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Abstract
The work contained in this thesis presents four research manuscripts concerning
the flow and motion of drops and bubbles in different geometries.

The first project explores the geometry of a totally wetting droplet on a conical
fiber. A droplet on a fiber undergoes spontaneous motion toward the base of the
fiber due to capillary forces, and viscous dissipation opposes the motion. In the
first paper (Chapter 3), it was found that balancing the viscous shear force with the
driving capillary force describes the motion of the droplet along the fiber. However,
in nature, if fibers are coated with a liquid, there is rarely one droplet present; the
second paper (Chapter 4) studies a conical fiber coated with multiple droplets.
A liquid film coating a fiber will break up into droplets and it is found that the
spacing of droplets depends on the shape of the fiber. The merging of droplets was
studied and the dynamics well matches numerical simulations. The third paper
(Chapter 5) studies the fluid film that a droplet will leave behind as it moves along
the fiber. Using asymptotic matching to film deposition theory, this study found
that the film thickness is affected by the curvature of the droplet. These studies
show that the conical geometry and droplet curvature play an important role in
droplet motion and film deposition.

The last project (Chapter 6) in this thesis concerns a chain of uniform sticky
bubbles that rise through an aqueous bath. It is found that the chain of bubbles
will buckle regularly as it moves through a liquid bath, much like a solid rope will
buckle when impacting a surface. As the bubble chain rises through the bath, a
compressive force develops due to an imbalance between the buoyancy of the chain
and the viscous drag of the liquid surrounding it. Unlike solid ropes, there is no
bending to stabilize the bubble chain and the regular buckling pattern is unex-
pected. Using scaling arguments, it is found that the viscous bath both stabilizes
the chain and introduces the compressive force. The geometry of the buckling can
be described from a force balance between the compressive and stabilizing forces.

Drops and bubbles prove to be useful experimental tools to probe driven flow
in different geometries and provide valuable insight into fundamental and applied
physics systems.
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Chapter 1

Introduction

1.1 Introduction

Fundamentally, this thesis falls into a category of dissertations that study fluid
mechanics, which is easy because fluid mechanics is a broad field that spans length
scales from galaxy dynamics all the way down to the flow of microscopic amoebae
in a pond. The study of fluid mechanics is also easy to motivate because fluids,
especially moving fluids, are all around us, from the air we breathe to the water in
our drinking glass to blood flow in our veins. In addition, if fluid systems include
components of self-assembly, pattern formation, mesoscopic system sizes, and if
thermal energy is important, then the systems are part of the study of soft con-
densed matter. Soft matter is a multidisciplinary field that includes components
of biophysics, granular physics, fluid mechanics, complex fluids, polymer physics,
colloids, chemical physics, and many others [1].

At the intersection of fluid mechanics and soft matter, we must look no farther
than some examples in nature to understand why this is such a rich area of physics.
Dry sand behaves very differently than wet sand, as those who have tried to build
a sandcastle know of the importance of adding water. The water in wet sand
fills the volume between the grains, creating small capillary bridges that hold the
particles and allow for an intrepid builder to create shapes that would revert to a
pile without the presence of the liquid [2, 3]. Along with acting like glue, liquids
can also act as a lubricating layer; snails, slugs and other gastropods secrete a
mucus that not only prevents their desiccation, but also allows them to change the
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friction between their bodies and the surface upon which they are moving [4, 5].
Nature has also come up with clever ways to remove liquid from surfaces where it
is not desired. For example, water striders rely on tiny hydrophobic hairs coating
their legs to spontaneously repel water, a key feature that allows them to skate
across the surface of a lake [6]. A combination of the hydrophobicity and the
geometry of the hairs are responsible for this effect. Lotus leaves are famous for
their hydrophobic nature causing raindrops to easily bead up and roll off the leaf
surface [7, 8]. This thesis aims to follow examples given by nature to understand
how droplets and bubbles form, move, and interact in different geometries.

Along with systems created in nature, there are many biological and techno-
logical applications that benefit from understanding droplets. Inkjet printing, for
instance, relies on both the break up of a jet of liquid into droplets (see the Plateau-
Rayleigh instability addressed in section 1.6.2) [9] and on the wetting of the ink on
the paper (see section 1.3.3) [10, 11]. In our changing environment due to climate
change, reliable potable water sources are an urgent necessity, and one possible
solution is the development of fog harvesting devices. Fog harvesting is the act
of catching moisture from the air, and many devices takes inspiration from water
striders; however, rather than coating the hairs with a hydrophobic surface, the
goal is to transport water towards the base of the hair faster than the water can
evaporate [12, 13, 14]. Droplet interactions with slender bodies have also been
of particular interest in recent literature, where droplets have been wrapped in
slender sheets [15, 16, 17, 18], used to bend fibers [19, 20, 21, 22] and transported
along surfaces of varying composition and structure [23, 24].

In this chapter, I will provide the relevant physics to understanding several
interactions between fluids and materials. First I will start by broadly defining
fluid dynamics and the governing equations in section 1.2, before examining what
happens when the system length scale is decreased to the point when capillary
forces dominate in section 1.3. I will briefly discuss ways of comparing forces to
understand which forces are dominant in fluid systems in section 1.4. After laying
the framework of the relevant physics concepts in the first three sections, I will
derive the shapes of droplets in different geometries in section 1.5 which will be used
in the later chapters that contain the research conducted for this doctoral thesis.

2
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Specific interactions between capillarity and hydrodynamics will be presented in
section 1.6, where the interplay between surface tension and viscosity can develop
a coating of a liquid film and also facilitate a break up of a film. Sections 1.7
and 1.8 will show some applications of the physics learned in the previous sections
including creating adhesive bubbles and coiling of slender structures. In chapter 2,
I will discuss the experimental techniques used in this thesis including pipette
pulling, droplet production, bubble production and image analysis.

The following chapters in this “sandwich thesis” will include four papers, three
of the papers investigate a system of a droplet moving on a conical fiber. Chap-
ter 3 discusses a simple surface tension driven model to describe the motion of a
droplet on a conical fiber. The formation, motion and merging of these droplets
is presented in Chapter 4 and Chapter 5 will discuss the relevant physics of the
film left behind a droplet as it self-propels along a fiber. In a slight side-step away
from droplets moving on fibers, in Chapter 6 we will take inspiration from both
air bubbles in carbonated drinks, and the coiling of honey on toast. This final
paper studies drag-induced buckling of a chain of bubbles. Finally, Chapter 7 will
contain general conclusions.

1.2 Fluid dynamics

One of the beautiful things about physics is that you can usually start from first
principles to come up with a set of equations that includes all the physics to de-
scribe a system. Sometimes the resulting equations are solvable, sometimes they
are not. In fluid dynamics, we can describe the relevant phenomena using the
Navier-Stokes equations. First, I will walk the reader through the general ingre-
dients to the equations, and then discard the parts of the equation that are not
relevant to topics in this thesis and subsequently simplify the mathematics. In this
section, we will start off broadly with the Navier-Stokes equations before introduc-
ing assumptions and ways to simplify the equations into an analytically solvable
form using the lubrication approximation. Relevant to the three papers presented
in Chapters 3-5, the lubrication approximation describes the flow of a thin film
of liquid on a solid surface. We see the effect of the lubrication approximation in

3
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a thin film when a droplet of fluid glides along the conical fiber because of the
lubricating layer of a pre-wetting film. At the end of this section, I will explain
the origins of viscous dissipation, which moderates the flow of the drops. Finally,
I will derive viscous drag forces for objects moving through a fluid, like the air
bubbles moving through an aqueous bath, as presented in Chapter 6.

1.2.1 Navier-Stokes equations

The Navier-Stokes equations are the most general set of equations that can be
used to describe fluid flow. From compressible gases with turbulence to viscous
liquids like honey or molasses, from ocean currents to the fluids in our cells, the
Navier-Stokes covers it all [25]. The Navier-Stokes equations describe motion in
three-dimensions and accounts for inertia, compressibility, pressure, gravity and
more through two simple ideas: conservation of momentum and conservation of
mass [25]. There is currently no general analytical solution for the Navier-Stokes
equations and famously there is an award for those who discover the general solu-
tion [26].

The first relationship we will consider is the conservation of momentum. To
begin deriving the Navier-Stokes equations for a fluid, it is informative to consider
one small volume of the fluid at one point in time in a fluid body. At an instan-
taneous point in time, this infinitesimal section of fluid will behave as a confined
volume. A volume of fluid will respond to any potential forces acting on it accord-
ing to Newton’s second law of motion [27]. Generally, a volume will have a force
F⃗ acting on it, and it will respond with an acceleration a⃗ according to the mass
m, which we can express in an equation that some may recognize from beginner
physics courses,

F⃗ = ma⃗. (1.1)

This equation is incredibly general and based on the specifics of the system we can
provide a more detailed analysis. Starting with the right-hand side of equation 1.1,
any acceleration can be attributed to different changes in momentum, where mo-
mentum p⃗ is the mass of an object multiplied by the velocity. This means the
right hand side of equation 1.1 can be rewritten to consider momentum p⃗, where
ma⃗ = dp⃗/dt, where for an unchanging density ρ and volume V , the momentum

4
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changes as a function of time t. The first type of momentum to consider is the
change in momentum of the parcel itself, just like if the parcel were a block being
pushed along a surface beginning from rest. We will refer to this as the variational
term= ρ∂u⃗/∂t expressed per unit volume, where u⃗ is the three-dimensional ve-
locity of the parcel, and t is time. Another momentum component to consider is
the momentum change due to the fluid surrounding the parcel, which is similar to
the idea of a stick floating down a river. The stick moves and changes direction
according to the flow of the river rather than the internal inertia of the stick. In
a similar argument, because the parcel is passing along a streamline through the
fluid, the passing fluid also carries momentum, this is known as the convective
term = ρ (u⃗ · ∇) u⃗ per unit volume. The convective term is non-linear in u⃗ and
can make calculations difficult.

To understand the left-hand side of equation 1.1, we can consider the forces
that the parcel might be experiencing, both internally and externally. One of the
forces that can act on the fluid parcel is an internal force, meaning it results not
from an external source, but from stresses inside of the fluid body. One of these
internal forces is from pressure gradients that can arise in the fluid, a common
surface related pressure is discussed in section 1.3.4. Any difference in pressure
P across the fluid body will cause flow. Fluid flows from high to low pressure,
just like air does when you inhale. When you expand your chest to inhale, you
are increasing the volume available in your chest and thus decreasing the pressure
relative to atmospheric pressure. The pressure difference between your expanded
chest and the atmosphere causes to air flow into your lungs. Flow due to pressure
differences will be referred to as pressure driven = ∇P per volume of liquid.

Another internal force present in a liquid is the viscous dissipation. In this
case, viscosity opposes any motion that the parcel might be feeling due to friction
between the liquid particles. Viscosity is the way that a liquid resists motion and
is often indicated with a viscous coefficient η. The origins and specifics of viscosity
are discussed in section 1.2.4 because it is particularly relevant to this thesis. The
viscosity term will oppose motion and will be referred to as viscous dissipation =
−η∇2u⃗ per volume of fluid.

Any external forces, like gravity or magnetic fields, are grouped into one term.

5

http://www.mcmaster.ca/
http://www.physics.mcmaster.ca/


Ph. D.– Carmen L. Lee; McMaster University– Physics and Astronomy

We can write this as an acceleration g⃗ for a fluid with density ρ as external forces
= ρg⃗ for a given volume of fluid.

Combining all of these components into equation 1.1, the general form of New-
ton’s second law becomes the first equation of the Navier-Stokes equations, here
written for a unit volume of liquid

ρ∂u⃗

∂t︸ ︷︷ ︸
variational

+ ρ (u⃗ · ∇) u⃗︸ ︷︷ ︸
convection

− η∇2u⃗︸ ︷︷ ︸
viscous dissipation

= ∇P︸︷︷︸
internal forces

+ ρg⃗︸︷︷︸
external forces

. (1.2)

This is statement is written for incompressible fluids like the fluids considered in
this thesis, If we were to consider compressible fluids, several more terms would be
needed to account for the changing density. This is a field particularly relevant to
engineers, aerodynamicists and astrophysicists [28, 29]. One of the common tech-
niques used to solve compressible fluid dynamics problems is to use computational
fluid dynamics [30].

Along with the conservation of momentum, we can also assume that conserva-
tion of mass holds true. The conservation of mass states that for any mass entering
any given volume requires that either an equal mass must exit or a change of den-
sity ρ must occur. This relationship is described mathematically as

∂ρ

∂t
+ ∇ · (ρu⃗) = 0, (1.3)

which says that any change of density over time, requires that the divergence of
the momentum must also change [31]. For an incompressible fluid, the density
stays constant with time, and equation 1.3 reduces to

∇ · u⃗ = 0, (1.4)

indicating that any amount of material flowing into a section of space requires the
same amount must be flowing out. Figure 1.1 shows some examples of possible
divergence patterns in two-dimensions that are valid for an incompressible fluid
that has a divergence of zero. Equation 1.4 is the second of the Navier-Stokes
equations. Now that we have discussed the Navier-Stokes equations in their most
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Figure 1.1: Examples of flow patterns with zero divergence, ar-
rows indicate flow velocity.

general form, the following sections will look toward ways to simplify them to
match the requirements of the systems in this thesis.

1.2.2 Simplifying the Navier-Stokes equations

In this section, we will walk through some simplifications that are relevant to the
projects in this thesis, namely that we assume slow flows. Assuming slow flows
means that the fluid is in a regime where the convection component of the flow
is small. Because convection depends on the velocity squared (eq. 1.2) it highly
complicates the already difficult equation, and by assuming it is small relative to
the other terms in the Navier-Stokes equation allows for it to be neglected.

Another simplification that can be done primarily in terms of notation is to
convert a body force into a pressure. For instance, a gravitational force often can
be written as a hydrostatic pressure and therefore can be grouped into the pressure
driven term. By dealing with slow velocities to disregard inertial components
and converting the body forces to pressures, we can simplify the Navier-Stokes
equations into

ρ∂u⃗

∂t
− η∇2u⃗ = ∇P, (1.5)

where the variational acceleration is driven by pressure gradients across the fluid
but is slowed by viscous dissipation.

One useful example of this is to consider microfluidic chambers. Microfluidic
chambers are small versatile devices that flow small amounts of liquid through a
confined chamber using pressure gradients across the device. The flow is relatively
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Figure 1.2: a) A thin liquid film that extends in the x − y plane
and is confined in the z-direction. b) A sample parabolic flow profile
for a thin film of thickness e on a solid substrate.

slow and so any acceleration of the fluid is driven by the pressure gradients. Here,
the viscous dissipation will slow motion of the items in the device [32, 33].

1.2.3 Thin film hydrodynamics

Even considering slow flows, equation 1.5 is still quite complicated as it is a three-
dimensional set of equations. Relevant to this thesis in Chapters 3-5, we will now
consider the lubrication approximation. The lubrication approximation makes a
couple of assumptions based on the geometry of the fluid system. We first assume
that the flow is steady, so there is no acceleration in the film and ∂u⃗/∂t = 0. For a
thin film where one direction is much smaller than the other two, it is reasonable to
assume that the fluid will flow in in the lateral direction more than the direction
corresponding to the small height, which reduces the three-dimensional vector
problem into a two-dimensional. Following the schematic in figure 1.2a), if the
film thickness is small in the z-direction, we can assume that the majority of flow
will happen in the x − y plane, with a small, but non-zero flow in the vertical
direction.

The second assumption is that the film can sustain a flow. For the thin films
present in this thesis (Chapters 3-5) there is a no-slip boundary where the film
comes in contact with the solid substrate and a no-shear boundary condition at
the free interface. These two boundary conditions require that at the solid-liquid
interface the velocity of the film is zero relative to the boundary, i.e. u = 0 at z = 0
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and at the liquid-air interface when the film thickness is z = e, there is no shear
force and ∂u/∂z = 0 at z = e. For flow with these boundary conditions, there
must be a velocity gradient over the thickness of the film, ∂u/∂z ̸= 0 for general
z, and that there is a viscous force opposing the flow in the diffusion term. The
flow is pressure driven and moves liquid from areas of high to low pressure in one
direction. Here we assume that the pressure gradients are constant or independent
of the z-direction. The viscous dissipation opposes flow due to gradients in velocity
in the z-direction, we can now write down the lubrication approximation,

−∂P

∂x
+ η

∂2u

∂z2 = 0. (1.6)

Finally, it is possible to integrate this equation analytically with the boundary
conditions. The double integration required from the velocity gradients in the
vertical direction indicates that the flow will be parabolic in z. Integrating once
with respect to z gives

−z
∂P

∂x
+ η

∂u

∂z
+ C = 0, (1.7)

where C is an integration constant that will be solved in a later step. Integrating
again, we find

−z2

2
∂P

∂x
+ ηu + Cz + D = 0, (1.8)

with D being another integration constant. Using the no-slip boundary condition,
when u = 0 at z = 0, we see that D = 0. At the top of the film, when z = e, we
know that ∂u/∂z = 0 to ensure a no-stress boundary condition. Implementing the
boundary condition, we find that C = −e∂P

∂x
. For a thin film that has a no-slip

boundary and a free interface, the resulting equation is

−(z2

2 + ze)∂P

∂x
+ ηu = 0. (1.9)

Solving for the velocity of the film, we find that the velocity is parabolic in z.
Figure 1.2b) shows a sample parabolic flow profile for this film, and is often referred
to as Poisueille flow or pipe flow [25].

Other boundary conditions can cause other flow patterns. For example, two
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no-shear interfaces on either side of the film will result in a uniform flow across
the film. This is known as plug flow and is often present in the drainage of soap
films [34]. Another example consists of two no-slip boundary conditions, with one
boundary moving relative to the other. These conditions create a linear flow profile
known as Couette flow [25].

Furthermore, equation 1.6 can be understood from scaling arguments, the av-
erage velocity U of the fluid flow should depend on the thickness of the film and
the pressure gradients, as well as a characteristic horizontal length scale L [34],

U ∝ e2

η

∆P

L
, (1.10)

where L is a value that depends on the geometry of the problem. In addition, we
can define the flow rate Q as the flow through a section of film due to this pressure
in the x-direction

Q = eU ∝ e3

η

∂P

∂x
. (1.11)

The relationship between flow rate and film thickness can therefore be directly
related to the pressure gradient that drives the flow of the fluid [35].

1.2.4 Viscous dissipation

Common descriptions of fluids often hold clues to their viscosity: gooey honey,
thick cream, runny milk. In everyday life we use relative terms to describe the
viscosity of a liquid by comparing it to known liquids, like ‘more runny than whip-
ping cream, but thicker than whole milk’. Viscosity is something that many people
have an intuition for without a scientific definition. The definition of viscosity is
formed through an understanding how of a liquid will flow in response to a shear
stress. For instance, a volume of liquid that touches two flat plates on opposite
sides of the liquid, with a contact area A, is sheared when the top plate is moved
with a constant velocity u with respect to the bottom plate. The shearing is shown
schematically in figure 1.3. The shearing motion will be resisted by a force F that
is due to the viscosity of the fluid. Assuming that there is a constant deformation
∆x (t) in response to the shear after some time, we can define a constant shear
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F,u

y

Δx

A
Figure 1.3: A schematic of a volume of fluid in contact with two
plates touching with area A. The top plate is moved a distance ∆x
at a constant velocity u with a force F . The separation between
the plates is a distance y.

strain ϵ = ∆x (t) /y. For a Newtonian liquid, which has constant viscosity regard-
less of the shear strain rate ϵ̇ = u/y, we expect that the viscosity will appear as
a proportionality constant between the shear strain rate and the force for a given
area,

F

A
= η

u

y
= ηϵ̇. (1.12)

Non-Newtonian fluids exhibit non-constant viscosity depending on the applied
shear strain rate. For example, toothpaste is shear thinning and the viscosity
will decrease as a shear strain rate is increased. The opposite example is that of
completely soaked sand, which shear thickens when a fast shear strain is applied
and is the reason why wet sand will appear more solid when stepped on quickly
but flows like a fluid when slowly perturbed [36, 37].

At the molecular level, viscosity comes from an energy cost to rearranging the
structure of the network of molecules. For the purposes of this thesis, we can
approximate viscosity as something similar to friction between molecules. This
‘friction’ dissipates energy through the fluid, just like friction between two sur-
faces dissipates kinetic energy, for instance when friction from rubbing your hands
together dissipates energy in the form of heat. We can consider the case of a thin
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film again, where at the solid-liquid interface there is a no-slip boundary condition.
A no-slip boundary condition means that the velocity of the fluid at the bottom of
the film must be equal to zero and at the top of the film the velocity will be u. In
order to transition between these two velocities, there must be a velocity gradient
inside of the film, which can be discretized, so the flow happens in layers. Each
layer will have a slightly different velocity (similar to the arrows shown in fig 1.2b)
), and will impart a shear force on each subsequent layer. The energy lost to this
is called viscous dissipation and is an important concept in highly viscous flow.
Generally, viscous dissipation takes the scaling of η∇2u⃗.

1.2.5 Drag

Drag is closely linked to viscous dissipation, which is the resistance felt by an
object moving through a fluid. You might feel drag on a particularly windy day
when you walk on the sidewalk and feel the air resisting you, or as you dangle
your hand through water while on a moving boat. Drag depends on the speed
of the object u, the cross sectional area A, a drag coefficient Cd and the density
of the fluid ρ [25]. For an object moving through a fluid with a constant speed
that is propelled by a constant force F , there must be an equal and opposite force
resisting any acceleration, and this is the drag force. Generally, the drag force
is Fd = 1

2ρu2CdA [25]. For highly viscous flows (i.e. low Reynolds number as
discussed in section 1.4.1), like those handled in this thesis, Cd asymptotically
approaches 1/Re, where the Reynolds number, Re = ρuL/µ, and µ is the viscosity
and L is a characteristic length scale of the system [38, 39, 40]. The Reynolds
number compares viscous forces to inertial ones. For slow flows, the drag force is

Fd = 1
2

µuA

L
. (1.13)

For the case of a sphere, the length scale is the radius L = R, and area is the
cross section of the sphere A ∝ R2. Inserting the length and area into the general
expression for drag force (equation 1.13) gives the drag force Fd = cµuR, where
all of the numerical coefficients are combined into a general coefficient c. From
this expression, the faster the flow around the sphere, the larger the drag force
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will, and larger spheres will experience a larger drag force. For a sphere, the drag
coefficient c can be solved analytically to be 6π [31]. Relevant to this thesis, the
drag force on a bubble rising through a fluid bath sets the terminal velocity on
the bubble due to the balance between buoyancy and drag. The buoyant force
is dependent on the volume of the bubble and the density difference between the
bubble and the bath

Fb = 4
3πR3∆ρg. (1.14)

By balancing buoyancy and drag, then solving for the velocity, we can find the
terminal velocity, vt, for the bubble when it rises through the fluid,

vt = 2R2∆ρg

9µ
. (1.15)

Drag on a spherical particle comes into particular relevance in measuring the vis-
cosity of the fluid baths used in Chapter 6 along with the motion of the buckled
bubble chain as it moves through the bath.

1.3 Capillarity

The research presented in this thesis is focused on interactions that happen at
liquid interfaces. When a system has a large interface to bulk ratio, surface prop-
erties become important. Surface properties typically dominate in small volumes,
when the small length scales of the system require that the volumetric scaling is
much smaller than the surface area scaling. The study of fluid interfaces is often
referred to as capillarity, which is the reason why bubbles are round and why the
water at the edge of the glass is curved. Capillarity and capillary interactions have
been an area of active study in the past number of years, and capillarity has been
the driving force in thin film hydrodynamics studies [41, 42, 43], interactions with
elastic media [44, 45, 46] and capillary induced instabilities [47, 48, 49]. In this
section, I will provide the background information behind capillarity and how it
pertains to drops and bubbles.
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1.3.1 Surface tension

When you pour a glass of water, the bulk of the liquid travels toward the bottom
of the glass due to gravity. Examining the surface closely, we see that at the
surface it is perfectly flat at the center of the glass and curves slightly at the edges
of the glass (the edges will be discussed in section 1.3.3). Swirl the glass or lift
it to take a drink and the water flows, distorting that perfectly flat surface, but
upon setting it back down the water quickly reforms the planar configuration. The
reason for this beautifully flat liquid surface is of a property called surface tension.
Consider surface tension as a restoring force that holds a liquid surface as taut
as the geometry will allow. An excellent visualization of this is to take a soap
film (like children may do in the summer months) and gently blow on the film
as though to blow a bubble, not enough to detach the film as a bubble but just
enough to distort the film. Stopping, you will notice the film springs back to a flat
configuration as though it were stretched like an elastic sheet.

The origins of surface tension come from interactions at the molecular level.
A liquid consists of molecules held together with inter-molecular bonds. These
bonds are typically strong enough to keep the molecules in a condensed state, but
not so strong that they are frozen strictly in place like a solid. Water is cohered
with strong hydrogen bonds, whereas something like an oil is held together more
loosely with weaker van der Waals forces. In the bulk of the liquid, each molecule
feels an isotropic attraction and repulsion, and there is a minimal energetic cost
of interaction because like-like interactions are generally the most favourable and
has the lowest energy cost [1, 34].

At the surface of the liquid, a molecule will only have favourable interactions
where it is in contact with the rest of the bulk. Figure 1.4a) shows a schematic
of interactions of two sample liquid molecules, one in the bulk and one at the
surface. The anisotropy of the configuration around the molecule at the surface
means that part of it is forced to interact with a less favourable medium like a
gas, other immiscible liquid, or solid, and this costs the system more energy than
interacting in the bulk liquid. Nature is always seeking to minimize free energy and
will work to reduce an excess surface and surface tension is the physical realization
of this phenomenon. Surface tension can be treated as an energy cost per unit area
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a) a)

Figure 1.4: a) Two liquid molecules, one in the bulk show-
ing isotropic interactions with the nearest neighbours and one at
the surface with anisotropic interactions. b) The same sample
schematic as in a) but now showing the relative strength of both
attractive and repulsive interactions.

and is frequently denoted as γ. Considering surface tension as an energy cost per
area makes sense from a mechanical point of view because to create more interface
means to create more locations for unfavourable interactions and thus, costs more
energy. The relationship between energy, area and surface tension can be written
as

δW = γ dA, (1.16)

where δW is the work done on the system, and dA is the change in area. In the
earlier example of blowing on the soap film, you are providing the work through
your breath, and the amount you must blow on the film to distort it by a given
area change is dependent on the surface tension.

Surface tension also has equivalent units as a force per unit length that runs
parallel to the surface of the interface. One of the confusing things for me during
my thesis work was understanding why, based on the energy interaction diagram
in fig 1.4a), the force is not normal to the surface. Considering figure 1.4 it appears
as though the unbalanced interactions should be pulling down into the liquid. This

15

http://www.mcmaster.ca/
http://www.physics.mcmaster.ca/


Ph. D.– Carmen L. Lee; McMaster University– Physics and Astronomy

figure, although common in many textbooks, is deceptive as it only shows the at-
tractive interactions. Molecules in a liquid will experience a long range attraction,
like van der Waals or hydrogen bonds, along with a repulsive interaction at short
range to prevent molecules from overlapping with one another [1]. Combining the
long range attraction and short range repulsion gives the interaction energy as a
function of separation distance which can be approximated as the Lennard-Jones
potential and is plotted in figure 1.5. The Lennard-Jones potential is a simplified
model of atomic interactions that depends on the strength of the potential well
ϵ and a particle size σ. A minimum in the potential indicates the distance be-
tween molecules for which the system is optimized, rmin. Moving two molecules
closer than rmin repels the molecules and moving them farther apart will cause
them to attract. One consequence of having short range repulsion and long-range
attraction is that when there is anisotropy at a given location, there can be an
anisotropy in the resulting interaction strengths. Early works in understanding
molecular interactions and molecular dynamic interactions show that at a surface
of a liquid the combination of the anisotropy at the interface and a decrease in
molecule density results in a larger attractive force parallel to the interface [50,
51]. Figure 1.4b) shows the anisotropic attractive and the isotropic repulsive in-
teractions at the surface compared to in the bulk. Thus, the force extends parallel
to the interface. The anisotropy in molecular interactions is what gives rise to the
macroscopic energy cost of creating more interface, known as surface tension.

1.3.2 Contact angles

Consider a droplet of water on a glass window, from observation one can see that
the droplet does not lie flat on the window but beads up on the surface. Zooming
in to the contact line where the solid, liquid, and gas meet, there is a constant
angle all the way around the base of the droplet. This angle is known as the
contact angle θE and comes from a balance of the three interfacial tensions, the
solid-liquid γSL, solid-vapour γSV and liquid-vapour γ. All three of these forces per
unit length are pulling away from the contact point and this is shown schematically
in Figure 1.6 a). It is worth noting here that the angle depends on the material
properties of the solid substrate, liquid drop and surrounding gas or liquid.
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rmin

Figure 1.5: A plot of the Lennard-Jones potential showing the
normalize interaction energy as a function of the normalized separa-
tion distance. The separation distance rmin marked by the minima
indicates the equilibrium state for two atoms in a balance between
short range repulsion and long range attraction.
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Figure 1.6: a) A static drop on a solid surface in equilibrium. The
three surface energies acting on the contact line with magnitudes
dependent on the respective interfacial tensions: γSV at the solid-
vapour interface, γSL at the solid-liquid interface, and γ at the
liquid-vapour interface. A horizontal force balance between these
three forces gives the contact angle θE . b) A drop moving with a
velocity v. The leading edge has an advancing contact angle θA and
the trailing edge has a receding contact angle of θR.

Considering that a horizontal force balance at the contact line must be true for
a static droplet, we find Young’s relation where

γ cos(θE) = γSV − γSL. (1.17)

Changing the contact angle will change the shape that the liquid sits on the solid
surface. For a given volume of drop, as the contact angle decreases, the liquid
spreads out, and conversely as the contact angle increases, the liquid beads up
higher on the surface.

In order to spontaneously move drops on a surface, the contact angle will need
to change from the static contact angle. Moving the drop towards a new, dry area
of the surface will require that the contact angle exceed an advancing contact angle
θA, i.e. θ > θA. If a contact angle is less than this critical angle, the shape of
the drop will change, however the contact line will only move when the advancing
contact angle is exceeded. Similarly, there is a receding contact angle, θR, which
is a minimum angle that can be sustained before the trailing edge will retract and
expose more solid substrate. The advancing and receding angle requirements can
be seen when drop rolling down a window will have a bulbous front and a drawn-
out tail, an example of this is shown in figure 1.6b). Motion on a pre-wet surface,
such as the motion of the drop on a conical fiber like presented in Chapters 3-5,
will require less force to move due to the decreased requirements to change the
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apparent contact angle of the drop due to the film. In particular, the importance of
a lubricating film and the effects on the droplets motion are discussed in Chapter 3.

Another interesting effect of the contact line is that often a vertical force balance
is disregarded because as the liquid-vapour surface tension pulls upwards on the
solid, the stiffness of the solid balances the small upwards force without deforming.
Soft solids, like gels, rubbers, and thin flexible films deform to balance this force
by creating a small wetting ridge around the drop [52]. This ridge changes the
dynamics of drop motion; in order to move the drop, it must not only distort
to exceed the advancing and receding angle limits but also must overcome the
increased dissipation caused by the wetting ridge [46]. Wetting ridge dynamics
is an important topic in tribology and understanding how liquids and soft solids
interact is important in the field of bio-engineering, the food industry and the
rubber industry [53].

1.3.3 Wetting

Closely linked to contact angles is the concept of wetting. Wetting described how
much a liquid will spread on a solid surface; for example, a drop of water placed
on a table will stay beaded up, where a drop of silicone oil will spread out until
it completely coats the table. Wetting also determines the meniscus that forms
between a liquid and a container. The meniscus forms due to a balance between
gravitational and capillary forces and the wetting causes a rise or depression of the
liquid at the contact line.

To understand wetting one can ask if would it be more favourable to have a
given surface be wet or dry? A spreading parameter S indicates the energetic
difference between a wet and a dry surface [34]:

S = γSV − (γ + γSL), (1.18)

where the energy of the dry surface (γSV ) is compared to the wet surface (including
the energy of both the solid-liquid interface and the liquid-air γ + γSL). The
spreading parameter identifies two regimes, when S > 0 and when S < 0.
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a) c)b)

Figure 1.7: A schematic of a) totally wetting, b) mostly wetting,
and c) mostly non-wetting liquids on a surface. The totally wetting
liquid spreads until it creates a microscopically thin film, the two
partially wetting droplets form spherical caps on the surface.

When S > 0, the liquid is totally wetting the surface, and it is energetically
favourable for the liquid to be in contact with the solid. As a result, the liquid will
spread out until it forms a coating over the entire surface. The liquid and solid
combination used in this thesis, silicone oil and glass, is one example of a totally
wetting liquid-solid combination. Figure 1.7a) shows how a totally wetting droplet
placed on a surface will spread out to form a microscopically thin film [34].

When S < 0, it is more costly to have the liquid be in contact with the solid and
therefore the liquid only partially wets the substrate. The liquid beads up on the
surface and a small drop forms a spherical cap. The liquid forms a contact angle
according to Young’s relation (equation 1.17), and if the contact angle is acute,
0 < θE < π/2, then the liquid is said to mostly wet the surface (fig. 1.7), and the
energetics are mildly favourable for the two to be in contact. For obtuse contact
angles θE ≥ π/2, the liquid mostly non-wets the surface, and forms marble-like
drops that are easy to roll off. Examples of totally wetting, mostly wetting and
mostly non-wetting drops are shown in figure 1.7 a)-c), respectively. Tuning the
wettability of a surface has many key applications in both industry and everyday
life including coatings on non-stick frying pans, hydrophobic coatings on tents and
rain jackets, and cell adhesion, among many others [44, 54]

1.3.4 Laplace pressure

When introducing surface tension in section 1.3.1, I described that surface tension
acts parallel to the surface of the liquid. In this section, we will discuss how
surface tension manifests itself over a liquid volume and how it creates a pressure
at curved surfaces. Furthermore, I will postulate that flow due to topography is
due to pressure gradients. Pressure at a curved interface is called Laplace pressure
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Figure 1.8: Diagram used for deriving Laplace pressure on a gen-
eral curved surface with two orthogonal radii of curvature, R1 and
R2. The surface is then inflated by a radial distance, dz and the
surface increases in size (adapted from Adamson [55].

and is readily seen when it stabilizes bubbles and drops from deformation. Laplace
pressure is caused by surface tension, and to understand where it originates we
can look at a general curved surface, as shown schematically in figure 1.8 [55].

The general curved surface can be described by two orthogonal radii of curva-
ture, R1 and R2. The surface is chosen so that the two radii are constant over the
expanse of the surface, which has an area A1. The area is defined so that A1 = xy.
If the surface is inflated by an infinitesimal radial distance of dz, we can define the
new area A2 = (x + dx)(y + dy). The difference in surface area ∆A between the
inflated and original surface is

∆A = A2 − A1 = xdy + ydx. (1.19)

If we postulate that producing new surface area requires work W , which depends
energy cost per unit area γ, the work required to inflate the surface is

W = γ∆A = γ(xdy + ydx). (1.20)
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We can use the relation between the arc length of a circular sector to the radius
to compare the arc length and radii of the original and inflated surfaces. For the
plane associated with R1, we find

x

R1
= x + dx

R1 + dz
. (1.21)

When the ratio is rearranged for dx, this relation becomes

dx = xdz

R1
. (1.22)

Similarly, the other plane finds that dy = ydz/R2. Inserting thex and y differentials
of these into equation 1.20 gives,

W = γ

(
xydz

R1
+ xydz

R2

)
. (1.23)

The above expression for work states that the energy to increase the surface area
will depend on the radii of curvature, the area A1 and distance expanded dz. Now
we can consider that from thermodynamics, work is also related to a pressure
difference acting on an area A1 through the distance dz,

W = ∆PA1dz = ∆Pxydz. (1.24)

Setting the two values for work (equations 1.23 and 1.24) equal, we arrive at
the expression for Laplace pressure

∆P = γ
( 1

R1
+ 1

R2

)
. (1.25)

The Laplace pressure states that any surface that is concave will have a negative
pressure, and a convex surface will have positive pressure. The canonical example
often used to explain this phenomenon is a sphere which has a higher pressure
inside compared to the medium outside, with ∆P = 2γ/R. Small droplets have
higher Laplace pressure than large drops and this explains why small bubbles are
more stable to deformation than large bubbles.
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a) b)

Figure 1.9: a) A shallow indentation in a volume of liquid with low
Laplace pressure gradients. b) A sharp indentation into a volume
of liquid with high Laplace pressure gradients

The Laplace pressure also has consequences for fluid flow. Imagine if a flat
liquid surface was perturbed slightly so that there is a non-flat topography on the
surface. The topography of the surface is no longer flat, surface tension will act
to reduce any excess area. As discussed in section 1.2, the way that a liquid flows
is determined by pressure gradients. Consider a curved surface perturbed in two
different ways, but with the same excess area, one has a long shallow increase,
where the other is narrow and deep (samples are shown in figure 1.9), we can ask
ourselves which will fill in more quickly, and why? Intuition tells us the narrow
and deep perturbation (figure 1.9b)) will resolve itself more quickly. We now know
that the highly curved surface has a much higher local Laplace pressure. The
surface with the deeper indentation therefore has larger Laplace pressure gradients
between the indented surface and the flat interface further away than the shallowly
deformed surface. The larger gradient in Laplace pressure results in a larger flow,
as discussed in section 1.2.2.

1.3.5 Capillary length

Capillary forces generally are weak in comparison to other forces that we experience
in our every day. However, on small scales capillary forces are incredibly important
and can add up to macroscopic effect. For example, ground water is transported
through capillary action in soil [56, 57], solvents in rapid tests for COVID-19 are
drawn through the paper due to capillary forces [58, 59], and capillary action causes
transpiration in plants [60, 61]. The length scale that compares the relative scales
of gravity and capillarity is known as the capillary length. A scaling argument
begins with the hydrostatic pressure Phyd of a liquid with density ρ in Earth’s
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gravity g at a depth of lc

Phyd = ρglc. (1.26)

The hydrostatic pressure would be balanced by the Laplace pressure in the liquid
with surface tension γ and average radius of curvature lc,

Pcap = γ

lc
. (1.27)

Setting these two pressures equal and solving for lc gives the following expression:

lc =
√

γ

ρg
. (1.28)

For many liquids on Earth, the capillary length lc is around a few millimeters
in length [34] and any system with a characteristic length scale r < lc will be
dominated by capillary forces. Menisci on the sides of the drinking glass are on
the order of a few millimeters in length because this is the length scale where
capillary forces and gravity are balanced. The capillary length also explains why
anything smaller than this scale appears to be unaffected by gravity.

If the length scale L of the system is larger than the capillary length, gravity
dominates, and surface tension can be neglected in favour of bulk forces. The
majority of this thesis operates in the regime where capillary forces dominate.

1.4 Comparing forces

For many hydrodynamic problems in soft matter, it is useful to note which forces
are relevant over the scales of the system. A simple way to do this is to compare
the magnitude of two forces in a system is by dividing them. Depending on the
resulting ratio, a large or small number would indicate a dominant force, where
a ratio ∼ 1 would indicate both forces are important. Many physics problems
can be simplified by considering the dominant forces and making the appropriate
approximations. Reducing a problem based on the relevant dominant regimes has
already been done in the section on fluid dynamics (section 1.2). For example,
when simplifying the Navier-Stokes equations, the inertia was small compared to
the viscous forces, and only the viscous term was considered. In this section,
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we will examine ratios of two forces that show up regularly in this thesis. The
ratio of two forces will be dimensionless, and these ratios are often referred to as
dimensionless numbers.

1.4.1 Reynolds number

The Reynolds number, Re, is the comparison of inertial forces to viscous forces.
The Reynolds number commonly appears in fluid dynamics to quickly determine if
the flow will be turbulent or laminar or somewhere in-between. From the Navier-
Stokes equations, we can directly take the inertial and viscous terms and divide
them to find the Reynolds number

Re = inertial term
viscous term = (u⃗ · ∇)u⃗

η∇2u⃗
. (1.29)

The relationship between inertia and viscosity is the same in one dimension as it
will be in three, and reducing to a one-dimensional problem simplifies the above
equation and the Reynolds number becomes

Re = ρUL

η
, (1.30)

with the density ρ, characteristic flow speed U , typical length scale L and viscosity
η. One can imagine for a highly viscous fluid, Re becomes small, and conversely
large for an inviscid fluid. The length scale, fluid speed and density also vary
Re proportionally. For a highly viscous liquid that is moving slowly at a small
length scale, the flow will be laminar and the Re < 1. When Re < 1, viscosity
dominates. For larger length scales with faster flow, inertia begins to dominate and
the potential for turbulence increases and Re > 1. This thesis focuses on systems
with small Re, and we assume flow is laminar with viscous forces dominating the
flow properties.

1.4.2 Bond number

Another important comparison of forces in this thesis is the comparison of capil-
lary forces to gravitational forces. Comparing capillarity and gravity is applicable
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when examining the shape of drops and bubbles, where the ratio of the body force
of gravity (volume dependent) to the capillary force (surface area dependent) de-
termines the stability of the drop. To a scaling order, the hydrostatic force is ρgL3,
where L is the length scale of the drop whereas the force due to surface tension is
γL. The ratio of these two forces is called the Bond number Bo,

Bo = ρgL3

γL
= ρgL2

γ
. (1.31)

When Bo > 1, gravity exceeds surface tension and gravity must be considered when
handling the problem. In the context of drops and bubbles, where the length scale
L is commonly defined as the radius of the drop or bubble R. A large Bo means
that there will be a difference in hydrostatic pressure across the drop, and the
drop may deform due to gravity. For example, when a drop becomes large, like
dew drops hanging from a strand of spider silk, the drops sag below the fiber
and are no longer axisymmetric. When the bond number is small, Bo < 1, surface
tension dominates, and the droplet will be smaller than the capillary length; gravity
is negligible. A droplet will surround the silk strand or fiber axisymmetrically.
Droplets and bubbles with small Bo are considered in this thesis and therefore the
shape of the droplets is determined entirely by surface tension. Typically, drops
with small Bond numbers are referred to as droplets.

1.4.3 Capillary number

The final relevant comparison between forces is the competition between viscosity
and capillarity. Known as the capillary number, the viscous forces are divided by
the capillary forces. The general scaling for a viscous force is ηUL, and capillary
forces scale as γL, and dividing these gives the capillary number Ca,

Ca = ηUL

γL
= ηU

γ
. (1.32)

The capillary number is often used to understand different regimes when depositing
Landau-Levich-Derjaguin films (see section 1.6.1 for a detailed derivation) [62, 63,
64]. Landau-Levich-Derjaguin (LLD) films are liquid films that coat a solid as the
solid is drawn out of a liquid bath. As a solid is pulled out of a bath, the viscosity
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of the liquid causes a film to be entrained along with the solid, whereas surface
tension opposes creating new interface. Ca directly compares surface tension to
viscosity. A large capillary number indicates a viscosity dominant regime with
a thicker film, whereas a small capillary number indicates that surface tension
dominates and will create a thinner film or no film at all.

1.5 Equilibrium shapes of drops

In this section, I will discuss the equilibrium shapes of drops in different geome-
tries. Combining the material in section 1.2 and section 1.3, I will derive the shapes
of drops in liquid baths, on solid surfaces and on cylindrical fibers. Of particular
importance to this thesis are the shapes of drops on fibers and in liquid baths. Un-
derstanding drop shapes at equilibrium enables several measurement techniques
including measuring surface tension using the pendant drop method [65, 66], con-
tact angles of sessile drops [67, 68] and wetting properties [69]. Drops in a bath are
used in a multitude of applications, including changing material properties during
manufacturing, like creating a metal foam during casting [70, 71], and to improve
nutrient transport in biological systems for mollusc farming [72]. Systems with
drops on fibers have been used to develop lab on chip-like networks [73], drops
have been used to bend and deform slender fibers [19, 21] and to look at transport
properties of surfaces [9].

1.5.1 In liquids

As described in section 1.3, surface tension drives the minimization of surface area
of an interface. For two immiscible liquids, with one dispersed phase inside of a
continuous phase, the dispersed phase will form domains in the continuous phase
and the geometry is set by the surface tension. Surface tension will minimize the
interface to form a sphere [74]. A free volume of liquid with Bo < 1 will form a
spherical droplet. The radius of the droplet depends on the volume of liquid for
incompressible fluids, but depends on the hydrostatic pressure for a compressible
one [75]. One can see this effect when enjoying a carbonated beverage, like beer
or sparkling wine. Carbon dioxide bubbles that form at the bottom of a glass
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inflate as they rise through the glass. At the bottom of the glass there is a higher
hydrostatic pressure pushing inwards compared to further up the liquid column.
Although the bubbles are still spherical because the pressure across the bubble
is constant, there is a slight inflation due to the global change in pressure as the
bubbles rise.

For example, a typical nucleated bubble is ∼ 100 µm in radius [76] and the
typical pint glass is ∼ 20 cm in height. The difference in hydrostatic pressure at
the top of the glass compared to the bottom is ∼ ρg∆h ∼ −200Pa. To keep the
Laplace pressure 2γ/R inside the bubble the same, the radius must change. Using
a surface tension of ∼ 72 mN/m, we find that the change in radius from the bottom
to the top of the glass is ∼ 720 µm, which is a very large increase and in fact much
larger than one would typically see in a glass of beer. This simple calculation
does not account for gas dissolution into the liquid, which would decrease the
volume of gas present, but does show that an increase in radius is expected for gas
bubbles [75].

1.5.2 On surfaces

Consider a droplet on a solid surface, for instance if you spilled a small drop of
coffee on the counter. The coffee will form a spherical cap because surface tension
pulls the volume of liquid into a spherical section to minimize the free surface. For
a partially wetting fluid, the shape is also constrained by the contact angle set by
the three surface energies. Both large and small drops will be considered in this
section, but first we must define the cut off between them. The distinction between
a large drop and a small droplet is delimited by the capillary length lc as defined
in section 1.3.5. Looking down from above onto the surface of the drop, the radius
R is based on the circle formed by the contact line. If R < lc like the example
shown in figure 1.10a), capillary forces dominate and the shape of the droplet will
depend on the two constraints: the contact angle and volume. In addition, the
curvature of the free surface will be constant.

For drops with R > lc, gravity begins to be important and if one has a disastrous
coffee spill, you will note that the puddle begins to spread out with a constant
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a) b)

Figure 1.10: a) Small liquid drops that partially wet a surface
and form a spherical cap. b) A large drop that spreads out like
a puddle. The height of the puddle is determined by a balance of
interfacial tensions and hydrostatic pressure.

thickness, e. To calculate the height of this puddle, we must consider both capillary
forces and hydrostatic pressure.

Surface forces - Consider the diagram in figure 1.10b), ignoring the effect of
the edge of the drop indicated by the shaded region and considering the shaded
region as small body of fluid, at each of the surfaces there will be a force per unit
length at the contact line. Summing these forces gives γSV − (γ + γSL), which is
the spreading parameter, S.

Hydrostatic pressure - The hydrostatic pressure P will push the liquid from
high regions to low regions. The pressure acting on a given location is calculated
by integrating the pressure from the top of the puddle to the bottom

P =
∫ e

0
ρg(e − z)dz = 1

2ρge2. (1.33)

Summing up these forces per unit length, shows that S = −1/2ρge2. To gain
insight into how the thickness of the puddle changes with the contact angle, it
is useful to substitute in Young’s relation into the spreading parameter, where
S = γ(1 − cos θE). Rearranging finds that

e =
√

2lc(1 − cos θE)1/2 = 2lc sin(θE/2), (1.34)

and we see that the thickness of the puddle increases for larger contact angles.
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1.5.3 On fibers

Drops on fibers are something that we see quite frequently in nature, like rain drops
on pine needles or dew on spider webs. Although it is trivial for one to imagine the
shape of a droplet suspended on a thin wire, the mathematical form is more difficult
to derive and can take on different shapes depending on the geometry and wetting
conditions. A small, totally wetting droplet will surround the fiber forming a barrel
shape. If the Bond number Bo is small, meaning that gravity can be ignored, and
the droplet will be axisymmetric around the fiber. Increasing the drop size beyond
a Bond number of 1 will result in a drop that is not axisymmetric around the fiber.
If the fiber is held horizontal to gravity, the drop will sag underneath the fiber,
and turning the fiber so it is held vertical with respect to gravity will result in the
droplet sliding down the fiber [77]. If the drop is partially wetting, the contact
line must also be considered, and for smaller drops on larger fibers we see a clam
configuration, where the drop clings to one side of the fiber.

For the droplets considered in this thesis, we will assume the droplet totally
wets the fiber and Bo is small, resulting in a barrel shaped, axisymmetric droplet.
A drop of radius R is deposited on a fiber that has a constant radius of b as shown
in figure 1.11. We also assume that R >> b meaning that the Laplace pressure
in the droplet is low. Here we will derive the shape of a totally wetting drop on
a thin fiber, which is relevant to the work presented in Chapters 3-5. The liquid
totally wets the fiber and has a contact angle of θE = 0.

Some important notes before we begin the calculation are:

• The pressure everywhere in the droplet must be constant, otherwise there
would be flow from high to low pressure and the droplet not be in equilibrium.

• If the pressure is constant everywhere throughout the droplet it is required
that the curvature C of the surface of the droplet must also be constant
according to Laplace pressure ∆P = γC

We first begin by examining the end of the droplet, where the droplet comes
into contact with the fiber and the radius of curvature pointing toward the fiber
becomes very small = b. In order to maintain the low pressure at this location,
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Figure 1.11: A diagram of a totally wetting droplet on a cylin-
drical, slender fiber of radius b. The surface of the droplet is traced
out by the vector s and can be described by the horizontal coordi-
nate x and vertical coordinate z. The surface normal n⃗ makes an
angle with the vertical θ. The droplet has a maximum height of L.
The lower panel shows example radii of curvature at the locations
marked by the black dot for both the out of plane curvature R1 and
in-plane curvature R2.
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the radius of curvature in the other orthogonal plane must also become small
but negative ∼ −b in order to keep the overall curvature low but still positive.
Keeping in mind that the surface must have a constant curvature at any point on
the surface of the droplet given by the Laplace pressure,

1
R1

+ 1
R2

= C = ∆P

γ
. (1.35)

Moving along the surface of the droplet, the height z changes as a function of the
position along the fiber x. Referring to figure 1.11, the outer surface of the drop
follows a contour s. In addition, starting from the beginning point of the droplet,
and moving from left to right, we can define two radii of curvature. Samples of
the two radii are shown in figure 1.11 at two different locations. The first, R1 is
the radius of curvature that points from the normal of the tangent until it reaches
the center of the axis line where z = 0. For instance, when x = 0, R1 = b, at the
center of the drop (the maximum point), R1 = L. As z increases, so does R1 and
it is always pointing inside of the droplet, and thus always positive. R1 can also be
defined along the length of the droplet using s, and the angle between the normal
of the drops surface to the vertical direction θ. Using trigonometry, we can see
that R1 = z/ cos(θ).

The other radius of curvature R2 changes along the drop from the start to the
middle. One can visualize this radius as though a circle is placed with the center
lined up in the direction of the normal to the outer curve. At first, the radius of
curvature is negative, meaning that it is concave out, which makes sense as the R1

radius of curvature is small enough that it needs to be balanced out to maintain a
low total curvature. Towards the center of the droplet along the x-direction, the
radius reaches a point where it points inwards, creating positive radii of curvature.
Using geometry, we find R2 = −ds/dθ.

There are now two radii of curvature defined with geometric parameters that
we can insert into equation 1.35. Inputting the constraints gives

−dθ

ds
+ cos θ

z
= ∆P

γ
. (1.36)
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It is useful to change the coordinate system from s and θ to x and z. At the curve
s, the two coordinates x and z can be related as dz = ds sin θ and dx = ds cos θ.
From trigonometry we also know that ds = dx

√
1 + z′2, where z′ = dz/dx and

z′′ = d2z/dx2, and that θ = tan−1 (dz/dx) = 1/ (1 + z′2). The differential equation
becomes:

−z′′

(1 + z′2)3/2 + 1
z(1 + z′2)1/2 = ∆P

γ
. (1.37)

This equation can be integrated once with respect to z to find

z√
1 + z′2

− C = ∆Pz2

2γ
(1.38)

.

Where C is an integration constant. Considering the edge of the drop, where
z = b and z′ = 0, we can find that C = b − ∆Pb2/2γ and by evaluating at the
maxima of the drop, where z = L and z′ = 0, we can also argue that the over
pressure of the drop is going to be equal to [78]

∆P = 2γ

b + L
. (1.39)

Therefore, the Laplace pressure in a drop on a fiber will depend on both the radius
of the fiber and the radius of the drop.

I want to note that on a curved surface, like this fiber, a totally wetting droplet
cannot spread out completely like it does on a flat surface. Spreading is not possible
because of two conditions first that the surface area must not increase, and second
that there must be constant pressure for everywhere on the drop. The section on
the Plateau-Rayleigh instability (section 1.6.2) discusses the surface area condition
in more detail.

1.5.4 Other equilibrium shapes for slowly moving drops

Along with surface tension affecting droplet shape by minimizing the surface area,
the presence of other such forces can distort the shape of the drop.
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Drops with large Bo will be able to be distorted by body forces that a small drop
would not experience. For instance, the shape of a larger raindrop changes from a
sphere to a rounded shape with one flattened side in the direction of motion [79].
As the drop falls, air resistance distorts drop, causing one side to flatten and the
rest of the drop to bow away from a sphere. Distortion occurs because of the lower
curvature; the Laplace pressure is not large enough to resist deformation for large
drops.

Large air bubbles rising through a liquid bath will also distort. In this case,
drag on the bubble is causing the distortion as it moves through the more viscous
fluid. Unlike the stable raindrop shapes, the lower viscosity of the air in the bubble
causes it to oscillate. Oscillations in the droplet shape can affect the path that
the drop takes as it rises through the liquid bath, changing from a straight path
to a zig-zag to a helix [80, 81, 82, 83]. Changing flow patterns happen when the
bubble is in a turbulent flow and able to distort which requires that Re > 1 and
Bo > 1. The changing shape also has an effect on a bubble or drop as it splashes
when it impacts a surface [84].

The final equilibrium shape I will touch on is the shape of a drop on a conical
fiber. Drops on conical fibers are discussed in the body of the thesis in Chapters 3-
5 and the consequences of the shape are detailed thoroughly in Chapter 3. In this
case, the drop is moving because of the shape of the fiber. We assume that motion
is happening slowly, and the drop is only slightly perturbed from equilibrium. The
radius of the fiber, b, is not constant across the drop, and instead there is a gradient
in radius across the droplet. Based on equation 1.39, the pressure changes from
the contact point of the fiber on the narrow end of the fiber to the other wider
end. The gradient in Laplace pressure ∇P becomes [85]

∇P = − 2γ

(b + L)2
∂b

∂x
, (1.40)

where γ is surface tension, x is the axial direction along the fiber and L is the
droplet height. In the presented system in Chapter 3, we present an even more
simplified case, where instead of Laplace pressure gradients across the entirety of
the drop, we consider the difference in the capillary force from one end of the drop
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to the other.

1.6 Interactions between capillarity and hydro-
dynamics

At the length scales relevant in this thesis, fluid hydrodynamics and capillarity
often interact in dynamical systems, and this gives rise to phenomena that make
it easy to produce droplets. First, I will describe the method that I used to coat
the fibers, either with the intent of creating droplets as discussed in Chapters 3-
5. Depositing a film on a surface through dip-coating phenomenon is the same
effect as when you dip a knife into a pot of honey, as you lift the knife out it
will be coated by the viscous liquid, and the coating thickness depends on the
speed at which it is pulled. The film left behind during the process of dip-coating
is known as the Landau-Levich-Derjaguin film. Chapter 5 also explores the film
that the droplet leaves behind due to the same phenomenon. Another interac-
tion between capillarity and hydrodynamics that is exploited in this thesis is the
Plateau-Rayleigh instability, which is a competition between hydrodynamic flow
and capillarity. The Plateau-Rayleigh instability is responsible for breaking up a
liquid coating on a fiber into droplets. The speed at which the film breaks up and
the wavelength between droplets is well studied and can be used to distinguish
material properties [86] and boundary conditions [87].

1.6.1 Landau-Levich-Derjaguin films

The Landau-Levich-Derjaguin film is a method of coating a solid surface with a
partially wetting liquid, and it belongs to a family of wetting techniques called
‘forced wetting’ [88]. Creating a Landau-Levich-Derjaguin film involves submerg-
ing a solid substrate into a bath then pulling it back out of the bath. This technique
is used frequently in industry (or when making a chocolate-dipped ice cream cone)
to coat a substrate evenly by pulling the substrate out of the bath at a constant
speed, a process known as dip-coating [89]. The key aspect of this coating method
is that the meniscus is deformed as the substrate is drawn out of the bath, and
the new shape of the meniscus is called the dynamical meniscus that has a length
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l
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e
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Figure 1.12: A diagram of a plate pulled out of a liquid bath
at velocity u. A coating of thickness e covers the surface due to a
difference in an entrained dynamical meniscus of length l compared
to the static meniscus of length lc. The film forms due to a balance
between viscous entrainment and surface tension.

of l. The dynamical meniscus differs from a static meniscus that has a length lc

corresponding to the capillary length. A schematic of a plate being pulled out of
a bath with velocity u creating a coating of thickness e is shown in figure 1.12.
Note that the substrate is moving slowly so as not to cause inertial effects. Unlike
a totally wetting material, which coats a substrate with a microscopic film, the
Landau-Levich-Derjaguin (LLD) film would not exist without the motion of the
substrate.

First I will describe the basis for coating a flat substrate before moving onto
the more relevant cylindrical substrate. As one pulls a substrate out of a bath,
the viscosity of the fluid will cause some of the liquid to be entrained by the
moving substrate. Fluid entrainment is due to the no-slip boundary condition at
the liquid-solid boundary because the liquid directly in contact with the substrate
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must move too. However, the surface tension will oppose the formation of extra
interface.

Combining the idea that surface tension opposes the formation of the film,
which is driven by the viscosity, we can make a scaling argument for the thickness
of the coated film, e. Defining the rate that the substrate is pulled out of the
bath as u, we now have all of the ingredients to make a scaling argument. The
viscous force is ∼ ηu/e2 in a method similar to that outlined in section 1.2.3. Using
similar arguments, the capillary force will depend on Laplace pressure gradients
from the of curvature of the dynamical meniscus. The curvature of the meniscus
changes from a flat film to the 1/lc to match the static meniscus, over the length
of the dynamical meniscus l. The Laplace pressure gradient will therefore follow
∼ γ/(l lc).

Setting the entraining viscous force to the same magnitude as the capillary
force, we find

ηu

e2 ≈ γ

lc l
. (1.41)

Currently, both e and l are unknown quantities but using the geometry of the film
and the curvature we can compare the two length scales. The curvature at small
slopes is approximately ∂2z/∂x2 and is proportional to e/l2. The curvature is also
constrained by the length of the dynamical meniscus 1/lc. Comparing the two
values for curvature gives that l ∼

√
e/lc. Combining these two constraints, we

find that [34]

e ∝ lc

(
ηu

γ

)2/3

= lcCa2/3, (1.42)

where Ca is the capillary number as derived in section 1.4.3

Here, the thickness of the film depends on the static capillary length and the
ratio between viscosity and capillarity for a plate being pulled out of a bath. The
faster the plate is pulled out of the bath or the more viscous the liquid, the thicker
the film. Counter intuitively, the faster moving substrate entrains more liquid in
the film rather than a slow-moving substrate.

A similar problem but with a slightly different geometry is the case of pulling
a cylinder of radius b out of a bath. For slender fibers where b << lc, the largest
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contribution to the curvature is now the radius of the fiber rather than the capillary
length. As a result, our capillary force to viscous force balance is

ηu

e2 ≈ γ

lb
. (1.43)

Matching the dynamical to static meniscii condition now gives

e

l2 ≈ 1
b
, (1.44)

and combining these two conditions gives the thickness of the deposited film e, as
is dependent on the fiber radius and capillary number,

e ≈ bCa2/3. (1.45)

What is important to note here is that the scaling behaviour for a cylindrical fiber
is the same as a planar structure in terms of the fluid properties and the speed of
the substrate, but the curvature of the fiber dominates the prefactor rather than
the capillary length. A deposited film on a slender fiber will always be thinner
than a film on a flat substrate under the same conditions. So here the curvature
in the radial direction plays an important role. One note is that for the coatings
in Chapter 4, the thickness of the film is much thicker than the radius of the fiber,
and we enter into a different regime where e ≈ (b + e)Ca2/3 [34], and because
e >> b we see very little variation in the film thickness. We will see in Chapter 5
that when we consider the LLD film deposited by a droplet, the curvature of the
droplet also is important to the deposition process.

1.6.2 Plateau-Rayleigh instability

If you turn on a water tap so that it forms a thin stream, you may notice that
further down, it breaks up into droplets. The reason that the jet breaks up into
droplets is because it undergoes a fluid instability called the Plateau-Rayleigh
instability. Interestingly, it is present in both liquid jets, and in liquid coatings on
a thin wire, where the presence of a solid core has little effect on the formation
of the instability. Just like in the case of the droplet on a fiber discussed in
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L

R

2r

Figure 1.13: A cylinder with length L and radius r can be unsta-
ble and break up into spherical droplets of radius R if the conditions
for minimizing surface energy are met through a rearrangement of
fluid.

section 1.5, the curvature of the surface plays an important role in the dynamics
of the process. We will first consider a jet breaking up into droplets to understand
that when changing from a jet to a series of uniform droplets the surface area
of the free surface is indeed reduced. Then we will consider the break up of a
liquid sheath around a thin cylinder and work to understand the dynamics and
the dominant wavelength that appears.

Consider a jet of fluid that has a radius r and a length L. Figure 1.13 shows
the original configuration of the fluid and the geometry of the jet after it breaks
up into droplets. The volume of this fluid will be V = πr2L, which is conserved
as the jet breaks up into n droplets with radius R,

V = πr2L = 4
3πR3n. (1.46)

We can now compare the ratios of surface area for the drops Sn versus the surface
area of the original jet Sj and this ratio gives

Sn

Sj

= 4πR2n

2πrL
= 2R2n

rL
, (1.47)
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where we can substitute in the ratio of n/L = 3r2/4R3, from the volume conser-
vation condition, to give:

Sn

Sj

= 3r

2R
. (1.48)

The ratio between surface area of the jet versus the droplets tells us that the
surface area of the droplets will be less than the jet when the radius of the drop
is more than 3/2 the radius of the cylinder. The condition proves that breaking a
cylinder into droplets results in a decrease in surface area, and we can now consider
the dynamics of such a breakup, i.e. what sets n.

Imagine a solid, thin cylindrical fiber with radius b that is coated with a liquid
that has a thickness of e0. The distance from the axis of symmetry to the surface
of the the liquid is R (shown schematically in fig. 1.14). In many cases, this liquid
coating is unstable (as anyone who has long hair that accidentally gets in their
mouth and coated with saliva might know), small fluctuations in the surface of
the liquid coating grow in amplitude and will break up into droplets. Break up is
driven solely by surface tension and the Laplace pressure ∼ γ/R. We will see that
a wavy surface (shown in fig. 1.14), with average thickness e∗ has a lower surface
area than the original surface area of the cylinder, and a minimization of surface
area drives the break of up this liquid coating.

We can start by defining a wavy surface as e = e∗ + δe cos(qx), where δe is
the amplitude of the perturbation that is a sinusoid with wave number q. Using
conservation of volume, we can find e*. The volume of liquid in the cylindrical
coating is V =

∫ λ
0
∫ R

b

∫ π
0 zdθdzdx = π(R2 − b2)λ, where λ is one wavelength.

The volume of liquid is conserved when the wavy perturbation forms, and it
follows a similar integration

V =
∫ λ

0

∫ b+e

b

∫ 2π

0
z dθ dz dx =

[
(b + e∗)2 + δe2

2 − b2
]

πλ. (1.49)

Setting the two volumes equal, linearizing, and rearranging, we find that average
thickness of liquid layer is e∗ = e0 − δe2/4R. Importantly, this relationship shows
that the average thickness of the modulated film is less than the original thickness.
From here we can now calculate the difference in energy between the wavy surface
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e0
2b 2R

δe

λ

e*

Figure 1.14: A liquid sheath of thickness e surrounding a fiber of
radius b initially forms in a cylinder. Due to the Plateau-Rayleigh
instability the cylinder will form a modulated surface with average
thickness e∗, wavelength λ and modulation amplitude δe, as shown
below.

and the straight cylinder because break up will be driven by a reduction in surface
energy. For our system, the surface energy of a straight cylinder is

E0 = 2π(b + e0)γλ. (1.50)

The surface energy (or in this case the surface area) of the perturbed surface is a
little bit less straightforward to calculate but begins with the general form

Ew =
∫ 2π

0

∫ λ

0
γz ds. (1.51)

Because we have the surface as a function of x not of the arc length s, we first
convert ds to dx using the Pythagorean theorem, ds = dx

√
1 + (de/ dx)2 and if

we assume de/dx is small, we can expand this to

ds ≈ dx

1 + 1
2

(
de

dx

)2
 , (1.52)
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using a series expansion. Inserting the differential relationship into the integral for
the surface energy

Ew = γ
∫ 2π

0

∫ λ

0
(b + e)

1 + 1
2

(
de

dx

)2
 dx

≈ 2πλ(b + e∗)
[
1 + 1

4q2δe2
]

.

(1.53)

Now subtracting the two surface energies ∆E = Ew − Eo to find the change in
energy from one geometry to the other, we can simplify by removing higher order
terms of δe. What follows is the change in energy for this system to have a wavy
surface

∆E = 2πγλ
δe2

4R

(
R2q2 − 1

)
. (1.54)

A decrease in surface energy (∆E < 0) will happen when R2q2 < 1, or in other
words, when the wavelength is much longer than the radius. It is worth noting
here that this stability condition for the wavelength is set by the total radius of
the system regardless of the ratio of b and e. The dynamics, however, will depend
on the ratio between the two. Now that we know the geometric constraints for the
beginning of the instability, we can also look at the dynamics of the film break-up.
We will assume that the fluid is in a viscosity dominant regime, the film is thin
(eo << b) and that the flow is driven by pressure gradients. This means that the
system will be linearized and the approximation of b ≈ b + e will be made.

The curvature that gives rise to Laplace pressure is going to depend on the two
radii of curvature, one being the radius of the fiber, and the other being the small
variations due to the wavy surface. Assuming small slopes, the curvature can be
written as

C = 1
b + e

+ d2e

dx2 . (1.55)

From here we can calculate the gradient in curvature dC/dx, which when multi-
plied by the surface tension gives the Laplace pressure gradients that will drive
flow. The Laplace pressure gradient is

∇P = γ

b + e0

[
(b + e0)2q2 − 1

]
(δe cos qx). (1.56)
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The flow through a segment of the film Q ≈ (e3/η)(∂P/∂x) (see derivation at
equation 1.11) can be related to the changing thickness of the film with time. As
material flows from areas of negative to positive curvature, the thickness of the
film must also change, ∂Q/∂x = −∂e/∂t. Upon inserting the values for pressure
and isolating for the changing amplitude of the film perturbation, we find

dδe

dt
= δe

γe3
0

3η2 q2(1 − q2b2). (1.57)

There are a couple of things worth noting from equation 1.57, first that the per-
turbation will grow when qb < 1, and second that the growth depends on the
amplitude of the perturbation itself. We can presume that larger amplitudes will
grow more quickly. The above equation however includes all values of q, which
means that all wavelengths that meet the instability criteria are possible. However,
we tend to see single wavelengths appear for given cylinder, and this is determined
by the fastest growing wavelength.

Taking the derivative of equation 1.57 with respect to q and setting it equal to
zero in order to find the maximum speed of growth, we find that q∗ =

√
2/b and

relating back to the wavelength we find that the fastest growing wavelength λ∗

depends only on the radius of the solid fiber in the thin film limit [34]:

λ∗ = 2π
√

2b. (1.58)

The dependence of the wavelength on b holds particular relevance to the work
presented in Chapter 4 due to the changing radius of the fiber. The changing
radius affects the spacing in between the droplets that form on a conical fiber.
For systems with a thicker coating, a detailed derivation is conducted in work by
Haefner et al. [87].

1.7 Suspensions

The final paper of this thesis in Chapter 6 considers the motion of small bubbles
through a liquid rather than liquid droplets moving along a solid surface. Instead
of considering how one continuous fluid flows in response to capillary forces, we
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are using capillary forces to stabilize the bubbles. In this section, I will discuss
how the bubbles can be considered hard spheres and subsequently used as analogs
for atomic structure, along with the physics behind keeping the bubbles stable,
and how to make bubbles adhesive over short ranges.

1.7.1 Bubbles as hard spheres

As discussed in the Laplace pressure section (1.3.4), a curved interface has a pres-
sure associated with the surface tension at the interface. When a spherical droplet
is small enough, the pressure inside of the bubble or drop stabilizes the spherical
shape. For example, consider an air bubble with a radius of ∼ 30 µm in an aque-
ous bath of SDS and water, like the bubbles in this thesis. The aqueous bath and
air has a surface tension of ∼35 mN/m [90]. The Laplace pressure of the bubble
will have a pressure of ∼2500 Pa more than the liquid around it. For comparison,
the difference in hydrostatic pressure across the drop 2ρgR ∼ 0.6 Pa. Because of
this large over-pressure to in the drop compared to the bath, the drops are stable
and act as hard spheres. The hard sphere approximation has been proven to cap-
ture the first order behaviour of glassy materials, and bubble rafts have been used
to mimic crystalline behaviour including packing of crystal structures, crystalline
defects like dislocations [91, 92], and strength of adhesion [93].

1.7.2 Surfactants

To further stabilize the interface between the water and air, we can introduce
a molecule known as a surface-active molecule, or a surfactant. A surfactant is
an amphiphilic molecule that serves to decrease the cost of having an interface
by lowering the interfacial tension. A surfactant is a molecule that straddles the
interface, because one part will have a lower energy when interacting with one
material, and the other part of the molecule will have a lower interaction energy
with the other. By placing these molecules at an interface, the overall cost of
having an interface is lowered and will allow for larger surface areas to exist for
longer than it would otherwise be stable. Some everyday examples of surfactants
include soaps, some polymers, phospholipids and some proteins, like the ones found
in egg [94]. In this thesis, I use sodium dodecyl sulfate (SDS) as the surfactant
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to stabilize the air bubbles, Adding a surfactant to a water bath allows for the
stabilization of air bubbles and subsequently allows for the production of small
bubbles on the order of 30 µm in radius that are stable for time scales ranging
from minutes to hours.

1.7.3 Micelles

If a critical concentration of surfactants is present in the solution, there is a ten-
dency for the surfactants to self-assemble into structures to protect the solvent-
phobic part of the molecule. A self-assembled structure that forms an enclosed
aggregate with the solvent-phobic part of the molecule on the interior and solvent-
philic part of the molecule on the exterior is a called a micelle. Micelles can form
in a variety of shapes, but the most common are spherical micelles. The concentra-
tion that micelles begin forming at is known as the critical micelle concentration
(CMC). The CMC can be calculated as a function of the difference in energy δϵ be-
tween a lone monomer and a monomer in an optimally packed micelle δϵ = ϵM −ϵ1,
where ϵM is the energy of the monomer in the micelle and ϵ1 is the energy of the
lone monomer in solution. Derived nicely in Jones [1], the critical volume fraction
ϕc of monomers in solution to spontaneously create micelles is ϕc = exp(−δϵ/kBT )
where kB is Boltzmann’s constant and T is the temperature. For SDS, the CMC
is 8.3 × 10−3 M [95].

What is interesting is after the critical micelle concentration is surpassed, the
concentration of micelles goes up, and the number of free surfactant molecules
stays constant and low. The constant free surfactant concentration means that
the surfactant molecules are successfully scavenged into micelles. Therefore, in-
creasing the concentration of surfactant ends up increasing the concentration of
micelles but not free surfactant molecules. Another effect worth noting is that in-
creasing the amount of interface present in a system (i.e. by producing a foam) will
reduce the amount of surfactant in solution and may depress the known amount
of concentration of micelles from a low interface system [96].
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Figure 1.15: Two large colloidal spheres of radius R that are
surrounded by small particles of radius r. A thin spherical shell
surrounds the large particle to indicate the excluded volume. The
two large particles are close enough for the excluded volumes to
overlap as indicated by the hatched area.

1.7.4 Depletion forces

A depletion force refers to an entropy-driven force that comes from having large and
small particles in a solution. Figure 1.15 shows a schematic of two large particles
surrounded by small particles, that are separated by a distance a. Assuming
the differently sized particles are spherical and are unable to overlap, there is a
spherical shell around the large particles in which the center of the small particles
may not reach, this volume is known as the excluded volume and for two large
particles of radius R and small particles of radius r, the excluded volume V is [97]

V = 8π(R + r)3

3 . (1.59)

The excluded volume is valid when the large particles are far away from one
another (i.e a > 2(R + r)). As two large particles diffuse in the solution, if they
get into close enough proximity, the two excluded volumes begin to overlap. The
overlapping volume decreases the total amount of volume, Vdep that is excluded
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from the small particles, which can be calculated based on the separation distance
a between the two large particles [1].

Vdep = 4π

3 (R + r)3
(

1 − 3a

4(R + r) + a3

16(R + r)3

)
. (1.60)

The increase in available volume serves to increase the entropy of the system,
because the small particles gain translational entropy due to the increased number
of configurations available. Thus, the large particles attract. It is noted that the
depletion forces cause a short-range attraction and become important when the
large particles come within a distance on the order of the size of the small particles.
In this work, the micelles discussed in the previous section are used as the small
particles and the larger particles are the air bubbles. We can model it generally by
considering the micelles as a dilute, ideal gas. The micelles will exert an osmotic
pressure given by the ideal gas law

Posm = N

Ω kbT, (1.61)

with N micelles in a volume Ω with the temperature of the solution T . The
resulting force due to the osmotic pressure is

Fdep = −PosmVdep = −N

Ω kbT
4π

3 (R + r)3
(

1 − 3a

4(R + r) + a3

16(R + r)3

)
. (1.62)

The depletion force is small, but always attractive. Because it also depends on the
number of micelles in solution, the depletion force increases with micelle concen-
tration [93].

1.8 Buckling and coiling

Coiling and buckling of slender structures happens when a slender object is sub-
jected to a compression along the axial direction. Typically, the compressive force
can be alleviated when the fiber buckles to reduce the length along the direction
of the compression at the cost of bending the fiber. This is something we do ev-
eryday when we style hair, fiddle with headphone cables, or twirl pasta around
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a fork or chopsticks. Beyond the everyday, there are important applications that
bound over several length scales, including bending of partially molten rock layers
during mountain building events on geologic scales [98]. The stability of slender
beams are important in bridge building and other civil engineering endeavours [27].
Laying down hose, like in installing underwater cables requires a specific handling
of the cable to prevent costly buckling and twisting [99]. We also see buckling in
regards to 3D printing techniques as a way to manufactures meta-materials at very
low costs [100, 101, 102]. Understanding the fundamentals of coiling can provide a
coarse-grained understanding of self-assembly of proteins and DNA structures [103,
104].

In the final paper, I present work examining the buckling of air bubbles attached
in a chain. Much of the theory presented in Chapter 6 was inspired by the work
from coiling theory, both for coiling of solid and viscous liquid threads [98, 105, 106,
107], however in working through the relevant parameters of the system, I found
that there were some key differences, the first was that instead of the buckling
being due to a barrier that applies a compressive force, it was due to the viscosity
of the liquid bath in which the chain was moving. Buckling can arise due to viscous
drag, which is when a slender object is pushed through a viscous liquid and the
drag on the object causes an instability that results in a bending torque [108].

Common to these subtopics is the idea that a long, thin, flexible uniform struc-
ture is fed at a uniform speed. When faced with either a barrier or a frictional
force, a compressive force results and the slender structure is forced to buckle and
bend. In some cases, it can wind with a regular radius and frequency if the speed,
stiffness, and feed height are constant. Here, I will first describe the conditions re-
quired for buckling a viscous thread and compare how this applies to solid threads.
I will discuss how the balance between viscous forces and gravitational forces result
in a set radius and frequency of coiling before describing drag-induced coiling.

1.8.1 Viscous coiling

When preparing a piece of toast with honey, you may be inclined to let the honey
flow off the knife or spoon and onto the bread rather than fighting the viscosity to
spread it onto the surface of the toast (and to prevent toast crumbs from infiltrating
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the honey). When you do this, you may notice that the radius of the streaming
honey decreases the higher you hold it and the honey begins to whirl around itself
in a coiling pattern, like shown in figure 1.16a). The reason that it does so is
because the timescale that gravity causes the viscous thread to impact the surface
is too fast for the viscosity of the liquid to flow in response. In this section, we
will derive the two relevant timescales due to the viscous force resisting bending
and the gravitational driving force before calculating the radius of coiling and the
frequency.

For a liquid thread falling from height H with viscosity η and density ρ, it will
fall with a flow rate Q based on the radius of the thread r (shown in figure 1.16b)).
The thread will fall with a characteristic timescale τg due to gravity that can be
derived from kinematics

τg =
√

H

g
, (1.63)

where g is the acceleration due to gravity. The viscous timescale, on the other hand
is derived by considering the time it would take for one fluid molecule to diffuse
across the radial direction of the fiber. Based on a random walk, the viscous
timescale τη is

τη = r2ρ

η
. (1.64)

We can see that τη >> τg when H >> r, which means we can define a slenderness
ratio ϵ = r/H and we will expect to see coiling when the ratio is small. When the
gravitational timescale is less than the viscous timescale, the viscous fluid cannot
flow fast enough when order to alleviate the stress of the thread impacting the
barrier. The fastest way for the system to relieve the excess length is to have it
behave like a solid and form a coil.

The radius of the coiling can be predicted using a simple force balance. The
gravitational force on the rope per length is Fg ∼ ρgr2. The viscous force is
Fη ∼ ηUr4/R4 which arises due to a bending torque on the thread for bending
with a radius R. Balancing these two forces, the radius of the coiling gives

R ∼ (ηUr2/ρg)1/4. (1.65)
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Figure 1.16: a) An image of an extruded plastic thread from a
3D printer undergoing a coiling as it impacts a piece of paper. b) A
schematic of a thread of liquid with radius r falling from height H
at speed U onto a surface. The thread begins to coil with a radius
of R.
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We can see that the coiling radius will depend on the radius of the thread and the
speed that the thread is moving when it impacts the surface. To translate into an
experimentally measurable parameters, we can consider the flow rate. The flow
rate of the liquid out of the reservoir Q, which we know from continuity must be
constant where the thread impacts the surface as well, which means that Q ∼ Ur2.
The continuity constraint reduces equation 1.65 to R ∼ ν1/4Q1/4g−1/4 where ν is
the kinematic viscosity. Rearranging instead for the coiling frequency Ω = U/R,
one can find that the frequency is

Ω ∼ Q4/3r−10/3ν−1/3. (1.66)

To compare to a solid rope with a bending stiffness of Er4 where E is Young’s
modulus for the fiber, we can simply swap out the viscous force for a solid bending
force altering it to Fb = Er4/R3. Otherwise the theory is the same, and it can be
shown that a viscous liquid and solid rope will coil in the same manner. Where
the radius Rb now scales as

Rb ∼
(

Er2

ρg

)1/3

. (1.67)

Note here that the bending radius does not depend on the speed that the rope
impacts the surface.

In the system presented in Chapter 6 of a buckling chain of bubbles is quite dif-
ferent than the above system because there is no viscosity nor bending to stabilize
the chain, and we see buckling far away from any barrier.

1.8.2 Drag induced coiling

In contrast to the previous example, where buckling is induced due to a difference
in timescales, in this section we consider buckling due to viscous drag. Heavily
inspired by the work presented by Chakrabarti et al. [109], we can compare the
bending torque exerted by viscous drag that drives the buckling and bending
energy of a solid fiber that resists the bending. If a thin fiber is extruded into
a bath with a constant speed, U , where the viscosity of the bath is η. Based on
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the bending stiffness of the fiber Er4, it will resist bending such that it has has
a bending force of Fb = Er4/R2. Viscous force from the ambient fluid will be
Fη = η UR which results in a bending radius Rd of

Rd ∼
(

Er4

ηU

)1/3

. (1.68)

Compared to the gravitationally-induced coiling in equation 1.67, the speed of the
extruded fiber is important to the radius of the coiling. The faster the speed,
the larger the buckling amplitude. Drag-induced coiling is a good starting point
for the system presented in this thesis, however, there is no bending stiffness to
stabilize the chain of droplets. Instead, as outlined in Chapter 6, we find that
viscous drag serves to both drive the buckling and also stabilize the buckling.
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Chapter 2

Experimental Details

This section elaborates on the experimental techniques used in the papers pre-
sented in Chapters 3-6. Although each paper has a short methodology section,
they are concise. The goal here is to write an experimental methods section that
is clear enough so that a future undergraduate or graduate student working in
the Dalnoki-Veress group can understand these techniques with enough clarity to
replicate the results that I have produced. First, I will describe the fabrication of
glass micropipettes which are used as the conical substrates in Chapters 3-5, and
are used to produce the bubbles in Chapter 6. I will then describe two different
methods for producing and placing droplets, followed by the method for producing
air bubbles using the micropipettes. Finally, I will discuss the different image anal-
ysis techniques that I used to extract the relevant data from optical microscopy
images.

2.1 Fabricating micropipettes

A technique used in all the papers in this thesis is the process of pulling glass
micropipettes. A glass capillary with an inner diameter of 0.7 mm and an outer
diameter of 1 mm (World Precision Instruments) is clamped on both ends (Fig-
ure 2.1a)) and an electromagnet exerts a force to pull on one end of the capillary
while the other is held fixed. A middle location on the pipette is heated using a
platinum filament and when the glass transition temperature is reached, the glass
becomes a viscous liquid. Once a liquid, the fluid is no longer able to sustain
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a)

F

b)

F Clamp

Capillary

Platinum filament

Figure 2.1: Schematic of pulling a glass capillary into a mi-
cropipette using a platinum filament. The capillary is clamped
on the right side, the filament is positioned over the center of the
capillary and a force F pulls on the left side of the capillary. a) An
unpulled capillary before the platinum filament is heated. b) The
pipette after being pulled. The filament heats and locally melts
the glass, and the applied force pulls the two sides of the capillary
apart, stretching the heated portion of the capillary to create a mi-
cropipette.

the pulling magnetic force and the two ends of the pipette pull apart as shown in
figure 2.1b). The highly viscous fluid stretches and thins as the two ends are sepa-
rated, resulting in a narrow diameter at the location of the filament that smoothly
tapers to the original diameter of the capillary. The pipette cools as it moves
further from the platinum filament and re-solidifies, halting any further flow. The
shape of the resulting pipette can by tuned by changing the strength of the magnet
and the temperature of the filament [110].

Typically, pulled micropipettes are used in patch clamping techniques, wherein
extremely thin pipettes are used to probe the inner workings of living cells [111,
112]. In our lab, we try to pull a long, slender pipette that is ∼3 cm in length with
the tip of the pipette being ∼30 µm in diameter. The pipettes are so thin that the
glass bends easily if any force is applied to the sides, like a Hookean spring, and
therefore can be used as force sensors. Previous work has found that these pipettes
are sensitive to tens of pico-Newton precision [113, 114]. These pipettes are in-
credibly versatile, and have been used by the Dalnoki-Veress lab and others for a
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variety of techniques, including making monodisperse oil droplets using the snap-
off technique [115], measuring adhesion forces of cells on surfaces [116], measuring
exerted forces of living organisms [117, 118], and measuring the force required to
translate droplets on a surface [114], along with many other applications. In this
section, I will describe the ways in which I used the micropipettes.

In this thesis, I studied how oil droplets travel along conical glass fibers. To
prepare the micropipettes, which are used as the glass fibers, I would first clean the
outside of glass capillaries using acetone before putting them in the pipette puller
(Narishige PN-30). Cleaning the surface of the capillaries is important because
any dust or imperfections on the surface could cause pinning of the oil droplet as
it translates across the substrate. When the micropipettes are used as conical glass
fibers, the radius of the fiber would range between ∼ 20 - 150 µm. When used as
a conical fiber, the micropipettes do not need to be manipulated any further.

In the final paper included in this thesis (Chapter 6), the shape of the mi-
cropipettes needed to be altered. Due to the chamber geometry, the narrow tip
of the pipette needed to be bent. This can be done using a heated platinum wire.
Figure 2.2 a) shows the pipette before it is bent. Figure 2.2b) shows the glass
of the thin section of the micropipette bending when it is brought into contact
with the hot wire. The heat from the wire locally melts the glass of the pipette
enough for the glass to bend. Using a pair of tweezers in conjunction with the
wire as bending template, the micropipette can be manipulated into a variety of
shapes. Cooling the wire sets the shape of the pipette, and if done carefully, this
can result in a micropipette bent into precise shapes. One important technical
aspect to reduce the chances of the molten glass sticking to the platinum wire and
breaking as a result, it was helpful to reduce the temperature of the platinum wire
first before attempting to move the pipette away. Lowering the wire temperature
meant that the as the molten glass solidifies, the thermal expansion coefficient of
the platinum shrinks the wire, which separates the platinum and glass.

To make the small air bubbles required in Chapter 6, I required a smaller orifice
than the standard range of radii that are easily obtained in the standard pulling
process. As a result, I developed a ‘double-pulling’ technique that involved taking
a pulled micropipette and thinning the end further. Double-pulling is done by
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a)

b)

Glass micropipette

Platinum wire

Figure 2.2: A glass micropipette bending due to a heated plat-
inum wire. a) A straight glass micropipette after being pulled. b)
The micropipette tip is bent on the heated platinum wire by locally
heating one spot on the fiber.

locally heating the tip of the pipette using a platinum wire. The process for double
pulling is shown in figures 2.3a) and b), where the best technique to reproducibly
narrow the pipette orifice was to heat the tip of the pipette on one side. Once the
pipette glass melts, it can be pulled away from the wire which further narrows and
elongates the pipette tip, just as though the pipette were being pulled a second
time on the micropipette puller. Asymmetric heating was key to the interior of
the pipette elongating and narrowing as illustrated in figure 2.3b). Heating the
pipette on one side allows an uneven melting across the narrow tip of the pipette,
which allows for a less viscous melt at the point in contact with the platinum wire.
The less viscous melt stretches out more quickly than the cooler, more viscous end
of the pipette, allowing for the tip of the pipette to stretch out asymmetrically.
This method produces air bubbles as small as 7 µm in radius. If the pipette tip
were brought into contact with the wire such that the face of the orifice is heated
(shown in figure 2.3c), the tip would rapidly melt closed and upon pulling the
pipette the solid glass would narrow and extend. Once clipped to allow for air to
be able to flow through the micropipette, the inner diameter would be the same as
if the pipette were pulled once and would create bubbles larger than the targeted
size.
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a)

b)

c)

Micropipette tip

Platinum wire

Figure 2.3: A schematic of the double-pulling pipette process. a)
A magnified view of the narrow end of a micropipette near an un-
heated platinum wire. b) The most reproducible manner of double-
pulling a micropipette, where the bottom edge of the pipette is
brought into contact with the hot platinum wire before being pulled
away. The tip stretches and draws the orifice to be narrower. c) A
method of double-pulling that does not result in a narrower orifice.
When a pipette tip is brought face on to the wire, the end of the
glass rapidly melts and when pulled does not result in a narrower
orifice.
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2.2 Making droplets

Chapters 3-5 present research studying droplets on conical fibers. In this section,
I will outline the two techniques for making droplets which include creating and
transferring single droplets and creating multiple droplets using a combination of
dip-coating and the Plateau-Rayleigh instability. All of the droplets were made
with silicone oil because it is non-hygroscopic, non-reactive in air and totally wets
glass. In addition, silicone oil was used because it is possible to change the viscosity
of the liquid without changing the material chemistry; we have used viscosities
ranging from 1000 cSt to 5000 cSt for the projects presented in this thesis.

2.2.1 Individual droplets

When it was necessary to place individual droplets onto a conical fiber in Chap-
ters 3-6, we developed a technique of producing a droplet on an auxiliary pipette
then transferring the droplet to the pipette used as a substrate. The auxiliary
pipette is connected to a syringe and a small volume of fluid is extruded from the
tip. The extruded volume will travel up the length of the auxiliary pipette and
will form into a barrel-shaped droplet. This droplet can then be transferred to
the primary pipette by bringing the two pipettes into contact at the location of
the droplet. The auxiliary pipette is then moved to ‘brush’ the droplet onto the
primary pipette. The droplet will transfer from one pipette to the other when
the droplet is on a thinner pipette than the target pipette, because of the wetting
conditions between the droplet and substrate. This technique allows for droplets
to be placed at a desired location on the primary pipette. One downfall of this
technique is that it is not possible to extrude droplets of extremely viscous liquids.
To extrude viscous liquids from the end of a narrow micropipette requires too high
of a pressure than can be supplied by hand from a syringe. To overcome this for
more viscous liquids, we continue to use an auxiliary pipette to produce droplets
using a technique outlined in the next section.
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2.2.2 Multiple droplets

Multiple droplets can be produced at one time using a combination of the Landau-
Levich-Derjaguin film deposition and the Plateau-Rayleigh instability. This tech-
nique works particularly well when trying to make droplets with an extremely
viscous liquid. A submerged fiber is pulled out of a liquid bath and the viscous
liquid will coat the fiber according to the Landau-Levich-Derjaguin relation. The
thickness of the liquid coating will depend on the fiber radius, pull speed, viscosity,
and surface tension. If the film is thick or if timescales are long, the film will break
up into droplets due to the Plateau-Rayleigh instability. On a conical fiber the
fiber radius is not constant, and this causes droplets with a range of sizes to form.
The droplets are ordered so the small droplets form at the narrow tip of the fiber
and large droplets form at the wide base.

Droplets can be made in a variety of sizes in an uncontrolled manner by simply
holding the pipette and pulling if out of the bath by hand. The irregular coating
breaks up into droplets that can be transferred to the primary pipette using the
transferring technique described in the previous section. In Chapter 4, I studied the
break up of a liquid film on a conical fiber, which required a uniform film thickness
along the fiber. The film thickness can be controlled by pulling the pipette out
of the bath at a constant speed using a translation stage. The tip of a Pasteur
pipette was filled with silicone oil and used as a reservoir for these experiments.
The Pasteur pipette was mounted on a translation stage. A schematic of the
experimental set up is shown in figure 2.4. The conical fiber was inserted into the
reservoir, and the Pasteur pipette was moved at a constant speed between 500
µm/s to 2000 µm/s to deposit a film on the fiber. At these speeds, film coatings
ranged from 13-88 µm. The film then breaks up into droplets at a time scale
and wavelength set by the fiber radius, the film thickness, viscosity, and surface
tension.

Interestingly, we found that it was possible to nucleate film break up by holding
the reservoir at a set location near the tip of the fiber (as shown in figure 2.5). The
meniscus between the bath and fiber created a slight perturbation in the surface
of the film, which created a cascade of droplets along the fiber. Nucleating the
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Silicone oil 
reservoir

Light sheet

Microscope objective

Micropipette

Figure 2.4: The experimental set up for droplet on conical fiber
experiments. A glass micropipette is held horizontally and imaged
from above with an optical microscope. A light sheet illuminates
from below and a reservoir mounted on a translation stage is lined
up with the narrow end of the pipette.

film break up reproducibly creates droplets with fixed sizes at fixed locations; a
phenomenon that could be used for self-patterning applications.

2.3 Making bubbles

In Chapter 6, small uniform bubbles are produced in an aqueous bath. The aqueous
bath includes a depletant which makes the bubbles adhesive over a short range
and the bubbles can therefore be linked together in a chain. In this section, I will

1 mm

Figure 2.5: A sample image of the break up of a liquid film on a
conical fiber. The reservoir is held at the right side of the image to
nucleate the droplets at fixed locations.
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discuss the method in which I create the bubbles as well as discussing the details
of the aqueous bath.

Air bubbles are produced by extruding air through a double-pulled micropipette
into an aqueous bath. The air pressure to create the bubbles was controlled using
a 10 mL syringe as an air reservoir, which was then connected to the micropipette
with tubing. The pressure was set by both the depth that the micropipette was
submerged in the solution as well as the pressure applied to the syringe plunger. To
ensure a constant pressure during the course of each data set, a motorized trans-
lation stage was used to apply a pressure to the end of the plunger on the syringe.
Because the air reservoir was large in comparison to the flow of air through the
micropipette, it is assumed that the pressure is constant over each data set. Con-
stant pressure is confirmed by comparing the size of the bubbles at the beginning
of the sequence to the size of the bubbles at the end. Air, being a compressible
fluid, will create larger or smaller bubbles depending on the back pressure in the
bubble blowing pipette [70, 119].

The solution that the bubbles are produced into is crucial to the small size,
stability, and adhesion of the bubbles. The surfactant, sodium dodecyl sulfate
(SDS, Bioshop) is added to water to stabilize the bubbles as they are extruded
from the pipette. If the concentration of SDS is too low, large bubbles will form.
As discussed in section 1.7.2, the surfactant migrates to the interface and lowers
the interfacial tension. In addition, SDS is a depletant and SDS concentrations
were varied to examine the effect of adhesion strength on chain behaviour [93].
The concentration of SDS ranged from 1% to 8% by weight in solution, and also
contained 1.5% NaCl (Caledon) to screen electrostatic charges.

2.4 Imaging and data analysis

For each of the research projects presented in this thesis, data was collected using
optical microscopy. This section details the experimental set up used to collect
the images and the image analysis techniques used.
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2.4.1 Imaging set ups

The first step to extracting quality data from optical microscopy images to ensure
that the images and lighting are of high quality to produce crisp, well-contrasted
images. There were two main optical microscopy set ups made for this thesis, one
for experiments with oil droplets on conical fibers and one for the moving bubble
chain experiments.

The experimental set up for studying droplet motion on conical fibers consists of
a conical fiber held horizontally. The camera (ThorLabs, USB2.0 Digital Camera)
imaged from above and a light sheet (Advanced Illumination, Side-fired Backlight)
provided uniform lighting from below. A schematic of the set up is shown in
figure 2.4. This geometry was found to provide the highest level of contrast between
the fiber and the background. Depending on the required magnification, lenses
ranging from a magnification of 2x to 10x were used. The 10x lens (Olympus)
was used to measure the thickness of the deposited film in Chapter 5, where the
2x lens (Navitar) was used to look at longer length scale behaviour presented in
Chapter 4.

In Chapter 6, the geometry of the system required imaging that allowed for 3-
dimensional reconstruction. Due to the speed that the system was moving, a single
camera and mirrors were used to ensure that orthogonal planes of the system were
imaged synchronously. Shown in figure 2.6, I developed chambers that allowed for
simultaneous imaging of two orthogonal planes. Using a resin 3D printer (Phrozen
Sonic 4k), I created a chamber with two edges at a 22.5◦ angle from the flat imaging
plane. Silicon wafer pieces were attached to the two angled edges using a two-part
epoxy, which served as reflective mirrors. The chamber was then attached to a
microscope slide to create a closed environment to hold the aqueous bath described
in section 2.3. An object in the center of the chamber can be imaged in two planes
orthogonal to each other by focusing on the reflections in the mirror rather than the
object itself. An example of the chamber with bubbles can be seen in figure 2.6a),
where the front view shows a bent micropipette produces bubbles in the center of
the chamber. The reflections are shown to the left and right of the central bubble
chain. Reflections of the micropipette are left out of the schematic for clarity.
Figure 2.6b) shows the imaging set up from the top, where the chamber was lit

62

http://www.mcmaster.ca/
http://www.physics.mcmaster.ca/


Ph. D.– Carmen L. Lee; McMaster University– Physics and Astronomy

Left mirror Right mirror

Micropipette

Chamber

Camera

Left reflection Right reflection

Front view

Left mirror Right mirror
22.5o

Top view

a) b)

Figure 2.6: Experimental set up for a bubble chamber with two
mirrors held at a 22.5◦ angle from a flat plane. a) Front view of
the chamber shows a bent micropipette is inserted into an aqueous
bath. Bubbles are produced in the center of the chamber (grey)
and reflections from the left (red) and right (blue) as shown with
the pipette reflections omitted for clarity. b) The top view of the
chamber with the two mirrors held at 22.5◦ angle from a flat plane.
The optical microscope focuses on the reflections to image two or-
thogonal planes. Sample ray traces are also shown.

and the camera imaged through the microscope slide. Two light sheets (Nanlite)
were used to illuminate each mirror evenly. A 2x objective lens (Edmund Optics,
0.13 NA, Ultra Compact Objective) was used with a CMOS camera (Teledyne
FLIR, Blackfly). Images were taken at a frame rate of 150 frames per second.

2.4.2 Image analysis

For each of the projects in this thesis, data collection was primarily conducted
through optical microscopy. To extract the data from the optical microscopy
images, image analysis needed to be done. All of the analysis was conducted using
the python coding language, of which I wrote analysis scripts and implemented
open-source image analysis packages.

In Chapters 3-5, I used edge detection to distinguish between fiber and droplet
system from the background. I used a Sobel edge detection algorithm (sobel from
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skimage.filters [120]), which detects edges based on the intensity gradients
in each direction of the image. Sharper gradients indicate a highly contrasted edge,
and an edge is defined by thresholding the gradient values to only consider sharp
gradients. Figure 2.7a) shows a representative image of silicone oil droplets on a
fiber, and figure 2.7b) shows the edges detected using the edge detection algorithm.
The first image taken for each of these experiments was an image of the bare glass
fiber. Imaging the fiber before introducing the silicone oil to the fiber gives the
measurement of the fiber radius r as a function of position z. A polynomial is fit
to the fiber radius, and by taking the derivative as a function of position gives the
gradient of radius of the fiber dr/dz.

The same edge detection can be done with the edge of the silicone oil, and by
subtracting off the fiber thickness, we can extract the thickness of the film and
droplet height, h, for each image as a function of position. An example of a profile
is shown in figure 2.7c). Droplets appear as bulges in these profiles and the position
of the droplet can be found using the local maxima. Fitting a small section of the
bulge to a parabola, the values from the fit give the location of the drop to sub-
pixel precision. Doing this for each of the frames gives the position of the droplets
as a function of time. To smooth the data, a moving spline is fit over the position
data, and which is used to take the numerical derivative, giving the velocity of the
droplets. From the droplet position, heights, film thicknesses, velocities and fiber
radius and gradient in radius we can extract all of the important information for
these experiments.

In Chapter 6, additional image processing techniques needed to be implemented
in addition to edge detection. The vertical speed of the chain was found using a
cross-correlation technique. First, the images were binarized, so the bubbles were
distinct from the background, and the center trace of the bubble chain was found.
The vertical speed of the chain was calculated using the center traces by comparing
one trace to the next frame. Using cross-correlation, the distance traveled in pixels
could be extracted. Cross-correlation (correlate from scipy.signal [121])
is a spatially resolved measure of similarity between two profiles. One profile is
translated across the other at a given step interval and the similarity between the
two profiles is calculated. The position or ‘lag’ that shows the most similar profile
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Figure 2.7: The image processing pipeline for a sample optical
microscopy image of oil droplets on a conical fiber. a) The raw
image of two oil droplets on a conical fiber. b) The image after
edge detection has been performed. Light colours indicate edges,
where the dark indicates non-edges. c) The profile of the oil surface
after subtracting the radius of the fiber. The location of the center
of each droplet is marked with a black square, which has been found
by fitting a parabola (red) to the local maximum of the droplet.
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is noted by a peak in the cross-correlation function [122]. The distance that the
profiles need to shift to reach a maximum similarity corresponds to the distance
that the chain has traveled in one frame. The distance moved per frame was
averaged for the entirety of the data set to find the vertical velocity of the chain.

The bubble radius R was found using template matching. Template matching
is an image analysis technique that searches an image for a smaller image patch.
For example, figure 2.8a) shows a sample image of a chain of bubbles, and the
inset i) shows the image patch that will be used as the template. Using a python
package called match_template from scikit-image [123] which performs a
2-dimensional cross-correlation to match the location of the template across the
image. This package exports an intensity map that corresponds to the location
where the template image is present on the original image. Figure 2.8b) shows
the cross-correlation map, where light colors indicate a higher similarity between
the template and the image. Then peak finding functions can be used to locate
instances of the template image. In this example, locations of the bubble template
are indicated with a green dot in figure 2.8c). For this project, we can use the
location of the bubbles to calculate the radius of the bubbles. Starting at the
bottom of the frame where the bubbles are produced, bubbles are matched along
the chain from the right and left side of the reflected images and using trigonom-
etry for the two imaged planes, we calculate the distance between the center of
subsequent bubbles. This distance corresponds to the diameter of the bubbles.

Finally, the amplitude of the buckling is determined by averaging all of the im-
ages for a given video. Averaging the images blur the compound image as a function
of time, as shown in figure 2.9a), and by taking a horizontal cross section of the
intensity allows us to find the outer edge of the bubble chain. Figure 2.9b) shows
the profile of the blurred image along the horizontal line shown in figure 2.9a),
with the beginning and end of the profile indicating the amplitude. Subtracting
off the bubble radius and reconstructing the averaged data in 3-dimensions gives
the average buckling amplitude.
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Figure 2.8: The image processing pipeline using template match-
ing. a) A sample image of a number of air bubbles linked together
in a chain and the inset i) shows the template bubble used in tem-
plate matching. b) The intensity profile corresponding to instances
of the template image in the original image. c) The sample image
overlaid with green dots to indicate the located instances of the
template bubble image.
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Figure 2.9: The image analysis pipeline to calculate the buckling
amplitude of a bubble chain. a) A sample image from the data set
is overlaid with an averaged image of all the images in the data set.
It creates a blurred outline that is sliced horizontally. A sample
slice is shown with a blue horizontal line. b) The intensity profile
indicated by the horizontal location in panel a). The beginning and
end of the amplitude are indicated by black lines.
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Chapter 3

Droplet migration on conical
fibers

Clementine Fournier, Carmen L. Lee, Rafael D. Schulman, Élie Raphaël and Kari
Dalnoki-Veress
European Physical Journal E 44:12, 2021.

3.1 Paper introduction

This paper was motivated by the transport of liquids along slender structures in
nature, specifically the motion of droplets on conical fibers. For example, droplets
of water condense on cactus spines before spontaneously moving toward the base of
the fiber. In this study, we have considered the interplay between surface tension
which drives spontaneous motion of the droplet, and viscous dissipation which
resists motion. An ideal cactus spine is modelled using glass pipettes that smoothly
taper from a thin tip to a wider base with a gradually increasing radius gradient.
The droplets are made of silicone oils of different viscosities. The oil totally wets
the glass substrate, and the droplet moves toward the base of the fiber to maximize
the contact of the liquid with the fiber.

Although droplet motion on conical fibers has been well studied, most previ-
ous works focus on systems with large droplets and large fibers, and with Bond
numbers approaching 1 [85, 124, 125, 126]. In this paper, we chose to study small
length scales so that the droplets will be axisymmetric around the fiber. We refined
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a simple model that considers the force due to surface tension at the two contact
lines between the droplet and the fiber. We considered viscous dissipation in the
droplet and use an approximation to model the shear force over the solid-liquid
boundary. Balancing viscous and capillary forces, we found good agreement be-
tween the predicted speed of the droplet and the experimentally measured values.
In addition, this is the first time to our knowledge that the relationship between
drop height and fiber radius, as derived by Carroll in 1976 [78], has been verified
experimentally.

Clementine Fournier, Rafael Schulman and Kari Dalnoki-Veress conceptualized
the experiments. Clementine Fournier performed the data collection and wrote
the MATLAB code for image analysis. I finalized the theoretical model that was
initially developed by Rafael Schulman, Clementine Fournier, Élie Raphaël and
Kari Dalnoki-Veress. I re-analyzed the data, and produced the figures containing
the experimental data, along with editing subsequent versions of the manuscript.
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Abstract The spontaneous migration of droplets on conical fibers is studied experimentally by depositing
silicone oil droplets onto conical glass fibers. Their motion is recorded using optical microscopy and analyzed
to extract the relevant geometrical parameters of the system. The speed of the droplet can be predicted as
a function of geometry and the fluid properties using a simple theoretical model, which balances viscous
dissipation against the surface tension driving force. The experimental data are found to be in good
agreement with the model.

1 Introduction

Spontaneous water transport systems at small length
scales are a crucial feature for the survival of many liv-
ing organisms and have been widely studied. In some
cases, the aim is to remove excess water. For instance,
water strider legs [1] and bird feathers [2] have water
repelling properties. However, many of the organisms
employing water transport do so to collect water. Spi-
der webs [3], the backs of desert beetles [4], desert moss
structures [5] and cacti spines [6–9] help these plants
and animals collect the water necessary for their sur-
vival. In the case of cacti, water collection is based on a
simple mechanism: when fog condenses at the tip of a
conical cactus spine, a droplet forms that spontaneously
migrates towards the widest end of the spine under the
action of surface tension as a driving force. Many recent
artificial water harvesting systems have been inspired
by this mechanism [10–16], with the intent of fighting
drought in arid environments. However, there are still
unanswered questions about the droplet dynamics in
this system.

A standard framework to describe droplets on cylin-
drical fibers has been developed by Caroll [17,18],
who also highlighted the existence and the transition
between two possible equilibrium configurations for a
droplet on a fiber: the asymmetric clam shell configu-
ration, in which the droplet is in contact with one side of
the fiber, and the axisymmetric barrel configuration, in
which the droplet envelopes the fiber. Drop transport
along fibers may be induced by several means; previ-
ous works have used gradients in coating [19], temper-
ature gradients [20,21] and gravity [22–25] to control
the motion of droplets on cylindrical fibers. Lorenceau

a e-mail: dalnoki@mcmaster.ca (corresponding author)

and Quéré [26] were the first to propose a theoretical
model, based on Carroll’s framework, to explain bar-
rel shaped droplet dynamics on conical fibers. They
showed that a gradient in Laplace pressure along the
fiber will drive the motion of the droplet: the thicker
the fiber is, the smaller the Laplace pressure will be,
thus creating a spontaneous migration of the droplet
toward thicker regions of the fiber. Their work is focused
on large drop and fiber systems (characteristic length
scale of approximately 1 mm), at which gravity must
be taken into account and for a small range of relative
drop sizes, i.e., the drop size is compared to the fiber
radius. The experimental results from Lorenceau and
Quéré focus on the case where the drop size is com-
parable to the fiber radius, and therefore, the drop is
quasi-cylindrical, along with considering the theoretical
explanation for when the drop is quasi-spherical. Other
recent theoretical, simulation and experimental works
on this topic [16,27–32] have focused on large length
scales and, in some of these studies, investigated where
gravity fully balances the surface tension driving force.
Smaller length scales have been explored in a more
recent study, where the data were analyzed with the
model presented by Lorenceau and Quéré [33]. In con-
trast to the model presented by Lorenceau and Quéré,
others have modeled the driving force being due to sur-
face tension acting on the point of contact between
the fiber and droplet [16,31]. Moreover, the migration
of clam shell drops has also been investigated [34,35].
In addition, the spontaneous migration of drops inside
a conical tube or a wedge has been studied recently
and theoretical models were proposed to describe this
case [28,36–41]. Even if the geometry differs, the same
forces are at play: gravity and gradients in the Laplace
pressure. More generally, the asymmetry created by
cone-like structures has been an inspiration in the field,
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for instance, in elastocapillarity, where a liquid drop
between two elastic fibers or thin sheets can make them
coalesce or separate [42–46].

In the present work, we study the migration of
highly viscous, totally wetting, and thus barrel-shaped,
droplets on conical glass fibers on length scales at
which gravity can be neglected. We explore a large
range of drop sizes relative to the fiber radius. In this
droplet/conical fiber system, the only forces acting on
the droplet are a driving force originating from sur-
face tension and the viscous shear force. The model we
present is equivalent to that of Lorenceau and Quéré,
with a modification to the assumptions used to describe
the geometry of the drop. The simple theoretical model
well predicts the droplet speed as a function of the
radius, the gradient of the radius, droplet volume, as
well as the surface tension and viscosity of the fluid.

2 Experimental methods

The glass fibers were prepared by pulling standard
borosilicate glass capillary tubes with an outer diam-
eter of 1 mm in a magnetic micropipette puller (Nar-
ishige PN-30). The resulting shape of the transformed
pipette was a nearly conical fiber with a changing gra-
dient and tip size of tens of micrometers. We note
that though the fibers are “trumpet” shaped, with
a gradient in diameter that increases weakly as the
diameter increases, on the length scale of the droplets
they are conical. The variations in diameter and gra-
dient were unique to each pipette. Glass was chosen
because it presents a well-controlled and smooth sur-
face. Three different silicone oils, i.e., poly(dimethyl
siloxane) (PDMS), were used: vinyl terminated PDMS,
silanol terminated PDMS and vinyl terminated copoly-
mer (0.3–0.4% vinylmethylsiloxane)-dimethylsiloxane
(Gelest). The respective kinematic viscosities are 5000
cSt, 2000 cSt and 1000 cSt and a surface tension of
γ = 22 mN/m. Silicone oils were the most appropriate
liquids in this case, as they have well-controlled viscosi-
ties, are non-volatile and chemically stable. These oils
also totally wet glass which means that droplets have a
zero equilibrium contact angle with the fibers.

A glass fiber is cleaned using acetone and methanol to
remove any dust particles. It is then fixed in a horizontal
orientation, and a small droplet of PDMS is placed close
to the tip of the fiber as shown in Fig. 1a at t = 0 s. The
droplet is first produced using another micropipette,
which then deposits it on to the fiber by brushing the
droplet perpendicularly on the top of the fiber. Once the
droplet is deposited, its motion is recorded from above
using an optical microscope. Snapshots of the result-
ing time series of the motion are shown in Fig. 1a. An
average frame rate of 1 image per second is used. The
recording continues until either the droplet exits the
field of view or it loses its barrel shape and axial symme-
try, which happens when the fiber radius becomes large
compared to the droplet size. The first two droplets
migrating on an as-cleaned fiber coat the fiber with a

(a)

(b)

Fig. 1 a Microscope images of droplet migrating along a
conical fiber at different times. The third panel is anno-
tated with the wedges defined in the model (see Sect. 3). b
Schematic of a barrel-shaped droplet on a pre-wetted con-
ical fiber with the relevant lengths identified. The surface
tension γ acting as a driving force on the droplet is also
shown

thin film of PDMS. Here we focus mainly on subse-
quent droplets, as we wish to study droplet motion on
fibers which are pre-wet by a homogenous thin liquid
film. Subsequently, the migration of several droplets of
different volumes is recorded and analyzed.

To ensure that gravity had no impact on the measure-
ments, the experimental setup (including the conical
fiber and the microscope) was tilted at an angle and the
experiment was reproduced in this configuration. The
resulting data presented no difference with the rest of
the recorded data; thus, gravitational effects are over-
whelmed by surface tension-driven forces. The domi-
nance of surface tension over gravity in the experiments
presented is to be expected since the capillary length of
the silicone oils used is lc =

√
γ/(ρg) ∼ 1.5 mm, with

density ρ ≈ 965 kg/m
3

and g the acceleration due to
gravity.

Several parameters of interest are extracted from the
videos: the fiber radius r, the radius gradient dr/dz as a
function of the axial coordinate z, as well as the droplet
properties, height h, volume Ω, width w and position
at all times. Some of these parameters are denoted in
Fig. 1b. All parameters are obtained by direct image
analysis. The droplet position is retrieved by averag-
ing the z-position of the maximum and minimum of
parabolas fitted, respectively, to the top and bottom of
the detected edge of the droplet. The speed v is cal-
culated as the numerical time derivative of the droplet
position.
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Fig. 2 Speed v of several droplets migrating one after
another along the same conical fiber plotted as a function
of their position on the fiber z. Different markers represent
droplets of different volumes Ω

As the goal of this study is to find a comprehensive
expression for v as a function of all the other variables,
a first step is to look at how the speed varies with the
other parameters of the system. A plot of v as a func-
tion of the droplet position (Fig. 2) shows the speed of
four droplets of different volumes that migrated on the
same pipette. From this plot, it is evident that the speed
increases with position. However, we also know that
both the radius and the gradient of the fiber increase
with position. Therefore, the raw data do not allow
us to dissociate the effect of each parameter. A sec-
ond observation is that the speed increases with the
droplet volume. Since there are several variables which
influence the droplet speed, it is necessary to develop
a model in order to attain a comprehensive expression
for v as a function of all the relevant parameters of the
system.

3 Theoretical model

In order to develop a model, we consider all the forces
applied on the droplet. Gravity is negligible, verified
both by the experiment (see Sect. 2) and the fact that
the length scale of the experiments is well below the
capillary length. We assume that inertial forces are
negligible, as the Reynolds number is on the order of
10−6. Two main contributions remain: the driving force
caused by the surface tension γ of the silicone oil, as
depicted in Fig. 1b, and the viscous dissipation in the
liquid. The first contribution, which we denote Fγ , is the
net surface tension force exerted by liquid–air interface
of the pre-wetted fiber onto the droplet volume. It is
composed of a difference between two surface tension
forces: one acting at the extremity of the advancing
side where r = r+ and another acting at the reced-
ing side where r = r−. We note that here we con-
sider the external forces acting on the droplet (surface
tension at the contact lines), rather than the method
of internal Laplace pressure gradients as implemented

by Lorenceau and Quéré [26]. A simple approximation
gives the following final expression for Fγ :

Fγ ∼ 2πγr+ − 2πγr− ∼ γw
dr

dz
. (1)

We note that this simple approximation ignores the dif-
ference in the advancing and receding contact angles [16].
The second contribution, denoted Fη, results from the
viscous force at the solid–liquid interface. In order to
attain a simple expression for this quantity, we approx-
imate the droplet shape as two joined wedges drawn in
the third panel of Fig. 1a which depend on h and w.
Although a crude approximation, it should suffice for
quantifying the dissipation at the level of scaling; fur-
thermore, this approximation is consistent with the use
of h to describe the dynamics of the Plateau–Rayleigh
instability [47]. In this case, the viscous force can be
evaluated by integrating the shear force over the entire
liquid–solid area (Als) beneath the wedge [48]:

Fη ∼
∫∫

Als

η
dv

dy

∣∣∣∣
y=0

∼ ηrv

tan(θ)
, (2)

where y represents the radial coordinate, which is equal
to 0 when the point of interest is at the center of
the fiber, η is the dynamic viscosity and θ is angle
of the wedges which approximate the droplet. Here,
we have neglected any prefactors and the logarithmic
term which truncates the integral in viscous wedge dis-
sipation (see Ref. [48]). The only parameter from this
expression that has not directly been measured in the
experiment is tan(θ). Using simple trigonometry, we
have:

tan(θ) =
h

w/2
. (3)

Substituting Eq. 3 back into Eq. 2, a final expression
for Fη is obtained:

Fη ∼ ηrvw

h
. (4)

In the absence of gravity and inertia, we must have Fη ∼
Fγ . Thus, equating Eqs. 1 and 4 yields an expression
for the speed as a function of all the other relevant
parameters:

v ∼ γ

η

h

r

dr

dz
. (5)

The droplet height can in principle be obtained from
an exact equation of the shape of a droplet on a fiber,
assuming the quasi-static approximation. For a bar-
rel droplet on a cylindrical fiber, it has been shown
that there is a non-trivial dependence on the fiber
radius [17,18,49,50]. The relationship between h and
r as derived by Carroll [17,18] is shown as a solid
black line in Fig. 3 with reduced coordinates h/Ω1/3

and r/Ω1/3 and is non-monotonic. The dashed black
line shown in the inset of Fig. 3 represents the asymp-
totic regime in which h = r. For large r, h tends
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Fig. 3 Reduced height h/Ω1/3 of all studied droplets plot-

ted as a function of the reduced radii of the fibers r/Ω1/3,
on which the droplets are migrating. The markers show the
experimental data for all droplets. Different colors for the
markers represent viscosities: 1000 cSt (orange), 2000 cSt
(purple) and 5000 cSt (green); different shades of a color
correspond to different fibers. The solid black line represents
the theoretical relationship between h/Ω1/3 and r/Ω1/3, as
derived by Carroll [17,18] with no fitting parameters. The
inset in the image shows the experimental data, the theo-
retical relationship and the dashed black line of equation
h = r show that the predicted h tends towards r for large
fiber radii on a larger scale compared to the main figure

towards r as the droplet flattens and takes the shape of
a cylinder enveloping the fiber. For small r, h is close
to that of a droplet in a quasi-spherical regime, where
h/Ω1/3 ≈ 0.62 as r → 0 (a droplet can be approximated
as a sphere of radius h). Experimentally the parameters
in Eq. 5 can all be determined easily. η and γ are known
fluid properties, and r and dr

dz are geometrical proper-
ties of the fiber which can be determined from image
analysis as discussed above (see Sect. 2). Lastly, since
the droplet height varies non-trivially with fiber radius,
we determine h experimentally at every image frame in
the sequence.

4 Results and discussions

We first turn to the height of the droplet on a fiber.
Since the droplet migrates, if we make the quasi-static
assumption (i.e., neglect fiber gradient and assume
v = 0), the experiment is equivalent to extracting the
height of a droplet as a function of fiber radius. The
experimental data are shown in Fig. 3, with markers
corresponding to the three different viscosities: 1000
cSt (orange), 2000 cSt (purple) and 5000 cSt (green);
different shades correspond to different conical fibers.
To the best of our knowledge, this relationship has not
been experimentally verified and the agreement with
the classic theory is excellent with no fitting parame-
ters. Although for small fiber radii h is close to that of

a droplet in a quasi-spherical regime, we do not make
the common approximation of h ∼ Ω1/3 in this study.

The droplet speed as a function of experimentally
relevant parameters is given by the model prediction
presented in Eq. 5. In Fig. 4a, we plot the speed, v,
as a function of h

r
dr
dz . The model predicts a straight

line through the origin with a slope proportional to γ
η .

Indeed, for all the experiments (52 in total), the experi-
mental data are in excellent agreement with the simple
model despite the approximations made (see [16] for
a more rigorous theory and simulation). The droplets
follow three different trends corresponding to the three
different viscosities: 1000 cSt (orange markers), 2000
cSt (purple markers) and 5000 cSt (green markers). For
each viscosity, three different fibers of varying radii and
gradients were used to diversify the experimental condi-
tions. They correspond to different colors shades of the
markers. On each single fiber, several droplets migra-
tions (6 on average) were recorded once the fiber was
pre-wet. In Fig. 4a, each different type of marker (circle,
square, etc.) corresponds to a different droplet. Accord-
ing to Eq. 5, these straight lines have slopes that are
inversely proportional to the respective viscosities of
the fluids but otherwise have the same prefactor. The
prefactor itself is the result of the multiplication of the
surface tension γ (the same for the three oils that were
used) and a numerical coefficient of order of 10−1.

The comparison between model and data can be
tested further by dividing the speed by the capillary
velocity of the oil γ/η, which normalizes the data by
the corresponding viscosities. The expectation is then
to obtain a single trend for all droplets, in this case a
straight line going through the origin with a slope equal
to the prefactor discussed earlier: a numerical prefactor
which we find to be equal to 0.074±0.002 by fitting the
data. We see in Fig. 4b that all data collapse in agree-
ment with Eq. 5. The agreement between the data and
the model further demonstrates the robustness of the
model.

Limitations of the model approximations could be
observed in the experiments. For instance, when the
droplet continues to migrate towards the larger end of
the fiber, there is a point where the droplet becomes
asymmetric which results in a deviation of the data
from the expected straight line when plotted as shown
in Fig. 4b. Failure of the model can also be observed
for droplets with extreme volumes when the volume is
sufficiently large and gravity cannot be neglected. This
deviation happens when the characteristic dimension of
the droplet is comparable to the capillary length of the
liquid.

A further interesting observation can be made about
the first droplets to migrate on each fiber. In that case,
the droplets are moving on fiber that has not been pre-
wet. The resulting data for these droplets are still found
to collapse onto a straight line going through the ori-
gin when plotted as shown in the inset in Fig. 4b. The
only difference is that the slope of this line is smaller
than the slope of the wet fiber data by a factor of
approximately 4. The altered dynamics is reasonable
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(a)

(b)

Fig. 4 a Speed for all studied droplets as a function of
the gradient of their respective fibers multiplied by their
height and divided by their radii, dr

dz
h
r
. Different color fam-

ilies represent the viscosity of the PDMS: 1000 cSt (orange
markers), 2000 cSt (purple markers) and 5000 cSt (green
markers). Different color shades denote different fibers (3
different fibers for each viscosity). Different types of mark-
ers (circle, square, etc.) denote different droplets. The lines
represent the best fit of the model (Eq. 5) for each viscosity.
The best fit lines have slopes of aγ/η, where a was found
to be ∼ 0.074 ± 0.002. b Speed normalized by the capillary
velocity for all studied droplets as a function of dr

dz
h
r
. The

color scheme is the same as in a. The straight line represents
the best fit of the model to all data with the best fit slope of
∼ 0.074 ± 0.002. The inset includes the data from the main
panel and the speed normalized by the capillary velocity for
droplets on a dry fiber as a function of dr

dz
h
r
. The best fit

slope for the data on a dry cone is ∼ 0.018 ± 0.003

because in the absence of a pre-wetting film there is
greater viscous dissipation at the advancing contact
line, and furthermore, one can expect a modification
to the driving force depicted in Fig. 1b. Images of such
droplets in motion reveal a cusp at the contact line and
an advancing angle that deviates significantly from the
receding angle, unlike the case of droplets moving on
a pre-wet fiber. Regardless, the deviation results in a
constant pre-factor so that the overall scaling remains
unchanged.

The work presented here differs from the experiments
presented by Lorenceau and Quéré [26] and the work by
Li and Thoroddsen [33] in several ways. First, in our
experiments, gravity is negligible because we consider
droplets with characteristic sizes smaller than the cap-
illary length, while Lorenceau and Quéré studied larger
droplets. Second, here we focus on a broad range of
relative droplet sizes in the quasi-spherical regime. In
contrast, Lorenceau and Quéré focus on experimental
results in the quasi-cylindrical regime. Third, our theo-
retical model differs from the model built by Lorenceau
and Quéré and used by Li and Thoroddsen. While we
also predict the droplet speed using a balance of both
the viscous dissipation and the driving force, we use a

different approximation for the dissipation and define
our driving force through the tensions at the contact
line. Lastly, in previous works by Lorenceau and Quéré
as well as Li and Thoroddsen, experimental data are
provided as evidence for the models. Just as for the
model presented here, the authors predict a direct pro-
portionality between the speed as a function of fiber
gradient with a speed that vanishes as the gradient
tends to zero. In both studies [26,33] when comparing
data to the theory, the data are consistent with a linear
dependence of speed on the fiber gradient, but incon-
sistent with the prediction that the speed must vanish
when the gradient vanishes (i.e., the best fit lines do
not go through the origin and predict a nonzero veloc-
ity when there is no gradient). We have resolved this
inconsistency with our model and data.

5 Conclusions

In this work, the spontaneous migration of a droplet
on a fiber with a radius gradient has been character-
ized. If gravity and inertia are negligible, the speed
of the droplet can be predicted as a function of the
other parameters of the system. These parameters are
geometrical (radius and gradient of the fiber, droplet
height) and fluid characteristics (viscosity, surface ten-
sion). The predicted speed of droplet migration is based
on a simple theoretical model in which the viscous shear
force on the droplet balances the surface tension driv-
ing force. We find a good agreement between this model
and the experiments that were performed using vari-
ous fiber shapes and droplet volumes. We further val-
idate the non-monotonic dependence of droplet height
on fiber radius. One could imagine using the model as
a way to improve future fog harvesting devices inspired
by this spontaneous droplet migration mechanism often
seen in biological systems.
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Chapter 4

Multiple droplets on a conical
fiber: formation, motion, and
droplet mergers

Carmen L. Lee*, Tak Shing Chan*, Andreas Carlson, and Kari Dalnoki-Veress
*co-first authorship
Soft Matter 18, 1364-1370. (2022).

4.1 Paper introduction

Although there is a robust theoretical and experimental background to describe
how single drops spontaneously travel on conical fibers, there has been very little
work on multiple droplets interacting on a conical fiber [127]. This work was
inspired by nature, where heavy rainfalls coat slender structures with a film of
water that then breaks up into drops, like the formation of dew drops on a spider
web. In this paper, we studied how a liquid coating on a conical fiber will break
up into droplets and how those droplets move and interact. First, we focused on
how a liquid coating breaks up on a fiber and found that the conical substrate
creates non-linear patterning between droplets. Break up dynamics were studied
using a uniform coating of silicone oil on a conical glass fiber. When the film was
thick relative to the fiber radius, we found that small satellite droplets formed
between larger droplets. As discussed in Chapter 3, droplet speed depends on the
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droplet size. As a result, larger drops will catch up to smaller drops and the two
will merge. We were able to identify the steps that a droplet undergoes when
merging, and we studied the dynamics of the merging process. Taking inspiration
from droplets merging on flat substrate [128, 129], we tracked merging dynamics by
extracting the height and location of the neck between the two droplets. Numerical
simulations of the geometry using the lubrication approximation were performed
to study the merging dynamics which match well with experiment. We also found
that we could explain the motion of the droplets during merging using surface
tension arguments similar to the model presented in Chapter 3.

I designed and conducted the experiments, did the data analysis and image
processing using in-house python code with support from Kari Dalnoki-Veress.
Tak Shing Chan led the simulation effort with help from Andreas Carlson. I
wrote the first draft of the manuscript, all authors contributed to the analysis and
writing.
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Multiple droplets on a conical fiber: formation,
motion, and droplet mergers†

Carmen L. Lee,‡a Tak Shing Chan,‡b Andreas Carlson b and
Kari Dalnoki-Veress *ac

Small droplets on slender conical fibers spontaneously move along the fiber due to capillary action. The

droplet motion depends on the geometry of the cone, the surface wettability, the surface tension, the

viscosity, and the droplet size. Here we study with experiments and numerical simulations,

the formation, spontaneous motion, and the eventual merger, of multiple droplets on slender conical

fibers as they interact with each other. The droplet size and their spacing on the fibre is controlled by

the Plateau–Rayleigh instability after dip-coating the conical fiber. Once these droplets are formed on

the fiber, they spontaneously start to move. Since droplets of different size move with different speeds,

they effectively coarsen the droplet patterning by merging on the fiber. The droplet merging process

affects locally the droplet speed and alters the spatiotemporal film deposition on the fiber.

1 Introduction

In Nature, several species of plants1–3 and animals4–6 have evolved
to form slender conical structures. One purpose of these conical
structures is to transport liquid drops along the cone, either toward
or away from the organism. For instance, the spines on a cactus can
create a surface preferential to fog condensation, with droplets
spontaneously travelling from the tip of the cone to the base.7–10

The hydrophobic hairs on the legs of a water strider work to expel
errant water droplets off the insect, allowing the strider to stay on
the surface of the lake or pond.11,12 Beyond these two examples,
there are many more organisms and structures that exhibit this
behaviour. Several studies have been conducted to examine the
efficacy of droplet transport along these conical structures, and have
served to motivate the development of bio-inspired fog harvesting
devices.13–16

Droplet motion can be driven by several factors. For droplets
below the capillary length, motion is driven by the surface
tension of the droplet to maximize contact with the fiber when
the droplet wets the fiber.11,17–20 As the characteristic size of the
droplet becomes larger than the capillary length, the droplet
may either be propelled21–24 or stalled25 by gravity depending
on the fiber orientation. Droplet motion can also be induced in

these systems by temperature gradients or coatings.26,27 The
motion of a single droplet on a slender conical structure has
been studied and characterized extensively, with an excellent
understanding of the driving forces and viscous dissipation in
the droplet.17,19,20,23,28–31 Furthermore, previous works have
examined the formation of multiple droplets via the Plateau–
Rayleigh instability (PRI) of a film of liquid on a cylindrical
fiber.32,33 In addition, studies have examined wetting and
coalescence of droplets on a fiber network with particular
interest in droplet capture in textiles34–38 However, there has
been little work on the formation and interaction between
multiple droplets as they traverse along a conical fiber beyond
qualitative observations,17,32,39 despite being prevalent in nat-
ure as illustrated in Fig. 1; a photograph of the Geranium
robertianum fruit covered with dew drops.

Here we examine the formation of multiple viscous liquid
droplets along a conical fiber created by the PRI. We then
follow the motion of the droplets as they move along the fiber,
propelled by capillary forces and the interaction between
droplets when they meet and coalesce. We rationalize the
experimental observations with numerical simulations of the
droplet flow based on a thin film model. The experiments and
simulations are found to be in excellent agreement. In this
paper, we study the effect of the conical nature of these fibers
and how this drives motion and merging of droplets.

2 Experimental methods

We fabricate ideal conical fibers with a smoothly changing
radial gradient from borosilicate glass capillary tubes (1 mm
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outer diameter, World Precision Instruments).19,28 The capil-
laries are locally heated and pulled with a constant force using
a micropipette puller (Narishige PN-30). The resulting shape is
a smoothly tapering conical glass fiber with the base of the fiber
being the diameter of the original capillary tube (1 mm), and
the tip being tens of microns in diameter.

A silicone oil (vinyl terminated polydimethylsiloxane) with kine-
matic viscosity Z = 5000 cSt was used to create droplets in these
experiments. The silicone oil is used because it is non-volatile, non-
hygroscopic, and is totally-wetting on glass, with a surface tension
g = 22 mN m�1. Droplets are placed on the conical fiber in two ways.
The first uses the Landau–Levich–Derjaguin (LLD) film
deposition,40 where the fiber is inserted into a reservoir of fluid
and then pulled away at a constant speed (ranging between
5 mm s�1 and 50 mm s�1), leaving behind a uniform fluid film on
the fiber. The thickness of the film depends on the speed that the
reservoir moves, with a film thickness that increases with increasing
speed. The resulting film is unstable via the PRI, and will break up
into droplets. Fig. 2a shows a schematic diagram of this process,
with relevant geometric parameters labelled. The patterning of
droplet formation along the fiber is controlled by the thickness of
the LLD film.

The second method begins with creating droplet in the
method described in Fig. 2a on a different fiber. The resulting
droplets are transferred by bringing one of the droplets into
contact with the fiber.19 This method allows for the precise
placement of individual droplets along the fiber. A droplet can
be placed at the tip of the fiber and allowed to completely move
to the base of the fiber to deposit a thin film to act as a
lubrication layer for subsequent droplets. A lubrication layer
is present for all experiments to ensure the dynamics are the
same between the two methods. To examine droplet coales-
cence, we take advantage of the dependence of droplet speed on
the size of the droplet. A large droplet moves more quickly
toward the base of the fiber compared to a smaller droplet.19

We place a smaller droplet closer to the base of the fiber, and a
larger droplet is placed closer to the tip allowing for the larger
droplet to catch up to the smaller droplet, coalesce, and merge.

With the fiber held horizontal, the droplet motion is
recorded from above using an optical microscope. Additionally,
a reference image of the bare glass pipette is taken before the
experiment begins. From these images, the fiber radius, cone
angle, and droplet heights, can be extracted as a function of
position along the fiber, and as a function of time t. Image
analysis was done with an in-house Python script. We use edge
detection to locate the outer contour of the liquid surface b(z).
For each pixel position, we calculate the volume of a circular
disk with radius b and height of one pixel. Summing these
disks along z, we can calculate the total volume taken up by
both the liquid and the cone. The same technique enables us to
calculate the volume of the cone with no liquid present, which
can then be used to find the volume of liquid.

3 Numerical simulations

To model the motion of the droplets, we describe the flow
inside the liquid by the Stokes equations and impose a no-slip
boundary condition at the solid substrate, and no-shear stress
at the liquid–air interface. Assuming that both the slope of the
liquid–air interface and the cone angle a are small, we apply the
lubrication approximation41,42 to the Stokes equations and
obtain the thin film equation for a conical geometry. A detailed
derivation of the thin film equation can be found in ref. 20. The
axisymmetric liquid–air interface profile is given by ĥ = ĥ(z,t),
defined as the distance between the interface and the substrate,
as a function of the distance from the vertex of the cone z and
time t. We note that z measures along the surface of the cone
and is related to the experimentally measured z as z = z cos(a)
and for small angles z E z. The evolution of the liquid–air

Fig. 1 Multiple dew drops covering Geranium robertianum fruit. Image
credit: Calum Davidson, Aberdeenshire, Scotland.

Fig. 2 (a) A schematic diagram of a coated glass fiber with radius r(z) and
film thickness h. After some time, t, the film breaks up into droplets via the
Plateau–Rayleigh instability, where the thickness from the axi-symmetric
centre to the liquid/air interface, b varies along the fiber. (b) A schematic of
two droplets merging on a conical fiber characterised by angle a, with
height hl for the large droplet, hs for the small droplet, and hn for the
minimum of the liquid–air interface between the droplets, as a function of
horizontal position z.
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interface is described by the thin film equation and driven by
the capillary pressure gradients qp/qz which reads,20,43

@ĥ

@t
þ 1

zaþ ĥ

@

@z
M
@p

@z

� �
¼ 0; (1)

where the mobility M = M(ĥ,z,a) is expressed as
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The capillary pressure gradient in the liquid generates the
flow and the pressure p = p(z,t) reads
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where the expression is simplified for a{ 1.20,43 Eqn (1) and (3)
are discretized by linear elements and numerically solved with
a Newton solver by using the open source finite element code
FEniCS,44 additional details about the numerical approach are
found in.43 The initial condition is a droplet smoothly con-
nected to a pre-wet film of thickness e. At the two boundaries
(dO) of the numerical domain we impose ĥ(dO,t) = e and
p(dO,t) = g/[R(dO) +e], where R(dO) is the radius of the cone at the
boundaries. We note that only the droplet volume V is important
and the initial droplet shape does not affect the results.

4 Results and discussion

Before discussing the case of multiple droplet migration we first
present an intuitive description of the motion of an isolated droplet
which has been studied extensively.17,19,20,23,28–31 Here we follow the
essential ingredients of a model presented by Fournier et al.19

aplicable to length-scales where the droplet is much smaller than
the capillary length, and the effect of gravity is negligible. In short,
the motion is driven by the rate of change in capillary energy, which
is dissipated by the liquid viscosity. There is a difference in the
capillary forces acting on the advancing and receding ends of the
isolated droplet due to the difference in the circumference of
the ends of the droplet: Fg = 2pg(r+ � r�). We see that the tug-of-
war between the advancing and receding ends of the droplet results
in the capillary force driving the droplet towards a larger diameter
on the cone. Clearly an increase in the droplet speed results from an
increase in the surface tension or an increase in the cone angle a.
The surface energy released is dissipated through Poiseuille flow in
the viscous droplet, thus the velocity decreases with increasing

viscosity. As the droplet migrates there is more contact with the
no-slip boundary condition at the liquid–solid interface, thereby
increasing viscous dissipation: droplets slow down as they migrate
away from the apex of the cone. And lastly, a larger droplet has a
greater difference in the advancing and receding contact lines
resulting in a higher velocity. These relationships, though well
established in the literature,17,19,20,23,28–31 are important for provid-
ing an intuitive understanding of the results presented.

4.1 Plateau–Rayleigh instability on a conical fiber

A cylinder of liquid will break up into droplets to minimize the
surface area according to the PRI. The size and spacing of the
droplets increases with the initial radius of the cylinder: in the
case of a liquid film with thickness h, coating a solid cylinder
with radius r, the sum of the radius of the cylinder and liquid
film, b = h + r, dictates the wavelength. However, a conical fiber
does not have a constant radius along the length of the fiber,
and hence the wavelength between droplets is not constant. As
such, the patterning of droplets along a conical fiber will
depend on the thickness of the film, and the location along
the fiber. To test the effect of the film thickness, the reservoir
was pulled at different constant velocities to deposit films of
different thicknesses. Fig. 3 shows examples of the break up of
the coating film for two different values of h: the thinner film,
h = 53 mm, shown in Fig. 3a was pulled out of the reservoir more
slowly than the thicker film with h = 88 mm shown in Fig. 3b.
Reservoir speeds ranged from 5 mm s�1 to 50 mm s�1 to deposit
appropriate Landau–Levich films for the PRI to occur in this
system. For the thinner film [Fig. 3a], droplets form in panel (i)
with monotonically increasing sizes along the fiber, and they

Fig. 3 Optical microscope images of a fiber with cone angle a = 0.96 �
0.011 coated with silicone oil with film thicknesses (a) h = 53 � 1 mm
(b) h = 88 � 1 mm. Panels (i)–(v) show snapshots of the break up of the
coating film and the motion of the droplet from left to right along the fiber
at 19.2, 44.8, 58.0, 73.6 and 117.8 s from the time when the fiber was
coated. The film thickness in (a) shows the formation of monotonically
increasing droplets, where the film thickness in (b) breaks up into principle
and satellite droplets. Scale bar indicates 1000 mm.
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move progressively toward the base of the fiber in the subse-
quent frames (ii)–(v). In Fig. 3b, a different patterning appears,
where larger droplets form [panel (i)] with small satellite
droplets in between. At later times, [panels (ii) and (iii)] the
larger droplets catch up with the satellite droplets and coalesce,
resulting in the large droplets moving toward the end of the
fiber [panels (iv) and (v)]. Videos of this process are shown in
the ESI† SI 1.

We can visualize the motion of the droplets by taking a row
of pixels along the axis of the fiber for each time-step of the
optical microscopy images. This row is stacked for each image
in the time-series to show the migration of droplets as a
function of time in Fig. 4. In Fig. 4 the same fiber is coated
with four different film thicknesses ranging from h = 29 � 1 mm
to h = 88 � 1 mm with the top row corresponding to the initial
film at t = 0. The dark bands in the center panel correspond to
the beginning and end of each droplet. Using these images we
track the droplet locations along the fiber, denoted by the white
dotted lines in the figure. At early times in the experiment as
the droplets first form (indicated by the black arrow), we take
these positions to calculate the wavelengths shown in Fig. 5.
Above this arrow is the initial regime that is dominated by
droplet formation through the Plateau–Rayleigh instability.
Below this arrow, the droplets have formed and the dominant
physics is associated with droplet motion and mergers. In
Fig. 4c and d one can observe the principle droplets moving
with a faster velocity (steeper slope) compared to the smaller
satellite droplets. Once the small and large droplets come into
contact, we see the trace of the smaller droplet disappear when
it merges with the large droplet, this is marked with a

horizontal white line overlaid on the image to guide the eye.
The droplet pattern at the end of the observation time is shown
in the bottom row and we note that the droplets will continue to
move and migrate toward the base of the fiber, until they all
collect at the base of the fiber.

The relationship between wavelength of droplet formation
and the radius of the fiber and coating is shown in Fig. 5. The
wavelength for a given droplet is found by locating the posi-
tions of the neighbouring droplets when they form, i.e. where
the white lines initially appear in Fig. 4. For various pipettes
and film thicknesses, the initial wavelength between droplets is
shown with different experiments indicated by different col-
ours. The conical shape of the fiber results in different time
constants along the length of the fiber, meaning that the
droplets appear at different times and immediately move after
forming, therefore the wavelength was defined when the dro-
plet first appears with a pronounced minima on either side. To
find the wavelength, we locate the position of the nearest local
maxima (i.e. the neighbouring principle droplets) on either side
of a droplet, which corresponds to twice the wavelength. The
data are shown in Fig. 5. The solid line shows the relationship

l ¼ 2p
ffiffiffi
2
p

b, where l is the wavelength, b is the distance from
the axis of symmetry about the length of the fiber and the
liquid/air interface, i.e. a combination of the fiber radius r with
the thickness of the coating film h.45 The wavelengths found
using this method show excellent agreement with the theory
and provides insight into using conical fibers to passively
control the patterning of droplets.

For sufficiently large film thicknesses, the PRI occurs such
that satellite droplets form between the principal droplets,
which can be seen in Fig. 3b panel (i). Previous experiments
and models on the motion of a single droplet on a conical fiber
show droplet speed along a fiber increases with droplet
volume,17,19 due to the increased volume reducing the resis-
tance to flow. In addition, the larger the fiber radius the slower

Fig. 4 Images of a fiber with cone angle a = 0.96 � 0.011 coated with
silicone oil. The top row corresponds to the fiber coated with film
thickness, (a) h = 29 � 1 mm, (b) 53 � 1 mm, (c) 77 � 1 mm, and (d) 88 �
1 mm at the initial state t = 0. The middle panel shows the central slice of each
image, stacked to reveal the the break up of the film into droplets and their
resulting motion, giving the position z of the droplets as a function of time t.
Overlaid on the images are the central position of the droplets marked with
white dotted lines, and merging events are shown as horizontal white lines
connecting the two merging droplets (present in (c) and (d)). Black arrows
indicate the time when each experiment transitions from the PRI dominant
regime to the migration/merging dominant regime. The final row shows the
patterning of the droplets at the end of the observation time.

Fig. 5 Spacing between droplets (l) produced from the Plateau–Rayleigh
instability on a conical fiber. Different colours refer to different liquid film
thicknesses, 8 different thicknesses are shown here for multiple fibers, while
the horizontal axis, the distance from the axi-symmetric centre to the liquid/
air interface, b, depends on the position along the conical fiber, z.
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the droplets move due to the increased contact with the fiber.
Fournier et al.19 showed the importance of the lubricating layer on
the speed of the droplet: the absence of a lubricating film drastically
slowed down the motion of the droplets in comparison to those
droplets with a lubricating film, indicating that equivalent droplets
on the same fiber move faster with a thicker precursor film
compared to a thinner film. Based on these previous experiments,
as the droplets move along the fiber, the larger main droplets catch
up to the smaller satellite droplets that are closer to the base of the
fiber. The two droplets merge to form a large droplet and change
the initial distribution of drops created by the PRI.

4.2 Coalescing droplets

To examine the coalescence process in more detail, individual
droplets were carefully placed on the fiber using the second droplet
deposition method described in the experimental section. These
droplets were imaged at higher magnification compared to the PRI
droplets. Images of the merging process are shown in Fig. 6. In
Fig. 6, we observe five distinct stages: (a) the two droplets begin as
individual droplets. (b) As the larger droplet catches up with the
smaller droplet, a thick fluid bridge forms between the two,
connecting the two fluid bodies. The smaller Laplace pressure in
the bridge causes the liquid in the droplets to flow toward the
bridge. (c) The bridge thickens as liquid flows into the bridge and
the local maximum height of the smaller droplet decreases. (d)
Remnants of the small droplet leave behind a thick film preceding
the larger droplet. (e) The droplet reforms into the semi-symmetric
shape, and continues moving to the end of the fiber. A thicker film
is deposited behind the merged droplet due to the acceleration
during merging along with the higher velocity associated with the
larger volume of droplet (see Fig. 6f).

In addition to optical microscopy, Fig. 6 also shows profiles of
the merging process matched to the conditions of the experiment as
generated by the numerical simulations. Outlined in red, the
profiles shown here match exactly the profiles obtained from
experiment. An interesting feature that appears in both simulation
and experiment is the presence of a thicker film deposited behind
the droplet after merging (shown in Fig. 6e, outlined in green).
Focusing on the location outlined in green in Fig. 6e, we can extract
the profile of LLD film left behind by the moving droplet, to show
that the increase in speed of the droplet due to merging, deposits a
thicker film than a slower moving droplet.28 Fig. 6f shows the profile
of the LLD, renormalized by the droplet volume, for each of the
preceding panels of the figure.

To further understand the dynamics during droplet merging, we
track the position of the droplets. We do this by locating three
features on the droplets, the positions and height of two maxima
associated with the large (zl(t), hl(t)) and small droplet (zs(t), hs(t)),
and the position of an intermediate radius (zn(t), hn(t)), which
denotes the location of the local minima in the fluid neck (see
Fig. 2b). The position along the fiber z is measured relative to the tip
of the cone with a constant cone angle. Fig. 7a shows the position of
these three points, normalized by the length scale determined by
the volume of the large droplet V, as a function of dimensionless
time tg/ZV1/3, and Fig. 7b shows the rescaled heights h/V1/3 of each of
these points as a function of dimensionless time tg/ZV1/3. In addition

to the experimental data, we have matched the droplets with
simulations. A slight difference in the experimental data compared
to the simulations can be attributed to the fiber having a gently
varying cone angle along the length of the fiber, unlike the
simulated fiber which has a constant cone angle. Regardless, the
agreement between experiment and theory is excellent.

5 Conclusions

In this work, we have studied the formation of multiple
droplets on a conical fiber through the breakup of a coating

Fig. 6 Images showing the main steps in the coalescence process of two
droplets (V = 0.0191 � 0.0002 mm3 and 0.0050 � 0.0003 mm3) on a
conical fiber (a = 0.673 � 0.0021). (a) Separate droplets. (b) Two droplets
when first in contact with one another. (c) Flow of the smaller, higher
pressure droplet backwards into the larger droplet. (d) Acceleration of the
large droplet toward the film left behind by the small droplet. (e) A final
droplet, the volume of the two initial droplets. Panels (a)–(e) correspond to
18.6, 47.1,47.8, 48.5, and 51.7 s after the experiment recording started.
(f) The dimensionless profiles of the deposited film h/V1/3 as a function of
z/V1/3 at different times (from (a)–(e)) in the receding region of the big
droplet (indicated by the green box in (e)). A thicker film is deposited
behind the droplet after the two droplets merge.
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film via the Plateau–Rayleigh instability. The patterning of
droplet production depends on the gradient of radius of the
cone, where the averaged wavelength or droplet spacing
depends on the radius of the fiber at the location of the drop.
The initial spacing of the droplets can be explained through the
relationship predicted by the classic Plateau–Rayleigh instabil-
ity theory. The droplets are driven by the surface tension to
spontaneously move along the fiber, where the motion of the
drops depends on the size of the droplet, properties of the
liquid and geometry of the fiber. In this system, the gradients in
radius of the conical fiber create an imbalance in capillary
forces and serve to drive motion toward the base of the fiber for
a wetting liquid. The larger the droplet, the larger the imbal-
ance as the droplet spans a larger range of fiber radii, and
larger droplets move more quickly compared to smaller dro-
plets. The motion of the droplets is limited by the viscosity of
the liquid, a droplet of a more viscous fluid will move more
slowly compared to a droplet of lower viscosity. Depending on
the local thickness of the cylinder where the droplet is created,
smaller satellite droplets may form between larger drops, and
with time, the larger droplets catch up with the smaller droplets
and merge, changing the droplet pattern. We have captured the
main steps of droplet merging, including bridge formation, and
reformation into a large droplet. We have modelled the droplet
merging by assuming lubrication flow on a conical geometry
which closely matches the dynamics captured in the experi-
ments. Understanding the motion and the interaction of dro-
plets merging on a conical fiber can give insight into efficient
methods of fog harvesting through modelling a realistic system
of multiple droplets on conical fibers. Droplet pattern

formation through the Plateau Rayleigh instability also gives
insight into the process of self-patterning droplet on fibers.
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Acad. Sci. U. S. A., 2015, 112, 9247–9252.
13 P. Wang, R. Bian, Q. Meng, H. Liu and L. Jiang, Adv. Mater.,

2017, 29(45), 1703042.
14 T. Xu, Y. Lin, M. Zhang, W. Shi and Y. Zheng, ACS Nano,

2016, 10, 10681.
15 M. Cao, J. Ju, K. Li, S. Dou, K. Liu and L. Jiang, Adv. Funct.

Mater., 2014, 24, 3235–3240.

Fig. 7 (a) The position along the fiber z rescaled with the volume of the
large droplet V for the maximum point of the large and small droplets
along with the fluid neck as a function of dimensionless time. (b) The
renormalized height of the liquid/air interface at the local maxima of the
large and small droplets hl and hs, respectively, and the local minima
between the two droplets marking the location of the liquid neck hn are
plotted as a function of time t. The heights are normalized by the length
scale determined by the volume of the large droplet V. Experimental values
for both subplots are denoted by dots and the matched numerical
simulations are denoted by lines with cone angle a = 0.673 � 0.0021.
These data correspond to the experiment shown in Fig. 6a–e and are
denoted by markers }, J, &, %, �.

Paper Soft Matter

Pu
bl

is
he

d 
on

 0
3 

Ja
nu

ar
y 

20
22

. D
ow

nl
oa

de
d 

by
 M

cM
as

te
r 

U
ni

ve
rs

ity
 o

n 
5/

11
/2

02
2 

3:
10

:1
9 

PM
. 

View Article Online



1370 |  Soft Matter, 2022, 18, 1364–1370 This journal is © The Royal Society of Chemistry 2022

16 X. Heng, M. Xiang, Z. Lu and C. Luo, ACS Appl. Mater.
Interfaces, 2014, 6, 8032–8041.
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Chapter 5

Film coating by directional
droplet spreading on fibers

Tak Shing Chan*, Carmen L. Lee*, Christian Pedersen, Kari Dalnoki-Veress, and
Andreas Carlson
*co-first authorship
Physical Review Fluids 6, 014004. (2021).

5.1 Paper introduction

As a droplet moves along a conical fiber, as discussed in detail in Chapters 3 and
4, it can leave behind a thin film as it travels. In this paper, we characterized the
deposited film that a droplet leaves behind as it travels along a conical fiber using
asymptotic analysis, experiments, and numerical simulations using the lubrication
equation. To understand the deposition process, one can imagine the droplet as
a reservoir being pulled along the conical fiber. We find that the film thickness,
hf , follows the same scaling behaviour as predicted by Landau-Levich-Derjaguin
(LLD) theory which is hf ≈ lCa2/3, where Ca is the capillary number and l is
the characteristic length scale based on the curvature of the system. However, we
found that the relevant length scale l changed depending on the ratio between the
fiber radius and droplet radius. For a large drop on a thin fiber, the curvature is
dominated by the fiber radius because the large droplets approach the shape of an
infinite bath. As a result, the length scale approaches the radius of the fiber, like in
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the classical LLD case of a cylindrical fiber as described in section 1.6.1. For small
droplets relative to the fiber radius, the curvature of the droplet begins to affect
the deposition due to the finite-size effect of the reservoir. The findings from this
paper suggest that large droplets moving at the same speed as smaller droplets will
deposit films of different thicknesses. We matched the experimentally measured
film thicknesses and profiles to the numerical simulations with good agreement.

Numerical simulations were performed by Tak Shing Chan with support from
Christian Pedersen and Andreas Carlson. I performed the experiments and ana-
lyzed the experimental data with help from Kari Dalnoki-Veress. Tak Shing Chan
wrote the first draft of the manuscript and all of the authors contributed to editing
subsequent drafts.
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Film coating by directional droplet spreading on fibers
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Plants and insects use slender conical structures to transport and collect small droplets,
which are propelled along the conical structures due to capillary action. These droplets can
deposit a fluid film during their motion, but despite its importance to many biological
systems and industrial applications, the properties of the deposited film are unknown.
We characterize the film deposition by developing an asymptotic analysis together with
experimental measurements and numerical simulations based on the lubrication equation.
We show that the deposited film thickness depends significantly on both the fiber radius
and the droplet size, highlighting that the coating is affected by finite-size effects relevant
to film deposition on fibers of any slender geometry. We demonstrate that by changing
the droplet size, while the mean fiber radius and the capillary number are fixed, the
thickness of the deposited film can change by an order of magnitude or more. We show
that self-propelled droplets have significant potential to create passively coated structures.

DOI: 10.1103/PhysRevFluids.6.014004

I. INTRODUCTION

Droplets on slender conical substrates will self-propel due to capillary action [1–10] provided
the droplets are smaller than the capillary length. This principle is used by insects [11,12] and
plants [13–20] for droplet collection. Several studies have focused on mimicking structures found
in nature to control liquid movement [21–27]. Recent work [13] has shown that the conically shaped
trichomes on the underside of the lid of the Sarracenia, a pitcher plant, can transport droplets
with a velocity several orders of magnitude larger than that found in other plants. Enhanced water
transport is the result of surface lubrication of the trichome. The first droplet that slowly spreads
across the trichome deposits a microscopic liquid film, and the following droplets slide along the
lubricating film on the trichome. From a technological point of view, understanding the principles of
film deposition by capillary-driven motion of droplets can provide pathways for relubrication
of slippery liquid infused porous surfaces with conical shapes [6,28] as well as the development of
other multifunctional materials. This lubricating film-coating principle has a fundamental role in
biological phenomena and has untapped potential as a droplet-driven coating technique, yet the
properties of the liquid film are unknown. We study here how droplets deposit lubricating films as
they move along slender structures.

*These authors contributed equally to this work.
†acarlson@math.uio.no

2469-990X/2021/6(1)/014004(8) 014004-1 ©2021 American Physical Society
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air

film deposition pre-wet layer

r
axis of rotation

droplet

FIG. 1. (a) A sketch of a droplet on a conical fiber with a local cone angle α. Inset: zoom into the region
connecting the deposited film of thickness hf and the receding edge of the droplet at the fiber radius Rf . The
fiber is prewet with a layer of the same fluid of thickness ε.

Coating a solid substrate with a lubricating liquid film as a way to reduce friction between
substrates has been known since ancient Egypt [29]. The broad relevance of coating processes
have made them widely studied, with great advances in understanding their underlying physical
principles [30–34]. Dip-coating is today one of the most widespread coating techniques [35],
where the solid moves with a velocity U relative to the liquid bath. The foundational work of
Landau-Levich-Derjaguin (LLD) [36,37] has paved the way for a fundamental understanding of
film deposition on solid substrates during wetting. By considering the viscous capillary flow of a
liquid with a viscosity μ and a surface tension γ , LLD predicted that the deposited film thickness
h f , normalized by the characteristic length of the system L, is given by h f /L ∼ Ca2/3 [36,37], where
the Capillary number Ca ≡ μU/γ is the ratio of the viscous and surface tension forces. The LLD
theory was developed for Ca � 1 and when inertia can be neglected. It is a generic scaling and
has proven to be an accurate description of a wide range of coating phenomena, i.e., dip coating of
plates [38], cylinders [31,39,40], and Bretherton bubbles [41]. However, a droplet depositing a film
on a cylinder has a fundamental difference from film deposition from a liquid reservoir; the droplet
size introduces another length scale to the system. The fiber geometry and droplet size are tuneable
parameters to control the coating process [1,2].

II. THEORY AND EXPERIMENT

In the system studied here, a droplet deposits a film as it migrates toward the thicker part of
a prewet conical fiber, driven by the curvature gradient, as shown schematically in Fig. 1. We
investigate the system by combining asymptotic analysis, experiments, and numerical simulations.
The assumptions made are that there is viscous flow driven by capillarity (Ca � 1). Furthermore,
we neglect gravitational effects because the drop size is much smaller than the capillary length, as
is clear from the Bond number, which represents the balance between gravity and surface tension,
Bo = �ρgV 2/3/γ � 1, where �ρ is the density difference between the liquid and surrounding
air, V is the droplet volume, and g is the gravitational acceleration. As will be seen below, these
assumptions are verified by our experiments.

A. Asymptotic analysis

We start off by revising the classical LLD theory for the case of a droplet moving on a cylindrical
fiber with radius R by matching asymptotically the quasistatic droplet profile on the fiber hs(x) and
the self-similar deposited film profile (for details, see [4]). By matching the profiles, we show that
the film thickness h f scales with Ca as [4]

h f = 1.338�Ca2/3, (1)
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FIG. 2. (a) The dimensionless characteristic length �/V 1/3 as a function of the rescaled radius R/V 1/3 of a
cylindrical fiber (solid line). The dotted line represents the linear relation, i.e., � = R. Inset: two static droplets
of the same volume in contact with a fiber with R/V 1/3 = 0.03 and 0.51 (indicated by the two red dots),
which demonstrate different droplet shapes when R varies. The deposited film thickness hf predicted by our
asymptotic analysis scales linearly with � for a given Capillary number Ca (dimensionless droplet velocity); see
Eq. (1). From (a) we see that a droplet of a fixed volume coats a thicker film on a thicker fiber. In (b), � rescaled
by the fiber radius R is plotted as a function of V 1/3/R. It shows that for the same fiber radius, a smaller
droplet coats a thicker film on the fiber. (c) Sample images of two droplets taken with optical microscopy
(top views). Left: α = 0.43◦ and R/V 1/3 = 0.038, and right: α = 2.5◦ and R/V 1/3 = 0.27. The numerically
calculated profiles from the lubrication theory on a cone [Eq. (2)] are shown in red for matching V , R, and α.

where � ≡ 1/[∂2hs(x = xcl )/∂x2] is the inverse of the second derivative of the static profile hs(x)
evaluated at the contact line position x = xcl, i.e., where the profile hs(x) meets the solid substrate. A
crucial difference from the classical LLD theory is that choosing � = R only recovers the correct film
thickness in the limit of R � V 1/3. In general, � depends on both the droplet volume V and the fiber
radius R, which indicates a finite-size effect. To illustrate this point, we plot �/V 1/3 as a function of
R/V 1/3 in Fig. 2(a). In the limit where R � V 1/3, � = R, then the film thickness h f = 1.338R Ca2/3

is independent of the droplet volume. However, when R/V 1/3 � 0.15, the droplet size starts to play
a significant role in predicting the deposited film thickness that is much larger than if we would
naively assume � = R. Since �/V 1/3 increases with R/V 1/3 faster than a linear relation, Eq. (1) also
implies that a smaller droplet deposits a thicker film for fixed R and Ca. This property is shown in
Fig. 2(b), in which �/R decreases with increasing V 1/3/R. For the directional spreading of droplets
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on a conical fiber with a small cone angle α, the influence of α on � only appears as high-order
corrections, which are neglected here (see [4] for details). The conical geometry acts as a factor that
generates the spontaneous motion of the droplet and plays a role in determining the magnitude of
Ca. The theoretical prediction for the film thickness dependence on the droplet size and the fiber
radius [see Eq. (1)] can now be compared to experiments and numerical simulations based on the
lubrication theory.

B. Experiments

The conical substrates used in the experiments are prepared by pulling standard borosilicate
glass capillary tubes in a magnetic micropipette puller (Narishige PN-30). The resulting shape of
the capillary tube is a nearly conical fiber with a smoothly varying diameter and gradient, with a
smaller cone angle nearing the tip of the fiber. The gradient in the cone angle varies slowly along the
fiber, thus on the length scale of the droplet the fibers can be treated as ideal. Droplets of silicone oil
with viscosity of μ ≈ 4.9 Pa s, and with air-liquid surface tension γ = 22 mN/m, were deposited
at the fiber tip. Silicone oil is ideal because it is totally wetting, chemically stable, nonvolatile, and
nonhygroscopic. The fiber is prewet by placing a droplet on the tip of the fiber and allowing it to
migrate from one end of the fiber to the other, thereby depositing a film. Prewet film thicknesses
were found to range from 0.27 to 13.87 μm, as determined by optical microscopy (OM) using an
upright microscope (Olympus BX51) with bottom illumination. OM images of the fiber were taken
from above both before and after coating, and they were used to obtain the film thickness. Droplets
of volumes V in the range of 0.009–1.99 mm3, i.e., Bo ∈ [0.02-0.7], were deposited onto the fiber.
Images of the droplet are taken as it migrates along the fiber at a given radius R, and the deposited
film is observed as the droplet passes a given location. To ensure the effects of gravity are not
affecting the dynamics, a similar experiment was performed in which the entire experimental setup
was tilted at different angles to measure if there were any changes in droplet motion in the plane
of gravity. There were no discernible differences in droplet motion, and thus the effects of gravity
are negligible. The radii of the cone at the measured film thicknesses ranged between 22.26 and
103.92 μm and the deposited film thicknesses were measured in the range of 0.17–19.75 μm.

C. Numerical simulations

To give a mathematical description of the droplet flow on the prewet fiber, we turn to the
lubrication approximation for the viscous incompressible flow, when the cone angle α � 1. The
thin-film equation is obtained by reducing the Navier-Stokes equations for flow in films with large
lateral dimensions in relation to the thickness [42,43], in combination with mass conservation. A
detailed derivation of the lubrication approximation on a conical geometry for α � 1 is found in
[3]. Note that we impose a no-slip condition at the solid substrate and no-shear stress at the free
surface. The axisymmetric liquid-air interface profile is given by h = h(r, t ), defined as the distance
between the interface and the substrate, as a function of the radial distance from the vertex of the
cone r and time t . The evolution of the free surface is described by [3,4],

∂h

∂t
+ 1

rα + h

∂

∂r

(
M

∂ p

∂r

)
= 0, (2)

where the mobility M = M(h, r, α) reads

M(h, r, α) = r4α4

2μ

{
1

8

[
3

(
1 + h

rα

)4

− 4

(
1 + h

rα

)2

+ 1

]
− 1

2

(
1 + h

rα

)4

ln

(
1 + h

rα

)}
. (3)

The capillary pressure gradient in the liquid generates the flow, and the pressure p = p(r, t ) reads

p = −γ

{
∂2h
∂r2[

1 + (
∂h
∂r

)2]3/2 − 1 − α ∂h
∂r

(rα + h)
[
1 + (

∂h
∂r

)2]1/2

}
, (4)
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where the expression is simplified for α � 1 [3,4]. Equations (2) and (4) are discretized by linear
elements and numerically solved with a Newton solver by using the open source finite-element code
FENICS [44]; additional details about the numerical approach are found in [4]. The initial condition
is a droplet smoothly connected to a prewet film of thickness ε. At the two boundaries (δ
) of the
numerical domain, we impose h(δ
, t ) = ε and p(δ
, t ) = γ /R(δ
), where R(δ
) is the radius
of the cone at the boundaries. We note that only the droplet volume V is important, and the initial
droplet shape does not affect the results.

III. RESULTS AND DISCUSSION

We start by comparing the droplet spreading dynamics on two cones with α = 0.43◦ and 2.5◦,
where the droplet quickly relaxes from its initial condition to its quasistatic shape and then starts to
translate to the thicker part of the fiber. When we overlay the experimental measurement with the
numerical simulations, as shown in Fig. 2(c), we see that the two results are in close agreement.
By zooming into the trailing edge of the droplet, both the experiment and the numerical simulation
show the deposition of a film of different thickness from that of the prewet film ε.

Next we turn to characterize the thickness of the film during the droplet spreading dynamics on
the fiber. To determine the Ca, we extract the droplet velocity U measured at its center of mass. The
film is measured on the cone after the droplet has deposited the film, which is stable throughout the
observation time in the experiments and the numerical simulations. The Rayleigh-Plateau instability
is expected to take place at much longer times as the time scale of the fastest growing mode for a film
coated on a cylinder with similar radius is predicted to be more than an order of magnitude longer
than both the experimental observation time and the simulation time. Since there is a slight gradient
in the cone angle along r in the fiber used in the experiments, we extract the cone angle locally at
a given position on the cone with radius R = R f . Here R f is the cone radius in the receding region,
defined based on the droplet profile; see [4]. The deposited film thickness h f is then a function of
α, R f , V , and ε. We combine all the experimental measurements and the numerical predictions of
h f ∈ [0.17 − 19.75] μm, i.e., for α ∈ [0.35 − 2.3]◦, in Fig. 3(a), and they are in good agreement.
The film thickness is not uniform along the fiber for a fixed cone angle, but increases with the cone
radius R f . The film thickness h f increases by roughly one order of magnitude when the cone angle
α is varied from 0.35◦ to 2.3◦.

To further compare the theory to the experiments and numerical simulations, we rescale our
measurements according to Eq. (1) and also plot the analytical prediction; see Fig. 3(b). Since
the motion of the droplet is driven by capillarity, i.e., it is self-propelled, the droplet velocity is a
function of the position on the cone. The deposited film thickness h f rescaled by � obtained from
the experiments and the lubrication theory on a cone is shown as a function of Ca in Fig. 3(b). When
comparing the results (1) predicted by the asymptotic matching, the experiments, and the numerical
simulations, we observe that they are in close agreement, especially for the smallest cone angles.
When α increases, there is a slight deviation from 2/3 scaling observed in the numerical simulations
with a slightly larger film thickness than predicted from Eq. (1), likely a consequence of the reduced
separation of length scales between the film thickness h f and the droplet size V 1/3.

We show that self-propelled droplets have a significant potential to create passively coated
structures. By combining an asymptotic analysis, experiments, and numerical simulations of the
lubrication equation, we have demonstrated that a droplet that moves on a fiber can deposit a film
with a thickness h f , controlled by the droplet’s capillary number and the characteristic length �. The
quantity � is a geometric factor that is linear with respect to the fiber radius R when R/V 1/3 � 1, i.e.,
the droplet is much greater in size than the fiber radius. Otherwise, �/V 1/3 increases significantly
with R/V 1/3 when R/V 1/3 � 0.15. Our finding has direct implications for control of film deposition
during spreading, e.g., if we fix the fiber radius, decreasing the droplet size can increase the
thickness of the deposited film by an order of magnitude or more at the same Ca. Coating by
droplets introduces novel design features that do not exist in classical coating techniques where
the substrate is connected to a liquid reservoir. For a droplet moving on a cylindrical fiber driven

014004-5



TAK SHING CHAN et al.

0.05 0.1 0.15 0.2 0.25 0.3

10-3

10-2

10-3 10-2

10-2

10-1

Expt.:

LAC:

Eq. (1)AM

FIG. 3. (a) The deposited film thickness hf as a function of the cone radius Rf and the cone angle α.
Both axes are normalized by V 1/3. Symbols are experimental data and curves are numerical results from the
lubrication theory on a cone (LAC). The prewet layer thickness ε in both the experiment and the theory is
controlled within a range of 0.27-13.87 μm. (b) The film thickness hf rescaled by � as a function of the
capillary number Ca. The solid line (AM) is the result of asymptotic matching given by Eq. (1).

by external forces, e.g., electric, magnetic, and gravitational, the deposited film thickness follows
Eq. (1), whereas Ca depends on the magnitude of the driving force. Our findings are expected to
be relevant for any droplet coating application involving a slender geometry, and they may help
shed light on why slender conical structures have evolved in a diverse set of biological systems to
facilitate efficient droplet transport.
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Chapter 6

Buckling instabilities in moving
chains of bubbles

Carmen L. Lee and Kari Dalnoki-Veress
To be submitted.

6.1 Paper introduction

The final paper of this thesis studies the buckling of a chain of bubbles as it moves
through an aqueous bath. Inspired by the coiling of ropes and viscous threads
[105, 106, 107, 98], this project studies how a ‘granular’ rope bends and buckles.
Micron-scale air bubbles are produced out of an orifice, and the bubbles rise due
to buoyancy. If the bubbles are produced quickly, they come into contact with one
another and stick together due to short range adhesive forces and rise through an
aqueous bath. Increasing the bubble production speed further, the chain begins
to buckle. As the chain moves upwards due to buoyancy, drag force opposes the
motion and induces a compressive force on the bubble chain. Because the chain
does not have a bending modulus and the bubbles are frictionless as they move
around each other, the chain should not be able to sustain any axial compression
and should buckle in a random manner. We instead found that when the chain
moved through the fluid, a regular buckling pattern developed. In this paper, we
develop a simple model that considers viscous drag to both drive the buckling
instability and to stabilize the chain. We have shown that in the absence of a
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bending modulus, hydrodynamic effects still create a regularly buckled structure.
From the model, we can predict the conditions required for buckling, the speed
of the chain as it moves through the bath and the amplitude of the buckling.
We compare measured values from the experiment to the values predicted by the
model and find excellent agreement.

I conducted the experiments, data analysis and theory included in this paper,
with theory inputs from Kari Dalnoki-Veress. I wrote the original draft with
editing of subsequent versions of the manuscript done by myself and Kari Dalnoki-
Veress.
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A slender object undergoing an axial compression will begin to buckle to alleviate the compression,
and the buckling is balanced by bending stiffness for solids or viscosity for liquid threads. We study
a chain of uniform sticky bubbles that undergoes a buckling instability in a viscous bath notably
in the absence of both bending and viscous resistance within the chain. Producing the bubbles
quickly induces a compressive stress as viscous drag exceeds buoyant forces and due to the friction-
less nature of the bubble chain, it buckles easily. Using low Reynolds number hydrodynamics and
geometric arguments, we predict the critical buckling speed, the terminal speed of a buckled chain
and the amplitude of the buckles.

Slender objects, like strands of hair, rope or blades
of grass are easy to buckle and bend if they are com-
pressed along the axial direction. Buckling can occur on
a multitude of length scales from macroscopic, like a rope
hitting the ground [1, 2], to microscopic, like the bend-
ing of flagella while micro-organisms swim [3–6]. If the
stress on the slender object is regular, it will undergo
a regular deformation, for example a rope fed at a con-
stant speed through a frictional nozzle will bend with a
characteristic wavelength determined by the experienced
friction and bendability of the rope [7]. Interestingly,
this phenomenon is not confined only to solid materials
and can also be seen with thin viscous threads of liquid.
For instance, a stream of honey coils when it falls onto
a piece of toast [8–15]. Here the viscosity of the liquid
resists the bending of the thread, and a regular coiling is
developed [14]. In addition to buckling and coiling due
the presence of a barrier, viscous drag has been shown
to induce buckling of slender structures as the structure
is moved through the liquid, as shown in the work by
Gosselin et al. [16] for solid threads and Chakrabarti et
al. [11] for gelling structures. Viscous drag causes a stress
along the length of the thread, rather than localizing it
at the location of the barrier. Coiling and buckling has
applications from orogeny in geosciences to the coiling
of DNA structures and is a common concern of those
building bridges and other structures [5]. Coiling and
buckling of slender fibers has continues to be explored
for applications in the context of easily creating meta-
materials [17, 18] to creating nanostructures through 3D
printing [19–21] and electrospinning [22, 23].

In this Letter, we experimentally investigate the buck-
ling of a slender chain of sticky, uniform air bubbles in
an aqueous bath (Fig 1a)-e)). The bubbles are produced
at the bottom of the chamber from a small orifice and
rise upwards, and by producing the bubbles quickly such

∗ Corresponding author: dalnoki@mcmaster.ca

that each subsequent bubble is produced before the other
bubble has risen by a distance of one diameter, the two
adhere due to short-range depletion forces. Producing
several bubbles in a row create a linear chain (Fig 1a).
Upon increasing the bubble production speed further, the
hydrodynamic drag force exceeds the buoyant force for
a given length, the linear chain is no longer stable, and
begins to buckle (Fig1b)-e). From three-dimensional re-
constructions (Fig1f)-j), buckling takes place in a two
dimensional plane and takes the shape of a granular si-
nusoid. The planar buckling of the chain is likely due
to a breaking of symmetry due to the direction that the
bubbles are initially expelled from the production ori-
fice, creating an initial direction of preferred motion. We
note that the buckling here is due to viscous drag on the
chain, similar to the work by Gosselin et al. [16] and
Chakrabarti et al. [11] with the important distinction
that instead of a continuous medium with intrinsic mate-
rial properties, whereas our system is a granular material
held together with only short range attractions, and thus
there is no intrinsic cost to deformation. We first in-
vestigate the balance between hydrodynamic drag and
buoyancy in the terminal velocity of the chain. We then
explore the relationship between bubble size, production
speed and viscosity and identify a critical speed that the
chain needs to be produced to induce buckling. Finally,
we relate the buckling amplitude to the excess amount of
chain created. In all of these models, we consider solely
hydrodynamic interactions, and the proposed scaling be-
haviour are in excellent agreement with our experiments.

Sample images of our buckling experiment are shown
in Fig. 1a)-e).A chain of bubbles with radius R is pro-
duced at speed q and moves with terminal speed v in
the vertical direction and buckles with an amplitude A
and wavelength λ (as described in Fig. 1 k)) is created
by forcing air through a thin, double-pulled micropipette
(Narishige, capillary tubes from World Precision Instru-
ments) into an aqueous bath (density ρ = 1 kg/m3, vis-
cosity 1.5 mPa s < η < 2.0 mPa s) composed of HPLC
water (Sigma-Aldrich), 1.5% by weight NaCl (Caledon)
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FIG. 1. Panels a)-e) show images of a bubble chain undergoing a buckling instability as the bubble production speed is increased
from left to right ranging from 7.8 mm/s to 27.2 mm/s. Each panel shows images of the same chain taken at two orthogonal
planes to allow for 3-dimensional reconstruction. Faster bubble production speed increases the buckling amplitude. Scale
bar corresponds to 250 µm. Panels f)-j) show the 3-dimensional reconstruction of a short segment (size of reconstruction is
shown in panel b) by the red dashed box) of the bubbles rotated to show the angle with maximum buckling amplitude, and
the corresponding orthogonal angle. Each reconstructed panel corresponds to the matching images above. Panel k) shows
the relevant geometric values including the terminal velocity v, chain production speed q, bubble radius R, wavelength λ and
amplitude A.

and a range of sodium dodecyl sulfate (SDS, Bioshop)
from 1% to 8% concentration by weight. Changing the
concentration of SDS changes the adhesion between bub-
bles [24]. The adhesion is used to keep the chain attached
and to resist breaking apart due to viscous torque on
different parts of the chain. The pressure through the
micropipette is kept constant over each of the trials by
using a syringe and plunger. We note that for the small
amounts of air being expelled through the micropipette,
we can treat the amount of air as an infinite reservoir
and thus constant, this is confirmed by the constant bub-
ble size over time frame of the trial [25, 26]. Changing
the size of the micropipette orifice creates bubbles with
radius R range over 16 < R < 38 µm, and at these
small length scales the bubbles have a Laplace pressure
large enough that we can treat them as hard, incom-
pressible spheres as evidenced by Bond numbers << 1.
In the studied system with droplets on the order of 30
µm in size, viscosity of the bath of 1.5-2.0 mPa s, the
Reynolds number is Re = ρgRv

µ < 1, and viscous forces

dominate inertial ones. The aqueous bath is held by a
mirrored chamber with two mirrors set at 22.5◦ to the
normal plane to allow for simultaneous imaging of two
orthogonal planes of the bubble chain. Image analysis
was done with a combination of edge detection, particle
tracking techniques with an in-house python script.

Critical production speed for buckling onset- We first
focus on understanding the critical speed qc that the

chain needs to be extruded to transition between an un-
buckled chain at low q and a buckled chain at higher q.
At low bubble production speeds q, the bubbles naturally
align in the vertical direction due to buoyant forces Fb.
The buoyancy per bubble is dFb =

4
3 π R3 ∆ρ g dn, where

∆ρ is the difference in buoyancy between the air and the
bath, g is the gravitational acceleration, and n is the
number of bubbles. Given the small Re in these experi-
ments, we expect the hydrodynamic drag per unit length
that is opposing the motion upwards takes the general
expression of dFd = c q µ dl, where µ is the viscosity of
the bath, q is the that the chain is being produced, c is a
dimensionless drag coefficient, and l is the length of the
chain [27, 28]. To compare the drag force to the buoyant
forces, we can use the conversion of dl = 2Rdn which
relates the axial length of the chain to the diameter of
the bubbles and the number of bubbles present in that
chain segment.

Initially, bubbles form a straight chain (Fig. 1a)) but
as the bubble production rate q increases, the chain speed
increases as the newly produced bubbles begin to push
on the bottom of the chain, a competition between drag
and buoyancy creates a compressive force along the ax-
ial direction of the chain, which is alleviated by buck-
ling the chain out of the axial direction. The addition
of one more bubble means that there’s a greater num-
ber of bubbles pulling upward, but also a greater length
for the drag to be acting on. The compressive force
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dFc = 2π R2 ∆ρ g dl/3 − cn µ q dl. We note that these
bubbles are frictionless and able to move rotate around
the other freely, and as such there is no bending cost to
the chain like a solid rope [1] would nor internal viscous
cost like a viscous thread [14]. In this case, hydrodynamic
drag in the normal direction prevents the bubble chain
from collapsing on itself. We can understand then that
the axial compression will turn into a buckle when the
compressive force is equal to the force required to move
one of the bubbles out of line of the chain. The force
required to do this is simply the drag force acting on the
bubble as it moves a distance of R at a speed of q, the
same speed that the chain is moving. Using Stokes’ law,
we know that the shear drag force required to do this is
dFs = co q Rµ, where co is the normal drag coefficient.
Equating the compressive force with the shear drag force
and rearranging for the critical bubble production speed
qc gives

qc =
2π R2 ∆ρ g

3cs µ
, (1)

where cs is a drag coefficient as a combination be-
tween the axial and normal drag coefficients. Figure 2
shows data for the bubble production speed as a func-
tion of the relationship outlined in equation 1. The data
points corresponding to a dark color blue are those for
unbuckled chains, the lighter pink color corresponds to
data for buckled chains. The resulting data creates a
phase diagram, separated by the predicted relation in
equation 1, with a dimensionless fit factor of 1.85 ± 0.02
corresponding to the drag coefficients present in the axial
and normal directions. The excellent agreement between
the data and theory indicate that we can predict the crit-
ical bubble production speed required to begin buckling a
chain of bubbles. We note here that there is no bending,
as compared to previous work on buckling of slender ob-
jects, and this makes an agreement using hydrodynamics
instead.

The terminal velocity of the chain- As the bubbles are
produced, the effect of the increased production speed
is only sustained over the first small number of bubbles,
this makes sense, as anyone who has tried to push the
end of a rope knows that the buckling happens near the
location of the push. Well beyond the production ori-
fice, each of the bubbles only moves in the vertical direc-
tion and does not translate along the arc length of the
chain i.e. each bubble only has a vertical component to
its velocity. Since Re is small for this system and there
will be fluid entrained between the spaces of the bubbles,
it is informative to treat the buckled chain as a ribbon
moving upwards through the liquid. The motion of the
chain is driven by the buoyant force acting on the bub-
bles. We can consider the buoyant force per unit length
along the vertical direction of the chain x̂, using the con-
version between the number of bubbles along the axial
length ds = 2Rdn and the requirement that the amount
of length must be conserved. Because the chain is mov-

ing with a constant speed, we can balance the buoyant
force unit length with the drag force per unit length and
derive an expression for the expected terminal velocity of
the chain. Considering the global motion of the chain v is
determined by the drag force on the chain as a whole, cre-
ated by the drag force acting on the whole chain, which
we can approximate as c µ v dx, where µ is the viscosity
of the bath, c is a drag coefficient taken to be constant for
all of the chains, v is the terminal velocity of the chain,
and dx is the infinitesimal length in the vertical direction.
Balancing these two forces gives the speed as a function
of the bubble radius, production rate and viscosity,

v ∝
√

R3q

µ
. (2)

The proposed scaling is plotted in figure 3, for several
data sets at varying q, and R and µ. We expect that the
terminal speed will increase with increasing chain pro-
duction speed based on the images in figure 1, as the
bubbles are more densely packed and therefore the buoy-
ancy per unit length should increase. We note that we
did not set out to vary the viscosity of the bath, but
in changing the concentration of the SDS in the bath,
the increased number of micelles also changed the viscos-
ity [29]. The expected relationship defined in equation 2
and the measured data show excellent agreement, with
the only fit factor being the drag coefficient. Although
the hydrodynamic drag has been coarse-grained in this
equation as we have modelled this as a ribbon with drag
coefficient c, this proves to be an adequate approxima-
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FIG. 2. A phase diagram showing the critical chain produc-
tion speed qc normalized by the ratio of inertial forces to vis-
cous forces, as a function of the bubble radius R squared. The
dark blue data points indicate an unbuckled chain, where the
light pink data points indicate buckled chains. The black line
corresponds to the predicted theoretical relationship in equa-
tion 1 with a constant fit parameter corresponding to the
dimensionless drag coefficient 1.85 ± 0.02.



4

tion due to the agreement between the model and the
experiment as well as the large amount of fluid entrain-
ment between the bubbles of the chain. We note that a
full understanding of the hydrodynamics could be stud-
ied using simulation however this is outside of the scope
of this current study.

Buckling amplitude- From figure 1, one can see that
the buckling amplitude A increases with increasing chain
productions speed q and to understand the relationship
between A and q we consider a geometric argument. We
reason that the buckling occurs because of an excess of
chain length that is produced relative to the speed that
the chain can move upwards. For the amount of chain
length that is produced, some amount translates in the
vertical direction, x, and the rest must translate in the
horizontal direction. If there is chain produced faster
than the chain can move globally, i.e. q > v, there will
be an excess of length that must move in the horizontal
direction. In this system, the buckling is confined to two
dimensions, and we choose to model the buckled shape of
the chain as a zigzag with a wavelength λ and amplitude
A. By calculating the arc length s for one wavelength,
and rearranging for the amplitude, we find A2 ≈ (s2 −
λ2)/4.

Due to variations in the data and noise in defining
wavelengths with a granular curve, we focus instead how
the amplitude should scale with increasing q and v. We
argue that a zigzag moving with constant speed along
the direction of motion that is being produced at a con-
stant rate will make an equivalent zigzag with velocities,
where it is moving along the x direction with velocity v,
at an axial speed q, and moving with horizontal speed w.
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FIG. 3. Dependence of the global chain speed v on the bubble
radii R chain productions speed q and the viscosity of the bath
µ. Bubble sizes range from 16 < R < 38 µm, viscosities are
indicated by the marker shape with ◦ being 1.5 mPa s, □
1.6 mPa s and △ 2.0 mPa s as measured using Stokes’ drag.
The black dashed line indicates the relationship described in
equation 2 with a single, non-dimensional fit parameter of
1.6889 ± 0.0002.
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FIG. 4. Dependence of the buckling amplitude A normalized
by the characteristic timescale τ on the chain productions
speed q and the terminal speed v. Bubble sizes range from 16
< R < 38 µm, viscosities are indicated by the marker shape
with ◦ being 1.5 mPa s, □ 1.6 mPa s and △ 2.0 mPa s as
measured using Stokes’ law. The black dashed line indicates
the relationship described in equation 3 with a slope of 0.723
± 0.001.

While q and v are both quantities that we can measure in
our experiment, where w is not. We assert that w ∝ A/τ ,
where τ ∝ R∆ρ g/µ is a characteristic timescale deter-
mined by Stokes’ Law, using similar arguments as in the
discussion for the buckling onset calculation. Converting
the lengths to velocities, we find that the amplitude is
related to the two relevant velocities in this system,

(
A

τ

)
∼

√
q2 − v2 (3)

We find that the buckling amplitude A per character-
istic time τ follows a relationship that depends on the
difference in the chain production speed q and termi-
nal speed v. This relationship is shown in figure 4.
We see that for a variety of bubble sizes, chain speeds
and production speeds the experimentally obtained am-
plitude closely agrees with the predicted relationship in
equation 3. At large differences between the production
speeds and chain speeds we see a deviation from the pre-
dicted theory, indicating that there is unaccounted non-
linear behaviour at the largest amplitudes.
To conclude, we have studied the buckling instability

that a slender chain of bubbles undergoes when travel-
ling through a viscous bath. The instability arises when a
compressive force due to an imbalance in buoyant forces
to drag force acting along the axial direction exceeds the
amount force required to move one bubble out of the line
of the chain, which is equal to the Stokes’ drag on a bub-
ble. Because only hydrodynamic drag serves to stabilize
the vertical chain buckling happens over a small length-
scale, relative to the length of the chain, directly after the
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bubbles are extruded. After the buckles are formed, the
chain moves as a ribbon through the bath and the ter-
minal velocity can be calculated using a simple balance
between buoyancy and drag. The predicted terminal ve-
locities agree extremely well with experiment values. Fi-
nally, we have predicted the amplitude of the buckles
based on the speed that the bubbles are produced rela-
tive to the terminal speed of the chain. We have studied
a system that shows buckling just like many other famil-
iar systems, like honey coiling on toast or the coiling of a
tendril of a cucumber vine when growing into a bound-
ary. Unlike other systems in which buckling is opposed
by either bending energy or viscous dissipation, this is

the first study to our knowledge that examines the onset
of drag-induced buckling with only viscous drag external
to the structure to stabilize the formation.
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Chapter 7

Conclusions

The work presented in this thesis focuses on the motion of drops and bubbles.
First, I presented work on capillary driven flow of oil droplets on conical fibers.
Many different aspects of this system were studied, including the motion of single
droplets, the formation and interaction of multiple droplets and the coating film
deposited when the droplets move along the fiber. I also presented a study on the
buckling of a ‘granular’ chain of air bubbles. All of these systems are governed by
hydrodynamics with slow laminar flow.

The first paper (Chapter 3) in this thesis studies the spontaneous motion of
a silicone oil droplet on a conical fiber. The silicone oil totally wets the glass
fiber, causing the oil to move to maximize the contact with the glass, and thus
travels toward the base of the fiber. In this system, capillarity drives motion, and
viscous dissipation opposes it. By balancing the driving and resisting forces, the
speed of the droplet is modelled as a function of droplet size, fiber geometry, liquid
viscosity, and surface tension. In this study, we tracked the speed of the droplets
in experiment and compared with the predicted speed from the simple surface
tension based model. In addition, by sampling a large number of droplet sizes and
fiber radii, we experimentally confirmed the relationship between droplet height
and fiber radius for a droplet in equilibrium, as predicted by Carroll in 1976 [78].

In an extension of the geometry in explored in the first paper, in Chapter 4 the
conical fiber geometry was studied with multiple droplets on the same fiber. In
nature, it is rare for a single droplet to be present, and typically multiple droplets
will coat a slender structure. Here, the break up of a fluid film coating a conical
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fiber is studied. It is found that break up follows the wavelength predicted by the
Plateau-Rayleigh instability. As a result, droplet formation cascades from the tip
to the base of the fiber. In addition, thicker films created satellite droplets which
appear between large principal droplets. According to the theory for single droplet
motion, larger droplets have a greater driving force than smaller droplets, causing
large droplets to move more quickly and catch up with the smaller ones. The
large and small droplets merge together where a bridge forms between the two.
Due to Laplace pressure gradients between the two drops, flow will continue until
the two drops combine into one. We studied the merging of the droplets using a
combination of numerical simulation and experiment. The dynamics was tracked
by measuring the height of the bridge between the two merging droplets. This
is the first work that combines the different aspects of film break up and droplet
merging of barrel-shaped droplets in a conical geometry.

The third paper, contained in Chapter 5, is a continuation of the same conical
fiber geometry. However instead studying the droplet, we chose to study the film
of fluid that the droplet leaves behind. Silicone oil droplets were placed on a glass
conical fiber and the deposited film shape and thickness was recorded for several
droplets. We matched our results to standard Landau-Levich-Derjaguin (LLD)
film deposition theory and found for large droplets, relative to the fiber radius,
the length scale that sets the thickness of the film matches LLD theory for a fiber
pulled from an infinite bath. However for small droplets, the curvature of the
droplet affects the film deposition. This paper is the first work to our knowledge
that considers a LLD film deposited from a curved, self-propelled reservoir.

In the final paper (Chapter 6), we move to study micron-scale air bubbles that
are attached in a chain. The chain is produced faster than hydrodynamic drag
allows the bubbles to move upwards through the bath, which creates a compression
along the axial direction of the chain. The bubble chain buckles in a regular
pattern as a result of the compression. We found that the buckling of the chain
was induced by hydrodynamic drag in the axial direction but also stabilized by
drag in the transverse direction. This system has many analogs to coiling of solid
and viscous ropes.

There are many possible extensions to the droplet on conical fiber projects.
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Recent work by Jeong et al. involves sorting particles using dipcoating [130]. By
pulling the fiber at different speeds from a bidisperse particle-laden bath, the au-
thors found that depending on the dipcoating speed, and thus the film thickness,
particles could preferentially be entrained based on particle size. Using this phe-
nomenon, there are several interesting applications to the conical fiber system with
regards to passive coating and patterning. For example, an oil droplet laden with
particles moving on a fiber may deposit particles only at certain locations along the
fiber. There is also an interesting extension regarding particle deposition during
the break up of a film on a fiber. As a particle-laden film breaks up into droplets,
particles may migrate toward the drop and may pose the question of where the
particles would preferentially deposit on a fiber.

Other questions that are still present in the conical fiber system are regarding
dissipation. In this thesis, care was taken to only consider droplets that totally
wet the fiber substrate; however, a partially wetting droplet would experience
dissipation along the contact line, in addition to viscous dissipation. The droplet
motion may serve as another tool to measure dissipation of contact lines. For
instance, a fiber could be coated in an elastomeric material and the change in
droplet motion can provide insight into the dissipation caused by elastic wetting
ridges. Elastocapillarity and dissipation during flow due to elastic wetting ridges
is a current hot topic in soft matter physics [131, 132].

Finally, the buckled chain of bubbles system can be explored further. An unex-
plored avenue at this time is to study how a bubble chain buckles as it impacts a
boundary, which would be an interesting geometry to use to push the limits of the
granular rope analogy. If the analogy holds, one might expect to see coiling, like a
solid rope impacting a surface, one might expect that adhesion strength between
bubbles becomes important. In addition, it would be interesting to do a similar
experiment as the one presented in this thesis, but using a viscoelastic bath, rather
than a Newtonian fluid. Since the buckling is a direct probe of the hydrodynamics
in the system, the way a bubble chain buckles in a viscoelastic bath might have
interesting properties. It is not clear if the buckling will be amplified or suppressed
in the presence of the elasticity.

As has been shown in this thesis, the motion of droplets and bubbles are an
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excellent tool to study hydrodynamics systems. In the systems I studied that are
inspired by nature, we see a richness of phenomena that still have so much more
to be explored.
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Appendix A

Papers not included in this thesis

The following papers consist of studies and work that I have been involved in but
are not included as the core papers of my thesis. Two papers were conducted in
collaboration with a behavioural ecologist, Dr. Grant Doering, to study the dy-
namic behaviour of small colonies of ants. Specific species of ants exhibit rhythmic
cycles in colony activity, meaning there are periods of time where the majority of
ants in the colony are inactive, followed by periods of high activity. Paper A1
studies quantifying and modelling the activity cycles for a variety of species and
colonies using an agent-based model. I was not the main contributor to this study,
my contribution was in discussing the agent-based model and in reviewing and
editing the manuscript. Paper A2 studies the same system of ants, but in this
manuscript, we studied one of the possible evolutionary reasons for the activity
cycles through the study of spatial inaccessibility. Here, we considered the in-
active ants as an obstacle for the active ants when doing tasks around the nest,
like tending brood. We found that the introduction of activity cycles decreased
the inaccessible areas in the nest. I wrote the original code for the agent-based
simulation and contributed to the manuscript editing and review. The final pa-
per, Paper A3, is a discussion regarding the equity, diversity and inclusion work I
have been contributing to during my tenure at McMaster University. We outline
the work done by graduate students in the department in regards improving the
environment for underrepresented groups in physics and astronomy.
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A1 Paper 1

Noise resistant synchronization and collective rhythm switching in a model of an-
imal group locomotion

G. N. Doering, B. Drawert, C. L. Lee, J. N. Pruitt, L. R. Petzold and K. Dalnoki-
Veress R. Soc. Open. Sci. 9(3), (2022), 211908. https://doi.org/10.1098/rsos.211908

A2 Paper 2

Synchronized locomotion can improve spatial accessibility inside ant colonies

G. N. Doering, C. L. Lee, K. Dalnoki-Veress, submitted.

A3 Paper 3

Equity, Diversity, and Inclusion: A Graduate Student Perspective

S. Dawson, C. Lee, W. Kirkby, J. Wightman and R. Pillsworth Physics in Canada
77(1) (2021), 24-25. https://pic-pac.cap.ca/index.php/Issues/showpdf/article/v77n1.0-
a4137.pdf
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