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LAY ABSTRACT

Biopharma processes involving live cells are utilised to produce several critical prod-

ucts such as monoclonal antibodies which are state-of-the-art cancer therapeutics.

Improving productivity for these would require advanced process control methods

which in turn would require good models. This thesis focuses on introducing a method

to build control relevant data driven models by using input perturbation and data

generation suitable for live cell systems. The data driven model is utilised in a model

predictive control scheme which meets control objectives while respecting biological

constraints with better performance than industrial standards. Further improvement

is made by incorporating first principles knowledge into the data driven model through

a novel implementation of constrained subspace identification. The approaches are

showcased on an advanced simulator test bed created by Sartorius.
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ABSTRACT

This thesis focuses on data-driven modeling and model predictive control for a mono-

clonal antibody process. The process uses live cell cultures such as Chinese Hamster

Ovary (CHO) cells and thus needs special consideration. With the trend in the in-

dustry to move towards perfusion processes which are continuous allowing better pro-

ductivity, advanced process control would play a vital role. Model Predictive Control

(MPC) requires a suitable model to optimally control the process. First principles

models for such live cell processes are complex and unsuitable for direct use in MPC.

In this work, we focus on data-driven modeling given its suitability for use in con-

trol. The data-driven model is eventually also incorporated with some first principles

knowledge for better performance and robustness.

Data-driven modelling requires some input perturbation and data generation meth-

ods such as Pseudo-Random Binary Sequence (PRBS) inputs. By themselves, these

methods are unsuitable for live cells as they can shock the system. To account for this,

a suitable, intensified design of experiments (DOE) approach is used to perturb the

data frequently enough to build a model of reasonable accuracy without significantly

impacting live cells. This method is general enough to be used to identify appropriate

input perturbation and data generation for many bioprocesses, and for our particular

process of study it identified an input perturbation frequency of once per three days.

The data-driven model is used in a model predictive control (MPC) scheme which re-

spects biological constraints and can meet desired objectives. Further improvement in

model robustness are made possible by incorporating first principles knowledge into

the data-driven model. The methods are demonstrated on an advanced simulator

developed by Sartorius with significant improvement over current industry standard.
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Chapter 1

Introduction
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1.1 Motivation

Advancements in technology, data availability and computational abilities have led to

strong adaption of advanced process control and data analytics in traditional chemical

engineering. Data driven modeling and machine learning methods have also seen a

surge in popularity and relevance in the broader process industry. The adaptation in

biopharmaceutical industry has however been much slower. The industry standard is

very often batch recipe and operator led modes or Proportional-Integral (PI) control

for process control applications. Further, biopharmaceutical processes have tradition-

ally been batch or fed-batch. Recent advancements in capabilities and with rising

demands of live cell therapeutics has generated strong interest in moving towards

continuous or perfusion processing which would allow higher productivity. Continu-

ous processing allows removal of toxic byproducts and waste allowing longer process

runs and more time for cells to be in production phase and hence a potential for

significantly more product over time and lower manufacturing footprint.

Advanced process control approaches such as Model Predictive Control (MPC) are

well placed to meet multiple objectives for such a perfusion process such as maintain-

ing Viable Cell Density (VCD) at a setpoint, maximising the volume specific concen-

tration or total mass of the protein product and meeting various input constraints and

suitable conditions in the bioreactor. Such control strategies are dependent on a good

model for successful implementation. Models are broadly classified into first princi-

ples or physics based models (white box modeling) and data-driven models (black

box modeling). A combination of features of both has also become an active area

of research in recent times and such methods are known as hybrid models (grey box

modeling). Biopharmaceutical processes involving live cells have a complex interplay

of reactor conditions, inputs and outputs along with metabolites fed and consumed

by cells, products and by-products produced and the impact of all factors of differ-
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ent phases of growth, death and lysing of cells. As such, first principles modeling

for these systems is especially convoluted and parameter estimation is challenging.

More importantly, such complicated models would not be well suited for implementa-

tion in advanced model predictive control formulations. Data-driven modeling using

methods such as neural networks need a lot of data to build a model with predictive

capabilities and data is often limited due to high cost of running every single pro-

cess run. This work focuses on data-driven modeling and model predictive control

for biopharmaceutical processes with demonstration on an antibody process used by

Sartorius. The method of choice is subspace identification for its strengths in mod-

eling with reasonable accuracy even with limited data and the subspace state space

model being relevant for control. Hybrid modeling is also a subject of this work with

some first principles information incorporated in the data driven model for improved

performance and robustness.

1.2 Outline of the thesis

The first manuscript of the thesis (Chapter 2) focuses on building a data-driven model

for the perfusion bioreactor for monoclonal antibodies based on a proprietary advanced

simulator by Sartorius which operates on a combination of true process conditions

from their plant, first principles equations and proprietary latent variable modeling

to replicate real-life bioreactor conditions with high fidelity. Given the significant costs

as well as longer duration for perfusion process (over thirty days) to run every single

run of the bioreactor process the simulator serves as the test bed to develop methods

relevant for deployment to the actual plant. The key challenge for building the data-

driven method is not just choosing a suitable method based on limited data but

also the mode of data generation or input perturbation. Biopharmaceutical processes

traditionally have very minimal changes in input condition during the process run to

3
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avoid shocks to the system whereas traditional system identification would require

very frequent perturbations such as Pseudo-Random Binary Sequence (PRBS) inputs

and the manuscript is based on an intensified design of experiments approach to build

a data driven model based on appropriate input perturbation frequency which would

respect biological constraints as well as measurement frequency feasibility.

The second manuscript (Chapter 3) is based on model predictive control of the perfu-

sion bioprocess based on the data-driven model developed in the first manuscript. The

design of the model predictive controller is done to allow flexibility in meeting multi-

ple objectives as required, including maximising the volume specific concentration of

product, maximising the total mass of product produced and tracking the viable cell

density. The inputs are constrained to respect biological requirements. The model

predictive controller already showing improvement over the industry standard PI is

further improved through incorporation of first principles knowledge in a hybrid or

process aware modification of subspace identification which incorporates constraints

on the sign of the gain matrix, allowing the causal input output relation for the bi-

ological process to be honored. The benefit of the approach towards robustness is

also demonstrated by building the model with biological knowledge constraints but

using input-output data from a different cell line and still be able to provide desired

performance.

The fourth chapter discusses recent work done with summer students in the Mhaskar

group which involves modern machine learning methods for improved process under-

standing. Bayesian inference using nested sampling for biological process parameters

estimation and physics informed neural networks (PINNs) for hybrid modeling are

the primary methods used. The last chapter summarizes the approaches, makes con-

cluding remarks and discusses future work and ideas to explore.
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Chapter 2

Determining Appropriate Input

Excitation for Model Identification

of a Continuous Bioprocess

This chapter introduces an approach to allow data driven modeling for live-cell con-

tinuous processes such as monoclonal antibody production. The method balances

a high input perturbation frequency needed by traditional system identification and

minimal perturbations to avoid shocking bioprocess. Based on the process dynamics

and measurement feasibility, an intensified design of experiments approach is devised

and subspace identification is used to identify the data-driven model.

This work was completed in collaboration with Sartorius who provided insights and

discussions on the bioprocess as well as the advanced proprietary simulator. The

manuscript has been submitted to Digital Chemical Engineering journal.

Sarna, S., Patel, N., Corbett, B., McCready, C., & Mhaskar, P. (2022).

Determining Appropriate Input Excitation for Model Identification of a Continuous

Bioprocess, Digital Chemical Engineering, (Submitted)
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2.1 Abstract

This manuscript addresses the problem of determining input excitation for data driven

model identification appropriate for cell culture bioprocesses in general, and for an

industrial bioreactor used for the production of monoclonal antibodies, in particular.

The design space is set up to give us the operating parameters for the key objective

of demonstrating the feasibility of using far more perturbations than typically done

in bio process identification, although significantly less than other applications, to

yield data rich enough for the purpose of data driven modeling (and subsequently,

control). A proprietary mechanistic model developed by Sartorius for their Cellca cell

line is first introduced to serve as a test bed, based on AMBR 250 ® (Sartorius reg-

istered trademark for integrated high throughput bioreactor systems). Subsequently,

this test bed is used to address the question of determining the frequency of input

perturbation sufficient to identify a data driven dynamic model. To this end, the

test bed is used to generate data at various frequencies and a linear time invariant

model identified. The predictive capability of the identified model is used to ascer-

tain the frequency of changes in data generation such that the changes are acceptable

from a biological standpoint, and yet generate sufficiently rich data. In particular, a

frequency of perturbations at once every three days is found to balance these trade-

offs for the monoclonal antibody process under consideration. The results from the

manuscript are meaningful both from a specific results standpoint (as illustrated by

subsequent adoption by Sartorius), but also by providing a mechanism to ascertain

such information for other bioprocesses.

6
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2.2 Introduction

Continuous bioprocessing is increasingly replacing more traditional batch and fed-

batch modes of production in bio-pharmaceutical manufacturing due to several advan-

tages such as significantly higher productivity (over 10 times), reduction in manufac-

turing footprint and cost and more opportunities for product quality and consistency

control, inclusion of industry 4.0, digital twins and other advanced control strategies.

[32] The productivity and economics of these continuous processes are affected by sev-

eral factors including hydrodynamics and transport phenomena.[16] A majority of the

literature on control and process systems engineering related work on bio-processes

deals with batch or fed-batch operation. [22, 6, 25] This work deals with a perfusion

process which differs from fed-batch and batch in that there is a continuous addition

of fresh media and removal of spent media through bleed and harvest streams. The

final product (volume specific monoclonal antibodies) is influenced by multiple factors

like cell growth rate, feed rate and feed concentration and thus, these factors need to

be accounted for in a model based control design.

The dependence of the process on the manipulated inputs and operating conditions

is complex. Glucose being the key substrate is paramount, however, excess glucose

is detrimental due to overflow metabolism, which is undesirable and leads to the

production of excess lactate and ammonia. Other substrates such as glutamine play

a similar role as glucose especially for promoting cell growth during periods of fast

growth. [15] These metabolites alone are not the only factors affecting cell growth.

Critical process parameters (CPPs) such as temperature and pH play a key role as

well. [4, 31] [15] The production of a specific product such as a protein by these cells

is heavily affected by the environment, such as the pH and glucose levels [3, 23, 25]

and a diversity of variables affect the system dynamics with many of these having

contradictory effects in different ranges.
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One approach to quantify process understanding is to use first principles models.

While a challenging problem, parameter estimation methods for first principles models

do exists in literature [8, 26, 7, 21, 19, 1] which have been utilized to develop first

principles models. [15] Most of the existing results have focused on batch or fed batch

systems, and limited results exist for perfusion processes. Among other challenges,

the availability of sufficiently rich data to estimate the parameters remains an issue

with first principles modeling approaches.

An alternate to first principles models are data driven models, that are often well

suited for ease of implementation.[6, 33] One suitable approach is subspace identi-

fication, which is a well established system identification method and has several

advantages such as having only one decision variable (the order of the system) and its

ability to handle large multi-input multi-output (MIMO) problems well. The model

complexity of MIMO and the simpler single-input single-output (SISO) systems is

similar when using subspace identification. This is in contrast to methods such as

Auto-Regressive Moving Average with eXogenous inputs (ARMAX) models which

have multiple ‘tuning’ parameters and hence in comparison to methods such as AR-

MAX, subspace identification is often easier to implement [11] .

Finally, hybrid semi-parametric models contain aspects of both models and utilize

knowledge about the process and make use of the data available as well.[28] The re-

sults for hybrid models are encouraging and could outperform first principles and data

driven (subspace) methods both individually. [12] Hybrid models have also been im-

plemented in MPC based framework with good results [13] and would be considered

in future work. Subspace identification [22] and other data driven and hybrid meth-

ods for bioprocesses [6, 33] have been presented in literature with promising results.

However, the focus has generally been on modelling and prediction based on a given

data set and not necessarily on determining the adequacy of input perturbations for

model identification which is crucial for design of experiments to generate training

8
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data for modeling of live-cell bioprocesses like the one under consideration.

From a system identification point of view, it is desirable to have frequent pertur-

bations as system identification would need sufficiently excited, data-rich inputs [20],

and is a regular practice in process industry. On the other hand, from an operational

point of view for a bioprocess, minimal input perturbations are desired so as to not

disturb the cell growth too much. Moreover, in implementing control or collecting

data for model identification of bioreactors, one consideration is that the control ac-

tion or input changes cannot be too drastic or extreme between sampling periods as

the living cells are sensitive to minute changes.

In more recent results the notion of intensified design of experiments has been pro-

posed in the context of biological processes, specifically for fed-batch processes.[29, 27,

2] The existing results are designed for fed-batch operation and as such not specifically

suited for perfusion operations. More importantly the results in [29, 27, 2] focus on

incorporating various consideration in the design, but do not specifically consider the

suitability of the resultant data to yield an accurate control relevant model. Further,

results on system identification on simulations of bioprocesses involving antibodies

have mostly focused on single input-single output variables [9]. In summary, the

question of determining an appropriate excitation level of data for bio processes re-

mains unaddressed along with control relevant modeling for multiple input-multiple

output variables.

Production of Monoclonal antibodies (mAbs) involving Chinese hamster ovary (CHO)

cells has been an important part of the biotherapeutics industry in recent years. [17]

Monoclonal antibodies are state of the art therapeutics which provide the most rapid

route to clinical proof of concept for disease modulation target activation or inhibition.

They are fast becoming popular with $75 Billion global sales revenue annually and

over three times faster increase in sales growth than other recombinant therapeutics

and biopharmaceutical products. [10] The current manuscript focuses on production

9
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of monoclonal antibodies via a Sartorius Cellca cell line in a continuous bioreactor.

For this process, a primary objective is to maximize its volume specific production by

manipulating properties and variables in the bioreactor.

Motivated by above, this paper investigates the ability of data driven models to cap-

ture the process dynamics for control purposes, particularly focusing on comparing

different input perturbation frequencies to enable identifying a sufficiently accurate

model with fewest possible input changes. Thus the key contribution of this work

is to illustrate a methodology to determine the tradeoff between input excitation

that preserves biological stability and obtaining a sufficiently rich data set for model

identification. Consistent with dynamics of the bio-process under consideration, the

considered input change frequencies (over a nominal baseline) are three times per

day, once per day, once per three days and once per five days. The trained models

(with these different frequency of input changes during training) are then tested using

validation data which has a singular temperature shift at day 10 of the process while

keeping the other inputs constant which is an industrial practice adopted by Sarto-

rius. The models are then compared for their predictive ability to determine the best

frequency of input change. The rest of the paper is organized as following: Section

2.3 described the bioreactor process as well as the cell culture. The first principles

model used as the test-bed is described briefly in section 2.3.2. Section 2.4 explains

the reduced order modelling done via subspace identification and the application of

the proposed method to the test bed. Concluding remarks are presented in Section

3.6.

2.3 Preliminaries

An overview of the bioreactor process is presented in this section followed by a de-

scription of the cell culture.
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2.3.1 Bioreactor Process Description

The bioprocess under consideration involves live cells in an enclosed enviornment

meaning that the growth and death rates affect the environment in the reactor and

consequently the titer (concentration in mg/L of final product). Thus, it is impor-

tant to ensure that the environment is not disturbed too frequently and for the effect

of the perturbations to be realized on the system before the next perturbation is

implemented. In a perfusion process, especially, there are mixing and biological phe-

nomenon that have to manifest before the effect of the process change is realized. This

limits the frequency of perturbations that are meaningful in a given period of time to

yield information rich data. Presenting a methodology to determine this frequency is

the objective of the present work.

A simplified schematic of the bioreactor is presented in Figure 2.1. The recycle stream

recycles live cells as a live cell retention filter does not allow live cells to leave through

the harvest stream.

Figure 2.1: Simplified schematic of the bioreactor

11
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An additional consideration is that the process runs in growth phase for 3 days followed

by perfusion phase for 30 days hence it takes over a month of time (and significant

costs) to generate data. Thus, the approach used in this work is illustrated utilizing

a simulation test bed provided by Sartorius.

The nominal values for the temperature and pH are set at 36.8◦C and 7.1 respec-

tively. The working volume of the reactor is 0.2L and the feed rate is 0.3L/day or 1.5

volumes/day. The growth phase lasts for 3 days during which the system is operated

as a fed batch process. This is followed by a perfusion phase for 30 days. For the

purpose of subspace identification, the inputs are chosen as temperature (◦C), pH,

glucose feed concentration (g/L) and feed rate (L). The outputs are chosen as titer

(mg/L), viability (%), glucose concentration (g/L) and viable cell density (VCD) (106

cells/mL). To reflect the current practice, the VCD is under PI control with a fixed

setpoint of 50 ×106 cells/mL. Further, the measurements for the metabolites and

titer are only taken three times per day. Hence this is highest frequency of changes

of inputs that is considered.

2.3.2 Cell Balance Model

The model can be broadly divided into three parts: 1) A first-principles cell balance

model (growth/death), 2) A hybrid metabolic evolution model, and 3) A hybrid pro-

ductivity (titer) model. Essentially the Sartorius test bed represents cells using a cell

balance similar to mass balances from traditional chemical engineering. This balance

tracks the population of cells as they move through three phases: live cells, dead cells,

and lysed cells. Mathematically, the evolution of the live, dead, and lysed cells are

tracked using ordinary differential equations as follows:
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dxv

dt
=

(
ueff − ud −

Fb

V

)
xv (2.1)

dxd

dt
= udxv −

(
kl +

Fb

V

)
xd (2.2)

dxl

dt
= klxd −

(
Fh + Fb

V

)
xl (2.3)

where xv is the viable cell density (VCD), xd is the dead cell density, and xl is the

lysed cell density (concentration of lysed cells). Fb is the bleed rate, Fh is the harvest

rate, and V is the volume, ueff , ud, and kl are the effective growth, effective death,

and lysing rates respectively.

Live cells are formed at the effective growth rate. Live cells can either exit the reactor

through the bleed stream or be transformed into dead cells. Note that this implies

the existence of a perfect cell retention filter (i.e., no live cells exit the reactor through

the harvest stream).

The growth and death rates are based on proprietary dynamics. The titer, which

is a function of the final output concentration, evolves based on a hybrid dynamic

model. While noting that the test bed developed by Sartorius has been validated

against experimental data and captures the key complexities of the bio-process under

consideration, it is important to recognize the results of this manuscript are neither

dependent on the accuracy of the test bed, nor on the specific bio-process under

consideration, and while the specific findings about the best excitation frequency are

specific to the present bio-process, the approach is applicable to any other bio-process.
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2.4 Determining Appropriate Input Excitation Fre-

quency

This section describes the approach proposed in this manuscript to determine the

appropriate frequency of input excitation for building a control-relevant reduced or-

der model. The key idea is that candidate data sets are generated at different input

frequencies (while keeping them within biologically acceptable ranges) and the appro-

priateness of a particular excitation frequency is determined via a metric that captures

the prediction capability of the model identified using the candidate data set.

As described in sections 2.2 and 3.3.1, the cell growth and consequently the production

of desired product/antibodies depends on the environment inside the reactor which

is determined by the substrates and physical conditions. Since the eventual goal is

to utilize the proposed approach for a model predictive control strategy, the variables

which are relevant from a control perspective, i.e. variables which are reasonable to be

considered manipulated inputs, were used as model inputs. Hence, pH, Temperature,

Glucose Feed Concentration and Feed Rate were chosen as the inputs. The final

product of interest is titer, hence it’s presence as an output would be incontrovertible.

Further, some of the key parameters which help get a sense of the cell growth inside

the reactor are viability and viable cell density and hence those were also chosen as

outputs. Finally, glucose is the key nutrient for cell growth and it is desirable to track

the glucose levels inside the reactor hence it was also chosen as one of the outputs for

the subspace model.

The inputs to the system are perturbed at four different frequencies to obtain four

sets of dynamic input-output data and these are used to build dynamic linear time

invariant models relevant for control applications using the technique of subspace

identification described in the next section 2.4.1. The choice of frequencies to be
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considered for input perturbation is based on the dynamics of the process under

consideration. For the current system, laboratory measurements are available once

every 8 hours or 3 times per day and that forms the upper bound of perturbation

frequency considered. Though lower frequencies of perturbation would be preferable

as long as a reasonably accurate model is identified, our upper bound would still be a

candidate if the model identified is significantly better. The process runs for 30 days

after the inoculation phase with a possible extension to 60 days in the future; hence an

input perturbation of once per 5 days is considered as the lower bound of perturbation

frequency under consideration to allow excitation of the system. Once per day and

once per 3 days are considered in the intermediate frequency range between the above

chosen higher and lower frequency bounds. These particular frequencies were based on

the dynamics of the system under consideration but a similar method of determining

possible perturbation frequencies and then building data driven model and validating

its accuracy can be applied to other bioprocesses.

The accuracy of the models is compared using a root mean squared error metric to

make a balanced choice between high accuracy and low perturbation frequency of

input excitation and presented in section 2.4.2 for the test bed.

To generate the data, the input changes are made by random perturbations of a small

magnitude around a chosen baseline profile and these are seeded, for replicability. The

baseline profile is selected to ensure exploring the input space sufficiently. The pertur-

bations themselves are done in a fashion similar to the pseudo random binary signal

(PRBS) methods used for system identification and widely deployed for dynamic sys-

tems [14] with suitable modifications for a live cell bioprocess to avoid shocks to the

system. These four different models or cases are summarised in the table 2.1 below:
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Table 2.1: Summary of the four different data sets using four different frequencies of
changes or perturbations made in inputs.

Case Description
Case 0 Inputs are changed/perturbed three times per day
Case 1 Inputs are changed/perturbed once per day
Case 2 Inputs are changed/perturbed once per three days
Case 3 Inputs are changed/perturbed once per five days

One of the key contributions of the present work in the context of biological systems

in general, and the Sartorius Bioreactor in particular, is to demonstrate that data

sets generated with significant perturbations in the input profiles, and also where the

perturbations are simultaneously made in all the inputs are feasible from both a data

generation perspective, and from a biological perspective. This is significant, in that

it reduces the number of independent experiments that need to be run, and can easily

translate into savings of hundreds of thousands of dollars. The results of the present

study have been implemented by Sartorius in their runs. In a significant departure

from past strategies, experiments were carried out for input variations in the same

frequency as suggested. In future work, data collected from the continuous bioreactor

will be used to demonstrate the model technique as well as investigate the possibility

of using hybrid models [12].

2.4.1 Subspace Model Identification

Methods such as neural networks, particularly recurrent neural networks (RNNs) are

also established for use in model identification and control. Promising results were

presented in literature such as [30]. RNNs also allow direct multiple step ahead

predictions hence their use in MPC is attractive. However the performance of RNNs

deteriorates with limited data which needs to be paid special attention to, especially

with bioprocesses with limited data due to infrequent measurements of only upto three
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times per day, and the exorbitant cost of running an experiment. Given the nature of

such processes with limited availability and high costs of data, subspace identification

is more well suited given its strength of building a model of reasonable accuracy from

row space intersections.

For each data set, subspace identification is used to identify a Linear Time In-

variant (LTI) model for the process [20] (adapted for batch processes in previous

results[Corbett and Mhaskar]). The identification approach used in this paper iden-

tifies an LTI model as follows: Given N measurements (N is the length of the data)

of the input u[k] ∈ Rm and the output y[k] ∈ Rl variables from each batch a model

with order n can be identified using the following equations:

x̂[k + 1] = Ax̂[k] +Bu[k],

y[k] = Cx̂[k] +Du[k],
(2.4)

The objective is to identify the order n, which can be determined by cross validation,

and the system matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, D ∈ Rl×m.

Identification of the system matrices is done in two stages, first stage involves identify-

ing a state sequence and the second stage comprises of identifying the system matrices.

Using subspace identification, the state sequence can be identified using methods such

as SVD before knowing the A,B,C,D system matrices. The system matrices are later

identified by least squares regression and any convergence or iterative algorithms are

not needed.

Some algebraic manipulation on the state space equations leads to the following equa-

tion involving Hankel matrices.

Yp = ΓiX+HtUp, (2.5)
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The block Hankel matrices are constructed for the input and output. The number

of block rows (i) and columns (j) are chosen sufficiently large, typically i should be

greater than or equal to n + 1 for the n identified later on and j >>max(mi,li).

The output and input block Hankel matrices are:

Yp =



y[k] y[k + 1] . . . y[k + j − 1]

y[k + 1] y[k + 2] . . . y[k + j]

y[k + 2] y[k + 3] . . . y[k + j + 1]
...

...

y[k + i− 1] y[k + i] . . . y[k + i+ j − 2]



Up =



u[k] u[k + 1] . . . u[k + j − 1]

u[k + 1] u[k + 2] . . . u[k + j]

u[k + 2] u[k + 3] . . . u[k + j + 1]
...

...

u[k + i− 1] u[k + i] . . . u[k + i+ j − 2]


Γi the extended observability matrix is:

Γi =



C

CA

CA2

...

CAi−1
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Ht is a lower triangular block Topelitz matrix consisting of Markov parameters:

Ht =



D 0 0 . . . 0

CB D 0 . . . 0

CAB CB D . . . 0
...

...

CAi−2B CAi−3B . . . D



Yf and Uf are defined similar to Yp and Up. The state vector sequence can then be

calculated from the intersection of the row spaces of two block Hankel matrices H1

and H2, constructed by concatenating the input-output vectors. Further details are

present in [20]. Once the state vector sequence is calculated, the A,B,C,D matrices

are determined by least squares regression as follows:

x[k + i+ 1] x[k + i+ 2] . . . x[k + i+ j]

y[k + i] y[k + i+ 1] . . . y[k + i+ j − 1]

 =

A B

C D

x[k + i] . . . x[k + i+ j − 1]

u[k + i] . . . u[k + i+ j − 1]



This approach identifies a linear state space model where the states are unmeasured

but observable from measured outputs. For the present results, while testing, an

initial state estimate was chosen based on the initial value for states observed while

training. A Luenberger observer [18] was used starting at the beginning and run

for either 30 time-steps or until the error (Euclidean norm) between the predicted

output and actual/observed output was below a chosen threshold of 0.2, whichever

was earlier.

The Luenberger observer takes the following form:

x̂[k + 1] = Ax̂[k] +Bu[k] + L(y[k]− ŷ[k]) (2.6)
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where L is the observer gain and is chosen such that (A − LC) is stable. ŷ[k] is

the predicted value given by state space equation y(b)[k] = Cx̂[k] + Du[k]. After

the observer has converged, the predictive ability and the potential use of the model

in feedback control implementations such as Model Predictive Control (MPC) can

be evaluated by determining the ability of the model to predict future values of the

outputs based only on the current state estimate and future inputs.

2.4.2 Quantifying Model Performance for a Candidate Input

Frequency

This section demonstrates the application of the method by presenting the modeling

results for the different input frequencies. Recall that for each choice of input fre-

quency, data was generated from the test bed, used to identify a subspace model and

ultimately, the prediction capability of the subspace model was tested.

Note that the prediction error is compared after the first 30 time-steps because as

described in subsection 2.4 the observer is run until a maximum of 30 time-steps for

every case. Thus the error after 30 time-steps for all variables and all cases are being

compared, resulting in a comparison over the same duration regardless of different

cases possibly requiring the observer to run for a different number of steps.

The error metric of Root Mean Square Error (RMSE) was chosen as the basis for

comparison. The RMSE is defined as:

RMSE =

√
1

N
ΣN

i=1(xi − x̂i)2 (2.7)

where xi is the ith observation and x̂i is the corresponding prediction.

The discrete nature of the subspace identification approach was recognized by using

the inputs and outputs at discrete times, at the same frequency at which the input
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changes are made. Further, the model is specifically designed not for the growth

phase, but for the perfusion phase, thus data is collected only after the perfusion

mode starts (i.e. after three days).

The choice of the number of states is a hyperparameter and can be chosen in multiple

ways, one of which is by cross-validation minimizing prediction error, which is the

chosen method for this particular work. The number of states was chosen based on

the best results for a particular case (input change frequency). The number of states

for cases 0-3 were 6, 5, 4 and 7 respectively.

The training input profile for the different inputs for case 2 (frequency of change once

per three days) is shown in Figure 2.2. The inputs were changed by using random

number deviations from a chosen baseline trajectory. The random numbers were

seeded and the change in random numbers was made as per the mentioned frequency

of three times per day to once per five days. As previously mentioned in sections

2.2 and 3.3.1, the environment in the reactor is key to cell growth and antibody

production. Keeping in mind the presence of live cells, it is necessary to maintain an

environment which is favorable to growth hence the temperature and pH are set close

to the nominal values of 36.8 and 7.1 respectively. The temperature varies between 33

and 38.6 as values outside this range are more dangerous and can result in extinction

events. The training trend itself is taken as a predetermined baseline trajectory and

then perturbations are done around this baseline at a given frequency. Similarly, the

pH varies between 6.9 and 7.3. The feed rate is conventionally set to 1.5 reactor

volumes/day and it is varied from 1.35 to 1.65 reactor volumes/day. The glucose feed

concentration was varied around the nominal value of 11 in the range of 9 to 13.
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Figure 2.2: The input profiles for the four input variables for case 2 (frequency of change
once per three days). Top left is temperature. Top right is pH. Bottom left is glucose feed

concentration. Bottom right is feed rate.

The validation is done on a temperature shift profile consistent with Sartorius’ in-

dustrial practices and is shown below in Figure 2.3. The pH was maintained at 7.1,

feed rate at 1.5 volumes (300 ml) and glucose feed concentration at 13 g/L. The val-

idation batch with a midway shift represents a batch intended to increase antibody

production.
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Figure 2.3: The validation input (Single Temperature Shift) profile, common for the four
different trained models.

Glucose is closely related to the cell growth since it is a key nutrient, hence a dip in

glucose also causes a dip in the cell viability as is evident from the plots presented.

The viable cell density is directly proportional to the total viable cells present and the

titer is being seen to be closely related to the viable cell density since the living cells

produce titer. These trends are expected from the test bed and illustrate the validity

of the underlying first principles equations. The subspace models identifying using

the data for the various cases is able to capture this behavior as shown in Figure 2.5

and Figure 2.4. The results demonstrate the ability of a subspace model to accurately

capture the bioprocess dynamics using only input output data.

The validation results are shown below in pre-processed scale in Figure 2.4. Note

that the subspace model gives the output in pre-processed scale (necessary for model

identification) which are then converted to the original scale in the end, the results

for which are shown in Figure 2.5.
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Figure 2.4: The output profiles for the four different trained models in pre-processed scale.
Dotted line is prediction when training batch had input change three times per day.

Dot-dash line had changes once per day. Solid grey line had changes once per three days.
Dashed line had changes once per five days. Solid black lines are observation or actual
data. Top left figure is for titer, top right is glucose, bottom left is viability and bottom

right is viable cell density.

The table for prediction error in individual output variables for the four different cases

is presented below:
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Table 2.2: The prediction error between the subspace based model and the process for
individual output variables, compared over models trained with four different input

frequencies.

Model Titer Error Glucose Error Viability Error VCD Error
Case 0 0.2228 0.0885 0.0591 0.0305
Case 1 0.2598 0.1587 0.0950 0.1129
Case 2 0.1985 0.2876 0.0466 0.0823
Case 3 0.2447 1.4487 1.0705 0.9269

The overall prediction error (average over four different outputs) for the different mod-

els built on different training data (different frequencies of changes in input variables)

is shown in table 2.3.

Table 2.3: The prediction error between the subspace based model and the process for the
validation data, compared over models trained with four different input frequencies.

Model Validation Prediction Error (Average for four output variables)
Case 0 0.1003
Case 1 0.1566
Case 2 0.1537
Case 3 0.9227

The results (validation plots) for all the output variables for all the four cases are

shown below in original/actual scale in Figure 2.5
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Figure 2.5: The output profiles for the four different trained models in actual scale.
Dotted line is prediction when training batch had input change three times per day.

Dot-dash line had changes once per day. Solid grey line had changes once per three days.
Dashed line had changes once per five days. Solid black lines are observation or actual
data. Top left figure is for titer, top right is glucose, bottom left is viability and bottom

right is viable cell density.

As is evident from the prediction errors as well as can be visualized in the plots

presented, the prediction accuracy for changing inputs once per three days (case 2)

is the optimal solution. Having an input frequency lower than this, (case 3) had

a significantly lower prediction accuracy. This is due to the effect of the input not

being sufficiently rich as is required for subspace identification (in other words, the

inputs did not end up exciting the low frequency dynamics). The cases with changes

three times per day and once per day are not significantly better than once per three

days, in fact the case for once per day is worse than once per three days except
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for glucose in the pre-processed scale. This is due to the fact that the frequency of

change for these cases is far too fast for this bio-process and since the dynamics of the

bioreactor system are typically slower with several complex interactions, having the

input changed too quickly results in the effect of the input on the output not being

adequately expressed in the data. Also, based on the dynamics of cell growth and

antibody production, from a biological perspective, it is preferred to have minimal

perturbations. Keeping in mind the aforementioned reasons, case 2 is the optimal

input frequency and is recommended to be applied online to the bioprocess.

A plot with the prediction for all four variables in case 2 (the final chosen frequency)

with inputs changed once per three days is shown below in Figure 2.6

Figure 2.6: The prediction for all four outputs in the chosen case, i.e. case 2 (frequency of
changes being made once per three days). The dotted line is prediction and the solid line

is observation.
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It is recognized that the first principles model of Sartorius is a test bed. Thus the

key contribution of the work is not the specific frequency that was found to be the

best for this particular case, but the approach of determining the best frequency that

can be implemented with any other bioprocess easily and then used for building a

control-relevant reduced order model from input-output data. Finally, note that the

test-bed can be readily utilized as part of a hybrd model structure and embedded in

an MPC implementation[13].

Remark 1. While the common practice for biological systems is a traditional

design of experiments without any perturbations, intensified design of exper-

iments is a relatively new approach which aims to reduce experiments to get

insightful data from the process by changing input multiple times [29, 2]. The

proposed approach is significantly different from the existing technique in the

context of bioreactors [29, 2] due to multiple reasons. First off, the notion of

intensified design of experiments has focused on fed batch operation [27, 24]

while the proposed approach addresses the problem for perfusion/continuous

operation. More importantly the existing results focus on embedding nuanced

constraints/requirements on the design, but do not consider the predictive ca-

pability of the resultant model. On the other hand, the proposed approach

explicitly focuses on determining the input excitation that yields data that in

turn gives the best predictive model while not perturbing the live cell system

too much and is also applicable for multiple input-multiple output systems.

Note that the present approach can use the notion of intensified design of ex-

periments by making the characterization of the input changes more nuanced

while still retaining the emphasis on the resultant model accuracy.
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2.5 Conclusions

In this work, a bioprocess under perfusion operation in the form of a high fidelity

simulation testbed was utilized to present a method to determine appropriate input

excitation. Specifically, the methodology addresses the problem of choosing an ap-

propriate frequency of input changes based on the dynamics, sampling frequency and

process run duration. The key objective for finding an appropriate frequency that

maximizes the information content in the data to build a control relevant model while

having minimal perturbations to the bioreactor. The optimal input frequency was

determined to be once every three days after considering four different frequencies of

input changes ranging from three times per day to once per five days. Utilising an ap-

propriate frequency in conjunction with a data driven method suited for limited data

provides a useful framework for control relevant modeling with a minimal number of

experiments.
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Chapter 3

Process-Aware Data Driven

Modeling and Model Predictive

Control of Bioreactor for

Production of Monoclonal

Antibodies

The previous chapter presented a novel design of experiments approach combined with

subspace identification to identify appropriate input frequency and build data driven

model for monoclonal antibody perfusion process. This chapter builds upon that to

build a model predictive control scheme capable of meeting biological requirements

and input constraints. Further improvement to the modeling and control solution is

made by a novel constrained subspace method incorporating first principles knowl-

edge through constraints on signs on gain matrix. Robustness of the method is also

demonstrated by good performance on a constrained model despite being built using

data from a different cell line.

This work was completed in collaboration with Sartorius Inc who provided insights

into the bioprocess and provided a high fidelity advanced simulator as a testbed.
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3.1 Abstract

This manuscript addresses the problem of controlling a bio-reactor to maximize the

production of a desired product while respecting the constraints imposed by the nature

of the bio-process. The approach is demonstrated by first building a data driven model

and then formulating a model predictive controller (MPC) with the results illustrated

by implementing on a detailed monoclonal antibody production model (the test bed)

created by Sartorius Inc. In particular, a recently developed data driven modeling

approach using an adaptation of subspace identification techniques is utilized that

enables incorporation of known physical relationships in the data driven model de-

velopment (constrained subspace model identification) making the data-driven model

process aware. The resultant controller implementation demonstrates significant im-

provement in product compared to the existing PI controller strategy used in the

monoclonal antibody production. Simulation results also demonstrate the superiority

of the process aware or constrained subspace model predictive controller compared to

traditional subspace model predictive controller. Finally, the robustness of the con-

troller design is illustrated via implementation of a model developed using data from

a test bed with a different set of parameters, thus showing the ability of the controller

design to maintain good performance in the event of changes such as a different cell

line or feed characteristics.
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3.2 Introduction

The need for bio-based and pharmaceutical products is on the rise with advancements

in healthcare and the demand of an ever-increasing global population. Bioreactors

form an important part of this industry by allowing for the mass production of these

bio-pharmaceutical products. One such product is a monoclonal antibody which is

produced by Sartorius and is used to demonstrate the model based controller design

approach. The Sartorius Bioreactor is designed to produce this protein in a perfusion

processing setup.

There exist several challenges associated with control of bio reactors in general, and

the monoclonal antibody production in consideration, in particular (herewith referred

to as the Sartorius Bioreactor). First off, in contrast to batch or fed-batch processing

[24, 6, 28] the Sartorius Bioreactor is operated in perfusion mode (thus is a continuous

removal of bleed and harvest streams). In addition to the perfusion mode of operation,

there are several other factors, such as hydrodynamics and transport phenomena

[16], that affect the volumetric production of the monoclonal antibodies. Factors like

cell growth rate, feed rate and feed concentration are all key variables in bioreactor

operation and thus, these factors need to be accounted for in order to maximize the

final product. The final product is a combination of the volumetric flow rate (referred

to as harvest rate) and a high volume specific concentration of the antibody (referred

to as titer). In order to maximize the final product the individual interactions between

different inputs, outputs and other parameters must first be examined. The first and

most important parameter to consider is glucose concentration, as glucose is the key

energy source, however, excess glucose is also detrimental due to lactate production

which increases cell death. Similarly, Glutamine plays an important role especially for

promoting cell growth during periods of fast growth. Lactate and more so, ammonia,

are inimical to cell growth[14]. These metabolites are not the only factors affecting
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cell growth. Both temperature and pH play a key role. Increasing temperature has

been shown to increase cell growth rate. However, high temperatures can also lead

to cell death. To handle this issue, increased antibody production is achieved with a

midway temperature shift [4, 31]. A more complex variable is pH since pH levels also

affect ammonia and lactate levels. Often, a shift in pH in later stages is necessary [14].

Further, due to operational considerations, it is preferable to decrease the pH rather

than increase it since it can be decreased by sparging CO2 but increasing pH would

require the addition of a base that could potentially disturb the cell environment

negatively. In essence, since the production of a specific product such as a protein by

these cells is heavily affected by the environment in the reactor, such as the pH and

glucose levels [2, 26, 28] and with such a diversity of variables affecting the system

dynamics with many of these having contradictory effects in different ranges, the

modelling and control problem is a challenging one.

With the increasing recognition of the flexibility provided by process control in process

operation, process control is being adopted within the bio-processing industry [27].

One popular and successful control strategy that has been used in large scale produc-

tion is model predictive control (MPC). MPC relies on a process model to calculate

the optimal input trajectory to meet desired objectives while respecting constraints

or bounds. MPC has been implemented in chemical industries and the energy sector

with favorable results. In recent years it has also been implemented for biochemical

and fermentation processes [21, 15, 3]. However, MPC of bioreactors is not common

in industry due to the sensitive nature of the cells and the set batch recipes available.

Instead proportional integral (PI) control is used to follow a batch trajectory. The use

of PI control however, potentially limits the productivity of the process (as illustrated

by the results in this manuscript) motivating the need to explore the implementation

of MPC.

In an MPC implementation, the process model forms the heart of the entire strat-
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egy therefore identifying a good model is critical to improved control. When mod-

elling a system, first principles models are valuable since they provide a direct insight

into the process. Although parameter estimation for first principles models is chal-

lenging, parameter estimation methods for first principles models exists in literature

[8, 29, 7, 22, 19, 1], and this has been applied to bioreactors [14]. More recently,

Sartorius Inc. has developed a high fidelity simulator for the monoclonal antibody

process, and is used in the present manuscript to illustrate the control approach. The

detailed simulator, while being a good representation of the bioreactor, is not very

suitable for direct incorporation in an MPC formulation due to model complexity.

More importantly, it is of much more benefit to the practitioner to demonstrate the

implementation of a control approach that can readily utilize process data directly for

model development and control implementation.

Data driven and black box models are one choice for ease of implementation[6, 32].

Reduced order models can also achieve high performance control if it is possible to

capture basic and fundamental dynamical features of the system. The performance

of the controller is often the main objective for model building in these instances and

thus such kind of models are valuable [12]. Within data-driven methods, there are

several different approaches; however, not all such approaches are suitable for the

Sartorius bioreactor problem. One particular concern is that the complex metabolite

interactions require specific gains that must be adhered to in the data driven model.

To that end any modeling approach must be capable of incorporating these constraints

with minimal complexity. Techniques such as Partial Least Squares (PLS) do not ex-

plicitly differentiate between inputs and outputs or handle multiple batches without

additional complexity [11, 10]. To that end, an approach involving Linear Time Invari-

ant (LTI) models would be better suited to handle this problem. One such approach

is subspace identification, which is a well established system identification method

and has several advantages such as having only one decision variable (the order of

the system) and its ability to handle large multi-input multi-output (MIMO) prob-
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lems well. The model complexity of MIMO and the simpler single-input single-output

(SISO) systems is similar when using subspace identification. This is in contrast to

methods such as Auto-Regressive Moving Average with eXogenous inputs (ARMAX)

models which have multiple ‘tuning’ parameters. In comparison to methods such as

ARMAX, subspace identification is often easier to implement, faster and more accu-

rate, including cases with white noise. [9] Additionally, recent results have allowed

imposing constraints in subspace identification at the modeling stage with minimal

additional computational complexity [24], to enable the model to be more ‘aware’ of

the process.

Motivated by the above considerations, the present work addresses the problem of

maximizing the production in a Sartorius bioreactor using MPC with a process aware

or constrained subspace model. Specifically, a process aware subspace MPC is imple-

mented on the simulation test-bed and compared against existing PI control. Next the

need to implement process aware MPC is demonstrated by comparing against a tra-

ditional subspace model based MPC. Finally, the robustness of the MPC approach is

tested by comparing the MPC against a new process with different system dynamics.

The rest of the paper is arranged as following: Section 3.3 described the bioreactor

process, reviews subspace identification and constrained subspace identification. The

model predictive control scheme which is developed and used is presented in section

3.4. Section 3.5 presents the application of the proposed method to the Sartorius

Bioreactor. Concluding remarks are presented in Section 3.6.
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3.3 Preliminaries

3.3.1 Bioreactor Process Description

The Sartorius Bioreactor grows live cells in an enclosed environment meaning that

the growth and death rates affect the environment in the reactor and consequently

the titer (final product). A simplified schematic of the bioreactor is shown in figure

3.1. The recycle stream shown in the figure recycles live cells as a cell retention filter

does not allow live cells to leave in the harvest stream.

A detailed first principles model developed by Sartorius is used as a test bed in the

present manuscript. The Sartorius simulator comprises a system of 10 ordinary dif-

ferential equations to describe the time evolution of variables including the cells and

metabolites (characterized by viable cell density (VCD), dead cell density, lysed cell

density, biomaterial, titer, glucose, glutamine, lactate, ammonia and glutamate). The

parameters, and various function describing growth rates etc are determined by fit-

ting the model to experimental data from twelve AMBR 250 ® (Sartorius registered

trademark for integrated high throughput bioreactor systems) fed batch runs to yield

a biologically meaningful and fairly accurate description of the bioreactor. Trans-

ferrability of this model structure from fed-batch to perfusion operation has been

established by Sartorius researchers, and as such, the present model is being utilized

to demonstrate the data driven modeling and control approach.
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Figure 3.1: Schematic of Sartorius Bioreactor

The process initiates in growth phase for 3 days during which the system is operated

in a fed batch fashion. This is followed by a perfusion phase for 30 days. In this

work, based on the specific process used by Sartorius, the nominal values for the

temperature and pH are set at 36.1◦C and 7.1 respectively. The reactor temperature

(◦C), pH, glucose feed concentration (g/L), feed rate (vols/day) and bleed rate(L/day)

are available as potential inputs. The measured outputs are viability (%), viable

cell density (VCD) (105 cells/mL)], titer (mg/L) and glucose concentration (g/L).

By design the bioreactor has control over and the ability to manipulate all of these

inputs and hence these are chosen as manipulated variables in the control scheme.

Note that plant model mismatch, the natural ‘drifting’ of parameters over time act

as disturbances and in the present manuscript, robustness to such disturbances is

demonstrated via a successful control of a ‘new cell line’ using an MPC designed
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using data from a previous operation. The inputs and outputs are organized in the

following vectors:

u =



Reactor Temp

pH

Feed Conc

Feed Rate

Bleed Rate



y =


V iability

V CD

Titer

Glucose Conc


The process objective is to maximize bioreactor production over the course of the

perfusion phase which is currently done by putting VCD under PI control where with

a fixed setpoint of 50. The PI controller that is currently employed adjusts the the

bleed rate in order to control the VCD. With the feed rate kept constant at 0.25L/day

or 1.25 volumes/day and under constant volume operation, the harvest rate can be

computed as:

Harvest Rate = Feed Rate−Bleed Rate (3.1)

As the bleed rate is the most significant contributor to cell growth, it is utilized as

the control variable with additional shifts in temperature or pH being applied by the

operators manually. The objective of the present work is to demonstrate the possibility

of using a data driven MPC to control and improve the bioprocess operation.

The current industry state of the art practice is using proportional-integral (PI) con-

troller. For discrete time implementations, Sartorius has tuned a velocity-form PI
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controller described below:

e[k] = y[k]− ysp[k]

∆u = (e[k]− e[k − 1])×Kc+
Kc

τI × e

u[k] = max(0, u[k − 1] + ∆u)

(3.2)

Where ysp is the set-point of the controlled output VCD, u corresponds to the ma-

nipulated input bleed rate and the tuned values of Kc and τI are 0.003 and 10.

3.3.2 Subspace Identification Description

Subspace identification is one model identification technique that is used to identify

a Linear Time Invariant (LTI) model [17] of the form:

x̂[k + 1] = Ax[k] +Bu[k],

y[k] = Cx̂[k] +Du[k],
(3.3)

where the objective is to identify the order n, and the system matrices A ∈ Rn×n,

B ∈ Rn×m, C ∈ Rl×n, D ∈ Rl×m. The particular subspace adaptation utilized

in the present work is originally based on [20], which was later adapted for batch

processes[Corbett and Mhaskar].

An important consideration for the process under consideration is to ensure that the

bioreactor is not disturbed too frequently otherwise the cell balance will be disrupted

leading to inefficient protein production and additional costs. Thus an appropriate

frequency of input changes is utilized in collecting data such that it has the fewest

number of perturbations while meeting reasonable prediction accuracy. Based on a

preliminary analysis, perturbation of inputs three times per day is utilized in the
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present work. An additional consideration is that the process runs in growth phase

for 3 days followed by perfusion phase for 30 days thus it takes over a month of time

(and significant costs) to generate data. To be able to demonstrate the approach, data

is generated from a detailed simulation test bed provided by Sartorius. The data was

generated by gradual shifts in the inputs over their appropriate constrained ranges

along with small perturbations. Data was obtained from a single batch run over thirty

days with measurements available thrice a day (for a total of 90 measurements). Note

that the ability to use this relatively modest dataset is extremely important for the

process under consideration where each run is prohibitively expensive.

The Sartorius simulator is used to generate input-output trajectory for one run, and

this data is assumed to be available for building the data driven MPC, and shown in

figures 3.2 and 3.3.
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(a) Temperature (b) pH

(c) Glucose feed concentration (d) Feed rate

(e) Bleed rate

Figure 3.2: Input data for building model with training (dotted) and validation data
(solid).
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(a) Titer (b) Harvest

(c) Product (Titer × Harvest) (d) Viable Cell Density (VCD)

(e) Glucose Concentration in Reactor

Figure 3.3: Output data for building model with training (dotted) and validation data
(solid).
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Identification of the system matrices is done in two stages, first stage involves identify-

ing a state sequence and the second stage comprises of identifying the system matrices

[20]. Using subspace identification, the state sequence can be identified using methods

such as SVD before knowing the A,B,C,D system matrices. The system matrices are

later identified by least squares regression.

In solving for the state sequence, block Hankel matrices are constructed for the inputs

and outputs. The number of block rows (i) and columns (j) are chosen sufficiently

large, typically i should be greater than or equal to n+ 1 and j >> max(mi, li).

The output and input block Hankel matrices are:

Yp =



y[k] y[k + 1] . . . y[k + j − 1]

y[k + 1] y[k + 2] . . . y[k + j]

y[k + 2] y[k + 3] . . . y[k + j + 1]
...

...

y[k + i− 1] y[k + i] . . . y[k + i+ j − 2]



Up =



u[k] u[k + 1] . . . u[k + j − 1]

u[k + 1] u[k + 2] . . . u[k + j]

u[k + 2] u[k + 3] . . . u[k + j + 1]
...

...

u[k + i− 1] u[k + i] . . . u[k + i+ j − 2]


Yf and Uf are defined similar to Yp and Up except the values are offset by i. These

matrices are used to identify the state vector which can be organized in a Hankel

matrix allowing the A,B,C,D matrices to be solved by least squares regression.
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x[k + i+ 1] . . . x[k + i+ j]

y[k + i] . . . y[k + i+ j − 1]

 =

A B

C D

x[k + i] . . . x[k + i+ j − 1]

u[k + i] . . . u[k + i+ j − 1]


(3.4)

Note that the approach identifies a linear state space model where the states are

unmeasured but intrinsically observable from measured outputs. As subspace states

are not measured, it is necessary to estimate the states before using the subspace

model for prediction/validation. To this end, during model validation an initial state

estimate is chosen (can be based on a state estimate from identification batch or

a random initialization) and a state observer is utilised. The state observer is run

until the error (Euclidean norm) between the predicted output and actual/observed

output is below a chosen tolerance, from which point on the model can be utilized

for prediction purposes. This same approach is utilized when the model is used for

feeback control. Note that Sartorius Bioreactor operation has the unique advantage

of an initial 3 day growth phase (without any feedback control) that can be used to

converge the states allowing the controller to be used online immediately after the

growth phase ends.

In this work a Luenberger observer [18] was used which takes the following form:

x̂[k + 1] = Ax̂[k] +Bu[k] + L(y[k]− ŷ[k]) (3.5)

where L is the observer gain and is chosen such that (A− LC) is stable. ŷ[k] is the

predicted value given by the state space equation y[k] = Cx̂[k] +Du[k].
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The identified system matrices by regular subspace identification are:

Yp =



y[k] y[k + 1] . . . y[k + j − 1]

y[k + 1] y[k + 2] . . . y[k + j]

y[k + 2] y[k + 3] . . . y[k + j + 1]
...

...

y[k + i− 1] y[k + i] . . . y[k + i+ j − 2]



Up =



u[k] u[k + 1] . . . u[k + j − 1]

u[k + 1] u[k + 2] . . . u[k + j]

u[k + 2] u[k + 3] . . . u[k + j + 1]
...

...

u[k + i− 1] u[k + i] . . . u[k + i+ j − 2]



3.3.3 Constrained Subspace Identification

In this subsection the approach used to impose the physical constraints on the sub-

space model is described [25]. The key idea is to include the first-principles knowledge

of the system at the model identification stage through the use of constraints to make

the data-driven model process aware. In this approach, instead of using regression to

determine the model parameters (3.4) an optimization problem with the first prin-

ciples based constraints is posed and solved. Thus, while the initial state trajectory

may have been determined without considering the physical constraints, the resultant

matrices do account for the presence of constraints. To minimize the discord between

the state trajectory and the constraints, the state trajectory is re-estimated using

the newly computed system matrices, and this iterative process terminated when a

pre-decided tolerance is achieved (see [25] for further details).
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For the Bioreactor, it is understood that the steady state gain between the bleed

rate and titer (product) should be negative. Similarly a positive relation holds for

temperature, glucose feed concentration and feed rate and is incorporated into the

constrained subspace model through constraints. The constraints are therefore math-

ematically formulated as:

dcgain(3, 5) + 0.01 <= 0

−dcgain(3, 1) + 0.01 <= 0

−dcgain(3, 3) + 0.01 <= 0

−dcgain(3, 4) + 0.01 <= 0

norm(eig(A)j)− 0.99 <= 0, j = 1, ...N

(3.6)

where dcgain(i, j) refers to the (i, j)th index of the steady state gain matrix, which

for a discrete linear time invariant (LTI) system is:

dcgain = D + C(I − A)−1B (3.7)

Thus the first constraint specifies dcgain(3, 5) to be negative. That is, the gain be-

tween the third output (titer) and the fifth input (bleed rate) should be negative.

Similarly, the other gain constraints enforce the positive steady state gain relationship

between the titer and the temperature, feed concentration and feed rate, respectively.

The final constraint is for the eigenvalues of the identified A matrix to lie within the

unit circle.
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The identified matrices for the constrained case are given below:

Ac =



0.9623 −0.0439 −0.0433 −0.1074 0.0584 0.1023

0.0567 0.9112 −0.0932 −0.0227 −0.0259 0.1783

−0.0420 0.0921 0.9340 −0.0567 −0.1187 −0.1246

0.1216 0.0526 0.0753 0.8233 −0.0959 0.2526

−0.0385 0.0314 −0.0295 0.1431 0.8519 0.0116

−0.0089 0.0058 0.019 −0.0134 −0.0060 0.8722



Bc =



0.0092 −0.0242 0.0295 −0.2165 −1.3273

−0.0018 −0.0828 0.006 0.339 −2.1627

0.0083 0.0808 −0.031 −0.3866 0.7003

−0.011 −0.0455 −0.0276 −0.601 0.8038

−0.0071 0.1129 −0.0219 0.2169 0.4335

5.0176e− 05 0.0124 −0.005 0.1087 0.5853



Cc =


−0.1644 −1.0734 −1.6297 −0.6979 0.3026 0.7797

−0.2343 0.9999 −0.2667 −0.4763 0.0552 0.208

0.2704 1.1325 −0.0565 0.1059 0.4200 0.6313

−0.2525 −1.597 0.2053 −0.366 −1.8811 −0.7681



Dc =


−0.0051 0.3442 −0.085 1.1634 −3.356

0.0395 0.1102 0.006 0.4413 −2.5792

0.0724 −0.695 0.0234 −2.2726 5.1213

−0.1012 0.3344 0.268 3.0322 −8.577
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The identified matrices for the regular case are given below:

A =


0.8829 −0.0224 0.1269 −0.0128

−0.0362 0.946 −0.1341 −0.0008

−0.0828 0.0476 0.9136 0.1849

0.1446 0.0316 −0.0397 0.9412



B =


0.0073 0.0448 0.0131 −0.1117 −1.726

−0.0031 0.0424 −0.0054 −0.0052 1.405

−0.0058 0.024 0.027 0.5971 −0.7986

−0.0185 −0.0008 −0.0082 −0.136 1.5365



C =


−0.452 0.9336 1.5757 0.1143

−0.3125 −1.1584 0.8583 −0.0731

0.5158 −1.009 0.5781 0.9361

−0.323 1.541 −0.915 −2.4586



D =


−0.0175 0.3966 −0.0082 0.8305 −1.219

0.0081 0.2437 −0.0258 0.5727 −5.6478

0.0437 −0.534 0.0142 −2.2901 5.762

−0.015 −0.3498 0.3135 3.0965 0.59434


The number of subspace states were chosen as 6 and 4 respectively for constrained

and regular (unconstrained) based on best model accuracy for their respective cases.

Remark 2. Subspace identification was chosen as the model identification

approach due to the following reasons: 1) The method results in a linear time

invariant model which in turn makes the resultant control problem easy to

solve and implement, 2) Compared to other approaches such as Projection to
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Latent Spaces (PLS), the method explicitly accounts for the presence of input

and output variables, consistent with a control implementation and 3) Even

though the model parameters are eventually determined using a regression, the

state trajectory first invokes the key property of a state- that future outputs

should be able to be completely determined using the current states and the

future inputs, thus avoiding potential overfitting issues. The implementation

does not require a first principles model- in the present manuscript, the first

principles model is simply used as a test bed. Finally, the method can be readily

adapted to incorporate first principles information either explicitly, as is done

in the present manuscript, or through a hybrid model [13].

Remark 3. Yes another possibility for model identification would be to use

the resurgent techniques of artificial neural networks. For developing a good

neural network model, large amounts of data is needed. While it is possible in

principle with the test bed, it would not be very feasible when this technique is

implemented in practice on the Sartorius Bioreactor. Note that the data set

size utilized for training in the present work was chosen while being cognizant

of the cost and effort needed to generate data from bioreactor.

3.4 Model Predictive Controller Formulation

In this section, the state space MPC formulation adapted to use the feedthrough

matrix [23] utilizing the subspace model of Eqn 3.4 is described. A Python script

utilising scipy.optimize [30] is used to solve the optimization problem. At the lth time

step, with the observer determining x̂[l], the following optimization problem is solved

to compute the control action:
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min
ū

P∑
i=1

(y3[i])
TQ(u4[i]− u5[i])

+(∆uT )R(∆u) + S∆u

s.t.

umin ≤ ū[i] ≤ umax , i = 1, . . . , P

∆u = ū[i]− ū[i− 1] , i = 2, . . . , P

∆u[1] = ū[1]− u[l − 1]

x[1] = x̂[l]

x[i+ 1] = Ax[i] +Bū[i] , i = 1, . . . , P

y[i] = Cx[i] +Dū[i] , i = 1, . . . , P

(3.8)

where y denotes the predicted output obtained from Eqn 3.4 and as described in

section 3.3.1 y3 corresponds to the titer, u is the input vector and ū is the optimisation

variable i.e. the inputs MPC computes, and sets u[l] = ū[1], and umin and umax are

the vectors corresponding to the lower and upper bounds respectively for the inputs

(see Table 3.1). The bounds are kept commensurate to the usual practice in industry

and hence feed rate, albeit important and strongly related to maximising product,

has been given a smaller upper bound. An effort has been made to impute any

increase in product to the other strongly related variables such as glucose by tuning

the weight appropriately. P denotes the prediction horizon, Q is a negative value

picked to appropriately weigh the product maximization in the objective function.

R is a diagonal matrix with appropriate penalties for input change. S is a scalar

weight to additionally penalise a positive change in pH. This term has been chosen

to not be a quadratic term specifically to penalize only positive changes. Note that

the implementation of a positive pH change is done via using a buffer, which ‘shocks’

the cells and is preferably avoided.
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Table 3.1: Input Constraints

u units umin umax unom

Temp degC 35 36.8 36.1
pH 6.95 7.15 7.1

Glucose Feed Conc. mg/L 6 12 9
Feed Rate vols/day 1 1.6 1.25
Bleed Rate L/day 0.01 0.05 0.025

Remark 4. Note that in this formulation the predicted outputs are deter-

mined using a state space model with a feedthrough term. When identifying a

data driven model it has been shown that retaining the feedthrough term pro-

vides more accurate control comparing to dropping it, motivating the use of

the recent MPC formulation in the present work [23].

The elements of the matrix R in the term ∆uTR∆u are taken as the inverse of the

nominal value of that input variable to compensate for the different scales of the

manipulated inputs. The value S is utilized to specifically penalize positive changes

in the pH. To accomplish this we adjust the elements in R and S such that the increase

to the objective due to pH change from term R is higher than the decrease due to

term S when the pH decreases. In case of a candidate positive pH change, since R

and S have positive weights, the pH terms add up from (∆uT )R(∆u) which is always

positive due to being quadratic and S∆u which is positive since ∆u is positive. In

the case of a negative pH change, the positive contribution from (∆uT )R(∆u) would

outweigh the negative contribution from S∆u for any reasonable change in pH when

s is small. The value of s is taken as 0.05. The value of the R term corresponding

to pH is 10
7.1

. For a ∆u of -0.05, the (∆uT )R(∆u) term is +0.0035 and S∆u term is

-0.0025 resulting in a net +0.001 penalty. Thus, a change to the pH would be only

made if it results in a net benefit to the product quality. On the other hand, for a

candidate increase in pH, for a ∆u of +0.05, the (∆uT )R(∆u) term is +0.0035 and

56



M.A.Sc. Thesis - S. Sarna; McMaster University - Chemical Engineering

S∆u term is +0.0025 resulting in a net +0.006 penalty, a six times higher penalty

than a corresponding decrease.

The net affect of such a choice of the tuning parameters and the formulation is that

any significant pH changes are penalized but increases in pH are penalised more than

decreases in pH.

The MPC is initialized when the error between predicted outputs and observed out-

puts (using the Luenberger observer) becomes smaller than a user specified tolerance.

The tolerance is chosen such that there is minimal plant-model mismatch but also

enough time left to implement an MPC strategy. Before the state observer converges,

a constant nominal input is applied to the process.

Q = q1 (3.9)

R =



r
unom,1

0 0 0 0

0 r
unom,2

0 0 0

0 0 r
10×unom,3

0 0

0 0 0 r
unom,4

0

0 0 0 0 r
unom,5


(3.10)

S = s (3.11)

Table 3.2 reports q1, r and s while unom values are reported in table 3.1. Since the

inputs vary in orders of magnitude, the weights on input change penalty are also

adjusted as such with their respective nominal values. The values of weights are

chosen by the user based on requirements or objectives to be met and can be changed

as needed. The specific values were weighted keeping in mind the presented objectives.
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Table 3.2: Tuning parameters

q1 r s

-1 10 0.05

Remark 5. The objective function in the MPC formulation focuses on max-

imising the final product which depends on both the titer (similar to output

concentration) and the harvest rate (similar to output flow rate). The specific

objective function can readily be altered. The key contribution of the present

manuscript are not the input profiles that the controller implements, but to

demonstrate that a data driven model based MPC, with a meaningful objective

function, can be implemented on the system (the test bed in this case) and

a biologically acceptable control action and system behavior achieved. This

objective function can be further fine tuned or changed based on the specific

needs of the process operation.

Remark 6. The measurements from biological data available from the lab are

available once every 8 hours or 3 times per day. This has been dealt with in the

present work by using state observers to predict the next state as well as the

sampling time of 8 hours per day being sufficient due to the slow dynamics of

the biological system which works well with changing the inputs less frequently.

Explicit handling of the time delay between the drawing of the sample and the

measurement being available would be considered in future work.

3.5 Results and Discussion

The first contribution of the work is to demonstrate the improved performance achiev-

able using a data driven MPC implementation over the current industrial practice of
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PI control. In current practice, a PI control is used with a fixed VCD setpoint of

30 which it is able to achieve at the twenty five day mark as shown in Figure 3.4.

Under the PI control, the bleed rate is initially kept low, and as the VCD starts to

peak, the bleed rate is increased in order to hold a VCD setpoint of 30 as seen in Fig-

ure 3.5. As expected the other variables are held at their nominal values since only

one PI controller is used which is linked to the bleed rate. This controller reaches

a final product of 97 mg/day. In contrast, the implementation of the MPC results

in a VCD over 47 but more importantly, results in the production of 178 mg/day of

product as mentioned in Table 3.3. This is due to the controller’s ability to shift all

of the input variables while utilizing an appropriately identified process aware model.

Figure 3.5 shows that increasing temperature, decreasing pH, increasing glucose feed

concentration and decreasing bleed rate leads to optimal bioreactor operation and a

clearly superior control strategy. Yet another benefit of the MPC implementation is

the ability to simply ask it to maximize the product (through the objective function)

instead of specifying a set-point.

In contrast, if the PI implementation was used to arbitrarily increase the PI setpoint

to 60 (in an effort to achieve comparable product) the set-point is not met (see Figure

3.5). This of course is due to the limited control action available to the PI (the

bleed rate), which it does push to zero. While the resulting final product is slightly

higher than the original PI implementation at 104mg/day, the increase is marginal.

Of course, in practice, the bleed rate would never be set to zero because without

removing any waste from the bioreactor the build up would lead to increased cell

death (thus under MPC implementation, the bleed rate is not allowed to go below

0.01 L/day as reported mentioned in Table 3.1).
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Table 3.3: Constrained Subspace MPC vs PI control

Case ) Improvement (%)

Current PI 0 (current)
Higher VCD setpoint PI 7.2

Constrained subspace MPC 83.5

(a) Titer (b) Harvest

(c) Product (Titer × Harvest) (d) Viable Cell Density (VCD)

Figure 3.4: Comparison of performance of the best MPC (dotted lines) with existing PI
(solid lines) as well as PI with higher VCD setpoint (dashed lines).
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(a) Temperature (b) pH

(c) Glucose feed concentration (d) Feed rate

(e) Bleed rate

Figure 3.5: Comparison of inputs of the best MPC (dotted lines) with existing PI (solid
lines) as well as PI with higher VCD setpoint (dashed lines).
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Remark 7. The performance of PI shows higher outputs over the MPC in

the first 10 days due to the PI being implemented from the beginning of the

run whereas the MPC is only implemented after the convergence of the ob-

server. This demonstrates the ability of the MPC to have a superior overall

performance despite being utilized later in the run.

The second objective of this work is to demonstrate the necessity of a process aware

constrained subspace identification technique when identifying the plant model. The

key advantage in utilizing the constrained model is that a traditional unconstrained

model may have incorrect steady state process gains. The process awareness comes

from constrained subspace identification approach applied biologically relevant knowl-

edge in the model identification stage by having the correct and relevant signs in

the steady state gain between inputs and outputs as constraints during identifica-

tion of the system matrices. Figure 3.6 clearly shows the advantage of utilising the

constrained subspace method compared to regular subspace identification (see Table

3.4). The MPC utilising the unconstrained subspace model with short horizon is

referred to as USH in the table for brevity. Similarly, ULH, CSH and CLH represent

unconstrained long horizon, constrained short horizon and constrained long horizon

respectively. Note that, in short horizon control these differences aren’t as noticeable

especially in the titer concentration as evident in Figure 3.6. However, when longer

control horizons are utilized, the unconstrained model MPC performance deteriorates

due to the effect of wrong gain signs identified, causing it to move inputs in a wrong

direction. This difference is highlighted in Figure 3.7 where the unconstrained MPC

fails to decrease the bleed rate as it has the wrong sign in the process gain. The

longer horizon unconstrained subspace MPC thus performs very slightly better than

existing PI control while the constrained model far outperforms both. Longer control

horizons lead to improved performance with the process aware (constrained subspace)

MPC as the controller is able to optimize the input trajectory over a longer period.

Not only does the long horizon constrained subspace based MPC get the highest final
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product, it achieves the higher product and higher concentration both much earlier

whereas the shorter horizon approaches only are able to reach values towards the end,

leading to a significantly lower cumulative product compared to the longer horizon

constrained MPC as shown in Table 3.5.

(a) Titer (b) Harvest

(c) Product (Titer × Harvest)

Figure 3.6: Comparison of performance of the best case i.e.longer horizon constrained
subspace MPC (dotted) with MPCs based on shorter horizon constrained subspace
(dash-dotted), longer horizon unconstrained i.e. regular subspace (solid) and shorter

horizon unconstrained i.e. regular subspace (dashed).
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Table 3.4: Unconstrained Subspace MPC vs Constrained Subspace MPC - Final Product

Case Final Improvement over Improvement over
Product (mg/day) current PI (%) USH MPC (%)

USH 160 65 0
ULH 107.4 10.7 -33
CSH 174 79.4 9
CLH 178 83.5 11.3

Table 3.5: Unconstrained Subspace MPC vs Constrained Subspace MPC - Average
Product

Case Average Improvement over Improvement over
Product (mg/day) current PI (%) USH MPC (%)

USH 94 18.2 0
ULH 85.3 7.3 -9.3
CSH 103.2 29.8 9.8
CLH 132.8 67 41.3
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(a) Temperature (b) pH

(c) Glucose feed concentration (d) Feed rate

(e) Bleed rate

Figure 3.7: Comparison of inputs of the best case i.e.longer horizon constrained subspace
MPC (dotted) with MPCs based on shorter horizon constrained subspace (dash-dotted),

longer horizon unconstrained i.e. regular subspace (solid) and shorter horizon
unconstrained i.e. regular subspace (dashed).
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The final contribution of this work is to show the robustness of model predictive

control to maximize the final product. In order to test the robustness of the controller

the MPC using the constrained subspace model is compared against a new bioreactor

process. In the new bioreactor the parameters such as growth rates and death rates are

now different than the training data used to identify the constrained subspace model.

This creates additional plant model mismatch and represents scenarios where the

reactor may be processing new batches of cells. Figure 3.8 shows how the constrained

MPC is able achieve a similar final product. When comparing the input changes made

by the MPC, Figure 3.9 shows that the constrained MPC makes similar input moves in

both the constrained model built on new or current data as well as a constrained model

which was built on data from an older system. The MPC utilising the constrained

subspace model built on old plant data is also able to achieve a high final product

though at a cost of higher temperatures which is not very desirable. But overall, the

control performance remains acceptable when using the constrained subspace MPC

on a different system demonstrating robustness
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(a) Titer (b) Harvest

(c) Product (Titer × Harvest)

Figure 3.8: Comparison of performance of the constrained subspace MPC trained on old
model plant system (solid) with performance of constrained subspace MPC trained on

current model plant system (dotted) to demonstrate robustness.
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(a) Temperature (b) pH

(c) Glucose feed concentration (d) Feed rate

(e) Bleed rate

Figure 3.9: Comparison of inputs of the constrained subspace MPC trained on old model
plant system (solid) with performance of constrained subspace MPC trained on current

model plant system (dotted).
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3.6 Conclusions

The present manuscript demonstrated the possibility of using a process aware data

driven model predictive control scheme for bioreactors to enable performance improve-

ment compared to industry standard of proportional-integral controller schemes. The

importance of using a process aware model within model predictive control schemes

was illustrated by comparing subspace model with process knowledge based con-

straints to standard subspace model based MPC implementation. Finally, the ability

of the MPC to handle process changes was illustrated, with the MPC performance

continuing to be acceptable under process changes.
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Biopharmaceutical processes especially monoclonal antibodies (mAbs) have been an

active area of interest in recent decades and have also been the subject of Nobel

Prizes in Physiology/Medicine in 1984 and 2018. Industry trends are moving towards

perfusion or continuous processes owing to the significantly increased productivity and

reduced manufacturing footprint for the same amount of product. With it’s increased

process run length, maintaining desired input and output conditions would require

advanced control strategies which are not as well adapted in the biopharma industry as

traditional process industry due to a combination of complicated processes affecting

first principles modeling and limited data and limitations on input perturbations

for identification. Chapter 2 focused on an intensified DOE approach to identify an

appropriate input perturbation mechanism that respected biological requirements and

feasibility depending on process run duration and dynamics. The presented result

of once per three days was chosen for this process, but the primary contribution

of the manuscript is the methodology and approach used to choose an appropriate

data generation method that can be implemented in combination with a data-driven

method such as SSID to build a control-relevant model that can be extended to any

similar bioprocess. The next stage of work was to develop a model predictive controller

(MPC) to meet various objectives and respect biological input constraints. This was

covered in chapter 3. The chapter also covered an enhancement to the subspace-based

modelling by incorporating first principles knowledge through the signs of the long-

term gain matrix that is added as a constraint in the identification step, allowing the

causal effect of a specific input to a specific output to be respected. This approach

also allowed robustness; for example, including the knowledge of the process gains

allowed reasonable performance even when the training data was based on a different

cell line with different growth and death rates.
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4.1 Recent and Upcoming Work

This section presents work done recently in collaboration with summer students Nigel

Mathias and Sarah Rasmussen, also from the Mhaskar Group, under my supervision.

The first area is using Bayesian Inference through methods such as nested sampling

to allow estimation of biological parameters such as growth and death rates directly

from input-output data. A parameterised neural network is built and trained offline

and then used in a nested sampling approach to sample different values of the pa-

rameters and iteratively improve on estimation of the critical parameters purely from

data, giving insights into the cell culture, saving time and money on intensive labo-

ratory experiments. This will be expanded to involve parallel estimation of multiple

parameters.

The second area is using Physics Informed Neural Networks (PINNs) to provide a

robust solution including both data and first principles knowledge. This also is trained

offline and the first principles knowledge is incorporated through the loss function

which now penalises not just the deviation of prediction from process data but also

the gradients from the gradients in the first principles ODEs. This approach would

be further augmented by introducing mismatch in the parameters in the ODE known

to the neural network and actual system and the combination of loss terms from

data and first principles would potentially still be able to predict with reasonable

accuracy since without model plant mismatch the physics based loss would help guide

the solution to a better accuracy and with model plant mismatch the input-output

data based loss would be able to able to bring the solution to the correct values.

The control solution for the bioreactor did not use neural networks initially as we

wanted to use a method being capable of accurate modeling and advanced process

control from limited data such as from actual plants. The neural network here is built
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offline from the simulator and the purpose of Bayesian inference and physics informed

neural networks is to provide a high fidelity alternative to the advanced simulator

which can be run in under a second to give an entire output trajectory unlike the

simulator which takes a few minutes. A large number of runs of this fast model can

then be run for parameter estimation of nonlinear models like biological parameters

such as maximum growth rate. Further, physics informed neural networks also help

prevent problems with overfitting by virtue of having knowledge of the first principles

equations.

4.2 Future Work

This section presents recommendations for further development and exploration of

process improvement for such processes, focusing on machine learning. This section

discusses recommendations for future areas. Section 4.1 covered present and upcoming

near future work in detail and this section briefly expands upon the same with other

future possibilities. The machine learning methods have the potential to be expanded

to include parallel parameter estimation for multiple parameters and to include model

plant mismatch in building the physics informed model. The bioreactor used in the

work had the initial three days in inoculation mode where no control action was

made. Future work would involve including the three day inoculation into the state

estimation and potentially control which would especially be useful for early detection

of batch quality problems.

The core of the thesis was to utilize subspace based methods to develop process models

and use them in control strategies. These can be expanded into further data driven

and hybrid models like incorporating them with PLS and PCA for monitoring and

potentially using a linear simplified model for the data loss in the physics informed

neural network to allow building models with limited data which traditional neural

77



M.A.Sc. Thesis - S. Sarna; McMaster University - Chemical Engineering

networks used in data loss struggle with.
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