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Abstract
Radiation physics is typically troubled by the accompanying of an interesting radi-

ation field with an uninteresting one, presented as the signal and the background

respectively. In some instances this background is a consequence of the signal of

interest and its interaction with the world around it. These issues can be alleviated

by clever experimental design that take advantage of the highly predictable way in

which radiation interacts with the world. This predictability can lead to structured

data which lends itself to data driven techniques which enable the identification

of signal and background. One such technique that can exploit the structure of

radiation detection data is machine learning, which is the focus of this thesis.

The first application was event selection onboard a satellite, called Advanced

Energetic Pair Telescope (AdEPT), being developed for photon polarimetry. This

application utilizes an adaptation of Google’s GoogLeNet which was trained off of

simulated data produced in a simulation developed in Geant4. The performance

of this adaptation, named GammaNet, was investigated and found to achieve the

desired 99.99 % background rejection while maintaining signal sensitivity ranging

from 0.1±0.1 % to 69±2 %. The signal sensitivity range depends on the down

sampling rate implemented and the energy of the incident photon.

The other application explored was neutron and photon separation in EJ-301

and EJ-309 neutron sensitive scintillators. This application, being experimental

and not simulation based, required the implementation of an already existing clas-

sification routine to generate the labelled data necessary for machine learning.
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This was accomplished by utilizing Tail-To-Total (TTT) Pulse Shape Discrimina-

tion (PSD) and algorithmically fitting the resultant photon and neutron popula-

tions. With this technique it was possible to correctly identify 75.3±0.5 % of the

neutrons while removing 99.9999 % of the photons. The neutron identification

rate was found to depend on the neutron source used, but was mostly accounted

for when considering the differences in neutron energies for those sources.

Both machine learning applications had the feature extraction technique, Gradient-

weighted Class Activation Mapping (Grad-CAM), applied to them. This technique

produces a spatially correlated activation mapping for each class inside the neural

network, identifying regions of the input that produced the greatest confidence

to an output classification. The features observed from both applications aligned

with the intuition of what comprises the dominant features of each signal and

background.

iv



Acknowledgements
Firstly I would like to express my gratitude to my supervisor Dr. Soo Hyun

Byun for providing me with intellectual freedom, opportunities, and continued

support since my first having you as a professor for MedPhys 4R06. Being able to

freely pursue a project I thought was interesting and engaging made my time spent

working on it feel effortless. I would also like to thank Dr. Andrei Hanu and Dr.

Stanley Hunter for initiating my interests in machine learning by welcoming me at

NASA for the summer before starting my graduate experience. Having been given

this opportunity introduced me to the seemingly endless possibilities afforded by

machine learning. Lastly I would like to thank Dr. Alan Chen and Dr. David

Chettle for sitting on my committee and providing me with feedback throughout

this process.

I would also like to express thanks to the McMaster medical physics community

at large. It will take more than a pandemic to make me forget the camaraderie

shared by us all. Camaraderie such as the countless late night studying sessions

trying to complete quantum mechanics assignments or finishing off a lab report

the night before it’s due. I’m also grateful for the stress releases that we all got

to enjoy together like going to the gym with Matt Bernacci and Matt Wong, or

taking a few swings at softball with Dr. David Chettle and all the other students

that joined the team. Having a support network that both helped me strive for

the best in my education, and maintain my sanity throughout, is what enabled

my success.

Lastly I would like to thank Zohra Tarar for sticking it through with me during

v



the arduous and seemingly endless process of writing! Always having someone to

turn to during tough times is the essence of companionship.

vi



Contents

Abstract iii

Acknowledgements v

Declaration of Authorship xxvii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Machine Learning and Neural Networks . . . . . . . . . . . . . . . . 5

1.3 Pair Production Classification . . . . . . . . . . . . . . . . . . . . . 7

1.4 Neutron and Photon Separation . . . . . . . . . . . . . . . . . . . . 10

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Simulation Based Application: GammaNet 18

2.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 AdEPT Mission and Objectives . . . . . . . . . . . . . . . . . . . . 19

2.3 Monte Carlo Simulations of AdEPT . . . . . . . . . . . . . . . . . . 25

2.3.1 Detector Geometry . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.2 Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.3 Simulated Radiation Environment . . . . . . . . . . . . . . . 28

vii



2.3.4 Event Recording . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 GammaNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.1 GammaNet Architecture . . . . . . . . . . . . . . . . . . . . 34

2.4.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5.1 ROC Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5.2 Downsampling Investigation . . . . . . . . . . . . . . . . . . 41

2.5.3 Architecture Comparison . . . . . . . . . . . . . . . . . . . . 45

2.5.4 Compton Scatter Sensitivity . . . . . . . . . . . . . . . . . . 45

2.5.5 False Positive and False Negative Events . . . . . . . . . . . 49

2.6 GammaNet Visualization . . . . . . . . . . . . . . . . . . . . . . . . 52

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Experiment Based Application: NeutronNet 56

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.1 Data Generation . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1.2 Performance Characterizations . . . . . . . . . . . . . . . . . 62

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.2 Event Timing and Energy Calibration . . . . . . . . . . . . 65

3.2.3 Bit Depth and Sampling Rate Reduction . . . . . . . . . . . 69

3.2.4 Machine Learning Architecture Comparisons . . . . . . . . . 70

3.2.5 Machine Learning Training . . . . . . . . . . . . . . . . . . . 72

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3.1 Equipment Verification . . . . . . . . . . . . . . . . . . . . . 74

viii



3.3.2 Timing Resolution . . . . . . . . . . . . . . . . . . . . . . . 76

3.3.3 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3.4 Performance Characterization . . . . . . . . . . . . . . . . . 79

3.3.5 Algorithm Comparisons . . . . . . . . . . . . . . . . . . . . 83

3.3.6 Bit Depth and Sampling Rate Dependence . . . . . . . . . . 86

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4 NeutronNet: Generalization and Characterization 91

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.1.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 92

4.1.2 CNN Architecture . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.1 Photon Data Set . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2.2 Neutron Data Set . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2.3 Training and Validation . . . . . . . . . . . . . . . . . . . . 98

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3.1 PMT Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3.2 Neutron Source Dependency . . . . . . . . . . . . . . . . . . 104

4.3.3 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3.4 Energy Dependence and Correction . . . . . . . . . . . . . . 107

4.3.5 Energy Dependence in Training . . . . . . . . . . . . . . . . 108

4.3.6 Source Shielding Variations . . . . . . . . . . . . . . . . . . 110

4.3.7 Neutron Intrinsic Efficiency . . . . . . . . . . . . . . . . . . 112

4.3.8 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.3.9 Signal Aberrations . . . . . . . . . . . . . . . . . . . . . . . 117

ix



4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5 Discussion and Conclusions 121

5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A Chapter 2 Supplement 129

A0.1 GammaNet Architecture . . . . . . . . . . . . . . . . . . . . . 129

A0.2 GammaNet Hyperparameters . . . . . . . . . . . . . . . . . . 129

Bibliography 132

x



List of Figures

1.1 Depiction of the difference in how energy deposition occurs for neu-

tral and charged radiation quanta [1]. In the case of a charged

particle, seen on the left, energy deposition occurs along the en-

tirety of the trajectory. For the neutral particle, seen on the right,

energy deposition occurs once and generates a secondary particle

which is then able to be detected in the sensitive volume. . . . . . . 3

1.2 Diagram demonstrating the cubic sensitive volume of the simula-

tions for Advanced Energetic Pair Telescope (AdEPT) and the sub-

sequent projection images output by the simulation. . . . . . . . . . 8

1.3 Graphic demonstrating the generation of a positron and electron

pair through pair production. Angle Θ represents the angle of sep-

aration between the two pairs. Φ is the angle of rotation about the

r-axis, which would dictate the polarization of the incident photon. 9

xi



1.4 Diagram depicting the two neutron interactions of interest resulting

in photon emission. Fig. 1.4a represents the inelastic scattering of

a neutron off of a target nucleus resulting in prompt photon emis-

sion. Fig. 1.4b shows the absorption of a neutron resulting in a new

isotope of the original target nucleus, which is left in a potentially

excited state resulting in prompt photon emission. These are not

exhaustive of the set of possible neutron interactions, which could

include fission, proton emission, alpha emission, or other combina-

tions of hadron emissions. . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Figure demonstrating the differences in Linear Energy Transfer (LET)

based on the type of ionizing particle inside the scintillation medium. 14

1.6 Plot of the stopping power, which is a measure of LET, for electrons

and protons over a range of energies using data provided by the

National Institute of Standards and Technology [34]. . . . . . . . . 15

2.1 Diagram depicting the process of inverse Compton scattering wherein

a relativistic electron imparts energy on an incident photon increas-

ing the energy of the photon drastically. Image taken from [49]. . . 20

2.2 a) shows the fluence rate of extraterrestrial photons [53] which can

be compared to the fluence rate of Galactic Cosmic Rays (GCRs)

in b) [54]. The relative scales are off by a factor of 1000 given that

b) is normalized to GeV instead of MeV in a). . . . . . . . . . . . . 22

xii



2.3 Diagram showing the main design features of the time projection

chamber (TPC) to be used in AdEPT, the concept of how the in-

teraction volume is reconstructed for a pair production event, and

the Micro-Well Detector (MWD) readout plane. . . . . . . . . . . . 23

2.4 Figure depicting the method for downsampling the output from

the simulation. In the event of non-integer dimensionality for the

output, 0 valued padding was added to enable integer dimensionality. 27

2.5 Diagram depicting the source geometry with the sensitive volume

concentric with the spherical surface source. The source location is

randomly chosen on the surface of the sphere, azimuthal angle is

chosen evenly between 0 and 2 π, which is omitted in the drawing,

and then the polar angle is sampled from the cosine law. . . . . . . 30

2.6 XZ projection of the sensitive volume of the AdEPT simulation.

a) GCR background image containing several proton tracks with

added electronic noise. b) gamma-ray image, containing two pair

production events with the vertices outlined in red for illustrative

purposes. c) Combination image that would be used for training and

testing GammaNet. These simulation images have had their contrast

adjusted for better viewing in this paper. . . . . . . . . . . . . . . . 32

2.7 Diagram of the inception module from GoogLeNet [26] as was im-

plemented in GammaNet for this work. . . . . . . . . . . . . . . . . . 35

xiii



2.8 XZ and YZ projections of the same event generated in the sub-scale

simulation, with a downsampling rate of 3. In a), the XZ projection,

a well separated pair production track is shown in the lower half of

the image. In b), the YZ projection, an overlapping pair production

track is shown in the lower left of the image. . . . . . . . . . . . . . 36

2.9 Graph of the training results for GammaNet with 1 inception module.

This training data was generated with the sub-scale simulation, with

a downsampling rate of 3x. The left axis contains the accuracy of

GammaNet on the validation data set, and the right axis contains the

loss value averaged over every 50k training iterations. . . . . . . . . 39

2.10 Fig. 2.10a The Receiver Operating Characteristic (ROC) curves

generated for each pair production data set as classified by GammaNet,

using 11x downsampled images. The AUC is provided in the leg-

end for each incident gamma-ray energy. Fig. 2.10b A subsection of

Fig. 2.10a is presented to display the nuanced features of the plot. . 41

2.11 Demonstration of the decrease in apparent separation angle with

increases in downsampling. Fig. 2.11a demonstrates the pair pro-

duction at a 3 times downsampling rate, and Fig. 2.11b shows the

same image at 11 times downsampling. Adjustments to brightness

in the images are made for visibility. . . . . . . . . . . . . . . . . . 44

xiv



2.12 Plot of the sensitivity for Compton scatter and pair production im-

age sets as the energy of the incident gamma ray varies, using a

downsampling rate of 11 on the full-scale simulation. These sen-

sitivities were calculated using a threshold value that generated a

99.990±0.002% background rejection rate. Errors were calculated

using binomial statistics with a 95% confidence interval. . . . . . . . 47

2.13 Projection images of simulated GCR proton events that resulted in

false positive classifications. Only the projection image resulting in

the false positive is shown, the alternate projection is not included

because no event produced a false positive in both projections. . . . 50

2.14 Projection images of pair production events that produced the low-

est response in GammaNet for the pair production event class. The

projection shown is most representative of the cause for false nega-

tive classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.15 a-c) Images generated by the Gradient-weighted Class Activation

Mapping (Grad-CAM) algorithm that demonstrate the features that

GammaNet utilizes for classifying images as background or sig-

nal. d-f) The simulation images used to generate the respective

Grad-CAM images, with d) being a background event and e) and

f) being signal events. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1 Energy level diagram for the 12C nucleus. De-excitation of the sec-

ond state occurs as a cascade, with each level decay promptly. . . . 59

xv



3.2 Average signals over the photon and neutron data sets. Signal event

times were calculated to align pulses, and signal height was normal-

ized to one before averaging. Noise present in the neutron signals

is more pronounced due to low signal amplitudes relative to noise. . 61

3.3 Tail-To-Total (TTT) plot of events recorded with the EJ-301 liquid

scintillator and the 241Am9Be neutron source. Note that events at

low energy with non-physical ratios of greater than 1 are caused by

the tail of the signal having an overall negative value. Energy, as

displayed here in keV ee, is the measure of energy deposited in the

scintillating material in terms of total charge measured for an event

and calibrated to a linear fit of the Compton edges of 24Na, 60Co,

and 137Cs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Images of the measurement setups used to generate neutron and

photon data sets, perform coincident timing measurements, and to

perform energy calibrations. . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Plots of a signal demonstrating the reduction of bit depth from the

original 12 bits Fig. 3.8a to 6 bits in steps of 2, and the same event

with reductions in sampling frequency from 3.2 GHz Fig. 3.8b with

2, 6, and 11x reductions. A horizontal offset is provided for each

representation of the event of 0.5 V for the sake of ease of viewing. 66

3.6 Charge histograms for the EJ-301 scintillator, Fig. 3.6a, and the

LaBr3(Ce) scintillator Fig. 3.6b. The source involved in Fig. 3.6a

is just the 60Co source, for Fig. 3.6b a 60Co and 137Cs source were

measured with an additional peak from internal decay of 138La in

the scintillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

xvi



3.7 Plot of a signal acquired with the EJ-301 liquid scintillator and the

resultant filtered signal with a 50 mV offset. . . . . . . . . . . . . . 69

3.8 Plots of a signal demonstrating the reduction of bit depth from the

original 12 bits Fig. 3.8a to 6 bits in steps of 2, and the same event

with reductions in sampling frequency from 3.2 GHz Fig. 3.8b with

2, 6, and 11x reductions. A horizontal offset is provided for each

representation of the event of 0.5 V for the sake of ease of viewing. 71

3.9 TTT Pulse Shape Discrimination (PSD) generated from photon

data collected with a 60Co and 137Cs photon source. . . . . . . . . . 73

3.10 Plot of the TTT PSD results when data collected from an Am-Be

neutron source were ingested. Manual regions were drawn around

the neutron and photon populations to separate for training and

validation of Machine Learning (ML) algorithms. . . . . . . . . . . 73

3.11 Image of the signal reflection, Fig. 3.11a, which was caused by im-

proper installation of the washer and grounding lug, Fig. 3.11b, and

the implemented fix to improve the ground contact Fig. 3.11c. . . . 75

3.12 Event timing histograms for measurement of coincident photons

from 24Na by two EJ-301 scintillators Fig. 3.12a, and an EJ-301

scintillator combined with a LaBr3(Ce) scintillator Fig. 3.12b. Note

the negative values in time differences in Fig. 3.12b are caused by

the longer transit time of the Hamamatsu R6233 Photomultiplier

Tube (PMT) used with the LaBr3(Ce) scintillator. . . . . . . . . . . 77

xvii



3.13 Histogram of the time difference for coincident events measured in a

LaBr3(Ce) scintillator and an EJ-301 neutron sensitive liquid scin-

tillator. The event timing window on the CAEN DT5743 for coin-

cidence was set to 50 ns. . . . . . . . . . . . . . . . . . . . . . . . . 78

3.14 Histograms of collected charge for events detected within a 50 ns co-

incidence window with EJ-301 and LaBr3(Ce) scintillators exposed

to a 238Pu9Be neutron source. . . . . . . . . . . . . . . . . . . . . . 78

3.15 TTT PSD results for the Time of Flight (ToF) tagged "neutron"

events from the 238Pu9Be neutron source. . . . . . . . . . . . . . . . 79

3.16 Histogram of the PSD metric for a measurement of the 238Pu9Be

neutron source, achieving a Figure of Merit (FoM) of 1.1. . . . . . . 80

3.17 Histogram of neutron classification probability output by the neu-

ral network when classifying events recorded from the un-shielded
238Pu9Be neutron source. . . . . . . . . . . . . . . . . . . . . . . . . 81

3.18 ROC curve demonstrating the classification performance of the GoogLeNet

implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.19 Manually bounded regions for determining classification of neutron

or photon based off of TTT PSD. . . . . . . . . . . . . . . . . . . . 84

3.20 TTT plot of the validation neutron set in blue, and the neutrons

correctly classified at a False Positive Rate (FPR) of 1E-6 by the

GoogLeNet implementation in orange. A vertical offset for the val-

idation neutron data set was provided to avoid overlap to enable

comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

xviii



3.21 TTT plot of the 8x reduced sampling rate data set. Blue is the neu-

tron population and orange is the photon population. The photon

data set consists of 1 million events recorded with a 60Co and 137Cs

photon source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.1 Image of the experimental setup used to measure the 252Cf neutron

source, with lead shielding wrapped around the source’s position

when exposed to the detector and with High-Density PolyEthylene

(HDPE) shielding in place. . . . . . . . . . . . . . . . . . . . . . . . 93

4.2 TTT PSD of data collected from a 60Co source over 13 hours. High

energy signals can be observed which are indicative of cosmic ray

detections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 TTT PSD of the 4.2 million photon events collected for use in iden-

tifying the performance of GoogLeNet at PSD. Events beyond 6000

keV ee were removed on the basis of the maximum neutron energy

of roughly 4000 keV ee in order to minimize the presence of signal

clipping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4 Plot of the histogram of shaping parameter for all events with en-

ergy deposition ranging from 150-175 keV ee with fits and resultant

residuals from the fit. . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5 TTT PSD plot demonstrating the separation of neutron and photon

data for use in training and validation of GoogLeNet. This data set

was generated from the 252Cf neutron source. . . . . . . . . . . . . . 99

xix



4.6 Plot of the training and validation accuracy achieved during train-

ing, with training accuracy being accumulated over an epoch and

validation accuracy being evaluated following each epoch. . . . . . . 100

4.7 FoM values achieved with TTT PSD at varying PMT biases. FoM

was calculated by averaging the FoM calculated for two energy

bands per data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.8 ROC curves generated for various validation data sets following re-

training of a GoogLeNet instance. Initial training was performed

with 238Pu9Be data and subsequent retraining was done with Deuterium

Tritium (DT) data. 241Am9Be validation data is omitted because

of the similarity in performance to 238Pu9Be. . . . . . . . . . . . . . 105

4.9 Plot of the True Positive Rate (TPR) achieved at a 1E-6 FPR for

varying energies. This data was generated by classifying 238Pu9Be,
252Cf, DD, and 241Am9Be validation data with an instance ofGoogLeNet

that was initially trained on 238Pu9Be data and then retrained with

DT data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.10 Energy deposition histogram for each neutron validation data set.
241Am9Be is omitted for visibility due to the similarity to the 238Pu9Be

data. Each histogram is normalized in area to the 252Cf data set.

The number of bins is reduced for DT to account for its relatively

small data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

xx



4.11 ROC curves generated for each validation data set by the GoogLeNet

instance which was initially trained off of the 238Pu9Be data set and

then retrained with the 252Cf data set. Results from the 241Am9Be

validation data set are omitted for visibility given their similarity

to 238Pu9Be. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.12 Plot of the TPR achieved at a 1E-6 FPR for varying energies.

This data was generated by classifying 238Pu9Be, 252Cf, DD, and
241Am9Be validation data with two instances of GoogLeNet. The

first was initially trained on 238Pu9Be data and then retrained with
252Cf data, the second is the initial instance trained off of 238Pu9Be

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.13 TPRs achieved at varying FPRs for 252Cf data collected with vary-

ing shielding setups. Each data set was measured with 500 thousand

events and with the same digitizer and PMT settings. . . . . . . . . 111

4.14 TTT PSD of the resultant photon and neutron classified events from

500 thousand events recorded from the 252Cf source. This set was

recorded with 0.25 inches of lead and 1 inch of HDPE between the

source and detector. Classification was performed at a 1E-6 FPR. . 113

4.15 Activation mappings from Grad-CAM for the average neutron and

photon events. Figs. 4.15a and 4.15b shows the average photon

event for neutron and photon classification respectively. Figs. 4.15c

and 4.15d shows the average neutron event for neutron and photon

classification respectively. . . . . . . . . . . . . . . . . . . . . . . . . 115

4.16 Histogram of the calculated event time for the neutron and photon

events used to create the average events used in Fig. 4.15. . . . . . . 117

xxi



4.17 The average neutron signal from Fig. 4.15 with the repeated non-

linearity from the delay lines removed. An offset between the signals

is provided for viewing. . . . . . . . . . . . . . . . . . . . . . . . . . 118

xxii



A1.1 Diagram depicting the architecture used for GammaNet. All neces-

sary functions are included in the NVCaffe library. a) input to the

network of an AdEPT simulation image. b) first layer made of a

7x7 convolution with a stride of 2. The convolution is followed by

a Rectified Linear Unit (ReLU) operation, where all negative val-

ues are made to be 0. c) 3x3 max pooling layer with a stride of

2. The 3x3 max pooling is followed by a Local Response Normal-

ization (LRN) operation, where the output is normalized along the

depth. d) 1x1 convolution with stride of 1 followed by a ReLU. e)

3x3 convolution with a stride of 1 followed by a ReLU and LRN

operation. f) 3x3 max pooling layer with a stride of 2. g) inception

module used by GoogLeNet [26], part 1, from left to right: 3 1x1

convolutions of stride 1 and a 3x3 max pooling with a stride of 1.

h) part 2 of inception module, from left to right: 3x3 convolution

of stride 1, a 5x5 convolution of stride 1, and a 1x1 convolution of

stride 1. i) concatenation along the depth of the previous 3 opera-

tions in h). j) 7x7 average pooling with a stride of 1. The average

pooling is followed by a dropout operation, randomly setting values

in the output to 0 with a defined probability. k) the flattening of j)

into a vector. l) inner product between vector k) and the parame-

ters of l) where there is a set of parameters for each class contained

in the output, with two classes in the case of GammaNet. This step

was carried out in double precision. m) 2 values output by the soft-

max operation. The softmax operation was carried out in double

precision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

xxiii



List of Tables

2.1 Tabulated results of GammaNet pair production sensitivity and back-

ground rejection rate for differing numbers of inception modules.

Pair Production sensitivity reported as highest of the 5–250 MeV

energy sets whereas background rejection rate was calculated from

only one set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Pair production sensitivity of GammaNet, for sub-scale simulation

images, given the desired background rejection rate with differing

factors of downsampling. The data rate limits are sampled between

the proposed minimum and maximum as described in Section 2.2.

The background rejection rates listed are calculated by using the

ratio of the raw data rate and the data rate limit, assuming the

signal is approximately entirely background. Each data set was

generated from the sub-scale simulation, using the given downsam-

pling rate. GammaNet was then trained and tested on those data

sets. The reported pair production signal sensitivities are the av-

erage sensitivity for the energies simulated. Error was calculated

using binomial statistics with a 95% confidence interval. . . . . . . . 42

xxiv



2.3 Pair Production sensitivity for GammaNet and VGG16 at varying back-

ground rejection rates corresponding to anticipated downlink speeds.

Performance comparison results were generated using the sub-scale

simulation data, with a downsampling rate of 3. . . . . . . . . . . . 44

2.4 Pair production and Compton scatter sensitivity at varying back-

ground rejection rates corresponding to anticipated downlink speeds.

The Galactic Cosmic Ray (GCR) proton background rejection rate

was calculated for one set of background images. Each data point

for Compton scatter and pair production sensitivity were generated

by averaging the sensitivity over all simulated gamma-ray energies.

All data here were generated using the full-scale simulation with a

downsampling rate of 11. . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1 True Positive Rate (TPR) of each Machine Learning (ML) architec-

ture relative to a given False Positive Rate (FPR). Data collected

when trained and validated on the same data set. . . . . . . . . . . 85

3.2 Table demonstrating the number of neutrons correctly identified by

the competing algorithms for given energy ranges. . . . . . . . . . . 86

3.3 Table of the TPRs achieved for varying degrees of reduction in sam-

pling rate and bit depth. Only the TPR achived at a FPR of 1E-6

is displayed for the sake of brevity, but the trend stays the same

when varying from a FPR of 1E-6 up to 1. . . . . . . . . . . . . . . 87

4.1 TPRs values achieved at various FPRs with data collected from the

Deuterium Tritium (DT) neutron source with varying Photomultiplier

Tube (PMT) biases. . . . . . . . . . . . . . . . . . . . . . . . . . . 102

xxv



4.2 TPR values achieved byGoogLeNet following training on the various

data sets and being applied to different neutron data. The TPRs

for GoogLeNet when validating on neutrons from the same source

used to train are in bold. These TPRs values are reported at a FPR

of 1E-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xxvi



Declaration of Authorship

I, Richard Garnett, declare that this thesis titled, “The Application of Machine

Learning to Event Classification in Radiation Detectors” and the work presented

in it are my own.

xxvii



Chapter 1

Introduction

1.1 Motivation

In radiation physics detecting only a subset of a radiation field can be of key im-

portance. Most often this task is complicated by the interaction of the field of

interest with matter present around it, such as the generation of Bremsstrahlung

radiation by beta emitting isotopes. This is an issue because simply having a

radiation detector immersed in the radiation field of interest will impact the field

and create secondary radiation that may or may not be what is the primary sig-

nal of interest. This could be, as previously mentioned, Bremsstrahlung radiation

being generated in the detector while intending to measure beta decays. In some

situations these issues can be mitigated with various techniques that allow you to

differentiate between the signal and the background on a physical basis such as

charge, which would be the case in measuring beta decays, with photons being the

background signal. In a situation as such, measuring just the neutrally charged

photon component or the positively or negatively charged beta emissions can be
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accomplished with coincidence measurements. Two concentric radiation detectors

can be run in coincidence and if a signal is detected in both detectors simulta-

neously, this is likely a charged particle. If, conversely, only one interaction is

observed in either of the two detectors, this radiation interaction likely was caused

by a neutrally charged particle. These inferences can be made because charged

particles deposit energy in their surrounding media effectively continuously, given

the extent of their electromagnetic fields, leading to a signal being generated in

any sensitive volume of the radiation detector that is traversed. Neutrally charged

particles on the other hand have negligible electromagnetic fields, leading to their

interactions being collisional and hence probabilistic. The probabilistic nature of a

neutral particle’s interaction inside the sensitive volume leads to discontinuous en-

ergy deposition and a possibility of that radiation traversing the radiation detector

without producing a signal. This is demonstrated in Fig. 1.1, where a concentric

plastic scintillator is used as a coincidence detector with the main instrument, a

tissue equivalent proportional counter being used for measuring charged and neu-

tral particle doses in Low Earth Orbit (LEO) [1]. This setup provides a simple

means of discriminating between charged and neutral particles, though the rate of

discrimination between charged and neutral is not perfect. In one case the charged

particle could impinge on only one of the two radiation detectors, leading to an

anti-coincident signal which would be interpreted as a neutral particle. Another

failure case would be a neutral particle interacting with both detectors producing

a coincident signal which then would be interpreted as a charged particle. Clever

design of the coincidence system can be employed to minimize these effects, but

in practice they cannot be avoided completely.
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Figure 1.1. Depiction of the difference in how energy deposition
occurs for neutral and charged radiation quanta [1]. In the case of
a charged particle, seen on the left, energy deposition occurs along
the entirety of the trajectory. For the neutral particle, seen on
the right, energy deposition occurs once and generates a secondary
particle which is then able to be detected in the sensitive volume.

In some situations physical solutions to separation of radiation fields are not

feasible or even possible, one such instance would be the separation of neutrons

from photons. The differentiation of neutron and photon radiation is impossible

given the previous solution because both particles possess the same neutral charge,

leading to similarly discontinuous energy deposition. The solution to these more

complicated situations is to look at the result of an interaction, namely electron

recoils for photon interactions and proton recoils for neutron interactions. In some

radiation detection media, the generation of excited states inside the detector

are dictated by the density of the generation of those states. This difference

results in differing signal shapes for different radiation interactions and this can

be exploited for Particle Identification (PId) with methods called Pulse Shape

Discrimination (PSD) [2]. The situation of separating neutron signals from photon

signals is of key importance whenever measuring neutron fields because of the
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presence of photons from inelastic neutron scattering in the surrounding material

as well as photons present from the neutron source itself [3, 4, 5, 6].

One other situation where a physical solution is not feasible is in high energy

radiation fields where PId is desired. In radiation physics it is always of great im-

portance to consider the distance a particle may travel on average within a medium

before depositing all of its energy known as the range. If the particle generated

by an interaction inside a detector has a range greater than the physical extent of

the detector it will on average exit the sensitive volume of the detector before ex-

hausting all of its energy. This would eliminate the possibility of using coincidence

detection for PId in the case of neutral and charged radiation because the recoil

particle from neutral interactions would behave in the same way as the charged

radiation, traversing both detection volumes and producing a coincidence signal

resulting in misidentifying the neutral particle as a charged particle. This could

be the case in high energy particle accelerators like the Large Hadron Collider

experiment, or in spaceborne instruments for measuring extraterrestrial radiation,

the solution in the former is to increase the mass and density of the interaction

medium or to increase the size of the detector to greater than the range of the

radiation of interest. This solution of increases to the detector size may not be

possible in spaceborne instruments because of their imposed limits on mass and

energy available in space. The solutions in these limiting situations would be com-

plex signal processing routines to achieve PId, such as PSD. It is this requirement

for complex signal processing, as well as the abundance of simulation and the flex-

ibility of radiation detection experiments, that lends the problem of PId so well to

machine learning. A great deal of interest has re-emerged in recent years around
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machine learning for its applications in complex image classification tasks such as

computer vision, facial recognition, and autonomous piloting of vehicles. In the

scope of classification of natural images machine learning should be more than

capable of handling the relatively small solution space of PId.

1.2 Machine Learning and Neural Networks

The beginning of machine learning occurred in 1959 when Arthur Samuel of IBM

coined the term for an algorithm used to play checkers [7]. This algorithm would

evaluate the board state and attempt to maximize the likelihood of winning given

its available legal moves. The learning aspect of this program came from the ability

of the program to alter its evaluation when playing against itself. One version of

the algorithm would be kept fixed while another was altered. If the altered version

of the algorithm won more frequently, it would be allowed to remain and the

adversary would then be altered. Further research building on this and the concept

of how neural pathways in the brain behave lead to the advent of the perceptron

[8, 9, 10]. This was the first machine learning algorithm built up to model neural

behaviour in an attempt to learn, giving birth to the first neural network. The

perceptron was used for computer vision and achieved little success, leading to a

decrease in research within this area for decades. Somewhat more recently this

area was reinspired by results from the Imagenet Large Scale Visual Recognition

Challenge (ILSVRC) [11] where computer vision algorithms were put to the task

of classifying natural images, such as photographs, and localizing objects within

them. These fields have since grown so profoundly that implementations of neural

networks can be found in self driving cars, noise cancellation, natural language

5

http://www.mcmaster.ca/
https://physics.mcmaster.ca/
https://physics.mcmaster.ca/


Doctor of Philosophy– Richard Garnett; McMaster University– Department of
Physics and Astronomy

processing, and advertising.

Machine Learning is classified as either supervised or unsupervised learning.

Supervised learning is when ground truth labels for data are used to train the

machine learning algorithm, and unsupervised learning is when unlabelled data

is used in training. A ground truth label is an identifier for the content of the

data that is taken in the machine learning algorithm as the truth for which class

each datum belongs to. Both methods of training a machine learning algorithm

require large amounts of data for significant results to be obtained, but supervised

training is so far the more prominent method. The introduction of ILSVRC as an

open source labelled database of natural images was a significant impetus for the

reemergence of machine learning and began the popularization of Convolutional

Neural Networks (CNNs) for computer vision applications, with CNNs being the

dominant architecture in the competition since 2012 being capable of superhuman

performance in image recognition [11]. A CNN is a subset of machine learning

wherein the neural network is composed of primarily convolution operations. The

ILSVRC database and challenge contains roughly 1.2 million images belonging to

1,000 different categories, with performance in the challenge being measured on

successfully classifying those images as belonging to their respective category.

Alongside the increased performance and popularity of CNNs afforded by the

availability of open sourced ground-truth-labelled image databases was the increas-

ing power of Graphics Processing Units (GPUs) and the parallelizability made

possible with GPU architecture. The increased performance capabilities of GPUs

over Central Processing Units (CPUs) enabled the increases in size of CNNs which

is credited for the increases in performance for image classification. The 2012
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winners of ILSVRC, AlexNet, were able to nearly double the performance of the

previous state of the art in the ILSVRC when classifying images to 1,000 cate-

gories. AlexNet achieved this with a network that contained 60 million trained

parameters [12], which can be compared to the 17,000 parameters of LeNet which

was designed to read hand written digits from images [13]. This comparison,

though not exactly transferable, shows that a larger CNN is more capable, being

able to classify the significantly more information dense natural images to 1,000

categories compared to hand written digits which belong to only 10 categories.

The successes of machine learning, and more specifically CNNs, in the complex

task of classifying natural images leads to perhaps an obvious implementation of

CNNs to PId in radiation detection. The focus of the research herein discussed

is to develop and further PId capabilities in two main projects: pair production

identification in a spaceborne time projection chamber (TPC) and neutron and

photon separation in mixed fields. Both projects preclude the use of more tradi-

tional identification techniques and thus require more intricate signal analysis to

be able to perform the desired PId.

1.3 Pair Production Classification

The first of the two projects included in this thesis was the development of an

event selection routine for use in background rejection onboard a proposed photon

polarimeter called the Advanced Energetic Pair Telescope (AdEPT) [14]. This

mission’s primary radiation detector is a TPC which is designed to generate 2

perpendicular projection images of the radiation track, along the x-axis and the

y-axis shown in Fig. 1.2.
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Figure 1.2. Diagram demonstrating the cubic sensitive volume of
the simulations for AdEPT and the subsequent projection images
output by the simulation.

The method for finding the polarization of incoming photons in this detector is

to measure the angle of the plane connecting the electron and positron produced

by the pair production interaction [15, 16], shown in Fig. 1.3 as the angle Φ. The

TPC designed for use in this satellite is filled with Ar and CS2 with a combined

pressure of 1140 torr at 25 ◦C. The energy range for the photons intended to be

measured by this experiment are between 5 and 200 MeV , which would produce

electron and positron pairs with energies just below half that, less the rest mass of

the electron and positron pair. The range of these resultant particles in the TPC

would be well over the length of the proposed sensitive volume, which precludes

the use of a coincidence and anti-coincidence setup as discussed in Section 1.1,

before considering the weight and size constraints imposed by spaceflight. Further

requirements are imposed on the event selection requirements when considering

the radiation environment of LEO, where the intended photon signal will be out-

numbered 10,000:1 by cosmic rays, solar radiation, and trapped radiation in the

Van Allen belts. These requirements setup the unique situation where a potential

solution is the use of a CNN for real time event selection.
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Figure 1.3. Graphic demonstrating the generation of a positron
and electron pair through pair production. Angle Θ represents
the angle of separation between the two pairs. Φ is the angle of
rotation about the r-axis, which would dictate the polarization of
the incident photon.

Machine learning applications for imaging detectors such as TPCs have seen

success in several experiments [17, 18, 19, 20, 21, 22, 23, 24, 25]. At the time of

the research for this project, the only known example was an implementation of

Google’s GoogLeNet [26] for use in classifying neutrino interactions for the NOvA

experiment [27]. The application of GoogLeNet in this instance outperformed

what was currently being used by the NOvA experiment for event classification

without the need for event reconstruction. This success provided the inspiration

for the CNN used in event selection for the AdEPT mission.

During the time of this research the satellite was still in the developmental

stages and not yet functional so all results were found utilizing simulations devel-

oped in the Geant4 Monte Carlo toolkit [28, 29]. The requirement to carry out

simulations to develop the training and testing data lends itself very well to su-

pervised learning for the development of a CNN based event selection algorithm.

The use of the Geant4 toolkit allows for control over every process that occurs

within the simulation making it trivial to generate a training and testing data

set with perfectly accurate ground truths assigned to each event. Given though

that these are only simulations this work serves as a proof of concept that given
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a sufficient training and testing data set a CNN could meet the requirements set

out by the AdEPT mission. With that in mind, the simulations were designed

with a simple geometry to represent the gas volume in AdEPT that would be

sensitive to radiation, leaving out the other structures of the satellite that may

still impact the radiation field present inside the TPC. Aside from this simplifi-

cation, all relevant physics was included in the simulation and the radiation field

was chosen to mimic what would be encountered in the LEO proposed for the

AdEPT mission. There were two classes chosen for the CNN: positive or negative.

The positive case would be any image containing a pair production interaction,

and the negative case being any other interaction type possible with the incident

radiation. Given that the CNN was to identify pair production or lack there of,

the network was coined GammaNet. To generate the data for training and testing

sets the simulation was run in two batches, the first batch with at least one pair

production interaction being forced in the sensitive volume from incident photons,

and the second set not having any interaction types forced from incident cosmic

rays . A more thorough discussion of the AdEPT mission, the goals that were

proposed for GammaNet, the simulation and the simulated radiation environment,

and the results of this research are found in Chapter 2.

1.4 Neutron and Photon Separation

The second project was the development of a CNN based solution for PSD of neu-

trons and photons. This is a significant research question because the presence of

a secondary photon field is inescapable whenever a neutron field is present. This
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secondary photon field is generated primarily through two types of neutron inter-

action in matter, inelastic scattering, and neutron capture. In the case of inelastic

neutron scattering a neutron will collide with an atom, excite it to an intermediate

excited state, which then results in either a prompt or delayed emission of a photon

as shown in Fig. 1.4a. The other interaction, neutron capture, is when a neutron

collides with an atom and is absorbed by the atom creating a new nucleus. This

new nucleus then can emit photons throughout its nuclear decay chain or through

prompt or delayed emission again resulting from the nucleus being brought into

an excited state which then decays to the ground state, as shown in Fig. 1.4b.

(a)

(b)

Figure 1.4. Diagram depicting the two neutron interactions of
interest resulting in photon emission. Fig. 1.4a represents the in-
elastic scattering of a neutron off of a target nucleus resulting in
prompt photon emission. Fig. 1.4b shows the absorption of a neu-
tron resulting in a new isotope of the original target nucleus, which
is left in a potentially excited state resulting in prompt photon
emission. These are not exhaustive of the set of possible neutron
interactions, which could include fission, proton emission, alpha
emission, or other combinations of hadron emissions.
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There are effectively innumerable pathways for a neutron field to create a sub-

sequent photon field which results in intense mixed fields in the presence of a

neutron source. Even if there were effectively no matter between the neutron de-

tector and the neutron source, a secondary photon field would still be generated via

interaction with the neutron detector itself. One solution may be to then have a

neutron detector that is entirely insensitive to photons, but this too is impractical

in practice as photons interact with all matter. Perhaps the most popular solu-

tion through insensitivity to photons is gaseous 3He neutron detectors, which are

often used as a gold standard for neutron and photon separation. A 3He neutron

detector is able to achieve an intrinsic neutron efficiency of 1.2E-1 % while having

an intrinsic photon efficiency of 1.7E-7 % [30] for source and detector geometries

as dictated in ??, with intrinsic efficiency is defined by Eq. (1.1). The interaction

mechanism for neutron detection in a 3He neutron detector is the thermal neutron

(n,p) reaction, which has a cross section roughly 1E3 times greater than the cross

section for photon interactions. Additionally, the reaction products from a 3He

neutron capture are 1H and 3H with 0.764 MeV of energy. This results in a char-

acteristic energy signal from each neutron interaction of 0.764 MeV , which can

be reduced by wall effects where some energy is deposited in insensitive detector

media. This discrepancy in sensitivities, combined with energy gating of signals,

is what leads to the 1E6 factor of difference in intrinsic efficiency for neutrons and

photons.

εint = C

φA
(1.1)
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Where C is the count rate in #
s

found by the radiation detection system, φ

is the fluence rate of the radiation of interest, particle
s·cm2 , that are impinging on the

radiation detection system’s sensitive volume, and A is the area of the detector

that is being impinged upon by the radiation in cm2.

The relative inaccessibility of 3He and its price have contributed to the increased

popularity of PSD in recent years as a means of neutron and photon separation.

PSD doesn’t depend on the physical insensitivity of the detector to neutrons,

but instead uses the differentiating pulse shape features to identify the neutron

and photon components of a mixed radiation field. In this research the specific

PSD capable detectors utilized are EJ-301 and EJ-309 which possess very similar

characteristics, with EJ-309 having slightly poorer performance in PSD [31]. EJ-

301’s use as a neutron sensitive detector initially came about as Ne-213, both

of which are a Xylene based liquid scintillator. It was found that some organic

scintillators, namely Xylene, displayed delayed scintillation when being interacted

with by highly ionizing radiation [32, 33]. This difference in scintillation time

was exploited to enable neutron and photon separation with early work finding it

possible to achieve a 9.5 % intrinsic efficiency for 2MeV neutrons while minimizing

photon sensitivity to 0.007 % intrinsic efficiency [32]. This capability made Xylene

based liquid scintillators very popular for use in experiments where neutron and

photon separation were desired.

The PSD enabling characteristic in Xylene based liquid scintillators is the gen-

eration of excited singlet and triplet states, with the singlet states decaying with

a characteristic time of 3 ns and the triplet states decaying with characteristic

times of 32 and 270 ns. The generation of the triplet state occurs by the transfer
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Figure 1.5. Figure demonstrating the differences in LET based
on the type of ionizing particle inside the scintillation medium.

of energy from singlet states, which has an increased occurrence with increases in

density of singlet states. This dependence on density of singlet states for triplet

state formation expresses itself as an increase in proportion of triplet states when

the scintillator is interacted with by particles with higher Linear Energy Trans-

fer (LET). The LET is the amount of energy deposited per unit distance in the

scintillator, demonstrated in Fig. 1.5.

When looking to neutron and photon discrimination in EJ-301 and EJ-309,

the primary differences are in the recoil particles with protons for the former and

electrons for the latter. The primary interactions in these scintillators are Compton

scatter for the incident photons and elastic scattering off of the hydrogen nuclei

of the scintillator for incident neutrons. In the case of Compton scatter, the recoil

electron can have energy ranging from 0 to the maximum allowed by a 180◦

Compton scatter. Elastic neutron scattering from a hydrogen nucleus results in

a recoil proton with an energy ranging from 0 up to the initial neutron energy,
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Figure 1.6. Plot of the stopping power, which is a measure of
LET, for electrons and protons over a range of energies using data
provided by the National Institute of Standards and Technology
[34].

similarly to Fig. 1.4a without the excitation of the proton. These both result

in a continuum of energies detected in the scintillator which, for non-relativistic

energies of protons, results in a much higher LET for recoil protons as shown in

Fig. 1.6. This causes the signals produced by neutrons in EJ-301 and EJ-309 to

be characteristically longer than those of photon interactions.

There exist many techniques to leverage these differences in time characteristics

to perform PSD with the most common being the tail-to-total method [35]. This

PSD method is the main point of comparison for traditional PSD methods in this

work, with various machine learning based solutions also utilized for comparison.

Several other attempts at using machine learning for PSD in neutron and photon

separation have been made, with a lot of success [36, 37, 38, 39, 40, 41], but

no applications of CNNs had been found at the time of writing. This lack of

application of CNNs to pulse shape discrimination likely is due to the signal for
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PSD being 1-D and the main use case for CNNs is computer vision, a 2-D task.

The adaptation of 2-D CNNs to 1-D tasks is trivial in most machine learning

toolkits with each function being adjustable to 1, 2, or 3-D inputs, this work was

carried out in Caffe [42] and TensorFlow [43] where such functionality exists.

To enable CNN based PSD for these liquid scintillators it is necessary to produce

training and testing sets with photon and neutron classification labels defined. In

this work there exists three possible solutions to this problem, namely the use of

already existing PSD methods, experimental design to exploit other physical char-

acteristics of photons and neutrons such as velocity, and lastly would be simulation.

Each of these potential solutions are further explored in the chapter covering the

development of the CNN solution Chapter 3.

1.5 Outline

This thesis contains 6 chapters, the first of which is this introduction describing the

motivations and the basics of the principals relevant to this research. Subsequent

to the introduction is Chapter 2 which gives a much more detailed look at the re-

search that was done in developing, testing, and interpreting the results that were

achieved with the implementation of the adaptation of GoogLeNet. This was done

with simulated data, which is also further discussed in Chapter 2. Following this

Chapter 3 outlines the development and application of a similarly adapted version

of GoogLeNet to experimental data measuring neutron and photon sources. The

goal of this work was to quantify the PSD performance achieved with the adapted

CNN, to outperform classical tail-to-total PSD, compare performance between var-

ious machine learning approaches, and identify the importance of sampling rate
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and bit depth. This work is then followed up by Chapter 4 which investigates

different techniques for generating the labels used in training and testing the CNN

for PSD. Further to this Chapter 4 also investigates the failure cases of the CNN,

the application or generalization of the CNN to neutron sources not used in train-

ing, and further investigates the performance. Lastly Chapter 5 contains a brief

discussion and conclusion of all results as well as areas for future improvements.
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Chapter 2

Simulation Based Application:

GammaNet

2.1 Preface

The core content of this chapter has been published in Nuclear Instruments and

Methods Section A. All simulations, Machine Learning (ML) computations, and

data analysis were performed by the author under the supervision of coauthors.

The manuscript was prepared by me and revised by coauthors. In this thesis,

Sections 2.2 to 2.5 were altered. Section 2.2 was greatly expanded upon to provide

more thorough description of the limitations on event classification imposed by

the physical requirements of Advanced Energetic Pair Telescope (AdEPT). Sec-

tions 2.3 to 2.5 were all changed to improve readability, to improve context for

subsequent chapters, and to add in additional description perhaps not suitable for

journal publication.
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2.2 AdEPT Mission and Objectives

The measurement of astrophysical photons is greatly important to the understand-

ing of our universe because they represent a tool to investigate the most extreme

non-thermal processes in the Universe. As it stands currently the greatest amount

of attention has been paid to astrophysical photons ranging from roughly 20 MeV

to 300 GeV with the largest satellites being the AGILE [44] and Fermi [45] space

telescopes. The AGILE mission’s high energy sensitivity extends from 30 MeV

to 50 GeV and Fermi’s energy sensitivity is from 20 MeV to 300 GeV . Imaging

for AGILE and Fermi are both enabled by the 3-D track reconstruction of pair

production interactions in the sensitive volume of the satellite’s detectors. The pri-

mary element of these detectors are silicon-strip detectorss (SSDs) [44, 45] which

provide 2-D readout of charge generated in the detector and with the position

in the 3rd dimension being generated by stacking of multiple layers of SSDs. In

addition to these SSDs is the use of a thin high Z element used to increase pair

production probability in the detector volume, such as Tungsten.

Neither of these missions were designed for measurement of polarization of

photons or for measurements within the medium energy range, where many as-

trophysical objects exhibit unique behaviour. For example, of interest would be

the presence or absence of polarization in one of the sources of these high energy

photons, inverse Compton scattering. When there are intense sources of photons

and relativistic particles, inverse Compton scattering can occur where energy is

transferred from the relativistic particle to the photon, as shown in Fig. 2.1. The

presence or absence of polarization in these photons can provide information about

the processes that generated the relativistic particles [46, 47]. An additional source
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of non-polarized high energy photons would be inverse Compton scattering from

the decay of dark matter candidates [48].

Figure 2.1. Diagram depicting the process of inverse Compton
scattering wherein a relativistic electron imparts energy on an inci-
dent photon increasing the energy of the photon drastically. Image
taken from [49].

The difficulty behind measuring medium energy photons is the significant con-

tribution to photon interactions from both pair production and Compton scat-

tering, each interaction possessing largely different signatures. These competing

processes would require greatly different instrumentation and algorithms to ob-

serve the polarization of the incident photon [14, 50, 51]. Optimization of an

instrument to be able to effectively measure both pair production and Compton

scatter on-board a satellite is prohibitive at this time. The challenge is further

exacerbated by the Galactic Cosmic Ray (GCR) background [52], which is an ex-

tragalactic source of charged atomic nuclei at extremely high kinetic energy. The

GCR background cannot be effectively shielded for on satellites given their high

kinetic energy, which can extend to several TeV per nucleon. Even at a modest

energy of 10 GeV the Continuous Slowing Down Approximation (CSDA) range

20

http://www.mcmaster.ca/
https://physics.mcmaster.ca/
https://physics.mcmaster.ca/


Doctor of Philosophy– Richard Garnett; McMaster University– Department of
Physics and Astronomy

would be 7 m in lead. In addition, the fluence of GCR particles exceeds the as-

trophysical gamma-ray flux by approximately four orders of magnitude, as can be

seen in Fig. 2.2.

Next-generation telescopes are being developed with the goal of characterizing

the complete signature of extraterrestrial photons including their direction, energy,

arrival time, and polarization. The most promising space missions (AdEPT [14],

HARPO [55], and SMILE-I/II [56, 57]) proposed to explore the photon sky in

the medium energy range are based on low-density gaseous time projection cham-

ber (TPC) technologies that enable precise, three-dimensional tracking of particle

interactions.

The AdEPT mission is one such medium energy gamma-ray polarimeter, which

is being designed to measure photons with energies from 5 MeV to 200 MeV .

The science data for AdEPT will consist of pair production interactions, with

a background composed primarily of GCR and Compton scatter interactions.

Compton scatter, though a photon interaction of interest for characterizing the

medium energy gamma-ray spectra, is considered background for the AdEPT mis-

sion. Compton scatter is considered background because the AdEPT instrument

is not designed to measure polarization for this interaction, so these interactions

would form incomplete data. The AdEPT TPCs takes advantage of the Micro-Well

Detector (MWD) technology augmented with the negative ion drift technique [58]

to construct an instrument with the largest volume that can be accommodated in

the rocket fairings currently available to MIDEX missions, 8 m3. The active gas

volume of the TPC is bounded on the top and bottom faces by an array of MWDs

defining the 400 µm X- and Y-coordinate spatial resolution of the TPC [14]. The
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(a)

(b)

Figure 2.2. a) shows the fluence rate of extraterrestrial photons
[53] which can be compared to the fluence rate of GCRs in b)
[54]. The relative scales are off by a factor of 1000 given that b) is
normalized to GeV instead of MeV in a).
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uniform electric field in the active volume provides a constant ionization charge

drift velocity. Measurement of a relative arrival time of the signals on the detector

strips provides the third, Z-coordinate. The use of the negative ion drift technique

in the AdEPT TPC design [14] effectively reduces electron drift diffusion in the

gas, making possible drift distances up to 1 m. With the applied electric field,

ionization charge can traverse the Z dimension of the detector within a maximum

of 50 ms. A schematic of the TPC designed for use in AdEPT is shown in Fig. 2.3.

Figure 2.3. Diagram showing the main design features of the TPC
to be used in AdEPT, the concept of how the interaction volume is
reconstructed for a pair production event, and the MWD readout
plane.
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The use of the negative ion drift technique precludes the use of an anti-coincidence

system, as used in HARPO [55]. The reason that this is the case is because a single

event occurring any significant distance away from the MWD readout plane will

take an appreciable amount of time to drift to the readout plane. This results in

a coincidence window for any interaction of up to 50 ms, which with the rate of

background GCRs expected in Low Earth Orbit (LEO) would result in effectively

all events being seen as charged particles. In addition to this, with the energy

range of interest and the density of gas filling the TPC, the positron and electron

pair produced in pair production would have a range greater than the length of the

TPC. This would result in pair production events activating the anti-coincidence

detector for every interaction. The inability to use anti-coincidence to eliminate

the background events results in a large and practically unavoidable data rate.

This requires an alternative on-board processing approach for discrimination of

GCR tracks and photon interactions.

The 8 m3 version of AdEPT is estimated to produce an uncompressed data

rate of ∼16 Gbps, which is much greater than what is capable for current satellite

communication. Currently the Fermi Large Area Telescope mission [45, 59, 60]

achieves an average science data downlink of 1.5 Mbps, while planned communi-

cations methods aim to achieve an average 50 Mbps downlink [61]. The range

of possible average downlinks leaves two to four orders of magnitude difference

between the raw data rate and communications data rate for the AdEPT mission.

The proposed solution is to use a Convolutional Neural Network (CNN) running

on-board the spacecraft in real time to discriminate gamma-ray interactions of

interest from the abundant GCR background.
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The design and science goals of the AdEPT mission setup an easily stated ob-

jective for this event classification algorithm: obtain the highest signal sensitivity

while achieving a background classification of 99.69-99.99 %. This classification

should also be able to be conducted within 50 ms onboard a satellite, though the

hardware to be available onboard is not yet known so a comparison to commer-

cially available flight hardware is necessary. One such available flight computer

is Innoflight’s Compact Flight Computer 500, which is radiation hardened up to

30 krad and is space rated. Additionally, National Aeronautics and Space Ad-

ministration (NASA) is investigating the suitability of System on a Chip (SoC)

solutions available from NVIDIA [62]. This background rejection rate and classifi-

cation inference time would result in a science data rate that would be manageable

by satellite downlink.

2.3 Monte Carlo Simulations of AdEPT

The AdEPT mission, at the time of this work, was in the developmental stages and

as such the development and testing of the CNN event classifier was conducted

with simulation data. The simulation of the response and readout of the AdEPT

instrument was carried out using the Geant4 Monte Carlo toolkit [28, 29]. Simu-

lations in Geant4 require four primary components, the first is a description of the

geometries involved in the simulation such as any components that will measure

the radiation known as the sensitive volume. Then it is necessary to describe what

physics will be involved in the simulation, which tells the simulation what radia-

tion interactions to account for such as pair production. Next is the description of

what radiation sources will be used in the simulation such as gamma rays from an
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isotopic source. Lastly is the description of what information will be reported by

the simulation, such as secondary ionizations inside the sensitive volume caused

by a specific particle type.

2.3.1 Detector Geometry

Due to the availability of only simulated data at the time of this research, this work

serves as a proof of concept that the proposed CNN could perform adequately for

event selection. Given this is a proof of concept the simulated geometry of the

AdEPT satellite only consisted of the appropriate gas mixture making up the sen-

sitive volume representative of the TPC. This volume contained 1.5 atmospheres

of Ar and CS2 at a temperature of 293 degrees K with a sub-scale size of 25x25x25

cm3, and full-scale size of 2x2x2 m3. The simulations were carried out with the two

varying sensitive volume sizes in order to identify an appropriate level of down-

sampling for the output of GammaNet. The full-scale volume was used to determine

the performance of GammaNet, given that this would be more representative of the

output from AdEPT. In this work, downsampling is defined as the process of

taking an N x N region of the output image, averaging it, and applying it to a

single pixel in the output, as shown in Fig. 2.4. This scales down the image by a

factor of N2, which is necessary for this work because the time to train and run

classification for any CNN is strongly correlated to the image size passed to it.

The full size AdEPT TPC will produce images of 5000 x 5000 pixels, which would

be prohibitively slow in terms of both training and time to classification during

operation.
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Figure 2.4. Figure depicting the method for downsampling the
output from the simulation. In the event of non-integer dimension-
ality for the output, 0 valued padding was added to enable integer
dimensionality.

2.3.2 Physics

The physics included in the simulation account for the different types of interac-

tions between source particles and the Ar gas. These include hadronic physics

for the interaction of GCR protons, electromagnetic physics for the interaction

of gamma rays, electrons, protons, and other secondary particles, and the photo-

absorption ionization model to accurately model the primary ionization and energy

loss of relativistic charged particles in low density media. When the data set for

the signal positive case was being run, any incident photon that impinged on the

detector’s sensitive volume was forced to undergo an interaction along it’s initial

trajectory with the distance selected randomly. G4AdEPTSim produces the ideal

response of the AdEPT TPC, reporting the number of ionization electrons, their

X-, Y-, and Z-coordinates, and the energy deposited in the active volume by a

single incident particle. This situation only provides the error in the signals that

are the result of variations in ionization, which can be characterized by Poisson

statistics. This level of simulation wouldn’t account for the noise introduced by

the readout electronics or losses of signal from recombination of ions. The latter
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of these sources of error were omitted but the electronic noise was added into the

simulation results. Lastly would be the error present in the models of high energy

interactions used to simulate such interactions in Geant4, which are built off of

sometimes incomplete or unavailable data for high energy interactions. This is

an unavoidable source of error for the background signals simulated herein, but

will be alleviated in the future when this work is adapted for experimental data

collected at high-energy particle accelerators.

2.3.3 Simulated Radiation Environment

To properly model the source radiation that AdEPT will encounter in flight, it

is important to know what elevation and inclination it will fly at. AdEPT is

proposed for launch into LEO with a 550 km altitude and a 28 degree inclina-

tion. The background environment in such an orbit is well-known and consists

predominantly of GCRs, cosmic diffuse radiation, atmospheric gamma-ray emis-

sions, reactions induced by albedo neutrons, and background produced by satellite

materials activated by fast protons, alpha particles, and albedo neutrons [63, 64,

65, 66, 67]. In the 0.1 to 200 MeV energy range, the instrument background is

dominated by charged particles in the Van Allen belt impinging on the spacecraft,

cosmic diffuse radiation, and atmospheric gamma-ray emissions. The signal for

the AdEPT TPC will be the medium energy photons, which exists either as an

isotropic diffuse photon background or from astrophysical objects such as active

galactic nuclei.

Given that this work is is a proof of concept, some simplifications to the back-

ground and signal sources considered were made. The background events for the
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simulation consisted of only GCR protons with the energy spectrum from the

Space Environment Information System for the expected AdEPT orbital condi-

tions. GCR protons were selected as the background because they comprise the

majority of the GCR fluence, and the energy range present will sufficiently in-

corporate the relevant background signals. Further to this, the aim of this work

is to develop and characterize an event selection routine and not to determine

characteristics of performance for event reconstruction or imaging, so the signal

portion of the simulation was also simplified. The instrument aims to detect 5–200

MeV photons through pair production, so signal simulations were evenly sampled

between these 5 and 250 MeV with steps of 25 MeV , starting at 5 MeV and

resuming at 25 MeV , with an addition of 225 and 250 MeV being sampled for

additional data.

Outside of simulating the energy distribution of the radiation environment for

signal and background is the angular and spatial distribution of the incident radia-

tion. In this work the background is more significantly comprised of GCR protons,

so an isotropic distribution of events was chosen. The signal was also simulated

with an isotropic distribution, in spite of there being structure to extraterrestrial

photons. The signal was left isotropic to avoid imparting directional bias in the

event selection routine during training, where bias in a training data set can greatly

impact ML results. To obtain an isotropic source geometry G4AdEPTSim models

the simulated events using a spherical volume source with a radius of 22 cm for

the sub-scale version, and 1.73 m for the full-scale version. This spherical source

is concentric with the active volume. The origin of the simulated particles are

evenly distributed on the surface of this sphere. Each particle is initiated with
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a momentum vector facing inward of the sphere with the azimuthal angle evenly

sampled between 0 and 2π, and the polar angle is sampled according to the cosine

law. This results in a uniform distribution of the radiation within the simulation

volume volume, as shown in Fig. 2.5

Figure 2.5. Diagram depicting the source geometry with the sen-
sitive volume concentric with the spherical surface source. The
source location is randomly chosen on the surface of the sphere, az-
imuthal angle is chosen evenly between 0 and 2 π, which is omitted
in the drawing, and then the polar angle is sampled from the cosine
law.

2.3.4 Event Recording

When running a simulation, there is one output per run of the simulation. In

the case of G4AdEPTSim a run represents one of the 50 ms collection windows for

AdEPT where any radiation interacting within the TPC within that collection

window will be read out. Since the simulation emulates a 50 ms collection win-

dow, each run of G4AdEPTSim contains 375 incident GCR protons for signal and

background, with an additional two incident photons for signal. The signal and

background data sets both contain the 375 GCR protons because even when the

signal event of pair production occurs within the TPC the background events will
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still be present with the same detection rate. The sub-scale simulation runs con-

sisted of five incident GCR protons or two incident gamma rays to account for the

reduced surface area relative to the full-scale instrument. The number of incident

particles were chosen in each case to fit the expected number of primary tracks

within the 50 ms collection window given the AdEPT instrument parameters [14].

There are two incident photons for both simulations because the anticipated pair

production rate in the full size simulation is less than one, although there is still the

probability of two pair production events occurring within one collection window.

For the photon events an interaction is forced if the path intersects the sensitive

volume of the detector. This interaction type is forced as pair production for the

signal events, and Compton scatter for the investigation of GammaNet’s sensitivity

to Compton scatter. The source geometry allowed for the possibility of particles

to miss the active volume, but results were only recorded if at least one particle

interacted with the active volume. The source geometry used allows for a varying

number of tracks to be recorded from each simulation run, although the number

of simulated particles was constant between runs.

Per simulation run the number of ionization electrons in 400 x 400 x 400 µm3

voxels was recorded, where a voxel is the discretized unit of volume used in 3-D

simulations. This voxel size was chosen to correspond to the nominal resolution

of the AdEPT instrument. The number of ionization electrons in each voxel is

then projected onto the XZ and YZ planes to generate images. In order to more

accurately simulate the images that would be produced by the AdEPT TPC elec-

tronic noise was added to the signal output for each set of images. The addition
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of electronic noise was performed by adding a randomly generated number of elec-

trons to each pixel of an image. The number of electrons added to each pixel

was generated from a normal distribution with standard deviation of two and a

mean of zero. In addition to electronic noise, background events were added to

every photon image in the form of GCR protons. To do the background event

addition, GCR proton images were generated with electronic noise and photon

images without. Each photon image then had a unique GCR image added to it.

Photon images were generated without the addition of electronic noise to ensure

GCR images and the composite photon images would have a constant amount of

electronic noise. Fig. 2.6 shows an example of the process used for generating the

pair production data set, where an image containing two pair production events is

added to a background GCR image with two tracks.

(a) (b) (c)

Figure 2.6. XZ projection of the sensitive volume of the AdEPT
simulation. a) GCR background image containing several proton
tracks with added electronic noise. b) gamma-ray image, containing
two pair production events with the vertices outlined in red for
illustrative purposes. c) Combination image that would be used for
training and testing GammaNet. These simulation images have had
their contrast adjusted for better viewing in this paper.

Correctly labeled image sets were generated from these simulations for both
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training and testing of GammaNet. The training image sets contained 1.1x106 pair

production images and 106 background GCR proton images. The testing image

sets contained 1.5x103 pair production images, 1.5x103 Compton scatter images,

and 106 background GCR images. The Compton scatter images were included in

testing, but not training, as an additional source of background. GammaNet was

found to be less sensitive to the Compton scatter images than pair production.

The intuition when applying a CNN to this classification problem was that the

CNN would be able to pick up on the discerning characteristic of pair production

events compared to GCR proton tracks. These pair production signatures are

further discussed in the results, Sections 2.5 and 2.6.

2.4 GammaNet

The application of ML to event classification in radiation detection is a natural

progression of the field given that radiation detectors produce highly structured

signals. These signals are often dependent on the nature of interacting radiation,

and the type of interaction undergone. High energy physics projects, such as

the Large Hadron Collider, are already implementing ML applications for event

classification [68, 69]. There has also been implementations of machine vision for

image classification in radiation imaging detectors using CNNs to classify neutrino

interactions at Fermilab and the Ash River Laboratory [70]. GammaNet was inspired

by the successes of this CNN application, with the CNN showing an increased

performance compared to the state-of-the-art algorithms currently deployed for

classification of neutrino events at Fermilab. Specifically, there was a relative

increase of 40% sensitivity for electron neutrino signals, going from 35% to 49%
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[70]. However, the AdEPT instrument does not require as much information about

the background radiation as the NOvA detector, allowing GammaNet to classify

to two classes as opposed to NOvA’s 13. It is believed that this reduction in

the number of classes helped achieve greater background rejection, whereas the

inclusion of additional classes such as Compton scatter or hadroninc processes

would complicate both the data set generation and the classification problem.

2.4.1 GammaNet Architecture

Two neural network architectures were used in this work, GoogLeNet and VGG16.

Both architectures represented what was currently the state of the art perfor-

mance for image classification in the Imagenet Large Scale Visual Recognition

Challenge (ILSVRC) [71, 72] and so posed a good point of comparison. The

VGG16 architecture is a traditional end to end network architecture where each

step is performed consecutively from input to output. The GoogLeNet architec-

ture represents one of the first instances of non-linear operations, where GoogLeNet

introduces a Network in Network (NiN) structure that was named the inception

module. The idea of the inception module is that it performs multiple convolu-

tions at the same depth in the layer simultaneously with each having a different

kernel size, where the kernel is the NxN matrix with which the input is convolved.

Fig. 2.7 demonstrates the implementation of an inception module. The NiN archi-

tecture was thought to be beneficial for event classification because of the ability

of it to observe features that exist at different spatial extents simultaneously at

different depths in the network. It was found that the GoogLeNet architecture

outperformed VGG16, with performance comparisons between the two discusses in

the results section of this chapter Section 2.5.
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Figure 2.7. Diagram of the inception module from GoogLeNet
[26] as was implemented in GammaNet for this work.

The typical input to a CNN is a NxMx3 image, with the last dimension being

the three typical colour channels. The simulation data, as well as the eventual

experimental data, are the two XZ and YZ projection images of an event in the

AdEPT TPC. To perform classification on an event these two images are input

into two instances of the same GammaNet instance. The output of the classification

on these individual projection images is then compared as a Boolean or operation,

with the classification of a pair production being present being a 1 and the absence

of the pair production being a 0 i.e. signal or no signal. Using an or comparison of

these two projection images is important for the performance of GammaNet because

of the geometry of the signal in the detector that pair production creates. The

key signature of a pair production interaction is the presence of the symmetrical

positron and electron ionization track, as shown in Fig. 1.3. If the two tracks

overlap on the axis over which the projection is taken, the resultant projection

image will appear only as a single track, though the alternate projection may still

show the characteristic pair production signal. An example of this situation is

presented in Fig. 2.8, where in Fig. 2.8a there is clear separation of the positron

and electron track, but in Fig. 2.8b the tracks overlap giving the appearance of a
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singular ionization track.

(a) (b)

Figure 2.8. XZ and YZ projections of the same event generated in
the sub-scale simulation, with a downsampling rate of 3. In a), the
XZ projection, a well separated pair production track is shown in
the lower half of the image. In b), the YZ projection, an overlapping
pair production track is shown in the lower left of the image.

With the unique constraints for the AdEPT mission in mind, mainly the 50 ms

timing constraint for inference and the power and mass budgets of space flight,

modifications to GoogLeNet were required for use as GammaNet. These modifica-

tions were aimed at reducing the computational burden that is imposed by deep

learning CNN architectures such as GoogLeNet where depth directly correlates to

intensity. To reduce the computational intensity the number of inception modules

used was reduced from the original 9. Three variations of the reduction were tested,

namely 1, 2, and 3 inception modules with the same architecture as GoogLeNet

for the remainder of the network [26]. The performance obtained by the three

variants is presented in Table 2.1, with the classifications being determined by

which ever classification output was the highest. Notably the last layer of a CNN

produces a probability that the input belongs to each class, which together are

normalized to unity. In the case of GammaNet this is just the presence or absence

of pair production, which is considered signal or background respectively. From
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Table 2.1 it can be seen that the greatest background rejection rate was observed

for a network with only 1 inception module, and the greatest signal sensitivity was

found for 2 inception modules.

These results are counterintuitive when considering the general trend over time

of increased performance with increased depth in neural networks, where depth

is the number of consecutive layers. This trend, when sufficient depth has been

reached, is found to reverse and performance begins to greatly diminish [73]. This

is observed for networks with depths surpassing 30, which is well outside the

depth used here. These results are all applicable to natural images, the extent

to which this applies to radiation detection images is unknown. It is expected

that the observed performance in Table 2.1 can be explained by considering the

complexity of the radiation images. Natural images contain important information

in nearly every pixel with an additional 3 colour channels, this can be compared

to the sparsity of information in the projection images of the AdEPT TPC in

Fig. 2.8 which are also only gray scale. This very limited information density, and

complexity, is believed to allow the CNN to learn all necessary features with a

much more limited depth of network. This would enable the observed comparable

performances with only one inception module.

Lastly, it was necessary to implement mixed precision in this work to achieve

the classification accuracies presented. The simulation images were stored in the

Portable Network Graphics (PNG) format with a bit depth of 8. The default

data format for computation and storage of parameters in the ML library used,

NVCaffe, is single precision or 32 bit. It was found that single precision wasn’t

sufficient to achieve the background classification desired, so the inner product and
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Table 2.1. Tabulated results of GammaNet pair production sensi-
tivity and background rejection rate for differing numbers of incep-
tion modules. Pair Production sensitivity reported as highest of
the 5–250 MeV energy sets whereas background rejection rate was
calculated from only one set.

Number of Inception
Modules

Pair Production
Sensitivity (%)

Background GCR
Rejection Rate (%)

1 93.17 96.30
2 94.28 93.91
3 93.47 96.10

the softmax layers, shown in Fig. A1.1 m) and l), were stored and computed in

double precision.

2.4.2 Training

In supervised learning training occurs by passing a number of inputs through the

network, called the batch number, and having the network produce a classification

for each input. After this the difference between the input ground truth and the

classification is compared with a loss function. The gradient for the loss function is

then calculated with respect to the parameter of each layer and these parameters

are then updated based off of that gradient. This process is repeated a fixed num-

ber of times, typically with the aim of reaching a steady state in performance when

classifying a set of testing data reserved for validation. The overall training is gov-

erned by a set of parameters that are independent of the CNN architecture called

hyperparameters. These hyperparameters are used by NVCaffe during training to

determine aspects such as the learning rate, the number of iterations, the batch

size etc [42]. The hyperparameters used during training in this work can be found

in Appendix A0.2. The outcome of training is shown in Fig. 2.9 and it shows that
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training proceeded well for the instance of GammaNet with 1 inception module,

with convergence on greater than 98 % accuracy on the testing data set. Training

was carried out for 5 million iterations for each network described in Table 2.4,

with the results for those not included in Fig. 2.9 being omitted because each plot

was effectively the same.

Figure 2.9. Graph of the training results for GammaNet with 1
inception module. This training data was generated with the sub-
scale simulation, with a downsampling rate of 3x. The left axis
contains the accuracy of GammaNet on the validation data set, and
the right axis contains the loss value averaged over every 50k train-
ing iterations.

2.5 Results

2.5.1 ROC Analysis

To quantify the performance of GammaNet as an event classifier Receiver Operating

Characteristic (ROC) analysis was applied to the testing data set [74]. ROC

analysis is performed by having the classifier provide an output for every event in

a testing set, with each output containing the probability of the input belonging
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to the signal or background classes. These are then sorted in descending order

of the output probability for the signal class, which in the case of this work is

pair production present. This results in a sorted list of the probability that each

input belongs to the signal positive class, which can be cross checked against the

associated ground truth for the input. The threshold, which is the probability

at which a positive or negative classification is made, is then iterated through

the sorted list. At each iteration the threshold becomes the next lowest positive

probability and that event is then considered positive. This allows for the number

of true positives and a false positives to be identified for every threshold value. True

positive is the case where an event with a ground truth of positive is classified as

positive. False positive is the alternate situation where an event with a ground

truth of negative is classified as positive. These values are then normalized to

the size of the input data set giving the rates of false positive and true positive

classification.

Plotting the True Positive Rate (TPR) and False Positive Rate (FPR) for each

threshold value encountered gives a useful visual representation of the behaviour

of the classifier which is shown in Fig. 2.10. The area under the ROC curve has

a theoretical maximum of 1, and a minimum of 0, both cases would represent

a perfect classifier with the latter situation occurring if labels are accidentally

inverted. The worst case scenario would be randomized guessing for classification

and with a balanced set should result in a straight line between 1 and 0, with

an area under the curve of 0.5. The values obtained for each energy range are

demonstrated in Fig. 2.10a. The ROC and its respective plot are important for

identifying the threshold level to operate GammaNet at in order to achieve the
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99.69–99.99 % background rejection rate desired for AdEPT.

(a)

(b)

Figure 2.10. Fig. 2.10a The ROC curves generated for each pair
production data set as classified by GammaNet, using 11x downsam-
pled images. The AUC is provided in the legend for each incident
gamma-ray energy. Fig. 2.10b A subsection of Fig. 2.10a is pre-
sented to display the nuanced features of the plot.

2.5.2 Downsampling Investigation

With the use of the ROC analysis, the impact of downsampling the simulated

images on classification performance can be investigated. The results of this are

displayed in Table 2.2, with downsampling rates between 1–11 are investigated
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Table 2.2. Pair production sensitivity of GammaNet, for sub-scale
simulation images, given the desired background rejection rate with
differing factors of downsampling. The data rate limits are sampled
between the proposed minimum and maximum as described in Sec-
tion 2.2. The background rejection rates listed are calculated by
using the ratio of the raw data rate and the data rate limit, assum-
ing the signal is approximately entirely background. Each data set
was generated from the sub-scale simulation, using the given down-
sampling rate. GammaNet was then trained and tested on those data
sets. The reported pair production signal sensitivities are the av-
erage sensitivity for the energies simulated. Error was calculated
using binomial statistics with a 95% confidence interval.

Downsampling Rate
1 3 5 7 9 11

Data Rate
Limit
(Mbps avg.)

Background
Rejection
Rate (%)

Signal Sensitivity (%)

1.5 99.99±0.002 43±2 65±2 50±2 41±2 40±2 28±2
5 99.97±0.003 47±3 73±2 65±2 54±2 49±2 45±2
10 99.94±0.005 54±3 78±2 73±2 62±2 56±2 56±2
20 99.87±0.007 64±2 84±2 81±2 74±2 67±2 66±2
30 99.81±0.009 68±2 87±2 84±2 78±2 72±2 71±2
40 99.75±0.01 71±2 89±2 86±2 81±2 75±2 74±2
50 99.69±0.01 74±2 90±1 87±2 83±2 78±2 77±2

using the sub-scale simulation. From these results it is shown that downsampling

rates between 3 and 5 provide improved signal sensitivity at every background

rejection rate, and with only marginal losses past this for the 99.99 % background

rejection rate. When considering the 99.94 % or lower background rejection rates,

every level of downsampling provides improved performance over the unaltered

images. This result may seem counterintuitive given the downsampling rate ef-

fectively reduces the resolution of the images, but it is believed that the down-

sampling increases performance by reducing the sparsity of the images. One such

consequence of this sparsity can occur at the original 400 µm resolution where
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the ionization tracks from the electron or positron can have discontinuities. This

can especially be a problem in the low energy range for pair production where

the electron and positron are Minimum Ionizing Particles (MIPs). With a 5 MeV

incident photon generating a 2 MeV electron and positron, the energy loss per

unit distance using the CSDA is 3.9 keV
cm

which at the 400 µm resolution is 1.56E-1

keV . With a mean energy per ion pair in Argon gas of 26.4 eV [75] this gives on

average 5 ion pairs generated per 400 µm distance, which could result in many

discontinuities in the track as can be seen in Fig. 2.8a which was downsampled by

a factor of 3 already.

While intermediate levels of downsampling provides higher performance for

every background rejection rate, there are losses in pair production sensitivity for

very high downsampling rates. This occurrence can be explained by the decreases

in apparent separation angle caused by high degrees of downsampling shown in

Fig. 2.11. In addition to this reduction in apparent separation of the two tracks,

the averaging that occurs begins to reduce the contrast between the ionization

track and the background noise.

These responses to downsampling are of benefit to GammaNet for both the in-

creases in sensitivity for most situations and the faster inference times afforded

by higher rates of downsampling. Given the large image size generated by the

full-scale simulation, a downsampling rate of 11 was used for the remainder of the

work when utilizing the full-scale simulation. Training of GammaNet on the full-

scale simulation data at a downsampling rate of 11 took 30 days of compute time,

proving investigating GammaNet’s performance on lower downsampling rates with

the full-scale simulation data to be prohibitively time consuming. This work was
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(a) (b)

Figure 2.11. Demonstration of the decrease in apparent separa-
tion angle with increases in downsampling. Fig. 2.11a demonstrates
the pair production at a 3 times downsampling rate, and Fig. 2.11b
shows the same image at 11 times downsampling. Adjustments to
brightness in the images are made for visibility.

completed with the use of a NVIDIA GTX 1080 Graphics Processing Unit (GPU)

which possess roughly 8.8 TFLOPS of processing power.

Table 2.3. Pair Production sensitivity for GammaNet and VGG16
at varying background rejection rates corresponding to anticipated
downlink speeds. Performance comparison results were generated
using the sub-scale simulation data, with a downsampling rate of
3.

Background Rejection
Rate (%)

GammaNet Pair Production
Sensitivity (%)

VGG16 Pair Production
Sensitivity (%)

99.990±0.002 65±2 28±2
99.97±0.003 73±2 38±2
99.94±0.005 78±2 46±2
99.87±0.007 84±2 57±2
99.81±0.009 87±2 61±2
99.75±0.01 89±2 64±2
99.69±0.01 90±1 66±2
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2.5.3 Architecture Comparison

A cursory investigation between the performance of GammaNet relative to other

neural network architectures was performed. In this investigation another neural

network architecture was chosen, VGG16 [71], given it outperformed GoogLeNet

in the ILSVRC. VGG16 was trained in the exact same manner as GammaNet and

the performance of the two networks were compared. The performance compar-

ison between GammaNet and VGG16 was carried out with a downsampling rate of

3, and with data produced from the sub-scale simulation. Section 2.5.2 provides

the results from each network when classifying the sub-scale simulation data, with

GammaNet shown to largely outperform VGG16 over the entire range of background

rejection rates investigated. This result is not what would be anticipated given that

VGG16 was found to be the better performing neural network in the ILSVRC com-

petition, but the task of event classification for AdEPT utilizes more sparse images.

This increased image sparsity perhaps loans itself better to the NiN architecture

employed by GoogLeNet allowing for improved performance on this task. These

results show that GammaNet is more well suited for classifying background images

than is VGG16, which ultimately is the primary task of GammaNet for AdEPT.

2.5.4 Compton Scatter Sensitivity

The performance of GammaNet when classifying Compton scatter events was of

interest as well given that it is the main photon interaction contributing to back-

ground in the AdEPT instrument, and the similarity in track structure compared

to pair production. The rate of misclassification for Compton scatter events as pair

production events provides information about the features that GammaNet uses for
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classifying the input. The main differentiation between the pair production and

Compton scatter tracks is the presence of only a singular track for Compton scatter

and the absence of the vertex from pair production. Support for the importance

of these features for classification is shown in Fig. 2.12. As the incident gamma-

ray energy increases, so too does the signal sensitivity for pair production. The

increase in signal sensitivity is due to the increased energy of the positron-electron

pair producing more linear tracks, closer in proximity, and with more distinct ver-

tices. This is supported by the negligible increase in signal sensitivity for Compton

scatter events.

The minor increase in sensitivity for Compton scatter is likely due to the in-

creased incident photon energy producing higher energy recoil electrons on average,

which would produce increased linearity in the ionization tracks. This produces a

much lesser response than does pair production though because it represents only

one of the characteristics of pair production signals. Additionally the energy of

the recoil electron in Compton scatter doesn’t take the entire incident photon’s

energy, instead having a continuum of possible energies unlike in pair production

where all energy is transferred to the creation of the pair and their kinetic energy.

These characteristics result in a much less significant increase in signal sensitivity

for Compton scattering as the incident energy increases.

Due to the large raw data rate and the limits of satellite communications, it is

required to achieve a background rejection rate of 99.99% to 99.69% in order for the

data to be transmitted. To achieve this background rejection rate, the threshold

for a pair production event classification has to be set quite high, 0.9999986, which

results in a number of pair production events being misclassified as background
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Figure 2.12. Plot of the sensitivity for Compton scatter and pair
production image sets as the energy of the incident gamma ray
varies, using a downsampling rate of 11 on the full-scale simula-
tion. These sensitivities were calculated using a threshold value
that generated a 99.990±0.002% background rejection rate. Errors
were calculated using binomial statistics with a 95% confidence in-
terval.

events. Table 2.4 shows the average rate at which GammaNet classifies pair produc-

tion and Compton scatter events as a positive event, given different background

rejection rates. These results were generated using the full-scale simulation with a

downsampling rate of 11. The classification accuracies were averaged over the en-

ergies simulated for pair production and Compton scatter. It is shown in Table 2.4

and Fig. 2.12 that at the proposed 99.99% background rejection rate, we obtain a

pair production sensitivity between 0.1±0.1% and 17±2%, depending on incident

photon energy, with an average of 10±1%. For the best case scenario of 99.69%

background rejection, the signal sensitivity increases to a range of 1.1±0.5% to

69±2%, again depending on incident photon energy, with an average of 52±2%.

In both cases, the sensitivity to Compton scatter is quite small, which is beneficial

for the mission due to Compton scatter representing background for the AdEPT

mission. The relatively low sensitivity to pair production events at low energy will
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reduce the effectiveness of the instrument, but this impact can be mitigated during

mission design by implementing image compression, where these calculations were

done assuming no compression.
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Table 2.4. Pair production and Compton scatter sensitivity at
varying background rejection rates corresponding to anticipated
downlink speeds. The GCR proton background rejection rate was
calculated for one set of background images. Each data point for
Compton scatter and pair production sensitivity were generated
by averaging the sensitivity over all simulated gamma-ray energies.
All data here were generated using the full-scale simulation with a
downsampling rate of 11.

Background Rejection
Rate (%)

Pair Production
Sensitivity (%)

Compton Scatter
Sensitivity (%)

99.990±0.002 10±1 0.3±0.3
99.97±0.003 16±2 0.4±0.3
99.94±0.005 26±2 0.7±0.4
99.87±0.007 37±2 1.3±0.6
99.81±0.009 44±2 1.7±0.6
99.75±0.01 47±2 1.9±0.7
99.69±0.01 52±2 2.2±0.7

2.5.5 False Positive and False Negative Events

In this study, the test set of GCR protons contained 106 events, with twice as

many images. Operating at 99.99% background rejection results in 100 GCR pro-

ton events being classified as a pair production event, considered false positives

events. Given that GammaNet classifies both projections of an image and compares

the results with a Boolean or, a false positive occurs when at least one of the two

projections is classified as positive. Fig. 2.13 shows 4 of the GCR proton events

that resulted in false positive classifications. The opposite situation where a pair

production event is classified as background is a false negative event. Fig. 2.14

shows 4 pair production events that resulted in GammaNet producing the lowest

response for pair production classification out of the testing set. The projection

images shown in Fig. 2.13 are the projections that resulted in the false positive
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(a) (b)

(c) (d)

Figure 2.13. Projection images of simulated GCR proton events
that resulted in false positive classifications. Only the projection
image resulting in the false positive is shown, the alternate projec-
tion is not included because no event produced a false positive in
both projections.

classification, with no single GCR proton event producing a false positive in both

projection images. The projection images shown in Fig. 2.14 are the projections

that were found to be more representative of the features that resulted in false

negative classifications. In the false positive images, Figs. 2.13a to 2.13d, ex-

tended delta-ray tracks are observed with at least one point of track crossing.

Where a delta ray is the occurrence of a secondary particle with enough energy to
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(a) (b)

(c) (d)

Figure 2.14. Projection images of pair production events that
produced the lowest response in GammaNet for the pair production
event class. The projection shown is most representative of the
cause for false negative classification.

create a significant ionization trail which diverges from the original ionizing parti-

cle’s vector. This observation demonstrates that GammaNet responds to extended

contiguous tracks, and track crossings, as signals of pair production events. In ad-

dition, Fig. 2.13a contains a pair production event occurring from a GCR proton

track which results in a false positive classification, showing GammaNet responds

significantly to the vertex of a pair production event. In the false negative images,

Figs. 2.14a to 2.14d, three features can be observed in the pair production images:

short apparent track length in Figs. 2.14a to 2.14c, overlapping of the two tracks
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making it appear as a singular track in Figs. 2.14a and 2.14b, and deep inelastic

scattering events in Fig. 2.14d. Each of these characteristics are indicative of sit-

uations where the ionization track would be made to look more like a background

event than pair production.

(a) (b) (c)

(d) (e) (f)

Figure 2.15. a-c) Images generated by the Gradient-weighted
Class Activation Mapping (Grad-CAM) algorithm that demon-
strate the features that GammaNet utilizes for classifying images
as background or signal. d-f) The simulation images used to gener-
ate the respective Grad-CAM images, with d) being a background
event and e) and f) being signal events.

2.6 GammaNet Visualization

As the use of CNNs becomes more prevalent in research, it is of increasing interest

how the CNN performs the classification and what features of the input it uses to

do so. Grad-CAM [76] is a recent algorithm developed to answer these questions by

providing an activation map for input images that shows the regions the CNN used

most within the image during classification. Fig. 2.15 shows the Grad-CAM images
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generated for GammaNet with one background image, Fig. 2.15d, and two signal

images, Figs. 2.15e and 2.15f. These images were generated using the sub-scale sim-

ulation of AdEPT because the lower track density provides interpretable results.

Fig. 2.15a shows that for the background class, GammaNet utilized sparsely ioniz-

ing tracks and delta rays present in Fig. 2.15d, resulting correctly in a background

classification. Fig. 2.15b demonstrates that for the signal class, GammaNet uti-

lizes the separate, nearly parallel, tracks of the pair production event preferentially

over the overlapped pair production event at the bottom of Fig. 2.15e, resulting in

an accurate positive classification. Lastly, Fig. 2.15c results in a false background

classification of the pair production image, Fig. 2.15f, with GammaNet using the

sparsely ionized GCR tracks and the delta generated from the pair production

track.

2.7 Conclusion

The event classification requirements of the AdEPT mission dictate a background

rejection rate between 99.99% and 99.69% which must be achieved within a 50

ms time window determined by the instrument collection rate. GammaNet, using

mixed precision enabled by NVCaffe, was able to achieve a background rejection

rate of 99.990±0.004%. These results were achieved using the full-scale simulation,

classifying on images downsampled at 11x. The time for inference was found to be

on average 6.8 ms utilizing a NVIDIA GTX 1080 GPU, which has 8.2 TFLOPS of

single precision compute performance. This implies that, as is, GammaNet would

require 1.1 TFLOPS of single precision compute available to it from the on-board

flight computer. The AdEPT mission is still in the development stages, and thus
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the flight computer has not been chosen. Commercially available flight computers

are capable of meeting this demand. Additionally NASA is investigating the use of

commercial SoC solutions that possess greater than 1 TFLOPS performance [62].

In its current iteration, GammaNet is not prohibitively compute intensive for use as

an on-board event classifier.

It was found that, in the best case situation of 99.69% background rejection,

signal sensitivity for pair production will range from 1.1±0.5% to 69±2% for 5 to

250 MeV incident gamma rays. This range becomes 0.1±0.1% to 17±2% for the

worst case scenario requiring 99.99% background rejection. The low sensitivity

lowers the effectiveness of the AdEPT instrument, however these values were gen-

erated using conservative estimates. These results show that GammaNet achieves

the desired background rejections of AdEPT, making it a serious consideration for

use on-board the satellite for event classification.

These performance estimates include no image compression, and downlink band-

width afforded by current and near future satellite communication [45, 59, 60, 61].

No image compression was used as a conservative assumption due to the data

handling system for the AdEPT satellite not yet being decided. Simple lossless

compression afforded by the PNG format produces compression ratios nearing 2

for the simulation images used in this study. As more systems aboard the AdEPT

satellite are designed and implemented, more precise determination of the opera-

tional parameters of GammaNet can be achieved. Reductions in the raw data rate

will allow GammaNet to operate at a lower background rejection rate, affording

increased pair production sensitivity.
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Grad-CAM was implemented for GammaNet in order to discern the features

that GammaNet uses during classification of the simulation images. The results

from this application support the supposition that GammaNet utilizes features that

are characteristic of background for the respective classification, such as lower

ionization density relative to the pair production tracks and the presence of delta

rays. For the positive class of pair production the network responds strongly

to semi-parallel tracks that are close in proximity, indicative of energetic pair

production events.
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Chapter 3

Experiment Based Application:

NeutronNet

3.1 Introduction

The identification and quantification of neutron fields is inherently a difficult task.

As was outlined in Section 1.4 this difficulty is due to two things: the lack of charge

of photons and neutrons, and the generation of an intense secondary photon field

by the principal neutron field. The lack of charge for both particles precludes

the use of coincidence or anti-coincidence detection systems for event separation.

Furthermore the generation of a secondary photon field by neutrons interacting

with all matter makes it impossible to simply remove the photon field by shielding

the detector from it. These issues left only two possible solutions: having a detector

that is sensitive to neutrons and relatively insensitive to photons, or Pulse Shape

Discrimination (PSD). Given the increasing difficulty of obtaining 3He as well

as its limitations, PSD has recently become the defacto solution for neutron and
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photon event separation.

The remainder of the research contained in this thesis looks at the application

of Machine Learning (ML) techniques to the task of PSD for neutron and pho-

ton event classification. This work is intended to be an extension of the research

outlined in Chapter 2 in the sense that it is ML as applied to Particle Identifi-

cation (PId). The limitations imposed by the instrument for Advanced Energetic

Pair Telescope (AdEPT) not being completed is the inability to conduct exper-

iments to validate and further develop GammaNet, which was a simulation based

study. Simulation based studies, especially in the context of ML, are quite en-

ticing. The capabilities afforded by simulation include having complete control

over the contents of the physics involved, confidence in the labelling of results,

and they are easily extended to arbitrary size for consideration of statistics. These

benefits though are opposed by the unavoidable differences between reality and

simulation, limiting simulation based studies to the realm of proof of concept. To

fully develop any application requires experimental data, which is the focus of this

research going forward. A review of the state of ML as applied to neutron and

photon separation found there was as yet no application of Convolutional Neural

Network (CNN) based ML algorithms as discussed in Section 1.4.

3.1.1 Data Generation

With each application of supervised ML there needs to be a commensurate labelled

data set to train the algorithm off of. In the case of neutron photon separation,

this includes a neutron data set and a photon data set, with the former presenting

complications outlined in Section 1.4. The photon data set is relatively trivial
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to produce because of the availability of isotopic photon sources and the limited

neutron background present at sea level [77, 78]. There are three practical solutions

to generating labeled neutron data: simulation of neutron detection events, Time

of Flight (ToF) tagging, and PSD derived neutron and photon separation.

During this work it was found that the simulation capabilities of Geant4 were

limiting in terms of fully simulating the time dependent characteristics of signals

for the proposed EJ-301 scintillator used in this work. The toolkit is limited to

simulating scintillation with two principal time constants for scintillation light,

but EJ-301 possesses three scintillation components. In addition to this incom-

patibility, which could be corrected for with additional programming, there was

also limited or no literature found for the ratios of excitation for these states from

different interacting particles. These issues combined made a better argument for

developing the training and testing data sets for the ML application by means of

ToF tagging and use of traditional PSD methods.

The enabling physical characteristic for ToF event tagging is the difference in

velocity for photons and neutrons. Photons obviously travel at the speed of light

and neutrons, with our energy range of interest being well below relativistic, travel

at a fraction the speed of light. This difference in velocity can be carefully exploited

to provide the identity of the particle that gets detected at a known distance from

the source, if the emission of the neutron and photon occur at a well known time.

Two such neutron sources would be those where neutron emission are accompa-

nied by characteristic prompt photon emissions, or where an intermittent neutron

emission is possible such as with pulsed accelerator based sources. The former was

attempted with the 9Be(α, n) neutron sources available at McMaster University,
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namely 238Pu9Be and 241Am9Be. The latter would have been the objective of a lab

visit to neutron metrology labs such as Physikalisch-Technische Bundesanstalt in

Germany or the National Physics Laboratory in the United Kingdom, but these

were made inaccessible because of the COVID-19 pandemic.

The 9Be(α, n) reaction produces a neutron and a 12C, with approximately 60

and 15 % chance of leaving the 12C in it’s first and second excited states [79],

shown in the level diagram Fig. 3.1. The coincident detection of the neutron and

one of these prompt photons would have an associated time delay governed by the

velocity of each particle. This time difference is given by Eq. (3.1).

∆t = d

c− vn
or
dγ
c

− dn
vn

(3.1)

With the time between coincidence signals being ∆t, c being the speed of light,

vn being the velocity of the neutron, and dx being the source to detector distances.

The first solution holds if the distance between the source and each coincidence

detector are kept equal, and the second being the solution for non-equal distances

between detector and source.

Figure 3.1. Energy level diagram for the 12C nucleus. De-
excitation of the second state occurs as a cascade, with each level
decay promptly.
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The neutron and photon separation results achieved with the ToF method for

event tagging, which are discussed in Section 3.3, were not considered to be ade-

quate. To remedy this data set separation for neutron and photon events was per-

formed by applying traditional PSD techniques. A multitude of PSD techniques

exist to try and perform PId, the most common and traditional being Tail-To-

Total (TTT) [35]. Newer techniques look at more complex analysis of the signal

including wavelet transforms, pulse gradients etc. to perform PSD with greater

success but higher computational overhead [80, 81, 82, 83]. Given the objective

with this application was to generate a pure enough training data set for neutron

and photon classification TTT was found to be sufficient.

TTT produces event separation by taking the charge collected in the total

signal, and then compares it to the charge collected in just the tail. The tail

of the event is defined as everything following some fixed time after event start.

With proper parameterization of the delay time from event start, identification

of neutron and photon interactions can be achieved. This separation is done by

plotting the energy of the event against the ratio of the tail and total charges. In

EJ-301 the signal duration for a neutron interaction is characteristically longer in

duration than that of a photon event, as discussed in Section 1.4. The resultant

signal shape from the two interaction types is shown in Fig. 3.2. It is evident, that

for uniform signal maxima, more of the total charge resides in the tail of a neutron

signal than does a photon signal.

From the plot of TTT data there are two evident populations, with the top

most population representing photons and the bottom representing neutrons. This

determination is made because the closer to 1 on the y-axis a signal resides, the
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Figure 3.2. Average signals over the photon and neutron data
sets. Signal event times were calculated to align pulses, and signal
height was normalized to one before averaging. Noise present in the
neutron signals is more pronounced due to low signal amplitudes
relative to noise.

more of it’s charge is present in the beginning of the signal. Conversely to this,

being lower on the y-axis represents more of the signal being collected in the

tail of the event. A representative TTT chart is shown in Fig. 3.3, which was

generated by collecting events from an 241Am9Be neutron source, which is further

discussed in Section 3.2.1. Given that, at low energy, the two populations begin

to overlap, a line separating neutron and photon events needs to be made. Several

attempts were made at separating these two populations, with good success found

for manually drawing a conservative line. A conservative separation being one that

more readily identifies events as photons, given that was thought to be the less

detrimental contamination for labelling events.
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Figure 3.3. TTT plot of events recorded with the EJ-301 liquid
scintillator and the 241Am9Be neutron source. Note that events at
low energy with non-physical ratios of greater than 1 are caused by
the tail of the signal having an overall negative value. Energy, as
displayed here in keV ee, is the measure of energy deposited in the
scintillating material in terms of total charge measured for an event
and calibrated to a linear fit of the Compton edges of 24Na, 60Co,
and 137Cs.

3.1.2 Performance Characterizations

Once a suitable data set of labelled neutron and photon events was generated, it

was necessary to identify a performant ML architecture. To do so, 4 different ML

architectures were implemented and tested. These architectures included more

recent CNNs as well as older fully connected architectures, to investigate whether

higher complexity was necessary. In addition to this the impact of sampling rate

and bit depth on ML performance were investigated to complement research in

the literature on these impacts on traditional PSD [84].
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3.2 Methods

3.2.1 Experimental Setup

The scintillators used in these experiments were an EJ-301 liquid scintillator cou-

pled to a Hamamatsu R7724 Photomultiplier Tube (PMT) and a LaBr3(Ce) scin-

tillator coupled to a Hamamatsu R6233 PMT. The EJ-301 liquid scintillator was

chosen for its neutron sensitivity and PSD performance, while the LaBr3(Ce) was

chosen for its energy resolution as well as scintillation time. These scintillators

would be used for ToF measurements and therefore both require very quick sig-

nal characteristics for effective sufficient time resolution. The advantage for the

energy resolution offered by LaBr3(Ce) over the faster timing of another EJ-301

liquid scintillator is the ability to not only time gate events for ToF but also en-

ergy gate for the characteristic energies of the 12C de-excitation photons shown in

Fig. 3.1.

The signals from the scintillators were recorded using a CAEN DT-5743 dig-

itizer. The CAEN DT-5743 digitizer was chosen for both its 12 bit depth and

2.5 V peak-to-peak input range, and its sampling frequency of 3.2 GHz. A rising

edge threshold of 10 mV was in each measurement with the CAEN DT-5743 digi-

tizer. The research found in the literature explored the impact on PSD of varying

frequencies and bit depths, but the frequencies sampled were limited to below 2

GHz, with only 10 bits of resolution available at that rate [84, 85]. This digitizer

would enable investigating a much wider range of sampling rates with a bit depth

covering the useful range found in [84, 85]. During the time of the literature re-

view and purchasing of components, more capable digitizers did exist such as the
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ADQ7, which samples at 5 or 10 GHz with 14 bits of depth, though the difference

in costs were significant.

Energy calibration and photon data set signals were collected from 24Na, 60Co,

and 137Cs sources. Neutron data, including ToF measurements, were collected

from 238Pu9Be and 241Am9Be isotopic neutron sources. Both of these sources emit

neutrons through the 9Be(α,n) reaction and have very similar neutron spectra with

accompanying 12C de-excitation photons. The discrepancies between these neutron

spectra can be attributed to the energy of the α decay for each isotope having a

difference of roughly 100 keV , as well as construction of the source with grain size

impacting the energy loss of the α before reacting with the target 9Be. The impact

of these differences on the work conducted here is believed to be inconsequential.

The experiments were conducted in three configurations with two variations

each. Firstly the energy calibrations were conducted for each detector simply with

the photon sources placed on the detector face. The next configuration was the

coincidence analysis conducted as shown in Fig. 3.4a. Lastly was the coincidence

measurements of the 238Pu9Be source, which were setup as shown in Fig. 3.4b.

Of note in Fig. 3.4b is the the borehole in the shielding box, which is where the
238Pu9Be neutron source is placed during measurement, which is located at the end

of the table in the top of the picture. The variations on these two coincidence ex-

periments was the replacement of the LaBr3(Ce) scintillator with a second EJ-301

later on. This replacement was done because the timing resolution was signifi-

cantly worse when using the LaBr3(Ce) scintillator due to its PMT which is slower

and has a larger Transit Time Spread (TTS) when compared the the PMT used in

the EJ-301 scintillator [86, 87]. For each experimental setup the electronics chain
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includes a desktop high voltage power supply, the CAEN DT-5743 digitizer, the

PMTs, and the readout laptop.

(a) (b)

Figure 3.4. Images of the measurement setups used to generate
neutron and photon data sets, perform coincident timing measure-
ments, and to perform energy calibrations.

3.2.2 Event Timing and Energy Calibration

The event timing in this work was performed by finding the intersection point of

a linear fit to the baseline before signal start and a quadratic fit to the rising edge

of the signal. The linear fit was performed on a baseline of 25 samples and the

quadratic fit was between 10 and 90 % of the signal max. The full length of the

signal is 1024 samples or 320 ns total, which allows for some pulse pileup to occur.

To avoid contamination in the training set from pulse pileup an algorithm was
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(a)

(b)

Figure 3.5. Plots of a signal demonstrating the reduction of bit
depth from the original 12 bits Fig. 3.8a to 6 bits in steps of 2,
and the same event with reductions in sampling frequency from 3.2
GHz Fig. 3.8b with 2, 6, and 11x reductions. A horizontal offset is
provided for each representation of the event of 0.5 V for the sake
of ease of viewing.
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implemented to detect these events and remove the respective signals from the

data set. The determination of a pulse pileup event was made following finding

the event time. A signal was said to contain a pileup if the signal level rose above

15 times the noise level following a delay of 150 samples after the determined event

time.

The energy of an event was determined by integrating all values in the sample

following the determined event time. This is then converted to charge by consid-

ering the sampling time and the 50 Ω resistance of the PMT output. Plotting a

histogram of all of these charges for a data set can then be used to calibrate for

energy. The complication in this matter arises from the dominant photon interac-

tion within a liquid scintillator being Compton scatter. This interaction creates a

continuum of energy depositions within a scintillator ranging from 0 to a maximum

dictated by the energy of the incident photon following Eq. (3.2).

Edep = Eγ ∗ (1 − 1
1 + ( Eγ

mec2 )(1 − cosθ)
) (3.2)

This continuous energy deposition prohibits the easy identification of character-

istic photons that is possible with inorganic scintillators where full energy deposi-

tion is typical. A plot comparing the energy deposition histograms for the EJ-301

and LaBr3(Ce) scintillators is shown in Fig. 3.6. In the LaBr3(Ce) histogram,

Fig. 3.6b, the relation to energy and charge is clearly discernible and calibration

is trivial. For the EJ-301 histogram, Fig. 3.6a, characterizing the relationship

between energy deposition and charge requires the identification of the Compton

edge where the maximum energy deposition occurs. In this work the fit for the
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(a) (b)

Figure 3.6. Charge histograms for the EJ-301 scintillator,
Fig. 3.6a, and the LaBr3(Ce) scintillator Fig. 3.6b. The source in-
volved in Fig. 3.6a is just the 60Co source, for Fig. 3.6b a 60Co and
137Cs source were measured with an additional peak from internal
decay of 138La in the scintillator.

Compton edge was achieved by fitting to a convolution of a quadratic Heaviside

function and a Gaussian function as outlined in [88]. This fit accounts for the

Compton continuum as well as the Gaussian broadening effect of the scintillator

and electronics.

Prior to determining event time and applying the TTT algorithm, each event

was filtered with a finite impulse response filter. This filter simply took a running

average of N signals by iterating through a pulse adding the newest element and

removing the oldest element and averaging those N elements for the signal output.

This filter was applied to improve the PSD results by achieving better timing

results, an example filtered pulse is shown in Fig. 3.7, with the filtered signal

having a 50 mV vertical offset for viewing.
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Figure 3.7. Plot of a signal acquired with the EJ-301 liquid scin-
tillator and the resultant filtered signal with a 50 mV offset.

3.2.3 Bit Depth and Sampling Rate Reduction

Of interest in this work was the impact of sampling rate and bit depth on the

performance of the ML solution. To enable this investigation events were recorded

with full bit depth and sampling rate afforded by the DT-5743 digitizer, being 12

bits and 3.2 GHz. New versions of a data set were then generated with artificially

reduced sampling rate and bit depth. This was opted for instead of reproducing

each measurement with multiple digitizers at varying bit depths and sampling rates

because it controls for other undesired variability such as electronic noise, dynamic

range, and differential nonlinearity that change between digitizers. The generation

of reduced sampling rate data sets was performed by taking every Nth value, with

n being the ratio between the original sampling rate and the desired reduced

sampling rate. For the reduction in bit depth the dynamic range of 2.5 Volts

was divided into the number of steps possible for the desired bit depth and then

values obtained in the measurement at 12 bits are rounded to the nearest value.
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A demonstration of these reductions is shown in Fig. 3.11, with Fig. 3.8a showing

the bit depth reduction and Fig. 3.8b showing the reduction in sampling rate.

Bit depth reductions were done performed with integers numbers of resultant bits

between 11 and 3. Sampling rate reductions were performed with integer reduction

ratios of between 2 and 64 to achieve effective sampling rates of 1600 MHz to 50

MHz. Of note, the data reductions mentioned here were performed following

event separation into neutron and photon data sets. This is important because

the reductions in sampling rate and bit depth would severely impact the event

selection routine used for separating neutrons and photons into their respective

training and validation data.

3.2.4 Machine Learning Architecture Comparisons

To find an effective ML solution for event separation four algorithms were tested in

this research: MultiLayer Perceptron (MLP), Recurrent Neural Network (RNN),

AlexNet, and GoogLeNet [89, 90, 91, 92]. MLPs represent some of the older ML

architectures and are designed around fully connected layers which are akin to

inner products, though with much higher dimensionality. RNNs, AlexNet, and

GoogLeNet all represent the more recent trend of machine vision architectures be-

ing built up from convolution operations called CNNs. Out of the three CNNs,

GoogLeNet and AlexNet were modified to include only 1-Dimensional operations,

and the input for the RNN was modified to be a 32x32 input. Additional modifi-

cations were made to GoogLeNet based off of the performance shown in Chapter 2,

with a depth of three inception modules used in this work.
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(a)

(b)

Figure 3.8. Plots of a signal demonstrating the reduction of bit
depth from the original 12 bits Fig. 3.8a to 6 bits in steps of 2,
and the same event with reductions in sampling frequency from 3.2
GHz Fig. 3.8b with 2, 6, and 11x reductions. A horizontal offset is
provided for each representation of the event of 0.5 V for the sake
of ease of viewing.
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3.2.5 Machine Learning Training

In order for a ML algorithm to be able to perform classification it first is necessary

to train it with data representative of the classification problem it will be applied

to. The training performed in this work represents supervised ML, where the

training data is already labelled for which class it belongs to which in this case is

neutron or photon. Again, the generation of a photon data set is mostly trivial

given the limited neutron background that is experienced near sea level [77, 78].

In the limiting case of low activity photon sources this can become an issue when

trying to determine PId performances with only 1:1,000,000 error rates, as will be

discussed in Chapter 4. With high enough activity sources, the neutron rate is

low enough that contamination in the photon data set is negligible as shown in

Fig. 3.9, which was collected with 60Co and 137Cs sources. In this work the TTT

PSD results presented are found using a delay time of 24 ns to define the tail

portion of the signal.

The issue of generating training and validation data for neutron classification

is more difficult. As is the problem that this work aims to address, whenever

neutron sources are present a significant secondary photon field is generated. In

order to be able to successfully train a ML algorithm it is necessary to have the

purest possible training data in terms of correct labelling. To achieve this in this

work PSD was performed on measurements of neutron sources and the resultant

neutron population and photon population were identified by manually drawing

regions around them as can be seen in Fig. 3.10.

When drawing the bounds around the neutron and photon region attention

was paid to broadening the region as energy decreased, but to avoid the region
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Figure 3.9. TTT PSD generated from photon data collected with
a 60Co and 137Cs photon source.

Figure 3.10. Plot of the TTT PSD results when data collected
from an Am-Be neutron source were ingested. Manual regions were
drawn around the neutron and photon populations to separate for
training and validation of ML algorithms.
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of overlap between the populations as much as possible. This avoidance was im-

portant to reduce the amount of improperly labelled events during training that

would negatively impact performance of the ML algorithms. Further to avoiding

this region of overlap for training data set generation, balancing the number of

neutron and photon events improved performance, likely by avoiding generating a

bias for one event over the other.

3.3 Results

3.3.1 Equipment Verification

Upon receipt of the EJ-301 scintillator, tests were performed to observe the signal

quality. These aimed at characterizing the noise, identifying if any power supply

issues occurred, and validating there were no issues with signal. When investigat-

ing the signal significant signal reflections were observed indicating an issue with

grounding in the PMT which are shown in Fig. 3.11a. The grounding issue was

being caused by the anodized aluminum layer on the PMT end cap, which was

too thick for the grounding connection to be sufficient. This issue was alleviated

by roughing the surface of the PMT end cap exposing the aluminum for a better

pathway to ground, shown in Fig. 3.11c. This issue is typically avoided by instal-

lation of a washer with teeth between the end cap and the grounding lug, which is

intended to penetrate the anodized aluminum layer. It can be seen in Fig. 3.11b

that this was incorrectly installed between the fastening nut and the grounding

lug.
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(a)

(b) (c)

Figure 3.11. Image of the signal reflection, Fig. 3.11a, which was
caused by improper installation of the washer and grounding lug,
Fig. 3.11b, and the implemented fix to improve the ground contact
Fig. 3.11c.
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3.3.2 Timing Resolution

The initial approach taken to separate neutron and photon events was through

implementation of ToF. This process requires accurate timing information to

be able to correctly gate for neutron or photon events. To identify the timing

resolution of the system and algorithms, coincident measurements of a 24Na source

were made with a pair of EJ-301 scintillators as well as with an EJ-301 scintillator

and the LaBr3(Ce) scintillator. The primary difference between these sets are the

PMTs involved, with both being the Hamamatsu R7724 for the EJ-301 scintillators

and R6623 for the LaBr3(Ce) scintillator. The Hamamatsu R7724 has a transit

time of 29 ns and a TTS of 1.2 ns and the Hamamatsu R6233 has a transit time

of 52 ns and a TTS of 8.5 ns [87]. This was observed in experiment when finding

the timing resolution of the setup including the LaBr3(Ce) scintillator, shown in

Fig. 3.12b, which results in a σ of 10.78 samples or 3.37 ns. When using the two

EJ-301 scintillators this improves drastically, as shown in Fig. 3.12a, which results

in a σ of 2.06, corresponding to 0.644 ns. When referring to the TTS, where

Hamamatsu reports the Full Width at Half Maximum (FWHM), these values are

7.93 and 1.52 ns for the measurements including the LaBr3(Ce) scintillator and

without it respectively. The event timing resolution is within what should be

expected given the published values from Hamamatsu [87].

3.3.3 Event Selection

ToF event tagging was attempted with coincidence measurements of the 238Pu9Be

neutron source. The ToF measurements were made with the EJ-301 scintillator

as the neutron signal and the LaBr3(Ce) scintillator acting as the coincidence
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(a) (b)

Figure 3.12. Event timing histograms for measurement of coin-
cident photons from 24Na by two EJ-301 scintillators Fig. 3.12a,
and an EJ-301 scintillator combined with a LaBr3(Ce) scintillator
Fig. 3.12b. Note the negative values in time differences in Fig. 3.12b
are caused by the longer transit time of the Hamamatsu R6233
PMT used with the LaBr3(Ce) scintillator.

trigger for the 12C de-excitation photons. The gating of events were made on

both time of arrival for the EJ-301 signal as well as energy deposition in the

LaBr3(Ce) scintillator. The LaBr3(Ce) scintillator was used, in spite of its worse

timing resolution, for its superior energy resolution allowing for identification of

full energy deposition from the 12C de-excitation photons. The resultant ToF

spectrum achieved with this setup is shown in Fig. 3.13, showing two distinct

peaks.

The larger peak is photon coincidences, likely from detection of the two prompt

photons from 12C de-exctitation or cross talk from Compton scattering in either

of the two scintillators due to inadequate shielding of each detector. The following

peak is neutron coincidences, with relative arrival times of roughly 50-80 samples

or 15-25 ns. The energy spectrum from the two detectors, before and after the

energy gating, is shown in Fig. 3.14.
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Figure 3.13. Histogram of the time difference for coincident events
measured in a LaBr3(Ce) scintillator and an EJ-301 neutron sen-
sitive liquid scintillator. The event timing window on the CAEN
DT5743 for coincidence was set to 50 ns.

(a) (b)

Figure 3.14. Histograms of collected charge for events detected
within a 50 ns coincidence window with EJ-301 and LaBr3(Ce)
scintillators exposed to a 238Pu9Be neutron source.
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Figure 3.15. TTT PSD results for the ToF tagged "neutron"
events from the 238Pu9Be neutron source.

The success of the ToF method was investigated by applying TTT PSD to

the events determined to be neutrons by the ToF setup. These results, shown in

Fig. 3.15, indicate that there was a large degree of photon contamination in the

supposed neutron data set. This is obvious from the observation of two very well

separated populations, as was observed in Fig. 3.10. This degree of contamination

was found to be too great for machine learning and so this method of data set

generation was abandoned. Label generation was instead performed by manually

separating the neutron and photon populations in TTT PSD, as was indicated in

Section 3.2.5.

3.3.4 Performance Characterization

Performance of PSD methods are typically quantified by using the Figure of

Merit (FoM) [93], which plots the histogram of the pulse shape metric and fits

a Gaussian to each population. From this, the FoM is calculated as the distance
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between the two populations divided by the sum of their full width at half max,

shown in Fig. 3.16. This performance metric does not work well for measuring the

performance of ML classifiers because the output is the probability that the input

belongs to one of the predetermined classes, in this case neutron or photon. The

outputs observed in this work are extremely bi-modal, as seen in the histogram of

outputs for the GoogLeNet adaptation used in this research Fig. 3.17. To compare

the performance of standard PSD methods and the ML algorithms, the sensitivity

to neutrons at varying photon rejection rates are investigated through use of the

Receiver Operating Characteristic (ROC) curve [94].

Figure 3.16. Histogram of the PSD metric for a measurement of
the 238Pu9Be neutron source, achieving a FoM of 1.1.

ROC curves are applicable for quantifying binary classifier performance, such as

the ML algorithms applied in this work. ROC curves are applied here in the same

manner as for Section 2.5, but the classifications are for neutrons and photons.

In the case of this application neutrons represent the positive classification and

photons represent the negative classification. A resultant ROC curve is shown in

Fig. 3.18 for the GoogLeNet adaptation. For this application the True Positive
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Figure 3.17. Histogram of neutron classification probability out-
put by the neural network when classifying events recorded from
the un-shielded 238Pu9Be neutron source.

Rate (TPR) and False Positive Rate (FPR) can then be identified as the number

of neutrons and photons correctly identified over their respective data sets. The

TPR can then be thought of interchangeably as signal sensitivity and the FPR as

background rejection rate in the case of neutron detection.

When characterizing the performance of the ML algorithms care was taken in

not providing a false sense of performance by only providing the network with well

separated events in regards to PSD. This is significant because these events are

already well managed by traditional PSD methods, consequently they are not of

great interest when looking to out perform those methods. To avoid this issue,

the photon validation data set was taken from the unaltered 60Co and 137Cs data

sets. This photon set, below roughly 340 keV ee, begins to impinge on the neutron

population that was selected and then split for training and validation of the

neutron class. This overlap is apparent when comparing Figs. 3.9 and 3.10.
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Figure 3.18. ROC curve demonstrating the classification perfor-
mance of the GoogLeNet implementation.

In spite of this large degree of overlap in signal shape at low energy deposition

the algorithm still achieves a TPR of 69.17 % while correctly rejecting 99.9999

% of the photons. Specifically, below 200 keV ee where both populations are en-

tirely overlapping, the algorithm identifies 21.48 % of the events from the neutron

population to be neutrons. This is significant because even with only the neutron

source present, this region of the neutron population will be contaminated with

secondary photons generated from the neutron field. This can be observed by com-

paring the extent of the photon population in Fig. 3.9 and the neutron population

in Fig. 3.10. The photon population extends, at low energy, down to a ratio of

0.5 which entirely overlaps with the neutron population. The neutron population

was selected to extend, at low energy, between a ratio of 0.7 and 0.5, making it

impossible to encompass only neutrons in the validation data set. Avoiding this

inseparability was the objective of implementing ToF, but as discussed the results
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of this were insufficient.

3.3.5 Algorithm Comparisons

Many studies have looked at the comparison of differing methods in PSD to one

another [95, 96, 97], with results for both traditional PSD methods as well as appli-

cations of ML, with the exception of any significant applications of CNNs. In this

work the classification performance was determined utilizing four ML algorithms

as well as TTT PSD. The performance when using region bounding with TTT

PSD is seen in Fig. 3.19, where a region was manually drawn to get the best per-

formance possible. This required a lower energy limit of 200 keV ee and achieved

a TPR 0.78 of at a FPR of 6.4E-4. This is a very high degree of performance, but

is limited to the already well separated region, and doesn’t extend to low energy

deposition. As soon as energies below 200 keV ee are considered, the FPR increase

greatly.

The comparison of performance for each ML algorithm, shown in Table 3.1,

demonstrates that when considering a low FPR, the GoogLeNet adaptation achieves

the greatest TPR at 69.17 % for a FPR of 1E-06. Of note though is that each

algorithm that implements a CNN architecture outperforms the more basic MLP.

Also of note is that the RNN implementation outperforms GoogLeNet when not

requiring FPRs below 1E-5.

Of interest in the performance of the GoogLeNet adaptation is the energy range

of the neutrons that were identified as neutrons. To out perform the PSD provided

by TTT, the identification of neutrons needs to extend below 200 keV ee. To
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Figure 3.19. Manually bounded regions for determining classifi-
cation of neutron or photon based off of TTT PSD.

observe this the neutrons correctly classified at the FPR of 1E-6 were saved and

then put through the TTT algorithm for observation, shown in Fig. 3.20.

The lowest energy observed in the validation neutron set is 127 keV ee and for

the correctly classified neutrons is 164 keV ee. This shows that the ML approach to

PSD out performs TTT in the low energy regime. At higher energies it is obvious

that the ML solution fails to correctly identify some of the neutrons. A breakdown

of these losses over the validation set are shown in Table 3.2.

These results show that the implementation of GoogLeNet used here outper-

forms the more traditional TTT PSD when energy deposition is below 1000 keV ee.

The loss of performance at greater than 1000 keV ee could be corrected for by ap-

plying both techniques gating on energy deposition for a combined approach. This
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Table 3.1. TPR of each ML architecture relative to a given FPR.
Data collected when trained and validated on the same data set.

FPR TPR
RNN MLP AlexNet GoogLeNet

1E-06 0.1346 0.0005 0.0969 0.6917
1E-05 0.9184 0.0220 0.2440 0.8882
1E-04 0.9961 0.4549 0.4181 0.9593
1E-03 0.9997 0.9820 0.5918 0.9919
1E-02 1 0.9996 0.8655 0.9998
1E-01 1 1 0.9673 1
2E-01 1 1 0.9766 1
5E-01 1 1 0.9864 1

Figure 3.20. TTT plot of the validation neutron set in blue, and
the neutrons correctly classified at a FPR of 1E-6 by the GoogLeNet
implementation in orange. A vertical offset for the validation neu-
tron data set was provided to avoid overlap to enable comparison.

would represent a minor improvement though given the marginal performance dif-

ference between 1000 and 3000 keV ee and the sparsity of events recorded at these

higher energy depositions. Further to this, the shortcomings of GoogLeNet in this
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Table 3.2. Table demonstrating the number of neutrons correctly
identified by the competing algorithms for given energy ranges.

Energy Range
(keVee)

Number of Neutrons
Total TTT GoogLeNet

0-200 419 0 90
200-340 955 596 741
340-1000 1723 1442 1550
1000-3000 920 757 515
3000-max 77 73 1

energy range could be mitigated by increasing the number of training examples

within this energy range, which represents a small subset of the total number of

neutron events.

3.3.6 Bit Depth and Sampling Rate Dependence

Looking at the performance of GoogLeNet when reductions in the bit depth and

sampling rate are made displays a similar trend in both reductions, as seen in

Table 3.3. For bit reduction, as would be expected, when reducing the bit depth

of the input signals there is a reduction in the TPR. This trend is also observed

for the reductions in sampling rate. In both cases, there is a marked increase in

the TPR at a given reduction level which then continues the trend of lower TPRs

with further reductions.

In the case of the bit depth reduction this increase in TPR occurs at 7 bits and

can be explained by considering the dynamic range of the system of 2.5 V . Data

collection on the CAEN DT-5743 used in this work was triggered on a pulse height

of 10 mV , therefore when discretizing to 7 bits there is a possibility of lower energy

deposition events to be entirely removed when converting from 12 bits. This issue
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Table 3.3. Table of the TPRs achieved for varying degrees of
reduction in sampling rate and bit depth. Only the TPR achived
at a FPR of 1E-6 is displayed for the sake of brevity, but the trend
stays the same when varying from a FPR of 1E-6 up to 1.

FPR Bit Depth Reduction TPRs
11 10 9 8 7 6 5 4 3

1E-6

0.5760 0.5595 0.1903 0.0801 0.4215 0.2993 0.1332 0.0744 0.0084
Sampling Rate Reduction TPRs

2x 4x 6x 8x 11x 16x 21x 32x 64x
0.4265 0.4139 0.3182 0.4942 0.4863 0.2397 0.3861 0.2845 0.0754

is further accentuated by the method used to convert to lower bit depths, which

looked at the discretization of 2.5 V for each target bit depth and then rounded

up or down to the nearest value for each data point in a signal. If the baseline of

the event resides immediately next to the round up point but never crosses it, a

negative polarity signal less than the resolution will be effectively removed.

This possibility impacts the validation photons more than the validation neu-

trons because of radiation sources used as well as the interaction mechanism for

each radiation. The photon sources used to generate the validation set have an

effective maximum energy deposition of 1117 keV through 180◦ Compton scat-

ter for 60Co, whereas the neutron energy can range up to several 1000 keV ee.

Secondly the main mechanism for neutron energy deposition for EJ-301 is elastic

scattering with protons, which results in uniform energy deposition. The main

mechanism for photons to interact with EJ-301 is Compton scattering, which at

the energies used here is preferentially forward scattering. These two consider-

ations result in significantly more low energy events for photons than neutrons,

resulting in more photon events being removed from the reduction in bit depth
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than neutrons. This is supported by looking at the number of lost photon events

at 7 bits, which amounted to 10.53 % of the events, whereas no neutron events

were lost. The preferential loss of photons over neutron events artificially inflates

the TPR by making it significantly easier for the neural network to achieve the

1E-6 FPR utilized here.

For the case of the increase in FPR when reducing sampling rate the increase

is observed at a reduction of 8x in the sampling rate. The original sampling rate

of 3.2 GHz corresponds to a time resolution of 0.3125 ns, which when reducing

by a factor of 8 results in a time resolution of 2.5 ns. This results in inadequate

sampling of the primary component of light emitted from EJ-301, which is reported

with a decay constant of 3.16 ns [31]. The delayed light component has a decay

constant of 270 ns [31] which is the primary differentiation between neutron events

and photon events, which would still be fully represented at the reduced time

resolution of 2.5 ns at the 8x reduction in sampling rate. It is expected that the

inability for the primary light yield component to be adequately sampled, while

the delayed light yield is fully sampled, that enables GoogLeNet to improve in

performance in separating the two populations. Overall the trend over the range

explored remains consistent with the reductions in bit depth and sampling rate.

Of further interest is the decrease in performance of the TTT PSD observed

with reductions in bit depth and sampling rate. This reduction in performance is

shown in Fig. 3.21, where it is quite visible that the overlap in the two populations

now occurs at significantly higher energies of up to 700 keV ee when observing the

8x reduction in sampling data set. Using the same region bounding as in Fig. 3.19

gives a FPR of 0.0475 with a TPR of 0.5474 compared to 0.8246 for GoogLeNet.
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This reduced performance at lower sampling rates and bit depths for traditional

PSD methods is supported by previous research exploring the two factors [84].

Figure 3.21. TTT plot of the 8x reduced sampling rate data set.
Blue is the neutron population and orange is the photon population.
The photon data set consists of 1 million events recorded with a
60Co and 137Cs photon source.

3.4 Conclusion

Comparisons were made between TTT PSD and four alternative ML algorithms

as applied to PSD. It was found that of these four ML algorithms, the CNN

based off of an adaptation of GoogLeNet provided the greatest performance for

PSD. Comparison of GoogLeNet’s performance directly with that of the TTT PSD

method shows that where the latter cannot effectively differentiate events below

200 keV ee, the former obtains a TPR of 0.2148. When comparing the performance

at various FPRs it was not feasible to achieve a 1E-6 FPR for TTT, but this was

achievable with GoogLeNet. Comparison of the performance was instead done at
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a FPR 6.4E-6 for TTT and 1E-6 for GoogLeNet, where the latter was found to

outperform between 0-1000 keV ee and the former outperformed from 1000 keV ee

onward.

The dependence of performance on the bit depth and the sampling rate was

investigated by artificially down-sampling both aspects. The anticipated trend of

reduced performance with reductions in bit depth and sampling rate were observed

with an unanticipated increase in performance observed at 7 bits and 8x reduction

in sampling rate. These are both anticipated to be artifacts from the implemen-

tation in reductions that impact the photon data set more than the neutron data

set. The reduction to 7 bits resulted in a significant portion of the low energy

photon signals to be reduced to zero, effectively removing the events that propose

the most significant challenge for PSD. The reduction of sampling rate by a fac-

tor of 8 represents the point where the 3.16 ns component of the EJ-301 signal

is no longer adequately sampled according to Nyquist’s theory. Where Nyquist’s

theorem states that to adequately sample a signal you need to sample at a fre-

quency twice greater than the highest frequency component of the signal [98].This

is suspected to aid GoogLeNet by increasing the relative amount of information

contained in the neutron signal’s primary time component of 270 ns.
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Chapter 4

NeutronNet: Generalization and

Characterization

4.1 Introduction

Of large concern in this research was the applicability of a Machine Learning (ML)

based solution which was trained on one neutron source but applied to classification

for another neutron source. This would help in alleviating concerns of overfitting,

which is a major issue for ML. In situations of overfitting an algorithm performs

exceedingly well on test data but severely fails on new data. This is likened to

the situation of fitting an n-dimensional polynomial to n data points; a perfect fit

can be achieved but further extrapolation or interpolation fails entirely. To assess

the applicability of the ML solution to varying neutron sources, measurements of

multiple neutron sources were made. From these data sets training was performed

for each source. For each trained instance testing was performed with each neutron

data set.
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4.1.1 Experimental Setup

In this research data from two experimental setups were utilized with five differ-

ent neutron sources. These experiments were performed at McMaster University,

Lawrence Berkeley National Laboratory (LBNL), and Bubble Technologies Indus-

tries (BTI).

McMaster and BTI Experimental Setup

The data collected at McMaster University and BTI were collected with an EJ-

301 liquid scintillator and digitized with a CAEN DT-5743 digitizer. Three iso-

topic photon sources were also measured, 60Co, 24Na, and 137Cs. These photon

sources were used for energy calibration as well as for generation of the photon

class for training and characterizing the Convolutional Neural Network (CNN)’s

performance. At BTI a 252Cf spontaneous fission neutron source was measured.

At McMaster University three neutron sources were measured: a 238Pu9Be and
241Am9Be (α,n) neutron source, and a DD neutron generator. Measurements con-

ducted at McMaster University follow the same setup as described in Chapter 3.

Measurements at BTI involved a similar irradiation geometry though in a free-field

room. Multiple sets of measurements of the 252Cf source were made with different

shielding configurations of High-Density PolyEthylene (HDPE) and lead, as shown

in Fig. 4.1.

The 252Cf source has an exposed and shielded position, where in the shielded

position it is recessed several feet into a concrete well. When the source is exposed

it is at the top of the pipe where the lead is coiled around the rope suspending

the source. The use of the lead is to reduce the amount of photons impinging on
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Figure 4.1. Image of the experimental setup used to measure
the 252Cf neutron source, with lead shielding wrapped around the
source’s position when exposed to the detector and with HDPE
shielding in place.

the scintillator, and the HDPE is used to change the energy spectrum of neutrons

reaching the scintillator. The wooden block the scintillator is resting on was used

to bring the scintillator to level with the exposed position of the neutron source,

allowing the lead and HDPE to shield the solid angle subtended by the scintillator.

Lawrence Berkeley National Laboratory

The data provided by LBNL was generated using an 5-inch EJ-309 liquid scin-

tillator and digitized by a PIXIE-16 digitizer from XIA, LLC. The experimental

setup was created for Associated Particle Imaging (API) and is described in de-

tails in [99]. To quickly summarize, neutrons and alpha particles are generated

in a Deuterium Tritium (DT) reaction. Coincidence measurements are made be-

tween the alpha particle and a gamma-ray resulting from inelastic scattering of

the neutron allowing one to calculate the 3D location of the scattering center with

a resolution of several centimeters. The coincidence measurement enables dras-

tic background reduction by filtering the data by location. The neutron data set

used in this work utilizes the EJ-309 liquid scintillator as the scattering target and
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data was taking in triple coincidence (alpha particle, EJ-309 inelastic scatter, and

gamma ray) resulting in a very low random background event rate and therefore an

ideally pure neutron data set. In practice, the application of Tail-To-Total (TTT)

Pulse Shape Discrimination (PSD) shows a significant amount of photons in the

neutron data sets. Subsequent measurements were made with 60Co and 137Cs for

energy calibration and as additional sources of photons.

4.1.2 CNN Architecture

From the work outlined in Chapter 3, it was found that an adaptation of GoogLeNet

performed the best out of a variety of Neural Networks (NNs) for PSD. The

modifications used inChapter 3 are the same as were used for this work, with an

adaptation for 1-D data and a reduction to three inception modules.

4.2 Methods

In order to characterize the performance achieved by GoogLeNet Receiver Oper-

ating Characteristic (ROC) curves [100] were generated. Similarly to Chapter 3,

neutron classification is considered the positive case and photon classification is

the negative case. In addition to ROC curves the TTT PSD method is imple-

mented for visualizing neutron and photon data sets and for separation of neutron

and photon data. As discussed in Chapter 3 the TTT method takes the entire

charge deposition of a signal and compares that value to the charge present in the

portion of the tail some time after the event start. For both EJ-301 and EJ-309

neutron signals contain a larger portion of the signal’s charge in the tail than that

of photons, as was shown in Fig. 3.2.
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4.2.1 Photon Data Set

The GoogLeNet adaptation used here is trained using supervised training, where

the data provided to the algorithm for training must already be labeled. In Chap-

ter 3 it was outlined that this presents an issue for this work because of the

difficulty in obtaining correct event labelling for both photon and neutron detec-

tion events. This difficulty presents itself as contamination in each data set with

photons being labelled as neutrons and vice versa. The stage where this poses the

largest problem is during training but mislabelling during performance validation

also presents a problem, especially at the levels investigated here of 1E-6 False

Positive Rate (FPR). At this low of an FPR data sets of millions of events are

required to validate the True Positive Rate (TPR) performance.

For the photon data set the source of contamination is background neutrons

which ideally present an insignificant contribution to the data set [101]. Given

that the background neutron rate is fixed, a higher strength photon source and ac-

companying count rate will make this background neutron rate comprise a smaller

fraction of the events recorded. When using the CAEN DT-5743 digitizer in list

mode, which is necessary for this work, the counting rate is limited to 700 s−1.

This limitation is further worsened by the low activity of available 60Co sources

resulting in a significant degree of neutron events being recorded when measuring

the 60Co source, as can be seen in Fig. 4.2. In this TTT PSD plot you can also

see events in excess of 10 MeV ee which represents cosmic ray muons interacting

with the detector, further showing the impact of the low activity 60Co source.

This measurement of 2 million events with the 60Co source took a total of 13

hours. There are two populations present in Fig. 4.2, the more prevalent photon
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Figure 4.2. TTT PSD of data collected from a 60Co source over
13 hours. High energy signals can be observed which are indicative
of cosmic ray detections.

population above, and the neutron population below. In the neutron population,

using the region drawing presented in Section 3.2.5, 411 of the 2 million events

are identified as neutrons. With this level of contamination in the photon data

set for testing, it would be impossible to achieve any TPR while maintaining the

desired 1E-6 FPR. To correct for this a region was drawn around the photon

population to exclude the neutron population. In addition to these 60Co events,

photons were collected from a 137Cs and 24Na source. The source activities used

here were significantly higher, resulting in no observable neutron population. The

TTT PSD of the full photon data set for testing is shown in Fig. 4.3, with a total

data set size of 4.2 million events.
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Figure 4.3. TTT PSD of the 4.2 million photon events collected
for use in identifying the performance of GoogLeNet at PSD. Events
beyond 6000 keV ee were removed on the basis of the maximum
neutron energy of roughly 4000 keV ee in order to minimize the
presence of signal clipping.

Attempts to fit the neutron population with the method described in Sec-

tion 4.2.3 were made, but the discrepancy in population size makes the fit in-

effective and results in the majority of photon events being removed.

4.2.2 Neutron Data Set

The second presentation of data set contamination is photons being present in the

neutron data sets. This issue can be corrected for in a similar fashion to the photon

data set contamination, but with less success. The method used is discussed more

thoroughly in Section 4.2.3. The difficulty in removing the photon component

from the neutron population comes from trying to retain as many low energy

neutron events as possible for training. Low energy neutrons are of importance for
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training and validation of GoogLeNet’s performance because that is the region of

interest for improving upon PSD. This low energy region for the neutrons though

can be somewhat dominated by low energy photons, which is apparent in Fig. 4.2

where the TTT ratio extends from beyond 1.2 to below 0.4. This contamination

is unavoidable using classical methods and can lead to reduced performance in

identifying neutrons by falsely labelling some of the training data as neutrons.

4.2.3 Training and Validation

To generate the training data for each neutron source, data were collected indi-

vidually from each source. TTT PSD data were then generated and events were

binned through energy ranges. From this, histograms of TTT ratio, or the shaping

parameter, were generated and two Gaussian distributions were fit to the resul-

tant populations as seen in Fig. 4.4. Using these fits a cut off was chosen for the

shaping parameter of each population. This cut off was chosen at the point where

the overlap from the opposing population was equal to 0.1 %, resulting in each

data set having 99.9 % purity. The resultant two populations from this method

are shown in Fig. 4.5. The data were then separated into an 80:20 split of training

and validation data for use during training. Training was then performed on each

data set separately to make an instance of GoogLeNet trained on each neutron

source. In addition to the neutron and photon data sets from PSD separation of

the neutron measurements, photons from the region of overlap were also provided

as training data for the photon classification. This region is between a shaping

parameter of 0.6 and 0.8 with energy less than 200 keV ee. The addition of a pure

photon data set within the region of overlap between the two populations greatly

improved the ability of GoogLeNet to differentiate between the two event types.
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Figure 4.4. Plot of the histogram of shaping parameter for all
events with energy deposition ranging from 150-175 keV ee with
fits and resultant residuals from the fit.

Figure 4.5. TTT PSD plot demonstrating the separation of
neutron and photon data for use in training and validation of
GoogLeNet. This data set was generated from the 252Cf neutron
source.
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Training the implementations of GoogLeNet performed well across each data

set, reaching a steady state performance within 5 epochs, with an epoch being one

pass over the entirety of the data set. A plot of the training and validation accuracy

over each epoch is shown in Fig. 4.6 and is characteristic of the performance for

each data set. The most stable results were achieved when applying an initial

learning rate of 0.001 with an exponential decay occurring every epoch with a

decay rate of 0.96.

Figure 4.6. Plot of the training and validation accuracy achieved
during training, with training accuracy being accumulated over
an epoch and validation accuracy being evaluated following each
epoch.

Following training off of one neutron set, classification was performed on the

data collected from the various neutron sources. This investigation, further dis-

cussed in the results, demonstrated dependence in performance on which neutron

source was used for training. To reduce this bias, and improve classification per-

formance when applied to other sources, transfer learning was applied [102, 103].
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Transfer learning takes an already trained NN and fixes the learned parameters for

some subset of the NN and then retrains the remainder of the parameters on new

data. This technique allows for training a NN on a limited data set with greater

success, provided the classification task is similar enough. In this work what was

done was an instance of GoogLeNet trained on one neutron source had all but the

fully connected layer at the end fixed, and training was carried out with a different

neutron source.

4.3 Results

Utilizing the ROC data enables quantifying the TPR for every FPR, where the

former is the rate neutrons are correctly identified as neutrons and the latter is

the rate photons are falsely identified as neutrons. The most significant and easily

verifiable of the two performance metrics is the FPR. This is because a photon data

set can be made significantly more pure than a neutron data set by measuring only

a photon source. The only contamination present is background neutron events,

as was discussed in Section 4.2.1. Given this availability, each ROC curve was

generated with 4.2 million photon events for the McMaster and BTI data, and 1.2

million photon events for the LBNL.

4.3.1 PMT Bias

The performance when classifying events generated from the DT neutron source

with varying PMT bias are shown in Table 4.1. Two significant characteristics

can be seen, the highest performance is achieved at 1500 V bias, and a marked

decrease in performance occurs at 1550 V . The peak in performance at 1500
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Table 4.1. TPRs values achieved at various FPRs with data col-
lected from the DT neutron source with varying Photomultiplier
Tube (PMT) biases.

PMT
Bias (V )

TPR
FPR: 1E-6±2E-6 1E-5±5E-6 1E-4±2E-5 1E-3±6E-5

1300 0.3481±0.0008 0.7596±0.0008 0.9645±0.0005 0.9927±0.0005
1350 0.3394±0.0008 0.8654±0.0007 0.9862±0.0005 0.9954±0.0005
1400 0.4428±0.0009 0.9694±0.0005 0.9920±0.0005 0.9960±0.0005
1450 0.3036±0.0008 0.8406±0.0007 0.9860±0.0005 0.9987±0.0005
1500 0.8099±0.0007 0.8917±0.0005 0.9862±0.0005 0.9965±0.0005
1550 0.0517±0.0004 0.0961±0.0005 0.5269±0.0009 0.9916±0.0005
1600 0.1173±0.0005 0.2464±0.0007 0.9465±0.0005 0.9896±0.0005

V is believed to occur because this is where maximum energy events begin to

clip, which allows for the DT events to fully utilize the entire dynamic range

of the digitizer. Where signal clipping is when the voltage level to be digitized

exceeds the capabilities of the op-amp in the circuit leading to non-linearities in the

signal. The full utilization of the dynamic range gives the greatest representation

of the events, and maximizes separability of events based off of TTT PSD. The

subsequent decrease in performance at a bias of 1550 and 1600 V are believed to

be caused by the increased presence of clipping in these signals. Further to this,

the relative performance gain between 1550 and 1600 V is due to the 1600 V data

set having a lower proportion of low energy signals, which GoogLeNet struggles

with in classifying. The higher proportion of low energy signals in the 1550 V data

set then causes the performance to diminish relative to the 1600 V data set.

These observations are further supported by looking at the change in the Figure

of Merit (FoM) as the PMT bias is changed. The FoM, as used here, gives a

measure of the performance of the TTT PSD method at separating events into
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Figure 4.7. FoM values achieved with TTT PSD at varying PMT
biases. FoM was calculated by averaging the FoM calculated for
two energy bands per data set.

neutrons and photons. The FoM can be calculated according to Eq. (4.1).

FoM = S

δ1 + δ2
(4.1)

With S being the separation of the two Gaussians fit to the histogram of the

TTT shaping parameter, and δ being the full width at half maximum of each

Gaussian. The change in FoM with PMT bias is shown in Fig. 4.7, with a trend

of increasing FoM with increasing bias. A subsequent decrease in FoM is observed

when clipping begins to degrade separation.
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Table 4.2. TPR values achieved by GoogLeNet following training
on the various data sets and being applied to different neutron
data. The TPRs for GoogLeNet when validating on neutrons from
the same source used to train are in bold. These TPRs values are
reported at a FPR of 1E-6.

Validation
Source

Training Source
241Am9Be 238Pu9Be 252Cf DD DT

241Am9Be 0.5621 0.6669 0.6570 0.5300 0.7545
238Pu9Be 0.5887 0.6903 0.6670 0.5302 0.7652
252Cf 0.6259 0.6951 0.9061 0.8291 0.6612
DD 0.4968 0.5902 0.9033 0.9090 0.6098
DT 0.0000 0.0000 0.0000 0.0000 0.7154

4.3.2 Neutron Source Dependency

The performance of GoogLeNet when trained off of the various neutron sources can

be seen in Table 4.2. From these data a few significant differences are apparent

when applying the GoogLeNet implementation that was trained off of one neutron

source to another. Firstly, the data collected at LBNL from the DT neutron

source utilized a different scintillator with a different geometry. The DT neutron

data utilized a 5"x5" right cylindrical EJ-309 scintillator compared to a 3"x3" right

cylindrical EJ-301 scintillator used for the other neutron source measurements.

The pulse shape characteristics for these two scintillators are for the most part

the same, but degraded PSD performance for EJ-309 has been found [104], as well

as decreases in PSD for larger detector geometries [105]. Lastly, the electronics

used at LBNL vary from those used for the McMaster and BTI measurements.

These variations lead to an understandable difficulty in GoogLeNet being trained

on the data collected at McMaster or BTI and being applied to the LBNL data.

Conversely, when GoogLeNet is trained on the LBNL data it performs well with
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Figure 4.8. ROC curves generated for various validation data sets
following retraining of a GoogLeNet instance. Initial training was
performed with 238Pu9Be data and subsequent retraining was done
with DT data. 241Am9Be validation data is omitted because of the
similarity in performance to 238Pu9Be.

classifying neutron events from McMaster or BTI. No explanation for the lack of

symmetry is available at this time. One other discrepancy in this data exists in

the differences in performance when trained off of the (α,n) neutron sources or

the DT and 252Cf neutron sources. similarly to the case with the DT data, there

is an asymmetry apparent, though to less of an extreme. These discrepancies are

somewhat resolved when transfer learning is applied.

4.3.3 Transfer Learning

Transfer learning in this work was performed by freezing all but the final layer

of GoogLeNet, the fully connected layer, and retraining the network on the al-

ternate data set. When doing this for the worst case of GoogLeNet trained on
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Figure 4.9. Plot of the TPR achieved at a 1E-6 FPR for varying
energies. This data was generated by classifying 238Pu9Be, 252Cf,
DD, and 241Am9Be validation data with an instance of GoogLeNet
that was initially trained on 238Pu9Be data and then retrained with
DT data.

data collected with the EJ-301 scintillator and applied to data collected with the

EJ-309 scintillator the performance of the network on all sources is relatively nor-

malized. Specifically the performance when originally trained on 238Pu9Be data

and retrained on DT data is shown in Fig. 4.8. The number of photons with which

performance was validated varied between the DT data and the remaining neutron

source data, with 1.2 million photons for the former and 4.2 million photons for

the latter. When considering the performance at a FPR of 1E-6 it can be seen that

for 238Pu9Be, 252Cf, DT, and DD the TPRs are 32.1 ± 0.3, 27.4 ± 0.9, 34 ± 3, and

11.6 ± 0.6 % respectively. The discrepancies between these performance levels can

be explained to an extent by considering the energy distribution of events for each

source in combination with the classification performance’s dependence on energy.
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Figure 4.10. Energy deposition histogram for each neutron val-
idation data set. 241Am9Be is omitted for visibility due to the
similarity to the 238Pu9Be data. Each histogram is normalized in
area to the 252Cf data set. The number of bins is reduced for DT
to account for its relatively small data set.

4.3.4 Energy Dependence and Correction

The classification performance exhibited by this instance of GoogLeNet when con-

sidering energy is shown in Fig. 4.9. This data demonstrates that there is signifi-

cantly more difficulty in classifying low energy data for this instance of GoogLeNet

where initial training data was from the 238Pu9Be neutron source and transfer

learning was performed with data from the DT neutron source. Considering this

then with the observed neutron energy distribution of the validation data sets,

shown in Fig. 4.10, explains why there is diminishing classification performance

when classifying the 252Cf and DD data compared to 238Pu9Be and DT, with the

former having a higher proportion of low energy events. When accounting for

these discrepancies by multiplying the energy dependant TPRs in Fig. 4.9 by the
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respective histograms the cumulative theoretical TPR is 31.1 ± 0.2, 24.0 ± 0.3,

37 ± 2, and 16.4 ± 0.3 % for 238Pu9Be, 252Cf, DT, and DD validation sets. This

gives a relative discrepancy between the observed TPR and that expected of 2.99 –

41.52 %. This degree of match between observed and expected TPR suggests that

the majority of the variation in observed TPRs can be accounted for by variation

in energy distribution, though there is still a large unexplained discrepancy for the

DD validation data set.

Following this same process with the 252Cf data, retraining the GoogLeNet in-

stance first trained off of the 238Pu9Be data, shows a large degree of agreement

in TPRs for each data set collected with the EJ-301 liquid scintillator. The ROC

curves for each source are shown in Fig. 4.11. The TPRs observed at a 1E-6 FPR

were 75.3 ± 0.9, 76.0 ± 0.3, and 65.8 ± 0.9 % for 252Cf, 238Pu9Be, and DD respec-

tively. This largely resolves the asymmetry observed in Table 4.2 for GoogLeNet

instances trained off of DD or 252Cf data where significantly higher TPRs were

achieved for DD and 252Cf than 238Pu9Be or 241Am9Be. The inability to effectively

classify the DT validation data set still remains, with no response until a FPR of

3E-3.

4.3.5 Energy Dependence in Training

The energy dependence of TPR for the instance of GoogLeNet retrained with
252Cf data and initially trained on 238Pu9Be is shown in Fig. 4.12. These results

are vastly different compared to Fig. 4.9, which suggests that the energy response

is dependent on the energy distribution of events provided during training. The

relative abundance of high energy events from the DT data imparts increased
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Figure 4.11. ROC curves generated for each validation data set
by the GoogLeNet instance which was initially trained off of the
238Pu9Be data set and then retrained with the 252Cf data set. Re-
sults from the 241Am9Be validation data set are omitted for visibil-
ity given their similarity to 238Pu9Be.

sensitivity for high energy events when classifying, with the peak of roughly 60

% occurring above 1200 keV ee. Conversely the abundance of low energy events

observed in the 252Cf data produces improved sensitivity for low energy events, with

up to 80 % TPR below 1000 keV ee seen in Fig. 4.12. Combining again the energy

histogram of each source with the energy dependant TPR observed in Fig. 4.12

for the instance of GoogLeNet that was trained on 238Pu9Be then retrained of

252Cf data we can compare the observed and anticipated cumulative TPRs. The

anticipated TPRs are 73.5 ± 0.8, 75.1 ± 0.3, 72.8 ± 0.8 % for 252Cf, 238Pu9Be,

and DD respectively. These results are within 1.2 – 9.6 % of the observed values

stated previously. Of note is the discrepancy between the expected and observed

TPR for DT where an anticipated TPR of 72 ± 3 % is found, but the observed

value is 0 % at the stated 1E-6 FPR.
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Figure 4.12. Plot of the TPR achieved at a 1E-6 FPR for vary-
ing energies. This data was generated by classifying 238Pu9Be,
252Cf, DD, and 241Am9Be validation data with two instances of
GoogLeNet. The first was initially trained on 238Pu9Be data and
then retrained with 252Cf data, the second is the initial instance
trained off of 238Pu9Be data.

4.3.6 Source Shielding Variations

Multiple sets of measurements were made with the 252Cf neutron source, where

varying thicknesses of moderator in the form of HDPE as well as a thickness of

lead were used to change the incident neutron and gamma ray field. One thickness

of lead was utilized, being 0.25 inches, and 0 – 5 plates of 0.5 inch HDPE were

used. To observe the response of an instance of GoogLeNet that was trained on
252Cf data the newly measured data sets were left unaltered and classification

was performed at 1E-6, 1E-5, and 1E-4 FPRs. The resultant TPRs are shown in

Fig. 4.13 with observed values appearing much lower than those shown in Table 4.2.

This apparent diminishing performance is due to the classification being performed

on all data, not the algorithmically separated neutron data as described in the
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methods.

Figure 4.13. TPRs achieved at varying FPRs for 252Cf data col-
lected with varying shielding setups. Each data set was measured
with 500 thousand events and with the same digitizer and PMT
settings.

Two readily apparent trends are displayed by Fig. 4.13, increases in HDPE

thickness reduces the ability to correctly classify events, and the presence of the

lead greatly increases the number of neutron classifications. The first trend of

decreasing positive rate with increasing thickness of HDPE is explained by the

increase in moderation of the neutron fluence from 252Cf. As more HDPE is

included the average neutron energy at the detector is reduced and subsequently

a greater proportion of the neutron events recorded have lower energies. These

lower event energies present a lower neutron classification rate as shown in Figs. 4.9

and 4.12, resulting in a reduction of overall neutron classification rate. Similarly to

this, the introduction of lead reduces the photon fluence at the detector face, which
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consequently increases the relative abundance of neutron events. This results in

an increase in the neutron classification rate of nearly double.

4.3.7 Neutron Intrinsic Efficiency

It is important to recognize when looking at these results that instead of the previ-

ously coined TPR this is the positive rate, which is more akin to neutron sensitivity.

This is because the classification is being performed on the entire data set, which

contains both photons and neutrons. A positive rate of 100 % in this situation

would be a poor result considering that all photons in the input were classified as

neutrons. A qualitative way of inspecting whether or not photons from the 252Cf

data set are being classified as neutrons is to perform TTT PSD on the events

classified as neutrons and photons independently and inspect for misclassification

that would be caught by TTT PSD. Figure 4.14 shows the resultant PSD for

events classified as neutron and photon from the 252Cf data set that was collected

with 1 inch of HDPE and 0.25 inches of lead.

The neutron classifications shown in Fig. 4.14 extend to as low as 30 keV ee

and reaches 3300 keV ee, with no events overlapping with the region that would be

readily identifiable as a photon. Looking at the events classified as photons shows

a easily identified neutron population that could be properly identified as neutrons

by a traditional PSD method. These false negative events number roughly 1200,

which would generate an increase of 1.4 % neutron classifications. Of significance

is the ability of the instance of GoogLeNet to separate neutron and photon events

down into the region where a traditional PSD method would fail, where both

populations overlap each other. The support that remains that these are correctly
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Figure 4.14. TTT PSD of the resultant photon and neutron
classified events from 500 thousand events recorded from the 252Cf
source. This set was recorded with 0.25 inches of lead and 1 inch
of HDPE between the source and detector. Classification was per-
formed at a 1E-6 FPR.

identified neutrons is that the data was collected at a FPR of 1E-6 which was

generated by classifying 4.2 million photon events, and that the trend observed in

Fig. 4.13 follows what would be expected with impacts of shielding on the neutron

and photon fields.

The intrinsic neutron efficiency at the 1E-6 FPR can be obtained in this con-

figuration by using the neutron classification rate in Fig. 4.13 for the 0 lead and

0 HDPE setup. This is then compared to the neutron rate from the 252Cf source,

which is 1.4E6 n/s, resulting in this setup with 1411 n/s impinging on the detector.

Taking into account the number of events recorded, the duration of the measure-

ment, and the rate limiting of the digitizer the rate of neutron classifications is

176.3 n/s giving an effective intrinsic efficiency of 12.49 % at a 1E-6 FPR.
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4.3.8 Visualization

Using the algorithm introduced in Section 2.6 for GammaNet, adapted for 1-D in-

puts, allows for the visualization of which regions of the pulse are most significant

for each classification output. These mappings of significance are indicative of

where GoogLeNet has learned to search for information from the input for pro-

ducing classifications. For this visualization the instance of GoogLeNet trained off

of 238Pu9Be data was utilized. An average neutron event was created from the

events classified as neutrons from the 252Cf data set at the 1E-6 FPR similarly

to Fig. 4.14. This resulted in an average over roughly 130,000 neutron events,

with an accompanying 130,000 photon events from the validation data set used to

generate an average photon event. The Gradient-weighted Class Activation Map-

ping (Grad-CAM) results for the average photon and neutron events are shown in

Fig. 4.15.

A few significant features in Fig. 4.15 are readily identified. The most significant

is the relative width and timing of the main feature between the average photon

and average neutron events. The response of GoogLeNet for neutron classification

shows a peak slightly delayed from the input signal peak, shown in Figs. 4.15a

and 4.15c. Similar to this peak is the trough observed for photon classification in

response to the average neutron and average photon event in Figs. 4.15b and 4.15d.

Both the trough and peak responses possess a larger width for the average neutron

event than for the average photon event. This difference in duration aligns perfectly

with the intuition behind the mechanism enabling PSD in EJ-301 scintillators,

namely that neutron interactions generate a longer signal duration. This increased

signal duration produces an increased duration of activation for GoogLeNet in
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(a) (b)

(c) (d)

Figure 4.15. Activation mappings from Grad-CAM for the aver-
age neutron and photon events. Figs. 4.15a and 4.15b shows the
average photon event for neutron and photon classification respec-
tively. Figs. 4.15c and 4.15d shows the average neutron event for
neutron and photon classification respectively.

response to a neutron signal. Conversely the average photon event is shorter

in duration and therefore the extent of activation in GoogLeNet is reduced. In

addition to this variation in duration of activation is the delay in the peak of

activation observed. The greatest point of differentiation between a photon and

neutron signal in EJ-301 occurs when the majority of the scintillation from the

fast decay component has already occurred. For TTT PSD this is presented as

the time delay used for defining the tail of the signal, and in the activation of
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GoogLeNet this is presenting as a delay in peak activation.

The second most notable feature is the value of peak activation for the correct

classifications and incorrect classifications. Each plot in Fig. 4.15 has the activation

normalized for plotting, with the value normalized to presented in the legend of

each figure. In the cases where classification is correct the activation maximum

1.629 for Fig. 4.15b and 1.628 for Fig. 4.15c. For the incorrect classification cases,

this maximum is reduced to 1.318 for Fig. 4.15d and 1.359 for Fig. 4.15a. This

variation in activation maxima is indicative of the response of GoogLeNet to the

input events, with the average photon producing a lesser response for neutron

classification and vice versa. This demonstrates qualitatively that GoogLeNet has

learned the features indicative of each class of event.

The last feature of interest is the difference in shape for neutron and photon

classification activation mapping, with the former being fairly close to an inverse

of the latter. From this difference it appears that the peak region, shown in

Figs. 4.15a and 4.15c, is the most significant region used for producing a neutron

classification. This region providing the most significance for neutron classification

is logical given that this is where the transition from the fast decay component

to the intermediate decay component for EJ-301 occurs. The greatest activation

for photon classification however occurs at the beginning and end of the signal,

shown in Figs. 4.15b and 4.15d. This is believed to occur because of a tendency

for the photon events to trigger the CAEN-DT5743 digitizer sooner than neutron

events, creating a bias for event times as seen in Fig. 4.16. The dependence on

the tail portion of the signal for photon classification is less intuitive, but is likely

indicative of the importance of a lack of signal being present in the tail, where
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for a photon there should be minimal presence of the long decay component in

EJ-301.

Figure 4.16. Histogram of the calculated event time for the neu-
tron and photon events used to create the average events used in
Fig. 4.15.

4.3.9 Signal Aberrations

Two features of note in the average neutron and photon signals from Fig. 4.15 are

the presence of very periodic noise and an errant feature at 987 samples. The noise

was occurring with a period of 200 MHz or 16 samples, which can be explained

by the method of timing in the digitizer. The CAEN DT-5743 digitizer uses a

200 MHz clock signal fed through 16 delay lines [106] to generate an effective

3.2 GHz sampling rate. It is believed that this periodic signal is generated by

non-linearities in the delay line circuits producing a very periodic offset in the

recorded voltage. When combined with electronic noise for an individual signal

this is inconsequential, but when averaging over 130,000 signals the electronic

noise is averaged out and the non-linearities become apparent. This is backed up
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Figure 4.17. The average neutron signal from Fig. 4.15 with
the repeated non-linearity from the delay lines removed. An offset
between the signals is provided for viewing.

by taking the first 16 signals from the signal, which exists in the baseline of the

signal, and subtracting those values from every N/16 set of samples. The result of

this subtraction is shown in Fig. 4.17.

The feature observed at 987 samples is thought to be a result of a logic pulse

produced in the digitizer for use in external triggering, which occurs with a set

delay following a trigger event in the digitizer. Both features, though apparent in

these averages, are not easily discernible within normal signals so are more of a

curiosity at this point than an issue to be remediated. Additionally, the average

signals were generated following normalization of each signal so the absolute scale

of these features aren’t well represented in Fig. 4.17. Observing the non-linearity

without rescaling of the signals shows a peak-to-peak value of 3.9 mV , and the

logic pulse artifact has a peak-to-peak value 5.8 mV for an average signal peak-

to-peak value of 272.5 mV . At a lower signal amplitude average of 137.2 mV

these values are reduced significantly to 0.98 mV and 3.9 mV respectively. The
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observed dependence on signal amplitude for the non-linearity is expected, but the

dependence displayed by the logic pulse artifact is as of yet not understood.

4.4 Conclusion

An adapted version of GoogLeNet was investigated for suitability for application in

Particle Identification (PId) for use with multiple neutron sources and at varying

levels of specificity. The impact of PMT bias on the ability of GoogLeNet to train

on and identify data collected from a DT neutron source was investigated. It was

found that the best performance was found at 1500 V with marked depreciation

in performance when signal clipping began. This lines up with expectations as the

FoM is greatest in the range of 1450-1500 V producing the most robust training

data in this range.

The ability of an instance of GoogLeNet that was trained on one neutron data

set to be able to classify data from other neutron sources was investigated. It was

found that within one experimental setup there was good generalization to the var-

ious neutron sources investigated, but without symmetry in the deficits observed.

An extreme asymmetry was observed when training and classifying off of the data

collected in different experiments. The application of transfer learning greatly

made up for these asymmetries. Additional attention to the differences in neutron

spectra of each source accounted for the majority of the remaining inconsistencies.

Notable differences in the energy dependence of the classification capabilities were

observed for instances of GoogLeNet trained on the various neutron sources.

It was found that when performing classification with an instance of GoogLeNet
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trained on one neutron source that the changes in classification performance fol-

lowed changes in the neutron spectrum. Variations in neutron moderation and

photon shielding were represented in exactly the way anticipated by the changes

in radiation field. Further qualitative inspection of the shape of TTT PSD for the

events classified as neutrons and photons by theGoogLeNet instance showed the ca-

pability of GoogLeNet at PId. It was found that, at the 1E-6 FPR specificity level,

that some neutrons were missed that simple PSD methods would have recovered,

though this only represents a 1.4 % relative increase. It was also demonstrated that

events within the region of overlap for neutron and photon populations in TTT

PSD could be separated, down to the minimum energy detected of 30 keV ee, while

maintaining the 1E-6 FPR.

Investigations into the regions of a pulse that produce the largest response in the

neural network were conducted by using the Grad-CAM algorithm on average neu-

tron and photon events. The average neutron event was generated from the 252Cf

source and the average photon event was generated from the validation photon

set, both being averaged over 130,000 signals. Features observed from Grad-CAM

aligned with intuition for what comprises the primary features of a photon and

neutron detection event in EJ-301 liquid scintillators. During this investigation

two anomalies were detected in the average photon and neutron events which are

believed to be caused by the circuit design of the CAEN DT-5743 digitizer. These

anomalies relate to the delay line design which enables the 3.2 GHz sampling rate

and a logic pulse generated on event trigger. These anomalies are not anticipated

to impact individual events as they represent a relatively small amplitude and are

only apparent when electronic noise is averaged out over multiple samples.
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Chapter 5

Discussion and Conclusions

The work presented in this thesis encompasses the development and quantification

of performance for machine learning based solutions to two event classification

problems. The first problem, outlined in Section 2.2, was the classification of pair

production events recorded by the Advanced Energetic Pair Telescope (AdEPT)

mission. The AdEPT instrument is a large volume time projection chamber (TPC)

designed to perform gamma-ray polarimetry in the medium energy range of 5-200

MeV in a Low Earth Orbit (LEO). During the time of this work the AdEPT

instrument was not yet functional so this research was conducted using simulated

data and stands as a proof of concept that the technique, with a sufficiently large

and labelled training data set, could achieve the requisite background rejection

rate. These Monte Carlo simulations were carried out using Geant4. The simu-

lation parameters, described in Section 2.3, comprised a simplified geometry and

radiation spectrum, with realistic outputs consisting of projection images of ion-

ization inside the TPC with additional electronic noise. The simulation data was

broken down into a signal set and a background set, with the former consisting of
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pair production images overlaid with a Galactic Cosmic Ray (GCR) proton image.

The background events were either Compton scatter images, also with an overlay

of a GCR proton image, or a GCR proton image.

The control of the content of a simulation afforded by Geant4 was crucial in the

development of the machine learning solution for event selection onboard AdEPT.

The ability to create data sets of signal and background with complete certainty

over the content of each enables generation of perfectly labeled training data.

This correctly labelled training data is crucial supervised learning, which enabled

the application of Convolutional Neural Networks (CNNs) to this problem. The

correctly labeled data is also invaluable when determining performance levels of

classifiers, where incorrectly labelled data artificially inflates or deflates the accu-

racy of a classifier. It was found in this work that the greatest performance, when

accounting for limitations imposed by satellites, was achieved with a reduced depth

implementation of GoogLeNet dubbed GammaNet. The performance requirements

set by the AdEPT mission was to achieve a background rejection rate of 99.99 %

while being able to classify the input images within 50 ms. GammaNet achieved this

background rejection rate while maintaining a range of signal sensitivity depen-

dent on the incident photon energy, with 0.1±0.1% to 17±2% signal sensitivity for

energies ranging from 5-250 MeV . It was found that with updated satellite com-

munications rates the onboard background rejection rate could be eased to 99.69

% without loss of science data, which would improve signal sensitivity to a range

of 1.1±0.5% to 69±2% over the same energy range. The compute requirements of

GammaNet to achieve a 50 ms inference time were found to be 1.1 TFLOPS, which

is within the compute power of commercially available System on a Chips (SoCs)
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that were being investigated for space readiness at the time of this research.

The other major focus of this thesis was the application of CNNs to event selec-

tion for advancing Pulse Shape Discrimination (PSD). This work was developed

with the EJ-301 and EJ-309 liquid scintillators which enable PSD for neutrons and

photons through different pulse time characteristics for each particle. In both scin-

tillators there are three primary decay times for scintillation, 3.16, 32.3, and 270

ns. Neutron interactions are characterized by producing more scintillation light

with the longer decay component, whereas photon interactions contain mostly the

short decay component. As with the AdEPT implementation, the most signifi-

cant task in generating a machine learning based solution for event classification

was generation of the labelled training and validation data. Initially labelling the

data was investigated with Time of Flight (ToF) analysis, which was found to

be insufficient when performing Tail-To-Total (TTT) PSD on the separated data.

Labelling was then followed up with manually drawing regions around the TTT

PSD data to select the photon and neutron populations produced by TTT. This

method produced good results but with a degree of variability introduced by man-

ually drawing the regions. This was later improved upon by binning events by

energy and then fitting two Gaussian distributions to the TTT results to identify

the neutron and photon populations. This method was found to provide the same

quality results as manually drawing the regions, but with reduced variability.

To identify a viable machine learning solution multiple architectures were in-

vestigated. Of the tested architectures three were CNNs and one was a fully

connected design, with each being adapted for inference of 1-D signals. The archi-

tecture found to be most successful was the adaptation of GoogLeNet explored for
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use with AdEPT, with a depth of three inception modules. The performance of

GoogLeNet was compared to the traditional TTT PSD method and it was found

to be limited to a practical minimum False Positive Rate (FPR) of 6.4E-4. At this

6.4E-4 FPR TTT achieves a True Positive Rate (TPR) of 0.78 with a minimum

energy of 200 keV ee where the photon and neutron populations begin to overlap.

These same limits were not found with the GoogLeNet implementation, where

achieving a 1E-6 FPR was seemingly trivial. At the 1E-6 FPR level GoogLeNet

achieved a TPR of 0.6917 with a minimum energy of 127 keV ee.

In addition to comparing GoogLeNet to traditional PSD it was important to in-

vestigate the impacts of variations in Photomultiplier Tube (PMT) bias, sampling

depth, and sampling frequency. It was found that there is generally an increase in

classification performance with increased PMT bias up to the point where signal

clipping or distortion occurs, where performance then decreases drastically. Addi-

tionally, a similar trend is observed for reduced bit depth and sampling frequency,

where lowering either of these factors decreases performance. There exists some

discrepancies in this trend at bit depths of 7 and at 8x sampling rate reductions.

The presence of this deviation in the bit depth trend is believed to be caused by an

artifact in the reduction technique, which predominantly impacts photon signals

rather than neutrons. The deviation in the trend for sampling rate reductions is

believed to be caused by the reduced sampling rate’s inadequate representation of

the fast component of the signal, which disproportionately impacts photon signals.

Machine learning is often referred to as a black box because of the disconnect

between the result and the input. In this research Gradient-weighted Class Ac-

tivation Mapping (Grad-CAM) was implemented to produce an interpretation of
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the key features employed by GoogLeNet when performing event classification. For

GammaNet it was found that the most significant identifier of background events was

sparse or discontinuous ionization indicative of GCR protons and small high ion-

ization density tracks indicative of delta rays. For deep inelastic scattering events

from GCR protons the secondary particles generated created vertices which were

correctly identified as background, likely because of the much higher ionization

density than electron positron pair production. For the identification of pair pro-

duction the apparent features were vertices, long parallel ionization tracks, and

when a continuous track exited frame. The application of Grad-CAM to the

GoogLeNet implementation for neutron and photon classification found similar

successes. For neutron classification the apparent focus for GoogLeNet was the

duration of the signal as indicated by a wider activation region for the average

neutron signal compared to the average photon signal. Also noted in the neutron

classification case is the activation at the rising edge of the signal being slightly

higher for the average photon than the average neutron, likely caused by a slower

rise time for the average neutron signal. For photon classification the activation in

GoogLeNet was focused on the return to baseline and the beginning of the leading

edge of the signal.

5.1 Future Work

The largest deficiencies with the research done for GammaNet relate to the incom-

plete status of the detector and satellite. Without a fixed computational budget,

data rate availability, and real science data, the possible space of solutions for this

problem are too large. The work stands as a proof of concept, but with these
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shortcomings resolved a real solution could be developed and potentially one with

greater performance than was found in this work. Further to these problems is the

possibility to use newer neural network architectures which perform region bound-

ing. With the use of these networks it would be possible to identify the sub-region

of the event images that pertain to the pair production event and save only that

for telemetry, affording an additional level of data rate reduction. Lastly, once

the satellite mission is solidified the data compression will be known, allowing a

higher FPR which would greatly increase the signal sensitivity. The use of PNG

file format provides a near 16x reduction in file size for the full scale simulation

images, and is a lossless compression format.

The research done implementing GoogLeNet as a neutron and photon classifier

could be improved upon primarily in four ways. The first improvement would

be to improve the ToF experimental results or gather neutron data at a pulsed

neutron source with the aim of gathering more pure neutron training data. These

two efforts would both depend heavily on improved ToF, which could be improved

with use of a PMT with a smaller time spread or by operating the PMT at a

higher bias to minimize the time spread. In addition, ToF results would likely

benefit from a better free field environment, where less scattering and secondary

field generation would occur, reducing the rate of false coincidences. Lastly, the

use of a pulsed neutron source would minimize the amount of secondary field

generation where, if the detector is sufficiently far and the pulse short enough, the

secondary field would essentially be the photon background. This improved data

set could then be used for training and compared to the results currently presented

to discern if more pure data is necessary or beneficial.
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Another potential improvement would be the use of an over-voltage protection

circuit for use with the McMaster and Bubble Technologies Industries (BTI) ex-

perimental setup. This was not implemented in this work so the bias was left at

a conservative level for that setup to avoid damage to the electronics. With the

use of an over-voltage protection circuit more data could have been gathered and

compared to the Lawrence Berkeley National Laboratory (LBNL) data, perhaps

providing even better results for the EJ-301 setup. Additional work could have

been done to optimize the electronics chain, where improvements to the PMT

and digitizer could have reduced noise and improved PSD performance for TTT

these could also improve the performance for machine learning. The improvements

from better electronics could have lead to a more pure training data set, which

relied on TTT PSD, or simply reduced false positive rates during classification by

GoogLeNet. The last obvious improvement would be to recreate the experiment in

reduced bit depth and sampling rates with actual measurements carried out at the

desired fidelity. Most apparent of the discrepancies would be the programmatic

reduction in bit depth and how it wouldn’t correctly represent the non-linearities

introduced per bit when discretizing voltage measurements.

A final improvement for both applications discussed in this research would be

the implementation of newer neural network architectures. The most performant

architectures, at the time of this research, were implemented but progress in the

field of machine learning is continuous. A point of comparison is a newly published

article for an image classifier that performs roughly 12 % better than the full scale

GoogLeNet [107]. The draw back of these newer architectures is that there is ever

increasing size and complexity to balance improved performance, where this can be
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limiting for their usefulness, especially in the case of AdEPT. Further to this is the

advent of faster accelerators for machine learning, where the rate of improvement

between generations of Graphics Processing Units (GPUs) has been roughly 50 %

for Machine Learning (ML) workloads.
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Appendix A

Chapter 2 Supplement

A0.1 GammaNet Architecture

The architecture used for GammaNet is shown schematically in Fig. A1.1 and is com-

prised of convolution, Rectified Linear Unit (ReLU) [108], maximum or average

pooling, Local Response Normalization (LRN) [12, 109], dropout [110], concate-

nation, inner product, and softmax [111, 12] operations. All of these operations

come preprogrammed in NVCaffe, a platform for developing and programming

Convolutional Neural Networks (CNNs) [42], which was used for the development

of GammaNet.

A0.2 GammaNet Hyperparameters

The hyperparameters used in training GammaNet are as follows:

test_iter: 1000

test_interval: 50000

base_lr: 0.0001
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display: 1000

max_iter: 10000000

lr_policy: "step"

gamma: 0.96

momentum: 0.9

weight_decay: 0.0002

stepsize: 320000

snapshot: 49000

snapshot_prefix: "/path/to/your_prefered_directory"

solver_mode: GPU

net: "/path/to/your_network.prototxt"

test_initialization: false

average_loss: 40

iter_size: 1
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Figure A1.1. Diagram depicting the
architecture used for GammaNet. All
necessary functions are included in the
NVCaffe library.
a) input to the network of an AdEPT
simulation image.
b) first layer made of a 7x7 convolution
with a stride of 2. The convolution is
followed by a ReLU operation, where
all negative values are made to be 0.
c) 3x3 max pooling layer with a stride
of 2. The 3x3 max pooling is followed
by a LRN operation, where the output
is normalized along the depth.
d) 1x1 convolution with stride of 1
followed by a ReLU.
e) 3x3 convolution with a stride
of 1 followed by a ReLU and LRN
operation.
f) 3x3 max pooling layer with a stride
of 2.
g) inception module used by
GoogLeNet [26], part 1, from left
to right: 3 1x1 convolutions of stride 1
and a 3x3 max pooling with a stride
of 1.
h) part 2 of inception module, from
left to right: 3x3 convolution of stride
1, a 5x5 convolution of stride 1, and a
1x1 convolution of stride 1.
i) concatenation along the depth of
the previous 3 operations in h).
j) 7x7 average pooling with a stride
of 1. The average pooling is followed
by a dropout operation, randomly
setting values in the output to 0 with
a defined probability.
k) the flattening of j) into a vector.
l) inner product between vector k)
and the parameters of l) where there is
a set of parameters for each class con-
tained in the output, with two classes
in the case of GammaNet. This step
was carried out in double precision.
m) 2 values output by the softmax
operation. The softmax operation was
carried out in double precision.131
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