importance of compensating
for non-negligible sensor motion between frames.

In most metrics, the proposed UHT method performs either better than all others or
similar to the WB method. Most notably, the UHT reduced the overall number of false
tracks in this scenario by a substantial 56% when compared with WB. In terms of track
accuracy (RMSE), it can be seen that WB is generally sufficient for targets moving with
an NCV model, but for targets moving with NCA and NCT models the UHT shows
notable improvements in at least some state components. This is expected since the
WB method transforms the position and velocity components used in NCV but does not
address additional state components used in NCA and NCT. Track continuity is similar
between the UHT and WB methods, except for the NCT target where continuity is
improved with the UHT. It seems that the tracker is able to maintain continuous tracks
for NCV and NCA targets while transforming only the position and velocity components.
TPD is the same for WB and UHT. The WB method is better on some metrics than the
proposed UHT method, but in nearly all cases the magnitude of the difference is ≤ 2%
when WB performs best. The only exception to this is in the course RMSE for the NCA
target (where WB is 7% better than UHT), but considering that the speed RMSE for
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NC WB UHT Ratio
Number of False Tracks 0.67 0.18 0.08 0.44
Position RMSE NCV (pix) 12.94 4.99 5.00 1.00
Position RMSE NCA (pix) 13.17 4.39 4.45 0.99
Position RMSE NCT (pix) 12.58 6.52 6.03 0.93
Speed RMSE NCV (pix/s) 69.07 6.78 5.92 0.87
Speed RMSE NCA (pix/s) 87.11 9.66 5.30 0.55
Speed RMSE NCT (pix/s) 85.66 22.70 7.67 0.34
Course RMSE NCV (deg) 90.66 26.91 26.91 1.00
Course RMSE NCA (deg) 97.70 17.96 19.25 0.93
Course RMSE NCT (deg) 92.65 42.35 37.77 0.89
Continuity NCV 0.12 0.45 0.46 1.02
Continuity NCA 0.11 0.68 0.67 1.01
Continuity NCT 0.13 0.59 0.67 1.14
TPD NCV 0.76 0.91 0.91 1.00
TPD NCA 0.75 0.90 0.90 1.00
TPD NCT 0.76 0.91 0.91 1.00

Table 4.2: Summary of simulation results for each approach averaged
over time with a frame rate of 1 FPS.

the same target is 45% worse than UHT it seems that the UHT still provides the best
velocity estimate.

Breaking down the results for RMSE and NFT over time allows for a detailed look
at the differences between sensor motion compensation approaches. Figure 4.2 shows
the track component RMSE metrics for each compared approach, over time, for each
target. The NC method consistently performs the worst, with WB and UHT performing
similarly in most circumstances. With the NCT target, the UHT performs better. This
aligns with the observations made when inspecting the results summary in Table 4.2.

Figure 4.3 shows the average NFT over time for each of the compared approaches.
As expected the NC approach again performs substantially worse than others. Substan-
tially fewer false tracks are consistently seen with the proposed UHT than with the WB
approach from the existing literature. This appears to be the most notable benefit of
the proposed UHT.

The next scenario compares the various approaches when using a sensor with a frame
rate of 5 FPS. The result of these simulations are summarized in table 4.3. Similar
trends are seen in this scenario as in the scenario with the frame rate of 1 FPS, but the
magnitude of the improvements is somewhat diminished. While NC is still considerably
worse, UHT and WB are more similar in terms of track accuracy metrics and the same in
terms of track continuity. TPD for all three approaches is now the same. This diminished
difference is expected since with a higher sensor frame rate there is less sensor motion
between frames, as well as less target motion. Accordingly, the accuracy of both sensor
motion compensation and target motion models is less critical to the overall tracking
performance. Despite this, UHT still reduced NFT by a substantial 30% when compared
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Figure 4.2: Root-Mean-Square Error (RMSE) of Position, Speed, and
Course for each target over time for each compared approach, with a
frame rate of 1 FPS.

with WB, although the NFT was much lower for all approaches in this scenario than in
the 1 FPS scenario.

The RMSE metrics broken down over time for the 5 FPS scenario are shown in figure
4.4. Though there are few moments where UHT is noticably more accurate than WB,
their accuracy is largely similar. The difference is most prominent for the NCT target,
but the magnitude of the difference is diminished compared to the 1 FPS scenario.

Figure 4.5 shows the average NFT over time for each approach in the 5 FPS scenario.
Due to the higher data rate and lower NFT among all approaches, the advantages of the
UHT are less visible in this figure. Nonetheless, the UHT can be seen to have the lowest
average NFT most of the time.

Lastly, a scenario with a sensor frame rate of 10 FPS is considered. The performance
evaluation results from this scenario are summarized in table 4.4. Continuing the trend
observed when comparing the 5 FPS scenario to the 1 FPS scenario, the differences
between the approaches are further diminished for the 10 FPS scenario when compared
to the 5 FPS scenario. As the frame rate is increased, the performance of all three
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Figure 4.3: Average Number of False Tracks (NFT) over time for each
compared approach, with a frame rate of 1 FPS.

approaches becomes more similar. With a frame rate of 10 FPS the accuracy of the
NC approach remains inferior to others, but track continuity and NFT are now largely
similar. As in the 5 FPS scenario, TPD is the same for all approaches.

When examining the RMSE metrics over time (figure 4.6) the same observation can
be made. Accuracy of WB and UHT are now virtually the same, with the gap to the
less accurate NC narrowing when compared to scenarios with lower frame rates. Also
interesting is that accuracy metrics are converging among the three targets. With a
frame rate of 10 FPS and the specified target and sensor motion dynamics (see table
4.1), the transformation of the position and velocity components only (as in the WB
approach) is largely sufficient to compensate for sensor motion regardless of the target
motion model. With a very high frame rate the sensor motion between frames would
become negligible, but this may not be practical to achieve.

Figure 4.7 shows the average NFT over time for the scenario with a sensor frame rate
of 10 FPS. Although UT performs slightly better in some isolated moments, most of the
time all approaches are performing similarly.

The computation time for each approach was also recorded, with similar results for
each scenario. Average (mean) computation time per frame for each approach is shown
in figure 4.8 for the 10 FPS scenario (due to the similarity of results, computation times
for the other two scenarios are omitted for brevity). This demonstrates that computation
time is the cost of using the proposed approach, with the UHT taking just under 21%
longer to run than WB, while WB took only just over 1% longer to run than NC. An
increase in runtime for UHT when compared with WB is expected since the UHT must
consider all state components when transforming the tracks. While WB transforms
only a state vector with 4 elements and a 2-by-2 sub-matrix of the covariance matrix
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NC WB UHT Ratio
Number of False Tracks 0.0130 0.0123 0.0086 0.70
Position RMSE NCV (pix) 7.21 3.25 3.27 0.99
Position RMSE NCA (pix) 7.33 3.28 3.30 0.99
Position RMSE NCT (pix) 7.38 3.76 3.58 0.95
Speed RMSE NCV (pix/s) 17.98 4.84 4.41 0.91
Speed RMSE NCA (pix/s) 19.28 5.42 4.89 0.90
Speed RMSE NCT (pix/s) 17.35 5.62 5.00 0.89
Course RMSE NCV (deg) 76.81 35.59 36.14 0.98
Course RMSE NCA (deg) 82.16 41.14 41.87 0.98
Course RMSE NCT (deg) 77.47 37.37 36.63 0.98
Continuity NCV 0.27 0.32 0.32 1.00
Continuity NCA 0.32 0.39 0.39 1.00
Continuity NCT 0.30 0.38 0.38 1.00
TPD NCV 0.96 0.96 0.96 1.00
TPD NCA 0.96 0.96 0.96 1.00
TPD NCT 0.96 0.96 0.96 1.00

Table 4.3: Summary of simulation results for each approach averaged
over time with a frame rate of 5 FPS.

(regardless of the motion model), the UHT transforms up to a 6-by-6 covariance matrix
(in the case of the NCA motion model). Note that the UHT implementation is not
highly optimized for computation speed, so it is likely that this gap could be narrowed
with further effort. In any case, the UHT remains computationally feasible, but there is
some increased computational cost when compared with WB and NC.

4.5 Conclusion
In this chaper the unscented homography transform (UHT) is proposed to address the
challenges of uncertainty and non-position state components in the traditional homog-
raphy transform by transforming the entire target state and covariance matrix. This
was accomplished by using the unscented transform to handle the estimate uncertainty,
reducing the problem to the derivation of a sigma point transformation function that
can be applied to the full target state vector.

The performance of the proposed UHT is evaluated through simulations and com-
pared with the existing extension (WB) and a low baseline tracker that neglects sensor
motion (NC). The scenario consisted of targets moving with three motion models, and
considered different sensor frame rates. The UHT reduced false tracks and improved
NCT motion model track accuracy, when compared with WB. Across other metrics the
performance of UHT and WB where comparable. The NC tracker performed worse or
similar in all metrics. As the frame rate increased the magnitude of the performance
differences between all three approaches diminished.
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Figure 4.4: Root-Mean-Square Error (RMSE) of Position, Speed, and
Course for each target over time for each compared approach, with a
frame rate of 5 FPS.

The proposed UHT offers an effective and flexible way to transform full target state
estimates in pixel coordinates between different points of view, as long as a valid ho-
mography can be obtained. A remaining limitation of the proposed approach is that
the targets must be approximately co-planar. Future work may address this by recon-
ciling the proposed approach with existing work using multiple consistent homography
matrices to transform points in different planes.

92



Doctor of Philosophy– David Schonborn; McMaster University– Department of
Electrical and Computer Engineering

Number of False Tracks

0 5 10 15 20
Time (s)

0

0.01

0.02

0.03

0.04

A
ve

ra
ge

 N
F

T
NC WB UT

Figure 4.5: Average Number of False Tracks (NFT) over time for each
compared approach, with a frame rate of 5 FPS.

NC WB UHT Ratio
Number of False Tracks 0.0078 0.0079 0.0075 0.95
Position RMSE NCV (pix) 5.13 2.88 2.90 0.99
Position RMSE NCA (pix) 5.20 2.93 2.96 0.99
Position RMSE NCT (pix) 5.24 3.06 2.99 0.98
Speed RMSE NCV (pix/s) 13.08 6.00 5.70 0.95
Speed RMSE NCA (pix/s) 13.69 6.26 5.88 0.94
Speed RMSE NCT (pix/s) 11.87 4.98 4.70 0.94
Course RMSE NCV (deg) 72.26 46.98 47.32 0.99
Course RMSE NCA (deg) 76.29 54.69 55.12 0.99
Course RMSE NCT (deg) 73.07 43.67 43.36 0.99
Continuity NCV 0.22 0.23 0.23 1.00
Continuity NCA 0.24 0.24 0.24 1.00
Continuity NCT 0.25 0.26 0.26 1.00
TPD NCV 0.98 0.98 0.98 1.00
TPD NCA 0.98 0.98 0.98 1.00
TPD NCT 0.98 0.98 0.98 1.00

Table 4.4: Summary of simulation results for each approach averaged
over time with a frame rate of 10 FPS.
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Figure 4.6: Root-Mean-Square Error (RMSE) of Position, Speed, and
Course for each target over time for each compared approach, with a
frame rate of 10 FPS.
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Figure 4.7: Average Number of False Tracks (NFT) over time for each
compared approach, with a frame rate of 10 FPS.
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pared approach, recorded for the scenario with a frame rate of 10 FPS.
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Chapter 5

Conclusion

The objective of this thesis was to address practical problems in tracking that limit the
effectiveness of existing methods or the scope of their application. This has been achieved
by developing approaches that relax assumptions about the both the tracking systems
and operational conditions in which they will be applied. Improved methods were pro-
posed in terrain-aided tracking, sensor bias estimation and measurement compensation,
and sensor motion compensation for tracking in pixel coordinates. The performance of
each proposed approach was evaluated through simulation and compared with existing
state of the art methods.

In terrain-aided tracking the approach proposed in this thesis relaxed the assumption
of a Gaussian distribution on the converted measurement, instead using the more general
Gaussian Mixture distribution to model the converted measurement. The Gaussian
Mixture distribution was parameterized using image processing techniques to cluster
samples from the converted target position distribution and estimate the number of
mixture components. The different algorithm variations used either the cluster sample
mean and covariance or Expectation Maximization to compute the parameters of each
mixture component. Due to the algorithm’s ability to dynamically estimate the number
of mixture components, the Gaussian Mixture will automatically fall back to being
equivalent with the Gaussian assumption (using a single mixture component) when the
flat earth assumption applies. When compared in a simulated scenario with an existing
approach from the literature that models the converted measurement using a Gaussian
distribution, the proposed approach resulted in improved track accuracy for targets
tracked in peaky terrain without any degradation of performance in flat terrain. This
allows for more robust tracking performance when terrain is peaky or the grazing angle
to targets is low.

The approach proposed in this thesis to estimate and compensate for sensor biases
does not rely on the assumptions of particular sensor or bias models, homogeneous
sensors, number of sensors, fusion architecture, high communication rate, full commu-
nication availability, or synchronous communication. It also has a reasonable compu-
tational cost, growing only linearly with the number of sensors and again linearly with
the number of targets. This makes its scope of practical application much wider than
existing approaches in the literature, which are either strictly limited to specific use
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cases or have a computational load which is not practical under many conditions. This
was achieved by restructuring the estimation problem to avoid sources of inconsistency,
and by using the flexible Unscented Transform and Covariance Intersection tools. In
a simulated scenario using a terrain-aided measurement model (that could not be han-
dled by existing bias estimation algorithms) the proposed approach for bias estimation
and compensation improved track accuracy to levels comparable to a tracker operating
on unbiased measurements. This was also found to be true for a scenario with limited
communication, demonstrating the proposed algorithm’s ability to operate effectively
without full communication. The tracker operating on unbiased measurements was used
as a high baseline due to the lack of any existing approaches that could handle the
relevant operational conditions. The proposed approach offers an option for estimating
and compensating for sensor biases in scenarios where there previously was none, and
substantially eases some challenges of integration for many practical, complex tracking
systems.

The extension to the homography transformation proposed for sensor motion com-
pensation when tracking in pixel coordinates can be applied to three common kinematic
motion models to fully transform the target state estimate between frames. In addition
to these kinematic models, for which derivations are provided, the general approach is
designed to be readily extensible to other models. This was achieved in two steps. First,
the unscented transform was used to handle uncertainty, reducing the problem of trans-
forming the distribution of the state estimate to that of transforming a set of realizations
of the state vectors. Second, the state vector realizations were transformed by encoding
them as sets of position points, transforming the position points using the standard ho-
mography transformation, and then decoding them into realizations of the transformed
state. The performance of the proposed approach was compared in a simulated scenario
with an existing approach which only partially transforms the state estimates. Trans-
forming the full state resulted in improved tracking performance if the target motion
and sensor motion between frames were substantial, when compared with partial state
transformation. The most notable improvements were in the reduced number of false
tracks and improved track accuracy and continuity for a target moving with a nearly
coordinated turn model when the tracking frame rate was low. This allows for more
robust tracking performance with target motion models other than NCV, lower frame
rates, and greater sensor motion between frames.

5.1 Future Work
One remaining challenge is the consistent handling of errors in terrain data in the context
of terrain-aided tracking. The algorithm in chapter 2 addressed sensor measurement er-
rors, but the error in the terrain data was modelled by adding to the vertical component
of the converted measurement noise and its correlation over time was not addressed.
Chapter 3 delved further into this issue, investigating the possibility of assuming un-
known correlation of measurements over time to produce consistent tracks, but this con-
sistency was achieved at the cost of reduced track accuracy. Future work may investigate
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the possibility of achieving a more optimal balance between consistency and accuracy
when tracking with correlated measurements. An alternative route may be to extend
the approach presented in chapter 3 to model the terrain error as a location-dependent
bias for each target and estimate this bias to correct for it. A similar approach could be
investigated in situations where the flat earth assumption is a good approximation, but
still results in some residual modelling error.

Another remaining challenge is improved fusion under unknown correlation with un-
equal state vectors. This has been applied to sensor bias estimation in chapter 3 as a
means of improving estimates of the uncommon state components (the bias estimates) by
using information about the common state components (the target state). This chapter
proposed one approach that was used effectively, but it is not optimal nor guaranteed
to be consistent. Further work on this problem is needed to address these challenges.

The unscented homography transform was proposed in chapter 4 to effectively com-
pensate for sensor motion when tracking co-planar targets in pixel coordinates using a
single sensor, but it may be possible to extend this to use cases including multiple sen-
sors and targets that are not co-planar. Future work may investigate using the proposed
transform to align tracks between two or more imaging sensors in track-to-track fusion
applications. To accommodate targets that do not all lie within the same plane, future
work may seek to reconcile the proposed transformation with existing work in multiple
homography estimation.
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