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Abstract

Sodium (23Na) plays a critical role in all organisms – it is crucial in cellular

homeostasis, pH regulation and action potential propagation in muscle and

neuronal fibres. Healthy cells have a low intracellular 23Na and high extra-

cellular concentration, with the sodium-potassium pump maintaining this

sodium gradient. In the human brain approximately 50% of its total energy

consumption is occupied by maintenance of this gradient, demonstrating the

pump’s importance in health. A failure of the sodium-potassium pump leads

to cellular apoptosis and ultimately necrosis, with potentially disastrous re-

sults for neurological function.

Magnetic resonance imaging (MRI) of 23Na is of great interest because

of the ubiquity of sodium in cellular processes. However, it is hampered

by many technical challenges. Among these are a low gyromagnetic ratio,

short T ∗2 relaxation times, and low concentrations all of which lead to long

acquisitions in order to account for the poor inherent signal. In addition,

23Na MRI requires specialized hardware, non-standard pulse sequences and

reconstruction methods in order to create images. These have all contributed

to render clinical applications for 23Na MRI virtually non-existent, despite

research indicating sodium’s role in various neurological disorders, including
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multiple sclerosis, Alzheimer’s, stroke, cancer, and traumatic brain injury.

This work is motivated by a desire to use 23Na MRI in clinical settings.

To that end, hardware and software methods were initially developed to pro-

cess sodium images. In order to quantify the imaging system the point-spread

function (PSF) and the related modulation transfer function (MTF) were cal-

culated with the aid of a 3D-printed resolution phantom with different 23Na

concentrations in gelatin. Two pulse sequences, density-adapted projection

reconstruction (DA-3DPR) and Fermat looped orthogonally encoded trajec-

tories (FLORET), with similar acquisition times were tested. Reconstruc-

tions were performed with the non-uniform fast Fourier transform. Results

indicated a full-width, half-maximum (FWHM) value of 1.8 for DA-3DPR

and 2.3 for FLORET. In a follow-up study, simulation experiments were

added to various sodium phantom concentrations in 3% agar. The simula-

tions indicated high potential variability in the MTF calculations depending

on the methodology, while the phantom experiments found a FWHMs of 2.0

(DA-3DPR), and 2.5 (FLORET).

Diffusion tensor imaging (DTI) is an MRI technique with wide adoption

for the assessment of a variety of neurological disorders. Combining DTI

with 23Na MRI could provide novel insight into brain pathology; however, a

study with a healthy population is warranted before examinations with other

populations. Fifteen subjects were scanned with DTI and sodium MRI, and

the latter was used to derive voxel-wise tissue sodium concentration (TSC).

Regional grey and white matter (WM) TSC was analyzed and compared to

fractional anisotropy (FA) and cerebrospinal fluid (CSF) proximity. Results

indicated that WM voxels proximal to CSF regions (i.e. corpus callosum)
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could have lower than expected FA values and higher measured TSC, with

an inverse correlation between TSC and distance to CSF. This is likely the

result of the broad PSF of 23Na MRI, as regions distal to CSF did not exhibit

this phenomenon. This potentially represents a confounding effect when

interpreting sodium concentrations, especially in regions proximal to the high

23Na content in CSF.
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Glossary

3DPR 3D projection reconstruction

ADC apparent diffusion coefficient

ADP adenosine diphosphate

ATP adenosine triphosphate

BART Berkeley Advanced Reconstruction Toolkit

BBB blood brain barrier

BLOSI Bloch-Siegert

BMI body mass index

CSF cerebrospinal fluid

DA-3DPR density adapted, 3D projection reconstruction

DCF density compensation function

DM direct modulation
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DQC double quantum coherences

DTI diffusion tensor imaging

FFT fast Fourier transform

FH Fourier 1st harmonic

FID free induction decay

FLORET Fermat looped orthogonally encoded trajectories

FOV field of view

FSL FMRIB Software Library

FWHM full width at half maximum

GM grey matter

1H hydrogen

ISTO irreducible spherical tensor operator

MQC multiple quantum coherences

MRI magnetic resonance imaging

MS multiple sclerosis

MTF modulation transfer function

NMR nuclear magnetic resonance
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NUFFT non-uniform fast Fourier transform

PSF point-spread function

B−
1 receive field

B+
1 transmit field

RF radiofrequency

ROI region of interest

SQC single quantum coherence

SNR signal to noise ratio

23Na sodium

[Na]e extracellular sodium concentration

[Na]i intracellular sodium concentration

Na+K+−ATPase sodium-potassium pump

TA acquisition time

TBI traumatic brain injury

TE echo time

TQC triple quantum coherences

TR repetition time
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TSC tissue sodium concentration

UTE ultra-short echo time

VGSC voltage gated sodium channels

WM white matter
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Chapter 1

Introduction

Magnetic resonance imaging (MRI) is an established in vivo medical imaging

modality. It is an essential tool in modern clinical practice, with applications

in neurology, cardiology, oncology, orthopedics, and pediatrics representing

only a partial list. MRI is based upon the interactions of hydrogen (1H)

atoms, a main magnetic field, radiofrequency (RF) and magnetic gradient

pulses in order to create an image. In fact, the term MRI is usually taken

to mean hydrogen or “proton MRI” because this type of scanning dominates

the modality. Most do not realize that MRI can be done (in theory) using a

significant variety of nuclei. The physics behind magnetic resonance indicates

that there are many other nuclei that occur in vivo which would be interesting

to image, including 31P , 13C, and sodium (23Na).

23Na is the most abundant cation in vivo, and is essential to metabolic

processes, making it an attractive candidate to image with magnetic res-

onance techniques. Unfortunately, numerous technical challenges abound,

including a low gyromagnetic ratio, short T ∗2 relaxation times, and poor 23Na
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concentration (relative to hydrogen). These combine to produce low signal

to noise ratios (SNR) for 23Na MRI, leading to large imaging voxels and long

acquisition times. Despite these difficulties, 23Na MRI remains an attrac-

tive prospect for brain imaging, because of sodium’s essential role in various

pathologies, including multiple sclerosis (MS), stroke, epilepsy, cancer and

traumatic brain injury. Thus, there is considerable interest in developing

robust methods for 23Na brain MRI.

1.1 Outline

This thesis follows the McMaster University format of a “sandwich thesis”,

such that published or submitted material is surrounded with opening chap-

ters and a summary and conclusions chapter at the end. The main objectives

for this work were focused on the development of methods for sodium brain

MRI, and are as follows:

1. Build, tune, and match a radiofrequency (RF) head coil compatible

with a clinical General Electric Healthcare 3 T MRI.

2. Develop an MRI pulse sequence which can capture and spatially encode

the 23Na signal from an MRI experiment.

3. Implement an image reconstruction pipeline for 23Na.

4. Design and build a resolution phantom to allow quantification of imag-

ing system performance.

5. Generate a tissue sodium content (TSC) imaging procedure which bal-

ances the low signal of 23Na MRI with acquisition times which are
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clinically viable.

Chapter 2 discusses some of the biological motivation behind this work,

including an overview of the sodium-potassium pump. This chapter also

outlines sodium’s role in various neurological disorders, and demonstrates

the potential for 23Na MRI.

Chapter 3 investigates the nuclear magnetic resonance (NMR) properties

of sodium. The most notable difference between 23Na and proton MRI from

a physics perspective is that sodium’s spin is 3/2, which leads to magnetic

and electric terms in its energy equation. This leads to more complicated

NMR spectra, and influences the design choices when developing the imaging

methods. It also discusses intra- and extracellular 23Na concentrations and

their contributions to the observed tissue sodium concentration.

Chapter 4 contains a review of MRI theory, including signal generation,

spatial encoding, 23Na pulse sequences and non-Cartesian image reconstruc-

tion. It also gives an overview of the point-spread function (PSF) and its

related modulation transfer function (MTF), both of which are used to quan-

tify imaging performance.

In Chapter 5 the objectives and hypotheses contained in this dissertation

are described. One of the goals was to study mild traumatic brain injury

with sodium MRI scanning. However, this became impossible for two rea-

sons due to Covid-19. First of all research MRI scanning was cancelled for

almost two years. The second reason was that during Covid there was a

significant reduction in concussions (almost to zero) due to the cancellation

of recreational and varsity sports.

The development of any imaging method should also have associated
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with it the techniques to quantify performance. One such measurement is

the PSF; however, this can be difficult to measure directly. Chapter 6 is

a pilot study that outlines the measurement of the MTF in a 3D-printed

phantom – the MTF being related to the PSF by the Fourier transform.

Three sodium concentrations in gelatin were used as the testing medium,

and imaging performance was evaluated in both density adapted, 3D pro-

jection reconstruction (DA-3DPR) and Fermat looped orthogonally encoded

trajectories (FLORET). These techniques and the 3D-printed phantom can

be readily applied to measure the MTF in other applications.

Chapter 7 expands upon the previous chapter, and uses sodium suspended

in an agar solution as the medium in the imaging experiments. A simulation

study was also conducted to determine the effect of imaging noise on the

evaluation of the MTF, under two methodologies: direct modulation, and

one based on Fourier harmonics. The imaging performance of DA-3DPR

and FLORET pulse sequences were then evaluated in the phantom, and

the MTFs were calculated by both MTF methods. The results indicate that:

(i) the Fourier harmonic MTF quantification is less affected by imaging noise,

and (ii) image SNR and the PSF are largely indifferent to acquisition type.

Diffusion tensor imaging (DTI) provides information on brain structure

by measuring the unrestricted or restricted diffusion of water. DTI is used to

evaluate pathology in a wide array of brain disorders. 23Na brain MRI could

provide complementary information; however, there are few studies in the

literature combining these two techniques. Chapter 8 provides details into

the investigation of combining 23Na MRI with proton DTI in fifteen healthy

subjects, to provide a “baseline” of complementary information. The results
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indicate that areas near sources of cerebrospinal fluid (CSF) have a higher

measured 23Na concentration – the likely effect of a broad PSF confounding

the high sodium concentration in the CSF with surrounding tissue. This

is potentially problematic for examining 23Na concentration in white matter

pathologies, as the largest bundle of white matter (i.e. the corpus callosum) is

proximal to the lateral ventricles. Despite this caveat, DTI and 23Na provide

information on the brain structure and sodium concentration, and could be

jointly useful in investigating pathology.

Chapter 9 summarizes this dissertation, provides conclusions and suggests

areas for further research.

5



Chapter 2

Biological Aspects of Sodium

2.1 Sodium Function in Healthy Tissue

Sodium (23Na) is an essential ion in living organisms, responsible for cellular

homeostasis, pH regulations, fluid balance, and action potentials in muscle

and neuronal fibres [1–4]. It has an essential role in various trans-membrane

ionic exchanges, including sodium-calcium exchange, sodium-bicarbonate co-

transporter, and the sodium-potassium-activated adenosine triphosphatase

(Na+K+−ATPase i.e. the sodium-potassium pump, see figure 2.1), which

pumps 3 Na+ out of the cell into the extracellular space, replacing them with

2 K+ ions. This process is driven against the electrochemical gradient (i.e.

keeping extracellular sodium higher and intracellular potassium lower), and

thus requires energy provided by the hydrolysis of adenosine triphosphate

(ATP) [1,2]. Disruptions that occur in the sodium-potassium pump leads to

increased intracellular 23Na concentration, ([Na]i), which can prelude cellular

apoptosis or necrosis. The normal [Na]i is ≈ 15 mM, while the extracellular
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concentration ([Na]e) is ≈ 140 mM.

Maintenance of the electrochemical gradient in cells as a percentage of

the total energy consumption varies as to the relevant organ. In the heart,

≈ 15% of the energy is related to “non-service” mechanisms – that is, energy

consumption for the purpose of organ maintenance, rather than “service”

function which benefits the entire body (i.e. cardiac cycle) [3]. In the brain,

this percentage rises to ≈ 50% [3]. This high relative percentage of en-

ergy consumed in maintaining the gradient indicates the importance of the

sodium-potassium pump in healthy brain tissue.
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Figure 2.1: Sodium-potassium pump. (a) Na+ ions move into ion channel
(b) ATP provides energy to open ion channel and 3 Na+ ions released to
the extracellular space – adenosine diphosphate (ADP) released by process
(c) Open channel attracts 2 K+ ions and (d) channel reverts to closed state,
releasing inorganic phosphate and 2 K+ to intracellular space. Original il-
lustration by author with free clip art provided by: https://www.clker.com.
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2.2 Sodium Dysfunction in Brain Diseases

Sodium plays an important role in healthy brain function, with the careful

balance between [Na]i and [Na]e maintained by the Na+K+−ATPase. As

such, we might expect sodium concentrations to be disrupted from home-

ostasis during a neurological disorder. Common brain disorders, as outlined

in Law et al. [5], cite the following as the most important problems in neu-

roradiology:

1. Infection and inflammation

2. Metabolic disorders

3. Tumor

4. Trauma

5. Congenital abnormalities

6. Epilepsy

7. Hypoxia and ischemia

In regards specifically to the above, we briefly discuss 23Na in terms of the

specific maladies of Multiple Sclerosis (MS) (1 above), Alzheimer’s (2), cancer

(3), epilepsy (6), stroke (7), and traumatic brain injury (TBI) (4).

2.2.1 Multiple Sclerosis

Multiple Sclerosis is a demyelinating disease characterized by focal lesions

which are visible with proton (1H) T2 magnetic resonance imaging (MRI).
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Demyelination of axons reduces the conduction potential in white matter

(WM) [6,7] leading to patient disability. In addition, an elevation of nitric ox-

ide interferes with normal mitochondria function, and a reduced production

of ATP [6]. The breakdown of the Na+K+−ATPase mechanism follows, as

eventually ATP stores are exhausted [8,9]. This leads to an increase in [Na]i,

which coupled with the sodium-calcium exchange allows Ca2+ to accumulate

inside the cell. Increased intracellular calcium migrates to the mitochondria

further impairing ATP production and exasperating the energy crisis. An

influx of calcium has been shown to be fatal to cells [10,11], likely due to the

ubiquitous nature of calcium as an important second messenger.

As a chronic disease, there is particular interest in uncovering the pro-

gression of MS over time, and in an examination of the temporal evolution

of WM lesions, Eisele et al. [12] measured 1H diffusion and tissue sodium

concentration (TSC). The findings indicated a reduced apparent diffusion

coefficient (ADC) and normal TSC in newly formed lesions. The authors

suggested that this indicates a mostly intact underlying tissue structure and

thus a potential target for early therapeutics, as these lesions have not yet

resulted in a breakdown of the blood brain barrier (BBB). Over time, the

ADC and TSC in these newly formed lesions “normalized” to the measures

found in older lesions, potentially indicating damage to the BBB.

2.2.2 Alzheimer’s Disease

Alzheimer’s disease is a debilitating and progressive form of dementia that

produces memory loss, behavioral changes, and cognitive impairment [13].

Structurally, Alzheimer’s is characterized by brain atrophy and this is most
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easily evaluated with structural 1H MRI. However, there are also metabolic

markers in Alzheimer’s, including down regulation of glucose metabolism [14]

which can precede cognitive symptoms by years [15]. Positron emission to-

mography can be used to evaluate metabolic function in the brain; however,

23Na MRI can provide a non-invasive alternative in detecting tissue disin-

tegration and potentially provide a biomarker to track disease progression.

Mellon et al. [16] and Mohamed et al. [17] used 23Na MRI to detect increases

in TSC in patients with Alzheimer’s compared to controls. While these were

comparatively small studies, their results indicate that further research into

the use of 23Na MRI for Alzheimer’s disease is needed.

2.2.3 Cancer

Brain tumors represent a relatively small subset of diagnosed cancers; how-

ever, they are among the most deadly [18, 19]. A hallmark of the most

aggressive brain tumors is rapid angiogenesis, as these tumors rapidly out-

strip their blood supply, resulting in an upregulation of factors which further

increase vessel formation and lead to tumor growth in a vicious cycle [20,21].

Both angiogenesis and tumor cell proliferation are associated with a reduced

Na+K+−ATPase, resulting in an increase in [Na]i. An elevated TSC is

also linked with tumor malignancy [22, 23]. The increased TSC has been

attributed with both an increase in intracellular sodium, and in the extra-

cellular volume fraction – both of which are associated with cellular prolifer-

ation [24].

11
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2.2.4 Epilepsy

Action potentials are generated and propagated by the voltage gated sodium

channels (VGSC). Genetic mutations can cause the malformations of the

VGSC, and is why epilepsy can also be described as a “channelopathy” [25].

Dysfunction of these channels can lead to Na+K+−ATPase disruptions,

with the result an increase in [Na]i [26]. Chronic epilepsy has been shown to

lead to an increase in the extracellular volume, leading to alterations in the

TSC [27]. Preclinical MRI by Wang et al. indicated a decrease in apparent

diffusion coefficient and an increase in TSC when seizures were instigated in

rats [28] – the authors interpreted this as being related to 23Na migration into

the excited neurons. In a 23Na MRI study of 9 patients with epilepsy, Ridley

et al. found an increase in TSC in the regions identified as epileptogenic [29].

However, despite these promising initial imaging studies the precise role that

23Na plays in epilepsy has not been fully investigated. In particular, how

TSC alters before and after seizures has not been elucidated [30].

2.2.5 Stroke

Strokes have two subtypes- occlusive and hemorrhagic, where the former in-

volves the lodging of a clot or thrombus in an artery/arteriole in the brain,

while the latter involves the rupture of a weakened blood vessel and subse-

quent catastrophic intracranial bleeding. The clinical management of both

subtypes is notably different. In terms of sodium all MRI work has focused

on occlusive stroke, which occurs as a result of a loss of perfusion to brain

tissue. The usual treatment is to administer a recombinant tissue plasmogen
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(tPa) within a narrow window (within 3 hours) after onset. The volume of

viable tissue is typically estimated with the difference between the perfusion

weighted images and ADC from 1H MRI [31], known as diffusion-perfusion

mismatch. The bigger the mismatch the greater the potential for recovery

if the thrombus is removed. Treatment with tPa is often not administered

when either the diffusion-perfusion mismatch is too small, or more than 3

hours has passed since stroke onset. However, this procedure can underes-

timate treatment potential – TSC has been shown to indicate viable tissue

outside of the perfusion-diffusion mismatch [32,33].

2.2.6 Traumatic Brain Injury

Unlike MS, stroke or cancer, traumatic brain injuries (TBI) occur as a result

of an acute event, and are not typically degenerative in their mild form. The

mechanical and physiological injuries are a result of complex interactions of

rotational, shearing, linear and decelerating events [34, 35]. The physical

forces cause damage to the underlying structure of brain tissue, and can

result in axonal dysfunction, ionic fluxes, and neurotransmitter disorder [36].

Complicating TBI in vivo is that the TBI events are unique from patient to

patient, resulting in spatially heterogeneous manifestations of insult. These

“diffuse axonal injuries” can occur in any WM tissue, although by the nature

of its central location (a form of pivot point) and the fact it is an exceptionally

dense bundle of fibers the corpus callosum is a common region [37–39] where

damage is seen.

The complete neurometabolic consequences as a result of a TBI is exten-

sive and complicated, and a variety of intersecting processes have been found.
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Studies have found increased glutamate in the synaptic cleft following a TBI

event, which results in excessive/prolonged stimulation of glutamate recep-

tors [36, 40, 41]. This subsequently leads to a dysregulation of potassium,

as the extracellular concentration of K+ increases. Furthermore, this then

places an increased burden on the Na+K+−ATPase, as the escalated demand

forces cells to exhaust their ATP stores. At this point the TBI cascade resem-

bles that which occurs in MS: as the ATP is exhausted, [Na]i increases, and

the sodium-calcium exchange causes the concentration of Ca2+ to increase

in mitochondria [42, 43]. The result is impaired mitochondrial function and

further aggravation of the cellular energy crisis. Again, the increase in [Na]i

precedes the resulting dysfunction and potential necrosis in axonal tissue.

Initial efforts to image the effects of TBI with 23Na MRI indicated that

TSC was reduced in patients with TBI compared to controls [44, 45]. It

should be noted that these studies were somewhat limited in scope, and

more investigation in this area is warranted.

In summary, of the seven most important problems in neuroradiology, the

literature provides evidence of the efficacy of 23Na MRI for MS, Alzheimer’s,

cancer, epilepsy, stroke and TBI. In particular, 23Na MRI can provide vital

information about metabolic biomarkers, which are prevalent for all of these

brain disorders. In the next chapter we will examine some of the underlying

physics and principles of 23Na and how these influence image acquisition with

MRI.
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Chapter 3

Magnetic Resonance Aspects of

Sodium

3.1 Spin Physics

Spin is a fundamental quantum mechanical property of subatomic particles,

in a similar manner to mass or electric charge – it can be viewed as the

intrinsic angular momentum of a particle. From a classical physics view, spin

is often conceived as a child’s top or gyroscope – although incorrect from a

quantum perspective, this analogy is useful from a visualization standpoint,

and will be the vantage adopted from this point forward.

For nuclear magnetic resonance (NMR) and MRI experiments, we are only

concerned with nuclei that generate a non-zero spin, since zero spin systems

are invisible to NMR. Although the precise spin number, I is determined by

experimentation, a few heuristics can be stated here [46]:

• Nuclei with an even number of protons and neutrons produce no net
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spin (i.e. 12C, 16O: I = 0)

• Nuclei with an odd number of protons and neutrons produce a net spin

of whole integers (i.e. 14N : I = 1)

• Nuclei with an even/odd or odd/even number of protons and neutrons

has a net spin of half integers (i.e. 1H, 31P : I = 1/2, 23Na: I = 3/2)

A spin of 3/2 is significantly more complicated than the more commonly

seen 1/2 as seen in 1H MRI.

3.2 Energy of 23Na Spin Systems

The time-dependent Schrödinger wave equation includes the Hamiltonian

operator and describes the interactions of all the particles in the spin system1:

d

dt
|ψ(t)〉 = −iĤ|ψ(t)〉 (3.1)

This equation is complete, but not particularly useful – it includes all the in-

teractions between nuclei and electrons. This entails information about their

velocities, positions, and spin states (i.e. |ψ(t)〉), and cannot be realistically

solved in any practical manner. Instead, in the remainder of this text we will

use the spin Hamiltonian hypothesis [47], which allows us to only consider the

nuclear spin states, and their associated Hamiltonian, Ĥspin. This hypothesis

states that electron motion is so rapid that their influences can be averaged,

1In this text, operators are denoted by a hat notation Â, vector quantities are denoted
in boldface, (A), vector operators are hat boldface (Â), and scalars are in regular face
(A).
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and only their aggregate effect upon nuclei be considered. Moreover, this

combined effect can be contained in the Ĥspin operator. In addition, the

spin energy of the nuclei are too small to affect either the movement of the

electrons around the molecules, or the motion of the molecules themselves.

Thus, we can restate equation 3.1 as referring to only the spin states of the

nuclei in question. Henceforth, further references to the Hamiltonians of the

various subsystems are to be considered with this hypothesis and resulting

simplification of equation 3.1:

d

dt
|ψspin(t)〉 = −iĤspin|ψspin(t)〉. (3.2)

The nucleus in an NMR experiment interacts with the surrounding elec-

trical and magnetic fields. What follows here is the rationale for which terms

of the Hamiltonian are most important for a 23Na spin I = 3/2 system, and

which terms are of “lesser” (in terms of magnitude) importance and are typ-

ically ignored. For further details of the following derivations, the reader is

directed to the excellent texts by Slichter [48] and Levitt [47].

It should also be noted that the work considered in this text are 23Na ex-

periments with single quantum coherence (SQC) (i.e. a single radiofrequency

(RF) pulse followed by readout). Moreover, I have avoided introducing the

irreducible spherical tensor operator (ISTO) basis in an attempt to minimize

overly complicated derivations. However, the ISTO notation can be highly

useful, particularly when describing experiments on multiple quantum coher-

ences (MQC). If interested, the reader is directed to texts [49–54].
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3.2.1 Hamiltonian

In terms of the system energy in NMR, we can examine the total energy, or

Hamiltonian, of the system as:

Ĥ = Ĥmag + Ĥelec. (3.3)

The magnetic dipole interacts with the surrounding magnetic field, and

the electric charge interacts with the electric field – it is important to note

that as the nucleus rotates in these fields, the energy from each component

changes. Moreover, the electric charge is not a simple point charge, but

is instead distributed, possibly unevenly, throughout the nucleus. Thus its

motion is more akin to an irregular, “lumpy” magnet, than a simple dipole.

Further, we can classify any influences on the nuclei through the magnetic

or electrical fields as either external or internal spin interactions.

3.3 Magnetic Field Interactions

For our purposes, we consider that all the external spin interactions are mag-

netic field interactions [47], and these can be separated into those provided by

the static field, RF, and gradient fields. We can thus write the Hamiltonian

of the magnetic field as:

Ĥmag = Ĥstatic + ĤRF + Ĥgradient. (3.4)
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All terms in equation 3.4 are taken as the sum for all spins in the NMR

experiment – so if k is some spin in our sample, we can write:

Ĥstatic =
∑
k

Ĥk,static

ĤRF =
∑
k

Ĥk,RF

Ĥgradient =
∑
k

Ĥk,gradient

3.3.1 Static Field

The magnetic dipole moment of the nucleus will interact with the surrounding

main magnetic field. If we define this magnetic field to be oriented along the

positive z axis we can write:

Bz = B0z (3.5)

where Bz is the strength of the static magnetic field, and z is a unit vector

along the field direction. The angular momentum (Ŝ) of the nucleus is defined

as:

Ŝx = −i
(
∂y

∂z
− ∂z

∂y

)
= −i(ŷD̂z − ẑD̂y) (3.6)

Ŝy = −i(ẑD̂x − x̂D̂z)

Ŝz = −i(x̂D̂y − ŷD̂x)

for each component along the main Cartesian axes, and where D̂n is the

partial derivative taken along n. The magnitude of the angular momentum
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is in units of the reduced Planck’s constant (h̄
√
I(I + 1)), and is related also

to the spin number. The relationship between the magnetic moment, µ and

the angular momentum is governed by:

µ = γŜ (3.7)

where γ is the gyromagnetic ratio of the nucleus, and is a numeric quan-

tity measured by experiment. The energy for each spin as a result of its

interaction with the external magnetic field is:

Ĥstatic = −µ ·Bz (3.8)

= −γB0Ŝz. (3.9)

This is the term for the energy due to the static field, and is also called the

nuclear Zeeman interaction, and arises out of the consequences of Zeeman

splitting as demonstrated by the Stern and Gerlach experiments [55]. For

further reading with historical context of the Stern-Gerlach experiments, the

reader is directed to the article by Schmidt-Böcking [56].

The Zeeman splittings as observed in the above are quantized into distinct

states based upon the angular momentum in the nuclei. Thus, the number

of states is based upon the spin number, I, and is equal to 2I + 1 possible

values – enumerated as:

ms = −I,−I + 1,−I + 2, . . . , I − 1, I. (3.10)
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If we examine the energy required for the single transition for a spin I = 1/2

NMR system – that is, a transition from ms = 1/2 to ms = −1/2 we have:

∆E = Ems=−1/2 − Ems=1/2

= −γB0

(
−1

2
h̄

)
−
(
−γB0

(
1

2
h̄

))
= h̄γB0.

We can then define the energy in terms of the reduced Planck’s constant:

∆E

h̄
= γB0 = ω0. (3.11)

The term ω0 is also known as the Larmor frequency of the NMR system,

and it is a critical component for any MRI experiment. For 23Na, with a

spin system of I = 3/2, there are 4 distinct energy states, and these are

enumerated as spin states: |−3
2
〉, |−1

2
〉, |1

2
]〉, and |3

2
〉 (figure 3.1). Transitions

between |−3
2
〉 and |−1

2
〉 or |3

2
〉 and |1

2
〉 are called satellite transitions, while

those between |−1
2
〉 and |1

2
〉 are the central transitions.
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Figure 3.1: Detailing the four spin states of 23Na. In a single quantum filter
NMR experiment, there are two satellite transitions possible: −3

2
⇀↽ −1

2
and

3
2
⇀↽ 1

2
, and a single central transition: −1

2
⇀↽ 1

2
.
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3.3.2 RF Field

In an NMR experiment the spins are initially aligned along the main magnetic

field parallel to the z-axis. Upon application of an RF pulse these spins are

rotated into the xy-plane. If the RF pulse is applied at the Larmor frequency,

the time dependent RF Hamilton in the rotating frame is:

ĤRF = ωRF Ŝr

= γB1(t)Ŝr

where B1(t) is the RF envelope and Ŝr is the angular momentum in the

rotating frame. In the reference or “laboratory” static frame, we can express

this as:

ĤRF = γB1(t)
[
cos(ω0t)Ŝx + sin(ω0t)Ŝy

]
(3.12)

In practice the magnitude of the B1(t) term is orders of magnitude less than

B0, and thus the ωRF is considerably less than ω0.

3.3.3 Gradient Field

The gradient field interactions of a spin j, located at position r = (x, y, z) in

a molecule in the laboratory frame along the main magnetic field Bz, with

a field gradient magnitudes Gx, Gy, Gz, is:
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Ĥj,gradx(r, t) = −γGx(t)xŜjz

Ĥj,grady(r, t) = −γGy(t)yŜjz

Ĥj,gradz(r, t) = −γGz(t)zŜjz (3.13)

for the three components of r. Note the presence of Ŝjz for each component

– this is because the gradient field magnitudes are considerably less than that

of the static field B0 in a typical NMR or MRI experiment (i.e. Gx, Gy, Gz �

B0). As a result, we can usually ignore the effects of the transverse gradient

fields when considering the spin Hamiltonian.

3.4 Electric Field Interactions

Examining the electrical energy term, we can write the energy as the distri-

bution of charge Q(r) interacting with the electric potential Ψ(r), over some

volume as:

Eelec =

∫
vol

Q(r)Ψ(r) dr (3.14)

It is convenient to break down the charge distribution into components:

Q(r) =
n∑
i=0

Qi(r) (3.15)

where Q0(r) is the spherical charge distribution, Q1(r) the dipole charge dis-

tribution, Q2(r) the quadrupolar, etc. In terms of the magnitudes: |Q0(r)| is

the total electric charge of the nucleus, |Q1(r)| is the electric dipole moment,
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and so on.

Similarly, the electric potential can also be viewed as a superposition of

terms:

Ψ(r) =
n∑
i=0

Ψi(r) (3.16)

where Ψ0(r) is the electric potential at the center of the nucleus, Ψ1(r) the

gradient of the electric potential at the center, Ψ2(r) the gradient of the

gradient of the electric potential, etc.

We can then restate equation 3.14 in terms of the individual elements

of the nucleus interacting with the field. So this becomes the energy of

the spherical charge distribution interacting with the electric potential, the

dipole charge with the gradient of the electric potential, the quadrupolar

charge with the gradient of the gradient, etc:

Eelec = Eelec,0 + Eelec,1 + Eelec,2 + Eelec,3 + · · ·

=

∫
Q0(r)Ψ0(r) d(r) +

∫
Q1(r)Ψ1(r) d(r) +∫

Q2(r)Ψ2(r) d(r) +

∫
Q3(r)Ψ3(r) d(r) + · · · . (3.17)

At this point, a number of simplifications can be made to equation 3.17:

1. The Eelec,0 is the energy from the point charge at the center of the

nucleus. It is responsible for holding the nucleus together, but has no

effect on NMR experiments.

2. Under the principle of parity conservation, the Eelec,1, Eelec,3, Eelec,5, . . .

terms all vanish – in effect, there is no electric dipole moment within
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experimental error.

3. A symmetric property based on the shape of the nucleus and its spin

system I dictates that: Qi(r) = 0, for i > 2I.

(For further discussion of these, refer to [48]).

With regards to point (3) above, for a spin system of I = 1/2, this results

in terms: Eelec,2, Eelec,3, . . . also vanishing in equation 3.17, and thus the

entire electrical energy portion of the Hamiltonian is 0 for spin 1/2 systems.

Thus 1H, 31P , and other spin 1/2 nuclei are only under the influence of the

magnetic field effects as per equation 3.3. These nuclei can be thought of as

a “bar magnet” in the magnetic field, and this greatly simplifies the resulting

Hamiltonian.

However, for quadrupolar nuclei like 23Na, with a spin system of I = 3/2,

the Eelec,2 term remains in equation 3.17. This is the quadrupolar term, and

represents the interaction of the quadrupole charge distribution interacting

with the gradient of the electric field. To use our previous analogy, 23Na is

an irregular magnet, interacting with both the electric and magnetic fields

(figure 3.2). Our Hamiltonian for the electrical energy term is now reduced

to that for the quadrupolar term:

Ĥelec = ĤQ. (3.18)
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Figure 3.2: Interaction of the nucleus in the magnetic (blue) and electric
(red) fields. Nucleus behaves as an irregular or “bumpy” magnet. The en-
ergy of the nucleus is dependent upon its orientation, (a) and (b), and the
distribution of its electric charges (+) relative to the fields. Legend: mag-
netic field lines: blue; electric field lines: red; nucleus electric charges: +,
magnetic moment: large black arrow.
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3.4.1 Electrical Quadrupole Coupling

The electric quadrupole interaction is governed by two factors for spins I >

1/2 – the quadrupole moment of the nucleus and the electric field gradient

created by the molecular orientation of the nucleus. The former, hereafter

referred to as Q is a property of the nucleus, and a few examples are listed

in table 3.1.

However, also important is the effect of the molecular properties of the

nuclei – molecules with a symmetric nuclear environment, like 7Li and 27Al,

have small local electric field gradients. Conversely, those with a small

quadrupole moment like 14N may have a large quadrupole interaction due to

large local field gradients from covalent bonds. For 23Na, these effects depend

on the orientation and, when not readily mobile, the electrostatic interaction

of the sodium with polar molecules in question.
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Nucleus Spin Gyromagnetic Ratio Electric Quadrupole
(MHz/T ) Moment (×10−31 m2)

7Li 3/2 16.546 -40.1
14N 1 3.077 20.44
23Na 3/2 11.262 104
27Al 5/2 11.103 146.6

Table 3.1: Gyromagnetic ratios and electric quadrupole moments for selected
quadrupolar nuclei. Data is from [57].
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We can describe the electric field gradient as a tensor operating on the

nucleus as V . The components of V are the second derivatives of the electric

potential Ψ, and along the main diagonal these are:

Vxx =
∂2Ψ

∂x2

Vyy =
∂2Ψ

∂y2

Vzz =
∂2Ψ

∂z2
.

V is symmetric, and the off diagonal elements are then:

Vxy = Vyx =
∂2Ψ

∂x∂y

Vxz = Vzx =
∂2Ψ

∂x∂z

Vyz = Vzy =
∂2Ψ

∂y∂z
.

However, V is usually stated in terms of its principle values, which we

align along the coordinate axes VXX , VY Y , VZZ , and ordered such that |VZZ | ≥

|VY Y | ≥ |VXX |. The value of VZZ is typically specified in terms of the field per

unit charge of the electron, such that VZZ = eq, where e = −1.6022×10−19 C.

Note that by electromagnetic theory V is traceless [47]:

Tr(V ) = VXX + VY Y + VZZ = 0. (3.19)
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If we define a biaxiality component, nQ as:

nQ =
VXX − VY Y

VZZ
, (3.20)

we can use equation 3.19 along with our definition of the principal compo-

nents of V in order to define the components in terms of nQ:

VXX = −eq/2 (1− nQ)

VY Y = −eq/2 (1 + nQ)

VZZ = eq

V is here expressed along its principle axes – if we wish to apply it instead

in some molecular orientation Φ, we can apply an appropriate 3× 3 rotation

matrix R, as:

V (Φ) = R(Φ) ·


VXX 0 0

0 VY Y 0

0 0 VZZ

 · R(Φ)−1 (3.21)

where R(Φ) represents the relative orientation of the principal axes system

to the molecular orientation.

Finally, we can state the quadrupolar Hamiltonian from equation 3.18

as a function of its molecular orientation in terms of both the quadrupole

moment, the electrical field gradients, and the spin system Ŝ as:
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Ĥelec(Φ) = ĤQ(Φ) =
eQ

2I(2I − 1)h̄
· Ŝ · V (Φ) · Ŝ (3.22)

where the latter term is:

Ŝ · V (Φ) · Ŝ = ŜxVxx(Φ)Ŝx + ŜxVxy(Φ)Ŝy + ŜxVxz(Φ)Ŝz + · · ·+ ŜzVzz(Φ)Ŝz.

(3.23)

The inclusion of the molecular orientation, Φ, is essential to the understand-

ing of how 23Na NMR behaves in biological tissues, as we will examine in an

upcoming section.

3.4.2 First-order Approximation of ĤQ

A further simplification of equation 3.22 can be made for 23Na NMR. If we

decompose the full quadrupolar Hamiltonian into individual components of

different order effects, similar to what was done for the electric potential in

equation 3.16, we have:

ĤQ(Φ) =
n∑
i=0

ĤQ,i(Φ) (3.24)

where ĤQ,1 is the first-order quadrular Hamiltonian, ĤQ,2 is the second-order

Hamiltonian, etc. If we make the general assumption that the quadrupolar

interaction is smaller than that of the static field (i.e. ĤQ � Ĥstatic) we can

make a first order or secular approximation [47,49] and neglect all the terms

of equation 3.24 greater than the first-order, or:

ĤQ(Φ) ≈ ĤQ,1(Φ). (3.25)
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Taking this approximation into account, we can state our first order Hamil-

tonian in terms of its first-order quadrupolar coupling angular frequency, ωQ,

as:

ĤQ,1 =
ωQ
2

(
3Ŝ2

z − I(I + 1)1̂
)
,

with ωQ =
eQV zz

6h̄
(3.26)

where 1̂ is the identity matrix, and V zz represents the average of the electrical

field gradient Vzz(Φ) over all its molecular motion, or:

V zz =

∫
p(Φ)Vzz(Φ) dΦ (3.27)

where p(Φ) is the probability of a particular orientation, and
∫
p(Φ) dΦ = 1.

3.5 Properties of in vivo 23Na NMR

The 23Na ion in an NMR experiment is subject to both magnetic and electric

field effects as per equation 3.3, and by equation 3.22 we see that the molecu-

lar orientation has a significant effect on the electrical energy operator, Ĥelec.

But how do these effects manifest themselves with in vivo NMR?

The answer lies in the molecular composition and environment in which

the 23Na is involved with, and this leads to four distinct NMR spectra, de-

pending on the motional regimes of the molecule in question [58–60]. In

the following we describe the spectra, and direct the reader to also reference

figure 3.3. We also make the following approximations and assumptions:
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• the 23Na ions are precessing at the Larmor frequency ω0

• the 23Na ions are rotating in a single compartment with rotational time

constant, τc

• the quadrupolar Hamiltonian can be accurately simplified to the 1st

order approximation by equation 3.25

• the 23Na ions are (possibly) subject to an anisotropic quadrupolar in-

teraction, wQ

• the 23Na ions are subject to a single quantum coherence NMR exper-

iment (i.e. a single RF pulse followed by readout) unless quantum

filtering is performed
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Figure 3.3: Representative NMR spectra for 23Na, dependent on the motional
regimes based on [58–60]. (a) type a anisotropic ‘crystal-like’ spectra, char-
acterized by a central peak, with the satellite transition at ±ωQ. Relative
intensity in the lines is 3:4:3. (b) type b anisotropic ‘powder-like’ spectrum,
with central transition and inhomogeneous satellite resonances. In this ex-
ample, these satellite transitions coalesce into very broad peaks. (c) type c
isotropic slow to intermediate motion. Quadrupolar interactions act to pro-
duce dynamic shifts in the Larmor frequency – but these shifts are small
and difficult to detect. The result is a broadening of the central transition,
into a ‘super-Lorentzian’ peak shape centered at ω0. Broad linewidth (lw)
indicated. (d) type d fast isotropic motion where all orientations of the nuclei
are equally likely and V zz = 0. This results in no net quadrupolar interac-
tion. All transitions are separated by ω0 resulting in a single NMR spectra.
Longitudinal and transverse relaxation are single exponentials. Linewidth is
narrow compared to type c. Legend: lw: linewidth.
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3.5.1 Rapid Isotropic Motion

In these substances with rapid isotropic motion (i.e. liquids), all orientations

of the molecule are equally possible, and this system has very rapid motion

such that ω0τc � 1. Thus all probabilities of the orientation, p(Φ) in equa-

tion 3.27, are equal. Moreover, given the NMR experimental timescale, the

average electric field gradient, V zz is 0, making ωQ in equation 3.26 also 0,

so there is no residual quadrupolar interaction. The four energy levels of

the spin states of 23Na are separated by ω0, and the NMR spectra is a single

peak at ω0. Longitudinal and transverse relaxation are simple exponential

decays, similar to I = 1/2 systems. In terms of brain tissue, the 23Na in the

cerebrospinal fluid (CSF) behaves as this type, and produces a type d spectra

as per Rooney and Springer [58] (see figure 3.3).

3.5.2 Slow to Intermediate Isotropic Motion

In these situations, the nucleus’ macromolecular motion is isotropic, but of

a similar order to the Larmor frequency, or ω0τc ≈ 1. As such, there is a

residual quadrupolar interaction, which depends upon the orientation of the

nucleus in the electric and magnetic fields (figure 3.2). These interactions

result in the satellite transitions having different relaxation rates from those

of the central transition, and produce a dynamic shift in the Larmor fre-

quency. However, these shifts are smaller than the linewidths, and are thus

extremely difficult to detect. Their net effect upon the NMR spectra is to

produce a broadening of the homogeneous peak. This bi-exponential, “super-

Lorentzian” peak, a type c spectra, describes the behavior of WM and grey
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matter (GM) in the brain.

3.5.3 Anisotropic Motion

For types b and a, ω0τc > 1, all possible orientations of the nucleus are not

likely. For type b, the sample is inhomogeneous, with multiple quadrupolar

couplings – or ‘powder-like’ as classified by Rooney [58]. This results in a

homogeneous central resonance superimposed with inhomogeneous satellite

resonances. A type a spectrum would be found in solid or semi-solid samples

(i.e. ‘crystal-like’), and its spectrum characterized by a single peak at ω0,

with the two satellite transitions represented by peaks at ±ωQ. The relative

intensity in spec tral peaks is 3:4:3. Both anisotropic types can be observed

with NMR methods, but neither are very relevant for in vivo tissue, and any

further discussion is limited to types c and d.

3.6 23Na Considerations for Brain MRI

In the previous sections we have seen how the quantum properties of 23Na

determine its motional regimes, and how those motional regimes manifest

themselves in the NMR spectra of 23Na. What we outline in this section is

how these NMR properties influence how we use MRI to image in vivo 23Na

– specifically, in vivo brain imaging.

After the application of an RF pulse at the Larmor frequency, the signal

equation of the MRI experiment is proportional to the voltage in the receiver

coil [61]:
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S(t) = γB0Ω

∫
V

MT (r, t)BT (r) d3r (3.28)

where γB0 is the Larmor frequency, Ω is a constant representing the gain

from the receiver coil electronics, MT = Mx + iMy is the transverse magne-

tization, BT = Bx + iBy the receive field in the coil, with r = (rx, ry, rz) and

t representing the spatial location and time respectively.

We can separate the transverse magnetization into sub-components, based

on the Larmor frequency and a signal decay constant, T ∗2 , as:

MT (r, t) = e−i(γB0t−φ0)e−t/T
∗
2 (r)MT (r, 0) (3.29)

The component introduced by the Larmor frequency is represented by

e−i(γB0t−φ0) with the φ0 term representing the initial signal phase (usually

assumed to be 0). The decay constant, T ∗2 is spatially dependent, and is

partly due to composition of the object under examination. We will examine

the T ∗2 component further below.

Equation 3.28 is linearly dependent on γ, and as

γ23Na/γ1H =
11.262× 2π

42.577× 2π
≈ 0.26, (3.30)

we can expect the 23Na signal to be attenuated by the same factor, other

components being equal.

Three tissues are visible in MRI of the brain – CSF, WM, and GM. For

23Na, CSF is a type d NMR spectra, while WM and GM are both type c (see

Figure 3.3). Thus, GM and WM both have multiple transverse relaxation
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rates, representing the relaxation times from the satellite and central transi-

tions respectively. The satellite transitions have a higher relaxivity than the

central transition, and are so noted as T ∗2f (T ∗2 ‘fast’) versus T ∗2s (T ∗2 ‘slow’).

Table 3.2 indicates typical 23Na and 1H relaxation components for brain tis-

sue at 3 T [62–66]. Comparison of the T ∗2 components indicate the relatively

rapid transverse decay of the 23Na signal compared to 1H MRI.
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Nucleus Tissue T1 T2 T ∗2f T ∗2s
23Na WM 15-25 – 0.8-3 15-30

GM 15-25 – 0.8-3 15-30
CSF 50-60 50-55 – –

1H WM 1039-1120 52-60 – –
GM 1420-1520 61-81 – –
CSF 4400 2200 – –

Table 3.2: Comparative relaxation times of brain tissue for 23Na and 1H at
3 T. All times are in ms. Values are from [62–66].
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As a result of their multiple relaxation components, GM and WM display

a biexponential decay. The satellite spins in the I = 3/2 system contain

approximately 60% of the signal immediately after the application of the RF

pulse. The importance of this is that 60% of the total transverse signal decays

rapidly at the T ∗2f time constant. We can describe this signal dependence to

its satellite and central transitions as:

S(t) ∝ 0.6e−TE/T
∗
2f + 0.4e−TE/T

∗
2s (3.31)

where TE is the echo time. The rapid decay T ∗2f component in 3.31 necessi-

tates the use of ultra-short TE (UTE) pulse sequences. This will be discussed

further in a later section.

One further difficulty in sodium MRI in the brain is the scarcity of 23Na

relative to 1H. In 1H MRI brain abundance of 1H is approximately 88 M.

A comparison of this to brain 23Na “dense” tissue, such as CSF, where the

concentration is only 0.14−0.16 M , easily shows the difficulty; this represents

a decrease in available signal of ≈ 600. If the interested tissue is either WM

or GM, the difficulties are only exasperated.

A simple model of an imaging voxel in a 23Na MRI experiment will

encompass three different tissue volumes [63] – intracellular, extracellular,

and a “solid” volume representing the cell membranes, proteins, etc. (see

figure 2.1). We can denote these volume compartments as Vi, Ve, and

Vs for intra-, extracellular and solid respectively. Their relative volumes

have been found to vary depending on whether we are measuring WM or

GM, but have been found to be Vi = 0.5 − 0.6, Ve = 0.18 − 0.22, and

Vs = 0.15− 0.3 [63,67,68].
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The sodium concentration of the solid volume is negligible, and further,

its T2 would be even shorter than in the extra- or intracellular 23Na com-

partments, making it almost impossible to image in vivo. This leads to the

conclusion that in an imaging voxel the observable TSC is a weighted av-

erage of the relative volumes of each tissue compartment and the sodium

concentrations therein, or:

TSC = Vi[Na]i + Ve[Na]e +���Vs(0) (3.32)

Using the above assumptions, Madelin et al. [63] found that the expected

WM [Na]i ≈ 10.6± 5.3, and GM [Na]i ≈ 11.7± 5.9, with the measured TSC

between 30 and 40 mM. This means that in the WM and GM tissues, which

are typically more interesting in terms of disease states, we can expect a

decrease in signal of ≈ 2500, based purely on the relative concentrations of

23Na and 1H in the brain.

In conclusion we can summarize the difficulties for 23Na MRI compared

with 1H MRI for neuroimaging applications with the following:

• reduced gyromagnetic ratio leads to a reduced signal in the receiver

coils (factor of ≈ 4)

• rapid T ∗2 decay necessitates the use of fast acquisitions and UTE pulse

sequences

• in WM and GM, the T ∗2f component of the signal disappears within a

few milliseconds – this represents 60% of the available signal

• low apparent TSC compared with 1H concentration in the brain repre-
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sents a reduction in signal by ≈ 2500

The above limitations lead to long acquisition times for 23Na MRI, as

multiple averages are required in order to produce a reasonable signal. Av-

eraging is typically combined with coarse resolutions in order to increase the

signal to noise ratio (SNR) in the resulting images.

3.7 Extracellular versus Intracellular 23Na

Instead of measuring the TSC and attempting to tease out the contribu-

tions in the total signal from the [Na]e and [Na]i, efforts have been made

to image the contributions from these two compartments separately using

(i) multiple quantum coherences of the spin 3/2 system, (ii) shift reagents,

and (iii) contrast agents. We will briefly outline these efforts here.

3.7.1 Multiple Quantum Coherences

Thus far, this dissertation has been primarily focused on SQC – transitions

that are either satellite (±3
2
⇀↽ ±1

2
) or central (−1

2
⇀↽ 1

2
) (see figure 3.1).

However, it should be noted that double and triple quantum coherences

(DQC and TQC) exist, which evolve as a result of the interaction of the

quadrupole charge distribution interacting with the gradient of the electric

field [49]. These coherences represent transitions from 3
2
⇀↽ −1

2
or −3

2
⇀↽ 1

2

for DQC, or −3
2
⇀↽ 3

2
for TQC as in figure 3.1. These coherences can be

detected with judicious use of preparatory RF pulses before the acquisition

readout in MQC pulse sequences [53,69,70]. MQCs have attracted attention

previously because of reports that these can selectively attain the signal of
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[Na]i [52,70–72]; however, this is still an open question scientifically, because

considerable evidence exists that the signal from the [Na]e contributes to

MQC experiments [73–75]. In addition, DQC and TQC imaging has been

reported to be approximately 10% of the signal obtained by a SQC exper-

iment [49]. As such, even if they could definitively capture the signal from

only the intracellular compartment, the signal loss is potentially prohibitive

for in vivo imaging, especially at 3T.

3.7.2 Shift Reagents

The signal contribution from the extracellular space has been suppressed

by the use of shift reagents [75, 76]. These shift reagent molecules are

too large to cross the cell membrane and thus remain in the extracellular

space. By shifting the Larmor frequency, shift reagents allow the extra-

cellular spins to be separated from their intracellular counterparts – this

allows the [Na]i to be imaged by a selective RF pulse. These reagents

may shift the frequency either downfield (i.e. higher frequency) as in the

cases of thulium-1,4,7,10-tetraazacyclododecane 1,4,7,10-tetrakis (methylene

phosphonate) (TmDOTP5−) [77] and dysprosium triethylenetetraminehexa-

acetate (Dy[TTHA]3−) [78]; or upfield as for bis(tripolyphosphate) dyspro-

sium(III) Dy(PPPi)
7−
2 [79]. However, as these reagents are somewhat toxic [80,

81], their use for in vivo imaging is contraindicated.

3.7.3 Contrast Agents

Both Kohler [80] and Winkler [82] mention the potential use of the contrast

agent dextran magnetite, which like the previously mentioned shift reagents
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stays in the extracellular space; however, it shortens the T ∗2 of the extra-

cellular 23Na instead of shifting the Larmor frequency. Kohler postulated

that sufficient concentration of the contrast agent could potentially suppress

the [Na]e altogether; however, despite early efforts into their use in preclin-

ical imaging [83, 84], there is scant evidence in the literature regarding its

applicability for human 23Na MRI.
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Chapter 4

Acquisition and Reconstruction

4.1 MRI coils

An RF coil is a necessary hardware component for any NMR experiment.

As per equation 3.28, we wish to maximize the the signal by having a large

gain constant, Ω. The most common type of coil is a cylindrical “bird-cage”

design, as described by Watkins and Fukushima [85]. The MRI coil has

two essential purposes – RF transmission, also known as B+
1 field, and the

receiver, or B−1 field.

In clinical 1H MRI (i.e. most often 1.5 and 3 T superconducting mag-

nets), typically the B+
1 field is generated by the magnet’s body coil, with an

anatomy specific coil used solely for the B−1 field. However, in non-proton

MRI it is common to use a coil which acts both as a transmit and receive

coil. figure 4.1 is an example of a 23Na bird-cage coil, and furthermore is the

coil used in the experiments detailed in the remainder of this dissertation.

This design has 16 rungs, with the outer diameter measuring 320 mm, inner
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diameter 240 mm, with a total length of 245 mm along a direction parallel

to the rungs.
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Figure 4.1: A single-channel, single-tune, transmit and receive quadrature
bird-cage RF coil. This coil is tuned to 33.8 MHz, the Larmor frequency
for 23Na at 3 T. Its inner diameter is designed to contain an imaging field
of view (FOV) of 240 mm, typically large enough for an adult human head.
This is the coil which was used in the experiments detailed in the rest of this
manuscript.
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Ideally, the B+
1 field is perfectly homogeneous and results in a completely

uniform flip angle across the imaging field of view (FOV). In practice, pertur-

bations exist creating a non-uniform flip angle in the FOV. Measuring and

adjusting for the B+
1 field is important for quantitative MRI, and is essential

when using custom-build RF coils. Measuring and correcting for the B+
1 field

is called B+
1 field mapping and B+

1 field map correction.

4.2 Gradients and Spatial Encoding

The signal S(t) from equation 3.28 in an NMR experiment is called the free

induction decay (FID) and it is spatially independent. In effect, it is the

signal from all of the spins in the object under consideration. In order to

produce an image, we need a method to determine the spatial location of the

spins, and thus derive the spin density, dependent on that location. Using

equations 3.28 and 3.29, we can rewrite the signal equation as:

S(t) =

∫
V

γB0ΩMT (r, 0)B−1 (r)e−iγB0te−t/T
∗
2 (r) d3r (4.1)

where the initial phase is 0. The other terms are the Larmor frequency γB0,

receiver coil gain Ω, transverse magnetization MT , receiver field B−1 , with r

the spatial location and t is time.

In general, the receiver field is spatially dependent – however, in the

interest of simplifying the following derivation of spatial encoding, we will

assume that B−1 is invariant with respect to position, and can be represented

as a constant:

B−1 (r) ≈ B−1 . (4.2)
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If we group all of the constants together as a single factor, A = γB0ΩB
−
1 ,

then:

S(t) =

∫
V

AMT (r, 0)e−iγB0te−t/T
∗
2 (r) d3r (4.3)

and since the Larmor frequency term is not dependent on position,

S(t) = e−iγB0t

∫
V

AMT (r, 0)e−t/T
∗
2 (r) d3r. (4.4)

The term under the integration is the effective spin density of the experiment,

which we define as:

ρ(r) = AMT (r, 0)e−t/T
∗
2 (r). (4.5)

In order to add spatial encoding to our signal we apply linear magnetic

field gradients. These perturb the Larmor frequency experienced by the spins

in a deterministic way based on the spin’s position, and thus spatially encode

the received signal. Mathematically, let us add gradient fields for each spatial

component and apply these across the object. The effective magnetic field is

then

B(r) = B0 +G(r) · r, (4.6)

where G(r) = (Grx , Gry , Grz). Equation 4.6 indicates that the Larmor fre-

quency experienced by the spins is now spatially dependent on r. Note that

the gradients can also vary in time, i.e. G(r, t) – but for simplicity we will as-

sume constant gradients for the following derivations. If we use equation 4.6
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in place of the static field B0 in 4.3, we have:

S(t) =

∫
V

AMT (r, 0)e−iγ(B0+G(r)·r)te−t/T
∗
2 (r) d3r

=

∫
V

AMT (r, 0)e−iγB0te−iγ(G(r)·r)te−t/T
∗
2 (r) d3r

= e−iγB0t

∫
V

ρ(r)e−iγ(G(r)·r)t d3r (4.7)

The NMR signal is demodulated by the Larmor frequency as part of the

processing in the receiver chain, so that the baseband signal becomes

Sb(t) = eiγB0tS(t) =

∫
V

ρ(r)e−iγ(G(r)·r)t d3r. (4.8)

Now split the volumetric integral and spatial vectors into their separate com-

ponents:

Sb(t) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ρ(r)e−iγGrxrxte−iγGry ryte−iγGrz rzt drz dry drx. (4.9)

Define a set of variables, k(t) such that:

k(t) = (γGrxt, γGryt, γGrzt)

= (krx , kry , krz), (4.10)

and substitute these back into equation 4.9 so that:

Sb(t) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ρ(r)e−ikrxrxe−ikry rye−ikrz rz drz dry drx. (4.11)

Recognize that equation 4.11 forms a multidimensional Fourier Transform
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pair between the baseband signal, Sb(t), in time and the effective spin density

ρ(r) in space, so that

Sb(t) = F [ρ(r)]

ρ(r) = F−1 [Sb(t)] , (4.12)

where F and F−1 represent the Fourier and inverse Fourier Transforms re-

spectively. In effect, what equation 4.12 is telling is that in our MRI experi-

ment our image can be determined by the inverse Fourier Transform of our

spatially encoded image, and in order to spatially encode our signal we apply

linear magnetic field gradients during the acquisition.

Before moving on to the next section, let us examine equation 4.10 a little

more. k(t) represents the range of spatial frequencies for each coordinate.

Over an entire MRI experiment, this represents our total range of spatial fre-

quencies sampled, or our k-space, which is a critical concept to understanding

strategies of MRI acquisition. We will examine this concept more closely in

the content of 23Na MRI in the next section.

Note also that equation 4.10 only represents the specific case where we

have constant gradients. In general, spatial frequencies and the gradient field

are related by:

k(t) = γ

∫ t

0

G(t′) dt′ (4.13)

4.3 Pulse Sequences for 23Na MRI

From table 3.2 and our previous discussions, the T ∗2f signal disappears rapidly

for type c tissues (i.e. WM and GM). Moreover, T ∗2f component represent ≈
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60% of the available signal (equation 3.31). It is thus imperative to capture

the MRI signal as soon as possible after application of the RF pulse, as

this signal will rapidly decay into the background noise. In addition, it is

important to capture the low spatial frequencies in this limited time window,

as these spatial frequencies represent most of the available k-space signal and

determine overall image contrast. The usual MRI convention is to arrange

k-space in a 3D grid, with the low spatial frequencies (i.e. at or near 0)

in the middle or center of k-space, with the “outer” frequencies arranged

distally (positive or negative) away from the center. These exterior spatial

frequencies have less energy than the central frequencies, and contain details

about the edges in the image. For further discussions of k-space and image

properties consult [61,86–88].

The echo time (TE) of an MRI sequence is the time between the center

of the RF pulse (for non-adiabatic pulses) and the center of the k-space

sampling window. Pulse sequences that sample the center of k-space soon

after the application of the RF pulse are termed ultra-short echo time (UTE)

pulse sequences, as they begin their acquisitions soon after the end of the RF

pulse (≈ 1 ms or less) and sample the center of k-space first. Two common

acquisition strategies in common use for 23Na MRI are density adapted, 3D

projection reconstruction (DA-3DPR) [89] and Fermat looped orthogonally

encoded trajectories (FLORET) [90].

4.3.1 DA-3DPR

3D Projection Reconstruction (3DPR), also known as 3D Radial Projection,

is a technique which has been used previously to study 23Na with MRI [91,92].
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In this UTE technique, the T ∗2f component of 23Na is captured by beginning

the acquisition at the center of k-space. The difference between this and

the DA-3DPR is the spacing of the k-space sampling points – while the

former technique has equidistant samples, DA-3DPR has a sparse sampling

density near the center of k-space, and denser in the exterior of k-space. The

gradient for the DA-3DPR technique uses a ramp and trapezoidal portion

like the 3DPR – however, it then decays at a rate of ∝ t−2/3 in order to

sample k-space progressively denser (see figure 4.2). Nagel et al. found

that this acquisition provided an approximate increase of 40% signal in brain

tissue compared to a 3DPR technique, with less blurring for longer readout

windows [89].

4.3.2 FLORET

Fermat looped, orthogonally encoded trajectories (FLORET) is a center-out

trajectory design based on a single Fermat spiral. Each spiral plays out in a

single repetition time (TR), and multiple trajectories are stacked with each

other in a conical fashion to produce a “hub” along a single axis. Multiple

hubs can be created orthogonal to each other in order to sample k-space

uniformly (see figure 4.3). Pipe et al. [90] found FLORET to have a superior

performance over comparable trajectory designs such as stack of cones or

spirals, and when FLORET is undersampled, it leads to incoherent aliasing.

Because FLORET samples k-space more efficiently than DA-3DPR, multiple

signal averages can be used with the former in order to bring the acquisition

times (TA) approximately equal. This ensures a “fair” comparison with

regards to acquisition time.
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Figure 4.2: DA-3DPR acquisition. (a) Plot of magnetic field gradients
(Gx, Gy, Gz) versus time for a single spoke. Gradients decay towards 0 with
time. (b) Plot of 50 trajectories for a DA-3DPR acquisition in 3D k-space
coordinates. Every dot represents a sampling point – for visualization pur-
poses only every 10th point is pictured.
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Figure 4.3: FLORET acquisition. (a) Plot of magnetic field gradients
(Gx, Gy, Gz) versus time for a single trajectory. (b) 5 FLORET trajectories
in 3D k-space. Each dot represents a k-space sampling point. Some sam-
pling points omitted for visualization purposes. FLORET samples k-space
more efficiently than DA-3DPR – this places greater demands on the gradi-
ent hardware than DA-3DPR as evidenced by higher absolute slew rates.
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4.4 Reconstruction

As per equation 4.12 we obtain an image in MRI from the application of the

inverse Fourier transform. In practice, most MRI k-space data are sampled

on a Cartesian grid, making image reconstruction relatively straightforward

by the application of the fast Fourier transform (FFT) directly. However, for

the UTE acquisitions we have discussed previously this is problematic, since

the data are not arranged on a grid, and are non-Cartesian acquisitions.

In order to reconstruct the imaging data the usual process is to apply a

non-uniform fast Fourier transform (NUFFT) to the data. This is achieved

by “gridding” the data first by convolution with a kernel, and then applying

an inverse FFT.

If our k-space acquisition data is s(k), where k = (krx , kry , krz) is our

position in k-space, we can write our gridding data, sc(k), as:

sc(k) = ((s(k) · w(k)) ∗ C(k)) · g(k) ∗−1 C(k), (4.14)

where w(k) is our density compensation function (DCF), C(k) is our con-

volution kernel, g(k) is a function which defines our Cartesian grid, and ∗−1

is the inverse convolution function [86]. The DCF factor is important to

remove the effect of non-uniform sampling – this is typically expressed as a

series of “weights” to the k-space data. The DCF can be obtained analyt-

ically from the acquisition trajectories (i.e. for DA-3DPR), iteratively [93],

or geometrically [94].

The inverse convolution operator is awkward to evaluate, and thus the
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usual method is to apply this deapodization term in image space –

ρ(r) = F−1[sc(k)]

= F−1[((s(k) · w(k)) ∗ C(k)) · g(k)] · 1

c(r)
, (4.15)

where C(k) = F [c(r)] form a Fourier transform pair.

4.5 Point-Spread Function

Quantifying imaging performance is an essential task in evaluating any imag-

ing system. In particular, the point-spread function (PSF) is a measure of

the imaging performance in terms of the broadening of image structures.

The PSF incorporates the cumulative effects of our scanning hardware, ac-

quisition window, reconstruction technique, etc., and can be thought of as

degrading our image quality. Qualitatively, an imaging system with a bet-

ter PSF will produce images with less degradation. Mathematically, we can

express the PSF as:

ρ̂(r) = F−1[s(k)H(k)]

= ρ(r) ∗ h(r), (4.16)

where the resulting degraded image is ρ̂(r), and the PSF is expressed as

h(r). What the above is saying our ideal image, ρ(r), is distorted by our

PSF which results in our image, ρ̂(r), with lessened quality. The ideal PSF

is a delta function such that ρ̂(r) = ρ(r) – as this is practically impossible,

we would like to measure how close our imaging PSF is to this theoretical
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ideal.

The PSF is our measure in image space, and its Fourier transform pair,

H(k), is called the modulation transfer function (MTF). Whereas the PSF

can measure the broadening of structures in image space, the MTF captures

information relating to the spatial frequencies and maximum resolution of

the imaging system. If the PSF is the ideal delta function, the MTF will

be a horizontal line at unity (i.e. all imaging structures, regardless of how

small, are perfectly resolvable).

For a given PSF, we are usually interested in the full width at half max-

imum (FWHM) – that is, the width of the PSF at the height of half of the

maximum value. This value represents the smallest resolution that can be

discerned in the image, or, the minimum distance two structures need to be

separated by in order to be visible as separate in the image. Smaller FWHM

values represent a narrower PSF and thus a superior imaging system.

4.5.1 Measuring the PSF

In principle, measuring the PSF in straightforward – construct a phantom

with a delta function structure, place this in the MRI scanner, and the re-

sulting image will be the PSF. In practice, constructing a phantom like this is

impractical. In lieu of this, it is generally more practical to measure the MTF

at different spatial frequencies, interpolate this function, and then convert to

the PSF via the Fourier transform (i.e. PSF = F−1[MTF ].

For a given frequency, f , the MTF can be calculated as:

MTFf =
Imax,f − Imin,f
Imax,f + Imin,f

, (4.17)
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where Imax,f and Imin,f represent the maximum and minimum image inten-

sities respectively at a particular spatial frequency. Practically, this can be

measured by constructing a phantom with “combs” or alternating patterns

of positive and negative signals at different frequencies. Within each comb,

the “teeth” will be separated by some known distance (i.e. 5 mm, 2 mm,

etc.) – the inverse of this distance will be our spatial frequency, f .
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Chapter 5

Objectives and Hypotheses

The physiological and biological aspects of 23Na and its relation to brain

health and pathologies were outlined in a previous chapter. The main pur-

pose of this thesis was to develop a 23Na magnetic resonance imaging (MRI)

apparatus in order to measure tissue sodium concentration (TSC) in the

brain. Underlining this were these major objectives:

1. Build, tune, and match a radiofrequency (RF) head coil compatible

with a clinical General Electric Healthcare 3 T MRI.

2. Develop an MRI pulse sequence which can capture and spatially encode

the 23Na signal from an MRI experiment.

3. Implement an image reconstruction pipeline for 23Na.

4. Design and build a resolution phantom to allow quantification of imag-

ing system performance.

5. Generate a TSC imaging procedure which balances the low signal of
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23Na MRI with acquisition times which are clinically viable.

These objectives support the following hypotheses for this dissertation:

• 23Na MRI is fundamentally signal limited – as a result, imaging perfor-

mance is not necessarily governed by acquisition strategy. In particu-

lar, the choice between two common UTE sequences, DA-3DPR and

FLORET, matters less than the overall acquisition time. Examining

the performance and image metrics from both acquisition types will be

used to test this hypothesis.

• Measurement of the point-spread function (PSF) in the resolution phan-

tom can be adversely affected by noise. This will be demonstrated by

phantom experiments with different expected SNR, and PSFs deter-

mined by two methodologies.

• The combination of 23Na MRI and 1H DTI can provide useful comple-

mentary information for in vivo brain imaging, despite (potentially)

broad PSFs with both techniques. DTI can provide information re-

garding the structure of brain tissue, particularly regarding WM axonal

integrity. 23Na can potentially provide metabolic information and the

cellular health of the Na+K+−ATPase.

Expanding on the last hypothesis, there are few papers which examine

the role of 23Na MRI and diffusion imaging. The combination of diffusion

weighted imaging has been used in breast cancer [95,96], MS [12], and uterine

fibroids [97]. More recently, low resolution 23Na images were combined with

DTI for a study into TBI [44]; however, outside of these there is a notable
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“gap” in the literature regarding the use of 23Na and DTI in the assessment

of the healthy or diseased human brain. Combining the two techniques could

add important information regarding brain health, despite the large PSF

which are inherent to both types of imaging. These observations motivated

the decision to combine 23Na and diffusion imaging in a health cohort, with

the ultimate goal of using the two methodologies to study 23Na disruptions

and potential diffusion correlates in brain disorders.
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Chapter 6

Pilot Study: Measurement of

23Na point-spread function

(PSF) in ultrashort TE (UTE)

acquisitions in a 3D printed

resolution phantom

Paul Polak M.A.Sc, Rolf F. Schulte Ph.D, Michael D. Noseworthy Ph.D,

P.Eng

6.1 Introduction

In vivo 23Na MRI is desirable due to sodium’s ubiquity in human metabolism,

being essential for cellular homeostasis, pH regulation, and action potentials
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in muscles and neurons [1, 2]. Unfortunately, 23Na MRI suffers from several

inherent challenges, including low gyromagnetic ratio, necessity of specialized

hardware, low signal and henceforth long acquisitions due to signal averag-

ing. Due to the rapid T2 decay, ultrashort TE (UTE) pulse sequences are

preferred, the most common of these being density-adapted 3D projection

reconstruction (3DPR) [89], and Fermat looped orthogonally encoded tra-

jectories (FLORET) [90].

This pilot study examines the PSF for sodium MRI in a 3D printed reso-

lution phantom with both DA-3DPR and FLORET. The motivation behind

this work was to demonstrate the efficacy of using a 3D printed resolution

phantom to quantitatively measure PSFs. 3D printing provides a convenient

and economical method to construct phantoms – this phantom was designed

with a removable lid, so the contents (i.e. sodium concentration) could be

easily changed and the phantom reused. The MTFs for both sequences mea-

sured with different concentrations of 23Na in gelatin – the PSFs were then

derived by the Fourier transform. This work directly compared DA-3DPR

and FLORET acquisition strategies by examining their PSF performances.

This work was the basis for a conference proceeding that was accepted by

the European Society for Magnetic Resonance in Medicine and Biology, 2020,

which presented by Paul Polak.
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6.2 Methods

6.2.1 Hardware

23Na imaging was conducted with a GE 3T MR750 (General Electric, Mil-

waukee, WI) using a custom built, single tune birdcage head coil with a

frequency of 33.8 MHz (see figure 6.1). A 3D printed phantom with a re-

movable lid (figure 6.1) was filled with different concentrations (13, 23, and

60 mM) of sodium in gelatin – the latter solution was doped with additional

NaCl for a final concentration of 60 mM.

6.2.2 Pulse Sequences

Acquisitions used the GE MNS Research Pack (b. 2018-07-18). DA-3DPR

and FLORET were both designed with custom Python software. Trans-

mit gain and frequency calibrations were performed using the Bloch-Siegert

shift [98].

DA-3DPR

DA-3DPR used a center-out trajectory design, with the following parame-

ters – TR: 24 ms, TE: 0.5 ms, FOV: 240 mm, flip angle: 70◦, 13500 spokes,

2 averages, TA: 10:48 for a (designed) voxel resolution of 3.2 mm isotropic.

The acquisitions were in the coronal plane and used gradient spoiling at the

end of the readout. Sampling efficiency was defined as the ratio of readout

window to TR – for DA-3DPR, this was 20/24 = 0.83.
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FLORET

The FLORET acquisitions had the following parameters: TR: 24.3 ms, TE:

0.5 ms, FOV: 240 mm, flip angle: 70◦, 3 hubs, 150 interleaves / hub, 64 aver-

ages, TA: 11:40 with the same designed isotropic resolution of 3.2 mm. The

FLORET acquisitions were also coronal with gradient spoiling. Sampling

efficiency was 0.82.

6.2.3 Reconstruction and Analysis

The non-uniform fast Fourier transform (NUFFT), as part of the Berkeley

Advanced Reconstruction Toolkit (BART) [99] was used to reconstruct 1 mm

isotropic images. Region of interest (ROI) analysis was conducted with the

FMRIB Software Library (FSL) [100], and the data were used to create

MTFs using the method described by González-López [101]. Each comb

was subdivided into 5 sections, so that they each provided 5 data points

for the MTF. Each ROI had a width of 20 pixels, which was averaged into

a single line profile. MTFs and PSFs were assumed to be Gaussian for

fitting purposes. Analyses, including SNR, R2 values and PSF FWHMs,

were performed with Python and Matplotlib [102].
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Figure 6.1: (a) single channel quadrature, transmit and receive 23Na head coil
used in these experiments. (b) Computed Tomography image of phantom.
Resolutions are split into 9 areas with positive and negative contrasts ranging
from 1 to 9 mm. Top row, left to right: 7 6 1; middle: 8 5 2; bottom: 9 4 3
(all in mm).
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6.3 Results

Images from each acquisition are shown in figure 6.2, with accompanying

derived MTF and PSF curves in figure 6.3. Table 6.1 has the SNR, R2

values for the MTF fits and PSF FWHM values for each acquisition and

23Na concentration.

Image quality (SNR and visual appearance), was superior for the 3DPR

acquisitions. As expected, SNR increases with 23Na concentration, although

not in a direct linear fashion. The FWHM values were largely unchanged

among the different phantoms, although quantitatively smaller for the 3DPR

acquisitions – this indicates that PSF performance is largely indifferent to

the inherent 23Na concentration for these acquisitions and reconstructions.
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Figure 6.2: (a-f) 23Na images. All images individually windowed to similar
pixel intensities. (a-c) 3DPR: 13, 23, 60 mM (d-f) FLORET: 13, 23, 60 mM.
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3DPR FLORET
SNR FWHM R2 SNR FWHM R2

13 mM 11.7 1.92 0.95 9.5 2.47 0.91
23 mM 12.8 2.13 0.97 11.5 3.32 0.83
60 mM 16.9 2.07 0.96 12.2 2.66 0.96

Table 6.1: 3DPR: 3D projection reconstruction; FLORET: Fermat looped
orthogonally encoded trajectories; FWHM: point spread function full width
half maximum; R2: modulation transfer function R-squared fit; SNR: signal
to noise ratio.
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6.4 Discussion

This work detailed initial efforts to measure the MTFs and related PSFs

from 23Na MRI in a 3D printed phantom. The experiments used sodium

concentrations of 13, 23, and 60 mM, with both DA-3DPR and FLORET

acquisitions. The pulse sequence parameters were kept similar between DA-

3DPR and FLORET, while the image reconstruction pipelines were identical.

This work has a few limitations – the largest one being the choice of

gelatin as a medium in lieu of agar. Agar is a combination of linear polysac-

charide agarose and smaller molecules called agaropectin [103]. The initial

assumption was that gelatin would be the superior phantom material, as its

origin as animal proteins would indicate a condition closer to what is found in

vivo. Gelatin also has the added benefit of being easier to prepare and dispose

of. However, choosing gelatin actually turned out to be sub-optimal – gelatin

actually displays a monoexponential T ∗2 decay [104]. This is on account of

its rotational correlation time, τc, being quite short (i.e. ω0τc � 1) [105], and

thus gelatin is actually a type d material, as shown in figure 3.3. Agar is

derived from algae; 23Na dissolved in this medium does display biexponential

T ∗2 decay, as we would expect from type c materials [104].

The choice to model the MTFs and PSFs with single exponential was (in-

advertently) correct, as gelatin does have a monoexponential decay However,

the motivation behind this work was to model imaging performance for 23Na

brain MRI, which has biexponential decay.

As seen in table 6.1, FLORET PSF performance is inferior to that of DA-

3DPR, despite approximately equal acquisition times and readout windows.

FLORET samples k-space more efficiently than DA-3DPR, and in this study
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an increased number of averages was used in order to create a more equal

comparison. One possible explanation for the PSF disparities is the increased

gradient demands, in terms of slew rate and maximum strength, that are

required for the FLORET acquisition (see figures 4.2 and 4.3). An increased

demand upon the gradients may introduce eddy currents, group delay, or

gradient amplifier nonlinearities which can all affect image quality. Although

not conducted in this pilot study, methods exist which can detect and correct

for these nonlinearities [106,107].

As noted by Nagel [89], balancing readout window length with acquisition

time, Nyquist criterion for field of view coverage and sampling efficiency

is a difficult problem, and is partly governed by T ∗2 rates in the tissue to

be imaged. The sequence parameters chosen here were governed by the

desire to measure the PSF with a sequence that would be appropriate for

in vivo brain imaging – thus, a FOV of 240 mm in less than 12 minutes

for either acquisition. Having longer acquisition windows would increase

sampling efficiency; however, as noted by Nagel [89] this can lead to increased

blurring and broader PSF. Akbari [108] also investigated acquisition window

length and found an increased 23Na SNR in articular cartilage with increased

readout windows, with only a modest widening of the PSF. These studies

informed the design choices in this pilot study, particularly for the choice of

a 20 ms receiver window.

This study assumed that the PSF was stationary across the field of view,

and also only considered a single acquisition plane (i.e. coronal). In general

this assumption may not apply, due to B0 and B+
1 inhomogeneities, gradient

non-linearity, and the PSFs we expect from non-Cartesian acquisitions [89,
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109, 110]. However, the methods employed in this study can be expanded

to include more complicated studies, by altering the imaging field of view

or acquisition plane in order to account for non-stationary PSFs and other

orientations.

6.5 Conclusions

These experiments demonstrate the PSF performance of 3DPR and FLO-

RET acquisitions for 23Na phantoms in gelatin. The results, however, cannot

indicate the performance that can be expected from in vivo applications, due

to the selection of a monoexponential decay material. The methodological

shortcomings discussed here were addressed and helped inform the paper

detailed in the next chapter.
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Chapter 7

An Approach to Evaluation of

the Point Spread Function

(PSF) for 23Na MRI

Paul Polak M.A.Sc, Rolf F. Schulte Ph.D, Michael D. Noseworthy Ph.D,

P.Eng

7.1 Context of the Paper

This paper examines the measurement of the PSF and MTF for 23Na MRI.

The goal of this work was an investigation into the variability in PSF mea-

surements under the noisy conditions that are expected in 23Na MRI. Two

methods to measure the MTF were considered – direct modulation (DM)

and the Fourier 1st harmonic (FH). Simulation experiments indicated that

the DM method had more variability. For the phantom experiments, both
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DA-3DPR and FLORET acquisitions were considered and these confirmed

the simulation results. This paper demonstrated the evaluation of the PSF

for 23Na MRI, and the result of image noise in the underlying derivations.

7.2 Declaration Statement

Paul Polak tuned and matched the 23Na head coil, and produced the software

in order to run the simulations, acquire the DA-3DPR and FLORET data,

image reconstruction and data analysis. As the first author he wrote the

first draft, and performed subsequent alterations based on the advice of the

other authors. Rolf Schulte provided the software framework for the MRI

acquisitions, and provided valuable input in drafting the manuscript. Michael

D. Noseworthy provided funding from the Natural Sciences and Engineering

Research Council of Canada, coil structure, and 3D phantom design. He is

also the corresponding author, and provided essential editing and submission

of the paper.

This paper has been published by NMR in Biomedicine. Oct 2021; doi:

10.1002/nbm.4627.
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7.3.1 Abbreviations

• 23Na: sodium

• CT: computer tomography

• DA-3DRP: density-adapted 3D radial projections

• DM: direct modulation

• FH: Fourier harmonic

• FLORET: Fermat looped orthogonally encoded trajectories

• FOV: field of view

• FSL: FMRIB Software Library

• FWHM: full width half maximum

• MTF: modulation transfer function

• PSF: point-spread function

• ROI: region of interest

• SNR: signal to noise ratio

• SRF: spatial response function

• UTE: ultra-short TE
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7.3.2 Abstract

Purpose

Despite the technical challenges which require lengthy acquisitions to over-

come poor signal-to-noise ratio (SNR) sodium (23Na) MRI is an intriguing

area of research due to its essential role in human metabolism. Low SNR

images can impact the measurement of the point-spread function (PSF) by

adding uncertainty into the resulting quantities. Here we present methods

to calculate the PSF by using the modulation transfer function (MTF), and

a 3D-printed line-pair phantom in the context of 23Na MRI.

Theory and Methods

A simulation study investigated the effect of noise on the resulting MTF

curves which were derived by direct modulation (DM) and a method utilizing

Fourier harmonics (FH). Experimental data utilized a line-pair phantom with

9 spatial frequencies, filled with different concentrations (15, 30, and 60 mM)

of sodium in 3% agar. MTF curves were calculated using both methods from

data acquired from density-adapted 3D radial projections (DA-3DRP) and

Fermat looped orthogonally encoded trajectories (FLORET).

Results

Simulations indicated the DM method has increased variability in the MTF

curves at all tested noise levels over the FH method. For the experimen-

tal data, the FH method resulted in PSFs with narrower full widths half

maximums with reduced variability, although the improvement in variability
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was not as pronounced as predicted by simulations. The DA-3DRP data

indicated an improvement in the PSF over FLORET.

Conclusion

A 3D-printed line-pair phantom represents a convenient method to measure

the PSF experimentally. The MTFs from the noisy images in 23Na MRI have

reduced variability from a Fourier harmonic method over direct modulation.

7.3.3 Introduction

In vivo sodium (23Na) MRI is desirable due to its essential role in cellular

homeostasis, pH regulation, and action potential propagation in neurons and

muscle. However, acquiring sodium images is technically challenging [1,2].

Among the difficulties are the physical properties of 23Na (low gyromagnetic

ratio, short T2 relaxation times, low concentration as compared to proton

imaging), special hardware requirements (broadband RF amplifier and dedi-

cated transmit and receiver coils), non-standard pulse sequences (ultra-short

or zero TE imaging) with accompanying reconstruction approaches, and long

acquisition times to account for low signal-to-noise ratio (SNR) [3-5]. Despite

these problems, sodium imaging remains an attractive prospect for a vari-

ety of in vivo applications, including stroke, multiple sclerosis, Alzheimer’s

disease, cartilage imaging, skeletal muscle assessment (especially for chan-

nelopathies) and thoracic imaging [6-9]. Sodium MRI’s difficulties result in

a signal 1000 fold lower compared to proton MRI, and this has led to in-

vestigations in the use of higher strength magnetic fields for in vivo human

imaging [10-12], but has been used to date in field strengths of up to 21.1 T
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in preclinical imaging. [13] However, research into 23Na MRI at clinical field

strengths (currently B0 ≤ 3 T) remains attractive because of the potential

of translational and comparative research with more traditional clinical MRI

techniques and also due to the widespread prevalence of 3T scanners now

available in clinical settings.

Owing to the very short T ∗2 relaxation times, ultra-short TE (UTE) ac-

quisition techniques are preferred – among these are the density adapted 3D

radial projections (DA-3DRP) [4] and Fermat looped orthogonally encoded

trajectories (FLORET) [14] acquisition schema. Both have been used for 23Na

MRI [15-18], along with regridding or iterative methods for image reconstruc-

tion. Considerable research has focused on techniques to measure intra- and

extracellular sodium concentrations [16,17,19], bound and unbound pools,

relaxivity properties of the spin 3/2 system [20-24], and the effects on the

quadrupolar interactions on the resulting signal [25-28]. However, there has

been less focus on acquisition and reconstruction techniques, and their ef-

fect upon the resultant image point spread function (PSFs). In particular,

low SNR acquisitions impact PSF quantification – noise in the input images

result in a high variability in the measurement, and the result is highly de-

pendent on the placement of regions of interest (ROIs). Together, low SNR

and a PSF with a broad full width half maximum (FWHM) confound the

detection of small structures and low sodium concentrations [29].

The work presented here examines the PSF, as a measure of sequence

and reconstruction performance, in the context of sodium MRI. Because the

PSF is difficult to measure experimentally we used the modulation transfer

function (MTF) which is related to the PSF through the Fourier transform.
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In particular, the various techniques were examined through simulation, a

3D-printed bar (aka line-pair) phantom, and multiple sodium concentrations.

7.3.4 Theory

A quadrature detector for MRI contains information from both the real and

imaginary signals. The noise for each signal can be assumed Gaussian, with

a mean of zero [30]. The result of the inverse Fourier transform of this data

is complex, and magnitude reconstructions are typically performed in or-

der to avoid problems with artifacts from phase; the resulting noise in the

background of the magnitude image is then best described as a Rayleigh

distribution [31]. However, the noise in magnitude images is typically ex-

pressed as Gaussian, since the Rayleigh distribution begins to be accurately

approximated by a Gaussian at an SNR > 3 [30-32].

The PSF can be calculated from the MTF from the inverse Fourier trans-

form, as:

PSF = F−1(MTF ) (7.1)

where the inverse Fourier transform, F−1, can be multi-dimensional. In

order to compute the MTF with a comb or bar phantom, we can use direct

modulation (DM) as the following:

MTF f =
Imax,f − Imin,f
Imax,f + Imin,f

(7.2)

where f is the particular frequency measured in line pairs mm−1, and Imax,f

and Imin,f are the maximum and minimum intensities for f across the profile.

If we consider the hypothetical case with normally distributed noise function

83



PhD Thesis - Paul Polak McMaster - School of Biomedical Engineering

N , with mean 0 and variance σn2 (i.e. homoscedastic) then the MTF with

noise, denoted MTF f,N , becomes:

MTF f,N =
µ1 +N(0, 2σ2

n)

µ2 +N(0, 2σ2
n)

(7.3)

This expression is the ratio of two correlated Gaussian random variables,

with means µ1 = Imax,f − Imin,f , and µ2 = Imax,f + Imin,f . The variance of

this expression is non-trivial to evaluate, and as demonstrated by Geary, [33]

leads to instabilities in the expression if µ1 and µ2 are both zero, or near zero.

However, as long as µ2 ≥ 6σn2 , the expression is well behaved and normally

distributed [33].

An alternative method to evaluate the MTF was proposed by González-

López et al. [34], which we denote as the Fourier 1st harmonic (FH) and

present here for reference:

MTF f =

∣∣∣∣F1,f

G1

∣∣∣∣ (7.4)

Where F1,f and G1 denote the first odd harmonics of the Fourier transforms

of the system output for a given frequency and the ideal output. As demon-

strated by González-López [35], the variance for the noisy MTF has a linear

dependence on noise and frequency.

σ2
MTF (f) ∝ fσ2

n (7.5)

As the noise characteristics of the FH method is correlated with frequency,

we expect better performance in terms of MTF stability at low frequencies.
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MTF performance of both methods under noisy conditions were measured

by simulations and experiments.

7.3.5 Methods

Simulations

A simulated bar phantom was created with 25 combs of differing resolutions,

with teeth widths measuring from 200 to 10 pixels. The phantom was created

with two values, 1 and 0, representing signal and the lack thereof respectively,

and the size of the created phantom was 3360 x 3360 pixels (Figure 7.1). The

phantom was then downsampled by a factor of 4, and was then convolved

with a point-spread function derived from the theoretical biexponential T ∗2

decay for 23Na MRI (S(t) ≈ cfe
−t/T ∗

2f + cse
−tT ∗

2s) with a 20 ms readout, where

T ∗2f / T ∗2s = 4/30 ms represent the fast and slow T ∗2 decay in tissue, and cf/cs

= 0.6/0.4 are the relative contributions from each component) [3,36]. This

final phantom had 25 ROIs created to measure the data for each comb in the

phantom. Each ROI spanned one period for each comb, and were created

with a width of 28 pixels. The mean data across the 28 pixels were used in

the MTF and contrast calculations described below.
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Figure 7.1: Simulated and phantom images. Greyscale bars representing
maximum and minimum values are shown on the right for (a) and (b). (a)
Simulated noise-free phantom image, measuring 3360 x 3360 pixels. There
are 25 different comb widths, organized from the upper left, left to right, and
then down, as: 200, 150, 110, 90, 75, 36, 42, 50, 55, 65, 31, 29, 26, 23, 21, 15,
16, 17, 18, 19, 14, 13, 12, 11, and 10 pixels, respectively. Values are binary,
with 0 being black and 1 white. (b) Simulated magnitude image phantom
data after downsampling and application of a 23Na point-spread function
(PSF) and the addition of normally distributed complex noise. The given
image had a noise level of σn = 0.1. (d) Computed tomography (CT) image of
the 3D-printed phantom showing the consistency of the 3D-printed line pairs.
Resolutions are split into nine areas of positive and negative contrast, with
line-pair groups annotated as indicated, with the numbers 1 to 9 indicating
1- to 9-mm groups, respectively. The CT imaging system was a Siemens
Biograph 16, with the following parameters: peak tube voltage, 120 kV; tube
current, 52 mA; field of view (FOV), 292 mm; 512 x 512 resolution; 0.57 x
0.57 mm2 in-plane resolution; and slice thickness, 1 mm. (d) Photograph
of (empty) 3D-printed phantom with the cover removed. The phantom is
disk-shaped, with a diameter of 205 mm and height of 60 mm with the cover.
Note that the .stl 3D printer files are available in the supporting information.

86



PhD Thesis - Paul Polak McMaster - School of Biomedical Engineering

Complex noise was added to the final phantom by creating individual

real and imaginary noise centered at 0, with standard deviation values of

0.05, 0.1, 0.15, 0.2, 0.3, and 0.4. The noise was added to the noise-free

phantom data before the magnitude of the combined phantom and noise was

calculated (Figure 7.1). Monte-Carlo simulations were performed for 2500

trials at each noise level – the data from each ROI was sampled and MTF

were created using both the DM and FH methods, and then plotted. Means

and variances were calculated across the trials for each noise level and comb

frequency. For the purposes of the simulations, TE was set to 0, while T1

effects and remaining residual T ∗2 signal following the readout were ignored.

Experiments

All experiments were conducted using a GE 3T MR750 (General Electric

Healthcare, Waukesha, WI), with maximum gradient amplitude and slew

rate of 50 mT/m and 200 T/m/s respectively. A custom designed and built

single-tune quadrature birdcage head coil with resonant frequency of 33.8

MHz was used. The coil was cylindrical, measuring 245 mm in length, outer

diameter of 320 mm, with a maximum imaging diameter of 240 mm. A

phantom was designed and 3D-printed to have 9 bar phantom regions, or

“combs” (1-9 mm) of positive and negative contrast in order to create the

MTFs (Figure 7.1). The phantom was 205 mm in diameter with a height

of 56 mm (without cover). A computed tomography (CT) dataset (Siemens

Biograph 16, tube current 52 mA, peak tube voltage 120 kV, in-plane res-

olution 0.57 x 0.57 mm2, slice thickness 1 mm) was also acquired as the

“gold standard” compared to MRI, and demonstrates both the geometric
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truth and high resolution desired in a phantom experiment. The phantom

was designed with a removable lid such that the phantom could be imaged

with different sodium concentrations. For these experiments three concen-

trations were used: 15, 30 and 60 mM NaCl in 3% agar (Sigma-Aldrich

https://www.sigmaaldrich.com/CA/en. A-7002).

MR Imaging was conducted using the GE MNS Research Pack (v. 2018-

11-13) for all acquisition schemes. The field of view (FOV) for all acquisitions

was set to 240 mm as this is a likely target for neuroimaging. Matlab (The

Mathworks Inc., Natick, MA) scripts were used to calibrate the transmit

gain and imaging frequency prior to imaging [37]. Two common 23Na imag-

ing strategies were compared: DA-3DRP and FLORET. Both acquisitions

were used for each phantom concentration. Acquisition times were set to be

approximately equal, and represent a length of time which would be con-

sidered reasonable for an in vivo subject. Readout window lengths were

determined based on observations made by Nagel et al. [4]. Residual T ∗2

signal at the end of the readout was eliminated with crusher gradients for

both acquisition types.

DA-3DRP DA-3DRP UTE trajectories were density-adapted and designed

to sample at 1/r with 13500 spokes, at polar angles calculated from points

equally distributed on a sphere, and with an isotropic resolution of 3.2 mm

at a FOV of 240 mm. A steady-state acquisition scheme was used in order to

minimize acquisition time (TA) at the expense of incomplete T1 relaxation.

Imaging parameters were: TR: 24 ms, TE: 0.2 ms, flip angle: 70◦, RF pulse

length: 0.6 ms, receiver bandwidth: 50 kHz, with a receiver window of 20
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ms. TA was 10:48 minutes for 2 averages.

FLORET FLORET trajectories were designed with 3 orthogonal hubs,

150 interleaves / hub. Other parameters were: FOV: 240 mm, isotropic

acquisition of 3.2 mm, TR: 24.3 ms, TE: 0.2 ms, flip angle: 70◦, RF pulse

length: 0.6 ms, receiver bandwidth: 50 kHz, and receiver window: 20 ms. TA

was 11:40 minutes for 64 signal averages. FLORET samples k-space more

efficiently than DA-3DRP, and hence averaging was used in order to provide

a similar TA to the DA-3DRP experiments.

Reconstruction and Analysis

All 23Na MR images were reconstructed via density-compensation and 3D

gridding as provided by the Berkeley Advanced Reconstruction Toolbox [38].

Files were reconstructed into NIFTI format, with dimensions 240 x 240 x

240. Example magnitude images for each concentration and acquisition are

shown in Figure 7.2.
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Figure 7.2: Sample 23Na magnitude images. Left column, DA-3DRP; right
column, FLORET. (a) and (b) 15 mM; (c) and (d) 30 mM; and (e) and
(f) 60 mM. DA-3DRP images: TR, 24.0 ms; TE, 0.5 ms; flip angle, 70o,
acquisition time, 10 min 48 s (two averages). FLORET images: TR, 24.3
ms; TE, 0.5 ms; flip angle, 70o; acquisition time, 11 min 40 s (64 averages).
Both acquisitions have an isotropic resolution of 3.2 mm, and were acquired
at a field of view (FOV) of 240 mm, and a reconstruction size of 240 x 240 x
240. The images have been windowed individually.
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Cross-section ROIs were created with FMRIB Software Library (FSL)

[39] v6.0 for the 9 different bar phantom regions on the magnitude images.

ROIs were created to span each comb, with depths and widths of 20 pixels

respectively. Mean line profiles were taken along both depth and width by

4 pixels each. As each bar region has 5 periods, this leads to a total of 125

samples for each spatial frequency. An analysis of the CT and MRI (DA-

3DRP and FLORET, 60 mM concentration) images in terms of geometric

truth, as compared to the measured phantom dimensions, was performed

with FSL. Geometric truth was assessed using two perpendicular diameter

measurements (in plane, left / right and inferior / superior), in addition to

the 9 bar phantom regions used in evaluation of the MTF. Zero frequency

data was constructed from the average signal in ROIs taken in homogeneous

appearing regions inside and outside the phantom, and then using the DM

or FH method respectively.

Sodium images are expected to be noisy, with resultant effects upon the

efficacy of MTF calculations. Both DM and FH methods were used to cal-

culate the MTFs. The data from both methods were fit to a function in the

form a1e
σ1 + a2e

σ2 in order to reproduce the expected biexponential decay

for 23Na MRI, with a1/σ1 and a2/σ2 representing the fractions / T ∗2 decays

for the fast and slow components respectively. PSFs were calculated from

the fitted data by the inverse Fourier transform. Python and Matplotlib [40]

were used to visualize the data, and FSL was used for SNR calculations.

Chi-squared (χ2) and mean squared residuals were calculated to evaluate the

quality of each biexponential fit.
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7.3.6 Results

Simulations

MTF curves for the DM and FH methods are shown in Figure ref3a. The

DM method consistently over-estimates the MTF performance in regards

to the noise-free simulation, while the FH method is much more consistent

with the noise-free curve at all noise levels. The DM is more susceptible to

noise, and has a much larger variance as compared to the FH method seen

in Figure ref3b. Comparatively, the FH method demonstrates the behavior

as dictated by equation 7.5, where the variances increase with frequency,

but remained fairly low at low frequencies. Although both methods have

increased variance as the noise level increases, the FH method demonstrates

superior performance in terms of reduced variance from the noise-free MTF –

i.e. at the lowest frequencies the variance of the FH method is approximately

10% of the DM method.

Experiments

The CT images were used to judge whether the geometric truth in the sodium

MR images was appropriately preserved and also to judge whether the dis-

tance between combs at different spatial frequencies was consistent in the

3D printing. Geometric analysis of the CT and MRI images can be found

in Table 7.1. The MR images were consistent with the manufactured design

when accounting for the PSF of the sodium acquisitions and reconstructions.

There were slight deviations (< 3%) between the left / right and inferior /

superior diameter measurements which were deemed acceptable.
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Figures 7.4 exhibit the MTF curves and variances for the experimentally

acquired MRI data. The FH method indicates superior FWHMs (Table 7.2)

for each of the 6 reconstructions (i.e. DA-3DRP and FLORET acquisitions

for 15, 30, and 60 mM concentrations). In addition, the variance in the FH

method was lower at the lower spatial frequencies, although the effect was not

as pronounced as demonstrated by the simulation data. For higher spatial

frequencies, particularly the data from bar regions of 1-3 mm, the variances

were markedly lower for both methods.

93



PhD Thesis - Paul Polak McMaster - School of Biomedical Engineering

Phantom CT DA-3DPR MRI FLORET MRI
LR diameter 205.0 205.8 203 203
IS diameter 205.0 205.8 197 198

9 mm 81.0 81.6 83 82
8 mm 72.0 73.0 74 74
7 mm 63.0 63.3 65 63
6 mm 54.0 54.7 55 54
5 mm 45.0 45.6 46 46
4 mm 36.0 36.5 37 37
3 mm 27.0 27.4 32 32
2 mm 18.0 18.2 21 20
1 mm 9.0 10.2 12 12

Table 7.1: Geometric analysis of CT and 23Na MRI images (acquisition
parameters as specified in Methods section). The diameter measurements
were taken in the direction indicated (LR or IS) on the image. Bar region
measurements (9 mm, etc.) taken across the entire comb (9 positive and
negative contrasts). Abbreviations – CT: computed tomographic image; DA-
3DPR MRI: 23Na MRI density-adapted 3D radial projection image; FLORET
MRI: 23Na MRI Fermat looped orthogonally encoded trajectories image; IS:
inferior / superior; LR: left / right.
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Figure 7.3: (a) Simulation modulation transfer function (MTF) curves for
the direct modulation (DM; red diamonds) and Fourier harmonic (FH; blue
squares) methods for all indicated noise levels. Data points are the noise-free
MTFs, and solid fills represent the mean ± standard deviation across all
trials for each noise level and frequency. (b) Simulated MTF variances (log)
versus frequency data for the DM (red diamonds) and FH (blue squares)
methods for all simulated noise levels.
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Figure 7.4: (a) Modulation transfer function (MTF) curves for the direct
modulation (DM) and Fourier harmonic (FH) methods, with sodium con-
centrations of 15, 30, and 60 mM (rows) and DA-3DRP and FLORET ac-
quisitions (columns). DM data are indicated as red diamonds, and FH data
as blue squares. Biexponential fits to the MTF curves are indicated by dashed
lines (Table 7.2 gives the χ2 and mean squared residuals values). (b) MTF
variances (log) versus frequency (log) for the same concentrations and acqui-
sitions.
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7.3.7 Discussion

Image resolvability is important, especially when delineating the boundary

between, for example, white and grey matter in brain imaging. The ability to

resolve fine structures in images is commonly measured through the PSF or

MTF. Thus, the purpose of this work was to examine the robustness of MTF

and PSF calculations, in the context of noisy acquisitions which are common

in 23Na MRI. In particular, two methods for calculating the MTF from a bar

phantom were examined – DM, from the maximum and minimum intensi-

ties from a profile, and the FH method utilizing the 1st Fourier harmonic.

From the simulations, both methods’ performance degrades with increasing

noise levels, but is particularly magnified for the DM method. Two obser-

vations can be obtained from Figure 7.3: (i) an over-estimation of the MTF

at high noise levels, and (ii) the standard deviation of the MTF calculation

drastically increases with increasing noise. By contrast, the FH method was

more robust under the same experiments, with the noisy MTF estimations

more closely aligned with the noise-free calculation with a smaller standard

deviation. The variances “level off” at the spatial frequencies for all noise

levels. One possible explanation is that the assumption that the noise being

accurately modeled by a Gaussian distribution is no longer correct at the

higher spatial frequencies and noise levels.

From the experimental data, the FH method indicated a superior FWHM

for all concentrations and acquisitions which in general agrees with simula-

tions: at the increased noise levels the DM method tends to underestimate the

MTF performance compared to noise-free calculations. The variances for the

FH method were less than those calculated by the DM method (Figure 7.4)
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for the bar regions 6 to 9 mm. Nonetheless, at higher spatial frequencies the

variances for both methods were reduced.

The method proposed by González-López et al. [34] is demonstrated to be

more robust in noisy conditions as might be expected for 23Na MRI. The PSF

and related MTF are fundamental quantitative measurements of imaging

performance. While an improvement in this performance might be expected

by running experiments in higher SNR conditions (i.e. higher magnetic field

strength, more signal averaging), two caveats exist: (i) the improvement in

FWHM for the higher sodium concentrations is not evident (Table 7.1), and

(ii) SNR improvement by signal averaging results in longer acquisition times.

The experiments conducted here were guided by acquisition times which

are clinically viable, and thus reflect imaging performance which might be

expected for an in vivo subject. With regards to resolution, a FWHM of

2.0 (Table 7.2) for the DA-3DRP (designed for 3.2 mm resolution) sequence

results in an effective resolution of approximately 6.4 mm, which compares

favorably to recent efforts (5.2 mm) at 7 T [41].

Gibbs ringing artifacts are problematic for 23Na MRI because of the large

acquisition voxels and low resolution, relative to proton MRI, which are re-

quired to achieve adequate SNR. Methods to reduce this artifact include

alterations in acquisition and post-filtering [42-44]. The authors indicate

that SNR also increased versus a DA-3DRP acquisition – however, both of

these techniques also broaden the PSF. The choice to use either method is

dependent on readout duration and T ∗2 decay, with longer readout favoring

a post-filtered technique.

23Na MRI has been demonstrated to be useful in assessing stroke [45,46],
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although the long acquisition times have hampered its adoption in acute

cases. Adlung et al. [47] have implemented a neural network approach

in an effort to mitigate the increased artifacts and noise which come with

accelerated acquisitions. They found that these deep learning approaches

can increase SNR with some loss of structural similarity compared to a fully

sampled dataset, with the latter implying some broadening of the underlying

PSF. Measurement of the PSF with these nascent reconstruction techniques

is a potential avenue for future research.

This study has focused attention on the MTF and its associated 1D PSF,

and assumed it to be stationary across the field of view. This assumption in

general may not apply, due to inhomogeneities in the B0 and B1 fields, trans-

verse relaxation effects during readout, and the more complicated PSFs we

expect from non-Cartesian acquisitions and reconstructions [4,14,48]. Other

studies have examined the spatial response function (SRF) [49] in the context

of spectroscopic and imaging studies. The SRF can be derived from the PSF,

and vice versa, with a complete set of PSF data [50]. Ideally, a bar phan-

tom is designed with the projected application known a priori, which would

influence FOV, number of bars, bar widths, etc. The use of a 3D printed

phantom allows multiple strategies to be created and tested economically.

Potential future studies could involve the investigation of a non-stationary

PSF, and possible corrective measures involving the B0 and B1 fields, and

partial volume correction [29,51,52].
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7.3.8 Conclusions

The goal of this work was to examine 23Na MRI MTF measurements in a

bar phantom under noisy conditions, with the results indicating its viabil-

ity despite the inherent variability. The techniques investigated here have

the advantage that they do not require any specialized pulse sequence or

reconstruction methodology other than what would already be required for

23Na MRI. While the DM method is valid under low or noise-free conditions,

the FH method is more robust for the higher noise situations expected with

23Na MRI. The PSF can be difficult to measure experimentally with MRI,

but the MTF and 3D printed line-pair phantoms provide one such viable

methodology.
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Chapter 8

Brain White Matter Fractional

Anisotropy and 23Na

Concentration: an

(Artifactually) Inverse

Relationship

Paul Polak M.A.Sc, Michael D. Noseworthy Ph.D, P.Eng

8.1 Context of the Paper

This paper examines the in vivo measurement of TSC in a comparison study

with diffusion tensor imaging (DTI). The goal of the study was to examine

brain 23Na MRI with 1H DTI, and investigate if there are any correlations
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between the measurements. Spin-density 23Na would require an excessive

long scan time, so a variable flip angle technique is employed to generate

spin-density weighted TSC maps from two sodium scans. Regional WM and

GM TSC were assessed and compared to FA and CSF proximity. Results

indicated that TSC values were increased in voxels proximal areas of CSF,

which was likely the result of the broad PSF of 23Na MRI. This is potentially

problematic in examining WM pathology, since the densest WM is located

proximal to the lateral ventricles. This paper investigated DTI and 23Na MRI

correlations, and demonstrated the potential confounding effects of the 23Na

PSF.

8.2 Declaration Statement

Paul Polak tuned and matched the RF coil used for the acquisitions, and

developed the software for data acquisition, image reconstruction and data

analysis. As the first author he wrote the first draft and performed the

subsequent corrections and alterations. Michael D. Noseworthy provided the

RF coil structure, funding, and is the corresponding author. He also provided

essential editing in order to prepare the manuscript for submission.

This work is now prepared and in a final form in order to be submitted

as a manuscript for potential publication.

111



PhD Thesis - Paul Polak McMaster - School of Biomedical Engineering

8.3 Paper

Brain White Matter Fractional Anisotropy and 23Na Concentra-

tion: an (Artifactually) Inverse Relationship

Paul Polak1,2, Michael D. Noseworthy1,2,3,4

1. School of Biomedical Engineering, McMaster University, Hamilton, ON,
Canada

2. Imaging Research Centre, St. Joseph’s Healthcare, Hamilton, ON, Canada

3. Electrical and Computer Engineering, McMaster University, Hamilton, ON,
Canada

4. Department of Radiology, McMaster University Hamilton, ON, Canada

Corresponding Author:

Dr. Michael D. Noseworthy, PhD PEng

Department of Electrical and Computer Engineering

McMaster University

1280 Main Street West., Hamilton, Ontario, Canada. L8S 4K1

VOICE: (905) 525-9140 x23727

EMAIL: nosewor@mcmaster.ca

Running Title: DTI and 23Na MRI

Keywords: 23Na MRI, diffusion imaging, fractional anisotropy, point-spread

function

112



PhD Thesis - Paul Polak McMaster - School of Biomedical Engineering

8.3.1 Abbreviations

• 23Na: sodium

• CSF: cerebrospinal fluid

• DA-3DRP: density-adapted 3D radial projections

• DTI: diffusion tensor imaging

• DWI: diffusion weighted imaging

• FA: fractional anisotropy item FOV: field of view

• GM: gray matter

• LR: left and right

• PSF: point-spread function

• ROI: region of interest

• SAR: specific absorption rate

• SNR: signal to noise ratio

• TSC: tissue sodium concentration

• UTE: ultra-short TE

• WM: white matter
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8.3.2 Abstract

Purpose

Recognizing sodium’s (23Na) indispensable role in human metabolism, 23Na

MRI seeks to illuminate its role in pathology. Among the challenges in 23Na

MRI is poor signal, often partially mitigated by large voxel sizes and long

acquisition times. Diffusion tensor imaging (DTI) is an MRI technique which

has been widely adopted, particularly for neurological purposes, and provides

a measure of myelin health through the measurement of fractional anisotropy

(FA). The techniques provide both structural (DTI) and physiological (23Na)

information, which could provide valuable insight into pathology – but only if

comparisons to the healthy brain exist. Here we investigate 23Na and diffusion

images in a healthy cohort in order to gain insight into their correlates.

Theory and Methods

15 healthy subjects were scanned with a 3 T MRI in accordance with our

research ethics board. Tissue sodium concentration (TSC) was determined

via a variable flip angle technique, and these were compared to fractional

anisotropy (FA) measures from DTI. Images from both techniques were co-

registered to the proton T1 anatomical subject space by a custom methodol-

ogy. Regional gray and white TSC was assessed in an analysis which com-

pared FA, TSC and cerebrospinal fluid (CSF) proximity.
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Results

In corpus callosum regions (body and genu), voxels exhibiting lower FA values

displayed higher measured TSC – this effect was most evident in voxels near

the lateral ventricles. In gray matter regions distal to CSF this effect was

diminished or not apparent. The data indicates partial voluming and sodium

point-spread function (PSF) as the potential causes.

Conclusion

A broad point-spread function is common in 23Na MRI and represents a con-

founding effect when interpreting sodium concentrations. Care must be taken

in studies combining suspected pathology and 23Na MRI in areas proximal

to sources of dense sodium concentrations.

8.3.3 Introduction

Sodium (23Na) is an essential ion in cellular metabolism, due to its critical

role in pH regulation, the Na+K+ ATPase pump, and propagation of action

potentials in neurons and muscles [1-4]. For these reasons, in vivo 23Na MRI

is intriguing for its potential role in elucidating sodium’s role in a variety

of neurological conditions, such as multiple sclerosis (MS) [5,6], Alzheimer’s

disease [7], stroke [8-10], and cancer [11,12]. Unfortunately, 23Na MRI is ham-

pered by many technical challenges, including the requirement of special RF

hardware, non-standard (generally ultra-short TE (UTE)) pulse sequences

and computationally intensive offline reconstructions. In addition, the low

23Na concentration, compared to proton (1H MRI), a low gyromagnetic ratio
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and short T ∗2 relaxation times result in images with poor signal-to-noise ra-

tios (SNR). The most common remedies (multiple averages, large acquisition

voxels) result in long acquisition times and coarse image resolutions. High-

field MRI (i.e. ≥ 7 T) has also been used for 23Na MRI, with the associated

risk of increased patient heating due to specific absorption rate (SAR) [13].

Diffusion imaging is an established 1H MRI technique used to assess water

diffusivity, and has numerous clinical applications in stroke [14], traumatic

brain injury [15-17], and multiple sclerosis [18-20]. Diffusion weighted imag-

ing (DWI) requires the acquisition of three orthogonal diffusion directions

in order to produce apparent diffusion coefficient maps. The more advanced

technique of diffusion tensor imaging (DTI), a rotationally invariant repre-

sentation of diffusivity, uses a minimum of six directions and can further

assess white matter integrity. More recent studies investigated the use of

multiple gradient directions and b-values, in order to perform white mat-

ter tractography, and assess diffusion kurtosis [21,22]. The applications for

brain DTI are too numerous to list, and its efficacy has been detailed across

numerous clinical and research studies [23,24].

Combining 23Na MRI and DWI have been used in a limited number of in-

vestigations, notably for breast cancer [25,26], uterine fibroids [27] and multi-

ple sclerosis [6]. Recently, DTI and low resolution 23Na images were combined

in a traumatic brain injury study [28]. But otherwise there are few studies

combining 23Na and DTI for in vivo assessment of human brain, healthy or

diseased. Combining both DTI and 23Na MRI could provide valuable in-

sight into brain pathology as they provide quantitative means to assess both

structure and physiology. However, to benefit from a combined approach
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an evaluation of healthy brains is required. In particular an understanding

as to how DTI metrics correlate with healthy brain sodium is necessary. In

this work we present 23Na and diffusion images and then evaluate the sodium

concentrations in relation to DTI measures in the healthy brain.

8.3.4 Methods

In a study approved by our local research board, and in accordance with the

Declaration of Helsinki, 15 healthy volunteers (9 male, 6 female, mean age:

33.3yrs, standard deviation: 11.8) were assessed. Following initial screening

subjects were instructed to change into a cotton hospital gown in preparation

for scanning. Subject weight and height were also recorded.

Imaging was conducted using a 60 cm bore GE 3T MR750 (General Elec-

tric Healthcare, Waukesha, WI), having a maximum gradient amplitude and

slew rate of 50 mT/m and 200 T/m/s respectively. For 23Na imaging a cus-

tom built 16-rung single-tune high-pass quadrature birdcage head coil with

resonant frequency of 33.8 MHz was used. Shimming and localization was

performed using the proton-tuned body coil. Proton imaging for DTI and

3D T1 imaging (details below) were performed using a 32 channel head coil

from GE Healthcare. Each subject was removed from the scanner between

23Na and 1H imaging components as the hardware was swapped.

Acquisition

The 23Na imaging used the GE MNS Research Pack (v. 2018-07-18) and a

3D density-adapted radial projection (DA-3DRP) sequence [29]. Projections

were designed with a 3.2 mm isotropic resolution at a field of view (FOV) of
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240 mm [30]. Transmit gain and center frequency calculations were derived

semi-automatically from the Bloch-Siegert shift [31]. As a by-product of this

process the SNR and 23Na linewidth (in Hz) were calculated. 23Na RF pulse

lengths were 600 µs for a volumetric excitation (i.e. hard pulse) and TE

was 0.2 ms (UTE sequence). A B+
1 map sequence was acquired and used to

correct the TSC [32], after first being smoothed with a Gaussian filter (width

= 6 mm).

TSC spin density and T1 maps were derived from dual sodium sequences

using a variable flip angle technique [33]. Chosen flip angles of 30 and 70

based on the error in the spin density map, while remaining within SAR

limits (i.e. < 3 W/kg). Figure 8.1 shows the spin density error versus flip

angles.

1H imaging used a DTI sequence (b=1000 s · mm−2) with 60 directions

and 6 b=0 s · mm−2 images. Other sequences included a 3D T1 weighted,

3D T2 weighted, and a 6 direction DTI (same acquisition parameters as 60

direction DTI) with reverse phase encoding polarity needed for eddy current

corrections (described below). Total MRI acquisition time was approximately

60 minutes, which included overhead for localizer scans, 23Na transmit gain

calculations, and proton parallel imaging (i.e. ASSET) calibrations. Acqui-

sition protocol parameters are listed in table 8.1.
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Figure 8.1: Expected noise in the derivation of the spin density TSC in
terms of the system noise, σS. Choice of flip angles in the range of 0 to 90
degrees. Plot has been normalized to the minimum error. From Sabati et
al. [33]:

σSD =
A
√
B2S4

2 + C2S4
1

KE∗(BS2 − CS1)2
,where

A = sin(α2) tan(α1)− sin(α1)tan(α2)
B = tan(α1) sin(α1)(sin(α2)− tan(α2))
C = tan(α2) sin(α2)(sin(α1)− tan(α1))

K is a system constant, E∗ represents the T ∗2 decay, α1 and α2 the flip angles,
and S1 and S2 the signals from the spoiled gradient echo equations for sodium
MRI. For this simulation, E∗ ≈ 1 for a UTE pulse sequence, K is set to 1,
and S1 and S2 calculated with TR: 24 ms, T1: 35 ms. The minimum σSD on
this range is for α1 = 33 and α2 = 90.
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Reconstruction

23Na images were reconstructed from k-space data using the Berkeley Ad-

vanced Reconstruction Toolkit [34], with density compensation and regrid-

ding, and zerofilled to a resolution of 1 mm (isotropic). An `1 wavelet trans-

form was used for noise reduction, before the 23Na and B1+ map images were

converted using Python into NIfTI format. Proton images from DTI, 3D T1

and T2 weighted scans were converted from DICOM to NIfTI format using

dcm2niix (https://github.com/rordenlab/dcm2niix). Eddy current correc-

tions [35] and subsequent DTI processing were conducted using the FSL

library [36]. Specifically, the FDT toolbox of FSL was used for DTI pro-

cessing – this toolbox does not enforce eigenvalue positivity. As a result of

image noise or subject motion this can result in calculated eigenvalues < 0,

which result in voxel fractional anisotropy (FA) > 1.0, which is not possi-

ble. Hence, a minimum eigenvalue constraint of 0 was enforced on all voxels

before calculating the FA maps.

Registration

The image processing pipeline for registration of NIfTI images into anatom-

ical T1 image space is shown in Figure 8.2. All operations used the FSL

library except for gradient unwarping of 23Na images [37]. An anatomical 3D

T2 image registered to the 3D T1 was created in step 1. This co-registered

T2 (labeled ‘coreg T2’ in figure 8.2) then becomes the reference target for

future registrations of the 23Na and DTI images. Susceptibility distortions

from the skull / tissue interface produce unwanted effects on the surround-

ing voxels in the DTI and 23Na data – these effects are mitigated by erosion
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of the brain mask in step 3 (figure 8.2) such that subsequent analysis ex-

cludes these distorted voxels. Brain extractions, registrations, and gradient

unwarping operations were verified visually for each subject.
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Analysis

TSC maps in mM were derived from the TSC spin density maps using a

two point fit. Regions of interest were drawn on the 23Na images in the

vitreus humor and corona radiata. The mean value of each region of interest

(ROI) was set to values from the literature (vitreus humor: 140 mM [38,39],

corona radiata: 38 mM [40-42]) – these were used to determine the linear

fit parameters for the remaining voxels for each subject. FSL, Python, and

Matplotlib [43] were used for the analysis and plots.

A brain atlas combining white and gray matter (WM, GM) regions from

the Talairach Daemon [44], JHU ICBM-DTI-81 White-Matter [45], and Har-

vard-Oxford Subcortical Structural [46] atlases was constructed from regions

on the Montreal Neurological Institute (MNI) standard brain template. GM

regions examined were the left and right (LR) thalami, LR caudates, LR

putamen, and LR palladium. WM regions analyzed were the corpus callosum

(body and genu), middle cerebellar peduncle, and LR anterior corona radiata.

The atlas was warped into the anatomical T1 space of each subject by the

following method: (1) create a warpfield of T1 to MNI by using a non-linear

registration of each subject’s T1 into MNI space, (2) reverse the warpfield

to produce an MNI to T1 space warp, and (3) apply this warping matrix

to the atlas. Each binary region of the atlas was slightly eroded (2 voxels)

after warping to each subject’s space in order to preclude contamination from

neighboring regions. This erosion can be justified by taking into consideration

the relatively broad point-spread function (PSF) of 23Na imaging and its

underlying effects on the effective resolution [47].

In order to analyze any correlation between DTI and 23Na MRI, binary
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masks were created from the FA maps. These masks subdivided each atlas

region into “bins” based on their FA values. Reflecting that WM is expected

to be more anisotropic than GM, different ranges were used for the masks.

WM regions used bins of FA ≤ 0.2, 0.2 < FA ≤ 0.3, 0.3 < FA ≤ 0.4 ... FA >

0.8. GM regions used FA ≤ 0.1, 0.1 < FA ≤ 0.2 ... FA > 0.4. WM regions

with low FA values are due to the effects of partial voluming or crossing

fibers [48,49]. Means and standard deviations for TSC were calculated in

each atlas region and appropriate (i.e. GM or WM) range of FA masks. In

addition, absolute and relative volumes were also calculated.

In an effort to examine the effects stemming from partial voluming and

the 23Na PSF, the distance to the nearest cerebrospinal fluid (CSF) voxel

was calculated for each voxel in the atlas. CSF voxels determined from

tissue segmentation (FSL program fast) of the T1 images into probabilistic

maps of WM, GM and CSF. CSF binary masks were created from the CSF

map where the probability of the voxel being CSF was > 0.5.

8.3.5 Results

Figure 8.3 displays representative images from a single subject’s 3D T1, FA,

and TSC. Figure 8.4 shows plots of the means and standard deviations of the

TSC in mM versus FA bins for GM (a) and WM (b). Relative volumes for

each FA bin are indicated by the blue bars. GM TSC is nearly unchanged

with respect to FA value – the possible exception in the thalami explained

by low voxel counts for FA < 0.2. In the WM regions of the corpus callosum

(body and genu), higher TSC values are correlated with lower FA values.

Figure 8.5 indicates the TSC versus both distance to CSF, and FA in
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the LR thalami (a) and genus of the corpus callosum (b) across all subjects.

The lower left corner (i.e. voxels nearest to CSF and having lower FA) of

both plots display the highest sodium concentrations. As the voxel distance

away from CSF increases, the apparent sodium concentrations decrease to

the levels expected in WM and GM. Histograms (FA: above; distance: right)

indicate the voxel counts associated with each region. Distance to CSF is

quantized, and is evident for short distances – this is visualized as empty

lines or “gaps” in the data where acquisition geometry prohibits some values

from being possible.
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Figure 8.3: Representative slices from one subject with 3D T1 (top row), FA
map (middle row) and 23Na TSC (bottom row). FA range of 0 to 1. TSC
range 0 to 150 in mM.
Abbreviations: FA: fractional anisotropy; TSC: tissue sodium concentration.
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8.3.6 Discussion

23Na MRI remains an enticing prospect for neuroimaging applications; how-

ever, the low SNR images can impair their utility. In particular, correla-

tions to other MRI techniques, such as DTI or T1 tissue segmentation, rely

upon accurate co-registrations. Coarse resolutions and poor SNR can impede

registrations [48,49], and this necessitated our image processing pipeline as

described in figure 8.2. Brain extractions are usually conducted prior to reg-

istration to remove the effects of the skull, eyes, etc. from the underlying

algorithm in order to concentrate these efforts on the tissue of interest (i.e.

brain). Unfortunately, in practice the brain extraction algorithm performed

poorly on the 23Na images which led to the methodology adopted here. Other

23Na studies have utilized different methods [6,50,51] to co-register coarse

sodium images to higher resolution anatomical images – the ideal method

remains an open question for further inquiry, but likely will be tied to the

individual study and underlying quality of the 23Na images.

The finding that some voxels show a higher TSC with proximity to CSF

corroborates 1H MRI DTI results [52]. DTI measures make the inherent

assumption that individual voxels contain only a single tissue type – the

partial voluming effects from the CSF in the lateral ventricles result in a

mixing of tissue types, and a weighted average of the FA measures [52,53].

A similar effect is likely occurring here with TSC measures where high 23Na

concentration is from CSF, combined with the broad point-spread function

inherent to 23Na MRI, results in increased measured concentrations around

the ventricles. Intuitively this effect is most clearly observed in the body

and genu of the corpus callosum. This confounding effect is problematic
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especially with regards to correlations between 23Na MRI and certain WM

pathologies, such as multiple sclerosis and traumatic brain injury. Further,

the geometry of the brain structures is critical – large parts of the thalami are

located distal to the ventricles (figure 8.5), and these voxels are thus unlikely

to be perturbed by the high 23Na concentration in the ventricles. Conversely,

corpus callosum structures are more compact and arranged proximal to the

lateral ventricles. Once the confounding effects of CSF are taken into account,

the TSC values are comparable to those found in the literature.

There is also a PSF associated with the FLORET B+
1 map, and in our

previous work we demonstrated that this PSF was slightly worse than for

DA-3DPR [30]; however, as the B+
1 map is smoothed with a Gaussian filter

before its application, the consequences of its broader imaging PSF are min-

imal. The RF subsystem is independent of the gradients, and thus while the

FLORET B1+ sequence samples k-space more efficiently [54], it is assumed

that this will have little or no effect upon the resulting B+
1 map.

The DA-3DPR acquisition was designed to have a 3.2 mm isotropic reso-

lution, which when factored in with the measured point-spread function [30]

results in an effective voxel resolution of approximately 6 mm. As the WM

corpus callosum structures are within this distance to CSF (figure 8.5), this

effect particularly affects these regions. Attempts to increase voxel size in

an attempt to alleviate low SNR in 23Na MRI will absolutely exacerbate this

effect [47,52,54].

In order to quantify and calibrate the TSC map in units of mmol/L, there

are two main experimental approaches: external calibration tubes [40,55],

and internal references [50]. This study used the latter technique, with the
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vitreus humor (140 mM) and anterior corona radiata (38 mM) being used as

calibration points for the linear 23Na fit. The use of a deep WM structure

to use for the calibration was intentional, so as to remove any effects from

proximity to the lateral ventricles (figure 8.5). Calibration tubes remain a

viable option for these operations, although their placement, usually around

the exterior of the subject’s head, introduce a dependence upon B1+ ho-

mogeneity. Regardless of the calibration method used, correlations between

spin density TSC and proximity to CSF remain. However, the reporting of

23Na concentrations in terms of mM in this study are useful for comparisons

to other 23Na MRI studies.

This study used two T1-weighted 23Na acquisition sequences each with

a different flip angle in order to reconstruct a 23Na TSC map. To negate

the effects of T1 relaxation using a single sequence would require an increase

in TR to 150 ms (or more) in order to remove the T1 weighting from CSF.

This increase in TR would represent a prohibitive increase in 23Na acquisition

time for this study (approximately 68 minutes at the same resolution). The

trade-off for the multiple flip angle technique is an increase in the noise in

the resulting spin density image, with the choice of flip angles (30◦ and 70◦)

in this study represented a value for σSD ≈ 1.09 (figure 8.1). Increasing the

flip angle in an attempt to decrease the noise [33] in the spin density image

results in an increase in SAR [13]. Coste et al. [40] reported the use of angles

of 25◦ and 55◦ because of SAR considerations for their study. The choice of

30◦ and 70◦ in this study resulted in a scanner reported SAR < 1.1 W/kg

for all subjects – well within clinical limits. None of the subjects reported

any adverse effects or experienced noteworthy heating. Increasing the larger
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flip angle to values > 90◦ would reduce σSD further [40]; however, flip an-

gles ≥ 90◦ have been shown to be problematic for 23Na imaging, as residual

quadrupolar interactions can act to confound quantification [56]. From the

same work Stobbe and Beaulieu indicate that these residual interactions are

particularly troublesome in WM regions where the tracts are primarily supe-

rior to inferior (i.e. parallel to the main magnetic field). These observations,

when added to the observations from this work, act to further complicate

23Na brain quantification, and warrant careful design in future studies.

8.3.7 Conclusions

This study examined the correlations between DTI and 23Na MRI in a healthy

population. A method to co-register to the subject T1 anatomical data was

presented and then applied in the analysis of correlation between FA and

TSC in gray and white matter tissues. An increased TSC was found for

voxels with a low FA and nearest proximity to CSF – as such, this effect

was particularly evident in regions nearest the lateral ventricles, such as the

corpus callosum. This confounding effect, likely as a result of the broad

point-spread function inherent to 23Na MRI, is important to consider when

evaluating sodium in brain pathology.
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Chapter 9

Summary and Conclusions

Despite the challenges surrounding 23Na MRI, it remains an enticing area for

research, because of its potential applicability in a variety of pathologies [49].

Approximately 50% of the brain’s oxygen use is for non-service purposes [3]

– that is, energy use for the purpose of maintaining brain tissue, rather than

in service to the entire body. Given the importance of the Na+K+−ATPase

in healthy cellular metabolism [1, 2], this only underlines the desirability of

23Na brain MRI as an interesting technique, and highlights the need for robust

methods in this area. This chapter summarizes the contributions made in

this dissertation, and suggests research into new areas in order to further the

development of 23Na MRI towards clinical use.

9.1 Contributions

• 23Na MRI is SNR limited – This can be significantly modulated by going

to a higher magnetic field, B0. This is a very costly, and in many cases
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impractical solution. Thus, in order to rectify this, either larger voxels

or longer acquisition times are employed. In terms of k-space sampling

efficiency, FLORET sequences are superior to projection methods such

as DA-3DPR. This efficiency can be exploited to reduce scan times in 1H

MRI because signal is plentiful; however, 23Na MRI is signal deficient.

Thus, in terms of total acquisition time the choice between DA-3DPR

and FLORET matters less because the latter may need high signal

averaging in order to recover SNR. In fact, DA-3DPR could be consid-

ered superior for 23Na MRI, because the hardware gradient demands

(i.e. maximum gradient and slew rate) are less than for FLORET.

• The PSF is an important metric for any imaging system. The underly-

ing PSF of an imaging system is “fixed”, although measurement of that

PSF can be complicated by the noise we expect to have in 23Na MRI. Of

the two methodologies tested, the Fourier harmonic method proved less

susceptible to error in the MTF calculations. This work also demon-

strated the usefulness and convenience of a 3D-printed phantom in the

evaluation of the PSF, and also demonstrates the effective resolution

the system will have for in vivo brain MRI.

• DTI can provide information regarding brain tissue structure, and in

particular has been used to assess axonal integrity in WM. 23Na MRI

provides complementary information; however, care must be taken

when measuring 23Na proximal to CSF, as the latter may be confound-

ing the measurement of TSC. This is particularly troublesome in the

corpus callosum, as this dense WM tissue is near the lateral ventricles.
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9.2 Future Research

In terms of future research into brain 23Na MRI methods, there are a number

of areas of promise. While pulse sequence selection is unlikely to be fruitful,

the use of a multi-channel receive array could provide great benefit for 23Na

acquisitions [111,112]. Lakshmanan et al. [113] reported an increase in signal

from 1.6 (center of the head) to 2.3 (periphery) – a significant improvement

over a single-channel transmit/receive birdcage design. In addition, using a

multi-channel array would have added benefits especially in regards to image

reconstruction and the use of compressed sensing techniques [114–116]. This

work used compressed sensing techniques to eliminate some noise in the in

vivo brain images, but the limitations of a single-channel RF coil (figure 4.1)

made these efforts fairly rudimentary. A more sophisticated receiver array

could provide a great benefit to 23Na image quality.

In the process of obtaining in vivo brain images in chapter 8, the Bloch-

Siegert shift [98] was exploited in order to tune the RF transmit gains and

center frequencies. Part of this calibration included the calculation of the

SNR – iterations were completed when the SNR reached a maximum for the

current subject. Plotting the resulting SNR versus body mass index (BMI)

(see figure 9.1) revealed an interesting trend of decreasing SNR with increased

BMI, to the extent that a decrease of ≈ 33% was noted between the best

and worst cases. The coil used for these studies was tuned and matched at

50 Ω to a single subject, but coil loading can have a significant effect on the

resultant SNR. Tuning and matching the coil to individual subjects is rarely

performed for human 1H or X-nuclei MRI, but is regularly practiced with

preclinical animal work [117, 118]. A mechanism to automatically or semi-
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automatically tune the 23Na RF coil to the individual subject would provide

a great boost in SNR [119,120].
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Figure 9.1: Measured prescan SNR versus BMI (in kg/m2) for all subjects.
Two subjects (gray triangles) were excluded as outliers in a Bonferroni test.
Linear trend line calculated from remaining data with R2: 0.815.
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9.3 Conclusions

This work demonstrated methods to obtain brain images for 23Na MRI.

Sodium plays an integral role in brain metabolism, and 23Na MRI would

be an invaluable tool in the diagnosis and prognosis of various pathologies,

including MS, stroke, epilepsy and cancer. Translation of 23Na MRI into

clinical routine has thus far been impeded by hardware and software require-

ments, low SNR and the resulting long acquisition times. The potential of

using higher strength magnets (i.e. 7 T), and more sophisticated RF receiver

circuitry could help allay these problems, and finally bring the potential of

23Na into clinical practice.
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Appendix A

Appendix

This appendix to the dissertation outlines the image reconstruction processes

used for the data, and will include the raw 23Na images, generation of the

B+
1 maps, and the final 23Na TSC images.

We will use the following example files in the following sections to illus-

trate the 23Na TSC reconstruction procedure:

• The GE raw data file (i.e. “p-file”) for the DA-3DPR acquisition is

43008.

• The p-file for the B+
1 acquisition is 43520.

• DA-3DPR trajectory is in the BART format, and is:

3DPR-13500.

• FLORET trajectory, also in BART format is: FLORET-B1MAP.

• The density compensation functions for the above trajectories are:

3DPR-13500-DCF and FLORET-B1MAP-DCF respectively.
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• The MRI acquisition has two 23Na acquisitions (see table 8.1) – the

NIFTI files relating to the two flip angles will be called 70.nii.gz and

30.nii.gz for angles 70◦ and 30◦ respectively.

A.1 23Na TSC image reconstruction process

1. Extract k-space data from GE raw data format (i.e. p-file) and put

into BART format – the output is named: 43008-data.

python readpfiles.py --npts 1000 --average 2 43008

The author has found better results with computing signal averaging

post-acquisition, rather than letting the system do it at acquisition

time – the latter can result in receiver gain overflow.

2. Use the BART toolbox to reconstruct the data using the NUFFT. We

first correct for off-isocenter delay times, then weight the data using

the density compensation function, before feeding this data into the

NUFFT. We reconstruct the image to 240 × 240 × 240 voxels.

python shiftkspace.py 43008-data 3DPR-13500 0 -0.1 0

bart fmac 3DPR-13500-DCF 43008-data-shift 43008-shift_w

bart nufft -d 240:240:240 3DPR-13500 43008-shift_w 43008-adj

3. Use a simple compressed sensing thresholding technique in the wavelet

domain to reduce image noise.

bart cdf97 7 43008-adj 43008-wave

bart threshold 2e8 43008-wave 43008-wave_thr

bart cdf97 -i 8 43008-wave_thr 43008-cs
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4. Convert the BART imaging data to NIFTI file format with a resolution

of 1.0 mm and an axial acquisition plane.

python cfl2nifti.py new -r 1 -p ax 43008-cs 43008-adj.nii.gz

5. First co-registering the 70◦ image to the 30◦ image using FSL, and then

create the TSC using the two flip angles and the TR of 24 ms. The

output of the final command creates a TSC NIFTI image: TSC.nii.gz

and a T1 map: T1Map.nii.gz in ms. The TSC map is proton density

weighted, and can be scaled appropriately to a value in mM if desired.

flirt -in 70.nii.gz -ref 30.nii.gz S70_30.nii.gz

python makeTSC.py S70_30.nii.gz 70 30.nii.gz 30 24

A.2 23Na B+
1 map reconstruction process

1. Extract data from p-file with extra argument for processing the Bloch-

Siegert (BLOSI) pulses. This creates three output files: 43520-data+

and 43520-data- respectively for the positive and negative BLOSI

arms respectively, and a Python “pickle” file which contains the details

of the acquisition.

python readpfiles.py --blosi --npts 5032 --average 4 43520

2. Shift k-space, multiply by the density compensation function, and re-

construct into complex images.

python shiftkspace.py --blosi 43520-data FLORET-B1MAP 0 -0.1 0

bart fmac FLORET-B1MAP-DCF+ 43520-data-shift+ 43520-shift_w+
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bart fmac FLORET-B1MAP-DCF- 43520-data-shift- 43520-shift_w-

bart nufft -a -d 240:240:240 FLORET-B1MAP+

43520-shift_w+ 43520-adj+

bart nufft -a -d 240:240:240 FLORET-B1MAP-

43520-shift_w- 43520-adj-

3. Create the B+
1 map and convert to NIFTI format.

python createB1Map.py --phasecor . 43520-adj+ 43520-adj-

blosi.pickle

python cfl2nifti.py new -r 1 -r ax B1Map-smooth B1Map.nii.gz

4. B1Map.nii.gz can now be co-registered to the same image space as

the TSC map, and is called: coreg B1+ uT.nii.gz since it is scaled

in units of µT. We can normalize this map by calculating the average

value in some region (i.e. binary mask of the brain) and then scaling

this appropriately with FSL.

mean=‘fslstats coreg_B1+_uT -k mask -M‘

fslmaths coreg_B1+_uT -div ${mean} coreg_B1+_norm

5. This normalized B+
1 map can now be used to correct the 23Na TSC and

T1 map images as per [121].

A.3 Exemplary 23Na images

The following figures display exemplary images from one subject from the

data in Chapter 8. Figures include raw 23Na images (70◦ and 30◦ flip angles),
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B+
1 map in µT, T1 map in ms, and TSC map in mM. Images are from the

same locations in the brain.
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