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Lay Abstract

Given two classes of functions with bounded capacity, is there a systematic way to

bound the capacity of their composition? We show that this is not generally true.

Capacity of a class of functions is a learning-theoretic quantity that may be used to

explain its sample complexity and generalization behaviour. In other words, bounding

the capacity of a class can be used to ensure that given enough samples, with high

probability, the deviation between training and expected errors is small.

In this thesis, we show that adding a small amount of Gaussian noise to the output

of functions can effectively control the capacity of composition, introducing a general

framework for modular design. We instantiate our results for sigmoid neural networks

and derive capacity bounds that work for networks with large weights. Our empirical

results show that the amount of Gaussian noise required to improve over existing

bounds is negligible.
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Abstract

Let F and H be two (compatible) classes of functions from Rd → Rp and Rp → Rq,

respectively. We observe that even when both F and H have small capacities as

measured by their uniform covering numbers, the capacity of the composition class

H ◦ F = {h ◦ f | f ∈ F , h ∈ H} can become prohibitively large or even unbounded.

To this end, in this thesis we provide a framework for controlling the capacity of

composition and extend our results to bound the capacity of neural networks.

Composition of Random Classes: We show that adding a small amount of

Gaussian noise to the output of F before composing it with H can effectively control

the capacity of H ◦ F , offering a general recipe for modular design. To prove our

results, we define new notions of uniform covering number of random functions with

respect to the total variation and Wasserstein distances. The bounds for composition

then come naturally through the use of data processing inequality.

Capacity of Neural Networks: We instantiate our results for the case of sig-

moid neural networks. We start by finding a bound for the single-layer noisy neural

network by estimating input distributions with mixtures of Gaussians and covering

them. Next, we use our composition theorems to propose a novel bound for the

covering number of a multi-layer network. This bound does not require Lipschitz

assumption and works for networks with potentially large weights.
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Empirical Investigation of Generalization Bounds: We include preliminary

empirical results on MNIST dataset to compare several covering number bounds based

on their suggested generalization bounds. To compare these bounds, we propose a

new metric (NVAC) that measures the minimum number of samples required to

make the bound non-vacuous. The empirical results indicate that the amount of

noise required to improve over existing uniform bounds can be numerically negligible

(i.e., element-wise i.i.d. Gaussian noise with standard deviation 10−240).1

1The source codes are available at https://github.com/fathollahpour/composition_noise

v

https://github.com/fathollahpour/composition_noise


To my beloved family

vi



Acknowledgements

I would like to express my gratitude to my exceptional and inspiring supervisor,

Dr. Hassan Ashtiani. I could have never imagined a supervisor to be as caring,

warmhearted, and supportive as Dr. Ashtiani. He always guided me when I was

stuck and encouraged me whenever I found the right answers. Dr. Ashtiani is a

brilliant advisor and a wonderful mentor who has never hesitated to help me grow as

a researcher. He took a chance on me when I had no prior background in learning

theory and never stopped encouraging me. I am grateful that this is just the beginning

of an enduring collaboration between us.

I would also like to thank my supervisory committee members Dr. Rong Zheng

and Dr. Lingyang Chu who accepted to be a part of my academic journey. Their

keen comments have truly helped me advance in my academic path.

I would like to thank my friends Shayan, Sahand, Sina, Amir-Hossein, Qing, Nima,

Jamil, Ghazal, and Ishaq for joyful friendships and insightful conversations.

I would also like to thank my parents and sister for their endless support and

unconditional help. Special thanks to my kind wife, Narges, who always believed

in me and never stopped encouraging me when I was frustrated by a challenging

research problem. Her support has always been one of the core contributing factors

to my success.

vii



Contents

Lay Abstract iii

Abstract iv

Acknowledgements vii

1 Introduction 1

1.1 Bounding the Capacity of Composition . . . . . . . . . . . . . . . . . 4

1.2 Challenges of Controlling Capacity with Lipschitz Continuity . . . . . 6

1.3 Benefits of Controlling the Capacity of Composition with Additive Noise 7

1.3.1 Controlling the Capacity of Neural Networks with Noise . . . 8

1.4 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.1 Controlling the Capacity Through Noisy Composition . . . . . 10

1.4.2 A Bound on the Capacity of Noisy Neural Networks . . . . . . 11

1.4.3 Empirical Investigation of Generalization Bounds . . . . . . . 12

1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Covering Number and Generalization 16

2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

viii



2.2 Covering Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Can Composition of Classes with Small Covering Numbers Create a

Much Richer Class? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Generalization by Uniform Convergence and Rademacher Complexity 25

2.6 Uniform Convergence by Bounding Covering Number . . . . . . . . . 26

3 Existing Bounds on the Covering Number of Neural Networks 28

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Covering Number Bounds . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.2 Norm-based Covering Number Bound . . . . . . . . . . . . . . 35

3.2.3 Pseudo-dim-based Covering Number Bound . . . . . . . . . . 36

3.2.4 Lipschitzness-based Covering Number Bound . . . . . . . . . . 37

3.2.5 Spectral Covering Number Bound . . . . . . . . . . . . . . . . 38

4 Covering Random Hypotheses 40

4.1 Notations and Definitions . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Covering Number for Classes of Random Hypotheses . . . . . . . . . 42

4.3 Bounding the Uniform Covering Number . . . . . . . . . . . . . . . . 45

5 Covering Numbers for Neural Networks 65

5.1 Uniform TV Covers for Single-Layer Neural Networks . . . . . . . . . 67

5.2 Uniform Covering Numbers for Deeper Networks . . . . . . . . . . . . 81

5.3 Analyzing Different Covering Number Bounds . . . . . . . . . . . . . 89

ix



5.3.1 Qualitative Comparison of Bounds on the Logarithm of Cover-

ing Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 NVAC: A Metric for Comparing Generalization Bounds 92

6.1 Estimating NVAC Using the Covering Number . . . . . . . . . . . . . 94

7 Experiments 97

7.1 Overview of Results and Discussion . . . . . . . . . . . . . . . . . . . 97

7.2 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8 Conclusion 103

8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A Miscellaneous Facts 106

B TV distance of Composition of a Class with Noise 109

C Techniques to Estimate Smooth Densities with Mixtures of Gaus-

sians 111

x



List of Figures

7.1 The left two graphs depict NVAC of different generalization bounds as

a function of the number of hidden layers and width of the network.

The Norm-based approach is excluded because of its excessively high

NVAC (see Section 7.2). The third graph plots NVAC against log10(σ)

(σ is standard deviation of noise) for the two best approaches. The

rightmost graph plots the train/test 0-1 losses for different values of σ.

The gaps between the train and test losses are shown for σ = 0, 0.3. . 99

7.2 NVAC of different generalization bounds as a function of the number

of hidden layers and width of the network. . . . . . . . . . . . . . . . 101

xi



List of Tables

5.1 Covering number of a T -layer sigmoid network from Rd to RpT defined

by F = NET[pT−1, pT ] ◦ . . . ◦ NET[p1, p2] ◦ NET[d, p1]. Corollary 47

is computed on the T -layer noisy sigmoid network. ∥X∥F denotes the

normalized Frobenious norm of input matrix X ∈ Rd×m (see Chapter 3

for more details). The definition of other quantifiers used in these

bounds can be found in Table 5.2. . . . . . . . . . . . . . . . . . . . . 89

5.2 Definition of quantifiers used in Table 5.1. Here, Wi ∈ Rpi−1×pi denotes

the weight vector associated with NET[pi−1, pi] for 2 ≤ i ≤ T andW1 ∈

Rd×p1 is the weight vector associated with NET[d, p1]. It is noteworthy

that the total number of parameters of the network, dp1+
∑T

i=2 pi.pi−1,

is always smaller than pTWrvo. . . . . . . . . . . . . . . . . . . . . . . 90

xii



Chapter 1

Introduction

Generalization properties of a class of functions (e.g., the class of all neural networks

with a certain architecture) is perhaps one of the most compelling concepts that have

been studied in the learning literature. Informally, a class of functions generalizes

well if given a sufficient number of samples, with high probability, the training and

(actual) expected errors of any function in the class are close to each other. We

usually consider the data to be sampled from an underlying distribution, which is

typically unknown. Therefore, we are ultimately interested in the error of functions

on a randomly selected sample from the distribution, i.e., the expected error of the

function on a sample with respect to the underlying distribution. On the other hand,

our resources are limited and we can only draw a limited number of samples from the

distribution to select the best hypothesis (with respect to expected error) from the

given class of functions. Consequently, we are interested in studying the generalization

of a class of functions in order to find out how well we can predict the expected error

of a function in the class from its training error on a set with a sufficient number

of samples. This motivates the study of the capacity of a function class, which is
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a learning-theoretic quantity that can be used to ensure generalization. Examples

of capacity measures include VC-dimension, fat-shattering dimension, and (uniform)

covering numbers associated with the class of functions (see Vapnik (1999); Anthony

and Bartlett (2009); Shalev-Shwartz and Ben-David (2014); Mohri et al. (2018) for

an introduction).

From a bound on the capacity of a hypothesis class one can derive a bound on the

minimum number of samples required to guarantee uniform convergence. Informally

speaking, a hypothesis class satisfies uniform convergence property if for every func-

tion in the class, with high probability, the expected error is close to the training error.

The uniform convergence property is only satisfied if we have a sufficient number of

samples for training. Obviously, as we try to close the gap between the training and

expected errors with higher accuracy, we need more samples for training to satisfy

the uniform convergence. We defer the exact definition of uniform convergence to

Chapter 2; see Definition 13.

We refer to the minimum number of samples required to ensure uniform conver-

gence with respect to a certain accuracy (ϵ) and probability (1 − δ) as the sample

complexity of uniform convergence and usually denote it by mUC(ϵ, δ). With uniform

convergence guaranteed, it would be reasonable to select a hypothesis that achieves

the smallest error on a training set with a sufficient number of samples, compared to

the sample complexity of uniform convergence for that class. In this case, the uniform

convergence implies that the expected error is also comparable to the training error,

which in turn concludes generalization. Studying uniform convergence and its sample

complexity is by now a mature field and we refer the reader to Vapnik (1999); Shalev-

Shwartz and Ben-David (2014); Mohri et al. (2018) for a more detailed discussion.

2
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The above discussion suggests that controlling the capacity of a class of functions

results in controlling the sample complexity required to ensure uniform convergence

and, thus, generalization with respect to a certain accuracy and probability. The

capacity of a class of functions is closely related to its “richness”. For instance, the

capacity of the class of linear classifiers has a linear relationship with the dimension

and as the dimension increases so does the capacity. Moreover, the capacity of neural

networks can be bounded based on the number of parameters or magnitude of weights.

Although by increasing the number of parameters of neural networks (e.g., by adding

more hidden layers) the training error may decrease, the capacity can potentially

increase. Consequently, guaranteeing that the expected error is also small and close

to the training error will become more challenging and requires more samples.

Taking the above-mentioned relation between capacity and generalization into

account, we are interested in studying the capacity of composition of two function

classes. More specifically, we want to know whether there is a way to bound the

capacity of composition of two bounded-capacity function classes. Being able to

control the capacity of composition is useful, as it offers a modular approach to

design sophisticated classes (and therefore learning algorithms) out of simpler ones.

Moreover, providing a general way to control the capacity of composition makes it

easy to extend the classes of functions that are already known to have bounded

capacity. Consequently, it is possible to build more complex classes that comply with

the requirements of different learning problems while ensuring generalization.

A remarkable example that motivates the study of composition is the capacity

of neural networks, where the composition of shallow neural networks can result in

deeper networks. Particularly, provided that we have tools for bounding the capacity

3
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of composition, we can simply bound the capacity of a deep neural network based on

the capacity of smaller networks (e.g., even single-layer neural networks).

Although we will later see that it is possible to bound the capacity of composition

under Lipschitz continuity, the acquired upper bound is often prohibitively large.

Therefore, a different approach is needed and, to the best of our knowledge, an

“effective” general way to control the capacity of composition based on the capacities

of individual classes has not yet been offered. Thus, the starting point for this thesis

is to study the capacity of composition of function classes in order to offer a general

framework for controlling the capacity of composition. We start by finding examples

where the composition of two classes with bounded capacity results in a class with

large or even unbounded capacity; see Propositions 8, and 9. On the other hand, we

show that by adding a small amount of Gaussian noise to the output of first class, the

capacity of composition can be controlled. We prove our results by introducing a new

notion of capacity that is defined with respect to random functions and variables. We

will further extend our results to study the capacity of (deep) neural networks.

In the remainder of this chapter, we first provide a more detailed background

on the capacity of composition of function classes and its benefits in analyzing the

capacity of neural networks. We then turn into discussing our contributions, which

include a general framework for composition (by defining new notions of capacity for

random functions), novel bounds on the capacity of neural networks, and an empirical

investigation of generalization bounds.

1.1 Bounding the Capacity of Composition

We start by defining the composition of two (classes of) functions.

4
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Definition 1 (Composition of two hypothesis classes). We denote by h◦f the function

h(f(x)) (assuming the range of f and the domain of h are compatible). The composi-

tion of two hypothesis classes F and H is defined by H◦F = {h◦f | h ∈ H, f ∈ F}.

Let F be a class of functions from X to Y , and H a class of functions from Y

to Z. Further, Assuming that F and H have bounded capacity, can we bound the

capacity of their composition, i.e., H ◦ F? To be concrete, we want to know if the

uniform covering number (as defined in Definition 6) of H ◦ F can be “effectively”

bounded as a function of the uniform covering numbers of F and H.

The answer to the above questions is true when F is a set of binary valued func-

tions (i.e., Y = {0, 1} in the above). More generally, the capacity of the composition

class (as measured by the uniform covering number) can be bounded as long as |Y|

is relatively small (see Proposition 7). But what if Y is an infinite set, such as the

natural case of Y = [0, 1]? Unfortunately, in this case the capacity of H ◦ F (as

measured by the covering number) can become unbounded (or excessively large) even

when both F and H have bounded (or small) capacities; see Propositions 8 and 9.

Given the above observations, we ask whether there is a general and systematic

way to control the capacity of the composition of bounded-capacity classes. More

specifically, we are interested in the case where the domain sets are multi-dimensional

real-valued vectors (e.g., X ⊂ Rd, Y ⊂ Rp, and Z ⊂ Rq). The canonical examples of

such classes are those associated with neural networks.

5
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1.2 Challenges of Controlling Capacity with Lips-

chitz Continuity

As discussed earlier, a common approach to control the capacity of H◦F is assuming

that H and F have bounded capacity and H consists of Lipschitz functions (with

respect to appropriate metrics). Then the capacity of H ◦F can be bounded as long

as H has a small “global cover” (see Remark 32). For the sake of completeness we

give the definition of Lipschitz continuity in the following:

Definition 2 (Lipschitz Continuous Function). Let f : X → Y be a function from

X to Y. Further let (X , ρX ) and (Y , ρY) be two metric spaces. We say that f is

Lipschitz continuous if there exists a constant L such that for any x1, x2 ∈ X we have

ρY (f(x1), f(x2)) ≤ LρX (x1, x2). We sometimes refer to L as the Lipschitz constant

of function f .

It is worth mentioning that the Lipschitz constant of functions in H affects the

accuracy of the cover required for F . As this constant becomes larger we need a

“finer” (and probably larger) cover for the class F to achieve the same accuracy in

covering H ◦ F .

The above observation has been used to bound the capacity of neural networks

in terms of the magnitude of their weights (Bartlett, 1996). More generally, the

capacity of neural networks that admit Lipschitz continuity can be bounded based

on their group norms and spectral norms (Neyshabur et al., 2015; Bartlett et al.,

2017; Golowich et al., 2018). One benefit of this approach is that the composition of

Lipschitz classes is still Lipschitz (although with a larger Lipschitz constant).

While building classes of functions from composition of Lipschitz classes is useful,

6
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it does not necessarily work as a general recipe. In fact, some commonly used classes

of functions do not admit a small Lipschitz constant. Consider the class of single-layer

neural networks defined over bounded input domain [−B,B]d and with the sigmoid

activation function. While the sigmoid activation function itself is Lipschitz, the

Lipschitz constant of the network depends on the magnitude of the weights. Indeed,

we empirically observe that this can turn Lipschitzness-based bounds on the covering

number of neural networks worse than classic VC-based bounds.

Another limitation of using Lipschitz classes is that they cannot be easily “mixed

and matched” with other (bounded-capacity) classes. For example, suppose F is a

class of L-Lipschitz functions (e.g., multi-layer sigmoid neural networks with many

weights but small magnitudes). Also, assume H is a non-Lipschitz class with bounded

uniform covering number (e.g., one layer sigmoid neural network with unbounded

weights). Then although both F and H have bounded capacity, H◦F is not Lipschitz

and its capacity cannot be generally controlled.

1.3 Benefits of Controlling the Capacity of Com-

position with Additive Noise

Surprisingly, we will show that adding an even negligible amount of Gaussian noise

to the output of functions before composing them can effectively control the capacity

of their composition based on their capacities. In this case, there is no need for the

functions in the second class to have a bounded Lipschitz constant and the capacity

of composition can be bounded even for functions with large or unbounded Lipschitz

constants. Since adding noise to the output of functions results in classes of random

7
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functions, it is more reasonable to analyze their covering numbers with respect to

the metrics between distributions as opposed to the conventional metrics such as

Euclidian distances.

1.3.1 Controlling the Capacity of Neural Networks with Noise

In contrast to the most of well-known bounds on the capacity (i.e., covering number) of

neural networks, adding noise to the output of layers in a network makes it possible

to bound its capacity even if the network is constituted of layers with unbounded

weights. Additionally, it would be possible to reuse existing architectures that are

proven to have a bounded capacity and compose them with several other layers to

create a deeper network with bounded capacity. In order to achieve this, it is only

enough to add a small amount of Gaussian noise to the output of the known network

and then compose it with several other layers of noisy networks. Given these facts, a

significant part of this thesis is dedicated to studying the capacity of (noisy) neural

networks (through composition) and their generalization bounds, both theoretically

and empirically.

As mentioned earlier, our tools for controlling the capacity of composition enables

a modular analysis, which can be used to bound the capacity of deep networks based

on the capacity of single-layer networks. In particular, we will find a novel covering

number bound for the classes of single-layer neural networks that have some Gaussian

noise added to their outputs. We then use our composition tools for noisy functions

to obtain covering number bounds for deeper networks. Our empirical investigations

suggest that our proposed bound outperforms other well-known covering number

bounds for neural networks. More details about our contributions are discussed in

8
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Section 1.4.

Adding various types of noise have been empirically shown to be beneficial in

training neural networks. In dropout noise (Srivastava et al., 2014) (and its variants

such as DropConnect (Wan et al., 2013)) the output of some of the activation functions

(or weights) are randomly set to zero. These approaches are thought to act as a

regularizer. Another example is Denoising AutoEncoders (Vincent et al., 2008), which

adds noise to the input of the network while training stacked autoencoders.

There has been efforts on studying the theory behind the effects of noise in neural

networks. Jim et al. (1996) study the effects of different types of additive and multi-

plicative noise on convergence speed and generalization of recurrent neural networks

(RNN) and suggest that noise can help to speed up the convergence on local minima

surfaces. Lim et al. (2021) formalize the regularization effects of noise in RNNs and

show that noisy RNNs are more stable and robust to input perturbations. Wang

et al. (2019) and Gao and Zhou (2016) analyze the networks with dropout noise and

find bounds on Rademacher complexities that are dependent on the product of norms

and dropout probability. It is noteworthy that our techniques and results are quite

different, and require a negligible amount of additive noise to work, while existing

bounds for dropout improve over conventional bounds only if the amount of noise

is substantial. Studying dropout noise with the tools developed in this paper is a

direction for future research.

1.4 Summary of Contributions

In the following, we will state a summary of our contributions. We start by discussing

our approach for composition of classes of function. We continue by introducing our

9
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contributions to finding covering number bounds for neural networks and empirical

investigations of generalization bounds.

1.4.1 Controlling the Capacity Through Noisy Composition

As we already discussed, finding a bound on the capacity of a class of functions is

closely related to obtaining generalization bounds. In order to allow for a modular

design we initially tried to answer the following question: Given two classes of func-

tions with bounded capacity, is there a general way to bound the capacity of their

composition? We observed that, in general, the answer to above question is only true

when the output of the first class of functions has a finite range (e.g., binary-valued

functions). We prove this claim in Proposition 7. In contrast, we provide examples

of classes of functions with bounded capacity such that their composition results in a

class with a large or even unbounded capacity. These examples are provided in Propo-

sitions 8 and 9. These observations motivate us to search for a novel, systematic, and

generic approach to control the capacity of composition.

We take a new approach for composing classes of functions. A key observation

that we make and utilize is that adding a little bit of noise while “gluing” two classes

can help in controlling the capacity of their composition.

In order to prove that noise can control the capacity, we define and study new

notions of uniform covering number for random functions with respect to total varia-

tion and Wasserstein metrics. While the conventional definitions of covering number

only consider the number of different behaviours/values that a class of functions can

generate on a finite set of input points, our notion of covering number considers the

number of different behaviours generated on a set of input distributions. In this novel

10
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notion of covering number we consider the distances between distributions after be-

ing mapped by a (random) function, in contrast to the previous notions of covering

number that consider conventional metrics such as Euclidian distance.

The bounds for composition then come naturally through the use of data process-

ing inequality for the total variation metric. We will see that to bound the capacity

of H◦F we usually require a stronger covering number for H with respect to the set

of all random variables that admit a generalized density function while for F a cover

with respect to random variables associated with Dirac delta measures is sufficient.

We also present technical results to relate the bounds on uniform covering numbers

with respect to Wasserstein, total variation, and ∥.∥2 metrics to each other.

1.4.2 A Bound on the Capacity of Noisy Neural Networks

We will exploit our composition tools to find a covering number bound for noisy

neural networks. Informally, the noisy neural network computes the noisy version of

outputs at each hidden layer (by adding a small amount of Gaussian noise) and takes

an expectation at output layer to make the output deterministic. Using the tools

that we provide for composition of noisy classes and for turning bounds on the total

variation covering numbers into bounds on ∥.∥2 covering numbers, it is then easy to

find a covering number for deep noisy neural networks based on the total variation

covering number of a single-layer network. The problem of finding a covering number

for the network will, therefore, boil down to finding a total variation covering number

for the class of single-layer noisy neural networks.

As described above, to fully utilize our composition tools for neural networks, we

need to bound the stronger notion of covering number for the class of single-layer

11
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networks. This cover is with respect to the set of all random variables that admit

a generalized density function and its size is unbounded for deterministic function

classes. However, we show that we can bound this covering number if some Gaussian

noise is added to the output of functions. Consequently, we present a technical

lemma to estimate smoothed densities (by adding Gaussian noise) with mixtures

of Gaussians. We then show how to find a cover for mixtures of Gaussians with

respect to Wasserstein metric. Using our results to turn a Wasserstein cover into

a total variation cover will conclude the bound on covering number of the class of

single-layer noisy neural networks. The bound for deeper networks are then found

using composition theorems for total variation distance. Finally, this bound will be

converted into a bound on ∥.∥2 covering number of the network by using our results

for turning the total variation cover of a random function into the ∥.∥2 cover of its

expectation.

1.4.3 Empirical Investigation of Generalization Bounds

We want to compare different covering number bounds in the literature with our

proposed covering number bound based on their suggested generalization bounds.

Comparing generalization bounds is challenging in practice since most of the cover-

ing number bounds result in vacuous generalization bounds. Therefore, we introduce

a quantitative metric (NVAC) to measure the minimum number of samples required

to obtain non-vacuous generalization bounds. We then train several neural networks

on MNIST dataset and show that our proposed covering number bound achieves

the smallest NVAC, compared to several well-known covering number bounds in lit-

erature. Further, we show that even a small amount of Gaussian noise (standard

12
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deviation of ≈ 10−240) is sufficient to improve over other covering number bounds

while enabling the noisy analysis.

1.5 Thesis Organization

• Sections 2.1 and 2.2 provide basic notations and definitions of (uniform) covering

numbers.

• Section 2.3 includes the observations that composing real-valued/continuous

range functions can be more challenging than binary-valued/finite range func-

tions (Propositions 7, 8, and 9).

• The remainder of Chapter 2 is dedicated to provide a background on uniform

convergence and the relation between uniform covering numbers and general-

ization bounds.

• Chapter 3 is dedicated to present several different covering number bounds in

literature. We present these bounds for classification with ramp loss. Some of

these bounds are originally derived for real-valued networks. Therefore, we also

present a lemma to turn the covering number bounds for real-valued layers into

bounds for multi-output layers.

• In Chapter 4, we define a new notion of covering number for random functions

(Definition 29) with respect to total variation (TV) and Wasserstein distances.

• The bulk of our technical results appear in Section 4.3. These include a com-

position result for random classes with respect to the TV distance (Lemma 37)

that is based on the data processing inequality. We also show how one can

13
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translate TV covering numbers to conventional ∥.∥2 counterparts (Theorem 36)

and vice versa (Corollary 40). A useful tool is Theorem 39 which translates

Wasserstein covers to TV covers when a Gaussian noise is added to the output

of functions.

• Section 5.1 provides a stronger type of covering number for classes of single-layer

noisy neural networks with the sigmoid activation function (Theorem 43).

• In Section 5.2, we use the tools developed in the previous sections and prove a

novel bound on the ∥.∥2 covering number of deep neural networks (Theorem 46).

We then instantiate our results (Corollary 47) and qualitatively compare it

with several other covering number bounds in Section 5.3. We also extend our

bound in Corollary 47 to a covering number bound for deep networks with

respect to classification with ramp loss in Corollary 48. We use this corollary

to quantitatively compare our results with other covering number bounds based

on their suggested generalization bounds.

• In Chapter 6 we define NVAC, a metric for comparing generalization bounds

(Definition 51) based on the number of samples required to make the bound

non-vacuous.

• We offer some preliminary experiments, comparing various generalization bounds

in Chapter 7. We observe that even a negligible amount of Gaussian noise can

improve NVAC over other approaches without affecting the accuracy of the

model on train or test data.

• Finally, we present a conclusion in Chapter 8 and discuss some future work.

14
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• In Appendix A we present some useful lemmas that we use throughout the

paper to prove our results.

• We introduce a lemma in Appendix B that relates the total variation distance

between noisy versions of random variables to their Wasserstein distance.

• Appendix C is dedicated to providing technical lemmas for estimating random

variables that have some Gaussian noise added to them with mixtures of Gaus-

sians. These lemmas will be used in finding covering number bounds for noisy

single-layer neural networks.

15



Chapter 2

Covering Number and

Generalization

In the case of neural networks, standard Vapnik-Chervonenkis-based complexity bounds

have been established (Baum and Haussler, 1988; Maass, 1994; Goldberg and Jerrum,

1995; Vidyasagar, 1997; Sontag, 1998; Koiran and Sontag, 1998; Bartlett et al., 1998;

Bartlett and Maass, 2003; Bartlett et al., 2019). These offer generalization bounds

that depend on the number of parameters of the neural network. There is also an-

other line of work that aims to prove a generalization bound that mainly depends on

the norms of the weights and Lipschitz continuity properties of the network rather

than the number of parameters (Bartlett, 1996; Anthony and Bartlett, 2009; Zhang,

2002; Neyshabur et al., 2015; Bartlett et al., 2017; Neyshabur et al., 2018; Golowich

et al., 2018; Arora et al., 2018; Nagarajan and Kolter, 2018; Long and Sedghi, 2020).

We provide a more detailed discussion of some of these results in Chapter 3. Finally,

we refer the reader to Anthony and Bartlett (2009) for an introductory discussion on

this subject.

16
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Followed by these lines of works, in this chapter, we will define uniform covering

numbers, which are quantities that are used for measuring the capacity of a class

of functions. Next, we introduce Propositions 7, 8, and 9 to show that composing

real-valued functions while controlling the capacity can be more challenging than

composing functions with finite ranges. We then give an overview of the relation

between uniform covering number and generalization gap. In particular, we will

define ramp loss for classification and show that the expected 0-1 loss for classification

is always smaller than the expected ramp loss (Lemma 12). Then, we present the

definitions of uniform convergence and empirical Rademacher complexity and state

Theorem 17 as a way to turn a bound on ∥.∥ℓ22 covering number (see Definition 6) to

a bound on generalization gap with respect to ramp loss.

2.1 Notations

X ⊆ Rd and Y ⊆ Rp denote two (domain) sets. For x ∈ X , let ∥x∥1, ∥x∥2, and ∥x∥∞

denote the ℓ1, ℓ2, and ℓ∞ norm of the vector x, respectively. We denote the cardinality

of a set S by |S|. The set of natural numbers smaller or equal to m are denoted by

[m]. A hypothesis is a Borel function f : Rd → Rp, and a hypothesis class F is a

set of hypotheses. For a function f and an input set S = {x1, . . . , xm}, we define

the restriction of f to S as f|S = (f(x1), . . . , f(xm)). Therefore, the restriction of the

class F to S can be denoted as F|S = {f|S : f ∈ F}.

17
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2.2 Covering Number

In this section, we define the standard notion of uniform covering numbers for hy-

pothesis classes. Intuitively, classes with larger uniform covering numbers have more

capacity/flexibility, and therefore require more samples to be learned.

Definition 3 (Covering number). Let (X , ρ) be a metric space. We say that a set

A ⊂ X is ϵ-covered by a set C ⊆ A with respect to ρ, if for all a ∈ A there exists

c ∈ C such that ρ(a, c) ≤ ϵ. The cardinality of the smallest set C that ϵ-covers A is

denoted by N(ϵ, A, ρ) and it is referred to as the ϵ-covering number of A with respect

to metric ρ.

Definition 4 (Extended metrics). Let (X , ρ) be a metric space. Let u = (a1, . . . , am),

v = (b1, . . . , bm) ∈ Xm for m ∈ N. The ∞-extended and ℓ2-extended metrics over Xm

are defined by ρ∞,m(u, v) = sup1≤i≤m ρ(ai, bi) and ρℓ2,m(u, v) =
√

1
m

∑m
i=1(ρ(ai, bi))

2,

respectively. We drop m and use ρ∞ or ρℓ2 if it is clear from the context.

Remark 5. The extended metrics are used in Definition 6 and capture the distance

of two hypotheses on an input sample of size m. A typical example of ρ is the Eu-

clidean distance over Rp, for which the extended metrics are denoted by ∥.∥∞,m
2 and

∥.∥ℓ2,m2 . Unlike ∞-extended metric, the ℓ2-extended metric is normalized by 1/
√
m,

and therefore we have ρℓ2,m(u, v) ≤ ρ∞,m(u, v) for all u, v ∈ Xm.

Definition 6 (Uniform covering number). Let (Y , ρ) be a metric space and F a hy-

pothesis class of functions from X to Y. For a set of inputs S = {x1, x2, . . . , xm} ⊆ X ,

we define the restriction of F to S as F|S = {(f(x1), f(x2), . . . , f(xm)) : f ∈ F} ⊆

Ym. The uniform ϵ-covering numbers of hypothesis class F with respect to metrics

ρ∞, ρℓ2 are denoted by NU(ϵ,F ,m, ρ∞) and NU(ϵ,F ,m, ρℓ2) and are the maximum
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values of N(ϵ,F|S, ρ
∞,m) and N(ϵ,F|S, ρ

ℓ2,m) over all S ⊆ X with |S| = m, respec-

tively.

It is well-known that the Rademacher complexity and therefore the generalization

gap of a class can be bounded based on logarithm of the uniform covering number.

For the sake of brevity, we defer those results to Section 2.6. Taking this into account,

our main object of interest is bounding (logarithm of) the uniform covering number.

2.3 Can Composition of Classes with Small Cov-

ering Numbers Create a Much Richer Class?

In this section, we introduce our observation that bounding the covering number of

composition can become a challenging task in general. Particularly, the following

propositions show that there is a stark difference between classes of functions with

finite range versus continuous valued functions when it comes to bounding the uniform

covering number of composite classes.

The first proposition shows that it is possible to bound the capacity of H ◦ F

based on the capacities of F and H whenever F has a finite range.

Proposition 7. Let Y be a finite domain (|Y| = k) and ρ(y, ŷ) = 11{y ̸= ŷ} be

a metric over Y. For any class F of functions from X to Y and any class H of

functions from Y to Rd we have NU(ϵ,H ◦ F ,m, ∥.∥∞2 ) ≤ N1.NU(ϵ,H,mN1, ∥.∥∞2 )

where N1 = NU(0.5,F ,m, ρ∞).

Proof. Fix an input set S = {x1, . . . , xm}. Let C = {f̂i|S | f̂i ∈ F , i ∈ [r1]} be 0.5-

cover for F|S with respect to ρ∞. Therefore, given any f|S ∈ F|S there exists f̂i|S ∈ C
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such that

ρ∞
(
(f(x1), . . . , f(xm)), (f̂i(x1), . . . , f̂i(xm))

)
≤ 0.5 (2.3.1)

Since ρ
(
f(x), f̂i(x)

)
= 11{f(x) ̸= f̂i(x)}, Equation 2.3.1 suggests that f(xk) = f̂i(xk)

for any k ∈ [m]. Let S ′ = {f̂i(xk) | i ∈ [r1], k ∈ [m]} and C ′ = {ĥj |S′ | ĥj ∈ H, j ∈

[r2]} be an ϵ-cover for H|S′ with respect to ∥.∥∞2 . We know that |S ′| ≤ mr1. Denote

Q̂ = {ĥj ◦ f̂i | i ∈ [r1], j ∈ [r2]}. We will prove that Q̂|S is an ϵ-cover for (H ◦ F)|S

with respect to ∥.∥∞2 . Consider (h ◦ f)|S = (h(f(x1)), . . . , h(f(xm))) ∈ (H ◦ F)|S.

Since C is a 0.5-cover for F|S, from equation 2.3.1, we know that there exists f̂i ∈ F

such that f(xk) = f̂i(xk) for any k ∈ [m]. On the other hand, for any k ∈ [m], f̂i(xk)

is an element of S ′, consequently, there exists ĥj ∈ H such that

∥∥∥(h(f̂i(x1)), . . . , h(f̂i(xm)))− (ĥj(f̂i(x1)), . . . , ĥj(f̂i(xm)))
)∥∥∥∞

2

=
∥∥∥(h(f(x1)), . . . , h(f(xm)))− (ĥj(f̂i(x1)), . . . , ĥj(f̂i(xm)))

)∥∥∥∞
2

≤ ϵ

From the above equation, we can conclude that (H◦F)|S is ϵ-covered by Q̂|S. Clearly,∣∣∣Q̂|S

∣∣∣ ≤ r1r2 and we know that mr1 ≤ mN1. As a result, N(ϵ,H|S′ , ∥.∥∞2 ) ≤

NU(ϵ,H,mr1, ∥.∥∞2 ) ≤ NU(ϵ,H,mN1, ∥.∥∞2 ). This result holds for any input set

S ⊂ Xm with |S| = m, therefore, it follows that

NU(ϵ,H ◦ F ,m, ∥.∥∞2 ) ≤ N1.NU(ϵ,H,mN1, ∥.∥∞2 ).

The next proposition states that it is possible that the capacity of H◦F becomes
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unbounded even if both F and H have bounded capacity.

Proposition 8. Let F = {fw(x) = wx | w ∈ (0, 1), x ∈ (0, 1)} be a class of functions

and H = {h(y) = 1/y | y ∈ (0, 1)} be a singleton class. Then, NU(ϵ,F ,m, ∥.∥ℓ22 ) ≤

⌈2/ϵ2⌉ and NU(ϵ,H,m, ∥.∥ℓ22 ) = 1, but NU(ϵ,H ◦ F ,m, ∥.∥ℓ22 ) is unbounded.

Proof. The proof for the bound of NU(ϵ,F ,m, ∥.∥ℓ22 ) can be found under Theorem 3 in

Zhang (2002). Since H is a singleton class, it is easy to verify NU(ϵ,H,m, ∥.∥∞2 ) = 1.

We prove that the covering number of H ◦ F is unbounded by contradiction. Let

S = {x1, . . . , xm} ∈ (0, 1)m be an input set where 0 < x1 ≤ . . . ≤ xm. Denote

C = {(h ◦ f̂i)|S = ( 1
ŵix1

, . . . , 1
ˆwixm

) | f̂i ∈ F , i ∈ [r]} to be an ϵ-cover for (H ◦ F)|S

where |C| = r1 is finite. We know that ŵi > 0 for i ∈ [r]. Denote w∗ = mini∈[r] ŵi.

Take any w <
1

1
w∗ + x1ϵ

≤ 1
1
ŵi

+ x1ϵ
and denote the corresponding function by f ∈ F ,

i.e., f(x) = wx. we know that for every i ∈ [r]

1

wx1

>
1

ŵix1

+ ϵ.

This means that ∥∥∥∥( w

x1

, . . . ,
w

xm

)
−
(
ŵi

x1

, . . . ,
ŵi

xm

)∥∥∥∥
2

=

√√√√ 1

m

m∑
i=1

(
w

x1

− ŵi

x1

)2

≥ ϵ

Therefore, there is no (h ◦ f̂i)|S ∈ C such that
∥∥∥(h ◦ f̂i)|S − (h ◦ f)|S

∥∥∥ℓ2
2

≤ ϵ, which

contradicts with the assumption that C is an ϵ-cover for (H ◦ F)|S.

Finally, the following proposition shows that even if F and H have a bounded

range and even if we bound their covering numbers with respect to higher accuracy
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compared to the accuracy that is desired for covering H ◦ F , the capacity of H ◦ F

can still become exponentially large.

Proposition 9. For every ϵ′ > ϵ > 0, there exist hypothesis classes F and H such

that for every m we have NU(ϵ,H,m, ∥.∥∞2 ) ≤ m+ 1 and NU(ϵ,F ,m, ∥.∥∞2 ) = 1, yet

NU(ϵ
′,H ◦ F ,m, ∥.∥∞2 ) ≥ 2m.

Proof. Let Fγ,ϵ denote the class of all functions fγ,ϵ from X to R such that |f(x)−x| ≤

γ for any x ∈ X , where γ ≤ ϵ/2. Fix an input set S = {x1, . . . , xm}. We know that

given any fγ,ϵ, f
′
γ,ϵ ∈ Fγ,ϵ and i ∈ [m],

∥fγ,ϵ(xi)− f ′
γ,ϵ(xi)∥ ≤ ∥fγ,ϵ(xi)− xi∥+ ∥xi − f ′

γ,ϵ(xi)∥ ≤ ϵ.

Therefore, it is easy to conclude that NU(ϵ,Fγ,ϵ,m, ∥.∥∞2 ) = 1. LetH to be the class of

all threshold functions ha from R to [0, 1], where ha(x) = 11{x ≥ a}. Consider an input

set S = {x1, . . . , xm} where x1 ≤ . . . ≤ xm. Given any k ∈ [m] we can find a ∈ R

such that xi < a for 1 ≤ i ≤ k and xi ≥ a for k < i ≤ m, e.g., set a = (xk + xk+1)/2.

We also know that for any i, j ∈ [m], ha(xi) ̸= ha(xj) only if xi < a ≤ xj. Therefore,

it is easy to verify that H|S = m + 1 and that for any ha|S and ha′ |S in H|S we have∥∥ha′ |S − ha|S
∥∥
2
≥ 1. We can therefore conclude that NU(ϵ,H,m, ∥.∥∞2 ) = m + 1.

Next, consider the class H ◦ Fγ,ϵ. We prove that NU(ϵ
′,H ◦ Fγ,ϵ,m, ∥.∥∞2 ) = 2m.

We first mention the fact that given any (y1, . . . , ym) and (y′1, . . . , y
′
m) in {0, 1}m if

there exists i ∈ [m] such that yi ̸= y′i, then ∥(y′1, . . . , y′m)− (y1, . . . , ym)∥2 ≥ 1. Also,

the range of the functions in H◦F is [0, 1], therefore, we are only interested in ϵ′ < 1.

In the following, we prove that for any m there exists a set S ′ with |S ′| = m such

that the restriction of H ◦ F to set S ′ has 2m elements and the result follows.
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Consider the input set S ′ = {z1, . . . , zm} such that 0 ≤ z1 < . . . < zm ≤ ϵ/2.

Given any (y1, . . . , ym) ∈ {0, 1}m we map (z1, . . . , zm) to (e1, . . . , em) as follows: for

any i ∈ [m] if yi = 1 we define ei = zi + ϵ/2, otherwise we define ei = zi − ϵ/2. This

mapping can be done by some function fγ,ϵ from Fγ,ϵ since for any i ∈ [m] we have

|ei − zi| = ϵ/2. Let a = ϵ/4. We know that ha(ei) is 1 if yi = 1 and 0 otherwise.

Therefore, we can conclude that for every element (y1, . . . , ym) in {0, 1}m, there exists

(ha ◦fγ,ϵ)|S′ in (H◦Fγ,ϵ)|S′ such that (H◦Fγ,ϵ)|S′ = (y1, . . . , ym). Since |{0, 1}m| = 2m

and for any two distinct elements (y1, . . . , ym) and (y′1, . . . , y
′
m) in (H◦Fγ,ϵ)|S′ we have

∥(y1, . . . , ym)− (y′1, . . . , y
′
m)∥2 ≥ 1, we can say that N(ϵ′, (H ◦ Fγ,ϵ)|S, ∥.∥∞,m

2 ) = 2m.

Therefore,

NU(ϵ
′,H ◦ Fγ,ϵ,m, ∥.∥∞2 ) = sup

|S|=m

{
N(ϵ′, (H ◦ Fγ,ϵ)|S), ∥.∥∞,m

2 )
}
≥ 2m.

2.4 Preliminaries

For any x ∈ R, the ramp function rγ with respect to a margin γ is defined as

rγ(x) =


0 x ≤ −γ,

1 + x
γ

[−γ, 0],

1 γ > 0.

Let x = [x(1), . . . , x(k)]⊤ ∈ Rk be a vector and Y = [k]. The margin function M :

Rk × Y → R is defined as M(x, i) := x(i) − maxj ̸=i x
(j). Next, we define the ramp
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loss for classification.

Definition 10 (Ramp loss). Let f : X → Rk be a function and let D be a dis-

tribution over X × Y where Y = [k]. We define the ramp loss of function f with

respect to margin parameter γ as lγ(f) = E(x,y)∼D [rγ(−M (f(x), y))]. We also de-

fine the empirical counterpart of ramp loss on an input set S ∼ Dm by l̂γ(f) =

1
m

∑
(x,y)∈S rγ(−M(f(x), y)).

It is worth mentioning that using (surrogate) ramp loss is a natural case for

classification tasks; see e.g., Boucheron et al. (2005); Bartlett et al. (2006).

Next, we define the composition of a hypothesis class with the ramp loss function.

Definition 11 (Composition with ramp loss)). Let F be a hypothesis class from X

to Rk and Y = [k]. We denote the class of its composition with the ramp loss function

by Fγ : X ×Y → [0, 1] and define it as Fγ = {(fγ(x, y) = rγ (−M(f(x), y)) : f ∈ F}.

The following lemma states that we can always bound the 0-1 loss by the ramp

loss.

Lemma 12. Let D be a distribution over X×Y, where Y = [k] and let f be a function

from X to Rk. We have

E(x,y)∼D
[
l0−1(f(x), y)

]
≤ E(x,y)∼D [rγ(−M(f(x), y))] = lγ(f).

For a proof of Lemma 12 see Section A.2 in Bartlett et al. (2017).
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2.5 Generalization by Uniform Convergence and

Rademacher Complexity

One way to bound the generalization gap of a learning algorithm with respect to

ramp loss is to find the rate of uniform convergence for class Fγ. We define uniform

convergence in the following.

Definition 13 (Uniform convergence). Let F be a hypothesis class and l be a loss

function. We say that F has uniform convergence property if there exists some func-

tion mUC : (0, 1)2 → N such that for every distribution D over X ×Y and any sample

S ∼ Dm if m ≥ mUC(ϵ, δ) with probability at least 1− δ (over the randomness of S)

for every hypothesis f ∈ F we have

∣∣∣∣∣∣E(x,y)∼D [l(f(x), y)]− 1

m

∑
(x,y)∈S

l(f(x), y)

∣∣∣∣∣∣ ≤ ϵ.

An standard approach for finding the rate of uniform convergence is by analyz-

ing the Rademacher complexity of Fγ. We now define the empirical Rademacher

complexity.

Definition 14 (Empirical Rademacher complexity). Let F be a class of hypotheses

from Z to R and D be a distribution over Z. The empirical Rademacher complexity

of class F with respect to sample S = {z1, . . . , zm} ∼ Dm is denoted by R̂(F|S) and

is defined as

R̂(F|S) = Eσ

[
sup
f∈F

m∑
i=1

σif(zi)

]

where σ = (σ1, . . . , σm) and σi are i.i.d. Rademacher random variables uniformly

drawn from {0, 1}.
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The following theorem relates the Rademacher complexity of Fγ to its rate of

uniform convergence and provides a generalization bound for the ramp loss and its

empirical counterpart on a sample S.

Theorem 15. Let F be a class of functions from X to Rk and D be a distribution

over X × Y where Y = [k]. Let S ∼ Dm denote a sample. Then, for every δ and

every f ∈ F , with probability at least 1− δ (over the randomness of S) we have

lγ(f) ≤ l̂γ(f) + 2R̂(Fγ |S) + 3

√
ln(2/δ)

2m

Theorem 15 is an immediate result of standard generalization bounds based on

Rademacher complexity (see e.g. Theorem 3.3 in Mohri et al. (2018)) once we realize

that E(x,y)∼D [fγ] = lγ(f) and
1
m

∑
(x,y)∈S fγ(x, y) = l̂γ(f).

2.6 Uniform Convergence by Bounding Covering

Number

We will use Dudley entropy integral (Dudley, 2010) for chaining to bound the Rademacher

complexity by covering number; see Shalev-Shwartz and Ben-David (2014) for a proof.

Theorem 16 (Dudley entropy integral). Let F be a class of hypotheses with bounded

output in [0, cx]. Then

R̂(F|S) ≤ inf
ϵ∈[0,cx/2]

{
4ϵ+

12√
m

∫ cx/2

ϵ

√
lnNU(ν,F ,m, ∥.∥ℓ22 ) dν

}
.

Putting Theorems 15, 16, and Lemma 12 together, we are now ready to state the

26



M.Sc. Thesis – A. Fathollah Pour McMaster University – Computing and Software

following theorem to bound the 0-1 loss based on the covering number of Fγ and

empirical ramp loss.

Theorem 17. Let F be a class of functions from X to Rk and D be a distribution

over X × Y where Y = [k]. Let S ∼ Dm be a sample. Then, with probability at least

1− δ (over the randomness of S) for every f ∈ F we have

E(x,y)∼D
[
l0−1(f(x), y)

]
≤

lγ(f) ≤ l̂γ(f) + inf
ϵ∈[0,1/2]

{
2

[
4ϵ+

12√
m

∫ 1/2

ϵ

√
lnNU(ν,Fγ,m, ∥.∥ℓ22 ) dν

]}
+ 3

√
ln(2/δ)

2m
.

We will use above theorem in Section 6.1 to estimate NVAC based on ∥.∥ℓ22 covering

number of composition of a class with ramp loss. We defer the definition of NVAC to

Chapter 6 where we discuss how to obtain (non-vacuous) generalization bounds from

covering number bounds.
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Chapter 3

Existing Bounds on the Covering

Number of Neural Networks

This chapter is dedicated to give a background on some of the approaches in bounding

the uniform covering number of neural networks. More precisely, we introduce the

following covering number bounds from literature: Norm-based (Theorem 14.17 in

Anthony and Bartlett (2009)), Lipschitzness-based (Theorem 14.5 in Anthony and

Bartlett (2009)), Pseudo-dim-based (Theorem 14.2 in Anthony and Bartlett (2009)),

and Spectral (Bartlett et al. (2017)). We qualitatively and quantitatively compare

these covering number bounds with our results (Corollaries 47 and 48) in Sections 5.3

and 7, respectively. We start by giving two preliminary lemmas.

Lemma 19 connects the covering number of a hypothesis class F to the covering

number of Fγ (see Definition 11), which will be used in Remark 52 to obtain NVAC

(see Chapter 6) and generalization bounds for classification with ramp loss.

In Lemma 20 we will show a way to find the covering number of a class of functions

from Rd to Rp from the covering number of real-valued classes that correspond to
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each dimension. We will use this lemma when we want to compare covering number

bounds in the literature that are given for real-valued functions, i.e., Norm-based,

Lipschitzness-based, and Pseudo-dim-based bounds.

In the following remark, we will discuss the motivation behind the choice of spe-

cific covering number bounds (and their suggested generalization bounds) that are

introduced here and are compared with our results in Chapter 7.

Remark 18 (Choice of generalization bounds). In our experiments in Chapter 7 we

have not assessed the PAC-Bayes bound in Neyshabur et al. (2018) since it is always

looser than the Spectral bound of (Bartlett et al., 2017); see Neyshabur et al. (2018)

for a discussion. Furthermore, we exclude the generalization bounds that are proved

in “two steps”. For example, a naive two-step approach is to divide the training data

into a large and a small subsets; one can then train the network using the large set

and evaluate the resulting hypothesis using the small set. This will give a rather tight

generalization bound since in the second step we are evaluating a single hypothesis.

However, it does not explain why the learning worked well (i.e., how the learning

model came up with a good hypothesis in the first step). More sophisticated two-step

approaches such as Dziugaite and Roy (2017); Arora et al. (2018); Zhou et al. (2019)

offer more insights on why the model generalizes. However, they do not fully explain

why the first step works well (i.e., the prior distribution in Dziugaite and Roy (2017)

or the uncompressed network in Arora et al. (2018); Zhou et al. (2019). Therefore,

we focus on bounds based on covering numbers (uniform convergence).
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3.1 Preliminaries

In this section, we state the preliminary lemmas that we use for some of the cover-

ing number bounds in literature to relate them to covering number bounds for the

composition of neural networks with the ramp loss.

Lemma 19 (From covering number of F to covering number of Fγ). Let F be a

hypothesis class of functions from X to Rk and Fγ : X ×Y → [0, 1] be the class of its

composition with ramp loss, where Y = [k]. Then we have

NU(ϵ,Fγ,m, ∥.∥ℓ22 ) ≤ NU(
γϵ

2
,F ,m, ∥.∥ℓ22 ).

Proof. First, it is easy to verify that rγ and −M(x, y) (with respect to the first input)

are Lipschitz continuous functions with respect to ∥.∥2 with Lipschitz factors of 1/γ

and 2, respectively; see e.g., Section A.2 in Bartlett et al. (2017). Therefore, we can

conclude that rγ (−M(f(x), y)) is Lipschitz continuous with Lipschitz factor of 2/γ.

Fix an input set S = {(x1, y1), . . . , (xm, ym)} ⊂ X × Y and let C = {f̂i|S |

f̂i ∈ F , i ∈ [r]} be an (γϵ/2)-cover for F|S. In the following, we will denote the

composition of f̂i with ramp loss by f̂γ,i for the simplicity of notation. Now, we prove

that Cγ = {f̂γ,i|S | f̂γ,i ∈ Fγ, i ∈ [r]} is also an ϵ-cover for Fγ |S.

Given any f ∈ F , there exists f̂i|S ∈ C such that

∥∥∥(f̂i(x1), . . . , f̂i(xm))− (f(x1), . . . , f(xm))
∥∥∥ℓ2
2
≤ γϵ

2
.
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We can then write that

∥∥∥(f̂γ,i(x1), . . . , f̂γ,i(xm))− (fγ(x1), . . . , fγ(xm))
∥∥∥ℓ2
2

=

√√√√ 1

m

m∑
k=1

(
f̂γ,i(xk)− (fγ(xk)

)2

≤

√√√√ 1

m

m∑
k=1

(
rγ

(
−M(f̂i(xk), yk)

)
− rγ(−M(f(xk), yk))

)2
(3.1.1)

From the Lipschitz continuity of rγ (−M(x, y)) we can conclude that for any (x, y) ∈

X × Y

∣∣∣rγ (−M(f(x), y))− rγ(−M(f̂i(x), y))
∣∣∣ ≤ 1

γ
∥M(f̂i(x), y)−M(f(x), y)∥2

≤ 2

γ
∥f̂i(x)− f(x)∥2.

Taking the above equation into account, we can rewrite Equation 3.1.1 as

∥∥∥(f̂γ,i(x1), . . . , f̂γ,i(xm))− (fγ(x1), . . . , fγ(xm))
∥∥∥ℓ2
2

≤ 2

γ

√√√√ 1

m

m∑
k=1

(
(f̂i(xk)− f(xk))

)2
≤ 2

γ

∥∥∥(f̂i(x1), . . . , f̂i(xm))− (f(x1), . . . , f(xm))
∥∥∥ℓ2
2

≤ 2

γ

γϵ

2

≤ ϵ.

In other words, for any fγ|S ∈ Fγ |S there exists f̂γ,i|S ∈ S such that
∥∥∥f̂γ,i|S − fγ|S

∥∥∥ℓ2
2
≤ ϵ

and, therefore, Cγ is an ϵ-cover for Fγ |S and the result follows.
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The following lemma finds a covering number for a class of functions with outputs

in Rp from the covering number of the classes of real-valued functions corresponding

to each dimension.

Lemma 20. Let F1, . . . ,Fp : X → R be p classes of real valued functions. Further

let F =
{
f(x) = [f1(x), . . . , fp(x)]

⊤ | fi ∈ Fi, i ∈ [p]
}
be a class of functions from X

to Rp, where each dimension i in their output comes from the output of a real-valued

function in Fi. Then, we have

NU(ϵ,F ,m, ∥.∥ℓ22 ) ≤
p∏

i=1

NU(
ϵ
√
p
,Fi,m, ∥.∥ℓ22 ).

Proof. Fix an input set S = {x1, . . . , xm} ⊂ X . Let C1, . . . , Cp be (ϵ/
√
p)-covers for

F1|S, . . . ,Fp|S, respectively. We will construct the set C as follows and prove that C

is an ϵ-cover for F|S

C =
{
[f̂1(xk), . . . , f̂p(xk)]

⊤ | f̂i|S ∈ Ci, i ∈ [p], k ∈ [m]
}
.

Particularly, from each class Fi, we are choosing all functions f̂i such that f̂i|S is in Ci.

We then use those functions as the dimension i of the output to get functions f ∈ F .

Then we put the restriction of these functions to set S in C. Clearly, |C| ≤
∏p

i=1 |Ci|.

Let f(x) = [f1(x), . . . , fp(x)]
⊤ be any function in F . Since C1, . . . , Cp are (ϵ/

√
p)-

covers for F1, . . . ,Fp we know that there exists another set of functions f̂i ∈ Fi, i ∈ [p]

such that f̂i|S ∈ Ci and

∥∥∥(f̂i(x1), . . . , f̂i(xm))− (fi(x1), . . . , fi(xm))
∥∥∥ℓ2
2
≤ ϵ

√
p
, ∀i ∈ [p].
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Let f̂(x) = [f̂1(x), . . . , f̂p(x)]
⊤. We can then write that

∥∥∥f|S − f̂|S

∥∥∥ℓ2
2
=
∥∥∥(f(x1), . . . , f(xm))− (f̂(x1), . . . , f̂(xm))

∥∥∥ℓ2
2

=

√√√√ 1

m

m∑
k=1

∥∥∥f(xk)− f̂(xk)
∥∥∥2
2

≤

√√√√ 1

m

m∑
k=1

p∑
i=1

(
fi(xk)− f̂i(xk)

)2

≤

√√√√ p∑
i=1

m∑
k=1

1

m

(
fi(xk)− f̂i(xk)

)2

≤

√√√√ p∑
i=1

(∥∥∥(fi(x1), . . . , fi(xm))− (f̂i(x1), . . . f̂i(xm))
∥∥∥ℓ2
2

)2

≤

√√√√ p∑
i=1

ϵ2

p

≤ ϵ

Therefore, we can conclude that C is an ϵ-cover for F|S. Since |C| ≤
∏p

i=1 |Ci| the

result follows.

3.2 Covering Number Bounds

In the following we will state the covering number bounds that we mentioned at the

beginning of this chapter. These covering number bounds are qualitatively compared

with our result in Section 5.3. They are also compared using a quantitative metric

(NVAC) and based on their suggested generalization bounds in Chapter 7.

The covering number bounds that we present are derived for T -layer sigmoid
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neural networks. Consequently, we first define the class of single-layer neural networks

with the sigmoid activation function and construct a T -layer network by composition

of T classes of single-layer neural networks.

Definition 21 (Single-Layer Sigmoid Neural Networks). Let Φ : Rp → [0, 1]p be the

element-wise sigmoid activation function defined by Φ((x(1), . . . , x(p))) = (ϕ(x(1)), . . . ,

ϕ(x(p))), where ϕ(x) = 1
1+e−x is the sigmoid function. The class of single-layer neural

networks with d inputs and p outputs is defined by NET[d, p] = {fW : Rd → [0, 1]p |

fW (x) = Φ(W⊤x),W ∈ Rd×p}.

3.2.1 Notations

For a matrix W ∈ Rd×p we denote its ∥.∥s,t norm as ∥(∥W:,1∥s, . . . , ∥W:,p∥s)∥t, where

W:,i denotes the ith column of W (e.g. for a weight matrix W , ∥W⊤∥1,∞ refers to

the maximum of ∥.∥1 norm of incoming weights of a neuron). By ∥W∥σ we denote

the spectral norm of a matrix. For a matrix X ∈ Rd×m we denote its normalized

Frobenious norm by∥X∥F , which is defined as ∥X∥F =
√

1
m

∑
x2
i,j.

We would like to mention that, in the experiments, we use a slightly different form

of sigmoid function for the activation function rather than the one in Definition 21.

Indeed, we will add a constant to the sigmoid function to turn it into an odd function

in [−1/2, 1/2]. In the following remark we will discuss the reason behind this choice

and the fact that it does not change the covering number bound that we propose for

composition of T -layer noisy neural networks with ramp loss (Corollary 48).

Remark 22. The bound in the Spectral covering number requires the activation func-

tions to output 0 at the origin. Therefore, in our experiments in Chapter 7, we set

ϕ(x) = 1
1+e−x − 1

2
as activation functions for neurons of the network, so that ϕ(0) = 0
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and ϕ(x) ∈ [−1/2, 1/2]. This will not affect the covering number bound of Corol-

lary 48. The bound in Corollary 48 is derived from the covering number bound of

Theorem 43 for single-layer neural network classes. There are three sources of de-

pendency on the activation function in Theorem 43. The first one is the dependence

on the range of output, which is 1 for both ϕ(x) = 1
1+e−x − 1

2
and the sigmoid func-

tion ϕ(x) = 1
1+e−x defined in Definition 21. The second dependecy is the Lipschitz

factor which is 1 for both of the activation functions. The final dependency is on

u = max {|ϕ−1(B − ϵ)| , |ϕ−1(−B + ϵ)|}. It is easy to verify that the value of u for

ϕ(x) = 1
1+e−x − 1

2
is exactly the same as the value of u for ϕ(x) = 1

1+e−x . As a result,

using both ϕ(x) = 1
1+e−x and ϕ(x) = 1

1+e−x − 1
2
will result in the same covering number

bound in Corollary 48. Generally, adding a constant to the output of functions in a

class will not change its covering number.

3.2.2 Norm-based Covering Number Bound

We will now discuss the Norm-based bound from Theorem 14.17 in Anthony and

Bartlett (2009), which is a bound for real-valued networks. Therefore, we will ap-

ply Lemma 20 to relate it to a covering number for neural networks with p output

dimensions.

Theorem 23 (Norm-based covering number). Let NET[d, p, v] = {fW : Rd → [0, 1]p |

fW (x) = Φ(W⊤x),W ∈ Rd×p and ∥W⊤∥1,∞ ≤ v} be the class of single-layer neural

networks with d inputs and p outputs where ∥.∥1,∞ norm of the layer is bounded by v.

Let NET[d, p1, v1], . . . ,NET[pT−1, pT , vT ] be T classes of neural networks and denote

the T -layer neural network by F = NET[pT−1, pT , vT ]◦ . . .◦NET[d, p1, v1]. Denote by

V the maximum of ∥.∥1,∞ among the layers of the network, i.e., V = maxi vi. Then
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we have

log2NU(ϵ,Fγ,m, ∥.∥ℓ22 ) ≤
pT
2
(
2
√
pT

γϵ
)2T (2V )T (T+1) log2(2d+ 2).

Proof. The proof simply follows from Theorem 14.17 in Anthony and Bartlett (2009)

and Lemmas 19 and 20 once we note that the sigmoid function is Lipschitz continuous

with Lipschitz factor of 1.

3.2.3 Pseudo-dim-based Covering Number Bound

Next we state the Pseudo-dim-based bound.

Theorem 24 (Psuedo-dim-based covering number). Let NET[d, p1],

. . ., NET[pT−1, pT ] be T classes of neural networks and F = NET[pT−1, pT ] ◦ . . . ◦

NET[d, p1]. Denote by Fi the class of real-valued functions corresponding to i-th di-

mension of output of functions in class F . Denote the total number of weights of the

real-valued network Fi by Wrvo = dp1 +
∑T−1

i=2 pi−1.pi + pT−1 and the total number of

neurons in all but the input layer of the real-valued network Fi by rrvo = 1+
∑T−1

i=1 pi.

Furthermore, let P be as follows

P = ((Wrvo + 2)rrvo)
2 + 11(Wrvo + 2)rrvo log2

(
18(Wrvo + 2)r2rvo

)
.

Then given that m > P we have

lnNU(ϵ,Fγ,m, ∥.∥ℓ22 ) ≤ pTP ln

(
2
√
pT em

Pγϵ

)
.

Proof. By Theorem 14.2 in Anthony and Bartlett (2009) we know that the pseudo
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dimension, Pdim, of Fi is smaller or equal to P (for a definition of pseudo dimension

see for instance Chapter 11 in Anthony and Bartlett (2009)). Furthermore, from the

standard analysis of covering number and pseudo dimension (see e.g., Theorem 12.2

in Anthony and Bartlett (2009)), we can write

lnNU(ϵ,Fi,m, ∥.∥ℓ22 ) ≤ Pdim ln(
em

ϵPdim

).

Combining the above equation with Lemmas 19 and 20 concludes the result.

3.2.4 Lipschitzness-based Covering Number Bound

Now we turn into presenting the Lipschitzness-based bound.

Theorem 25 (Lipschitzness-based covering number). Let NET[d, p, v] = {fW : Rd →

[0, 1]p | fW (x) = Φ(W⊤x),W ∈ Rd×p and ∥W⊤∥1,∞ ≤ v} be the class of single-layer

neural networks with d inputs and p outputs where ∥.∥1,∞ norm of the layer is bounded

by v. Let NET[d, p1, v1],. . ., NET[pT−1, pT , vT ] be T classes of neural networks and

denote the T -layer neural network by F = NET[pT−1, pT , vT ] ◦ . . . ◦ NET[d, p1, v1].

Denote by Fi the class of real-valued functions corresponding to i-th dimension of

output of functions in class F . Let V the maximum of ∥.∥1,∞ among all but the first

layer of the network, i.e., V = max2≤i≤T vi and denote the total number of weights of

the real-valued networks by Wrvo = dp1 +
∑T−1

i=2 pi−1.pi + pT−1. Then we have

lnNU(ϵ,Fγ,m, ∥.∥ℓ22 ) ≤ pTWrvo ln

(
4em

√
pTWrvoV

T

γϵ(V − 1)

)
.

Proof. The covering number follows from the bound in Theorem 14.5 in Anthony and

Bartlett (2009), which is a ∥.∥∞2 covering number, but we know that ∥.∥ℓ22 is always
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smaller than ∥.∥∞2 . Therefore, from Theorem 14.5 in Anthony and Bartlett (2009),

Lemma 20, and the fact that sigmoid is a Lipschitz continuous function with Lipschitz

factor of 1 we know that

lnNU(ϵ,F ,m, ∥.∥ℓ22 ) ≤ pTWrvo ln

(
2em

√
pTWrvoV

T

ϵ(V − 1)

)
.

Combining the above equation with Lemma 19 will result in the desired bound.

3.2.5 Spectral Covering Number Bound

Finally, we will present the Spectral bound in Bartlett et al. (2017).

Theorem 26 (Spectral covering number). Let NET[d, p, s, b] = {fW : Rd → [0, 1]p |

fW (x) = Φ(W⊤x),W ∈ Rd×p and ∥W⊤∥σ ≤ s, ∥W⊤∥2,1 ≤ b} be the class of single-

layer neural networks with d inputs and p outputs where spectral and ∥.∥2,1 norms of

the layer is bounded by s and b, respectively. Let NET[d, p1, s1, b1], . . . , NET [pT−1, pT ,

sT , bT ] be T classes of neural networks and denote the T -layer neural network by F =

NET[pT−1, pT , sT , bT ]◦ . . .◦NET[d, p1, s1, b1]. For an input set S = {x1, . . . , xm} ⊂ Rd

define X = [x1 . . . xm] ∈ Rd×m as the collection of input samples. Finally, denote by

w the maximum number of neurons in all layers of the network (including the input

layer). Then we have

lnNU(ϵ,Fγ,m, ∥.∥ℓ22 ) ≤
4∥X∥2F ln(2w2)

γ2ϵ2

(
T∏
i=1

s2i

)(
T∑
i=1

(
bi
si

)2/3
)3

.

The original bound in Bartlett et al. (2017) considers the input norm ∥X∥2F to

be the sum of ∥.∥22 norms of input samples and adjusts the chaining technique of
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Theorem 16 to account for this assumption. Here, for the sake of consistency, we

consider the Forbenious norm to be normalized and use the conventional chaining

technique, which applies to the ∥.∥ℓ22 metric.
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Chapter 4

Covering Random Hypotheses

We want to establish the benefits of adding (a little bit of) noise when composing

hypothesis classes. Therefore, we need to analyze classes of random hypotheses.

One way to do this is to replace each hypothesis with its expectation, creating a

deterministic version of the hypothesis class. Unfortunately, this approach misses the

whole point of having noisy hypotheses (and their benefits in composition). Instead,

we extend the definition of uniform covering numbers to classes of random hypotheses.

Next, in Section 4.3, we provide tools to bound this new notion of covering number

for random functions and their compositions. We also present tools to relate different

notions of covering number to each other.

4.1 Notations and Definitions

We define the random counterparts of the definitions and notations in Section 2.1 and

use an overline to distinguish them from the non-random versions. X denotes the set
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of all random variables defined over X that admit a generalized density function.1 We

sometimes abuse the notation and write x ∈ X rather than x ∈ X (e.g., x ∈ Rd is a

random variable taking values in Rd). By y = f(x) we denote a random variable that

is the result of mapping x using a Borel function f : Rd → Rp. We use f : Rd → Rp to

indicate that the mapping itself can be random. We use F to signal that the class can

include random hypotheses. We conflate the notation for random hypotheses so that

they can be applied to both random and non-random inputs (e.g., f(x) and f(x)).2

We also denote by D(x) the probability density functions of the random variable x.

For two Borel functions f1 and f2, we denote by π∗(f1(x), f2(x)) a coupling between

random variables f1(x), f2(x) such that

Mπ∗(A) =


Mx(B) ∃B ⊂ B(X ) such that A = f1(B)× f2(B)

0 otherwise,

where B(X ) is the set of all Borel sets over X , Mπ∗(A) is the measure that π∗ assigns

to the Borel set A, and Mx(B) is the measure that random variable x assigns to Borel

set B.

Similar to Definition 1, we define the composition of two random hypotheses

classes as follows:

Definition 27 (Composition of two random hypothesis classes). We denote by h ◦ f

the function h(f(x)) (assuming the range of f and the domain of h are compatible).

The composition of two hypothesis classes F and H is defined by H ◦ F = {h ◦ f |
1Both discrete (by using Dirac delta function) and absolutely continuous random variables admit

generalized density function.
2Technically, we consider f(x) to be f(δx), where δx is a random variable with Dirac delta measure

on x.
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h ∈ H, f ∈ F}.

The following singleton class Gσ will be used to create noisy functions (e.g., using

Gσ ◦ F).

Definition 28 (The Gaussian Noise Class). The d-dimensional noise class with scale

σ is denoted by Gσ,d = {gσ,d}. Here, gσ,d : Rd → Rd is a random function defined by

gσ,d(x) = x + z, where z ∼ N (0, σ2Id). When it is clear from the context we drop d

and write Gσ = {gσ}.

4.2 Covering Number for Classes of Random Hy-

potheses

The following is basically the random counterpart of Definition 6 for the class of

random hypotheses F .

Definition 29 (Uniform covering number for classes of random hypotheses). Let

(Y , ρ) be a metric space and F a class of random hypotheses from X to Y. For a

set of random variables S = {x1, x2, . . . , xm} ⊆ X , we define the restriction of F to

S as F |S = {(f(x1), f(x2), . . . , f(xm)) : f ∈ F} ⊆ Ym
. Let Γ ⊆ X . The uniform

ϵ-covering numbers of F with respect to Γ and metrics ρ∞ and ρℓ2 are defined by

NU(ϵ,F ,m, ρ∞,Γ) = sup
S⊆Γ,|S|=m

N(ϵ,F |S, ρ
∞,m),

NU(ϵ,F ,m, ρℓ2 ,Γ) = sup
S⊆Γ,|S|=m

N(ϵ,F |S, ρ
ℓ2,m).

Remark 30. Unlike in Definition 6 where ρ is usually the ∥.∥2 metric in the Euclidean
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space, here in Definition 29 ρ is defined over random variables. More specifically, we

will use the Total Variation and Wasserstein metrics as concrete choices for ρ.

Remark 31. The specific choices that we use for Γ are

• Γ = Xd: the set of all random variables defined over Rd that admit a generalized

density function.

• Γ = XB,d: the set of all random variables defined over [−B,B]d that admit a

generalized density function.

• Γ = ∆d = {δx | x ∈ Rd} and Γ = ∆B,d = {δx | x ∈ [−B,B]d}, where δx is the

random variable associated with Dirac delta measure on x.

• Γ = Gσ,d ◦ XB,d = {gσ,d(x) | x ∈ XB,d}: all members of XB,d after being

“smoothed” by adding (convolving with) Gaussian noise.

Remark 32. Some hypothesis classes that we work with have “global” covers, in the

sense that the uniform covering number does not depend on m. We therefore use the

following notation

NU(ϵ,F ,∞, ρ∞,Γ) = lim
m→∞

NU(ϵ,F ,m, ρ∞,Γ).

We now define Total Variation (TV) and Wasserstein metrics over probability

measures rather than random variables, but with a slight abuse of notation we will

use them for random variables too.

Definition 33 (Total Variation Distance). Let µ and ν denote two probability mea-

sures over X and let Ω be the Borel sigma-algebra over X . The TV distance between
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µ and ν is defined by

dTV (µ, ν) = sup
B∈Ω

|µ(B)− ν(B)|.

Furthermore, if µ and ν have densities f and g then

dTV (µ, ν) = sup
B∈Ω

∣∣∣ ∫
B

(f(x)− g(x))dx
∣∣∣ = 1

2

∫
X
|f(x)− g(x)| dx =

1

2
∥f − g∥1.

Definition 34 (Wasserstein Distance). Let µ and ν denote two probability measures

over X , and Π(µ, ν) be the set of all their couplings. The Wasserstein distance between

µ and ν is defined by

dW(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
X×X

∥x− y∥2dπ(x, y)
)
.

The following proposition makes it explicit that the conventional uniform cover-

ing number with respect to ∥.∥2 (Definition 6) can be regarded as a special case of

Definition 29.

Proposition 35. Let F be a class of (deterministic) hypotheses from Rd to Rp. Then

we have

NU(ϵ,F ,m, ∥.∥∞2 ) = NU(ϵ,F , d∞W ,m,∆d),

NU(ϵ,F ,m, ∥.∥ℓ22 ) = NU(ϵ,F , dℓ2W ,m,∆d).

The proposition is the direct consequence of the Definitions 6 and 29 once we

note that the Wasserstein distance between Dirac random variables is just their ℓ2

distance, i.e., dW(δx, δy) = ∥x− y∥2.
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4.3 Bounding the Uniform Covering Number

This section provides tools that can be used in a general recipe for bounding the

uniform covering number. The ultimate goal is to bound the (conventional) ∥.∥∞2

and ∥.∥ℓ22 uniform covering numbers for (noisy) compositions of hypothesis classes.

In order to achieve this, we will show how one can turn TV covers into ∥.∥2 covers

(Theorem 36) and vice versa (Corollary 40). But what is the point of going back and

forth between ∥.∥2 and TV covers? Basically, the data processing inequality ensures

an effective composition (Lemma 37) for TV covers. Our analysis goes through a

number of steps including connecting Wasserstein covering numbers to TV covers

(Theorem 39) and global ∥.∥2 covers to global TV covers (Theorem 41). We first

introduce necessary notations and then state our main results. The following theorem

considers the deterministic classH associated with expectations of random hypotheses

from F , and shows that bounding the uniform covering number of F with respect to

TV distance is enough for bounding the uniform covering number of H with respect

to ∥.∥2 distance.

Theorem 36 (From a TV cover to a ∥.∥2 cover). Consider any class F of random

hypotheses f : Rd → [−B,B]p with bounded output. Define the (nonrandom) hypoth-

esis class H = {h : Rd → [−B,B]p | h(x) = Ef

[
f(x)

]
, f ∈ F}. Then for every

ϵ > 0, m ∈ N these two inequalities hold:

NU(2Bϵ
√
p,H,m, ∥.∥∞2 ) ≤ NU(ϵ,F ,m, d∞TV ,∆d) ≤ NU(ϵ,F ,m, d∞TV ,Xd),

NU(2Bϵ
√
p,H,m, ∥.∥ℓ22 ) ≤ NU(ϵ,F ,m, dℓ2TV ,∆d) ≤ NU(ϵ,F ,m, dℓ2TV ,Xd).

Proof. It is easy to verify that NU(ϵ,F ,m, d∞TV ,∆d) ≤ NU(ϵ,F ,m, d∞TV ,Xd). Since we
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know that ∆d ⊂ Xd, we have

NU(ϵ,F ,m, d∞TV ,∆d) = sup
S⊂∆d

|S|=m

{
N(ϵ,F |S, d

∞
TV )
}

≤ sup
S⊂Xd

|S|=m

{
N(ϵ,F |S, d

∞
TV )
}
= NU(ϵ,F ,m, d∞TV ,Xd).

(4.3.1)

Let S = {x1, . . . , xm} ⊂ Rd be an input set. Denote S = {δx1 , . . . , δxm} ⊂ ∆d and

let C = {f̂1|S, . . . , f̂r |S | f̂r ∈ F , i ∈ [r]} be an ϵ-cover for F |S with respect to d∞TV .

Define a new set of non-random functions Ĥ =
{
ĥi(x) = E

f̂i

[
f̂i(x)

]
| i ∈ [r]

}
.

Given any random function f ∈ F and considering the fact that C is an ϵ-cover

for F |S and that f |S ∈ F |S, we know there exists f̂i, i ∈ [r] such that

d∞TV

(
f̂i|S, f |S

)
= d∞TV

(
(f̂i(δx1), . . . , f̂i(δxm)), (f(δx1), . . . , f(δxm))

)
≤ ϵ. (4.3.2)

From Equation 4.3.2 we can conclude that for any k ∈ [m], dTV

(
f̂i(δxk

), f(δxk
)
)
≤ ϵ.

Further, for the corresponding h, ĥi ∈ H, we know that

ĥi(xk) = E
f̂i

[
f̂i(δxk

)
]
=

∫
Rd

xD(f̂i(δxk
))(x)dx,

h(xk) = Ef

[
f(δxk

)
]
=

∫
Rd

xD(f(δxk
))(x)dx.

Denote I = D(f(δxk
)) and Î = D(f̂i(δxk

)). Define two new density functions Idiff
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and Îdiff as

Idiff (x) =



I(x)− Î(x)

dTV (I, Î)
I(x) ≥ Î(x)

0 otherwise,

Îdiff (x) =



Î(x)− I(x)

dTV (I, Î)
Î(x) ≥ I(x)

0 otherwise.

Also, we define Imin as

Imin(x) =
min{I(x), Î(x)}∫
min{I(x), Î(x)}dx

=
min{I(x), Î(x)}
1− dTV (I, Î)

.

It is easy to verify that

I(x) =
(
1− dTV (I, Î)

)
Imin(x) + dTV (I, Î).Idiff (x)

Î(x) =
(
1− dTV (I, Î)

)
Imin(x) + dTV (I, Î).Îdiff (x).
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We can then find the ℓ2 distance between ĥi(xk) and h(xk) by

∥∥∥ĥi(xk)− h(xk)
∥∥∥
2

=

∥∥∥∥∫
Rd

xÎ(x)dx−
∫
Rd

xI(x)dx

∥∥∥∥
2

=

∥∥∥∥∫
Rd

x
[(

1− dTV (I, Î)
)
Imin(x) + dTV (I, Î).Îdiff (x)

]
−x
[(

1− dTV (I, Î)
)
Imin(x) + dTV (I, Î).Idiff (x)

]
dx
∥∥∥
2

=

∥∥∥∥∫
Rd

xdTV (I, Î)
[
Îdiff (x)− Idiff (x)

]
dx

∥∥∥∥
2

= dTV (I, Î)

∥∥∥∥∫
Rd

x
[
Îdiff (x)− Idiff (x)

]
dx

∥∥∥∥
2

≤ 2B
√
p dTV

(
f(δxk

), f̂i(δxk
)
)

(Bounded domain [−B,B]p

≤ 2Bϵ
√
p and triangle inequality).

Since this result holds for any k ∈ [m], we have

∥∥∥ĥi|S − h|S

∥∥∥∞
2

=
∥∥∥(ĥi(x1), . . . , ĥi(xm))− (h(x1), . . . , h(xm))

∥∥∥∞
2

≤ 2Bϵ
√
p. (4.3.3)

In other words, for any h|S ∈ H|S there exists a ĥi|S ∈ Ĥ|S such that
∥∥∥ĥi|S − h|S

∥∥∥∞
2

≤

2Bϵ
√
p. Therefore, Ĥ|S is a 2Bϵ

√
p cover for H|S with respect to ∥.∥∞2 and |Ĥ|S| = r.

The bound in Equation 4.3.3 holds for any subset S of Rd with |S| = m. Therefore,

NU(2Bϵ
√
p,H,m, ∥.∥∞2 ) ≤ NU(ϵ,F ,m, d∞TV ,∆d). (4.3.4)

Putting Equations 4.3.1 and 4.3.4 together, we conclude

NU(2Bϵ
√
p,H,m, ∥.∥∞2 ) ≤ NU(ϵ,F ,m, d∞TV ,∆d) ≤ NU(ϵ,F ,m, d∞TV ,Xd).
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To prove the second part that involves covering number with respect to ∥.∥ℓ22 , we can

follow the same steps. Similarly, we know that

NU(ϵ,F ,m, dℓ2TV ,∆d) = sup
S⊂∆d

|S|=m

{
N(ϵ,F |S, d

ℓ2
TV )
}

≤ sup
S⊂Xd

|S|=m

{
N(ϵ,F |S, d

ℓ2
TV )
}
= NU(ϵ,F ,m, dℓ2TV ,Xd).

Consider the same input sets S and S and let C̃ = {f̃1|S, . . . , f̃r |S | f̃t ∈ F , i ∈ [t]}

be an ϵ-cover for F |S with respect to dℓ2TV . Define a new set of non-random functions

H̃ =
{
h̃i(x) = E

f̃i

[
f̃i(x)

]
| i ∈ [r]

}
.

Similarly, consider f|S and f̃i|S such that

dℓ2TV

(
f̃i|S, f |S

)
= dℓ2TV

(
(f̃i(δx1), . . . , f̃i(δxm)), (f(δx1), . . . , f(δxm))

)
≤ ϵ.

Using the same analysis as before, we can conclude that for any k ∈ [m],

∥∥∥h̃i(xk)− h(xk)
∥∥∥
2
≤ 2B

√
p dTV

(
f(δxk

), f̃i(δxk
)
)
.
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We can then conclude that

∥h̃i|S − h|S∥ℓ22

=

√√√√ 1

m

k∑
i=1

∥∥∥h̃i(xk)− h(xk)
∥∥∥2
2

≤

√√√√ 1

m

k∑
i=1

(2B
√
p)2
(
dTV

(
f(δxk

), f̃i(δxk
)
))2

≤ 2B
√
p

√√√√ 1

m

k∑
i=1

(
dTV

(
f(δxk

), f̃i(δxk
)
))2

≤ 2B
√
p dℓ2TV

(
f̃i|S, f |S

)
≤ 2Bϵ

√
p.

We can then say that H̃|S is a 2Bϵ
√
p cover forH|S with respect to ∥.∥ℓ22 and |Ĥ|S| = t.

It follows that

NU(2Bϵ
√
p,H,m, ∥.∥ℓ22 ) ≤ NU(ϵ,F ,m, dℓ2TV ,∆d) ≤ NU(ϵ,F ,m, dℓ2TV ,Xd).

But what is the point of working with the TV distance? An important ingredient

of our analysis is the use of data processing inequality which holds for the TV distance

(see Lemma 54). The following lemma uses this fact, and shows how one can compose

classes with bounded TV covers.

Lemma 37 (Composing classes with bounded TV covers). Let F be a class of random

hypotheses from Rd to Rp, and H be a class of random hypotheses from Rp to Rq. For

50



M.Sc. Thesis – A. Fathollah Pour McMaster University – Computing and Software

every ϵ, ϵ′ > 0, and every m ∈ N these three inequalities hold:

NU

(
ϵ+ ϵ′,H ◦ F ,m, d∞TV ,Xd

)
≤ NU

(
ϵ′,H,mN1, d

∞
TV ,Xp

)
.N1,

NU

(
ϵ+ ϵ′,H ◦ F ,m, d∞TV ,∆d

)
≤ NU

(
ϵ′,H,mN2, d

∞
TV ,Xp

)
.N2,

NU

(
ϵ+ ϵ′,H ◦ F ,m, dℓ2TV ,∆d

)
≤ NU

(
ϵ′,H,mN3, d

∞
TV ,Xp

)
.N3,

where N1 = NU

(
ϵ,F ,m, d∞TV ,Xd

)
, N2 = NU

(
ϵ,F ,m, d∞TV ,∆d

)
, and

N3 = NU

(
ϵ,F ,m, dℓ2TV ,∆d

)
.

Proof. DenoteQ = H◦F . Consider an input set of random variables S = {x1, . . . , xm}

⊂ Xd. Denote r1 = N(ϵ,F |S, d
∞
TV ) and let C = {f̂1|S, . . . , f̂r1 |S | f̂i ∈ F , i ∈ [r1]} be

an ϵ-cover for F |S with respect to d∞TV and S ′ = {f̂i(xk) | i ∈ [r1], k ∈ [m]}. Clearly,

|S ′| ≤ mr1. Also, let C ′ = {ĥ1|S′ , . . . , ĥr2 |S′ | ĥj ∈ H, j ∈ [r2]} be an ϵ′-cover for H|S′

with respect to d∞TV metric, where r2 = N(ϵ′,H|S′ , d∞TV ) is the cardinality of the cover

set C ′. Denote Q̂ = {ĥj ◦ f̂i | i ∈ [r1], j ∈ [r2]}. We claim that Q̂|S is an (ϵ+ ϵ′)-cover

for Q|S with respect to d∞TV . Since the cardinality of Q̂|S is no more than r1r2, we

can conclude that N(ϵ,Q|S, d
∞
TV ) ≤ N(ϵ,F |S, d

∞
TV )N(ϵ′,H|S′ , d∞TV ).

Consider (h ◦ f)|S =
(
h(f(x1), . . . , h(f(xm)

)
∈ Q|S, where f ∈ F and h ∈ H.

Since F |S is ϵ-covered by C, we know that there exists f̂i ∈ F such that

d∞TV

(
(f̂i(x1), . . . , f̂i(xm)), (f(x1), . . . , f(xm))

)
≤ ϵ.

By data processing inequality for total variation distance (Lemma 54), we conclude

that

dTV

(
h(f̂i(xk)), h(f(xk))

)
≤ ϵ
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for k ∈ [m]. Therefore,

d∞TV

(
(h(f̂i(x1)), . . . , h(f̂i(xm))), (h(f(x1)), . . . , h(f(xm)))

)
≤ ϵ. (4.3.5)

Since f̂i|S = (f̂i(x1), . . . , f̂i(xm)) ∈ C, we know that f̂i(xk) ∈ S ′ for k ∈ [m]. We also

know that H|S′ is ϵ′-covered by C ′, therefore, there exists ĥj ∈ H such that

d∞TV

(
(ĥj(f̂i(x1)), . . . , ĥj(f̂i(xm))), (h(f̂i(x1)), . . . , h(f̂i(xm)))

)
≤ ϵ′ (4.3.6)

Combining Equations 4.3.5 and 4.3.6 and by using triangle inequality for total

variation distance, we conclude that

d∞TV

(
(ĥj(f̂ i(x1)), . . . , ĥj(f̂i(xm))),

(
h(f(x1)), . . . , h(f(xm))

))
≤ ϵ+ ϵ′,

which suggests that for any (h ◦ f)|S ∈ Q|S, there exists (ĥj ◦ f̂i)|S ∈ Q̂|S such that

d∞TV

(
(h ◦ f)|S, (ĥj ◦ f̂i)|S

)
≤ ϵ+ ϵ′.

In other words, Q|S is (ϵ+ ϵ′)-covered by Q̂|S.

Let N1 = NU(ϵ,F ,m, d∞TV ,Xd). We know that mr1 ≤ mN1 and, therefore,

N(ϵ′,H|S′ , d∞TV ) ≤ NU(ϵ
′,H,mr1, d

∞
TV ,Xd) ≤ NU(ϵ

′,H,mN1, d
∞
TV ,Xd). Since the re-

sult holds for any input S ⊂ Xd of cardinality m and we know that

r1 ≤ NU(ϵ,F ,m, d∞TV ,Xd), it follows that

NU(ϵ+ ϵ′,Q,m, d∞TV ,Xd) ≤ NU(ϵ
′,H,mN1, d

∞
TV ,Xd).NU(ϵ,F ,m, d∞TV ,Xd).
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The bound for ∆d is almost exactly the same as that of Xd. The only difference is

that S = {δx1 , . . . , δxm} ⊆ ∆d, and we have a uniform ϵ-covering number with respect

to ∆d. We conclude that

NU

(
ϵ+ ϵ′,H ◦ F ,m, d∞TV ,∆d

)
≤ NU

(
ϵ′,H,mN2, d

∞
TV ,Xd

)
.NU(ϵ,F ,m, d∞TV ,∆d).

The bound with respect to dℓ2TV follows the same analysis. Consider a new set Sz =

{δz1, . . . , δzm} ⊂ ∆d. Denote t1 = N(ϵ,F |Sz
, dℓ2TV ) and let Cz = {f̃1|Sz

, . . . , f̃t1 |Sz
|

f̃i ∈ F , i ∈ [t1]} be an ϵ-cover for F |Sz
with respect to dℓ2TV and S ′

z = {f̃i(δzk) | i ∈

[t1], k ∈ [m]}. Clearly, |S ′
z| ≤ mt1. Let C ′

z = {h̃1|S′
z
, . . . , h̃t2 |S′

z
| h̃j ∈ H, j ∈ [t2]}

be an ϵ′-cover for H|S′
z
with respect to d∞TV metric, where t2 = N(ϵ′,H|S′

z
, d∞TV ) is the

cardinality of the cover set C ′
z. Denote Q̃ = {h̃j ◦ f̃i | i ∈ [t1], j ∈ [t2]}. We claim that

Q̃|Sz
is an (ϵ + ϵ′)-cover for Q|Sz

with respect to dℓ2TV . We can then conclude that

N(ϵ,Q|Sz
, dℓ2TV ) ≤ N(ϵ,F |Sz

, dℓ2TV ).N(ϵ′,H|S′
z
, d∞TV ).

Consider (h ◦ f)|Sz
=
(
h(f(δz1), . . . , h(f(δzm)

)
∈ Q|Sz

, where f ∈ F and h ∈ H.

Since F |Sz
is ϵ-covered by Cz, we know that there exists f̃i ∈ F such that

dℓ2TV

(
(f̃i(δz1), . . . , f̃i(δzm)), (f(δz1), . . . , f(δzm))

)
=

√√√√ 1

m

m∑
k=1

(
dTV (f̃i(δzk), f(δzk))

)2
≤ ϵ.

Similarly, by data processing inequality, we conclude that dTV

(
h(f̃i(δzk)), h(f(δzk))

)
≤
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dTV

(
f̃i(δzk), f(δzk)

)
for k ∈ [m]. Therefore,

dℓ2TV

(
(h(f̃i(δz1)), . . . , h(f̃i(δzm))), (hf(δz1)), . . . , h(f(δzm)))

)
=

√√√√ 1

m

m∑
k=1

(
dTV (h(f̃i(δzk)), h(f(δzk)))

)2

≤

√√√√ 1

m

m∑
k=1

(
dTV (f̃i(δzk), f(δzk))

)2
≤ ϵ.

(4.3.7)

Now, using the fact that f̃i|Sz
= (f̃i(δz1), . . . , f̃i(δzm)) ∈ Cz, we know that f̃i(δzk) ∈

S ′
z for k ∈ [m]. We also know that H|S′

z
is ϵ′-covered by C ′

z with respect to d∞TV .

Therefore, there exists h̃j ∈ H such that

d∞TV

(
(h̃j(f̃i(δz1)), . . . , h̃j(f̃i(δzm))), (h(f̃i(δz1)), . . . , h(f̃i(δzm)))

)
≤ ϵ′. (4.3.8)

From Equation 4.3.8 we can conclude that dTV

(
(h̃j(f̃i(δzk)), (h(f̃i(δzk))

)
≤ ϵ′ for

k ∈ [m]. Using triangle inequality for total variation distance, we can write

dTV

(
(h̃j(f̃i(δzk)), (h(f(δzk))

)
≤ dTV

(
(h̃j(f̃i(δzk)), (h(f̃i(δzk))

)
+ dTV

(
h(f̃i(δzk)), h(f(δzk))

)
≤ dTV

(
h(f̃i(δzk)), h(f(δzk))

)
+ ϵ′.

(4.3.9)
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We can then conclude that

dℓ2TV

(
(h̃j(f̃i(δz1)), . . . , h̃j(f̃i(δzm))), (h(f(δz1)), . . . , h(f(δzm)))

)
=

√√√√ 1

m

m∑
k=1

(
dTV (h̃j(f̃i(δzk)), h(f(δzk)))

)2

≤

√√√√ 1

m

m∑
k=1

(
dTV (h(f̃i(δzk)), h(f(δzk))) + ϵ′

)2
(From Equation 4.3.9)

≤

√√√√ 1

m

m∑
k=1

(
dTV (h(f̃i(δzk)), h(f(δzk)))

)2
+

1

m

m∑
k=1

ϵ′2

≤

√√√√ 1

m

m∑
k=1

(
dTV (h(f̃i(δzk)), h(f(δzk)))

)2
+

√√√√ 1

m

m∑
k=1

ϵ′2

≤ ϵ+ ϵ′. (From Equation 4.3.7)

As a result, Q|Sz
is (ϵ + ϵ′)-covered by Q̃|Sz

. Let N3 = NU(ϵ,F ,m, dℓ2TV ,∆d). Since

mt1 ≤ mN3, we can writeN(ϵ′,H|S′ , d∞TV ) ≤ NU(ϵ
′,H,mt1, d

∞
TV ,Xd) ≤ NU(ϵ

′,H,mN3,

d∞TV ,Xd). We know that the result holds for any input Sz ⊂ ∆d of cardinality m and

t1 ≤ NU(ϵ,F ,m, dℓ2TV ,∆d), therefore, it follows that

NU(ϵ+ ϵ′,Q,m, dℓ2TV ,∆d) ≤ NU(ϵ
′,H,mN3, d

∞
TV ,Xd).NU(ϵ,F ,m, dℓ2TV ,∆d).

Remark 38. In Lemma 37, for H, we required the stronger notion of cover with re-

spect to Xd (i.e., the input to the hypotheses can be any random variable with a density

function), whereas for F a cover with respect to ∆d sufficed in some cases. As we will

see below, finding a cover with respect to ∆d is easier since one can reuse conventional
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∥.∥2 covers. However, finding covers with respect to Xd is more challenging. In the

next chapter we show how to do this for a class of neural networks.

The next step is bounding the uniform covering number with respect to the TV

distance (TV covering number for short). It will be useful to be able to bound

TV covering number with Wasserstein covering number. However, this is generally

impossible since closeness in Wasserstein distance does not imply closeness in TV

distance. Yet, the following theorem establishes that one can bound the TV covering

number as long as some Gaussian noise is added to the output of the hypotheses.

Theorem 39 (From a Wasserstein cover to a TV cover). Let F be a class of random

hypotheses from Rd to Rp, and Gσ,p be a Gaussian noise class. Then for every ϵ > 0

and m ∈ N we have

NU

( ϵ

2σ
,Gσ,p ◦ F ,m, d∞TV ,Xd

)
≤ NU(ϵ,F ,m, d∞W ,Xd),

NU

( ϵ

2σ
,Gσ,p ◦ F ,m, d∞TV ,∆d

)
≤ NU(ϵ,F ,m, d∞W ,∆d).

Intuitively, the Gaussian noise smooths out densities of random variables that are

associated with applying transformation in F to random variables in Xd or ∆d. As

a result, the proof of Theorem 39 has a step on relating the Wasserstein distance

between two smoothed (by adding random Gaussian noise) densities to their total

variation distance (see Lemma 58). We now state the proof.

Proof. Fix an input set S = {x1, . . . , xm} ⊂ Rd. Let C = {f̂1|S, . . . , f̂r |S : f̂i ∈ F , i ∈

[r]} be an ϵ-cover for F |S with respect to d∞W metric. Denote Q = Gσ ◦ F . We

define a new class of random functions Q̂ = {gσ ◦ f̂i | i ∈ [r]}. We show that Q|S is

( ϵ
2σ
)-covered by Q̂|S and since |Q̂|S| = r, the result follows.
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Let Iσ denote the probability density function of N (0, σ2Id). For any f ∈ F ,

we have gσ(f(x)) = f(x) + z, where z is a random variable with probability density

function Iσ, therefore, we know that D(gσ(f(x)) = D(f(x)) ∗ Iσ.

Given (gσ ◦ f)|S = (gσ(f(x1)), . . . , gσ(f(xm))) ∈ Q|S, we know that

f |S = (f(x1), . . . , f(xm)) is in F |S. Therefore, there exists f̂i ∈ F such that

d∞W(f̂i|S, f |S) ≤ ϵ, i.e.,

d∞W

(
(f̂i(x1), . . . , f̂i(xm)), (f(x1), . . . , fxm))

)
≤ ϵ. (4.3.10)

From Equation 4.3.10, we know that dW(f̂i(xk), f(xk)) ≤ ϵ for all k ∈ [m]. From

Lemma 58, we can conclude that for all k ∈ [m],

1

2

∥∥∥Iσ ∗ D(f̂i(xk)− Iσ ∗ D(f(xk)))
∥∥∥
1

≤ 1

2

(
sup
y ̸=z

{
∥Iσ(x− y)− Iσ(x− z)∥1

∥y − z∥2

})
dW(f̂i(xk), fxk))

≤ ϵ

2

(
sup
y ̸=z

{
∥Iσ(x− y)− Iσ(x− z)∥1

∥y − z∥2

})
.

(4.3.11)

Moreover, Iσ∗D(f̂i(xk) and Iσ∗D(f(xk)) are probability density functions of gσ(f̂i(xk))

and gσ(f(xk)), respectively. Therefore, from Equation 4.3.11,

dTV

(
gσ(f̂i(xk)), gσ(f(xk))

)
≤ ϵ

2

(
sup
y ̸=z

{
∥Iσ(x− y)− Iσ(x− z)∥1

∥y − z∥2

})
. (4.3.12)

Since Equation 4.3.12 holds for all k ∈ [m], it follows that

d∞TV

(
gσ(f̂i(xk)), gσ(f(xk))

)
≤ ϵ

2

(
sup
y ̸=z

{
∥Iσ(x− y)− Iσ(x− z)∥1

∥y − z∥2

})
.
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This shows that for any (gσ ◦ f)|S ∈ Q|S there exists (gσ ◦ f̂i)|S ∈ Q̂|S such that

d∞TV

(
(gσ ◦ f)|S, (gσ ◦ f̂i)|S

)
≤ ϵ

2

(
sup
y ̸=z

{
∥Iσ(x− y)− Iσ(x− z)∥1

∥y − z∥2

})
. (4.3.13)

It is only left to bound the supremum term in Equation 4.3.13.

Based on Theorem 55, we know that for two Gaussian distributions N (µ1, σ
2I)

and N (µ2, σ
2I) their total variation distance can be bounded by

dTV

(
N (µ1, σ

2I),N (µ2, σ
2I)
)
≤ 1

2σ
∥µ1 − µ2∥2. (4.3.14)

We also know that ∥Iσ(x− y)− Iσ(x− z)∥1 = 2dTV (N (y, σ2I),N (z, σ2I)). Combin-

ing Equations 4.3.13 and 4.3.14, we can write

d∞TV

(
(gσ ◦ f)|S, (gσ ◦ f̂i)|S

)
≤ ϵ

2

(
sup
y ̸=z

{ 1
σ
∥y − z∥2
∥y − z∥2

})
≤ ϵ

2σ
. (4.3.15)

From Equation 4.3.15 it follows that Q|S is ( ϵ
2σ
)-covered by Q̂|S. Since the result

holds for any subset S of Xd with cardinality m, we can conclude that

NU

( ϵ

2σ
,Gσ ◦ F ,m, d∞TV ,Xd

)
≤ NU(ϵ,F ,m, d∞W ,Xd).

The second part of the proof is similar. We consider a set of inputs Sz =

{δz1 , . . . , δzm} ⊂ ∆d. We can then consider an ϵ-cover Cz = {f̃1|S, . . . , f̃t|S : f̃i ∈

F , i ∈ [t]} for F |Sz
. We will then construct a class of functions Q̃ = {gσ ◦ f̃i | i ∈ [t]}

and show that Q|Sz
is ( ϵ

2σ
)-covered by Q̃|Sz

. The proof follows the same steps as the

previous part. Particularly, let f̃i ∈ F be such that d∞W(f̃i|Sz
, f |Sz

) ≤ ϵ. For any
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k ∈ [m], we can write that

1

2

∥∥∥Iσ ∗ D(f̃i(δzk)− Iσ ∗ D(f(δzk)))
∥∥∥
1

≤ 1

2

(
sup
y ̸=z

{
∥Iσ(x− y)− Iσ(x− z)∥1

∥y − z∥2

})
dW(f̃i(δzk), f(δzk))

≤ ϵ

2

(
sup
y ̸=z

{
∥Iσ(x− y)− Iσ(x− z)∥1

∥y − z∥2

})
.

(4.3.16)

Using the same arguments as the previous part, we will have that

dTV

(
gσ(f̃i(δzk)), gσ(f(δzk))

)
≤ ϵ

2

(
sup
y ̸=z

{
∥Iσ(x− y)− Iσ(x− z)∥1

∥y − z∥2

})
≤ ϵ

2σ
.

Therefore, we can conclude that for any f ∈ F there exists f̃i, i ∈ [t] such that

d∞TV

(
(gσ ◦ f)|Sz

, (gσ ◦ f̃i)|Sz

)
≤ ϵ

2σ
,

which means thatQSz
is ( ϵ

2σ
)-covered by Q̃|Sz

. Since the result holds for every Sz ⊂ ∆d

of cardinality m, we can conclude that

NU

( ϵ

2σ
,Gσ ◦ F ,m, d∞TV ,∆d

)
≤ NU(ϵ,F ,m, d∞W ,∆d).

Finally, we can use Proposition 35 to relate the Wasserstein covering number with

the ∥.∥2 covering number. The following corollary is the result of Proposition 35 and

Theorem 39 that is stated for both dℓ2TV and d∞TV extended metrics.

Corollary 40 (From a ∥.∥2 cover to a TV cover). Let F be a class of hypotheses

f : Rd → Rp and Gσ,p be a Gaussian noise class. Then for every ϵ > 0 and m ∈ N we
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have

NU(
ϵ

2σ
,Gσ,p ◦ F ,m, d∞TV ,∆d) ≤ NU(ϵ,F ,m, ∥.∥∞2 ),

NU(
ϵ

2σ
,Gσ,p ◦ F ,m, dℓ2TV ,∆d) ≤ NU(ϵ,F ,m, ∥.∥ℓ22 ).

Proof. First, from Proposition 35, we can conclude that

NU(ϵ,F , d∞W ,m,∆d) = NU(ϵ,F ,m, ∥.∥∞2 ). (4.3.17)

Then, consider an input set Sz = {δx1 , . . . , δxm} ⊂ ∆d. Let Cz = {f̂1|Sz
, . . . , f̂r |Sz

|

f̂i ∈ F , i ∈ [r]} be an ϵ-cover for F|Sz
with respect to d∞W , then for a given f|Sz

∈ F|Sz

and f̂i|Sz
∈ Cz, where d∞W(f|Sz

, f̂i|Sz
) ≤ ϵ, from Equations 4.3.11 and 4.3.15, we know

that for all k ∈ [m]

dTV (gσ(f̂i(δxk
)), gσ(f(δxk

))) = dTV

(
N (f̂i(xk), σ

2Ip),N (f(xk), σ
2Ip)

)
≤ 1

2σ
∥f̂i(xk)− f(xk)∥2 ≤

1

2σ
dW

(
f̂i(δxk

), f(δxk
)
)

≤ ϵ

2σ
.

Therefore, we can conclude that

d∞TV

(
(gσ ◦ f̂i)|Sz

, (gσ ◦ f)|Sz

)
= d∞TV

(
(gσ(f̂i(δx1)), . . . , gσ(f̂i(δxm))), (gσ(f(δx1)), . . . , gσ(f(δxm)))

)
≤ ϵ

2σ
,

It follows that for any (gσ ◦ f)|Sz
∈ (Gσ ◦ F)|Sz

, there exists f̂i|Sz
∈ Cz such that
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d∞TV

(
(gσ ◦ f̂i)|Sz

, (gσ ◦ f)|Sz

)
≤ ϵ

2σ
. Therefore,

N(
ϵ

2σ
, (Gσ ◦ F)|Sz

, d∞TV ) ≤ N(ϵ,F|Sz
, d∞W).

Since this results holds for any Sz ⊂ ∆d, we can conclude that

NU(
ϵ

2σ
,Gσ ◦ F ,m, d∞TV ,∆d) ≤ NU(ϵ,F ,m, d∞W ,∆d) = NU(ϵ,F ,m, ∥.∥∞2 ).

The proof of the second part again follows from Proposition 35. We can write

that

NU(ϵ,F , dℓ2W ,m,∆d) = NU(ϵ,F ,m, ∥.∥ℓ22 ).

Consider the input set Sz ⊂ ∆d as defined above and let C̃z = {f̃1|Sz
, . . . , f̃t|Sz

|

f̃i ∈ F , i ∈ [t]} be an ϵ-cover for F|Sz
with respect to dℓ2W . Now, for a given f|Sz

∈ F|Sz

and the corresponding f̃i|Sz
∈ C̃z, where dℓ2W(f|Sz

, f̃i|Sz
) ≤ ϵ, we know that for all

k ∈ [m]

dTV (gσ(f̃i(δxk
)), gσ(f(δxk

))) = dTV

(
N (f̃i(xk), σ

2Ip),N (f(xk), σ
2Ip)

)
≤ 1

2σ
∥f̃i(xk)− f(xk)∥2 ≤

1

2σ
dW

(
f̃i(δxk

), f(δxk
)
)
.
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Therefore,

dℓ2TV

(
(gσ ◦ f̃i)|Sz

, (gσ ◦ f)|Sz

)
=

√√√√ 1

m

m∑
k=1

(
dTV

(
gσ(f̃i(δxk

)), gσ(f(δxk
))
))2

≤

√√√√√ 1

m

m∑
k=1

(
dW

(
f̃i(δxk

), f(δxk
)
))2

(2σ)2

≤ 1

2σ
dℓ2W(f̃i|Sz

, f|Sz) ≤
ϵ

2σ
.

Therefore, for any (gσ ◦ f)|Sz
∈ (Gσ ◦ F)|Sz

, there exists f̃i|Sz
∈ Cz such that

dℓ2TV

(
(gσ ◦ f̃i)|Sz

, (gσ ◦ f)|Sz

)
≤ ϵ

2σ
.

As a result we have

N(
ϵ

2σ
, (Gσ ◦ F)|Sz , d

ℓ2
TV ) ≤ N(ϵ,F|Sz , d

ℓ2
W).

Since this results holds for any Sz ⊂ ∆d, we can conclude that

NU(
ϵ

2σ
,Gσ ◦ F ,m, dℓ2TV ,∆d) ≤ NU(ϵ,F ,m, dℓ2W ,∆d) = NU(ϵ,F ,m, ∥.∥ℓ22 ).

The following theorem shows that we can get a stronger notion of TV cover with

respect to XB,d from a ∥.∥2 global cover, given that some Gaussian noise is added to

the output of hypotheses.

Theorem 41 (From a global ∥.∥2 cover to a global TV cover). Let F be a class of
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hypotheses f : Rd → Rp and Gσ,p be a Gaussian noise class. Then for every ϵ > 0

and m ∈ N we have

NU

( ϵ

2σ
,Gσ,p ◦ F ,∞, d∞TV ,XB,d

)
≤ NU(ϵ,F ,∞, ∥.∥∞2 ).

The proof involves finding a Wasserstein covering number and using Theorem 39

to obtain TV covering number. We now state the complete proof.

Proof. Let Q = Gσ ◦ F . Denote by r = NU(ϵ,F ,∞, ∥.∥∞2 ). Let C = {f̂i(x) |

f̂i ∈ F ,∀x ∈ Rd, i ∈ [r]} be a global ϵ-cover for F with respect to ∥.∥2 met-

ric. We will show that for all (gσ ◦ f)|XB,d
, f ∈ F , there exists f̂i ∈ F such that

d∞TV

(
(gσ ◦ f)|XB,d

, (gσ ◦ f̂i)|XB,d

)
≤ ϵ

2σ
. Clearly, |C| ≤ r and the result follows.

Since C covers the restriction of F to Rd, for any f ∈ F , there exists f̂i such that

∥f(x) − f̂i(x)∥2 ≤ ϵ for every x ∈ Rd. Next, for any x ∈ XB,d and for the coupling

π∗(f(x), f̂i(x)) as defined in Notations we can write

∫
Rd×Rd

∥x− y∥2dπ∗(x, y) ≤ ϵ

∫
Rd×Rd

dπ∗(x, y) ≤ ϵ,

which comes from the fact that f̂i is “globally close” to f with respect to ∥.∥2 distance.

We, therefore, know that

dW(f(x), f̂i(x)) = inf
π∈Π(f(x),f̂i(x))

∫
Rd×Rd

∥x− y∥2dπ(x, y)

≤
∫
Rd×Rd

∥x− y∥2dπ∗(x, y) ≤ ϵ.
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Since this holds for any x ∈ XB,d, we can conclude that

d∞W

(
f|XB,d

, f̂i|XB,d

)
≤ ϵ.

Next, from the arguments in Theorem 39 and Equation 4.3.15, we know that

d∞TV

(
(gσ ◦ f)|XB,d

, (gσ ◦ f̂i)|XB,d

)
≤ 1

2σ
d∞W

(
f|XB,d

, f̂i|XB,d

)
≤ ϵ

2σ
,

which is exactly what we wanted to prove. Therefore, the size of the TV cover for

Gσ ◦ F can be bounded by the size of ∥.∥2 cover of F ,

NU(
ϵ

2σ
,Gσ ◦ F ,∞, d∞TV ,XB,d) ≤ NU(ϵ,F ,∞, ∥.∥∞2 ).
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Chapter 5

Covering Numbers for Neural

Networks

This chapter is dedicated to study the uniform covering number of (noisy) neural

networks. We start by finding a TV covering number for the class of single-layer

noisy neural networks. We then use the tools that we provided for composition of

noisy functions to obtain a TV covering number bound for deeper networks. Lastly, we

turn this bound to a ∥.∥2 covering number bound using Theorem 36. Additionally,

we propose a technique to build deeper networks with bounded covering number

from the composition of an existing neural network with bounded covering number

and several more layers of neural network. It is worth mentioning that although we

consider a noisy output for the layers of network, the output of neural network is itself

deterministic as we take an expectation of output at the last (output) layer. Finally,

we qualitatively compare our proposed covering number bound with the other covering

number bounds that we presented in Chapter 3. In the following, we first discuss some

related work regarding the capacity and generalization of neural networks.

65



M.Sc. Thesis – A. Fathollah Pour McMaster University – Computing and Software

In Chapter 3 we have introduced several bounds on the covering number of neural

networks from literature. However, these bounds are usually vacuous for commonly

used data sets and architectures. Moreover, it is often observed that neural networks

can easily overfit the data or even fit randomly labeled datasets (Zhang et al., 2021).

These facts have led to the question that whether the proposed theoretical general-

ization bounds for neural networks are indeed capable of explaining their behaviour

in empirical applications. This motivates a more careful analysis of the capacity of

neural networks (e.g., uniform covering number, VC-dimension, etc.).

Dziugaite and Roy (2017) (and later Zhou et al. (2019)) show how to achieve a

non-vacuous bound using the PAC Bayesian framework. These approaches as well as

compression-based methods (Arora et al., 2018) are, however, examples of “two-step”

methods; see Chapter 3 for more details. It has been argued that uniform convergence

theory may not fully explain the performance of neural networks (Nagarajan and

Kolter, 2019; Zhang et al., 2021). One conjecture is that implicit bias of gradient

descent (Gunasekar et al., 2017; Arora et al., 2019; Ji et al., 2020; Chizat and Bach,

2020; Ji and Telgarsky, 2021) can lead to benign overfitting (Belkin et al., 2018, 2019;

Bartlett et al., 2020); see Bartlett et al. (2021) for a recent overview.

In a recent line of work, generalization has been studied from the perspective of

information theory (Russo and Zou, 2016; Xu and Raginsky, 2017; Russo and Zou,

2019; Steinke and Zakynthinou, 2020), showing that a learning algorithm will gen-

eralize if the (conditional) mutual information between the training sample and the

learned model is small. Utilizing these results, a number of generic generalization

bounds have been proved for Stochastic Gradient Langevin Descent (SGLD) (Ra-

ginsky et al., 2017; Haghifam et al., 2020) as well as Stochastic Gradient Descent
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(SGD) Neu et al. (2021). Somewhat related to our “noise analysis”, these approaches

(virtually) add noise to the parameters to control the mutual information. In con-

trast, we add noise between modules for composition (e.g., in between layers of a

neural network). Furthermore, we prove uniform (covering number) bounds while

these approaches are for generic SGD/SGLD and are mostly agnostic to the struc-

ture of the hypothesis class. Investigating the connections between our analysis and

information-theoretic techniques is a direction for future research.

5.1 Uniform TV Covers for Single-Layer Neural

Networks

In this section, we study the uniform covering number of single-layer neural networks

with respect to the total variation distance. This will set the stage for the next

section, where we want to use the tools from Chapter 4 to bound covering numbers

of deeper networks.

Remark 42. We choose sigmoid function for simplicity, but our analysis for finding

uniform covering numbers of neural networks (Theorem 43) is not specific to the

sigmoid activation function. We present a stronger version of Theorem 43 at the

end of this chapter (Theorem 45), which works for any activation function that is

Lipschitz, monotone, and bounded.

As mentioned in Remark 38, Lemma 37 requires stronger notion of covering num-

bers with respect to Xd and TV distance. In fact, the size of this kind of cover is

infinite for deterministic neural networks defined above. In contrast, Theorem 43

shows that one can bound this covering number as long as some Gaussian noise is

67



M.Sc. Thesis – A. Fathollah Pour McMaster University – Computing and Software

added to the input and output of the network. The proof is quite technical, starting

with estimating the smoothed input distribution (gσ(x)) with mixtures of Gaussians

using kernel density estimation (see Lemma 60 in Appendix C). Then a cover for mix-

tures of Gaussians with respect to Wasserstein distance is found. Finally, Theorem 39

helps to find the cover with respect to total variation distance.

Theorem 43 (A global total variation cover for noisy neural networks with un-

bounded weights). For every p, d ∈ N, ϵ > 0, σ < 5d/ϵ we have

NU(ϵ,Gσ ◦ NET[d, p],∞, d∞TV ,Gσ ◦ X1,d)

≤

(
30

d5/2
√
ln ((5d− ϵσ)/(ϵσ))

ϵ3/2σ2
ln

(
5d

ϵσ

))p(d+1)

.

Note that the dependence of the bound on 1/σ is polynomial. The assumption

σ ≪ 5d/ϵ holds for any reasonable application (we will use σ ≪ 1 in the experiments).

In contrast to the analyses that exploit Lipschitz continuity, the above theorem does

not require any assumptions on the norms of weights. Theorem 43 is a key tool in

analyzing the uniform covering number of deeper networks.

Remark 44. Another approach to find a TV cover for neural networks is to find

“global” ∥.∥2 covers and apply Theorem 41. We know of only one such bound for

neural networks with real-valued output in the literature, i.e., Lemma 14.8 in An-

thony and Bartlett (2009). This bound can be translated to multi-output layers (see

Lemma 20 in Chapter 3). However, unlike Theorem 43, the final bound would depend

on the norms of weights of the network and requires Lipschitzness assumption.

We now turn into proving Theorem 43 by stating a proof for its stronger version

(Theorem 45). We first present the notations and then state the complete proof.
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Notation. For a vector V ∈ Rd, we denote its angle by ∠V . By ∠(V1, V2), we are

referring to the angle between two vectors V1 and V2. Also, we denote by 11{x = a}

the indicator function that outputs 1 if x = a and 0 if x ̸= a. We also denote

by ⟨V1, V2⟩ the inner product between vectors V1 and V2. We denote by D(x) the

probability density function of the random variable x. For two Borel functions f1 and

f2, we denote by π∗(f1(x), f2(x)) a coupling between random variables f1(x), f2(x)

such that

Mπ∗(A) =


Mx(B) ∃B ⊂ B(X ) such that A = f1(B)× f2(B)

0 otherwise,

where B(X ) is the set of all Borel sets over X , Mπ∗(A) is the measure that π∗ assigns

to the Borel set A, and Mx(B) is the measure that random variable x assigns to Borel

set B. We also denote by Balld(x,R) the d dimensional ball of radius R centered at

x.

Proof of Theorem 43. In the following we state a stronger version of Theorem 43

which presents a uniform covering number bound for neural network classes that

have a general activation function that is Lipschitz continuous, monotone, and has a

bounded domain. We then prove this theorem.

Theorem 45 (Stronger version of Theorem 43). Consider the class NET[d, p] of

single-layer neural networks, where the activation function is Lipschitz continuous

with Lipschtiz factor L, monotone, and has a bounded output in [−B,B]p. The global

covering number of Gσ ◦ NET[d, p] with respect to total variation distance is bounded
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by

NU(ϵ,Gσ ◦ NET[d, p],∞, d∞TV ,Gσ ◦ XB,d)

≤

(
4(4 +B)3/2

(2π)1/4
d5/2L

√
Bu

ϵ3/2σ2
ln

(
(4 +B)Bd

ϵσ

))p(d+1)

,

where u = max {|ϕ−1 (B − σϵ/((4 +B)d))| , |ϕ−1 (−B + σϵ/((4 +B)d))|}.

Note that Theorem 43 is a special case of the above theorem where the activation

function is the sigmoid function with Lipschitz continuity constant of 1 and a bounded

domain in [0, 1]p. In the case of sigmoid function, we can also conclude that

u = max
{∣∣ϕ−1 (1− ϵσ/((4 +B)d))

∣∣ , ∣∣ϕ−1 (ϵσ/((4 +B)d))
∣∣}

=
∣∣ϕ−1 (1− ϵσ/((4 +B)d))

∣∣
= ln (((4 +B)d− ϵσ)/(ϵσ))

≤ ln ((5d− ϵσ)/(ϵσ)) .

Proof. We bound the global covering number of class NET[d, p] = {f : Rd → Rp |

f(x) = Φ(W⊤x)} with respect to Wasserstein distance by constructing a grid for

the weights Vi ∈ Rd of W⊤ = [V ⊤
1 . . . V ⊤

p ]. Then, we find the TV covering number

using Theorem 39. To construct the grid, we consider two cases for each Vi based

on its ℓ2 norm. In case ∥Vi∥2 ≤ Bv, we construct the grid based on ∥Vi∥2 and its

angle, while for the case that ∥Vi∥2 > Bv, we prove that only a grid on the angle

of Vi is sufficient. Further, we choose Bv based on ϵ and σ. We then show that for

each matrix W⊤ = [V ⊤
1 . . . V ⊤

p ], there exists Ŵ⊤ = [V̂ ⊤
1 . . . V̂ ⊤

p ] in the grid such that

dW

(
Φ(W⊤x),Φ(Ŵ⊤x)

)
is bounded for all x ∈ Gσ ◦ XB,d.
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Denote r = ⌈2Bv

δ
⌉ and

A = {−Bv + iδ |∈ [r]}d. (5.1.1)

Define a new set

AS =

{
(a1, . . . , ad) ∈ A |

(
d∑

i=1

11{ai = Bv}+
d∑

i=1

11{ai = −Bv}

)
≥ 1

}
.

Informally, AS is the grid of points on sides of a d-dimensional hypercube. For any

point b = (b1, . . . , bd) ∈ AS, we define the following set of vectors

Pb = { iζ

Bv

[b1 . . . bd] ∈ Rd | i ∈ [⌈Bv

ζ
⌉]}.

Note that the way we defined AS in Equation 5.1.1, implies that for any (b1, . . . , bd) ∈

AS, there exists at least one bi such that |bi| = Bv. Therefore, whenever i = ⌈Bv

ζ
⌉, we

know that ∥ iζ
Bv

[b1 . . . bd]∥2 ≥ Bv.

Now, we can define the grid of vectors V ∈ Rd in the following way

C =
⋃
b∈AS

Pb.

Informally speaking, we are discretizing the norms in ⌈Bv

ζ
⌉ values and then for each

vector from origin to gird points on the sides of the hypercube, we use ⌈Bv

ζ
⌉ vectors

with the same angle and different norms as our grid. Clearly, the size of grid |C| is

upper bounded by ⌈Bv

ζ
⌉⌈2Bv

δ
⌉d.

Next, we turn into proving that given any vector V in Rd, there exists a vector V̂

in C such that for any z ∈ Gσ ◦ XB,d, dW(ϕ(V ⊤z), ϕ(V̂ ⊤z)) ≤ (B + 4)ϵ.
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Case 1. In this case, we consider vectors V ∈ Rd such that ∥V ∥2 ≤ Bv. The way

that we constructed the set of vectors C implies that given any vector there exists a

b ∈ AS and the set of aligned vectors Pb such that the angle between V and vectors

in set Pb can be bounded. More specifically, for any V ′ ∈ Pb, we know that

∠(V, V ′) ≤ arcsin
δ

Bv

,

since arcsin is a monotone increasing functions over [−1, 1] and we know that

∥[b1 . . . bd]∥2 ≥ Bv. Let θ = arcsin δ
Bv

. Moreover, since ∥V ∥2 ≤ Bv, we know that

there exists V̂ ∈ Pb such that

∣∣∣∥V ∥2 − ∥V̂ ∥2
∣∣∣ ≤ ζ

Bv

∥[b1 . . . bd]∥2 ≤
ζ

Bv

√
dBv ≤

√
dζ.

Without loss of generality, let ∥V ∥2 ≤ ∥V̂ ∥2. We can then write

∥V̂ ∥2
∥V ∥2

≤ 1 +

√
dζ

∥V ∥2
.

Denote V̂⊥ = ∥V̂ ∥2sin(∠(V, V̂ ))V⊥ and V̂∥ = ∥V̂ ∥2cos(∠(V, V̂ )) V
∥V ∥2 , where V⊥ is a

normalized vector orthogonal to V . Denote Bz = (B + σ)
√
d + σ

√
2 ln B

ϵ
. For any

72



M.Sc. Thesis – A. Fathollah Pour McMaster University – Computing and Software

x ∈ Rd such that ∥x∥2 ≤ Bz, we can write

⟨V̂ , x⟩ = ⟨V̂⊥, x⟩+ ⟨V̂∥, x⟩ = ⟨V̂⊥, x⟩+ ⟨V, x⟩
∥V̂∥∥2
∥V ∥2

= ∥V̂⊥∥2∥x∥2cos(∠(V̂⊥, x)) + ⟨V, x⟩
∥V̂∥∥2
∥V ∥2

≤ ∥V̂⊥∥2∥x∥2 + ⟨V, x⟩
∥V̂∥∥2
∥V ∥2

≤ ∥V̂ ∥2∥x∥2sin(∠(V, V̂ )) + ⟨V, x⟩∥V̂ ∥2cos(∠(V, V̂ ))

∥V ∥2

≤ ∥V̂ ∥2∥x∥2
δ

Bv

+ ⟨V, x⟩∥V̂ ∥2
∥V ∥2

≤
√
dBv∥x∥2

δ

Bv

+ ⟨V, x⟩(1 +
√
dζ

∥V ∥2
).

Therefore, we can conclude that

⟨V̂ , x⟩ − ⟨V, x⟩ ≤
√
dBv∥x∥2

δ

Bv

+ ∥V ∥2∥x∥2(
√
dζ

∥V ∥2
)

≤ (
√
dδ +

√
dζ)∥x∥2

≤ (
√
dδ +

√
dζ)

(
(B + σ)

√
d+ σ

√
2 ln

B

ϵ

)
.

(5.1.2)

Now, for any z ∈ Gσ ◦ XB,d, by Lemma 60, we know that we can find a mixture of

m = ⌈B
η
⌉d d-dimensional Gaussian random variables h =

∑m
i=1 wigi with bounded

means in [−B,B]d and covariance matrices σ2Id such that dTV (h, z) ≤ 2
√
dη/σ. Let

H be the class of all such mixtures.

From Lemma 57, we know that

P
[
∥x∥22 ≥ (B + σ)

√
d+ σ

√
2t
]
≤ e−t. (5.1.3)
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Setting t = ln B
ϵ
and δ = ζ = ϵ/(2dL ln B

ϵ
), we can conclude that

P [∥x∥2 ≥ Bz] = P

[
∥x∥2 ≥ (B + σ)

√
d+ σ

√
2 ln

B

ϵ

]
≤ ϵ

B
. (5.1.4)

Therefore, from Equations 5.1.2 and 5.1.4, we can conclude that for the random

variable h =
∑m

i=1wigi with D(h) = Ih and for the coupling π∗ of ϕ(V ⊤h) and

ϕ(V̂ ⊤h) as defined in notations we can write

∫
Rd×Rd

∥x− y∥2dπ∗ (x, y)

≤
∫
Balld(0,Bz)

L
√
d(δ + ζ)

(
(B + σ)

√
d+ σ

√
2 ln

B

ϵ

)
dIh

+

∫
Rd\Balld(0,Bz)

2B dIh

≤ (B + σ)ϵ

2 ln B
ϵ

+
ϵσ√
2d ln B

ϵ

+ 2ϵ,

(5.1.5)

where we used the fact that for any x ∈ Rd, we know that ∥V ⊤x− V̂ ⊤x∥2 is bounded

and the activation function ϕ(x) is Lipschitz continuous with Lipschitz constant L.

Here, we assume that the variance of noise is always smaller than 1, i.e., σ ≤ 1. We

know that d ≥ 1 and assuming that ln B
ϵ
≥ 1 (*), we can rewrite Equation 5.1.5 as

∫
Rd×Rd

∥x− y∥2dπ∗ (x, y) ≤ (B + 1)ϵ+ ϵ+ 2ϵ ≤ (B + 4)ϵ,
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Then, we have

dW

(
ϕ(V ⊤h), ϕ(V̂ ⊤h)

)
= inf

π∈Π(ϕ(V ⊤h),ϕ(V̂ ⊤h))

∫
Rd×Rd

∥x− y∥2dπ (x, y)

≤
∫
Rd×Rd

∥x− y∥2dπ∗ (x, y) ≤ (B + 4)ϵ.

Therefore, we have proved that for any V ∈ Rd such that ∥V ∥2 ≤ Bv, there exists a

vector V̂ in C such that for any z ∈ Gσ ◦ XB,d and its estimation with a mixture h of

Gaussian random variables, we have

dW

(
ϕ(V ⊤h), ϕ(V̂ ⊤h)

)
≤ (B + 4)ϵ.

Case 2. Now, we turn to analyze the case where we have vectors V in Rd such that

∥V ∥2 > Bv. We assume that the function ϕ is invertible. Taking into account that

ϕ is also bounded in [−B,B], denote u = max {|ϕ−1(B − ϵ)|, |ϕ−1(−B + ϵ)|}. For a

given vector V ∈ Rd, select b ∈ AS such that for all V ′ ∈ Pb, we have ∠(V, V ′) ≤ θ,

where θ is defined the same as case 1. From all vectors in Pb, select V̂ such that it

has the maximum ℓ2 norm, i.e., the one on the side of the hypercube. It is obvious

that ∥V̂ ∥2 ≥ Bv. We will show that for any h ∈ H, the Wasserstein distance between

ϕ(V ⊤h) and ϕ(V̂ ⊤h) is bounded.

Define following two sets

S1 = {x ∈ Rd | |⟨V, x⟩| ≤ u},

S2 = {x ∈ Rd | |⟨V̂ , x⟩| ≤ u}.
(5.1.6)

Given any x ∈ Rd \ S1 ∪ S2 such that ∥x∥2 ≤ Bz, we show that both of ⟨V, x⟩ and
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⟨V̂ , x⟩ are either smaller than −u or larger than u. Assume that ⟨V̂ , x⟩ > u. Denote

α = ∠(V̂ , x) and β = ∠(V, V̂ ). From the fact that ⟨V̂ , x⟩ = ∥V̂ ∥2∥x∥2 cosα ≥ u, we

conclude that cosα ≥ 0. On the other hand, to conclude that ⟨V, x⟩ is also larger than

u, we only need to prove that ⟨V, x⟩ ≥ 0 since x ∈ Rd \ S1 ∪ S2 and we already know

that |⟨V, x⟩| ≥ u. Therefore, we want to prove that ⟨V, x⟩ = ∥V ∥2∥x∥2 cos(α±β) ≥ 0.

It implies that we need to prove cosα ≥ sin β. But we know that

cosα ≥ u

∥V̂ ∥2∥x∥2

≥ u

∥V̂ ∥2Bz

(Since ∥x∥2 ≤ Bz)

≥ u√
dBvBz

(Since V̂ ∈ Pb and ∥V̂ ∥2 ≤
√
dBv)

≥ B − ϵ

LBvBz

√
d

≥ δ

Bv

≥ sin θ ≥ sin β,

where we used the fact that the function ϕ is Lipschitz continuous and we know that

|ϕ(u) − ϕ(−u)| ≤ 2Lu. The last line follows from the fact that

Bz ≤ ((B − ϵ)/ϵ)
(
2
√
d ln(B/ϵ)

)
(**). It is easy to verify in the same way that

if ⟨V̂ , x⟩ ≤ −u, then ⟨V, x⟩ ≤ −u.

Next, since ϕ is monotone, we can conclude that for any x ∈ Rd \ S1 ∪ S2 such

that ∥x∥2 ≤ Bz, we have either both V ⊤x, V̂ ⊤x in [B − ϵ, B] or both V ⊤x, V̂ ⊤x in

[−B,−B + ϵ], which means that |V ⊤x− V̂ ⊤x| ≤ ϵ. Setting B2
v = 4Bu/(ϵσ

√
2π), for

any mixture of Gaussian random variables h ∈ H and for the coupling π∗ of ϕ(V ⊤h)
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and ϕ(V̂ ⊤h), we can write

∫
Rd×Rd

∥x− y∥2dπ∗ (x, y)

≤
∫
Balld(0,Bz)\S1∪S2

ϵdIh +

∫
S1∪S2

2BdIh +

∫
Rd\Balld(0,Bz)

2BdIh

≤ ϵ+ 4B
u√

2πσB2
v

+ 2ϵ

≤ 4ϵ,

where we used the union bound and the fact that x ∈ S1 is similar to the probability

that |x| ≤ u/Bv for the zero mean Gaussian random variable x with variance equal

to (σBv)
2. We can, again, write that

dW

(
ϕ(V ⊤h), ϕ(V̂ ⊤h)

)
= inf

π∈Π(ϕ(V ⊤h),ϕ(V̂ ⊤h))

∫
Rd×Rd

∥x− y∥2dπ (x, y)

≤
∫
Rd×Rd

∥x− y∥2dπ∗ (x, y) ≤ 4ϵ.

So far, we proved that for any V ∈ Rd there exists a V̂ ∈ C such that

dW

(
ϕ(V ⊤h), ϕ(V̂ ⊤h)

)
≤ (4 + B)ϵ for all mixtures h ∈ H, which comes from the

fact that 4ϵ ≤ (4 + B)ϵ. Now, we turn to covering functions in NET[d,p]. Note that

the output of ϕ(V ⊤x) is real-valued. We also know that Φ is applied element-wise.

Consider the set

CW = {[V ⊤
1 . . . V ⊤

p ]⊤ | Vi ∈ C for i ∈ [p]}.

We know that for any W = [V ⊤
1 . . . V ⊤

p ]⊤ there exists Ŵ⊤ = [V̂ ⊤
1 . . . V̂ ⊤

p ]⊤ such

that for every i ∈ [p], we have dW

(
ϕ(V ⊤

i h), ϕ(V̂ ⊤
i h)

)
≤ (4 + B)ϵ. Therefore,

since we keep the coupling the same π∗ for every i ∈ [p], we can conclude that
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dW

(
Φ(W⊤h),Φ(Ŵ⊤

i h)
)
≤ (4 +B)ϵd.

Now, using Theorem 39, we get that

dTV

(
gσ(Φ(W

⊤h)), gσ(Φ(Ŵ
⊤h))

)
≤ (4 +B)ϵd

2σ
(5.1.7)

Consequently, for any z ∈ Gσ ◦ XB,d, we can write

dTV

(
gσ(Φ(W

⊤z)), gσ(Φ(Ŵ
⊤z))

)
≤ dTV

(
gσ(Φ(W

⊤z)), gσ(Φ(W
⊤h))

)
+ dTV

(
gσ(Φ(W

⊤h)), gσ(Φ(Ŵ
⊤h))

)
+ dTV

(
gσ(Φ(Ŵ

⊤h)), gσ(Φ(Ŵ
⊤z))

)
≤ 4

√
dη

σ
+ (4 +B)

ϵd

2σ
,

(5.1.8)

where we used data processing inequality and Equation 5.1.7. Equation 5.1.8 implies

that CW is a global cover for Gσ ◦ NET[d, p] with respect to dTV metric. Clearly,

|CW | ≤
(
(Bv)

d+1

δdζ

)p

=

(
2BvdL ln B

ϵ

ϵ

)p(d+1)

.

Therefore, setting η =
√
d(4 +B)ϵ/8 and ϵ′ = ϵσ/((4 +B)d) we conclude that

NU

(
ϵ,Gσ ◦ NET[d, p],∞, dTV ,Gσ ◦ XB,d

)
≤
(
2(4 +B)d2LBv

ϵσ
ln

(
(4 +B)Bd

ϵσ

))p(d+1)

≤

(
4(4 +B)3/2

(2π)1/4
d5/2L

√
Bu′

ϵ3/2σ2
ln

(
(4 +B)Bd

ϵσ

))p(d+1)

,

(5.1.9)
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where

u′ = max
{
|ϕ−1(B − ϵ′)|, |ϕ−1(−B + ϵ′)|

}
= max

{∣∣ϕ−1 (B − ϵσ/((4 +B)d))
∣∣ , ∣∣ϕ−1 (−B + ϵσ/((4 +B)d))

∣∣} ,
and

σ ≤ (4 +B)Bd

ϵ
.

Note that we always use σ ≤ 1. In that case, having σ > (4 + B)Bd/ϵ means that

ϵ > (4 + B)Bd > B
√
d. On the other hand, the domain of the output of Φ is in

[−B,B]d and, therefore, in this case the covering number would be simply one and

no further analysis is required. Furthermore, the assumption (*) always holds since in

order to obtain an ϵ-cover for the single-layer neural network, we will need to bound

the Wassestein distance between ϕ(V ⊤h̄) and ϕ(V̂ ⊤h̄) by (4 + B)ϵ′. In this case we

have

ln
B

ϵ′
≥ 1

⇔ B

ϵ′
≥ e

⇔ B

e
≥ ϵσ

(4 +B)d

⇔ (4 +B)d

eσ
B ≥ ϵ,

which holds since we consider σ ≤ 1 and ϵ ≤ B
√
d. Moreover, for assumption (**) to
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hold, we need

Bz ≤
(
B − ϵ′

ϵ

)
2
√
d ln(

B

ϵ′
)

⇔ (B + σ)
√
d+ σ

√
2 ln

B

ϵ′
≤
(
B − ϵ′

ϵ′

)
2
√
d ln(

B

ϵ′
)

⇔ B + 1√
ln B

ϵ′

+

√
2√
d
≤ 2

(
B − ϵ′

ϵ′

)√
ln

B

ϵ′

⇔ B + 1

(ln B
ϵ′
)1/4

+

√
2√

d ln(B
ϵ′
)
≤ 2

(
B − ϵ′

ϵ′

)

⇔

B + 1

ln B
ϵ′

+

√
2√

d ln(B
ϵ′
)

 ϵ′

2
≤ B − ϵ′

⇔

(
B + 1 +

√
2

2
+ 1

)
ϵ′ ≤ B

⇔

(
B + 3 +

√
2

2

)(
ϵσ

(4 +B)d

)
≤ B

⇔ ϵ ≤ 2(4 +B)d

(B + 3 +
√
2)σ

B,

which is always true if σ ≤ 1. Note that in both (*) and (**) we were interested

in values of ϵ that are smaller than B
√
d; Otherwise, the covering number would be

one.

We can also simplify the constants and write Equation 5.1.9 as

NU

(
ϵ,Gσ ◦ NET[d, p],∞, dTV ,Gσ ◦ XB,d

)
≤

(
2.6(4 +B)3/2

d5/2L
√
Bu′

ϵ3/2σ2
ln

(
(4 +B)Bd

ϵσ

))p(d+1)

.
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Also since ϕ is a monotone function, we can approximate u′ by

u′ ≤ max

{∣∣∣∣ϕ−1

(
B − σϵ

(4 +B)d

)∣∣∣∣ , ∣∣∣∣ϕ−1

(
−B +

σϵ

(4 +B)d

)∣∣∣∣} .

5.2 Uniform Covering Numbers for Deeper Net-

works

In the following, we discuss how one can use Theorem 43 and techniques provided in

Chapter 4 to obtain bounds on covering number for deeper networks. For a T -layer

neural network, it is useful to separate the first layer from the rest of the network. The

following theorem offers a bound on the uniform covering number of (the expectation

of) a noisy network based on the usual ∥.∥ℓ22 covering number of the first layer and

the TV covering number of the subsequent layers.

Theorem 46. Let NET[d, p1],NET[p1, p2], . . . ,NET[pT−1, pT ] be T classes of neural

networks. Denote the T -layer noisy network by

F = Gσ ◦ NET[pT−1, pT ] ◦ . . . ◦ Gσ ◦ NET[p1, p2] ◦ Gσ ◦ NET[d, p1],

and let H = {h : Rd → [0, 1]pT | h(x) = Ef

[
f(x)

]
, f ∈ F}. Denote the uniform

covering numbers of compositions of neural network classes with the Gaussian noise

class (with respect to d∞TV ) as

Ni = NU

(
ϵ

T
√
pT

,Gσ ◦ NET[pi−1, pi],∞, d∞TV ,Gσ ◦ X1,pi−1

)
, 2 ≤ i ≤ T, (5.2.1)
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and the uniform covering number of Gσ ◦ NET[d, p1] with respect to ∥.∥ℓ22 as

N1 = NU

(
2σϵ

T
√
pT

,NET[d, p1],m, ∥.∥ℓ22
)
.

Then we have

NU

(
ϵ,H,m, ∥.∥ℓ22

)
≤

T∏
i=1

Ni.

The proof of Theorem 46 involves applying Corollary 40 to turn the ∥.∥2 cover

of first layer into a TV cover. We then find a TV cover for rest of the network by

applying Lemma 37 recursively to compose all the other layers. We will compose the

first layer with the rest of the network and bound the covering number by another

application of Lemma 37. Finally, we turn the TV covering number (of the entire

network) back into ∥.∥ℓ22 covering number using Theorem 36. The complete proof

can be found below. The above bound does not depend on the norm of weights and

therefore we can use it for networks with large weights.

Proof. We will prove the theorem for the stronger case where the output of single-

layer neural network classes and H is in [−B,B]pT . In the case of sigmoid function,

ϕ(x), the output is in [0, 1]pT . Since adding a constant to the output of functions in

a class does not change its covering number, we can replace the sigmoid activation

function in the class of single-layer neural networks with ϕ(x) − 1/2. Therefore, we

can assume B = 1/2 and consider outputs to be in [−1/2, 1/2]pT . Consider two

82



M.Sc. Thesis – A. Fathollah Pour McMaster University – Computing and Software

consecutive classes NET[pi− 1, pi] and NET[pi, pi+1]. From Lemma 37 we know that

NU

(
2ϵ

2BT
√
pT

,Gσ ◦ NET[pi, pi+1] ◦ Gσ ◦ NET[pi−1, pi],∞, d∞TV ,Gσ ◦ XB,pi−1

)
≤ NU

(
ϵ

2BT
√
pT

,Gσ ◦ NET[pi−1, pi],∞, d∞TV ,Gσ ◦ XB,pi−1

)
.NU

(
ϵ

2BT
√
pT

,Gσ ◦ NET[pi, pi+1],∞, d∞TV ,Gσ ◦ XB,pi

)
= Ni.Ni+1.

(5.2.2)

Let

Q = Gσ ◦ NET[pT−1, pT ] ◦ . . . ◦ Gσ ◦ NET[p1, p2].

It is clear that F = Q ◦ Gσ ◦ NET[d, p1]. Equation 5.2.2 is true for every 2 ≤ i ≤ T .

Therefore, we can conclude that

NU

(
(T − 1)ϵ

2BT
√
pT

,Q,∞, d∞TV ,Gσ ◦ XB,p1

)
≤

T∏
i=2

Ni.

Moreover, corollary 40 suggests that

NU

(
ϵ

2BT
√
pT

,Gσ ◦ NET[d, p1],∞, dℓ2TV ,∆d

)
≤ NU

(
2σϵ

2BT
√
pT

,NET[d, p1],∞, ∥.∥ℓ22 ,∆d

)

Using Lemma 37, we can again write that

NU

(
ϵ

2B
√
pT

,F ,m, dℓ2TV ,∆d

)
≤ NU

(
(T − 1)ϵ

2BT
√
pT

,Q,∞, d∞TV ,Gσ ◦ XB,p1

)
.NU

(
ϵ

2BT
√
pT

,Gσ ◦ NET[d, p1],∞, dℓ2TV ,∆d

)
≤

T∏
i=1

Ni.
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Finally, from Theorem 36 and the fact that F is a class of functions from Rd to

[−B,B]p, we can conclude that

NU

(
ϵ,H,m, ∥.∥ℓ22

)
≤ NU

(
ϵ

2B
√
pT

,F ,m, dℓ2TV ,∆d

)
≤

T∏
i=1

Ni.

The ∥.∥ℓ22 covering number of the first layer (i.e., N1 in above) can be bounded

using standard approaches in the literature. For instance, in the following corollary

we will use the bound of Lemma 14.7 in Anthony and Bartlett (2009). Other Ni’s

can be bounded using Theorem 43.

Corollary 47 (Covering number bound of Theorem 46). Let NET[d, p1], NET[p1, p2],

. . .,NET[pT−1, pT ] be T classes of neural networks. Denote the T -layer noisy network

by

F = Gσ ◦ NET[pT−1, pT ] ◦ . . . ◦ Gσ ◦ NET[p1, p2] ◦ Gσ ◦ NET[d, p1],

and let H = {h : Rd → [0, 1]pT | h(x) = Ef

[
f(x)

]
, f ∈ F}. Then we have

lnNU

(
ϵ,H,m, ∥.∥ℓ22

)

≤
T∑
i=2

pi.pi−1 ln

30

(T
√
pT )

3/2p
5/2
i−1

√
ln

(
5T

√
pTpi−1 − ϵσ
ϵσ

)
ϵ3/2σ2

ln

(
5Tpi−1

√
pT

ϵσ

)
+ dp1 ln

(
Tem

√
pT

2ϵσ

)
.
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Proof. We first use Theorem 43 to find the covering number of NET[pi−1, pi]. Partic-

ularly, for any 2 ≤ i ≤ T we have,

lnNi = lnNU

(
ϵ

T
√
pT

,Gσ ◦ NET[pi−1, pi],∞, d∞TV ,Gσ ◦ X1,pi−1

)

≤ pi.pi−1 ln

30

(T
√
pT )

3/2p
5/2
i−1

√
ln

(
5T

√
pTpi−1 − ϵσ
ϵσ

)
ϵ3/2σ2

ln

(
5Tpi−1

√
pT

ϵσ

) .

Moreover, we use Lemma 14.17 in Anthony and Bartlett (2009) to find a bound on

N1. This lemma provides a bound with respect to ∥.∥∞2 , however, we know that ∥.∥ℓ22

is always smaller than ∥.∥∞2 (see Remark 5). Therefore, we can bound N1 as follows

lnN1 ≤ dp1 ln

(
Tem

√
pT

2ϵσ

)
.

From Theorem 46 we know that lnNU

(
ϵ,H,m, ∥.∥ℓ22

)
≤
∑T

i=1 lnNi, therefore, we can

write that

lnNU

(
ϵ,H,m, ∥.∥ℓ22

)

≤
T∑
i=1

pi.pi−1 ln

30

(T
√
pT )

3/2p
5/2
i−1

√
ln

(
5T

√
pTpi−1 − ϵσ
ϵσ

)
ϵ3/2σ2

ln

(
5Tpi−1

√
pT

ϵσ

)
+ dp1 ln

(
Tem

√
pT

2ϵσ

)
.

As we mentioned in Chapter 2 we can obtain generalization bounds with respect
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to ramp loss from the covering number bound of the composition of a hypothesis class

with ramp loss. Therefore, similar to other bounds that are presented in Chapter 3,

we will extend the covering number bound of Corollary 47 to the covering number

bound for the composition of T -layer noisy neural networks with ramp loss. We will

state this bound in the following corollary and use it in our experiments in Chapter 7

where we want to compare covering number bounds based on NVAC. The proof is a

simple application of Lemma 19 to turn the covering number bound of Corollary 47

into a covering number for Hγ.

Corollary 48 (Covering number bound of Theorem 46 for ramp loss). Let NET[d, p1],

NET[p1, p2],. . ., NET[pT−1, pT ] be T classes of neural networks. Denote the T -layer

noisy network by

F = Gσ ◦ NET[pT−1, pT ] ◦ . . . ◦ Gσ ◦ NET[p1, p2] ◦ Gσ ◦ NET[d, p1],

and let H = {h : Rd → [0, 1]pT | h(x) = Ef

[
f(x)

]
, f ∈ F}. Then we have

lnNU

(
ϵ,Hγ,m, ∥.∥ℓ22

)

≤
T∑
i=2

pi.pi−1 ln

30

(2T
√
pT )

3/2p
5/2
i−1

√
ln

(
(10/γ)T

√
pTpi−1 − ϵσ
ϵσ

)
(γϵ)3/2σ2

ln

(
10Tpi−1

√
pT

γϵσ

)
+ dp1 ln

(
Tem

√
pT

γϵσ

)
.

One can generalize the above analysis in the following way: instead of separating

the first layer, one can basically “break” the network from any layer, use existing

∥.∥2 covering number bounds for the first few layers, and Theorem 43 for the rest.
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This result is formalized in Lemma 49. It is a useful technique that enables the use of

existing networks with bounded ∥.∥2 covering number to create deeper networks while

controlling the capacity. Another possible application of Lemma 49 is that it gives

us the opportunity to get tighter bounds on the covering number in special settings.

One example of such settings would be networks that have small norms of weights in

the first few layers and potentially large weights in the final layers. In this case, it is

possible to use ∥.∥2 covering numbers that are dependent on the norms of weights for

the first few layers and Theorem 43 for the rest, which does not depend on the norms

of weights.

Lemma 49. Let Q be a class of functions (e.g., neural networks) from Rd to Rp0 and

NET[p0, p1], NET[p1, p2], . . . ,NET[pT−1, pT ] be T classes of neural networks. Denote

the composition of the T -layer neural network and Q as

F = Gσ ◦ NET[pT−1, pT ] ◦ . . . ◦ Gσ ◦ NET[p1, p2] ◦ Gσ ◦ NET[p0, p1] ◦ Gσ ◦ Q,

and let H = {h : Rd → [−B,B]pT | h(x) = Ef

[
f(x)

]
, f ∈ F}. Define the uniform

covering numbers of composition of neural network classes with the Gaussian noise

class (with respect to d∞TV ) as

Ni = NU

(
ϵ

4BT
√
pT

,Gσ ◦ NET[pi−1, pi],∞, d∞TV ,Gσ ◦ XB,pi−1

)
, 1 ≤ i ≤ T,

and define the uniform covering number of class Q as

N0 = NU

(
σϵ

2B
√
pT

,Q,m, ∥.∥ℓ22
)
.
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Then we have,

NU

(
ϵ,H,m, ∥.∥ℓ22

)
≤

T∏
i=0

Ni.

Proof. From Corollary 40, we can conclude that

NU(
ϵ

4B
√
pT

,Gσ ◦ Q,m, dℓ2TV ,∆d) ≤ NU(
σϵ

2B
√
pT

,Q,m, ∥.∥ℓ22 ) = N0.

Same as proof of Theorem 46, by using Lemma 37, we can say that for two consecutive

classes NET[pi − 1, pi] and NET[pi, pi+1]

NU

(
2ϵ

4BT
√
pT

,Gσ ◦ NET[pi, pi+1] ◦ Gσ ◦ NET[pi−1, pi],∞, d∞TV ,Gσ ◦ XB,pi−1

)
≤ NU

(
ϵ

4BT
√
pT

,Gσ ◦ NET[pi−1, pi],∞, d∞TV ,Gσ ◦ XB,pi−1

)
.NU

(
ϵ

4BT
√
pT

,Gσ ◦ NET[pi, pi+1],∞, d∞TV ,Gσ ◦ XB,pi

)
= Ni.Ni+1

Let

E = Gσ ◦ NET[pT−1, pT ] ◦ . . . ◦ Gσ ◦ NET[p0, p1].

It is clear that F = E ◦ Gσ ◦ Q. Now, from Lemma 37, we can conclude that

NU

(
ϵ

2B
√
pT

,F ,m, dℓ2TV ,∆d

)
≤ NU

(
ϵ

4B
√
pT

, E ,∞, d∞TV ,Gσ ◦ XB,p

)
.NU(

ϵ

4B
√
pT

,Gσ ◦ Q,m, dℓ2TV ,∆d)

≤
T∏
i=0

Ni.
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Lastly, from Theorem 36, we can conclude that

NU(ϵ,H,m, ∥.∥ℓ22 ) ≤ NU

(
ϵ

2B
√
pT

,F ,∞, dℓ2TV ,∆d

)
≤

T∏
i=0

Ni.

5.3 Analyzing Different Covering Number Bounds

Approach Log of covering number: lnNU(ϵ,F ,m, ∥.∥ℓ22 ) Nature

Corollary 47 O

(
Wwin ln

(
(T

√
pT )3/2d

5/2
max

ϵ3/2σ2

)
+ dmaxd ln(

mT
√
pT

ϵσ
)

)
MOL

Norm-based
(Theorem 23)

O
((

1
ϵ

)2T
(pT )

T+1 (2V )T
2+T log2(2d)

)
RVO

Pseudo-dim-based
(Theorem 24)

O
(
pT (Wrvorrvo)

2 ln
(

m
√
pT

(Wrvorrvo)2ϵ

))
RVO

Lipschitzness-based
(Theorem 25)

O
(
pTWrvo ln

(
m
√
pTWrvoV T

ϵ(V−1)

))
RVO

Spectral
(Theorem 26)

O

(
∥X∥2F ln(w2)

ϵ2

(∏T
i=1 s

2
i

)(∑T
i=1(

bi
si
)2/3
)3)

MOL

Table 5.1: Covering number of a T -layer sigmoid network from Rd to RpT defined by
F = NET[pT−1, pT ] ◦ . . . ◦ NET[p1, p2] ◦ NET[d, p1]. Corollary 47 is computed on the
T -layer noisy sigmoid network. ∥X∥F denotes the normalized Frobenious norm of
input matrix X ∈ Rd×m (see Chapter 3 for more details). The definition of other

quantifiers used in these bounds can be found in Table 5.2.

For the remainder of this chapter we will qualitatively compare some of the ap-

proaches in finding covering number with our approach in Corollary 47 (Later in

the next chapter we will propose a quantitative metric (see Definition 51) to com-

pare these approaches based on their suggested generalization bounds). Particularly,
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Quantifier Definition Description

dmax max1≤i<T−1 pi
Maximum number of neurons

in a hidden layer

Wrvo dp1 +
∑T−1

i=2 pi.pi−1 + pT−1

Total number of parameters of the
real-valued networks corresponding to

each dimension of the output

Wwin

∑T
i=2 pi.pi−1

Total number of parameters excluding
the weights between input
and first hidden layers

rrvo 1 +
∑T−1

i=1 pi

Total number of neurons in all
but the input layer of the

real-valued networks corresponding to
each dimension of the output

w max {d, dmax, pT}
Maximum number of neurons in

all layers of the network

V max1≤i≤T ∥Wi∥1,∞
Maximum ℓ1 norm of incoming

weights to a neuron

si ∥Wi∥σ Spectral norm of Wi

bi ∥Wi∥2,1 ∥.∥2,1 norm of Wi (see Section 3.2.1)

Table 5.2: Definition of quantifiers used in Table 5.1. Here, Wi ∈ Rpi−1×pi denotes
the weight vector associated with NET[pi−1, pi] for 2 ≤ i ≤ T and W1 ∈ Rd×p1 is the
weight vector associated with NET[d, p1]. It is noteworthy that the total number of

parameters of the network, dp1 +
∑T

i=2 pi.pi−1, is always smaller than pTWrvo.

we compare the following approaches: Corollary 47, Norm-based (Theorem 14.17 in

Anthony and Bartlett (2009)), Lipschitzness-based (Theorem 14.5 in Anthony and

Bartlett (2009)), Pseudo-dim-based (Theorem 14.2 in Anthony and Bartlett (2009)),

and Spectral (Bartlett et al. (2017)). Some of these bounds work naturally for multi-

output layers, which we will denote by MOL, while some of them are derived for

real-valued outputs, which we denote by RVO. In Chapter 3, we recommended

one possible approach to turn RVO covering number bounds into MOL bounds

(Lemma 20). A simplified form of these bounds is presented in Table 5.1. More
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details about these bounds and their exact forms can be found in Chapter 3.

5.3.1 Qualitative Comparison of Bounds on the Logarithm

of Covering Number

In the following, whenever we reference to an approach, we are considering the

logarithm of the covering number. For the definition of quantifiers see Table 5.2.

Corollary 47 and Pseudo-dim-based bounds have no dependence on the norms of

weights while Norm-based and Spectral bounds mostly depend (polynomially) on the

norms with Spectral having a slight dependence of ln(w2) on the size of the net-

work. Pseudo-dim-based bound has the worst dependence on the size of the network,

i.e., Õ
(
pT (d3max + d2maxd)

2
)
, where Õ hides logarithmic factors. On the other hand,

comparing Corollary 47 and Lipschitzness-based bound requires more attention. In

terms of dependence on the size of the network, Corollary 47 and Lipschitzness-based

bound are incomparable: Corollary 47 has a dependence of Õ (d2max + dmaxd) while

Lipschitzness-based bound depends on Õ (pT (d
2
max + dmaxd)). However, in contrast

to Corollary 47, Lipschitzness-based bound has a dependence on the norms of the

weights. Another important dependence is on 1/ϵ. Corollary 47 has a logarithmic de-

pendence on 1/ϵ. While Lipschitzness-based and Pseudo-dim-based bounds also enjoy

the logarithmic dependence, the Norm-based and Spectral bounds depend polynomi-

ally on 1/ϵ. It is also worth mentioning that Corollary 47, Pseudo-dim-based and

Lipschitzness-based bounds depend on ln(m). The empirical results of Chapter 7

suggest that Corollary 47 can outperform all other bounds including Lipschitzness-

based bound.
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Chapter 6

NVAC: A Metric for Comparing

Generalization Bounds

We want to provide tools to compare different approaches in finding covering numbers

and their suggested generalization bounds. First, we define the notion of a generaliza-

tion bound for classification. Let Y = [k] and F be a class of functions from X to Rk.

Let A be an algorithm that receives a labeled sample S = ((x1, y1), . . . , (xm, ym)) ∈

(X × Y)m and outputs a function ĥ ∈ F . Note that the output of this function is a

real vector so it can capture margin-based classifiers too. Let l0−1 : Rk × [k] → {0, 1}

be the “thresholded” 0-1 loss function defined by l0−1(u, y) = 11{argmaxiu
(i) ̸= y}

where u(i) is the i-th dimension of u.

Definition 50 (Generalization Bound for Classification). A (valid) generalization

bound for A with respect to l0−1 and another (surrogate) loss function l is a function

GB : F × (X ×Y)m → R such that for every distribution D over X ×Y, if S ∼ Dm,
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then with probability at least 0.99 (over the randomness of S) we have

∣∣∣∣∣∣ 1m
∑

(x,y)∈S

l(ĥ(x), y)− E(x,y)∼D

[
l0−1(ĥ(x), y)

]∣∣∣∣∣∣ ≤ GB(ĥ, S).

For example, GB(ĥ, S) = 2 is a useless but valid generalization bound. Various

generalization bounds that have been proposed in the literature are examples of a GB.

Note that GB can depend both on S (for instance on |S|) and on ĥ (for example, on

the norm of the weights of network).

It is not straightforward to empirically compare generalization bounds since they

are often vacuous for commonly used applications. Jiang et al. (2020) address this

by looking at other metrics, such as the correlation of each bound with the actual

generalization gap. While these metrics are informative, it is also useful to know how

far off each bound is from producing a “non-vacuous” bound (Dziugaite and Roy,

2017). Therefore, we will take a more direct approach and propose the following

metric.

Definition 51 (NVAC). Let ĥ be a hypothesis, S ∈ (X × Y)m a sample, and GB

a generalization bound for algorithm A. Let Sn denote a sample of size mn which

includes n copies of S. Let n∗ be the smallest integer such that the following holds:

GB(ĥ, Sn∗
) +

1

|Sn∗|
∑

(x,y)∈Sn∗

l(ĥ(x), y) ≤ 1.

We define NVAC to be |Sn∗ | = mn∗.

Informally speaking, NVAC is an upper bound on the minimum number of sam-

ples required to obtain a non-vacuous generalization bound. Approaches that get
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tighter upper bounds on covering number will generally result in smaller NVACs. In

Section 6.1, we will show how one can calculate NVAC using the uniform covering

number bounds.

6.1 Estimating NVAC Using the Covering Num-

ber

In this section, we will use Theorem 17 to establish a way of approximating NVAC

from a covering number bound. In Remark 52 we state the technique used to ap-

proximate NVAC and in the following we will justify why this would be a good

approximation.

Remark 52. Let F be a hypothesis class from X to Rk, S be a sample of size m and

ĥ ∈ F . We find n∗ such that the following holds

6√
mn∗

√
lnNU(ϵ,Fγ,mn∗, ∥.∥ℓ22 ) ≤ ϵ, ϵ =

1− l̂γ(ĥ)

10
, (6.1.1)

and choose mn∗ as an approximation of NVAC. Here, l̂γ(ĥ) is the empirical ramp loss

of ĥ on sample S. In Section 7.2, where we empirically compare NVAC of different

covering number bounds, we choose S to be the MNIST dataset and ĥ as the trained

neural network (from a class F of all neural networks with a certain architecture) on

this dataset.

In the following we discuss why this choice of mn∗ is a good estimate of NVAC.

First, let Sn ∈ (X × Y)mn be an input set and D be a distribution over (X × Y),

where mn is larger than mn∗ as found in Remark 52. From Theorem 17 and using
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the fact that the ramp loss is in [0, 1] we can write

E(x,y)∼D

[
l0−1(ĥ(x), y)

]
≤ l̂γ(ĥ) + 2R(Fγ |Sn) + 3

√
ln(2/δ)

2mn

≤ l̂γ(ĥ) + inf
ϵ∈[0,1/2]

{
2

[
4ϵ+

12√
mn

∫ 1/2

ϵ

√
lnNU(ν,Fγ,mn, ∥.∥ℓ22 ) dν

]}
+ 3

√
ln(2/δ)

2mn
.

(6.1.2)

Since Sn consists of n copies of the sample S, we can replace l̂γ(ĥ) on Sn by the

ramp loss of ĥ on S (this would be equal to the ramp loss of trained neural network

when we empirically compare NVACs in Section 7.2). Moreover, since the number of

samples are very large and δ = 0.01, we can approximate the last term in the right

hand side of Equation 6.1.2 with zero. Therefore, we can write that

E(x,y)∼D

[
l0−1(ĥ(x), y)

]
≤ l̂γ(ĥ) + inf

ϵ∈[0,1/2]

{
2

[
4ϵ+

12√
mn

∫ 1/2

ϵ

√
lnNU(ν,Fγ,mn, ∥.∥ℓ22 ) dν

]}

≤ l̂γ(ĥ) + 2

[
4ϵ+

12√
mn∗

∫ 1/2

ϵ

√
lnNU(ν,Fγ,mn∗, ∥.∥ℓ22 ) dν

]
(∀ϵ ∈ [0, 1/2])

≤ l̂γ(ĥ) + 2

[
4ϵ+

6√
mn∗

√
lnNU(ϵ,Fγ,mn∗, ∥.∥ℓ22 )

]
,

(6.1.3)

where we used the fact that NU(ϵ,Fγ,mn, ∥.∥ℓ22 ) decreases monotonically with ϵ and

the integral is over [ϵ, 1/2]. Note that in the above equation we subtly used the fact

that covering number grows at most polynomially with the number of samples and,

therefore, increasing number of samples will always result in smaller right hand side

term in Equation 6.1.3. In Remark 53, we discuss why this is a valid assumption for

the covering number bounds that we use in our experiments.

Since Equation 6.1.3 holds for any ϵ ∈ [0, 1/2], we can set ϵ = (1− l̂γ(ĥ))/10 and
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conclude that

E(x,y)∼D

[
l0−1(ĥ(x), y)

]
≤ l̂γ(ĥ) + 2

[
4ϵ+

6√
mn∗

√
lnNU(ϵ,Fγ,mn∗, ∥.∥ℓ22 )

]
≤ l̂γ(ĥ) + 2

5(1− l̂γ(ĥ))

10

≤ 1.

(6.1.4)

From the above equation, we can conclude that by setting mn to be larger that mn∗

as defined in Remark 52, we can provide the following valid generalization bound

with respect to l0−1 and lγ:

GB(ĥ, Sn) = 2

[
4ϵ+

6√
mn

√
lnNU(ϵ,H,mn, ∥.∥ℓ22 )

]
.

Moreover, for any Sn such that mn ≥ mn∗ we can conclude that the GB defined

above results in a non-vacuous bound, i.e.,

GB(ĥ, Sn) + l̂γ(ĥ) ≤ 1,

which concludes that mn∗ is a reasonable approximation for NVAC.

Remark 53. Some of the covering number bounds that we presented are dependent on

the number of input samples, m. However, for all of them the logarithm of covering

number has at most a logarithmic dependence on the number of samples. It is also

worth mentioning that the Spectral bound is dependent on the normalized Frobenious

norm and increasing the number of copies of S in Equation 6.1.3 (i.e., mn) will not

change this norm and, therefore, the Spectral bound.
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Chapter 7

Experiments

In Section 5.3 we qualitatively compared different approaches in bounding covering

number. In this section, we empirically compare the exact form of these bounds (see

Chapter 3) using the NVAC metric.

7.1 Overview of Results and Discussion

We train fully connected neural networks on MNIST dataset. We use a network

with an input layer, an output layer, and three hidden layers each containing 250

hidden neurons as the baseline architecture. See Section 7.2 for the details of the

learning settings. The left two graphs in Figure 7.1 depict NVACs as functions of the

depth and width of the network. It can be observed that our approach achieves the

smallest NVAC. The Norm-based bound is the worst and is removed from the graph

(see Section 7.2). Overall, bounds that are based on the norm of the weights (even

the spectral norm) perform poorly compared to those that are based on the size of

the network. This is an interesting observation since we have millions of parameters
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(≈ 3× 109) in some of the wide networks and one would assume approaches based on

norm of weights should be able to explain generalization behaviour better. Aside from

the fact that our bound does not have any dependence on the norms of weights, there

are several reasons why it performs better. First, the NVAC in Spectral and Norm-

based approaches have an extra polynomial dependence on 1/ϵ, compared to all other

approaches. Moreover, these bounds depend on product of norms and group norms

which can get quite large. Finally, our method works naturally for multi-output layers,

while the Pseudo-dim-based, Lipschitzness-based, and Norm-based approaches work

for real-valued output (and therefore one needs to bound the cover for each output

separately).

The covering number bound of Corollary 48 has a polynomial dependence on 1/σ.

Therefore, NVAC has a mild logarithmic dependence on 1/σ (see Section 6.1 for

details). The third graph in Figure 7.1 corroborates that even a negligible amount

of noise (σ ≈ 10−240) is sufficient to get tighter bounds on NVAC compared to other

approaches. Finally, the right graph in Figure 7.1 shows that even with a considerable

amount of noise (e.g, σ = 0.2), the train and test accuracy of the model remain almost

unchanged. This is perhaps expected, as the dynamics of training neural networks

with gradient descent is already noisy even without adding Gaussian noise. Overall,

our preliminary experiment shows that small amount of noise does not affect the

performance, yet it enables us to prove tighter generalization bounds.

7.2 Empirical Results

In this section, we will discuss details of the learning settings for the empirical re-

sults that were stated in Section 7.1 and elaborate more on the observation that
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Figure 7.1: The left two graphs depict NVAC of different generalization bounds as a
function of the number of hidden layers and width of the network. The Norm-based
approach is excluded because of its excessively high NVAC (see Section 7.2). The
third graph plots NVAC against log10(σ) (σ is standard deviation of noise) for the
two best approaches. The rightmost graph plots the train/test 0-1 losses for different
values of σ. The gaps between the train and test losses are shown for σ = 0, 0.3.
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Corollary 48 outperforms other bounds.

We train fully connected neural networks on the publicly available MNIST dataset,

which consists of handwritten digits (28× 28 pixel images) with 10 labels. Our base-

line architecture has 3 hidden layers each containing 250 neurons, one input layer, and

one output layer. The input layer has 784 neurons, which are pixels of each image in

MNIST dataset. The output layer has 10 neurons, corresponding to the 10 labels. All

the activation functions are the shifted variant of the sigmoid function as discussed

in Chapter 3, i.e., ϕ(x) = 1
1+e−x − 1

2
. The additional architectures that we use are as

follows: (a) fully connected neural networks with one input layer, one output layer,

and 2, 4, 5 hidden layers each containing 250 neurons; (b) fully connected neural net-

works with one input layer, one output layer, and three hidden layers each containing

64, 150, 350, 500, 800, 1000, 1500 neurons. All of the experiments are performed using

NVIDIA Titan V GPU.

Networks are trained with SGD optimizer with a momentum of 0.9 and a learning

rate of 0.3. For the purpose of training the loss is set to be the cross-entropy loss. For

the rest of the experiments (e.g., to report the accuracy and NVACs) ramp loss with

a margin of γ = 0.1 is used. The size of training, validation, and test sets are 59000,

1000, and 10000, respectively. In Corollary 48 we are considering noisy networks with

its expectation as output. Therefore, for reporting results of Corollary 48 we compute

the output 50 times and take an average. Computing random outputs several times

and averaging them yields in negligible error bars in the demonstrated results.

The results of NVAC as a function of depth and width are depicted in Figure 7.2.

All of the NVACs are derived according to Remark 52. In Figure 7.2, we also include
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Figure 7.2: NVAC of different generalization bounds as a function of the number of
hidden layers and width of the network.

the Norm-based approach (Theorem 23) which was omitted from the Figures in Sec-

tion 7.1 due to its large scale. As mentioned in Section 7.1, Corollary 48 outperforms

other bounds. In the following, we will investigate this observation.

The first justification behind this observation is the dependence on 1/ϵ. As it was

discussed, we know that the NVAC in Norm-based and Spectral bounds has an extra

polynomial dependence on 1/ϵ, compared to other bounds including Corollary 48.

The second reason behind this observation is that the Spectral and Norm-based

bounds depend on the product of the weights. Although one may think that in

networks with large number of parameters this dependency would be better than

those on the number of parameters, we will see that the Pseudo-dim-based bound,

Lipschitzness-based bound, and Corollary 48 perform better in these cases. For in-

stance, consider the network that has been trained with three hidden layers, each

containing 1500 neurons. In this case, the number of parameters is ≈ 5× 109, while

in the Spectral bound, the contribution of product of norms to covering number is
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≈ 1 × 109 and the contribution of 1/ϵ is ≈ 4 × 104. In the norm-based bound the

contribution of the product of norms is ≈ 1× 1053 alone.

Finally, we will explore this observation by considering the dependence of these

bounds on size of the network. In Section 5.3 we discussed that Pseudo-dim-based

bound has the worst dependence and comparing Corollary 48 with Lipschitzness-

based bound is not straightforward. The empirical results, however, suggests that

the Lipschitzness-based bound is worse than Corollary 48.

It is worth mentioning that in the rightmost graph in Figure 7.1, the output of

noisy networks are averaged over 1000 noisy outputs to obtain results that are more

close to the true expectation that has been considered in the output of architecture

in Corollary 48.

102



Chapter 8

Conclusion

In this thesis, we have studied the capacity of composition of classes of functions and

showed that it is not always possible to control the capacity of the composite class,

even if the classes have bounded capacity. We further showed that if we add a small

amount of Gaussian noise to the output of functions and make them noisy, we can

indeed control the capacity of composition. To prove the results we introduced and

defined new notions of covering number with respect to total variation and Wasser-

stein metrics. In contrast to conventional notions of covering numbers that consider a

finite set of input samples, these new notions of covering numbers consider the num-

ber of behaviours a class of functions can generate on a set of input distributions. The

results for composition then come naturally by using the data processing inequality.

Finally, we derived a bound for the covering number of single-layer neural networks

based on these new notions of covering number and used our composition results to

turn it into a ∥.∥2 covering number for the noisy deep network. Contrary to a family

of covering number bounds, our bound does not depend on the norms of weights

and works for networks with potentially large weights. Moreover, we introduced a
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quantitative metric (i.e., NVAC) based on the number of samples required to obtain

a non-vacuous generalization bound and empirically compared our covering number

bound for deep neural networks with several other bounds. Our results on MNIST

dataset shows that even a small amount of Gaussian noise is sufficient to improve

over other covering number bounds.

8.1 Future Work

Our analysis is based on the assumption that the activation function is bounded.

Therefore, extending the results to ReLU neural networks is not immediate, and is

left for future work. Also, our empirical analysis is preliminary and is mostly used as

a sanity check. Further empirical evaluations can help to better understand the role

of noise in training neural networks.

A remarkable byproduct of our analysis is finding more efficient covering number

bounds for Recurrent Neural Networks (RNN). More precisely, the existing covering

number bounds for RNNs usually do not take into account the fact that weights are

shared among time steps. Perhaps this is a result of the lack of any general and

efficient composition tool. Using our composition tools, it would be possible to reuse

covering sets for different time steps and thus significantly improve the dependence

of covering number on the number/size of the parameters. A potential future work is

to find more efficient covering number bounds for noisy RNNs based on our modular

analysis.

Furthermore, the noisy analysis that we proposed for covering numbers and capac-

ity of function classes can be readily exploited to find capacity/generalization bounds

for generative models.
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As mentioned in Chapter 5 there is a recent line of work that studies generalization

of SGD from the perspective of information theory. These approaches (virutally) add

noise to the parameters to control the mutual information while our techniques are

different. Exploring the relation between our analysis and these information-theoretic

techniques to find capacity/generalization bounds is a prospective research direction.

In Chapter 1, we discussed that dropout and DropConnect are also different kinds

of noise which are different than the type of noise that we consider in our analysis

and require more amount of noise to improve over existing bounds. A possible future

work would be studying dropout noise with the tools that we provided to investigate

the capacity of networks with dropout noise.
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Appendix A

Miscellaneous Facts

Lemma 54 (Data processing inequality for TV distance). Given two random vari-

ables x1, x2 ∈ X , and a (random) Borel function f : X → Y,

dTV (f(x1), f(x2)) ≤ dTV (x1, x2).

The next theorem, bounds the total variation distance between two Gaussian

random variables.

Theorem 55 (Total variation distance between Gaussians with same covariance).

Let N (µ1, σ
2Id) and N (µ2, σ

2Id) be two Gaussian random variables, where Id is the

d-by-d identity matrix. Then we have,

dTV (N (µ1, σ
2Id),N (µ2, σ

2Id)) ≤
1

2σ
∥µ1 − µ2∥2 .

Proof. Form Pinsker’s inequality we know that for any two distributions P and Q we
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have

dTV (P,Q) ≤
√

1

2
dKL(P,Q), (A.0.1)

where dKL(P,Q) is the Kullback-Liebler (KL) divergence between P and Q. We

can then find the KL divergence between N (µ1, σ
2Id) and N (µ2, σ

2Id) as (see e.g.,

Diakonikolas et al. (2019))

dKL

(
N (µ1, σ

2Id),N (µ2, σ
2Id)

)
≤ 1

2σ2
∥µ1 − µ2∥22. (A.0.2)

Combining Equations A.0.1 and A.0.2 concludes the result.

Lemma 56. Let Y ∼ χ2
n be a chi-squared random variable with n degrees of freedom.

Then we have (Laurent and Massart, 2000)

P[Y − n ≥ 2
√
nt+ 2t] ≤ e−t.

Lemma 57. Let x =
∑m

i=1 wigi be a random variable, where gi are d-dimensional

Gaussian random variables with means µi ∈ [−B,B]d and covariance matrices of

σ2Id. We have

P
[
∥x∥2 ≥ (B + σ)

√
d+ σ

√
2t
]
≤ e−t.

Proof. We know that for any R ∈ R

P
[
∥x∥22 ≥ R2

]
=

m∑
i=1

wiP
[
∥gi∥22 ≥ R2

]
=

m∑
i=1

wiP
[
∥σyi + µi∥22 ≥ R2

]
=

m∑
i=1

wiP [∥σyi + µi∥2 ≥ R] ,

where yi ∼ N (0, Id) are standard normal random variables. Using triangle inequality
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we can rewrite the above equation as

P
[
∥x∥22 ≥ R2

]
≤

m∑
i=1

wiP [∥σyi∥2 + ∥µi∥2 ≥ R] ≤
m∑
i=1

wiP
[
∥σyi∥2 +B

√
d ≥ R

]
.

We can, therefore, conclude that

P
[
∥x∥22 ≥ R2

]
≤ P

∥yi∥22 ≥
(
R−B

√
d

σ

)2
 .

Setting R = (B + σ)
√
d+ σ

√
2t, we can write

P
[
∥x∥2 ≥ (B + σ)

√
d+ σ

√
2t
]

= P
[
∥x∥22 ≥

(
(B + σ)

√
d+ σ

√
2t
)2]

≤ P
[
∥yi∥22 ≥ (

√
d+

√
2t)2

]
≤ P

[
∥yi∥22 ≥ d+ 2t+ 2

√
dt
]

≤ e−t.
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Appendix B

TV distance of Composition of a

Class with Noise

The following lemma, which is used in bounding the total variation distance by

Wasserstein distance, is borrowed from Chae and Walker (2020). This lemma is

used in some of the proofs of in Chapter 4.

Lemma 58 (Bounding TV distance by Wasserstein distance). Given a density func-

tion K over Rd and two probability measures µ, ν over X with probability density

functions Iµ and Iν, respectively, we have

∥K ∗ Iµ −K ∗ Iν∥1 ≤ sup
y ̸=z

{
∥K(x− y)−K(x− z)∥1

∥y − z∥2

}
dW(µ, ν)

Proof. For any coupling π of µ and ν, we have

K ∗ Iµ(x)−K ∗ Iν(x) =
∫
(K(x− y)−K(x− z))dπ(y, z).
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Therefore,

∥K ∗ (Iµ − Iν)∥1 =
∫ ∣∣∣∣∫ ((K(x− y)−K(x− z)) dπ(y, z)

∣∣∣∣ dx
≤
∫ ∫

|(K(x− y)−K(x− z)| dπ(y, z)dx (By Jensen’s inequality)

=

∫
∥K(x− y)−K(x− z)∥1 dπ(y, z) (By Fubini’s theorem)

≤ sup
y ̸=z

{
∥K(x− y)−K(x− z)∥1

∥y − z∥2

}∫
∥y − z∥2dπ(y, z).

Since this holds for any coupling π of µ and ν we conclude that

∥K ∗ (Iµ − Iν)∥1 ≤ sup
y ̸=z

{
∥K(x− y)−K(x− z)∥1

∥y − z∥2

}
dW(µ, ν).
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Appendix C

Techniques to Estimate Smooth

Densities with Mixtures of

Gaussians

Notation. Denote by D(x) the probability density function of the random variable

x. Let 11{x ∈ S} be an indicator function that outputs 1 if x ∈ S and 0 if x /∈ S.

For a function f : X → Y , let f+(x) = max{0, f(x)} and f−(x) = min{0, f(x)}. By

Rd \ [−B,B]d we refer to the complement of set [−B,B]d with respect to Rd. We

also denote by f ∗ g the convolution of functions f and g. For two sets S1 and S2, we

define their Cartesian product by S1 ×S2 and by Sd we refer to the Cartesian power,

i.e., Sd = {(s1, . . . , sd) | si ∈ S,∀i ∈ [d]}. In the following lemma, we sometimes drop

the overlines in our notation and simply write x when we are referring to random

variables. When it is clear from the context, we write f instead of f(x).

Lemma 59 (Gaussian kernel estimation of bounded distributions). Let x be a random
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variable in XB,d and denote its probability density function by f = D(x). Let g be

the density function of a zero mean Gaussian random variable with covariance matrix

σ2Id. Given a set S = {x1, . . . , xn} ⊂ Rd of i.i.d. samples xi ∼ f, i ∈ [n], we define

the empirical measure as µn(x) =
11{x∈S}

n
. Then, we have

E
[∫

Rd

|(µn ∗ g)(x)− (f ∗ g)(x)| dx
]
≤ 2

√
1

n

(
2B√
(2πσ2)

+ 1

)d

Proof. Note that
∫
µn(x)dx = 1 and since f and g are probability density functions,

we know that
∫
(f ∗ g)(x)dx = 1 and

∫
(µn ∗ g)(x)dx = 1. Therefore, we have (for

simplicity, we write Exi∼f instead of Exi∼f,
i∈[n]

)

Exi∼f

[∫
Rd

|(µn ∗ g)(x)− (f ∗ g)(x)| dx
]

=

∫
Rd

Exi∼f [|(µn ∗ g)(x)− (f ∗ g)(x)| dx]

= 2

∫
Rd

Exi∼f

[
(µn ∗ g − f ∗ g)+ (x)dx

]
≤ 2

∫
Rd

√
Exi∼f

[
((µn ∗ g)(x)− (f ∗ g)(x))2

]
dx (By Jensen’s inequality)

≤ 2

∫
Rd

√√√√√Exi∼f

( 1

n

n∑
i=1

g(x− xi)−
∫

f(y)g(x− y)dy

)2
dx.

(C.0.1)
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Now, we can write

Exi∼f

( 1

n

n∑
i=1

g(x− xi)−
∫

f(y)g(x− y)dy

)2
 = Exi∼f

( 1

n

n∑
i=1

g(x− xi)

)2


+ Exi∼f

[(∫
f(y)g(x− y)dy

)2
]
− Exi∼f

[
2

(
1

n

n∑
i=1

g(x− xi)

)(∫
f(y)g(x− y)dy

)]

= Exi∼f

( 1

n

n∑
i=1

g(x− xi)

)2
+

(∫
f(y)g(x− y)dy

)2

− 2

(∫
f(y)g(x− y)dy

)(
1

n

n∑
i=1

Exi∼f [g(x− xi)]

)

= Exi∼f

( 1

n

n∑
i=1

g(x− xi)

)2
−

(∫
f(y)g(x− y)dy

)2

,

(C.0.2)

where the last equality comes from the fact that the expectation is over random

variables x1, . . . , xn

1

n

n∑
i=1

Exi∼f [g(x− xi)] =
1

n

n∑
i=1

∫
g(x− y)f(y)dy =

∫
g(x− y)f(y)dy = f ∗ g.
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Next, we know that

Exi∼f

( 1

n

n∑
i=1

g(x− xi)

)2
 =

1

n2
Exi∼f

( n∑
i=1

g(x− xi)

)2


=
1

n2
Exi∼f

[
n∑

i=1

g(x− xi)
2

]
+

1

n2
E

[
n∑

i ̸=j

g(x− xi)g(x− xj)

]

=
1

n2

n∑
i=1

Exi∼f

[
g(x− xi)

2
]
+

1

n2

n∑
i ̸=j

Exi,xj∼f [g(x− xi)g(x− xj)]

=
1

n
Exi∼f

[
g(x− xi)

2
]
+

1

n2

n∑
i ̸=j

Exi∼f [g(x− xi)]Exj∼f [g(x− xj)]

=
1

n
Exi∼f

[
g(x− xi)

2
]
+ (1− 1

n
) (Exi∼f [g(x− xi)])

2

=
1

n
Exi∼f

[
g(x− xi)

2
]
+ (1− 1

n
)

(∫
g(x− y)f(y)dy

)2

.

(C.0.3)

Putting Equations C.0.3 and C.0.2 together, we have

Exi∼f

( 1

n

n∑
i=1

g(x− xi)−
∫

f(y)g(x− y)dy

)2


=
1

n
Exi∼f

[
g(x− xi)

2
]
− 1

n

(∫
g(x− y)f(y)dy

)2

=
1

n

∫
g(x− y)2f(y)dy − 1

n

(∫
g(x− y)f(y)dy

)2

=
1

n

(
f ∗ g2 − (f ∗ g)2

)
.

(C.0.4)
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Therefore, we can rewrite Equation C.0.1 as

Exi∼f

[∫
Rd

|(µn ∗ g)(x)− (f ∗ g)(x)| dx
]

≤ 2

∫
Rd

√
1

n
(f ∗ g2 − (f ∗ g)2)dx

≤ 2

√
1

n

∫
Rd

√
(f ∗ g2 − (f ∗ g)2)dx.

(C.0.5)

We know that g is the probability density function of N (0, σ2Id). Consequently, we

know that

g(x)2 =
1

(2π)dσ2d
exp(− 1

σ2
x⊤x) ≤ 1

(2πσ2)d
,

and we can rewrite Equation C.0.5 as

Exi∼f

[∫
Rd

|(µn ∗ g)(x)− (f ∗ g)(x)| dx
]

≤ 2

√
1

n

∫
Rd

√
(f ∗ g2 − (f ∗ g)2)dx ≤ 2

√
1

n

∫
Rd

√
f ∗ g2dx

≤ 2

√
1

n

∫
Rd

√∫
g(x− y)2f(y)dy dx

= 2

√
1

n

∫
Rd

√∫
1

(2πσ2)d
exp

(
− 1

σ2
(x− y)⊤(x− y)

)
f(y)dy dx

= 2

√
1

n

∫
[−B,B]d

√∫
1

(2πσ2)d
exp

(
− 1

σ2
(x− y)⊤(x− y)

)
f(y)dy dx

+ 2

√
1

n

∫
Rd\[−B,B]d

√∫
1

(2πσ2)d
exp

(
− 1

σ2
(x− y)⊤(x− y)

)
f(y)dy dx

≤ 2

√
1

n

∫
[−B,B]d

√∫
1

(2πσ2)d
f(y)dy dx

+ 2

√
1

n

∫
Rd\[−B,B]d

√
1

(2πσ2)d

∫
exp

(
− 1

σ2
(x− y)⊤(x− y)

)
f(y)dy dx.
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We can then conclude that

Exi∼f

[∫
Rd

|(µn ∗ g)(x)− (f ∗ g)(x)| dx
]

≤ 2

√
1

n

∫
[−B,B]d

√
1

(2πσ2)d
dx

+ 2

√
1

n

∫
Rd\[−B,B]d

√
1

(2πσ2)d

∫
exp

(
− 1

σ2
(x− y)⊤(x− y)

)
f(y)dy dx

≤ 2

√
1

n

(2B)d√
(2πσ2)d

+ 2

√
1

n

∫
Rd\[−B,B]d

√
1

(2πσ2)d

∫
exp

(
− 1

σ2
(x− y)⊤(x− y)

)
dy dx

≤ 2

√
1

n

(2B)d√
(2πσ2)d

+ 2

√
1

n

∫
Rd\[−B,B]d

√
1

(2πσ2)d

∫
exp

(
− 1

2σ2
(x− y)⊤(x− y)

)
dy dx

≤ 2

√
1

n

(2B)d√
(2πσ2)d

+ 2

√
1

n

d∑
i=1

(
d

i

)
(2B)d−i

√
(2π)iσi√

(2πσ2)d

≤ 2

√
1

n

d∑
i=0

(
d

i

)
(2B)d−i√
(2πσ2)d−i

= 2

√
1

n

(
2B√
(2πσ2)

+ 1

)d

.

(C.0.6)

Here, we used the fact that for f is supported on [−B,B]d and the maximum value of

exp(−(1/σ2)(x−y)⊤(x−y)) is 1 over [−B,B]d. Moreover, for a fixed x in Rd\[−B,B]d,

the maximum value of exp(−(1/σ2)(x − y)⊤(x − y)) happens when (x − y)⊤(x − y)

is minimized, therefore, Whenever x(i) > B, the minimization occurs when y(i) = B.

On the other hand, when x(i) < B, the minimization happens when y(i) = −B.

We can, then, consider the integration over Rd \ [−B,B]d as sum of integrals over

subsets where for some i ∈ [d], |x(i)| > B. Then we can upper bound the integration

over each subset by the marginalization of the Gaussian variable in dimensions where

|x(i)| > B and consider the fact that the exponent is always smaller than the exponent

of an i dimensional Gaussian distribution in those subsets. Note that, when we use

this lemma, we consider large values of n such that the expectation of our kernel
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estimation can get as small as desired. It is also noteworthy that the upper bound on

the expectation implies that there exists a set of samples S = {x1, . . . , xn} that can

achieve the desired upper bound.

Lemma 59 can be used to estimate any bounded distribution that is perturbed

with Gaussian noise with a mixture of Gaussians with bounded means and equal

diagonal covariance matrices. To do so, we can first use Lemma 59 to approximate

the distributions with Gaussian kernels over n i.i.d samples from the distribution. We

can then divide the subset [−B,B]d into several subsets and define a Gaussian on

each subset that has a weight equal to the number of samples on each interval. We

provide the formal version of this estimation in the following lemma.

Lemma 60. Let x ∈ XB,d be a random variable and denote its probability density

function by f = D(x). Let g be the density function of a zero mean Gaussian random

variable with covariance matrix σ2Id. Then for any small value η, we can estimate

f ∗ g by a mixture of k = ⌈B
η
⌉d Gaussians

∑k
i=1 g(x− µi), where µi ∈ [−B,B]d and

dTV (f ∗ g,
k∑

i=1

g(x− µi)) ≤
2
√
dη

σ

Proof. From Lemma 59, we know that there exists a set S = {x1, . . . , xn} ⊂ Rd of

i.i.d. samples from f and its empirical measure µn(x) =
11{x∈S}

n
such that the total

variation between f and the sum of Gaussian kernels defined on empirical measure is

bounded

dTV

(
f ∗ g,

n∑
i=1

g(x− xi)

)
≤ 2

√
1

n

(
2B√
(2πσ2)

+ 1

)d

= ϵ.

Denote m = ⌈B
η
⌉. We construct the following grid P of points on [−B,B]d and choose
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means of the Gaussian densities based on it

P = {−B + 2iη | i ∈ [m]}d.

For any a = (a1, . . . , ad) ∈ [m]d, we define

µa = [−B + (2a1 + 1)η, . . . ,−B + (2ad + 1)η]⊤ ∈ Rd

as a choice of mean vector for the Gaussian mixture. We claim that by choosing

appropriate weights, we can estimate f ∗ g with respect to total variation distance by

a mixture of Gaussians with means in the following set

M =
{
µa = [µ(1)

a . . . µ(d)
a ]⊤ ∈ Rd | µ(i)

a = −B + (2ai + 1)η, ∀a = (a1, . . . , ad) ∈ [m]d
}
.

For the set S = {x1, . . . , xn} that was sampled for kernel estimate µn ∗ g, we choose

the weight wa for the Gaussian density with mean µa as follows. Define the set Sa as

Sa = {xi ∈ S | xi ∈ [−B + 2a1η,−B + 2(a1 + 1)η]× . . .× [−B + 2adη,−B + 2(ad + 1)η]}

(C.0.7)

Next, we select wa as

wa =
1

n

n∑
i=1

11 {xi ∈ Sa} =
|Sa|
n

.

In other words, wa is the number of samples in S that the ℓ∞ distance between those

samples and µa is smaller than 2η. Note that the cardinality of M , which is the

number of Gaussian densities in the mixture is |M | = (⌈B
η
⌉)d.

We now prove that the total variation distance between µn∗g and
∑

a∈[m]d wag(x−
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µa) is smaller than
√
d
σ
η.

dTV

 1

n

n∑
i=1

g(x− xi),
∑

a∈[m]d

wag(x− µa)


=

1

2

∥∥∥∥∥∥ 1n
n∑

i=1

g(x− xi)−
∑

a∈[m]d

wag(x− µa)

∥∥∥∥∥∥
1

=
1

2

∥∥∥∥∥∥
∑

a∈[m]d

(
1

n

∑
xi∈Sa

g(x− xi)− wag(x− µa)

)∥∥∥∥∥∥
1

≤ 1

2

∑
a∈[m]d

∥∥∥∥∥
(
1

n

∑
xi∈Sa

g(x− xi)− wag(x− µa)

)∥∥∥∥∥
1

(By triangle inequality).

(C.0.8)

Now, we can write

∥∥∥∥∥ 1n ∑
xi∈Sa

g(x− xi)− wag(x− µa)

∥∥∥∥∥
1

≤

∥∥∥∥∥ 1n ∑
xi∈Sa

(g(x− xi)− g(x− µa))

∥∥∥∥∥
1

(Since wa =
|Sa|
n

)

≤ 1

n

∑
xi∈Sa

∥g(x− xi)− g(x− µa)∥1 .

(C.0.9)

From Theorem 55, we know that

2dTV (g(x− xi)− g(x− µa)) = ∥g(x− xi)− g(x− µa)∥1

≤ ∥xi − µa∥2
σ

≤
√
d

σ
2η.

(C.0.10)

Putting Equation C.0.10 into Equation C.0.9, we have
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∥∥∥∥∥ 1n ∑
xi∈Sa

g(x− xi)− wag(x− µa)

∥∥∥∥∥
1

≤ 1

n

∑
xi∈Sa

√
d

σ
2η =

√
d

σ
2ηwa.

(C.0.11)

Now, putting Equations C.0.9 and C.0.11 together, we can rewrite Equation C.0.8 as

dTV

 1

n

n∑
i=1

g(x− xi),
∑

a∈[m]d

wag(x− µa)


≤ 1

2

∑
a∈[m]d

∥∥∥∥∥
(
1

n

∑
xi∈Sa

g(x− xi)− wag(x− µa)

)∥∥∥∥∥
1

≤ 1

2

∑
a∈[m]d

√
d

σ
2ηwa

=

√
d

σ
η.

(C.0.12)

Note that the bound in Equation C.0.12 does not depend on the size of sampled set S.

Therefore, we can choose n as large as we want. Specifically, we choose n as follows

n =

(
2B√
2πσ2

+ 1

)2d

.

(√
d

2σ
η

)−2

We can then conclude that for any random variable x defined over [−B,B]d, we can

approximate the density function of x + z, z ∼ N (0, σ2Id) with a mixture of ⌈B
η
⌉d

Gaussians with means in [−B,B]d such that

dTV

f ∗ g,
∑

a∈[m]d

wag(x− µa)

 ≤ ϵ+

√
d

σ
η =

2
√
dη

σ
.

120



Bibliography

Anthony, M. and Bartlett, P. L. (2009). Neural Network Learning: Theoretical Foun-

dations. Cambridge University Press, 1st edition.

Arora, S., Ge, R., Neyshabur, B., and Zhang, Y. (2018). Stronger generalization

bounds for deep nets via a compression approach. In International Conference on

Machine Learning, pages 254–263. PMLR.

Arora, S., Cohen, N., Hu, W., and Luo, Y. (2019). Implicit regularization in deep

matrix factorization. Advances in Neural Information Processing Systems, 32.

Bartlett, P. (1996). For valid generalization the size of the weights is more important

than the size of the network. Advances in neural information processing systems,

9.

Bartlett, P., Maiorov, V., and Meir, R. (1998). Almost linear vc dimension bounds for

piecewise polynomial networks. Advances in neural information processing systems,

11.

Bartlett, P. L. and Maass, W. (2003). Vapnik-chervonenkis dimension of neural nets.

The handbook of brain theory and neural networks, pages 1188–1192.

121



M.Sc. Thesis – A. Fathollah Pour McMaster University – Computing and Software

Bartlett, P. L., Jordan, M. I., and McAuliffe, J. D. (2006). Convexity, classification,

and risk bounds. Journal of the American Statistical Association, 101(473), 138–

156.

Bartlett, P. L., Foster, D. J., and Telgarsky, M. J. (2017). Spectrally-normalized

margin bounds for neural networks. Advances in neural information processing

systems, 30.

Bartlett, P. L., Harvey, N., Liaw, C., and Mehrabian, A. (2019). Nearly-tight vc-

dimension and pseudodimension bounds for piecewise linear neural networks. The

Journal of Machine Learning Research, 20(1), 2285–2301.

Bartlett, P. L., Long, P. M., Lugosi, G., and Tsigler, A. (2020). Benign overfitting

in linear regression. Proceedings of the National Academy of Sciences, 117(48),

30063–30070.

Bartlett, P. L., Montanari, A., and Rakhlin, A. (2021). Deep learning: a statistical

viewpoint. Acta numerica, 30, 87–201.

Baum, E. and Haussler, D. (1988). What size net gives valid generalization? Advances

in neural information processing systems, 1.

Belkin, M., Hsu, D. J., and Mitra, P. (2018). Overfitting or perfect fitting? risk

bounds for classification and regression rules that interpolate. Advances in neural

information processing systems, 31.

Belkin, M., Rakhlin, A., and Tsybakov, A. B. (2019). Does data interpolation con-

tradict statistical optimality? In The 22nd International Conference on Artificial

Intelligence and Statistics, pages 1611–1619. PMLR.

122



M.Sc. Thesis – A. Fathollah Pour McMaster University – Computing and Software

Boucheron, S., Bousquet, O., and Lugosi, G. (2005). Theory of classification: A

survey of some recent advances. ESAIM: probability and statistics, 9, 323–375.

Chae, M. and Walker, S. G. (2020). Wasserstein upper bounds of the total variation

for smooth densities. Statistics & Probability Letters, 163, 108771.

Chizat, L. and Bach, F. (2020). Implicit bias of gradient descent for wide two-layer

neural networks trained with the logistic loss. In Conference on Learning Theory,

pages 1305–1338. PMLR.

Diakonikolas, I., Kamath, G., Kane, D., Li, J., Moitra, A., and Stewart, A. (2019).

Robust estimators in high-dimensions without the computational intractability.

SIAM Journal on Computing, 48(2), 742–864.

Dudley, R. M. (2010). Universal donsker classes and metric entropy. In Selected

Works of RM Dudley, pages 345–365. Springer.

Dziugaite, G. K. and Roy, D. M. (2017). Computing nonvacuous generalization

bounds for deep (stochastic) neural networks with many more parameters than

training data. In Proceedings of the 33rd Annual Conference on Uncertainty in

Artificial Intelligence (UAI).

Gao, W. and Zhou, Z.-H. (2016). Dropout rademacher complexity of deep neural

networks. Science China Information Sciences, 59(7), 1–12.

Goldberg, P. W. and Jerrum, M. R. (1995). Bounding the vapnik-chervonenkis dimen-

sion of concept classes parameterized by real numbers. Machine Learning, 18(2),

131–148.

123



M.Sc. Thesis – A. Fathollah Pour McMaster University – Computing and Software

Golowich, N., Rakhlin, A., and Shamir, O. (2018). Size-independent sample com-

plexity of neural networks. In Conference On Learning Theory, pages 297–299.

PMLR.

Gunasekar, S., Woodworth, B. E., Bhojanapalli, S., Neyshabur, B., and Srebro, N.

(2017). Implicit regularization in matrix factorization. Advances in Neural Infor-

mation Processing Systems, 30.

Haghifam, M., Negrea, J., Khisti, A., Roy, D. M., and Dziugaite, G. K. (2020).

Sharpened generalization bounds based on conditional mutual information and an

application to noisy, iterative algorithms. Advances in Neural Information Process-

ing Systems, 33, 9925–9935.

Ji, Z. and Telgarsky, M. (2021). Characterizing the implicit bias via a primal-dual

analysis. In Algorithmic Learning Theory, pages 772–804. PMLR.

Ji, Z., Dud́ık, M., Schapire, R. E., and Telgarsky, M. (2020). Gradient descent follows

the regularization path for general losses. In Conference on Learning Theory, pages

2109–2136. PMLR.

Jiang, Y., Neyshabur, B., Mobahi, H., Krishnan, D., and Bengio, S. (2020). Fantastic

generalization measures and where to find them. In International Conference on

Learning Representations.

Jim, K.-C., Giles, C. L., and Horne, B. G. (1996). An analysis of noise in recurrent

neural networks: convergence and generalization. IEEE Transactions on neural

networks, 7(6), 1424–1438.

124



M.Sc. Thesis – A. Fathollah Pour McMaster University – Computing and Software

Koiran, P. and Sontag, E. D. (1998). Vapnik-chervonenkis dimension of recurrent

neural networks. Discrete Applied Mathematics, 86(1), 63–79.

Laurent, B. and Massart, P. (2000). Adaptive estimation of a quadratic functional

by model selection. Annals of Statistics, pages 1302–1338.

Lim, S. H., Erichson, N. B., Hodgkinson, L., and Mahoney, M. W. (2021). Noisy

recurrent neural networks. Advances in Neural Information Processing Systems,

34.

Long, P. M. and Sedghi, H. (2020). Size-free generalization bounds for convolutional

neural networks. In International Conference on Learning Representations.

Maass, W. (1994). Neural nets with superlinear vc-dimension. Neural Computation,

6(5), 877–884.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2018). Foundations of machine

learning. MIT press.

Nagarajan, V. and Kolter, J. Z. (2019). Uniform convergence may be unable to

explain generalization in deep learning. Advances in Neural Information Processing

Systems, 32.

Nagarajan, V. and Kolter, Z. (2018). Deterministic pac-bayesian generalization

bounds for deep networks via generalizing noise-resilience. In International Con-

ference on Learning Representations.

Neu, G., Dziugaite, G. K., Haghifam, M., and Roy, D. M. (2021). Information-

theoretic generalization bounds for stochastic gradient descent. In Conference on

Learning Theory, pages 3526–3545. PMLR.

125



M.Sc. Thesis – A. Fathollah Pour McMaster University – Computing and Software

Neyshabur, B., Tomioka, R., and Srebro, N. (2015). Norm-based capacity control in

neural networks. In Conference on Learning Theory, pages 1376–1401. PMLR.

Neyshabur, B., Bhojanapalli, S., and Srebro, N. (2018). A pac-bayesian approach to

spectrally-normalized margin bounds for neural networks. In International Con-

ference on Learning Representations.

Raginsky, M., Rakhlin, A., and Telgarsky, M. (2017). Non-convex learning via

stochastic gradient langevin dynamics: a nonasymptotic analysis. In Conference

on Learning Theory, pages 1674–1703. PMLR.

Russo, D. and Zou, J. (2016). Controlling bias in adaptive data analysis using infor-

mation theory. In Artificial Intelligence and Statistics, pages 1232–1240. PMLR.

Russo, D. and Zou, J. (2019). How much does your data exploration overfit? control-

ling bias via information usage. IEEE Transactions on Information Theory, 66(1),

302–323.

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding machine learning: From

theory to algorithms. Cambridge university press.

Sontag, E. D. (1998). Vc dimension of neural networks. NATO ASI Series F Computer

and Systems Sciences, 168, 69–96.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.

(2014). Dropout: a simple way to prevent neural networks from overfitting. The

journal of machine learning research, 15(1), 1929–1958.

126



M.Sc. Thesis – A. Fathollah Pour McMaster University – Computing and Software

Steinke, T. and Zakynthinou, L. (2020). Reasoning about generalization via condi-

tional mutual information. In Conference on Learning Theory, pages 3437–3452.

PMLR.

Vapnik, V. (1999). The nature of statistical learning theory. Springer science &

business media.

Vidyasagar, M. (1997). A theory of learning and generalization: with applications to

neural networks and control systems. Springer-Verlag.

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. (2008). Extracting and

composing robust features with denoising autoencoders. In Proceedings of the 25th

international conference on Machine learning, pages 1096–1103.

Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., and Fergus, R. (2013). Regularization

of neural networks using dropconnect. In International conference on machine

learning, pages 1058–1066. PMLR.

Wang, H., Yang, W., Zhao, Z., Luo, T., Wang, J., and Tang, Y. (2019). Rademacher

dropout: An adaptive dropout for deep neural network via optimizing generaliza-

tion gap. Neurocomputing, 357, 177–187.

Xu, A. and Raginsky, M. (2017). Information-theoretic analysis of generalization

capability of learning algorithms. Advances in Neural Information Processing Sys-

tems, 30.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2021). Understanding

deep learning (still) requires rethinking generalization. Communications of the

ACM, 64(3), 107–115.

127



M.Sc. Thesis – A. Fathollah Pour McMaster University – Computing and Software

Zhang, T. (2002). Covering number bounds of certain regularized linear function

classes. Journal of Machine Learning Research, 2(Mar), 527–550.

Zhou, W., Veitch, V., Austern, M., Adams, R. P., and Orbanz, P. (2019). Non-

vacuous generalization bounds at the imagenet scale: a pac-bayesian compression

approach. In International Conference on Learning Representations (ICLR).

128


	Lay Abstract
	Abstract
	Acknowledgements
	Introduction
	Bounding the Capacity of Composition
	Challenges of Controlling Capacity with Lipschitz Continuity
	Benefits of Controlling the Capacity of Composition with Additive Noise
	Controlling the Capacity of Neural Networks with Noise

	Summary of Contributions
	Controlling the Capacity Through Noisy Composition
	A Bound on the Capacity of Noisy Neural Networks
	Empirical Investigation of Generalization Bounds

	Thesis Organization

	Covering Number and Generalization
	Notations
	Covering Number
	Can Composition of Classes with Small Covering Numbers Create a Much Richer Class?
	Preliminaries
	Generalization by Uniform Convergence and Rademacher Complexity
	Uniform Convergence by Bounding Covering Number

	Existing Bounds on the Covering Number of Neural Networks
	Preliminaries
	Covering Number Bounds
	Notations
	Norm-based Covering Number Bound
	Pseudo-dim-based Covering Number Bound
	Lipschitzness-based Covering Number Bound
	Spectral Covering Number Bound


	Covering Random Hypotheses
	Notations and Definitions
	Covering Number for Classes of Random Hypotheses
	Bounding the Uniform Covering Number

	Covering Numbers for Neural Networks
	Uniform TV Covers for Single-Layer Neural Networks
	Uniform Covering Numbers for Deeper Networks
	Analyzing Different Covering Number Bounds
	Qualitative Comparison of Bounds on the Logarithm of Covering Number


	NVAC: A Metric for Comparing Generalization Bounds
	Estimating NVAC Using the Covering Number

	Experiments
	Overview of Results and Discussion
	Empirical Results

	Conclusion
	Future Work

	Miscellaneous Facts
	TV distance of Composition of a Class with Noise
	Techniques to Estimate Smooth Densities with Mixtures of Gaussians

