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Lay Abstract 
 

 

Wearable sensor-based gait analysis is becoming increasingly popular for studying knee 

osteoarthritis (OA). Unfortunately, this work involves highly controlled and short walking 

protocols that represent a single snapshot of one’s walking, which is not indicative of the 

fluctuations that occur in the real-world. Therefore, to use wearable sensors for understanding 

knee OA gait, it is essential to understand normal fluctuations in gait and differentiate them from 

meaningful changes. We utilized knee injections as a model to determine the sensitivity of 

wearable sensors to identify meaningful changes in gait. Three gait trials were insufficient in 

describing typical gait patterns and post-injection atypical strides were not significantly different 

from pre-injection. Changes in pain following the injection were not correlated to atypical 

strides. This study was the first to use wearable sensors for multi-week knee OA gait monitoring 

out-of-lab, but suggests more work is needed to understand these complex real-world 

fluctuations in gait.  
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Abstract 
 

 Intra-articular corticosteroid knee injections (ICIs) were used as a tool to determine the 

sensitivity of wearable inertial sensors and machine learning algorithms in identifying 

meaningful changes in gait patterns amidst day-to-day fluctuations in out-of-laboratory gait. 

Specifically, three overarching aims were proposed; I) Determine if three gait trials could define 

an everyday typical gait pattern, II) investigate if post-injection atypical strides are significantly 

different from pre-injection atypical strides and III) explore the relationship between changes in 

pain and atypical strides. Nine knee OA patients (7M/2F) were recruited from St. Joseph’s 

Healthcare Hamilton. Participants completed a total of four walking trials prior to the ICI and 

three following. Participants were fitted with two wearable sensors on each shank just below the 

knee, and one sensor on the lower back during every trial. Data from these sensors were 

processed to train and test a one-class support vector machine (OCSVM). Individual gait models 

were created based on three out of the four pre-injection trials. Each trained model was tested on 

a withheld pre-injection trial and three post-injection trials to determine the number of typical 

and atypical gait cycles. Self-reported pain was analyzed throughout the study and compared to 

the percent of atypical strides seen during each walk. It was found that three gait trials could not 

define a typical gait model and that post-injection atypical strides were not significantly different 

from with-held pre-injection atypical strides. Finally, large variations and fluctuations in self-

reported pain were observed on a week-to-week basis, which were not significantly correlated to 

atypical strides observed. This study was the first to investigate the sensitivity of wearable 

inertial sensors and machine learning algorithms to detect changes in real-world gait patterns and 

provides foundational work for using wearable sensors to monitor and triage knee OA patients.  

 



 

 V 

Acknowledgements 
 

I am very fortunate to be surrounded by tremendous individuals who have all helped me in 

different ways along my journey. First, I would like to thank Dr. Dylan Kobsar. I could not have 

asked for a better mentor and scientist to guide me through my Master’s. Thank you for being so 

patient and always willing to go the extra mile to help your students. Your support, guidance, 

and infectious passion for science have inspired me to continue research, and become a better 

scientist, and critical thinker. Thank you for the countless hours of debugging code, sports talk, 

and career advice; I will always appreciate and remember our “quick chats”. Thank you. 

 

Thank you to my committee members, Dr. Peter Keir and Dr. Janie Wilson. The feedback and 

guidance you both have provided me have been instrumental in my development as a researcher 

and growth as a scientist. 

 

Thank you to my colleagues Joshua Keogh and Matthew Ruder for spending countless hours 

listening to me discuss my projects, complaining about how stressed I am, or whining that my 

code isn’t working. Thank you both for always being so supportive and making coming to our 

lab enjoyable every day.  

 

Thank you to the staff at St. Joseph’s Healthcare Hamilton. Dr. James Yan, Dr. Kim Madden, 

Dr. Adili, and Darren Young. Without support from this group, this project would not be 

possible.  

 

Finally, I want to thank my family. First, a sincere thank you to my parents, who gave me 

everything and keep on giving. Your sacrifices, unconditional love, and ability to support every 

step of the way will never be forgotten. Thank you for always sticking by my side and helping in 

every way possible. I owe all my successes to you both. To my sister, thank you for teaching me 

to be more confident, think outside the box, and be resilient. You have taught me more than you 

can imagine, and without you, I would not be the person I am today. Lastly, a big thank you to 

my brother. I have grown up admiring your work ethic, critical thinking, and constant 

determination to be a better person. Thank you for always being there to check in with me and 

making me laugh. I am forever grateful for all the things you have taught me.  

 

 

 

 

 

 

 

 

 

 

 



 

 VI 

Table of Contents 

Lay Abstract ......................................................................................................................... III 

Abstract ............................................................................................................................... IV 

Acknowledgements ............................................................................................................... V 

List of Figures ................................................................................................................... VIII 

List of Tables .........................................................................................................................X 

List of Abbreviations and Symbols ........................................................................................XI 

Declaration of Academic Achievement .................................................................................XII 

Chapter 1: Introduction ......................................................................................................... 1 

Chapter 2: Literature Review ................................................................................................. 3 

2.1 Knee Osteoarthritis ...................................................................................................................3 

2.2 Knee Osteoarthritic Gait ...........................................................................................................5 
2.2.1 Introduction to Gait Analysis ...................................................................................................................... 5 
2.2.2 Knee Osteoarthritis Gait Metrics ................................................................................................................ 7 

2.3 Wearable Sensors in Knee Osteoarthritis...................................................................................8 
2.3.1 Inertial Measurement Units (IMUs) ............................................................................................................ 9 
2.3.2 IMUs in Gait Analysis ............................................................................................................................... 11 
2.3.3 IMUs for Spatiotemporal Metrics ............................................................................................................. 13 
2.3.4 IMUs for Lower Limb Accelerations ......................................................................................................... 15 
2.3.5 IMUs for Gait Symmetry ........................................................................................................................... 18 
2.3.6 Bridge to Section 2.4 ................................................................................................................................. 20 

2.4 Intra-articular Injections for Knee Osteoarthritis .................................................................... 21 
2.4.1 Corticosteroid Injection Applications in OA Gait ..................................................................................... 22 
Bridge to Section 2.5 .......................................................................................................................................... 25 

2.5 Machine Learning Methodology ............................................................................................. 25 
2.5.1 Support Vector Machines .......................................................................................................................... 25 
2.5.2 Support Vector Machines in Gait Analysis ............................................................................................... 28 

2.6 Summary of Literature Review ............................................................................................... 31 

Chapter 3: Research Question and Hypotheses .................................................................... 32 

Chapter 4: Methods ............................................................................................................. 34 

4.1 Study Design .......................................................................................................................... 34 

4.2 Sample ................................................................................................................................... 36 

4.3 Protocol ................................................................................................................................. 37 

4.4 Data Analysis ......................................................................................................................... 39 
4.4.1 Data Pre-Processing ................................................................................................................................. 39 
4.4.2 Data Reduction .......................................................................................................................................... 40 
84.4.3 One-Class Support Vector Machine (OCSVM) ....................................................................................... 41 

Chapter 5: Results ............................................................................................................... 44 



 

 VII 

Chapter 6: Discussion.......................................................................................................... 51 

6.1 Fluctuations of Pain and Gait in Defining Typical Gait Models ............................................... 51 

6.2 Determining Typical Gait Patterns from a Modeling Perspective ............................................. 53 

6.3 Atypical Strides following an ICI ............................................................................................ 55 

6.4 Correlation between changes in pain and atypical strides ........................................................ 56 

6.5 Limitations ............................................................................................................................. 57 

6.8 Future Directions ................................................................................................................... 58 

Chapter 7: Conclusion ......................................................................................................... 60 

References........................................................................................................................... 60 

Chapter 8: Appendix ............................................................................................................ 79 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 
 
 
 
 

 
 



 

 VIII 

List of Figures 
 
 
Figure 1: Outlining the relationship between joint mechanics, cartilage mechanobiology and in 

vivo function in knee OA all influencing articular cartilage degradation. Gait analysis, 

quantitative MRI and biomarkers are valuable tools in understanding this pathway. (Andriacchi 

et al., 2004)………………………………………………………………………………………..5 

 

Figure 2: Highlighting the stance and swing phase as well as the major events within the gait 

cycle. (Whittle, 1991)……………………………………………………………………………..6 

 

Figure 3: Figure 3: Inertial Measurement Unit (IMU) where accelerometer can measure linear 

acceleration in the X, Y, and Z axis while gyroscope can measure pitch, roll, and yaw (Javier & 

Ortega, 2017)……………………………………………………...……………………………..11 

 

Figure 4: Number of wearable sensor studies published each year for gait analysis in knee OA 

populations. Colours indicate the study design. (Kobsar et al., 2020)…………………………...12 

 

Figure 5: (A) Internal tibial and (B) internal femoral accelerations in mediolateral, 

anteroposterior, and distal-proximal directions for knee OA (mean in solid line, standard 

deviation in dotted line, N=9) and asymptomatic (mean in dashed line, N=9) subjects. (Turcot et 

al., 2008)…………………………………………………………………….…………………...17 

 

Figure 6: Relative effect size for corticosteroids and hyaluronic acid (95% Confidence Interval) 

(Bannaru et al., 2009). N represents the total number of studies and I2 represents the level of 

heterogeneity across the studies………………………………………………………………….22 

 

Figure 7: SVM example in 2-dimensional space. Support vectors, marked with grey squares, 

define the optimal hyperplane used to separate two groups (X and O)(Chen et al., 2009)……...26 

 

Figure 8: Dataset has no easily recognizable pattern and thus no linear hyperplane. A kernel is 

used to increase the dimensionality of the data and allows for a 3D hyperplane to optimally 

separate the data into two groups (Yu et al., 2010)……………………………………………...27 

 

Figure 9: Study protocol outlining the schedule for each participant. Abbreviations: 6MW; 6-

Min Walk, KOOS; Knee Outcome and Osteoarthritis Survey, NPRS; Numerical Pain Rating 

Scale, SJHH; St. Joseph’s Healthcare Hamilton………………………………………………...35 

 

Figure 10: Sensor placement and axis orientation during the 6-min walk……………………...38 

Figure 11: Pipeline highlighting the transformation of raw data into time normalized waveforms, 

and then reduced via PCA before entering the OCSVM. This pipeline was followed for each 

participant………………………………………………………………………………………..43 

 

Figure 12: Atypical strides for each participant across pre-injection and post-injection trials. 

Each circle represents the atypical strides (%) for each participant and the grey line shows the 



 

 IX 

change in pre- and post-injection that is occurring within individual participants. No significance 

(p = 0.390) was found when comparing post-injection atypical strides to pre-injection atypical 

strides…………………………………………………………………………………………….46 

 

Figure 13: Representative example of one participant (subject 6) demonstrating a low 

percentage of atypical strides. Ensemble mean and standard deviation strides of training sets in 

purple, with ensemble mean of atypical strides overlayed for test data in red (trial 5), green (trial 

6) and magenta (trial 7)…………………………………………………………………………..47  

 

Figure 14: Representative example of one participant (subject 9) demonstrating a high 

percentage of atypical strides. Ensemble mean and standard deviation strides of training sets in 

purple, with ensemble mean atypical strides overlayed for test data in red (trial 5), green (trial 6) 

and magenta (trial 7)……………………………………………………………………………..48 

 

Figure 15: NPRS score for all participants over the course of seven trials. Each colour represents 

a different participant…………………………………………………………………………….49 

 

Figure 16: Change in pain compared to atypical strides in post-injection trials. Red circles 

highlight trial 5 while green and magenta circles highlight trial 6 and 7, respectively. A change in 

pain was defined as the difference between each post-injection trial (5,6 or 7) compared to the 

average pain levels seen in pre-injection collections (trials 1,2,3 and 4)………………………..50 

 

Figure 17 (Appendix): All waveforms from right shank sensor for all 9 subjects. Each row 

represents one subject. Ensemble mean and standard deviation strides of training sets in purple, 

with ensemble mean atypical strides overlayed for test data in red (trial 5), green (trial 6) and 

magenta (trial 7)………………………………………………………………………………….79 

 

Figure 18 (Appendix): All waveforms from left shank sensor for all 9 subjects. Each row 

represents one subject. Ensemble mean and standard deviation strides of training sets in purple, 

with ensemble mean atypical strides overlayed for test data in red (trial 5), green (trial 6) and 

magenta (trial 7)………………………………………………………………………………….80 

 

Figure 19 (Appendix): Numerical Pain Rating (NPRS) used in the current study…………..…84 

 

 

 

 

 

 

 

 
 
 



 

 X 

List of Tables 
 

Table 1: Participant characteristics of all subjects……………………………………………...37 

 

Table 2: Overview of one-class SVM training and testing models for each individual’s pre-

injection and post-injection collections, with associated research questions. The average 

proportion of atypical strides are shown for all subjects………………………………………...45 

 

Table 3 (Appendix): Average atypical strides when using the three most reliable channels and a 

PCA reduction. *Methodology used in current study…………………………………………...81  

 

Table 4 (Appendix): Average atypical strides when using the three most reliable channels and 

no PCA reduction………………………………………………………………………………..81 

 

Table 5 (Appendix): Average atypical strides when using all six channels and a PCA 

reduction…………………………………………………………………………………………82 

 

Table 6 (Appendix): Average atypical strides when using all six channels and no PCA 

reduction…………………………………………………………………………………………82 

 

Table 7 (Appendix): Average atypical strides when using a regularization parameter (‘Nu’) of 

0.1 and the three most reliable channels with a PCA reduction…………………………………83 

 

Table 8 (Appendix): Average atypical strides when using an “OutlierFraction” of 5% and the 

three most reliable channels with a PCA reduction……………………………………………...83 

 

 

 

 

 

 

 

 

 
 
 
 
 



 

 XI 

List of Abbreviations and Symbols 
 
 
OA: Osteoarthritis 

 

ICI: Intraarticular Corticosteroid Knee Injection 

 

SVM: Support Vector Machine 

 

OCSVM: One-Class Support Vector Machine 

 

PCA: Principal Component Analysis 

 
IMU: Inertial Measurement Unit 

 

NPRS: Numerical Pain Rating Scale 

 

KOOS: Knee Osteoarthritis Outcome Score 

 

TKA: Total Knee Arthroplasty 

 

6MW: 6-Minute Walk 

 

WOMAC: Western Ontario and McMaster Universities Osteoarthritis Index 

 

RMS: Root Mean Square 

 

K/L Grade: Kellgren and Lawrence Grade 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 XII 

Declaration of Academic Achievement 
 
I, Zaryan Masood, hereby declare that I am the sole author of this thesis. The study was 

conceived by Zaryan Masood and Dr. Dylan Kobsar. Edits and revisions were conducted by 

Zaryan Masood, based on feedback from Dr. Dylan Kobsar, Dr. Peter Keir, and Dr. Janie 

Wilson. 

   



MSc. Thesis – Zaryan Masood; McMaster University – Science, Kinesiology 

 

 1 

Chapter 1: Introduction 
 

 

Osteoarthritis (OA) is a degenerative joint disease resulting in pain, stiffness, impaired 

mobility, and a reduced quality of life (Henriksen et al., 2012). Currently, nearly 5 million 

Canadians are diagnosed with OA, making it the most prevalent musculoskeletal disease and the 

leading cause of physical disability in adults (Bombardier, 2011; Cross et al., 2014). Knee OA is 

the most common form of OA (Chehab et al., 2014) and is characterized by the loss of cartilage, 

change in bone, and abnormal lower limb movement patterns (Chu & Andriacchi, 2015). As 

such, gait analysis provides a non-invasive approach to study the mechanics and loading of the 

lower limbs that can provide valuable information on the etiology, progression, and treatment of 

knee OA (Davis, 1997). Unfortunately, conventional gait analysis laboratories involving motion 

capture cameras and in-ground force platforms are expensive and confined to laboratory settings 

thus limiting their accessibility and clinical practicality. Further, the use of conventional gait 

analysis technology can only assess a limited number of gait cycles in a controlled environment 

which may not effectively define one’s typical gait pattern that is occurring every day in the real-

world (Benson et al., 2019; Hillel et al., 2019). 

Fortunately, the advent of wearable sensors has revolutionized gait analysis by making it 

more accessible and affordable, while also providing the unique ability to collect data out-of-lab. 

Research has shown that wearable inertial sensors or inertial measurement units (IMUs) can 

collect detailed and reliable biomechanical data (Ahmad et al., 2013; Kobsar et al., 2014) in a 

laboratory setting. Further, these wearable sensor-based gait analyses have the potential to 

support clinical decisions for common musculoskeletal disorders such as OA (Kobsar et al., 

2016; Na & Buchanan, 2021; Turcot et al., 2008). For these reasons, wearable sensors are 



MSc. Thesis – Zaryan Masood; McMaster University – Science, Kinesiology 

 

 2 

becoming increasingly popular for the study of OA, with more research utilizing them in out-of-

lab gait collections (Ahamed et al., 2019; Ahmad et al., 2013; Halilaj et al., 2018; Kobsar, 

Masood, et al., 2020). Unfortunately, much of this work still involves highly controlled and short 

(e.g., 20 m) walking protocols (Kobsar et al., 2020) that represent a single snapshot of gait and 

may not be indicative of the fluctuations occurring daily in more real-world gait patterns (Hillel 

et al., 2019).  

Therefore, if future research aims to use wearable sensors more effectively in tracking 

changes with respect to OA disease progression or treatment, there is not only a need to better 

understand day-to-day fluctuations in real-world gait patterns, but to place them in the context of 

meaningful changes overtime. Doing so will allow us to better understand the sensitivity of these 

devices by determining whether meaningful changes can be identified amongst these variable, 

out-of-lab gait patterns in older adults with knee OA. As such, we utilized a common clinical 

intervention for reducing pain as a method to evoke and assess these meaningful changes in gait. 

Specifically, individuals with knee OA are commonly given intra-articular corticosteroid 

injections (ICI) to both treat the affected joint as well as reduce pain. This reduction in pain from 

ICI has been shown to provoke individual changes in gait patterns (Mehta et al., 2011). 

Therefore, the overarching aim of this project is to use ICI as a model to assess the ability of 

wearable inertial sensors and machine learning algorithms to identify changes in gait, amidst the 

day-to-day fluctuations in out-of-lab gait patterns. More specifically, our goal is to use a 

principal component analysis (PCA) to capture key gait features and a one-class support vector 

machine (OCSVM) to holistically define and represent changes in individual gait models, 

particularly with respect to changes in pain.  
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 This current document consists of a Literature Review (Chapter 2), as well as Thesis 

Research Questions (Chapter 3), Methodology (Chapter 4), Results (Chapter 5) and Discussion 

(Chapter 6). The Literature Review highlights and analyzes studies that are in the field of knee 

OA biomechanics specifically utilizing IMUs and machine learning for gait analysis. The 

methods, results, and discussion outline the study design, sample, and key findings from the 

thesis “Tracking real-world changes in osteoarthritic gait patterns following intra-articular 

corticosteroid knee injections”. 

Chapter 2: Literature Review 
 

The purpose of this Literature Review is to first briefly outline background topics such as 

knee OA (2.1) and the importance of gait analysis in adults with knee OA (2.2), followed by a 

more in-depth examination of current literature on wearable sensors (2.4), knee injections (2.5) 

and machine learning (2.6) all in knee osteoarthritic populations. Specifically, this review 

critically highlights the importance of using inertial measurement units (IMUs) and machine 

learning techniques to understand knee OA gait.  

2.1 Knee Osteoarthritis 

 

Osteoarthritis (OA) is a deteriorating joint disease characterized by structural changes 

and pain in synovial joints (Henriksen et al., 2012). OA can affect the hands, hips, feet and spine, 

however, OA is most commonly found at the knee (Chehab et al., 2014). Knee OA is diagnosed 

by assessing structural damage or reduction of the knee joint space via magnetic resonance 

imaging or a radiograph (Altman et al., 1991). Common structural changes include the presence 

of osteophytes, bone sclerosis, or malalignment (Michael et al., 2010). These structural damages 

can be graded using the Kellgren and Lawrence (K-L) criteria where grade 0 is no structural 

damage and grade 4 is classified as severe. The most common feature of knee OA is the presence 
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of joint pain, which can accompany other symptoms such as limited mobility, joint stiffness and 

swelling (Guccione et al., 1994). Further, knee OA can be characterized by its location within the 

knee joint. Locations include the medial tibiofemoral compartment, the lateral tibiofemoral, and 

the patellofemoral compartment. The medial tibiofemoral compartment, or medial compartment 

for short, is the most common location for knee OA and is most commonly studied in current 

literature (Neumann et al., 2009).  

Although knee OA has previously been described as a wear and tear disease, current 

literature focuses on the interaction between biology and physiology, structure or alignment, and 

gait mechanics in the development and progression (Asay et al., 2018). Specifically, the changes 

to the articular cartilage are highly complex and involve mechanical, biological and structural 

pathways (Figure 1) (Andriacchi et al., 2004). Andriacchi and colleagues (2014) created a two-

part framework (Initiation and Progression), which describe the degradation of articular cartilage 

that contributes to the worsening of knee OA. The initiation phase is associated with biological 

or mechanical changes that shift load-bearing to infrequently loaded regions, which the cartilage 

cannot accommodate and support. The progression phase follows cartilage breakdown, where 

knee OA progresses more rapidly with increasing load. Further, there is no single risk factor that 

can define the etiology of OA but rather several systemic and local factors. Factors include 

obesity, sex, age, exercise status, and menopause, which can influence the onset or progression 

of knee OA by activating the initiation phase. Additionally, Silverwood et al., (2015) conducted 

a systematic review and meta-analysis in order to determine the most common risk factors, 

which influence the onset of knee OA. Although age, genetics, BMI, muscle strength, and 

alignment play a considerable role in the development of knee OA, Silverwood and colleagues 

(2015) concluded obesity and female sex were the most common risk factors for the onset of 
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knee OA. As knee OA becomes more prevalent in our aging population, understanding the 

functional, anatomical, and biological interactions further will assist in optimizing treatments for 

this highly prevalent and debilitating disease. Specifically, this review analyzes the functional 

aspect through investigating gait, where the knee joint is subject to high loads.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Outlining the relationship between joint mechanics, cartilage mechanobiology and in 

vivo function in knee OA all influencing articular cartilage degradation. Gait analysis, 

quantitative MRI and biomarkers are valuable tools in understanding this pathway. (Andriacchi 

et al., 2004) 

 

2.2 Knee Osteoarthritic Gait 

 

2.2.1 Introduction to Gait Analysis 

 

 Walking is the most common form of locomotion and has the ability to describe an 

individual’s overall health (Roberts et al., 2017). The gait cycle is divided into two phases, 

stance and swing. Stance is used to designate the entire period the foot is on the ground and 

begins with initial contact. Swing applies to the time when the foot is in the air and is essential 

for limb advancement (Kharb et al., 2011). The swing phase is initiated when the foot is first 

lifted from the surface which is also known as toe-off. Within the gait cycle, there are seven 

major events, four of which occur in the stance phase and three which occur in swing (Figure 2). 
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The major events include loading response, mid-stance, terminal stance, pre-swing, initial swing, 

mid-swing, and terminal swing. Dividing the gait cycle into these specific events allows for a 

more specific gait analysis.  

Gait analysis has become widely used as a means to diagnose specific pathologies, 

monitor prognosis, and establish treatment plans (Roberts et al., 2017). In more clinical settings, 

gait analysis is often conducted through visual observation due to its ease in measurement; 

however, this method remains highly subjective. Optical motion capture analysis systems, 

wearable sensors, and force plates allow researchers to understand gait pathologies further as 

well as analyze specific objective gait parameters. Gait parameters that are commonly studied in 

healthy and clinical populations are spatiotemporal parameters, ground reaction forces (GRF), 

joint kinematics, and joint moments (Kobsar et al., 2020; Tyburski & Gage, 1991; Winter et al., 

1990). Gait analysis is a meaningful way to study the mechanical environment of the lower limbs 

non-invasively and can allow researchers to further understand gait pathologies such as knee 

osteoarthritic gait, and to design specific prevention and treatment plans.   

 

 

 

 

 

 

 

 

Figure 2: Highlighting the stance and swing phase as well as the major events within the gait 

cycle. (Whittle, 1991) 
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2.2.2 Knee Osteoarthritis Gait Metrics  

 

 Adults with knee OA adopt a wide variety of patterns and deviations of gait depending on 

their disease severity, sex, or compartment (Zeni & Higginson, 2009). First, gait speed and other 

spatiotemporal parameters are critical metrics used to characterize gait in knee OA populations. 

Numerous studies have reported slower gait speeds in OA patients compared to healthy controls 

and slower gait speeds in more severe OA as compared to less severe OA patients (Astephen et 

al., 2008; Julien Favre & Jolles, 2016). Astephen et al., (2008) found individuals with severe 

knee OA had smaller stride lengths, increased stride time and increased stance time as compared 

to moderate knee OA and asymptomatic participants. While spatiotemporal patterns are effective 

and efficient parameters to describe the overall knee OA gait, they are often not sensitive enough 

to detect underlying differences in knee biomechanics (Julien Favre & Jolles, 2016). Therefore, it 

is necessary to further analyze three-dimensional kinetic and kinematic gait patterns in 

individuals with knee OA.  

 While there is a near-infinite number of potential parameters which could be assessed 

with respect to walking gait kinetics and kinematics, knee OA research has most often focused 

on three key parameters. First, the knee adduction moment (KAM) undoubtedly receives the 

most attention and analysis as it provides a proxy for the medial to lateral distribution of loading 

through the knee and has been linked to OA severity, progression, and symptoms (Astephen 

Wilson et al., 2017; Brisson et al., 2017; Julien Favre & Jolles, 2016; Hurwitz et al., 2002; Maly 

et al., 2015; Mündermann et al., 2005; Sharma et al., 1998). Another important kinetic variable 

assessed in osteoarthritic gait is the knee flexion moment (KFM). Similar to KAM, KFM is 

thought to be highly related to compartmental loading and has been shown to play an important 
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role in knee OA severity and progression (Bennell et al., 2014; Henriksen et al., 2010; Astephen 

et al., 2008; Huang et al., 2008). Finally, the knee flexion angle (KFA) has been an essential 

variable in the analysis of knee OA biomechanics. Current literature has highlighted the smaller 

ranges of motion over the entire gait cycle which are consistently reported with increasing 

disease severity and outline the importance of KFA in the biomechanical analysis of knee OA 

(Baliunas et al., 2002; Favre et al., 2014).  

Although this section highlights spatiotemporal, kinetic (KAM & KFM), and kinematic 

(KFA) parameters separately, these variables are not entirely independent, and all play a vital 

role in describing and understanding knee osteoarthritic gait. Further, while KAM, KFM, and 

KFA are characteristic measures of knee OA gait, they are time-consuming to measure, making 

it difficult to collect large amounts of longitudinal research data and almost entirely impractical 

to collect in a clinical setting. Further, their sensitivity to change with respect to pain or exercise 

is limited (Bennell et al., 2014; Khalaj et al., 2014) and they are often not assessed repeatedly 

over time or reported on a day-to-day basis where fluctuations in pain can occur. Although these 

metrics will likely remain the gold-standard variables due to their relationship with knee OA 

severity and progression, we know that these cannot be fully representative of everyday real-

world gait patterns where such day-to-day fluctuations in these parameters is ever-present (Hillel 

et al., 2019). One solution to tracking everyday gait patterns that may be sensitive enough to 

changes in pain, is to use wearable inertial sensors in out-of-laboratory settings along with 

machine learning algorithms to manage and track gait patterns over time. 

 

2.3 Wearable Sensors in Knee Osteoarthritis 

 

The purpose of this section is to highlight the importance of wearable sensors, 

specifically inertial measurement units (IMUs), to conduct gait analysis in knee OA patients. 
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This section will start with a general overview of IMUs and then take a comprehensive approach 

to examine and analyze current studies that use wearable sensors for gait analysis where 

spatiotemporal variables, impact accelerations, and gait symmetry are studied in knee 

osteoarthritic patients.  

2.3.1 Inertial Measurement Units (IMUs) 

 

 Inertial Measurement Units (IMUs) first became popular in the 1930s where they were 

primarily used for aircraft navigation (Zhao & Wang, 2012). In the past, IMUs were large, 

costly, inefficient, and required large power consumption which in turn restricted the use of 

IMUs in small devices and consumer applications (Ahmad et al., 2013). The recent development 

of micro-electromechanical system (MEMS) technology has made it possible to manufacture 

more affordable IMUs which are compact and require low processing power. Recently, the 

demand for IMUs has been growing exponentially and sparked many new applications, 

especially within scientific research, specifically human movement analysis (Avrutov et al., 

2017).  

IMUs consist of accelerometers, gyroscopes, and sometimes magnetometers, and are 

designed to measure linear acceleration, angular velocity, orientation, or gravitational force 

(Figure 3). Specifically, accelerometers measure linear acceleration by measuring force and 

using Newton's second law (i.e., Force = Mass x Acceleration). Accelerometers are currently 

built with a variety of different mechanisms. Commonly, a mass is attached to a spring which is 

suspended inside an outer casing. When the sensor is accelerating, the mass is left behind due to 

inertia, and the spring is stretched with a force relative to the outer casing which relates to the 

acceleration (Ahmad et al., 2013). The distance the spring is stretched can be used to measure the 

force, and subsequently acceleration. Some accelerometers use changes in electrical or magnetic 
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signals to determine acceleration. If a moving mass alters the distance between two parallel 

metal plates, measuring the change in capacitance can give insight into the total force on the 

sensor. Finally, in piezoresistive accelerometers, the mass is attached to a potentiometer which 

adjusts the electric current depending on the size of the force (Ahmad et al., 2013). Triaxial 

accelerometers provide measurements in three orthogonal directions or dimensions (x,y,z) for a 

more detailed understanding of the total acceleration on the unit. 

 Gyroscopes can measure the angular velocity and orientation of an object. Angular 

velocity is the change in the rotational angle of the object per unit of time. Gyroscopes assist in 

determining the pitch, roll, and yaw (Figure 3). Similar to accelerometers, gyroscopes are based 

on Newton’s second law and transform the Coriolis force to angular velocity. The Coriolis force 

is a fictitious force which applies to the movement of rotating objects. It is determined by the 

mass of the object and the rate of rotation. Gyroscopes measure force using a mass and spring, 

similar to accelerometers, combined with Coriolis sensing fingers. As the mass within the 

gyroscope moves and as the surface that the gyroscope lies on rotates, the mass experiences the 

Coriolis force which translates the mass and frame 90 degrees from the movement. Further, as 

the rate of rotation increases, the displacement of the masses changes which creates a change in 

capacitance (Watson, 2016).  

Finally, magnetometers are used to detect and measure magnetic fields which assist in 

orientation. Magnetometers commonly function under the effects of detecting the Lorentz force 

which measures the change in voltage or resonant frequency electronically. The exact 

mechanisms and applications of magnetometers are out of the scope of this review as they are 

less commonly used for gait applications.  The advancement of accelerometers, gyroscopes, and 
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IMUs together are promising as they continue to spark and improve newer applications such as 

gait analysis, which has become more accessible, affordable, and real-world relevant. 

 

 

 

 

 

 

 

 

 

 

Figure 3: Inertial Measurement Unit (IMU) where accelerometer can measure linear 

acceleration in the X, Y, and Z axis while gyroscope can measure pitch, roll, and yaw (Javier & 

Ortega, 2017) 

 

2.3.2 IMUs in Gait Analysis 

 

 IMUs continue to become more popular in scientific research and have a variety of 

applications such as stabilometry, instrumented clinical tests, upper body mobility assessment, 

daily-life activity monitoring, tremor assessment and gait analysis (Iosa et al., 2016). 

Specifically, gait analysis, as discussed in section 2.2, can provide important lower limb 

biomechanical data which can be useful in understanding the development and progression of 

knee OA. Gait analysis is most often done via laboratory-based optical motion capture however, 

this gold-standard remains inaccessible to most clinicians, can be expensive and require lengthy 

setup and post-processing. While using laboratory based gait analysis is beneficial as the 

environment can be controlled, there is also a need to collect gait data in out-of-laboratory 

settings where gait patterns are more representative of the patients natural gait (Hillel et al., 
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2019). Wearable sensors or IMUs can be used as an affordable and accessible alternate for 

conventional motion capture gait analysis systems, and they offer the unique ability to track out 

of-laboratory gait. A recent scoping review outlined the exponential growth of studies using 

wearable sensors to assess knee OA gait (Kobsar et al., 2020) (Figure 4).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Number of wearable sensor studies published each year for gait analysis in knee OA 

populations. Colours indicate the study design (Kobsar et al., 2020). 

 

 

 

Previous literature has highlighted the reliability and accuracy of wearable sensors for  

gait analysis (Benson et al., 2019; Kobsar et al., 2016). To this point, wearable sensors offer the 

versatility to be placed in a variety of locations to derive valid and reliable spatiotemporal, 



MSc. Thesis – Zaryan Masood; McMaster University – Science, Kinesiology 

 

 13 

kinematic, or even kinetic metrics of a specific body segment (Kobsar et al., 2020; Charlton, et 

al., 2020). Common locations include the foot, ankle, knee, hip, shank, thigh, and lower back. 

Although previous literature has used wearable sensors to measure joint moments, joint and 

segment angles, impact accelerations and gait symmetry accurately, spatiotemporal parameters 

remain the most common metric measured among health and knee OA populations (Kobsar et 

al., 2020; Mills et al., 2013; Hunt, et al., 2013).  

2.3.3 IMUs for Spatiotemporal Metrics 

 

 Spatiotemporal metrics are highly reported in gait analysis as they are easy to measure 

and understand, while holding important clinical information (Iosa et al., 2016). Most generally, 

walking speed has been used as an indicator of locomotor deficits, prolonged stance phase is 

associated with instability and shorter steps are characteristic of pathological gait (Iosa et al., 

2016). Spatiotemporal metrics are commonly reported in current literature as the mean value or 

presented as variability metrics where they are calculated by standard deviation or coefficient of 

variation for a given spatiotemporal variable.  

2.3.3.1 Mean Spatiotemporal Metrics 

 

Mean spatiotemporal metrics as measured by IMUs have also been correlated to knee OA 

severity. Bolink et al., (2012) used mean spatiotemporal metrics to differentiate knee OA patients 

from healthy controls. Bolink and colleagues (2012) found knee OA patients had a significantly 

slower walking speed (0.85 m/s) as compared to healthy subjects (1.29 m/s). Further, knee OA 

patients also had a significantly slower cadence (98.1 steps/min), shorter step length (0.52m) and 

slower step time (0.62s) as compared to the healthy control group (112 steps/min; 0.69m; 0.54s). 

Intuitively, these findings make sense as individuals with severe knee OA are less confident and 

comfortable in their gait due to changes in pain, increased stiffness, and decreased range of 
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motion which could lead to shorter step lengths and slower walking speeds. Similar results were 

found by many other studies utilizing a single IMU on the lower back (Andrade et al., 2017; 

Clermont & Barden, 2016; Fransen et al., 2019). Moreover, increased stride time has shown the 

strongest and most common deviation in adults with knee OA, as compared to healthy controls 

(Mills et al., 2013; Hunt, et al., 2013). Chopra & Crevoisier (2019) used a 5-sensor system with 

sensors on the tibia, ankle and metatarsals and found that adults with moderate to severe OA 

have increased stride time and decreased stride length as compared to healthy controls. Many 

studies have found similar results to Mills et al., (2013) and Chopra & Crevoisier (2019), 

however, the majority of current literature highlights mean spatiotemporal parameters following 

surgical interventions (Kobsar et al., 2020).  

2.3.3.2 Spatiotemporal Variability 

 

 Although less reported in current literature compared to mean values, variability of 

spatiotemporal metrics is important in describing knee OA gait. Spatiotemporal variability is 

often used to assess health status, mobility, function or fall risk as variability measures are more 

sensitive to neurological and musculoskeletal changes than mean spatiotemporal metrics 

(Herssens et al., 2018; Lord et al., 2011). Bolink et al., (2012) found that severe knee OA 

patients had a significantly higher step length and step time variability when compared to healthy 

controls as measured by the coefficient of variation. Additionally, Andrade et al., (2017) found 

step and stride time coefficient of variations much greater in knee OA patients, similar to Bolink 

et al., (2012).  

 Although measuring the mean and variability of spatiotemporal can be important in 

describing knee OA gait, tracking lower limb or segment motions using acceleration signals can 
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provide a more in-depth and unique perspective to individual gait patterns (Na & Buchanan, 

2021). 

 

2.3.4 IMUs for Lower Limb Accelerations 

 

In addition to monitoring changes in spatiotemporal variables, IMUs offer the ability to 

measure unique kinematic variables such as impact accelerations, which are the peak impacts 

during heel strikes. Depending on the placement of the IMU, segmental accelerations can be 

determined using a variety of methods such as multi-axis accelerations (e.g., mean, root mean 

square; RMS), impact peaks, or waveform analyses (Kobsar et al., 2020). These acceleration 

variables measured by wearable sensors have been shown to be reliable in both healthy adults 

(Kobsar et al., 2020; Charlton et al., 2020) and in patients with knee OA (Turcot et al., 2008). 

Commonly, acceleration patterns measured by wearable sensors are used to study pathological 

gait but can also be used in both post-surgical and sport applications. A more recent focus has 

been placed on clinical gait applications, specifically differentiating between healthy and OA 

gait.  

Barrois et al., (2016) used a four IMU based protocol to understand differences between 

healthy and osteoarthritic gait and determined if IMUs could provide simple features that could 

correlate with knee osteoarthritis severity. IMUs were attached to the head, lower back (L3-L4) 

and both feet. The foot IMUs showed a discrimination capacity between different knee OA 

severity groups for mean and RMS in peak impact acceleration in the horizontal or mediolateral 

plane. These results remained statistically significant with BMI and age as covariates however 

the authors did not determine if the changes in impact accelerations were due to the slower 

walking speed found in OA cohorts. Nevertheless, the Barrois et al., (2016) findings are 
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noteworthy in clinical settings as only two lower-limb IMUs were used to differentiate impact 

accelerations in OA and healthy patients. Additionally, Turcot & Aissaoui, et al., (2008) were 

also able to discriminate between an OA and healthy group based on accelerations. Turcot & 

Aissaoui, et al., (2008) found differences in tibial and femoral mediolateral and anteroposterior 

accelerations between asymptomatic and OA groups exclusively in the loading phase of the gait 

cycle (Figure 5).  

 Impact and segmental accelerations are also useful in determining knee OA patient gait 

stability. Na & Buchanan (2021) examined whether impact accelerations measured by IMUs 

could discriminate between knee OA patients who self-reported higher instability throughout 

gait. Self-reported instability was measured by the Survey-Activities of Daily Living Scale 

(KOS-ADLS). Twenty-six participants with moderate to severe medial compartment knee OA 

and 13 control participants were recruited. IMUs were strapped bilaterally on the femur and tibia 

as well as a single IMU was placed on the PSIS. Na & Buchanan (2021) found peak RMS tibial 

impact acceleration to show excellent discriminant validity between the OA and control group as 

the OA group had significantly higher tibial accelerations during midstance. Also, within the OA 

group, greater tibial acceleration during midstance was associated with worse self-reported 

instability. The authors suggested two major findings from this study: 1) wearable sensors are a 

valid and appropriate tool for objectively quantifying and detecting self-perceived instability and 

2) patients with knee OA are at a higher risk of these instabilities due to greater accelerations at 

the shank during midstance. However, Na & Buchanan (2021) did conduct the study in a cross-

sectional manner and reported that knee OA patients did not have any episode of instability 

during data collection. Future studies may look to examine similar variables over time and 

through many gait trials to holistically understand gait patterns and changes.  
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Figure 5: (A) Internal tibial and (B) internal femoral accelerations in mediolateral, 

anteroposterior, and distal-proximal directions for knee OA (mean in solid line, standard 

deviation in dotted line, N=9) and asymptomatic (mean in dashed line, N=9) subjects (Turcot et 

al., 2008). 

 

Not only have acceleration magnitudes been shown to be sensitive enough to differentiate 

between knee OA patients and healthy controls, but they have also been shown to be correlated 

to knee OA severity. Ishii et al., (2020) divided 44 knees from 44 patients into two groups: early-

stage knee OA (K-L grade = 2) and severe knee OA (K-L > 3). The mediolateral thrust during 

gait, which was measured by the mediolateral acceleration immediately after heel strike, was 

recorded by IMUs placed on each tibia and each foot. The severe knee OA group had a 

significantly higher mediolateral impact acceleration (0.76 G’s) as compared to the less severe 

group (0.58 G’s). These increases in the mediolateral impact accelerations could be attributed to 

varus alignment and or varus thrust gait patterns. However, it is important to note, that 

mediolateral accelerations using wearable sensors have been previously shown to demonstrate 

poor reliability.  

A B 
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Based on a recent review by Kobsar et al., (2020), lower-limb accelerations have been a 

reliable measure in healthy adults, however, mediolateral accelerations, especially in OA cohorts 

can exhibit poor reliability. In healthy adults, Moe-Nilssen (1998) found the mediolateral axis 

demonstrated good reliability with an intraclass correlation coefficient (ICC) of 0.79, however it 

was still the lowest ICC as compared to the anteroposterior (ICC = 0.93) and vertical axis (ICC = 

0.91).  Further, Kobsar et al., (2016) compared the reliability of the three axes (e.g., vertical, 

anteroposterior and mediolateral) in a cohort of knee OA patients. Kobsar and colleagues (2016) 

also found the mediolateral axis to demonstrate the lowest reliability (ICC = 0.82-0.95) whereas 

the vertical and anteroposterior axis had excellent reliability (ICC = 0.97-0.99). Lastly, similar 

results were found by Lyytinen et al., (2016) in knee OA patients where the mediolateral axis 

demonstrated the lowest reliability (ICC = 0-0.75), while the vertical and anteroposterior axis 

demonstrated good to excellent reliabilities (ICC = 0.69-0.94). Mediolateral accelerations can 

still prove to be useful in understanding gait patterns in knee OA patients, however, should be 

used cautiously given the low reliability found by Moe-Nilssen (1998), Kobsar et al., (2016) and 

Lyytinen et al., (2016).  

2.3.5 IMUs for Gait Symmetry  

 

 Between-limb differences in gait can reflect functional differences in the limbs and, as 

such, these metrics have been commonly studied in healthy and OA gait using IMUs. Staab et 

al., (2014) placed sensors on the back (L3) of 12 knee OA diagnosed patients and found the knee 

OA group to be significantly more asymmetrical in mediolateral trunk accelerations and 

spatiotemporal parameters such as step and stance time. Similar asymmetries were detected by 

Chopra & Crevoisier (2019) in patients with ankle OA and by Rapp et al., (2015) in hip OA 

patients who underwent hip arthroplasty. 
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Christiansen et al., (2015) analyzed tibial acceleration symmetry in severe knee OA 

patients who underwent a total knee arthroplasty (TKA) and a healthy control group. The knee 

OA patients who underwent TKA had a greater between limb asymmetry for tibial initial peak 

acceleration asymmetry index during a stair climbing intervention and a 6-min walk test 5 weeks 

after TKA. This increased asymmetry is characterized by decreased loading of the surgical limb 

compared to the non-surgical limb which has been related to the higher incidence of knee 

pathologies after TKA (Christiansen et al., 2015). The authors suggested that improving 

asymmetry could be an important approach to improving rehabilitation outcomes after TKA. 

Measuring acceleration asymmetry can be useful for clinicians in providing patient feedback 

during gait retraining following surgery. Christiansen and colleagues (2015) demonstrated that 

tibial acceleration asymmetry can be a valuable tool in understanding knee OA progression, 

especially after TKA and that acceleration-based symmetry patterns show similar results to limb 

loading and other kinetic parameters. Finally, gait symmetry has also been an important tool in 

assessing gait differences between unilateral and bilateral knee OA groups. Messier et al., (2016) 

compared the gait symmetry between a unilateral and bilateral knee OA group and interestingly 

found no significant differences in any spatiotemporal, kinematic, or kinetic symmetries between 

the two groups. Therefore, Messier et al., (2016) hypothesized that biomechanical gait changes 

are systemic and not exclusively based on physiological changes in the affected limb.   

Although gait symmetry is becoming increasingly popular in current literature, many 

studies do not assess between limb gait symmetry in longitudinal designs or out-of-laboratory 

gait. This may be because many studies still utilize IMUs in combination with force plate or 

optical motion capture cameras. Assessing these asymmetries in more real-world, out-of-
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laboratory settings where gait patterns may be more indicative of an individual’s natural or real-

world gait pattern would be an important addition to the literature.  

 

2.3.6 Bridge to Section 2.4 

 

 IMUs have the capability to accurately measure a variety of biomechanical gait variables 

including spatiotemporal, kinematic or symmetry-based. Lower limb accelerations have shown a 

lot of promise and are increasing in popularity to further understand gait patterns (Kobsar et al., 

2016). Accelerations in the vertical and anteroposterior axis demonstrate good-to-excellent 

reliability however, the mediolateral axis has continued to exhibit poor reliability, especially in 

OA cohorts (Kobsar et al., 2016; Lyytinen et al., 2016; Moe-Nilssen, 1998). However, gait 

biomechanical variables including accelerations are continuously subject to change as knee OA 

progresses and patients experience fluctuating changes in pain. Patients with knee OA can have 

random variations in pain which can influence biomechanical gait variables on a day-to-day 

basis. These changes due to pain may be more pronounced in out-of-lab gait patterns, where 

individuals may experience a pain flare at any time and are more likely to walk similar to their 

typical gait pattern. Therefore, understanding a patient’s regular day-to-day fluctuations and 

analyzing how pain influences gait parameters can be useful to further comprehend knee OA gait 

as well as foster preventative technologies and treatments aimed to slow the progression of knee 

OA. One method to study changes in pain is to analyze intra-articular knee injections, an 

exceedingly common intervention given to knee OA patients to reduce pain and control knee OA 

advancement.  
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2.4 Intra-articular Injections for Knee Osteoarthritis 

 

The most common injection types administered in Canada include corticosteroid derived 

and hyaluronic acid injections (Kopka et al., 2019). Synthetic corticosteroids have been used in 

clinical practice for over 50 years and provide an anti-inflammatory effect due to their ability to 

modulate the expression of lymphocytes and cytokines. Corticosteroids increase the viscosity of 

the synovial fluid however their primary purpose is to reduce inflammation and alleviate pain 

(Hollander, 1951). The most common form of corticosteroid administered includes 

methylprednisolone and triamcinolone, however, these are usually combined with local 

anaesthetics to decrease the incidence of a post-injection flare up (Kopka et al., 2019). Further, 

hyaluronic acid is a naturally occurring polymer which increases the viscosity of the synovial 

fluid as well as strengthens the articular cartilage. Like corticosteroids, hyaluronic acid injections 

can have anti-inflammatory effects.  

 Although they seem to have similar effects, many studies have compared the efficacy of 

corticosteroids versus hyaluronic acid. A recent Cochrane review highlighted that corticosteroids 

are more beneficial in reducing pain and improving function within 6 weeks post-injection with 

no benefit observed after 6 months (Jüni et al., 2015). Hyaluronic acid provides improvement in 

pain, function and stiffness however has a significant delay post-injection before positive effects 

are felt and can last up to a year (Jüni et al., 2015). Similar results were found by a systematic 

review and meta-analysis by Bannuru et al., (2009) where from baseline to week 4, 

corticosteroids appear to be more effective for pain but beyond week 8, hyaluronic acid has 

greater efficacy (Figure 6). Therefore, intra-articular corticosteroids may offer similar benefits in 

pain, stiffness, and function as hyaluronic acid but in a faster and shorter term (4-6 weeks). 
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Figure 6: Relative effect size for corticosteroids and hyaluronic acid (95% Confidence Interval) 

(Bannaru et al., 2009). N represents the total number of studies and I2 represents the level of 

heterogeneity across the studies.  

 

2.4.1 Corticosteroid Injection Applications in OA Gait 

 

 Pain can have varying effects on gait mechanics. Henriksen et al., (2010) demonstrated 

that induced pain in healthy subjects led to reduced peak moments in the frontal and sagittal 

planes. However, what are the effects of pain reduction via intra-articular corticosteroid knee 

injections on spatiotemporal, kinetic, and kinematic gait variables in knee OA patients? Shrader 

et al., (2004) compared the gait of 19 medial compartment knee OA patients before and 

immediately after pain-relieving intra-articular corticosteroid knee injections with 21 healthy 

controls. Shrader and colleagues (2004) found gait velocity to increase by 5.8% and cadence to 

increase by 4.6% after injection. Further, peak KAM significantly increased with pain relief to a 

level not significantly different from that of the control group. No significant differences were 

found in joint angles in flexion-extension, abduction-adduction, or internal-external rotation, at 

the knee, hip, or ankle after the injection. A notable limitation of this study is that the researchers 
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did not ask participants to complete a self-reported pain questionnaire or survey and thus did not 

measure the degree of pain relief from the corticosteroid injection. This would mean that the 

authors results could be due to other confounding variables and not from direct pain-relief itself. 

Similar results were found by Pinto & Birmingham (2018) where the gait, numeric pain rating 

scales (NPRS) for pain, and Knee Injury and Osteoarthritis Outcome Scores (KOOS), before and 

3 weeks after a corticosteroid injection was examined. NPRS pain decreased post-injection and 

peak KFM and KOOS subscale increased post-injection, where an increase in KOOS is related to 

less knee OA symptoms, pain, and a better daily living score. Increases in gait speed and 

reductions in NPRS pain were associated with greater peak KFM highlighting the relationship 

between changes in pain and knee joint moments.  

 Although corticosteroids have been shown to reduce pain in the short-term, many knee 

OA patients still experience increases in knee pain post-injection (Jüni et al., 2015) Additionally, 

although no study has directly assessed the effect of knee injection on segmental accelerations 

and gait symmetry, authors Bolink et al., (2015), Turcot et al., (2009) and Christiansen et al., 

(2010) have demonstrated that pain can influence accelerations and gait symmetry in knee OA 

patients. Therefore, we may expect similar results after decreases in pain following knee 

injections. Bolink et al., (2015) discovered a moderate correlation between self-reported pain 

levels and acceleration magnitudes in knee OA patients with a single IMU on the lower back. 

Contrary to their hypothesis, Bolink et al., (2015) found knee OA patients who had less pain or a 

lower WOMAC score had lower mean acceleration magnitudes in the anteroposterior and 

mediolateral directions. Similar results were found by Turcot et al., (2009) after examining mild-

to-moderate knee OA patients following a rehabilitation treatment aimed to reduce knee OA pain 

and strengthen the knee joint. Self-reported pain, as assessed by WOMAC, significantly reduced 
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following the rehabilitation program. With this reduction in pain, Turcot and colleagues (2009) 

found reduction in mean tibial accelerations in the mediolateral and anteroposterior direction. 

These findings by Bolink et al., (2015) and Turcot et al., (2009) were not expected, as many 

studies have demonstrated that the reduction of pain symptoms in knee OA could lead to 

increase of knee loading and accelerations as patients feel more comfortable in their gait as seen 

by an increase in walking speed (Henriksen et al., 2012; Hurwitz et al., 2002; Shrader et al., 

2004). Perhaps these differences in pain-response are attributed to sample size, compartment, 

severity, or unilateral/bilateral status.  

Bolink et al., (2015) and Turcot et al., (2009) had knee OA patients with varying severity, 

had bilateral knee OA and were not specified to the medial compartment. Nonetheless, while 

changes in pain are seen to influence impact accelerations in mild-to-moderate knee OA patients, 

the exact mechanism of change is still unknown. Moreover, Christiansen et al., (2010) found a 

strong correlation between Numerical Pain Rating Scale (NPRS) and weight-bearing asymmetry 

where individuals with higher NPRS scores had a more asymmetrical gait. These findings by 

Christiansen et al., (2010) may be specific to individuals with severe unilateral knee OA and 

future research should explore the relationship between knee OA severity and symmetry.   

 Although many studies have found changes in spatiotemporal, kinetic, kinematic and 

symmetry variables following changes in pain or post-injection, many studies have not tracked 

these gait variables, especially symmetry and accelerations, in longitudinal and out-of-laboratory 

settings. Many studies have assessed pain before and after TKA, however, they frequently report 

frontal-plane loading. Studies need to examine multiple gait assessments due to the unpredictable 

nature of pain flares and take advantage of IMUs to track acceleration and symmetry variables 

out-of-lab.  
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Bridge to Section 2.5 

 

 Many studies have found changes in biomechanical gait variables with changes in pain 

(Henriksen et al., 2010; Jüni et al., 2015; Pinto & Birmingham, 2018; Shrader et al., 2004). How 

the changes in pain influence lower-limb accelerations and gait over time is still relatively 

unknown. Further, it is essential to account for changes in pain to define and understand typical 

gait patterns over time. By doing so, meaningful changes in gait can be better distinguished from 

everyday typical gait patterns. However, differentiating a typical gait pattern from a meaningful 

change (e.g., reduction in pain, improvement in function, disease progression, etc.) over multiple 

gait assessments in out-of-lab settings can be difficult, especially due to the large datasets that 

are provided by wearable sensors that quickly become complex and hard to interpret. Within 

these large datasets, there remains a vast amount of data that goes unanalyzed which can limit 

many study findings (Kobsar & Ferber, 2018). One method of sorting, processing, analyzing, and 

differentiating these large datasets is through the growing field of machine learning.  

 

2.5 Machine Learning Methodology 

 

2.5.1 Support Vector Machines 

 

Support Vector Machines (SVMs) are machine learning models that are utilized for 

regression and classification of data (Chen, 2009). Multi-class SVMs are one of the most robust 

prediction machine learning methods and are primarily used for the classification of two distinct 

groups. Given a set of training data (e.g., data with input variables and known class labels), an 

SVM training algorithm classifies new data into one of the two groups making it a non-

probabilistic binary linear classifier (Hastie et al., 2013). To separate data into two groups, multi-
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class SVMs construct a hyperplane (a line for 2-Dimensional data), which is used to classify new 

data and separate it into groups. A hyperplane is designed using support vectors, which are the 

data points in each group that are used to calculate the orientation of the hyperplane and are 

usually the closest for both groups (Decoste & Schölkopf, 2002). A maximal marginal classifier 

technique is used when designing a classification boundary or hyperplane, where the distance 

from the support vectors is maximized to reduce errors for new unclassified data (Figure 7).  

Figure 7: SVM example in 2-dimensional space. Support vectors, marked with grey squares, 

define the optimal hyperplane used to separate two groups (X and O)(Chen, 2009). 

 

In more complex data with no easily recognizable pattern, multi-class SVMs can increase 

the dimensionality of the data using specific kernel functions to create an effective hyperplane 

(Figure 8). Common kernels include polynomial, gaussian radial basis, and hyperbolic (Chen, 

2009). In data with low dimensionality, a kernel is applied before deciding on an optimal 

hyperplane. Using SVM-specific models has many advantages such as high dimensionality, 

where they are effective in high dimensional spaces (>106) and memory efficiency, meaning they 

only require a small subset of training points to create an efficient decision process. Finally, 

SVMs can be extremely versatile, where many kernels can be applied in highly non-linear data 
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making SVMs flexible and highly accurate (Statnikov et al., 2006). SVMs also carry some 

disadvantages such as a high risk of generalization and overfitting error which can lead to 

incorrect classifications. Further, SVMs give no direct probability interpretation for each group 

or new featured data (Lee et al., 2004). While training data is often labelled for binary 

classification, if training data is unlabelled (i.e., data is not specified as one group or another), 

the process relates to an unsupervised learning approach that can be used to find a natural 

cluster(s) in the data.  

 

 

 

 

 

 

 

 

 

Figure 8: Dataset has no easily recognizable pattern and thus no linear hyperplane. A kernel is 

used to increase the dimensionality of the data and allows for a 3D hyperplane to optimally 

separate the data into two groups (Yu et al., 2010).  

 

 SVMs can be multi-class or one-class depending on the dataset and goal of the model. 

Multi-class models separate each group or class by a hyperplane whereas in one-class, the 

classification is not defined by either side of a hyperplane, but rather a “typical” boundary is 

created. Then, new test data can be classified as outliers if they fall outside of the “typical” 

boundary and inliers if they fall within (Mourão-Miranda et al., 2011). One-class SVM’s have 

become increasingly popular in a variety of applications and are used for facial detection, 
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bioinformatics, image and text classification, and more recently for gait biomechanics to classify 

typical and atypical changes in movement patterns (Hawley et al., 2022; Kobsar & Ferber, 2018). 

2.5.2 Support Vector Machines in Gait Analysis 

 

 Recently, Halilaj et al., (2018) conducted a review highlighting machine learning in 

human movement biomechanics. In this review, the authors identified an exponential growth of 

using machine learning models over the last 20 years and found SVM’s to be the most common 

machine learning method. Further, wearable sensors were the most common data source over the 

last 10 years and osteoarthritis, stroke, and Parkinson’s disease were among the leaders in 

pathologies studied. Overall, it was found that the most common area of application was 

classification of movement patterns, with many studies focusing on distinguishing pathological 

kinematics from healthy kinematics during gait.  

 Multi-class SVM models are used often for studying knee OA gait and can be useful 

tools in distinguishing OA patients from healthy controls. Laroche et al., (2014) used an SVM 

approach on kinematic metrics during gait in hip OA patients and were able to successfully 

distinguish between OA patients and healthy controls with a mean success rate of 88%. 

Similarly, Moustakidis et al., (2010) distinguished between healthy and knee OA patients as well 

as assessed OA severity using GRF measurements in an SVM based machine learning model. 

SVM models are also extremely versatile and have been used in more clinical settings to assess 

improvement from TKA or exercise interventions. Levinger et al., (2009) used a SVM model to 

classify gait patterns indicative of knee OA before TKA based on spatiotemporal gait parameters 

and investigated whether SVMs could successfully predict gait improvement 2 and 12 months 

following TKA. The authors concluded that the SVM could be used to distinguish between OA 

gait and healthy control using spatiotemporal parameters with an accuracy of 88.89%. Further, 
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the SVM model was also able to predict and detect improvement in gait function post-TKA in all 

but three subjects, which coincided with the WOMAC scores and clinical assessment of the 

knee. Levinger and colleagues (2009) suggested that spatiotemporal patterns contain important 

discriminative information which could be used for identifying knee OA improvement using an 

SVM classifier. Laroche et al., (2014), Moustakidis et al., (2010) and Levinger et al., (2009) all 

used multi-class supervised machine learning models for gait pattern analysis which is a more 

common method in current literature (Halilaj et al., 2018). Alternatively, one-class SVM models 

for gait analysis has been a more recent focus for classifying changes in typical gait patterns over 

time and after interventions.  

 Kobsar & Ferber (2018) provide an interesting example where a subject-specific one-

class SVM was used to evaluate whether knee OA patients exhibited changes in their gait after a 

6-week exercise intervention program. They found that patients who benefited most from the 

exercise intervention also demonstrated the greater overall change in gait patterns as detected by 

the SVM and a significant association between outlier gait cycles post-intervention and clinical 

outcome improvement. This study was the first to use wearable sensors and pattern recognition 

algorithms to define subject-specific biomechanical metrics related to clinical improvements. 

Kobsar and Ferber (2018) also discuss the clinically relevancy of this methodology as a 

percentage score from 0% to 100% could be used in the future by clinicians to define meaningful 

changes in gait patterns. Although this study was one of the first to classify gait patterns using 

one-class SVM’s and track improvement using IMUs, some notable limitations are still present 

in this work. The study had a very small sample size (8 subjects) and had classified a typical gait 

pattern for subjects in only two 2.5 minute in-laboratory gait trials. As a next step, authors could 

have focused on quantifying a baseline or typical gait pattern with more training data and have 
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administered data collection in out-of-lab settings where gait patterns are more indicative of real-

world gait. More recently, Benson et al., (2019) utilized a one-class SVM model using wearable 

sensors, in out-of-laboratory settings, to determine how many trials were required to classify a 

typical pattern in runners. Benson and colleagues (2019) determined 4 running trials could define 

a typical running pattern which was defined by models with less than 5% anomalies or atypical 

data. Although this research by Benson et al., (2019) was novel and highly relevant, many key 

limitations were present in the study. Only one IMU was placed on the lower back thus limiting 

their analysis to six spatiotemporal and kinematic parameters with varying levels of validity. 

More importantly, Benson et al., (2019) did not have any perturbation to accurately verify 

meaningful change from typical running pattern. By not having any perturbation, the authors are 

subject to overfitting of their SVM and the sensitivity to change is unclear. For instance, their 

typical gait model may cast a very wide net and they are then unable to detect large enough 

changes in gait to fall outside of these ranges. Lastly, although not for gait,  Hawley et al., (2022) 

utilized a similar OCSVM approach to classify fatigue in lifting kinematics. Hawley and 

colleagues (2022) utilized 35% of the first lifting sets as training to data to define the OCSVM 

boundaries and found a positive correlation between self-report fatigue (i.e., rate of perceived 

exertion) and the percent of outliers (i.e., outlier lifting kinematic sets). This study really 

highlights the unique applications in which SVMs can be applied to understand typical human 

movements and detect meaningful changes.  

The versatility of SVMs in conjunction with wearable sensors allows for researchers to 

not only track out-of-lab gait patterns but also provide a feasible method to understand knee OA 

progression and treatment. Using an approach like Kobsar and Ferber (2018), Benson et al., 

(2019), and Hawley et al., (2022), gait analysis using machine learning and wearable sensors has 
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the ability to become clinically feasible and meaningful. Measuring variables such as gait 

symmetry and impact accelerations using wearable sensors and an SVM approach can allow for 

clinicians to track gait progress in more longitudinal settings, especially when changes in pain 

can significantly change gait patterns on a day-to-day basis. Therefore, the combination of 

wearable sensors and machine learning can allow us to track real-world changes in gait patterns, 

all while differentiating between day-to-day fluctuations and clinically meaningful changes in 

knee OA patients.  

2.6 Summary of Literature Review 

 

 Osteoarthritis is a progressive joint disease which results in the breakdown of cartilage 

and bone leading to pain and limited mobility. It currently affects nearly 5 million Canadians and 

has a significant impact on long-term disability and the Canadian labour force (Bombardier et al., 

2011). Biomechanical gait analysis is commonly used to analyze and understand specific gait 

pathologies such as lower-limb OA. While the gold standard for gait analysis includes optical 

motion capture equipment and force plates, these methods are expensive and are limited as they 

only assess in-laboratory gait. The advancement of IMUs has made gait analysis more affordable 

and real-world relevant as they can analyze gait in out-of-lab settings. Commonly, knee OA 

onset, progression, and treatment are understood by analyzing gold-standard metrics such as 

KAM, KFM, and joint angles. However, these gold-standard metrics are often measured cross-

sectionally or at large intervals to depict disease progression, and are not feasible or easily 

transferable to clinical or out-of-lab settings (Asay et al., 2018). Thankfully, lower limb 

accelerations and gait symmetry have also been correlated with knee OA onset and progression 

and remain more practical as they can be measured accurately out-of-lab with wearable sensors. 

Additionally, wearable sensors offer the opportunity to track these changes longitudinally in real-
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world settings, yet this remains something that has yet to be fully realized. Machine learning 

techniques, such as SVM’s, may provide the link to actualize this prophecy and maximize the 

impact of human movement analysis (Halilaj et al., 2018). Preliminary research has highlighted 

the use of subject-specific biomechanical models (e.g., one-class SVM) to track typical 

movement patterns in runners (Benson et al., 2019), adults with knee OA (Kobsar & Ferber, 

2018), and weightlifting (Hawley et al., 2022). Understanding the stability of these individual 

biomechanical models in the context of clinically relevant changes in gait will support the 

longitudinal tracking of adults with knee OA using wearable inertial sensors.  

Chapter 3: Research Question and Hypotheses 
 

The overarching aim of this project was to use intra-articular corticosteroid injections 

(ICI) as a model to assess the ability of wearable inertial sensors to identify changes in gait, 

amidst the day-to-day fluctuations in out-of-lab gait patterns. To address this, I used multiple 

pre-injection, real-world wearable sensor gait collections in a one-class support vector machine 

to individually define typical gait models for older adults with knee OA. Individually defined 

typical gait models were generated using three pre-injection gait trials. These models were then 

compared to withheld test data collections from before and after the ICI to determine the level of 

deviation (i.e., percent of atypical strides) that occurred for each in their gait pattern.  

 

Research Questions 

Specifically, I proposed 3 research questions:  

i) Will withheld pre-injection gait trials display a similar pattern (<10% atypical 

strides) when compared to the individually defined typical gait models in patients 

with knee OA. 
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ii) Will post-injection gait trials display a deviant pattern (e.g., significantly greatly 

proportion of atypical strides) when compared to the pre-injection gait trials in the 

individually defined typical gait models in patients with knee OA? 

iii) Will the level of pattern deviance (i.e., proportion of atypical strides) in post-

injection gait trials be significantly correlated with the self-reported changes in 

pain in knee OA patients? 

 

 

Hypotheses 

 Based on the previous findings by Kobsar & Ferber (2018), Benson et al., (2019), and 

Ahamed et al., (2019), I hypothesized that three pre-injection gait trials will allow for the 

definition of a stable gait pattern amongst typical day-to-day fluctuations in gait. As such, I 

expect any held-out pre-injection gait collections will represent a similar multivariate profile and 

display, on average, less than 10% atypical strides, thus forming a stable gait pattern (RQi). 

Additionally, I hypothesized that following the ICI, individual gait patterns will deviate and 

result in a significantly greater number of atypical strides, in comparison to the pre-ICI stable 

gait pattern (RQii). However, it is unlikely that the ICI will have the same effect on all patients 

and as such some may experience greater changes in pain than others. Therefore, I hypothesized 

that the deviation in post-injection gait patterns, as defined by the proportion of atypical strides, 

will display a significant positive correlation with self-reported changes in pain (RQiii).  
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Chapter 4: Methods 
 

4.1 Study Design 

 

The study is a within-subjects, longitudinal prospective design, with data collected at 

seven total time points (Figure 9). Participants scheduled for an ICI in at least five weeks were 

recruited by the physician assistant or junior resident at St. Joseph’s Healthcare Hamilton 

(SJHH). ICIs were chosen over hyaluronic acid injections as they provide fast-acting pain relief 

and have a shorter course of action (Section 2.4). Participants who fit within the inclusion criteria 

and agreed to participate completed 4 trials before their injection and three following their 

injection. Only one trial was completed per week leading up to the scheduled injection day (trial 

1-4), followed by three more trials (1/week) post-injection (trial 5-7). Each trial consisted of a 6-

min walk and completion of knee OA pain questionnaires, such as the Knee Osteoarthritis 

Outcome Survey (KOOS) and Numerical Pain Rating Scale (NPRS). 
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Figure 9: Study protocol outlining the schedule for each participant. Abbreviations: 6MW; 6-

Min Walk, KOOS; Knee Outcome and Osteoarthritis Survey, NPRS; Numerical Pain Rating 

Scale, SJHH; St. Joseph’s Healthcare Hamilton.  
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4.2 Sample 

 

This study was approved by the Hamilton Integrated Research Ethics Board (HiREB) 

#13247 and informed consent was obtained prior to testing. Adults diagnosed with knee OA who 

were scheduled for an ICI at St. Joseph’s Healthcare Hamilton (SJHH) in Hamilton, Ontario, 

were recruited. We collaborated directly with the clinicians and physician’s assistants 

administering the injections for recruitment. The inclusion criteria consisted of participants 

scheduled to receive an ICI in 5 or more weeks, have knee pain greater than 3/10 on the NPRS 

when screened, and are able to walk 6 minutes without stopping and without using any gait aids. 

Exclusion criteria included previous lower limb joint replacement surgery, systemic 

inflammatory arthritis (e.g., rheumatoid arthritis), any neuromuscular conditions which could 

affect gait, recently or soon to be in new physiotherapy or exercise rehabilitation program, or the 

inability to provide informed consent. 

The study was powered for a within-subject design (repeated measures analysis of 

variance). Based on previous work using similar methods in healthy adults (Benson et al., 2019), 

our recommended sample size was 15 individuals with knee OA (medium effect size with an 𝛼 = 

0.05 and 𝛽 = 0.20; Faul et al., 2007). However, due to challenges in recruitment with COVID-19 

restrictions and weather considerations, we were able to recruit a total of 9 participants (7 male, 2 

female). The cohort had an average age of 64(8), a BMI of 30.9(5.3) kg/m2, and KL grades 

ranging from 2-4 (See Table 1 for individual participant demographics).  
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Table 1: Participant characteristics of all subjects. 

M; Male. F; Female. BMI; Body Mass Index. K/L; Kellgren-Lawrence. NPRS; Numerical Pain 

Rating Scale. 

 

4.3 Protocol 

 

Participants participated in seven total gait trials (Figure 9). Each trial consisted of a 6-

min walk around the spiritual gardens at SJHH. Before each trial, participants were fitted with 

wearable inertial sensors (IMeasureU, ±16g, 250Hz) embedded in semi-elastic straps under the 

knee and on the lower back (Figure 10). The IMeasureU sensor is commercially available and 

one of the most robust and valid sensors for assessing lower limb accelerations (r>0.9) during 

walking and running gait (Andrews, 2019; Johnson et al., 2020). Participants were asked to wear 

their regular shoes and walk at a comfortable and self-selected pace.  

During each trial, participants completed two questionnaires to describe their pain and 

function in the previous week, as well as their pain before and after the 6-min walk. Specifically, 

the Knee Injury and Osteoarthritis Outcome Score (KOOS) was administered to describe their 

Subject 

(Sex) 

Age 

(years) 

BMI 

(kg/m2) 

K/L 

Grade 

Average 

Pre-

Injection 

NPRS 

Pain 

Average 

Post-

Injection 

NPRS 

Pain 

Average 

Stride 

Time 

Pre-

Injection 

Average 

Stride 

Time 

Post-

Injection 

Average 

Strides Over 

7 Trials 

1 (F) 55 24.4 4 5 4 1.0 1.0 345 

2 (M) 60 30.7 3 6 6 1.1 1.1 334 

3 (F) 64 35.9 2 8 3 1.3 1.2 272 

4 (M) 69 26.8 3 6 3 1.2 1.2 284 

5 (M) 70 30.1 3 0 2 1.0 1.1 328 

6 (M) 56 22.9 2 5 5 1.1 1.1 325 

7 (M) 80 36.4 3 3 4 1.3 1.3 281 

8 (M) 62 32.8 3 6 1 1.2 1.2 309 

9 (M) 62 38.0 2 9 3 1.2 1.2 314 

Mean 

(Std.) 
64.2(7.7) 30.9(5.4) 2.8(0.6) 5.3(2.7) 3.4(1.5) 1.2(0.1) 1.2(0.08) 310.2 (25.8) 
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pain, symptoms, function, and quality of life in the previous week. The KOOS has been shown to 

be a reliable measure in this population (ICC = 0.8-0.97; Alviar et al., 2011), with subscale 

sensitive to change following surgical or non-surgical interventions such as those in the current 

study design (Collins & Roos, 2012). Additionally, participants completed an 11-item Numeric 

Pain Rating Scale (NPRS) immediately prior to and following their 6-min walk. The NPRS is the 

most accepted and commonly used measure of pain intensity and allows for a simple and 

immediate assessment of the current level of pain in the participant’s knee at the time of the 

collection (Hawker et al., 2011).  

Standing full-length weight-bearing lower limb radiograph images and reports were used 

to determine disease severity for all participants. These were obtained from the orthopedic and 

fracture clinic at SJHH following participant consent to access these data. In addition to the 

severity and compartment of OA identified in the radiographic report, for the purposes of this 

study the Kellgren-Lawrence classification of OA was assessed by an orthopaedic surgeon 

(Kohn et al., 2016) and contralateral limb OA status was obtained from patient records.  

  

 

 

 

 

 

 

 

Figure 10: Sensor placement and axis orientation during the 6-min walk. 
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4.4 Data Analysis 

 

4.4.1 Data Pre-Processing 

 
 The study design involves significant amounts of data being collected and as such, there 

are significant pre-processing requirements to be outlined. Specifically, the 3 sensors collecting 6 

channels of data (i.e., 3D accelerometer and gyroscope) at 250Hz for 6 minutes generate 1.62 

million data points per collection and over 100 million in total across all participants. These data 

are stored within the sensors before being exported using the iMeasureU software (CaptureU, 

Vicon, Oxford, UK) following each data collection. The exported data are the calibrated 

accelerometer and gyroscope signals which are time-synchronized between sensors at sampling 

frequency of 250 Hz. These data are tri-axial, but given their placement on the anteromedial 

shank, they are not aligned with the local coordinate systems of the shank and require further 

pre-processing to do so. Specifically, a previously developed method utilizing angular velocity 

data and a principal component analysis (PCA) was implemented to correct this orientation 

(Hafer et al., 2020). The PCA generated coefficients which defined rotations based on the 

principal motion occurring during walking (i.e., sagittal plane angular rotation). Tri-axial aligned 

data were then generated by applying the coefficients generated by the PCA to the previously 

unaligned data (Hafer et al., 2020). Additionally, all inertial data were filtered with a 40Hz low-

pass 4th order Butterworth filter before this rotation (Fong & Chan, 2010). Recent research has 

demonstrated both the validity (coefficient of multiple correlation = 0.94-0.99 for 3D data) and 

reliability (coefficient of multiple correlation > 0.9 for vertical and anteroposterior signals and > 

0.8 for mediolateral signals) of this method in healthy adult walking gait (Ruder et al., 2022). 

Following sensor alignment, gait event detection and time-normalization were 

implemented to segment the 6 minutes of walking data into separate gait cycles. Gait event 
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detection was completed using the mediolateral angular velocity data, where key gait events 

were clearly evident due to the large sagittal plane rotation the shank undergoes during gait. 

Specifically, the mid-swing peak in the mediolateral angular velocity data was used to provide 

event detection “search windows” from the mid-swing of one gait cycle to the mid-swing of the 

subsequent gait cycle. Following this mid-swing event, initial contact was estimated as the zero-

crossing preceding the stance phase, relating to the change in rotation direction of the shank 

immediately preceding initial contact (Mariani et al., 2013; Trojaniello et al., 2014). 

Alternatively, toe-off was identified as the negative peak concluding the stance phase, as this 

represents the initiation of the swinging shank (Mariani et al., 2013; Trojaniello et al., 2014). By 

determining these gait events, gait cycle segmentation and time-normalization of the identified 

gait cycles was set to 60% stance and 40% swing, which is a common ratio used in previous 

studies for OA gait (Messier et al., 1992) (Figure 11). The average number of gait cycles per 6-

minute walking session was 309.7(27.6).  

 

4.4.2 Data Reduction 

 
The resulting segmented and time-normalized inertial data still represented an 

unreasonably large amount of data describing the motion for each gait cycle, and as such further 

data reduction was required. First, only the vertical acceleration, anteroposterior acceleration, 

and mediolateral (sagittal plane) angular velocity of the bilateral shank sensors were retained 

based on their proximity to the injection site and their consistently superior reliability as 

compared to the other signals (Kavanagh et al., 2006; Kobsar et al., 2016; Kobsar et al., 2020; 

Lyytinen et al., 2016; Moe-Nilssen, 1998; Ruder et al., 2022). These signals were then 

concatenated into a single 600-point vector (i.e., three 100-point signals from each shank sensor) 

and combined into an s x 600 matrix for each trial, where s represents the number of gait cycles 
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in the 6-minute walk. Second, given these 600 data points represent correlated information 

describing a gait cycle, a PCA was applied to further reduce these data to a subset of linearly 

uncorrelated variables. This method is commonly utilized in biomechanical gait data to generate 

a smaller number of features which still retain the majority of the variance in an original dataset 

(Astephen Wilson et al., 2015; Ibrahim et al., 2020; Robbins et al., 2013). The current 

application of the PCA involved retention of PCs that explained at least 90% variance across the 

entire cohort. Therefore, these newly generated PC scores more efficiently described gait cycles 

than the original 600 data points and were subsequently implemented in the OCSVM to define 

each individual’s typical gait (Figure 11).  

84.4.3 One-Class Support Vector Machine (OCSVM) 

 

An OCSVM aims to define a hypersphere where most of the data lie within, thereby 

creating a definition of “typical” values within the hypersphere and “atypical” values which lie 

outside the hypersphere. In the current application, this method was used to model an 

individual’s multivariate gait pattern based on PC scores from three pre-injection gait trials. 

Thereafter, the model could be compared to any pre- or post-ICI trial held out from the training 

of the model to determine the percentage of gait cycles that fell outside of the hypersphere. 

Specifically, individual gait pattern models were developed using the “fitcsvm” function in 

MATLAB2020A (The MathWorks INC., Natick MA, USA) to create an OCSVM trained on 

combinations of three of the four pre-injection trials. A Gaussian kernel function was used to 

model the hypersphere or decision boundaries, with a regularization parameter (“Nu”) to 

optimize how many support vectors would be used to create a decision boundary. Generally, the 

more complexity in the data, the more support vectors and ultimately the more flexible decision 

boundary is required (depicted with a larger Nu value). An additional parameter 
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(“OutlierFraction”) was also implemented in the OCSVM to which account for potential outliers 

in the training data (Dagher & Azar, 2019) 

Given the average number of gait cycles per trial was 309, the resulting training sets 

were, on average, 927 gait cycles (i.e., 927 gait cycles each defined by the PC score features). 

Training data were randomly subdivided into 80% training and 20% cross-validation for defining 

individual models and decision boundaries. Further, based on these training and cross-validation 

data a “Nu” of 0.9 and an “OutlierFraction” of 1% were determined use for all models. Refer to 

tables 3-8 in the appendix for other iterations of hyperparameters for the OCSVM.  

Following the training and cross-validating of each model, pre-injection data unseen to 

the model (one of the Trials 1-4) could be tested on a single, held-out pre-injection trial to 

determine the number of gait cycles defined as typical or atypical (Table 2). Concerning the first 

research question, all combinations of pre-injection training sets and test sets were examined, 

with the average proportion of atypical gait cycles from all four held-out pre-injection trials (T1-

4) used to examine the stability of this model (i.e., the proportion of atypical strides <10%). A 

10% value was selected as it has been used in previous literature to define anomalies or atypical 

values in similar machine learning methodologies (i.e., one-class support vector machine, 

anomaly detectors) (Breunig et al., 2000; Shyu et al., 2003).  

Additionally, I examined if ii) post-injection trials displayed a significantly greater 

proportion of atypical strides than the average pre-injection proportion. Post-injection trials 

(Trials 5-7) underwent the same processing defined in 4.4.1 and 4.4.2 before being compared to 

the individual gait pattern model developed from pre-injection data to determine the proportion 

of atypical strides (Table 2). It was hypothesized that post-injection trials would demonstrate a 

greater proportion of atypical trials than observed in the trial’s pre-injection. This was 
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statistically assessed using one-way repeated measures analysis of variance (ANOVA) at an 

alpha level of 0.05.  

Finally, I examined iii) the potential association between the number of atypical strides 

from a given post-injection gait trial with the change in self-reported pain for that gait trial. This 

change in pain score measured at each post-injection trial was calculated compared to the 

average pre-injection pain level, using the NPRS before walking. A Pearson’s Correlation 

Coefficient, with significance at an alpha level of 0.05, was used to determine if the proportion 

of atypical strides observed was correlated with changes in pain following the ICI. 

 

Figure 11: Pipeline highlighting the transformation of raw data into time normalized waveforms, 

and then reduced via PCA before entering the OCSVM. This pipeline was followed for each 

participant.  
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Chapter 5: Results 
 
 Participant demographic and gait trial information is presented in Table 1. The total 

number of gait cycles measured across all participants was 19,410, relating to an average of 310 

(25.89) per trial. The PCA data reduction method reduced the number of gait variables from 600 

(i.e., time-normalized vertical acceleration, anteroposterior acceleration, and mediolateral 

angular velocity of the left and right sensors) to 44 linearly uncorrelated PCs which described 

90% of the total variance in this sample. Further, on average, the number of observations in the 

training sets was 933.7(34.9), while the withheld test sets had 309.9 (31.0). Therefore, 

dimensions of the input data used to define typical gait models in the OCSVMs were, on 

average, 934 x 44 (i.e., gait cycles x PC scores), and withheld test sets (pre- or post-ICI) used to 

determine the proportion of atypical gait cycles were 310 x 44. 

Regarding the first research question, an average of 17.7% atypical strides were found 

across all participants pre-injection trials when compared to three-trial built typical models 

(Table 2). Further, when comparing post-injection trials to those typical models for the second 

research question, an average of 6.9%, 16.9%, and 26.6% were observed for trials 5, 6, and 7, 

respectively (Table 2). Based on these data, no significant difference was found between the 

average post-injection atypical strides and pre-injection atypical strides between all participants 

(p = 0.390; Figure 12). The effect of these atypical strides can clearly be seen on a case-by-case 

basis. For example, the participant in Figure 13 has test waveforms that fall within the 

boundaries created by the training sets (purple), resulting in a low percentage of atypical strides 

for this participant. On the contrary, Figure 14 has test waveforms that fall outside the 

boundaries created by the training sets (purple), resulting in a high percentage of atypical strides 

for this participant.   
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The NPRS data showed variability week-to-week across the cohort across the entire study 

(Figure 15). The average pain reported in the pre-injection trials was 5.5(2.7) and 3.7(1.4) post-

injection, for an average reduction in pain of -1.8(1.3). However, this reduction in pain was not 

significant (p = 0.20; Cohen’s d = 0.43). Notably, in the pre-injection period, pain levels varied 

up to 5 points between adjacent weeks with an average of 2.2 over this time. Similarly, in the 

post-injection period, pain levels varied up to 8 points between adjacent weeks with an average 

of 3.9 over this time. Finally, for the third research question, no significant correlation was found 

between changes in the NPRS (or KOOS) post-injection and atypical strides (r = 0.15, p = 0.70) 

Figure 16).  

 

Table 2: Overview of one-class SVM training and testing models for each individual’s pre-

injection and post-injection collections, with associated research questions. The average 

proportion of atypical strides are shown for all subjects.  

Abbreviations: T; Trial.Std.; Standard Deviation Subscript denotes the test trial. 𝑇 denotes the average seen across 

all subjects and respective trials. 

 

 

 

 

 

Pre-Injection Post-Injection 

Training Data 
(Normal gait   

pattern model) 

Pre-Injection 
(Test data atypical 

strides per model) 

Trial 5  
(Test data atypical 

strides per model)  

Trial 6  
(Test data atypical strides 

per model) 

Trial 7 
(Test data atypical 

strides per model)   
T1, T2, T3 T4 T5 T6 T7 

T1, T2, T4 T3 T5 T6 T7 

T1, T3, T4 T2 T5 T6 T7 

T2, T3, T4 T1 T5 T6 T7 

Ave proportion 

of atypical 

strides (Std.) 
𝑇1-4 = 17.7 (9.4) % 𝑇5 = 6.9 (9.2) % 𝑇6 = 16.9 (28.1) % 𝑇7 = 26.6 (36.3) % 

Associated 

Research 

Questions 
i) 𝑇1-4 < 10% 

ii) 𝑇5, 𝑇6, 𝑇7 > 𝑇1-4  

iii)  𝑇5, 𝑇6, 𝑇7 correlated with changes in pain from 𝑇1-4 



MSc. Thesis – Zaryan Masood; McMaster University – Science, Kinesiology 

 

 46 

 

Figure 12: Atypical strides for each participant across pre-injection and post-injection 

trials. Each circle represents the atypical strides (%) for each participant and the grey line shows 

the change in pre- and post-injection that is occurring within individual participants. No 

significance (p = 0.390) was found when comparing post-injection atypical strides to pre-

injection atypical strides.  
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Figure 13: Representative example of one participant (subject 6) demonstrating a low 

percentage of atypical strides. Ensemble mean and standard deviation strides of training sets in 

purple, with ensemble mean of atypical strides overlayed for test data in red (trial 5), green (trial 

6) and magenta (trial 7). 

 

 

 

Pre-Injection Post-Injection 

Training Data 
(Normal gait   

pattern model) 

Pre-Injection 
(Test data atypical 

strides per model) 

Trial 5  
(Test data atypical 

strides per model)  

Trial 6  
(Test data atypical 

strides per model) 

Trial 7 
(Test data atypical 

strides per model)   
T1, T2, T3 T4 T5 = 1.24% T6 = 3.14% T7 = 2.44% 

T1, T2, T4 T3 T5 = 1.55% T6 = 3.46% T7 = 3.66% 

T1, T3, T4 T2 T5 = 0.93% T6 = 5.35% T7 = 4.27% 

T2, T3, T4 T1 T5 = 1.24% T6 = 3.14% T7 = 4.57% 

Ave proportion 

of atypical strides 
𝑇1-4  𝑇5 = 1.24% 𝑇6 = 3.77% 𝑇7 = 3.73% 
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Figure 14: Representative example of one participant (subject 9) demonstrating a high 

percentage of atypical strides. Ensemble mean and standard deviation strides of training sets in 

purple, with ensemble mean atypical strides overlayed for test data in red (trial 5), green (trial 6) 

and magenta (trial 7). 

 

Pre-Injection Post-Injection 

Training Data 
(Normal gait   

pattern model) 

Pre-Injection 
(Test data atypical 

strides per model) 

Trial 5  
(Test data atypical 

strides per model)  

Trial 6  
(Test data atypical 

strides per model) 

Trial 7 
(Test data atypical 

strides per model)   
T1, T2, T3 T4 T5 = 1.94% T6 = 2.96% T7 = 100% 

T1, T2, T4 T3 T5 = 1.29% T6 = 4.93% T7 = 100% 

T1, T3, T4 T2 T5 = 1.94% T6 = 3.62% T7 = 100% 

T2, T3, T4 T1 T5 = 2.90% T6 = 6.25% T7 = 100% 

Ave proportion 

of atypical strides 
𝑇1-4  𝑇5 = 2.02% 𝑇6 = 3.77% 𝑇7 = 100% 
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Figure 15: NPRS score for all participants over the course of seven trials. Each colour represents 

a different participant.   
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  Figure 16: Change in pain compared to atypical strides in post-injection trials. Red 

circles highlight trial 5 while green and magenta circles highlight trial 6 and 7, respectively. A 

change in pain was defined as the difference between each post-injection trial (5,6 or 7) 

compared to the average pain levels seen in pre-injection collections (trials 1,2,3 and 4).  
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Trial 6  
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Chapter 6: Discussion 
 

The purpose of the study was to use ICIs as a model to determine if wearable inertial 

sensors and machine learning algorithms can identify changes in gait, amidst the day-to-day 

fluctuations in out-of-lab gait patterns of older adults with knee OA. First, I hypothesized that 

three pre-injection gait trials would create stable patient-specific typical gait models, such that 

most strides from a fourth pre-injection gait trial would fall within this model (e.g., <10% 

atypical strides). Contrary to this initial hypothesis, I observed a grand mean of 17.7% atypical 

strides in the withheld pre-injection trials. Further, contrary to my second hypothesis, I found the 

percent of atypical strides observed in post-injection trials were not significantly different from 

atypical strides seen in withheld pre-injection trials. Finally, large differences in self-report pain 

levels were observed within-subjects on a week-to-week basis. While I hypothesized changes in 

pain from an ICI would be positively correlated to the proportion of atypical strides, no 

correlation was found in this cohort. Although these results did not support my hypotheses, 

important findings can be taken from this work as it was not only the first study to examine gait 

and pain together on a week-to-week basis, but it was done using wearable sensors in an out-of-

lab setting. Specifically, both pain and gait can be highly variable on even a week-to-week basis 

in older adults with knee OA and this may limit our ability to identify potential intervention 

effects, especially when those data observed out of lab. The remaining sections of this discussion 

will address these issues of weekly fluctuations of both pain and gait with respect to defining a 

stable gait pattern model, as well as the effect of the ICI on this relationship.  

6.1 Fluctuations of Pain and Gait in Defining Typical Gait Models 

 
The goal of the study was to individually define a typical gait pattern using wearable 

sensor data from three pre-injection trials using in an out-of-laboratory setting. While week-to-
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week fluctuations were expected during this pre-injection period with respect to both pain and 

gait, it was also expected that these would be limited in comparison to changes occurring with 

the ICI. Unfortunately, the fluctuations observed pre-injection may have limited the ability to 

define a stable, yet sensitive typical gait model. With respect to pain, many individuals displayed 

highly variable NPRS data in weeks prior to the ICI (Figure 15). These findings are in 

accordance with Parry and colleagues (2019) who found that pain intensity was highly variable 

for some and stable for others. While this may be due to unpredictable pain flares, random bouts 

of inflammation, and varying knee soreness, the underlying reason for this heterogeneity remains 

unclear (Atukorala et al., 2021; Parry et al., 2019). Together with the current findings, there is a 

clear literature gap identified in our understanding of multi-week assessments of pain in knee OA 

cohorts. Moreover, this variability could be at least partially responsible for the difficulty in 

defining stable gait pattern models in current study. 

The desired stability of the typical gait models with respect to pre-injection gait trials did 

not achieve the desired 10%. In fact, only two of the nine participants demonstrated an average 

stable typical gait pattern below the predefined 10%. The exact reason for this finding can be 

multifactorial, however, it can be hypothesized to have a relation to the variability in pain. 

Previous literature has found that changes in pain can influence gait patterns (Wang et al., 2021; 

Shrader et al., 2004), specifically impact accelerations which were heavily utilized as key 

features in our OCSVM. Further, Asay et al., (2013) found that while KAM was repeatable with 

varying changes in pain over a multi-week study, but gait speed, stride length, cadence and first 

peak ground reaction forces (proxy to impact accelerations) had large variations between visits 

and were more sensitive to variations in pain. Therefore, the findings by Asay and colleagues 

(2013) could be one explanation as to why we are seeing such variability in gait within 
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individuals as impact accelerations may be less reliable week-to-week and more sensitive to 

changes in pain. Moreover, when integrating such gait data into a machine learning algorithm 

aimed at identifying high-dimensional relationships, the lack of stability from three out-of-lab 

gait trials is not surprising.  

6.2 Determining Typical Gait Patterns from a Modeling Perspective 

 
The current findings suggest that three collections may be insufficient to define a typical 

gait pattern among the ever-present variations in out-of-lab gait. Nevertheless, this lack of a 

typical pattern from three trials is specific to the current OCSVM and features, and as such 

further advancements may be made on these data. Firstly, a different feature selection method 

may be important to identify a smaller and more stable subset of gait parameters. In the current 

study, PCs that explained 90% of the variance in the original data were selected as features to 

define typical gait models. Other studies have had similarities in feature selection where Kobsar 

& Ferber (2018) and Hawley et al., (2022) used a 95% threshold. However, these applications 

were conducted in-lab, with Kobsar & Ferber (2018) relating to highly consistent treadmill 

walking. Alternatively, Benson et al. (2019) utilized a similar model in out-of-lab running data, 

but only had access to six simplified parameters. Therefore, increased variability with out-of-lab 

gait (Hillel et al., 2019) may require a smaller subset of highly specialized and/or clinically-

relevant features, rather than larger, more holistic sets of gait pattern data utilized in the current 

study.  

Further, even with other advanced feature selection methods, there can still be a high 

degree of variability due to the number and direction of turns made within each collection as 

participants were told to walk freely. This was evident in a recent study by Hillel et al., (2019) 

where step length and gait speed were significantly different in out-of-lab “free-living” gait as 
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compared to in-lab. Further, stride regularity was far lower in out-of-lab “free-living” gait versus 

in-lab gait, thus highlighting the variability present in out-of-lab gait data. Additionally, the 

direction and number of turns between each subject and within trials can be highly variable in 

out-of-lab gait which increases the complexity of defining typical gait patterns. Participants 

could also be rounding corners, turning in different directions, or not walking in a straight line 

which could make defining typical gait patterns difficult. By having to turn in the protocol alone, 

participants can have large variations in stride lengths, swing times and double-support times as 

compared to a straight-line walk (Gulley et al., 2020). However, to control for the large variation 

in “free-living” gait data, event detection pre-processing algorithms could be utilized to only 

analyze straight walking bouts (Hickey et al., 2017).  

To also combat the variability and irregularities that can be present in out-of-lab “free-

living” data, different machine learning models can be implemented to better define typical gait 

models. An unsupervised K-means clustering model can be applied to this dataset where data is 

clustered based on specific patterns and new test data is sorted into a cluster with the nearest 

mean (Sinaga & Yang, 2020). For example, one can sort the combinations of three trials (training 

data) into one large cluster and then determine the distance of new test data to determine the 

magnitude of atypical strides. Further, a semi-supervised anomaly detector has been used 

previously to predict fall risk (Yang et al., 2016) but can be similarly implemented to define a 

typical gait model. A small portion of the three trial training data can be labelled to define overall 

boundaries while a large portion of the data can be unlabeled to define overall gait clusters. 

Future work should consider these approaches along with other machine learning models and 

determine a way to optimize parameters without over or underfitting. 
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6.3 Atypical Strides following an ICI 

 
There was no significant difference in the percent of atypical strides observed between 

post-injection and pre-injection strides across our cohort (Figure 15). Further, we found no 

significant differences in atypical strides between trials 5, 6 and 7. However, there was a general 

trend observed between subjects where following the ICI, the percent of atypical strides 

decreased from 17.7% to 6.8% in trial 5 and then steadily increased to 16.9% and 26.6% in trials 

6 and 7, respectively. This pattern can be attributed to the varying effects of pain relief following 

an ICI where increases in pain contributed to greater percentages of atypical strides, however, 

this was not found statistically in the current study. Interestingly, trial 5 occurred immediately 

following the ICI and as such had the immediate effects of a “numbing agent” (lidocaine) and it 

resulted in the most typical gait patterns. While this is contrary to what may be expected, there 

may be a safer or more consistent pattern adopted that has a reduced chance of atypical strides.  

Immediately following an ICI, Shrader et al., (2004) and Asay et al., (2013) found significant 

changes in gait such as increased gait speed, gait cadence and KFM. To our knowledge, no study 

has assessed gait biomechanics weekly following an ICI however, Pinto & Birmingham also 

found an increased gait speed and KFM (Pinto & Birmingham, 2018) 3-weeks after the ICI. The 

exact timeline of these gait changes with respect to the ICI is unknown and can be one 

explanation as to why no significant differences are found between participants in atypical 

strides post and pre-injection. 

Importantly, the increase in average atypical strides in trials 6 and 7 are largely driven by 

a few anomalous subjects. An example of this can be seen in Figure 14 where the average and 

standard deviation of pre-injection trials are plotted in purple for the three channels used in our 
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feature selection and OCSVM. While the purple waveforms are not equivalent to that of the 

typical gait pattern model developed for this one patient, they do provide an adequate visual 

representation of differences from this typical pre-injection baseline. The red, green, and 

magenta trials represent trials 5, 6, and 7, respectively. Figure 15 clearly shows the deviation of 

trial 7 from the pre-injection trials thus resulting in an average of 100% atypical strides for this 

individual. Most subjects in the study demonstrated waveforms similar to those seen in Figure 

14, where many of the post-injection trials fit within the boundaries of the pre-injection trials, 

resulting in a lower percentage of atypical strides post-injection. Nonetheless, these two case 

study examples not only highlight our methodology in determining atypical strides but also the 

variability observed within knee OA gait patients, especially after an ICI.  

6.4 Correlation between changes in pain and atypical strides 

 
 We found that the proportion of atypical strides in post-injection gait trials was not 

significantly correlated with self-reported changes in pain after an ICI (Figure 16). The change in 

pain was calculated by taking the difference between the average pre-injection pain levels (trials 

1-4) and the pain reported in each trial following the ICI (trial 5, trial 6, and trial 7). Generally, 

we found that with even large changes in pain (i.e., 5 points) the percentage of atypical strides 

was still low in trial 5. However, this was not the case for trials 6 and 7 where any changes in 

pain resulted in larger percentages of atypical strides. Interestingly, the largest proportions of 

atypical strides were found at very low and high levels of changes in pain, however, this finding 

may be attributed to the low sample size in the study. Although our results were not 

hypothesized, there are a few reasons to why this was observed. Firstly, self-reported pain is a 

subjective measure and measuring through the NPRS is not highly sensitive (Spadoni et al., 

2004). Pain can be perceived by individuals very differently and other biopsychosocial factors 
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(mental, emotional, and physical wellbeing) can interplay in this pain score (Meints & Edwards, 

2018). Additionally, previous research has demonstrated that not all gait features are sensitive to 

pain (Asay et al., 2013; Henriksen et al., 2010) and, as previously discussed, there may be a need 

to identify more pain-specific gait features that can be implemented in such a models. 

6.5 Limitations 

 
 The study has some limitations regarding the PCA waveform reduction and the selected 

OCSVM parameters. First, only the vertical and anteroposterior accelerations along with the 

sagittal angular velocities were selected for the PCA due to their high reliability between days. 

However, by selecting these three channels, we could be missing out on the natural variability 

within the data, which could help differentiate typical gait models. Perhaps we are missing 

valuable gait characteristics by neglecting mediolateral accelerations which have been related to 

KAM. Further, due to the high variability within the data, we selected PCs, which described 90% 

of the variance, thereby casting a wider “net” for typical strides by reducing the overall 

variability of strides as compared to Kobsar & Ferber (2018) and Hawley et al., (2022) who used 

a 95% threshold. However, it is essential to note that this threshold can be an arbitrary value but 

should be accounted for when optimizing models. Further, another limitation with our PCA 

feature selection method was that a PCA was built across all nine subjects and not applied for 

each individual separately. In doing this, the features selected may underrepresent gait patterns 

for some participants. However, by alternatively building PCA models individually, features 

would be derived based on the aspects of gait patterns, which, by definition, have the greatest 

variability within or between days. Therefore, this within-participant PCA method could thereby 

potentially make it even more difficult to define consistent gait patterns within individuals. 

Nevertheless, future research may examine optimal practices for defining these features and 
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models. Next, another limitation with many machine learning models can be selecting 

parameters without over or underfitting. The regularization or “nu” parameter of 0.9 can be 

considered a large hypersphere as “nu” spans from 0 to 1, perhaps resulting in overfitting and 

decreased percent atypical values. Nonetheless, this value was determined as it based on learning 

curves relating to the training and cross-validation atypical rates. Naturally, real-world gait data 

where participants can walk “freely” and make varying turns can have larger variability between 

trials (Hillel et al., 2019; Asay et al., 2013), potentially adjusting the timing of gait cycles and/or 

event detection algorithms, and thus the results from the OCSVM. Further, the sample size in the 

current study was small; however, based on our within-subject model, this did not impact our 

main research question of defining typical gait models for each knee OA patient. In other words, 

a larger sample would be required to compare the percentage of atypical strides between-subjects 

more effectively in post-injection and pre-injection trials, but not generate individual results 

below 10% atypical strides. Additionally, the small sample size could also skew the relationship 

between changes in pain and atypical strides, as the correlation occurs between-subjects. Finally, 

to define typical gait models more accurately, it may be ideal to increase the number of sensors 

and have varying sensor placements (i.e., foot, thigh, torso). However, the goal with the current 

sensor set-up was to capture knee motion during gait minimally and to eventually have clinicians 

implement this set-up to monitor knee OA patients’ progression following ICIs.  

  

6.8 Future Directions 

 
 The overarching aim of this study was to define typical gait patterns using wearable 

sensors in a real-world, out-of-lab setting and to use ICIs to perturb gait patterns to determine if 

meaningful changes can be detected. However, based on our findings, clear future directions are 
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needed to progress this critical area of research further. Firstly, future studies may need to utilize 

different perturbation methods apart from ICIs to elicit meaningful changes. Changes in pain and 

the week-to-week fluctuations are clearly driving these unpredictable changes in gait. Therefore, 

a simpler and more predictable perturbation would be beneficial for detecting changes. 

Perturbations could include neuromuscular tasks such as serial subtraction, which have 

previously been shown to perturb gait (Hillel et al., 2019), exercise programs, 2-week 

immobilization or more severe changes such as joint arthroplasty. Further, future studies should 

aim to monitor patients for more extended periods to create more robust training and testing sets 

for the OCSVM. In the future, these wearable sensors can have similar applications to ECG-

Holter monitoring, where knee OA patients who are recommended ICIs can be given wearable 

sensors and tracked in “free-living” situations for a longer duration. To do this, future work 

should also develop efficient data pipelines and event-detection algorithms to monitor these 

patients more accurately. These event detection algorithms could first process only straight-line 

walking data to reduce the within-subject variability in gait patterns seen with turning, perhaps 

making it easier to define typical gait patterns (Hickey et al., 2017).  This would also require 

more robust and sensitive feature selection methods. Further, with these larger datasets, it is 

essential to understand the best way to select the ideal machine learning models and, more 

specifically, hyperparameters needed for optimization. Finally, future work should validate our 

findings and experiment with different sensor set-ups to determine the ideal number of sensors 

and locations required to define typical gait models. Nonetheless, these studies should be aware 

of the clinical practicality of using a more minimal and affordable sensor setup.  



MSc. Thesis – Zaryan Masood; McMaster University – Science, Kinesiology 

 

 60 

 

Chapter 7: Conclusion 
 

 In summary, we found that three gait trials with our wearable sensor set-up and machine 

learning algorithm could not define a typical gait pattern in knee OA patients. Further, we 

noticed no differences between post-injection and pre-injection atypical strides between subjects 

and found no significant correlation between changes in pain and atypical strides. We believe 

many discrepancies in atypical strides within participants and between trials could be attributed 

to pre-injection changes in pain observed on a week-to-week basis. The current study is the first 

to assess gait and pain over multiple weeks using wearable sensors in out-of-lab settings and is 

the first to monitor changes in gait following an ICI. With such a large and diverse dataset, our 

method integrates using wearable sensors and machine learning algorithms to understand the 

complex gait patterns of knee OA patients.  
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Chapter 8: Appendix 
 

Figure 17 (Appendix): All waveforms from right shank sensor for all 9 subjects. Each row 

represents one subject. Ensemble mean and standard deviation strides of training sets in purple, 

with ensemble mean atypical strides overlayed for test data in red (trial 5), green (trial 6) and 

magenta (trial 7).  
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Figure 18 (Appendix): All waveforms from left shank sensor for all 9 subjects. Each row 

represents one subject. Ensemble mean and standard deviation strides of training sets in purple, 

with ensemble mean atypical strides overlayed for test data in red (trial 5), green (trial 6) and 

magenta (trial 7).  
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Table 3: Average atypical strides when using the three most reliable channels and a PCA 

reduction. *Methodology used in current study. 

Abbreviations: T; Trial.Std.; Standard Deviation Subscript denotes the test trial. 𝑇 denotes the average seen across 

all subjects and respective trials. 

 

 

Table 4: Average atypical strides when using the three most reliable channels and no PCA 

reduction. 

Abbreviations: T; Trial.Std.; Standard Deviation Subscript denotes the test trial. 𝑇 denotes the average seen across 

all subjects and respective trials. 

 

 

 

 

 

 

 

 

 

Pre-Injection Post-Injection 

Training Data 
(Normal gait   

pattern model) 

Pre-Injection 
(Test data atypical 

strides per model) 

Trial 5  
(Test data atypical 

strides per model)  

Trial 6  
(Test data atypical strides 

per model) 

Trial 7 
(Test data atypical 

strides per model)   
T1, T2, T3 T4 T5 T6 T7 

T1, T2, T4 T3 T5 T6 T7 

T1, T3, T4 T2 T5 T6 T7 

T2, T3, T4 T1 T5 T6 T7 

Ave proportion 

of atypical 

strides (Std.) 
𝑇1-4 = 17.7 (9.4) % 𝑇5 = 6.9 (9.2) % 𝑇6 = 16.9 (28.1) % 𝑇7 = 26.6 (36.3) % 

Associated 

Research 

Questions 
i) 𝑇1-4 < 10% 

ii) 𝑇5, 𝑇6, 𝑇7 > 𝑇1-4  

iii)  𝑇5, 𝑇6, 𝑇7 correlated with changes in pain from 𝑇1-4 

Pre-Injection Post-Injection 

Training Data 
(Normal gait   

pattern model) 

Pre-Injection 
(Test data atypical 

strides per model) 

Trial 5  
(Test data atypical 

strides per model)  

Trial 6  
(Test data atypical 

strides per model) 

Trial 7 
(Test data atypical 

strides per model)   
T1, T2, T3 T4 T5 T6 T7 

T1, T2, T4 T3 T5 T6 T7 

T1, T3, T4 T2 T5 T6 T7 

T2, T3, T4 T1 T5 T6 T7 

Ave proportion 

of atypical 

strides (Std.) 
𝑇1-4 = 20.3 (14.3) % 𝑇5 = 14.8 (23.6) % 𝑇6 = 20.7 (34.4) % 𝑇7 = 25.9 (39.2) % 

Associated 

Research 

Questions 
i) 𝑇1-4 < 10% 

ii) 𝑇5, 𝑇6, 𝑇7 > 𝑇1-4  

iii)  𝑇5, 𝑇6, 𝑇7 correlated with changes in pain from 𝑇1-4 
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Table 5: Average atypical strides when using all six channels and a PCA reduction. 

Abbreviations: T; Trial.Std.; Standard Deviation Subscript denotes the test trial. 𝑇 denotes the average seen across 

all subjects and respective trials. 

 

 

Table 6: Average atypical strides when using all six channels and no PCA reduction. 

Abbreviations: T; Trial.Std.; Standard Deviation Subscript denotes the test trial. 𝑇 denotes the average seen across 

all subjects and respective trials. 

 

 

 

 

 

 

 

 

 

Pre-Injection Post-Injection 

Training Data 
(Normal gait   

pattern model) 

Pre-Injection 
(Test data atypical 

strides per model) 

Trial 5  
(Test data atypical 

strides per model)  

Trial 6  
(Test data atypical 

strides per model) 

Trial 7 
(Test data atypical 

strides per model)   
T1, T2, T3 T4 T5 T6 T7 

T1, T2, T4 T3 T5 T6 T7 

T1, T3, T4 T2 T5 T6 T7 

T2, T3, T4 T1 T5 T6 T7 

Ave proportion 

of atypical 

strides (Std.) 
𝑇1-4 = 57.9 (25.1) % 𝑇5 = 44.0 (23.5) % 𝑇6 = 48.4 (33.1) % 𝑇7 = 55.1 (38.3) % 

Associated 

Research 

Questions 
i) 𝑇1-4 < 10% 

ii) 𝑇5, 𝑇6, 𝑇7 > 𝑇1-4  

iii)  𝑇5, 𝑇6, 𝑇7 correlated with changes in pain from 𝑇1-4 

Pre-Injection Post-Injection 

Training Data 
(Normal gait   

pattern model) 

Pre-Injection 
(Test data atypical 

strides per model) 

Trial 5  
(Test data atypical 

strides per model)  

Trial 6  
(Test data atypical 

strides per model) 

Trial 7 
(Test data atypical 

strides per model)   
T1, T2, T3 T4 T5 T6 T7 

T1, T2, T4 T3 T5 T6 T7 

T1, T3, T4 T2 T5 T6 T7 

T2, T3, T4 T1 T5 T6 T7 

Ave proportion 

of atypical 

strides (Std.) 
𝑇1-4 = 68.9 (20.7) % 𝑇5 = 53.1 (27.2) % 𝑇6 = 54.4 (38.3) % 𝑇7 = 56.6 (34.1) % 

Associated 

Research 

Questions 
i) 𝑇1-4 < 10% 

ii) 𝑇5, 𝑇6, 𝑇7 > 𝑇1-4  

iii)  𝑇5, 𝑇6, 𝑇7 correlated with changes in pain from 𝑇1-4 
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Table 7: Average atypical strides when using a regularization parameter (“Nu”) of 0.1 and the 

three most reliable channels with a PCA reduction. 

Abbreviations: T; Trial.Std.; Standard Deviation Subscript denotes the test trial. 𝑇 denotes the average seen across 

all subjects and respective trials. 

 

 

 

Table 8: Average atypical strides when using an “OutlierFraction” of 5% and the three most 

reliable channels with a PCA reduction. 

Abbreviations: T; Trial.Std.; Standard Deviation Subscript denotes the test trial. 𝑇 denotes the average seen across 

all subjects and respective trials. 

 

 

 

 

 

Pre-Injection Post-Injection 

Training Data 
(Normal gait   

pattern model) 

Pre-Injection 
(Test data atypical strides 

per model) 

Trial 5  
(Test data atypical 

strides per model)  

Trial 6  
(Test data atypical 

strides per model) 

Trial 7 
(Test data atypical 

strides per model)   
T1, T2, T3 T4 T5 T6 T7 

T1, T2, T4 T3 T5 T6 T7 

T1, T3, T4 T2 T5 T6 T7 

T2, T3, T4 T1 T5 T6 T7 

Ave proportion 

of atypical 

strides (Std.) 
𝑇1-4 = 80.3 (19.1) % 𝑇5 = 68.6 (31.0) % 𝑇6 = 69.4 (25.5) % 𝑇7 = 70.2 (37.0) % 

Associated 

Research 

Questions 
i) 𝑇1-4 < 10% 

ii) 𝑇5, 𝑇6, 𝑇7 > 𝑇1-4  

iii)  𝑇5, 𝑇6, 𝑇7 correlated with changes in pain from 𝑇1-4 

Pre-Injection Post-Injection 

Training Data 
(Normal gait   

pattern model) 

Pre-Injection 
(Test data atypical strides 

per model) 

Trial 5  
(Test data atypical 

strides per model)  

Trial 6  
(Test data atypical 

strides per model) 

Trial 7 
(Test data atypical 

strides per model)   
T1, T2, T3 T4 T5 T6 T7 

T1, T2, T4 T3 T5 T6 T7 

T1, T3, T4 T2 T5 T6 T7 

T2, T3, T4 T1 T5 T6 T7 

Ave proportion 

of atypical 

strides (Std.) 
𝑇1-4 = 49.4 (22.4) % 𝑇5 = 27.7 (24.1) % 𝑇6 = 37.1 (39.0) % 𝑇7 = 50.9 (42.2) % 

Associated 

Research 

Questions 
i) 𝑇1-4 < 10% 

ii) 𝑇5, 𝑇6, 𝑇7 > 𝑇1-4  

iii)  𝑇5, 𝑇6, 𝑇7 correlated with changes in pain from 𝑇1-4 
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Figure 19: Numerical Pain Rating Scale (NPRS) used in the current study. 
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