
DATA-DRIVEN SUPPLY CHAIN MONITORING AND
OPTIMIZATION



DATA-DRIVEN SUPPLY CHAIN MONITORING AND
OPTIMIZATION

by

JING WANG, M.SC., B.ENG.

A Thesis

Submitted to the School of Graduate Studies

in Partial Ful�llment of the Requirements

for the Degree of

Doctor of Philosophy

McMaster University

© Copyright by Jing Wang, August 2022



DOCTOR OF PHILOSOPHY (2022) McMaster University

(Computational Science and Engineering) Hamilton, Ontario, Canada

TITLE: Data-driven Supply Chain Monitoring and Optimization

AUTHOR: Jing Wang

M.Sc. (Electrical Engineering),

Zhejiang University, Hangzhou, China

B.Eng. (Electrical Engineering and Automation),

Zhejiang University, Hangzhou, China

SUPERVISORS: Dr. Christopher L.E. Swartz, Dr. Kai Huang

NUMBER OF PAGES: xiii, 233

ii



Abstract

In the era of Industry 4.0, conventional supply chains are undergoing a transformation into

digital supply chains with the wide application of digital technologies such as big data, cloud

computing, and Internet of Things. A digital supply chain is an intelligent and value-driven

process that has superior features such as speed, �exibility, transparency, and real-time

inventory monitoring and management. This concept is further included in the framework

of Supply Chain 4.0, which emphasizes the connection between supply chain and Industry

4.0. In this context, data analytics for supply chain management presents a promising re-

search opportunity. This thesis aims to investigate the use of data analytics in supply chain

decision-making, including modelling, monitoring, and optimization.

First, this thesis investigates supply chain monitoring (SCMo) using data analytics. The

goal of SCMo is to raise an alarm when abnormal supply chain events occur and identify

the potential reason. We propose a framework of SCMo based on a data-driven method,

principal component analysis (PCA). Within this framework, supply chain data such as

inventory levels and customer demand are collected, and the normal operating conditions of

a supply chain are characterized using PCA. Fault detection and diagnosis are implemented

by examining the monitoring statistics and variable contributions. A supply chain simula-

tion model is developed to carry out the case studies. The results show that dynamic PCA

(DPCA) successfully detected abnormal behaviour of the supply chain, such as transporta-

tion delay, low production rate, and supply shortage. Moreover, the contribution plot is

shown to be e�ective in interpreting the abnormality and identify the fault-related variables.

The method of using data-driven methods for SCMo is named data-driven SCMo in this work.

Then, a further investigation of data-driven SCMo based on another statistical process

monitoring method, canonical variate analysis (CVA), is conducted. CVA utilizes the state-

space model of a system and determines the canonical states by maximizing the correlation

between the combination of past system outputs and inputs and the combination of future

outputs. A state-space model of supply chain is developed, which forms the basis of applying

CVA to detect supply chain faults. The performance of CVA and PCA are assessed and
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compared in terms of dimensionality reduction, false alarm rate, missed detection rate, and

detection delay. Case studies show that CVA identi�es a smaller system order than PCA and

achieves comparable performance to PCA in a lower-dimensional latent space.

Next, we investigate data-driven supply chain control under uncertainty with risk taken

into account. The method under investigation is reinforcement learning (RL). Within the

RL framework, an agent learns an optimal policy that maps the state to action during the

process of interacting with the non-deterministic environment, such that a numerical reward

is maximized. The current literature regarding supply chain control focuses on conven-

tional RL that maximizes the expected return. However, this may be not the best option for

risk-averse decision makers. In this work, we explore the use of safe RL, which takes into

account the concept of risk in the learning process. Two safe RL algorithms, Q̂-learning and

β-pessimistic Q-learning, are investigated. Case studies are carried out based on the supply

chain simulator developed using agent-based modelling. Results show that Q-learning has

the best performance under normal scenarios, while safe RL algorithms perform better under

abnormal scenarios and are more robust to changes in the environment. Moreover, we �nd

that the bene�ts of safe RL are more pronounced in a closed-loop supply chain.

Finally, we investigate real-time supply chain optimization. The operational optimization

problems for supply chains of realistic size are often large and complex, and solving them

in real time can be challenging. This work aims to address the problem by using a deep

learning-based model predictive control (MPC) technique. The MPC problem for supply

chain operation is formulated based on the state space model of a supply chain, and the

optimal state-input pairs are precomputed in the o�ine phase. Then, a deep neural network

is built to map the state to input, which is then used in the online phase to reduce solution

time. We propose an approach to implement the deep learning-based MPC method when

there are delayed terms in the system, and a heuristic approach to feasibility recovery for

mixed-integer MPC, with binary decision variables taken into account. Case studies show

that compared with solving the nominal MPC problem online, deep learning-based MPC can

provide near-optimal solution at a lower computational cost.
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Chapter 1

Introduction

1.1 Supply Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

In this chapter, we �rst introduce some basics of supply chain systems. Then, the main

research contributions and the outline of this thesis are presented.

1.1 Supply Chain

A supply chain (SC) is a set of entities that are directly involved in the upstream and

downstream �ows of products, services, �nances and information from sources to customers

(Mentzer et al., 2001). These entities include suppliers, manufacturers, distributors, and

retailers. The structure of a supply chain network is shown in Figure 1.1. The supply chain

members are typically interlinked through a material �ow from the upstream suppliers to

1
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the downstream customers and an information �ow in the opposite direction. With the

cooperation between agents, a supply chain deals with the procurement of raw materials,

the manufacture of products, and the distribution of products to satisfy customers’ demands.

Figure 1.1. A supply chain network

A well-functioning supply chain is important to the general economic performance of an

enterprise. Supply chain management (SCM) involves systemic and strategic coordination of

business activities across business functions and across businesses within the supply chain

(Mentzer et al., 2001; Papageorgiou, 2009). Supply chain management and optimization

aim at satisfying customers’ demands at minimum overall cost (Al-Othman et al., 2008;

Mohammadi Bidhandi and Mohd Yusu�, 2011; Benyoucef et al., 2013; Castillo-Villar et

al., 2017), bringing greater pro�t (Awudu and Zhang, 2013; Ma and Li, 2018; Zhou et al.,

2019), and/or improving the customer service (Gupta et al., 2000; Mastragostino et al., 2014),

through e�cient coordination and integration of network design, procurement, production,
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transportation, and distribution. Good SCM improves the long-term performance of the

supply chain participants and the entire supply chain, and therefore helps maintain the

competitiveness of supply chain systems (Mentzer et al., 2001; Mastragostino et al., 2014;

Patel and Swartz, 2019).

Generally, decision-making for supply chains is categorized into the following three classes

according to the planning horizon and the importance of decisions (Gupta and Maranas,

2003; Santoso et al., 2005; Stadtler et al., 2015; Silver et al., 2017):

(1) Long-term design and planning, or strategic planning. Planning at this level determines

the acquisition of resources and typically aims to identify an optimal supply chain network

con�guration over a relatively long time horizon, e.g., more than 2 years. Examples of

strategic decisions are the number, location, and capacity of facilities, the products to

sell, the technology to be establish, long-term raw material and energy contracts, and

nature of production planning and inventory management decision systems. Strategic

decisions are the prerequisites for the future development of a supply chain and their

e�ects are perceptible over several years. Strategic supply chain planning is investigated

by, e.g., Tsiakis et al., 2001; Guillén et al., 2005; Azaron et al., 2008; Azaron, 2013; Singh

et al., 2013; Tong et al., 2014; Hamta et al., 2015; Badri et al., 2016; Badri et al., 2017;

Chatzikontidou et al., 2017; Jerbia et al., 2018; Zhen et al., 2019; Zhou et al., 2019.

(2) Mid-term planning, which is called either tactical planning (Silver et al., 2017) or opera-

tional planning (Stadtler et al., 2015) in the literature. Planning at this level focuses on an

intermediate time horizon, e.g., 6–24 months, and determines the utilization of resources

within the scope of strategic plans. Examples of mid-term decisions are rough quantities

and times for the �ows and resources in the supply chain, operation hours of plants,

work force sizes, inventory levels, subcontracting levels, output rates, and transportation

modes. Mid-term supply chain planning is investigated by, e.g., Gupta et al., 2000; Gupta

and Maranas, 2000; Gupta and Maranas, 2003; Al-Othman et al., 2008; You et al., 2009;

Awudu and Zhang, 2012; Mirzapour Al-e-hashem et al., 2013; Azadeh et al., 2014; Azadeh

and Vafa Arani, 2016; Esmaeilikia et al., 2016; Shabani et al., 2014.

(3) Short-term planning, or operational planning/control. Planning at this level deals with

3
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specifying the detailed instructions for instant execution and control in a relatively short

time horizon, e.g., from a few days to 3 months. Examples of short-term decisions are

what to produce or procure, when, on what machine (from which vendor), in what

quantity, and in what order. Operational supply chain control is investigated by, e.g.,

Schütz and Tomasgard, 2011 and Mastragostino et al., 2014.

The environment under which a supply chain is operated is not always stable. The presence

of uncertainty in supply chains, such as uncertain demand (Gupta et al., 2000; Gupta and

Maranas, 2003), supply (Shabani et al., 2014; Hamdan and Diabat, 2019), process yield

(Mastragostino et al., 2014), and product price (Awudu and Zhang, 2013; Azadeh et al.,

2014), makes SCM a complex task (Tsiakis et al., 2001). Modern supply chain networks are

prone to uncertainty due to their increasing complexity and interrelation. Various type of

risks exist due to uncertainties that are ubiquitous within modern supply chains. Supply

chain risks can be categorized into two classes (Tang, 2006): (1) Operational risks that are

caused by the inherent uncertainties, for example, uncertainties in demand, supply, yield

and transportation; (2) Disruption risks such as natural or man-made disasters, which have a

greater impact on supply chains. Unexpected events may disrupt supply chain operations and

cause substantial negative e�ects that propagate across the supply chain (Bansal et al., 2005;

Fernández et al., 2015; Fernández et al., 2016). The uncertainties and risks in supply chain

systems are the main motivation of this work. In this work, we aim to develop data-driven

methods to support supply chain modelling and decision-making under uncertainty.

With the wide application of digital technologies such as big data, cloud computing and

Internet of Things (IoT), conventional supply chains are undergoing a transformation into

digital supply chains (Büyüközkan and Göçer, 2018; He et al., 2020). A digital supply chain is

an intelligent and value-driven process that has superior features such as speed, �exibility,

transparency, and real-time inventory monitoring and management. Although in its infancy,

a digital supply chain possesses great potential in value creation. This concept is further

included in the framework of Supply Chain 4.0 to emphasize the connection between supply

chain and Industry 4.0, which is a framework involving cyber-physical integration in supply

chains (Frederico et al., 2020; Ivanov and Dolgui, 2021; Govindan et al., 2022).
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In the era of Supply Chain 4.0, data are an important resource that can be harnessed. Data

analytics for supply chain management and optimization presents a promising opportunity,

and has gained much attention in both academic research and industrial applications (Nguyen

et al., 2018; Ning and You, 2019). Data analytics has been applied to di�erent supply chain

functions, for example, procurement, manufacturing, logistics and transportation, warehous-

ing, and demand management (Nguyen et al., 2018). The process of using information and

analytical tools to improve supply chain decision-making is de�ned as supply chain analytics

(SCA) (Souza, 2014). SCA is generally categorized into the following three types (Souza, 2014;

Wang et al., 2016; Tiwari et al., 2018):

(1) Descriptive analytics, which focuses on explaining what is happening or has happened

in the supply chain and why.

(2) Predictive analytics, which aims to predict what will happen or will be likely to happen

in the supply chain.

(3) Prescriptive analytics, which explores what should be happening and provides decision

recommendations.

In this thesis, we focus on investigating the use of data analytics in operational supply chain

decision-making, including modelling, monitoring and optimization. The methods adopted

can be classi�ed as descriptive and prescriptive SCA.

1.2 Main Contributions

In this thesis, several research gaps in the current literature are identi�ed and addressed.

The main research contributions of this thesis are presented as follows:

1. We proposed a data-driven supply chain monitoring (SCMo) framework based on

principal component analysis (PCA). This method can be used for fault detection and

diagnosis of supply chain systems. It can be classi�ed as descriptive SCA.

5
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2. We developed a state-space model of supply chain, and further extended the scope of

data-driven SCMo using canonical variate analysis (CVA). This method can be classi�ed

as descriptive SCA. Comparative study was carried out to assess the performance of

CVA and PCA in SCMo.

3. We developed a supply chain simulator using agent-based modelling. This simulator

not only helps understand and evaluate the supply chain under di�erent scenarios,

but also enables the implementation of supply chain control policies in this work.

4. We developed a risk-averse supply chain control method using safe reinforcement

learning (RL). Compared with conventional RL, the safe RL policies takes into account

the concept of risk by incorporating the worst-case return in the optimization crite-

rion. This method can be classi�ed as prescriptive SCA. The performance of safe RL

polices is examined and compared with a classical Order-Up-To inventory policy and

a conventional RL policy. This study extends the supply chain control from forward

supply chains to closed-loop supply chains using RL, and from conventional RL to safe

RL.

5. We developed a deep learning-based model predictive control (MPC) method for real-

time supply chain optimization. We proposed an approach to implement the method in

the case where there are delayed decisions in the system. Moreover, a heuristic method

was proposed to deal with the binary decision variables for deep learning-based mixed-

integer MPC. Furthermore, we discussed the approach to data generation. Compared

with MPC, this method can reduce the online computation time. This method can be

classi�ed as prescriptive SCA.

1.3 Thesis Outline

The research work in this thesis is composed of four components that are presented in

Chapters 2–5. The remainder of this thesis is structured into the following chapters.

6
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In Chapter 2, we �rst present a data-driven SCMo framework. The method of using PCA

to detect and diagnose supply chain faults is described. Then, we present the details of

the development of a supply chain simulator using agent-based modelling. Next, two case

studies are carried out to validate the proposed method and the results are given, followed

by the conclusions.

In Chapter 3, we start with a comprehensive literature review on SCMo and data-driven

process monitoring. Then, the development of the state-space model of supply chain is

described and data-driven SCMo based on CVA is presented. Hyperparameter tuning is also

discussed. Next, two case studies are carried out to compare the performance of CVA and

PCA, followed by the conclusions.

In Chapter 4, we �rst present a comprehensive literature review on RL-based supply chain

control. Then, we present a risk-averse supply chain control method based on safe RL.

The development of the supply chain simulator and the details of the simulation procedure

are described. Next, two case studies are carried out to validate the safe RL polices. The

performance of the safe RL polices is compared against a classical Order-Up-To policy and a

conventional RL policy.

In Chapter 5, we begin by developing the MPC model for operational control of supply

chain systems. Then, we present a deep learning-based MPC method for real-time supply

chain control. Moreover, we propose an approach to implement the method for applications

where there are delayed decisions in the system, and a heuristic method to deal with the

binary decision variables for deep learning-based mixed-integer MPC. Next, two case studies

are carried out to validate and assess the proposed control method.

In Chapter 6, a brief summary and concluding remarks on the contributions of this thesis

are presented. Then, future research directions are identi�ed and presented.
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Various types of risks exist in a supply chain, and disruptions could lead to economic loss or

even break-down of a supply chain without an e�ective mitigation strategy. The ability to

detect disruptions early can help improve the resilience of the supply chain. In this paper,

the application of principal component analysis (PCA) and dynamic PCA (DPCA) in fault

detection and diagnosis of a supply chain system is investigated. In order to monitor the

supply chain, data such as inventory levels, market demands and amount of products in

transit are collected. PCA and DPCA are used to model the normal operating conditions

(NOC). Two monitoring statistics, the Hotelling’s T2
and the squared prediction error (SPE),

are used to detect abnormal operation of the supply chain. The con�dence limits of these two

statistics are estimated from the training data based on the χ2
- distributions. The contribution

plots are used to identify the variables with abnormal behavior when at least one statistic

exceeds its limit. Two case studies are presented - a multi-echelon supply chain for single

product that includes a manufacturing process, and a gas bottling supply chain with multiple

products. In order to validate the proposed method, supply chain simulation models are

developed using the programming language Python 3.7, and simulated data is collected

for analysis. PCA and DPCA are applied to the data using the scikit-learn machine

learning library for Python. The results show that abnormal operation due to transportation

delay, supply shortage, and poor manufacturing yield can be detected. The contribution

plots are useful for interpreting and identifying the abnormality.

14



Ph.D. Thesis - Jing Wang McMaster University - Computational Science and Engineering

2.1 Introduction

A supply chain is a network of suppliers, manufacturing facilities, warehouses, retailers, and

customers that deals with the procurement of raw materials, the manufacture of products,

and the distribution of products to the customers. There are material �ow from upstream

suppliers to downstream customers, and information �ow in the opposite direction (Patel

and Swartz, 2019; Mastragostino et al., 2014). The importance of a well operating supply

chain to the overall economic performance of an enterprise has underpinned a large body of

research on supply chain operation and design across several disciplines. Reviews of supply

chain studies from a process systems engineering perspective are given by Grossmann (2005),

Shah (2005), and Papageorgiou (2009).

There are various types of risks in supply chain operation, including delays, poor yield or

quality at supply source, procurement failures, inaccurate forecasts, uncertain consumer

demands, and disruptions like natural disaster (Chopra and Sodhi, 2004; Tang, 2006a). For

example, in the case study of Carvalho et al. (2012), the supply delay is regarded as the main

disturbance that negatively a�ects the automaker. Wilson (2007) investigates the impact of

transportation disruptions on the supply chain performance. The disturbances may cause

�nancial loss or even break-down of the supply chain without an e�ective mitigation strategy

(Tang, 2006b). Improving the ability to detect disturbances in a supply chain quickly can

help reduce the risks and substantially increase the resilience of the supply chain (Chopra

and Sodhi, 2014; She�, 2015). The purpose of this paper is to investigate the application of

data analytics for supply chain monitoring, fault detection and diagnosis.

Data analytics is becoming more and more important in the era of big data. Data analytics

in supply chain management (SCM) has gained much attention in both academic research

and industrial applications (Souza, 2014; Wang et al., 2016a; Tiwari et al., 2018). In SCM, data

is increasingly employed to capture the trends in costs and performance, monitor inventory,

support process control and improve the process, and optimize production (Mishra et al.,

2018). Supply chain analytics (SCA), de�ned by Souza (2014) as the use of information and

analytical tools for improved supply chain decision-making, can generally be categorized into
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three classes (Souza, 2014; Wang et al., 2016a; Tiwari et al., 2018): (1) descriptive analytics,

which aims at explaining what has happened/is happening in the supply chain and why;

(2) predictive analytics, which focuses on answering what will be happening or likely to

happen in the supply chain; and (3) prescriptive analytics, which explores what should be

happening and how to in�uence it. The relevant techniques involve statistics, programming,

mathematical optimization, and simulation (Tiwari et al., 2018).

The applications of data analytics in SCM can also be classi�ed by supply chain functions:

procurement, manufacturing, logistics and transportation, warehousing, and demand man-

agement, or general SCM (Nguyen et al., 2018). For example, in research on procurement, Jain

et al. (2014) investigate a data mining approach to discover the hidden relationships between

data used for suppliers’ selection and their overall rating based on prior performance. The

approach helps in optimizing the selection process of suppliers. Mori et al. (2012) utilize

machine learning techniques like support vector machine and logistic regression to build

the prediction model of customer-supplier relationships, and help �nd potential business

partners. As for manufacturing, Zhong et al. (2015) use radio frequency identi�cation (RFID)

production shop �oor data to obtain better estimation of the arrival of customer orders and

standard operation times. These parameters are then used to develop a two-level planning

and scheduling model for the RFID-enabled real-time ubiquitous shop �oor manufacturing.

In logistics and transportation, Zhao et al. (2017) extract the upper and lower limits of uncer-

tain parameters from historical data, and use them for the re-design of a green supply chain.

Toole et al. (2015) develop a system to estimate the travel demand and infrastructure usage

for transportation planning, using massive data generated by mobile computing. Li et al.

(2015) employ Lasso Granger causality models to pick the most relevant data to build the

tra�c prediction model, thus achieving a good balance between model complexity and model

performance. In terms of warehousing, Chiang et al. (2011) de�ne an association index and

propose a data mining-based storage assignment approach, which improves the e�ciency of

order picking. Tsai and Huang (2015) use data analytics to capture customer purchase and

moving behaviours, and optimize the shelf space allocation. As for demand management,

Salehan and Kim (2016) use a sentiment mining approach to investigate the predictors of

performance of online consumer reviews; Alain Yee et al. (2016) employ a neural network
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to investigate which variables, like online reviews, promotion strategies and sentiments,

are important predictors of product sales. Ma et al. (2014) propose a demand trend mining

technique for data-driven product design.

A promising application of SCA is the data-driven supply chain optimization under uncer-

tainty, in which techniques of data analytics and machine learning are used to characterize

the uncertainty based on process data in order to more accurately represent the uncertainty

and reduce conservativeness in the optimization. Ning and You (2017) and Ning and You

(2018a) present formulations for data-driven adaptive robust optimization with case studies

that include robust planning of chemical process networks under uncertainty. Shang and

You (2018) develop a formulation for distributionally robust optimization under uncertainty,

which seeks to hedge against inexactness of the probability distribution of the uncertainty.

In Gao et al. (2019), the scheme is extended and applied to robust optimization of shale

gas supply chains under uncertainty. A recent review of data-driven optimization under

uncertainty with perspectives on future research directions is given in Ning and You (2019).

The various applications of SCA reviewed by Wang et al. (2016a), Nguyen et al. (2018), and

Tiwari et al. (2018) indicate the power and potential for data analytics in aiding decision-

making in many aspects of SCM. This paper focuses on a multivariate statistical method,

principal component analysis (PCA). PCA is designed for extracting uncorrelated components

from correlated data, as described by Wold et al. (1987). It is known as a latent variable

method (LVM), and is also considered as a type of machine learning method (Ge, 2017;

Qin and Chiang, 2019). PCA has been successfully applied to industrial process modeling,

monitoring and diagnosis (Kresta et al., 1991; Kourti and MacGregor, 1995; MacGregor

and Kourti, 1995; Nomikos and MacGregor, 1995; Qin, 2012; Ge et al., 2017). Extensions

of PCA have been developed for industrial process analysis, including dynamic PCA (Ku

et al., 1995; Russell et al., 2000; Chiang et al., 2001; Li and Qin, 2001; Li et al., 2014a; Li et al.,

2016), kernel/nonlinear PCA (Lee et al., 2004), recursive PCA, multi-block, multi-way PCA

(Qin, 2012), dynamic inner PCA (Dong and Qin, 2018), and mixtures of probabilistic PCA

(Kodamana et al., 2019).

In the current literature, PCA has been applied in some aspects of SCA. In Pozo et al.
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(2012), PCA is employed to reduce the computational complexity of the multi-objective

optimization problem formulated for supply chain design. The redundant environment

metrics are identi�ed and omitted while retaining the main features of the problem. In Li et

al. (2014b), PCA is used to reduce the feature dimensions and improve the e�ciency of model

development. Lei and Moon (2015) use PCA to help determine market segments for new

products, and develop a decision support system for market-driven product positioning and

design. How and Lam (2018) use PCA to reduce the redundancies of performance indicators,

thus aiding the multi-objective optimization of supply chain. In data-driven supply chain

optimization, PCA is applied to help characterize uncertain parameters of supply chain, by

reducing the dimensionality of the correlated uncertainty data (Ning and You, 2018b; Gao

et al., 2019). Mele et al. (2005) demonstrate the application of PCA techniques for detection

of manufacturing and transportation delays in a simulated supply chain system. Their study

includes a wavelet based multi-scale PCA technique and a Genetic Algorithm based search

scheme to account for time delays.

The above applications demonstrate some of the bene�ts of using PCA in SCA. However,

research on applying PCA to monitoring, fault detection and diagnosis of a supply chain as

a system is still lacking. In SCA applications of PCA, the monitoring statistics of the scores

and residual are largely ignored and the ability of PCA in statistical monitoring has not been

fully taken advantage of yet, in contrast to applications of statistical process monitoring

using PCA in plant-wide processes such as manufacturing.

The objective of this paper is to investigate the use of PCA in supply chain monitoring,

which means keeping track of the operating status of a supply chain as a system. Since there

are usually many measurements in a supply chain, monitoring all of them individually could

be di�cult to implement and ine�cient. If the operation of the supply chain is viewed as

a process, there exists correlation in the supply chain data. Hence analogous to process

monitoring, PCA can potentially be employed to model and monitor the operation status of

a supply chain. This means helping to detect variation from the normal operating conditions

(NOC) of the supply chain. Within the context of SCA, this research can be classi�ed as

descriptive analytics. In order to validate the e�ectiveness of PCA in supply chain monitoring,

simulation is carried out to generate supply chain data, with PCA and dynamic PCA (DPCA)
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performed on the simulated data.

The PCA and DPCA are used in this paper, since this is an initial investigation of applying

data-driven techniques to supply chain monitoring. It is worth noting that other data-driven

techniques, such as the canonical variate analysis (CVA), can also potentially be applied to

supply chain monitoring. Since it was introduced to process monitoring over two decades

ago (Wang et al., 1997), CVA has been standard textbook material on process monitoring

(Chiang et al., 2001). Negiz and Çinar (1997) investigate a statistic based on CVA states to

monitor the variation in the state space, and Russell et al. (2000) propose a residual space

CVA statistic for fault detection. Jiang et al. (2015a) present CVA-based contributions to

identify the fault-related variables. Jiang et al. (2015b) combine CVA and Fisher discriminant

analysis to determine the root cause of faults. CVA is shown to perform better than PCA and

DPCA (Negiz and Çinar, 1997; Russell et al., 2000), which indicates its potential in supply

chain monitoring.

The remainder of this paper is organized as follows: Section 2.2 provides a summary of

fault detection and diagnosis using PCA and DPCA. Section 2.3 describes the supply chain

simulation model developed in this study, which is employed to generate simulated data for

analysis. In Section 2.4, two case studies are introduced, and used to validate the proposed

supply chain monitoring method. Conclusions are presented in Section 2.5.

2.2 Principal Component Analysis

A brief introduction of PCA and the fault detection and analysis (FDD) using PCA is given in

Sections 2.2.1–2.2.3, respectively. Dynamic PCA is described in Section 2.2.4. The description

of supply chain monitoring using PCA/DPCA is presented in Section 2.2.5. The formulas are

extracted from Kresta et al. (1991), Kourti and MacGregor (1996), Qin (2012), Li et al. (2016),

as well as other references where stated.
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2.2.1 Principal component analysis

PCA is designed for extracting uncorrelated components from correlated data. Denote the

data collected at time i as a K-dimensional vector xi, and the data collected over N time

periods as X = [x1, x2, . . . , xN]
T

, which contains N samples. Assume that X has been scaled

to zero-mean and unit-variance, then performing PCA on X corresponds to construction of

the following relationships:

T = XP (2.1a)

X = TPT + E =
A

∑
a=1

tapT
a + E (2.1b)

where P = [p1, p2, . . . , pA] is the loading matrix; T = [t1, t2, . . . , tA] is the score matrix,

and ta = Xpa, for a = 1, . . . , A, is the sample data of the a-th principal component (PC);

and E is the residual. The loadings are determined by maximizing the variance of the scores.

Usually A < K to achieve dimensionality reduction.

PCA can be implemented through an eigen-decomposition on the sample covariance matrix

S = 1
N−1XTX, or a singular value decomposition (SVD) on X. Alternatively, the PCs can

be e�ciently extracted by the nonlinear iterative partial least squares (NIPALS) algorithm,

which is actually a variant of the Power method (Wold et al., 1987).

2.2.2 Fault detection

For fault detection, �rst, a PCA model is built to characterize the normal operating conditions

(NOC) from normal operating data. A sample xi can be projected to the principal component

subspace (PCS) and the residual subspace (RS) respectively:

tT
i = xT

i P (2.2a)

x̃T
i = xT

i − tT
i PT = xT

i (I− PPT) (2.2b)
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Qin (2003) gives a comprehensive review of fault detection indices in statistical process

monitoring. In PCA, the Hotelling’s T2
and the squared prediction error (SPE) are widely

employed to detect variations from the NOC. The Hotelling’s T2
, also known as the D-

statistic, of xi is de�ned as:

T2(xi) = tT
i Λ−1ti = xT

i PΛ−1PTxi =
A

∑
a=1

t2
ia

λa
(2.3)

where Λ = diag{λ1, λ2, . . . , λA} contains the eigenvalues of S in descending order, and tia

is the a-th component of ti.

Even when the data is not multivariate normally distributed, the principal components are

approximately independently normally distributed when the number of variables is large,

according to the central limit theorem (Sprang et al., 2002; Qin, 2003). When N is large, the

distribution of T2
can be approximated by a χ2

-distribution, and the con�dence limit at a

signi�cance level α can be calculated as:

T2
α = χ2

α(A) (2.4)

Alternatively, the con�dence limit can also be estimated by the F-distribution (Kourti and

MacGregor, 1995) or the Beta-distribution (MacGregor and Cinar, 2012). The signi�cance

level α can be determined based on the users’ needs (Wang et al., 2016b).

The SPE, also referred to as the Q-statistic, of xi is de�ned as:

SPE(xi) = ‖x̃i‖2
2 = ‖(I− PPT)xi‖2

2 = xT
i P̃P̃Txi (2.5)

where P̃ = [pA+1, . . . , pK] comprises the (K− A) eigenvectors that are not retained. The

con�dence limit of SPE at a signi�cance level α can be estimated by a weighted χ2
-distribution

(Nomikos and MacGregor, 1995):

SPEα =
v

2m
χ2

α(
2m2

v
) (2.6)
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where m = mean(SPE), v = var(SPE), denote the mean and variance of the SPE, respec-

tively. The approximating distribution using eq 2.6 works well in practice even when the

errors are not normal (Sprang et al., 2002; Qin, 2012).

The T2
and SPE model the variation in the PCS and RS, respectively. They can be used as a

pair to indicate signi�cant deviation from the NOC (MacGregor and Cinar, 2012). Their roles

in process monitoring are not symmetric. Exceeding the T2
limit does not necessarily indicate

a fault, while probably a shift in the operation region; thus SPE is considered preferable

over T2
for fault detection (Qin, 2003). In this paper, the Hotelling’ T2

and SPE are adopted

for supply chain monitoring, with greater emphasis on the SPE, since it is more reliable for

non-normal data (Qin, 2012).

2.2.3 Fault diagnosis

Fault detection tells whether there is an abnormality or not. Fault diagnosis is to �nd the

source cause of the deviation (MacGregor and Cinar, 2012) or to determine which fault has

occurred (Chiang et al., 2000). A widely used approach for fault diagnosis is the contribution

plot (Kourti and MacGregor, 1995; Westerhuis et al., 2000). If a fault is detected, the next step

is to identify potential fault-related variables. The variables with large contributions to the

T2
and SPE are considered most likely to be fault related. For a sample xi, the contribution

of the j-th variable xij to score Ta can be de�ned as follows (Miller et al., 1998):

contributiona,j = xij paj (2.7)

where paj is the j-th component of the a-th loading pa, while the contribution of xij to the

SPE can be de�ned as:

contributionj = x̃2
ij (2.8)

where x̃ij is the j-th component of the residual x̃i.

The contribution plot is categorized as a fault diagnosis approach in some works (He et al.,

2005; MacGregor and Cinar, 2012; Qin, 2012). It should be noted that although contribution
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plots can narrow down the search for fault-related variables, it could not explicitly diagnose

the root cause of faults (Chiang et al., 2000). Variables that have in�ated the monitoring

statistics are �rst determined by contribution plots, and then related to speci�c process

behaviour or disturbances. Thus it is referred to as an indirect approach to fault diagnosis that

replies on the interpretation of the plot (MacGregor and Cinar, 2012). Due to the limitation,

it is categorized as a fault isolation technique rather than a fault diagnosis technique by

Chiang et al. (2000).

In terms of fault diagnosis, Fisher discriminant analysis (FDA) is shown to have better

performance than PCA (Chiang et al., 2000). PCA looks for directions that can e�ciently

represent the data, while FDA focuses on the discrimination of data (He et al., 2005). In FDA,

the process data during faults are collected and categorized into classes, with each class

representing a speci�c fault. Dimensionality reduction is implemented with the separability

of the classes maximized. Observations can then be classi�ed by a discriminant function,

in a lower-dimensional space. By augmenting the observations with previous observations,

FDA is enabled to taken into account the series correlations of data, which is referred to as

the dynamic FDA (Chiang et al., 2001; Jiang et al., 2015b).

Other methods developed for fault diagnosis in process monitoring include the fault signa-

ture (Yoon and MacGregor, 2001), hierarchical contribution plots (Qin, 2003), causal map

combined with data-driven approach (Chiang and Braatz, 2003), trajectory loading and score

contribution plots (García-Muñoz et al., 2003), reconstruction based contribution (RBC)

(Alcala and Qin, 2009), and the framework integrating dynamic PCA, RBC and Granger

causality analysis (Li et al., 2016).

The contribution plots have been demonstrated to be very useful in many applications (Yoon

and MacGregor, 2001). They greatly help narrow the scope of potential fault-related variables.

Therefore, in this paper, the contribution plots for the score (eq 2.7) and SPE (eq 2.8) are

adopted for fault diagnosis. The trajectory contribution plot is also employed. Contribution

plots are used in this paper as an initial investigation of applying data-driven techniques to

supply chain monitoring. Other approaches, such as FDA, can also potentially be applied for

the fault diagnosis of supply chain systems.
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2.2.4 Dynamic PCA

The standard (static) PCA deals with correlated data that are time independent. When the

observations are time series, the auto-correlation and cross-correlation can be taken into

account by dynamic PCA (DPCA). DPCA uses the time lag shift technique to enable the PCA

model to capture dynamic behavior of a system (Ku et al., 1995). In DPCA, the observation

at time k is augmented by the l previous observations:

zk = [xT
k , xT

k−1, . . . , xT
k−l]

T
(2.9)

where l is the number of time lags.

DPCA then corresponds to PCA implemented on the following augmented matrix Z (Li et al.,

2016):

Z = [zl+1, zl+2, . . . , zN]
T =


xl+1 xl+2 . . . xN

xl xl+1 . . . xN−1
.
.
.

.

.

.

.
.
.

.

.

.

x1 x2 . . . xN−l



T

(2.10)

The augmented matrix can be equivalently expressed as Z = [Xl+1, Xl, . . . , X1] (Ku et al.,

1995), where Xk = [xk, xk+1, . . . , xk+N−l−1]
T

.

In DPCA models, the time lag needs to be taken into account when calculating the variable

contributions. The contribution of one variable to Ta and SPE is summed over the lags

(Huang and Yan, 2015), as shown in eq 2.11.

Contributionj = contributionj,t + contributionj,(t−1) + · · ·+ contributionj,(t−l) (2.11)

2.2.5 Supply chain monitoring using PCA/DPCA

The structure of a supply chain is shown in Figure 2.1. Generally, a supply chain consists

of suppliers, manufacturers, warehouses (distribution centers), retailers, and consumers
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(customers). At each agent, di�erent inventory management policies can be adopted (Axsäter,

2015). There are various types of �ows in a supply chain: material �ow, product �ow, and

service �ow which are from upstream to downstream; with information �ow and cash �ow

from downstream to upstream (Lee et al., 2002; Pundoor and Herrmann, 2006). In this paper,

the material �ow from upstream to downstream, and the order information �ow in the

opposite direction are considered.

Figure 2.1. The structure of a supply chain.

In process system monitoring, a linear dynamic process can be represented by the following

state-space equation (Russell et al., 2000; Jiang et al., 2015a):

x(t + 1) = Ax(t) + Bu(t) + w(t) (2.12a)

y(t) = Cx(t) + Du(t) + Ew(t) + v(t) (2.12b)

where x(t), u(t), y(t) are the state variables, inputs and outputs, respectively; w(t), v(t)

are independent white noise processes in the state equation eq 2.12a and output equation eq

2.12b, respectively; A, B, C, D, E are coe�cient matrices.

The dynamics of a supply chain system can also be modelled by the state-space model, which

is typically used in literature on the model predictive control (MPC) of supply chains. For

example, in Li and Marlin (2009), Subramanian et al. (2012), and Mastragostino et al. (2014),

the state-space model of supply chain is given as:

x(t + 1) = Ax(t) + Bu(t) + Cd(t) (2.13)

with some constraints on the variables. Depending on the de�nitions in di�erent works, the
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states variables x(t) could contain inventory levels and backorders; the inputs u(t) could

contain decision variables associated with material procurement, production, transportation

and sale quantities; and the disturbances d(t) could be the demands, yields and delays. In Li

and Marlin (2009), a feedback term is added to eq 2.13 to represent the di�erence between

the measured and predicted inventories.

The state-space models eq 2.12a and eq 2.13 imply the similarities between the process

systems and supply chain systems. And this relation is further strengthened by the work

of Subramanian et al. (2013), which models a supply chain node analogously to a two-tank

system, and use distributed MPC for supply chain optimization. Based on these works,

the operations of a supply chain could potentially be treated as a dynamic process, which

responses to the disturbances in the system. Due to the existence of disturbances, feedback

information, and uncertainty in the parameters, statistical methods can potentially be used

to monitor supply chain dynamics, just as in process systems. There is no obvious barrier

in extending statistical process monitoring to supply chain systems. From this perspective,

the ‘process variables’ of a supply chain, such as the time-varying market demands and

inventory levels, are not independent, but correlated. Hence the idea is to apply PCA to

analyze supply chain data. Assuming the information of all echelons and agents can be

obtained, the correlation of data indicates the potential for PCA in dimensionality reduction

and subsequent monitoring.

The procedure adopted for using PCA and DPCA for supply chain monitoring is presented

as follows:

1. Training step:

(1) Collect NOC data of the supply chain, such as inventory levels, market demands, and

the amount of products in transit;

(2) Preprocessing: augment data for DPCA; normalize the data to have zero mean and unit

variation for each variable;

(3) Perform PCA/DPCA, obtain the loadings and scores;
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(4) Calculate the monitoring statistics (T2
and SPE) of the NOC data;

(5) Determine the con�dence limits of T2
and SPE (Qin, 2003; Qin, 2012; Wang et al., 2016b).

2. Monitoring step:

(1) For new data, normalize it with the mean and standard deviation of each variable from

the training step;

(2) Project the new data into the PCS and RS to get scores and residuals;

(3) Calculate the T2
and SPE of the new data;

(4) Check whether T2
and SPE are both within the con�dence limits; if so, then the data can

be seen as normal; otherwise, there is an abnormal event, check the contribution plots to

identify the fault-related variables.

2.3 Supply Chain Simulation

In order to validate the e�ectiveness of PCA and DPCA in supply chain monitoring, the

simulation model of a supply chain is developed and the simulated data is collected for

analysis. This section gives a detailed description of the simulation model developed in this

paper.

2.3.1 The role and basics of supply chain simulation

Usually the optimal design of a supply chain network under uncertainty can be formulated

as a two-stage stochastic program (Tsiakis et al., 2001), or a robust/adaptive optimization

problem with more stages (Ning and You, 2019). Solving the optimization problem will

produce an optimal supply chain con�guration. However, it cannot tell what will happen

after the supply chain design is implemented under arbitrary scenarios (Lee et al., 2002). In
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comparison, simulation can help understand and evaluate the supply chain under di�erent

scenarios.

For example, inventory policies, such as (R, Q) and (s, S) policies with periodic or continuous

review, might be used for the inventory management in a multi-echelon supply chain in

reality (Axsäter, 2015). The (R, Q) policy requires that an order with lotsize Q be placed to

the upstream when the inventory position falls below the re-order point R. The (s, S) policy

is to maintain a target inventory level S when the inventory position falls below the re-order

point s. Simulation can help analyze the performance of a supply chain over a time period

when using di�erent inventory policies, even with time-varying re-order point. Wilson

(2007) uses simulation to study how the transportation disruptions a�ect the performance

of supply chain. Carvalho et al. (2012) use simulation to investigate di�erent mitigation

strategies when disruptions occur in the supply chain.

In order to validate the proposed supply chain monitoring method, this paper uses simulation

to generate supply chain data for analysis.

2.3.2 Supply chain simulation using Python

There are some softwares designed for supply chain simulation, such as Arena combined

with Microsoft Excel (Pundoor and Herrmann, 2006), AnyLogic (Ivanov, 2017), and Supply

Chain Analyzer (Lee et al., 2002). In this paper, the supply chain simulation is implemented

using the open-source programming language Python 3.7.

The simulation model is developed using the discrete-continuous combined modelling as

presented by Lee et al. (2002), where the supply chain elements can be classi�ed into two

groups, continuous and discrete. Inventory levels, order information and customer demands

are considered as continuous elements, while transportation between agents is considered as

discrete element. Object-oriented programming is implemented, which makes the simulation

model �exible to be customized for di�erent supply chains. The Python simulation model

can be categorized into two parts: (1) The Python modules where the classes for the supply

chain participants are de�ned. Each type of participant is de�ned as a class, while some
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participants share some common attributes and methods. These classes can be debugged

individually �rst before the systematic simulation. (2) The ‘main’ Python module where the

classes are imported, the supply chain structure is de�ned, and the simulation is run.

For example, the attributes and methods de�ned for the ‘Warehouse’ class is shown in Table

2.1.

Table 2.1. Attributes and methods de�ned for the ‘Warehouse’ class.

Attributes

name string, the name of this Warehouse

total_periods NumPy array, the time periods for which the simulation is

run

products list, contains the names of all products stored at this Ware-

house

product dictionary, created for each of the product in the ‘products’

list, containing information (key-value pairs) including in-

ventory level, demand, inventory policy, re-order point,

target inventory level, lot-size, order size, the amount of

product in transit, arrival time of order, etc.

Methods

__init__() initialize the attributes of the class

update() update the inventory pro�les after satisfying downstream

orders and receiving upstream shipments

review() review the inventory level, if the inventory level is below

the re-order point, place an order to upstream according to

the inventory policy

collect_data() collect data and save it as a 2-dimensional numpy array,

write it into a .txt �le, or comma-separate values (.csv) �le

plot() plot the pro�les

Figure 2.2 shows the causal loop diagram of the supply chain simulation model when all

the participants adopt the (s, S) inventory policy. The ‘inv’ is used as the attribute name for

inventory level for short. The ‘Retailer’ class satis�es the orders from the ‘Customer’, and

places orders to the ‘Warehouse’. Similarly, the ‘Warehouse’ orders from the ‘Factory’ and

satis�es the orders from ‘Retailer’. The ‘Factory’ orders raw materials from the ‘Supplier’,

manufactures the product and delivers it to the ‘Warehouse’. The ‘Supplier’ has raw material

in stock while no product. A waiting line (with an attribute name ‘waitline’) of a participant

is a list of its customers. It uses the �rst in, �rst out (FIFO) method, which means the �rst

order is �rst served.

29



Ph.D. Thesis - Jing Wang McMaster University - Computational Science and Engineering

Figure 2.2. The causal loop diagram of the supply chain simulation model.
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It is assumed that an agent does not place another order if there is an outstanding order

which has not arrived yet. Further demands are satis�ed using available stocks. The methods

update() and review() for the participants are given as follows, which contain the material

balance equations and show how the class attributes are updated at time period i.

Algorithm 2.1: Retailer.update(i):
Retailer.inv[i] = Retailer.inv[i-1] - Customer.demand[i]
if Retailer.order_ready == True then

Retailer.in_transit = Retailer.ordersize

Retailer.arrival_time = i + transportation_delay

Retailer.order_ready = False

end if
if i == Retailer.arrival_time then

Retailer.inv[i] = Retailer.inv[i] + Retailer.in_transit

Retailer.in_transit = 0

Retailer.outstand_order = False

end if

Algorithm 2.2: Retailer.review(i):
if Retailer.inv[i]≤ Retailer.reorder_point and Retailer.outstand_order == False then

(s, S) policy: Retailer.ordersize = Retailer.target_inv - Retailer.inv[i]
(r, Q) policy: Retailer.ordersize = Retailer.lotsize

Retailer.outstand_order = True

end if

The attribute ‘inv’ indicates the inventory level, which is de�ned by eq 2.14, in the same way

as de�ned by Axsäter (2015):

inventory level = stock on hand− backorders (2.14)

The backorders are the orders that have been placed but cannot be ful�lled yet due to a

shortage. For the Retailer, negative ‘inv’ means backorders. The Warehouse has a waiting

line for its customers, and the orders are satis�ed in a FIFO method. If the inventory is not

su�cient, then the rest of the orders are recorded as backorders. The backorders will be

satis�ed once su�cient inventory is available. The method Warehouse.update() is given

below. The review and replenishment of inventory for the Warehouse are similar to those of
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the Retailer, and hence they are not described here. The attribute ‘stock’ indicates the stock

on hand.

Algorithm 2.3: Warehouse.update(i):
while len(Warehouse.waitline) > 0 do

if Warehouse.stock[i] ≥Warehouse.waitline[0].ordersize then
Warehouse.stock[i] = Warehouse.stock[i-1] - Warehouse.waitline[0].ordersize

Warehouse.waitline[0].order_ready = True

Warehouse.waitline.pop(0)

else
break

end if
end while
Warehouse.backorder[i] = ∑ Retailer

in waitline
Retailer.ordersize

Warehouse.inv[i] = Warehouse.stock[i] - Warehouse.backorder[i]

The Factory uses a ‘make-to-order’ production system. It starts to manufacture only when an

order is received. It has raw materials in stock, while no excess product in stock. The waiting

line for the Factory is similar to that of the Warehouse, and the review and replenishment

of raw materials for the Factory are also similar to those of the Retailer. The Supplier is

similar to the Warehouse, while it is seen as the most upstream and provides raw materials.

The material balance equations for manufacturing at the Factory are given in the following

Factory.update() method, where Factory.material_BOM is the mass balance coe�cient of

material.

Algorithm 2.4: Factory.update(i):
for each material do

Factory.material_inv[i] = Factory.material_inv[i-1] - Factory.production[i] ×
Factory.material_BOM

end for
Factory.product_inv[i] = Factory.product_inv[i-1] + Factory.production[i]

The Python libraries used for developing the simulation model and analyzing data are listed

in Table 2.2. No other third-party library is used in the simulation.

For a supply chain shown in Figure 2.1, the pseudo-code of the simulation is presented in the

following procedure. The simulation starts from the most downstream and proceeds to the
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Table 2.2. Python libraries used in simulation and analysis.

Python library Purpose

numpy some pro�les such as inventory levels are stored as numpy arrays;

multivariate normal distribution

scipy the χ2
- distribution (scipy.stats.chi2) is used to calculate the con-

�dence limits of T2
and SPE

matplotlib.plot to plot the pro�les

pandas to store data as dataframes, which can then be saved as txt or csv

�les

sci-kit learn (sklearn) sklearn.preprocessing.StandScaler for preprocessing data, and

sklearn.decomposition.PCA for implementing PCA

most upstream echelon by echelon. First, the demands of the Customers in each time period

are generated, for example, as constant values or randomly from statistical distributions,

like multivariate Gaussian. Then the Retailers satisfy the demands of Customers, review

their inventories and place orders to the Warehouse according to the inventory policy. The

Retailers are appended to the waiting lines of the Warehouses. The Warehouses satisfy

the orders of Retailers in the waiting lines in a FIFO way, and place orders to the Factories.

Once a Retailer’s orders are satis�ed, it is moved out from the waiting line. The Factories

update the attributes in a similar way and manufacture products according to orders from

Warehouses. After that the Suppliers update.

2.3.3 PCA and DPCA using Python

The data analysis can be conducted in Python. In this paper, PCA is implemented using the

scikit-learn (Pedregosa et al., 2011). The scikit-learn, also known as sklearn, is a machine

learning library for Python, which provides various machine learning algorithms. The

application program interface (API) sklearn.preprocessing.StandScaler is used to preprocess

the collected supply chain data, and then the sklearn.decomposition.PCA is used to implement

PCA on the preprocessed data. As for DPCA, there is no o�-the-shelf API in scikit-learn,

therefore it is coded in Python. The supply chain data is augmented with previous time lags,

and then PCA is implemented on the augmented data by sklearn.decomposition.PCA.
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Algorithm 2.5: Supply chain simulation
import Customer, Retailer, Warehouse, Factory, Supplier
initialize the supply chain participants
generate Customer.demand
for i = 1 to total_periods do

for each Retailer do
Retailer.demand[i]← ∑downstream Customer.demand[i]
Retailer.update(i)
Retailer.review(i)

end for
for each Warehouse do

for each downstream Retailer of Warehouse do
Warehouse.waitline.append(Retailer)

end for
Warehouse.update(i)
Warehouse.review(i)

end for
for each Factory do

for each downstream Warehouse of Factory do
Factory.waitline.append(Warehouse)

end for
Factory.update(i)
Factory.review(i)

end for
for each Supplier do

for each downstream Factory of Supplier do
Supplier.waitline.append(Factory)

end for
Supplier.update(i)
Supplier.review(i)

end for
end for
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Also, sklearn.decomposition.PCA does not provide methods for calculating the Hotelling’s

T2
and SPE, nor the variable contributions. Therefore, the methods for calculating the

two statistics and plotting the variable contributions are coded in Python. The PCA model

containing all these methods is coded as a class.

2.4 Case Studies

2.4.1 Case study 1: A multi-echelon supply chain with

manufacturing process

In the �rst case study, a multi-echelon supply chain example with a manufacturing process

for a single product is investigated. The structure of this supply chain is shown in Figure 2.3.

It consists of 2 suppliers, 1 factory, 1 warehouse, 3 retailers and their customers. At the most

upstream are the suppliers, and the most downstream are the customers. The Supplier1 and

Supplier2 provide raw materials M1 and M2, respectively. The �nal product A is made from

M1 and M2 at the Factory, and the production scheme is 0.5M1 + M2 → A.

Figure 2.3. Case 1: a multi-echelon supply chain with manufacturing process.

The supply chain network in this case is similar to that of the famous “Beer Distribution

Game” (Sterman, 1989), but more complicated in some aspects. The beer game is designed for

role-playing simulation of a production and distribution system. They both have 4 echelons.
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The supply chain in the beer game is a serial system (Axsäter, 2015), having one agent for

each echelon. In Case 1, the wholesaler is not included, while multiple retailers and suppliers

are included, which makes the supply chain network more complex.

It is assumed that all the participants adopt the (s, S) inventory policy with continuous

review, which means the inventory is reviewed in every period. The demands of Customers

are generated from a multivariate Gaussian distribution (You and Grossmann, 2008; Ning

and You, 2017). The mean vector of the Gaussian distribution is [30, 60, 90]T , as given in

Table 2.3, and the covariance matrix is a randomly generated positive semi-de�nite ma-

trix: [6.23, 4.37, 4.47; 4.37, 5.62, 4.95; 4.47, 4.95, 6.18]. For each time period, the Retailers

satisfy the demand of Customers if su�cient inventory is available, otherwise backorders

are recorded; then they review the inventory and place an order to the Warehouse for re-

plenishment. The Warehouse orders products from the Factory. The Factory follows the

‘make-to-order’ policy, which means only when there is an incoming order from the Ware-

house, it starts to manufacture the product A. It is assumed that the Factory manufactures

at a �xed production rate, 400 units per time period, until the order is ful�lled. It has raw

materials in stock, but no excess product in stock. The Factory orders raw material M1 from

Supplier1 and M2 from Supplier2. The parameters of the supply chain, such as the re-order

points and target inventory levels, are listed in Table 2.3. The time interval of simulation

is one time period, and 600 time periods are simulated. The normal transportation time

between two agents is set as one time period.

Table 2.3. Parameters of supply chain.

Participant

demand of

A (mean)

initial stocks (units) target stocks (units) re-order points (units)

A M1 M2 A M1 M2 A M1 M2

Retailer1 30 300 – – 300 – – 100 – –

Retailer2 60 400 – – 500 – – 180 – –

Retailer3 90 400 – – 800 – – 200 – –

Warehouse – 4000 – – 5000 – – 2500 – –

Factory – 0 1000 2000 – 1500 3000 – 600 1200

Supplier1 – – 4000 – – 4000 – – 2000 –

Supplier2 – – – 6000 – – 8000 – – 2500

The demands of Customers at the 3 Retailers over the simulated time periods are shown in
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Figure 2.4a. It can be seen the demands �uctuate with time. Figure 2.4b shows the scatter

plot of each pair of the demands, which indicates the assumed positive correlation between

the demands of Customers. When the demand at one Retailer is high or low, the demands

at the other two Retailers also tend to be high or low. The simulated supply chain data are

collected, and the inventory pro�les of the agents are shown in Figure 2.5a. A total of 21

variables are collected, including the orders received at the Retailers and the Warehouse (4

variables), and the inventory levels of A, M1, and M2 of the agents (9 variables), and the

amount of products in transit or in processing (8 variables).

(a) Demands over the simulated time periods. (b) Demand versus demand for Retailer pairs.

Figure 2.4. Case 1: demands at the 3 Retailers.

The supply chain operation over 600 time periods is simulated and analyzed. Each time

period can be seen as 1 day. The NOC data from time period 0 to 400 is taken as the training

set, which is a matrix of 400 rows and 21 columns, denoted as Xraw
train. For PCA, Xraw

train is

mean centred and scaled to unit variance to get Xtrain. Then PCA is performed on Xtrain.

With PCA, 10 PCs are retained to achieve a R2
value (the ratio of variance explained) of

85%. For DPCA, the matrix Xraw
train is augmented with 2 time lags to get Xraw

train,aug, which has

21× 3 = 63 columns. It is then preprocessed to get Xtrain,aug, and 18 PCs are extracted to

achieve a R2
value of 82%. A testing set Xraw

test from time period 401 to 600 is compiled, and

also comprises NOC data. Xraw
test is preprocessed to get Xtest, using the means and standard

deviations obtained from the training set. Then Xtest is projected into the latent space using

the same transformation as that implemented on Xtrain.

The monitoring charts for the Hotelling’s T2
and SPE using PCA and DPCA are shown

in Figure 2.5b and Figure 2.5c, respectively. The con�dence limits are estimated from the
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training set and plotted as dashed lines. Since the supply chain data are not all normally

distributed, in order to reduce the false alarm rates, the signi�cance levels in eq 2.4 and eq 2.6

are tuned to 99% and 99.9%. Exceeding the 99% limit raises a warning that the supply chain

could be behaving abnormally, while exceeding the 99.9% limit raises an alarm that it is very

likely that some fault has occurred in the supply chain. It is observed that a small portion of

NOC samples slightly violate the con�dence limits, which are the false alarms. False alarms

are not uncommon in fault detection, as in the research of Russell et al. (2000) and Dong

and Qin (2018), for example. DPCA shows lower false alarm rate than PCA, which could

be potentially due to the signi�cant dynamics in the supply chain data, as can be seen in

Figure 2.5a. As shown by Ku et al. (1995), DPCA performs better than static PCA for dynamic

systems. In general, the statistics of testing set by DPCA are below the limits, which means

no unexpected event is detected and the testing data can be seen as normal.

Three fault scenarios are simulated and analyzed using PCA and DPCA.

Scenario 1: The �rst fault scenario is the transportation delay between two echelons, which

could lead to variations in the inventory levels of the a�ected participants. Suppose the order

placed by the Retailer2 to the Warehouse at time period 454 is delayed, and the transportation

time increases from 1 to 5 time periods. The simulated inventory pro�les of the agents are

shown in Figure 2.6a. The inventory level of the Retailer2 becomes low and backorder

situation occurs due to the delay.

The monitoring charts using PCA and DPCA are shown in Figure 2.6b and Figure 2.6c,

respectively. It can be seen that when the delay occurs, the SPE by DPCA exceeds its

limits, which means a large variation from the NOC is detected. In comparison, the SPE by

PCA is not able to detect the fault. In order to identify the fault-related variables, the SPE

contribution plot of a fault sample detected by DPCA is shown in Figure 2.7a. It can be seen

that the variables related to Retailer2’s inventory contribute the most to SPE, which implies

that they are most likely to be fault-related, and some unexpected event might have happened

at the Retailer2. The trajectory SPE contribution plot of these two abnormal variables is

given in Figure 2.7b. From the trajectory, the SPE contributions of the 2 variables increase

abnormally during the period of the fault. This helps narrow the scope of the root cause
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(a) Inventory levels.

(b) PCA.

(c) DPCA.

Figure 2.5. Case 1, NOC.
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diagnosis. The SPE falls below the limits after the Retailer2 returns to NOC.

Scenario 2: The second simulated fault scenario is a low production rate (or poor yield)

of the Factory. Suppose the production rate of the factory decreases from 400 to 150 units

per time period suddenly within time period 451–463 due to some problem. The inventory

pro�les of the agents are shown in Figure 2.8a.

The monitoring charts using PCA and DPCA are shown in Figure 2.8b and Figure 2.8c,

respectively. It can be seen that during the period with low production rate, the SPE by

DPCA exceeds its limit when the inventory level of the Warehouse becomes low, and the

orders from the Retailers cannot be satis�ed. This means that the e�ect of the poor yield of

the Factory on the supply chain is detected. In comparison, the SPE by PCA cannot detect

the fault. For diagnosis, the SPE contribution plot of an abnormal sample and the trajectory

SPE contribution plot using DPCA are shown in Figure 2.9a and Figure 2.9b, respectively. It

can be seen that the contribution of the variable related to the inventory level of Warehouse

is the largest. This implies that it is likely to have a large variation from the NOC, and

hence indicates the low yield problem of the Factory and its e�ect on the operation of the

Warehouse. The SPE falls below the limits after the supply chain returns to NOC. In terms

of the Hotelling’s T2
, PCA detects the fault while DPCA does not. This implies that PCA

takes this fault as a large variation from NOC in the PCS, while DPCA takes it as a large

variation in the RS.

Scenario 3: The third fault scenario is a raw material shortage of a supplier. It is simulated

by a shortage occurring at the Supplier1 during time period 498–519. Figure 2.10a shows the

inventory levels of the supply chain participants. Because of the shortage, the Factory cannot

get raw material ‘M1’ from the Supplier1 and has to stop manufacturing. The Warehouse

subsequently cannot get replenished, and a backorder situation occurs at the Retailer2.

The monitoring charts by PCA and DPCA are shown in Figure 2.10b and Figure 2.10c,

respectively. It can be seen that by DPCA, both the T2
and SPE raise an alarm when the

supplier’s inventory level becomes low and abnormal, which is at the beginning of the

stockout of the supplier. This means the abnormal behavior of the supply chain is detected

soon after the stockout occurs at the supplier, before it a�ects downstream agents. The T2
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(a) Inventory levels.

(b) PCA.

(c) DPCA.

Figure 2.6. Case 1, scenario 1: transportation delay.
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(a) Sample SPE contribution.

(b) Trajectory SPE contribution of fault-related variables.

Figure 2.7. Case 1, scenario 1: DPCA, SPE contribution plots.
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(a) Inventory levels.

(b) PCA.

(c) DPCA.

Figure 2.8. Case 1, scenario 2: low production rate.

43



Ph.D. Thesis - Jing Wang McMaster University - Computational Science and Engineering

(a) Sample SPE contribution.

(b) Trajectory SPE contribution of

fault-related variables.

Figure 2.9. Case 1, scenario 2: DPCA, SPE contribution plots.
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and SPE by PCA also pick up this fault. The SPE contribution plot of the abnormal sample

501 and the trajectory SPE contribution plot using DPCA are shown in Figure 2.11a and

Figure 2.11b, respectively. It can be seen that the contribution of the variable related to the

material in processing of Supplier1 is the largest, which implies it is likely to have a large

variation from the NOC. Hence, the e�ect of the shortage of Supplier1 on the supply chain is

detected. After the supply recovers, the supply chain returns to NOC, and the monitoring

statistics fall below the limits.

It is worth mentioning that the training data does not have to be contiguous in time. The

training set can be organized by removing fault data within some time periods and stacking

the NOC data. A comparison of the DPCA results using di�erent training sets while same

number of PCs is given in Figure 2.12. Figure 2.12a shows the inventory levels over the

simulated 1200 time periods, during which a shortage occurs twice at the Supplier1. The

result when taking samples 0–300 as the training set, and samples 801–1200 as the testing set

is shown in Figure 2.12b. The horizontal axes are labelled with a range of 0–700 continuously

to represent these samples. It can be seen that although the abnormality is detected, the SPE

of the NOC data in the testing set is generally higher than that of the training data. The

reason for this is that when the supply chain recovers to NOC after the shortage, the relation

between the variables and the operating status of the supply chain may change. Therefore,

an increase in SPE is observed. In comparison, when combining samples 0–150 and 650–800

as the training set, the SPE of the NOC data in the testing set remain close to that of the

training data, as shown in Figure 2.12c. This is because the NOC data after the shortage have

been included in the training set. The comparison indicates that organizing the training set

by removing fault data and stacking NOC data could help reduce over�tting to some extent.

Moreover, it implies that new NOC data can be included into the training set to update the

DPCA model.

From the analysis and results shown above, the faults like transportation delay, low produc-

tion rate, and supply shortage can be detected by the proposed supply chain monitoring

method using DPCA. The monitoring charts raise an alarm when the abnormality occurs.
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(a) Inventory levels.

(b) PCA.

(c) DPCA.

Figure 2.10. Case 1, scenario 3: supply shortage of Supplier1.
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(a) Sample SPE contribution.

(b) Trajectory SPE contribution plot.

Figure 2.11. Case 1, scenario 3: DPCA, SPE contribution plots.
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(a) Inventory levels.

(b) DPCA, using samples 0–300 as training set, 801–1200 as testing set.

(c) DPCA, using samples 0–150 and 650–800 as training set, 801–1200 as testing set.

Figure 2.12. Case 1: comparison of DPCA results using di�erent training data.
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2.4.2 Case study 2: Apackaged liquefiedgas supply chain

The second case study is based on the packaged lique�ed gas supply chain investigated by

Misra et al. (2019). The gas products are stored in containers (stock keeping units, SKUs).

The structure of this supply chain is shown in Figure 2.13. It consists of 3 echelons: (1) the

Customer locations, where the �lled SKUs are consumed and then empty SKUs are generated.

(2) the Warehouse, which stores both �lled and empty SKUs. Filled SKUs are transported to

the Customer locations to be replenished, and empty SKUs are collected from the Customer

locations. The empty SKUs are transported to the Plants for re�lling. (3) the Plants, where

the empty SKUs from the Warehouse are re�lled and then transported back.

The di�erence between this case study and the �rst case study is that the empty SKUs from

downstream are transported back upstream for re�lling. Therefore, there is both �ow of

�lled SKUs from upstream to downstream, and �ow of empty SKUs from downstream to

upstream.

Figure 2.13. Case 2: the packaged lique�ed gas supply chain from Misra et al. (2019).

In Misra et al. (2019), vendor managed inventory (VMI) is adopted to make sure the �lled SKU

inventory levels of the Customer locations are above the number of �lled SKUs currently

being used. VMI means the suppliers make the replenishment decision. In the simulation in

this paper, the inventory policy is implemented in the following method: when the inventory
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level of �lled SKUs of a product at a Customer location is below its ‘re-order point’, �lled

SKUs of this product are shipped from the Warehouse to the Customer location to replenish

the stock. The number of delivered �lled SKUs is exactly equal to the collected empty SKUs.

Simultaneous delivery and pickup is adopted for the Customer locations, which means the

trucks bring the �lled SKUs to the Customer location, and collect the empty SKUs from it in

the same time period of arrival, then bring them back to the Warehouse. All the delivered

products originate from the Warehouse and all the collected empty containers are sent back

to the Warehouse. When the inventory level of �lled SKUs of the Warehouse is below its

‘re-order point’, the empty SKUs are transported to the Plants for re�lling. Ships are used for

upstream transportation, while trucks are used for downstream distribution (Misra et al.,

2019). Hence in this paper, the transportation times of upstream and downstream are set as

3 time periods and 1 time period, respectively.

In order to simplify the simulation model, some assumptions are made here. Two types

of products A and B are transported across this supply chain, and re�lled at the Plant 1

and 2, respectively; there is no product in transit before time period 0; in normal operating

conditions, the transportation times are constant. The supply chain parameters used in this

paper, such as the initial inventory levels and re-order points, are listed in Table 2.4. The time

interval of simulation is one time period. The normal period is from 0 to 600 time periods.

The numbers of the SKUs in the supply chain are assumed to be �xed, and there are no new

or departing customers.

Table 2.4. Parameters of the supply chain.

Participant

demand (mean) initial �lled SKUs initial empty SKUs re-order points

A B A B A B A B

Customer1 10 15 100 150 0 0 50 80

Customer2 20 30 200 350 0 0 100 200

Customer3 30 50 300 450 0 0 180 250

Customer4 40 80 400 800 0 0 240 500

Customer5 50 100 600 1500 0 0 400 800

Warehouse – – 4000 8000 2000 3500 2000 4000

The demands for A and B at the 5 Customer locations are shown in Figure 2.14. They are

generated from multivariate Gaussian distributions, respectively, and then rounded into
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integers. The demand means the amount of �lled SKUs consumed at a Customer location in

each time period, which is equal to the amount of empty SKUs generated. The simulated

inventory pro�les of the agents for the two products are shown in Figure 2.15a and Figure

2.15b, respectively. The data of the Warehouse and Customer locations are collected for

analysis. There are a total of 60 variables collected, including the demands for A and B at

each Customer location (10 variables), inventory levels of �lled and empty SKUs for A and

B at each agent (total of 24 variables), and the amount of �lled and empty SKUs for A and B

in transit and in re�lling at the Plants (total of 26 variables).

The supply chain operation over 800 time periods is simulated and analyzed. Each time

period can be seen as 1 day. The NOC data during time period 10–600 is taken as the training

set. Using DPCA with 2 time lags, the raw data is augmented to 60× 3 = 180 variables,

and 50 PCs are extracted to achieve a R2
value of 95%. The data between period 601–800 is

taken as the testing set, which are also normal data. The monitoring charts for the D- and

Q- statistics using DPCA are shown in Figure 2.16. The 99% and 99.9% con�dence limits are

estimated from the training data and plotted as dashed lines. It can be seen that in NOC, the

two statistics of testing set are within the con�dence limits. This suggests no unexpected

event occurs in the supply chain and the testing data can be seen as normal.

(a) Demands versus time.
(b) Demand versus demand for Customer pairs.

Figure 2.14. Case 2: demands.
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(a) Product A.

(b) Product B.

Figure 2.15. Case 2, NOC: inventory levels.
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Figure 2.16. Case 2, NOC: DPCA

The transportation delay is stated as a supply chain risk by Chopra and Sodhi(Chopra

and Sodhi, 2004). In this case study, two fault scenarios are designed in the simulation

and analyzed: the transportation delay under Gaussian demands and seasonal demands,

respectively. In the analysis, DPCA is focused on.

Scenario 1: The �rst scenario is the transportation delay under multivariate Gaussian

demands. Suppose a problem occurs in the transportation link between the Warehouse and

the Customer location 2, and the transportation time of the shipment of product B to the

Customer location 2 at time period 650 increases from 1 day to 5 time periods. The inventory

pro�les of the agents are shown in Figure 2.17a and Figure 2.17b. It can be seen from Figure

2.17b that when the delay occurs, the Customer location 2’s inventory level of �lled SKUs of

product B becomes low and the empty SKUs pile up.

The monitoring charts using DPCA are shown in Figure 2.18. It can be seen that when the

delay occurs, the SPE by DPCA exceeds the 99.9% con�dence limit by a wide margin, which

means there is a large variation from the NOC. In order to identify the fault-related variables,

the SPE contribution plots by DPCA of a sample above the limit is presented in Figure 2.19.

From this plot, the variables related to the Customer location 2’s inventory of product B

contribute the largest to SPE, which implies they are most likely to be fault-related, and

some abnormal event might happened at Customer location 2. This helps in the diagnosis of

the root cause.
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(a) Product A.

(b) Product B.

Figure 2.17. Case 2, scenario 1: inventory levels.
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Figure 2.18. Case 2, scenario 1: DPCA.

Figure 2.19. Case 2, scenario 1: DPCA, sample SPE contribution.
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Scenario 2: The other fault scenario simulated is the transportation delay under seasonal

demands, which could cause a variation in the inventory level of the a�ected Customer

location. The seasonal demands at the 5 Customer locations are shown in Figure 2.20. For

this scenario, a total of 1095 time periods are simulated. The Customer location 2 experiences

a transportation delay for the shipment of product B from the Warehouse at time period 784.

The shipment is delayed to 5 time periods. The inventory pro�les of the agents are shown in

Figure 2.21. It can be seen from Figure 2.21b that at Customer location 2, the inventory level

of �lled SKUs of product B is low than usual when the delay occurs, and the empty SKUs

pile up.

The NOC data during time period 10–730 are taken as the training set, and the data during

time period 731–1095 are taken as the testing set. 45 PCs are retained to achieve a R2
value

of 95%. The monitoring charts using DPCA are shown in Figure 2.22. It can be seen that

during the period when the delay occurs, the SPE greatly exceeds its limit. This means the

e�ect of the delay on the inventory levels of the Customer location 2 is successfully detected.

For diagnosis, the SPE contribution plot of an abnormal sample is shown in Figure 2.23. It

can be seen that the contributions of variables related to the Customer location 2’s inventory

of product B are the largest. This implies the inventory of the Customer location 2 have a

large variation from the NOC, and hence the fault is identi�ed.

From the analysis and results shown above, the e�ect of transportation delay on the supply

chain, under Gaussian and seasonal demands, is detected by the proposed supply chain

monitoring method using DPCA.

2.5 Conclusion

In this paper, PCA and dynamic PCA are applied for the fault detection and diagnosis of

supply chain systems. In order to monitor the supply chain, data such as inventory levels,

market demands, and material in transit are collected. PCA and DPCA are employed to model

the NOC of the supply chain, and the Hotelling’s T2
and SPE are used to detect abnormal

behavior of the supply chain. Contribution plots are adopted to identify the fault-related
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(a) Demands versus time. (b) Demand versus demand for Customer pairs.

Figure 2.20. Case 2, scenario 2: seasonal demands at the 5 Customer locations.

variables when at least one index exceeds the limits. The proposed supply chain monitoring

method is validated on two case studies, one of which is a 4-echelon supply chain with single

product, and the other is a two-product supply chain with materials transported not only

from upstream to downstream but also in the opposite direction. A Python-based supply

chain simulator is developed to generate supply chain data. Di�erent scenarios are simulated

and analyzed. The results show that the SPE by DPCA is more reliable than the other

fault detection indices considered in this paper, while that by PCA is not sensitive enough.

Abnormal behavior of the supply chain, such as transportation delay, low production rate

and supply shortage, can be successfully detected by DPCA. The proposed method applies

to non-contiguous data and seasonal market demands. Moreover, the contribution plots can

help interpret the abnormality and identify the fault-related variables. Future work would

consider investigating the use of other data-driven methods, such the CVA and FDA, in fault

detection and diagnosis of supply chains.
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(a) Product A.

(b) Product B.

Figure 2.21. Case 2, scenario 2: inventory levels.
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Figure 2.22. Case 2, scenario 2: DPCA.

Figure 2.23. Case 2, scenario 2: DPCA, sample SPE contribution.
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3.1 Introduction

In Chapter 2, we developed a SCMo framework based on a data-driven method, PCA. The

study considers the SCMo problem from a process engineering perspective and adopts the

statistical process monitoring method for fault detection and diagnosis of supply chain

systems. The results show that PCA-based SCMo is able to detect and diagnose abnormal

supply chain operations. This technique of applying data-driven methods to SCMo is called

data-driven SCMo in this thesis. Although the study in Chapter 2 focuses on the PCA method,

it indicates the potential of applying other data-driven methods to SCMo. In this chapter,

we follow this research direction and continue exploring data-driven SCMo with a di�erent

statistical process monitoring method, canonical variate analysis (CVA).

It is worth mentioning that in the context of global supply chains, supply chain systems

are exposed to many risks, and SCMo is poised to gain more attention. An example that

shows the importance of being aware of the status of a supply chain is the COVID-19

pandemic, which occurred with an extremely low probability while has impacted global

supply chains adversely and signi�cantly since it started. The impacts of the COVID-19

pandemic on supply chains include spike or decline in demand of products, shortage of

supply and products, production disruption, delays in transportation and distribution, shift

of logistics pattern, and ripple e�ect (Queiroz et al., 2020; Chowdhury et al., 2021). The

consequences of supply chain disruptions have resulted in an increasing interest in supply

chain risk management (Fahimnia et al., 2015). It is important and often challenging to

assess, monitor, and raise awareness of supply chain risks (Heckmann et al., 2015; Tran

et al., 2018). The ability to detect and provide early warning of abnormal operations is vital

to SCM. Tracking the operating status of a supply chain and monitoring the uncertainties

continuously reveals the gap between planning and execution, thus helping to identify

potential problems and improvement strategies. For example, regular monitoring of the

obsolete inventory allows supply chain participants to take more proactive measures and

reduces the overall inventory cost (Chae, 2009). SCMo has become an integral part of SCM

and received much attention of both academics and practitioners. The goal of SCMo is to
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support decision-making through characterizing the normal operating conditions of a supply

chain, raising warnings of abnormal situations, identifying potential reasons, and providing

suggestions (Mele et al., 2005; Wang et al., 2020). Moreover, SCMo is considered to be a

critical component of supply chain visualization (Goh et al., 2013). Therefore, in this chapter,

we further investigate the use of data-driven methods to provide deeper insights to SCMo.

The methods we consider for SCMo are mainly statistical process monitoring (SPM) methods

that have been established in the process system engineering community. SPM, also known as

data-driven process monitoring, describes the area of applying data-driven and multivariate

statistical methods to fault detection and diagnosis for industrial processes (Russell et al.,

2000a; MacGregor and Cinar, 2012; Qin, 2012; Jiang et al., 2019). It has been well-established

and recognized in academia and industry over the past three decades. In comparison to

univariate methods, multivariate SPM methods have advantages such as providing more

precise process information and raising earlier warnings (Kourti and MacGregor, 1995;

Norvilas et al., 2000; MacGregor and Cinar, 2012). Classical data-driven methods include

PCA, partial least squares (PLS), CVA, as well as their variants (Kresta et al., 1991; Ku et al.,

1995; Russell et al., 2000b; Severson et al., 2016). PCA is a linear dimensionality reduction

technique that extracts uncorrelated components from cross-correlated data by maximizing

the variance explained. PCA-based SCMo has been investigated in Chapter 2. PLS is another

linear dimensionality reduction technique, while it deals with two groups of variables and

aims to maximizes the covariance between them in the reduced space. It is mainly used for

monitoring quality variables. CVA utilizes the state-space model of a system and discovers

the relationship between the past and future system data. The canonical states in a CVA

model are determined by maximizing the correlation between a linear combination of past

outputs and inputs and a linear combination of future outputs.

CVA is considered to provide a better representation of system dynamics, and to be a more

suitable method for monitoring dynamic systems than dynamic PCA and PLS in some works

(Odiowei and Cao, 2010; Jiang et al., 2015a; Jiang et al., 2015c; Ruiz-Cárcel et al., 2015; Lu

et al., 2018a). Therefore, in this chapter, we investigate a CVA-based SCMo method. The

main contributions of this chapter are:
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1. The development of a state-space model of a supply chain;

2. The application of CVA to SCMo;

3. A modi�cation to the Q-statistic of sparse CVA model based on the right Moore-Penrose

inverse;

4. An approach to hyperparameter tuning for the sparse CVA method;

5. A comparative study on data-driven SCMo based on CVA and PCA, in terms of dimen-

sionality reduction, false alarm rate, missed detection rate, and detection delay.

The remainder of this chapter is organized as follows. Section 3.2 presents a literature

review on SCMo and the CVA method. Then, the data-driven SCMo method based on CVA is

proposed in Section 3.3. In Section 3.4, two case studies are presented, and the performance

of the proposed method is assessed and compared with dynamic PCA. The conclusion is

given in Section 3.5.

3.2 Literature Review

The data-driven SCMo proposed in this chapter involves SCMo and a data-driven method,

CVA. Relevant literature for the two elements are reviewed in Section 3.2.1 and Section 3.2.2,

respectively.

3.2.1 Supply chain monitoring

The literature review in Chapter 2 focused on data analytics in supply chain, rather than

SCMo. In this section, a comprehensive review of SCMo in the current literature is presented

as follows. Lau et al. (2002) proposed a fuzzy logic scheme to monitor the performance of

suppliers and adjust the next order quantity based on historical data. The criteria considered

are the product quality and delivery time. Bansal et al. (2005) designed an agent-based

framework for the supply chain disruption management system. This system monitors key
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performance indicators (KPIs) of a supply chain, such as inventory and throughput, and

identi�es the potential causes for the alarms using causal models. Bae and Seo (2007) focused

the development of an integrated architecture of supply chain process modelling, execution

and monitoring based on business process management techniques. They proposed a role-

based supply chain process monitoring model where each supply chain participant is de�ned

an access level of monitoring information. Fei and Wang (2008) proposed a supply chain

monitoring and early-warning method based on the system dynamics model of supply chain.

A recurrent neural network that predicts the dynamic behaviour of indicators acts as the

real-time monitoring engine. Chae (2009) proposed a list of primary and secondary KPIs

for measuring supply chain performance, and suggested that the supply chain operation be

overseen by a cross-functional group through monitoring the proposed KPIs. This group

also takes the lead in identifying the root causes of events detected by low-performing KPIs,

communicating with responsible units, and elaborating improvement strategies. Zhou and

Rong (2010) proposed a multi-level SCMo model based on the Integration De�nition for

Function Modelling (IDEF0) method. A supply chain IDEF0* model is developed based on

IDEF0. This structured analysis approach incorporates the characteristics of supply chain

and models the system events and information �ow. Fernández et al. (2012) presented a

model-driven development method for generating the monitoring component within the

supply chain event management (SCEM) system. The monitoring model predicts disruptive

events by analyzing the impact of the resource attributes and environment parameters

on the order attributes. Goh et al. (2013) developed a supply chain visualization platform

with real-time risk monitoring based on multi-hierarchical modular design. The platform

visualizes the spatio-temporal connectivity patterns of supply chain entities, and monitors the

logistics, inventory, order and manufacturing information, as well as real-time risk-related

information such as natural disasters. Irizarry et al. (2013) proposed a visualization system

for monitoring resources in the construction SCM through integrating building information

modelling and geographic information systems. The system keeps track of the status of

materials within the supply chain and generates warning signals to ensure timely delivery.

Fernández et al. (2015) designed a multi-agent SCMo system for detecting and predicting

disruptive events. The system consists of a set of structured autonomous agents that are able
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to concurrently monitor orders and resources in di�erent schedules. McKinney et al. (2015)

studied the development and application of container monitoring devices for the tracking

of supply chain systems. They showed that supply chain monitoring and visibility bring

not only short-term bene�ts such as awareness of actual real-time terminal activities, but

also long-term bene�ts such as more reliable end-to-end service to businesses. Jiang et al.

(2017) proposed a SCMo framework composed of interacting components. Data associated

to real-time inventory, order and transportation information, machine status, supply chain

plans and situations are collected. An alert generator propagates the detected deviation

on one product to associated products to assess the consequence, and sends the alert for

noti�cation, analysis and solution. Blos et al. (2018) presented a framework for modelling

and monitoring supply chain disruptions using Petri net and agent-based model techniques.

Probabilistic disruption scenarios are generated based on historical database to foresee the

occurrence and duration of potential supply chain disruptions. The agent-based model is

adopted to derive mitigation actions and evaluate the impact of the disruptions.

Mele et al. (2005) and Wang et al. (2020) considered the SCMo problem from a process

engineering perspective and adopted the SPM methods. Mele et al. (2005) investigated the

performance of a multi-scale delay adjusted PCA method in monitoring a supply chain

network simulated by an event-driven model, and obtained promising results. Wang et al.

(2020) investigated the fault detection and diagnosis of supply chain systems using dynamic

PCA and agent-based modelling. This study shows that PCA-based monitoring statistics

and contributions can detect and diagnose abnormal supply chain operation caused by

transportation delay, poor manufacturing yield and supply shortage. This technique of

applying data-driven methods to SCMo is called data-driven SCMo in this chapter.

3.2.2 Data-driven process monitoring based on CVA

CVA, also known as canonical correlation analysis (CCA) in the statistics community, is

a data-driven method for multivariate statistical analysis (Russell et al., 2000a; Hardoon

et al., 2004). It was introduced to system and process identi�cation by Larimore (1990) and

Schaper et al. (1994), investigated for SPM later (Larimore, 1997; Wang et al., 1997; Negiz

73



Ph.D. Thesis - Jing Wang McMaster University - Computational Science and Engineering

and Çinar, 1997; Russell et al., 2000b), and has received wide attention (Odiowei and Cao,

2010; Ruiz-Cárcel et al., 2015; Ruiz-Cárcel et al., 2016; Jiang et al., 2015a; Jiang et al., 2015b;

Jiang and Braatz, 2017; Severson et al., 2016).

Negiz and Çinar (1997) demonstrated the ability of CVA in dealing with the cross-correlation

and autocorrelation in data. This study showed CVA can determine the minimal state order

for describing a dynamic system, while classical PCA and PLS are unable to identify it by

non-zero eigenvalues or singular values. Russell et al. (2000b) compared the performance of

DPCA and CVA using the Tennessee Eastman process. The results show that CVA-based

residual monitoring statistics usually achieve smaller detection delays than DPCA, with

properly adjusted control limits. Simoglou et al. (2002) investigated the performance of

CVA and PLS in the monitoring of a continuous stirred tank co-polymerisation reactor. It

is shown that the two approaches generally achieve comparable results in fault detection,

while CVA has fewer false alarms. Moreover, the statistics based on the output residuals

are found to be the most reliable, where the two approaches perform equally well. Juricek

et al. (2004) investigated process monitoring based on the multivariate state-space model

identi�ed by CVA. A fault detection method based on the local statistic for canonical variables

is proposed, and the comparison with the Kalman �lter residuals and canonical variable

residuals showed its sensitivity for detecting process changes. Treasure et al. (2004) pointed

out that a limitation of DPCA is that the model size can be considerable when the process is

complex and a large number of process variables are involved. This makes it more di�cult

for fault diagnosis using contribution plots, given that time-lagged values are involved. By

comparison, through integrating PCA into subspace model identi�cation, signi�cant fewer

variables are needed. Odiowei and Cao (2010) proposed a kernel density estimation method

to determine the upper control limits of the CVA monitoring statistics. This method is more

appropriate for the monitoring of nonlinear dynamic process where the statistics violate

the Gaussian assumption, and achieves better performance than dynamic PCA and PLS.

Jiang et al. (2015a) proposed CVA-based variable contributions based on the monitoring

statistics in the canonical state and residual spaces for fault identi�cation. The fault-related

variables are classi�ed into state-space and residual-space faulty variables, which provides

insights into the characteristics of the process and faults. Jiang et al. (2015b) used CVA to
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quantify the dissimilarity among the causal dependencies, which are the feature measures

generated from the original process data to facilitate the monitoring of process correlation

structures. Ruiz-Cárcel et al. (2015) designed a benchmark case for assessing the performance

of SPM techniques based on an industrial scale experimental multiphase �ow facility and

arti�cially seeded faults. It is demonstrated that CVA can be e�ectively applied for monitoring

real complex systems, and the performance of CVA including Kernel Density Estimators is

superior to PCA and PLS methods in terms of detection rate, false alarm rate and detection

time. The case study is further investigated by Ruiz-Cárcel et al. (2016) to examine the

system identi�cation capability of CVA. CVA is adopted to identify the system not only

under normal operating conditions, but also under faulty conditions to estimate performance

degradation and predict the behaviour of a faulty system. Jiang and Braatz (2017) proposed

two monitoring statistics to measure the variation of dynamic correlations in the state

and residual spaces of CVA model. The pro�ciency of monitoring is improved by utilizing

e�ective feature representation of the canonical correlation with reduced redundancy in the

feature space. Lu et al. (2018b) proposed a sparse CVA method that is applicable when the

sample covariance matrices are highly ill-conditioned or even singular. This method has

the advantages of sparse canonical vectors in interpreting the process and promoting the

identi�cation of faulty variables.

In general, PCA and PLS are limited in their ability to generate accurate models for dynamic

processes, even though the observation vector has been augmented with lagged data of

process variables (Odiowei and Cao, 2010; Jiang et al., 2015a; Jiang et al., 2015c; Lu et al.,

2018a). Thus, the contribution plots based on them have limited ability in fault diagnosis. To

this end, fault detection and diagnosis based on state-space models have been investigated

to better deal with the process dynamics. CVA can outperform dynamic PCA and alternative

identi�cation methods in some case studies. CVA �nds the direction that yields maximum

correlation information, thus it can achieve a similar prediction accuracy to PLS using fewer

latent variables (Yao and Gao, 2008).

Based on the literature review, we found that although many approaches have been proposed,

data-driven SCMo by considering the supply chain as a system from a process system point

of view has not been investigated to a satisfactory extent. In this chapter, we focus on the
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investigation of data-driven SCMo. Considering the advantages of CVA, this work aims to

extend the current research on SCMo through investigating the use of CVA for data-driven

SCMo. As each node of the supply chain network generates data, the data-driven SCMo

method extracts useful information from supply chain data. The proposed CVA-based SCMo

method falls within the range of descriptive analytics. The goal is to support decision-making

through raising alarm when the supply chain is abnormal when the fault has a�ected the

operation of supply chain (Mele et al., 2005).

3.3 Data-driven SCMo Based on CVA

This section introduces the proposed data-driven SCMo method using CVA. Section 3.3.1

describes the methodology of CVA for SPM, and the monitoring statistics and their con�dence

limits. Section 3.3.2 presents the method of using CVA for SCMo and the state-space model

of a supply chain. Section 3.3.3 describes the hyperparameter tuning method used in this

work.

3.3.1 Statistical process monitoring using CVA

As a data-driven method, CVA discovers the relationship between two group of variables

and constructs a model from data. Consider two sets of process variables x ∈ Rm
and

y ∈ Rn
. The historical data for x and y over N time periods are denoted as X =

[x(1), x(2), . . . , x(N)]T ∈ RN×m
and Y = [y(1), y(2), . . . , y(N)]T ∈ RN×n

, respectively.

Assume X and Y have been preprocessed to have zero means. The sample covariance ma-

trices of X and Y, Σxx and Σyy, and the sample cross-covariance matrix between X and Y,

Σxy, are calculated as:

Σxx =
1

N − 1
XTX, Σyy =

1
N − 1

YTY, Σxy =
1

N − 1
XTY (3.1)

CVA aims to �nd a pair of canonical vectors α ∈ Rm
and β ∈ Rn

to construct projections of
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x and y, which are αTx and βTy, such that the correlation between them is maximized. This

results in the following optimization problem (Hardoon et al., 2004; Odiowei and Cao, 2010;

Yang et al., 2021):

max
α,β

corr(αTx, βTy) =
αTΣxyβ√

αTΣxxα
√

βTΣyyβ
=

αTXTYβ√
αTXTXα

√
βTYTYβ

(3.2)

In the above optimization problem (3.2), rescaling α or β does not a�ect the value of the

objective function (Hardoon et al., 2004). Therefore, problem (3.2) can be written as (Hardoon

et al., 2004; Yang et al., 2021):

max
α,β

αTΣxyβ

s. t. αTΣxxα = 1

βTΣyyβ = 1

(3.3)

or equivalently (Witten et al., 2009; Lu et al., 2018b):

max
α,β

αTXTYβ

s. t. αTXTXα ≤ 1, βTYTYβ ≤ 1
(3.4)

Letting u = Σ1/2
xx α, v = Σ1/2

yy β, the above optimization problem (3.3) can be written as

(Odiowei and Cao, 2010; Yang et al., 2021):

max
u,v

uTΣ−1/2
xx ΣxyΣ−1/2

yy v

s. t. uTu = 1

vTv = 1

(3.5)

Denote Σxy = Σ−1/2
xx ΣxyΣ−1/2

yy . The Lagrangian associated with the constrained optimiza-

tion problem (3.5) can be formulated as (Yang et al., 2021):

L(u, v, λ1, λ2) = uTΣxyv− λ1

2
(uTu− 1)− λ2

2
(vTv− 1) (3.6)
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where λ1 and λ2 are the Lagrange multipliers associated with the constraints.

Taking the partial derivatives and setting them equal to 0, we have:

∂L
∂u

= Σxyv− λ1u = 0

∂L
∂v

= ΣT
xyu− λ2v = 0

(3.7)

Multiplying the above two equations by uT
and vT

on the left, respectively, we have:

uTΣxyv− λ1uTu = 0

vTΣT
xyu− λ2vTv = 0

(3.8)

Since uTu = vTv = 1, from (3.8), we have uTΣxyv = λ1 = λ2. Denote λ1 = λ2 = λ; then

Σxyv = λu

ΣT
xyu = λv

(3.9)

From Equation (3.9), we have:

ΣT
xyΣxyv = λΣT

xyu = λ2v

ΣxyΣT
xyu = λΣxyv = λ2u

(3.10)

Equation (3.10) implies that u is the eigenvector of ΣxyΣT
xy, i.e., Σ−1/2

xx ΣxyΣ−1
yy ΣyxΣ−1/2

xx ,

corresponding to λ2
; and v is the eigenvector of ΣT

xyΣxy, i.e., Σ−1/2
yy ΣyxΣ−1

xx ΣxyΣ−1/2
yy , cor-

responding to λ2
. This indicates that u and v are the left and right singular vectors of Σxy

corresponding to the singular value λ, respectively (Klema and Laub, 1980; Odiowei and

Cao, 2010; Yang et al., 2021).

Furthermore, notice that uTΣxyv = λ is the objective function to be maximized in problem

(3.5). This means the solution u and v are the singular vector corresponding to the largest

singular value. Then, α and β are computed by α = Σ−1/2
xx u and β = Σ−1/2

yy v, respectively.
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In this way, the problem (3.3) is solved.

The linear combinations αTx and βTy are referred to as the canonical variables (Jiang et al.,

2015a; Jiang et al., 2015b). If more than one pair of canonical variables need to be extracted,

then the vectors u and v are computed according to a descending order of the singular values.

Thus, the CVA problem can be solved by the following singular value decomposition (SVD):

Σxy = Σ−1/2
xx ΣxyΣ−1/2

yy = UΣVT
(3.11)

where Σ is a m×n matrix with the singular values of Σxy on its diagonal; U = [u1, u2, . . . , um]

and V = [v1, v2, . . . , vn] are orthogonal matrices with their �rst min(m, n) columns being

the corresponding left and right singular vectors.

Assume that we retain d pairs of canonical variables, i.e., we retain the �rst d (d ≤ min(m, n))

columns of U and V. Then, for i = 1, 2, . . . , d, we have

xi
d = αT

i x = uT
i Σ−1/2

xx x

yi
d = βT

i y = vT
i Σ−1/2

yy y
(3.12)

where ui and vi are the singular vectors corresponding to λi.

The d pairs of canonical variables are expressed as xd = [x1
d, x2

d, . . . , xd
d]

T
and yd =

[y1
d, y2

d, . . . , yd
d]

T
. Denote Ud = [u1, u2, . . . , ud] and Vd = [v1, v2, . . . , vd]. Let

Jd = [α1, α2, . . . , αd]
T = UT

d Σ−1/2
xx

Ld = [β1, β2, . . . , βd]
T = VT

d Σ−1/2
yy

(3.13)

Then, the canonical variables can be computed by xd = Jdx and yd = Ldy.

For a sample x(t) in X, xd(t) = Jdx(t), and Xd = [xd(1), xd(2), . . . , xd(N)]T = XJT
d . The

sample covariance matrix of xd can be calculated as

Σd
xx =

1
N − 1

XT
d Xd = JdXTXJT

d = UT
d Σ−1/2

xx ΣxxΣ−1/2
xx Ud = Id (3.14)
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where Id ∈ Rd×d
is an identity matrix.

Similarly, Σd
yy = Id. This means Jd transforms the variables in x into mutually uncorrelated

canonical variables, and Ld transforms the variables in y into mutually uncorrelated canonical

variables. Meanwhile, the canonical variables in xd and yd are pairwise correlated.

The use of CVA for data-driven process monitoring is based on the state-space model of a

system, which can be expressed as follows:

x(t + 1) = Ax(t) + Bu(t) + v(t)

y(t) = Cx(t) + Du(t) + Ev(t) + w(t)
(3.15)

where t is the time period, x(t) is a k-order state vector; u(t) ∈ Rmu
and y(t) ∈ Rmy

are

the input and output of the system, respectively; v(t) and w(t) are independent white noise

processes.

Constructing a CVA model means �nding the best linear combinations of the past and future

observations such that the correlation between them is maximized (Odiowei and Cao, 2010;

Jiang et al., 2015a). For period t, the past vector p(t) comprises of the system outputs and

inputs during the past l periods, and the future vector f (t) comprises of the system outputs

during the h periods starting from period t:

p(t) = [yT(t− 1), yT(t− 2), . . . , yT(t− l), uT(t− 1), uT(t− 2), . . . , uT(t− l)]T ∈ Rnp

f (t) = [yT(t), yT(t + 1), . . . , yT(t + h− 1)]T ∈ Rn f

(3.16)

Here, np = l(mu + my), and n f = hmy. The matrices for past and future information, P

and F, are constructed by stacking p(t) and f (t) as follows:

P = [p(l + 1), p(l + 2), . . . , p(N − h)]T

F = [ f (l + 2), f (l + 3), . . . , f (N + 1− h)]T
(3.17)

The dimensions of P and F are R(N−l−h)×(mul+myl)
and R(N−l−h)×(myh)

, respectively. Then,

the CVA problem for system (3.15) is obtained by substituting matrices X and Y in problem

80



Ph.D. Thesis - Jing Wang McMaster University - Computational Science and Engineering

(3.3) with P and F, respectively. And the resulting SVD problem is obtained by substi-

tuting matrices Σxx, Σyy, and Σxy in problem (3.11) with Σpp, Σ f f , and Σp f , respectively.

Dimensionality reduction is achieved by retaining the �rst d canonical states (CSs), i.e.,

xd(t) = Jd p(t) = UT
d Σ−1/2

pp p(t), where Ud contains the �rst d columns of U. The process

monitoring statistics can be de�ned based on xd(t).

It should be noted that according to Equation (3.11), building a CVA model requires computing

the inverse of Σ1/2
pp and Σ1/2

f f . In other words, CVA implicitly assumes that Σpp and Σ f f are

invertible. If at least one of these two matrices is singular and cannot be inverted, CVA fails

immediately. Even if they are ill-conditioned, computational errors exist and the monitoring

statistics can be overly sensitive (Lu et al., 2018b). This problem is found to occur when

we apply the CVA method to supply chain data, where the two matrices are not invertible.

Therefore, a model that can work with singular Σpp or Σ f f is needed.

In this chapter, we consider the use of the sparse CVA (SCVA) method (Lu et al., 2018b).

SCVA is a process monitoring method proposed based on a penalized matrix decomposition

method for sparse CCA (Witten et al., 2009; Lu et al., 2018b). The SCVA problem is derived

from the classical CVA problem. In problem (3.4), substituting X and Y with P and F yields:

max
α,β

αTPTFβ

s. t. αTPTPα ≤ 1, βTFTFβ ≤ 1
(3.18)

Then, through approximating the sample covariance matrices PTP and FTF with the identity

matrices, the following optimization problem is obtained:

max
α,β

αTPTFβ

s. t. αTα ≤ 1, βTβ ≤ 1
(3.19)
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Next, two extra constraints are imposed on the l1-norms of α and β to enforce their sparsity:

max
α,β

αTPTFβ

s. t. ‖α‖2 ≤ 1, ‖β‖2 ≤ 1, ‖α‖1 ≤ c1, ‖β‖1 ≤ c2

(3.20)

Problem (3.20) is the optimization problem associated with a SCVA model (Witten et al.,

2009; Lu et al., 2018b). Problem (3.19) gets rid of the singular covariance matrices through

an approximation. It has been shown that in other high-dimensional problems, treating the

covariance matrix as diagonal can yield good results (Witten et al., 2009). The two extra

constraints in problem (3.20) restrict α and β to contain only fewer nonzero components

by setting upper bounds on the summation of absolute values of the components of them.

The sparse canonical vectors obtained in this way can help reveal important relationships

between process variables, and strengthen the contributions of major fault-related variables,

thus improving fault identi�cation. SCVA is shown to be able to achieve better fault detection

performance than CVA for the Tennessee Eastman process, and to have advantage in singling

out faulty variables (Lu et al., 2018b).

The solutions of problem (3.20) can be e�ciently computed by a penalized matrix decompo-

sition, Algorithm 3.1 (Witten et al., 2009; Lu et al., 2018b). The algorithm takes the matrices

P and F as inputs and returns the matrices Jd and Ld. There are 3 hyperparameters that

need to be speci�ed for the algorithm to work, which are the number of canonical states to

extract, d, and the sparsity parameter c1 and c2. The algorithm begins with computing the

�rst pair of canonical vectors α1 and β1 by an iterative method. After α1 and β1 are obtained,

the matrix Z1 = PTF is de�ated to get Z2
, and the second pair of canonical vectors α2 and

β2 are computed based on the de�ated matrix. This process repeats until d pairs of canonical

vectors are obtained. In Algorithm 3.1, S(a, c) = sign(a)(|a| − c)+ is a soft-thresholding

function, with sign(a) returns the sign of the elements of vector a, and x+ returns x if x > 0

and 0 otherwise.

For classical CVA, the Hotelling’s T2
statistic can be used to measure the variation within

the canonical state space, which is de�ned as T2
d (Russell et al., 2000a; Russell et al., 2000b;
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Algorithm 3.1: SCVA algorithm (Witten et al., 2009; Lu et al., 2018b)

Data: P, F
Result: Jd, Ld
Parameters :d, c1, c2

1 Z1 ← PTF
2 for k = 1, 2, . . . , d do
3 Initialize v with ‖v‖2 = 1
4 while not converge do
5 u← S(Zkv,∆1)

‖S(Zkv,∆1)‖2
where ∆1 = 0 if it results in ‖u‖1 ≤ c1; otherwise, ∆1 is

chosen by a binary search such that ‖u‖1 = c1

6 v← S((Zk)Tu,∆2)
‖S((Zk)Tu,∆2)‖2

where ∆2 = 0 if it results in ‖v‖1 ≤ c2; otherwise, ∆2 is

chosen by a binary search such that ‖v‖1 = c2
7 end
8 γk ← uTZv, αk ← u, βk ← v
9 Zk+1 ← Zk − γkuvT

10 end
11 Jd ← [α1, . . . , αd]

T, Ld ← [β1, . . . , βd]
T, D ← diag(γ1, . . . , γd)

Jiang et al., 2015a; Jiang et al., 2015b):

T2
d (t) = xT

d (t)xd(t) (3.21)

For quantifying the variation in the residual space, the following T2
r statistic can be de�ned

(Russell et al., 2000b; Jiang et al., 2015a; Jiang et al., 2015c):

T2
r (t) = xT

e (t)xe(t)

where xe(t) = Je p(t) = UT
e Σ−1/2

pp p(t), with Ue containing the last e = np − d columns of

U.

Alternatively, a Q-statistic, Q = rT(t)r(t), can be de�ned to measure the variation in the

residual space, where r(t) is the residual vector. r(t) can be de�ned as r(t) = (I− JT
d Jd)p(t)

(Russell et al., 2000a; Russell et al., 2000b), or r(t) = (I −UdUT
d )Σ

−1/2
pp p(t) (Odiowei and

Cao, 2010; Samuel and Cao, 2015; Ruiz-Cárcel et al., 2015; Ruiz-Cárcel et al., 2016).
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Given a signi�cance level α, the con�dence limits for T2
d and T2

r can be estimated using the

F-distribution:

T2
d,α =

d(N2 − 1)
N(N − d)

Fα(d, N − d)

T2
r,α =

e(N2 − 1)
N(N − e)

Fα(e, N − e)
(3.22)

where d is the number of canonical states, and N is the number of samples. Usually α =

95% or 99% is used. It should be noted that T2
r can be overly sensitive due to the matrix

inversion. Thus its con�dence limit should be adjusted before applying the statistics for

process monitoring (Russell et al., 2000b; Lu et al., 2018b).

The canonical states obtained by SCVA may be not mutually uncorrelated due to the l1
constraints. Therefore, the T2

d statistic is de�ned with the covariance matrix taken into

account (Lu et al., 2018b):

T2
d (t) = xT

d (t)Λ
−1xd(t) (3.23)

where Λ is the covariance matrix of canonical state xd(t) computed from training data. The

con�dence limit of T2
d can be estimated by using a F-distribution similar to T2

d in Equation

(3.22).

For SCVA, the Q-statistic that measures the variation in the residual space is calculated based

on a reconstructed vector p̂(t) = J+d xd(t). According to Lu et al. (2018b), J+d = (JT
d Jd)

−1 JT
d

is the Moore-Penrose pseudoinverse of Jd. The residual is then calculated as:

r(t) = p(t)− p̂(t) = [I − J+d Jd]p(t) (3.24)

It is worth mentioning that Jd ∈ Rd×np
. Therefore, if d < np, then rank(JT

d Jd) ≤ d < np.

Hence, JT
d Jd ∈ Rnp×np

is not invertible, and the above J+d is unavailable. This implies

that the left Moore-Penrose pseudoinverse may be not applicable under this circumstance.

Note that Jd JT
d ∈ Rd×d

is invertible, thus in this chapter, we use the right Moore-Penrose

pseudoinverse of Jd, J+d = JT
d (Jd JT

d )
−1

(Barata and Hussein, 2012), to calculate the residual:

r(t) = p(t)− p̂(t) = [I − JT
d (Jd JT

d )
−1 Jd]p(t) (3.25)
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The con�dence limit of Q corresponding to a signi�cance level α, denoted as Qα, is deter-

mined in such way that a (1− α) portion of the training samples are below it. T2
d and Q are

used as a pair to indicate signi�cant deviation from the normal operating conditions (NOC).

An alarm is raised when at least one of them exceeds the con�dence limit. This is de�ned by

a overall measure Soverall (Lu et al., 2018b):

Soverall =

1, if T2
d > T2

d,α or Q > Qα

0, otherwise

(3.26)

If Soverall = 1, then the SCVA model raises an alarm. When a fault is detected, the next step is

to identify potential fault-related variables. A widely used approach for fault diagnosis is the

contribution plot (Kourti and MacGregor, 1995; MacGregor and Cinar, 2012). The variables

with large contributions to the deviation of monitoring statistics are considered most likely

to be fault related. This greatly helps to narrow the scope of potential fault-related variables.

As de�ned in Equation (3.16), a sample p(t) comprises of the input and output variables over

l time lags. Therefore, the contribution of an input variable uk in the state space is calculated

as a sum of the contribution of corresponding elements over the l lags (Lu et al., 2018b):

Cd
uk
(t) =

l

∑
j=1

xT
d (t)Λ

−1uk(t− j)Jd,kj (3.27)

where k j is the index of the column of Jd that corresponds to the lagged variable uk(t− j).

The contribution in the residual space is calculated as (Lu et al., 2018b):

Cr
uk
(t) =

l

∑
j=1

rT(t)uk(t− j)Je,kj (3.28)

where Je = I − J+d Jd, and k j is the index of the column of Je that corresponds to the lagged

variable uk(t− j).

The contributions of a output variable yk are calculated analogously. In this chapter, the

combined contribution is calculated as
1
2

(
|Cd

uk
(t)|+ |Cr

uk
(t)|
)

to facilitate visualization by
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the contribution plot.

3.3.2 State-space model of supply chain

As the CVA-based process monitoring method is based on the assumption of a state-space

model of the system, representing the supply chain system in a state-space form would lay

the foundation for CVA-based SCMo. Based on the state-space model, the state, input, output,

and disturbance variables can be speci�ed to facilitate the use of CVA. In this section, the

state-space model of a supply chain system is developed. A classical supply chain example,

the beer distribution game, is used to illustrate the model. Then, a more general supply chain

model is presented.

The beer game is a roleplay simulation of an industrial production-distribution system

(Sterman, 1989; Chen and Samroengraja, 2000). It involves a four-echelon serial supply

chain that deals with the production and distribution of a beer product. As shown in Figure

3.1, this supply chain consists of a factory, a distributor, a warehouse, and a retailer. This

benchmark has been widely used in operation management as an example to illustrate the

dynamics of supply chain system or investigate supply chain control (Chaharsooghi et al.,

2008; Oroojlooyjadid et al., 2022). Each position holds an inventory of the beer product,

receives orders from and ships beer to its downstream entity, orders beer from its upstream

entity and receives beer after a shipping delay (except for the factory, which places production

requests and receives beer after a production delay).

Figure 3.1. The beer game supply chain.

In each time period, the Customer agent purchases products from the Retailer agent. The Re-

tailer places an order to the Factory according to its ordering policy. The Factory determines

the production quantity and �lls Retailer’s orders. The agents hold inventory of the product
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and record backlog. The material balances are given as follows:

Ip
t+1 = Ip

t −Qp,dc
t + Qp,prod

t−δp,prod
, ∀t ∈ T

Bp
t+1 = Bp

t −Qp,dc
t + Odc

t , ∀t ∈ T

Idc
t+1 = Idc

t −Qdc,w
t + Qp,dc

t−δp,dc
, ∀t ∈ T

Bdc
t+1 = Bdc

t −Qdc,w
t + Ow

t , ∀t ∈ T

Iw
t+1 = Iw

t −Qw,r
t + Qdc,w

t−δdc,w
, ∀t ∈ T

Bw
t+1 = Bw

t −Qw,r
t + Or

t , ∀t ∈ T

Ir
t+1 = Ir

t − SAr
t + Qw,r

t−δw,r
, ∀t ∈ T

Br
t+1 = Br

t − SAr
t + Dr

t , ∀t ∈ T

(3.29)

where the superscripts p, dc, w, and r represent the factory, distributor, wholesaler, and

retailer, respectively; Ip
t , Idc

t , Iw
t , Ir

t represent the stock on hand of corresponding agent at

the beginning of time period t; Bp
t , Bdc

t , Bw
t , Br

t represent the backorder of corresponding

agent at the beginning of time period t; Qp,prod
t is the production quantity of the factory;

Qp,dc
t , Qdc,w

t , and Qw,r
t are the shipment quantities from the factory to the distributor, from

the distributor to the wholesaler, and from the wholesaler to the retailer, respectively; δp,prod,

δp,dc, δdc,w, and δw,r are the corresponding production and shipment delays; Odc
t , Ow

t , and

Or
t are the quantities of order placed by corresponding agent; SAr

t is the sales quantity of

the retailer; Dr
t is the customer demand.

In order to transform Equation (3.29) into the state-space form Equation (3.15), one has to

deal with the lagged terms. A variable lifting technique is used to address this problem (Li

and Marlin, 2009; Mastragostino et al., 2014). Additional state variables (called auxiliary

variables) are introduced to model the delays in the system. Consider modelling a lagged

term Qt−δ, which has a delay of δ periods. In order to model the delay, δ auxiliary variables
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are introduced for each time period t, and the relationship is expressed as Equation (3.30).

Qt+1,1

Qt+1,2
.
.
.

Qt+1,δ−1

Qt+1,δ


=



Qt,2

Qt,3
.
.
.

Qt,δ

Qt


, ∀t (3.30)

By replacing t with t− δ in the last row of Equation (3.30), we have

Qt−δ+1,δ = Qt−δ (3.31)

Similarly, in the last but one row, by replacing t with t − δ + 1, we have Qt−δ+2,δ−1 =

Qt−δ+1,δ. More generally, in Qt+1,k = Qt,k+1, by replacing t with t− k, we have:

Qt−k+1,k = Qt−k,k+1, for k = 1, 2, . . . , δ− 1 (3.32)

Equation (3.32) is equivalent to:

Qt,1 = Qt−1,2 = Qt−2,3 = · · · = Qt−δ+2,δ−1 = Qt−δ+1,δ (3.33)

Hence, based on Equation (3.31) and Equation (3.33), we have:

Qt−δ = Qt,1 (3.34)

Equation (3.34) transforms a lagged term Qt−δ to a state variable at time period t, Qt,1.

For example, by replacing the lagged term Qp,prod
t−δp,prod

with the auxiliary state Qp,prod
t,1 and

incorporating additional equations similar to Equation (3.30), the equation Ip
t+1 = Ip

t −
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Qp,dc
t + Qp,prod

t−δp,prod
can be transformed into the state-space form as follows:

Ip
t+1 = Ip

t −Qp,dc
t + Qp,prod

t,1 , ∀t ∈ T

Qp,prod
t+1,k = Qp,prod

t,k+1 , ∀t ∈ T, k = 1, 2, . . . , δp − 1

Qp,prod
t+1,δp,prod

= Qp,prod
t , ∀t ∈ T

(3.35)

The other lagged terms can be modelled in a similar way. Then, the supply chain system

(3.29) can be transformed into the following state-space form:

x(t + 1) = Ax(t) + Bu(t) + v(t)

y(t) = Cx(t)
(3.36)

with the state variables x(t), control inputs u(t), disturbance d(t), and outputs y(t) de�ned

as follows:

x(t) =[Ip
t , Bp

t , Idc
t , Bdc

t , Iw
t , Bw

t , Ir
t , Br

t ,

Qp,prod
t,1 , . . . , Qp,prod

t,δp,prod
, Qp,dc

t,1 , . . . , Qp,dc
t,δp,dc

, Qdc,w
t,1 , . . . , Qdc,w

t,δdc,w
, Qw,r

t,1 , . . . , Qw,r
t,δw,r

]T

∈ R8+δp,prod+δp,dc+δdc,w+δw,r

u(t) =[Qp,prod
t , Qp,dc

t , Qdc,w
t , Qw,r

t , Odc
t , Ow

t , Or
t , SAr

t ]
T ∈ R8

v(t) =[0, 0, . . . , 0, Dr
t , 0, . . . , 0]T ∈ R8+δp,prod+δp,dc+δdc,w+δw,r

y(t) =[Ip
t , Bp

t , Idc
t , Bdc

t , Iw
t , Bw

t , Ir
t , Br

t ]
T ∈ R8

(3.37)

The state variable x(t) is de�ned to comprise of the stock on hand and backorders of the

supply chain agents, and also the auxiliary variables. The control input u(t) is de�ned to

comprise of the quantities of production, shipment, sales, and order quantities. The customer

demand is considered as the disturbance v(t) to the system. The output y(t) is de�ned to

comprise of the stock on hand and backorders. Since CVA assumes the disturbance v(t) to be

white noise, the demand needs to be included in the input vector u(t) if it is autocorrelated.
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Consider a general supply chain, in which the material balances can be modelled as follows:

Ia,m
t+1 = Ia,m

t − ∑
i∈ADJ(a)+a

Qa,i,m
t + ∑

j∈ADJ(a)+a
Qj,a,m

t−δj,a
, ∀a ∈ A, m ∈ M, t ∈ T

Ba,m
t+1 = Ba,m

t − ∑
i∈ADJ(a)

Qa,i,m
t + ∑

i∈ADJ(a)
Oi,a,m

t + Da,m
t , ∀a ∈ A, m ∈ M, t ∈ T

(3.38)

where Ia,m
t and Ba,m

t are the stock on hand and backorder of material m of agent a at the

beginning of time period t, respectively; ADJ(a) is the set of adjacent nodes of a; Qa,i,m
t

represents the transportation quantity of m from a to i at period t; similarly, Qj,a,m
t represents

the transportation quantity of m from j to a at period t; especially, Qa,a,m
t represents the

quantity of m produced or consumed at a at period t; Oi,a,m
t is the order quantity of m placed

to a by i; δj,a is the production or shipment delays; A and M are the sets of supply chain

agents and materials, respectively; Da,m
t is the demand of m at a at period t.

Consider modelling a lagged term Qj,a,m
t−δj,a

, which has a delay of δj,a periods. In order to

model the delay, δj,a auxiliary variables, Qj,a,m
t,i , i = 1, 2, . . . , δj,a, are introduced for each

time period t in a similar manner as described earlier. By replacing the lagged term Qj,a,m
t−δj,a

and adding the extra equations, the system (3.38) can be rewritten as:

Ia,m
t+1 = Ia,m

t − ∑
i∈ADJ(a)+a

Qa,i,m
t + ∑

j∈ADJ(a)+a
Qj,a,m

t,1 , ∀a, m, t

Ba,m
t+1 = Ba,m

t − ∑
i∈ADJ(a)

Qa,i,m
t + ∑

i∈ADJ(a)
Oi,a,m

t + Da,m
t , ∀a, m, t

Qj,a,m
t+1,k = Qj,a,m

t,k+1, ∀a, m, t, k = 1, 2, . . . , δj,a − 1

Qj,a,m
t+1,δj,a

= Qj,a,m
t , ∀a, m, t

(3.39)

Therefore, the system (3.38) can be transformed into the state-space form (3.36), with the state
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variables x(t), control inputs u(t), disturbance v(t), and outputs y(t) de�ned as follows:

x(t) =
[
(Ia,m

t ∀a, m) , (Ba,m
t ∀a, m) ,

(
Qj,a,m

t,k ∀a, j, m, k
)]T

u(t) =
[(

Qa,i,m
t ∀a, i, m

)
,
(

Oi,a,m
t ∀a, i, m

)]T

v(t) = [(Da,m
t ∀a, m)]

T

y(t) = [(Ia,m
t ∀a, m) , (Ba,m

t ∀a, m)]
T

(3.40)

For a general supply chain, the state variable x(t) is de�ned to comprise of the stock on

hand and backorder of the supply chain agents, and also the auxiliary variables. The control

input u(t) is de�ned to comprise of the quantities of purchase, production, shipment, sale,

and order. The output y(t) is de�ned to comprise of the stock on hand and backorders. The

customer demand can be considered as the disturbance v(t) to the system or included in the

input vector.

The above analysis indicates that a general supply chain system can be represented by a

state-space model. This is the foundation for using CVA to reduce the dimensionality and

model the supply chain. Based on the de�nition in Equation (3.40), the supply chain data

can be collected and organized according to Equation (3.16) and Equation (3.17). Then, a

CVA-based SCMo model can be developed.

3.3.3 SCVA hyperparameter tuning

It is worth mentioning that based on the state-space model of supply chain, the covariance

matrices of supply chain data may be singular. For example, if in Equation (3.40), a backorder

variable Ba,m
t = 0, ∀t under the NOC, then the covariance matrices Σxx and Σyy would be

singular. In this case, the SVD (3.11) cannot be computed, and the classical CVA method

cannot be applied directly. Therefore, in this chapter, the SCVA method is adopted.

Before implementing Algorithm 3.1 to develop a SCVA model, there are �ve hyperparameters

that need to be speci�ed, which are the lag orders for the past and future vectors, l and
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h, respectively; the state order d; and the sparsity parameters c1 and c2. Hyperparameter

tuning is important to the SCVA algorithm, as the choice of hyperparameters can have an

impact on the performance of the SCVA model.

In the current literature, there are a few ways used for hyperparameter tuning. The lag orders

l and h can be determined by using an ARX model and the Akaike information criterion

(AIC) (Russell et al., 2000a; Russell et al., 2000b; Jiang et al., 2015a; Jiang et al., 2015c; Jiang

et al., 2015b; Lu et al., 2018b; Lu et al., 2018a), or by checking the autocorrelation in the sum

of squares of all measurements (Ruiz-Cárcel et al., 2015; Ruiz-Cárcel et al., 2016). AIC is a

metric that rewards the goodness of �t of a model, but penalizes an increase in the number of

model parameters. This study employs the autocorrelation plot to determine the lag orders.

It is common to consider l = h (Larimore, 1990; Larimore, 1997; Odiowei and Cao, 2010;

Ruiz-Cárcel et al., 2015; Ruiz-Cárcel et al., 2016; Lu et al., 2018b; Lu et al., 2018a), which is

what we adopt in this chapter. For classical CVA, the state order d can be determined by

minimizing the AIC (Larimore, 1997; Russell et al., 2000a; Burnham and Anderson, 2004), or

according to the dominant singular values (Odiowei and Cao, 2010). However, since the SCVA

algorithm is not a SVD problem, the dimension of canonical states cannot be determined

according to dominant singular values. In this chapter, the mean squared error (MSE) is

chosen as the selection criterion (Witten et al., 2009).

The sparsity parameters c1 and c2 should be selected within [1,√np] and [1,√n f ], respec-

tively, in order to maintain the feature of CVA and meanwhile let the l1-norm constraints

be active to enforce sparsity (Witten et al., 2009; Lu et al., 2018b). In the current literature,

c1 and c2 are determined independently of the state order d (Witten et al., 2009), or after

d is selected (Lu et al., 2018b). In this chapter, we consider the combined tuning of the 3

hyperparameters. The procedure for tuning parameters is based on a grid search, and is

presented in Algorithm 3.2. This procedure is based on the method presented by Witten et al.

(2009) and is similar to cross-validation. First, for simplicity, the two sparsity parameters are

reduced to one. This can be done by setting c1 = c√np and c2 = c√n f (Witten et al., 2009),

or by setting c1 = c2 = c√np (Lu et al., 2018b). Here, the �rst approach is used. This allows

the sparsity to be represented using single parameter c, and the canonical vectors α and

β to be equally sparse. Next, the subset of hyperparameter space, i.e., the set of candidate
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(d, c) pairs, are speci�ed. Then the optimal (d, c) pair is determined by minimizing the MSE

through a grid search, as this is a relatively common practice in machine learning. By tuning

d and c as a pair, the procedure helps understand the impact of them on the SCVA model. In

Algorithm 3.2, K is a parameter that is speci�ed by the user, and can be selected to be, e.g.,

10 (Witten et al., 2009).

Algorithm 3.2: SCVA hyperparameter tuning (d, c)
Data: P, F
Result: (d, c)?

Parameters :K
1 Z ← PTF
2 Partition Z into K non-overlapping matrices Zk, k = 1, 2, . . . , K, with Zk containing

1/K of the rows of Z
3 Specify the candidate sets D for state order d, and C for sparsity parameter c
4 for each d ∈ D do
5 for each c ∈ C do
6 for k = 1, 2, . . . , K do
7 Fit the penalized decomposition with (d, c) to Z̄k, i.e., Z with Zk removed

8 Calculate the residual Z̄res
k = Z̄k −∑d

n=1 γnαnβT
n

9 Calculate the mean squared error: MSE(d, c, k) = mean(∑z∈Z̄res
k

z2)

10 end
11 Calculate the average MSE: AMSE(d, c) = ∑K

k=1 MSE(d, c, k)/K
12 end
13 end
14 Select (d, c)? that minimizes the AMSE: (d, c)? = arg mind,c AMSE(d, c)

3.4 Case Studies

Two case studies are carried out to validate the CVA-based SCMo method. The �rst case is

an illustrative example based on the beer game supply chain, and the second case involves

a packaged liqui�ed gas supply chain that is more complicated. Studies on the two cases

are presented in Section 3.4.1 and 3.4.2, respectively. Results of PCA-based SCMo are also

presented for comparative study.
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3.4.1 Case study I: The beer distribution game

The beer game supply chain, which has been shown in Figure 3.1 and analyzed in Section

3.3.2, is used in the �rst case study to demonstrate the CVA-based SCMo method. First, a

simulation model for the beer game supply chain is developed to generate simulated data

for analysis. The simulation model is developed using the programming language Python

3.8 and the agent-based modelling (ABM) technique. ABM is a well-suited paradigm for

the modelling and simulation of distributed systems such as supply chain system. Within

the ABM framework, the components of a supply chain, such as the retailer, wholesaler,

distributor and factory, are modelled as autonomous agents that are able to communicate

with other agents and make decisions. For example, an agent Retailer is de�ned to mimic

the behaviour of a retailer, and the sequence of actions of the Retailer for each time period is

given as follows:

1. Places an order to the upstream distributor agent. The order quantity is determined by

an inventory policy.

2. Receives the products that were shipped from the distributor and arrives in this period

after a transportation delay.

3. Satis�es the backorders and demand of the customer agent. If the current stock on

hand is su�cient, then products are shipped to �ll the orders immediately; otherwise

the un�lled part is recorded as backorders and will be processed prior to the demand

once su�cient stock is available.

4. Updates the inventory and backorders pro�les.

The wholesaler, distributor and factory agents are developed in a similar way. The simulation

model developed in this work is similar to that has been used by Wang et al. (2020), where

the details of the model are given and a causal diagram is presented to show the interaction

between the agents.

Two inventory policies are investigated for the beer game supply chain. The �rst one is
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a continuous review (S − 1, S) policy, which is also known as the “one for one” policy

(Chaharsooghi et al., 2008; Axsäter, 2015). With this policy, a supply chain agent reviews the

inventory continuously, and orders to its upstream whatever is ordered by the downstream.

The second one is a periodic review order-up-to (OUT) (R, S) policy, where R is the review

period, and S is the OUT level (Chat�eld et al., 2004). With this policy, a supply chain agent

reviews the inventory periodically, and orders to its upstream to maintain a target inventory

position S. It is assumed that all the supply chain agents manage their inventory according

to the same policy.

The SCMo model is able to monitor the supply chain under uncertainty. Therefore, the

simulation model mimics the supply chain operation under uncertain customer demand.

Two demand models are considered in order to investigate the impact of the autocorrelation

in demand on supply chain dynamics. The �rst demand model is the normal distribution

(Gupta and Maranas, 2003; Chat�eld et al., 2004). It is assumed that the demand follows a

normal distribution N (µ, σ2) with mean µ and variance σ2
. In the case study, the demand

is assumed to follow N (50, 102), and is sampled from this distribution by the application

programming interface (API) numpy.random.normal() provided by the numpy library

for Python. The samples are rounded to integer, and negative samples are set to zero to

avoid negative demand. It is observed that customer demand generated from the normal

distribution does not have signi�cant autocorrelation with previous observations.

The second model used for demand modelling is a time series model, the AutoRegressive

Integrated Moving Average (ARIMA) model (Box et al., 2015). An ARIMA(p, d, q) model

for modelling a time series x1, x2, . . . , xt, . . . can be expressed as the following di�erence

equation form:

∇dxt =
p

∑
i=1

φi∇dxt−i −
q

∑
j=1

θjat−j + at (3.41)

alternatively:

xt =
p+d

∑
i=1

ϕixt−i −
q

∑
j=1

θjat−j + at (3.42)

where ∇d
is the dth order (backward) di�erence, p is the order of the autoregressive part, q
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is the order of the moving average part, and at is the forecasting error in period t, which

is assumed to follow a normal distribution with zero mean; φi, θj and ϕi are the weight

parameters.

Equations (3.41) and (3.42) show that in an ARIMA model, the current value (or di�erenced

value) can be expressed as a linear combination of it lagged observations and forecasting

errors. A normal distribution is essentially corresponding to an ARIMA(0, 0, 0) model,

where xt is irrelevant to the previous data. It is observed that demand generated from the

ARIMA model is usually autocorrelated with lagged observations, except for ARIMA(0, 0, 0).

To capture the seasonality in demand, a seasonal ARIMA (SARIMA) model can be used,

which is written as ARIMA(p, d, q)× (P, D, Q)s. The (p, d, q) models the non-seasonal part,

(P, D, Q) models the seasonal part, and parameter s models the seasonal pattern. ARIMA

and SARIMA models have been adopted in demand modelling in the literature (Aburto and

Weber, 2007; Jaipuria and Mahapatra, 2014; Mastragostino et al., 2014). Gilbert (2005) shows

that if the customer demand and lead times at each echelon follow ARIMA models, then

the orders and inventories at each echelon are also ARIMA when an OUT policy is adopted.

This implies that a supply chain system operated under autocorrelated demand may also

have an autocorrelated structure. This is investigated in this section.

In order to generate a ARIMA model that simulates real-world demand pattern, the Iowa

Liquor Sales dataset
1

is used to train the model. This dataset is published as open data by the

Iowa Department of Commerce, Alcoholic Beverages Division. It contains every wholesale

purchase of liquor in the State of Iowa by retailers for sale to individuals since January

1, 2012, and is updated monthly. It is a good resource for analyzing real-world customer

demand of individual products at the store level, and thus is used in this case study to train

the ARIMA demand model. The daily sales data of Canadian Whiskies are extracted from the

dataset to �t a ARIMA(p, d, q)× (P, D, Q)s model. The model is built and trained by using

pmdarima, which is a statistical library designed for time series analysis in Python. The

seasonality parameter s is determined as 5 according to the autocorrelation plot of data. The

other parameters are tuned automatically using the pmdarima.auto_arima() API. An

ARIMA(4, 0, 0)× (0, 0, 2)5 model is obtained for demand simulation. Demand scenarios are

1
https://data.iowa.gov/Sales-Distribution/Iowa-Liquor-Sales/m3tr-qhgy
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simulated by using the model and adding a disturbance at each time step. The disturbance is

generated from a normal distribution with zero mean. Results show that the simulated time

series basically maintains the autocorrelation of the original data.

The supply chain simulator and the SCMo models are developed in the programming language

Python. The supply chain operation is simulated with the demand models and inventory

policies. The normal transportation delays between each two adjacent agents are set to 2 time

periods. According to the state-space model developed in Section 3.3, a total of 17 variables

are collected to build the data-driven SCMo model, which are 9 input variables, including

the quantities of production, shipment, order, sale, and demand; and 8 output variables,

including the stock on hand and backlog of the 4 agents. For the normal distribution demand

model, a total of 1000 demand samples are generated fromN (50, 102), and the supply chain

operation is simulated over 1000 time periods. Thus, 1000 samples of supply chain data

are collected to train the SCVA model. For the ARIMA demand, 1090 demand samples are

extracted from the dataset, and therefore 1090 samples of supply chain operation data are

obtained.

For NOC under the normal distributed demand and the 1-1 policy, the time lag in supply

chain data are determined as l = h = 2 according to the autocorrelation plot, which is shown

in Figure 3.2. Therefore, the observation at each time period is augmented into 17× 2 = 34

variables. Then the NOC is characterized by SCVA to construct the SCMo model. In order to

determine the hyperparameter of the SCVA model, the MSEs using di�erent hyperparameter

combinations are calculated and visualized in Figure 3.3. In Figure 3.3, the horizontal and

vertical axes represent the state order d and the sparsity parameter value c, respectively. The

MSE values are plotted as bubbles. The size and color of a bubble indicate the average MSE

of the model under a pair of (d, c), and a smaller size indicates a smaller MSE value. It is

observed that with 1 canonical state (d = 1), the MSE is relatively large when c < 0.6, and

is small when c ≥ 0.67. With 2 or more canonical states d ≥ 2, the MSE is very small. This

suggests that the supply chain data can be explained using 1 canonical state. Therefore, a

state order d = 1 and a sparsity parameter c = 0.8 is determined as a good hyperparameter

combination, because it results in a low MSE and a small number of states. Thus, the 34

supply chain variables are reduced to 1 canonical state through dimensionality reduction by
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SCVA.

Figure 3.2. Case study I: normal demand, autocorrelation plot.

A SCVA model is then trained with the selected hyperparameters. In order to examine the

performance of the monitoring model under NOC, 200 testing scenarios are simulated and

the average false alarm rate (FAR) is calculated. FAR, also know as the Type I error rate or

false positive rate, is calculated as the ratio of false alarms relative to the total samples. The

average FAR of 200 testing scenarios is 2%, which is a satisfactory level that indicates good

performance under NOC. Similarly, the CVA-based SCMo models for ARIMA demand and

(R, S) policy are also built to investigate their performance under di�erent conditions. For

the (R, S) policy, the review period R is set to 1, and the OUT level S is set to 300 for all

agents.

For comparison, a DPCA model that has been shown to be e�ective for SCMo (Wang et al.,

2020) is also developed in this work. For the DPCA model, the hyperparameter that needs

to be speci�ed before training is the number of principal components (PCs), NPC. NPC is

determined through a 10-fold cross-validation based on two metrics R2
and Q2

, which are

the explained variance ratio of the training set and testing set, respectively. The R2
and

Q2
are shown in the bar chart Figure 3.4. The �rst PC has a R2

and a Q2
of approximately

55%. The �rst 2 PCs together have a R2
and a Q2

of approximately 93%. And the �rst 3 PCs

together have a R2
and a Q2

over 99.9%. Therefore, NPC = 2 is a good option, and the 17

supply chain variables are reduced to 2 PCs by DPCA.
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Figure 3.3. Case study I: normal demand, SCVA MSE.

Figure 3.4. Case study I: normal demand, DPCA R2, Q2
.
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The results of dimensionality reduction and FAR using the SCVA and DPCA models are

summarized in Table 3.1. First, it is observed that with a SARIMA demand model, the lag

orders l and h determined according to the autocorrelation plot are larger than those with a

normal demand model. This means stronger autocorrelation in demand also leads to stronger

autocorrelation in the supply chain system. In general, with SARIMA demand, more latent

variables are needed to model the supply chain data for SCVA and DPCA, except for the

(R, S) policy, where SCVA uses fewer canonical states and shows its ability in modelling

autocorrelated data. Moreover, the (R, S) policy results in stronger autocorrelation than

the 1-1 policy. For di�erent demand models and inventory policies, SCVA identi�es a lower

system order, which means it requires a smaller number of states than DPCA to model the

supply chain. For SCVA, the FARs of T2
d , Q, and Soverall are less than 8% for all situations.

For DPCA, the largest FAR is 10.6%, which is Soverall under SARIMA demand and (R, S)

policy. For the SARIMA demand, Soverall of SCVA has a lower FAR than Soverall of DPCA.

In general, for both models, the FARs of the 3 monitoring statistics are at a low level. The

di�erence of FAR between SCVA and DPCA is not signi�cant. Both of them characterize the

NOC well. Furthermore, for normal demand, the FARs are lower than SARIMA demand.

Table 3.1. Case study I: average FAR.

Demand Policy Lag l, h SCVA DPCA

NCS T2
d Q Soverall NPC T2

SPE Soverall

Normal 1-1 2 1 0.013 0.013 0.026 2 0.014 0.01 0.024

Normal (R, S) 4 4 0.013 0.013 0.026 6 0.013 0.012 0.025

SARIMA 1-1 8 3 0.036 0.036 0.069 5 0.068 0.01 0.076

SARIMA (R, S) 11 3 0.029 0.053 0.078 8 0.093 0.015 0.106

In order to comprehensively assess the performance of SCVA in SCMo, di�erent supply chain

faults are designed, simulated and analyzed, which include:

(1) Delay in the transportation between the wholesaler and retailer. The normal transporta-

tion time is 2 time periods, while a delayed transportation time is set to 4. This fault may

cause stockout of the retailer.

(2) Delay in the transportation between the distributor and wholesaler. The normal trans-
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portation time is 2 time periods, while a delayed transportation time is set to 4. This

fault may a�ect the inventory of wholesaler, and retailer subsequently.

(3) Delay in the transportation between the factory and distributor. This fault may a�ect

the inventory of distributor, wholesaler and retailer.

(4) Poor yield of the factory. Only 50% of the production order can be ful�lled. This fault

may a�ect the inventory of all the agents.

(5) An increase in the customer demand. The demand is multiplied by 2. This may cause

stockout of the retailer.

(6) Delays in the transportation between the distributor and wholesaler, and the transporta-

tion between the wholesaler and retailer. The delayed transportation times are set to 3

time periods.

(7) Poor yield of factory and transportation delay between factory and distributor. Only

60% of the production order can be ful�lled, and the delayed transportation time is set

to 3 time periods.

Faults (1-5) are designed to validate FDD of abnormal events occurring at individual agents,

and faults (6-7) are designed to test abnormal events at more than one agent. The duration

of the faults are set to 4 time periods. An example of FDD using SCVA-based monitoring

charts is shown in Figure 3.5, with the monitoring statistics plotted on the top and a 2-D

contribution plot given on the bottom. The simulated supply chain fault is fault (1): during

time period 49-53, the Retailer experiences a longer transportation delay (4 periods) for its

orders. The normal delay is 2 periods. In the monitoring chart, T2
d and Q are plotted over

time, with the axis shown on the left and right, respectively. Their 99% con�dence limits are

aligned for better visualization. It can be seen that when the supply chain is operated under

NOC, the monitoring statistics are below their limits. When the fault occurs, the Q statistic

of SCVA model exceeds its 99% limit. This implies the fault has been detected by Q and an

alarm has been raised by the SCMo model. In the contribution plot shown on the bottom,

the combined contribution of each variable to the monitoring statistics are plotted over time
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in the form of a heatmap (Zhu and Braatz, 2014). In the 2-D contribution plot, a deeper color

indicates a larger contribution. It is observed that during the faulty period, the Retailer’s

inventory Ir
t contributes the most to the variation of the statistics, thus it is identi�ed as the

fault-related variable. This implies the fault has a�ected the Retailer’s inventory, and the

variation of supply chain status is caused by an unusual change in the Retailer’s inventory.

Furthermore, during the faulty period, the contribution of the backorder Br
t becomes larger

than usual for several periods, as can be observed in Figure 3.5. This indicates the fault may

cause a shortage at the Retailer. After the faulty period ends, the monitoring statistics and

variable contributions return to normal.

Figure 3.5. Case study I: CVA-based SCMo chart.

The SCVA-based SCMo model is tested with the two demand models and two inventory

policies. For each fault, 200 demand scenarios are used in simulation and analysis. The
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performance of FDD are assessed using two metrics, the missed detection rate (MDR) and

detection delay. MDR, also known as the Type II error rate or false negative rate, is de�ned as

the ratio of undetected faulty samples relative to the total number of faulty samples under a

speci�c fault. The detection delay under a scenario is calculated as the time needed to detect

a fault after it occurs. These three metrics, FAR, MDR and detection delay, are commonly

used to assess SPM methods (Russell et al., 2000b; Lu et al., 2018b; Ruiz-Cárcel et al., 2015;

Ruiz-Cárcel et al., 2016). In this work, the ability of a SCMo model in dimensionality reduction

is also considered. It is associated to the number of canonical states that are determined to

model the system for SCVA, and the number of PCs needed for DPCA.

The MDRs of SCVA and DPCA under di�erent demand models and inventory policies are

presented in Table 3.2. For SCVA, the results of 3 metrics, T2
d , Q and Soverall , are presented.

As de�ned in Equation (3.26), Soverall raises an alarm when at least one of T2
d and Q exceeds

its con�dence limit. For DPCA, the results of T2, SPE and Soverall are presented. It is observed

that T2
d by SCVA and T2

by DPCA show high MDRs for the faults. For both demand models

and inventory policies, the MDRs of these two statistics are greater than 70% for most of

the faults, which is a high level. By contrast, Q by SCVA and SPE by DPCA have low MDRs.

For most of the faults, their MDRs are less than 10%. This implies that the supply chain

faults usually result in deviations from NOC in the residual space rather than in the state or

score space. The monitoring statistics that quantify variations in the residual space are thus

found to be more reliable for both SCVA and DPCA in SCMo. This result is consistent with

the results of Russell et al. (2000b), where the statistics in the residual space are shown to

be generally more sensitive to the faults than the statistics in the state or score space. The

performance of Soverall is close to the residual statistics for both models. This is because the

fault is usually detected by the residual statistics, rather than T2
d and T2

.

The average detection delays of SCVA and DPCA are presented in Table 3.3. For a certain

fault, the average detection delay is calculated as an average of the detection delay over

all the test scenarios. Since T2
d by SCVA and T2

by DPCA have high MDRs, the detection

delays of them do not provide much useful information. Therefore, we focus on the detection

delays of the residual statistics. It is observed that for some faults, the SPE by DPCA has

a slightly smaller detection delay than Q by SCVA, while for other faults, SCVA Q has a
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smaller detection delay. In general, the di�erence is insigni�cant. For the considered faults,

SCVA is able to raise an alarm at the same time with SCVA, or at most 1 time period later.

Considering that SCVA uses signi�cantly fewer states than DPCA, the performance of SCVA

is satisfactory.

In summary, SCVA and DPCA have comparable performance in general for the beer game

supply chain. Both SCMo models rely on the statistic in the residual space. In terms of

dimensionality reduction, SCVA is more e�cient in modelling supply chain data. Compared

with cross-correlated demand, autocorrelated demand requires more states or components

for modelling. In both cases, SCVA determines a smaller system order than DPCA, and

achieves similar performance to DPCA in terms of FAR, MDR and detection delay with

signi�cantly fewer states.

3.4.2 Case study II:Apackaged liquefiedgas supply chain

This case study is based on a packaged lique�ed gas supply chain that has been investigated

by Misra et al. (2019) and Wang et al. (2020). The con�guration of this supply chain network

is shown in Figure 3.6. This supply chain consists of 2 plants, 1 warehouse, and 5 customer

locations. It deals with the �lling and distribution of gas products to satisfy customers’

needs. The gas products are stored in stock keeping units (SKUs). The customers consume

�lled SKUs, which are turned into empty SKUs. The warehouse holds inventory of �lled

and empty SKUs. It transports �lled SKUs to customer locations, and retrieves empty SKUs.

Empty SKUs are then transported to the upstream plants for re�lling. Re�lled products are

sent back to warehouse. This means there are two directions of material �ow: the �ow of

�lled SKUs from upstream plants to the downstream customers, and the �ow of empty SKUs

in the opposite direction. This supply chain network is more complicated than the serial

beer game supply chain. There are 2 gas products transported across the supply chain, A

and B. The transportation time between Plants and Warehouse is set to 3 time periods, and

the transportation time between the Warehouse and Customers is set to 1 time period. The

re�lling time of the plant is 1 period. It is assumed that a vendor managed inventory (VMI)

policy is adopted. When a customer’s inventory falls below a certain level s, �lled SKUs are
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Table 3.2. Case study I: MDR.

Demand Policy Fault

SCVA DPCA

T2
d Q Soverall T2

SPE Soverall

Normal 1-1 1 0.96 0 0 0.95 0 0

Normal 1-1 2 0.94 0 0 0.94 0 0

Normal 1-1 3 0.94 0 0 0.94 0 0

Normal 1-1 4 0.94 0 0 0.93 0 0

Normal 1-1 5 0 0 0 0 0.01 0

Normal 1-1 6 0.95 0 0 0.94 0 0

Normal 1-1 7 0.94 0 0 0.93 0 0

Normal (R, S) 1 0.92 0.05 0.05 0.97 0 0

Normal (R, S) 2 0.97 0.02 0.02 0.97 0 0

Normal (R, S) 3 0.94 0.02 0.02 0.95 0 0

Normal (R, S) 4 0.89 0.41 0.40 0.91 0.02 0.02

Normal (R, S) 5 0.01 0.04 0.01 0.01 0.01 0.01

Normal (R, S) 6 0.97 0.4 0.4 0.97 0.01 0.01

Normal (R, S) 7 0.9 0.43 0.43 0.92 0 0

SARIMA 1-1 1 0.81 0.02 0.01 0.73 0.03 0.02

SARIMA 1-1 2 0.8 0.02 0.01 0.74 0.03 0.02

SARIMA 1-1 3 0.8 0.02 0.01 0.74 0.03 0.02

SARIMA 1-1 4 0.82 0.05 0.05 0.74 0 0

SARIMA 1-1 5 0 0 0 0 0 0

SARIMA 1-1 6 0.75 0.35 0.33 0.72 0.22 0.20

SARIMA 1-1 7 0.77 0.08 0.07 0.71 0.02 0.02

SARIMA (R, S) 1 0.82 0.06 0.05 0.75 0 0

SARIMA (R, S) 2 0.79 0.07 0.07 0.7 0 0

SARIMA (R, S) 3 0.87 0.05 0.05 0.75 0 0

SARIMA (R, S) 4 0.87 0.03 0.03 0.71 0 0

SARIMA (R, S) 5 0 0 0 0 0 0

SARIMA (R, S) 6 0.84 0.55 0.50 0.71 0.11 0.1

SARIMA (R, S) 7 0.87 0.11 0.11 0.7 0 0
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Table 3.3. Case study I: detection delay.

Demand Policy Fault

SCVA DPCA

T2
d Q Soverall T2 SPE Soverall

Normal 1-1 1 2.2 2.3 2.3 2.6 2.3 2.3

Normal 1-1 2 3.2 2.3 2.3 3 2.3 2.3

Normal 1-1 3 3.2 2.3 2.3 3 2.3 2.3

Normal 1-1 4 2.5 1.1 1.1 2.3 1.1 1.1

Normal 1-1 5 0.2 1.6 0.2 0.2 1.6 0.2

Normal 1-1 6 2.2 2.0 1.9 2.3 2 1.9

Normal 1-1 7 2.2 1.6 1.6 2.1 1.7 1.6

Normal (R, S) 1 3.1 3.3 3.3 3.7 2.9 2.9

Normal (R, S) 2 3.3 3.1 3.1 4 2.9 2.9

Normal (R, S) 3 3.8 3 3 3.8 2.8 2.8

Normal (R, S) 4 3.3 2.6 2.5 3.4 1.6 1.6

Normal (R, S) 5 0.3 4.7 0.3 1.2 0.2 0.2

Normal (R, S) 6 3.3 3.5 3.4 4 2.6 2.6

Normal (R, S) 7 3.9 2.7 2.6 3.4 1.9 1.9

SARIMA 1-1 1 2.8 2.8 2.7 2.5 3 2.7

SARIMA 1-1 2 3 2.8 2.7 2.6 2.9 2.7

SARIMA 1-1 3 3 2.8 2.7 2.7 2.9 2.7

SARIMA 1-1 4 2.8 3.8 3.7 2.6 3.9 3.5

SARIMA 1-1 5 0 0.2 0 0.1 0.1 0

SARIMA 1-1 6 3 3.1 2.9 2.4 3.5 3.1

SARIMA 1-1 7 2.9 3.7 3.5 2.7 3.6 3.3

SARIMA (R, S) 1 3 4 3.8 3 3.6 3.3

SARIMA (R, S) 2 3.6 3.9 3.7 3.5 3.5 3.2

SARIMA (R, S) 3 2.7 3.9 3.7 3.3 3.4 3.1

SARIMA (R, S) 4 1.9 3 2.8 3.1 2.2 2.1

SARIMA (R, S) 5 1.3 0.5 0.4 1.3 0.1 0.1

SARIMA (R, S) 6 2.6 3.9 3.3 3 4.3 3.8

SARIMA (R, S) 7 2.2 3.3 3.2 3.2 2.5 2.3
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shipped from the Warehouse for replenishment. In this case study, the reorder levels for the

customers and the two products are all set to 300, and the initial inventories of the �lled

SKUs are all set to 500. For the warehouse, the reorder levels are set to 3000, and the initial

inventories of the �lled SKUs are set to 5000. The initial inventories of empty SKUs are all

set to 0.

Figure 3.6. Case study II: a packaged lique�ed gas supply chain.

The simulation model of the packaged lique�ed gas supply chain is developed using Python

based on ABM. It is similar to the model developed in Wang et al. (2020), where the details

and results of simulation are described. Since there are multiple customers in this supply

chain, multivariate demand models are investigated to take into account the cross-correlation

and autocorrelation. Two demand models are considered in this case study. The �rst one

is multivariate Gaussian distribution N (µ, Σ), where µ is the vector of mean and Σ is

the covariance matrix. It is used to model cross-correlated demand. With this model, the

customer demands have cross-correlation, but does not show autocorrelation. In this case

107



Ph.D. Thesis - Jing Wang McMaster University - Computational Science and Engineering

study, the mean of demand is set to 50 for the 5 customer locations.

In order to model multivariate autocorrelated demand, a Vector AutoRegressive Moving

Average (VARMA) time series model is adopted. A K-dimensional VARMA(p, q) process yt

can be expressed as (Lütkepohl, 2005; Box et al., 2015):

yt =
p

∑
i=1

Aiyt−i + εt +
q

∑
j=1

Mjεt−j (3.43)

where yt ∈ RK
, and εt is zero mean white noise with nonsingular covariance matrix.

The VARMA model for demand scenario generation is built using the VARMAX()API provided

by the statsmodels library. The model is trained using data extracted from the dataset.

The input and output variables of this supply chain system are de�ned based on the state-

space model. The outputs include inventory of �lled and empty SKUs of the Warehouse and

Customers, which involves 24 variables. The input variables include the shipment quantity

of �lled and empty SKUs between Warehouse and Customers (20 variables), and shipment

quantity of �lled and empty SKUs between Warehouse and Plants (4 variables), and the

Customer demand of 2 products (10 variables). Therefore, there are a total of 58 variables

collected for analysis.

The number of training samples is 2000. For the multivariate Gaussian demand, the autocorre-

lation plot of supply chain data is shown in Figure 3.7. It is observed that the autocorrelation

shows a periodic pattern, with a period of 8. This is potentially related to the forward and

reverse structures of the supply chain. The lag order for augmenting the observation is

thus determined as l = h = 8. The observation vector that comprises of 58 variables are

augmented into 58× 8 = 464 variables. The R2
and Q2

using di�erent number of PCs are

shown in Figure 3.8. It can be seen that to achieve a Q2
of approximately 70%, DPCA needs

51 PCs. The MSE for determining the state order and sparsity parameter value for SCVA

is shown in Figure 3.9. The MSE value under a certain sparsity parameter value is plotted

over the state order using a line plot. It is observed that with a certain sparsity parameter

value, the MSE decreases when the state order increases. With a certain state order, the

MSE decreases when the sparsity parameter decreases. This indicates that the ability of
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SCVA in explaining the data gets stronger with more canonical states and a larger sparsity

parameter. When the sparsity parameter value is within the range of [0.7, 1], it does not have

a signi�cant impact on the MSE. Therefore, a state order d = 20 and a sparsity parameter

c = 0.8 is determined as a good hyperparameter combination for SCVA, as this combination

achieves a low MSE using a relatively small number of canonical states. Therefore, the 464

supply chain variables are reduced to 20 canonical states. This implies the strong ability of

SCVA in dimensionality reduction of supply chain data.

Figure 3.7. Case study II: Gaussian demand, autocorrelation plot.

For the model constructed for Gaussian demand, it is observed that both DPCA and SCVA

have relatively high FARs (over 30%) for the testing data. Therefore, the con�dence limits

have been adjusted before comparison using the method of Russell et al. (2000b). Given a

signi�cance level α, the con�dence limit of a monitoring statistic is set in such way that

a (1− α) portion of the samples are below the limit. α is set to 1% in this work, thus the

adjusted limits correspond to a signi�cance level of 1%. For the statistics that showed high

FARs, the adjustment increased their limits and reduced the FARs. It is believed that this

adjustment provides a fairer basis for the comparative study of sensitivities.

The SCMo models under VARMA demand are constructed in a similar way. The R2
and Q2

using di�erent number of PCs are shown in Figure 3.10. The MSE for determining the state

order and sparsity parameter for SCVA is shown in Figure 3.11. The results of dimensionality

reduction and FAR using the SCVA and DPCA models are presented in Table 3.4. It is
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Figure 3.8. Case study II: Gaussian demand, DPCA R2, Q2
.

Figure 3.9. Case study II: Gaussian demand, SCVA MSE.
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observed that when the demand is autocorrelated (VARMA), both SCVA needs more CSs

to model the data, and DPCA needs more PCs. However, in both cases of cross-correlated

and autocorrelated demand, SCVA identi�es a small system order than DPCA. Therefore,

in terms of dimensionality reduction for supply chain system, SCVA is more e�cient than

DPCA. Similar to the results of case study I, it is observed that when the demand follows a

VARMA model, Soverall of SCVA shows a lower FAR than Soverall of DPCA. In general, both

models show satisfactory FARs after the adjustment of con�dence limits.

Figure 3.10. Case study II: VARMA demand, DPCA R2, Q2
.

Table 3.4. Case study II: average FAR.

Demand Lag l, h SCVA DPCA

NCS T2
d Q Soverall NPC T2

SPE Soverall

Gaussian 8 20 0.011 0.011 0.022 51 0.012 0.01 0.021

VARMA 8 30 0.001 0.041 0.041 57 0.006 0.065 0.069

In order to examine the ability of SCVA in SCMo in this case, 7 faults are designed and

simulated, which are:

(1) Delay in the transportation between the Warehouse and a Customer. The faulty delay is

set to 4 time periods.
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Figure 3.11. Case study II: VARMA demand, SCVA MSE.

(2) Delay in the transportation between the Plant and Warehouse. The faulty delay is set to

6 time periods.

(3) Delay in the re�lling process of the Plant. The faulty delay is set to 6 time periods.

(4) An increase in the customer demand. The demand is multiplied by 2.

(5) An increase in the customer demand, and a delay in the transportation between the

Warehouse and a Customer. The demand is multiplied by 1.5, and the faulty delay is set

to 2 time periods.

(6) Delay in the transportation between the Plant and Warehouse, and between the Ware-

house and a Customer. The faulty delays are set to 4 and 3 time periods, respectively.

(7) Delay in the re�lling process of Plant, and delay in the transportation between the Plant

and Warehouse. The faulty delays are set to 4 and 5 time periods, respectively.

The above faults may have an impact on the inventory of SKUs, and lead to a shortage of
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�lled SKUs and accumulation of empty SKUs at one or more locations. SCVA and DPCA are

tested under 100 random demand scenarios. The MDRs of SCVA and DPCA under di�erent

situations are presented in Table 3.5. It is observed that for the 7 faults and 2 demand models

considered in this case, T2
d by SCVA and T2

by DPCA both show high MDRs. For most of the

faults, their MDRs are over 80%, which is a high level. This indicates that the two statistics

are very likely to miss the faults when they occur. By contrast, the Q statistic by SCVA and

SPE by DPCA have low MDRs. For most of the faults, their MDRs are below 8%, which may

be considered to be a satisfactory level. This implies that for both SCVA and DPCA, the

monitoring statistics that quantify variations in the residual space are more sensitive and

reliable in SCMo. The results of Soverall are close to the residual statistics for both SCVA and

DPCA.

The detection delays of SCVA and DPCA under di�erent scenarios are presented in Table 3.6.

Since T2
d by SCVA and T2

by DPCA have high MDRs, the detection delays of them do not

provide much useful information. The SPE by DPCA has a smaller detection delay than Q

by SCVA overall. For the considered faults, DPCA is able to raise an alarm about 2-3 periods

earlier than SCVA. Considering that SCVA uses signi�cantly fewer states than DPCA, the

performance of SCVA is acceptable.

In summary, SCVA shows advantage over DPCA in terms of the dimensionality reduction of

supply chain data in this case study. Compared with cross-correlated demand, autocorrelated

demand requires more states or components for modelling. In both cases, SCVA determines

a smaller system order than DPCA, and achieves comparable performance to DPCA in terms

of FAR, MDR and detection delay with signi�cantly fewer states. Both SCMo models rely on

the statistic in the residual space.

3.5 Conclusion

This chapter proposes a data-driven SCMo model based on CVA. This model considers a

supply chain as a dynamic system and utilizes the state-space model of supply chain. The

ability of the model in supply chain fault detection is validated on two simulation case studies.

113



Ph.D. Thesis - Jing Wang McMaster University - Computational Science and Engineering

Table 3.5. Case study II: MDR.

Demand Fault

SCVA DPCA

T2
d Q Soverall T2

SPE Soverall

Gaussian 1 0.71 0 0 0.87 0 0

Gaussian 2 0.92 0 0 0.96 0 0

Gaussian 3 0.91 0.04 0.03 0.96 0 0

Gaussian 4 0.84 0 0 0.44 0 0

Gaussian 5 0.63 0.02 0.02 0.71 0 0

Gaussian 6 0.78 0.13 0.12 0.85 0.02 0.01

Gaussian 7 0.92 0.04 0.03 0.96 0 0

VARMA 1 1 0 0 0.88 0 0

VARMA 2 0.95 0.01 0.01 0.88 0 0

VARMA 3 0.94 0.1 0.1 0.92 0 0

VARMA 4 0.9 0.06 0.06 0.19 0.07 0.06

VARMA 5 0.97 0.06 0.06 0.72 0.01 0.01

VARMA 6 0.99 0 0 0.94 0 0

VARMA 7 0.99 0.05 0.05 0.92 0 0

Table 3.6. Case study II: detection delay.

Demand Fault

SCVA DPCA

T2
d Q Soverall T2

SPE Soverall

Gaussian 1 13.4 8.3 8.2 13.2 4.6 4.6

Gaussian 2 6.1 16.4 15.6 4.5 13.8 13.5

Gaussian 3 7.6 16.4 15.6 4.5 13.8 13.5

Gaussian 4 11.4 1.4 1.3 6.4 0.1 0.1

Gaussian 5 9.7 4.8 4.7 10.7 2 2

Gaussian 6 13.9 9.4 9.3 13.3 6 6

Gaussian 7 6.1 16.4 15.6 4.5 13.8 13.5

VARMA 1 – 7 7 13.8 4.1 4.1

VARMA 2 17.6 13.2 13.2 16.5 10.7 10.6

VARMA 3 18.7 13.2 13.2 14.6 10.9 10.8

VARMA 4 13.8 6.5 6.5 9.2 5 4.8

VARMA 5 15 7.4 7.4 11.1 5 4.9

VARMA 6 16 8.2 8.2 13.8 4.9 4.9

VARMA 7 19 13.4 13.4 15.1 10.8 10.6
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Results show that CVA is able to detect di�erent types of operational supply chain faults,

and the CVA-based variable contribution plot is able to identify the fault-related variables

and thus indicating the cause of the fault.

A comparative study of CVA and PCA in SCMo is carried out. Both cross-correlated and

autocorrelated demand are considered. The FAR, MDR, detection delay and dimension

reduction of the two methods are investigated. Results show that the autocorrelation in data

requires more CVs for CVA and more PCs for PCA to model the NOC. It is observed that

the residual statistics are more reliable in SCMo for both methods. CVA identi�es a smaller

system order than DPCA and achieves comparable performance to DPCA with signi�cantly

fewer states. Therefore, CVA is more e�cient in modelling a supply chain system and

detecting abnormal supply chain operations. This study indicates the advantage of applying

state-space models to supply chains.
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4.1 Introduction

In Chapter 2 and Chapter 3, we focused on investigating the SCMo problem under uncertain-

ties and risks. Data-driven SCMo helps improve the awareness of the operating conditions

of supply chains, while in this thesis, it is considered to be only the �rst step for data-driven

SCM. As a further step, we aim to investigate optimal supply chain control under uncertainty

using data-driven methods, which is the research objective of this chapter. In the study

presented in this chapter, a data-driven control method is applied to supply chain systems to

provide decisions for operational control.

As has been mentioned in Chapter 1, there are generally three levels for supply chain planning,

which are strategic/long-term planning, tactical/mid-term planning, and operational/short-

term planning. In this chapter, we focus on operational supply chain planning under uncer-

tainty. The existence of supply chain uncertainties, such as stochastic customer demands,

and production and transportation delays, makes it complicated to manage a supply chain.

Mathematical programming has been applied to optimize supply chain decision-making

under uncertainty, such as stochastic programming, robust optimization, chance-constrained

programming, fuzzy logic, and interval programming (Govindan et al., 2015; Ning and You,

2019). In recent years, data-driven optimization has developed rapidly and been applied to

solve supply chain problems. Data-driven approaches integrate mathematical programming

and machine learning, and use historical data to characterize uncertainty, instead of assuming

the uncertainty model is perfectly given a priori as in conventional optimization techniques

(Ning and You, 2019).

A promising technique that has been shown to be bene�cial to SCM is reinforcement learning

(RL) (Sutton and Barto, 2018). RL is a branch of machine learning, and is also known as a

data-driven method, as it learns from system data rather than utilizing the mathematical

model of system (Jiang et al., 2018). The RL framework is di�erent from the mathematical

programming-based paradigms mentioned above. In this framework, an agent learns optimal
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decisions when interacting with the non-deterministic environment. Then the feedback

information from the environment, i.e., state and reward, is used to optimize its actions,

while a pre-determined model of environment is not necessarily required. RL provides the

advantage of solving complex sequential decision-making problems through learning from

previous experience. Therefore, it is considered as a powerful technique for solving problems

where a large number of factors need to be taken into account, such as SCM problems (Kara

and Dogan, 2018; Fuji et al., 2018).

Research on using RL for supply chain control emerged around two decades ago (Pontrandolfo

et al., 2002; Giannoccaro and Pontrandolfo, 2002). Some advantages of RL policies over

classical inventory policies have been demonstrated in the current literature. To the best of

our knowledge, however, there still exists the following two research gaps.

First, RL-based control of closed-loop supply chains (CLSCs). A CLSC is a production and

distribution system that focuses on collecting used products from customers and recovering

added value by reusing the entire or partial product. It integrates both forward and reverse

logistics, and enables remanufacturing of used products in parallel with manufacturing of

new products (Savaskan et al., 2004; Guide and Van Wassenhove, 2009). A CLSC plays two

main roles: (1) Operating value-added processes aimed at satisfying customers’ demands, as

in a conventional SC (also called open-loop SC); (2) Taking back the end-of-lifecycle products

from customers and determining the best ways to recover their value. Due to their extensive

economic and environmental potential, CLSCs have received attention from industry and

academia over the past decades. A comprehensive review of relevant research is given by

Govindan et al. (2015). All of the current works focus on forward SCs, while the control

of CLSCs using RL has not been investigated. A main di�erence between a CLSC and a

forward SC is the reverse �ow in CLSC, which could involve a higher degree of uncertainty,

for example, uncertain return rate, quality of returned products, and remanufacturing lead

time (Ilgin and Gupta, 2010; Govindan et al., 2015; Dominguez et al., 2020). This makes the

control of CLSCs more challenging than conventional forward SCs.

Second, risk-averse RL of supply chains. All of the current studies utilize risk-neutral

RL algorithms for supply chain control, while the concept of risk or safety has not been
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considered. It should be noted that risk management forms an important component of SCM

and thus has been investigated in many works, e.g., You et al. (2009). Therefore, it is worth

exploring SC control using RL with consideration of risk. In this chapter, the use of safe RL is

explored for operational supply chain control. The terminology safe RL is �rst proposed by

García and Fernández (2015) to describe a sub�eld within RL. It is de�ned as the process of

learning policies that maximize the expected return in problems where ensuring reasonable

system performance or obeying safety constraints is considered important. To put it simply,

safe RL describes a class of RL algorithms that takes into account the concept of safety or risk.

Generally, safe RL is implemented by transforming the optimization criterion or modifying

the exploration process of conventional RL. Research on applying safe RL to SC control is

scant.

This chapter aims to �ll the above two research gaps. The main contributions of this chapter

are:

1. Development of a RL-based method for operational control of CLSCs under uncertainty;

2. Development of a safe RL-based method for risk-averse operational control of supply

chains under uncertainty;

3. A comparative study on the control performance of a classical Order-Up-To (OUT)

inventory policy, a conventional RL algorithm (Q-learning), and two safe RL algorithms

(Q̂-learning and β-pessimistic Q-learning).

The rest of this chapter is organized as follows. In Section 4.2, a comprehensive review of

related works on RL-based supply chain control is presented, and the research gaps are then

identi�ed. In Section 4.3, RL-based supply chain control is described, including a RL algorithm

(Q-learning) and two safe RL algorithms (Q̂-learning and β-pessimistic Q-learning). In order

to examine the performance of RL algorithms for SC control, a SC simulation model is

developed using the programming language Python for case studies. The details of the

simulation model are presented in Section 4.4. Two case studies are presented in Section 4.5.

The �rst one is a two-echelon SC consisting of a manufacturer and a retailer. The second

one is a CLSC, which includes a remanufacturing process and has both a forward �ow and a
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reverse �ow. The RL policies are compared with the classical OUT policies. Conclusions are

given in Section 4.6.

4.2 Literature Review

A review of related works on SC control using RL is presented in this section. The articles

are reviewed from four aspects, which are the supply chain problems they investigate, the

SC con�gurations, the RL algorithms they use, and the advantages of RL they demonstrate.

Table 4.1 gives a summary of related works in an ascending order of the year of publication

from the top of the table to the bottom. The four aspects are listed in the second to �fth

column of the table, and described in detail in Section 4.2.1 to Section 4.2.4, respectively.

4.2.1 Supply chain problems

In research studies related to this work, RL is commonly applied to optimize inventory

or ordering decisions in a stochastic environment, such as decisions on the quantities of

production, ordering, and shipment (Giannoccaro and Pontrandolfo, 2002; Chaharsooghi

et al., 2008; Mortazavi et al., 2015; Kemmer et al., 2018), order-up-to level and re-order point

(Zhang and Bhattacharyya, 2007; Jiang and Sheng, 2009), safety factor level and safety lead

time (Kim et al., 2008), and selection of supplier and transportation mode (Pontrandolfo et al.,

2002). Di�erent studies may have di�erent focuses. Qiu et al. (2007) use RL to investigate the

impact of business service mode, which is de�ned as a combination of business process and

information scenario, on distribution systems. Kwon et al. (2008), Jiang and Sheng (2009),

and Kim et al. (2010) investigate the inventory control problem with a constraint on the

customer service level, in which a prede�ned target service level needs to be satis�ed by the

retailers. Kwak et al. (2009) use RL to address the Vendor Managed Inventory (VMI) problem,

in which the supplier makes replenishment decisions for the retailer based on the sales and

inventory information provided by the retailer. Sui et al. (2010) focus on the consignment-

inventory VMI system, in which the supplier owns the inventory at the retailer and pays for
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the holding cost. The supplier is not paid until the item is sold, and is penalized for stock-out.

Valluri et al. (2009) conduct comparative study on the performance of three di�erent RL

algorithms in learning supply chain operating rules. van Tongeren et al. (2007) and Fuji et al.

(2018) investigate the management of competitive supply chains, where the agents make

decisions individually and independently in a distributed environment based on partial or

local information, and also cooperate to guarantee the performance of the entire supply

chain. Kara and Dogan (2018) focus on perishable inventory management where the age

information of products is taken into account, and use RL approaches to determine ordering

policies that can strike a balance between the shortage cost and outdating cost resulting

from discarded products. Aghaie and Heidary (2019) consider the multi-period newsvendor

problem with supplier disruption (MNVPSD), and use RL to optimize behavior of the risk-

sensitive retailer with respect to forward and option contracts. Peng et al. (2019) focus on

the capacitated supply chain optimization problem, where there are capacity constraints on

the plant production and retailer storage. Hubbs et al. (2020) apply deep RL to a chemical

production scheduling process and achieve e�cient online scheduling. Gijsbrechts et al.

(2022) evaluate the performance of deep RL in three classic inventory problems, which are

lost sales, dual-sourcing, and multi-echelon inventory management. Oroojlooyjadid et al.

(2022) apply deep RL to play the beer game, which is a decentralized multi-agent problem

where the agents cooperate to minimize the total cost with only local information available.

4.2.2 Supply chain configurations

Generally, the con�guration of traditional supply chains can be categorized into six types

(Beamon and Chen, 2001; Giard and Sali, 2013): (1) Dyadic, a simple structure that consist

of a single supplier and a single customer; (2) Serial, a linear structure where each node is

connected to at most one predecessor and one successor; (3) Divergent, a tree structure where

each node has at most one predecessor, but may have multiple successors; (4) Convergent, a

tree structure where each node has at most one successor, but may have multiple predecessors;

(5) Conjoined, a combination of convergent and divergent structures; (6) Network, a general

structure that does not fall within the previous classes.
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Kara and Dogan (2018) investigate a dyadic system, where a single retailer manages in-

ventory to meet customer demands. In terms of the reviewed works, the most commonly

used con�guration is the serial supply chain, which has only one agent for each echelon.

Serial supply chains consisting of two to four echelons are used by, e.g., Giannoccaro and

Pontrandolfo (2002), Kim et al. (2008), Kwak et al. (2009), Kim et al. (2010), Mortazavi et al.

(2015), Kemmer et al. (2018), and Peng et al. (2019). In particular, a benchmark four-echelon

serial supply chain, the Beer Distribution Game, is used as a case study by van Tongeren

et al. (2007), Chaharsooghi et al. (2008), Valluri et al. (2009), and Fuji et al. (2018).

Two-echelon divergent supply chains consisting of single supplier or distributor and multiple

retailers are investigated by Qiu et al. (2007), Kwon et al. (2008), and Sui et al. (2010). A

three-echelon divergent supply chain is considered by Peng et al. (2019). Two-echelon or

multi-echelon supply chain networks with multiple agents in each echelon are investigated

by Pontrandolfo et al. (2002), Zhang and Bhattacharyya (2007), Jiang and Sheng (2009), and

Aghaie and Heidary (2019).

4.2.3 RL algorithms

In terms of the RL algorithms that have been applied to supply chain control, Q-learning is

the most popular one in the reviewed works (Zhang and Bhattacharyya, 2007; Chaharsooghi

et al., 2008; Mortazavi et al., 2015; Kemmer et al., 2018; Kara and Dogan, 2018; Aghaie

and Heidary, 2019). Sarsa, another tabular solution method, is used by Kara and Dogan

(2018). Pontrandolfo et al. (2002) and Giannoccaro and Pontrandolfo (2002) employ the

semi-Markov average reward technique (SMART), which is based on value iteration and

solves semi-Markov decision processes over the in�nite time horizon under an average

reward criterion. Kwon et al. (2008) and Jiang and Sheng (2009) investigate the case-based RL

approach, which uses the case-based reasoning to discretize the state space dynamically. Kim

et al. (2008), Kwak et al. (2009), and Kim et al. (2010) adopt action-reward learning, which is

a RL model simpler than the Markovian learning models, but has the ability to learn when

the environment is dynamically changing.
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RL with function approximation has been applied to supply chain control to learn a func-

tional mapping of the action-value function. Valluri et al. (2009) employ linear functions

to approximate the state-action pair values of Q-learning, Sarsa(λ), and tile coding with

Sarsa(λ). Kemmer et al. (2018) use linear function to approximate the Sarsa algorithm. Sui

et al. (2010) use a back-propagated neural network as the approximator of the Q-factors of

Q-learning. Using deep neural networks (NNs) for value and policy approximations is called

the deep RL in the literature. Deep RL algorithms that have been applied to supply chain

control include, e.g., the Vanilla Policy Gradient algorithm (Peng et al., 2019), the Advantage

Actor-Critic (A2C) algorithm (Hubbs et al., 2020), the Asynchronous Advantage Actor Critic

(A3C) algorithm (Gijsbrechts et al., 2022), and the shaped-reward deep Q-network (SRDQN)

algorithm (Oroojlooyjadid et al., 2022). Through combining the actor-critic deep RL with

learning management, Fuji et al. (2018) propose a deep multi-agent RL technique for decision

making in multi-agent system.

4.2.4 Advantages of RL in supply chain control

It has been demonstrated by comparative studies in relevant works that RL policies have

advantages over some classical inventory policies. The superiority of RL in supply chain

control, as inferred through case studies, include:

(1) Outperforms expert players in the Beer Game (Fuji et al., 2018);

(2) Outperforms some classical inventory policies in terms of cost or pro�t, for example, the

one-for-one (1-1) policy (van Tongeren et al., 2007; Chaharsooghi et al., 2008), static or

rolling horizon (r, Q) policy (Kim et al., 2008; Kemmer et al., 2018; Peng et al., 2019), (R,

S) policy (Giannoccaro and Pontrandolfo, 2002), newsvendor or newsboy model for VMI

system (Sui et al., 2010);

(3) Performs better or almost better than genetic algorithms (GAs) (Chaharsooghi et al.,

2008; Kara and Dogan, 2018; Aghaie and Heidary, 2019);

(4) Outperforms naive mixed-integer linear programming (MILP) approaches, and is com-
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petitive with the MILP with a shrinking horizon for chemical production scheduling

(Hubbs et al., 2020);

(5) Can match advanced heuristics and other approximate dynamic programming (ADP)

methods (Gijsbrechts et al., 2022);

(6) Can reduce the bullwhip e�ect (van Tongeren et al., 2007);

(7) Is robust against changes in the holding and shortage costs (Oroojlooyjadid et al., 2022).

Based on the review of current literature, it is observed that although RL has been applied to

solve many SCM problems, two research gaps still exist. The �rst one is the control of CLSC

using RL. Due to the existence of reverse �ow, CLSC problems could involve more uncertain

parameters than conventional forward SC problems, and thus are more complicated. The

promising RL technique is worth investigating for control of CLSC under uncertainty. The

second research gap is the consideration on risk in supply chain control. Since the risk-

neutral criterion may not satisfy the need of risk-sensitive or risk-averse decision makers,

we believe it is worth exploring safe RL algorithms for supply chain control. Therefore, this

work has two objectives: (1) to examine the performance of RL for control of CLSCs; (2) to

explore the use of safe RL for risk-averse SC control.

4.3 Reinforcement Learning-BasedSupplyChainControl

This section describes the methodology for supply chain control using RL. Section 4.3.1 intro-

duces the RL framework and the Q-learning algorithm. Section 4.3.2 introduces the concept

of safe RL and two algorithms, Q̂-learning and β-pessimistic Q-learning. The procedure of

applying RL to supply chain control is described in Section 4.3.3.
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4.3.1 Reinforcement learning

Generally speaking, machine learning can be categorized into three paradigms: supervised

learning, unsupervised learning, and RL (Lee et al., 2018; Shin et al., 2019). Supervised

learning is aimed at constructing a mapping from input to output based on labelled data,

while unsupervised learning discovers patterns from unlabeled data. RL is a di�erent machine

learning task. The goal of RL is to learn a mapping from situations to actions such that a

numerical reward signal is maximized for the decision maker.

RL has two major components: (1) the agent, which is the learner and decision maker; (2) the

environment, which comprises everything outside the agent and interacts with the agent. RL

explicitly considers the problem of an active decision-making agent seeking to achieve a goal

despite uncertainty in the environment. A diagram for the interaction between the agent and

the environment is shown in Figure 4.1 (Sutton and Barto, 2018). Let t = 0, 1, 2 . . . be the

index of discrete time steps. At each time step t, the agent observes the state of environment

st ∈ S , and selects an action at ∈ A(st) according to a policy π. The policy π is a mapping

from states to probabilities of selecting each possible action. For example, π(at|st) is the

probability of choosing action at when the state is st. One step later, partially due to its

action, the agent receives a numerical reward rt+1 ∈ R ⊂ R, and a new state st+1 of the

environment. The environment is modelled as a Markov Decision Process (MDP) that has the

following Markov property:

Pr(st+1, rt+1|st, at, st−1, at−1, . . . , s0, a0) = Pr(st+1, rt+1|st, at), (4.1)

Equation (4.1) indicates that the probability of each possible value of state st+1 and reward

rt+1 depends only on the immediately preceding state st and action at, while not on any

earlier trajectory given st and at. If the sets of states, actions, and rewards have a �nite

number of elements, then the MDP is said to be a �nite MDP.

The goal of the agent is to maximize the expectation of the cumulative sum of the reward it

receives, or the expected return that is de�ned as some function of the reward sequence. If
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Figure 4.1. The agent-environment interaction in RL.

the present value of future reward is taken into account, the expected discounted return is

typically de�ned as Gt := ∑∞
k=0 γkrt+k+1, where γ ∈ [0, 1] is the discount rate. The agent

is said to be ‘myopic’ if γ = 0, while it becomes more farsighted as γ approaches 1.

The expected return for the agent when it starts from a state s and follows policy π thereafter

is called the value function of s under π, denoted as vπ(s):

vπ(s) := Eπ [Gt|st = s] = Eπ

[
∞

∑
k=0

γkrt+k+1|st = s

]
(4.2)

Similarly, the expected return for the agent when it starts from state s, takes action a, and

follows policy π thereafter is called the value of taking a in s under π , denoted as qπ(s, a):

qπ(s, a) := Eπ [Gt|st = s, at = a] = Eπ

[
∞

∑
k=0

γkrt+k+1|st = s, at = a

]
(4.3)

vπ and qπ are called the state-value function and the action-value function for policy π,

respectively. Solving a RL problem means �nding an optimal policy π?
that outperforms all

other policies across all possible scenarios, which yields an optimal action-value function q?

(Spielberg et al., 2020):

q?(s, a) = max
π

qπ(s, a), ∀s ∈ S , a ∈ A(s) (4.4)
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For an optimal policy, we have:

q?(s, a) = E [rt+1 + γv?(st+1)|st = s, at = a] (4.5)

By selecting actions with the highest values, π?
can be recovered from q?:

π?(a|s) =

1, if a = arg maxa′∈A(s) qπ(s, a′),

0, otherwise.
(4.6)

Q-learning, a temporal-di�erence (TD) control algorithm proposed by Watkins and Dayan

(1992), has been widely used to solve �nite Markov decision problems. This algorithm

approximates q? through a learned action-value function Q using the following update:

Q(s, a)← Q(s, a) + α

[
r + γ max

a′
Q(s′, a′)−Q(s, a)

]
(4.7)

where α ∈ (0, 1] is the step-size parameter or learning rate.

Algorithm 4.1: Q-learning

Parameters : step size α ∈ (0, 1], small ε > 0
1 Initialize Q(s, a) arbitrarily (e.g., 0), ∀s, a, and Q(terminal, ·) = 0
2 for each episode do
3 Initialize state s
4 for each step of episode do
5 Choose a using policy derived from Q, e.g., ε-greedy

6 Take action a, observe reward r and new state s′

7 Update: Q(s, a)← Q(s, a) + α [r + γ maxa′ Q(s′, a′)−Q(s, a)]
8 s← s′

9 Until s is terminal

10 end
11 end

The Q-learning procedure is given by Algorithm 4.1 (Sutton and Barto, 2018). It is typically

implemented as a tabular method based on a Q-table, which is a 2-D lookup table for storing

the Q-values of all the state-action pairs. For problems with �nite state and action sets,

135



Ph.D. Thesis - Jing Wang McMaster University - Computational Science and Engineering

Q-learning applies directly. For supply chain control problems where the state and action

spaces are usually large or continuous, the �rst step is to discretize the spaces appropriately,

thus they have a reasonable number of elements (Chaharsooghi et al., 2008; Mortazavi

et al., 2015; Kara and Dogan, 2018). The Q-table can be created by using the discrete states

and actions as columns and rows, with all entries initialized with arbitrary values, such

as 0. The training process takes place through a series of episodes. For each step of an

episode, the agent takes the action with the highest Q-value according to the Q-table and

the current state. Then it observes the reward and new state, and uses this information to

update corresponding entry of the Q-table.

Q-learning does not require a model of the environment, and is well suited for step-by-step

incremental computation. It is classi�ed as o�-policy, because the target policy it approxi-

mates and the behavior policy it follows are di�erent. The target policy is greedy, i.e., taking

the action with the highest reward, while the behavior policy can be, e.g., ε-greedy, which

means the agent has a probability of 1− ε for exploiting the current optimal action, and also

allows for a probability of ε for exploring the action space randomly. Thus, the compromise

between exploitation and exploration is determined by the parameter ε.

4.3.2 Safe RL

Supply chain risks include operational risks related to inherent uncertainties and disruption

risks caused by disasters (Tang, 2006). The risk attitude of a decision maker, i.e., risk-

neutral, risk-averse, or risk-seeking, has a major impact on the assessment of supply chain

performance and the decision-making (Heckmann et al., 2015). The optimization criterion

Q-learning uses, i.e., Equations (4.3) and (4.4), is an expectation-based criterion. It is said to

be risk-neutral and is based on long-term consideration that the decision process is repeated

for su�ciently many times under the same conditions. However, it should be noted that

maximizing the long-term expected return does not guarantee the avoidance of occurrences

of large negative outcomes. Thus, the expected value criterion is not always considered to be

reliable in operations management (Heger, 1994; García and Fernández, 2015; Govindan and

Fattahi, 2017). For risk-averse decision makers, a criterion that takes into account the risk
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could be a better option. When the probability distribution of uncertain parameters is known,

risk measures can be de�ned for assessment or incorporated into the objective functions

of supply chain problems, such as the variance, downside risk, conditional value-at-risk,

and the worst-case cost (Gupta and Maranas, 2003; You et al., 2009; Gebreslassie et al., 2012;

Heckmann et al., 2015). In case the probability distribution of uncertainty is unknown, robust

optimization approaches that use a minimax objective or the worst-case criterion can be

used to obtain robust solutions (Pishvaee et al., 2011; Govindan and Fattahi, 2017; Ning and

You, 2019).

In this work, the use of safe RL for risk-averse or risk-avoidance SC control is explored. Safe

RL algorithms are RL algorithms that take into account the concept of safety or risk. Generally,

safe RL algorithms can be categorized into two frameworks (García and Fernández, 2015):

(1) transforming the optimization criterion, e.g., using worst-case criterion, risk-sensitive

criterion, or constrained criterion; (2) modifying the exploration process of conventional

RL by incorporating external knowledge or using a risk measure. This work focuses on RL

based on the worst-case criterion or the maximin criterion, which is given by:

max
π

min
ω

Eπ,ω

(
∞

∑
t=0

γtrt

)
(4.8)

where ω represents the trajectory under policy π. Under optimality criterion Equation (4.8),

a policy is considered to be optimal if its worst-case return is superior (García and Fernández,

2015).

Q̂-learning, proposed by Heger (1994), is a safe RL algorithm that adopts the worst-case

criterion. In Q̂-learning, the state-value function and action-value function are de�ned by

Equations (4.9a) and (4.9b), respectively.

v̂π(s) := sup {r ∈ R|p(Gt > r|st = s) > 0} (4.9a)

q̂π(s, a) := max
st+1
{rt+1 + γv̂π(st+1)|st = s, at = a} (4.9b)

v̂π(s) is the worst-case return that the agent could receive if it starts from state s and follows
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policy π thereafter. For an optimal policy, we have:

q̂?(s, a) = max
π

q̂π(s, a), ∀s ∈ S , a ∈ A(s) (4.10a)

q̂?(s, a) = max
st+1
{rt+1 + γv̂?(st+1)|st = s, at = a} (4.10b)

where v̂? is the optimal state-value function.

The Q̂-learning algorithm approximates q̂?(s, a) by calculating Q̂(s, a) through the following

update:

Q̂(s, a)← min
{

Q̂(s, a), r + γ max
a′

Q̂(s′, a′)
}

(4.11)

The Q̂-value provides a lower bound on the value of action. As a counterpart to Q-learning

with respect to the worst-case criterion, Q̂-learning is aimed at decision making in situations

where avoiding risk is considered to be important (García and Fernández, 2015).

In comparison to the expectation-based criterion, the worst-case criterion may be conser-

vative in some cases because it takes into account severe scenarios which may occur with

a small probability. To this end, Gaskett (2003) proposes the β-pessimistic Q-learning as a

compromise between the optimism of standard Q-learning and the pessimism of minimax

approaches. It adopts the following update by weighting the maximum and the minimum

action-values with a parameter β:

Qβ(s, a)← Qβ(s, a)+ α

{
r + γ

[
(1− β)max

a′
Qβ(s′, a′) + β min

a′′
Qβ(s′, a′′)

]
−Qβ(s, a)

}
(4.12)

The β-pessimistic action-values (Qβ-values) approximate the expected return of taking an

action followed by actions with highest values with probability 1− β or lowest values with

probability β. The weight β can be adjusted to represent di�erent levels of risk-averse

attitude. For example, if β = 0, the update Equation (4.12) is standard Q-learning; if β = 1,

then it is a minimax approach (Gaskett, 2003). β can be interpreted as the probability of a

potential malicious adversary attacking the agent in the next state, taking over control, and

aiming to minimize the expected return for the agent (Klima et al., 2019).
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Gaskett (2003) uses β-pessimistic Q-learning to solve the Cli� Walking task, and �nds that

it is robust to uncertainty in the action-selection. Following the idea of using a weighted

sum of the maximum and minimum for a robust policy, Klima et al. (2019) generalize the

algorithm with a κ-operator and propose the Q(κ) and Expected SARSA(κ) methods, of which

Q(κ) is comparable to the β-pessimistic Q-learning. They use the κ methods to solve the

Cli� Walking and Puddle World tasks, and �nd that for the more expressive Puddle World

task, they outperform classical RL methods. Especially, Q(κ) is superior for all considered

levels of probability of attack. Zorowitz et al. (2020) apply the β-pessimistic Q-learning to

the domain of computational psychiatry, and use it to model the bias in beliefs. Their results

o�er novel insights to some phenomena related to anxiety disorders.

The pseudo-code of Q̂-learning and β-pessimistic Q-learning are given in Algorithm 4.2. The

main di�erence between these two algorithms and Q-learning is the update of the Q-table,

i.e., Equations (4.11), (4.12), and (4.7). It should be noted that for Q̂-learning, the Q-table is

initialized optimistically, i.e., Q(s, a) ≥ q̂?(s, a). In this work, the performance of the three

RL algorithms for supply chain control are examined and compared.

Algorithm 4.2: Q̂-learning and β-pessimistic Q-learning

Parameters : step size α ∈ (0, 1], small ε > 0
1 Initialize Q(s, a), ∀s, a, optimistically for Q̂-learning

2 for each episode do
3 Initialize state s
4 for each step of episode do
5 Choose a using policy derived from Q, e.g., ε-greedy

6 Take action a, observe reward r and new state s′

7 (Q̂-learning): Q(s, a)← min {Q(s, a), r + γ maxa′ Q(s′, a′)}
8 (β-pessimistic Q-learning): Q(s, a)← Q(s, a) +

α {r + γ [(1− β)maxa′ Q(s′, a′) + β mina′′ Q(s′, a′′)]−Q(s, a)}
9 s← s′

10 Until s is terminal

11 end
12 end
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4.3.3 RL-based supply chain control

Figure 4.2 shows the diagram of using RL for supply chain control. Within the RL modelling

framework, the supply chain is considered as the stochastic environment and is modelled as

a MDP. The agent is the learner and decision maker – the supply chain controller in this

case. For RL-based supply chain control, the state and action vectors need to be constructed

with proper information. Furthermore, appropriate discretization of the state and action

spaces may be required if tabular methods are used. In this work, the state of environment

comprises the inventory positions of the supply chain actors, and the action of the agent

comprises the order and production quantities. The goal of agent is to minimize the total cost

over all time periods, which is the summation of total inventory holding cost and shortage

cost. Since the RL algorithms typically maximize the expected return, the reward signal is

de�ned as the negative total cost.

Figure 4.2. RL-based supply chain control.

In the training phase, for each time period, the agent chooses an action, i.e., determines the

ordering and production quantities according to its policy. One time step later, the state of

supply chain (inventory positions) and the reward signal (total cost for that period) is received

by the agent. Then the corresponding action-value in the Q-table is updated by using the

RL algorithms. After training for a su�ciently large number of episodes, the algorithm

converges and a controller is obtained. In comparison to mathematical programming-based

control techniques such as model predictive control and stochastic programming, the Q-

learning algorithm has the feature of being model-free. Here, it is worth mentioning that

Q-learning is said to be model-free because it does not require an estimate of the Markov
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transition model of the environment (Mnih et al., 2015; Shin et al., 2019). Instead, it solves the

RL problem directly using information from the environment or a simulator that mimics the

environment. In practice, a simulation model is often needed to generate data for training

the RL agent (Hubbs et al., 2020; Oroojlooyjadid et al., 2022). In the context of supply chain

decision-making, the RL controller can be trained using high-quality supply chain simulation

tools �rst, and then be applied online for real supply chain control.

4.4 Supply Chain Simulation

RL is sometimes said to be a simulation-based optimization approach as the training process

often requires simulation of interaction between the agent and the environment. To apply RL

to supply chain control, a supply chain simulator is needed to train the controller. Generally,

the supply chain simulation tools that are used in the current literature can be classi�ed into

three types (Othman and Musta�a, 2012): (1) spreadsheet simulation (Boute and Lambrecht,

2009); (2) simulation software, e.g., Arena (Giannoccaro and Pontrandolfo, 2002), AnyLogic

(Mortazavi et al., 2015), and NetLogo (Jinqi et al., 2017; Aghaie and Heidary, 2019); (3) general

purpose programming language, e.g., Java (Li et al., 2010; Dominguez and Framinan, 2013;

Dominguez et al., 2018) and Python (Wang et al., 2020).

In order to get �exible customization for di�erent supply chain con�gurations and functions,

in this work a supply chain simulator is developed using the open-source programming

language Python 3.8. Section 4.4.1 gives a description of the simulator, and the details of

simulation procedure are presented in Section 4.4.2.

4.4.1 Supply chain simulator

This work adopts the agent-based modelling (ABM) technique to develop the supply chain

simulator. ABM is a well-known paradigm for modelling distributed systems, and has been

commonly applied to supply chain modelling (Zhang and Bhattacharyya, 2007; Valluri et al.,

2009; Mortazavi et al., 2015; Ponte et al., 2017; Aghaie and Heidary, 2019). Note that the
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“agent” in ABM has di�erent meaning from the “agent” in the RL framework. In the ABM

framework, the components of a system are modelled as autonomous agents called actors,

which have the ability to communicate and make decisions (Mortazavi et al., 2015; Ponte

et al., 2017). Thus, for the modelling and simulation of supply chain system, which is complex

and often involves nonlinear behaviour, ABM is a good option.

In our simulation model, �ve supply chain agents are de�ned, which are:

(1) Manufacturer/Factory agent, which issues production orders and transforms raw materi-

als into products;

(2) Distributor agent, which places orders to the Manufacturer and satis�es orders placed

by the Retailer agent;

(3) Retailer agent, which places orders to the Distributor and satis�es the Customer’s orders;

(4) Customer agent, which simulates the behaviour of customers;

(5) Remanufacturer agent, which processes used products returned by customers, and

delivers remanufactured products to the Retailer. Through de�ning the Remanufacturer

agent, this model can be used to simulate not only forward supply chains, but also CLSCs.

The simulation model is coded in the programming language Python 3.8 and object-

oriented programming is implemented. Each of the �ve supply chain agents is de�ned as

a class object. The structure of the simulator and the interaction between the agents are

shown in Figure 4.3. The Manufacturer, Distributor, and Retailer agents have some attributes

in common, such as stock of product on hand, backorder, inventory level, and inventory

position. Single product is considered in this work, and the inventory level and inventory

position of an agent a are de�ned in the same way as used by Axsäter (2015):

ILa,t = SHa,t − Ba,t

IPa,t = SHa,t + OSa,t − Ba,t

(4.13)

where ILa,t, IPa,t, and SHa,t are the inventory level, inventory position, and stock on hand

of agent a in period t, respectively. They are updated according to the simulation procedure
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presented later in Section 4.4.2. The inventory position IPa,t is used in the OUT policy to

determine the ordering or production quantity for agent a in period t, as described later in

Section 4.5.1. Ba,t represents the backorders of agent a in period t, which is the quantity of

products that have been demanded by the downstream agent but not yet delivered; OSa,t

represents the outstanding orders of agent a in period t, which is the quantity of orders that

have been placed to the upstream agent but not yet arrived.

The order and return are also de�ned as classes, and thus can be used to link the agents and

pass information or material between them. These classes are de�ned in separate Python

modules, and can be used to construct simulation model for di�erent supply chains. In this

work, we use serial forward �ow and reverse �ow for example, which means each echelon

involves only one agent, as shown in Figure 4.3, while multiple agents can also be simulated

using the simulator.

Figure 4.3. Framework of the supply chain simulator.

4.4.2 Simulation procedure

This section describes the details of the �ve supply chain agents de�ned in the simulation

model. The sequence of actions of a Retailer agent r during time period t is given as follows
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(Dominguez et al., 2018; Dominguez et al., 2020):

Step 1. Places an order to the upstream Distributor agent d. An Order object is created and

passed to d. The order quantity is determined by an inventory policy, e.g., OUT

policy or RL policy.

Step 2. Receives products from d. The update of stock can be understood as SHr,t ←
SHr,t−1 + Sd,t−δd,r

, where SHr,t is the stock on hand of r in period t, Sd,t−δd,r
is the

quantity of shipment from d to r in period t− δd,r, and δd,r is the transportation

delay between d and r.

Step 3. Receives �nished products from the Remanufacturer agent rm. The update of

stock for time period t can be understood as SHr,t ← SHr,t + RTrm,t−δrm,r , where

RTrm,t−δrm,r is the quantity of �nished products shipped by rm in period t− δrm,r,

and δrm,r is the transportation delay between rm and r. It is assumed that the Re-

manufacturer follows a push policy, i.e., the used products returned by the Customer

agent are processed as soon as they are received. If there is no reverse �ow in the

supply chain, then this step can be skipped.

Step 4. Satis�es backorders and demand of the Customer agent. The backorders in period

t− 1, Br,t−1, are considered prior to the demand in period t, Dc,t. If current stock

on hand SHr,t is su�cient to satisfy Br,t−1 and Dc,t, then products are shipped to

�ll them immediately; otherwise the un�lled part are recorded as backorders, which

causes shortage cost or backlog penalty, and will be processed �rst once su�cient

stock is available. This step can be understood as (SHr,t, Br,t)← (max{0, SHr,t −
Br,t−1 − Dc,t}, max{0, Br,t−1 + Dc,t − SHr,t}).

Step 5. Updates inventory pro�les. The inventory level and inventory position are updated

by ILr,t ← SHr,t − Br,t, and IPr,t ← SHr,t + OSr,t − Br,t, respectively.

The sequence of actions of the Distributor agent d is similar, and is brie�y described as

follows:

Step 1. Places an order to the upstream Manufacturer agent m.
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Step 2. Receives products from m: SHd,t ← SHd,t−1 + Sm,t−δm,d , where Sm,t−δm,d is the

quantity of shipment from m to d in period t− δm,d, and δm,d is the transportation

delay between m and d.

Step 3. Satis�es backorders and orders of downstream Retailer r. Distributor d delivers

product of quantity Sd,t to r to satisfy as many backorders and orders as it can:

Sd,t → r. Then the stock on hand is updated by: SHd,t ← SHd,t − Sd,t.

Step 4. Updates inventory pro�les: ILd,t ← SHd,t − Bd,t, IPd,t ← SHd,t + OSd,t − Bd,t.

The sequence of actions of the Manufacturer agent m are de�ned in a similar way, only

that in the �rst step, it determines the quantity of product to be manufactured and issues a

production order.

For the Remanufacturer agent rm, the sequence of actions is:

Step 1. Accepts used products that are returned by the Customer agent c: rm ← RTc,t,

where RTc,t is the quantity of returned products in period t.

Step 2. Remanufactures products: RTrm,t ← RTc,t−δrm , where RTrm,t is the output of reman-

ufacturing process in period t, and δrm is the remanufacturing lead time.

Step 3. Transports �nished products to Retailer: RTrm,t → r.

The Customer agent c simulates the behavior of consumers, and the sequence of actions is:

Step 1. Passes demand information to Retailer r: Dc,t → r.

Step 2. Returns used products to rm: RTc,t ← αtD̂c,t−δc , RTc,t → rm, where D̂c,t−δc is the

satis�ed demand in period t− δc, which is then consumed during the consumption

lead time δc, and is returned or disposed of in period t; αt ∈ [0, 1] is the return rate

in period t. The disposal in period t is (1− αt)D̂c,t−δc .

The complete simulation procedure for a CLSC is presented by Algorithm 4.3 in the form of

pseudo-code. For a forward supply chain, the procedure is similar except that the Remanu-

facturer is excluded.
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Algorithm 4.3: Supply chain simulation

Parameters :Number of time periods of simulation Nstep
1 Initialize agents

2 Build forward and reverse �ows

3 for t← 1 to Nstep do
4 for each Retailer do
5 Place an order to upstream: Or,t → Distributor d
6 Receive past order: SHr,t ← SHr,t−1 + Sd,t−δd,r

7 Receive return from Remanufacturer: SHr,t ← SHr,t + RTrm,t−δrm,r

8 Satisfy backorder and Customer demand: (SHr,t, Br,t)←
(max{0, SHr,t − Br,t−1 − Dc,t}, max{0, Br,t−1 + Dc,t − SHr,t})

9 Update inventory pro�les: ILr,t ← SHr,t − Br,t,

IPr,t ← SHr,t + OSr,t − Br,t
10 end
11 for each Distributor do
12 Place an order to upstream: Od,t → Manufacturer m
13 Receive past order: SHd,t ← SHd,t−1 + Sm,t−δm,d

14 Satisfy downstream orders: Sd,t → Retailer r, SHd,t ← SHd,t − Sd,t
15 Update inventory pro�les: ILd,t ← SHd,t − Bd,t,

IPd,t ← SHd,t + OSd,t − Bd,t
16 end
17 for each Manufacturer do
18 Issue a production order: Om,t
19 Receive past production order: SHm,t ← SHm,t−1 + Ot−δm
20 Satisfy downstream orders: Sm,t → Distributor d, SHm,t ← SHm,t − Sm,t
21 end
22 for each Remanufacturer do
23 Accept return from Customer: rm← RTc,t
24 Remanufacturing process: RTrm,t ← RTc,t−δrm
25 Transport �nished products to Retailer: RTrm,t → r
26 end
27 for each Customer do
28 Passes demand to Retailer: Dc,t → r
29 Returns used products to Remanufacturer: RTc,t ← αtD̂c,t−δc , RTc,t → rm
30 Disposal: (1− αt)D̂c,t−δc

31 end
32 end
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A schematic of applying RL to the control of a CLSC is shown in Figure 4.4. A CLSC di�ers

from a forward supply chain in the reverse �ow of materials, which needs to be taken into

account when determining an optimal control policy. For a classical policy based on demand

forecasting, the remanufactured products need to be considered in the calculation of net

demand (Dominguez et al., 2020). With the RL framework, the remanufacturing process

can be considered implicitly by including it in the environment. The RL-based supply chain

controller is the agent, and the supply chain simulator acts as the environment. For each time

step, the simulator returns state (inventory positions) and reward (cost) to the controller, and

the controller determines and improves its action such as ordering and production quantities.

In this work, the RL algorithms are also implemented in Python. The Q-table is created as a

pandas.DataFrame with hierarchical indexing using pandas.MultiIndex.

Figure 4.4. RL-based control of CLSC.

4.5 Case Studies

In order to evaluate the performance of the RL policies in supply chain control, two case

studies are carried out. A classical Order-Up-To (OUT) policy is chosen as the baseline
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inventory policy for comparative study, as it is commonly adopted in the literature and in

real-world SCM (Chat�eld, 2013; Costantino et al., 2015; Dominguez et al., 2020). The details

of OUT policy are described in Section 4.5.1. The �rst case study involves a two-echelon

serial supply chain that consists of a manufacturer and a retailer. The results are presented

in Section 4.5.2. The second case study is focused on a CLSC, which does not only have a

forward �ow of products, but also include a reverse �ow of returned products. The results

are presented in Section 4.5.3.

4.5.1 Baseline: OUT policy

For the baseline, it is assumed that each supply chain agent employs an adaptive (R, S)

policy with periodic review. Here R is the review period, and S is the desired OUT level

that is updated in every time period. In this work, R = 1 and the ordering quantity of each

agent in period t is determined according to the following procedure (Chat�eld et al., 2004;

Chat�eld, 2013; Dominguez et al., 2020):

(1) Demand and lead times forecasting. The mean and variance of demand are estimated

using the τ-period moving average and variance techniques, respectively:

Da,t =
1
τ

τ

∑
k=1

Da,t−k (4.14a)

s2
Da,t

=
1

τ − 1

τ

∑
k=1

(
Da,t−k − Da,t

)2
(4.14b)

where τ is the forecasting period (Dominguez et al., 2018; Dominguez et al., 2020), and

Da,t and s2
Da,t

are the estimated mean and variance of demand at agent a ∈ {r, d, m}
in period t, respectively. For Retailer r, Dr,t is the Customer’s demand in period t, i.e.,

Dr,t = Dc,t; for a CLSC where a remanufacturer rm exists, Dr,t is the net demand in

period t, i.e., Dr,t = Dc,t − RTrm,t. For Distributor d, Dd,t is the quantity of order placed

by Retailer r in period t, i.e., Dd,t = Or,t; for Manufacturer m, Dm,t is the quantity of

order placed by Distributor d in period t, i.e., Dm,t = Od,t.
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In case where the lead times are stochastic, they can be estimated through the running

average and variance technique using all previous data available. The estimated mean

and variance of the ordering or production lead time at agent a in period t is denoted as

δa,t and s2
δa,t

, respectively.

(2) Determine the OUT level OLa,t of agent a in period t:

OLa,t = (δa,t + R)Da,t + z
√
(δa,t + R)s2

Da,t
+ D2

a,ts2
δa,t

(4.15)

where z is the safety factor. Assuming that the demand during the lead time follows

a normal distribution, z = 2 corresponds to a customer service level of 97.72%, and

z = 3.09 corresponds to a customer service level of 99.9%. These two levels are commonly

adopted in the literature (Chat�eld et al., 2004; Chat�eld, 2013; Cannella et al., 2016;

Dominguez et al., 2018; Dominguez et al., 2020), and thus are used as the baselines in

this work.

(3) Determine the ordering or production quantity Oa,t of agent a in period t:

Oa,t = max{0, OLa,t − IPa,t−1} (4.16)

When inventory position IPa,t−1 is above the OUT level OLa,t, agent a does not place any

order in period t; otherwise, agent a places an order with the quantity of OLa,t− IPa,t−1.

4.5.2 Case study I: A two-echelon serial supply chain

A two-echelon serial supply chain for single product is used for the �rst case study. This

supply chain consists of a factory and a retailer, and its con�guration is shown in Figure 4.5.

This example can be seen as a simpli�ed version of the well-known Beer Distribution Game

(BDG) (Sterman, 1989; Chen and Samroengraja, 2000). The BDG supply chain is a benchmark

four-echelon serial supply chain, which deals with the production and distribution of beer

product and consists of a factory, a distributor, a warehouse and a retailer. This simulation

example has been widely used in operation management to illustrate the bullwhip e�ect in
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supply chains, and has also been used as an example application for supply chain control

(Chaharsooghi et al., 2008; Fuji et al., 2018; Oroojlooyjadid et al., 2022). Here, two echelons of

the BDG supply chain are taken to construct a simpler example: the factory and the retailer.

Figure 4.5. Case study I: a two-echelon serial supply chain.

In each time period, the Customer agent c purchases products from the Retailer agent r.

The Retailer places an order to the Factory m according to its ordering policy. The Factory

determines the production quantity and �lls Retailer’s orders. Customer demand Dc,t is the

uncertain parameter in this case. It is assumed that Dc,t is subject to a normal distribution,

as this assumption is widely adopted in research studies, e.g., Chat�eld et al. (2004) and

Dominguez et al. (2020). The mean of demand is set to µDc,t = 30 and the coe�cient of

variation (c.v.) σDc,t /µDc,t is set to 20%, i.e., Dc,t ∼ N (30, 62). Since the demand is always

non-negative, in simulation it is sampled from a truncated normal distribution using the

scipy.stats.truncnorm() application programming interface (API) provided by the

SciPy library to avoid negative values. The manufacturing lead time of the Factory is set to

δm = 4, and the transportation delay between the Factory and Retailer is set to δm,r = 2.

Two types of cost are considered in this case study, inventory holding cost Cinv and shortage

cost (backlog penalty) Cbkl . The unit inventory holding cost Ca,inv and unit shortage cost

Ca,bkl for agent a ∈ {m, r} are set to have a ratio of 1 : 10, i.e., Ca,inv = 1 per unit per period,

and Ca,bkl = 10 per unit per period (Chen and Samroengraja, 2000; Kwak et al., 2009). Cinv

and Cbkl are calculated as:

Cinv = ∑
t

∑
a∈{m,r}

Ca,invSHa,t, Cbkl = ∑
t

∑
a∈{m,r}

Ca,bklBa,t (4.17)

The total cost is the summation of inventory holding cost and backlog penalty: Ctot =
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Cinv + Cbkl . The goal is to obtain an optimal ordering policy that minimizes the total cost by

determining the ordering quantity of the Retailer and the production quantity of the Factory.

It is obvious that if the two agents hold excess safety stock, then the total inventory holding

cost will be high. On the other hand, if their inventory levels are too low, then shortage could

occur and lead to high backlog penalty. Thus, a good policy should �nd suitable average

inventory and achieve a balance between the two types of cost.

The performance of the RL policies is examined and compared with that of the baseline policy.

For the baseline OUT policy, two sets of parameters are used, which are a forecasting period

τ = 15 with a safety factor z = 2 or z = 3.09 (Dominguez et al., 2020). The two baselines are

denoted as OUTz=2
τ=15 and OUTz=3.09

τ=15 , respectively. For the RL models, the state comprises

inventory positions of the two agents: st = [IPr,t, IPm,t]. IPr,t is discretized into 8 intervals,

which are [−∞, 0), [0, 20), [20, 40), [40, 60), [60, 80), [80, 100), [100, 120), [120, ∞), and

coded as −1, 0, 1, 2, 3, 4, 5, 6, respectively. IPm,t is discretized into 10 intervals, which

are [−∞, 0), [0, 20), [20, 40), [40, 60), [60, 80), [80, 100), [100, 120), [120, 140), [140, 160),

[160, ∞), and coded as −1, 0, 1, 2, 3, 4, 5, 6, 7, 8, respectively. Thus, the system has 8× 10 =

80 di�erent states. The action at = [Or,t, Om,t] consists of the order quantity of Retailer in

period t, Or,t, and the production quantity of Factory in period t, Om,t. For both Retailer

and Factory, 7 actions are available for each state, i.e., Or,t, Om,t ∈ {0, 10, 20, 30, 40, 50, 60}.
The 7 actions are coded as 0, 1, 2, 3, 4, 5, 6, respectively. Thus, there are 72 = 49 di�erent

actions available for each state, and the dimension of the Q-table is 80× 49. The objective

is to minimize the total cost while a RL algorithm maximizes the reward, thus the reward

signal in period t is calculated as the negative total cost for period t:

rt = − ∑
a∈{m,r}

Ca,invSHa,t − ∑
a∈{m,r}

Ca,bklBa,t (4.18)

The RL algorithms examined include Q-learning, Q̂-learning, and β-pessimistic Q-learning.

For β-pessimistic Q-learning, three values of β are considered, which are β = 0.1, 0.3, 0.5,

and the algorithms are denoted as Qβ=0.1, Qβ=0.3, and Qβ=0.5, respectively. The discount

rate is set to γ = 0.95. The learning rate is set to α = 0.1. For the ε-greedy policy, ε is
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set to 0.1 for the probability of exploration. Since supply chain operation is a continuing

task rather than an episodic task, there is no terminal state for an episode. Therefore, each

episode is set to have Nstep = 100 steps. All of the �ve RL models are trained for the same

number of episodes, i.e., 20,000 episodes. The simulation and training procedure is presented

in Algorithm 4.4 in the form of pseudo-code.

Algorithm 4.4: Training RL controllers

Parameters :number of steps per episode Nstep, number of episodes Neps, learning

rate α, discount rate γ, weight β
1 Initialize supply chain simulator

2 Initialize Q-table: Q(s, a)← 0, ∀s, a
3 for n← 1 to Neps do
4 Initialize state s̃0 = [IPr,0, IPm,0]; s0 ← encode(s̃0)
5 Sample uncertainty: ω = [Dc,1, Dc,2, . . . , Dc,Nstep ]←

scipy.stats.truncnorm()
6 for t← 1 to Nstep do /* ε-greedy */
7 if numpy.random() < 1− ε then /* exploitation */
8 Choose action at ∈ {a|Q(st−1, a) = maxa′∈A(st−1)

Q(st−1, a′)} with a

random tiebreaker

9 else /* exploration */
10 Choose action at ∈ A(st−1) randomly

11 end
12 Agent takes action at: at → simulator

13 Run simulator for 1 step with s̃t−1, at, ω
14 Observe state: s̃t = [IPr,t, IPm,t]; st ← encode(s̃t)
15 Calculate reward: rt → agent

/* Update Q-table: */
16 if using Q-learning then
17 Q(st−1, at)← Q(st−1, at) + α [rt + γ maxa′ Q(st, a′)−Q(st−1, at)]

18 else if using Q̂-learning then
19 Q(st−1, at)← min {Q(st−1, at), rt + γ maxa′ Q(st, a′)}
20 else if using β-pessimistic Q-learning then
21 Q(st−1, at)← Q(st−1, at) +

α {rt + γ [(1− β)maxa′ Q(st, a′) + β mina′′ Q(st, a′′)]−Q(st−1, at)}
22 end
23 end

After the RL controllers are trained, they are compared with the baselines to evaluate their

performance. A main objective of this study is to examine the robustness of the RL policies
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to uncertainty in the environment. Hubbs et al. (2020) show that the performance of a RL

policy drops dramatically when the demand distribution changes, because the model-free

RL is not capable enough to respond to large changes in the environment. In this work, 3

di�erent environment settings are designed for testing, which are:

(1) Normal environment setting, where the distribution of demand in testing data is the

same as that in training process, i.e., D′c,t ∼ N (30, 62).

(2) A change in the demand pattern, where the mean of demand is assumed to increase by

10% and the coe�cient of variation remains the same, i.e., D′c,t ∼ N (33, 6.62) in testing

data. This setting is designed to evaluate the robustness of policies to unexpected change

of uncertainty in the environment.

(3) A larger change in the demand pattern, where the mean of demand is assumed to increase

by 20% and the coe�cient of variation remains the same, i.e., D′c,t ∼ N (36, 7.22). The

deviation of testing environment from training environment in this setting is larger than

that in setting (2).

Figure 4.6 shows the comparison of inventory levels and accumulated cost under a random

demand scenario under the normal environment setting. It can be seen that during the �rst

10 time periods, the Retailer and Factory experience a stockout. Then their inventory levels

increase and the system reaches a steady state after around 20 time periods. Thus, in this

case, the �rst 20 time periods are taken as the so-called warm-up period (Cannella et al.,

2016; Dominguez et al., 2018; Dominguez et al., 2019; Dominguez et al., 2020), which are

used to set up the system and not taken into account when calculating the accumulated cost.

In this scenario, Retailers using the safe RL policies have higher inventory level than those

using OUT and Q-learning policies.

Since using only 1 scenario is not su�cient to evaluate the performance of policies, statistical

analysis is needed. For each environment setting, 200 random demand scenarios are generated

and simulated, and the costs are collected. Figure 4.7 shows the comparison of di�erent

policies under 3 environment settings. The results are presented using box plots. A box plot is

a statistical plot that aims to display the main features of a dataset, such as the sample median,
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Figure 4.6. Case study I: comparison of inventory level and total cost.
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the �rst quartile or 25th percentile Q1, the third quartile or 75th percentile Q3 (Frigge et al.,

1989). The interquartile range (IQR) is Q3 −Q1, and half of the data are contained by the

box. Two whiskers are determined based on Q1 − k ∗ IQR and Q3 + k ∗ IQR. A k = 1.5 is

used in this work, and any observation outside the whiskers is regarded as an outlier. A box

plot is suitable for comparing the metrics of di�erent algorithms under di�erent scenarios,

and thus has been used to compare supply chain control techniques by, e.g., Cui et al. (2017)

and Rajendran and Ravi Ravindran (2019). In this work, the box plots are created using

the seaborn.boxplot() API provided by seaborn, which is a Python library for data

visualization.

The results of total cost, inventory holding cost, and shortage cost are shown in Figures

4.7a, 4.7b, and 4.7c, respectively. The environment settings (1), (2), and (3) are colored in

green, yellow, and red, respectively. It is observed from Figure 4.7a that as the demand

average increases, the median, minimum, and maximum of total cost using OUT policies

and Q-learning increase. The variance using OUT policies is not a�ected by the demand

change, while that using OUTz=3.09
τ=15 is smaller than that using OUTz=2

τ=15. By contrast,

the median, minimum, and maximum of total cost using Q̂-learning, Qβ=0.1-learning, and

Qβ=0.3-learning are lowest in setting (2) and highest in setting (3). Among all the policies,

Q-learning has the best performance under the normal setting in terms of the statistics

of total cost. However, it is the most sensitive to changes in the demand setting, because

the median, minimum, maximum, and variance of total cost increase on a large scale in

settings (2) and (3), in comparison with setting (1). Thus, it is not as robust to changes in the

uncertainty as the safe RL policies are.

The total cost consists of inventory holding cost and shortage cost. Figure 4.7b shows that

the median, minimum, and maximum of inventory holding cost using OUT policies increase

as the demand average increases. By contrast, those statistics decrease for all the RL policies.

A potential reason is that when determining the ordering quantities, the OUT policies take

into account the demand change by demand forecasting. However, the RL agent does not

have demand information, and the ordering quantities do not change when demand pattern

changes. Therefore, the inventory levels and inventory cost become lower when demand

increases. It can be seen from Figure 4.7c that under the normal setting, the OUTz=2
τ=15 policy
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has the highest shortage cost, while the OUTz=3.09
τ=15 policy that uses a larger safety factor

reduces the shortage. The variance using OUT policies is not a�ected by the demand setting,

while that using OUTz=3.09
τ=15 is smaller than that using OUTz=2

τ=15. The safe RL policies achieve

a lower shortage cost than OUT and Q-learning policies. Q-learning is the most sensitive to

changes in the demand setting, as the statistics of shortage cost increase by a large amount in

settings (2) and (3), compared with setting (1). The variance in the shortage cost contributes

to that of the total cost. By comparison, safe RL policies are more robust to changes in the

environment.

In order to explore the reason for the di�erence between RL policies in robustness, the

state-action pairs under the policies are investigated. Since the supply chain is two-echelon

and the state vector is two-dimensional, it is possible to visualize the state-action pairs of a RL

policy. This work adopts the heat map for visualization and comparison, as shown in Figure

4.8. The heat maps are created using the seaborn.heatmap() API. Figure 4.8a displays the

state-action pairs of the Retailer (left) and Factory (right) under the Q-learning policy. There

are 8 states for the Retailer and 10 states for the Factory, therefore the heat map are gridded

by 8× 10. Di�erent actions are plotted in di�erent colors, and the legend is shown on the

right to the �gure. The state-action pairs of Q̂-learning and Qβ=0.1-learning are displayed in

Figure 4.8b and 4.8c, respectively. It is observed that in general, Q̂-learning generates larger

order quantity for the Retailer than Q-learning does, for example, for state [IPr = 4, IPm]

(the 6th column of heat map). This results in higher safety stock and inventory level for

Q̂-learning, and thus it is more robust to demand increase.

The bullwhip e�ect using di�erent policies is also investigated in this work. Here, the

Bullwhip Slope (BwSl) metric is adopted to quantify the bullwhip e�ect in a supply chain.

The BwSl metric proposed by Cannella et al. (2013) has been used to study supply chain

dynamics by, e.g., Dominguez et al. (2015), Dominguez et al. (2018), and Tombido et al. (2020).

BwSl is de�ned based on an echelon-level metric Order Variance Ratio (OVR) that measures

the ampli�cation of order variability. The OVR of echelon e is de�ned as the ratio between

the variance of the orders placed by echelon e and the variance of customer demand. Under

the assumption that all customer demands are independent and each node places orders
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(a) Total cost.

(b) Inventory holding cost.

(c) Shortage cost.

Figure 4.7. Case study I: comparison of costs under di�erent environment settings.
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(a) Q-learning.

(b) Q̂-learning.

(c) Qβ=0.1-learning.

Figure 4.8. Case study I: state-action pairs.
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independently, the OVR of echelon e can be expressed as (Tombido et al., 2020):

OVRe =
s2

Oe

s2
D

=
∑j s2

Oe,j

∑c s2
Dc

(4.19)

where Oe = ∑j Oe,j is the aggregate order of echelon e, Oe,j represents the order quantity of

agent j in echelon e, and s2
Oe,j

is the variance of Oe,j; sD = ∑c sDc is the aggregate customer

demand, and s2
Dc

is the variance of customer c’s demand Dc.

OVRe is said to be the bullwhip su�ered by echelon e (Coppini et al., 2010). The BwSl for

a supply chain is de�ned as the slope of the linear regression of OVR value on echelon

position:

BwSl =
E ∑E

e=1 peOVRe −∑E
e=1 pe ∑E

e=1 OVRe

E ∑E
e=1 p2

e − (∑E
e=1 pe)2

(4.20)

where pe is the position of the e-th echelon in Dejonckheere et al. (2004)’s curve, and E is

the total number of echelons. BwSl quanti�es the bullwhip propagation through the supply

chain. It is a system-level metric and allows for comprehensive comparison between di�erent

supply chains. A low BwSl indicates smooth propagation of the bullwhip e�ect, while a high

BwSl indicates fast propagation.

The comparison of bullwhip slope under di�erent demand scenarios in the normal settings

is presented in Figure 4.9. It is observed that except for Qβ=0.3-learning that achieves the

lowest of median, minimum, maximum, and variance of BwSl, there is no obvious advantage

in RL policies over the baselines.

4.5.3 Case study II: A closed-loop supply chain

The second case study is focused on a closed-loop supply chain. The supply chain con�g-

uration is adapted from Dominguez et al. (2020) and is shown in Figure 4.10. This supply

chain consists of a Manufacturer m, a Distributor d, a Retailer r, and a Remanufacturer rm.

The forward �ow deals with production and distribution of products to Customer c, which

is m → d → r → c. A main di�erence between this case study and the �rst one is the
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Figure 4.9. Case study I: comparison of bullwhip slope.

existence of a reverse �ow, which is c → rm → r and deals with remanufacturing and

return of used products.

During each time period, the Customer agent purchases products from the Retailer agent,

and returns used products to the Remanufacturer agent. The Remanufacturer receives used

products and sends �nished products to the Retailer. The Retailer places an order to the

Distributor. The Distributor �lls orders of the Retailer and places an order to the Manufacturer.

The Manufacturer determines its production quantity and �lls the Distributor’s orders. In

this case, the uncertain parameters are the demand and return rate of the Customer.

The supply chain parameters are listed in Table 4.2. It is assumed that the demand Dc,t

and return rate αc,t follow normal distributions. The mean and coe�cient of variation of

Dc,t are set to µDc,t = 50 and σ2
Dc,t

= 20%, respectively, i.e., Dc,t ∼ N (50, 102). The mean

and coe�cient of variation of αc,t are set to µαc,t = 0.5 and σ2
αc,t

= 20%, respectively, i.e.,

αc,t ∼ N (0.5, 0.12). A truncated normal distribution is used in the simulation for non-

negative samples. The customer consumption lead time is set to δc = 32. The manufacturing
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Figure 4.10. Case study II: a closed-loop supply chain.

lead time of the Manufacturer, δm, and the remanufacturing lead time of the Remanufacturer,

δrm, are set to 4. The transportation delay between the Manufacturer and Distributor, δm,d,

and the transportation delay between the Distributor and Retailer, δd,r, are set to 2.

Table 4.2. Case study II: supply chain parameters.

Parameters Values

Demand average µDc,t 50 units per period

Demand variance σ2
Dc,t

102

Return rate average µαc,t 0.5

Return rate variance σ2
αc,t

0.12

Review period R 1

Transportation lead time δm,d, δd,r 2

Manufacturing lead time δm 4

Remanufacturing lead time δrm 4

Consumption lead time δc 32

Inventory holding cost Ca,inv, ∀a ∈ {m, d, r} 1 per unit per period

Shortage cost Ca,bkl, ∀a ∈ {m, d, r} 10 per unit per period

Inventory holding and shortage costs are considered. The unit inventory holding cost is

Ca,inv = 1 per unit per period, and the unit shortage cost is Ca,bkl = 10 per unit per period,

for a ∈ {m, d, r}. The total cost is the summation of inventory holding cost and shortage

cost:

Ctot = ∑
t

∑
a∈{m,d,r}

Ca,invSHa,t + ∑
t

∑
a∈{m,d,r}

Ca,bklBa,t (4.21)

The goal is to obtain an optimal ordering policy that minimizes the total cost by determining
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the ordering quantities of the Retailer and Distributor, and the production quantity of the

Manufacturer. The performance of the RL policies is examined and compared with that of a

baseline OUT policy. For the OUT policy, two sets of parameters are considered, which are

a forecasting period τ = 15 with a safety factor z = 2 or z = 3.09. The two baselines are

denoted as OUTz=2
τ=15 and OUTz=3.09

τ=15 , respectively.

For the RL models, the state comprises inventory positions of Retailer, Distributor, and

Manufacturer, i.e., st = [IPr,t, IPd,t, IPm,t]. IPr,t, IPd,t, and IPm,t are all discretized into 10

intervals. The intervals and corresponding codes are listed in Table 4.3. Thus, the system

has a total of 103 = 1000 di�erent states. The action of the agent is at = [Or,t, Od,t, Om,t],

where Or,t and Od,t are the ordering quantities of the Retailer and Distributor in period

t, respectively; and Om,t is the production quantity of the Manufacturer in period t. For

the three supply chain agents, 7 actions are available for each state, i.e., Or,t, Od,t, Om,t ∈
{0, 10, 20, 30, 40, 50, 60}. The 7 actions are coded as 0, 1, 2, 3, 4, 5, 6, respectively. Therefore,

there are a total of 73 = 343 di�erent actions available for each state, and the dimension of

the Q-table is 1000× 343. The reward signal in period t is the negative total cost for period

t:

rt = − ∑
a∈{m,d,r}

Ca,invSHa,t − ∑
a∈{m,d,r}

Ca,bklBa,t (4.22)

Table 4.3. Case study II: CLSC, states and codes.

IPr,t IPd,t IPm,t Code

[−∞, 0) [−∞, 0) [−∞, 0) −1
[0, 20) [0, 20) [0, 25) 0
[20, 40) [20, 40) [25, 50) 1
[40, 60) [40, 60) [50, 75) 2
[60, 80) [60, 80) [75, 100) 3
[80, 100) [80, 100) [100, 125) 4
[100, 120) [100, 120) [125, 150) 5
[120, 140) [120, 140) [150, 175) 6
[140, 160) [140, 160) [175, 200) 7
[160, ∞) [160, ∞) [200, ∞) 8

The RL algorithms examined include Q-learning, Q̂-learning, and β-pessimistic Q-learning.

For β-pessimistic Q-learning, three values of β are considered, which are β = 0.1, 0.3, 0.5.
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The discount rate and learning rate are set to γ = 0.95 and α = 0.1, respectively. For the

ε-greedy policy, ε is set to 0.1 for the probability of exploration. Each episode is set to have

Nstep = 400 steps. All of the �ve RL models are trained for the same number of episodes,

i.e., 200,000 episodes. The simulation and training procedure is similar to Algorithm 4.4.

After the RL controllers are trained, they are compared with the baselines to test their

performance and robustness to uncertainty in the environment. Three di�erent environment

settings are considered, which are:

(1) Normal environment, where the distribution of demand in testing data is the same as in

training data, i.e., D′c,t ∼ N (50, 102).

(2) A change in the demand pattern, where the mean of demand is assumed to increase

by 10% and the coe�cient of variation remains the same, i.e., D′c,t ∼ N (55, 112). The

purpose of this setting is to evaluate the robustness of policies to unexpected change of

uncertainty in the environment.

(3) A larger change in the demand pattern, where the mean of demand is assumed to increase

by 20% and the coe�cient of variation remains the same, i.e., D′c,t ∼ N (60, 122). The

deviation of testing environment from training environment is larger than setting (2).

Figure 4.11 shows the comparison of inventory levels and accumulated cost under a random

demand scenario in the normal setting. It can be seen that it takes less than 100 time periods

for the system to reach a steady state. In this case, the �rst 100 periods are taken as the

warm-up periods, which are not considered in the calculation of accumulated cost. Under

this scenario, the RL policies achieve lower total cost than OUT policies do.

For each environment setting, 200 random demand scenarios are generated and simulated.

The costs are collected and presented using box plots. Figure 4.12 shows the comparison of

di�erent policies under 3 environment settings. The results of total cost, inventory holding

cost, and shortage cost are shown in Figures 4.12a, 4.12b, and 4.12c, respectively. The boxes

corresponding to the environment setting (1), (2), and (3) are colored in green, yellow, and

red, respectively. It is observed from Figure 4.12a that the median, minimum, and maximum
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Figure 4.11. Case study II: comparison of inventory level and total cost.
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of total cost using OUT policies increase as the demand average increases. The variance

using OUT policies is not signi�cantly a�ected by the demand pattern, while that using

OUTz=3.09
τ=15 is slightly smaller than that using OUTz=2

τ=15. Under the normal setting, the

performance of safe RL policies outperforms that of the two baselines in terms of the median,

minimum, maximum, and variance of total cost. Among all the policies, Q-learning has the

best performance under the normal setting in terms of total cost. However, it is the most

sensitive to changes in the uncertain demand, because compared with the normal setting

(1), the cost statistics increase substantially in settings (2) and (3). Therefore, it is not as

robust to changes in the uncertainty as Q̂-learning, Qβ=0.1-learning, and Qβ=0.3-learning

polices are. It is worth mentioning that the performance of Qβ=0.5-learning under setting

(3) is signi�cantly a�ected, and the variance of the total cost becomes large, as in Q-learning.

This indicates that β = 0.5 may not be a good choice for a robust policy in this case.

Figure 4.12b shows that the median, minimum, and maximum of inventory holding cost

using OUT policies increase as the demand average increases. In contrast, those statistics

decrease for all the RL policies. This pattern is similar to the �rst case study. The reason

is that the OUT policies take into account the demand increase by demand forecasting,

while the RL agent does not have demand information. Among all the policies, Q-learning

achieves the lowest values of the statistics under a normal setting. It is observed from Figure

4.12c that under a normal setting, the OUTz=3.09
τ=15 policy that uses a larger safety factor

achieves a lower shortage cost than the OUTz=2
τ=15 policy, and all the �ve RL algorithms

outperform the two OUT policies, in terms of the median, minimum, and maximum of

shortage cost. The variance using OUT policies is not a�ected by the demand setting, while

that using OUTz=3.09
τ=15 is smaller than that using OUTz=2

τ=15. When the demand deviates from

its normal pattern, the Q-learning policy is found to be the most sensitive one, because

the total cost statistics increase by a large amount in settings (2) and (3). By comparison,

Q̂-learning, Qβ=0.1-learning, and Qβ=0.3-learning policies are less a�ected and are more

robust to changes in the environment. Similar to the total cost, the Qβ=0.5-learning policy

leads to a large variance of shortage cost in setting (3), and it shows no advantage over

Q-learning in this case.

The bullwhip e�ect is investigated using the bullwhip slope metric. The comparison of the
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(a) Total cost.

(b) Inventory holding cost.

(c) Shortage cost.

Figure 4.12. Case study II: comparison of costs under di�erent environment settings.
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bullwhip slope under di�erent demand scenarios in the normal settings are presented in

Figure 4.13. It can be seen that all the �ve RL policies achieve a lower BwSl than the baselines,

in terms of the median, minimum, maximum, and variance. By comparing Figures 4.9 and

4.13, it is found that in the CLSC case, RL policies have more advantage than the baselines in

terms of the bullwhip slope. By comparing Figures 4.7a and 4.12a, it is observed that in the

CLSC case, RL policies have more advantage than the baselines in terms of the total cost.

However, the �rst case study uses a 2-echelon forward supply chain, while the second one

uses a 3-echelon CLSC, thus it is di�cult to identify the cause of the di�erence.

Figure 4.13. Case study II: comparison of bullwhip slope in the normal setting (1).

In order to determine whether the reason is the di�erence in number of echelons or the

existence of reverse �ow, the algorithms are tested on a 3-echelon forward supply chain for

comparison. The simulation and training are implemented by setting the return rate to 0.

The discretization of the state space is adjusted since uncertainty in the environment has

changed. The states and corresponding codes are given in Table 4.4. For each supply chain

agent, the actions available for each state are within {0, 15, 30, 45, 60, 75, 90}.
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Table 4.4. Case study II: forward SC, states and codes.

IPr,t IPd,t IPm,t Code

[−∞, 0) [−∞, 0) [−∞, 0) −1
[0, 30) [0, 30) [0, 40) 0
[30, 60) [30, 60) [40, 80) 1
[60, 90) [60, 90) [80, 120) 2
[90, 120) [90, 120) [120, 160) 3
[120, 150) [120, 150) [160, 200) 4
[150, 180) [150, 180) [200, 240) 5
[180, 210) [180, 210) [240, 280) 6
[210, 240) [210, 240) [280, 320) 7
[240, ∞) [240, ∞) [320, ∞) 8

The total cost under 3 demand settings and 200 scenarios is plotted using a box plot, as

shown in Figure 4.14. It can be seen that Q-learning has the best performance under the

normal setting, while Q̂-learning outperforms the other policies in terms of the median,

average, and IQR when there is a change in the demand pattern. However, the advantage of

RL in reducing total cost is not as obvious as in the CLSC case. For β-pessimistic Q-learning,

β = 0.1 does not give satisfactory results for all 3 settings. β = 0.3 and 0.5 show good

performance in normal settings (1), and exhibit robustness in setting (2), but are not robust

in setting (3) where the deviation in the environment is larger.

In summary, based on the results of the two case studies, we have the following observations:

(1) When the environment is normal as expected, Q-learning has the best performance

among the policies under investigation; (2) Under abnormal setting where there is a change

in the environment, Q̂-learning and β-pessimistic Q-learning with appropriate β perform

better, and they are more robust to changes in the environment; (3) Compared with OUT

policy, RL policies have a greater impact on reducing the total cost in the CLSC case than

in the serial supply chain case; (4) Compared with OUT policy, RL can reduce the bullwhip

e�ect in CLSCs.

The reason for the di�erent performance of Q-learning and Q̂-learning is given as follows.

By using the expectation-based criterion, Q-learning assumes the nature always selects the

successor state with some time-invariant probability, and the agent plans for the average
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Figure 4.14. Case study II: comparison of total cost in a 3-echelon forward supply chain.

(Koenig and Simmons, 1996). Therefore, when the environment is normal, it naturally

falls within the framework of Q-learning, and it has the best performance among the RL

algorithms studies in this work. However, an unexpected change in the environment breaks

the time-invariant assumption, and makes the state-action pairs not optimal anymore. Thus,

Q-learning is sensitive to changes in the environment, and its performance could get worse in

this situation. In contrast, by using the worst-case criterion, Q̂-learning assumes the nature

always selects the worst successor state for the agent (Koenig and Simmons, 1996). Thus it

is risk-averse. An unexpected change in the environment can be seen as an extreme event

that could occur with a small probability, thus it falls within the framework of Q̂-learning.

Therefore, Q̂-learning is more robust to changes in the environment.

The performance of β-pessimistic Q-learning depends on the weight parameter β. In the

case studies in this work, a small β such as 0.1 or 0.3 is generally a good option for a robust

supply chain control policy. However, the robustness of the policy cannot necessarily be

maintained when a larger value of β such as 0.5 is used, instead, its performance could get

worse. This counter-intuitive behaviour of β-pessimistic Q-learning policy is also observed

in the Cli� Walking task investigated by Gaskett (2003). The results in Gaskett (2003) show

that when β = 0.5 is used, the agent does not choose a safer path than β = 0.1 or 0.2,
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but jumps o� the cli� at the beginning. Therefore, β needs to be chosen appropriately in

order to obtain a robust β-pessimistic Q-learning policy. Moreover, it is worth mentioning

that in the work of Klima et al. (2019), the actual probability of the agent being attacked

and failing to choose the optimal action is assumed to range from 0.001 to 0.2. This models

the inconsistency between the training and testing environments. The weight parameter κ
(equivalent to β in this work) in the κ methods is set within the same range. Their results

show that a small weight parameter can yield a superior policy.

4.6 Conclusion

The contribution of this work is twofold. First, the control of CLSC using RL is presented;

second, risk-averse supply chain control using safe RL is explored. Two safe RL algorithms,

Q̂-learning and β-pessimistic Q-learning, are examined and compared with classical OUT

policy and Q-learning. A Python-based supply chain simulator is developed using the

ABM technique to examine the performance of RL algorithms in supply chain control. Two

case studies are presented, which involve a two-echelon serial supply chain and a CLSC,

respectively. Results show that in normal environment, Q-learning has the best performance

in terms of the total cost. However, when there is an unexpected change in the environment,

Q̂-learning and β-pessimistic Q-learning with appropriate β perform better, and thus they are

more robust to uncertainty. RL policies can reduce the bullwhip e�ect in CLSC. A potential

reason is that Q-learning uses the expectation-based criterion, and thus is better when

the environment is as expected and its pattern does not change over time. By comparison,

Q̂-learning uses the worst-case criterion and assumes the nature always selects the worst

successor state for the agent. Therefore, Q̂-learning optimizes the worst-case return and is

suitable for risk-averse supply chain control. β-pessimistic Q-learning, which compromises

between Q-learning and Q̂-learning, can provide a robust policy when the value of β is

selected appropriately.

Future research directions include (1) investigation of the impact of β on the performance

of β-pessimistic Q-learning in supply chain control; (2) investigation of the robustness of
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safe RL algorithms to di�erent sources of supply chain uncertainty, such as transportation

lead time, production yield, and return rate; and (3) exploration of the safe RL with function

approximation, applicable to supply chain control with continuous state and action spaces.
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5.1 Introduction

In this chapter, we continue exploring the operational supply chain control problem, where

the focus is developing a control method to improve the computational e�ciency in real

time. In the era of Supply Chain 4.0, speed and real-time decision-making are considered

as important features of modern supply chains. However, for a large-scale supply chain

system, the constrained optimization models are often large and complex. Solving them

in a reasonable time is challenging in many applications, and optimal solutions may be

computationally intractable (Schildbach and Morari, 2016; Abbasi et al., 2020). It is therefore

the motivation of this chapter.

For a supply chain optimization problem, a computation burden exists when integer decision

variables and nonlinearity are involved, and when uncertainty is considered. For example,

Schulz et al. (2005) formulate the supply chain model for a petrochemical complex as a

multiperiod mixed-integer nonlinear program (MINLP). The model includes decisions on

production, delivery, inventory management, and operating conditions for each plant in

the complex. The problem involves thousands of variables and constraints, and takes more

than 1 hour to solve. Moreover, uncertainty is usually associated with the parameters of the

optimization problems. When uncertainty is taken into account, the problem formulation

becomes more complex. A widely-used method for operational supply chain optimization

under uncertainty is stochastic programming (Papageorgiou, 2009; Mastragostino et al., 2014;

Grossmann et al., 2016). In two-stage stochastic programming, uncertain parameters are

represented by a set of scenarios, and each scenario corresponds to a possible realization

of the uncertainty according to a discretized probability distribution. The expectation of

the objective function over the set of scenarios is optimized subject to common �rst-stage

decisions. In order to characterize the uncertainty to a satisfactory extent, the number of

scenarios could be huge. Stochastic programs are often di�cult to solve due to their large size

and complexity that grows with the number of scenarios. Although decomposition algorithms

have been developed to solve stochastic linear programming (LP) or mixed-integer linear

programming (MILP) problems, �nding the optimal solution may still take hours (Torres et al.,
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2022). Mastragostino et al. (2014) proposed a robust model predictive control (MPC) strategy

for supply chain systems that captures uncertainty by stochastic programming. Compared

with the nominal MPC, the robust MPC formulation achieves signi�cant improvement of

the performance, while it also increases the solution time substantially.

The above examples indicate that real-time supply chain optimization is intractable in some

cases. In order to meet the real-time property required by Supply Chain 4.0, a real-time

control technique is needed. To this end, this chapter investigates a deep learning-based

explicit MPC technique for supply chain operations. MPC is a multivariable control method

that utilizes an explicit system model to predict future system states and determine optimal

control inputs. This technique has been widely applied to industrial processes (Qin, 2003).

Due to advantages such as the ability to handle constraints explicitly, the ability to address

interactions and time delays in the system, and �exible problem formulation, MPC has been

applied to supply chains more recently (Perea-López et al., 2003; Mestan et al., 2006; Li and

Marlin, 2009; Subramanian et al., 2012; Subramanian et al., 2013; Mastragostino et al., 2014;

Schildbach and Morari, 2016). For a MPC problem in the form of a linear or quadratic program

(QP), it can be formulated as a multi-parametric LP or QP by considering the current system

state as parameters, and the optimal solution is a piece-wise a�ne (PWA) function and only

depends on the current state (Bemporad et al., 2002; Faísca et al., 2007). The MPC problem

needs to be solved for updated system states at every time step. In order to avoid repetitive

online computation and reduce solution time, this PWA function can be precomputed o�ine

and stored for online use. This is known as the explicit MPC technique. However, as the

planning horizon and the number of constraints increase, the required storage increases

exponentially, which makes it di�cult to obtain and apply the explicit MPC law. For this

reason, an arti�cial neural network (NN) can be used to approximate the explicit MPC laws,

i.e., to construct a map from system state to optimal control inputs. This is known as the

deep learning-based explicit MPC technique (Karg and Lucia, 2020). If the MPC problem is

not a LP or QP, e.g., for a nonlinear or mixed-integer MPC problem, the deep learning-based

method can still be applied, as it has been established by Hornik et al. (1989) that multilayer

feedforward networks with as few as one hidden layer using arbitrary squashing functions

are capable of approximating any measurable function to any desired degree of accuracy,
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provided a su�cient number of hidden units are available. Thus they are a class of universal

approximators.

NNs with single hidden layer are referred to as shallow neural networks (Lopez-Martin et

al., 2019), and NNs with two or more hidden layer are called deep neural networks (DNNs)

(Abiodun et al., 2018; Saikia et al., 2020; Karg and Lucia, 2020). It is worth mentioning that in

the current literature, the research on NN-based system control generally has two paradigms,

which are:

(1) Using a NN to model the dynamic system or process, as investigated by, e.g., Punjani

and Abbeel (2015), Deepa and Baranilingesan (2018), Wu et al. (2020), Bieker et al. (2020),

Hassanpour et al. (2022), and Bonassi et al. (2022). This paradigm is referred to as the

system identi�cation (Punjani and Abbeel, 2015; Hassanpour et al., 2022) or the surrogate

model (Bieker et al., 2020).

(2) Using a NN to approximate the optimal control law, as investigated by, e.g., Karg and Lucia

(2020) and Kumar et al. (2021). This paradigm is referred to as the surrogate optimizer

(Krishnamoorthy and Skogestad, 2019).

In some works, the two paradigms are investigated in an integrated manner (Wu et al.,

1992; Karg and Lucia, 2021). In this chapter, we focus on the second paradigm. A review

of relevant literature is presented as follows. Research on using (feedforward) NNs as

approximate controllers to reduce online computation burden has emerged since the 1990s.

Early research used shallow NNs and focused on nonlinear control. Wu et al. (1992) used

a shallow NN to approximate the nonlinear control of turbogenerators. The NN regulator

showed satisfactory control performance and compared well with an adaptive controller

under di�erent operating conditions. Parisini and Zoppoli (1995) used a shallow NN to

approximate the receding-horizon regulator of nonlinear systems such as a space robot.

Simulation results demonstrated the e�ectiveness of the approach. Ortega and Camacho

(1996) used a shallow NN to approximate the nonlinear model predictive controller for mobile

robot navigation. Experiments on a mobile robot testbed validated the method. Cavagnari

et al. (1999) investigated the use of a shallow NN for the nonlinear receding-horizon control
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of a seesaw. Results show that the NN controller guarantees good performance. Nayeri

et al. (2004) investigated the nonlinear control of spacecraft slew maneuver. Simulation

results show that smooth control of pitch angle and e�ective vibration suppression can be

achieved by the NN controller. Åkesson et al. (2005) applied a shallow NN for the model

predictive control of a nonlinear pH neutralization process. The study showed that this

approach achieves good control performance and reduces online computations signi�cantly.

Åkesson and Toivonen (2006) further investigated the use of the approach for the MPC of a

non-isothermal continuous stirred tank reactor (CSTR). Numerical examples showed that

the NN model predictive controller achieved near-optimal control performance. Csekő et al.

(2015) looked into the NN approximation of a mixed-integer QP and applied it to quarter car

semiactive suspension model. Results show that a well-tuned NN can replace the explicit

MPC controller.

The above studies have shown that NNs with single hidden layer is already able to be a

satisfactory approximate controller. In the current literature, DNNs with two or more hidden

layers have also been investigated for approximating optimal control inputs. Ahmed and

Al-Dajani (1998) investigated the use of a NN with two hidden layers for the control of

nonlinear plants and a continuous �ow stirred tank reactor. The results of simulation on

nonlinear plants demonstrated the practical usefulness of the proposed schemes in regulating

nonlinear plants. Furuta et al. (2017) investigated the use of a NN with two hidden layers for

the dynamic manipulation of a robot. The method is validated by experiments. Karg and

Lucia (2018) investigated MPC in the form of mixed-integer QP for the control of an energy

management system. Results show that a DNN achieves a signi�cantly smaller training

error than a shallow NN with the same total number of neurons. Moreover, the number of

weights needed to represent the DNN is smaller than to represent the shallow NN, which

leads to a smaller memory footprint. Chen et al. (2018) employed a DNN to approximate the

optimal MPC control law for constrained linear quadratic regulator systems. An e�cient

policy gradient method is proposed to train the model. Drgoňa et al. (2018) applied a deep

time delay NN to the model predictive building control problem. Hardware-in-the-loop

simulation results show that the method outperforms the regression tree method. Hirose

et al. (2018) applied the deep learning-based MPC policy to the human following control of a
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personal robot. The method is shown to be e�ective and signi�cantly faster than solving the

QP. Pon Kumar et al. (2018) developed a long short-term memory (LSTM) supported NN to

approximate the ideal MPC. The LSTM part of the controller ensures that the current control

action depends on the past control actions, the current system output and the target output.

It is observe that the controller outperforms the LSTM-only and the NN-only controllers, and

demonstrates better generalization over the larger process state space. Hertneck et al. (2018)

proposed a supervised learning framework for the approximate model predictive controller

with guarantees on stability and constraint satisfaction.

In more recent works, approximation of MPC problem in the form of an LP or QP received

more attention (Karg and Lucia, 2020; Chen et al., 2022). Karg and Lucia (2020) show that

DNNs with recti�ed linear units (ReLUs) as activation functions can exactly represent the

piecewise a�ne explicit MPC law, and not only approximate it arbitrarily well. A comparative

study shows that the deep learning-based explicit MPC achieves better performance than

other approximate explicit MPC methods such as multivariate polynomials, with signi�cantly

smaller memory requirements. Kumar et al. (2021) applied the DNN design approach to a

CSTR and an industrial crude distillation unit model, and compared its performance with the

online QP-based MPC. Their study shows that DNNs can implement MPC signi�cantly faster

than an QP solver with the closed-loop performance loss less than 1%. Furthermore, deep

learning-based approximation of nonlinear MPC (Cao and Gopaluni, 2020; Lucia et al., 2021;

Adhau et al., 2021), robust nonlinear MPC (Lucia and Karg, 2018; Karg and Lucia, 2019; Karg

and Lucia, 2021; Karg et al., 2021), Gaussian processes-based multistage MPC (Bonzanini

et al., 2021), mixed-integer MPC (Karg and Lucia, 2018; Masti and Bemporad, 2019), economic

MPC (Krishnamoorthy et al., 2021), and MPC of linear parameter-varying systems (Zhang

et al., 2021) have also been investigated in the current literature.

It is worth mentioning that this technique is also called deep MPC, surrogate optimizer

(Krishnamoorthy and Skogestad, 2019), neural (network) regulator, NN MPC, MPC learning

(Furuta et al., 2017), MPC policy learning (Hirose et al., 2018), and approximate MPC (Pin

et al., 2013; Hertneck et al., 2018; Nubert et al., 2020; Paulson and Mesbah, 2020) in some

works. The series of papers Chang-Yun Seong and Widrow (2001a), Chang-Yun Seong

and Widrow (2001b), and Chang-Yun Seong and Widrow (2001c) presented the connection
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between the NN-based approach and dynamic programming, and applies the approach to

several systems including control of autonomous vehicles and of a robot arm. The method

is referred to as neural dynamic optimization, as a method of optimal feedback control for

nonlinear systems. In this work, deep learning-based MPC (DLBMPC) is used. To the best of

the author’s knowledge, despite the various applications of the deep learning-based MPC

technique, the use of it for supply chain optimization has not been investigated. Considering

the computation burden of optimal control of large-scale supply chains, this technique

has great potential in aiding real-time supply chain control. To this end, this study aims

at addressing the research gap, and focuses on applying deep learning-based MPC to the

operational supply chain optimization.

The deep learning-based MPC method enables decision-making in real time, which facilitates

the development of Supply chain 4.0. Studies on physical or fast embedded systems have

shown that the method can provide near-optimal solutions for MPC problems at an extremely

low computational cost. Various studies have shown that DLBMPC is e�cient in reducing

online computation time for the control of physical or embedded systems. It is able to provide

near-optimal solutions for nonlinear or mixed-integer MPC problems in seconds, or even in

milliseconds (Karg and Lucia, 2018; Lucia and Karg, 2018; Karg and Lucia, 2019; Karg and

Lucia, 2020; Karg and Lucia, 2021; Kumar et al., 2021). Therefore, this technique has great

potential in real-time supply chain management.

This technique represents a shift toward removing the cap on the complexity of the online

optimization problem, and thus more sophisticated formulations can be adopted for real-time

decisions. Long computation times may limit the use of optimization techniques in real-time

supply chain optimization. In order to obtain an optimization problem that can be solved

online in a short time, the prediction horizon and the number of scenarios may have to

be set to small values to avoid heavy computation load. The simpli�cation of the problem

may result in suboptimal decisions. DLBMPC mitigates the cap on the complexity of the

online optimization problem by taking advantage of the o�ine solution process. Since the

optimal solutions are obtained o�ine before the online use of the controller, complicated

problem formulations and accurate solution methods can be adopted for better decisions.

The online computation time depends on the evaluation of the neural network, which is very
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fast compared to solving the original optimization problem. As mentioned in Pon Kumar

et al. (2018), this technique can approximate the best-in-class/ideal MPC, without considering

the real-time computation load.

Another advantage of using the DLBMPC technique is that it does not require an optimization

solver for real-time supply chain decision-making. This bene�ts many industries that may

have limited access to commercial solvers or have limited computing resource for their daily

operational decision-making (Abbasi et al., 2020; Kumar et al., 2021). The DLBMPC avoids

the need for long-term access to high-performance computing facilities in order to solve

large-scale supply chain optimization problems. What it needs is an initial short-term use of

high-performance computing resource for learning the optimal decisions. When the trained

model is applied to real-time supply chain management, near-optimal decisions are provided

immediately at an extremely low computation cost.

The main contributions of this chapter are:

(1) Investigation of the deep learning-based MPC in the context of supply chain optimization;

(2) An approach to implement the deep learning-based MPC method when there are de-

layed/lagged terms in the system;

(3) A heuristic approach to feasibility recovery for deep learning-based mixed-integer MPC,

with the binary decision variables taken into account;

(4) A data generation method that utilizes both random samples and closed-loop simulation

samples.

The remainder of this chapter is organized as follows. Section 5.2 presents the method of deep

learning-based MPC for supply chain optimization. Section 5.3 presents two case studies.

The �rst case study is conducted on a benchmark supply chain and is an LP. The second

case study is based on a more complicated supply chain and involves a mixed-integer MPC

problem. The conclusion is given in Section 5.4.
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5.2 Deep Learning-Based MPC for Supply Chain Opti-

mization

This section presents the deep learning-based MPC technique for supply chain optimization.

Section 5.2.1 describes the supply chain model and the MPC problem. Section 5.2.2 describes

a method to model the delayed terms in the system, based on which the deep learning-based

MPC technique is developed. Section 5.2.3 presents the deep learning-based MPC technique

for supply chain optimization, as well as a heuristic method to deal with the binary decision

variables for deep learning-based mixed-integer MPC. Section 5.2.4 discusses data generation.

5.2.1 MPC of supply chains

Consider a general supply chain network, the structure of which is shown in Figure 5.1

(Mastragostino et al., 2014). The supply chain consists of a set of suppliers SS, a set of plant

sites SP, and a set of distribution sites SDC. It deals with the procurement of raw materials,

production and distribution of products to satisfy customers’ demands. At each plant site

p ∈ SP, there are a set of production schemes Sp
PS installed. A plant site p purchases a set of

raw materials Sp
R from the suppliers, and transforms them into a set of intermediate products

Sp
I and a set of �nal products SF through the production schemes. The �nal products are

shipped to the distribution sites, where customers’ orders are received and satis�ed.

The mass balance for the plant sites is given by Equation (5.1). Equations (5.1a), (5.1b), and

(5.1c) represent the mass balance for the raw materials, intermediate products, and �nal

products, respectively.

Ip
j,t+1 =Ip

j,t + ∑
s∈SS

Os,p
j,t−δs,p − ∑

ps∈Op
j

µ
p
ps,jW

p
ps,t, ∀p ∈ SP, j ∈ Sp

R, t (5.1a)

Ip
j,t+1 =Ip

j,t + ∑
ps∈Ip

j

µ
p
ps,jβ

p
psW

p
ps,t−δ

p
ps
−∑

ps
µ

p
ps,jW

p
ps,t

− ∑
p′ 6=p

Qp,p′

j,t + ∑
p′ 6=p

Qp′,p
j,t−δp′ ,p , ∀p ∈ SP, j ∈ Sp

I , t (5.1b)
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Figure 5.1. A supply chain network.

Ip
j,t+1 =Ip

j,t + ∑
ps∈Op

j

µ
p
ps,jβ

p
psW

p
ps,t−δ

p
ps
− ∑

dc∈SDC

Qp,dc
j,t , ∀p ∈ SP, j ∈ SF, t (5.1c)

where Ip
j,t is the inventory of material j at plant site p at time period t; Os,p

j,t is the purchase

quantity of raw material j to plant site p from supplier s at time period t; Wp
ps,t is the quantity

of main raw material associated with production scheme ps at plant site p at time period t;

Qp,p′

j,t , Qp′,p
j,t , and Qp,dc

j,t are the quantities of material j shipped from plant site p to p′, from

plant site p′ to p, and from plant site p to distribution site dc at time period t, respectively;

δs,p
, δ

p
ps, and δp′,p

are the transportation delay from s to p, production delay of production

scheme ps, and transportation delay from p′ to p, respectively. Op
j and Ip

j are the sets of

production schemes that consume and output material j, respectively. µ
p
ps,j is the mass

balance coe�cient of j in ps at p, and β
p
ps is the yield parameters of ps at p. At time period

t, if Wp
ps,t units of main raw material are consumed for ps at p, then µ

p
ps,jW

p
ps,t units of raw

material j is consumed; for a product j′ of ps, µ
p
ps,j′β

p
psW

p
ps,t units of j′ is produced after a

production delay δ
p
ps.

The mass balance for distribution sites is given by Equation (5.2):

Idc
j,t+1 = Idc

j,t + ∑
p∈SP

Qp,dc
j,t−δp,dc − SAdc

j,t, ∀j ∈ SF, dc ∈ SDC, t (5.2a)

Bdc
j,t+1 = Bdc

j,t + Ddc
j,t − SAdc

j,t, ∀j ∈ SF, dc ∈ SDC, t (5.2b)
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where Idc
j,t , Bdc

j,t , Ddc
j,t and SAdc

j,t are the inventory, back orders, demand forecast and sales

quantity of �nal product j at plant site p at time period t, respectively.

In cases where the distribution sites use a “best I can do” policy, the sales quantity SAdc
j,t is

determined in this way: when su�cient stock is available, the demand and accumulated

back orders are satis�ed; otherwise the available stock is shipped to satisfy partial customer

orders, and the unsatis�ed orders will be recorded as back orders (Mastragostino et al., 2014).

In other words, SAdc
j,t is determined based on the following rule:

SAdc
j,t =

Bdc
j,t + Ddc

j,t , if Idc
j,t ≥ Bdc

j,t + Ddc
j,t

Idc
j,t , if Idc

j,t < Bdc
j,t + Ddc

j,t

∀j ∈ SF, dc ∈ SDC, t (5.3)

In order to model this nonlinear policy, a variable ILdc
j,t is de�ned:

ILdc
j,t = Idc

j,t − Bdc
j,t , ∀j ∈ SF, dc ∈ SDC, t (5.4)

ILdc
j,t is the inventory level de�ned in Axsäter (2015). By introducing ILdc

j,t, the mass balance

Equation (5.2) is transformed to Equation (5.5b), with inequality constraints (5.5c) and (5.5d)

imposed (Mastragostino et al., 2014).

ILdc
j,t+1 = ILdc

j,t + ∑
p∈SP

Qp,dc
j,t−δp,dc − Ddc

j,t , ∀j ∈ SF, dc ∈ SDC, t (5.5a)

Bdc
j,t ≥ −ILdc

j,t, ∀j ∈ SF, dc ∈ SDC, t (5.5b)

Idc
j,t ≥ ILdc

j,t + Bdc
j,t , ∀j ∈ SF, dc ∈ SDC, t (5.5c)

Idc
j,t ≥ 0, Bdc

j,t ≥ 0, ∀j ∈ SF, dc ∈ SDC, t (5.5d)

This transformation renders the model linear. Note that Idc
j,t and Bdc

j,t are minimized in the

objective function of the MPC problem. Therefore, the inequality constraints Equations

(5.5b), (5.5c), and (5.5d) ensure that when ILdc
j,t ≥ 0, Bdc

j,t = 0 and Idc
j,t = ILdc

j,t; and when

ILdc
j,t < 0, Bdc

j,t = −ILdc
j,t and Idc

j,t = 0. In both cases, Equation (5.4) is satis�ed.
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The other constraints to be imposed are given in Equation (5.6). Equations (5.6a) and (5.6b)

are the constraints on the binary production decisions and the minimum and maximum

production batch sizes. Here, up
ps,t is a binary variable associated with production scheme

ps at plant site p at time period t. If up
ps,t = 1, then production scheme ps is started at time

period t, and 0 otherwise. Equation (5.6b) ensures that for each production scheme, there

is no more than one batch in process. Equations (5.6c), (5.6d), and (5.6e) are constraints

on the transportation quantities. Equations (5.6f), (5.6g), and (5.6h) are the constraints on

the inventories of the plant sites. Equation (5.6i) is the constraint on the inventories of the

distribution sites. Equation (5.6j) speci�es the nonnegative variables.

up
ps,tW

p,lb
ps ≤Wp

ps,t ≤ up
ps,tW

p,ub
ps , ∀p ∈ SP, ps ∈ Sp

PS, t (5.6a)

t−δ
p
ps+1

∑
t′=t

up
ps,t′ ≤ 1, up

ps,t ∈ {0, 1}, ∀p ∈ SP, ps ∈ Sp
PS, t (5.6b)

∑
j∈Sp

R

Os,p
j,t ≤ Qs,p

ub , ∀p ∈ SP, j ∈ Sp
R, s ∈ SS, t (5.6c)

∑
j∈SI

Qp,p′

j,t ≤ Qp,p′,ub, ∀p, p′, t (5.6d)

∑
j∈SF

Qp,dc
j,t ≤ Qp,dc,ub, ∀p, dc, t (5.6e)

∑
j∈Sp

R

Ip
j,t ≤ Ip,ub

R , ∀p ∈ SP, t (5.6f)

∑
j∈Sp

I

Ip
j,t ≤ Ip,ub

I , ∀p ∈ SP, t (5.6g)

Ip
j,t ≤ Ip,ub

j , ∀p ∈ SP, j ∈ SF, t (5.6h)

ILdc
j,t ≤ Idc,ub

j , ∀dc ∈ SDC, j ∈ SF, t (5.6i)

Wp
ps,t,O

s,p
j,t , Qp,p′

j,t , Qp,dc
j,t , Ip

j,t ≥ 0, ∀s, p, p′, ps, dc, j, t (5.6j)

Two objectives are considered in the operational optimization of the supply chain, the

economic performance and customer service. The economic performance is measured by

the total operating cost over the planning horizon, which is the summation of the purchase
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cost, production cost, transportation cost, and inventory cost. The costs are calculated by

Equations (5.7a)–(5.7d), respectively.

Cpurchase =
N

∑
t=1

∑
s∈SS

∑
p∈SP

∑
j∈Sp

R

αs
jO

s,p
j,t (5.7a)

Cproduction =
N

∑
t=1

∑
p∈SP

∑
ps∈Sp

PS

ρ
p
psW

p
ps,t (5.7b)

Ctransport =
N

∑
t=1

∑
p∈SP

∑
dc∈SDC

∑
j∈SF

τp,dcQp,dc
j,t +

N

∑
t=1

∑
p∈SP

∑
p′∈SP :p′ 6=p

∑
j∈Sp

I

τp′,pQp′,p
j,t (5.7c)

Cinventory =
N

∑
t=1

∑
p∈SP

∑
j∈Sp

R∪Sp
I ∪SF

π
p
j Ip

j,t +
N

∑
t=1

∑
dc∈SDC

∑
j∈SF

πdc
j Idc

j,t (5.7d)

where αs
j is the unit purchase cost of material j at supplier s; ρ

p
ps is the unit production cost

of production scheme ps at plant site p; τp,dc
and τp′,p

are the unit shipping costs from plant

site p to distribution site dc and from plant site p′ to plant site p, respectively; π
p
j and πdc

j

are the unit inventory costs of material j at plant site p and distribution site dc, respectively.

The total operating cost is calculated as the summation of the above costs:

J1 = Cpurchase + Cproduction + Ctransport + Cinventory (5.8)

The customer service is measured by the total quantity of back orders over the planning

horizon:

J2 =
N

∑
t=1

∑
dc∈SDC

∑
j∈SF

Bdc
j,t (5.9)

This multi-objective problem is addressed using a weighted-sum method, i.e., the objective

function is calculated as a weighted sum of J1 and J2, which is J = ω1 J1 + ω2 J2. Here, ω1

and ω2 are the weights assigned to J1 and J2, respectively. The objective function of the
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MPC problem is thus to minimize J, and the MPC problem is formulated as:

min
u

ω1 J1 + ω2 J2

s. t. Equations (5.1), (5.5), (5.6)
(5.10)

Due to the existence of demand uncertainty, the inventory of distribution sites may exceed

the maximum capacity, which may lead to infeasibility in the closed-loop implementation

of MPC. In order to address this issue, Equation (5.6i) is transformed from a hard to a soft

constraint, which is given by Equation (5.11). By de�ning a variable OSdc
j,t for overstock of

material j, Equation (5.11) allows the inventory of distribution sites to exceed the upper

bound. This helps address the infeasibility under uncertain demand.

ILdc
j,t ≤ Idc,ub

j + OSdc
j,t ∀dc ∈ SDC, j ∈ SF, t (5.11)

Meanwhile, the overstock should be penalized in the objective function. The cost for over-

stock is calculated as:

J3 = Coverstock =
N

∑
t=1

∑
dc∈SDC

∑
j∈SF

OSdc
j,t (5.12)

The MPC problem therefore becomes:

min
u

ω1 J1 + ω2 J2 + ω3 J3

s. t. Equations (5.1), (5.5), (5.6a− 5.6h), (5.6j), (5.11)
(5.13)

Here, ω3 is the weight assigned to the objective function J3.

5.2.2 Modelling delayed terms

The lagged terms in Equations (5.1) and (5.5) indicate that the past decisions should be taken

into account when making current decisions. For more convenient implementation of MPC,

additional auxiliary state variables are introduced to carry the past decisions in the system,
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and transform the supply chain model into a state-space form. This approach is referred to

as lifting (Li and Marlin, 2009; Subramanian et al., 2012; Mastragostino et al., 2014).

Consider modelling the delayed/lagged decision Os,p
j,t−δs,p in Equation (5.1a), which has a

delay of δs,p
time periods. δs,p

auxiliary state variables are introduced for each time period t,

and the following Equation (5.14) is constructed:



Os,p
j,t+1,1

Os,p
j,t+1,2

.

.

.

Os,p
j,t+1,δs,p−1

Os,p
j,t+1,δs,p


=



Os,p
j,t,2

Os,p
j,t,3
.
.
.

Os,p
j,t,δs,p

Os,p
j,t


, ∀p ∈ SP, j ∈ Sp

R, t (5.14)

By replacing t with t − δs,p
in the last row of Equation (5.14), we have Os,p

j,t−δs,p+1,δs,p =

Os,p
j,t−δs,p . Also, based on Equation (5.14), we have:

Os,p
j,t−δs,p+1,δs,p = Os,p

j,t−δs,p+2,δs,p−1 = · · · = Os,p
j,t,1 (5.15)

Hence,

Os,p
j,t−δs,p = Os,p

j,t−δs,p+1,δs,p = Os,p
j,t,1 (5.16)

By replacing the lagged term Os,p
j,t−δs,p with the auxiliary state Os,p

j,t,1, and incorporating

Equation (5.14), Equation (5.1a) can be transformed into the state-space form as follows:

Ip
j,t+1 = Ip

j,t + ∑
s∈SS

Os,p
j,t,1 − ∑

ps∈Op
j

µ
p
ps,jW

p
ps,t, ∀p ∈ SP, j ∈ Sp

R, t

Os,p
j,t+1,k = Os,p

j,t,k+1, ∀p ∈ SP, j ∈ Sp
R, t, k = 1, 2, . . . , δs,p − 1

Os,p
j,t+1,δs,p = Os,p

j,t , ∀p ∈ SP, j ∈ Sp
R, t

(5.17)

The other lagged terms can be modelled in a similar way. Then, the supply chain system can
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be represented as the following state-space form:

xt+1 = Axt + But + vt (5.18)

with the state variables xt, input variables ut, and disturbance vt de�ned as follows:

xt =
[(

Ip
j,t∀p, j

)
,
(

ILdc
j,t∀dc, j

)
,
(

Os,p
j,t,k∀s, p, j, k

)
,
(

Wp
ps,t,k∀p, ps, k

)
,(

Qp,p′

j,t,k∀p, p′, j, k
)

,
(

Qp,dc
j,t,k∀p, dc, j, k

)]T

ut =
[(

Os,p
j,t ∀s, p, j

)
,
(

Wp
ps,t∀p, ps

)
,
(

Qp,p′

j,t ∀p, p′, j
)

,
(

Qp,dc
j,t ∀p, dc, j

)]T

vt =
[(

Ddc
j,t∀dc, j

)]T

(5.19)

In Equation (5.19), the state xt is de�ned to comprise of the inventory of the supply chain

members and the additional state variables for modelling past decisions. The input ut is

comprises of the variables of purchase, production, and shipment quantities. The customer

demand is considered as the disturbance vt to the supply chain system. The MPC problem is

therefore expressed as:

min
u=[uT

1 ,uT
2 ,...,uT

N ]T

N

∑
t=1

CT
x xt + CT

u ut + CT
a at

s. t. xt+1 = A1xt + B1ut + C1vt, ∀t = 1, . . . , N − 1

A2xt + A0at + B2ut + C2vt + D2bt + c ≤ 0, ∀t = 1, . . . , N

x1 = x0
(5.20)

where x0 represents the initial values of the state variables, and the auxiliary variables at

and the binary decision variables bt are de�ned as follows:

at =
[(

Idc
j,t∀dc, j

)
,
(

Bdc
j,t∀dc, j

)]T

bt =
[(

up
ps,t∀p, ps

)]T (5.21)

In the MPC problem (5.20), at and bt appear in the inequality constraints, while do not appear

194



Ph.D. Thesis - Jing Wang McMaster University - Computational Science and Engineering

in the state-space equation. The optimal solution of MPC is the decision over the planning

horizon N, which is denoted as u∗ = [u∗T1 , u∗T2 , . . . , u∗TN ]T . At the immediate succeeding

time step, only the decision u∗1 is implemented. The MPC problem is solved again for updated

state variables, and the process is repeated.

5.2.3 Deep learning-based supply chain MPC

If the problem (5.20) is an LP or QP, the optimal solution is a PWA function of the state:

u∗1 = PWA(x1). Karg and Lucia (2020) show that DNNs with recti�ed linear units (ReLU)

as activation functions can exactly represent the piecewise a�ne explicit MPC law, and not

only approximate it arbitrarily well. When binary variables are involved and the problem

is mixed-integer MPC, the deep learning-based technique also applies (Karg and Lucia,

2018; Masti and Bemporad, 2019). When the problem is nonlinear, the deep learning-based

technique also applies. This is because the DNN is able to be a universal approximator.

A feedforward NN is de�ned as a sequence of layers of neurons which determines a function

(Karg and Lucia, 2020):

NN (x; θ, H, L) = fL+1 ◦ gL ◦ fL ◦ · · · ◦ g1 ◦ f1(x) (5.22)

where x ∈ Rnx
is the input to the NN. The output of the NN is y ∈ Rny

. The input

layer has the same dimension as x ∈ Rnx
. The output layer has the same dimension as

y ∈ Rny
. L is the number of hidden layers in the NN, and H is the number of neurons

in each hidden layer. NN is called a deep NN if L ≥ 2. Speci�cally, when L = 1,

NN (x; θ, H, L) = f2 ◦ g1 ◦ f1(x) is called a shallow NN.

NN can be understood as a composition function that is computed layer by layer. For the

l-th hidden layer, it takes the output of the (l − 1)-th hidden layer hl−1 as the input, and

compute a PWA function fl(hl−1) = Wlhl−1 + bl . Then fl(hl−1) goes through a nonlinear

activation function gl to obtain gl[ fl(hl−1)]. Activation functions that have been used for

NN-based MPC include ReLUs (Karg and Lucia, 2020; Kumar et al., 2021; Chen et al., 2022),
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radial basis functions (RBFs) (Csekő et al., 2015), etc. In this work, ReLUs are chosen as

the activation functions of DNN, considering the relationship between ReLU NN and PWA

function, as well as its good performance that has been shown by Karg and Lucia (2020),

Kumar et al. (2021), and Chen et al. (2022). A ReLU activation function computes the element-

wise maximum between 0 and the a�ne function of the current layer: gl( fl) = max(0, fl).

The set of all the weights and biases is denote as the parameter θ.

A diagram of the proposed deep learning-based explicit MPC for supply chain operation is

shown in Figure 5.2. Implementation of this technique consists of two stages: the o�ine

stage and the online stage.

Figure 5.2. Deep learning-based explicit MPC for supply chain operation.

In the o�ine phase, the deep learning-controller is developed based on the optimal MPC

solutions. The �rst step is to generate optimal state-input pairs and use them to train the DNN.

This involves formulating the MPC problem for supply chain operation, i.e., the problem

(5.20) in Section 5.2.2; and solving the problem o�ine for a set of initial states x0 to obtain

corresponding optimal inputs u∗1 . These state-inputs pairs (x0, u∗1) are collected and stored

as the training data for the NN controller. Then, a NNNN (x; θ, H, L) : Rnx → Rnu
is built.

The NN is trained using the o�ine data to approximate the MPC law u∗1 =MPC(x0).
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It is worth mentioning that the constraints in the MPC problem involve the past values of

the binary decision variables bt. In order to take into account the potential impact of these

variables on the solution, the initial state x0 is augmented with the past values of the binary

variables at time step 0, which is denoted as ū0 =
[(

up
ps,k∀p, ps, k = −1, . . . , 1− δ

p
ps

)]T
.

Here, a up
ps,k with a negative k represents the past decision before the current time period.

Moreover, the initial auxiliary variables a0 are incorporated, and the state x0 is therefore

augmented into the following augmented state x̄0:

x̄0 =
[(

Ip
j,0∀p, j

)
,
(

Idc
c,0∀dc, c

)
,
(

Bdc
c,0∀dc, c

)
,
(

Os,p
j,0,k∀s, p, j, k

)
,
(

Wp
ps,0,k∀p, ps, k

)
,(

Qp,p′

j,0,k∀p, p′, j, k
)

,
(

Qp,dc
j,0,k∀p, dc, j, k

)
,
(

up
ps,k∀p, ps, k = −1, . . . , 1− δ

p
ps

)]T

(5.23)

Therefore, in this work, the DNN is approximating the map from x̄0 to u∗1 . With well-tuned

hyperparameters and appropriate training, the NN is supposed to achieve high approximation

accuracy, i.e., u1 = NN (x0) should be a good approximation of u∗1 =MPC(x0). Data

generation and preprocessing are discussed in Section 5.2.4.

In the online phase, the NN is used for real-time control, thus the optimization solver is no

longer needed. The current state of supply chain x0 is fed to the NN, and the NN computes

the decisions u1. Since the output of NN is an approximation, it is possible u1 is an infeasible

solution, and thus feasibility recovery is needed. Feasibility recovery is discussed in Section

5.2.5.

5.2.4 Data generation and preprocessing

Generating data requires sampling x1 and solving for optimal u∗1 . It is worth mentioning

that it could be di�cult to cover the entire state space S when sampling x1, especially when

there are delayed decisions in the system, and auxiliary state variables are introduced. It

could be challenging to ensure that the constraints involving the auxiliary state variables

to be satis�ed, otherwise the x1 could be an infeasible state. Therefore, generating optimal

state-input pairs through closed-loop simulation is a better option in some cases. Closed-loop
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data are used by (Karg and Lucia, 2020; Kumar et al., 2021).

The process of closed-loop sampling in this work is shown by Figure 5.3. At the beginning,

an initial state x1 is randomly sampled from the state space S , with all the auxiliary states

set to 0. This means the past decisions before time step 1 are not considered. Then, the MPC

problem is solved to obtain an optimal solution u∗1 . After that, the simulator accepts the

input, does a simulation with uncertainty realization, and returns the new state x2 to the

controller. In general, at time step t, MPC computes the solution u∗t based on the current

state xt, and the state is then updated by the simulator. In this way, assuming the simulation

horizon is Nh, for each simulation run, a total of Nh state-input pairs {(xt, u∗t )}t=1,2,...,Nh

are obtained. The simulation procedure is run for Ns times, from which a total of NsNh

state-input pairs are obtained.

Figure 5.3. Sampling of optimal state-input pairs based on closed-loop simulation.

It should be noted that in closed-loop simulation, MPC tends to determine inputs that result in,

e.g., low inventory of raw materials at plants, low inventory of �nal products at distribution

sites of the supply chain. This is because MPC minimizes the inventory cost. Therefore,

the state enter a small region (“sweet spot”) of the state space (denoted as x ∈ Ss ⊂ S)

soon after the simulation starts, even it starts from a random initial state. In the collected

data, samples in Ss may make up a large portion. However, this is a small region in the

entire state-space, and cannot cover the entire state space S . This means the DNN is trained

mainly for Ss and ignores the rest of the state space. Thus, the approximation for Ss may

be accurate, but over�tting may happen, and a�ect the overall performance. For an initial
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state that falls outside the sweet spot, the approximation error could be large. In order to

avoid over�tting into the subset of state space and obtain more accurate approximation,

besides the closed-loop data from simulation, the DNN is supplied with more random initial

states in this work. This means a hybrid of closed-loop data and random optimal state-input

pairs sampled from the state space are used. This approach improves the overall accuracy of

approximation.

The state and input data are organized as matrices, with each row represents a sample, and

each column corresponds to a variable. Before using the data for training the DNN controller,

the data need to be preprocessed. In this chapter, data preprocessing is implemented as

follows (Karg and Lucia, 2021; Kumar et al., 2021):

(1) Remove the columns with constant values in the state and input data. These columns are

corresponding to the state and input variables that have constant values for all samples.

(2) Split the data into a training set and a validation set. The training set accounts for 80% of

the data, which is used for �tting the DNN. The validation set accounts for the remaining

20% of the data, which is used for selecting hyperparameters in the training step.

(3) Scale each state and input variable to the range of [0, 1]. A variable x is scaled by using:

xscaled =
x− xmin

xmax − xmin
(5.24)

where xmin and xmax are the minimum and maximum of the samples of x, respectively;

and xscaled is the scaled variable.

The scaling parameters xmin and xmax are calculated based on the training set. The

scaling is also implemented on the validation set and test set using the same parameters.

The test set for closed-loop testing is generated separately such that MPC and DLBMPC can

be compared under the same initial state and demand realization. The DNN is blind to the

test set before online testing.

199



Ph.D. Thesis - Jing Wang McMaster University - Computational Science and Engineering

5.2.5 Feasibility recovery

In terms of dealing with mixed-integer linear or mixed-integer quadratic MPC, basically there

are two paradigms: (1) Use a NN to approximate and predict the binary decision variables,

then in the online phase solve a LP or QP with the binary variables �xed to their predicted

values (Masti and Bemporad, 2019; Masti et al., 2020; Srinivasan et al., 2021); (2) Use a NN to

approximate the binary variables and continuous variables (Karg and Lucia, 2018). Masti

and Bemporad (2019) use a NN to approximate the binary decisions of multiparametric

MIQP problems. In the online phase, a QP is solved with all the binary variables set to the

predicted values. If the QP is infeasible, a sequence of MIQPs is solved with the binary

variable unlocked one by one from their predicted values to {0, 1}. Masti et al. (2020) use a

machine learning approach to predict the binary decisions of a multiparametric MILP, so

that only a LP is solved online. Infeasibility is avoided through a simple rule-based engine

that modi�es the binary con�guration when necessary. Srinivasan et al. (2021) �x the values

of most or all integer variables in MILPs based on the predicted trajectories, and then the

resulting simpler MILP is solved. A further improvement is solving the full MILP initialized

at the above solution with a timeout for real-time feasibility.

Since the output of the NN is an approximation of the optimal solution and yields �oating

point numbers, infeasibility may exist, especially when there are integer decision variables.

Therefore, feasibility recovery after obtaining the prediction of NN is an important step. In

this work, the binary and continuous decision variables are approximated by the same DNN.

The following heuristic method is used to deal with the binary variables in the mixed-integer

linear MPC and recover the feasibility of the decisions obtained from the NN:

(1) For the binary decision variables {up
ps,t}p∈SP,ps∈Sp

PS
, a threshold of 0.5 is used to adjust

the prediction of the NN, ûp
ps,t:

ûp
ps,t =

0, if ûp
ps,t ≤ 0.5

1, if ûp
ps,t > 0.5

(5.25)
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Equation (5.25) means if the prediction of NN for a binary variable ûp
ps,t is less or equal

to 0.5, then it is set to 0; otherwise it is set to 1.

(2) Adjust ûp
ps,t according to past production decisions based on Equation (5.6b):

If ∑
t−δ

p
ps+1

t′=t−1 ûp
ps,t′ = 1 (for δ

p
ps ≥ 2), then set ûp

ps,t ← 0.

This adjustment aims to mitigate the potential error in the prediction ûp
ps,t in step (1),

thus ensuring that the constraint on the binary variables, i.e., ∑
t−δ

p
ps+1

t′=t−1 ûp
ps,t′ + ûp

ps,t ≤ 1

required by Equation (5.6b), is satis�ed.

(3) Adjust the production quantity Ŵp
ps,t based on the associated binary production decision

ûp
ps,t and the minimum and maximum batch sizes (Equation (5.6a)):

Ŵp
ps,t =

0, if ûp
ps,t = 0

max{Wp,lb
ps , min{Wp,ub

ps , Ŵp
ps,t}}, if ûp

ps,t = 1
(5.26)

Equation (5.26) ensures that the production quantity Ŵp
ps,t is 0 when ûp

ps,t = 0, and is

within the lower and upper bounds when ûp
ps,t = 1.

(4) Update the current inventory state variables with the past decisions based on Equation

(5.1). For example:

Ip,tmp
j,t+1 ← Ip

j,t + ∑ps∈Op
j

µ
p
ps,jβ

p
psW

p
ps,t−δ

p
ps

, ∀p ∈ SP, j ∈ SP
F .

Here, Ip,tmp
j,t+1 is the maximum available inventory of product j at plant site p that can

be shipped to the distribution centers. It can be used to adjust the shipment quantities

Q̂p,dc
j,t , as shown in the next step.

(5) Adjust the input variables according to the updated state variables calculated in the last

step. For example, Q̂p,dc
j,t is adjusted based on Equation (5.1c) as follows:

If ∆ = ∑dc∈SDC
Q̂p,dc

j,t − Ip,tmp
j,t+1 > 0, then set Q̂p,dc

j,t ← max{0, Q̂p,dc
j,t − ∆}.

This adjustment ensures that the total shipment quantities do not exceed the current

available inventory. The production quantity Ŵp
ps,t and shipment quantity Q̂p,p′

j,t are

adjusted in a similar way based on Equations (5.1a) and (5.1b), respectively.
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It is worth mentioning that the approximation of DNN is (supposed to be) generally accurate,

therefore the adjustment should not be signi�cant.

5.3 Case Studies

In this section, two case studies are carried out to validate the deep learning-based MPC in

supply chain optimization. The �rst case is an illustrative example based on the beer game

supply chain, and the second case involves a more complicated supply chain network. The

two case studies are presented in Section 5.3.1 and Section 5.3.2, respectively.

5.3.1 Case study I

The Beer Distribution Game is a classical roleplay simulation of an industrial production-

distribution system in the operations management area (Sterman, 1989; Chen and Samro-

engraja, 2000). As shown in Figure 5.4, the beer game involves a 4-echelon serial supply

chain that consists of a factory, a distributor, a wholesaler, and a retailer. It deals with the

production and distribution of a beer product to satisfy customer orders. The beer game has

been widely used in operations management as an example to illustrate the dynamics in

supply chain system and to investigate supply chain control (Oroojlooyjadid et al., 2022).

Figure 5.4. Case study I: the beer game supply chain.

Based on Sterman (1989), the following assumptions are made for the supply chain control

problem in this work:

(1) Each supply chain member holds an inventory of the beer product.

(2) Each supply chain member receives orders from and ships beer to its downstream.
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(3) Each supply chain member (except for the factory) orders beer from its upstream compo-

nent and receives beer after a shipping delay. The factory places production requests

and receives beer after a production delay.

(4) There is no information delay.

(5) The retailer uses a “best I can do” policy and allows backorders. If the retailer’s inventory

is insu�cient to �ll incoming orders plus backlog, it �lls as many orders as it can and

add the remaining orders to the backlog.

The MPC problem for the operation of this supply chain is formulated as follows:

min
u

N

∑
t=1

ω1

(
πp Ip

t + πdc Idc
t + πw Iw

t + πr Ir
t

)
+ ω2Br

t

s. t. Ip
t+1 = Ip

t −Qp,dc
t + Wp

t−δp
, ∀t ∈ T

Idc
t+1 = Idc

t −Qdc,w
t + Qp,dc

t−δp,dc
, ∀t ∈ T

Iw
t+1 = Iw

t −Qw,r
t + Qdc,w

t−δdc,w
, ∀t ∈ T

ILr
t+1 = ILr

t + Qw,r
t−δw,r

− Dr
t , ∀t ∈ T

Br
t ≥ −ILr

t , ∀t ∈ T

Ir
t ≥ ILr

t + Br
t , ∀t ∈ T

Ip
t , Idc

t , Iw
t , Ir

t , Br
t , Wp

t , Qdc,w
t , Qw,r

t ≥ 0, ∀t ∈ T

Ip
1 = Ip

0 , Idc
1 = Idc

0 , Iw
1 = Iw

0 , ILr
1 = ILr

0

(5.27)

where the superscripts p, dc, w, and r represent the factory, distributor, wholesaler, and

retailer, respectively. As has been presented in Section 5.2, Ip
t , Idc

t , Iw
t , Ir

t , and ILr
t are the

inventory of the corresponding agent at time period t; Br
t represents the back orders of

the retailer. Ip
0 , Idc

0 , Iw
0 , and ILr

0 are the initial inventory. Wp
t , Qp,dc

t , Qdc,w
t , and Qw,r

t are

the production and shipment quantities; δp, δp,dc, δdc,w, and δw,r are the production and

shipment delays. Dr
t is the demand forecast at the retailer.

The objective function is a weighted sum of the total inventory holding cost and the penalty

for back orders. The unit inventory holding costs of the 4 agents, πp
, πdc

, πw
, and πr

are
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set to 0.25, 0.5, 0.75, and 1 $/unit/period, respectively; the weights ω1 and ω2 are set to 1

and 10, respectively (Chen and Samroengraja, 2000).

The state variables for time period t, including the additional states for modelling past

decisions, are:

xt = [Ip
t , Idc

t , Iw
t , ILr

t , Wp
t,1, . . . , Wp

t,δp
,

Qp,dc
t,1 , . . . , Qp,dc

t,δp,dc
, Qdc,w

t,1 , . . . , Qdc,w
t,δdc,w

, Qw,r
t,1 , . . . , Qw,r

t,δw,r
]T

(5.28)

The auxiliary state variables for time period t are at = [Ir
t , Br

t ]
T

. The input variables for time

period t are ut = [Wp
t , Qp,dc

t , Qdc,w
t , Qw,r

t ]T , and the decision variables of the MPC problem

are u = [uT
1 , uT

2 , . . . , uT
N]

T
.

In this illustrative example, the delays δp, δp,dc, δdc,w, and δw,r are all set to 1. Therefore, the

state is a 8-dimensional vector xt = [Ip
t , Idc

t , Iw
t , ILr

t , Wp
t,1, Qp,dc

t,1 , Qdc,w
t,1 , Qw,r

t,1 ]
T

. The initial

state is x0 = [Ip
0 , Idc

0 , Iw
0 , ILr

0, Wp
0,1, Qp,dc

0,1 , Qdc,w
0,1 , Qw,r

0,1 ]
T

, where ILr
0 = Ir

0 − Br
0. For each

time period t, the MPC problem is solved for given updated state x0 to obtain the optimal

decision u∗ for the current period, and u∗1 = [Wp∗
1 , Qp,dc∗

1 , Qdc,w∗
1 , Qw,r∗

1 ]T are implemented

at the next period.

Table 5.1. Case study I: supply chain parameters.

Parameters Value

Factory unit inventory cost πp
0.25

Distributor unit inventory cost πdc
0.5

Wholesaler unit inventory cost πw
0.75

Retailer unit inventory cost πr
1

Weight ω1 1

Weight ω2 10

Planning horizon N 7

Demand N (20, 42)
Demand forecast Dt 20

For simpli�cation, it is assumed that there are no capacity constraints on the storage. The

customer demand is assumed to follow a normal distributionN (20, 42). In the deterministic

MPC formulation, the demand forecasts over the planning horizon are set to the mean 20.
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The planning horizon is selected to be N = 7. The parameters are summarized in Table 5.1.

It is worth mentioning that in the classical beer game, the beer product is measured in cases

(Sterman, 1989) or kegs (Chen and Samroengraja, 2000), thus the decision variables are

integers. In this work, the supply chain control problem is adapted to allow continuous

decision variables, thus it is more general. The MPC optimization problem is formulated as a

linear program.

Implementation of the DLBMPC technique follows an o�ine-online procedure. In the o�ine

phase, a DNN u1 = DNN (x0) is developed to construct a map from the state x0 to the

control input u1. This DNN is fed with optimal state-input pairs to approximate the explicit

MPC law u∗1 =MPC(x0). The optimization problem for the supply chain MPC is modelled

using the Python optimization package Pyomo (Hart et al., 2011; Bynum et al., 2021) and

solved using the IBM CPLEX 12.10 solver. The problem is solved o�ine for many initial

system states x0 to obtain corresponding optimal inputs u∗1 . These state-inputs pairs (x0, u∗1)

are collected and stored as the training data for the DNN controller. Since the demand

forecast in the MPC problem is a constant, it is not considered as an input to the DNN. For

the case where the demand forecast is varying, the DNN should map from the initial state and

demand forecast to the control inputs. The state variables used as the input to the DNN are

x̄0 = [Ip
0 , Idc

0 , Iw
0 , Ir

0, Br
0, Wp

0,1, Qp,dc
0,1 , Qdc,w

0,1 , Qw,r
0,1 ]

T ∈ R9
. The decisions used as the output

of the DNN are u1 = [Wp
1 , Qp,dc

1 , Qdc,w
1 , Qw,r

1 ]T ∈ R4
.

The DNN is built by using the tensorflow.keras.Sequential() API provided by the

machine learning platform TensorFlow (Martín Abadi et al., 2015). The hyperparameters

of DNN and relevant information are summarized in Table 5.2. In this case, the linear MPC

problem has a state dimension of 9. Therefore, the input layer of the DNN has 9 neurons.

The output layer has 4 neurons, which is the number of decision variables. The DNN has 5

hidden layers, with 50 neurons in each hidden layer. The DNN maps from the state to the

decisions, which is u1 = DNN (x0) : R9 → R4
.

In order to train the DNN, 5000 optimal state-input pairs are generated through closed-loop

simulation, and another 5000 optimal state-input pairs are generated for states randomly

sampled from the state space. The supply chain simulation model is developed using the
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programming language Python to generate closed-loop samples and validate the method.

For the closed-loop simulation, the simulation horizon is set to 50 time periods, and the

simulation procedure is run for 100 replications, starting from di�erent random initial states.

80% of the data are used as training set, i.e., 4000 closed-loop samples plus 4000 random

samples. The remaining 2000 closed-loop samples and 2000 random samples are used to

construct the validation set. For the random state samples, each state variable is sampled

from a uniform distribution U (0, 50), except for the backorder, which is set to 0. The DNN is

trained using the Adam optimizer for 100 epochs with a learning rate of 0.001. For the scaled

data where each variable is scaled to [0, 1], the DNN achieved a root-mean-squared-error

(RMSE) of 0.003 on the training set, and a RMSE of 0.004 on the validation set. In the original

scale, the RMSEs are 0.14 and 0.17, respectively.

Table 5.2. Case study I: DNN hyperparameters and relevant information

Hyperparameters Value

Number of neurons in input layer 9

Number of hidden layers 5

Number of neurons per hidden layer 50

Number of neurons in output layer 4

Activation function ReLUs

Batch size 32

Epochs 100

Optimizer Adam

Learning rate 0.001

Number of training samples 8,000

Number of validation samples 2,000

In the online implementation phase, a total of Ntest
s = 200 random scenarios are generated

as the test set for closed-loop validation. Each scenario is a combination of a random initial

state and a demand sample. The MPC and DLBMPC are tested and compared under the same

scenarios. The simulation horizon is set to 30. The comparison of the state and input over

the simulation horizon using the two control methods under a scenario is shown in Figure

5.5. The column on the left shows the state variables including inventory of the agents, the

backorders of the retailer and the customer demand. The column on the right shows the

input variables including the production and shipment quantities. The simulation starts
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from an initial state where the inventories and past decisions are sampled randomly. It is

observed that soon after the simulation starts, the agents tend to maintain low inventories

to avoid inventory holding costs. This is the “sweet spot” mentioned in the previous section.

It can be seen that the state trajectory and the input obtained from the DLNMPC is almost

identical to the MPC, and can hardly be distinguished. This implies that the DNN controller

can approximate the model predictive controller well. It is worth mentioning that the DNN

controller is blind to (not trained for) the test samples in the o�ine training phase. Therefore,

the closed-loop performance is excellent.

Similar to Kumar et al. (2021), a performance loss metric is de�ned in this work to assess

the DLBMPC method in closed-loop implementation. Under a scenario s, the total cost over

the simulation horizon, denoted as Cmpc and Cdlbmpc for MPC and DLBMPC, respectively,

are calculated as ∑N
t=1 ω1

(
πp Ip

t + πdc Idc
t + πw Iw

t + πr Ir
t
)
+ ω2Br

t , which is the objective

function in the MPC problem. The performance loss using DLBMPC under a scenario s is

then de�ned as:

∆s
loss =

Cdlbmpc − Cmpc

Cmpc
× 100% (5.29)

The average performance loss over the Ntest
s scenarios is calculated as:

∆avg
loss =

1
Ntest

s
∑

s
∆s

loss × 100% (5.30)

Under di�erent scenarios, the total cost is di�erent. The results over the 200 test scenarios

are presented in Figure 5.6. The distributions of the total cost using the two methods are

shown in the box plot on the left of Figure 5.6. A box plot is a graphical summary of a dataset

based on the median, the minimum and maximum (excluding any outliers), and the �rst

and third quartiles (Frigge et al., 1989). The small circles in the plot represent the outliers,

which are the samples beyond the boundary of the whiskers. It can be seen that two box

plots are very similar, in terms of the �ve-number summary. The plot on the right of Figure

5.6 shows the spread of performance loss (∆s
loss) over the 200 scenarios. It is observed that

the median is greater than 0. This means for at least a half of the scenarios, the DLBMPC

causes performance loss. For most scenarios, the loss is less than 2%. However, it is worth

207



Ph.D. Thesis - Jing Wang McMaster University - Computational Science and Engineering

Figure 5.5. Case study I: closed-loop simulation results for a test scenario.
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mentioning that for some scenarios, the DLBMPC achieved a lower total cost than MPC.

This is because uncertainty exists in the demand, and MPC cannot guarantee an optimal

decision in real implementation. The highest outlier in the plot on the right indicates that

the worst-case performance loss of DLBMPC over the test scenarios is approximately 4.5%.

The lowest outlier indicates that in the best case, DLBMPC improves the performance by

approximately 4.5%. The average performance loss of using the DLBMPC controller is

∆avg
loss = 0.43%. The loss is very small, which indicates that the DLBMPC achieved good

performance in the closed-loop implementation. The DNN is able to approximate the MPC

solutions to a high accuracy.

Figure 5.6. Case study I: comparison of closed-loop performance.

5.3.2 Case study II

In the second case study, a multi-echelon and multi-product supply chain is investigated.

This supply chain network has been investigated by Mastragostino et al. (2014), and is more

complicated than the serial supply chain in case study I. In this section, the structure of the

supply chain and the MPC problem are described. The development and implementation

of the DNN controller is discussed. The performance of the deep learning-based MPC is
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validated through closed-loop simulation and compared with the nominal MPC.

The structure of this supply chain is shown in Figure 5.7 (Mastragostino et al., 2014). This

supply chain involves 2 suppliers (SS = {S1, S2}), 2 plant sites (SP = {P1, P2}), and 2

distribution sites (SDC = {DC1, DC2}). Plant site P1 has two production schemes PS1 and

PS2 installed (SP1
PS = {PS1, PS2}). Plant site P2 has two production schemes PS3 and PS4

installed (SP2
PS = {PS3, PS4}). The mass balances of the 4 production schemes are given as

follows:

PS1 : A + B→ C + D

PS2 : C → 0.5E + 0.5G

PS3 : A + D → E + F

PS4 : F → G

Figure 5.7. Case study II: supply chain network.

The supply chain deals with the production and distribution of products to satisfy customers’

demand. The plant sites purchase raw materials from the suppliers. For plant P1, A and

B are the raw materials, C and D are the intermediate products, and E and G are the �nal

products. For plant P2, A and D are the raw materials, F is the intermediate product, and E

and G are the �nal products. A is purchased from suppliers and D is shipped from P1. The

�nal products are shipped to the distribution sites, where customer orders are ful�lled. The

plant sites hold inventory of the raw materials and products. The distribution sites DC1 and

DC2 use a “best I can do” policy.
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For the supply chain con�guration in this case study, the mass balances for plant P1 and P2

are expressed in detail as Equation (5.31):

IP1
j,t+1 = IP1

j,t + ∑
s∈SS

Os,P1
j,t−δs,P1

− µP1
PS1,jW

P1
PS1,t, ∀j ∈ {A, B}, t (5.31a)

IP1
C,t+1 = IP1

C,t + µP1
PS1,CβP1

PS1
WP1

PS1,t−δ
P1
PS1

− µP1
PS2,CWP1

PS2,t, ∀t (5.31b)

IP1
D,t+1 = IP1

D,t + µP1
PS1,DβP1

PS1
WP1

PS1,t−δ
P1
PS1

−QP1,P2
D,t , ∀t (5.31c)

IP1
j,t+1 = IP1

j,t + µP1
PS2,jβ

P1
PS2

WP1

PS2,t−δ
P1
PS2

− ∑
dc∈SDC

QP1,dc
j,t , ∀j ∈ {E, G}, t (5.31d)

IP2
A,t+1 = IP2

A,t + ∑
s∈SS

Os,P2

A,t−δ
s,P2
A

− µP2
PS3,AWP2

PS3,t, ∀t (5.31e)

IP2
D,t+1 = IP2

D,t + QP1,P2
D,t−δP1,P2

− µP2
PS3,DWP2

PS3,t, ∀t (5.31f)

IP2
E,t+1 = IP2

E,t + µP2
PS3,DβP2

PS3
WP2

PS3,t−δ
P2
PS3

− ∑
dc∈SDC

QM2,dc
E,t , ∀t (5.31g)

IP2
F,t+1 = IP2

F,t + µP2
PS3,DβP2

PS3
WP2

PS3,t−δ
P2
PS3

− µP2
PS4,FWP2

PS4,t, ∀t (5.31h)

IP2
G,t+1 = IP2

G,t + µP2
PS4,GβP2

PS4
WP2

PS4,t−δ
P2
PS4

− ∑
dc∈SDC

QP2,dc
G,t , ∀t (5.31i)

The MPC problem is formulated based on Section 5.2.1. Since the customer demand is

uncertain, overstock is allowed at the distribution sites and soft constraints are imposed

to avoid potential infeasibility in closed-loop implementation. The objective function of

the MPC problem is to minimize the total weighted sum of the economic performance,

the customer service (measured by backorders), and a penalty for overstock. The weights

assigned to the 3 objectives are chosen as ω1 = 1, ω2 = 10, and ω3 = 5, respectively. The

economic performance is measured by the total operating cost over the planning horizon,

which consists of the purchase cost, production cost, transportation cost, and inventory cost.

The supply chain parameters are given in Tables 5.3–5.9 consistent with Mastragostino

et al. (2014). Table 5.3 presents the unit purchase costs. Table 5.4 presents the production

parameters, including production cost, batch size, production delay and process yield. Table

5.5, Table 5.6, and Table 5.7 present the transportation cost, delay, and maximum capacity,
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respectively. Table 5.8 presents the inventory cost and capacity. The demand of �nal products

at the distribution sites are assumed to follow normal distributions. The mean and standard

deviation of the normal distributions are presented in Table 5.9.

Table 5.3. Case study II: raw material purchase cost parameters αs
j .

Raw material

Suppliers

S1 S2

A 1 1.2

B 1.4 1.7

Table 5.4. Case study II: production parameters.

Parameters

Production schemes

PS1 PS2 PS3 PS4

Cost ρ
p
ps 1.25 1 1.3 1.5

Maximum batch size Wp,ub
ps 120 300 120 150

Minimum batch size Wp,lb
ps 25 60 25 25

Production delay δ
p
ps 1 2 2 1

Process yield parameter β
p
ps 0.8 0.7 0.8 0.7

Table 5.5. Case study II: shipment cost parameters τp,dc
, τp,p′

.

Plant sites

Plant sites Distribution sites

P1 P2 D1 D2

P1 – 4 2.7 2.8

P2 4 – 2.8 2.5

The state variables for time period t, xt in Equation (5.19) (plus past binary variables) is

a 71-dimensional vector. The auxiliary state variables for time period t are at = [Ir
t , Br

t ]
T

.

The input variables for time period t, ut in Equation (5.19) is a 23-dimensional vector. The

decision variables of the MPC problem are u = [uT
1 , uT

2 , . . . , uT
N]

T
. For each time period t,

the MPC problem is solved for updated state x0 to obtain the optimal decision u∗ for the

current period, and u∗1 are implemented at the next period.

In the o�ine development of the deep learning-based controller, the mixed-integer linear

MPC problem is modelled using Pyomo and solved using the IBM CPLEX 12.10 solver
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Table 5.6. Case study II: transportation delays δp,dc, δp,p′ .

Plant sites

Suppliers Distribution sites Plant sites

S1 S2 D1 D2 P1 P2

P1 3 3 3 4 0 2

P2 2 2 4 2 2 0

Table 5.7. Case study II: maximum transportation quantity Qs,p,ub
, Qp,p′,ub

, Qp,dc,ub
.

Plant sites

Suppliers Distribution sites Plant sites

S1 S2 D1 D2 P1 P2

P1 120 120 100 100 0 100

P2 120 120 100 100 100 0

Table 5.8. Case study II: inventory parameters.

Parameters

Plant sites Distribution sites

P1 P2 D1 D2

Inventory cost of Sp
R 0.8 0.7 – –

Inventory cost of Sp
I 0.9 1.1 – –

Inventory cost of Sp
F 1.4 1.1 – –

Inventory cost of SF – – 1.5 1.25

Storage capacity Ip,ub
R /Ip,ub

I /Ip,ub
E /Ip,ub

G 500 500 – –

Storage capacity Idc,ub
E /Idc,ub

G – – 500 500

Table 5.9. Case study II: demand parameters.

Parameters

Distribution site DC1 Distribution site DC2

E G E G

mean 20 20 40 20

std. 4 4 8 4
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to obtain optimal state-input data. The state x0 is augmented with past binary decision

and auxiliary states to obtain x̄0. Then a DNN u1 = DNN (x̄0) is built and trained to

construct a map from the augmented state x̄0 to the control input u1. This DNN is fed with

optimal state-input pairs to approximate the MPC law u∗1 =MPC(x0). The problem is

solved o�ine for many initial system states x0 to obtain corresponding optimal inputs u∗1 .

These state-inputs pairs (x̄0, u∗1) are collected and stored as the training data for the DNN

controller.

In order to train the DNN, 105
optimal state-input pairs are generated through closed-loop

simulation, and another 105
optimal state-input pairs are generated for states randomly

sampled from the state space. The supply chain simulation model is developed using Python

to generate closed-loop samples and validate the method. For the closed-loop simulation,

the simulation horizon is set to 40 time periods, and the simulation procedure is run for 2500

replications, starting from di�erent random initial states. 80% of the data are used as training

set, i.e., 8× 104
closed-loop samples plus 8× 104

random samples. The remaining 2× 104

closed-loop samples and 2× 104
random samples are used to construct the validation set. For

the random state samples, the inventory variables are sampled from a uniform distribution

U (0, 200), and the backorders and past decision variables are set to 0. The generation of

2× 105
samples takes around 11 hours.

For the mixed-integer MPC problem in this case study, x̄0 ∈ R71
, and u∗1 ∈ R23

. In the

preprocessing step, it is observed that in u∗1 of the MPC solution, three decision variables

QS2,P1
A,t , QS2,P1

B,t , and QS2,P2
A,t are always zeros. Therefore, the corresponding components of the

state and input vectors are removed to obtain x̂0 and û∗1 . By removing QS2,P1
A,0,k, k = 1, 2, 3,

QS2,P1
B,0,k , k = 1, 2, 3, and QS2,P2

A,0,k, k = 1, 2 from x̄0, the state variables used as the input to

the DNN are reduced from x̄0 ∈ R71
to x̂0 ∈ R63

. Also, by removing QS2,P1
A,1 , QS2,P1

B,1 , and

QS2,P2
A,1 from u∗1 , the decisions used as the output of the DNN are reduced from u∗1 ∈ R23

to

û∗1 ∈ R20
. Since the demand forecast in the MPC problem is a constant, it is not considered

as an input to the DNN. Each state and input variable is scaled to the range of [0, 1].

The DNN is built by using the tensorflow.keras.Sequential() API. The hyperparam-

eters of DNN and relevant information are summarized in Table 5.10. The input layer and
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output layer of the DNN has 63 and 20 neurons, respectively. The DNN has 5 hidden layers,

with 500 neurons in each hidden layer. The DNN maps from the state to the decisions, which

is û1 = DNN (x̂0) : R63 → R20
. Here, û1 is an approximation of the reduced optimal

decisions û∗1 . Once û1 is computed by the DNN controller, the approximated MPC solution

u1 ∈ R23
is obtained from augmenting û1 with QS2,P1

A,1 , QS2,P1
B,1 , QS2,P2

A,1 = 0.

Table 5.10. Case study II: DNN hyperparameters and relevant information.

Hyperparameters Value

Number of neurons in input layer 63

Number of hidden layers 5

Number of neurons per hidden layer 400

Number of neurons in output layer 20

Activation function ReLUs

Batch size 2048

Epochs 400

Optimizer Adam

Learning rate 0.001

Number of training samples 1.6× 105

Number of validation samples 4× 104

The DNN is trained using the Adam optimizer for 400 epochs with a learning rate of 0.001.

For the scaled data where each variable is scaled to [0, 1], the DNN achieved a RMSE of

0.024 on the training set, and a RMSE of 0.076 on the validation set. In the original scale,

the RMSEs are 2.71 and 6.45, respectively. For the prediction of binary variables, the DNN

achieved an error rate of ≈ 0.05% for the training set, and 1.77% for the validation set.

For the online closed-loop validation, a total of Ntest
s = 100 random scenarios are generated

as the test set. Each scenario consists of an initial state randomly sampled from the state

space, and the demand of �nal products over the simulation horizon. The MPC and DLBMPC

are tested and compared under the same initial state and demand realization. The simulation

horizon is set to 40 time periods. Figure 5.8 shows the comparison of some state and input

variables using the two control methods under a test scenario, with the state variables such as

inventory, backorder, and demand shown by the column on the left, and the input variables

such as the production and shipment quantities shown by the column on the right. Similarly

to case study I, in this case it is also observed that the supply chain system enters a “sweet
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spot” soon after the simulation starts. This means for most of the time, the inventories of

most materials are low such that high inventory holding costs are avoided. The trajectories

of the state and input variables obtained from the DLNMPC are very close to the MPC, and

are barely distinguishable for some variables. This implies that the decisions obtained from

the DNN controller are a good approximation of the MPC solutions, and the closed-loop

performance of the DNN controller is excellent.

The results over the 100 test scenarios are presented in Figure 5.9. The distributions of the

total cost using the two methods are shown in the box plot on the left of Figure 5.9. It can be

seen that two box plots are very similar, in terms of the median, mean and quantiles. The

plot on the right of Figure 5.9 shows the spread of performance loss (∆s
loss) over the 100

scenarios. It is observed that the median is approximately 1%. For 75% of the scenarios, the

loss is less than 2.5%. Similar to case study I, for some scenarios, the DLBMPC achieved

a lower total cost than MPC. This is because uncertainty exists in the demand, and MPC

cannot guarantee an optimal decision in real implementation. The average performance loss

of using the DLBMPC controller is ∆avg
loss ≈ 1.8%. The loss is small, which indicates that the

DLBMPC achieved good performance in the closed-loop implementation. The DNN is able

to be a good approximation of the MPC law.

The comparison of average computation time for MPC and DLBMPC is shown in Figure

5.10. It is observed that to obtain a solution, DLBMPC takes signi�cantly less computation

time than MPC. The average solution time of using MPC is approximately 0.16 CPU seconds,

while using DLBMPC only takes approximately 0.05 CPU seconds on average. DLBMPC

saves 68.8% computation time. In the context of supply chain optimization, a solution time of

0.16 seconds may be not long. However, it should be noted that in this work, a deterministic

MPC formulation is investigated, and solving it is not time-consuming. In case where more

sophisticated MPC problem is formulated to obtain better control performance, e.g., robust

MPC strategies (Mastragostino et al., 2014), the solution time could increase by a large

amount. By contrast, the DLBMPC only requires the evaluation of a DNN to obtain decisions,

thus it would still be fast in the real-time implementation.
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Figure 5.8. Case study II: closed-loop simulation results for a test scenario.
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Figure 5.9. Case study II: comparison of closed-loop performance.

Figure 5.10. Case study II: comparison of computation time.
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5.4 Conclusion

This work investigates the performance of deep learning-based MPC in the context of supply

chain optimization. An approach is proposed to implement the method when there are

delayed decisions in the system. Moreover, a heuristic method is proposed to deal with the

binary decision variables for deep learning-based mixed-integer MPC. For data generation, a

combination of closed-loop simulation samples and random samples are generated to train

the DNN. The DLBMPC is validated on two case studies through closed-loop simulation. The

�rst case study involves a linear MPC, and the second case study involves a more complicated

mixed-integer linear MPC. Results show that DLBMPC has good closed-loop performance

and achieves high accuracy in approximating the MPC decisions. The average performance

loss in the two cases are 0.43% and 1.8%, respectively. Compared with MPC, DLBMPC reduces

the online computation time in the second case study.

A future research direction is deep learning-based robust MPC of supply chain systems. Deep

learning-based robust MPC approximates the optimal solution of a robust MPC problem

by using a DNN (Karg and Lucia, 2021). This technique helps address real-time supply

chain decision-making under uncertainty. Another potential direction is deep learning-based

Pareto solution of multi-objective MPC. As shown by Bemporad and Muñoz de la Peña

(2009), the Pareto optimal solution of a multi-parametric multi-objective linear or quadratic

MPC can be computed as a PWA function of the state vector and the weights assigned to

the objective functions. Therefore, it is worth investigating using a DNN to approximate

the Pareto optimal solution of multi-objective MPC. This technique would help improve the

computational e�ciency of real-time multi-objective supply chain optimization.
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Nomenclature

Indices/Sets

t time period

j material

s ∈ SS supplier

p ∈ SP plant site

dc ∈ SDC distribution site

ps ∈ Sp
PS production scheme at plant site p

Sp
R set of raw material at plant site p

Sp
I set of intermediate product at plant site p

Sp
F set of �nal product at plant site p

I(j) set of production schemes that consumes material j

O(j) set of production schemes that produces material j

Binary variables

up
ps,t binary variable associated with production scheme ps at plant p at time

period t; up
ps,t = 1 if ps begins at time period t, and 0 otherwise.

Continuous variables

Bdc
j,t quantity of back orders of product j at distribution site dc at time period t

Ip
j,t inventory of material j at plant p at time period t

Idc
j,t stock of product j at distribution site dc at time period t

ILdc
j,t inventory level of product j at distribution site dc at time period t

Os,p
j,t quantity of raw material j purchased from supplier s by plant site p at time

period t

Qp,p′

j,t quantity of material j from plant site p to plant site p′ at time period t

Qp,dc
j,t quantity of material j from plant site p to distribution site dc at time period t

SAdc
j,t sale of product j at distribution site dc at time period t

Wp
ps,t quantity of main raw material associated with production scheme ps at plant

site p at time period t
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Parameters

N planning horizon

αs
j unit purchase cost of material j at supplier s

β
p
ps process yield parameter of product in production scheme ps at plant site p

δp,dc
transportation delay from plant site p to distribution site dc

δp,p′
transportation delay from plant site p to plant site p′

δ
p
ps production delay of production scheme ps at plant site p

µ
p
ps,j mass balance coe�cient of material j in production scheme ps at plant site p

π
p
j unit inventory cost of material j at plant site p

πdc
j unit inventory cost of material j at distribution site dc

ρ
p
ps unit production cost of production scheme ps at plant site p

τp,dc
unit shipping cost from plant site p to distribution site dc

τp′,p
unit shipping cost from plant site p′ to plant site p

Ddc
j,t demand of �nal product j distribution site dc at time period t

Ip,ub
R maximum storage capacity of raw materials at plant site p

Ip,ub
I maximum storage capacity of intermediate products at plant site p

Ip,ub
j maximum storage capacity of �nal product j at plant site p

Idc,ub
j maximum storage capacity of �nal product j at distribution site dc

Qs,p,ub
maximum transportation capacity from supplier s to plant site p

Qp,dc,ub
maximum transportation capacity from plant site p to distribution site dc

Qp,p′,ub
maximum transportation capacity from plant site p to plant site p′

Wp,lb
ps minimum batch size for production scheme ps at plant site p

Wp,ub
ps maximum batch size for production scheme ps at plant site p
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This chapter presents the conclusions of this work and the future research directions.

6.1 Conclusions

This thesis investigates the use of data-driven methods to improve supply chain management

and optimization, speci�cally, to address operational supply chain monitoring and control

problems.

In Chapter 2, a data-driven SCMo method based on PCA is proposed for the fault detection
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and diagnosis of supply chain systems. In order to build the SCMo model, supply chain data

such as inventory levels, demands, and material in transit are collected. PCA is employed to

model the NOC of the supply chain. Two monitoring statistics, the Hotelling’s T2
and SPE,

are used to detect abnormal behaviour of the supply chain. Contribution plots are adopted

to identify the fault-related variables when abnormality is detected. A Python-based supply

chain simulator is developed, and the proposed SCMo method is validated on two simulation

case studies. The results show that dynamic PCA is able to detect and diagnose the abnormal

behaviour of the supply chain, such as transportation delay, low production rate and supply

shortage. Moreover, the SPE by dynamic PCA is more reliable than the other monitoring

statistics investigated in this chapter, while the sensitivity of PCA is lower.

In Chapter 3, we further extended the data-driven SCMo framework by using the CVA

method. A state-space model of supply chain is developed, such that the CVA-based SCMo

method can be implemented. This method is validated on two simulation case studies. Results

show that CVA is able to detect di�erent types of operational supply chain faults, and the

CVA-based contribution plot is able to identify the fault-related variables and thus indicating

the cause of the fault. Moreover, it is observed that for both CVA- and PCA-based SCMo, the

monitoring statistics in the residual space are more reliable. A comparative study shows that

CVA identi�es a smaller system order than PCA and achieves comparable performance to

PCA in a lower-dimensional space. This study indicates the advantage of applying state-space

models to supply chain systems.

In Chapter 4, we developed a risk-averse supply chain control method using safe RL. Two

safe RL algorithms, Q̂-learning and β-pessimistic Q-learning, are examined and compared

with the classical OUT policy and Q-learning. Compared with Q-learning which maxi-

mizes the expected return, the safe RL algorithms incorporates the worst-case return in

the optimization criterion. A Python-based supply chain simulator is developed to conduct

case studies. Results show that in a normal environment, Q-learning has the best perfor-

mance in terms of the total cost. However, when there is an unexpected change in the

environment, Q̂-learning and β-pessimistic Q-learning with appropriate β perform better,
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and thus they are more robust to uncertainty. Moreover, we extend the use of RL-based

control method to CLSCs. It is found that RL polices can reduce the bullwhip e�ect in a CLSC.

In Chapter 5, a deep learning-based MPC method for real-time supply chain optimiza-

tion is developed. We developed an approach to implementing the method in the case where

there are delayed decisions in the system, and a heuristic method to deal with the binary

decision variables for deep learning-based mixed-integer MPC. The deep learning-based

MPC is validated on two case studies through closed-loop simulation. Results show that

this technique has good closed-loop performance with a small average performance loss,

and achieves high accuracy in approximating the MPC decisions. Compared with MPC, this

technique can reduce the online computation time.

6.2 Future Research Directions

Based on a survey of the current literature, several research gaps are identi�ed and the

following potential research directions are proposed for further exploration.

The �rst research avenue that is worth further exploration is data-driven SCMo based on

di�erent SPM methods, besides PCA and CVA. In this work, although we focused on the

use of PCA and CVA, this implies that other SPM methods may also be applied to supply

chain systems. The area of process monitoring has been well-established, and various data-

driven methods have been developed for industrial process monitoring, for example, PLS,

Fisher discriminant analysis (FDA), independent component analysis (ICA) (Yin et al., 2014;

Severson et al., 2016; Ge, 2017). However, most of them have not explored in the context of

SCMo. It would be bene�cial to SCMo to explore the use of other data-driven methods.

The second potential research direction is safe RL with function approximation. In the

current literature, function approximation has been mainly investigated for conventional

RL, for example, the deep RL method (Hubbs et al., 2020). It would help extend the scope

of RL to investigate safe RL with function approximation, e.g., deep RL with a risk-averse

optimization criterion. This method can be named deep safe RL. It is applicable to supply
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chain control problems with continuous state and action spaces.

For the research avenue of deep learning-based supply chain MPC, it would help bridge the

research gaps to explore deep learning-based robust MPC for supply chain control. This

technique uses a DNN to approximate the optimal solution of a robust MPC problem (Karg

and Lucia, 2021). It can be applied to deal with real-time supply chain decision-making under

uncertainty. Another potential direction is deep learning-based Pareto solution of multi-

objective MPC. Bemporad and Muñoz de la Peña (2009) showed that for a multi-parametric

multi-objective linear or quadratic MPC addressed by the weighting method, the Pareto

optimal solution can be computed as a piecewise a�ne function of the state vector and the

weights assigned to the objectives. Therefore, it is possible to approximate the Pareto optimal

solution of multi-objective MPC by using a DNN. This technique would help improve the

computational e�ciency for multi-objective supply chain optimization in real time.
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