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Lay Abstract

River ice breakup is a key event to the hydrology of rivers throughout Canada, playing a
major role in their physical and ecological characteristics. The timing and mechanism of these
events can, however, be unpredictable and volatile, with the effects of climate change only
exacerbating these risks. This dissertation focuses on addressing these potential issues through the
application of machine learning and hybrid modeling in the prediction of river ice breakup events.
Advanced data driven techniques coupled with novel applications of other analytical methods are
used to: i) predict the presence of ice jams through the application of stacking ensemble modelling;
ii) predict the severity of mid-winter breakups through application of trend and variable analysis;
iii) predict the occurrence and timing of mid-winter breakups using rare-event forecasting
techniques; and iv) develop a novel hybrid modelling scheme coupling ontology-based semantic
modelling and machine learning to predict spring breakup timing. Detailed case studies for each

application are provided demonstrating the effectiveness of the discussed techniques.



Abstract

River ice breakup is a vital process to the morphology and hydrology of many rivers in
Canada, often governing peak flows of the river. These events can occur through multiple
mechanisms, with the potential for volatile or early breakup events that can have severe impacts
to the river. Ice jam flooding can be a potentially devastating result of river ice breakup while early
breakup of ice cover in a mid-winter breakup can be unpredictable and greatly alter the remaining
ice season. These events are growing increasingly common as a result of climate change, and as a
result there is a need to develop prediction tools for these events to aid in decision making support.
Past investigations into developing such tools, especially from a data-driven modelling
perspective, are challenged by the availability and complexity of the data related to these rare and
dangerous to measure events. Therefore, the goal of this dissertation was to develop and apply
methods to address the historical challenges and shortcomings in predicting these events through
the use of data-driven modelling techniques. This includes: i) development of a stacking ensemble
modelling framework for the prediction of ice jam presence during the spring breakup season of a
river, utilising variable selection and rare-event forecasting techniques in combination with a
comprehensive selection of machine-learning algorithms; ii) return period and trend analysis of
mid-winter breakups in conjunction with comprehensive input analysis techniques to identify the
key drivers of these events’ severity and develop a means of classifying the flood risk based on
hydroclimatic traits; iii) the development of a two-level modelling system for the prediction of the
occurrence and timing of mid-winter breakups on a national scale utilising rare event forecasting
techniques and imbalanced learning; and iv) development of a novel hybrid semantic and machine
learning modelling system in which an ontology is used in conjunction with network analysis

techniques to select variables for machine learning models, which is used on a national case study



of the prediction of spring breakup timing in Canada. The results of each study in application to
their respective case studies demonstrate the effectiveness of the proposed techniques, which are
shown to be easily adaptable to other regions or locations. These technigues can form the backbone
of decision-making support for communities on rivers that are affected by the unpredictable and

oftentimes volatile nature of river ice breakup.
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Chapter 1: Introduction

The vast majority of rivers in Canada develop fully formed ice covers throughout the winter
season. These ice covers generally form after an extended period of below freezing temperatures
and continue to develop throughout the winter season. These ice covers are often accompanied by
low water flow rates and water levels in the rivers and their thicknesses can vary from centimeters
up to several meters depending on the river, precipitation, and temperatures throughout the season.
With few exceptions, these ice covers will eventually breakup, typically in the spring, through one
of two mechanisms. The first, thermal breakup, results in the ice cover melting in place as
temperatures gradually increase and snow cover melts, increasing the amount of thermal energy
absorbed by the ice. The second, dynamic breakup, occurs when the rise in water levels brought
about by the increase in snowmelt runoff outpaces the melt of the ice cover. When this occurs, the
ice is lifted out of place due to buoyancy and begins to flow with the river. Both breakup
mechanisms are quite common throughout the country, though dynamic breakup has the potential
to trigger more severe breakup events. This includes the potential for ice jam flooding, where the
free flowing chunks of ice form a semi-permanent dam on the river, greatly restricting the flow
capacity and triggering an upstream damming effect. These jams will eventually give way and
release a wave of water and ice flowing downstream, similar to a dam release scenario. These
events are also no longer limited to occurring in the spring, as the occurrence of Mid-Winter
Breakups (MWBS), the breakup of ice cover outside of the typical spring season, is becoming
much more common due to the increasing frequency of climate change induced mid-winter thaws.
Because of the importance of these events to the flow regime of the rivers as well as their potential
to trigger flooding, the ability to accurately predict these events is of vital importance to affected

communities and has been the focus of several past studies. Though these needs are recognized,



past studies often focus on applications of process-based physical modelling or analysis of trends
in drivers and occurrence, with applications of machine learning limited or non-existent depending

on the event in question.

1.1 River Ice Events

1.1.1 Spring Breakup

As stated, the two primary breakup mechanisms are thermal and dynamic. Thermal
breakups are often triggered by milder spring temperatures which result in low amounts of runoff
entering the river. This is also dependent on the amount of rainfall, as increasing amounts of
rainfall both increase precipitation runoff entering the river as well as increasing snowmelt and
subsequent snowmelt runoff (Prowse et al., 2007). Conversely, warmer springs often coupled with
larger amounts of rainfall are often the trigger of dynamic breakups. In both cases, a series of days
with above freezing temperatures is required to trigger the melt required for a breakup to occur.
The quantity and magnitude of short-wave radiation is a governing trigger for the type of breakup
mechanism (Prowse and Bonsal, 2004). Other factors governing the timing and mechanism of
spring breakups include the date and water level at freeze up, the speed of freeze up and subsequent
ice roughness, the average temperatures throughout the winter, the amount of snowfall and
snowpack depth, and the length of the ice season (Prowse et al., 2007). de Rham et al., (2008a)
and de Rham et al., (2008b) investigated the factors and trends governing the spring breakups in a
northern Canadian basin, finding that high water events in much of the basin were caused by ice
cover breakups, and that breakup timing is trending towards earlier spring breakups. Ice thickness
and speed of melt have been found to have a strong influence on the timing of subsequent breakup

(Goulding et al., 2009).



1.1.2 Ice Jams

There are a complex number of interacting factors influencing the formation of ice jams
including many hydroclimatic and physical factors. The location of a jam is largely governed by
physical characteristics of a river, including the channel morphology (slope, width, depth, bed
materials, presence of sharp curves, presence of changes in cross-sectional shape, presence of man-
made structures) and watershed characteristics (size, retention time, infiltration, vegetation,
urbanization) (Beltaos and Prose, 2002). The timing of both freeze up and breakup is a key factor
in the occurrence of ice jams. A shorter ice season with mild temperatures and fast warming in the
spring results in a less developed ice cover which is not conducive to the formation of ice jams
(Beltaos and Burrell, 2003). Conversely early freezes with long ice seasons allow an ice cover to
develop further, with early spring breakups often leading to ice jam formation as the cover is
stronger at that time (Carr and Vuyovich, 2014). Though there have been many hydroclimatic
variables identified as leading factors in the occurrence and severity of ice jams, the complexity of
their interaction has led to the conclusion that no single variables can reliably predict these factors
on their own, and that combinations must be considered in the development of machine learning
models (Robichaud, 2003). The effects of ice jams on the location have been noted to be complex.
Severe flooding is often a risk (Beltaos, 2003, De Coste et al., 2017), with communities located on
or near the river often sustaining large financial costs and in some cases requiring the relocation
of communities, as in the case of the town of Hay River. Conversely, ice jam flooding can also be
a beneficial process, with standing basins in some norther regions of the country relying on their

occurrence for replenishment (Beltaos et al., 2006).



1.1.3 Mid Winter Breakups (MWBS)

The trigger of these events and the factors governing their occurrence and severity are largely
similar to those of spring breakup, with both thermal and dynamic breakup events being possible
despite the earlier timing in the ice season (Prowse et al., 2002). These events have been increasing
in frequency due to climate change, linked to an increasing trend towards earlier breakups and
more common mid-winter warming periods throughout the country (Beltaos and Prowse, 2009).
Mild winter days have been noted to be significantly increasing in frequency over the past 80 years,
and with them the possibility of these events (Beltaos, 1999). These events, after the re-
establishment of ice cover following the thaw, often result in milder spring breakups and reduced
flows, and a significantly altered flow regime for the remainder of the season (Huntington et al.,

2003).

1.2 Applications of Machine Learning
1.2.1 Spring Breakup

Shouyu and Honglan (2005) applied a combination of fuzzy optimization and ANN to predict
both freeze up and spring breakup dates. Both events utilised a different combination of input
variables and the input variables were fuzzified before application to the model. Though the model
was noted to be successful, the results were noted to be based on limited data, particularly in the
case of the breakup dates. Zhao et al., (2012) applied a three-layer feed forward ANN to predict
the start of breakup in the Hay River with a specific target of the first crack in ice cover following
the start of increasing water levels. The model was found to accurately predict the most recent

breakup event, though results degraded over previous years in relation to the availability of data.

Sun and Trevor tested two fuzzy logic modelling systems for the prediction of breakup

initiation on 39 years of data from the Athabasca River. Both of the models attained success in
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different aspects, with one found to be more suitable for pre-screening of ice flooding risk and one
more effective at predicting maximum breakup water levels than previously developed models. It
was noted that limited data availability was a potential issue in the overall reliability of the models.
Sun and Trevor (2018a) subsequently developed a two-level stacking ensemble system for
predicting breakup dates, testing numerous combinations of model structures and configurations.
The models used the same combinations of input variables with the simpler algorithms being found
to outperform the more complicated and computationally intensive models, with results deemed
promising but needing development. Sun (2018) applied the stacking ensemble system to predict
breakup timing using a different combination of component models, with 24 models tested against
36 years of data using climatic ang hydrologic inputs. The simple averaging methods utilized were
most successful, with the technique noted to have transferability to different locations. Sun and
Trevor (2018b) applied multiple model combinations in predicting maximum breakup water levels
including fuzzy logic, ANNS and multiple linear regressions as well as simple averaging methods.
36 years of data were used with input data including hydrologic and climatic variables, with
varying but strong model performance obtained with the considered algorithms. ANN was found
as the most successful combining model, but limitations in data were once again noted as a factor

degrading results.

1.2.2 Breakup lce Jams

Though extensive process-based modelling of ice jams has been conducted using varying
physical and numerical based models (De Coste et al., 2018), the number of studies utilising
machine learning to directly predict ice jam occurrence is limited. Madaeni et al., 2020 provides
an review of the application of artificial intelligence techniques applied to ice jam forecasting,

noting some of the earliest applications were conducted by Appelbaum (1982) and Barnes-Svarney



and Montz (1985), analysing ice jam frequency and predicting ice jam occurrence based on time
series analysis respectively. White (1996) was one of the earliest applications of traditional data
driven modelling to the forecasting of river ice jams. A logistic regression model was applied in
the prediction of ice jams with a one-day lead time. The utilised data focussed on climatic values
leading up to the jam occurrence, but the total dataset was limited to only 39 observations, with 28
being ice jams. Though the model was successful, its utility was left in question due to the limited
analysis. Masie et al., (2002) followed this study with the application of Artificial Neural Networks
(ANN) for same day prediction of ice jam occurrence. Though the developed model was found to
be 93% accurate on predictions using variables combining both climatological and hydrological
factors, only 17 ice jams were included leading to some problems in the selection of data and the

potential model utility.

Mahabir et al., (2006) applied a hybrid neuro-fuzzy model similar to that of Shouyu and
Honglan (2005), predicting the occurrence of ice jams. The model was based around a long lead
time of 3-4 weeks and used corresponding variables, but the ensuing results were poor due to the
combination of long lead times and limited data availability. Mahabir et al., (2007) subsequently
tested the transferability of the previous model on a more remote location, with results being noted
as particularly poor in quantitative assessments, indicating a need to reconstruct and reevaluate the
model for the new location, though the transferability to low population and low data locations
was shown to be promising. Guo et al., (2018) applied a backwards propagation ANN to predict
ice jam occurrence against a historical record of 23 ice jam events. The model was found to be

85% accurate but the data limitations were again noted.



1.2.3 Mid-Winter Breakups

Direct applications of machine learning to the prediction of MWBSs have been extremely
limited, with no formal application of traditional algorithms. Prowse et al., (2002) proposed a
threshold for the triggering of MWBSs based on climatic data, finding it accurate for the limited
region of its application. Likewise, Carr and Vuyovich (2014) developed a threshold including
both temperature and precipitation as factors for the triggering of an MWB, again demonstrating
its accuracy for the specific region it was developed for. Newton et al., (2017) developed a larger
database of MWB events in the western portion of Canada and the United States where it was
shown that the above proposed thresholds were quite inaccurate when translated to this region.
Though this study featured further analysis of MWBs and their drivers, it included no formal

application of machine learning techniques directly to this phenomenon.

1.3 Objectives and Organization

1.3.1 Research Objectives

Though the ice phenomena described through the literature review have been extensively
researched from a physical and process-based perspective, the attempts at predicting these events
using machine learning have been limited in scope and amount. Data availability is often the
primary limiting factor, with studies generally focussing on single rivers or regions, and in the case
of some events, relying on extremely simplified datasets. There is also no generally accepted
methodology for modelling these events, with existing applications reliant on relatively simple
machine learning applications and with minimal attempts at implementing non-traditional model
structures. Rare event forecasting techniques are well suited to these event types, though these

techniques have been applied minimally if at all. Further, these applications also face challenges



in presenting the data in a meaningful way for stakeholders, with decision making support tools

often being unintuitive and difficult to transfer between locations.

With this in mind, this thesis aims to investigate the application of machine learning in 1)
predicting the presence of ice jams on a river, 2) predicting the occurrence, timing, and severity of
MWABs while implementing rare event forecasting techniques, and 3) the prediction of the timing
of spring breakups in conjunction with ontology-based modelling. Case studies are implemented
for each application, with large scale national applications achieved for all breakup investigations.
The results obtained illustrate the effectiveness of the applied techniques while also demonstrating
their viability as decision making support tools that can be easily implemented on regional or

national scales.

1.3.2 Thesis Organization

To achieve the stated objectives, this dissertation is organized as follows:

In Chapter 2, a hybrid ensemble framework for the prediction of ice jam occurrence on the
Saint John River in New Brunswick is proposed. This framework combines the results of multiple
machine learning algorithms at two levels and after extensive testing was proved to outperform

other modelling methods and single model algorithms for the same purpose.

In Chapter 3, an application of machine learning in assessing the severity of MWBSs on a
national scale in Canada is proposed. Key variables leading to the occurrence and affecting the
severity of MWBs are identified, and a new threshold for the triggering of MWBs in Canada is

described, outperforming the accuracy of previously proposed thresholds to a significant degree.

In Chapter 4, a method for predicting the occurrence and timing of MWBs in Canada using

a two-level machine learning framework is proposed. Techniques implemented focus around rare-



event forecasting, with the final model configuration producing a high level of accuracy in the

results.

In Chapter 5, a novel hybridization of machine learning and ontology-based modelling for
the prediction of spring breakup timing is proposed. The ontology model allows the application of
network analysis techniques to the data used in the machine learning model, allowing a refined

selection of variables to be made. The success of the models is demonstrated on a national scale.

Chapter 6 presents the conclusions and contributions of this dissertation, with further

recommendations for research provided.



Chapter 2: A Hybrid Ensemble Modelling Framework for the Prediction of Breakup Ice
Jams on Northern Canadian Rivers

Prediction of ice jams using machine learning has been previously attempted but has
encountered issues in the selection of both algorithms and organization of data. In this chapter, a
stacking ensemble approach is presented wherein the results of a set of first level models are used
as the input for a second level model in the prediction of ice jam presence on the Saint John River
in New Brunswick. A variety of machine learning algorithms ranging from single models to
complex ensembles were tested. Combinations of input variables and algorithms were extensively
tested using grid searching with accuracy assessed based on common binary classification metrics.
The final model achieved a high level of accuracy on the prediction of both ice jam and non-ice

jam occurrence.

Michael De Coste was responsible for investigation, model development and testing, and
results validation under the guidance of Dr. Zhong Li and Dr. Wei Sun. Data from the Saint John
River was supplied by Darryl Pupek. The manuscript was drafted and prepared by Michael De

Coste and revised by Michael De Coste, Dr. Zhong Li, and Dr. Wei Sun.

This chapter has been published: Michael De Coste, Zhong Li, Darryl Pupek, and Wei Sun.
(2021) A hybrid ensemble modelling framework for the prediction of breakup ice jams on
Northern Canadian Rivers. Cold Regions Science and Technology, 103302. (DOI:

10.1016/j.coldregions.2021.103302) Copyright (2021) Elsevier.
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Abstract

The forecasting of river ice jams faces challenges relating to both the availability of data
and the complexity of river ice dynamics, resulting in difficulties in model formulation. In this
study, a hybrid ensemble modelling framework is developed to address the data scarcity issue and
leverage advanced machine learning techniques for the prediction of ice jams with a one-day lead
time. The proposed methodology utilises data easily monitored in advance of any ice jam events
and maintains a realistic balance between ice jam and non-ice jam events. A combination of both
single model algorithms, including classification trees, logistic regression, k-nearest neighbors,
support vector machines, and artificial neural networks, and ensemble model algorithms, including
random forest, adaptive boosting, gradient boosting, variance penalizing adaptive boosting,
logistic boosting, class switching, and adaptive resampling and combining, are considered for both
the member models of the first layer of the hybrid ensemble and for the ensemble combiner of the
second layer. The final selection of both variables and member models for the hybrid ensemble is
detailed, with a focus on the reduction of false negatives, the prediction of no ice jam on a day
when one occurs. The proposed method is applied to the St. John River in New Brunswick, Canada,
in a location particularly prone to ice jam flooding. Using the proposed methodology, a final model
combining 6 different member models using a support vector machine as the ensemble combiner
was produced, with a balanced prediction accuracy of 86%. This hybrid ensemble model
outperformed the other tested ensemble models, as well as a series of generalized models produced
using all available input variables and member models. The model also performed well against
other ensemble techniques and against the individual member models. These results demonstrate
the viability of the proposed methodology in constructing a hybrid ensemble model for the

forecasting of ice jams on Northern Canadian Rivers. The techniques utilised can be adapted to
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other locations to facilitate ice jam forecasting, requiring data that is easily available and monitored

in advance of any potential flooding events.

Keywords: River ice; ice jams; flooding; forecasting; data-driven modelling; ensemble learning
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2.1 Introduction

A problem faced by many northern Canadian rivers is vulnerability to ice jam flooding in
the early spring during ice cover breakup. These floods typically occur following a dynamic ice
cover breakup, a volatile event where the ice on the river is lifted out of place by increasing water
levels before it melts. The ice will break first into discrete panels, and then smaller chunks,
resulting in it flowing freely downstream. If the flow of the ice becomes restricted, either at a
location where the channel geometry changes or where there is still intact ice cover, the ice chunks
can bridge the channel and begin to accumulate and thicken. The increasing accumulation of ice
is called an ice jam, and this often triggers a damming effect, reducing the available flow area in
the channel (Massie et al., 2002). As daily temperatures continue to rise, increasing runoff and
flows into the river while melting the ice further, the jam will weaken, eventually giving way and
releasing a wave of ice and water that will flow downstream. In some rivers this can cause a
cascading effect of ice jam formation and release, and as a result, communities both upstream and
downstream of an ice jam are at risk for flooding. Because of their volatility, the development of
accurate ice jam forecasting techniques is of great interest both for the purposes of early warning

and mitigation.

Data driven modelling techniques including machine learning have been applied to both
ice jam and ice breakup forecasting on rivers in past studies, with varying degrees of success.
White (1996) applied logistic regression modelling to predict breakup ice jams on the Platte River
in Nebraska, USA, with a dataset consisting of 28 historic ice jams and 11 non-ice jam dates. The
model achieved a classification accuracy of 87%, though the dataset was heavily weighed towards
ice jams. Massie et al., (2002) focussed on predicting the timing of ice jams using Artificial Neural

Networks (ANN) in Oil City, Pennsylvania. Only 17 historic ice jams were available to be tested,
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producing a final model with a 93% accuracy in predicting ice jams on the same day. Mahabir et
al., (2006) utilized a hybrid neuro-fuzzy model for the prediction of ice jams. The system used
four long lead time (3-4 week) input variables, but the obtained quantitative ice jam prediction
results were poor and would require more years of calibration data and additional testing. Wang et
al, (2010) aimed to forecast ice jam water levels and thickness in the Quyu reach of the Yellow
River using a Back-Propagation Artificial Neural Network (BP-ANN) and a Support Vector
Machine (SVM). The developed models outperformed existing regression models for both
methods based on a tolerable relative error of 20%, however performance sharply declined as the
tolerable relative errors were decreased, and the available data at the time of the study was
extremely limited. Zhao et al, (2012) aimed to forecast the timing of spring breakup in Hay River
using a three-layer feed forward ANN. The developed model showed potential, with accurate
prediction of the 2011 breakup event; however, the performance in other years did not exceed that
of existing models and limited data constrained the accuracy of results. Sun and Trevor (2015)
aimed to forecast the breakup of ice cover on the Athabasca River using a Qualitative Fuzzy Logic
Model (QFLM) and an Adaptive Neuro-Fuzzy Inference System (ANFIS). It was concluded that
the QFLM model could act best as a seasonal risk assessment tool, with the ANFIS model as a
forecasting tool, however improvement of the models with additional data was stated as a necessity
as there were only 39 samples available in model development. Guo et al., (2018) used a BP-ANN
to predict the occurrence of ice jams based on historical ice jam records. The developed model was
85% accurate in forecasting jam occurrence, with plans for future research being the addition of
event observations to the data series as well as added climatic and hydrological variables as the

base data only had 23 ice jam events.
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Several limitations consistently arise in these and other river ice jam forecasting studies
using data driven modelling. Many of the studies cite a lack of data resulting from the difficulties
in obtaining both observations and direct field measurements, particularly in ice jam conditions.
The configuration of ice jam dates in the modelling dataset is an additional issue that has arisen in
these studies, with some opting to model seasonally, while others reduce the quantity of dates
without ice jams through statistical algorithms to improve accuracy, but there is no well accepted
procedure for this. Other techniques exist to address these data limitations such as surrogate data
testing (Shaiknina and Khovanova, 2017), which builds additional data mimicking the statistical
properties of the original data, or virtual sample generation and over-sampling (Li et al., 2018)
which generates new data falling in the gaps between existing data, however these techniques rely
on the use of generated data, not solely observational data. Further, new ensemble learning
algorithms have been developed and applied to river ice related modelling tasks, but not yet to ice
jam forecasting specifically. For example, Sun and Trevor (2018a) predicted ice breakup dates on
rivers using a stacking ensemble model consisting of a two-level system of member and combining
models. The combining models utilised Simple Averaging Methods (SAM) with varying
combinations of component models tested. A SAM model using only ANN member models
performed the best, with the results deemed promising for application to other river ice forecasting
problems. Sun and Trevor (2018b) applied multiple model combination methods in the estimation
of maximum water levels during the spring breakup of ice cover. The developed models utilise
ANFIS, ANN, and multiple linear regression models as member models and as the combining
method for the ensemble models for comparison, using data from 36 years. While performance for
each of the member models varied in ability to predict maximum water levels optimal

configurations of each were found. Sun (2018) focused on the use of a Stacking Ensemble Tree
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Model (SETM) to predict breakup timing on the Athabasca River. Classification and regression
trees and M5 (using regression tree with linear regressions at leaves) models were tested as both
base and ensemble models. 12 of each model type were tested on 36 years of data. The SETM
using simple averaging methods performed the best, and the flow and temperature in the freeze up
and breakup months were the most important variables in prediction. The technique was noted as
easily applicable to other river ice forecasting problems. Barzegar et al., (2019) developed an
extreme learning machine model, a least squares support vector machine model, and their
bootstrapping versions to estimate river ice thickness in the Mackenzie River Basin in the
Northwest Territories, Canada. The results indicate that the bootstrapping extreme learning model

approach using meteorological variables is a promising prediction tool for river ice thickness.

This study focuses on the development of a hybrid ensemble framework for forecasting the
occurrence of ice jams. The model construction included variables to account for the trends in
temperature and flow and utilised a stacking ensemble structure for predictions. The modelling
dataset did not reduce the amount of non-ice jam dates included for model training, resulting in a

more realistic proportion between these days and days with ice jams.

A case study of the ice jams on the Saint John River in New Brunswick, Canada, is used
to demonstrate the applicability of the developed framework. The proposed hybrid ensemble
structure can provide a more robust and flexible approach to account for the limited amount of ice
jam data available for model training. It also leverages the advantages of various advanced
machine learning techniques concurrently providing more diverse predictions than those produced
from single model algorithm structures. To the best of our knowledge, this is the first application

of these techniques in ice jam forecasting.
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2.2 Methodology

2.2.1 Hybrid Ensemble Modelling

The structure of the hybrid ensemble model utilised in this study consists of two internal
levels, illustrated in Figure 2.1. The first level of the ensemble consists of multiple member models,
each of which is trained and tested on the same original input dataset and outputting an individual
prediction. These predictions are combined into a second level input dataset, which is used to train
and test the second level combiner model. The second level model only uses the outputs from the
first level models as inputs in its predictions, outputting a final prediction for the overall model
(Sun and Trevor, 2017). Major advantages of this model structure are the reduction of variance in
forecasting errors and the correction of model biases that would not be possible with a single model
structure. Multiple model types are considered for both the member models and combiner model
and tested by various methods. Tested models for both the ensemble members and combiner
included single model algorithms, including classification trees, logistic regression, k-nearest
neighbors, support vector machines, and artificial neural networks, and ensemble model
algorithms, including random forest, adaptive boosting, gradient boosting, variance penalizing

adaptive boosting, logistic boosting, class switching, and adaptive resampling and combining.
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Figure 2.1: Schematic of hybrid ensemble model structure.

2.2.2 Utilised Model Algorithms

A comprehensive selection of binary machine learning algorithms were considered for both
the member models and the combiner model to ensure the flexibility of the modelling framework.
The selected algorithms consist of types that are commonly applied to binary prediction tasks and
have not yet been applied in the field of river ice. As none of these models have yet been utilised
in a hybrid ensemble framework for the predictions of river ice jams, the potential benefits each
may have were not known prior to modelling. Thus, it was elected to treat each model equally
without applying either ranking or differing weights to the model results. These algorithms are

summarized below.

2.2.2.1 Single Model Algorithms

Classification Tree (CT) (Safavian and Landgrebe, 1991): A CT or decision tree model produces
a single classification for a set of input variables based on decisions made at internal model splits.
Each split is based on the value of a single input variable, with the number of branches within the

model and the number of splits being tuned by the user. The model terminates in leaf nodes
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representing a final classification, with the model structure resembling a tree. Singh et al. (2014)
successfully applied CT to determine the relationship between catchment similarity and the

performance of transferred parameters predicting runoff from rainfall.

Logistic Regression (LR) (White, 1996): An LR model produces a binary prediction outcome via
a linear combination of variables in a similar fashion to linear regression. The logistic regression

uses a logistic function (Equation 2.1) to model a binary dependent variable.
eu

2.1
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where f(x) is the probability of the binary response being 1, and u is a linear function of input

variables X;, X,, ..., X; defined as below.

u = a+B1X1+ﬁ2X2 +"‘+BiXi (22)
where a is the regression intercept, and f3; is the regression coefficient for each variable X;. Szelag
etal., (2019) applied LR to predict the occurrence of storm overflow in a stormwater system based

on total rainfall and duration.

k-Nearest Neighbors (KNN) (Dudani, 1975): In a KNN model, unlabelled observations are
classified based on the labels of the k nearest classified points, classifying the unlabelled point to
the class most heavily represented amongst its k nearest neighbors. The value of k is the primary
parameter for tuning the model, with each new observation being labelled based on a weighting
factor comparing the distances to the k nearest neighbors from the labelled point. As described in
Equation 2.3, w; is the weight for an individual observation j, and the distance between neighbor
points are given by dj, j=1,...,k. The value of a new observation is assigned to the class with the

highest sum of weights.
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Liu et al., (2020) used a KNN model in conjunction with a recurrent neural network to provide
real time flood forecasting on three differing catchments, demonstrating its effectiveness for local
decision-making support. Semenova et al., (2020) used KNN to forecast whether ice jams will
occur in a given season at the confluence of the Sukhona and Yug Rivers in Russia, achieving an

82% accuracy.

Support Vector Machine (SVM) (Suykens and Vandewalle, 1999): An SVM maps data into a
higher dimensional input space followed by constructing an optimal separating hyperplane for
classification. This process entails the construction of a classifier from a set of N data points
{x1, Vi }¥_, in the form of Equation 2.24, where a; and b are positive real constants and ¥ (x, x;)

is described by Equation 2.5 in a polynomial SVM of degree d.

N

f0) = @i x) + b 24
k=1

Y(x, x) = (xfx + 1D (2.5)

Wang et al., (2019) used an SVM coupled with a Copula function to simulate runoff data for the
Yangtze River in China, overcoming severe limitations in the available data which was deemed

insufficient for traditional modeling methods.

Artificial Neural Network (ANN) (Agatonovic-Kustrin and Beresford, 1999): The feed-forward
ANN structure utilised in this study maps the relationship between input and output variables by
developing weights for the input variables, a layer of internal nodes, and the output nodes. A

nonlinear activation function allows for nonlinear mapping between the variables and nodes, while
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the number of nodes in the internal layer must be tuned alongside the training algorithm. Massie
et al., (2002) applied ANNs in forecasting ice jam occurrence on rivers and Tsakiri et al., (2018)

applied ANNSs in forecasting seasonal river flooding.

2.2.2.2 Ensemble Model Algorithms

Random Forest (RF) (Liaw and Wiener, 2002): As an extension of the bootstrap aggregating (also
called bagging) technique, RF is an ensemble of classification trees developed from bootstrap
samples of the data set. The bootstrap samples are resampled from the overall dataset. Each
bootstrap sample can be used to train an independent classification tree, and the prediction of the

random forest, £(x), can be generated based on all bootstrap samples, using Equation 2.6.

M
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where /™(x) is the prediction trained on the m™ bootstrap sample, and M is the number of bootstrap
ensembles. Each tree in the random forest is split based on a randomly selected subset of variables
made available to each tree in its construction, providing robustness against overfitting. An RF
model was used by Munoz et al., (2018) in the prediction of flash-flooding in the Ecuadorean

Andes catchment.

Adaptive Boosting (AdaBoost) (Zhu et al., 2009): AdaBoost is an iterative ensemble procedure
for two-class classification problems that builds a series of classification trees with associated class
labels. The initial classifier is constructed first, producing class labels. If a training data point is
incorrectly classified, the weight of that point is boosted with the Stagewise Additive Modelling
using a Multi-class Exponential (SAMME) loss function, and a second classifier is constructed

using the new weights. The process aims to minimize the misclassification rate through the
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weighting of the weak learners’ accuracy. AdaBoost was successfully applied to the prediction of

flash flooding in the Lao Cai province of Vietnam by Bui et al., (2019).

Gradient Boosting (GBoost) (Friedman, 2002): GBoost alters the AdaBoost algorithm by solving
the internal trees through fitting them by least squares to their current residual errors, followed by
a single parameter optimization of the expansion coefficient based on the general loss criterion.
Papacharalampous et al., (2019) applied gradient boosting in the prediction of hydrological model

errors, successfully combining the results with those of other algorithms to reduce model errors.

Extreme Gradient Boosting (XGBoost) (Chen and Guestrin, 2016): XGBoost functions similarly
to Gradient Boosting but uses the second order gradients of the loss function in the minimization
of the overall model error. Additionally, the method utilises advanced regularization to improve
model generalization. XGBoost was applied by Wu et al., (2019) in the prediction of mean
evapotranspiration based on temperature data, achieving a higher level of accuracy than other non-

tree-based methods applied for the same purpose.

Variance Penalizing Adaptive Boosting (VadaBoost) (Shivaswamy and Jebara, 2011):
VadaBoost is a similar algorithm to the AdaBoost algorithm, with the weighting function
combining both the empirical risk and empirical variance, creating a trade-off between the two

quantities allowing a minimization of the upper-bound of true risk.

Logistic Boosting (LogitBoost) (Cai et al., 2006): Functioning similarly to the AdaBoost
algorithm, LogitBoost utilizes the minimization of a binomial log-likelihood loss function
changing linearly with classification error. This process recasts the AdaBoost model as a

generalized additive model.
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Class Switching (CS) (Narassiguin et al., 2016): CS is a variant of an output flipping ensemble
approach where class labels are randomly flipped within the data set. The final classifier decision
is given by majority vote over the base classifiers, with the parameter p representing the rate of

class switching as a percentage of the overall dataset, specified by the user.

Adaptive Resampling and Combining-X4 (ArcX4) (Breiman, 1996): Belonging to the Arc
algorithm family, this algorithm functions by sequentially training a series of classifiers similarly
to the AdaBoost algorithm. At each step a resampled training set is constructed based on a set of
probabilities which are then updated and weighted based on the number of misclassifications at
the present step. Upon termination, the classifiers are then combined using unweighted voting, a
difference from other Arc algorithms which use weighting for recombination, returning the

majority predicted class.

2.2.3 Performance Metrics and Cross-Validation

The dataset was divided into training and testing sets using a randomized 70/30 split
stratified between the classes, such that 70% of ice jam and non-ice jam days were in the training
set and 30% were in the testing set. As the modelling task was based around a binary classification,
model performance was assessed based around the quantity of correct predictions for both positive
and negative results. There are four possible outcomes of predictions that may be obtained in
binary classification, with true positive in this study denoting the correct prediction of the
occurrence of an ice jam and true negative denoting the correct prediction of no ice jam occurrence.
Conversely, false positive would denote the prediction of an ice jam when one does not occur,
while false negative would denote the prediction of no ice jam when one does occur. Three
performance metrics were considered in this study: Recall, specificity, and balanced accuracy,

defined in Equations 2.7-2.9 (Brodersen et al., 2010).
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tp

Recall = o+ fn (2.7)
where tp is true positives and fn is false negatives.
Specificity = —— 2.8
pecificity = T p (2.8)
where tn is true negatives and fp is false positives.
Specificity + Recall
Balanced Accuracy = pecificity (2.9)

2

As each of the considered models have degrees of freedom in the configuration of their
hyperparameters, cross-validation was used to select the best performing model parameters. Cross-
validation divides the training set into K equally sized parts, using K-1 of the parts as a training set
and 1 part as a validation set (Bengio and Grandvalet, 2004). This process is done K times, such
that each individual part of the set is used as the validation set. This procedure is completed for
each of the considered values of model configuration, producing an averaged error metric for each
to facilitate parameter selection. A 5-fold grid search cross-validation was utilised in this study for
the selection of model parameters. In ice jam forecasting it is of most importance to avoid false
positives, where the model predicts that an ice jam does not occur when it does. As a measurement
of the occurrence of true positives against combined false negatives and true positives, Recall was

used as the primary assessment metric for the cross-validation conducted on all models.

2.2.4 Selection of Input Variables

Selection of input variables was conducted based around the variable importance values
obtained from a trained RF model and the Recall values obtained from a trained CT model. The
variable importance provides an indication of which variables provide the greatest contribution to

lowering of Gini impurity of the model predictions. The Gini impurity is based around the overall
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classification rate, assessing both the misclassification of ice jam and non-ice jam events. Because
of this, the next step of in-depth variable testing used the construction of CT models considering
all possible input variables followed by developing models with single variables removed and with
the removal of pairs of variables, a process called Input Omission (10) (Snieder et al., 2020). As
the modelling target is a binary prediction, the changes in Recall values from that obtained using
the full input variable set were assessed to determine the impact of the 10, allowing both important
and redundant variables to be identified. Following this, redundant variables were removed,
important variables retained, and remaining variables were further tested through an 10 process,

with a final reduced input variable set determined based on the best modeling performance.

2.2.5 Selection of Members and Combiner Models

Following the selection of the input variable set, each of the considered models’ parameters
were tuned using 5-fold cross-validation. Following this, the 70/30 data split was used to train and
validate each of the tuned models. These outputs were then combined into a new input dataset for
the second level model. Similar to the selection of input variables for the first level model, the
selection of member models to include in the final hybrid ensemble began through assessing the
Recall of a CT built with all of the member models, followed with 10 of individual models and
model pairs. Member models whose exclusion either had no impact on the final ensemble Recall
or improved the results were noted, allowing a final selection of ensemble combiners to be made.
Following this, a series of ensemble combiners were tuned using 5-fold cross-validation, with the
tuned models then applied to the same 70/30 data split, providing final predictions. Recall,
specificity, and balanced accuracy were used to make a final assessment of the most effective

combiner. To further validate model selection, a generalized model was developed including all
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candidate variables and model algorithms. This would allow further comparison and validation of

the curated approach.

2.2.6 Algorithm Implementation

Analysis was completed using Python, version 3.7 (Van Rossum and Drake, 2009).
Additional packages used in the implementation of the algorithms included Keras (Gulli and Pal,
2017), scikit-learn (Pedregosa et al., 2011), Numpy (Oliphant, 2006), and Pandas (McKinney,
2010). Additional code for the implementation of VVadaBoost, LogitBoost, CS, and ArcX4 models

was adapted from Narassiguin et al. (2016).

2.3 Case Study

2.3.1 Study Area

The location of the study area for this project is the middle reach of the Saint John River
in New Brunswick, Canada. The middle reach, shown in Figure 2.2, begins just downstream of the
town of Grand Falls and extends approximately 60 km to just upstream of Bath. Bed elevations in
this region vary between 60-90 m above sea level, with water surface elevations typically varying
between 72-96 m. Channel manning’s roughness coefficient ranges from 0.012-0.024 while
floodplain roughness ranges from 0.040-0.060. There are three major tributaries entering the
middle reach, the Little, Tobique, and Aroostook Rivers. The reach has historically been highly
vulnerable to ice jam flooding, with historical ice jam dates and locations shown in Figure 4.
Historic ice jams have induced flows of up to 8000 m?/s at the Beechwood Generating Station at
the downstream end of the reach. Just upstream of the reach is the Grand Falls Generating Station,
one of the five hydropower structures on the Saint John River, originally constructed in 1925. This
structure is responsible for a significant portion of power generation in the region and is also a
governing factor on flows in the middle reach. The middle reach is home to many small
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communities, including the town of Perth-Andover, which has been particularly vulnerable to ice
jam flooding, with a major flood occurring in 2012 resulting in a state of emergency being declared

and several millions of dollars in damages (Knack and Shen, 2018).
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Figure 2.2: Map of the Middle Reach of the Saint John River showing locations and timing of

historical ice jams (Adapted from Environment and Local Government, 2013).
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2.3.2 Data

Data used in this study included meteorological data obtained from both Environment
Canada and the Government of New Brunswick, as well as ice jam observations from the New
Brunswick Department of Environment and Local Government. Data sources and types are
summarized in Table 2.1. The data spanned 1988-1990, 1995, and 2011-2017. For each year of
available data, only the data in the typical ice jam season (March 20 — April 30) was included to
reduce both the presence of redundant data and the effects of imbalanced classes in modelling. It
was important to include all non-ice jam days present within this span to ensure that the developed
model was structured around a realistic distribution of data, ensuring that it would also be able to
function in years where no ice jams occur. Figure 2.3 shows the timeline of both ice jam and non-
ice jam events during the modeling period. The historical ice jams all occurred within the middle
reach of the St. John River however some location data was unable to be measured at the time,
thus location data was excluded from modelling. A total of 29 input variables were considered,
including daily flow rate (Q, m%/s), average daily temperature (T, °C), and daily precipitation (P,
mm) up to day i, Accumulated Freezing Degree Days (AFDD, °C), change in AFDD over the past
1-15 days (AAFDDi or DAFDDI, °C), and change in Q over the past 1-10 days (AQi or DQi, m%/s).
These variables are detailed in Table 2.2 and their selection was suggested by Mahabir et al.,
(2006), Massie et al., (2002), and White (1996) as potential indicators of ice jam occurrence.
AFDD measures the negative sum of temperatures from a set date, in this case October 1%, which
marks the beginning of the water year for New Brunswick. The AAFDDi values account for the
rate of temperature change during the spring breakup season, and AQi accounts for the changes in
runoff entering the river. Each variable is available up to day i, with the prediction target of ice

jam occurrence on day i+1 providing a one-day lead time.
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Figure 2.3: Timeline of ice events in modelled dataset.
Table 2.1: Summary of data sources and types.
DATA TYPE SOURCE
Flow Continuous  Water Survey of Canada Gauge St. John River at Grand
Falls
Temperature and Continuous  Environment Canada Gauge at Aroostook, missing data
Precipitation filled with Environment Canada gauges at Juniper and St.
Leonard, and New Brunswick Climate Gauges at Andover
and Grand Falls
Ice Jam Dates Binary NB Department of Environment and Local Government
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Table 2.2: Summary of considered input variables.

Variable Meaning Unit Minimum Average Maximum
0 Flow m3s 305 930.3 3880
T Daily mean temperature °C -15.3 1.75 18.3
P Precipitation mm 0 2.04 332
AFDD Accumulated Freezing Degree Days °C 122.9 703.8 1110
DAFDD1 Change in AFDD in last 1 day °C -18.3 -1.76 15.3
DAFDD2 Change in AFDD in last 2 days °C -31.3 -3.24 29.1
DAFDD3 Change in AFDD in last 3 days °C -42.8 -4.51 43.1
DAFDD4 Change in AFDD in last 4 days °C -49.1 -5.56 51.6
DAFDD5 Change in AFDD in last 5 days °C -58.9 -6.45 59.4
DAFDD6 Change in AFDD in last 6 days °C -63.9 -7.12 66.4
DAFDD7 Change in AFDD in last 7 days °C -74.8 -7.59 73.7
DAFDD8 Change in AFDD in last 8 days °C -81.1 -7.85 76.5
DAFDD9 Change in AFDD in last 9 days °C -86.1 -7.91 88.1
DAFDD10 Change in AFDD in last 10 days °C -97.1 -1.77 102.1
DAFDD11 Change in AFDD in last 11 days °C -108.6 -7.36 109.1
DAFDD12 Change in AFDD in last 12 days °C -117.9 -6.70 116.4
DAFDD13 Change in AFDD in last 13 days °C -124.2 -5.79 123.2
DAFDD14 Change in AFDD in last 14 days °C -129.2 -4.57 133.2
DAFDD15 Change in AFDD in last 15 days °C -134.7 -2.98 146.6
DQ1 Change in Q in last 1 day m¥s -980 43.6 2410
DQ2 Change in Q in last 2 days m®/s -1490 86.7 3206
DQ3 Change in Q in last 3 days m®/s -2070 127.7 3445
DQ4 Change in Q in last 4 days m®/s -2380 166.1 3547
DQ5 Change in Q in last 5 days m®/s -2610 203.9 3599
DQ6 Change in Q in last 6 days m®/s -2760 242.4 3602
DQ7 Change in Q in last 7 days m¥s -2891 280.2 3598
DQ8 Change in Q in last 8 days m®/s -3000 316.4 3598
DQ9 Change in Q in last 9 days m¥s -3077 351.6 3620
DQ10 Change in Q in last 10 days m?/s -3130 384.6 3673

2.4 Results and Analysis

2.4.1 Variable Selection

Variable selection began with the assessment of variable importance obtained from an RF

model. As the goal of the model was prediction of both ice jam and non ice jam events, the

importance of variables in both predictions was used rather than just the importance in predicting
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solely ice jam events. The model was first tuned using 5-fold grid search cross-validation including
all 29 considered input variables. The tuned parameters were then used to train and validate a
single model using the 70/30 data split. Figure 2.4 plots the obtained variable importance values
from the trained model. AFDD had the highest importance, with several of the AAFDDi and AQi
variables having high importance relative to others. It is important to note that this variable
importance metric considers the overall accuracy in predicting both possible outcomes, which
weighs much more heavily towards the prediction of non-ice jam events given the configuration

of the modelling dataset.

Following this, in depth testing of the effects of 10 on Recall was conducted by both single
variable omission and pairs variable omission in a CT model. Figure 2.5 shows the changes in
model Recall that occurred from 10 of a single variable and the 10 of pairs of variables. In each
case, the Recall obtained from the model built with all variables was subtracted from the Recall of
a model built excluding the specified variables, with a negative value representing a decrease in
model accuracy. The AFDD variable was again shown to have a higher degree of importance, with
the majority of cases including its omission resulting in a reduction of Recall. Several
combinations of the omission of delta variables resulted in either very little change or slight
increases in Recall. It was indicated that some of these variables were redundant to the prediction

capabilities of the data set.

With these results, final variable selection was completed through the omission of larger
combinations of delta variables while maintaining enough to keep trends in the data. The total
number of input variables was reduced from 29 to 11. The final model data set included Q, T, P,
AFDD, AAFDDS5, AAFDD10, AAFDD15, AQ1, AQ4, AQ7, and AQ10. The variable selection

process eliminated several redundant variables and greatly simplified the input.
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Figure 2.4: Random Forest variable importance plot using all considered input variables.
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Figure 2.5: Changes in recall from the 10 of single and pairs of variables.

2.4.2 Member Model Selection

With the finalized dataset, thirteen models were tuned using 5-fold grid search cross-
validation, with the training metric being Recall. The tuned parameters were then used to train and
validate the models using a 70/30 data split. Table 2.3 details the accuracy for each of the final
models ranked by balanced accuracy. The obtained balanced accuracies ranged from 0.65 to 0.79,

with an average of 0.73. The best performance was obtained from the CS model. LR, KNN, and
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CS achieved the highest Recall values, with specificity over 0.87 amongst all of the models. CS

and ArcX4 attained a specificity of 1.0, indicating perfect classification of non-ice jam events.

Table 2.3: Obtained member model classification rates and accuracies.

Model TN FP FN TP Specificity Recall Balanced Accuracy
KNN 122 4 5 8 0.97 0.62 0.79
CS 126 0 6 7 1.00 0.54 0.77
ANN 125 1 6 7 0.99 0.54 0.77
SVM 123 3 6 7 0.98 0.54 0.76
CT 122 4 6 7 0.97 0.54 0.75
VadaBoost 119 7 6 7 0.94 0.54 0.74
LR 109 17 5 8 0.87 0.62 0.74
ArcX4 126 0 7 6 1.00 0.46 0.73
RF 125 1 8 5 0.99 0.38 0.69
XGBoost 125 1 8 5 0.99 0.38 0.69
LogitBoost 125 1 8 5 0.99 0.38 0.69
GBoost 124 2 8 5 0.98 0.38 0.68
AdaBoost 124 2 9 4 0.98 0.31 0.65

Note: inputs of these models are the variables Q, T, P, AFDD, A4FDD5, AAFDD10, AAFDD1 5,
401, 404, 407, and 4010.

Member model selection continued with the assessment of variable importance using a
tuned random forest model. Figure 2.6 shows the variable importance plot including each of the
13 considered member models. Several models (KNN, RF, AdaBoost, XGBoost, VadaBoost, CS,
and ArcX4) ranked similarly highly, with importance exceeding 0.10, while two models (LR and
LogitBoost) ranked extremely low. As these importance values are assessed using overall
accuracy, assessment of changes in Recall caused by member omission from a CT was also
conducted. Figure 2.7 shows the changes in Recall caused by single model omission and by pairs
omission. All of the non-ensemble techniques resulted in decreases in Recall with their omission,
while many ensemble models resulted in either minor changes or increases to Recall with their

omission, with the exception of AdaBoost and XGBoost.
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With the above results as the basis, the combination of six member models that produced
the best model performance in terms of both Recall and balanced accuracy were selected for the
first level of the hybrid ensemble, including four non-ensemble algorithms (CT, LR, KNN, and
ANN) and two ensemble algorithms (VadaBoost and ArcX4). Using the predictions of these
models as the second level input, the 13 combiner models were tuned using a 5-fold cross-
validation and trained on the split data to produce the hybrid ensemble results listed in Table 2.4.
The balanced accuracy ranged between 0.73 to 0.86, with an average of 0.79, which shows an
overall improvement in prediction accuracy compared to those obtained from the single models.
Specificity was very close to 1.0 amongst all models, while Recall ranged up to 0.77, which is an
additional improvement from the single model results. Many of the boosting algorithms performed
better as ensemble combiners than they did as single models. The single model algorithms of CT,
KNN, and SVM performed well as both single models and as ensemble combiners. The hybrid
ensembles were also compared to a voting ensemble technique, which counts the predictions from
each model and assigns a value based on the quantities of “votes”. The voting model was tuned to
predict the occurrence of ice jams based on a number of votes for jams exceeding 2, and produced

a balanced accuracy of 0.72, which was exceeded by all of the considered hybrid ensembles.
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Figure 2.7: Changes in recall from the 10 of single and pairs of member models.
Table 2.4: Obtained ensemble combiner model classification rates and accuracies.
Model TN FP FN TP Specificity Recall Balanced Accuracy
SVM 121 5 3 10 0.96 0.77 0.86
KNN 126 0 5 8 1.00 0.62 0.81
LR 125 1 5 8 0.99 0.62 0.80
CT 122 4 5 8 0.97 0.62 0.79
RF 122 4 5 8 0.97 0.62 0.79
AdaBoost 122 4 5 8 0.97 0.62 0.79
GBoost 122 4 5 8 0.97 0.62 0.79
VadaBoost 122 4 5 8 0.97 0.62 0.79
LogitBoost 122 4 5 8 0.97 0.62 0.79
ArcX4 122 4 5 8 0.97 0.62 0.79
CS 122 4 5 8 0.97 0.62 0.79
ANN 125 1 6 7 0.99 0.54 0.77
XGBoost 125 1 7 6 0.99 0.46 0.73
Voting 124 2 7 6 0.98 0.46 0.72

Note: Input models of these combiners are CT, LR, KNN, and ANN, VadaBoost and ArcX4.
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2.4.3 Best Hybrid Ensemble Model

The best prediction accuracy of 0.86 was obtained from SVM. SVM notably outperformed
the next best models, which were grouped around a balanced accuracy of 0.8. The structure of the
best model is detailed in Figure 2.8. Each of the model components were tuned using 5-fold grid
search cross-validation for the selection of hyperparameters. The CT model used a maximum
number of leaf nodes of 20, a minimum number of samples per leaf of 1, and a minimum number
of samples per split of 2 in training. The LR model used a value of 0.001 for the inverse of
regularization, the KNN a value of 1 for k, and the ANN 20 nodes in the hidden layer and a sigmoid
activation function in model training. The VadaBoost model was trained using 750 trees with a
lambda value of 0.1 and the ArcX4 model using 200 trees. The SVM combiner used a value of 0.1

for the inverse of regularization and a single degree sigmoid function in training.
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Figure 2.8: Structure of best hybrid ensemble model.
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2.4.4 Discussion

To assess the individual prediction accuracy of the final ensemble models, the predictions
the models obtained using 5-fold cross-validation using each of the models were plotted in a
timeline. Figure 2.9 shows the timelines obtained from each of the tuned ensembles as well as the
voting model. It was found that there is no single day where every model is incorrect, and that the
incorrect predictions varied from model to model. False negatives were largely grouped at the start
and end of ice jam events where jams were present for more than one day consecutively.
Inaccuracies in the prediction of the end of these events are less severe, as a jam would already be
in place and thus the risk would be known, but the inaccuracies in the start of events are a more
severe issue. In this study the incorrect prediction of the start of events appears less common in
the model results. False positives appear to be more randomly scattered throughout the timeline,
with the only observable trend being their more common occurrence in the earlier years of the data
rather than the more recent years. As many of these false positives occur after the presence of an
ice jam in the timeline, this suggests that the conditions both climatically and hydraulically would

be conducive to ice jamming in the river were the ice cover still present.

Figure 2.10 shows a timeline of the percentage of correct predictions from each of the
considered models for every day in the dataset. The majority of poorly predicted days included the
presence of ice jams, while many of the days without ice jams that had incorrect classifications
still had high levels of correct predictions, typically close to a value of 1.0. Overall there were 20
days with incorrect predictions. The incorrect predictions appear to be grouped more heavily in
the early years of record, with 2012 to 2017 having only 7 days that included incorrect

classifications, two of which were less than 0.5.
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Additional analysis was conducted through the creation of generalized models containing
all of the considered variables and member models. The accuracies of the member models using
all 29 input variables are listed in Table 2.5, ranked by balanced accuracy. The obtained balanced
accuracies ranged from 0.65 to 0.76, with an average of 0.73, very similar to the values obtained
from the simplified input set. Specificity was over 0.94 for the models with the exception of the
LR model, which produced a value of 0.72. Recall ranged from 0.31 to 0.46, again with the
exception of LR, which produced a value of 0.77. Using all of the models as member models, the
resulting accuracies for the hybrid ensemble models are listed in Table 2.6, ranked by balanced
accuracy. Balanced accuracies ranged from 0.68 to 0.77, with an average of 0.74. Specificities
approaching 1.0 were obtained for all models and Recall values ranging from 0.38 to 0.62. The
use of the hybrid ensemble approach resulted in improvements in the modelling results for several
of the algorithms, similar to the improvement observed in the models developed with variable and
member selection. A voting model, again tuned to more than 2 votes for ice jam classification, was
also developed. This model obtained a final balanced accuracy of 0.82, outperforming the other
generalized models, as well as several models using the curated variables and ensemble members.
The overall results of the generalized model tests demonstrate that case-specific tuning is not
always necessary if time and resources act as a constraint. A generalized approach to the selection
of inputs and ensemble members produces results with accuracies that are not significantly lower

due to the versatility of the hybrid ensemble technique.
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Table 2.5: Obtained member model classification rates and accuracies using all 29 input
variables.

Model TN FP FN TP  Specificity Recall Balanced Accuracy
CS 124 2 6 7 0.99 0.54 0.76
SVM 124 2 6 7 0.98 0.54 0.76
VadaBoost 124 2 6 7 0.98 0.54 0.76
GradBoost 123 3 6 7 0.98 0.54 0.76
CT 121 5 6 7 0.96 0.54 0.75
LR 91 35 3 10 0.72 0.77 0.75
ArcX4 125 1 7 6 0.99 0.46 0.73
LogitBoost 124 2 7 6 0.98 0.46 0.72
ANN 122 4 7 6 0.97 0.46 0.71
KNN 118 8 7 6 0.94 0.46 0.70
XGBoost 125 1 8 5 0.99 0.38 0.69
AdaBoost 124 2 8 5 0.98 0.38 0.68
RF 126 0 9 4 1.00 0.31 0.65

Table 2.6: Obtained ensemble combiner model classification rates and accuracies using all 13
member models.

Model TN FP FN TP Specificity Recall Balanced Accuracy
VadaBoost 117 9 5 8 0.93 0.62 0.77
AdaBoost 117 9 5 8 0.93 0.62 0.77

ArcX4 126 0 6 7 1.00 0.54 0.77

CS 126 0 6 7 1.00 0.54 0.77
CT 125 1 6 7 0.99 0.54 0.77
LogitBoost 125 1 6 7 0.99 0.54 0.77

ANN 122 4 6 7 0.97 0.54 0.75

KNN 126 0 7 6 1.00 0.46 0.73

SVM 126 0 7 6 1.00 0.46 0.73

RF 126 0 7 6 1.00 0.46 0.73
GradBoost 126 0 7 6 1.00 0.46 0.73
LR 126 0 8 5 1.00 0.38 0.69
XGBoost 124 2 8 5 0.98 0.38 0.68
Voting (>2) 119 7 4 9 0.94 0.69 0.82
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2.5 Conclusions

A hybrid ensemble framework that leverages a number of machine learning techniques was
developed for the prediction of river ice jams with a one-day lead time, marking the first
application of these techniques in the field of ice jam forecasting. An in-depth variable selection
procedure was also introduced to produce a more accurate prediction. The input data was arranged
such that there was a realistic proportion between the amount of ice jam and non-ice jam events
used in model training and testing. Variables used in the predictions are accessible in advance for
predictions and provide indications of the trends in the progression of warming and breakup within
a river. The tested models provide a variety of algorithms, including both single model structures
and ensemble structures, allowing for potential weaknesses in some algorithms to be offset by
others. Models were each trained using cross-validation to select the optimal configuration. The
variable selection methodology was also extended to the selection of ensemble members, allowing
for the optimal combination of members to be determined for the final model. This hybrid
ensemble model framework produces a robust model structure with high prediction accuracy that
can both reduce forecasting error and provide correction for individual model biases. The data
requirements are both flexible and simple, allowing for applicability to a variety of locations with

varying data availability, which is a major limiting factor in ice jam forecasting.

This methodology was applied to the Saint John River in New Brunswick, Canada, for the
prediction of ice jams in the typical breakup season over the course of 11 years of record. The most
successful model combination was obtained using an SVM combined with 6 member models,
obtaining a balanced accuracy in predictions of 86%. While this model was the most successful,
several other hybrid ensemble models that were developed obtained results approaching the

obtained values. This model also outperformed generalized models developed using all available
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variables and member models, as well as voting ensemble models developed using both the
curated and generalized datasets. In both the generalized and curated cases, the use of the hybrid
ensemble technique improved balanced accuracies beyond what was obtained with single models.
The hybrid ensemble technique is viable to improve modelling accuracy for both situations where

time and resources allow for detailed variable and model selection and where that isn’t possible.

These results demonstrated the viability of the hybrid ensemble model for the forecasting
of ice jams in the spring breakup season. Many combinations of ensemble members and second
level combiners produced similarly strong results, while the utilised modelling dataset provided a
more accurate representation of the typical ice jam season without the need for reducing the
number of non-ice jam observations to improve results. This model can work to provide decision
making support for the St. John River in the ice jam season, and the applied methodology is
adaptable to other rivers facing similar ice jam related problems. Within Canada, all data required
to build models using the proposed framework is easily obtained from resources provided by
organizations such as Environment Canada, such as local climate gauge stations, river flow gauges,
and the Canadian River Ice Database. Similar data sources are available in many other northern
countries facing the risk of ice jams. With these resources combined with observations of the
timing of historical ice jams, this framework can be easily extended to many other rivers, not only

in Canada but abroad.
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Chapter 3: Assessing and Predicting the Severity of Mid-Winter Breakups Based on Canada-
Wide River Ice Data

The prediction of MWB severity has been hampered by a lack of data in many studies. This
chapter presents a new analysis of the severity of MWBSs in Canada on a national scale, combining
the Canadian River Ice Database (CRID) and the National Resources Canada (NRCan) gridded
climate dataset. Multiple input selection techniques are utilised to identify the primary drivers of
MWABs on a national scale, successfully selecting the key variables linked to the severity of the
events. A random forest model developed using the identified inputs successfully classified the
severity of the events, and a new threshold for the triggering of the events selected based on the
identified variables was found to be significantly more accurate than previously proposed

thresholds.
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Abstract

Mid-winter breakups (MWBS), consisting of the early breakup of the winter river ice cover
before the typical spring breakup season, are becoming increasingly common events in cold region
rivers. These events can lead to potentially severe flooding, while also altering the expected spring
flow regime, yet data on these events is limited. In this study, a newly released Canadian River Ice
Database (CRID), containing river ice data from 196 rivers across Canada obtained from time
series analysis, was used to analyse these MWBSs on a previously impossible national scale. The
CRID data was combined with the Natural Resources Canada (NRCan) gridded daily climate
dataset to identify a list of potential hydrologic and climatic drivers for MWB events. Techniques
such as correlation analysis, Least Absolute Selection Shrinkage Operator (LASSO) regression,
and input omission were combined to select 20 key drivers of the severity of MWB events. A
random forest model that was trained with these drivers using data-driven modelling techniques
successfully classified the MWBs as either low, medium, or high severity, achieving an overall
accuracy of 80%. A new threshold for the prediction of MWB initiation based on climatic
conditions was subsequently proposed through the use of optimization via an exhaustive grid
search and its accuracy in identifying MWBs exceeded those proposed by previous studies. The
new threshold used in conjunction with the random forest model provide valuable tools for both

the prediction of MWBSs and the assessment of their potential severity.

Keywords: River ice; breakup; flooding; prediction; data-driven modelling; time series analysis
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3.1 Introduction

River ice formation and breakups are a yearly phenomena on many Canadian rivers and are
often source of the highest annual flows. In recent years, there has been an increasing risk of Mid-
Winter Breakups (MWBSs), which are the early breakup of a river ice cover before winter ends
(Beltaos et al., 2003). These typically result from unseasonably high temperatures and are followed
by temperatures returning to typical seasonal values and the reformation of an ice cover. In addition
to exposing the river to higher than usual flows more than once per season, they also carry the risk
of producing ice jams, where broken river ice becomes restricted in the channel, leading to a
damming effect on flows (Massie et al, 2002, Beltaos 2002, Rokaya et al., 2018). There is the
potential for these jams to freeze in place when temperatures return to seasonal levels, creating a
semi-permanent dam on the river (Beltaos 2003). Further, these events alter the subsequent spring
breakup on the river, greatly affecting the expected flow regime by reducing expected flows which
can have impacts on the hydrology and ecosystem of downstream basins (Beltaos et al., 2006).
Many studies have noted the increasing frequency of these events throughout North America
(Prowse et al., 2002, Huntington et al., 2003, Carr and Vuyovich, 2014). Because of this, it is of
great interest to develop a better understanding of the key factors, both at the start of the ice season
and before melt occurs, that can trigger a MWB and their effect on the severity of the resulting

MWB.

Several past studies have applied large scale data analysis techniques to the spring breakup of
river ice cover. For example, de Rham et al., (2008a) investigated annual high water events in the
Mackenzie River Basin, investigating the spatial distribution of open water and breakup dominated
high flows. They concluded that high water events in the southern portion of the basin were

dominated by open water flows while those in the north were dominated by spring breakup flows.
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This was further investigated through a spatiotemporal analysis of the last ice affected dates of 29
Water Survey of Canada (WSC) gauges in the basin (de Rham et al., 2008b). Through the
extraction of the breakup and peak water levels and subsequent trend analysis it was found that the
timing of breakup is trending earlier throughout the basin, with longer breakup periods expected.
Goulding et al., (2009a) examined the drivers of breakup and ice jamming in the Mackenzie Delta
through time series inspection. Trend analysis using Mann-Kendall and Sen’s slope revealed that
the peak stage in the Delta was most influenced by upstream discharge while timing of breakup
was most influenced by ice conditions such as thickness and the speed of melt, and that breakups
in the Delta were trending towards longer melts, lower peaks, and earlier timing. Further research
incorporating spatial mapping and analysis of both ice driven and open water driven peak flows
reinforced these conclusions (Goulding et al., 2009b). While these papers investigated the drivers
and trends in breakup, they were focussed largely on single regions within the country and

investigated only spring breakup and open water events.

Past studies on the phenomena of MWBSs have looked at these events in a generalized sense,
emphasizing their increasing frequency, but due to the lack of readily available data were unable
to do any detailed modeling. Beltaos (1999) provided an overview of the effects of climate change
on the Saint John Rivers ice breakup regime. It was noted that there was an increase in mild winter
days over the past 80 years, with a trend of spring breakup occurring earlier that was tied to an
increase of mid winter breakup events carrying a risk of ice jams freezing in place and flooding.
Beltaos and Prowse (2009) investigated the impacts of climate change on the timing and severity
of ice events, including breakup and ice jamming. Their findings indicated a trend towards shorter
ice seasons and earlier breakups with the potential for mid winter ice jams increasing as a result.

Further, it was found that the changes to breakups occurring both in mid winter and in spring would
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be driven by changes in warming rates and snowpack depths, with potentially severe

environmental impacts both to habitats and hydrology.

Research has also been conducted on MWB severity and drivers with varying levels of success.
Prowse et al., (2002) investigated the drivers of MWBS, focussing on the effects of temperature in
triggering these events. They defined a climatic threshold of 25 melting degree days (MDD), the
sum of temperatures over 0°C over 7 days as a major trigger for breakups. Similarly, Carr and
Vuyovich (2014) also defined a threshold for the trigger of an MWB. Their threshold considered
temperature as well as precipitation, with values of 8 MDD or 2.8 mm of rain over a period of 5
days. Both of these thresholds were investigated by Newton et al., (2017) in their study of the
hydro-climatic drivers of MWBs in western Canada. In this study, a database compiled from
gauges on 90 unregulated rivers was used to study the influence of daily temperature and
precipitation on MWBs in 5 different climate regions, with a larger “temperate” region defined as
the area where solid, sufficiently thick ice cover is expected to form while still being susceptible
to mid-winter warm spells. In total, 52 MWBs were identified from 21 rivers in the considered
region. The climate conditions preceding these MWBs were then compared to the thresholds
proposed by Prowse et al., (2002) and Carr and Vuyovich (2014), finding that the first threshold
was inaccurate, only accurately predicting 11% of the MWBs, while the second was more accurate,
predicting 60% of all MWBs. While the results of this research were promising, it was limited
both by the quantity of data s and in the scale of the considered region, only including the western

coast of the country.

Machine learning techniques have been previously applied to model and predict a variety of
river ice phenomena. White (1996), Massie et al., (2002), and Mahabir et al., (2006) utilised

logistic regression, artificial neural networks, and hybrid neuro-fuzzy systems for the prediction
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of ice jam timing on rivers, however they encountered issues related to the availability of data.
Spring breakup has also been modeled using techniques such as artificial neural networks (Zhao,
2012, Guo et al., 2018), adaptive neuro-fuzzy inference systems (Wang et al., 2012, Sun and
Trevor, 2015, Sun and Trevor, 2018), stacking ensembles (Sun, 2018), and support vector
machines (Wang et al., 2010, Barzegar et al., 2019). These studies often focus on predicting the
water levels or ice thicknesses associated with these events, however some have focused on the

specific timing of spring breakup, with data availability often being a limiting factor in the results.

This study focuses on the application of return period analysis, statistical and spatial analysis,
and machine learning techniques to investigate the primary drivers of MWBs and predict the
Severity of MWBSs on a national scale. The study was facilitated through the use of a newly
developed river ice dataset containing data on 458 MWBs occurring throughout the country.
Through this investigation, a generalised set of key indicators of MWB occurrence are
identified and their linkages to MWB severity are examined. A data driven model capable of
accurate prediction of MWB severity and a new threshold providing highly accurate indication of
MWAB occurrence were both developed, outperforming results of past studies with similar goals.
This is the first attempt to assess and predict the severity of MWBs in Canada at a national
scale. It allowed a greater understanding of drivers of MWBSs, and a clearer relationship

between the drivers and severity of the MWB events.

3.2 Data

3.2.1 The Canadian River Ice Database (CRID)

One of the primary data sources for this study, the Canadian River Ice Database (CRID)
contains an extensive amount of data on river ice throughout the country extracted from WSC
gauge records by de Rham et al., (2020) using time series analysis. The extraction process involved
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visual inspection of water level time series records according to a process laid out by Beltaos
(1990), requiring detailed criteria for each river ice event to be identified before the timeline of
each river ice season could be constructed. The definition of each event was primarily based on
the time series of water levels, with peaks and lows occurring throughout the winter season acting
as indicators of distinct events. The CRID contains data from 196 gauges in Canada, with 46 on
regulated rivers and 150 on unregulated rivers. For each season, up to 15 river ice related events
are identified and the corresponding water levels, discharges and event timings are recorded. One
of the key events recorded is the occurrence of MWBS, identified as peaks in the flow record
associated with higher-than-average winter temperatures at nearby climate stations, historically a
difficult task (Beltaos 1990). The instantaneous MWB water level represents the onset of ice cover
movement at a site during the winter season and is identified as a spike on the rising limb of the
water level record (de Rham et al., 2020). For each MWB event, the event date and associated
discharge are recorded along with the water level. Additional water level, flow, and ice thickness
data were also recorded for each event if available. To demonstrate potential applications of the
data, an initial trend analysis was conducted for the calculated interval representing ice cover
duration, the span between the date of freeze-up and the date of break-up. Their primary findings
through this analysis were that ice-duration was decreasing and breakups were occurring earlier
throughout the country, with only some gauges in the southwest experiencing longer seasons (de

Rham et al., 2019).

The 196 gauges of the CRID are shown in Figure 3.1, with the gauges containing historical
MWBs highlighted with the number of MWB events. There are a total of 52 gauges with MWB
events mainly concentrated in two major regions of the country: the southwest (in BC and Alberta)

and the southeast (in Ontario, Quebec, New Brunswick, and Newfoundland and Labrador). The
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locations of these gauges are largely outside of the colder northern portions of the country and are
more frequently affected by mid winter thaws. Temporal coverage varies from gauge to gauge
depending on period of operation, with the earliest MWB occurring in 1955 and 301 of the MWB
station years occurring after 1990. 38 of the gauges are located on unregulated rivers, while 14 are
on regulated rivers containing structures altering the flow regime in the rivers. Data on 452 MWB
events are contained in the CRID amongst the 52 stations where they have been observed. Outliers
in the time water level or discharge time series stemming from gauge repositioning or
measurement error were identified and corrected after consultation with Environment and Climate
Change Canada. Historical notes were used to identify the dates of gauge datum changes and the
corresponding datum measurements, allowing corrections to be made. In total 7 gauges had
portions of their record adjusted, including 28 station years with MWBs. The CRID data that was
utilised in this study for the prediction of MWBs is listed in Table 3.1. This data consists of all ice

cover related variables preceding the occurrence of MWB events.
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Location of CRID Gauges and Amount of MWBs
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Figure 3.1: Locations of gauges included in the CRID. Number of MWBs at affected gauges is

given by color scale.

Table 3.1: List of events and associated variables in the CRID used for prediction of MWBs.

Event Variables

First Day with Ice Backwater Date

Freeze-Over Date, Time, Water Level, Flow,
Water Levels of next 30 days

First Minimum Winter Water Level Date, Water Level, Flow

First Minimum Winter Flow Date, Water Level, Flow

MWAB Initiation Date, Time, Water Level, Flow

Maximum MWB Water Level Date, Time, Water Level, Flow

3.2.2 NRCan Gridded Climate Data
The primary source of climate data for this research was the Natural Resources Canada
(NRCan) Daily Gridded Climate set, providing 0.1-degree gridded data across the country

spanning 1950-2010. Variables included in the initial data are daily minimum temperature, daily
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maximum temperature, and daily precipitation. This data was derived from quality-controlled, but
unadjusted (without homogenization or procedural changes), station data from the National
Climate Data Archive (NCDA) of Environment and Climate Change Canada data (Hutchinson et
al., 2009) and interpolated onto a high-resolution grid using thin plate splines. (McKenney et al.,

2011, Hopkinson et al, 2011).

Geographic information system mapping was used to extract daily minimum and maximum
air temperature and daily precipitation data from the nearest NRCan grid point at each of the
gauges in the CRID where MWBSs have occurred. The minimum and maximum temperature values
were used to calculate a single daily mean temperature value for each day in the time series
(McMaster and Wilhelm, 1997). These values were used to compile a series of climate variables
for attribution analysis of MWBs. Temperature values were also used to calculate a daily value for
Accumulated Freezing Degree Days (AFDD), the sum of temperatures below 0°C beginning from
a reference date, in this case October 1%, the beginning of the Canadian water year (Boyd, D.,
1979). Over the course of the winter these values would represent the magnitude of how cold the
season had been. The daily total seasonal precipitation cumulatively summed from the beginning

of freeze up was also calculated to account for the depth of snowpack over the winter.

3.3 Methodology

3.3.1 Trend Analysis

Trend analysis of MWBSs was conducted using the Mann-Kendall (MK) trend test for time
series data based on it’s previous successes in applications related to river flooding (Du et al.,
2015, Goulding et al., 2009a, Hamed and Rao, 1998). MK has been widely used for trend analysis

in hydrological studies as it does not require the data it’s applied to to be normally distributed
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while also not being affected by missing data points. For a time series X=x1, Xz, ..., xn, a statistic

S is calculated using Equation 3.1.

S = nz_‘? zn: sign(x; — x;) (3.2)

i=1 j=i+1
where S is the MK trend statistic, the values of x; are the data being analysed for trends, and n is
the number of observations in the time series. Under the null hypothesis that no trend is present,

the statistic S tends towards normality, with variance given by Equation 3.2.

var(S) = % [n(n—1)(2n +5)] (3.2)

The test statistic z for the MK test is described by Equation 3.3.

s—1
[F—=  s>o0
se
z=10, S=0 3.3)

S+1
, $<0
se

where se is the square root of var. The p-value derived from the area under a normal distribution
curve at the value of z will be assessed against a 95% confidence interval for this MK test, where
a value less than 0.05 for the p-value would indicate the presence of a trend, allowing the null-

hypothesis of no trend to be rejected.

3.3.2 Return Period Analysis

The return period of each MWB was calculated at each of the gauges independently. At
each gauge, ice affected flows and water levels were first normalised through the subtraction of
the means. A Weibull distribution, traditionally used in the assessment of flood return periods on

rivers (Apel et al., 2006, Vervuren et al., 2003), was then fitted to each of the water level and flow
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curves, using maximum likelihood estimation to fit parameters (de Rham et al., 2008a). The

probability density function (PDF) of the Weibull distribution is presented in Equation 3.4.

f(xc) = c/2]x| texp(|x]) (3.4)
where c is the shape parameter fitted for the distribution and is greater than 0. Equation 3.5 is used

to calculate the plotting position of return periods of the historic MWBS.

R=m+1)/m (3.5)
where R is the return period of the event in years, n is the number of years of water level records,
and m is the magnitude ranking of the event. Stations with less than 30 years of ice season data,
including both years with and without MWBS, were excluded from this analysis. In total, 50 of

the 52 stations with MWBs had sufficient data to be included in this analysis.

3.3.3 Driver Identification

A series of potential drivers were identified for early indication of MWBSs based on the
NRCan climate data and the CRID data. To determine the drivers best suited to provide early
indications of MWB occurrence, a multi-step variable selection process was employed consisting
of correlation analysis, regression analysis, and input omission (Hall and Miller, 2009,
Meinshausen and Buhlmann, 2006, Galelli et al., 2014). While there are various other techniques
that can be employed including analysis of variable distributions or principal component analysis,
this process ensures that each of the possible drivers are considered in the selection process to
prevent the risk of excluding vital features while also ensuring that redundant or detrimental
drivers are excluded. This combination of multiple selection methods considers each driver
individually while also employing a combination of a typical forward selection approach and a
modified backward elimination process employing shrinkage, avoiding biased regression

coefficients typical of a standard backwards approach (Tibshirani, 1996). Potential issues
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stemming from non-linear relationships between drivers are also addressed through the selection

of a regression algorithm capable of functioning in non-linear problems in the second step.

The first step of this process involved correlation analysis of the candidate drivers against
the three variables representing MWB severity: water level, discharge, and return period
corresponding to the maximum MWB water level (Hmwwm). Pearson’s correlation was used as the

primary metric for this analysis, described by Equation 3.6 (Benesty et al., 2009).

cov(X,Y)

-~ 7 3.6
Pxy Oy 0y (3.6)

where py y is the Pearson correlation between variables X and Y, cov(X,Y) is the covariance
between variables X and Y, and gy and oy are the standard deviations of variables X and Y. A
Pearson’s correlation value approaching 1 would represent an increasingly strong positive
correlation, a value approaching -1 would represent an increasingly strong negative correlation,
and a value of 0 would represent no correlation between the variables. By conducting this analysis
for all drivers to the three MWB severity metrics, early indications of potentially redundant drivers
could be identified while drivers with stronger correlations indicate stronger potential as

predictors.

The second step of this process involved initial driver selection using Least Absolute
Selection Shrinkage Operator (LASSO) regression, regressing the full input set against the three
variables representing MWB severity. A LASSO model fits a regression with an L1 penalty on
non-intercept coefficients in the regression equation (Tibshirani, 1996). This allows the regression

to perform initial variable selection through using a shrinkage factor, detailed in Equation 3.7.
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p
B = argmaxg e(Blyie, A) — /12|,8q| (3.7)
q=1

where B, the coefficient or weight for a particular variable, is estimated through maximizing the
likelihood function (Bly;:, A), with y;, representing the observed value of the predictand, A
representing the pool of potential predictors, A the tuning parameter, and ¢ the L1 regularization
penalty which focuses on reducing the weights of each variable, often driving small weights to
zero. The tuning parameter A was selected through 5-fold cross validation on the data, subdividing
the data into five portions and building a model based on four then testing the model against the
fifth. Each of the five possible data combinations is tested with each of the possible A values and
the value producing the best performance is selected. The final equation developed resembles that
of a multiple linear regression, shown in Equation 8, where the b parameters would be replaced by
B.Through this, the drivers selected by the LASSO algorithm from the full input set (those with a
non-zero f3 value) for regressing each of the three targets were able to be ranked based on the order
in which the regression included them and the value of their final coefficient, providing an

indication of their importance (Sermpinis et al., 2018). Drivers not selected for inclusion in the

fitted LASSO regressions could be excluded from subsequent analysis.

Following this, the remaining ranked drivers selected from the LASSO analysis were tested
using an Input Omission (10) process against a Multiple Linear Regression (MLR) to the three

targets, detailed in Equation 3.8.

y=a-+ byxy + byx, + - byx, (3.8)
where a is the intercept and b are the coefficients for each of the predictor variables x;, predicting
the response y (Goswami and Brahma, 2019). An MLR equation was constructed using all drivers,

and an additional equation was developed for each variable where it was omitted from the predictor
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variables. Changes in mean squared error were calculated and drivers whose omission either
decreased the value or resulted in no change were removed from the driver pool to develop a final
driver selection (Snieder et al., 2020). This two-step process of LASSO and 10 functions to reduce
the initial candidate driver pool to those that showed the strongest link to the predictand variables.
The final driver selection could conceptually be used to identify a new threshold for the initiation
of MWBs by identifying the ideal climatic variables to base a threshold around. Identified climatic
variables would be run through a grid search process to identify the values that maximize the

prediction of MWBs from the full dataset.

3.3.4 Classification Algorithm

Following the final selection of drivers, a data-driven modelling algorithm, random forest,
was used to test the effectiveness of the drivers in classifying the severity of MWB return periods.
The amount of events in the severity classes would be uneven to ensure the model is capable of
capturing the uneven distribution of rare events while also ensuring each severity class was
distinct. A random forest model develops an ensemble of classification trees through bootstrap
samples of the dataset, as shown in Figure 3.2 (Zhou et al., 2019a and 2019b). Each bootstrap
sample set is used to develop an independent classification tree and a separate prediction, and the
predictions of all bootstrap sample sets are used to output a final prediction (Liaw and Wiener,

2002). This process is represented in Equation 3.9.

Ms

f= (3.9)

m:
where £(x) is the overall prediction of the random forest, M is the number of bootstrap ensembles,
and f™(x) is the prediction trained on the m™ bootstrap sample. Overfitting of random forest models

is a concern particularly with smaller datasets, thus in some cases it is recommended to use
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stopping criterion to limit tree growth to account for this problem. As this model was built for
classification, which seldom encounters the overfitting effect as a result of the ensemble structure
which also limits error increases due to bias (Segal, 2003, Wu and Zhang, 2016, and Javeed et al.,
2019), a default stopping criterion of zero with no pruning was used producing fully grown trees,
as recommended by Hastie et al., (2009). As a results, with no stopping criteria to meet, full trees
will be grown for each member of the random forest according to the values selected for the model
hyperparameters. These values would be selected using 5-fold cross-validation, with a grid search
being used to try each possible combination of the considered hyperparameters one at a time
(Probst et al., 2018, Albers et al., 2016). The hyperparameters included in model tuning were the
number of estimators (number of trees included in the forest), maximum features (the number of
features considered when determining the best split), maximum depth (maximum levels of the
tree), minimum samples per split (number of samples needed to split a node), and minimum
samples per leaf (number of samples needed at a leaf node). A minimized Gini impurity, the
measure of an incorrect classification’s likelihood, was used as the target value to split each node.
A default learning rate of 0.1 and step-size of 10 (Hastie et al., 2009). The final model would be
subsequently trained and tested on a stratified and randomized 90/10 data split with variables
normalized. The variables of test data would be run through the trained model to obtain a set of
predicted severity classes which would then be compared to the actual classes those observations

belonged to.

Model accuracy can be assessed using metrics based around the class-by-class rate of true
positives (tpi, the number of correctly classified members of the class), true negatives (tni, the
number of correctly classified non-members of the class), false positives (fpi, the number of non-

members of the class incorrectly classified into the class), and false negatives (fni, the number of
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members of the class incorrectly classified as non-members). With these values, the metrics
Overall Accuracy (average effectiveness of the classifier per class), average Precision (agreement
of the classifier’s labels with the true class labels per class), and average Recall (effectiveness of
the classifier in identifying class labels) can be calculated using Equations 3.10-3.12. Additionally,

the rate of true negatives, or average Specificity can be calculated using Equation 3.13.

k tp; +tn;
i=1%p. : ) -
Overall Accuracy = Pt tTZ + /et (3.10)
k tp;
i= ] -
Precision = t+l+m (311)
k tpi
i= ; ;
Recall = %ﬁh (3.12)
k tni
=1t + Fp.
Specificity = ++fpl (3.13).

where k is the total number of classes (Sokolova and Lapalme, 2009). These metrics are commonly
used in the assessment of multi-class models (Shahri et al., 2020 and Shahri et al., 2021). By
plotting the relationship between the Recall, or true positive rate, and 1 — Specificity, or the false
positive rate, a Receiver Operating Characteristic (ROC) curve can be developed. This curve plots
the ability of the model to classify each target class, with a curve produced for each of the
considered classes by looking at the accuracy of their predictions. The Area Under the Curve
(AUC) is a useful indication of model skill, producing a value between 0 and 1.0, with values of
0.5 representing no discriminatory ability, 0.7-0.8 being acceptable, 0.8-0.9, considered excellent,

and anything above 0.9 demonstrating outstanding ability (Mandrekar, 2010).
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The trained model can also provide an indication of variable selection accuracy through
the output of variable importance values. The value of a variables importance in a random forest
model indicates the level of contribution it provides in lowering the Gini impurity of the model
predictions, based around overall classification rate. This allows an indication of whether any
selected variables are further redundant and could potentially be excluded, or if each variable
provides an even contribution to the model results. While non-stationarity can be a concern as a
result of climate change in these modelling applications, the developed model will be built on a
combination of hydrologic and climatic variables, which addresses this potential issue (Li et al.,
2016, Ghaith et al., 2020). Random forest models have historically been successful in classifying

flood hazard risks (Wang et al., 2005, Sadler et al., 2018).

This final model will be valuable in demonstrating the strength of the selected drivers in
predicting the severity of a subsequent MWB in combination with the techniques applied in driver
selection. The predictions of the model are based on the assumption that there are relationships
present in the data, specifically between the variables and the severity, which are demonstrated
through the variable selection process, though not necessarily described in detail. While random
forest models have historically encountered issues related to computational time, especially in real-
time predictions, these issues are not a concern in this application due to the size of the data. The
rareness of MWB events limits the amount of data needed for initial model training, while the
variable selection process reduces the amounts of data needed for real time monitoring, preventing

issues stemming from computation time and model complexity.

67



»  Treel ,| Output Y R
~3 J|  Tree2 o| Output}, R -
) Majority
g Voting of .
En . ‘ ; Classes Final Mgdel
g ! g " Selected by Prediction
‘E cach Tree (Y*)
=
g » Treen-1 ,| Output ¥,,, >
»] Treen »| Output ¥, >

Figure 3.2: Random forest internal model structure.

3.3.5 Algorithm Implementation

Analysis in this study was completed using Python, version 3.7 (Van Rossum and Drake,
2009). Additional packages implemented in these applications included Numpy (Oliphant, 2006),
Pandas (McKinney, 2010), scikit-learn (Pedregosa et al., 2011), scipy (Virtanen et al., 2020), and

seaborn (Waskom, 2008).

3.4 Results and Discussion
3.4.1 MWB Trend Analysis

The annual number of MWBSs throughout Canada was compiled from the CRID and plotted
as a time series in Figure 3.3. This time series was used as the basis of the MK trend test on the
annual number of MWBs in the country. This analysis produced an S value of 1061, which
provides an indication of an increasing trend, an se value of 15.9, a z value of 6.63, and a p-value

of 3.47x10"1, which indicates a statistically significant trend at a 95% confidence interval. It can
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be concluded based on both this analysis and the visible trend in Figure 3 that there is an increasing
trend in the frequency of MWBs in Canada, emphasizing the importance of their analysis. A trend
analysis of the MWBs at the individual gauges within the CRID was further conducted. MK testing
of the water levels and timing of the events at individual gauges was less conclusive, displaying
no statistically significant trend at all but one of the rivers, the exception of which had an increasing
trend in water level. Thus, while the frequency of these events is clearly increasing, there is no

clear increase or decrease in their severity on a regional scale.

30
25 (]

20 P P
15

Number of MWBs

1955 1965 1975 1985 1995 2005 2015

Figure 3.3: Number of MWBs occurring each year in the CRID from 1955-2015 including the

trend line.

3.4.2 Return Period Analysis

At each of the gauges with MWB events and sufficient ice season data, a Weibull
distribution was fitted to the maximum ice affected water level of each year. The fitted distribution
was used to calculate the return period of each maximum ice affected water level for each ice
season including the maximum MWB water levels. It was found that a significant portion of the
high return period ice-affected water levels in the CRID were caused by MWBs. Figure 3.4A

shows the number of MWB water levels with return periods over 5 years plotted at each gauge
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location with the average return period being 3.47 years. It was found that more southern locations
had a higher number of such events, and that every gauge where a MWB had occurred produced
at least one with a return period exceeding 5 years. Figure 3.4B plots the percentage of water
levels with a return period of over 5 years caused by MWBSs. In the southern portions of BC and
Alberta, as well as Southern Ontario and Quebec, the percentage is notably higher, approaching
85% at some gauges. While the MK tests on the water level and flows related to these MWBs
indicated that the severity of these events has no significant increasing trend, on average these
events are typically much more severe than the regular ice season flows. Because of this, the
increasing trend in frequency that was found for these events indicates an increasing likelihood of
high water level events related to MWBSs on these rivers, which can be much more severe than

typical spring breakups.
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Figure 3.4: A) Number of MWBs where water levels with > 5 year return period and B) percentage
of RPs over 5 years caused by MWBs at each gauge where they have historically occurred in the

CRID.
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3.4.3 Driver ldentification

An initial selection of 130 potential indicator variables was assembled for each of the 452
MWABs in the CRID. Each MWB would be treated as a discrete event with the goal of using a
selection of the 130 indicator variables to predict the level of MWB severity via classification.
Table 3.2 details these variables, consisting of ice-related events preceding MWBs from the CRID
and climatic indicators derived from the NRCan climate time series, all of which could provide
early indication of ice, snow, or climatic conditions preceding MWBSs occurrence. Each variable
includes the name they were coded as in analysis. The events included the first ice affected day
and the freeze up date, which describe the initial traits of the ice cover, and the dates of the first
winter low flow and low water level, providing an indication of the development of both the ice
cover and the flow regime in the river preceding an MWB. Dates used in the analysis were
calculated as the number of days since the beginning of the reference period, October 1%, Water
levels and flows were normalised at each station to prevent any inconsistencies being present in
modelling. The AFDD was used as a measure of how cold the ice season had been preceding an
MWAB, with values included from each of the 30 days preceding the event. The change in AFDD
between each of these 30 days and the value measured on the day an MWB occurred were also
included, providing an indication of how quickly the warming occurred during the thaw preceding
the MWB. Similarly, the total precipitation from the start of the winter season was calculated up
to each of the 30 days preceding the MWBS, providing an early indication of how much snow was
present before thaw occurred. The change in total precipitation between each of the 30 days
preceding the MWB and the date of the MWB was also calculated, providing an indication of the

amount of precipitation that fell directly preceding the MWB, potentially as liquid.
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Table 3.2: Initial variables considered as potential MWB drivers.

Category

Initial Inputs

Coded Name

Number of Features

Date

Water Level

Flow

Temperature

Precipitation

First Ice Affected Date,

Freeze Up Date, Winter

Low Level Date, Winter
Low Flow Date

Freeze Up Water Level,

Winter Low Level Water

Level, Winter Low Flow
Water Level

Freeze Up Flow, Winter
Low Level Flow, Winter
Low Flow Flow

AFDD from 1-30 days,
AAFDD from 1-30 days

Total Seasonal
Precipitation (P) from 1-
30 days, P in last 1-30
days

FIRST B_DATE,
HF_DATE,
HLW1_DATE,
HLQL_DATE

HF_EXT WL,
HLW1_EXT WL,
HLQ1_EXT WL

HF_DISCHARGE,
HLW1_DISCHARGE,
HLQ1 DISCHARGE

AFDDi, DAFDDiI

TotP1, DPi

4

60

60

Initial analysis of Pearson correlation was conducted between each of the 130 candidate

variables and the three severity variables. Figure 3.5A-E shows heatmap results of this analysis.

Stronger correlations were found between ice event variables and precipitation variables to the

three severity targets, while the variables related to temperature largely had a weaker correlation

to these same targets, though these values varied.
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Figure 3.5: Heatmaps of the correlation between the Discharge (MWB_Q), Return Period

(MWB_RP) and Water Level (MWB_WL) of each MWB and A) CRID ice event variables, B)
(DAFDD:I), D) Total Precipitation up to day i before an MWB (TotPi), and E) change in Total

AFDD up to day i before an MWB (AFDDi), C) change in AFDD up to day i before an MWB
Precipitation up to day i before an MWB (DPi).



LASSO models were constructed as the next step of variable selection from the 130 initial
variables. Figure 3.6 shows an example of the variable implementation of the LASSO regressing
a selection of variables to the return period. Models were developed regressing the entire driver
pool to the water level, flow, and return period of each MWB. By removing those variables that
were not included in the final regression equations (having a 8 of 0 in Equation 3.7), the initial
variable selection was able to be reduced to 76 variables. These remaining variables were ranked
based on the order of their implementation in the LASSO regressions and the value of their g
coefficient in the final regression equation. Inspection of the rankings allowed an additional 35
variables to be rejected on the basis of their overall low contributions to the regression equations.
The final 41 variables were then analysed through an 10 process regressing them against the MWB
return period using MLR equations. Each variable was removed from the equation in turn,
allowing the changes in mean squared error with their absence to be calculated. Variables whose
removal resulted in either no change or a decrease in mean squared error would be removed from
consideration. Based on the change to mean squared error, a further 21 variables were removed,

resulting in the final 20 variables listed in Table 3.3.
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Figure 3.6: LASSO results example regressing a selection of variables against MWB return
period, showing the changing values of the coefficients of each variable as more are introduced to

the regression.
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Table 3.3: Final selection of candidate driver variables after analysis.

Category Initial Inputs Number of Features
Date Freeze Up Date, Winter Low 2
Level Date
Water Level Freeze Up Water Level, Winter 3

Low Level Water Level, Winter
Low Flow Water Level

Flow None 0
Temperature AFDD from 1 day before, 4
AAFDD from 12, 26, and 30 days
Precipitation Total P from 1, 5, and 12 days, P 11
in last 3, 5, 7, 12, 15, 20, 21, and
25 days

3.4.4 Classification Algorithm

Using the final selection of 20 variables, a random forest model was next trained and tested
to classify the severity of MWB event return periods. The return periods of the MWBs considered
in the dataset were divided into three categories: low severity (return period less than 2 years),
medium severity (return period between 2 and 15 years) and high severity (return period greater
than 15 years). Figure 3.7 maps the dominant category at each of the gauges in the CRID included
in MWB analysis. After completing a 5-fold cross validation to select model hyperparameters via
a grid search (with a selected value of 100 estimators from a range of 100-1000, maximum features
of 5, maximum depth of 30 from a range of 10 to 100, minimum samples per split of 2 from a
range of 2 to 5, minimum samples per leaf of 3 from a range of 1 to 5, and bootstrap selection)
producing the highest accuracy on the training set, the random forest was trained and tested using
the 20 variables. The variables of a testing set with 40 events was classified by the model and

compared to the actual classes of the data, with the resulting confusion matrix shown in Table 3.4.
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The trained model produced an 80% overall accuracy, a precision of 87% and a recall of 71% on
the testing data. The ROC curve for the testing data is shown in Figure 8. An AUC of 0.8 was
obtained for low severity, 0.735 for medium severity, and 0.824 for high severity, indicating
overall good ability of the model to capture the MWB severity. Many of the events were classified
correctly, with the majority of incorrect classifications being the prediction of a low severity event
as a medium severity event. Figure 3.9 shows the variable importance plot for this model. While
the date variables obtained slightly higher values than the others, it can be seen that all of the
selected variables provided a roughly equal contribution to the reduction of Gini impurity in the
model classification. These results successfully demonstrate the strength of the selected variables
in classifying MWBs and their use as early indicators for MWB severity. The classification
accuracy of the trained model applied to the whole dataset is mapped by gauge in Figure 3.10. The
overall accuracy was 96%, with a precision of 97% and a recall of 88%. An AUC of 0.99 was
obtained for low severity, 0.99 for medium severity, and 0.936 for low severity. Nearly all gauges
had high classification accuracies, with the exception of one gauge in northern Alberta, which had
a 0% classification accuracy. Further analysis of this gauge shows that there was only one MWB
in its record, which was considered a high severity event by the criteria described above. Based on
the overall results, the high severity events are the hardest to classify due to the small number of

them contained in the dataset.

To investigate the structural uncertainty of the final model and the driver selection process,
additional models were developed for comparison. The first of these models was constructed using
all 130 of the variables considered in Table 3.2. The constructed model was a random forest
classifying the return period in the same manner as the curated model detailed above, with training

and testing being conducted in the same manner. The resulting model had a 63% overall accuracy,
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a recall of 46%, a precision of 67.5%, and an average AUC of 0.65, a decrease in comparison to
the curated model. This indicates that the reduced variable set provides a much greater indication
of MWB severity through the removal of redundant variables whose linkages to the severity are
less significant, less relevant, and misleading (or potentially correlated non-linearly with other
variables), while also increasing computational efficiency through the removal of unneeded data.
A second model was developed using an alternative method of AFDD calculation from the method
described in Section 3.3.1. In this method, AFDD was calculated from the first day of below 0
temperatures rather than the generalized start date of October 1%. As the only AFDD variable
present in the final curated dataset was AFDD1, the AFDD up to the day of an MWB, this was the
only factor that would change in the final model. DAFDDi variables would remain the same as
they are the day-to-day difference in AFDD directly preceding the MWB event. By replacing the
AFDD1 variable and retraining the model, an overall accuracy of 72%, recall of 65%, precision of
81%, and an average AUC of 0.72 were obtained, indicating that the generalized method of

calculating the AFDD provides a better indicator of MWB severity.
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Figure 3.7: Map of the dominant cluster of MWB severity at each gauge in the CRID.

Table 3.4: Random forest model classification confusion matrix.

Predicted
Low Medium High
Low 17 3 0
Medium 4 14 0
E
B High 1 0 1
<
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Receiver Operating Characteristic Curves
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Figure 3.8: ROC curves from the trained random forest classification model for the test data.

81



010 4

008

006

004 4

2Iuepiodul)

002 4

000 -

M 13 TOH
1Zdd

0Zdd
Z10a4va

TN 1%3 TMTH
S1dd
97004v0
Z1doL

gdioL

£dd

71d0

zaaLy

Gd(d

£dd

I 1x3 4H
SZda
0£0a4va
TdioL

31vad 4H

Variable

Figure 3.9: Variable importance plot from the trained random forest classification model.
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Classification Accuracy of Random Forest at Each Gauge
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Figure 3.10: Classification accuracy of the random forest for the full dataset at each gauge in the

CRID with MWBs.

3.4.5 Comparison with previous studies

Investigation of the use of thresholds to predict the occurrence of MWBs was also
conducted. Previously, two thresholds for predicting the initiation of MWBs were proposed
(Prowse et al., 2002;Carr and Vuyovich, 2014). The accuracy of each of these thresholds was
evaluated against the data collected for this research, followed by the construction of a random
forest model classifying MWB severity based solely on the threshold variables. The threshold
proposed by Prowse et al., (2002) of a value of 25 MDD over the 7 days preceding an MWB, was
accurate for only 0.22% of the MWBs in the CRID, as shown in Figure 3.11A. Using only the
single variable of this threshold in a random forest classifying MWB severity, an overall accuracy
of 26% was obtained. The threshold from Carr and Vuyovich (2014), 8 MDD or 2.8mm of
precipitation over the 5 days preceding an MWB, was accurate for 12% (in the case of the MDD)
and 80% (in the case of the precipitation) of the MWBSs in the CRID, as shown in Figure 3.11B. A

random forest model using these two variables obtained an overall accuracy of 48%.
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With these results in mind, a new threshold was proposed through analysis of the values of
MDD and precipitation for the 30 days preceding all MWBs contained in the CRID. An
optimization process focused on maximization of the percentage of MWBs correctly predicted by
threshold values was developed, with each possible combination of MDD ranging from 0 to 25 in
increments of 1 and precipitation ranging from 0 mm to 10 mm in increments of 0.1 mm. A
threshold of 4 MDD and 8 mm of precipitation in the 20 days preceding an MWB was selected,
with an overall accuracy of 96%, shown in Figure 3.11C. The newly proposed threshold was also
tested for use as classification variables, obtaining an overall accuracy for MWB severity of 64%.
This new threshold exceeds both the accuracy in predicting MWBSs and the classification accuracy
of the previous thresholds when measured against the CRID data, however it does not outperform
the final input set developed above in classifying MWB severity. This indicates that while these
thresholds have some use in predicting MWB occurrence, predictions of the MWB severity are a
much more complicated process requiring additional variables to be considered beyond the values
presented by the thresholds. Additionally, while these thresholds may provide some early
indication of the occurrence of MWBS, due to their simplicity they cannot be solely relied on for
accurate prediction of MWB timing and additional research would be necessary to develop a more

dependable method of predicting the timing of MWBs.
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Figure 3.11: Maps of the accuracies of MWB thresholds at each CRID gauge for A) Prowse et al.,

2002, B) Carr and Vuyovich, 2014, and C) the newly proposed threshold.

3.4.6 Discussion

In this study, a combination of LASSO, correlation analysis, and input omission was used
to select input variables from the initial selection of 130 potential variables. Using this multi-step
approach, some of the shortcomings of each method were overcome while ensuring that multiple
facets of input relationships were considered. The variable selection methods have had past
successes in previous research and were successful in this application in determining a set of
drivers with a strong ability to predict MWB severity, but they still have shortcomings. For
example, care must be taken when restricting variables to avoid excluding their potential effects
in the classification model, and variable distribution should be considered when determining which
variables to exclude (Chowdhury and Turin, 2020). Other methods for input selection exist with
their own advantages and shortcomings including methods such as Bayesian variable selection,

best subset regression, stepwise selection, and principal component analysis (George and
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McCulloch, 1997, Abdi and Williams, 2010, and Zhang, 2016), although it is worth noting that

there is no universally accepted method.

These concerns also extend to the model construction, where steps were taken in choosing
hyperparameters, division of testing and training data, and model structure to avoid overfitting
issues common in machine learning applications. For example, although random forest is known
for its ability to limit overfitting without substantially increasing error, yet the risk remains for
this model type. . Also, though the 90/10 data split is commonly used in the literature for training
and testing (Ahmad et al., 2018, You et al., 2020), there is no consensus on the optimal split and
other ratios (e.g., 80/20 and 70/30) can be found in many other studies (Garcia and Muga, 2016,
Wahid et al., 2017). Future work to account for this can include the use of different proportions of

training and testing data or different algorithms and training techniques.

Uncertainties remain present in the results both in terms of the used data and methods.
Though the data has been quality controlled, uncertainties are still present stemming from the
numerous sources and quantity of data, which increases risk of error. Some of these issues were
encountered in this study and corrections were provided, but the risk remains present. Further
uncertainties exist in both the application of variable selection and the random forest algorithm
(Mentch and Hooker, 2016 and Rahmati et al., 2019). Detailed analysis of these inherent

uncertainties may form the basis of future work.

Additionally, though the algorithm is successful for the utilised data, which includes all
possible data for MWBs in CRID, the algorithm may have issues when encountering data which
falls outside of the range of the data used (Hengl et al., 2018). It is recommended to continue
refining both the model and thresholds as new data is acquired. This is especially important as

climate change brings about more extreme and more frequent events, which may easily fall outside
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of the considered ranges. Closely related to this concern are issues potentially stemming from
spatial distribution, with a common consequence of models working accurately within the spatial
regions for which they were developed but struggling when extended beyond the training region
(Meyer et al., 2019). The current model includes data from many rivers across the country,
however the climate regions they inhabit are quite similar, particularly in their capacity for MWBs.
As climate change continues to alter the expected temperatures in winter, the distribution of these
events can be expected to shift throughout the country, thus the current approach may no longer
be applicable. With this in mind, revisions to the spatial distribution of data when training the
model, or training separate regional models, may be necessary to account for spatial and climatic

variability.

3.5 Conclusions

This study focussed on the analysis of the severity and causes of MWBs, which have
become increasingly common in Canada as a result of climate change. This study utilised a newly
released dataset, the CRID, to gain insight on MWB events occurring throughout the country. The
extensive data contained in the CRID allowed this study to conduct MWBs analysis on a scale not
possible before, providing the opportunity for a greater understanding of the main drivers of these
events. A combination of trend analysis, return period analysis, attribution analysis, and machine
learning techniques were employed to gain a better understanding of the early indicators of MWB
severity. A clear increasing trend in the frequency of MWBSs in Canada was identified, while return
period analysis found that these events are consistently more severe than the average ice events on
the affected rivers. Combining traits of the river ice cover in the early parts of the ice season and
climate conditions directly preceding the MWB events, 130 initial candidate variables were

identified. The initial variable set was reduced through the application of correlation analysis,
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LASSO regression, and input omission. Through this analysis, 20 variables that have high link to
the traits defining MWB severity were selected. These variables include the initial date of freeze
up, the low flow water levels and flow rate, and several variables representing the warming rate
and quantities of liquid precipitation occurring during the warming preceding and MWB. These
variables can be easily monitored in advance of a potential MWB, providing the opportunity for

detailed forecasting to be developed.

The strength of these selected variables’ connection to MWB severity was demonstrated
through the construction of a random forest model classifying the return period of the MWBs based
on the identified variables. This model achieved a high level of accuracy, indicating a strong
connection between the variables and the severity of the MWB events. Further, this model was
compared to previously developed threshold values for the triggering of MWBSs, as well as a new
set of threshold values developed from the extensive data contained in the CRID. The new
threshold, 4 MDD and 8 mm of precipitation in the 20 days preceding an MWB, consistently
outperformed the previous thresholds and, coupled with the results of the random forest model,
provides a new method through which both the occurrence and severity of MWBSs throughout the
country can be predicted. Through this, major indicators of MWB severity have been identified
and their utility in the prediction of MWBSs can continue to be researched. Future studies of these
drivers may investigate alternative methods for selection of drivers or model variables such as
global sensitivity analysis or principal component analysis (Ashegi et al., 2020, Ciriello et al.,
2019). The study of multiple periodicities present in the time series data as well as data non-

stationarity is also recommended.
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Chapter 4: Machine-Learning Approach for Predicting the Occurrence and Timing of Mid-
Winter Ice Breakups on Canadian Rivers

Forecasting of extreme river ice events is often challenged by the rarity of said events
relative to the larger time scale. This chapter focusses on the application of novel rare-event
forecasting techniques in the prediction of MWBs in Canada, developing a unique two-level model
structure to predict the occurrence of these events. Both model levels utilised rare-event
forecasting techniques in the configuration of data, the selection of model algorithms, and the
assessment of model accuracy. The final model configuration achieved a high level of accuracy

on the tested events at both model levels.
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Abstract

The increasingly common occurrence of Mid-Winter Breakups (MWBSs) in Canadian rivers,
consisting of the early breakup of ice cover outside of the typical spring season, is a cause for
concern. This study applied various data-driven modelling techniques to predict MWBs
occurrence and timing with sufficient lead times on a national scale using a new Canadian River
Ice Database (CRID) coupled with National Resources Canada gridded climate data. A two-level
machine learning model structure was developed, with the first level model predicting MWB
occurrence within a given period and the second level model predicting the timing of an MWB
occurrence within that period. Machine learning techniques that can handle class imbalance were
employed to address many of the issues inherent in rare event forecasting, including the
implementation of data preprocessing, the selection of algorithms and performance metrics suited
to rare events. Multiple configurations of both model levels, including variations on time series
arrangement and input variables, were tested to select the optimal model structure. The best
performing configuration, focussing on a biweekly time period, attained overall accuracies of
80.1% and 77.6% for the first and second level models respectively on the 452 MWBSs in the CRID.
In addition, probabilistic prediction results were analyzed to evaluate model uncertainty and
robustness. This new modelling framework provides the first tool capable of predicting MWBSs on
a national scale, with easily extendable methodology to locations that have not yet experienced
MWABs and can form the basis of vital decision-making support to affected communities.
Keywords: River ice; mid-winter breakup; rare event forecasting; imbalanced learning; prediction;

data-driven modelling
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Software and Data Availability
Analysis in this study was completed using Python v3.7

(https://www.python.org/downloads/release/python-370/). Data used in this study is available

through Environment and Climate Change Canada

(https://open.canada.ca/data/en/dataset/c5b58ccd-0011-4a80-8f24-034c86¢chcl4d) and Natural

Resources Canada (https://cfs.nrcan.gc.ca/projects/3/4).
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4.1 Introduction

The spring breakup of river ice cover is a yearly occurrence on rivers throughout cold
regions of the world, with many environmental processes depending on both the timing and
mechanism of the breakup (Beltaos et al., 2003). The combination of runoff from snowmelt and
melting of ice cover is important to ecosystems, especially those that depend on the higher than
usual water levels generated by these types of events (Beltaos et al., 2006). However, in recent
years it has been noted that many rivers in Canada have become vulnerable to Mid-Winter
Breakups (MWBSs), which are the early breakup of river ice cover caused by unseasonably high
temperatures and the occurrence of liquid precipitation (Prowse et al., 2002, Carr and Vuyovich,
2014). While the ice cover typically re-establishes as temperatures return to seasonal values, the
flow regime for the remainder of the season is significantly altered (Huntington et al., 2003).
Spring breakups following these events are often milder, with lower flows and water levels, which
can have significant environmental impacts to those processes that rely on spring breakups to drive
higher water levels (Beltaos et al., 2003). However, MWBs also carry the risk of river ice jam
formation where the ice rubble can freeze in place, creating a semi-permanent dam on the river
that can trigger severe flooding (Beltaos, 2003). To reduce such risk of severe flooding and their
long-term impacts on the river system, effective means of predicting MWB events are of great
interest to affected communities. Though past studies have attempted to forecast these events, they
have been limited both by the effectiveness of the methodology and the availability of data
(Newton et al., 2017).

Analysis of the spring breakup processes on rivers, typically driven by more gradual
temperature increases in combination with snowmelt runoff (Beltaos et al., 2006), has been

conducted through application of large-scale data analysis techniques at regional scales. For
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example, de Rham et al. (2008a) studied the high water events driven by the changing spatial
distribution of breakups in the Mackenzie River Basin in Canada. Through analysis of Water
Survey of Canada gauges within the basin, it was concluded that spring breakups are trending
towards earlier occurrence and longer affected periods (de Rham et al., 2008b). Trend analysis of
these events identified factors that influenced the timing and magnitude of breakups while also
reinforcing the trend towards earlier and longer breakups (Goulding et al., 2009), with additional
spatial mapping and analysis of peak flows reinforcing these findings. The breakup trends in the
Peace Athabasca Delta in Canada has also been well studied. The delta has seen a notable
decreasing trend in ice jam occurrence, leading to perched basins which rely on the flooding
triggered by these events to be replenished beginning to reduce (Timoney, 2002). Regulation on
the Peace River upstream has been generally accepted as the cause, and subsequent research has
focussed on investigating changes in ice jam frequency and severity through statistical and
modelling based means in the complex delta (Beltaos, 2017, Timoney et al., 2018, Jasek, 2019a,
and Jasek, 2019b). Statistical data analysis has also identified factors that are best indicators of ice
jam occurrence in the delta, such as winter temperatures and precipitation (Lamontagne et al.,
2021). Though these studies have investigated factors driving breakup and breakup related events
on a regional scale, their focus was limited to the more easily monitored spring breakup events and
limited to singular regions.

Research into MWBSs has historically encountered issues related to data availability and
spatial coverage, with trends being successfully modelled while forecasting is often difficult. A
trend towards earlier spring breakups on the Saint John River triggered by an increase in MWBs
was noted by Beltaos (1999), with a notable increasing trend in the occurrence of mild winter days.

Beltaos and Prowse (2009) subsequently noted an increasing risk of spring and mid winter ice jams
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on the river as a results of climate change effects. Prowse et al., (2002) and Carr and Vuyovich
(2014) conducted research into the drivers of MWBS, producing predictive thresholds based on
trends in temperature and precipitation. Though these thresholds were entirely accurate for the
specific location for which they were developed, they were found to not translate with a meaningful
accuracy to other locations through a regional investigation of MWBs in Western Canada and the
United States (Newton et al., 2017). Their research identified 52 MWBs in the considered region,
with the aforementioned thresholds being accurate for only 11% and 60% of the events
respectively as those studies were limited by the available data. The MWB database developed by
Newton et al., (2017), which covers the western portion of Canada and the United States, was one
of the largest collections of data on these types of events. Though these studies developed some
methods of simple predictions of MWBSs, there has been no attempt at the creation of a
comprehensive forecasting tool for these events.

In comparison to MWBS, the prediction of spring breakup events timing through machine
learning has been much more thoroughly researched, though these projects often focussed on a
single river or river network and are based around events with a more reliable timing. Simple
single-model algorithms such as artificial neural networks (Zhao, 2012, Guo et al., 2018) and
support vector machines (Wang et al., 2010, Barzegar et al., 2019), as well as more complicated
algorithmic structures such as adaptive neuro-fuzzy inference systems (Wang et al., 2012, Sun and
Trevor, 2015, Sun and Trevor, 2018) and stacking ensembles (Sun, 2018), have had ranges of
success in spring breakup prediction. One such example is the prediction of spring breakup ice
jams, which have been predicted with logistic regression (White, 1996), artificial neural networks
(Massie et al., 2002), hybrid neuro-fuzzy systems (Mahabir et al., 2006), and stacking ensembles

(De Coste et al., 2021). Like prediction of breakup timing, these studies were often limited to

107



specific rivers, with an added problem of accounting for rare event forecasting, a challenging data
issue in machine learning that can lead to biased results from models. The rare event forecasting
issue would extend to MWB forecasting attempts as well and has never been addressed so far.
This paper focusses on the development and application of a two-level modelling framework for
the prediction of MWB occurrence and timing on a national scale, applying machine learning and
probabilistic analysis techniques while avoiding common issues that challenge rare event
forecasting. The study combines data of 452 MWBs from affected 52 rivers throughout Canada
with a national scale climate dataset to facilitate development of four machine learning algorithms
(Adaptive Boosting, Class Switching, K-Nearest Neighbors, and Adaptive Resampling and
Combining X4). This new approach allows for the prediction of an MWBSs occurrence within a
given time period using the first level model and the subsequent prediction of the MWBSs timing
within the period using the second level model. The developed models are tested and validated
from both a classification and probabilistic standpoint, allowing the best model configuration to
be selected. This is the first successful application of these modelling techniques in the
prediction of MWBSs on a national scale. It provides an easily configured methodology for
the development of models predicting these events that is easily transferable to other
locations.
4.2 Data
4.2.1 CRID

The primary source of historical ice data for this study was the Canadian River Ice Database
(CRID), an extensive collection of data taken from a select set of Water Survey of Canada gauges
located across the country (de Rham et al., 2020). This dataset was compiled through analysis and

extraction of water level time series, utilising visual inspection techniques first proposed by
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Beltaos (1990) to identify the key river ice events of each season based on the observed changes
of water levels. Data from 196 river gauges in Canada are included in the CRID, with 46 located
on regulated rivers and 150 on unregulated rivers. Fifteen river ice related events (e.g., freeze up,
winter low flows and levels, MWBSs, secondary low flows and levels, breakups, etc.) are included
with corresponding water levels, flows, and dates recorded if available. Included in these events
are MWBs at gauges where they have been historically observed, identified as peaks in the flow
record outside of typical spring breakup periods for the gauge and associated with higher-than-
average air temperatures recorded at nearby climate gauges. Each MWB includes the date, flow,
and water level at both the initiation of the event and the peak flow if available.

Figure 4.1 shows the 196 gauges of the CRID with the 52 gauges that have had historical
MWB events highlighted. These gauges were concentrated in the southwest (British Columbia and
Alberta) and southeast (Ontario, Quebec, New Brunswick, and Newfoundland and Labrador)
portions of the country. These regions fall within the relatively warmer portions of the country that
are more vulnerable to mid-winter thaws that trigger MWBSs. In total 452 MWBSs are included in
the CRID amongst the 52 identified stations. The time span covered by the CRID varies between
gauges, with the earliest MWB on record occurring in 1955, but most (301 out of 452) MWBs
occurring after 1990. Water levels at seven gauges with MWBs (28 station years) were corrected
for outliers using historical notes relating to gauge datum changes and in consultation with

Environment and Climate Change Canada.
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Location of CRID Gauges and Amount of MWBs
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Figure 4.1: Locations of CRID gauges with locations and quantities of MWBs in color and gauges
without MWBs as open circles.
4.2.2 NRCan Gridded Climate Data

Climate data corresponding to MWB stations were extracted from the National Resources

Canada (NRCan) Daily Gridded Climate Dataset (https://cfs.nrcan.gc.ca/projects/3/4). The

NRCan dataset provides daily maximum and minimum air temperatures and total precipitation
data with a resolution of 0.1° at a national scale. The data spans 1950-2015 and is derived from
quality controlled, non-homogenized station data taken from the National Climate Data Archive
(NCDA) of Environment and Climate Change Canada data (Hutchinson et al., 2009). This station
data has been interpolated onto a high-resolution grid (i.e., 0.1° x 0.1 through thin plate splines
(McKenney et al., 2011, Hopkinson et al, 2011). In this study, climate data at the closest grid point
to each CRID gauge was extracted using geographic information system mapping techniques,
providing a complete time series of the three extracted variables for all CRID gauges. Maximum
and minimum air temperatures were averaged to obtain daily mean air temperatures. Then, the

Accumulated Freezing Degree Days (AFDD) was calculated as the sum of temperatures below
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0°C beginning from a reference date of October 1%, which is the beginning of the Canadian water
year (Boyd, 1979). Total precipitation cumulatively summed from the freeze-up date of river ice
cover was also calculated. These two values represent how cold a particular season has been and
how much snowpack has fallen, respectively.
4.3 Methods
4.3.1 Model Construction with Imbalanced Data

Data imbalance is a common issue in rare event forecasting, especially in the case of binary
classification where there is a significant difference in the number of observations in the majority
class and the minority class (Maalouf and Trafalis, 2011, Li et al., 2016). In this study there is a
massive imbalance present in the data between the majority class (periods or days with no MWB)
and minority class (periods or days with an MWB). The majority class makes up 92-99% of the
dataset depending on the configuration. Without any modifications to the traditional algorithmic
construction process, a common result of these imbalances is the classification of all cases as
belonging to the majority class. While this would represent an accuracy of 92-99%, the results
would be useless in practice, as none of the rare events were properly classified. To address these
issues, changes to the algorithm construction process can be implemented to data preprocessing,
the algorithm selection, and the performance metric selection (Haixiang et al., 2017).

4.3.1.1 Data Preprocessing and Resampling

Resampling is the most common and versatile data preprocessing technique for imbalanced
datasets due to its independence from the selected classifiers (Lopez et al., 2013). Two common
methods of resampling are over-sampling, which works by duplicating instances of the minority
class (Chawla et al., 2002), and under-sampling, which works by removing instances of the

majority class (Tahir et al., 2009). Hybrid methods combining both over-sampling and under-
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sampling exist, but their utilisation is rare. Under-sampling was selected in this study due to its
versatility and effectiveness in computation time when there are hundreds of samples in the
minority class, as there are in the MWB datasets (Napierala and Stefanowski, 2015, Loyola-
Gonzalez et al., 2016). An even balance between the classes was used due to its past successes in
application to classification without affecting generalization of the model results (Koziarski,
2020). The under-sampling and even balance techniques have had previous success in rare event
forecasting of class imbalanced data (Li et al., 2013, Kumar et al., 2014, Sun et al., 2015).

4.3.1.2 Algorithm Selection

Ensemble techniques which train multiple classifiers and some traditional single model
classifiers are recommended for imbalanced learning, including cases where data preprocessing
has been applied (Galar et al., 2012). In this study, four model algorithms with previous success
in addressing class imbalances in combination with preprocessing and performance metric

selection (Haixiang et al., 2017), were tested and are detailed below.

Adaptive Boosting (AdaBoost): The AdaBoost algorithm develops an ensemble of iterative
classification trees with associated class labels (Zhu et al., 2009). An initial classifier is constructed
and used to classify observations until an incorrect classification occurs. A subsequent tree is then
developed with the weight of that point “boosted” using the Stagewise Additive Modelling using
a Multi-class Exponential (SAMME) loss function. This process continues until all training data
has been run through the iterative ensemble. The overall goal of the process is the minimization of
misclassification rates through the boosting of the weight of a weak learners’ accuracy. The final

model label output by the ensemble is calculated using Equations 4.1 and 4.2.
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where h(x) is the ensemble of T hypotheses (tuned by the user) from the input vector x (ranging
from 0 to 1), c; is the weight of each learner (with ¢, satisfying the conditions ¢, = 0 and
YT ¢, =1), fr(x) is the weighted hypothesis, and f7(x) is the final model hypothesis (Ratsch
et al., 2001). These models have been applied in the forecasting of rainfall-runoff and rare dust

storms (Liu et al., 2014 and Zhang et al., 2014).

k-Nearest Neighbors (KNN): KNN produces single models which function by classifying
unlabelled samples based on the applied labels of the k nearest neighbors, with k tuned by the user
(Dudani, 1976). Each new observation classified to the model is labelled based on a weighting

factor, w;, described by Equation 4.3.

OF i A
W] = Z dk —_ dl Tk 1 (43)
j=1 1, dy = d4

where the distance between neighboring points is described by d;, j=1, ...,k and the weight for an
individual point is w; (Guo et al., 2003). These models have been successfully applied to the rare

event forecasting of ice jam occurrence (Semenova et al., 2020) and real time flood forecasting

(Liu et al., 2020).

Class Switching: Class Switching is an ensemble approach where class labels are randomly flipped
during model training, allowing a more diverse classifier to be developed (Breiman, 2000). The

ensemble is composed of classification trees, similar to the AdaBoost algorithm, with each
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individual classifier generated based on the original training data with class labels switched at a

rate defined by Equations 4.4, 4.5, and 4.6.

Pic;= WP, fori#j (4.4)
Pi<—i =1- W(]. - Pl) (445)
P

where P;; is the probability that an element with the label i gets labelled as j, P;.; the probability
that an element with the label i remains labelled i, P; the proportion of elements in the training set
labelled i, P; the proportion of elements in the training set labelled j, and w is proportional to the
switching rate p, a factor tuned by the user. Martinex-Munoz and Suarez (2005) applied the

algorithm successfully to a variety of binary classification tasks, including rare event forecasting.

Adaptive Resampling and Combining X4 (ArcX4): ArcX4 is an algorithm belonging to the
Adaptive Resampling and Combining (ARC) family of iterative ensemble classifiers (Breiman,
1996). At each stage of model construction, the model resamples a portion of the training set to
generate a classifier Cn (where n ranges from 1 to k) based on a probability described by Equation
4.7.

1+ mm)*

S+ mm) (4.7)

p(n) =

where p(n) is the probability for resampling of the nth classifier, and m(n) is the number of
misclassifications of the n-1th classifier. The results of each classifier are combined through
unweighted voting, with the number of classifiers k tuned by the user. When applied to imbalanced
classification, the algorithm was found to outrank several other ensemble techniques (Narassiguin

et al. 2016).
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Each of the above-described models requires the tuning of hyperparameters to select the
best model configuration for the given task. For this application, models were trained using five-
fold cross-validation. The data is subdivided into five portions, with a training and testing process
being conducted five times such that each partition is used as the testing data. The possible
considered values of the parameter(s) of each model are organized into grids, and an exhaustive
grid search was used to test every possible combination of parameters for each partition of data
(Refaeilzadeh et al., 2009). The ability of each configuration to correctly classify MWBs was
averaged to give a performance assessment, and the configuration with the best performance was
used to select the optimum model topology. Finally, a stratified 80/20 training/testing split was
used to develop the classification models.

4.3.1.3 Performance metrics

Performance metrics for the assessment of model tuning and final model accuracy were
selected to focus on the correct classification of the minority case or rare event, the occurrence of
an MWB. These metrics are based around a comparison of the actual class and the predicted class
of an observation, assessing it with one of four outcomes. True positive (tp) denotes the correct
prediction of an MWB, true negative (tn) denotes the correct prediction of no MWB, false positive
(fp) denotes the prediction of an MWB when one does not occur, and false negative (fn) denotes
the prediction of no MWB when one does occur. The primary metric for assessment is recall,
which assesses the correct classification of the minority class, with additional assessment metrics
of specificity (correct classification of the majority case) and balanced accuracy also calculated
(Broderson et al., 2010). For each, values will range between 0 and 1, with 1 representing perfect

classification, and are calculated using Equations 4.8 — 4.10.
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Recall = o+ fn (4.8)
Specificity — tn 49
pecificity = o+ fp (4.9)
Specificity + Recall
Balanced Accuracy = pecificity (4.10)

2

Each of the four considered algorithms in Section 4.3.1.2 internally computes binary
classifications by first producing a probabilistic prediction that an observation falls into a given
class before conversion into a final binary value. In the case of a single model algorithm a single
probability is produced, while ensemble algorithms use a mean of the values produced by each
ensemble member (Pedregosa et al., 2011). These initial probabilistic predictions were also
extracted and assessed using the metrics of Brier Loss and Log Loss (Roulston, 2007). Both loss
functions compare the predicted probability of a sample being in the minority class to the actual

binary value according to Equations 4.11 and 4.12.

Brier Loss = %Z(p(yi) —y:)? (4.11)
! . 4.12
Log Loss = Nz yilog(p(y) + (1~ y) * log (1 — p(3) (4.12)

where y; is the binary value of the event and p(y;) is the predicted probability of the event for N
events. For each of the above metrics, a value of 0 represents perfect probabilistic prediction, while
values above 0.25 for Brier loss and 0.675 for Log loss represent unacceptable accuracy no better
than chance (Roulston, 2007 and Vovk, 2015). Calibration curves, plotting the mean of predicted
probabilities against the mean of the target variable for a set of observations were also used to
evaluate the model performance. A perfectly calibrated probabilistic classifier would output a

straight line from 0 to 1 (Niculescu-Mizil and Caruana, 2005).
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4.3.2 Two-Level Model Framework

A two-level modeling framework was developed to allow for versatility in monitoring
practice. The first level model focuses on an individual period of the year, producing a binary
prediction of whether or not an MWB would occur within that period. If the first level model
predicts an MWBSs occurrence, the second level model would then be used to predict the timing of
the event, producing a three day ahead binary prediction of an MWB. Figure 4.2 shows a flowchart
of the model structure. Both models would use unique datasets featuring data easily monitored
well in advance of an MWB. Though the first level model is used to trigger the use of the second

level model, there is no direct feed of data or results from the first level model into the second

Final Model
Prediction:

Occurrence

in 3 days

level.
Level 2 Input Data Level 2
(Available up to 3 R Binary
days before MWB) Classification |
. MWB
Level I Input Level 1 Activates Model (Will
Data Binary * MWB ' " MWB occur
(Varies R Classification in 3 days?)
Depending on | Model (Will
Time Series Period have * No MWB
Configuration) MWRB?)

Figure 4.2: Two-Level model structure flow chart for the prediction of MWB occurrence and
timing.

4.3.2.1 First Level Model

The primary goal of the first level model was to identify whether an MWB would occur in
a given time period between December 15 to March 15. The duration of the target time period was

the first aspect of model development requiring testing. Four different time series configurations
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were considered: weekly, biweekly, triweekly, and monthly, as illustrated in Figure 4.3. In this
figure, three hypothetical example MWB timings are provided to illustrate how data would be
included, with all time periods preceding an MWB included and periods after the MWB has
occurred excluded. In years where an MWB does not occur, all periods would be included. The
different input variables for each shown time series configuration are listed in Table 1. These
variables include values related to the key river ice conditions preceding an MWB and the climatic
conditions at the start of freeze up and directly preceding the period of interest, suggested by Sun
(2018) and De Coste et al., (2021). Once the optimum time series configuration was identified, it

would be used to train and test the four algorithms to assess the accuracy of the chosen methods.

A) December Jamary February March

Start Date (Dec 15) Week 1 |[Week 2 [Week 3 [Week 4|Week 5 |Week 6[Week 7 |Week 8 |Week9 |Week 10 |[Week 11 [Week 12

Year 1 (MWE on Feb 1st) -No MWEB
Year 2 (No MWE) MWB

Year 3(MWB on Jan 1st) Not included
B) | December | Jamary | Febuary March

Start Date (Dec 15)

Year 1 (MWE on Feb 1st) -No MWEB
Year 2 (No MWE) MWB

Year 3(MWB on Jan 1st) Not included
(9] December Jamary February March

Start Date (Dec 15)

Year 1 (MWE on Feb 1st) -No MWEB
Year 2 (No MWE) MWB

Year 3(MWB on Jan 1st) Not included
D) December January February March

Start Date (Dec 15) Month 3 Month 4

Year 1 (MWB onFeb 1st) -@
Year 2 (No MWB) MWB

Year 3 (MWB on Jan Ist) Not included

Figure 4.3: Examples of tested modelling time series configurations for A) weekly, B) biweekly,
C) triweekly, and D) monthly periods. For the example station, two MWBSs occurred during Years

1-3.
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Table 4.1: Input variables used for each time series configuration of first level model.

Category Variables Time Period Number of
Features

Date Freeze Up Date, Winter Low n/a 3

Level Date, Winter Low

Flow Date

Water Level Freeze Up Water Level, n/a 3

Winter Low Level Water

Level, Winter Low Flow

Water Level
Discharge Freeze Up Discharge, Winter n/a 3
Low Level Discharge, Winter
Low Discharge

Temperature Maximum, Minimum, Mean, October, November, December, and 16

AFDD

Precipitation Total Precipitation

configured period preceding period of

interest

October, November, December, and 4
configured period preceding period of

interest
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4.3.2.2 Second Level Model

The second level model focusses on three-day ahead prediction of MWB occurrence within
an identified period of interest in the first level model, providing sufficient medium range notice
of potential alterations to flow (Le et al., 2019, Jurlina et al., 2019). This model would look at each
possible day within the period and classify the MWB occurrence based on data available up to
three days ahead of the day of interest. Variables would be limited to climatic variables, as factors
such as warming and precipitation preceding the event have been found to be the primary drivers
of MWB occurrence (Carr and Vuyovich, 2014). Ice-event related variables (such as those
associated with freeze, low winter flow, and low winter level) used as inputs for the first level
model would be too far from this event on a time scale and would provide no useful information
at this prediction resolution. The initial pool of variables would include daily temperatures, AFDD
and changes in AFDD, and daily precipitation and total seasonal precipitation. An input omission
process would be used to select the optimum variable set for this prediction. A generalized
AdaBoost model would be constructed using all variables to be sure that the effects of each was
considered, followed by the exclusion of each variable in turn to see how the recall and balanced
accuracy change with the removal. If the values increased or did not change, it would indicate that
the variable in question is potentially redundant and can be removed from the model without
negative impact. This would be further verified through the testing of the omission of larger groups
of potentially redundant variables to reduce the input set to the most relevant values (Snieder et
al., 2020). The final input set would then be used to test and train the four algorithms detailed

above for the prediction of MWB timing.
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4.3.3 Model Implementation

This study utilised Python, version 3.7, for all analysis (Van Rossum and Drake, 2009).
Additional analysis was conducted using the packages Numpy (Oliphant, 2006), seaborn
(Waskom, 2008), Pandas (McKinney, 2010), scikit-learn (Pedregosa et al., 2011), ensemble
(Narassiguin et al., 2016), imblearn (Lemaitre et al., 2017) and scipy (Virtanen et al., 2020).
4.4 Results and Analysis
4.4.1 First Level Model

4.4.1.1 Time Series Configuration

The first level model aimed to predict the occurrence of an MWB in a given time period
between December 15 to March 15, with the four time periods considered being weekly, biweekly,
triweekly, and monthly. The initial number of observations was 4,098 for the monthly
configuration, 6,965 for the triweekly configuration, 8,316 for the biweekly configuration, and
10,456 for the weekly configuration. The variables for each configuration were first normalised
through division by means, and then balanced between positive and negative cases using under-
sampling. An AdaBoost model was trained for each configuration using 5-fold cross-validation
with an 80/20 training/testing split. The performance of each configuration using two classification
metrics, i.e., balanced accuracy and recall, is presented in Table 4.2. The biweekly model was
selected as the most successful of the tested configurations, greatly outperforming the monthly and
triweekly models and producing comparable performance to the weekly model, however with a

simpler initial dataset.
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Table 4.2: Performance of AdaBoost Model for each tested time series configuration.

Period Balanced Accuracy Recall
Weekly 0.779 0.771
Biweekly 0.785 0.809
Triweekly 0.677 0.718
Monthly 0.651 0.687

4.4.1.2 First Level Model Results and Analysis

Additional KNN, Class Switching, and ArcX4 models were trained on the same data from
the biweekly time series configuration as the AdaBoost model, with the results of each for both
classification and probabilistic predictions shown in Table 3. Deterministic classification metrics
indicate that the ArcX4 model performed the strongest at binary classification, with the highest
obtained balanced accuracy and recall. The ArcX4 also performed well with probabilistic
predictions; however, it was slightly outperformed by the Class Switching model in all considered
metrics. While the AdaBoost and KNN models performed comparably well to the ArcX4 and Class
Switching models in deterministic classification, they were found to have a more significant
reduction in accuracy in probabilistic predictions. While their performance was reduced in
comparison, each model did achieve an acceptable level of accuracy for each of the probabilistic
prediction metrics for a binary classification. The success of each of the models is further
demonstrative of the effectiveness of the selected biweekly model configuration, as a change to
triweekly or monthly would degrade the obtained results based on the performance of the
AdaBoost model, while selection of the weekly configuration would greatly increase data

requirements.
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Figure 4.4 shows the binary classification accuracy of each model at each gauge. Some of
the gauges, particularly those with relatively few MWBs in their flow history like the Elbow River
below Glenmore Dam in Alberta, were challenging for some of the developed models but no
gauges were completely unclassifiable by all of the developed algorithms, demonstrating both the
strength of the selected variables and the trained algorithms in modelling all considered MWBs.
Figure 4.5 shows calibration curves for each model, a representation of the calibration error listed
in Table 4.3. The smoothest curves were those of the ArcX4 and Class Switching models, which
also had the widest ranges of probabilistic prediction values. The AdaBoost model concentrated
its probabilistic predictions between 0.4 to 0.6. This is further emphasized in Figure 4.6, which
shows the distribution of probabilistic predictions produced by each model, with ArcX4 and Class
Switching again having the widest range of predictions followed by KNN, with the AdaBoost
model greatly concentrating its predicted probabilities around 50%. This stems from the AdaBoost
algorithms tendency to fit predicted probabilities to a transformation of the true probabilities,
rather than the actual probabilities (Niculescu-Mizil and Caruana, 2012). Figure 4.7 shows the
probabilities predicted by each model against the corresponding correct classification. KNN,
ArcX4, and CS performed very well on MWB predictions with the majority of their incorrect
predictions falling very close to the 50% cut-off. Conversely, the predictions of the AdaBoost
model are so concentrated around 50% that all predictions, whether they are for an MWB or are
not, are very close to each other, thus the practical use of these predictions can be called into

question.
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Table 4.3: Final performance of trained first level algorithms for deterministic and probabilistic

predictions.
Deterministic Prediction Probabilistic Prediction
Model Balanced Calibration
Recall Log Loss Briar Loss

Accuracy Error
AdaBoost 0.785 0.809 0.609 0.208 0.128
KNN 0.721 0.838 0.621 0.211 0.098
Class Switching 0.794 0.824 0.514 0.174 0.023
ArcX4 0.801 0.853 0.519 0.176 0.045
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C) Classification Accuracy of First Level Class Switching at Each Gauge
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Figure 4.4: Total accuracies of first level models at each considered gauge for A) AdaBoost, B)

KNN, C) Class Switching, and D) ArcX4.
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Figure 4.5: Calibration curves for probabilistic predictions for each of the four first level models

(Naeini et al., 2015).
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D) ArcX4 Predictions
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Figure 4.7: Probabilistic predictions from the first level models against the actual classification of
each value in the testing set for A) AdaBoost, B) KNN, C) Class Switching, and D) ArcX4. Dots
in the green quadrant represent the model properly predicting no MWB, while dots in the red
quadrant represent the model properly predicting MWB occurrence.

4.4.2 Second Level Model

4.4.2.1 Variable Selection

The goal of the second level model was to identify if an MWB would occur in 3 days from
a day of interest in the MWB period identified by the First Level Model. Input omission was used
to test the removal of variables from an initial variable pool listed in Table 4.4. These variables
consist of climatic variables representing air temperature and precipitation in the days immediately
preceding the day of interest. The input omission process first started with the removal of each
variable from the pool one at a time, with the reduced pool then used to train and test an AdaBoost
model in a similar fashion to the first level model. The accuracies obtained from the removal of
each individual variable were similar, thus no immediate conclusions could be drawn. A
subsequent input omission procedure removing combinations of variables from each of the five
groups identified in Table 4.4 starting from 15 days before the day of interest and moving closer

was then conducted, with the resulting model accuracies shown in Figure 4.8. With these larger
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combinations of variable removals tested, it was identified that the majority of considered variables
were redundant, and the dataset was reduced to the variables shown in Table 4.5, which were the
main variables whose removal began to show larger reductions in accuracy and recall in Figure
4.8. The selected variables were those illustrating short-term changes in the days immediately
preceding an MWB, with AFDD and daily precipitation excluded entirely. These short-term
changes in trends can be inferred to have a stronger impact on MWB occurrence than those over a
longer timespan.

Table 4.4: Initial considered variables for the second level model.

Category Variables Number of Features
Daily Temperature T from 1-15 days before 15
AFDD AFDD from 1-15 days before 15
Change in AFDD DAFDD from 1-15 days before 15
Precipitation P from 1-15 days before 15
Total Precipitation TOTP from 1-15 days before 15
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Figure 4.8: Heatmap of variable removal accuracies where A) is balanced accuracy and B) is
recall.

Table 4.5: Final selected inputs for second level models.

Category Variables Number of Features
Daily Temperature T from 1-3 days before 3
Change in AFDD DAFDD from 1-3 days before 3
Total Precipitation ~ TOTP from 1-3 days before 3

4.4.2.2 Second Level Model Performance

Data used for the second level models was first normalised and balanced using under-
sampling in the same fashion as the first level model, with an 80/20 training/testing split. An
AdaBoost, KNN, Class Switching, and ArcX4 model was trained separately using the prepared
data, with the results of each model for both deterministic classification and probabilistic
prediction detailed in Table 4.6. The obtained values for the considered performance metrics
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indicate that the KNN model had the highest accuracy for binary classification with the other three
models performing quite similarly. The Class Switching and ArcX4 models achieved the highest
performance in probabilistic predictions, with KNN and AdaBoost performing slightly worse in
both Briar loss and calibration error. Notably, both the KNN and AdaBoost fall outside of the
acceptable range of 0.675 for log loss score for a binary calibration. Similar to the first level model,
Figure 4.9 shows the classification accuracies of each model at each gauge. Much like the first
level model, the majority of the gauges were properly classified by at least one model,
demonstrating the models strength and the importance of the selected variables. The calibration
curves of each model for probabilistic predictions are shown in Figure 4.10. The smoothest curves
were those of the ArcX4 and Class Switching models, which also had the widest ranges of
probabilistic prediction values, while the KNN model had a smaller range. The values of the
AdaBoost model were heavily concentrated at 0.5, resulting in a curve very far off from a perfect
calibration. This shortcoming in predictions is further emphasized in Figure 4.11, which shows the
distribution of probabilistic predictions of each model, with all values from the AdaBoost model
being concentrated at 0.5. Figure 4.12 shows the probabilistic predictions against the correct
classification. KNN, ArcX4, and Class Switching again performed well in predicting both classes,
with most incorrect predictions very close to the 50% cut-off. The AdaBoost model produced
predictions so concentrated around 50% that there is again very little distinction between what the

model is classifying between the two classes.
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Table 4.6: Final performance of trained second level algorithms for deterministic and

probabilistic predictions.

Deterministic Prediction Probabilistic Prediction
Model
Balanced Accuracy Recall Log Loss Briar Loss Calibration Error
AdaBoost 0.767 0.773 1.461 0.206 0.116
KNN 0.773 0.8 1.596 0.204 0.092
Class Switching 0.746 0.76 0.597 0.184 0.056
ArcX4 0.76 0.773  0.621 0.175 0.072
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Figure 4.9: Total accuracies of second level models at each considered gauge for A) AdaBoost,

B) KNN, C) Class Switching, and D) ArcX4.
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D) ArcX4. Dots in the green quadrant represent the model properly predicting no MWB, while
dots in the red quadrant represent the model properly predicting MWB occurrence.
4.4.3 Discussion

At both of the developed model levels, the ArcX4 and Class Switching models achieved
the best performance. The other two models obtained comparable performance in deterministic
classification but showed a deterioration when probabilistic results were considered. Though the
values of the performance metrics for the AdaBoost model were comparable to the KNN, the
AdaBoost models had significant issues in the distribution of predicted probabilities, with their
predictions so concentrated around 0.5. Because of this, shift in the classification threshold, which
could be possible for other models, would ruin its results, especially in the second level, unless
additional calibration of the results was performed, which is not necessary for the other models.
Considering both the deterministic and probabilistic predictions can provide a clearer picture of
the accuracy of the developed models because of factors such as this. On a national scale, the
ArcX4 performs well, with no clear examples of a gauge being difficult to classify on both levels,
while also obtaining some of the highest performance of the considered models for both prediction
methods. Some spatial variability was present in the results of the second level model, with select
gauges in British Columbia and Maritime provinces having slightly reduced accuracy, stemming
from a combination of variations in the amounts of data available for these gauges and the milder
climates of these regions. However, despite the lowered performance at some of these locations,
the minimum balanced classification accuracy for this model was 68%, indicating an overall

reliable performance.
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The utilised two-level structure also provides versatility in predictions. Predicting the date
of an MWB from the start of the season would be far less accurate based on the degrading
performance of the models used to test the time series configuration in the first level as the time
step increased in size. Conversely, predicting MWB occurrence using solely the second level
model would be very data intensive as it would have to be run for every possible day in the
considered period of MWB vulnerability. The two-level structure reduces the data complexity
while increasing the model accuracy. Though the model accuracy of each level was assessed
independently due to the differing timescales, objectives, and input variables at each model level,
the results obtained are very promising, especially given the large spatial scale of the data used in
the analysis. Due to the ease of configuration, both binary classification and probabilistic
predictions are easily output from the models, with errors and shortcomings of both prediction
methods well known. This can provide strong decision-making support for the affected rivers,
producing predictions of occurrence with associated probabilities rather than just a binary
prediction, allowing the strength of the prediction to be considered alongside the value of the
prediction. Additionally, the methods used were successfully tested on seasons without any
MWABs, thus the models could be applied to rivers that have not yet experienced MWBs but may
encounter them in the future.

4.5.0 Conclusions

This study focussed on the development of a modelling methodology for the prediction of
MWBs on a national scale, an event becoming increasingly common due to climate change and
having an affect on both ecosystems and communities. An extensive database on river ice events
in Canada, the CRID, along with gridded climate data were used to build data-driven models

predicting both the occurrence and timing of these events on 52 rivers with historical MWBS across
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Canada. Due to the rarity of these events and the subsequent issues introduced by the resulting
imbalanced dataset, modifications were implemented throughout model construction to ensure the
best results. These changes affected the data preprocessing, algorithm selection, and performance
metric selection to strengthen the results against imbalanced data issues. The developed framework
utilised a two-level structure, with multiple dataset configurations tested for the first level model,
with detailed input selection performed for the second level model. The finalized model included
a first level predicting the occurrence of MWBSs within a given two-week period, and a second
level predicting the timing within that period with a three-day lead time. Several machine-learning
algorithms with both deterministic and probabilistic outcomes were considered with the objective
of achieving best accuracy in the final models.

The final recommended model, utilising an ArcX4 algorithm at each model level, produced
a high level of accuracy given the timescale of the predictions. This model was easily modified to
output probabilistic and classification results, where the model performance was similar in both
cases. This was not the case for the other considered models, which were found to have
unacceptable performances from a probabilistic standpoint. The two-level structure was
demonstrated to be a versatile method of predicting MWBSs, avoiding the issues of degrading
performance with increasing timescale that would be introduced using solely the first level model,
while providing a far less data intensive method than would be required using solely the second
level. The models themselves were tested both on years with MWBSs as well as years where they
did not occur, demonstrating the capacity for the model to be applied to rivers that have not yet
experienced MWBSs. The models are dependent solely on climatic, hydrometric and river ice data
that can be monitored in advance of events, allowing for ease of use in forecasting. The model was

constructed at a national scale not previously possible because of data scarcity, with the possibility
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of easy reconfiguration for other northern regions vulnerable to MWBs. Future work may include
detailed investigation of the transferability of this method, requiring data from other vulnerable
regions. Further testing of additional machine learning algorithms and using additional climate
data, such as snowpack depths and historical weather forecasts that can further increase the
dependability of predictions, will also be considered.
Acknowledgements

This study was supported by Natural Sciences and Engineering Research Council of
Canada (NSERC). Data used is available from Environment and Climate Change Canada
(https://open.canada.ca/data/en/dataset/c5b58ccd-0011-4a80-8f24-034c86¢bcl4d) and Natural

Resources Canada (https://cfs.nrcan.gc.ca/projects/3/4).

141


https://cfs.nrcan.gc.ca/projects/3/4

References

Barzegar, R., Ghasri, M., Qi, Z., Quilty, J., and Adamowski, J., 2019. Using bootstrap ELM and
LSSVM models to estimate river ice thickness in the Mackenzie River Basin in the
Northwest Territories, Canada. Journal of Hydrology, 577.

Beltaos, S., 1990. Guidelines for extraction of ice break-up data from hydrometric station records.
Working Group on River Ice Jams: Field Studies and Research Needs. NHRI Science
Report No. 2, National Hydrology Research Institute, Environment Canada, Saskatoon,
SK, Canada, pp. 37-70.

Beltaos, S., 1999. Climatic effects on the changing ice-breakup regime of the Saint John River.
Proceedings of the 10" Workshop on the Hydraulics of Ice Covered Rivers, Guidelines for
Extraction of Ice Break-up Data from Hydrometric Station Records. Winnipeg, Canada,
251-264.

Beltaos, S., 2003. Threshold between mechanical and thermal breakup of river ice cover. Cold
Regions Science and Technology, 37: 1-13.

Beltaos, S., Ismail, S., and Burrell, B., 2003. Midwinter breakup and jamming on the upper Saint
John River: a case study. Canadian Journal of Civil Engineering, 30: 77-88.

Beltaos, S., Prowse, T., Bonsal, B., MacKay, R., Romolo, L., Pietroniro, A., and Toth, B., 2006.
Climatic effects on ice-jam flooding of the Peace-Athabasca Delta. Hydrological
Processes, 20: 4031-4050.

Beltaos, S., and Prowse, T., 2009. River-ice in a shrinking cryosphere. Hydrological Processes,
23: 122-144.

Beltaos, S., 2017. Frequency of ice jam flooding of Peace Athabasca Delta. Canadian Journal of

Civil Engineering, 45: 71-75.

142



Boyd, d., 1979. Degree days: The different types. Building research note, National Research
Council of Canada from the Atmospheric Environment Service Department of Fisheries
and Environment.

Breiman, L., 1996. Bias, variance, and arcing classifiers. Technical Report, 460:1-25.

Breiman, L., 2000. Randomizing outputs to increase prediction accuracy. Machine Learning, 40:
299-242.

Brodersen, K., Ong, C., Stephan, K., and Buhmann, J., 2010. The balanced accuracy and its
posterior distribution. 20" International Conference on Pattern Recognition.

Carr, M., and Vuyovich, C., 2014. Investigating the effects of long-term hydro-climatic trends on
Midwest ice jam events. Cold Regions Science and Technology, 106-107: 66-81.

Chawla, N., Bowyer, K., Hall, L., and Kegelmeyer, W., 2002. SMOTE: synthetic minority over-
sampling technique. Journal of Artificial Intelligence Research, 321-357.

De Coste, M., Li, Z., Pupek, D., and Sun, W., 2021. A hybrid ensemble modelling framework for
the prediction of breakup ice jams on Northern Canadian Rivers. Cold Regions Science
and Technology, 189: 103302.

de Rham, L., Prowse, T., Beltaos, S., and Lacroix, M., 2008a. Assessment of annual high-water
events for the Mackenzie river Basin, Canada. Hydrological Processes. 22: 3864-3880.

de Rham, L., Prowse, T., and Bonsal, B., 2008b. Temporal variations in river-ice break-up over
the Mackenzie River Basin, Canada. Journal of Hydrology, 349: 441-454.

de Rham, L., Dibike, Y., Beltaos, S., Peters, D., Bonsal, B., and Prowse, T., 2020. A Canadian
river ice database from national hydrometric program archives. Earth System Science Data,

Open Access Discussions.

143



Dudani, S., 1976. The distance-weighted k-Nearest-Neighbor rule. IEEE Transactions on Systems,
Man, and Cybernetics, 6: 325-327.

Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., and Herrera, F., 2012. A review on
ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based
approaches. Systems, Man, and Cybernetics, Part C: Applications and Reviews, |IEEE
Transactions on, 42: 463-484.

Goulding, H., Prowse, T., and Bonsal, B., 2009. Hydroclimatic controls on the occurrence of
break-up and ice-jam flooding in the Mackenzie Delta, NWT, Canada. Journal of
Hydrology, 379: 251-267.

Guo, G., Wang, H., Bell, D., Bi, Y., and Greer, K., 2003. KNN Model-based approach in
classification. Lecture notes in Computer Science, 2888: 986-996.

Guo, X., Wang, T., Fu, H., Guo, Y., and Li, J., 2018. Ice-jam forecasting during river breakup
based on neural network theory. Journal of Cold Regions Engineering, 32(3): 04018010.

Haixiang, G., Yijing, L, Shang, J., Mingyun, G., Yuanyue, H., and Bing, G., 2017. Learning from
class-imbalanced data: Review of methods and applications. Expert Systems with
Applications, 73: 220-239.

Hopkinson, R., McKenney, D., Milewska, E., Hutchinson, M., Papadopol, P., and Vincent, L.,
2011. Impact of aligning climatological day on gridding daily maximum-minimum
temperature and precipitation over Canada. Journal of Applied Meteorology and
Climatology, 50: 1654-1665.

Huntington, T., Hodgkins, G., and Dudley, R. 2003. Historical trend in river ice thickness and

coherence in hydroclimatological trends in Maine. Climate Change 61: 217-236.

144



Hutchinson, M., McKenney, D., Lawrence, K., Pedlar, J., Hopkinson, R., Milewska, E., and
Papadopol, P., 2009. Development and testing of Canada-wide interpolated spatial models
of daily minimum-maximum temperature and precipitation for 1961-2003. American
Meteorological Society, 48: 725-741.

Jasek, M., 2019a. An emerging picture of Peace River break-up types that influence ice jam
flooding of the Peace-Athabasca Delta, part 1. the 2018 Peace River breakup. In:
Proceedings of the 20" Workshop on the Hydraulics of Ice Covered Rivers, Ottawa, ON,
Canada.

Jasek, M., 2019b. An emerging picture of Peace River break-up types that influence ice jam
flooding of the Peace-Athabasca Delta part 2: Insights from the comparison of the 2014
and 2018 break-ups. In: Proceedings of the 20" Workshop on the Hydraulics of Ice
Covered Rivers, Ottawa, ON, Canada.

Jurlina, T., Baugh, C., Pappenberger, F., and Prudhomme, C., 2019. Flood hazard risk forecasting
index (FHRFI) for urban areas: The Hurricane Harvey case study. Meteorological
Applications, 27: €1845.

Koziarski, M., 2020. Radial-Based undersampling for imbalanced data classification. Pattern
Recognition, 102: 107262.

Kumar, N., Rao, K., Govardhan, A., Reddy, K., and Mahmood, A., 2014. Undersampled K-means
approach for handling imbalanced distributed data. Progress in Artificial Intelligence, 3:
29-38.

Lamontagne, J., Jasek, M., and Smith, J., 2021. Coupling physical understanding and statistical
modeling to estimate ice jam flood frequency in the norther Peace-Athabasca Delta under

climate change. Cold Regions Science and Technology, 192: 103383.

145



Le, X., Ho, H., Lee, G., and Jung, S., 2019. Application of Long Short-Term Memory (LSTM)
neural network for flood forecasting. Water, 11:1387.

Lemaitre, G., Noguiera, F., and Aridas, C., 2017. Imbalanced-Learn: A Python toolbox to tackle
the curse of imbalanced datasets in machine learning. Journal of Machine Learning
Research, 18: 1-5.

Li, Q., Yang, B., Li, Y., Deng, N., and Jing, L., 2013. Constructing support vector machine
ensemble with segmentation for imbalanced datasets. Neural Computing and Applications,
22: 249-256.

Li, J., Liu, L., Fong, S., Wong, R., Mohammed, S., and Fiaidhi, J., 2016. Adaptive swarm
balancing algorithm for rare-event prediction in imbalances healthcare data. Computerized
Medical Imaging and Graphics, 12(7).

Liu, S., xu, J., Zhao, J., Xie, X., and Zhang, W., 2014. Efficiency enhancement of a processObased
rainfall-runoff model using a new modified AdaBoost.RT technique. Applied Soft
Computing, 23: 521-529.

Liu, M., Huang, Y., Li, Z.,, Tong, B., Liu, Z., Sun, M., Jiang, F., and Zhang, H., 2020. The
applicability of LSTM-KNN model for real-time flood forecasting in different climate
zones in China. Water, 12:440.

Lopez, F., Garcia, S., Palade, V., and Herrera, F., 2013. An insight into classification with
imbalanced data: Empirical results and current trends on using data intrinsic characteristics.
Information Sciences, 250: 113-141.

Loyola-Gonzélez, O., Martinez-Trinidad, J., Carrasco-Ochoa, J., and Garcia-Borroto, M., 2016.
Study of the impact of resampling methods for contrast pattern based classifiers in

imbalanced databases. Neurocomputing, 175: 935-947.

146



Maalouf, M., and Trafalis, T., 2011. Robust weighted kernel logistic regression in imbalanced and
rare events data. Computational Statistics and Data Analysis, 55: 168-183.

Mahabir, C., Hicks, F., and Fayek, A.R., 2006. Neuro-fuzzy river ice breakup forecasting system.
Cold Regions Science and Technology. 46:100-112.

Martinez-Munoz, G., and Suarez, A., 2005. Switching class labels to generate classification
ensembles. Pattern Recognition, 38: 1483-1494.

Massie, D., White, K., and Daly, S., 2002. Application of neural networks to predict ice jam
occurrence. Cold Regions Science and Technology. 35:115-122.

McKenney, D., Hutchinson, M., Papadopol, P., Lawrence, K., Pedlar, J., Campbell, K., Milewska,
E., Hopkinson, R., Price, D., and Owen, T. 2011. Customized spatial climate models for
North America. Bulletin of American Meteorological Society-BAMS December: 1612-
1622.

McKinney, W., and others, 2010. Data structures for statistical computing in python. Proceedings
of the 9™ Python in Science Conference, 445: 51-56.

Naeini, M., Cooper, G., and Hauskrecht, M., 2015. Obtaining well calibrated probabilities using
Bayesian Binning. Proceedings of the AAAI Conference on Atrtificial Intelligence, 2015:
2901-2907.

Napierala, K., and Stefanowski, J., 2015. Types of minority class examples and their influence on
learning classifiers from imbalanced data. Journal of Intelligent Information Systems, 1
35.

Narassiguin, A., Bibimoune, M., Elghazel, H., and Aussem, A., 2016. An extensive comparison
of ensemble learning methods for binary classification. Pattern Analysis Applications,

19:1093-1128.

147



Newton, B., Prowse, T., and de Rham, L., 2017. Hydro-climatic drivers of mid-winter break-up of
river ice in western Canada and Alaska. Hydrology Research 48.4: 945-956.

Niculescu-Mizil, A., and Caruana, R., 2005. Predicting good probabilities with supervised
learning. In Proceedings of the 22" International Conference on Machine Learning.

Niculescu-Mizil, A., and Caruana, R., 2012. Obtaining calibrated probabilities from boosting. In
Proceedings of the 21t Conference on Uncertainty in Artificial Intelligence.

Oliphant, T., 2006. A guide to NumPy (Vol. 1). Trelgol Publishing USA.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., and others, 2011.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12, 2825-
2830.

Prowse, T., Bonsal, B., Lacroix, M., and Beltaos, S., 2002. Trends in river-ice breakup and related
temperature controls. Proceedings of the 16" IAHR International Symposium on Ice.
Trends in River-Ice Breakup and Related Temperature Controls. Dunedin, New Zealand,
64-71.

Ratsch, G., Onoda, T., and Muller, K., 2001. Soft margins for AdaBoost. Machine Learning, 42:
287-320.

Refaeilzadeh, Payam, Lei Tang, and Huan Liu. "Cross-validation." Encyclopedia of database
systems 5 (2009): 532-538.

Roulston, M., 2007. Performance targets and the Brier Score. Meteorological Applications, 14:
185-194.

Semenova, N., Sazonov, A., Krylenko, 1., and Frolova, N., 2020. Use of classification algorithms

for the ice jams forecasting problem. E3S Web of Conferences, 163.

148



Snieder, E., Shakir, R., and Khan, U., 2020. A comprehensive comparison of four input variable
selection methods for artificial neural network flow forecasting models. Journal of
Hydrology, 583: 124299.

Sun, W., and Trevor, B., 2015. A comparison of fuzzy logic models for breakup forecasting of the
Athabasca River. CRIPE 18" Workshop on the Hydraulics of Ice Covered Rivers, Quebec
City, QC, Canada, August 18-20, 2015.

Sun, Z., Song, Q., Zhu, X., Sun, H., Xu, B., and Zhou, Y., 2015. A novel ensemble method for
classifying imbalanced data. Pattern Recognition, 48: 1623-1637.

Sun, W., 2018. River ice breakup timing prediction through stacking multi-type model trees.
Science of the Total Environment, 644:1190-1200.

Sun, W., and Trevor, B., 2018. A stacking ensemble learning framework for annual river ice
breakup dates. Journal of Hydrology. 561:636-650.

Tahir, M., Kittler, J., Mikolajczyk, K., and Yan, F., 2009. A multiple expert approach to the class
imbalance problem using inverse random under sampling. Multiple Classifier Systems, 82-
91.

Timoney, K., 2002. A dying delta? A case study of a wetland paradigm. Wetlands, 22: 282.

Timoney, K., Smith, J., Lamontagne, J., and Jasek, M., 2018. Discussion of “Frequency of ice-jam
flooding of Peace-Athabasca Delta”. Canadian Journal of Civil Engineering, 46 (3).

Van Rossum, G., and Drake, F., 2009. Python 3 Reference Manual. Scotts Valley, CA:
CreateSpace.

Virtanen, P., Gommers, R., Oliphant, T., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E.,
Peterson, P., Weckesser, W., Bright, J., van der Walt, S., Brett, M., Wilson, J., Millman,

K., Mayorov, N., Nelson, A., Jones, E., Kern, R., Larson, E., Carey, C., Polat, I., Feng, Y.,

149



Moore, E., VanderPlas, J., Laxalde, D., Pertkold, J., Cimrman, R., Henriksen, 1., Quintero,
E., Harris, C., Archibald, A., Ribeiro, A., Pedregosa, F., van Mulbregt, P., and SciPy 1.0
Contributors, 2020. SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nature Methods, 17: 261-272.

Vovk, V., 2015. The fundamental nature of the log loss function. Fields of Logic and Computation
11, 307-318.

Wang, J., Sui, J., Guo, L., Karney, B., and Jupner, R., 2010. Forecast of water level and ice jam
thickness using the back propagation neural network and support vector machine methods.

International Journal of Environmental Science & Technology, 7(2): 215 - 224.

Wang, T., Yang, K.L., Guo, X.L., and Fu, H., 2012. Application of adaptive network based fuzzy
inference system to ice condition forecast. Journal of Hydraulic Engineering, 1:18.
Waskom, M., and the seaborn development team, 2020. Seaborn. Zenodo,

https://doi.org/10.5281/zenod0.592845

White, K., 1996. Predicting breakup ice jams using logistic regression. Journal of Cold Regions
Engineering, 10(4):178-189.

Zhao, L., Hicks, F., and Fayek, A., 2012. Applicability of multilayer feed-forward neural networks
to model the onset of river breakup. Cold Regions Science and Technology, 70:32-42.

Zhang, Z., Ma, C., Xu, J., Huang, J., and Li, L., 2014. A novel combinational forecasting model
of dust storms based on rare classes classification algorithm. Communications in Computer
and Information Science, 482: 520-537.

Zhu, J., Zou, H., Rosset, S., and Hastie, T., 2009. Multi-class AdaBoost. Statistics and its Interface,

2:349-360.

150


https://doi.org/10.5281/zenodo.592845

Chapter 5: A Hybrid Ontology-Based and Machine Learning Model for the Prediction of
Spring Breakup on Canadian Rivers

The management of complex data in the prediction of river ice breakups is a challenge in
many studies, with the presentation of results in a user-friendly way often hampered by the
resulting difficulties in organization and delivery. In this study, an ontology-based semantic model
of the domain of an ice season is proposed, providing a way to organize data and describe
relationships between the key events present in the formation and development of river ice cover.
This ontology is used in a novel modelling system in conjunction with machine learning models
to predict the timing of spring breakup on these rivers. The ontology allows the application of
network analysis techniques in the selection of variables in the machine learning algorithms,
producing predicting results that exceed the accuracy of similar models developed without
application of the hybrid system. This is the first application of these new techniques and provides

an avenue for further analysis of both river ice phenomena and other domain systems in general.
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of the models, and results validation under the supervision of Dr. Zhong Li and Dr. Ridha Khedri,
who provided additional guidance on the development of the hybrid modelling system. The
presented manuscript was drafted and prepared by Michael De Coste and revised by Michael De

Coste, Dr. Zhong Li, and Dr. Ridha Khedri.

This chapter has been submitted for publication in the journal Computer-Aided Civil and

Infrastructure Engineering.

151



Abstract

River ice breakup is a yearly event on the majority of rivers in Canada. These events carry
the potential for high flows and flooding and are therefore of great interest to accurately predict.
A challenge in developing models for the prediction of these events, especially on a national scale,
is the management of the massive amounts of data associated with a typical ice season. Physically
based models require case-by-case calibration, which is data and time intensive, and there is no
generalized approach for the prediction of these events. This study couples the unique capabilities
of semantic-based and machine-learning-based models in developing a new hybrid modelling
framework capable of predicting spring breakup on a national scale. The semantic model uses
ontology web language to describe the relationships between the key events and measurements
taken throughout the ice season, producing an Ice Season Ontology that sorts the data and allows
for a user-friendly means of analyzing any ice season of interest. The structure of the ontology is
used to further analyse the relationships between the ice season features (i.e., variables), providing
an insight on which of the datapoints are most central to the typical ice season and conversely
which are the least. With this, a refined variable selection is able to be made for the machine
learning model, for which several algorithms were tested. The most successful developed model,
a random forest, was able to predict the timing of spring breakups with a mean absolute error of
10.85 days and an R? of 0.884, a high level of accuracy for the long and varying lead time of the
produced predictions. This new modelling framework combines the first ever ontology developed
for river ice with data-driven modelling techniques in a novel way, allowing for accurate and easily
understood prediction of spring breakup throughout Canada, providing a means for decision-

making support for river bound communities.
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5.1 Introduction

The spring breakup of river ice cover is an expected event on many rivers throughout
northern regions, often occurring after the initial spring thaw begins. As temperatures rise, snow
melt increases, resulting in an increase in runoff into rivers found in the same basin. As this occurs,
one of two breakup mechanisms can result: thermal or dynamic (Beltaos, 1997). Thermal breakup
is the gradual melt of an ice cover in place and is more often linked to slow increases in air
temperature and gradual increases in snow melt runoff and water level increases. Conversely,
dynamic breakup is brought about by faster increases in air temperature and runoff flows, leading
water levels rising faster than the ice can melt and lifting out of place (Beltaos, 2003). In the case
of dynamic breakup, ice jamming can result, where the free flowing ice cover can become trapped
at locations where channel geometry changes, potentially resulting in severe flooding
(Lindenschmidt et al., 2016). While dynamic breakups can have potentially more severe
consequences, both mechanisms play important parts in the flow regime, morphology, and
environmental characteristics of the river in questions, and also impact any communities that are
present along the river (Beltaos and Prowse, 2009). With this in mind, it is of great interest to be
able to accurately predict the timing of these events with sufficient lead times to provide decision
making support. Challenges in the prediction of these events, especially on larger regional or

national scales, are often linked to data availability and management.

The processes leading to spring breakup are generally well researched and understood. The
primary drivers are the changes in air temperature and flow occurring during the spring thaw
(Beltaos et al., 2006), with trends in the spatial distributions and timing of breakups moving
towards earlier and longer breakup periods (de Rham et al., 2008a and de Rham et al., 2008b).

Geomorphological factors also play a role, with the width, slope, and shape of channels playing a
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factor in the breakup mechanism that can be expected (Turcotte and Morse, 2013). Globally, the
extent and duration of the river ice season is projected to decrease between the present and 2100,
with season lengths decreasing up to 75 days and spring breakups occurring much earlier (Yang
et al., 2020). Breakup trends also have a complex relationship to the presence of regulation on
rivers, with operational dams affecting both the timing and mechanisms of breakup that can be
expected (Timoney, 2002, Beltaos, 2017, and Jasek, 2019). The impacts of preceding winter
temperatures and precipitation and the related trends in breakup occurrence have also been noted,
with the factors potentially leading to ice jams or early breakups also well understood (Goulding
et al., 2009, Lamontagne et al., 2021). This knowledge has formed the basis of past attempts at
data-driven modelling and forecasting of spring breakups. Algorithms including support vector
machines (Wang et al., 2010, Barzegar et al., 2019), artificial neural networks (Zhao, 2012, Guo
et al., 2018), k-nearest neighbors (Sun et al., 2020), stacking ensembles using regression trees
(Sun, 2018), and adaptive neuro-fuzzy inference systems (Sun and Trevor, 2015, Sun and Trevor,
2018) have been applied with varying levels of accuracies to spring breakup prediction. These
predictions are often limited to single rivers or regions and have encountered challenges in
managing and selecting data. Similar problems have been encountered in the prediction of mid-
winter breakups (the early breakup of ice cover brought about by mid-winter thaws) using data-
based thresholds (Prowse et al., 2002, Carr and VVuyovich, 2014, Newton et al., 2017) and machine
learning analysis (De Coste et al., 2022a, De Coste et al., 2022b), or in the prediction of breakup
ice jams using artificial neural networks (Massie et al., 2002), neuro-fuzzy systems (Mahabir et
al., 2006), and stacking ensembles (De Coste et al., 2021). These techniques have also been
extended to generalized spring flooding using boosting and random forest (Kulin et al., 2021),

ensembles of regression and snowmelt models (Sarafanaov et al., 2021), and recurrent neural
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networks (Cai and Yu, 2022). The management of data in these hydrological forecasting studies,
especially when attempting modelling on regional or national scales, is often a challenge, as is
delivering a user-friendly means of delivery. Challenges are also present in the selection of

variables and the delivery of final decision-making tools for end users and stakeholders.

Knowledge and data management through the use of ontology-based semantic modelling
presents an opportunity to address many of the issues present in the management and prediction
of spring breakups. Ontologies are representations of a domain in terms of concepts and their
relationships. They allow the structure of a system domain to be conceptualized and formalized
through the establishment of the relevant concepts and entities and relationships present within the
system (Guarino et al., 2009). Ontologies can be easily designed to match a specific criterion or
purpose and multiple ontologies can be constructed to conceptualize the same domain knowledge
body, while providing an easily understood and evaluated means of illustrating a network (Brank
et al., 2005). Further, developed ontologies can also be combined with other ontologies to further
elaborate on contained concepts or account for multiple related concepts, allowing more
comprehensive models to be developed (Noy and Musen, 2004). Ontologies have been developed
to describe flood forecasting systems (Agresta et al., 2014), flood risk assessment systems (Scheur
et al., 2013), riverine systems (Mughal and Shaikh, 2017), remote sensing (Potnis et al., 2018),
and many flood management systems (Mughal et al., 2021, Agresta et al., 2002, Roller et al., 2015,
Kollarits et al., 2009, Yi and Sun, 2013). Though these systems have been well established in
related fields, there has not been any application of these techniques to river ice related systems,

and very limited applications in river-based hydrology.

This paper focuses on the prediction of spring breakup timing using a novel hybrid

ontology and machine learning modelling framework. The Ice Season Ontology organizes the data
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and connections between variables (i.e. concepts/entities) to build a semantic model of the relevant
data, allowing network analysis techniques to assess the centrality of relevant variables. The
machine learning model is then constructed and refined based on the output of the ontology model
with the variable selection process enhance by the results of the ontology. This new framework
leverages the advantages of both semantic and data-driven modelling techniques to produce
more versatile predictions, providing and easy to use and understand model for stake
holders. This is the first attempt at combining these separate modelling techniques in this
fashion as well as the first application of semantic modelling to river ice hydrology. This
framework is applied to a national case study of river ice breakups in Canada, focussing on rivers
throughout the country with a variety of climate regions, to demonstrate the effectiveness of the

proposed framework.

5.2 Data

The primary data source in this study is the Canadian River Ice Database (CRID) (de Rham
et al., 2020). The CRID includes data from 196 rivers in Canada spread between 10 of the 11
climate regions within the country. Forty six of these rivers are regulated (meaning flows are
affected by man-made structures such as dams or reservoirs) and 150 are non-regulated or natural.
These river stations are mapped in Figure 5.1. The CRID contains data on 15 river ice events
occurring within the typical river ice season. These events were extracted using careful analysis of
the water level time series using a technique developed by Beltaos (1990). The first of the included
events is freeze up, denoted as First B Date and Hy. First B Date indicates the first day that ice
backwater effects were detected in the channel and thus the initial presence of ice forming in the
river, however it does not indicate that a full ice cover has developed. The Hs date, which marks

the point where a full ice cover has developed and freeze up has occurred, was extracted based on
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observation of a spike in water level caused by the increase in frictional resistance caused by the
presence of the full ice cover. The water level and flow measured on the Ht date as well as 30
subsequent days of freeze up water levels are also included for several of the rivers if the records
were available. The next key events were the first winter low flow (HLQZ1) and low water level
(HLW1), both occurring after a decrease in flows caused by drawdown of water contributions to
the river. These are determined through observation of the respective time series for each measure
and may not occur on the same day as the open water stage-discharge relationship is no longer
applicable under ice cover conditions (United States Geological Survey, 1977). For both of these
events, the date, water level, and flow rate are also included at the occurrence of the event. Many
of the ice seasons in the CRID also include measurements of ice thickness, taken based on direct
measurement occurring during site visits to the gauges in question, with corresponding dates
included. Though these ice thicknesses can be valuable in analysis, it is important to note that there
is no fixed date or timing in the ice season for these measurements. Additional ice season events
included in the CRID prior to ice cover breakup are the occurrence of mid-winter breakups
(HMWB and HMWM) and the subsequent freeze up, maximum water level and minimum water
level and flows measured for these events (HF2, HF2MAX, HLW?2, and HLQ?2 respectively), with
each measured in the same manner as the initial events. The final event of the typical ice season
is the breakup, starting with the onset of breakup (HB) determined as a spike in the rising limb of
the water level hydrograph triggered by a decrease in flow resistance. The subsequent peak
breakup flow (HM) is determined through analysis of the flow hydrograph following the onset of
breakup, with the last ice affected date (Last B Date) determined as the final day with ice backwater
effect. For each of these events, flows and water levels are also included if available. Table 5.1

summarises the events included in the CRID.
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Figure 5.1: National map of CRID gauges included in this study.
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Table 5.1: Key Ice Season Events included in the CRID and the number of measurements of each.

Event Variables Number of Values
Freeze Up First B Date 8351

Freeze Date 5933

Water Level 5934

Flow 5896
First Winter Low Flow  Date 7554
Water Level 4841
Flow 7554
First Winter Low Level Date 4327
Water Level 4329
Flow 4310
Ice Measurement Date 5893
Thickness 5893
Breakup Date 5367
Water Level 5366
Flow 5335

Last B Date 8715

5.3 Methodology
5.3.1 Semantic Model Development

The intent of this study was the development of an Ice Season Ontology, which sorts the
data and entities, and connections between the relevant concepts of an “ice season”. The focus of
this ontology needed to be clearly defined before construction began (Mughal et al., 2021). In this
case, the ontology’s key concept describes an ice season, with the associated events and measures
from those events being the internal entities within the ontology. Each of the events has associated

dates, flows, and levels, and the values of those falls under the umbrella of both the event and the
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data type, thus the importance of the subdivisions detailed below. Within an ontology’s structure,
axioms define the relationships between model nodes, relationships are the links between nodes
with a relevant descriptor, and individuals are the specific values present for a node (Guarino et
al., 2009). The key individuals in this study are the flows, levels, and dates associated with the
events of an ice season. Each node is defined with a datatype (float, integer, date, etc.,) to better

represent any individuals mapped to the node and allow for further calculation if necessary.

The construction process of this ontology followed the METHONTOLOGY framework,
consisting of 4 stages: Specification, Conceptualization, Formalization and Implementation, and
Evaluation (Lopez et al., 1999). The Specification stage consists of defining the scope of the
ontology and formulating the usage case and competency questions for assessment of the ontology
accuracy. The Conceptualization stage is where the structure of the ontology is defined, with key
entities identified and model concepts, properties, relationships, and axioms mapped.
Formalization and Implementation consists of the construction of the ontology using OWL. The
Evaluation stage consists of the testing of the ontology against the constructed competency
questions and any other testing criteria that are developed, at which point the testing criteria can
be refined, or the scope and mapping of the model can be revisited to reformulate problematic

sections. If the model is found to be satisfactory at this stage, construction has concluded.

5.3.2 Machine Learning Model Development

5.3.2.1 Considered Algorithms

Five machine learning algorithms were tested in this study based on their previous
applications in hydrology related modelling studies as described below. The models range in

complexity from single equations to complex ensemble algorithms and are detailed below.
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Multiple Linear Regression (MLR): MLR models develop a single equation to describe
relationship between a set of i independent variables (xi) and a dependent target variable (y) as
shown in Equation 5.1 (Uyanik and Guler, 2013). This model is fit using the technique of least
squares, through which the Mean Squared Error (MSE) between predicted values and actual values

is minimized, as in Equation 5.2 below.
Yy =a+bixq + byxy + - byxy (5.1)
1 n
MSE =+ (% = y1)? (52)
i
where a is the intercept for the MLR equation, bj the coefficient for each variable xi, N the total
number of observations, and Y; the actual value for the predicted value yi. MLR has been

successfully applied to the prediction of stream flow on rivers in both open water and ice affected

conditions (Seidou and Ouarda, 2007 and Chokmani et al., 2007).

k-Nearest Neighbours (KNN): This model type assigns values to observations based on feature
similarity to its “k-nearest neighbours”, with k being a user specified function (Song et al., 2017).
A distance function is used to assign the value of each new observation to the model point based

on the selected value of k neighbours, with the factor, wj, described in Equation 5.3.

N s R
wi= > Jdp—dy 7! (5.3)
j=1 1, dk = d1

where w; is the weight for the individual point and the distance between the k neighboring points

is described by dj, j=1,....k . KNN regression has been successfully applied to open water

streamflow prediction and river ice breakup timing (Poul et al., 2019 and Sun et al., 2020).

Regression Tree (RT): Part of the Classification and Regression Tree (CART) model family, an

RT model assesses the appropriate value for the predictand by using a series of decision nodes that
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assess the values of individual variables (Lewis, 2000). Based on this value, the current observation
will pass to the next appropriate decision node until it arrives at a final “leaf” node representing
the predicted value for the observation. The total number of splits, leafs, and total tree depth are
user selected parameters, along with the metric for which the regression accuracy is assessed,
typically a form of MSE similar to the value used by the MLR in Equation 2. RT models have
commonly been applied to river hydrology, finding success in modelling flood susceptibility and

breakup timing (Janizadeh et al., 2021 and Sun, 2018).

Random Forest (RF): The RF algorithm is an extension of the RT model type, in which an
ensemble, or “forest”, of decision trees is constructed using bootstrap samples of data taken from
the full dataset (Segal, 2003). Each of the trees is built from a unique bootstrap resampling of the
overall dataset, leading to a final prediction of the model based on the ensemble of the bootstrap

samples, developed from Equation 5.4 (Liaw and Wiener, 2002).

M
for=2 > im@ 54

where /' (x) is random forest final prediction for the given observation, M is the total number of
bootstrap samples, and 7™(x) is the prediction from tree developed from the m" bootstrap sample.
RF has been successfully applied to the assessment of mid-winter breakups in Canada (De Coste

etal., 2022).

Extreme Gradient Boosting (XGBoost): XGBoost models function in a similar fashion to other
boosting algorithms, constructing an iterative ensemble of classification trees. Each tree is built
sequentially, with points incorrectly classified used to refine subsequent trees. The XGBoost
algorithms unique feature is the use of second order gradients of the loss function in order to
minimize overall model error, while also employing regularization. The kth feature values and
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second order gradient statistics of the training instances are represented by D, =
{11, 1), (X2, hy), ... (ks hyy) } With candidate split points represented by {si1, Sk2, - Sk}, thus

satisfying Equations 5.5 and 5.6 (Chen and Guestrin, 2016).

1
n@=s——r Y h 55)
Z(x,h)eDk h (x,h)eDy,x<z
|Tk(5k.j) - Tk(sk,j+1)| < €, Sk = min(xy) , s = max(xy) (5.6)

where the rank function is r.: R — [0, +00), representing the proportion of instances with a feature
value k smaller than z, hi is the weight of each point, and € is an approximation factor indicating
that there is 1/ e candidate points. XGBoost has been successfully applied to flood mapping on

rivers and prediction of ice phenomena (Abedi et al., 2021 and Graf et al., 2022).

5.3.2.2 Model Assessment

Model accuracy for each of the considered algorithms was assessed using the regression
metrics Mean Absolute Error (MAE) and R2. These are calculated using Equations 5.7 and 5.8

below.

n
1
MAE = =) |e;] (5.7)
)

noyo 5.2
RZ =1— Zl:l(yl 311)2 (58)
2i=1(vi —¥)
where n is the number of observations, e the error for observation i, y; is the ith response value, ;
is the ith fitted response, and y is the mean of the responses (Chai and Draxler, 2014, and Nakagawa and
Schielzeth, 2013). Each of the models required the use of five-fold cross-validation to select the optimal
configuration of hyperparameters. In this process, the entire data pool is subdivided into five equal
segments, with each segment being used as a testing set against the remaining data used as training data.

The considered values for the parameter(s) of each model are sorted into grids, and an exhaustive grid

search is used to test each possible combination of parameters against the five data partitions, allowing the
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most successful configuration to be selected (Refaeilzadeh et al., 2009). The models were subsequently

trained and tested on a 75/25 training/testing split of the overall data.

5.3.3 Hybrid Model Structure

A hybrid model structure was developed for this study which integrates knowledge gained
from the semantic model of the ice season to refine the abilities of the machine learning models to
predict the timing of spring breakup. Analysis of the structure of the developed ontology using
network analysis techniques provides a means to assess the critical and redundant nodes in the

ontological structure, allowing variable selection in the machine learning models to be reassessed.

5.3.3.1 Data Preparation

Prior to analysis within either type of the models, the data was first cleaned and organized.
Observations with missing values were removed from the modelling pool as, due to the large time
spans that can be present between measurements coupled with the inconsistencies in when the
measurements were taken, interpolation or other replacement methods were not possible without
comprehensive reanalysis of the original data (Dastorani et al., 2009). Due to the large variance in
both flows and water levels between the gauges considered in this study, the values for variables
related to these measures were normalized through division by means to ensure consistency in the
modelling results (Dery et al., 2009). Dates were also altered to be better used by the machine
learning model, converted from calendar dates to durations from a reference date. In this study the
selected reference date was October 1%, the start of the Canadian water year (Boyd, 1979). One
group of variables that was excluded from analysis were those relating to mid-winter breakups,
thus limiting the scope of the domain to only consider seasons without these events. These events
are so rare and result in such a differing flow regime and progression for the remainder of the ice

season that they would result in potential inaccuracies were they included in this study (Huntington
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et al., 2003). Further, a differing ontology describing these events would need to be developed,

separating them from the typical progression of the ice season.

5.3.3.2 Hybridization and Variable Selection

The ontology was structurally analysed using metrics common to network analysis,
producing values describing the importance or dependency of the network on a given node or
variable. The three metrics selected were unweighted measures of centrality or criticality. The first
metric, degree centrality, describes the amount of links a particular node has in comparison to the
total links in the network, giving and indication of the centrality of that node against the total
network connectivity(Zhang and Luo, 2017). The second metric, closeness centrality, describes
how close a particular node is relative to all other nodes present in the network, providing an
indication of the overall connectivity of the node in question to the network (Okamoto et al., 2008).
The final metric, betweenness centrality, describes the ratio of the amount of shortest paths
between nodes in the network passing through the node of interest against the total number of
shortest paths in the network, indicating the level of connectivity of that node to the other nodes

of the network. These metrics are described in Equations 5.9-5.11 below.

_ Shx
Cp(v) = VD —2) (5.9)
Colw) = 5.10
O S dew) (510
Cp(v) = “5;(:’) (5.11)
SEVELEV s

where Cp, is the degree centrality, v is the node of interest, V is the total number of nodes in the
network, Xi is the amount of links of a particular node, C, is the closeness centrality, d; (v, t) is
the distance between vertices v and t in the network, Cg is the betweenness centrality, oy (v) is the

number of shortest paths passing through node v, and o; the total number of shortest paths in the
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network. For each of the considered centralities, the values can vary between 0 and 1, with smaller
values indicating decreasing centrality of the node in the network. Through assessing the values
of centralities for each of the nodes representing a relevant variable in the machine learning model,
the least critical values can be identified and removed from the model, producing a refined variable

selection. This process is described in Figure 5.2.

Initial | Initial Machine . Timing of
Variables Learning Models Spring Breakup
Refined | Refined Machine Refined Timing of
Variables Learning Models Spring Breakup
Centrality |
Measures | Qutrel o)

Figure 5.2: Flow chart of hybrid modelling framework combining the results of the Ontology and

machine learning models in producing refined spring breakup timing predictions.

5.3.4 Model Implementation

This study utilised Protégé, version 5.5.0 for the development of the Ice Season Ontology
(Musen, 2015). Additional analysis was conducted in Python, version 3.7, using the packages ddot
(Yuetal., 2019), geopandas (Jordahl, 2014), Pandas (McKinney, 2010), Numpy (Oliphant, 2006),
scikit-learn (Pedregosa et al., 2011), scipy (Virtanen et al., 2020), seaborn (Waskom, 2008), and

xgboost (Chen and Guestrin, 2016).
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5.4 Results and Analysis
5.4.1 Ice Season Ontology

As describes in Section 5.3.2, the Ice Season Ontology was constructed according to the
METHONTOLOGY framework. In the Specification stage, the ontology was constructed to
describe an “ice season”, including all relevant events and traits described in the CRID, hence the
title Ice Season Ontology. All variables listed within Table 5.1 were included in the model in
addition to the years, station, and coordinates of each ice season in the record. This produced a
more complete model and allowed for more robust predictions to be produced by the hybrid model
framework. At this stage competency questions assessing the intended function of the finished
model were developed. These included 1) “Which Ice Seasons include Breakup Flow?”, 2) “Which
Ice Seasons include the First Winter Low Flow Level?”, 3) “What are the End Years and Station
Names for each Breakup Level?”, and 4) “What are the Dates of all Freeze Ups?”. The next step
of model construction was the Conceptualization stage, where the primary relationships between
the intended data were identified and model structure was organized. Each individual variable
value fell under the description of both the relevant event (i.e. freeze up, first winter low flow, first
winter low level, breakup, ice measurement) and the type of value (i.e. date, flow, water level,
thickness). Additional ice season characteristics were included separately from the key ice season
events. The model structure was implemented in the Formalization and Implementation stage in
the Protege software, with an OWL model constructed describing an Ice Season. At this stage, the
data from the CRID was loaded in using the CELLFIE plugin, allowing the appropriate
relationships between each ice season component to be assigned to each individual data point
loaded. The final ontology structure is shown in Figure 5.3, including all events and data types. In
Figures Al — A8 of Appendix A, detailed views of the components of the ontology focussed on

the event type and detailed views divided by the data type are provided to give a complete view of
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the structure. The overall summary statistics of the model are detailed in Table 5.2, giving a
breakdown of the model complexity and the amount of relationships, classes, components, and

datatypes included in the final model with all CRID data imported.
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Figure 5.3: Full structural overview of the developed Ice Season Ontology.
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Table 5.2: Summary statistics of Ice Season Ontology describing contained logical and data

connections.

Metric Count
Axiom 983624
Logical Axiom 891545
Declaration Axiom 92079
Class 65
Class Assertions 235040
Obiject Property 120
Object Property Assertions 654354
Data Property 7
Individual 91215

The model was tested against the competency questions listed above in the Evaluation
phase and was found to successfully provide the intended data. In response to competency question
1, the response shown in Figure 5.4 was obtained, demonstrating the expected ability to produce
the relevant breakup flows and associated ice seasons. Figure 5.5 shows the response to question
2, producing a similar list of the expected seasons and associated first winter low flow levels.
Figure 5.6 shows the ice seasons, breakup water levels, end years, and station names expected in
response to question 3, demonstrating the ability to handle more complex queries and link together
separate entities from the ontology. The response to question 4 is shown in Figure 5.7, providing
a list of ice seasons and freeze up dates, demonstrating the ability to call the last of the relevant

variable datatypes.
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SPARQL query: (I = (o] 3]

PREFX rdf =httpifwww w3 orgM999/02/22-rdf-syntax-ns#=
PREFLX owl: <http:ifwww w3, orglZ002007 lowl#=
PREFIX rdfs: =http:ffwww w3, org/2000/01/rdf-schema#=
PREFIX xsd: <httpifwww w3.org/Z0010MLSchema#=
PREFIX ice: =http:ifwww. semanticweb.org/michdiontologies/2021/8/ICRIDSMALLZ#=
SELECT ?lceSeason ?BreakFlow
WHERE { ?lceSeason ice:hasBreakFlow YBreakFlow. }

lceSeason BreakFlow
50044 297
120080 134
50078 100
IS0076 207
20057 8991
50094 63.4
120079 278
50020 60
150013 453
120018 396
Execute

Figure 5.4: Sample of the Ice Season Ontology response to competency question 1) Which ice

seasons include breakup flows?
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SPARCL query: (I = ][]

PREFLX rdf: =http:ifwww w3 orgM999/02/2 2-rdf-syntax-ns#=
PREFLX owl: <http:ifwww w3, orglZ002/07 lowl#=
PREFLX rdfs: =http:ifwww w3, org/2000001/rdf-schema#=
PREFIX xsd: <httpfwww w3.orgi2001MLSchema#=
PREFLX ice: =http:ifwww. semanticweb.org/michdiontologies/Z2021/8/ICRIDSMALLZ#=
SELECT ?lceSeason ?LowFlowlLevel
WHERE { ?lceSeason ice:hasLowFlowLevel ?LowFlowlLevel. }

lceSeason LowFlowLevel
[s0002 2515
50048 1.284
20037 1.062
=0007 1.685
IS0046 1114
S0087 10.404
IS0086 10.634
20088 10.699
IS0067 10.56
20057 10.803
Execute

Figure 5.5: Sample of the Ice Season Ontology response to competency question 2) Which ice

seasons include first winter low flow level?
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SPARCL query: [0 =[] [3]

PREFX rdf =http:ifwww w3 orgM999/02/22-rdf-syntax-ns#=
PREFLX owl: =http:ifwww w3.orglZ002007 lowl#=
PREFIX rdfs: =http:/fwww w3 org/2000/01/rdf-schema#=
PREFIX xsd: <httpifwww w3.org/Z0010MLSchema#=
PREFIX ice: =http:ifwww. semanticweb.org/michdiontologies2021/8/CRIDSMALLZ#=
SELECT ?lceSeason ?BreakLevel 7End ?StationMame
WHERE { ?lceSeason ice:hasBreakLevel YBreaklLevel.
?lceSeason icechasEnd YEnd.
?lceSeason ice has3tationMame #StationMame}

lceSeason BreakLevel End StationMame
50020 1.658 1981 MASHWAAKRIVERATDURHAMBRIDGE
IS0070 12.213 19849 SALMONRIVERATCASTAWAY
20006 1.646 1967 MASHWAAKRIVERATDURHAMBRIDGE
50024 1.37 1985 MASHWAAKRIVERATDURHAMBRIDGE
130084 13.886 2003 SALMONRIVERATCASTAWAY
50093 13.183 2012 SALMOMNRIVERATCASTAWAY
150019 2.017 1980 MASHWAAKRIVERATDURHAMBRIDGE
20029 1.765 1990 MASHWAAKRIVERATDURHAMERIDGE
150038 1.931 19949 MASHWAAKRIVERATDURHAMBRIDGE
120078 12.416 1997 SALMONRIVERATCASTAWAY
Execute

Figure 5.6: Sample of the Ice Season Ontology response to competency question 1) What are the

end years and station names for each breakup level?
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SPARCL query: (1 = ][]

PREFLX rdf: =http:ifwww w3 orgM999/02/2 2-rdf-syntax-ns#=
PREFLX owl: <http:ifwww w3, orglZ002/07 lowl#=
PREFLX rdfs: =http:ffwww w3, org/2000001/rdf-schema#=
PREFIX xsd: <httpfwww w3.orgi2001MLSchema#=
PREFLX ice: =http:ifwww. semanticweb.org/michdiontologies/Z2021/8/ICRIDSMALLZ#=
SELECT ?lceSeason ?FreezeDate
WHERE { ?lceSeason ice:hasFreezeDate ?FreezeDate }

lceSeason FreezeDate
S0068 28M11M1986
IS0056 291121974
50021 28M2M1981
|S0077 051219495
130031 15M2M1991
50047 09M22007
IS0072 011011991
20040 18M2/2000
500446 1400142007
20009 011011970
Execute

Figure 5.7: Sample of the Ice Season Ontology response to competency question 1) What are the

dates of all freeze ups?

5.4.2 Hybrid Model Results

Five machine learning models were constructed using all potential variables in the CRID
for initial accuracy. An MLR, KNN, DT, RF, and XGBoost model were constructed to predict the
length of the ice season from the beginning of freeze up to the breakup date using the key events
of the season in between. Each of the models was trained and tested on a 75/25 split, and the model
hyperparameters were selected using 5-fold cross-validation. The models included a total of 10

variables for the prediction of the season length. The obtained accuracies of each of the five models
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on the testing set is shown in Table 5.3. The R-Squared values and MAEs of each of the models
varied, though performance was generally high. The best performing models were the RF and
XGBoost, with near comparable values in accuracy, both algorithms being ensemble models that

produce more versatile predictions.

Table 5.3: Model accuracies of each machine learning algorithm prior to hybridization.

Model R-Squared  Mean Absolute Error (days)

MLR 0.774 13.82
KNN 0.795 12.82
DT 0.777 14.66
RF 0.864 11.86
XGBoost 0.854 11.25

Following this, the lce Season Ontology structure was used to calculate the values for
degree, closeness, and betweenness centrality for all of the variables included in the initial models,
as well as the larger categories that the variables belong to (event type and data type). The obtained
values are listed in Table 5.4. Based on the structure of the ontology itself, it was found that each
of the 10 considered variables in the initial machine learning models had the same values for each
of the three centralities considered, thus further analysis of the larger categories was necessary.
For both degree and betweenness centrality, the values for the event categories of First Low Flow
(LowFlow in Table 5.4) and First Low Level (LowLevel in Table 5.4) were lower than those of
freeze up and breakup. The degree centrality for both the level and flow categories was also lower
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than the value for date. Through these values it was concluded to remove four variables from the
initial selection: First Winter Low Flow Level, First Winter Low Flow Flow, First Winter Low
Level Level, and First Winter Low Level Flow. The refined variable selection now consisted of

six variables for the prediction of breakup timing.

Table 5.4: Centrality metrics from Ice Season Ontology for each relevant variable in hybrid

modelling framework.

Variable Degree Centrality Closeness Centrality Betweenness
Centrality

IceSeason 0.212 0.000 0.000
Date 0.212 0.000 0.000
Flow 0.121 0.000 0.000
Level 0.121 0.000 0.000
Freezeup 0.152 0.030 0.004
FirstBDate 0.061 0.068 0.000
FreezeDate 0.061 0.068 0.000
FreezeFlow 0.061 0.068 0.000
FreezeLevel 0.061 0.068 0.000
LowFlow 0.121 0.030 0.003
LowFlowDate 0.061 0.068 0.000
LowFlowFlow 0.061 0.068 0.000
LowFlowLevel 0.061 0.068 0.000
LowLevel 0.121 0.030 0.003
LowLevelDate 0.061 0.068 0.000
LowLevelFlow 0.061 0.068 0.000
LowLevellLevel 0.061 0.068 0.000
Break 0.152 0.030 0.004
BreakDate 0.061 0.068 0.000
BreakFlow 0.061 0.068 0.000
BreakLevel 0.061 0.068 0.000
LastBDate 0.061 0.068 0.000

With the refined variable selection, the five machine learning models were reconstructed

using the same methodology previously discussed. Each model was trained and tested on a 75/25
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split, with hyperparameters again selected through five-fold cross-validation. The new
performances achieved by the models are listed in Table 5.5. The performance of each of the
models uniformly increased with the refined variable selection, with the RF and XGBoost models
again being the best performing of the five considered algorithms, though with the RF more
consistently outperforming the XGBoost model. Figure 5.8 graphs the predictions of each of the
models against the actual values for each of the seasons in the testing set. Though all five models
achieved reasonable R-Squared values, the closeness of the predictions of the RF is best illustrated
here. Further, the MAE of 10.85 days can be seen against the maximum time span for the

considered seasons of 224 days.

Table 5.5: Accuracies of considered machine learning algorithms post-hybridization using refined

variable selection.

Model R-Squared  Mean Absolute Error (days)

MLR 0.779 13.61
KNN 0.797 12.77
DT 0.781 14.12
RF 0.884 10.85
XGBoost 0.856 11.18
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Figure 5.8: Graphs of the accuracies of predicted season lengths from the A) MLR, B) KNN, C)

DT, D) RF, and E) XGBoost models.

5.4.3 Discussion

Overall prediction performance for the machine learning models was acceptable both pre
and post hybridization, though an improvement in model accuracy was noted after a refined
variable selection was made. In particular, a decrease in MAE of 1.01 days was achieved for the
RF model. While the decrease in error was not as significant for other models, with the XGBoost
having only a decrease of 0.08 days, each of the models was seen to increase in accuracy. As the
model is intended for decision making support for river-bound communities, increases in accuracy
of this level are vital for providing sufficient notice of breakup initiation. The accuracy of the
model was also assessed on a national scale by running all included CRID data through the
successful RF and mapping it by gauge, shown in Figure 5.9. The MAE achieved at each gauge
was found to be quite consistent and in line with the overall model, though there were some
exceptions. Two gauges in particular (Nicola River near Merritt in British Columbia and
Whitemud River near Dixonville in Alberta) had notably high values of MAE (24.79 days and
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23.37 days respectively). The Nicola River gauge was located on a heavily regulated river, while
the Whitemud River gauge had a significant amount of missing data, impacting the amount of data
available for modelling. Though this study investigated both regulated and unregulated rivers
simultaneously, future research may investigate the separation of these river types and the impact
this has on accuracy. Additional research into the effects of the physical characteristics of the rivers
could also include investigation of the hydrological factors of the river, such as basin size, slope,
or flow regime, and their inclusion in both the Ice Season Ontology and the machine learning

models.

Though other variable selection methods exist, including importance assessment (De Coste
et al., 2021) and input omission (Snieder et al., 2020), this technique provides a refined selection
in combination with the development of a usable ontology. The ontology itself provides an easily
understood tool for organizing and viewing data and allows assessments at specific locations to be
extracted and modelled with relative ease for an inexperienced user. This also allows for easy
communication of modelling results with strong visuals for end-users, and a means of sorting and

providing machine learning predictions.

181



MAE of Spring Breakup Prediction in Days at Each Modelled Gauge

T T T T e

-]

Latitwde {N)

T T T T T
=140 —1z0 =100 80 il
Longitude (E)

Figure 5.9: Map of the MAE of the hybrid RF model at each considered gauge using the full

dataset.

There are several avenues for future development of both the Ice Season Ontology itself as
well as the hybrid modelling framework. Currently, the ontology excludes the occurrence of mid-
winter breakups in its structure, as these are relatively rare events, and they result in significant
alteration to the remainder of the ice season and the type of events that occur. These events have
been noted to be significantly increasing in frequency however (De Coste, 2022a), and their
inclusion would be of great benefit to the model. Similarly, data from outside of the ice season,
including maximum spring flows and climatic statistics from the year preceding freeze up would
also provide additional avenues for analysis, as well as a more robust database to draw from for
alternative modelling approaches. Currently, the ontology and machine learning aspects of the
framework consist of separate models, though research could focus on full hybridization of the
two, providing a single means for organization and analysis of the data and an easier method to

add and assess new data and observations.
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5.5 Conclusions

This study focussed on the development of a new hybrid modelling framework combining
the advantages of ontology-based semantic modelling and data-driven modelling to describe and
predict spring breakups on Canadian rivers. The CRID, an expansive dataset containing large
amounts of data on the key events of the river ice season, was used to form the basis of an Ice
Season Ontology. This ontology describes the key events and associated values of the typical
Canadian Ice Season, and application of competency questions demonstrated the effectiveness of
the model structure, which was designed according to typical semantic modelling standards. This
model was then analysed using network modelling techniques to assess the importance of each
event in the structure, allowing a refined selection of variables for a series of machine learning
models. The refined selection lead to a smaller number of critical variables and was demonstrated
to increase accuracy for all tested models, with the best performing model gaining a significant
increase in accuracy. The model was found to be successful for the majority of gauges across the

country, demonstrating the transferability of the proposed framework.

This study was the first application of semantic modelling to river hydrology and river ice
hydrology. The obtained results demonstrate the value of these techniques both as an analytical
tool, providing new means of assessing data and improving models, as well as acting as decision-
making support. The intuitive structure of the semantic model coupled with it’s relative ease-of-
use compared to other data-driven modelling techniques allows it to be easily adopted by affected
communities with a minimal learning curve. The hybrid framework acts as a novel combination
of the results of semantic and data-driven modelling, with a successful demonstration of the value

of these techniques used in parallel. These techniques are easily extended to similar locations and
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applications in river ice studies, as well as other forecasting applications where network structures

exist and ontology-based models have not yet been applied.
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Chapter 6: Conclusions

6.1 Conclusions and Contributions

This thesis presents a series of studies into the prediction of rare and volatile river ice
breakup events. Machine learning techniques are coupled with input selection, imbalanced
learning, novel modelling framework, and ontology-based techniques to achieve high levels of
accuracy. These novel techniques present means of conducting these analyses that have not been
achieved before, with levels of accuracy greatly exceeding traditional methods. Case studies
include single rivers up to a national scale of Canada, demonstrating the success of the proposed
techniques through extensive testing and analysis. The success of these studies demonstrates the
value of non-traditional modelling frameworks in achieving high accuracy in cases where
modelling is limited by small data sets and rare events. The developed techniques and models are
easily transferable and can form the basis of decision-making support for affected communities

throughout the country.

Chapter 2 developed a stacking ensemble framework for the prediction of river ice jam
presence on the Saint John River in New Brunswick. Data requirements for the implementation of
these techniques are outlined in depth. The techniques utilised in the selection of both variables
and models as components of the ensemble are explained, with detailed overviews of each
considered algorithm provided. The basis for model selection and means for assessing the best
model combinations, in addition to other potential ensemble techniques such as voting are
explored, with the potential for other ensemble combination techniques also present in adapting
this methodology to other locations. The finished model delivered a combination of high accuracy

with low computational demand after extensive testing of model combinations, with this study as
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a whole providing a framework for the development of similar ensemble models for other rivers

affected by ice jams.

Chapter 3 outlines the analysis of MWBs in Canada using a newly available dataset. The
trends in the occurrence and severity of these events are first analysed using well established
techniques, providing valuable results for subsequent modelling. These results are combined with
input selection techniques to comprehensively analyse the drivers of MWBs in Canada on a
national scale. The results of this analysis identified the key drivers of both MWB occurrence and
severity on a national scale, and comparisons to past studies in combination with new machine
learning analysis demonstrated both the accuracy and utility of these identified drivers. Through
this, a new threshold for the occurrence of MWBS on a national scale is proposed whose accuracy
greatly exceeds previous efforts and provides a valuable early warning tool to determine potential

flood levels of these events.

Chapter 4 describes the development of a two-level modelling framework for the prediction
of occurrence and timing of MWBSs on a national scale in Canada using insights gained from the
results of Chapter 3. This study features the first application of several rare-event forecasting
techniques to river ice related phenomena, providing a basis for their implementation in future
studies. The effectiveness of the developed two-level structure both as a means for the prediction
of MWBs in Canada and as a framework for application to rare events forecasting in general is
also demonstrated through a detailed and extensive case study. This novel framework can easily
be transferred to other river phenomena such as ice jams, or in a more general sense to other rare

events with similar data availability challenges.

Chapter 5 describes the development of a novel hybrid modelling system combining the

advantages of semantic modelling and machine learning in the first study of this kind. The new
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methodology developed within is used to produce an Ice Season Ontology, the first application of
these techniques to river ice. This ontology is used in conjunction with network analysis techniques
in the first hybridization of ontology-based modelling with machine learning to produce models
capable of predicting spring breakup timing with increased accuracy over the non-hybrid models.
This new methodology is easily transferred to other domains in both hydrology and civil

engineering in general and represents a promising first combination of separate model techniques.

6.2 Recommendations for Future Work

(1) Though a variety of machine learning algorithms were tested for predicting each event,
there remain a variety of algorithms and modelling techniques that are still untapped in these fields.
Differing combinations of algorithms, deep learning, and applications of fuzzy logic and
uncertainty analysis in these predictions has not been attempted, particularly in the case of MWBS,
for which the work presented in this dissertation was the first application of machine learning
directly to these event types. Further investigation of other model algorithms and techniques could
yield better results and new insights into the drivers and severity of these events. Data used in these
studies was inclusive of all that was available for the researchers at the time the models were
developed, but increasing the data pool through acquisition of new data beyond the timespans of
the existing data sets, or supplementing the data with additional variables that were either not
available or obtainable through different means from those applied in these studies could also lead

to improved results or new conclusions.

(2) The application of the ontology-based modelling in Chapter 5 represented the first use
of these techniques in describing these river ice events, as well as the first integration of these
techniques directly with machine learning. As presented, the ontology and machine learning

models currently operate in separate software with different programming languages used in their
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construction. Direct integration of these models would be an optimal next step in their application,
allowing for results obtained from the machine learning model to be fed directly back into the
ontology, and new observations added to the ontology to be directly assessed by the machine
learning model. Through this, a single, user-friendly tool for the forecasting of breakup events
could be developed and delivered to stakeholders. This would allow an intuitive means of decision-
making support for affected communities while also allowing additional means of analysis to be

conducted on the integrated data.
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Appendix A: Detailed view of Ice Season Ontology divided by Event and Data Types
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Figure A2: Subsection of Ice Season Ontology divided by event detailing Winter Low events.
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Figure A3: Subsection of Ice Season Ontology divided by event detailing Breakup events.
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Figure A4: Subsection of Ice Season Ontology divided by event detailing Miscellaneous Season
Values.
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Figure A5: Subsections of Ice Season Ontology divided by datatype detailing Dates.
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Figure A6: Subsections of Ice Season Ontology divided by datatype detailing Flows.

Figure A7: Subsections of Ice Season Ontology divided by datatype detailing Water Levels.
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Figure A8: Subsections of Ice Season Ontology divided by datatype detailing Miscellaneous
Season Values.
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