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Lay Abstract 

Autonomous vehicles are expected to be the future of transportation, however, the 

high continuous electrical accessory power needed for control and perception is a 

challenge. Fortunately, there is an inherent property of speed planning for autonomous 

vehicles that can help deal with this problem. This thesis focuses on optimal speed planning 

to minimize energy use, proposing convex methods considering detailed internal and 

external losses for battery electric vehicles (BEVs), and optimal speed planning integrated 

with optimal energy management for fuel cell hybrid electric vehicles (FCHEVs). The 

proposed framework in this thesis is accurate while maintaining a low computational effort, 

which are the desired criteria for real-time algorithms.  
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Abstract 

Electric vehicles with autonomous driving are the future of transportation, as they 

are sustainable, efficient, environmentally friendly, and can provide collision-free 

congestion-free driving. However, the sensing and control technology adds new accessory 

loads which increase the vehicle energy use. Thus, it is critical to minimize energy use 

where possible, and optimal speed planning is a promising way to achieve this goal and is 

thus the topic of study for this thesis. 

First, a low-computation framework for the onboard calculation of energy-optimal 

cruising speed of battery electric vehicles is proposed. The framework is used to investigate 

the critical parameters for energy-optimal cruising speed determination, and it includes 

major internal and external vehicle losses, uses accurate motor-inverter efficiency maps as 

look-up tables, and does not require knowledge of the future route. This framework is 

validated using three electric vehicle models in MATLAB/SIMULINK. 

Secondly, a novel two-level model predictive control (MPC) speed control 

algorithm for battery electric autonomous vehicles as a successive convex optimization 

problem is proposed. The proposed successive convex approach produces a highly accurate 

optimal speed profile while also being solvable in real-time with the vehicle's onboard 

computing resources. This algorithm is used to perform a variety of simulated test cases, 

which show an energy savings potential of about 1% to 20% for different driving 

conditions, compared to a non-energy-optimal driving profile. 

Lastly, the research is expanded to consider fuel cell hybrid electric vehicles 

(FCHEVs), which have the added need for an optimal energy management strategy in 
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addition to optimal speed planning. Novel successive and integrated convex speed planning 

and energy management algorithms are proposed to solve the minimum hydrogen 

consumption problem for autonomous FCHEVs. The simulation results show that the 

proposed integrated method, which considers fuel cell system efficiency in the optimization 

objective function for speed planning, leads to 0.19% to 2.37% less hydrogen consumption 

compared to the successive method on short drive cycles with varying accessory loads. On 

the same test cycles, the integrated method uses 10.12% to 21.62% less hydrogen than an 

arbitrary constant-speed profile.  
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1.1 Background and Motivations 

The transportation industry is currently undergoing two radical transformations: 

electrification, to reduce the harmful environmental effects of internal combustion engines, 

and autonomous driving, to reduce traffic fatalities and transform the way society moves. 

However, the computational and perceptional burden of autonomous vehicles and the 

continuous demand for extra energy to run these systems is in disagreement with one of 

the main environmental objectives of transportation electrification. Thus, it is vital to use 

every opportunity available to reduce the energy use of autonomous electric vehicles. 

Much work in the area of autonomous vehicles focuses on sensors, signal 

processing, computations, security, and safety, which are critical areas of research in the 

transition to fully autonomous vehicles. Other work has demonstrated the clear potential 

for reductions in energy consumption due to optimal route selection [1], smoother driving 

[2][3], and more optimal energy management in hybrid vehicles [4]-[6]. For fully 

connected autonomous vehicles, further energy usage reductions can be made through 

ridesharing [7], improved traffic flow at intersections [8][9], and platooning [10].  

The standard method of quantifying vehicle energy consumption involves driving 

a test vehicle on a dynamometer at speeds specified by standard drive cycles. Automotive 

engineers design and control powertrain components to minimize losses on these cycles. 

To build a mathematical method to calculate detailed losses for electric vehicles (internal 

and external), [11] proposes a framework, where all the internal and external losses of the 

vehicle are converted into per distance unit (J/m) and the sum of these losses is used as an 

objective function to find the optimal cruising speed.  
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This study shows different parameters such as electrical accessory power level, 

ambient temperature, grade, vehicle mass, wind speed, and battery SOC level can affect 

optimal speed selection. This study shows that some of these parameters such as electrical 

accessory power level, and grade are more dominant in comparison to other variables.  

Figure 1-1 shows the effect of electrical accessories on BEVs energy usage at 

different cruising speeds. This figure can summarize the main motivation for this research, 

as it shows having a higher electrical accessory power level encourages the vehicle to go at 

a faster speed. 

 

Figure 1-1 Effect of electrical accessories on vehicle energy usage in different cruising speeds 

Autonomous vehicles (AVs) offer many advantages and features such as collision 

avoidance, passenger convenience, and mobility for groups with driving challenges, 

however, perception of the vehicle’s environment, and autonomous driving control systems 
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contain many sensors and computational hardware, which results in higher accessory 

power loads. Even though the exact values of this power consumption are not well-

published and differ among different vehicles, [11] estimates it to be around a few kilowatts 

of continuous power. Luckily, autonomous driving essentially presents two exclusive 

opportunities for energy reduction: determination of optimal speed trajectory at vehicle 

level and optimal energy management if it is a hybrid vehicle.   

Now that the importance of optimal speed selection is established, this research 

tackles this challenging problem in three ways. First, optimal cruising speed for battery 

electric vehicles (BEVs) is studied to point out what are the main parameters influencing 

optimal speed selection, then an optimal transition between these optimal cruising speeds 

are explored using the dynamic programming method and the findings are fitted into a 

fitting function to maintain the real-time performance of the framework. This algorithm 

could be used by a not-fully-autonomous vehicle, and it also can be used by an autonomous 

vehicle during cruising on a highway to reduce the computational burden compared to city 

driving. Secondly, an optimal speed planning in an MPC platform for BEVs is proposed to 

generate the whole speed trajectory from the starting point to the end point of the trip. 

Thirdly, optimal speed planning, as well as optimal energy management is proposed for a 

fuel cell hybrid electric vehicle (FCHEV), to better highlight challenges and advantages of 

having additional energy storage (usually a battery) on the optimal speed planning 

algorithm.       
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1.2 Review of Autonomous Driving and Speed Optimization for AVs 

It was in 1926 that the first attempts for experimental AV were done, and it wasn’t 

before 1986 that the first modern AVs were created[12][13]. Most major automotive 

manufacturers are working on the development of AVs since 2010 [14], and Google’s AV 

traveled over one million kilometers in 2016 which was a major milestone in the field. The 

complexity of the task in addition to safety and reliability concerns are the main reasons 

for slightly slow progress in the development [15]. 

According to the Society of Automotive Engineers (SAE) [16], there are six levels 

of automation in the AV area (0-5). Level 0 is the “no automation” level, where all driving 

aspects are performed by human drivers. Level 1 is “driver assistance” (hands-on), where 

automation shares some performance tasks with the driver. Level 2 automation is “partial 

automation” (hands-off), where all driving aspects are automated, but the human driver 

should supervise the system. Level 3 automation is “conditional automation” (eyes-off), 

where the driver intervention may be requested and all driving aspects are automated. Level 

4 is “high automation” (mind-off), which is similar to level 3, however, the automatic 

system continues to control even if the human driver does not respond to a request. The 

last stage is level 5 “full automation”, where the steering wheel is optional and human 

intervention is never requested.        

According to [17], autonomous driving consists of three layers, the perception 

layer, the reference generation layer, and the control layer. The perception layer is 

responsible for recognizing the vehicle's environmental settings, such as obstacles, road 

signs, and so on. The reference generation layer is responsible for generating reference 
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instructions based on data gathered by the perception layer, and path planning is an 

example of this layer's duties. The control layer is responsible for tasks such as steering, 

acceleration, and braking to guarantee that the vehicle follows the desired trajectory. 

The main objective of eco-driving is to determine the optimal speed profile for a 

vehicle to minimize its energy usage over a given distance with a constraint on its desired 

arrival time. There are some prior works focused specifically on vehicle energy 

minimization by optimization of speed profile. A variety of techniques are proposed to 

obtain the optimal solution for this problem. A summary of these techniques is listed below.  

Dynamic Programming (DP) is a common approach to finding a globally optimal 

speed profile, which is critical to truly minimize energy use over a trip, is to use dynamic 

programming (DP) [18]-[21]. However, this approach is computationally expensive and 

does not align well with the fast real-time needs of a driving vehicle, yet it can be used as 

benchmark method for evaluation purposes.  

Evolutionary Optimization algorithms are algorithms inspired by nature and 

attempt to solve problems using behavioral actions of living organisms. Reference [22] 

uses an off-line evolutionary optimization approach to solve the speed optimization 

problem, and in [23] the ant colony algorithm is used to solve speed profile optimization 

for a train, but it is not applicable for real-time implementation.  

Model Predictive Control (MPC) has also been used to solve various formulations 

of the energy-optimal speed selection problem. The idea of eco-driving with consideration 

of safety is studied in [24] for connected autonomous vehicles. It uses MPC to solve the 

optimization problem with the objective of minimizing energy consumption while avoiding 
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collision with nearby connected vehicles. However, in order to get real-time results, motor 

losses are approximated with a simple expression and other internal vehicle losses are 

ignored. Similarly, MPC is used to optimize the speed trajectory for heavy-duty urban 

vehicles in [25], but a simplified vehicle model is used which ignores the vehicle internal 

losses.  

Convex Optimization uses convex formulation, and it is an attractive alternative for 

energy-optimal speed determination because it can generally find the globally optimal 

solution in a computationally efficient way, which is well suited to the quickly-changing 

driving conditions in urban settings. However, to make the problem convex, many 

simplifications are often made, which can alter the accuracy of the results. For example, 

[26] and [27] use a convex formulation in a MPC platform to solve the speed optimization 

problem, but only simple external vehicle losses are considered, and internal losses such 

as the motor losses and accessories are ignored. An innovative approach for the real-time 

calculation of the optimal speed trajectory for a commuter train is proposed in [28]. The 

second-order cone programing method is used to formulate the optimization problem in a 

convex way. However, simplifications have again been made to create the convex 

formulation: the motor efficiency is assumed constant for the trip and other internal losses 

are not considered. 
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1.3 Contributions 

1.3.1 Optimal Cruising Speed Selection Framework  

The first contribution of this thesis is the proposal of a framework to generate optimal 

cruising speed considering detailed internal and external losses. Parameters are divided 

into three types; fixed parameters (frontal area, drag coefficient, …), slowly changing 

parameters (ambient temperature, vehicle mass, …), and fast-changing parameters (road 

grade, electrical accessory power, …). All the considered losses are converted into per 

distance unit (J/m) and the algorithm evaluates total internal and external losses at velocity 

samples between minimum and maximum allowed speed and chooses the best option to 

minimize the objective function (total losses). This algorithm is suitable for vehicles that 

are not fully autonomous, and it is also useful for fully autonomous vehicles when driving 

on a highway to reduce the computational burden. 

1.3.2 Real-Time Determination of Near-Optimal Transition Rate  

The second contribution of this thesis is a real-time determination of the near-

optimal transition rate between the previous and new optimal cruising speed when a vehicle 

state change is added. Criteria for real-time implementation in this work is to keep code 

run time under one second for computation effort. Initially, DP is used to find the best 

transition rate between two optimal cruising speeds, and the findings are used to generate 

a fitting polynomial approximation based on ΔE and Vorig.  
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1.3.3 Energy-Optimal Speed Problem in a Two-Level MPC Platform  

The third contribution of this thesis is the proposal of a new convex formulation of 

the energy-optimal speed problem in a two-level MPC platform which considers detailed 

internal and external losses of an electric vehicle (EV), to generate a highly accurate result. 

The proposed algorithm uses the successive convex approach to obtain a real-time means 

of solving the optimization problem with a mixed objective of time and energy. Successive 

convex optimization is an iterative method: at each iteration, it uses the efficiency data 

calculated from the last iteration. By repeating the algorithm, the speed profile starts to 

converge, resulting in the final answer. The optimal solution can be updated periodically 

by using new data so it can re-evaluate and adjust to new conditions. Using a convex 

formulation ensures a fast run-time, making it suitable for on-board implementation on 

autonomous vehicles. This convex optimal speed planning with consideration of detailed 

internal and external losses is novel in this area of research.  

1.3.4 Integrated Convex Speed Planning and Energy Management for FCHEVs  

The last contribution of this thesis is the development of a framework for energy use 

minimization of a FCHEV through optimal speed planning and energy management using 

convex optimization. The convex formulation allows the algorithm to run in real-time, and 

detailed loss modeling is used to ensure a highly accurate result. Thus, the first novel 

contribution in this area is the proposed successive method, where convex optimization is 

first used to generate the optimal speed trajectory, then convex optimization is used to solve 

the EMS problem using the optimal speed trajectory. The second novel contribution of this 

work is the proposed integrated method, which uses the knowledge of the EMS 
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(instantaneous fuel cell power) to affect the optimal speed trajectory, such that the speed 

planning and EMS problems are solved in an integrated way using convex optimization. 

The consecutive convex optimal speed planning and integrated method using fuel cell 

system efficiency are novel compared to prior work in the literature. 

1.4 Publications 

This thesis is written in the “Sandwich Thesis” format, where each following 

chapter is based on a journal paper. These papers keep the main content intact but have a 

slightly modified structure to comply with the format of the thesis. Chapters 2, 3, and 4 

have been prepared based on publications shown in Section 1.4.1 respectively.   

1.4.1 Journal Publications 

[1] Meshginqalam and J. Bauman, "Investigation of Critical Parameters for Selecting 

Energy-Optimal Cruising Speed Using a Low-Computation Framework," in IEEE 

Transactions on Industry Applications, vol. 57, no. 3, pp. 2825-2837, May-June 2021, 

doi: 10.1109/TIA.2021.3057037. 

 

[2] A. Meshginqalam and J. Bauman, "Two-Level MPC Speed Profile Optimization of 

Autonomous Electric Vehicles Considering Detailed Internal and External Losses," in 

IEEE Access, vol. 8, pp. 206559-206570, 2020, doi: 10.1109/ACCESS.2020.3038050. 
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[3] A. Meshginqalam and J. Bauman, " Integrated Convex Speed Planning and Energy 

Management for Autonomous Fuel Cell Hybrid Electric Vehicles," accepted for 

publication in IEEE Transaction on Transportation Electrification, June 2022.  

1.4.2 Conference Publications  

[1] Meshginqalam and J. Bauman, "An Onboard Real-Time-Implementable Framework 

for Calculating the Optimal Cruising Speed of Electric Autonomous Vehicles," 2019 

IEEE Transportation Electrification Conference and Expo (ITEC), 2019, pp. 1-6, doi: 

10.1109/ITEC.2019.8790538. 

1.5 Outline of the Thesis 

This thesis is organized into five chapters. Chapter 1 has given the background and 

motivation for the speed optimization in electric autonomous vehicles and this research’s 

contributions. Chapter 2 discusses the proposed algorithm to find optimal cruising speed 

for an autonomous BEV and optimal transition between two optimal speed choices. This 

method is computationally efficient and can also be used in not fully autonomous vehicles. 

Chapter 3 discusses the design process for the algorithm to generate optimal speed 

trajectory for autonomous BEVs using MPC. The simulation results for different study 

cases are presented and computational effort analyses are conducted to show the ability to 

implement it in real-time. This method is more suitable for autonomous vehicles driving in 

a city where multiple stop-and-go scenarios should be performed. Chapter 4 discusses the 

optimal speed planning for FCHEVs, and two frameworks are proposed for the 

optimization problem, successive and integrated methods. Simulation scenarios for these 
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studies show that the integrated method can outperform the successive method. Also, 

computational effort evaluations are shown to verify the real-world implementation ability 

of the framework. Chapter 5 gives the conclusion and future work.  
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2.1 Introduction 

In autonomous vehicles or vehicles with eco-cruise control, it is important to 

minimize cruising energy use while adhering to driver trip time constraints so that 

advanced vehicle deployment is aligned with the vision of clean and efficient 

transportation. However, there is one major vehicle parameter that has not been focused on 

by previous research in this area: vehicle accessory loads. It is commonly assumed that for 

an electric vehicle (EV) there is always a trade-off between vehicle energy use and trip 

time while cruising (i.e., on a highway or backroad drive). The usual assumption is that 

since a higher travel speed equates to more aerodynamic losses, lower speeds should be 

selected for eco-driving. However, when considering higher vehicle accessory loads, 

among other vehicle parameters, this trade-off can change and may no longer apply.  

This is an important area of research because autonomous vehicles inherently have 

a large amount of sensors and computation required, which increases the vehicle’s 

accessory power load. Reports of this load increase are not yet widely available, but [1] 

estimates that at least a few kilowatts of continuous power is required in fully autonomous 

vehicles, meaning the extra load is in the same range as heating and air conditioning loads, 

which are already a major concern for EVs [1]. Further, even non-autonomous EVs with 

cruise control can have a high accessory load up to 8 kW due to heating, ventilation, and 

air conditioning (HVAC), which will greatly affect the energy-optimal cruising speed. 

Prior work in eco-driving has demonstrated the clear potential for reductions in 

energy consumption due to optimal route selection [2], smoother driving [3][4], and more 

optimal energy management in hybrid vehicles [5][6]. For fully connected autonomous 
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vehicles, further energy usage reductions can be made through ride-sharing [7], improved 

traffic flow at intersections [8][9], and platooning [10]. References [11]-[13] present 

detailed algorithms to determine vehicle speed with the goal of minimizing jerk, thus 

ensuring a smooth and comfortable ride.  

With a focus on minimizing energy consumption, [14] assumes full knowledge of 

the future route, divides the route into segments based on constant road grade, and then 

generates an optimal speed for each segment to minimize energy use for a specified travel 

time. Reference [14] considers only the aerodynamic, rolling, and grade losses, and does 

not consider losses within the vehicle. In [15], additional internal vehicle losses for a hybrid 

electric vehicle are considered, yet the models are very simplified so that the resulting 

nonlinear optimization problem can be solved offline by MATLAB’s fmincon function. 

For example, the motor efficiency is assumed constant and the inverter losses are ignored, 

both of which are poor approximations [16]-[21]. Furthermore, the engine losses are not 

speed-dependent, and the battery losses are calculated for a fixed battery state-of-charge 

(SOC) of 50%. In [22], optimal velocity for a route with varying grade is determined by 

considering aerodynamic, rolling, and grade losses, as well as engine losses, where the 

engine losses are approximated by a simple polynomial equation. Reference [23] assumes 

future knowledge of the grade of the route, and includes aerodynamic, rolling, grade, 

motor, and inverter losses, but does not specify the level of detail of the motor and inverter 

models, and does not consider accessory losses. It uses a look-ahead window and dynamic 

programming to consider many hundreds of possible speed trajectory paths. Reference [24] 

uses dynamic programming in a cloud-based system, which is needed to handle the high 
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computational burden, to calculate the optimal speed profile for a known route considering 

aerodynamic, rolling, grade, and engine losses using an analytical engine model. The most 

detailed loss models are considered for an EV in [25]-[27], where an analytical vehicle 

model is used to generate a speed profile that minimizes energy consumption during 

acceleration and deceleration events, for a given cruising velocity, but it does not calculate 

the energy-optimal cruising velocity. They consider grade losses, aerodynamic losses, 

rolling losses, and the copper and iron losses in the motor. However, in order to make their 

motor model tractable, they neglect spinning losses in the motor and inverter losses. 

Furthermore, they do not consider battery losses nor accessory power use. 

In order to address gaps in the prior work of determining energy-optimal cruising 

speeds, this chapter develops and investigates a framework with the following 

contributions: 

1) All major vehicle losses, both internal and external to the vehicle, are considered in the 

optimization to attain very high accuracy. These losses depend on the current state of 

the vehicle parameters (SOC, temperature, etc.). The investigation particularly focuses 

on the high accessory vehicle loads that can greatly affect optimal cruising speed and 

have not been considered previously. 

2) Loss maps for motors and inverters, in the form of look-up-tables (LUTs) are used 

directly in the framework, as opposed to prior work that approximates constant 

efficiency or uses simple polynomials to approximate efficiency. The use of test-based 

LUTs is more accurate than simple polynomial modeling: [28] finds that in order to 

achieve high accuracy motor loss accuracy, the constant torque region must be modeled 
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separately from the constant power region, where the constant torque region requires 

11 terms of torque () and speed (ω), up to 4 and ω4, and the constant power region 

requires 15 terms that combine orders of  and ω. This level of complexity for non-

LUT approaches is not suitable for analytical solutions. 

3) No future route or traffic information is required, as the framework simply finds the 

optimal cruising speed for the current vehicle state. While future connected vehicles 

will ideally have vast knowledge of the future route, there is an immediate need for 

non-connected autonomous vehicles and vehicles using eco-cruise control to be able to 

calculate the local optimal cruising speed with minimal connected/external 

information. Thus, the proposed framework has a low number of computations and is 

easily implemented in real time without the requirement of connectivity or cloud-based 

computations. 

The proposed framework can be applied in any cruising situation such as: low-

traffic semi-urban roads which may have speed limits between 50 km/h and 60 km/h, 

regional roads at the outskirts of cities and between cities that may have speed limits 

between 60 km/h and 90 km/h, and major highways. The speed optimization of stop-and-

go urban driving considering accessory losses and accurate motor/inverter losses will be 

addressed in future work, and will likely require a higher computational burden. 

In [29] the core concept of the framework was proposed and investigated using 

vehicle parameters for the Chevrolet Spark EV. This study expands on [29] by: (i) 

validating the framework using multiple vehicle models created from real-world driving 

data, (ii) adding a real-time determination of near-optimal transition rate between the 
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previous and new optimal cruising speed when a vehicle state changes, (iii) investigating 

higher accessory loads which better represent the loads of autonomous vehicles, (iv) 

performing a sensitivity analysis for two vehicle parameters that are difficult to estimate in 

real time, and (v) proposing a flexible implementation option for when a driver wants to 

drive faster than the energy-optimal speed. Section 2.2 presents the proposed framework 

and derives the associated equations, Section 2.3 describes the vehicle model creation and 

validation process, Section 2.4 presents the simulation results, and Section 2.5 presents the 

flexible option for implementing the proposed algorithm. Section 2.6 discusses the 

conclusions and future work.  

2.2 Proposed Framework 

2.2.1 System Architecture 

The main goal of the framework is to find the cruising speed that minimizes the energy 

use per unit distance for any particular vehicle state. Figure 2-1 shows the proposed system 

architecture. It is assumed that the Autonomous Safety System gathers and processes all the 

sensor and driver data in order to produce both a minimum and maximum cruising velocity 

bound (vmin, vmax), which limits the optimal velocity, vopt. In an autonomous vehicle, these 

bounds would be calculated as a result of many factors (e.g., speed of the vehicle in front, 

road speed limit, etc.). Also, any driver trip time constraint would bound the lower limit, 

vmin. For example, if the cruising speed bounds are 50 km/h and 80 km/h, the Energy-

Optimal Velocity Generation (EOVG) block uses vehicle internal and external data to 

calculate the optimal cruising velocity, vopt, between 50 km/h and 80 km/h, for that point 
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in time.  

Inside the EOVG block, there are four main parts. The first part is the parameter block, 

which accepts fixed and changing parameters from a variety of sources: vehicle internal 

sensors, external sensors, and optional connected data such as wind speed. These 

parameters are sent to the next set of blocks, LUTs and loss equations, which populate the 

equations derived in this study with the specific operating parameters and motor-inverter 

efficiency at that point in time. The result of the second part is a fully-specified equation 

summing all of the relevant vehicle losses as a function of motor speed, ωmot, for the current 

state of the vehicle and the vehicle’s environment (equation (11) below). The third part 

simply evaluates (11) at various values of ωmot, since once a value of ωmot is selected, the 

total loss is directly calculable using (11). The selection of ωmot values to evaluate can be 

β evenly spaced velocities between vmax and vmin, where β is fixed to a reasonable value like 

10 or 20 evaluation points, or can vary to achieve a fixed resolution, such as evaluating 

every 1 km/h or 2 km/h. Out of the β evaluation points, the vehicle velocity with the least 

losses per unit distance (J/m) is selected as vopt. The fourth part calculates the near-optimal 

speed transition between the previous optimal speed and the new optimal speed, whenever 

internal or external parameters change to alter the optimal cruising speed. The resulting 

signal, vref, is then sent into the closed-loop vehicle speed controller as a reference speed, 

and the appropriate motor torque command is generated to achieve this vehicle velocity. 

The entire EOVG block would run on a loop, such as every 2 or 5 seconds, and/or be 

triggered when input parameters change.  
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Figure 2-1 The proposed inner structure of EOVG block 

 

2.2.2 Steady-State Loss Equations 

The framework uses low-computations because it relies on well-known vehicle modeling 

equations that have been reduced into loss equations that only depend on motor speed. 

Thus, while the baseline equations are not new, the use of the final equation formulations 

to find the optimal cruising speed is unique. In order to consider the losses for a certain trip 

distance, and not for a certain trip driving time, the loss equations are formulated in units 

of J/m, instead of the more usual watts (J/s). It is a cornerstone of the proposed framework 

that the losses can be calculated simply for any vehicle cruising speed, and thus all loss 

equations are formatted as a function of motor speed, ωmot. 

External resisting forces against the vehicle are presented in (1)-(4). Equation (1) shows 

the aerodynamic drag, Faero, where ρ is the air density, A is the vehicle effective frontal 

area, Cd is the drag coefficient, vchass is the chassis speed (in m/s), and vw,tangential is the 
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tangential wind speed (defined as being in the same direction as the vehicle is driving). For 

operation in different regions, the GPS altitude measurement and the vehicle ambient 

temperature measurement can be used to accurately estimate the local air density. Equation 

(2) shows the rolling resistance, where Froll is the rolling resistance force, m is vehicle mass, 

g is the gravitational constant, θ is the road grade in radians, and μ1 and μ2 are rolling 

resistance coefficients. The resisting force of grade, Fgrade, is shown in (3). The wheel 

output force, Fout_wh, is shown in (4), where τin_ wh is the input torque to the wheel and 

rwh is the wheel radius in m. Equation (5) is Newton’s second law of motion applied to (1)-

(4), where the vehicle will have zero net force, Fnet, applied for a constant cruising speed. 
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The connected wind data is optional, but if available, it would yield a more accurate result 

on a windy day. If desired, the vehicle communication system can be setup to obtain real-

time wind data from weather service providers using an application programming interface 

(API). For example, in the U.S.A, the National Weather Service provides an API service 

that allows developers to access current and forecasted wind speed and direction (in 

degrees), as well as other weather data [30], for any specified location. This wind data can 

be obtained periodically over the course of a trip, perhaps at 1 or 5 minute intervals. Since 
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the direction of vehicle movement is known by the vehicle through GPS coordinates, the 

effective wind speed in the direction of vehicle movement, vw,tangential, can be found based 

on (6), as shown in Figure 2-2. 

 

w,tangential cos( )wV V =                (6) 

 

Figure 2-2 Wind in an arbitrary direction 

 The relationship among different parts of the vehicle is presented in (7) and (8). ωmot is 

the motor speed, fd is the final drive ratio, and ωwh is wheel speed in rad/s. Equation (9) 

shows how the wheel torque is related to motor torque. Though final drive efficiency is 

often represented by a 2-D map dependent on speed and torque, this formulation simplifies 

it to a constant efficiency ηfd to increase the simplicity of the algorithm. This is a reasonable 
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approximation since a gear efficiency map is quite flat in the cruising speed areas, and only 

dips lower at low speed or low torque.  
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An expression for motor torque is obtained using (1)-(9), as shown in (10). Equation (10) 

expresses the motor torque, mot, as a function of ωmot, which is crucial because it makes 

the search for the optimal vehicle speed one dimensional, based only on the selection of 

ωmot. 
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The summation of the vehicle losses is described by (11), where the Total Loss is the 

function to be minimized. These losses occur in the plant blocks of the vehicle model 

shown in Figure 2-3. These losses must all be given in J/m to minimize the losses for a 

certain trip distance. In the EOVG block, this function is tested at β evenly spaced options 

of vchass between vmin and vmax. These vchass options correlate to ωmot using (7), where ωmot 

is the actual parameter varied in (11). The calculations can run on a fast loop, which re-

evaluates (11) when a parameter changes. 
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Figure 2-3 Block diagram of vehicle model 
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The motor and inverter loss can be combined into one LUT; hence, the total loss of the 

vehicle consists of seven speed-dependent losses that are considered to determine optimal 

cruising speed. The first three losses are the aerodynamic losses from (1), the rolling 

resistance losses from (2), and the grade losses from (3), which are all already expressed 

in J/m. The fourth loss is in the final drive as shown in (12). To convert this power (J/s) to 

J/m, Ploss_fd must be divided by the vehicle chassis speed, vchass (from (7)). The result is 

shown in (13). 
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The fifth loss is the combined motor and inverter loss, and a two-dimensional LUT (with 

ωmot and mot as inputs) is used to find the combined efficiency, ηmotinv, at any ωmot selected. 

Though the LUT is two-dimensional,  this is reduced to a one-dimensional problem using 

(10) since mot is dependent on ωmot. Once this efficiency is determined, (14)-(15) calculate 

the total motor and inverter losses in J/m. 
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The sixth loss is expressed in (16) as the energy used by the electrical accessories, which 

can be large since autonomous vehicles can use multiple kilowatts of continuous power for 

sensing and computation [1]; also, if HVAC is set to high, it will add to this amount, 

meaning very high total accessory power draws are possible, which will affect the optimal 

cruising speed greatly. Pacc is the accessory power usage, which is measured by the vehicle. 

 ( / ) acc d

mot wh

P f
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The seventh loss is the battery loss, which is a function of SOC-dependent parameters 

such as battery resistance Rb, open-circuit voltage Voc, and battery current Ib, where the 

positive direction of Ib is defined as leaving the battery. To make the solution tractable, Rb 

and Voc are determined from one-dimensional LUTs based on battery SOC as the input.  

Terminal voltage is calculated in (17), which is used to show battery power in (18). 

Combining (17) and (18) yields (19).  

oc b b termV R I V− =       (17) 

b term bP V I=        (18) 
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Battery power consumption, Pb, is comprised of both vehicle demand and accessory 

usage, which is shown in (20).  
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Equations (19) and (20) can be combined to generate (21), which describes the battery 

current as a function of ωmot and Pacc. The lowest positive quadratic solution to (21) will 

give the correct battery current . 
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Once battery current is determined, battery loss power is calculated in (22), and is 

converted to energy per distance using (23). By using the battery current calculated in (21), 

battery loss can be calculated as (24), which is given in J/m. 
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The battery state-of-health (SOH) over time can also be considered if the vehicle has an 

on-board SOH estimation algorithm. Internal battery resistance, Rb, is the main SOH-

dependent parameter that will affect battery loss. Thus, if an SOH algorithm is available, 

it’s estimated Rb for the given SOC can be used, rather than the battery beginning-of-life 



29 

 

Rb value. 

Equations (1) to (24) describe the proposed framework and require specific parameters 

that are unique to each vehicle. In this study, these parameters are estimated based on 

models validated to logged driving data for three vehicles. In a real implementation, these 

parameters, such as vehicle frontal area, drag coefficient, wheel radius, motor/inverter 

efficiency map, final drive efficiency, etc., will be known by the vehicle manufacturer and 

thus easily programmable.  

 

2.2.3 Optimal Speed Transition Determination 

Though constant cruising speed is the main focus of the algorithm, the optimal cruising 

speed will change as vehicle and/or environmental parameters change during the drive. 

Thus, to complete the framework, this section proposes a real-time low-computational 

method to find near-optimal transition rates between optimal speeds. Previous work has 

tackled this transient speed rate problem offline using dynamic programming (DP) [23]. 

The proposed method is to use offline dynamic programming to find parameters for the 

proposed equation, and then use this vehicle-specific equation for the real-time 

implementation. Thus, a DP algorithm is created to (i) fit the parameters in the proposed 

equation and (ii) validate the overall energy use including speed transitions of the proposed 

algorithm compared to the optimal DP results (Section IV-C). 

When the optimal cruising speed changes, the new optimal speed may be higher or lower 

than the original optimal speed. When the new optimal speed is lower, and the vehicle 

should slow down, the optimal transition will be the one that moves to the new optimal 
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speed as quickly as possible but does not generate any additional losses in any powertrain 

components. Whenever regenerative braking occurs, one portion of the kinetic energy of 

the vehicle is transferred back to the battery and the other portion is lost in the pathway to 

the battery (final drive, motor/inverter, battery internal resistance). Thus, the optimal 

braking transition is to set the motor torque to zero (similar to the driver taking their foot 

off the gas pedal), and let the aerodynamic and rolling resistance forces slow the vehicle 

down to the new optimal speed, so that no additional losses are generated in the powertrain 

components. Thus, the proposed algorithm focuses only on finding the optimal acceleration 

transition rate.  

The DP algorithm is set up with a fixed acceleration distance (60 m) divided into four 

equal segments, where each segment can have a different constant acceleration rate. The 

fixed distance of 60 m is chosen based on the average acceleration distance found in the 

Tesla Model S logged data. Other distances can be used, but the resulting coefficients 

below will be different. In each segment, one of six acceleration rates is possible, ranging 

from zero acceleration to the upper limit of 4.5 m/s2, which is recommended in [31] as an 

upper comfort limit for the driver. Or, a lower limit such as 2 m/s2 can be used for even 

better driver comfort. For a single test case, the offline DP algorithm searches all of the 

resulting 56 acceptable combinations (either positive or zero acceleration in each segment) 

by running the validated vehicle model on the 56 unique acceleration profiles, and then 

calculating the energy usage of each profile. For example, Figure 2-4 shows four of the 56 

results for the test case of the optimal speed changing from 75 km/h to 80 km/h. Figure 2-

5 shows the same for a different test case, where the optimal speed changes from 50 km/h 
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to 80 km/h.   

Twenty-one different test cases are considered (original optimal speeds to new optimal 

speeds) that cover various values for vehicle mass, wind, accessory power use, etc., in order 

to represent the full case of possible scenarios. It is found that often, the optimal 

acceleration profile is equal or close to a constant acceleration rate, and this rate varies 

based on the change in energy consumption at the original and new optimal speed, ΔE, and 

the vehicle starting speed, Vorig. Also, as expected, it is found that it is always better to start 

accelerating as soon as the optimal speed changes, rather than to stay at the original optimal 

speed any longer. Based on these findings, (25) is proposed to calculate the near-optimal 

constant acceleration rate, aopt, in real time, which is a fifth order equation of ΔE and Vorig. 

The weighting coefficients, αi and γi, are found offline using the DP results across the 21 

test cases – thus, these weighting coefficients will change vehicle-to-vehicle. For example, 

for the Chevrolet Spark EV, the curve-fitted weighting coefficients are found to be 

α1=16.2604, α2=0.0045, α3=0.0135, α4=0.0499, α5=0.2184, γ1=6.8110-5, γ2=-2.7510-5, 

γ3=-2.4810-5, γ4=8.9210-7, γ5=-6.9110-9. 

 

 
5

1

( )i i

opt i i orig
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Figure 2-4 Acceleration trajectory in distance domain from 75km/h to 80km/h 

 

 

Figure 2-5 Acceleration trajectory in distance domain from 50km/h to 80km/h 
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Figure 2-6 Acceleration results from DP analysis and proposed equation 

 

Figure 2-6 compares the determined acceleration rates from (25) for the 21 test cases 

to the optimal acceleration rates from the offline DP algorithm which relies on running the 

vehicle model to calculate energy consumption during accelerations. The results show that 

(25) can closely match the DP results. The simulation results in Section IV-C quantify the 

small error that results in the difference between the rate found by (25) (red) and the DP 

optimal rate (blue).   

2.3 Vehicle Model Creation and Validation  

Using logged driving data, dynamic models for three different vehicles were 

created in MATLAB/Simulink: Chevrolet Bolt EV, Chevrolet Spark EV, and Tesla Model 

S with 85kWh battery. Selected vehicle parameters are shown in Table 2-1. The Bolt and 

Model S driving data were obtained from real-world driving in the Toronto, Canada area. 
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The Spark EV data is obtained from dynamometer testing [32]. Three logged cycles for 

each vehicle are used to validate the accuracy of the models. The goal is to compare 

cruising energy use between the validated models and the proposed framework, to show 

the accuracy of the proposed equations for calculating optimal cruising speed.  

Table 2-1 Baseline Values of Vehicle Parameters 

 
Mass 

mc (kg) 
Cd 

Frontal Area 

(m2) 

Battery Size 

(kWh) 

Wheel 

Radius 

(mm) 

Model S 2108 0.24 2.43 85  352 

Bolt 1616 0.32 2.41 60 292 

Spark EV 1300  0.35 1.90 20  324 

 

The top-level block diagram of the vehicle models is shown in Figure 2-3. In this 

structure, a PI feedback loop represents the driver behavior; there is a logged speed 

reference from the drive cycle feeding into this loop as the reference speed, and considering 

the current simulated speed, the driver requests motor/brake torque to follow the speed 

profile as closely as possible. In the controller block, the requested torque is an input and 

the controller generates the motor torque demand or brake torque demand subject to 

limitations of the vehicle components. In the plant model, the next simulated speed sample 

is calculated using the force applied to the wheels and resisting forces, as shown in (26).  

  
( )

1

2

_

1 1
( 1) ( ) ( )

2

t

chas chas out wh d chas

t

v t v t F AC v t dt
m



+

+ = + −
 
 
 


     (26) 

In (26), m is the vehicle mass in kg, ρ is the air density, A is the vehicle frontal area 

in m2, and Cd is the coefficient of drag. The force out of the wheel block is calculated from 

the torque into the wheel block, the friction braking torque, and the rolling resistance losses, 

as shown in (4). 
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With inputs of motor speed and motor torque, the motor/inverter block calculates 

the DC input current required from the battery using (27). 

 
_

( , )mot mot motinv mot mot
in motor

term

I
V

    
=

            (27) 

The total battery current (Ib) is the sum of the required motor current (Iin_motor) and 

the required electrical accessory current, as shown in (28). 

_
access

b in motor

term

P
I I

V
= +

         (28) 

The battery model uses the battery current and an initial SOC value to determine 

the SOC and battery terminal voltage at the next simulation step. The SOC at the next 

simulation step is the integral of the battery current divided by the total battery capacity 

(Cbatt), as shown in (29). The same Rb-SOC and Voc-SOC LUTs are used in the Simulink 

models as are used in the equations of the proposed algorithm.  

1
1

( 1) ( )

t

b

tbatt

SOC t SOC t I dt
C

+

+ = + −
          (29) 

For creating the vehicle models, the main available logged signals are: time and 

date of trip, battery voltage, battery current, battery SOC, vehicle speed, outside ambient 

temperature, altitude (for real-world driving of Bolt and Model S), and grade (for 

dynamometer testing of Spark EV). For the Bolt, air conditioning power and heater power 

data are also logged. In the model, tire rolling resistance is estimated as μ1 = 0.008 and μ2 

= 0.00012 for driving on dry asphalt, based on Autonomie approximations from Argonne 

National Laboratory [33]. The final drive efficiency is represented by a 2-D lookup table 

based on torque and speed, which was obtained for the Aisin AW AF33 5-Speed 
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Transmission from [33]. For the motor/inverter efficiency, multiple sources are used. For 

the Chevrolet Spark EV, the combined motor-inverter efficiency map of the Toyota Prius 

[34] is used as a baseline, and the torque and speed indices are scaled according to the 

specific size of the Spark motor. For the Chevrolet Bolt, the motor efficiency map is 

available in [35]. This is combined with a scaled version of the Toyota Prius inverter 

efficiency map [34] to create a combined motor-inverter efficiency map based on motor 

torque and speed. Since there was no specific data available for the Tesla Model S motor, 

the created motor-inverter efficiency map for the Bolt is scaled according to the maximum 

torque and speed of the Tesla Model S motor. The logged heater power of the Bolt can 

reach 8 kW, thus the maximum accessory power considered is 11 kW, including the 

autonomous vehicle continuous load. 

Considering the real implementation of the proposed framework, the tire rolling 

resistance and vehicle mass would not be known by the manufacturer for future drives. For 

example, winter tires may be installed and cargo load can change. One suggested approach 

is to always use the original estimate of stock tires on the most common road surface, 

asphalt, and curb mass plus one passenger. This approach is shown to be reasonable by a 

sensitivity analysis in Section IV-B. Another approach is to perform online parameter 

estimation [36]-[39].  
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Figure 2-7 Scheduled and simulated speed profile for nine test cycles 
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Figure 2-8 Simulated battery SOC vs logged SOC of Spark EV (S3 cycle) 

 

Figure 2-9 Simulated battery current vs logged current of Spark EV (S3 cycle) 
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Figure 2-10 Simulated battery voltage vs logged voltage of Spark EV (S3 cycle) 

Logged speed data and simulated speed data for three drive cycles for each of the 

three vehicles are shown in Figure 2-7. The cycles are labeled as “T#” for Tesla cycles, 

“S#” for Spark EV cycles, and “B#” for Bolt cycles. Figs. 2-8 to 2-10 shows the validation 

plots for the Spark EV. The results show that the created models have very similar behavior 

to the actual logged vehicles. Figure 2-8 shows that the simulated Spark EV has an ending 

SOC value within 1% of the logged data. When the simulated battery voltage follows the 

logged voltage data well, as shown in Figure 2-10, it means that the Rb-SOC LUT data 

points are well determined for the battery model, since the Rb value at any point in time 

determines the voltage rise or drop at the battery terminal voltage from the OCV. Table 2-

2 compares the simulated vehicle energy consumption to the logged energy consumption 

for each of the nine validation trips. The results show that all models are within 5% of real 
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energy use, which is quite close considering some driving factors were unknown (e.g., 

wind and mass).  

 

Table 2-2 Vehicle Model Energy Usage Validation 

Vehicle Model Cycle 
Logged Energy  

(kWh/cycle)  

Simulated 

Energy  

(kWh/cycle) 

Error 

(%) 

Tesla Model S 

T1 22.95 23.17 0.97 

T2 21.29 21.99 3.30 

T3 41.16 40.40 -1.85 

Chevrolet Bolt 

EV 

B1 20.77 20.11 -3.14 

B2 19.95 20.94 4.48 

B3 15.81 15.99 1.13 

Chevrolet Spark 

EV 

S1 41.39 39.53 -4.48 

S2 14.63 15.19 3.85 

S3 10.57 10.21 -3.43 

 

2.4 Simulation Results 

2.4.1 Steady-State Optimal Cruising Speed 

The related prior work [29] showed that wind speed, road grade, and accessory 

power usage are the most influential factors for determining optimal cruising speed, based 

on the Spark EV vehicle parameters. However, the consideration of all relevant variables, 

as shown in (11), is important as the less significant factors, such as vehicle mass and 

ambient temperature, are still useful for fine-tuning the optimal speed.  To expand the 

investigation, this section studies the effects of all factors for the three vehicles analyzed, 

and considers even higher accessory load values, up to 11 kW. Since a high accessory load 

significantly moves the optimal speed to higher speeds to reduce the travel time for a fixed 

trip distance, it is important to consider the impact of these high accessory loads.  
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Figure 2-11 shows the calculated vehicle energy consumption, using the proposed 

algorithm, for each vehicle across a range of speeds when the accessory power is set to 3 

kW, 7 kW, and 11 kW. The baseline values for other parameters are as shown in Table 2-

3. The energy consumption is calculated using (11), because the sum of all losses equals 

the total energy consumption for a cruising state. The results show that, as expected, 

optimal speeds are higher when accessory power is higher, so as to shorten the trip time. 

Also, when comparing the three vehicles at a constant accessory power, such as 11 kW 

(blue traces), it is clear that the specific vehicle parameters of each EV model have a large 

influence on the optimal speed. For example, when Pacc = 11 kW, the Spark EV has an 

optimal speed of 80 km/h whereas the Model S has an optimal speed of 71.2 km/h and the 

Bolt has an optimal speed of 68.7 km/h. When comparing within the same vehicle type, 

say the Model S (solid lines), it is clear that significant energy savings can be realized by 

following the optimal speed. For example, if Pacc = 11 kW, and the Model S is cruising at 

50 km/h instead of the optimal 71.2 km/h, the vehicle energy consumption will be 38.8 

kWh/100km instead of the optimal 35.6 kWh/100km, an 8.9% increase. Tesla Model S 

energy consumption is higher than that of the other vehicles during cruising mainly due to 

its higher mass compared to the other vehicles studied.  

Figure 2-12 shows the optimal velocity selection for the vehicles at three different 

wind speeds. The baseline values for other parameters are given in Table 2-3. Using (11), 

the total energy usage for each vehicle is calculated. When the wind speed is in the same 

direction as vehicle cruising, it pushes the optimal speed to higher values, while an 

opposing wind direction lowers the optimal speed. The optimal speed for different vehicles 
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are different for the same condition. For example, when wind speed is 20 km/h, the optimal 

speed for the Spark EV and Bolt EV is 62.5 km/h, and for the Model S it is 60 km/h.  In 

this case, the Spark EV cruising at 50 km/h instead of the optimal 62.5 km/h yields 3.95% 

higher energy usage.   

 

Figure 2-11 Vehicle energy consumption for different accessory usage levels 
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Figure 2-12 Vehicle energy consumption for different wind speeds 

Table 2-3 Baseline Values of Vehicle Parameters for Test Cases 

 Mass (kg) 
SOC 

(%) 

Wind speed 

(km/h) 

Grade 

(%) 

Temp 

(̊C) 

Pacc 

(kW) 

Pacc changing 
Curb mass 

+ 80 
50 0 0 25 Changing 

Wind speed 

changing 

Curb mass 

+ 80 
50 Changing 0 25 4 

 

 In addition to varying one parameter at a time, it is useful to consider a set 

of realistic test cases, as shown in Table 2-4. The minimum accessory power is set to 2 kW 

in Case 1 as the very lower potential limit of autonomous power needs with no HVAC 

load. Numerous additional parameters are varied in the cases, including different road 

grades, battery SOCs, vehicle mass (where mc is the curb mass of the vehicle and the 

additional 400 kg represents a vehicle loaded with multiple passengers or cargo). The six 
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cases are used as a base for validating the proposed equation-based algorithm to the 

dynamic MATLAB/Simulink vehicle models, which themselves have been validated to 

actual driving data, as per Table 2-2. The goal is to connect the accuracy of the proposed 

equations back to real driving data, using the verified vehicle models as an intermediate 

link.  

Table 2-4 Test Case Specifications 

 Pacc (kw) Mass (kg) 
Wind speed 

(km/h) 
Grade (%) SOC (%) Temp (̊C) 

Case 1 2 mc -10 0 60 20 

Case 2 4 mc+400 -20 0 70 20 

Case 3 4 mc 0 -1 90 15 

Case 4 8 mc +400 0 +1 80 30 

Case 5 8 mc  +10 0 80 -10 

Case 6 11 mc +400 +15 0 55 -20 

 

Figure 2-13 shows the results for different cases of the Tesla Model S. Figure 2-13 

shows that in varying conditions, optimal speed choice can change over a large interval. 

For example, in Case 4, the energy usage can change by 5.5% between driving at the 

optimal speed (70 km/h) and 50 km/h. A comparison of the “Equation” (solid) and “Model” 

(dashed) lines shows that the equation-based algorithm is extremely accurate in energy 

prediction when compared to the full dynamic Simulink-based vehicle model. This 

conclusion holds for the Model S, as well as for the Bolt and Spark EV as shown in Figure 

2-14 and 2-15, respectively. Figure 2-14 presents the energy consumption for the Chevrolet 

Bolt EV for the six cases. Optimal cruising speed selection can have a vast range depending 

on the internal and external vehicle conditions. For example, in Case 2, choosing optimal 

speed (48 km/h) over a higher speed such as 70 km/h can save 8.7% of battery energy. The 

energy usage results of the Chevrolet Spark EV are shown in Figure 2-15. Note that for 
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high accessory power usage (Case 6), optimal speed is 81.6 km/h. In this particular case 

cruising at 50 km/h instead of the optimal speed can result in 18.4% higher energy 

consumption.  

The optimal speed choice for all the vehicles in different study cases are 

summarized in Figure 2-16. It can be seen that the behavior of changes in different cases 

is similar for all vehicles; nevertheless, the value of the optimal velocity is different for 

each vehicle even in the same case, which shows that internal parameters of the vehicles 

are as important as the environmental factors. Specifically, this study has uniquely proven 

that the high accessory power loss expected in fully autonomous vehicles will have a large 

effect on optimal speed selection and will generally make the optimal cruising speed higher 

than for that of a non-autonomous vehicle with lower accessory power losses. For example, 

from low accessory power use to high (Pacc = 3kW to 11kW) in the Tesla Model S, with 

other parameters constant, vopt can change from 47.5 km/h to 71.2 km/h. 
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Figure 2-13 Equation validation using energy consumption of Tesla Model S 

 

Figure 2-14 Equation validation using energy consumption of Chevrolet Bolt 
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Figure 2-15 Equation validation using energy consumption of Chevrolet Spark EV 

 

Figure 2-16 Optimal speed in different study cases 
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2.4.2 Steady-State Cruising Speed Sensitivity Analysis 

The vehicle manufacturer will have detailed data for the powertrain components 

for use in the proposed framework, but vehicle mass and rolling resistance may change 

frequently in an unknown manner. Thus, it is important to study the effects that can these 

factors have on the optimal speed selection. Figure 2-17 shows vehicle energy consumption 

curves for the six cases described in Table 2-4 for both the scenario of the vehicle mass 

being curb mass + 100 kg and curb mass + 600 kg. Although the vehicle mass does make 

a significant change in the energy consumption, the optimal speed changes only slightly 

because losses due to vehicle mass are not highly speed-dependent, i.e., the loss curve 

maintains a very similar shape for different masses.  

Figure 2-18 shows a similar study of changing rolling resistance, where standard 

values are μ1 = 0.008 and μ2=0.00012, and 20% higher values are compared. Similar to the 

mass study, the results show that the energy use curve shape does not change significantly, 

and thus small changes in rolling resistance will not greatly affect the optimal cruising 

speed. Figure 2-19 summarizes these results, which show that these two parameters have 

only a small effect on optimal cruising speed, meaning approximation or online parameter 

estimation may be used to determine them in the proposed framework. This result can be 

understood by the fact that rolling resistance losses (either from higher vehicle mass or 

higher resistance coefficients) do not change significantly with speed, in contrast to losses 

that are highly speed-dependent, such as wind and accessory losses. 
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2.4.3 Optimal Speed Transition 

While in some cruising cases, parameters may not change for a large portion of the 

drive, the proposed method for determining optimal dynamic speed transition between an 

old optimal speed and a new optimal speed is best tested on the case of quickly changing 

parameters – otherwise, the cruising speed energy use would overshadow any differences 

in energy use  

 

 

Figure 2-17 Energy usage with curb mass +100 kg and + 600kg for Cases 1-6 
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Figure 2-18 Energy usage with standard rolling resistance and 20% higher values for Cases 1-6 

 

 

Figure 2-19 Sensitivity analysis of optimal speed selection 
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during speed transitions. Thus, a test case has been formulated where three changes 

occur in the environment and/or vehicle over a 2 km distance to simulate the performance 

of the optimal speed transition algorithm. Each new optimal speed is calculated from the 

steady state loss calculations and the speed rate change is set according to (25) with the 

DP-fitted α and γ parameters. Figure 2-20 shows the resulting speed compared to the 

optimal offline DP results and Figure 2-21 shows the resulting battery SOC compared to 

the optimal offline DP results. The proposed constant rate acceleration in (25) results in a 

0.45% higher energy use compared to the ideal offline-calculated DP speed transitions over 

the 2 km test case. These results show that the proposed fast online approximation of the 

optimal speed transition is very close to the performance of the computationally-expensive 

offline DP method. 

 

Figure 2-20 Velocity trajectory in the time domain 
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Figure 2-21 SOC comparison between DP and suggested trajectory 

2.5 Flexible Implementation Option  

The main proposed algorithm is ideal for optimizing cruising speed for minimal 

energy usage between the allowable vmin and vmax at any instant in time. The algorithm 

offers two main benefits to the driver: (i) reduced charging costs due to lowered energy 

use, and (ii) higher driving range due to lowered energy use. At times, the driver may prefer 

to cruise at the lowest-energy speed to maximize these benefits, and at other times, trip 

time may be the most important factor. This section presents a flexible implementation 

option based on energy usage that allows the driver to stay close to energy optimal, but 

decrease the trip time if needed. This energy-based approach allows the driver to stay 

within a selected energy use percentage of the optimal speed energy use. This is a 

straightforward way to encompass the effect on both charging costs and electric range. For 
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example, if the driver specifies to stay within 5% of optimal energy use, they are accepting 

5% higher charging costs and 5% lower driving range.  

Since the proposed algorithm calculates energy use curves at β test points between 

allowable vmin and vmax, the algorithm innately finds the relationship between increased 

energy usage and higher speeds that may be desirable for some drivers at some times. The 

main concept of the proposed energy-based approach is to limit the selected driven speed 

to a percentage of energy over the energy use at the optimal speed. Having the calculated 

energy use curve is insightful here, because for a certain percentage more energy 

consumption, α, the vehicle may be able to drive much faster for only a small increase in 

energy if the energy use curve is relatively flat to the right of the optimal point. If E(vopt) is 

the energy use (in kWh/100km) of the vehicle cruising at vopt, then the new energy use 

limit, Elim, is calculated by (30). 

lim (1 ) ( )optE E v= + 
                            (30) 

Then, the selected vehicle speed, vsel, is chosen from the β already-calculated points 

on the curve to select the vehicle velocity that correlates to the energy use closest to, but 

not over, Elim. This concept is illustrated in Figure 2-22, which shows energy usage curves 

for two arbitrary cases, X and Y, and α values of 1%, 10%, and 20%. For Case Y, the curve 

is relatively flat to the right of the optimal point. If the energy use is limited to 1% over 

optimal, vsel is 88km/h. However, for Case X, the curve increases to much higher values at 

high speeds, and thus even a 10% increase in energy use would make vsel equal to 70 km/h. 

It is proposed that the α parameter is user-definable by the driver, and could be set once 
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based on the driver’s general preference, or could be set for each trip based on the driver’s 

needs at that time.  

 

Figure 2-22 Energy-based flexible implementation approach 

2.6 Conclusion  

This work has shown that it is critical to consider detailed internal and external 

vehicle parameters to the determine energy-optimal cruising speed at any given time. In 

particular, the high accessory loads of EVs and especially autonomous EVs change the 

normally-assumed relation that higher speeds use more energy, because when a fixed trip 

distance is considered, and accessory loads are high, higher vehicle speeds can indeed be 

optimal. A simple framework is proposed to quickly calculate the energy-optimal cruising 

speed and determine near-optimal transition rates when parameters change that lead to a 

new energy-optimal cruising speed. Future work will address the high-traffic urban driving 
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scenario, while considering all the essential vehicle internal and external parameters 

identified in this research  
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3.1 Introduction 

The transportation industry is currently undergoing two radical transformations: 

electrification, to reduce the harmful environmental effects of internal combustion engines, 

and autonomous driving, to reduce traffic fatalities and transform the way society moves. 

Unfortunately, the addition of large amounts of sensors and computing resources on board 

autonomous vehicles increases the continuous vehicle load by at least a few kilowatts [1]. 

This increase in energy use is in clear opposition to the environmental goals of 

transportation electrification. Thus, it is imperative to use every opportunity available to 

reduce the energy use of autonomous electric vehicles, since by their very nature, they 

consume more energy than baseline electric vehicles. Fortunately, autonomous vehicles 

provide a new degree of freedom in this quest to minimize losses: energy-optimal 

determination of second-by-second vehicle speed. 

Much autonomous vehicle research focuses on the sensors, signal processing, 

algorithms, and computations required to assure the safe operation of a fully driverless 

vehicle. Once safety is assured, algorithms to minimize energy consumption while driving 

can be implemented. Some prior research has focused on reducing energy consumption 

though optimal route selection [2], path planning [3], smoothing the driving speed profile 

[4], [5] and optimizing energy management in hybrid vehicles [6], [7]. Furthermore, [8] 

seeks to determine both the optimal hybrid energy management and the energy-optimal 

local speed profile, but to make the problem tractable it uses a simple vehicle model 

considering only vehicle external losses (aerodynamic, rolling resistance, and grade).   
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Some prior work focuses specifically on vehicle energy reduction by optimizing 

the speed profile. Reference [9] reduces energy use by dividing the trip into road segments 

of constant grade and generating an optimal speed for each segment, but considers only 

vehicle external losses and does not consider losses within the vehicle. Similarly, [10] and 

[11] do not consider inverter loss, motor mechanical loss, battery loss, or accessory loss, 

and seek to find the local optimum speed rather than the global optimum for a trip segment. 

Reference [12] has developed a simple and fast framework for determining the energy-

optimal cruising speed while considering all major vehicle internal and external losses, but 

as this algorithm is focused on cruising, it is not suitable for urban stop-and-go driving 

patterns. However, [12] does uniquely show the importance of considering vehicle internal 

losses, especially accessory losses, in the determination of energy-optimal speed. 

A common approach to finding a globally optimal speed profile, which is critical 

to truly minimize energy use over a trip, is to use dynamic programming (DP) [13]-[16]. 

However, this approach is computationally expensive and does not align well with the fast 

real-time needs of a driving vehicle. For example, [14] has implemented the DP algorithm 

in the cloud as the computational requirement was too high for on-board implementation, 

and although fuel consumption was improved on the highway, much less improvement was 

obtained for urban driving due to rapid changes in the driving conditions. Reference [17] 

uses an off-line evolutionary optimization approach to solve the speed optimization 

problem, but it is not applicable for real-time implementation. Reference [16] seeks to 

replace the offline-calculated DP results with approximated look-up tables for use on board 

the vehicle, but does not consider detailed internal vehicle losses. 
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Model predictive control (MPC) has also been used to solve various formulations 

of the energy-optimal speed selection problem. The idea of eco-driving with consideration 

of safety is studied in [18] for connected autonomous vehicles. It uses MPC to solve the 

optimization problem with the objective of minimizing energy consumption while avoiding 

collision with nearby connected vehicles. However, in order to get real-time results, motor 

losses are approximated with a simple expression and other internal vehicle losses are 

ignored. Similarly, MPC is used to optimize the speed trajectory for heavy-duty urban 

vehicles in [19], but a simplified vehicle model is used which ignores the vehicle internal 

losses. In general, MPC will only produce the optimal speed profile for the prediction 

horizon length considered. 

Using a convex formulation is an attractive alternative for energy-optimal speed 

determination because it can generally find the globally optimal solution in a 

computationally efficient way, which is well suited to the quickly-changing driving 

conditions in urban settings. However, to make the problem convex, many simplifications 

are often made, which can alter the accuracy of the results. For example, [20] and [21] use 

a convex formulation in a MPC platform to solve the speed optimization problem, but only 

simple external vehicle losses are considered, and internal losses such as the motor losses 

and accessories are ignored. An innovative approach for the real-time calculation of the 

optimal speed trajectory for a commuter train is proposed in [22]. The second-order cone 

programing method is used to formulate the optimization problem in a convex way. 

However, simplifications have again been made to create the convex formulation: the 



63 

 

motor efficiency is assumed constant for the trip and other internal losses are not 

considered. 

The contribution of this study is the development of a new convex formulation of 

the energy-optimal speed problem in a two-level MPC platform which considers detailed 

internal and external losses of an electric vehicle (EV), in order to generate a highly 

accurate result. The proposed algorithm uses the successive convex approach to obtain a 

real-time means of solving the optimization problem with a mixed objective of time and 

energy. Successive convex optimization is an iterative method: at each iteration, it uses the 

efficiency data calculated from the last iteration. By repeating the algorithm, the speed 

profile starts to converge, resulting in the final answer. The optimal solution can be updated 

periodically by using new data so it can re-evaluate and adjust to new conditions. Using a 

convex formulation ensures a fast run-time, making it suitable for on-board implementation 

on autonomous vehicles.  

The rest of the chapter is organized as follows: Section 3.2 presents the convex 

problem formulation and the associated equations, Section 3.3 explains the vehicle 

modeling, Section 3.4 presents the simulation results, and Section 3.5 presents the 

conclusions of this work 

3.2 Convex Problem Formulation 

By definition, a convex optimization problem is an optimization problem where the 

objective function is a convex function, and its constraints are convex as well [23]. Convex 

optimization problems have desirable features such as globally optimal solutions and fast 

convergence times with linear programming. Although non-convex problems can have 
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more complex and precise modeling, there is no assurance of convergence to a feasible 

globally optimal solution [24]. Non-linear convex problems can be solved using interior-

point method. MOSEK is a software package capable of solving large-scale optimization 

problems using the interior-point method which is used in this work [25].   

The proposed model formulation consists of four parts: (A) vehicle dynamics, (B) 

losses, (C) physical limitations and essential constraints, and (D) optimization objective.  

 

3.2.1 Vehicle Dynamics 

 

As shown in [22], formulating vehicle dynamics in the position domain regardless 

of its more complicated formulation will result in less non-linearity, which is an essential 

characteristic when it comes to convex optimization. The vehicle dynamics are modeled as 

a discrete position point-mass system. In this system, the dynamics are modeled using the 

basic kinematic rule in (1)-(2), 

 

i i ix v t =            (1) 

/i i it x v =                                 (2) 

 

where Δxi is the traveled distance (m) in the ith segment, Δti is the amount of time 

(s) required to travel Δxi, and vi is the velocity (m/s) in that segment, where each segment 

is assumed to have a constant velocity. From (1) and (2), the time at each segment can be 

calculated using (3), 
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1 /i i i it t x v+ = +         (3) 

 

where ti represents the time at the end of the ith segment. Acceleration is the result 

of net applied force, as shown in (4) where ΣF is the net applied force (N), m is the vehicle 

mass (kg), and a is the acceleration (m/s2). It is reasonable to assume a constant acceleration 

in each segment if the segments are small enough. The acceleration in segment i (ai) will 

affect the speed of the next segment (vi+1). With constant segment acceleration assumed, 

the relationship between velocity, time, and acceleration is shown in (5). To calculate the 

speed of each segment, acceleration in position domain is defined as γi, which is the change 

of speed over the change of position as shown in (6), and thus the velocity in each segment 

can be calculated by (7). Using (6) and (7), the velocity calculation during each segment 

can be expressed as (8). 

 

F ma=                                     (4) 

v a t =                                        (5) 
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3.2.2  Losses Formulation 

A basic block diagram of an EV powertrain is shown in Figure 3-1. The inverter-

motor block generates the torque required and applies it to the wheels through the final 

drive. The torque at the wheels is applied to the chassis, considering the external losses 

such as aerodynamic losses, grade losses, and rolling resistance losses. The vehicle speed 

is calculated based on the net force applied to the chassis. The battery supplies power to 

both the inverter and the electrical accessories, which includes controllers, lights, steering, 

etc., as well as heating, ventilation, and air conditioning (HVAC).  

 

 
Figure 3-1 EV block diagram 

 

As shown in (8), in order to calculate velocity at each segment, the net force in that 

segment is calculated first. The net force equals the driveshaft output force minus the 

external resisting forces, as shown in (9).  

 

,net i i driveshaft roll aero gradeF F F F F F= = − − −        (9) 

Equation (10) shows the aerodynamic drag where ρ is the air density, A is the vehicle 

effective frontal area, Cd is the drag coefficient, v is the vehicle speed (in m/s), and 
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vw,tangential is the tangential wind speed (defined as being in the same direction as the vehicle 

is driving in). 

2

w,tangential

1
( )

2
aero dF AC v v= −                 (10) 

 The real-time wind data can be estimated from weather service providers using an 

application programming interface (API). For example, the National Weather Service in 

the U.S.A provides the current and forecasted wind speed and direction, in addition to other 

data [26]. The vehicle direction of motion is known using GPS, thus the effective wind 

speed can be calculated using (11) as shown in Figure 3-2.  

w,tangential cos( )wV V=         (11) 

 

Figure 3-2 Wind in an arbitrary direction 
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Equation (12) shows the rolling resistance where m is vehicle mass, g is the gravitational 

constant, θ is the road grade in radians, and μ1 and μ2 are rolling coefficients. The resisting 

force of grade is shown in (13).  

  

1 2cos ( )rollF mg v  = +              (12) 

singradeF mg =            (13) 

 

The force at the output of the final drive is represented by Fdriveshaft which is the motor 

output torque applied through the final drive to the wheels, as calculated in (14),  

 

 0

  

     0

mot d fd

driveshaft mot

wh

mot d
driveshaft mot

wh fd

f
F

r

f
F

r

 








= 



 = 



    (14) 

 

where fd is the final drive ratio, ηfd is the final drive efficiency, rwh is the wheel 

radius, and τmot is the motor output torque.  

The force required to accelerate the vehicle is not strictly considered a loss because this 

energy is converted to kinetic energy as the vehicle drives at a higher speed. The actual 

loss associated with acceleration stems from the fact that the motor and inverter operate at 

different operating points than during cruising, where the high torque and low speed 

operating points during acceleration are generally less efficient than cruising operating 

points. Thus, because this work uniquely considers a detailed motor/inverter efficiency 
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map, it is better able to capture these acceleration losses. During regenerative braking, the 

vehicle’s kinetic energy is converted back to mechanical then electrical energy for storage 

in the battery, and the loss formulations also account for these losses when the torque is 

negative. Thus, the internal vehicle losses are formulated in (15)-(18) based on prior work 

of the authors in [12]. These losses are formatted in Joules per meter so that they become 

suitable to use in a distance domain formulation.  
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ηmotinv is the motor-inverter efficiency at the given speed-torque operating point, Rb 

is the internal battery resistance, Ib is the battery current, Voc is the open circuit voltage, and 

Paccessory is the power consumption of the accessories in the vehicle.  

One of the crucial aspects to consider in EV modeling is the electrical motor and 

inverter’s efficiency. In most prior work on speed profile optimization, motor/inverter 

efficiency is not considered or is assumed to be a constant value, but it can actually vary 

dramatically at different operating points.  As shown in Figure 3-3, the combined motor-

inverter efficiency for the Toyota Prius can change from 65% to 96%. 
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The accessory power draw has a significant effect on the resulting optimal speed profile, 

and yet it is ignored in all prior work on this subject. Large accessory loads can result from 

the autonomous sensors and computations in autonomous vehicles and HVAC loads in any 

electric vehicle. Smaller loads include controllers, battery management systems, lights, 

windshield wipers, power steering, etc. Since these loads manifest as a constant or near-

constant power consumption, the longer the vehicle drives, the more accessory energy will 

be used on a trip. Thus, although aerodynamic losses increase with increased vehicle speed, 

total trip accessory losses decrease with increased vehicle speed. Due to this opposing 

effect on optimal speed of these significant losses, it is critical to consider the accessory 

losses, as in some cases, driving faster may be more energy optimal despite the higher 

aerodynamic losses. This usage is usually presented in the form of power; thus, the energy 

consumption is as shown in (19) where Paccessory,i is the constant accessory power in 

segment i: 

, ( )i accessory i iAccessory Loss J P t=        (19)        

 

Figure 3-3 2010 Prius combined motor-inverter efficiency contours at 650 Vdc [27] 
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3.2.3 Physical Limitations  

One main physical limitation of the vehicle is that the maximum output torque of 

the electric motor depends on the motor’s rotational speed. The yellow line on the top of 

the efficiency map (upper boundary) in Figure 3-3 shows the maximum torque curve. This 

curve can be broken into two sections: in the low speed region, the motor can supply a high 

constant torque, and in the higher speed region, the motor operates in constant power mode 

and the maximum output torque decreases as the motor speed increases. It is suggested in 

[22] to model this maximum torque curve as a minimum of a maximum constant torque 

portion (first part) and a second order polynomial (second part), as shown in (20), 

  

2

maximum 0 1 2min( , )mot i ir rv r v = + +           (20) 

 

where r0, r1, and r2 are polynomial coefficients which can be curve-fitted to match 

the experimental or manufacturer data [23], and τmaximum is the maximum torque the motor 

can provide. 

The second physical limitation to consider is driver comfort. To maintain the comfort of 

the passengers during the trip, the vehicle velocity trajectory should have a smooth shape, 

without hard acceleration or deceleration events (unless it is necessary for safety). It is 

suggested in [28] to keep acceleration and deceleration rates below 4.5 m/s2 for this 

purpose. 
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3.2.4 Optimization Formulation  

The optimization problem in this work is a mixed-objective optimization problem 

considering both vehicle energy use and travel time. Thus, the proposed objective function 

seeks to minimize energy consumed (Econsumption) and trip time (Ttrip), as shown in (21),  

 

    min( )consumption tripE T  +                          (21) 

 

where α and β are weighting coefficients for the energy consumption and trip duration. The 

Econsumption is determined by external and internal vehicle losses as described in (12) – (19), 

which are dependent on the specific vehicle speed profile of the trip. The optimization 

occurs for a driving segment consisting of a start increasing from zero speed and an end 

point where speed again returns to zero. Thus, a full trip may consist of many driving 

segments, where each driving segment is optimized. This concept is shown in Figure 3-4, 

where the trip is broken down into two driving segments, where the stop point (which could 

be, for example, a stop sign) is the division between the two driving segments. 
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Figure 3-4 Illustration of proposed method for optimization 

One main difficulty in modeling the vehicle internal losses accurately is dealing with the 

motor and inverter efficiency, ηmotinv, which can vary greatly across different operating 

points (Figure 3-3). For example, [29] shows that in order to have a high accuracy motor 

loss approximation, the constant torque region must be modeled independently from the 

constant power region, where the first part requires 11 terms of torque and speed, up to 4 

and ω4, and the second part needs 15 terms of the combinations of  and ω, which becomes 

very complex. For a more tractable approach, the following options exist: ignore 

motor/inverter losses, approximate a constant efficiency, approximate efficiency using a 

simple polynomial, or use the detailed two-dimensional look-up table obtained 

experimentally. Using the actual look-up table gives the highest accuracy by far, but is not 

possible in a convex problem formulation. For example, Figure 3-5 shows the Bolt EV 
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motor efficiency data fitted to a second order polynomial approximation using MATLAB’s 

curve fitting toolbox and Figure 3-6 shows the corresponding error across the map. 

A convex problem formulation is desired, as these are generally fast and easy to solve, 

and assure global optimality suitable for real-time implementation [10]. However, this 

formulation is incompatible with the most accurate representation of motor/inverter 

efficiency, an experimentally-derived look-up table. Thus, this work proposes the use of 

successive convex programming, as illustrated in Figure 3-7. At the beginning of the 

algorithm, an initial guess is generated for the velocity and torque of all the segments (va, 

τa). The optimization is then performed in successive loops using more and more precise 

motor/inverter efficiency data from the look-up table until the velocity profile converges. 

In order to address the challenge of generating the initial values for va and τa, a two-level 

MPC structure is proposed, consisting of high-level MPC and low-level MPC. The high- 

level controller generates the overall speed trajectory over the trip using a constant 

motor/inverter efficiency for the whole driving segment. Then, the low-level controller 

uses 
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Figure 3-5 Efficiency data vs fitted second order approximation from Chevy Bolt EV [12] 

 

 

Figure 3-6 Error between efficiency data and fitted polynomial from Chevy Bolt EV [12] 

the data coming from the high-level controller as the initial values (first guess) and 

then tries to generate better results for the smaller portion of the road ahead using the 



76 

 

mentioned successive approach. For the high-level MPC, the tunable parameter is the 

number of segments, and the length of each segment changes as the vehicle proceeds, but 

for the low-level MPC, there are two parameters to choose: length of the window ahead 

and number of segments. Figure 3-8 illustrates this control platform, where the trip 

requirements and road data are used as input for the high-level MPC. Vd_high and τd_high are 

the desired speed and torque generated by the high-level MPC, which are used as inputs 

for the low-level MPC. Then Vd_low and τd_low are produced by the low-level MPC and are 

sent to the autonomous vehicle as the desired trajectory. The actual measured values for 

time, velocity, and distance are used as feedback for the high-level MPC (tmes, vmes, Xmes).  

     The optimization problem in (22) is once solved in the high-level MPC for the whole 

trip using the constant motor/inverter efficiency, then the velocity and torque data  
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Figure 3-7 Flowchart of the successive convex optimization approach 
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Figure 3-8 Proposed two-level control platform 

for the next portion of the road (e.g. 100m ahead) is extracted from the results of the high-

level MPC and is fed to the low-level MPC as the initial value. The low-level MPC solves 

(22) for that portion of the road using the detailed motor/inverter efficiency map in a 

successive manner. The new values for velocity and torque are compared to the values 

from the last iteration; if the data is converged the process is done, if not, the next iteration 

is started.       

The optimization problem is shown in (22), where the objective function represents the 

energy consumption over the whole planned horizon. ΔxT is the transposed vector of 

distance of segments. Trip time is shown by tN, and a term is added to penalize fluctuation 

in the speed profile with the weight of ξ. It is shown in (22) that the time constraint is added 

to the objective function in terms of energy using accessory usage described in (19).  

Velocity at each segment is limited between small non-zero value ε (to prevent non-

singularity), and Vlim which is the upper boundary velocity (22a).  Initial and ending 

velocity (Vstart and Vend) for each horizon of planning is pre-defined (22b). Time at the start 

of planning is shown with t1 and it is set to be equal to Tstart (22c). Arrival time is set to be 

in an acceptable interval of duration illustrated as Tend_min, and Tend_max (22d).  Time at the 

end of each segment is calculated as shown in (3), but the formulation is not generally 
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convex (dividing a convex function by another convex function is not necessarily convex) 

so an arbitrary variable, ρv, is added to maintain the convex format of the optimization. The 

concept of using ρv in a second order cone format is proposed in [22] and it is shown that 

it is effectively a relaxed version of ρv=1/v (22e, 22f). The "second-order cone" arises from 

the constraint, which is equivalent to requiring the Euclidian norm to lie in the affine 

function [23]. The motor torque is divided into positive torque and original torque (22g). 

The reason for this classification is that only positive torque actually uses energy to 

overcome losses or accelerate. The more detailed format of velocity calculation which was 

shown in (7) is shown in (22i). These losses are also considered in the objective function. 

The regenerative braking energy is considered, as the τ variable can have negative values, 

which representing the reverse flow of energy during regenerative braking. 

The main differences between the formulations used in this work compared to [22] are: 

the addition of the constraint for limiting to comfortable acceleration and deceleration rates, 

the low-level/high-level MPC to allow for the successive use of the detailed motor/inverter 

efficiency map, the consideration of accessory power losses, and that the objective function 

in this study accounts for the actual energy usage instead of an energy-like objective.  

The entire formulation of (22) is a convex SOCP (Second-order cone programming) 

form. Thus, solvers with the capability of working with conic optimization problems can 

be used to find the solution. The CVX solver is one of these capable solvers which can be 

integrated into both MATLAB and C [30][31].   
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To preserve the real-time performance of the suggested algorithm, two conditions 

should be considered: 1) if the velocity profile is converged, and 2) if the allocated 

acceptable time of the algorithm is spent. Whichever of these conditions holds, the 

algorithm will stop going through the next loop and will generate the current result for the 

speed trajectory as the final result. If the convergence doesn’t happen in the specified time, 

a sub-optimal solution would be chosen that is feasible and maintains the controllability of 

the vehicle optimal solution would be chosen that is feasible and maintains the 

controllability of the vehicle. 

3.3 Vehicle Modeling 

The dynamic model for the Tesla Models S with 85kWh battery was created in 

MATLAB/Simulink using logged driving data in the Toronto, Canada area, as shown in 

Figure 3-9. In this model, a PI feedback loop represents the driver behavior; the logged 
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speed data from the drive cycle feeds into the loop as the reference speed, and the driver 

requests a motor/brake torque considering the current simulated speed to follow the speed 

profile as closely as possible. In the controller block, the controller generates the motor 

torque demand subject to limitations of the vehicle components. In the plant model, the 

next simulated vehicle speed, vchas(t+1), is calculated using the force applied to the wheels 

and resisting forces, as shown in (23).  
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1 1
( 1) ( ) ( )

2

t

chas chas out wh d chas

t
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Figure 3-9 Block diagram of vehicle model 

In (23), m is the vehicle mass in kg, ρ is the air density, A is the vehicle frontal area in 

m2, and Cd is the coefficient of drag. The force out of the wheel, Fout_wh, is calculated 

backward considering rolling losses, final drive losses, and motor/inverter losses to 

generate the battery current. Then the corresponding next battery SOC value, SOC(t+1) is 

calculated using (24). 
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The vehicle parameters are shown in Table 3-1. Three logged drive cycles for the Model 

S are used to validate the accuracy of the model. The objective of creating this model is to 

compare energy use between the optimal speed trajectory (results of the proposed 

algorithm) and the real-world speed profile using this model. Logged speed data and 

simulated speed data for three drive cycles (T1, T2, T3) for the Model S are shown in 

Figure 3-10.  

 

Figure 3-10 Logged vs simulated drive cycle data of a Tesla Model S 
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The comparison between the simulated vehicle energy consumption to the logged energy 

consumption for the shown cycles are illustrated in Table 3-2. Less than 3.3% difference 

between the simulated and the logged energy consumption shows an acceptable accuracy 

considering there are some unknowns in the logged data. There are 4 main potential sources 

of error. Firstly, mass was not logged during the drive cycles. The simulated vehicle uses 

curb mass + driver, but if the real vehicle had multiple passengers and/or cargo during the 

drive, this would change the energy use slightly. Accessory power usage is also not 

specifically logged in the dataset. Estimates are made using battery current during times 

that the vehicle is stopped, but these may be erroneous during driving times, especially 

long driving times like in T1. Thirdly, wind is unknown during the logged driving, though 

wind speed is set to zero in the vehicle model for validation. Fourthly, logged GPS altitude 

is used to estimate grade, but there is some inherent noise and error in this data. The GPS 

altitude data has been filtered and fed into the model to approximate road grade. Despite 

these unknowns from the logged data, the model is still able to have very accurate energy 

use across three unique drive cycles of significant driving time. 

Table 3-1 Baseline values of Tesla Model S vehicle parameters 

Mass 

mc (kg) 
Cd 

Frontal Area 

(m2) 

Battery Size 

(kWh) 

Wheel Radius 

(mm) 

2108 0.24 2.43 85 352 

 

Table 3-2 Vehicle Model Energy Usage Validation 

Vehicle Model Cycle 
Logged Energy  

(kWh/cycle)  

Simulated Energy  

(kWh/cycle) 

Error 

(%) 

Tesla Model S 

T1 22.95 23.17 0.97 

T2 21.29 21.99 3.30 

T3 41.16 40.40 -1.85 
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3.4 Simulation Results 

The proposed convex optimization problems are solved using CVX software inside 

MATLAB using the Mosek solver. To show the effect of considering a detailed efficiency 

map, a comparison between optimization results of two cases, one with constant motor 

inverter efficiency (90%) and one with a detailed efficiency map, is conducted. Figure 3-

11 shows the results of this study. The selected route’s distance is 300m, where the control 

horizon of the high-level MPC and low-level MPC are both 50 segments, where the size 

of each segment, ΔX, is 4 m for the low-level MPC. This is the number of the segments 

that the route ahead is discretized into. 

 

 

Figure 3-11 a) Time-speed profile b) Distance-speed profile c) Time-SOC d) Energy consumption of 

the Tesla model S with constant efficiency  
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Using a detailed efficiency map for this study case will result in 0.88% energy 

saving comparing to constant efficiency over the 300m trip. The fact that efficiency 

changes in different speed and torque levels can be used by the solver to generate a more 

detailed answer which results in a better performance in terms of the energy for the vehicle. 

3.4.1 Energy Focused Optimization 

In order to show how the optimal speed profile changes for different conditions, a 

study of five different cases for the Tesla Model S is conducted: three different accessory 

power levels (3kW, 8kW, and 11kW), and two different wind speeds (+20 km/h, and -20 

km/h). Figure 3-12 illustrates the resulting speed profiles versus time and distance 

respectively. The maximum allowed speed is set to 70 km/h over a 1600 m route. In order 

to focus on energy consumption, β is set to 0 in these simulations. As shown in Figure 3-

12, when the driving condition changes, the optimal speed profile changes as well. The 

optimal speed profile tries to go faster when there is high accessory usage. For the cases 

with different wind speeds, when the speed blows in the same direction as the vehicle drives 

(+20km/h), the algorithm chooses a higher optimal speed compared to when the wind is 

resisting (-20 km/h). To show the effectiveness of the optimal profiles, a non-optimal 

arbitrary speed profile is added to Figure 3-12 (shown using dashed black line) for 

comparison, consisting of constant acceleration from 0 to 55 km/h in 10 seconds, 

deceleration from 55 to 0 km/h in 10 seconds, and a 55 km/h cruising speed. The 

comparison between the energy usages of the optimal and non-optimal driving profiles for 

the different cases is shown Table 3-3. For all the cases, the optimal speed trajectories 

calculated using the proposed algorithm result in less energy usage compared to the non-
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optimal arbitrary speed profile. It is clear that the accessory power use makes a significant 

impact on the energy-optimal speed profile; in this case, an 8 kW accessory load gives an 

optimal speed profile coincidentally close to the arbitrary speed, so only about 1% of 

energy is saved. However, if accessory load is 3 kW or 11 kW, the optimal speed profile 

changes significantly, and 3-4% of energy can be saved.  

    A study on a real-world logged drive cycle of the Tesla Model S is also 

conducted. In this case, the traveled distance is 585 meters in 74 seconds. Three different 

accessory usage 3kW, 8kW, and 11kW are studied. For the goal of the simulations, some 

default values are selected for different parameters. The wind speed is set to 0 km/h, the 

road grade is equal to 0%, and the vehicle curb mass used. In Figure 3-13, Figure 3-14, and 

Figure 3-15, the simulation results for the resulting optimal speed trajectory and the real-

world speed profile at the 3 kW, 8 kW and 11 kW accessory usage in the time domain and 

spatial domain is shown. These figures also contain the corresponding used energy as well 

as the simulated battery SOC.  
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Figure 3-12 a) Time-speed profile b) Distance-speed profile for five different cases 

Table 3-3 Study cases for different cases 

 
Non-optimal Profile 

Energy Usage (kJ) 

Optimal Profile 

Energy Usage (kJ) 

Energy 

Saved (%) 

3kW accessory usage 1039.8 998.7 3.95 

8kW accessory usage 1614.8 1599.4 0.95 

11kW accessory usage 1959.8 1900.6 3.02 

+20 km/h Wind speed 956.9 932.5 2.55 

-20 km/h Wind speed 1158 1104.3 4.63 
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Figure 3-13 a) Time-speed profile b) Distance-speed profile c) Time-SOC d) Energy consumption of 

the Tesla model S at 3 kW accessory usage 

 

Figure 3-14 a) Time-speed profile b) Distance-speed profile c) Time-SOC d) Energy consumption of 

the Tesla model S at 8 kW accessory usage 
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Figure 3-15 a) Time-speed profile b) Distance-speed profile c) Time-SOC d) Energy consumption of 

the Tesla model S at 11 kW accessory usage 

 

The results show that 9.66%, 16.09%, and 17.83% energy savings result from the 

vehicle following the optimal speed trajectory compared to the logged real world drive 

cycle, for the 3 kW, 8 kW, and 11 kW accessory power levels, respectively. For these 

specific cases, the optimal speed profiles are almost identical, but this is because a speed 

limit of 45 km/h has been applied to stay close to the real-world driving constraints. If this 

upper limit were raised higher, the results would be more different, and specifically, the 11 

kW case would choose an even higher optimal speed to make the trip have a shorter travel 

time. 
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Considering the studied cases, it is shown that optimal speed is not always the 

lowest or the highest allowed speed, and it can change significantly with the given 

condition.   

 

Table 3-4 Simulated energy use of cases over 585m trip 

 
Real-world Driving 

Energy (kJ) 

Optimal Driving Energy 

(kJ) 

Saved Energy 

(%) 

3kW accessory usage 462.8 418.1 9.66 

8kW accessory usage 832.8 698.8 16.09 

11kW accessory usage 1055 866.8 17.83 

+10 km/h Wind speed 453.2 405.5 10.52 

-10 km/h Wind speed 475.6 433.8 8.78 

+5% road grade 1192 1153 3.27 

-5% road grade -165.2 -200.7 21.48 

-2% road grade 190.07 135.21 28.86 

+2% road grade 756.85 716.96 5.27 

-8% road grade -521.65 -582.54 11.67 

+8% road grade 1627.30 1574.20 3.26 

+5 km/h Wind speed 457.63 414.48 9.42 

-5 km/h Wind speed 468.81 422.10 9.96 

+ 20km/h Wind speed 446.85 401.07 10.24 

- 20km/h Wind speed 491.54 447.14 9.03 

+ 30km/h Wind speed 443.65 400.15 9.80 

- 30km/h Wind speed 510.61 467.82 8.38 

 

Further, it is shown that a more gradual acceleration is not always best, as for high 

accessory power usage, optimal energy use is obtained by minimizing trip time. The results 

for 17 different cases are summarized in Table 3-4, where the accessory power is set to 3 

kW unless otherwise noted. These cases are selected to demonstrate different external and 

internal conditions (e.g. windy weather or a ramp). These results show that the amount of 

saved energy can change dramatically in different cases. The real-world energy usage 

shown in Table 3-4 is obtained from running the Simulink Tesla Model S vehicle model 



91 

 

on the real-world drive cycle, so that simulation-based energy values are used for both 

cases (real speed profile and optimal speed profile) for a fair comparison. 

3.4.2 Time and Mixed Time-Energy Optimization 

The proposed algorithm can also be used to generate a purely time-optimal drive 

cycle or a mixed time-energy optimal drive cycle. Two cases are simulated for 

investigation: 3kW and 8kW accessory usage over a 1500m route, where other parameters 

such as wind speed and grade are set to zero. For each scenario, three different optimization 

objectives are considered: energy-focused (α=1, β=0), time-focused (α=0, β=1), and mixed 

time-energy (α=1, β=1000). The maximum allowed speed is set to 70 km/h. Figure 3-16 

summarizes the energy use and trip duration for these scenarios, and Figure 3-17 shows 

the resulting optimal velocity profiles with respect to time and distance. For the 3kW 

accessory load, the energy-focused case uses the lowest energy at 942 kJ and has the 

longest trip duration at 124 seconds. The time-focused result has the same velocity profile 

for both accessory power levels since it will maximize speed wherever possible, and uses 

21.5% more energy than the energy-focused result for the 3kW case. However, for the 3kW 

accessory load, the mixed time-energy result is very favorable as it has only increased 

energy use by 1.1% (compared to the energy-focused result) but has shortened the trip 

duration to 99 seconds. The 8kW results follow a similar pattern, where the mixed time-

energy result strikes a balance between time and energy as expected. However, the energy 

and time differences between the 3 results for 8kW are much smaller than for the 3kW 

results, because with higher accessory load, energy use and time and not “competing” as 

much, meaning higher speed is better for both energy and time. For example, at 8kW, the 
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energy- focused result gives 1511 kJ energy usage for a 92 second trip, and the time-

focused result increases energy use by 3.8% and reduces the trip duration to 85 seconds. 

Overall, the optimization of energy use and trip duration is highly dependent on the 

instantaneous values of vehicle parameters considered in the proposed algorithm, such as 

accessory power usage, wind, and grade.    

 

 

Figure 3-16 Energy consumption vs. trip duration for two different cases with three different 

optimization objectives (Energy optimal, Time optimal, Mixed time-energy) 
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Figure 3-17 Speed profiles for two different cases with three different optimization objectives 

(Energy focused, Time focused, Mixed Time-Energy) a) speed vs time b) speed vs distance 

3.4.3 Computational Effort 

Figure 3-18 shows a comparison between the execution time and optimal energy 

usage for different segmentation sizes for a drive of 585m with 3kW accessory power. The 

MPC algorithm is run with different segment choices to create various optimal velocity 

profiles. Then the Simulink vehicle model is run on each velocity profile to calculate the 

energy usage (y-axis in Figure 3-18). The presented simulation results are performed using 

a Dell laptop computer with Windows 10 environment, core i7 1.8 GHz CPU and 16 GB 

RAM. Even though implementation of this suggested algorithm on a microcontroller will 
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have less computational power compared to a laptop with multiple cores, it is a well-known 

fact that coding in lower-level coding languages such as C++ will make code a lot faster. 

The time values on the x-axis are the times for each iteration of the low-level MPC. The 

segment size in the high-level MPC changes as the vehicle proceeds, so is not a constant 

number, but it discretizes the remainder of the trip into the selected number of segments. 

ΔX is the length of the low-level MPC segments. By increasing the number of segments 

(smaller distance segments), the accuracy of the model excels, but the execution time will 

also get larger. Also, the results show that the segment size of the low-level MPC is the 

most important to minimize, as it has a large effect on the vehicle energy consumption, 

whereas the choice of number of high-level segments has little effect on the energy 

consumption results. Considering the results in Figure 3-18, the trade-off between optimal 

energy and execution time is noticeable and should be weighed carefully based on the 

availability of vehicle on-board computing resources.  
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Figure 3-18 Execution time vs. vehicle energy usage for different horizon length 

3.5 Conclusion 

This chapter presents a novel two-level MPC trajectory planning framework to 

solve the energy-optimal speed profile planning problem. A convex formulation is 

developed which performs successive optimizations to allow for the use of detailed 

motor/inverter efficiency maps. A comparison between using detailed efficiency maps 

versus using constant efficiency shows an energy savings of 0.88% over a 300m driving 

segment. A Tesla Model S vehicle is modeled and validated to real world data. The model 

is used to drive optimal and non-optimal speed profiles to quantify energy savings. 

Compared to an arbitrary constant-speed profile, the optimal profile saves between 0.95% 

and 4.63% of energy over a 1.6km driving segment. It is found that considering the high 
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accessory losses of autonomous vehicles is critical for finding the optimal speed trajectory. 

Compared to a more variable real-world logged drive cycle, the optimal profile saves 

between 3.26% and 28.86% of energy. The trade-off between execution time and 

optimality of results is also investigated.  
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4.1 Introduction  

Fuel cell hybrid electric vehicles (FCHEVs) have the potential to play a critical role in 

transitioning to a clean and sustainable transportation system. Though battery electric 

vehicles (BEVs) have a higher powertrain efficiency, BEVs face challenges such as limited 

range and long charging times [1]. Though fast-charging can somewhat alleviate these 

challenges, it also increases battery degradation [2] and adds logistical challenges such as 

finding available fast-charging stations and waiting to charge. FCHEVs have zero harmful 

tailpipe emissions, offer fast refueling times, and have potentially longer ranges with high-

density on-board hydrogen storage [1]. Thus, a flexible and sustainable future 

transportation paradigm will likely utilize both vehicle types, BEVs for shorter commutes, 

and FCHEVs for longer distance driving and new mobility concepts with high amounts of 

driving like ride-sharing and autonomous taxis [3]. 

Autonomous driving offers further advantages with the goals of collision avoidance, 

passenger convenience, and mobility for groups that have driving challenges, such as the 

elderly and disabled [4]. However, autonomous driving technology, mainly sensors and 

computational hardware, increases a vehicle’s accessory power load. Though exact values 

of this increase are not well-published and will vary vehicle-to-vehicle, [5] estimates that a 

few kilowatts of continuous power may be required for fully autonomous vehicles. Thus, 

in order to realize the safety and convenience of autonomous vehicles within a clean and 

sustainable transportation paradigm, special care must be focused on reducing autonomous 

vehicle energy use wherever possible. Fortunately, autonomous driving inherently offers 

two unique options for energy use reduction at the vehicle level: (i) determination of 
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optimal second-by-second speed trajectories to minimize internal and external vehicle 

losses [6] – [8], and (ii) optimization of hybrid energy management strategies given future 

knowledge of the trip [9], [10]. At the fleet level, fully connected autonomous vehicles can 

further reduce energy use through ridesharing [11], improved traffic flow at intersections 

[12], [13], and platooning [14]. 

This chapter focuses on the vehicle-level minimization of energy use for an autonomous 

FCHEV. There is growing interest in autonomous FCHEVs, as shown by Hyundai’s recent 

testing of an autonomous FCHEV on a 190 km high-speed trip from Seoul to Pyeongchang 

[15]. Furthermore, [3] conducts research on autonomous ride-hailing fleets to compare 

using FCHEVs or BEVs, and shows that smaller fleet sizes of FCHEVs can be used due to 

lower refuel times and longer ranges. Reference [3] concludes that, despite higher initial 

costs, FCHEV fleets can be economically competitive with BEVs [3]. Reference [16] 

studies an integrated motion and powertrain joint optimization for autonomous FCHEVs 

using model predictive control (MPC), but solving the nonlinear problem takes a high 

computation time, making it unsuitable for real-time use. Linear approximations are then 

used in [16] to simplify the calculations, but these simplifications reduce the optimality of 

the solution. Furthermore, [16] does not generate the optimal speed profile, and component 

efficiency maps are simplified into second order and linear models.  

Much prior research has focused on vehicle energy minimization of autonomous vehicles 

of any type by optimization of the speed trajectory. Reference [17] divides the trip into road 

segments with constant grade and generates optimal speeds for each segment but only 

considers external vehicle losses. Yet the internal vehicle losses such as inverter loss, motor 
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mechanical loss, battery loss, and accessory loss are essential components of the total 

energy consumed by a vehicle, and are not considered in [17] – [19]. To achieve a globally 

optimal speed profile, it is common to use dynamic programming (DP) [20] – [23]. 

However, DP is computationally expensive and is thus not ideal for real-time applications. 

On the other hand, convex optimization is a practical alternative since it is fast to run; 

however, to develop a convex formulation, many simplifications are often made which can 

reduce the accuracy of the result. For example, [24] and [25] use a convex formulation in 

a MPC platform, but only consider simple external vehicle losses. The authors’ previous 

research [7], [8] presents a framework for solving the optimal speed planning problem for 

autonomous BEVs using convex optimization, while considering detailed internal and 

external vehicle losses.  

Much research has also focused on the energy management strategy (EMS) of FCHEVs. 

Since a fuel cell-powered vehicle must have an energy storage system (usually a battery) 

to accept regenerative braking energy and provide fast bursts of power during acceleration, 

an EMS is required to determine the instantaneous power flows from the fuel cell and 

battery during driving. There are two main categories of EMSs: rule-based and 

optimization-based. Although rule-based control strategies are simple and robust, they do 

not guarantee optimality in terms of minimizing fuel use. Optimization-based methods 

include DP [26], non-linear optimization [27], convex optimization [28] – [36], and 

e uivalentq  consumption minimization strategy [37]. Convex optimization involves 

formulating a problem with convex equations so that a maxima or minima can be easily 

found. The convex optimization approach is attractive for real-time EMS problems because 
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after the convex formulation is complete, convex problems are often easier and faster to 

solve compared to non-convex problems [38]. However, [28] – [36] use convex 

optimization to address the EMS problem, and do not consider the additional challenge of 

optimizing the speed trajectory with the EMS.  

A further evolution of hybrid vehicle EMSs is to use the predicted future velocity to help 

improve EMS decisions [39] – [41]. In [39] and [40], the EMS problem is solved using the 

MPC approach, and in [41], it is solved using convex programming. Reference [42] goes 

further to propose a speed planning algorithm that is activated when a fuel cell bus is 100 

m from an intersection, so that the speed planning outcome can improve the energy use 

through the intersection, where the EMS is solved in real-time using MPC. In [43], the co-

optimization of the speed trajectory and power management for a FCHEV is studied using 

Pontryagin’s Minimum Principle to reduce the computational burden of DP. The possible 

actions for DP are limited to full acceleration, full regenerative braking, full brake, coasting, 

and cruising, so the full range of vehicle motion is not considered, and thus the results do 

not represent a true optimum. For example, it is well-accepted that slower accelerations can 

be more efficient than full throttle accelerations. Furthermore, simplifications such as 

setting the inverter/motor efficiency to a constant value and the DC/DC converter 

efficiency to 100% further erode the accuracy of the results. Still, [43] shows the benefits 

of the co-optimization approach over a sequential optimization (speed planning then EMS 

optimization), especially for aggressive or hilly driving. However, the long execution time 

of the co-optimization approach in [43] is not implementable in real-time, and the presented 

alternative real-time sequential method can have up to 24% worse energy use.  
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Conversely, this study contributes to autonomous FCHEV research by proposing energy 

use minimization through optimal speed planning and energy management using convex 

optimization, which is not found in the prior literature. The convex formulation allows the 

algorithm to run in real-time, and detailed loss modeling is used to ensure a highly accurate 

result. Thus, the first novel contribution of this work is the proposed successive method, 

where convex optimization is first used to generate the optimal speed trajectory, then 

convex optimization is used to solve the EMS problem using the optimal speed trajectory. 

The second novel contribution of this work is the proposed integrated method, which uses 

the knowledge of the EMS (instantaneous fuel cell power) to affect the optimal speed 

trajectory, such that the speed planning and EMS problems are solved in an integrated way 

using convex optimization. The only prior work that attempted a similar integrated 

optimization approach for speed planning and EMS for a FCHEV is [43]; however, it 

excludes important loss details and since it uses DP, it has to limit the motor torque options 

to a few unrealistic levels to make computation feasible, yet it still has a long execution 

time that is not realistic for real-time implementation. Thus, the proposed successive and 

integrated methods in this chapter are the first to (i) optimize speed planning then EMS for 

a FCHEV using fast convex optimization suitable for real-time use (successive method), 

and (ii) optimize speed planning and the EMS in an integrated way for a FCHEV using fast 

convex optimization suitable for real-time use (integrated method). 

The rest of this chapter is organized as follows. Section 4.2 describes the convex problem 

modeling and formulation, including the use of experimental data to create and validate the 

fuel cell and battery models. Section 4.3 provides the convex simulation results, including 
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a comparison to arbitrary short drive cycles, a sensitivity analysis of varying the vehicle 

electrical accessory load, analysis of results on long real-world drive cycles, and a 

computation time analysis. Section 4.4 presents a DP formulation to be used as benchmark 

and compares the proposed convex methods to the DP results. Finally, Section V concludes 

the chapter. 

4.2 Convex Problem Modeling and Formulation 

4.2.1 General Overview  

Figure 4-1 shows the general concepts of the proposed successive and integrated 

optimization methods, where Pd is the vehicle power demand and ηFC is the fuel cell (FC) 

system efficiency. Since the FC system efficiency depends on its output power, selecting 

how to allocate power between the battery and FC will affect the system’s overall 

efficiency, which will affect the optimal speed decision, as shown in Figure 4-1(b) for the 

integrated method. For both methods, the proposed real-time framework is that the 

optimization algorithm plans the velocity for the window ahead, and as the vehicle 

proceeds, it periodically provides feedback signals such as position (distance), velocity, 

accessory power level, time spent so far, grade, etc. The proposed method uses these 

feedback signals to rerun the optimization algorithm and update the speed trajectory 

according to the new input data. For example, the computational effort analysis in Section 

III-E uses a 1000 m look-ahead window. 
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Figure 4-1 a) Successive optimization method b) Integrated optimization method using ηFC feedback 

The general form of the convex optimization formulation is shown in (1), where f(x) is 

the objective function, gi(x) is the ith equality constraint, and hj(x) is the jth inequality 

constraint. If all these functions are convex, the optimization problem becomes a convex 

optimization problem. The goal is to formulate vehicle dynamics, physical limitations, and 

all the major vehicle losses as convex constraint functions and the energy consumption as 

the convex objective function. 

min ( )

. .

( ) 0 1,...,

( ) 0 1,...,

x

i

j

f x

s t

g x i m

h x j n

= =


 =

     (1) 

Figure 4-2 shows a block diagram of the target study vehicle, the 2017 Toyota Mirai [44]. 

The FC system consists of different subsystems, including the fuel cell stack, compressor, 

pumps, and DC/DC converter. The main source of the energy in this vehicle is the fuel cell 

stack (114 kW peak power [44]) and the energy storage system is a nickel metal-hydride 

battery (1.6 kWh [44]). 
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Figure 4-2 Toyota Mirai 2017 block diagram 

4.2.2 Convex Vehicle Model 

     This research formulates vehicle dynamics in a discrete position domain point-

mass system. The principal for the formulations comes from the kinematics in (2)-(3). In 

these formulations, Δxi is the traveled distance (m) in the ith segment, Δti is the amount of 

time (s) required to travel Δxi, and vi is the speed (m/s) in that segment. Time at the next 

step can be calculated using time at the current step plus the amount of time required to 

travel that segment, as shown in (4).  

i i ix v t =            (2) 

/i i it x v =         (3) 

1 /i i i it t x v+ = +        (4) 

     As Newton’s law of motion expresses, there is a relationship between the applied 

net force and acceleration, as shown in (5), where ΣF is the net applied force (N), m is the 

vehicle mass (kg), and a is the acceleration (m/s2). Assuming constant force is applied 
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within each segment results in a constant acceleration in each segment, and thus the change 

of speed of the next segment can be found using (6) - (8).  

 

F ma=       (5) 

v a t =         (6) 

1i i i iv v a t+ = +        (7) 

1

( / )i i

i i

i

F m x
v v

v
+


= +


     (8) 

      

     The net applied force for a segment is calculated using applied electrical motor 

torque and external resisting force in (9). External resisting forces against the vehicle are 

presented in (10)-(12). Aerodynamic drag, Faero, is shown in (10) where ρair is the air 

density (1.225 kg/m3), A is the vehicle effective frontal area (m2), Cd is the drag coefficient, 

vchass is the chassis speed (m/s), and vw is the tangential wind speed (m/s). Equation (11) 

shows the rolling resistance force, Froll, where m is vehicle mass (kg), g is the gravitational 

constant (9.81 m/s2), θ is the road grade in radians, and μ1 and μ2 are rolling resistance 

coefficients. Equation (12) shows the grade resisting force, Fgrade. The force at the output 

of the final drive, Fout_fd, is shown in (13), where τmot is the motor torque, fd is the final drive 

ratio, rwh is the wheel radius (m) and ηfd is the final drive efficiency. Based on the sign of 

the applied motor torque, the corresponding formula should be used, so that energy losses 

occur across the final drive whether the vehicle is in propelling mode (τmot positive) or 
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regenerative braking mode (τmot negative). In this formulation, a constant final drive 

efficiency (0.97) for ηfd is used. 

   

_ , , , ,i out fd i aero i roll i grade iF F F F F = − + +      (9) 
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     The relationship between vehicle speed, motor rotational speed (ωmot in rad/s), 

and wheel speed (ωwh in rad/s) is shown in (14) and (15).   

mot wh
chass

d

r
v

f


=         (14) 

   mot
wh

df


 =           (15) 

     The FC system is complicated and can be modeled in various ways. For example, 

multiphase models are very complex and highly accurate [45-46]. However, since the goal 

of this study is to run a fast online convex optimization process to generate optimal speed 

trajectories and an optimal EMS, a simpler approach is taken by assuming the FC system 

operates at its optimal conditions. In this case, using a FC system efficiency map to describe 
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the relationship between FC output electrical power and hydrogen consumption is 

sufficient, especially considering much prior literature on this topic uses a second-order 

approximation of this efficiency map [1], [16], [28], [29], [32], [39]. The FC system 

efficiency includes all relevant losses, such as water and H2 pumps, compressor, boost 

converter, and FC stack. This FC efficiency is a function of FC output power, as shown in 

Figure 4-3. This map is extracted from experimental tests by Argonne National Laboratory 

[44] on the FC in the Toyota Mirai. In [44], both FC stack efficiency (peak is 66%) and FC 

system efficiency (peak is 63.7%) are shown, and these analyses are based on steady state 

speed tests. The FC system efficiency curve from [44] is used to model the FC in this study, 

as shown in Figure 4-3.  

 

 

Figure 4-3 FC system efficiency as a function of FC output power, as extracted from [43] 
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To verify the accuracy of the FC system efficiency map in Figure 4-3, 

experimentally logged data (by Argonne National Laboratory) from three drive cycles of 

the Toyota Mirai are used [47]. This publicly available dataset includes FC output power 

and H2 flow rate. To validate the extracted FC system efficiency map, the experimentally 

logged FC power data is fed into the model and the resulting simulated H2 flow rate is read 

as the output. This simulated H2 flow rate is then compared with the experimentally logged 

H2 flow rate, and the results are shown in Figure 4-4 for Test ID 61712033. Table 4-1 

summarizes the validation results for three test drive cycles and shows that using the FC 

system efficiency map in Figure 4-3 gives reasonable accuracy compared to the 

experimental data, with the cumulative error less than 2.4% and the RMSE less than 3.3%. 

 

Figure 4-4 UDDS test cycle for fuel cell system validation (Test ID 61712033) 
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Table 4-1 Validation of Fuel Cell Model 

Data Test 

ID 

Simulated H2 

Consumption 

(g) 

Logged H2 

Consumption 

(g) 

Error in 

Cumulative H2 

Consumption 

(%) 

RMSE H2 

Consumption 

(%) 

61712033 186.66 183.37 1.79 1.81 

61712034 1154.37 1182.63 -2.39 3.27 

61712037 306.56 307.14 -0.19 1.87 

 

     The battery is modeled as a voltage source, Voc, in series with internal resistance, 

Rb. Equation (16) shows how terminal voltage Vterm is calculated where Ib is the battery 

current and is considered positive when the battery is discharging. The open circuit voltage, 

Voc, is a function of the battery state-of-charge (SOC), and the logged data extracted from 

the tests provided in [47] are used to generate a linear approximation of Voc over SOC. This 

linear approximation is shown in (17), where (V0=155.8, ζ=2.252). The value for Rb is also 

estimated using the experimentally logged data (0.6899 Ω). Battery output power, Pb, is 

calculated using (18) and the amount of power loss in the battery Ploss_batt is expressed in 

(19). The battery SOC calculation is shown in (20), where CAh is the battery capacity in 

Amp-hours.   

term oc b bV V R I= −       (16) 

0ocV V SOC= +       (17) 

batt term bP V I=       (18) 

2

_loss batt b bP R I=       (19) 

1

1

1
( )

3600

i

i

t

i i b

Ah t

SOC SOC I t dt
C

+

+ = +
      (20) 
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     To validate the parameter choices of the battery modeling, a Simulink-based 

simulation is developed to study the battery behavior. In this simulation, logged current 

data (from Toyota Mirai Test ID-61712034, a UDDS cycle) [44] is sent into the battery 

model as the input, and the battery terminal voltage and battery SOC are the outputs. Figure 

4-5(a) shows the input current, and Figure 4-5(b) and (c) show the comparison between the 

simulated results and the logged data of battery voltage and SOC respectively. Table 4-2 

shows the results for validation of the battery model over three different logged cycles from 

[47]. The results show a close correlation (less than 5% RMSE and close to one for 

correlation coefficients) between the logged and simulated battery data, which validates the 

battery modeling parameters used.  
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Figure 4-5 Battery model validation a) battery input current b) battery terminal voltage c) battery 

SOC 
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Table 4-2 Validation of Battery Model 

Data Test 

ID 

RMSE 

Voltage 

(%) 

RMSE 

SOC 

(%) 

Correlation 

Voltage 

Correlation 

SOC 

61712033 2.57 0.67 0.9397 0.9914 

61712034 1.31 0.66 0.9560 0.9861 

61712037 4.05 1.35 0.9834 0.9985 

 

    It is crucial to consider the physical limitations of the vehicle, such as the 

maximum motor torque available, as this will limit the vehicle’s acceleration. Maximum 

available electric motor torque depends on the speed of the electric motor, as shown in 

Figure 4-6 (blue curve in the efficiency map). The maximum torque curve can be 

approximated using a minimum function over a second-order polynomial in combination 

with a constant value (21). This second-order approximation is shown in Figure 4-6 using 

the black dashed curve.  

 

2

max 2 1 0( , )mot chass chassmin a v a v a


  + +    (21) 

 

Figure 4-6 shows the efficiency map for a combined permanent magnet (PM) 

electric motor and inverter. This map is generated based on the Toyota Prius motor inverter 

efficiency map provided in [48] by the U.S. Department of Energy. Since specific Mirai 

motor efficiency data is not available, and both the Mirai and Prius use PM motors, the 

Prius map has been scaled to meet the specifications of the Toyota Mirai electric motor. 
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Figure 4-6 Combined PM motor and inverter efficiency map based on [48] 

     Loss in the combined motor-inverter is expressed in (22), where ηmotinv is the motor-

inverter efficiency. As shown in Figure 4-6, the motor-inverter efficiency is a function of 

motor speed and torque, and this dependency is implemented using a 2-dimensional look-

up table. This 2-D look-up table is utilized every iteration after solving the convex problem 

using calculated speed and torque characteristics and the value for the motor-inverter 

efficiency is updated.  Equation (23) shows the final drive loss. Since motor torque can 

have both negative and positive values (braking and accelerating), the loss is always 

positive. Table 4-3 lists parameter values for the Toyota Mirai that are used in the convex 

vehicle model and the simulation results in Section III and IV.  
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Table 4-3 Vehicle Specifications based on Toyota Mirai 

Parameter Value Unit 

Vehicle mass (m) 1940 Kg 

Frontal area (A) 2.38 m2 

Rolling resistance (µ1) 0.008 - 

Aerodynamic drag coefficient (Cd) 0.29 - 

Wheel radius (rwh) 0.371  m 

Final drive ratio (fd) 3.478  - 

Maximum FC output power (PFCmax) 113 kW 

Maximum battery output power (Pbattmax) 25 kW 

      

Using the preceding loss equations, Figure 4-7 shows an example of how considering the 

FC efficiency can affect the optimal speed selection, and thus gives motivation for why it 

should be considered in optimal speed planning (the proposed integrated method). Figure 

4-7 shows two ways of calculating the energy consumption of a vehicle model using the 

Toyota Mirai parameters and travelling at constant speeds over a 5 km trip with 3 kW 

accessory power. The assumption in this example is that all vehicle demand power comes 

from the FC stack. One way to calculate energy consumption is to consider the power out 

of the FC, which is needed to power the traction and accessory needs. Often, this is the 

power/energy that is attempted to be minimized in other studies that generate optimal speed 

profiles [16], [42], [43]. In Figure 4-7 (top), the blue line represents this energy for different 

constant speed options, and the optimal speed is found to be 54 km/h. However, if the 

hydrogen energy input to the FC is considered instead by dividing FC power by the FC 

efficiency at that operating point, the red dashed line is obtained for energy consumption, 

and the optimal speed for energy minimization is found to be 52 km/h. This simple example 

illustrates the concept used in the proposed integrated optimization method: since the FC 
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efficiency can affect the optimal speed selection, it should be considered in optimal speed 

planning.  

 

Figure 4-7 . Effect of fuel cell efficiency on energy consumption and optimal speed selection. 

4.2.3 Convex Optimization Formulation 

 

     In this study, the optimization process has two interconnected parts. The first 

optimization problem focuses on finding the optimal speed trajectory for the given trip. The 

second optimization problem aims to perform optimal energy management between the 

fuel cell and battery. The proposed successive optimization method will be described first, 

and the proposed integrated method will be described afterwards. As shown in (1), the 

objective and constraint functions are formulated as convex functions. The objective 

function of the optimal speed planning problem is set to minimize hydrogen consumption 
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while maintaining a smooth speed trajectory and short arrival time, using the idea that all 

vehicle power will ultimately come from the fuel cell. Equation (24) shows this objective 

function, where α is the energy weight coefficient, Pd is the demand power vector, β is the 

trip duration weighting coefficient, Tend is the arrival time, and kspeed is the speed 

smoothness coefficient.  

 

Objective1 = ( ), 1 ,

T

d end speed chass i chass iP t T k v v  +
   +  +  −      (24) 

 

     Equation (25) shows that velocity at segment i+1 is calculated using velocity at 

segment i and acceleration as a result of applied electric motor force and resistive forces. 

To make this function convex, an iterative method is used which is discussed in detail in 

[7], and variables with ~ mean this value is used from the last iteration.  
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 (25) 

 

     To calculate the time at each segment, the expression is shown in (4). It is crucial 

to set an acceptable limit for the arrival time to make the optimal speed meet the expected 

criteria, and this constraint is shown in (26), where Tmin and Tmax are the minimum and 

maximum of the acceptable arrival times. 
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 min maxendT T T       (26) 

 

Since the method uses calculated time sample values from the last iteration, the 

variable Tend for the current iteration is calculated directly in the current iteration. To 

achieve this goal, an additional variable is added to the optimization formulation, as 

explained in [49]: the parameter σi effectively approximates 1/vi as shown in (27), and using 

this parameter, Tend can be explained in a convex way as shown in (28). ( • is notation 

used for Euclidean norm (norm-2) for example
2 2

1 2 ...x x x= + + ) 
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i i

i i

v
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
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      (27) 

end i i

i

T x =        (28) 

     Demand power at each segment is calculated in (29), where Pacc is the accessory 

power at each segment, representing the power needed for the control unit of an 

autonomous vehicle, HVAC system, and other accessories of the vehicle. In (29), ψ+ 

represents the positive values of motor torque, τmot, so that by minimizing over ψ+, τmot will 

effectively be minimized. Equation (30) shows the constraints on ψ+. Overall, (29) sums up 

the losses in the vehicle, where the first term represents the power needed to overcome 

external losses (such as rolling and aerodynamic losses), the second term represents losses 

of the electrical accessories, the third term represents the final drive losses, the fourth term 

represents the motor and inverter losses, and the fifth term represents the battery losses. 



122 

 

  

( ) ( )
~

~ ~
2,

, ,, ,

1 1
   

i mot d fd mot d motinvi d
i id i

h

chass
ci hass chasacc b b

wh wh w

s

f fv f
P P v v R I

r r r

    +
+

− − 
= + +  +  +

(29) 

                 mot  +         ,        0  +                                         (30) 

 

     In addition to these constraints, some initial value assignments should be set in 

the formulation: velocity at the start of the section and time at the start of the section. In 

this chapter, a section is defined as a part of the trip that speed planning is performed for, 

where the initial speed is known (either starting from a stationary position or the calculated 

end velocity of the last section) and the end velocity can be known (where the vehicle needs 

to meet a certain velocity, or needs to stop at a stop sign, or is chosen by the optimization 

algorithm to be in the acceptable range). Equations (31) and (32) express these constraints, 

where Vintial is the initial velocity at the start of the section, and Tintial is the start time of that 

section.    

1, initis alchasv V=      (31) 

1 initialt T=      (32) 

 

     Considering these constraints, the optimization formula can be constructed. 

Equation (33) shows the first optimization problem.  
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Solving (33) results in the optimal time and speed vectors which are used as the 

inputs for the second optimization problem of the proposed successive method. Using (29), 

demand power of the generated optimal time and speed vector is calculated. The second 

optimization objective (34) is to find the best energy management algorithm to use the least 

amount of H2 while maintaining battery SOC in an acceptable range throughout the trip, 

and ensuring the final SOC is equal to the initial SOC, so the strategy is charge sustaining. 

Since the strategy is charge sustaining over each trip, the objective function can seek only 

to minimize hydrogen use and does not need to consider net changes in the battery energy, 

similar to the approach used in [32], [34].    
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   (34) 

 

     In (34), ρH2 is the hydrogen energy density, PFC is the output power of the FC 

system, and Δtcalc is generated using the calculated time vector from the first optimization 

problem. Total demand power at the DC bus, Pd, must be provided by the available energy 

sources, as shown in (35), where Pbrake is the friction braking power, Pbatt+ is the positive 

battery power at the battery terminals (battery discharge), Pbatt- is the negative battery power 
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at the battery terminals (battery charge), and ηconverter is the battery DC/DC converter 

efficiency.  

 

batt
d FC converter brakebatt
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+= +  + +     (35) 

 

FC output power should always be between zero and its maximum output power 

since the FC cannot accept negative power. Positive and negative battery output powers 

should also stay in the feasible range and brake power can only obtain negative values. 

These constraint functions are shown in (36)-(39).  

 

max0 FC FCP P        (36) 
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0

batt batt
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0
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0brakeP       (39) 

 

Using (20), a discrete SOC update algorithm is used to determine the battery SOC 

through the trip in (40). The constraint of charge sustainability is shown in (41) and (42), 

where SOCinit is the initial value of battery SOC. To prevent any sudden changes in the 

output power of the FC system, its rate of increase/decrease is limited to an acceptable 

range using (43). The limitation of fuel cell fluctuation is used as suggested in [50]. (

80 FC
kWP

s
 = )  
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The second optimization problem is formulated using the equations in (44).  

 

, , ,
min      (34)

. .

(35), (36), (37), (38),

(39), (40), (41), (42), (43)

FC breakbatt batt
P P P P

s t

+ −

    (44) 

 

     The preceding equations and explanations constitute the proposed successive 

optimization method, as shown in Figure 4-1 (a). Using this framework, the following 

additions are proposed to create the integrated optimization method in Figure 4-1 (b). For 

the integrated method, using the findings of (44), the value of FC efficiency can be updated 

using the detailed FC efficiency map, and these new values are used to solve (33), and 

update calculated results for time and velocity (optimal speed trajectory). This loop will 

continue until either of the loop ending conditions are satisfied: (i) convergence of the speed 

profiles, or (ii) reaching the maximum allowed time for algorithm execution. This 
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algorithm sequence is shown in Figure 4-8, where the difference in the successive method 

is that there will be no feedback loop to update the FC system efficiency (ηFC).  

     The optimization procedure is performed over a window of prediction ahead and 

this window is divided into k segments. In study cases where there are no pre-defined 

velocity points to reach over the trip (as discussed in Sections III-A and III-B) the window 

size is kept constant over the trip. In cases where there are logged data and pre-defined 

velocity points (as discussed in Section III-C) the window is set to the distance between 

each two points, and its size may change throughout the trip. 

To study the effects of the FC system efficiency on the optimal speed planning, the 

formulation in (24) is adjusted in a way to include the FC system efficiency as shown in 

(45). Therefore, the objective in (24) is used in the successive method when solving (33), 

and the objective in (45) is replaced in the integrated method when solving (33). 

 

Updated Objective1 = ( ), 1 ,

T

d
end speed chass i chass i

FC

P
t T k v v 


+

  
   +  +  − 
   

  

  (45) 
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Figure 4-8 Integrated optimization algorithm flowchart (the successive method does not contain the 

orange-encircled part) 

  

Section III discusses how in some cases, generated speed profiles are below average 

city driving velocity. To address this, a penalty factor is added to the objective function for 
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being away from the desired speed. The adjusted objective function is shown in (46), where 

Vdes is the vector of the desired velocity over the trip.  

 

Objective1 =

( ), 1 , , ,

T

d
end speed chass i chass i des chass i des i

FC

P
t T k v v k v V 


+

  
   +  +  − +  − 
   

   (46) 

 

4.3 Convex Simulation Results and Discussion 

To study the performance of the proposed algorithms, optimization problems are 

formulated and solved using CVX software inside MATLAB using SeDuMi solver [51-

53]. 

4.3.1 Short Test Cycle Results 

 

     To study the effect of considering the FC efficiency in the objective function, 

three cases are tested using different methods: the integrated method, the successive 

method, and an arbitrary method. These trips are set to travel two different distances (1000 

m and 1500 m) with a maximum speed of 60 km/h. Also, these trips start from a zero speed 

(stationary condition) and end at zero speed. The resulting 1000 m optimal speed trajectory 

is shown in Figure 4-9. Both convex-successive and convex-integrated methods have a 

notably different profile shape compared to an arbitrary trip with mostly constant speed, as 

they accelerate to a higher speed at the start of the trip and decelerate slowly for most of 

the trip. Compared to the successive method, the effect of the integrated method can be 
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seen in the generated speed profile, where using the feedback of FC system efficiency 

means this method tries to lower the speed at the top speed area to minimize the FC power 

demand to allow the FC to operate at a higher efficiency. Table 4-4 summarizes the findings 

for H2 consumption, showing improvement in the hydrogen consumption of the proposed 

methods compared to an arbitrary speed profile with optimized EMS. Both methods 

(integrated and successive) have notable advantages over the arbitrary speed profile in 

terms of H2 consumption (more than 10% over all trips). Furthermore, the integrated 

method shows an advantage over the successive method of 0.27% to 2.37%. Since the 

successive method is still performing optimization, the improvement of the integrated 

method is not expected to be large but is still relevant and useful given the fact that it is 

simple to implement.  
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Figure 4-9 Comparison of arbitrary speed profile with optimal results from successive and integrated 

methods 

Table 4-4 Optimization Results for Short Test Cycles 

Trip Distance 

(m) 
Method 

H2 Consumption 

(g) 

Advantage of 

Integrated Method (%) 

1000 

Arbitrary 8.37 14.65 

Successive 7.32 0.27 

Integrated 7.30 - 

1500 

Arbitrary 14.89 10.70 

Successive 13.77 2.37 

Integrated 13.45 - 

4.3.2 Electric Accessory Sensitivity Analysis 

Since the vehicle electrical accessory loads can vary widely over the day or over the year, 

mainly due to changing heating and air conditioning needs, it is useful to investigate how 

the proposed optimization framework performs at different accessory load levels. This 

section performs a sensitivity analysis on the proposed formulations using values of Pacc = 
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1 kW, 2.5 kW, 5 kW, and 8 kW. The optimal speed trajectory results are shown in Figure 

4-10 for the 1000 m trip. These results show that for both the successive and integrated 

methods, a higher Pacc leads to higher optimal speeds since a longer travel time will result 

in higher energy consumption at higher Pacc – thus the optimization process tries to speed 

up the trip, though all trips are completed within the upper limit allowed, Tend. Thus, a 

higher Pacc value acts as a higher coefficient for arrival time in (24). Comparing the 

successive and integrated speed curves for the same Pacc value shows that the integrated 

method reduces speed (and hence fuel cell power) at some peak speed areas due to the 

feedback of FC efficiency, which lowers FC power at otherwise high power points to 

increase FC efficiency. Table 4-5 summarizes the hydrogen consumption for each speed 

trajectory in Figure 4-10. Compared to the arbitrary speed trajectory, the integrated method 

reduces hydrogen use by 10% to 21%. Compared to the successive method, the integrated 

method reduces hydrogen use by about 0.2% to 0.7%. 
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Figure 4-10 Sensitivity analysis optimal speed trajectories for different values of electric accessory 

power 

Table 4-5 Optimization Results for Sensitivity Analysis of Pacc 

Pacc (kW) Method 
H2 Consumption 

(g) 

Advantage of Integrated 

Method (%) 

1 

Arbitrary 5.98 10.12 

Successive 5.47 0.73 

Integrated 5.43 - 

2.5 

Arbitrary 8.37 14.65 

Successive 7.32 0.27 

Integrated 7.30 - 

5 

Arbitrary 12.21 16.06 

Successive 10.54 0.19 

Integrated 10.52 - 

8 

Arbitrary 17.04 21.62 

Successive 14.06 0.35 

Integrated 14.01 - 

 



133 

 

4.3.3 Logged Driving Cycle Results 

To show the effect of optimal speed planning on hydrogen consumption, three different 

driving scenarios are studied. This experimentally logged data is selected from publicly 

available data from Argonne National Laboratory, and is generated using dynamometer 

testing of a 2017 Toyota Mirai [47]. These trips are selected in a way to start and end in a 

stationary condition (vstart = 0), cover different distances, and reach various top speeds to 

cover distinct driving situations (city or highway). The accessory power in these 

simulations is set to 2.5 kW, reflecting a moderate heating or air conditioning load. To 

make this comparison more realistic, sample points through the trip are selected to make 

the optimal speed trajectory go through the same velocity points. In real-time driving, these 

points represent known future points in the road due to changes in speed limit or the need 

to slow down to perform a turn. These sample points are added to the optimization problem 

as constraints and the algorithm runs for each portion between these sample points and 

finds the optimal speed trajectory in between them. In all the case studies presented below, 

the integrated method is used since it yields the most advantageous results, based on Section 

III-A. In these simulation studies, the H2 consumption advantage is only the result of 

optimal speed planning since the same EMS (optimization problem in (44)) is performed 

for the real-world logged driving cycle as well, for a fair comparison. Results for these 

investigations are illustrated in Figs. 11 to 13 for the three selected driving scenarios.  
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Figure 4-11 Optimal vs logged driving for Trip 1: a) time-speed trajectory b) distance-speed 

trajectory c) cumulative H2 consumption d) time-SOC curve e) optimal power split based on optimal 

speed planning 

Figure 4-11 shows a comparison between optimal and logged driving speeds for a 

1080 m trip with a maximum speed of 53 km/h, which represents typical city driving. The 

optimal speed trajectory meets the high and low velocity points through the trip at the same 

distance points of the real-world driving, but between these points, the algorithm is free to 

choose the speed trajectory. The speed profile is smooth between the fixed velocity points 

and avoids frequent acceleration and deceleration. This smoothness of the speed profile 

also affects the SOC curve and decreases its fluctuations. Figure 4-11 also shows that the 

EMS is working properly in charge-sustaining mode as the battery SOC at the end of the 
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trip is equal to its initial value, 60%. Interestingly, the optimal speed path is able to finish 

the trip in shorter time than the logged trip, as shown in Figure 4-11 (a). The optimal H2 

advantage on this trip is 2.82% compared to logged driving, where both the optimal and 

logged speeds use the optimal EMS. 

 

Figure 4-12 . Optimal vs logged driving for Trip 2: a) time-speed trajectory b) distance-speed 

trajectory c) cumulative H2 consumption d) time-SOC curve e) optimal power split based on optimal 

speed planning 

         Figure 4-12 shows the simulation results of a 3152 m trip with a top speed of 

92 km/h, which is a combination of city and highway driving. The optimal speed trajectory 

is smooth and reaches the predefined velocity points. In the power management process 

(Figure 4-12 (e)), it is shown that the optimal EMS algorithm tries to recharge the battery 
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as much as possible during the braking and uses this power in the acceleration events, and 

the EMS maintains the SOC at the end of the trip. The amount of decrease in H2 

consumption of the optimal speed profile for this trip is 1.43%.  

 

 

Figure 4-13 Optimal vs logged driving for Trip 3: a) time-speed trajectory b) distance-speed 

trajectory c) cumulative H2 consumption d) time-SOC curve e) optimal power split based on optimal 

speed planning      

Figure 4-13 shows the simulation results for a long trip of about 10 km, where the 

vehicle mostly maintains a high speed above 95 km/h and reaches the top speed of 130 

km/h. The optimal speed trajectory eliminates most of the fluctuations of real-world 

driving. Since the speed profile does not contain many braking sections, chances to save 
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regenerative power are limited. Similar to the other scenarios, the charge is sustained over 

the trip and the ending SOC is equal to the initial SOC. Optimal speed for this trip provides 

1.90% improvement in H2 consumption. Table 4-6 summarizes the reduction in H2 

consumption for these cases for only optimizing the speed profile using the integrated 

method (since the optimal EMS split is used for all simulations in these cases).         

 

Table 4-6 Summary of Results for Optimal speed vs logged speed (both using 

optimal EMS) 

 
Trip distance 

(m) 

Optimal Speed 

H2 Consumption 

(g) 

Logged Speed 

(non-optimal) 

H2 Consumption 

(g) 

H2 

Consumption 

 Reduction 

(%) 

Trip 1 1080 8.88 9.13 2.82 

Trip 2 3152 27.65 28.05 1.43 

Trip 3 10200 109.99 112.05 1.90 

 

 

4.3.4 Road Speed Limit Changes     

In some cases, the optimal speed trajectory may have maximum speeds lower than the 

speed limit on a road section. To address this issue, (46) can be used to add a penalty factor 

for being away from a desired speed. The results of the algorithm with the new objective 

function (46) are shown in Figure 4-14. For this study, the desired speed limits over the trip 

are specified in (47) and are shown in Figure 4-14 with a red dashed line. By using this 

algorithm, the optimal speed tries to reach the desired velocities through the trip and 

chooses the optimal profiles for the transition. The desired speed can be selected for 

different parts of the path considering the traffic rules and maximum allowed speed. 
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Figure 4-14 Optimal speed trajectory with addition of desired velocity to the objective by (a) time, 

and (b) distance 

4.3.5 Computational Effort Analysis 

     Figure 4-15 shows the trade-off between each iteration time and H2 consumption 

(a reflection of optimality), using different numbers of segments to divide up a given trip. 

Values on the y-axis represent the amount of time spent on solving the optimization 

problem using Mosek [54] solver integrated in the CVX software in MATLAB, and the x-
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axis shows the H2 usage during the simulated test case. These simulations are run on a Dell 

laptop computer with core i7 2.8 GHz CPU and 16 RAM. This study considers a 1km road 

with a constant 2.5 kW accessory power throughout the trip. As the number of segments in 

an optimization window increases, the optimal H2 consumption decreases as expected due 

to higher accuracy, but the execution time increases, which is the inevitable cost for getting 

more precise results. Regardless, these results show that excellent optimality can be 

achieved in short simulation times that are suitable for on-board real-time implementation. 

Though multiple iterations may be used for each trip (four are used in the DP comparison), 

the total run-time can still remain well below one second. Even though implementation of 

this suggested algorithm on a microcontroller will have less computational power compared 

to a laptop with multiple cores, it is a well-known fact that coding in lower-level coding 

languages such as C++ will make code a lot faster. 
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Figure 4-15 Optimal speed trajectory with addition of desired velocity to the objective 

4.4 Convex Comparison to Dynamic programming 

In this section, the results of the proposed convex formulations are compared to results 

from dynamic programming, which is often used as an optimization benchmark [43]. 

Dynamic programming (DP) aims to find the optimal solution by determining the optimal 

decision at each time step considering the current state of the system [55]. The main 

drawback to DP is the high computation time, which often renders it unsuitable for real-

time implementation. For example, [43] allows only 5 options of motor torque for each 

segment to try to deal with DP’s curse of dimensionality, yet these few torque options 

cannot cover all possible optimal vehicle motions, so the result is sub-optimal. Thus, for 

DP, the accuracy of the optimal solution is highly dependent on the precision of the problem 
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formulation and the discretization of optimization variables. Therefore, there is a clear 

tradeoff in DP formulations of run-time versus accuracy. Due to this curse of 

dimensionality, using DP to solve both the speed planning and EMS problem in an 

integrated way is infeasible with standard computing resources if a high discretization of 

motor torque options is desired. Reference [43] attempts this process but must use only 5 

torque options, leading to a non-optimal result and a very high runtime. Thus, in order to 

obtain a more truly optimal speed profile to compare to the convex solution, this chapter 

uses DP to find the optimal speed profile only using 135 motor torque options, leading to 

a torque discretization of 5 Nm. Then, the optimal EMS is found for the determined speed 

profile using the convex formulation given in (44).  

4.4.1 Dynamic Programming Formulation  

The general concept of DP can be described as assuming a sequence of terminal functions 

T1, T2, …, Tn where γ is an argument representing the state of the system at time i ∈[1 … 

n]. The value of Tn(γ) is the value at the last time sample in state γ. The value obtained by 

Ti in earlier time samples i = 1, 2, …, n-1 is calculated backwards using a recursive method 

(Bellman equation) [55]. For i = 2, …, n the terminal value of Ti-1 at any state γ is calculated 

using the value of Ti (cost to reach Ti from Tn) and the cost of the decision at time i-1 based 

on the current state and decision. This process is done until the final value for T1 at the 

initial state of the system is found, which is the optimal value of the optimal policy. Then 

by tracking back the calculations that have already been done, the optimal path (decision) 

is recovered. 
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The problem of optimal speed planning for FCHEVs using DP is studied in prior 

literature [43]. The DP formulation in this chapter follows the method presented in [43]. 

The state vector γ has two variables (time and vehicle speed) and the input, u, has a single 

variable (motor force, Fmot). The optimal speed planning problem over a given trip distance 

is found using (48), which is solved using dpm (a generic DP MATLAB function) [56].  
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In (48a), J is the cost function to be minimized which represents energy, ηmotinv is the 

motor efficiency which is a function of motor force (torque converted to force) and speed. 

Equations (48d) and (48e) show how the transition between states is happening, where 

Fresisting is the sum of resisting forces; since all equations are in the distance domain, the 

derivatives are also with respect to distance. In (48f) and (48g) the initial and final values 

for the state variables are shown where v0 is the initial speed, vf is the final speed, and tf is 
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the final time.  Attempts to solve this DP problem have confirmed that discretizing motor 

torque into more segments achieves better results in terms of energy consumption. The 

discretization used to solve this problem is: Δx = 10 m, Δt = 1 s, Δv = 1 m/s, and Δτ = 5 Nm. 

The resulting optimal speed trajectory of the DP problem (t and v) is fed into the convex 

EMS problem (44) to allow a fair comparison between the DP and convex method for 

optimal speed planning.  

4.4.2 Dynamic Programming Results 

Two scenarios are analyzed: trips of 1000 m and 1500 m with a maximum speed limit of 

100 km/h. The DP method takes 64.8 and 110.3 seconds to determine the solution for the 

two study cases, respectively. The optimal speed trajectories for DP, convex-integrated, 

and convex-successive methods are shown in Figure 4-16. The convex speed trajectories 

have a similar shape to that of DP but have a slower acceleration and reach a higher peak 

speed. As found previously, the integrated method reduces speed near the peak compared 

to the successive method to avoid the lower efficiency regions of fuel cell operation. Table 

4-7 compares the equivalent hydrogen consumptions of these three speed trajectories. Since 

the same EMS method (44) is used to generate the optimal energy allocation, the difference 

in the equivalent hydrogen consumption is only the result of the speed profile differences. 

The results show that the proposed convex-integrated method performs within 1% of the 

DP method, and the convex-successive method performs within 2.6% of the DP method. 

However, the convex methods have a much lower computational burden and thus a faster 

calculation time (0.748s and 0.873s for four iterations, respectively), meaning they can be 

run in real-time.  



144 

 

 

Figure 4-16 Comparison between three speed trajectories generated using the integrated method, 

successive method, and DP method 

Table 4-7 Equivalent Hydrogen Consumption Comparison for DP Method 

Trip Distance 

(m) 
Method 

H2 Consumption 

(g) 

Advantage of DP Method 

(%) 

1000 

DP 7.24 - 

Successive 7.32 1.10 

Integrated 7.30 0.82 

1500 

DP 13.42 - 

Successive 13.77 2.60 

Integrated 13.45 0.22 

 

4.5 Conclusions and Future Work 

This chapter presents novel successive and integrated convex speed planning and 

energy management algorithms to solve the minimum hydrogen consumption problem for 

autonomous FCHEVs. For the proposed convex formulations, an iterative method is used 

to utilize the detailed FC system and motor-inverter efficiency maps in the objective 
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functions. The component models are carefully created and validated according to 

experimentally logged data from the Toyota Mirai. The simulation results show that the 

proposed integrated method, which considers FC system efficiency in the optimization 

objective function for speed planning, leads to 0.19% to 2.37% less hydrogen consumption 

compared to the successive method on short drive cycles with varying accessory loads. On 

the same test cycles, the integrated method uses 10.12% to 21.62% less hydrogen than an 

arbitrary constant-speed profile. Furthermore, when considering real-world logged drive 

cycles, the proposed integrated method reduces hydrogen use by 1.43% to 2.82% just 

through speed optimization, since an optimal EMS is used for both cases. A computational 

effort analysis shows that the proposed algorithms are suitable for real-time implementation 

on autonomous FCHEVs, since each calculation iteration takes between 0.13 s and 0.28 s 

on standard computing resources, depending on the selection of number of segments in 

each window. Finally, a detailed comparison to a DP benchmark formulation, which cannot 

run in real-time, shows that the proposed integrated convex method results in hydrogen use 

within 1% of the optimal DP result. Future work will focus on adding the consideration of 

other vehicles on the road (i.e., fleet-level optimization) and will try to determine its 

influence on optimal speed planning.  
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5.1 Summary 

This research has shown that both external (environmental) conditions and internal 

vehicle conditions should be considered in an algorithm for determining the optimal 

cruising speed of an electric autonomous vehicle. The simulation results show that factors 

such as wind speed, electrical accessory power consumption, and grade have the largest 

effect on the selection of optimal cruising speed, and factors such as ambient temperature, 

battery SOC level, and vehicle mass have smaller effects that are useful in fine-tuning the 

optimal speed. 

A computationally efficient framework is proposed to quickly calculate the energy-

optimal cruising speed and determine near-optimal transition rates when parameters change 

that lead to a new energy-optimal cruising speed. The proposed constant rate acceleration 

results in only a 0.45% higher energy use compared to the ideal offline-calculated DP speed 

transitions over the 2 km test case. 

A convex formulation is developed which performs successive optimizations to 

allow for the use of detailed motor/inverter efficiency maps. A comparison between using 

detailed efficiency maps versus using constant efficiency shows an energy savings of 

0.88% over a 300m driving segment. A Tesla Model S vehicle is modeled and validated to 

real world data. The model is used to drive optimal and non-optimal speed profiles to 

quantify energy savings. Compared to an arbitrary constant-speed profile, the optimal 

profile saves between 0.95% and 4.63% of energy over a 1.6 km driving segment. It is 

found that considering the high accessory losses of autonomous vehicles is critical for 

finding the optimal speed trajectory. Compared to a more variable real-world logged drive 
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cycle, the optimal profile saves between 3.26% and 28.86% of energy. The trade-off 

between execution time and optimality of results is also investigated to further justify the 

ability of real-time implementation. 

To better investigate the optimal speed planning effect on hybrid electric vehicles, novel 

successive and integrated convex speed planning and energy management algorithms are 

proposed to solve the minimum hydrogen consumption problem for autonomous FCHEVs. 

For the proposed convex formulations, an iterative method is used to utilize the detailed 

FC system and motor-inverter efficiency maps in the objective functions. The component 

models are carefully created and validated according to experimentally logged data from 

the Toyota Mirai. The simulation results show that the proposed integrated method, which 

considers FC system efficiency in the optimization objective function for speed planning, 

leads to 0.19% to 2.37% less hydrogen consumption compared to the successive method 

on short drive cycles with varying accessory loads. On the same test cycles, the integrated 

method uses 10.12% to 21.62% less hydrogen than an arbitrary constant-speed profile. 

Furthermore, when considering real-world logged drive cycles, the proposed integrated 

method reduces hydrogen use by 1.43% to 2.82% just through speed optimization, since an 

optimal EMS is used for both cases. A computational effort analysis shows that the 

proposed algorithms are suitable for real-time implementation on autonomous FCHEVs, 

since each calculation iteration takes between 0.13 s and 0.28 s on standard computing 

resources, depending on the selection of number of segments in each window. Finally, a 

detailed comparison to a DP benchmark formulation, which cannot run in real-time, shows 
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that the proposed integrated convex method results in hydrogen use within 1% of the 

optimal DP result.   

5.2 Recommendations for Future Work 

The recommendations for future work focus on the improvement of existing 

algorithms as well as adding to the optimization concept. The first recommendation is to 

implement the suggested frameworks on control hardware such as a microcontroller to 

check the framework in a hardware-in-loop platform (for example RT-LAB) to further 

investigate its performance in real-world conditions and debug any issues. It is vital to test 

the algorithm for reliability-optimality under different test scenarios and compare the 

findings to well known methods such as rule-based methods which are very reliable but not 

always optimal. It is also important to check the availability of used signals in a real-world 

environment and modify the method if there are unavailable signals.  

The second recommendation is to add the consideration of other vehicles on the 

road and study what should change in proposed frameworks to prepare them for a fleet-

level implementation rather than a vehicle-level optimization. In a fleet-level study, there 

are many complex types of signals and communications such as vehicle to vehicle (V2V), 

vehicle to infrastructure (V2I), vehicle to pedestrian (V2P), and vehicle to network (V2N) 

communications. Perception of these signals as well as making decisions based on analysis 

of them is a complex task that should be carefully studied. In some of the previous literature 

on this subject, this problem is tackled using simple constraints in the code where the 

optimal speed planning system is only active when there is a safe distance from vehicle 

ahead.    
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The third recommendation is based on findings of the study on FCHEVs. This study 

can be further investigated with cases where the hybrid system includes supercapacitors 

(with or without batteries) to better illustrate if using more components and additional 

energy storage can have a sizable effect on optimal speed trajectory of an electric vehicle. 

Since adding energy storage and required components will increase the cost, this 

recommendation can be expanded to a cost feasibility study. 

The last recommendation is to add uncertainty into the formulation. Many different 

parameters are uncertain while driving. For example, measurements of the sensors can 

generate noisy data, and the fact that there will be human drivers on the road adds another 

factor that cannot directly be measured. It would be helpful to investigate methods that can 

deal with uncertain systems such as reinforcement learning and evaluate its performance in 

a changing environment. 

 


