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Abstract 
Introduction: Through large neuroimaging consortia, researchers have identified a series 

of neuroanatomical alterations in mood and psychotics disorders, such as major 

depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SCZ). However, 

the mechanism behind these alterations is not well understood. One of the existing 

hypotheses suggests that the observed brain changes are related to a process of 

accelerated brain ageing. Studies investigating this hypothesis use a measure called the 

brain age gap (i.e., the difference between machine learning model predictions of brain 

age and chronological age). Thus far, there is limited understanding on how mood and 

psychotic disorders affect model predictions, how can predictions be clinically useful, and 

what is the biological meaning behind the brain age gap. In this thesis, we investigated 

accelerated brain ageing in mood and psychotic disorders. We sought to estimate the 

effect of the brain age gap and propose new ways of modeling brain age. We also 

explored the clinical utility and meaning of the brain age gap. 

Results: We confirmed the presence of a brain age gap in MDD, BD, and SCZ through a 

systematic review and meta-analysis. SCZ presented the highest levels of brain age gap, 

followed by BD and MDD. We analyzed the clinical utility of brain age for 

antidepressant treatment response and concluded that the brain age gap is not a predictor 

of antidepressant treatment response in weeks 8 and 16. We proposed a new method for 

brain age prediction that is more interpretable than previous approaches while preserving 

good predictive performance. We have also used model explanation strategies and 
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identified that the brain age gap is largely associated with total gray matter volume 

reduction and ventricle enlargement in SCZ.  

Conclusion: The results of this thesis suggest that the brain age gap is present across 

mood and psychotic disorders. The results have also helped to clarify the meaning behind 

the brain age gap, a largely used but still poorly understood measure in neuroimaging 

research. So far, there is no indication that the brain age gap can be a useful tool for 

treatment response prediction in MDD. 

 

Key words: mood disorders, psychotics disorders, machine learning, neuroimaging, 

accelerated ageing 
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Chapter 1: Introduction 
In this thesis, we sought to explore accelerated brain ageing in mood and psychotic 

disorders, a poorly understood process of brain changes that resembles ageing. We start 

by providing a summary of some of the theoretical components and technological 

building blocks that power accelerated brain ageing research. In the subsequent chapters, 

we demonstrate our contributions to the field. Our original contributions included a 

systematic review of the brain age gap in mood and psychotic disorders, proposed new 

methods for the interpretation of brain age models and the brain age gap, and 

investigation of the clinical utility of the brain age gap for treatment response prediction. 

Finally, in chapter 6, we discuss and integrate the findings from all chapters and provide 

critical suggestions to the future of the field. The findings from this thesis shed light on 

the current state of the field of accelerating brain ageing in mood and psychotic disorders, 

alongside providing new methods for the investigation of this phenomenon. 

 

1.1 Mood and psychotic disorders 

1.1.1 Epidemiology 

Mood and psychotic disorders, such as major depressive disorder (MDD), bipolar 

disorder (BD), and schizophrenia (SCZ), are severe mental health disorders with high 

rates of illness burden (Charlson et al., 2018; Frey et al., 2020) and a plethora of 

biological effects, such as an elevated risk for cardiovascular disease and dementia 

(Nielsen et al., 2021; Velosa et al., 2020). Each of these disorders have a distinct 

presentation. MDD is characterized by marked depressive episodes (APA, 2013). During 
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these episodes, individuals should present depressed mood or a loss of interest. These 

episodes may be accompanied by disruptions in appetite, sleep, concentration, and other 

symptoms (APA, 2013). Around 50% of individuals that have a depressive episode will 

develop a second one, while 80% that have a diagnosis of a second one, will develop a 

third episode (Burcusa & Iacono, 2007). BD is characterized by two types of episodes, 

manic or hypomanic and depressive. Manic episodes are characterized by elevated mood 

and high energy, possibly accompanied by feelings of grandiosity, pressured speech, 

decrease need for sleep, and impulsive behaviour (APA, 2013). During depressive 

episodes, individuals will have a similar symptom presentation to the episodes that occur 

in MDD. SCZ is characterized by psychotic episodes, which may contain hallucinations, 

delusions, disorganized speech, and cognitive impairment (APA, 2013). 

Mood and psychotic disorders are highly prevalent. MDD is estimated to have a 

lifetime prevalence of 11.2% in Canada (Knoll & MacLennan, 2017). The lifetime 

prevalence in Canada of BD I and BD II is 0.87% and 0.57% (McDonald et al., 2015). 

According to the Canadian Chronic Disease Surveillance System, around 1% of the 

population lives with SCZ (Lix et al., 2018). These disorders have a series of shared risk 

factors, including childhood trauma, familial risk, and low socioeconomic status (Arango 

et al., 2021). How these risk factors affect the individual risk for each disorder is still 

unknown. For instance, a study by Rasic and colleagues (2014) has established that a 

familial risk for a psychiatric disorder increases the risk of developing any severe mental 

illness (Rasic et al., 2014).  



Ph.D. Thesis – P. L. Ballester; McMaster University – Neuroscience.  

3 
 

Psychotropic treatments may vary across disorders, with MDD being predominantly 

treated with antidepressants (Kennedy et al., 2016), BD being treated with mood 

stabilizers (Yatham et al., 2013), such as lithium and valproic acid, and SCZ being treated 

primarily with antipsychotics (Remington et al., 2017). Mood and psychotic disorders  

may present disruptions in sleep, appetite, functioning, cognition, and increased suicidal 

thoughts, which tend to be more pronounced during episodes (Dome et al., 2019; 

Isometsä, 2014; Ventriglio et al., 2016). Therefore, it is of utmost importance to better 

characterize the biology of these disorders, both in their shared genetic predisposition, but 

also their differences in symptom profile and treatment response. 

A step towards better characterization of mood and psychotic disorders is the 

investigation of brain scans. Individuals with these disorders present important 

anatomical and functional differences when compared to healthy comparison (HC) 

individuals. 

 

1.1.2 Neuroimaging and brain alterations in mood and psychotic disorders 

Many studies explore neuroimaging scans in the field of psychiatry. The majority fall 

under three broad groups: 1) Structural imaging, 2) functional imaging, and 3) diffusion 

imaging. Structural imaging involves generating snapshots of the brain that are useful for 

differentiating tissue types. Computerized tomography (CT) and magnetic resonance 

imaging (MRI) are modalities that can generate static scans that capture tissue integrity. 

Functional imaging, on the other hand, follows changes in blood flow or metabolic 

processes. Functional magnetic resonance imaging (fMRI) and positron emission 
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tomography (PET) are modalities that fall under this category. Parallels between 

functional neuroimaging and electroencephalogram can be drawn, where the former has a 

better spatial resolution, and the latter provides a better temporal resolution. Finally, 

diffusion imaging follows the dispersion direction of molecules in the brain. Diffusion 

tensor magnetic resonance imaging (DTI) is a popular approach that leverages the 

fractional anisotropy of water molecules. This modality focuses on the integrity of white 

matter tracts, allowing us to observe if there are disruptions in the connections between 

regions. These techniques have been used to investigate neurobiological changes not only 

in mood and psychotic disorders, but also in Alzheimer’s disease, mild cognitive 

impairment, borderline personality disorder, and many others (Chandra et al., 2019; 

Goodman et al., 2013). 

In the context of mood and psychotic disorders, meta-analyses and large consortia of 

brain imaging help identify consistencies across studies (Thompson et al., 2020). Total 

gray matter volume reduction, cortical thinning, ventricle enlargement, white matter 

hyperintensities, hippocampal volume reduction, and hypothalamus volume reduction, are 

some of the many differences observed across mood and psychotic disorders. Some of 

these findings have also been linked to clinical outcomes. For instance, increased positive 

symptoms in SCZ are linked to cortical thinning in the superior temporal gyrus (Walton et 

al., 2017), lower hippocampal volume in MDD is associated with recurrence of episodes 

and early onset of the disorder (Schmaal et al., 2016). Studies have also identified that 

medication may play a role in the observed brain differences. Lithium use is associated 

with a larger cortical thickness and a larger volume of subcortical structures (Hibar et al., 



Ph.D. Thesis – P. L. Ballester; McMaster University – Neuroscience.  

5 
 

2016; Thompson et al., 2020). On the other hand, antipsychotic use has been associated 

with cortical thinning (van Erp et al., 2018). 

Some of the reported brain changes in mood and psychotic disorders, such as total 

gray matter volume reduction and ventricle enlargement, are also known to be associated 

with ageing (Peters, 2006). Are these findings a coincidence or do they represent a 

process of accelerated ageing in these disorders?  

  

1.1.3 Disorders of accelerated ageing 

The similarities between age-related brain changes and the observed in large 

consortium studies of brain abnormalities in mood and psychotic disorders is extensive 

(Peters, 2006; Schmaal et al., 2020). Further, clinical studies show patterns of greater 

cognitive and functioning decline as a function of age (Lewandowski et al., 2014). These 

studies have led to a series of hypotheses that accelerated ageing partly explains the brain 

differences in mood and psychotic disorders (Eyler & Jeste, 2018; Kirkpatrick et al., 

2008; Teeuw et al., 2021; Verhoeven et al., 2014). Simply put, mood and psychotic 

disorders would have two components: 1) disorder-specific processes (e.g., metabolic, 

cardiovascular, and brain changes), and 2) an accelerated ageing process (Schnack et al., 

2016). Whether accelerated ageing would be concentrated in the brain or would be a 

body-wide process remains unclear. For this thesis, we investigate the possibility of 

accelerated brain ageing. 

At this point, the evidence of accelerated brain ageing in severe mental illness is 

mixed. Epigenetic studies of post-mortem tissue from the cerebellum and hippocampus 
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have identified accelerated ageing in BD (Fries et al., 2017, 2020), while similar studies 

with tissue from the superior temporal gyrus and the frontal cortex in SCZ have not 

(McKinney B.C. et al., 2017; Voisey J. et al., 2017). When looking exclusively into brain 

ageing measured through MRI data, the findings are also heterogeneous. However, 

significant differences between brain age and chronological age have been identified in 

MDD (Christman, Bermudez, Hao, Landman, Albert, et al., 2020), BD (van Gestel H. et 

al., 2019), and SCZ (Han et al., 2018). To understand more about brain age and 

accelerated ageing in severe mental illness, one needs to dive deeper into healthy brain 

ageing and the structural changes that follow it. 

 

1.2 Ageing and the brain 

1.2.1 Age-related trajectories of brain volume and brain age 

Ageing is a phenomenon that affects the body at the genetic and epigenetic levels. 

One of the leading theories of ageing suggests that ageing is caused by cumulative genetic 

and epigenetic damage, leading to cell senescence (Harman, 2001; Sinclair & 

Oberdoerffer, 2009). Ageing leads to marked alterations all over the body, such as 

wrinkles in the skin and an increased risk for a wide range of diseases, from diabetes 

(Ismail et al., 2021) to Parkinson disease (Hou et al., 2019). The brain is not immune to 

such changes. During early development, the brain goes through rapid changes in volume 

and thickness (Brown, 2017). Brain maturation is completed at around 25 years of age 

(Arain et al., 2013). By then, a slow but steady process of gray matter reduction and 

increased white matter hyperintensities takes place (Peters, 2006). Although individual 
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differences exist (Brown, 2017), the progressive shrinking of the brain is consistently 

observed until death. 

These trajectories of brain volume and thickness depend on a series of factors, many 

of which might still be unknown to research. These factors include sex, lifestyle choices 

(e.g., smoking, alcohol use, and exercise), psychiatric disorders, neurological diseases, 

and traumatic brain injuries (Ning et al., 2020; Peters, 2006). Given that age-related 

trajectories are somewhat predictable but contain idiosyncrasies, it is possible to estimate 

the age of an individual by using statistical and artificial intelligence methods. That is, 

age can be extracted given radiological scans of the brain. The age estimate derived from 

brain scans is typically called “brain age”.  

 

1.2.2 Genetic and epigenetic age and its relationship with brain age 

The brain, of course, is not the only part of the body that is ageing. Research outside 

of neuroimaging have also identified measures other than brain age that correlate with 

chronological age. In genetics, the telomere length (nucleotide chain at the edge of the 

chromosomes) is inversely correlated with age (i.e., they become shorter as we age). In 

epigenetics, methylation levels have been correlated with age. A combination of different 

methylation sites and their levels in a regression is called the epigenetic clock (Horvath, 

2013). 

Although brain, genetic, and epigenetic age are attempts of capturing biological 

ageing, recent evidence suggests that these measures do not capture the same processes. 

The epigenetic clock and telomere length have been shown to correlate with 
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chronological age and mortality, but the estimation residuals across individuals are not 

correlated (Marioni et al., 2016). Likewise, individuals with SCZ have uncorrelated 

values of epigenetic and brain aging (Teeuw et al., 2021). These findings strongly support 

hypotheses of mosaic ageing, in which senescence is not homogeneous across body 

structures, but heterogeneous and highly dependent on genetics and environment (Walker 

& Herndon, 2010). 

Although we have differentiated epigenetic age and brain age based on the data (i.e. 

methylation and MRI data), some studies refer to epigenetic age as brain age when 

postmortem brain tissue is used for the estimations (Voisey J. et al., 2017). The issue with 

this overlap in the definition of brain age is that there are not enough studies that compare 

the behaviour of post-mortem epigenetic brain age with brain age extracted from 

neuroanatomical scans. It is likely, however, that these processes are not completely 

aligned, as neuroanatomical scans take several brain areas into consideration 

simultaneously to estimate brain age, while the epigenetic clock is usually extracted from 

tissue of a single region. Therefore, when we discuss accelerated brain ageing in this 

thesis from this point forward, we will be focusing on the neuroanatomical age, as 

extracted by magnetic resonance imaging data, unless otherwise noted. 

 

1.3 Brain age prediction 

1.3.1 Machine learning and deep learning 

Machine learning is a field of artificial intelligence concerned with using data to 

solve problems. From the definition of Dr. Tom M. Mitchell: “The field of machine 
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learning is concerned with the question of how to construct computer programs that 

automatically improve with experience.”, then expanded by “computer program is said to 

learn from experience E with respect to some class of tasks T and performance measure 

P, if its performance at tasks in T, as measured by P, improves with experience E.” 

(Mitchell, 1997). In other words, for a computer program to learn, it needs data 

(experience), it needs a problem to be solved (task) and it needs a performance measure to 

evaluate how well it performs in that task. In most cases, the by-product of the learning 

process is a model that can be used to generate predictions. The learning procedure is 

commonly referred to as training the model. 

A series of protocols need to be followed to ensure a sound training procedure. The 

first concern of these protocols is overfitting. Overfitting is when the model becomes too 

adjusted to the data used in model training, worsening the performance in other data 

points. A few approaches exist to circumvent this issue, including a holdout procedure. In 

holdout, the complete database is separated into two (or more) parts, consisting of 

training and test sets. The training set is used for generating the model and the test set is 

used to evaluate the model performance in samples that were not included during training. 

Model performance is usually assessed in terms of accuracy, sensitivity, specificity, 

precision, positive predictive value, and negative predictive value. 

Deep learning is a subfield of machine learning that focuses on unstructured data 

(e.g., sound, text, images, and videos). In traditional machine learning, human-designed 

methods for feature extraction were used in unstructured data, generating a structured 

(e.g., spreadsheets) dataset that was then used for training. In the case of images, these 
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methods involved extracting distributions of pixel values, number of edges, and many 

more (Kumar & Bhatia, 2014). However, some of these extraction methods were limiting, 

as they removed part of the characteristics that could potentially help predictions. For 

instance, by extracting pixel value distributions, one completely ignores the spatial 

representation of the image, which might be of importance for a given task. Additionally, 

these extraction methods were usually not problem-specific, i.e., they were usually 

designed for the data type, but not for what problem is being solved. With deep learning, 

the feature extraction is learned jointly with the prediction model, removing the need for 

human feature design. 

Both traditional machine learning and deep learning methods have been applied in the 

context of the brain age. These models generally use magnetic resonance imaging (MRI) 

as their input data modality. 

 

1.3.2 Magnetic resonance imaging processing 

MRI is a scanning modality that generates images based on the spin of protons 

(Berger, 2002). In simple terms, the machine aligns the protons of the target with its 

magnetic field. Then, this magnetic field is disrupted by a magnetic pulse. The energy 

released due to spin realignment is measured and used to generate an image. The energy 

release is dependent on the chemical composition of the tissue, which leads to an image 

that can be used to distinguish gray matter, white matter, and CSF. Image quality is 

dependent on the strength of the magnetic field (usually measured in Tesla), the ability of 

participants to stay still during the exam, and the machine processing speed. For 
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neuroimaging data, MRI tends to be a better alternative to computerized tomography 

(CT) as it provides better contrast in soft tissue and does not present any radiation 

concerns. 

After the scan, the image is preprocessed to remove or minimize imaging errors, such 

as blurs and ghosts. FreeSurfer is a common tool for this process, containing several 

implemented algorithms that allow for preprocessing of neuroimaging data (Fischl, 2012). 

Among the tools contained in FreeSurfer, there are registration methods – those that can 

spatially align several scans or scans to templates –, skull stripping, normalization, and 

others. Ultimately, after the preprocessing steps, the scans are fed to segmentation 

methods, also provided by FreeSurfer. Segmentation methods leverage annotations of 

brain regions, called atlases, to identify brain regions in scans. These methods commonly 

yield a second image with a category for each voxel (3-dimensional pixel). These voxels 

are summarized into area, volume, and thickness, and can thus be fed to brain age 

prediction methods.  

 

1.3.3 Brain age prediction methods 

A brain age prediction method is any method that, given a brain scan, estimates the 

age of an individual. Although there are distinctions across the methods, they have a 

consistent approach toward training brain age models. First, a large set of brain scans of 

HC is used for model training. In this case, HC are usually those with no history of 

neurological diseases, psychiatric disorders, or traumatic brain injury. The assumption 

behind using just HC for training is that chronological age should match their brain age. 
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Inclusion and exclusion criteria may vary across studies. Each training instance consists 

of a pair of a scan and chronological age. This model is then trained to predict the 

chronological age based on the neuroimaging data. These models are trained to minimize 

the difference between predicted age and chronological age (𝑦# − 𝑦), with some slight 

variation of the actual error being minimized (e.g., mean squared error, mean absolute 

error, and others). When training is finished, predictions from this model are frequently 

referred to as brain age predictions. 

These methods also present important differences, impacting how they can be used, 

interpreted, and their predictive performance (i.e., how accurately they predict brain age). 

The differences in the methods concentrate on two main components: 1) the machine 

learning model and 2) the choices of preprocessing. Some of the first methods for brain 

age prediction used somewhat simple models (such as linear or ridge regression) with 

input data coming directly from FreeSurfer pipelines (Koutsouleris et al., 2014). These 

methods tend to be more interpretable, as the influence of each feature can be extracted 

from their corresponding coefficients. This advantage comes with the downside of the 

inability of these models to capture higher-order relationships. Newer methods may thus 

use more complex models, such as gradient boosting (Chen & Guestrin, 2016) and 

introduce changes to the training protocol by splitting training between males and females 

due to differences in brain development, for instance (Kaufmann et al., 2019). Some other 

studies employ convolutional neural networks, a type of deep learning artificial neural 

network characterized by a series of convolution operations that learn how to extract 

features from raw data (Bashyam et al., 2020; Jonsson et al., 2019; Peng et al., 2019). 
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Other studies present completely different approaches to MRI preprocessing, such as 

structural covariance networks (Kuo et al., 2020). Finally, a few studies use functional 

MRI and electroencephalogram (EEG) for brain age modelling (Dunlop et al., 2021; Sun 

et al., 2019). The varying approaches of brain age estimation makes it challenging to 

interpret what brain age models are capturing. Efforts on improving model interpretability 

are of utmost importance to help solve this issue. 

 

1.3.4 Model interpretability 

A side-effect of modelling complex phenomena is the lack of interpretability of 

generated models. Anything more complex than a linear regression or a single decision 

tree poses a challenge for interpretation. In the case of decision trees, although its nodes 

provide an exact description of the model behaviour, larger trees explode the number of 

possible paths an instance can take. Beyond decision trees and linear models, more 

complex models may present thousands, if not millions, of parameters, so extracting 

interpretations may not only be impractical, but computationally unfeasible. Even 

approaches that attempt to provide interpretations of these models may fail by leading to 

imperfect representations (Murdoch et al., 2019). 

Naturally, brain age prediction methods present issues with interpretability. So far, 

studies have shown that feature importance is consistent across different model types and 

that it corresponds to our knowledge of how ageing in the brain happens (Ball et al., 

2021). Deep learning models, on the other hand, are harder to interpret. Model 

interpretation solutions, such as GradCAM (Selvaraju et al., 2017), have been proposed, 
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but they are noisy and may not faithfully represent model behaviour. Popescu and 

colleagues (2021) have proposed the use of voxel-level predictions of brain age to 

improve interpretability, yielding an individual prediction for each voxel (Popescu et al., 

2021). However, this approach currently falls behind other methods of brain age 

prediction in predictive performance. 

As an alternative to interpreting models at the model level, we can extract 

information on individual predictions. In this case, we are seeking explanations of each 

model predictions, as opposed to a single interpretation of model behaviour. There are a 

few methods that can be used for this purpose, such as Shapley additive explanations 

(SHAP) (Lundberg & Lee, 2017) and counterfactual explanations (Wachter et al., 2018). 

SHAP yields a value for each feature for each participant that represents how features 

have contributed to individual predictions. SHAP has already been used in the context of 

brain age, but thus far it has been solely applied to better explain model behaviour for 

HC, and has not yet been used to investigate clinical conditions in psychiatry (e.g. 

differences between SCZ and HC in brain age model behaviour) (Ball et al., 2021; 

Boscolo Galazzo et al., 2022; Lombardi et al., 2021). If used differently, these 

explanation methods may inform individual brain age predictions, and, consequently, the 

explain the brain age gap differences across groups, the main biomarker extracted from 

brain age predictions. 
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1.4 Brain age gap in severe mental illness 

1.4.1 The brain age gap 

As discussed before, brain age prediction methods are the foundation of accelerated 

brain ageing research in severe mental illness. However, the most relevant values do not 

come solely from predicting brain age. Instead, they come from the difference between 

predicted brain age and chronological age. This difference has been called brain age gap, 

and the procedure for finding it is commonly referred to as brain age gap estimation 

(brainAGE). A positive brain age gap (brain age > chronological age) indicates the 

resemblance of an older than expected brain, while a negative brain age gap indicates the 

opposite. 

The MDD, BD, and SCZ clinical populations consistently present a higher brain age 

gap than HC. These levels may be modulated by a series of factors, such as medication 

use (van Gestel H. et al., 2019), obesity (Kolenic et al., 2018), and mean age of the study 

sample (Christman, Bermudez, Hao, Landman, Boyd, et al., 2020). Beyond that, 

Alzheimer’s disease and dementia also present a larger brain age gap than HC (Franke & 

Gaser, 2019). The brain age gap has been associated with a plethora of negative 

outcomes, such as increased mortality risk and lower fluid intelligence in the general 

population (Cole et al., 2018), cognitive impairment and disability in MDD (Christman, 

Bermudez, Hao, Landman, Boyd, et al., 2020), and worse negative symptoms in SCZ 

(Kaufmann et al., 2019).  

Current protocols of brain age prediction involve training models with data from HC 

of studies in neurology and psychiatry. However, there is evidence to support that some 
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factors may influence the brain age gap in the HC population, which could impact the 

assumption that chronological age matches brain age for this group. For instance, long-

term meditation practitioners present a negative brain age gap (Luders et al., 2016). 

Beyond that, factors such as obesity, smoking, and alcohol use, may also play a role in the 

brain age gap (Ning et al., 2020; Ronan et al., 2016). These findings suggest that the brain 

age gap is a non-specific biomarker that captures brain health instead of a marker of 

neuropsychiatric disorders (Cole & Franke, 2017). 

 

1.4.2 Age-dependency 

Due to models being trained to minimize the error of predictions, they tend to have a 

strong effect of pulling predictions towards the mean age of the dataset. Therefore, brain 

age prediction models overestimate brain age in individuals with age below the mean and 

underestimate brain age in those above the mean (Beheshti et al., 2019). Some approaches 

can be used to mitigate this issue. Beheshti and colleagues (2019) present a 

straightforward solution to the problem by modelling the relationship between the brain 

age gap and age for HC with a linear regression. Then, all brain age predictions are 

adjusted by the slope and intercept of the linear regression model to ensure that the mean 

brain age gap is consistently close to zero across the lifespan in HC. 

Although the brain age gap should have an average of zero across the lifespan in HC, 

there is a potential effect of age in clinical groups. Christman and colleagues (2020) 

identified a higher than HC brain age gap in older individuals with MDD, but not younger 

ones, indicating a role of age in the increase of the brain age gap (Christman, Bermudez, 
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Hao, Landman, Boyd, et al., 2020). This finding also reinforces the idea of a cumulative 

effect of accelerated brain ageing in mood and psychotic disorders. 

 

1.5 Main Aims 

Due to the limited understanding of the brain age and brain age model behaviour, 

especially in the context of mood and psychotic disorders, we sought to 1) systematically 

review and synthesize the findings of the brain age gap in mood and psychotic disorders, 

2) propose new methods of brain age prediction that can be more interpretable, 3) explore 

the associations between brain age and clinical outcomes, and 4) explain the brain age 

gap in clinical populations.  

 

1.6 Specific Objectives 

The specific objectives of this thesis were to: 

1) In chapter 2, provide a systematic review and meta-analysis of the brain age gap 

in mood and psychotic disorders, 

2) In chapter 3, create a new method for brain age prediction that alleviates the 

trade-off between interpretability and predictive performance, 

3) In chapter 4, explore the relationship between the brain age gap and 

antidepressant treatment response in MDD, 

4) In chapter 5, explain the brain age gap in SCZ and understand the differences 

between HC and SCZ in terms of model behaviour. 
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1.7 Hypotheses 

The hypotheses for the first three specific objectives were: 

1) All three groups (MDD, BD, and SCZ) will have a larger brain age gap than HC, 

2) Brain age prediction can be more interpretable without a substantial decrease in 

predictive performance, 

3) The brain age gap is predictive of treatment response in MDD. 
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Abstract 

Objective: To evaluate whether accelerated brain aging occurs in individuals with mood 

or psychotic disorders. 

Methods: A systematic review following PRISMA guidelines was conducted. A meta-

analysis was then performed to assess neuroimaging-derived brain age gap in three 

independent groups: (1) schizophrenia and first-episode psychosis, (2) major depressive 

disorder, and (3) bipolar disorder. 

Results: A total of 18 papers were included. The random effects model meta-analysis 

showed a significantly increased neuroimaging-derived brain age gap relative to age-

matched controls for the three major psychiatric disorders, with schizophrenia (3.08; 

95%CI [2.32; 3.85]; p<0.01) presenting the largest effect, followed by bipolar disorder 

(1.93; [0.53; 3.34]; p<0.01) and major depressive disorder (1.12; [0.41; 1.83]; p<0.01). 

Brain age gap was larger in older compared to younger individuals. 

Conclusion: Individuals with mood and psychotic disorders may undergo a process of 

accelerated brain aging based on patterns captured by neuroimaging data. The brain age 

gap tends to be more pronounced in older individuals, indicating a possible cumulative 

biological effect of illness burden. 

 

Keywords: accelerated brain aging; meta-analysis; schizophrenia; bipolar disorder; major 

depressive disorder.  
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Summations:  

- Signs of neuroimaging-derived brain age gaps are identifiable in schizophrenia, 

bipolar disorder and major depressive disorder. 

- The brain age gap is differentially expressed in each disorder, with schizophrenia 

presenting the largest gap, followed by bipolar disorder and then major depressive 

disorder. 

- The brain age gap is positively associated with age, contributing to the hypothesis 

of accelerated brain aging. 

 

Limitations: 

- Variable training dataset sizes for each study are not accounted for. 

- In some studies the datasets overlap. 

- The limitations of each independent study were not considered during the meta-

analysis.  
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2.1 Introduction 

Mood and psychotic disorders are mental health conditions associated with high rates 

of early disability and poor quality of life (1–3). These disorders tend to follow a chronic 

course with periods of clinical remission alternating with periods of episodic worsening. 

It has been postulated that repeated illness episodes are associated with brain rewiring, 

which may eventually diminish responsiveness to treatment (i.e., kindling effect) (4). 

After years of neuroimaging research suggesting brain changes in individuals with 

psychiatric disorders (5), recent findings support that brain age estimates in these groups 

do not match their chronological age due to an illness-related process of accelerated brain 

aging (6). The difference between predicted brain age and chronological age is called the 

brain age gap or brain-predicted age difference (brain-PAD). Beyond neuropsychiatric 

disorders, a greater brain-PAD has been associated with other factors, such as increased 

alcohol and tobacco use (7), lower fluid intelligence, and increased mortality risk (8). 

Given its complex nature, there are disagreements in the field as to the presence and 

extent of accelerated brain aging in mood (9,10) and psychotic disorders (11). 

A hypothesis of accelerated brain aging is consistent with the current 

conceptualization of neuroprogression. Neuroprogression is defined by pathological brain 

rewiring associated with changes in cognition, functioning, inflammation, and 

neuroanatomy (12,13). Proposed mechanisms to explain accelerated aging in mood (14) 

and psychotic disorders (15)  include telomere length (16), the epigenetic clock (17), and 

inflammation levels (18). Although there is considerable synergism among these studies 

examining peripheral markers of aging, brain imaging is ideally suited to investigate 
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localized and/or circuit-level neurophysiological abnormalities (19,20).  Considering 

neuroimaging-based aging measurements, a recent review acknowledged the important 

prognostic information contained in brain age estimates (21), while another suggested that 

brain-PAD will become a valuable aging biomarker (22). However, these reviews have 

not led to any quantitative conclusions about the current state of the field. The question of 

whether neuroanatomical accelerated brain aging is present in mood and psychotic 

disorders and its effect size remain unanswered. In summary, while some studies support 

the claim of accelerated brain aging in mood and psychotic disorders, others disagree and 

instead claim accelerated brain aging does not occur in major depressive disorder (MDD) 

(10), bipolar disorder (BD) (9), or schizophrenia (SCZ) (11).  

Given the burgeoning literature investigating accelerated brain aging in mood and 

psychotic disorders using neuroimaging data, including both functional and structural 

imaging, a systematic review and aggregation of current findings is needed. Therefore, 

the aims of this systematic review and meta-analysis are: (1) to examine whether 

accelerated brain aging occurs in mood and psychotic disorders and, if so, to estimate the 

extent of the phenomenon for each of these major psychiatric disorders; (2) to discuss the 

main methodological limitations of the available studies and the future directions in this 

field. We hypothesized that MDD, BD, and SCZ would all present signs of accelerated 

brain aging with distinct magnitudes. 
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2.2 Methods 

2.2.1 Search strategy 

We followed the PRISMA guidelines for systematic reviews and meta-analyses. The 

search was conducted on February 1st, 2021 in the databases PsycINFO, Embase, and 

PubMed without any year or language restrictions. Papers that fit broad criteria including 

mood or psychotic disorders and the evaluation of brain age were included in the search 

strategy, which comprised of the following terms: (brain aging OR brain age) AND 

(mood disorders OR psychotic disorders OR major depressive disorder OR bipolar 

disorder OR schizophrenia OR psychosis). The actual search included variants of these 

terms which are included in the supplementary material. This review was registered in 

PROSPERO under the identification number CRD42020160127. 

The search returned a total of 1,084 papers (684 after duplicate removals). We 

included cross-sectional, longitudinal, and case-control studies, removing systematic 

reviews, other reviews, case reports, descriptive studies, and meta-analyses. Studies were 

only included if they had neuroimaging-derived estimates of brain-PAD in SCZ, MDD, or 

BD compared to healthy controls (HC) with no history of neurological disease or 

psychiatric disorders. Neuroimaging data included any acquisition protocol and/or 

modality, such as structural, functional, or diffusion magnetic resonance imaging (MRI). 

All papers were reviewed for inclusion or exclusion by two independent reviewers (PLB, 

MTR), and conflicts were resolved by consensus: If consensus could not be achieved, the 

decision was made by a third reviewer (BNF). Additionally, MTR and PLB searched the 
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references of all included papers, and through reference check and consensus did not 

include any additional papers. Figure 1 details the search procedures.  

 

2.2.2 Data extraction 

We extracted the following data: aim of the study, study design, participant 

demographics, sample size, inclusion and exclusion criteria, clinical assessments, main 

results on brain age, and confounding factors. Data extraction was performed by PLB and 

MTR. In the case of brain age prediction, most studies followed a standard machine 

learning protocol, with HC used for model training, validation, and testing and cases used 

only for testing. Therefore, for the meta-analysis, we extracted the results belonging to the 

experiments in test datasets (HC and cases) of each study. In studies where no 

independent HC test set was available and results were reported using a robust validation 

procedure (e.g. cross-validation), those results were used. Some studies only reported the 

mean brain-PAD difference between cases and controls or only showed the brain-PAD 

for the case group and not for the HC group. In these instances, we emailed the 

corresponding authors to request the information from the HC group. In the case of no-

reply or the lack of additional information, the studies were described in the review but 

could not be included in the meta-analyses. Where studies reported results for multiple 

brain age prediction models, the one with the lowest error in the HC sample was used. 
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2.2.3 Statistical analyses 

All statistical analyses were conducted using R (version 3.6.3) with the meta package 

(version 4.13-0). Both fixed and random effect models were used to evaluate brain-PAD 

for each diagnosis independently. The mean and standard deviation of brain-PAD of 

cases and controls were used. Therefore, the residuals of the prediction models in each 

original study are compared.  Our analyses were executed using the metacont function 

from the meta package, with default optional parameters.  

 

2.3 Results 

After title and abstract screening (n = 684), followed by full-text assessment for 

eligibility criteria (n = 53), 18 papers remained and were included in the systematic 

review (Figure 1). Within the included studies, some have analyzed brain-PAD only in 

SCZ (n=5) (23–27), only in BD (28), and only in MDD (n=4) (10,29–31). Other studies 

investigated brain-PAD in more than one disorder: SCZ and BD (n=4) (9,32–34), SCZ 

and MDD (n=3) (35–37), and SCZ, BD, and MDD (6). Details for each study included 

are listed in Table 1. A more complete version of Table 1 is available in the Supplement 

(Table S1). The meta-analyses included a total of n=15 studies. Three studies could not be 

meta-analyzed due to insufficient information (10,34,35). In addition, three studies 

investigated two independent samples of the same disorder (28,29,32) and, therefore, 

these studies were included twice in the meta-analyses and forest plots. 

Most studies included papers which relied on using traditional machine learning 

methods for brain age predictions, such as relevance vector machines (38), support vector 
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machines, or XGBoost (39) for their solutions. Some exceptions involve the use of deep 

neural networks (36) and more sophisticated techniques to improve training procedures, 

such as transfer learning (26). Procedures for the estimation of brain age varied 

considerably, as some studies used parcellations followed by volumetric information 

extraction (6) while others used structural covariance (37). The common factor in all 

studies were how group-level brain-PAD was generated: (1) models were trained with 

HC, (2) trained models were used to estimate brain age at the individual level for both 

cases and controls, (3) brain age estimates were subtracted by chronological age yielding 

individualized brain-PADs, (4) brain-PADs were averaged by groups and compared. Of 

note, some studies have independent test sets for both cases and controls, which, in turn, 

led to mean brain-PAD values ¹ 0 for healthy controls (33,36). Nonzero brain-PADs for 

HC may happen when the mean chronological age of the HC training and HC test sets 

differ. 

 

2.3.1 Systematic review of brain-PAD in psychotic disorders (schizophrenia and first-

episode psychosis) 

We identified 13 studies that assessed brain-PAD in SCZ or first-episode psychosis 

(FEP), with a total of n=3,169 cases (6,9,23–27,32–37). Brain-PAD scores were 

significantly greater in individuals with psychotic disorders in all except two studies 

(27,32). 

The first recorded study to investigate brain-PAD in psychotic disorders included 

participants with SCZ between the ages of 18 and 65 (35). Koutsouleris et al. (2014) was 
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the first study to propose the current method of brain age prediction with machine 

learning for brain-PAD assessments in SCZ (35,40). The main finding of their research, 

that SCZ presented a brain-PAD, has been replicated extensively. One of these studies 

had a longitudinal, repeated-measures design, where Schnack et al. (2016) found that 

acceleration of brain aging was not constant, and that brain-PAD increased soon after the 

onset of SCZ. After about five years, however, the effects of accelerated brain aging were 

no longer significant (23);  Hence, the brain aging rate was normalized to 1 year/year. 

Findings for SCZ have been replicated in increasingly more robust studies. Shahab et 

al. (2019), collected two independent samples of individuals with SCZ and tested the 

hypothesis of brain-PAD in both, finding brain-PADs of +7.8 and +6.12 years. The 

largest study of brain age in SCZ to date also identified similar patterns of brain-PAD (6). 

In an automated surface-based morphometry study, Kaufmann et al. (2019) trained an 

XGBoost model using thickness, area, and volume features extracted from MRI data (6). 

The training set consisted of 35,474 individuals and independent models were trained for 

each sex. In this analysis, a significant brain-PAD was observed (Cohen’s d = 0.51). In 

the same study, using a separate test, brain age prediction models trained using only 

features from specific regions of the brain showed no increased brain-PAD in cerebellar 

or subcortical regions, but a large effect in the frontal lobe (Cohen’s d = 0.70). This might 

suggest that the neuroanatomical features of brain aging are not homogeneously 

distributed across the brain, and each region may display an independent aging pattern. 

 A subset of studies investigated accelerated brain aging after the first psychotic 

episode. Hajek et al. (2019) measured  differences  in brain-PAD between first-episode 
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schizophrenia-spectrum disorders (FES) and HC groups (25). This study recruited n=43 

participants with FES and found a statistically significant mean brain-PAD difference of 

+2.65 years. Another study defined patients with FEP based on factors such as obesity 

and dyslipidemia, and reported a higher brain-PAD in individuals with FEP compared to 

controls. In addition, obesity was shown to contribute an additive effect in FEP, such that 

brain-PAD scores were highest in participants with a combination of FEP and obesity 

reaching a gap of 3.83 years (24). This finding suggests that obesity is an important factor 

to include when studying FEP and brain age. Authors also reported no effects of 

psychotropic medication use or other clinical variables, such as history of hypertension, 

smoking status, and glucose levels (27).  

Another approach used to determine brain age acceleration in a younger sample was 

the Neural Maturation Index (NMI), which characterizes typical brain maturation patterns 

and identifies those that deviate from the norm. In this study, an association between SCZ 

and advanced NMI scores was identified, indicating accelerated neural maturation in SCZ 

(27). Although used for a different purpose than the straightforward comparison of brain-

PAD across groups, the values used by the structural component of NMI are directly 

comparable to brain age. This study involved participants between the ages of 16 and 22, 

with a younger mean age and a considerably narrower age range with respect to other 

studies. Alongside the evidence for FEP, these are consistent findings of accelerated brain 

aging from very early on in the course of illness. 

A set of novel methods for brain age estimation has also been used in the context of 

SCZ. Chen et al. (2020) showed that models after transfer learning, a machine learning 



Ph.D. Thesis – P. L. Ballester; McMaster University – Neuroscience.  

44 
 

technique used to leverage models pre-trained in other databases and/or data types, and 

models trained from scratch for brain age prediction with diffusion MRI led to similar 

brain-PAD differences between SCZ and HC (26). Structural covariance networks were 

also used to assess brain-PAD in SCZ, yielding similar results to other approaches (mean 

brain-PAD difference = 5.52 years) (37). Finally, deep neural networks were also used for 

brain age prediction, achieving distinct brain-PAD differences between SCZ and HC 

depending on how well the model was fit to the data (36). Models with a looser fit tended 

to better discriminate between SCZ and HC, while the best model in terms of mean 

absolute error (MAE) demonstrated a brain-PAD difference of 3.04.  

 

2.3.2 Meta-analysis of brain-PAD in psychotic disorders (schizophrenia and first-

episode psychosis) 

The meta-analysis revealed significant brain-PAD differences between individuals 

with psychotic disorders and HC (Figure 2). The significant findings are demonstrated by 

both the fixed effects model (2.90; 95% CI [2.59; 3.21]; p<0.01) and by the random 

effects model (3.08; 95% CI [2.32; 3.85]; p<0.01). Another interesting outcome of this 

meta-analysis is that brain-PAD is also significant in FEP, which suggests that 

accelerated brain aging may occur early in the course of the illness.  

 

2.3.3 Systematic review of brain-PAD in bipolar disorder 

We identified six studies that investigated brain-PAD in BD, including a total of 

n=938 cases. All studies assessed brain-PAD cross-sectionally at a single time point. 
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Individually, the results have been contradictory, with two studies reporting non-

significant results (9,32), three describing significant differences between groups 

(6,33,34), and one showing conflicting results based on current medication use (28). 

Importantly, 49% of the included sample comes from a single large study (6). 

Nenadić et al. (2017) analyzed brain-PAD in BD based on previous findings of brain-

PAD in SCZ (9,35). Therefore, in an attempt to both replicate previous findings of SCZ 

and expand them to BD, they predicted brain age for HC, BD, and SCZ, finding no 

increase of brain-PAD in BD with respect to HC. This small study (n=22 cases), 

involving euthymic BD participants aged 21 to 58, was likely underpowered. Shahab et 

al. (2019) conducted a similar experiment including euthymic participants with BD I or II 

(n=53) (32). Consistent with Nenadić et al. (2017), no differences between BD and HC 

were identified. Additionally, there were no differences between BD participants with and 

without psychotic features during an episode and brain-PAD. 

Contrasting the negative results observed in smaller studies, a significant association 

between brain-PAD and BD were found in larger studies. For example, Kaufmann et al. 

(2019) included several databases, for a total of n=459 participants with BD (6). By 

comparing cases with an age-matched subset of HC participants, they identified a 

significant mean difference of brain-PAD of +2.07 years. A study by Van Gestel et al. 

(2019) divided participants from the BD sample into two groups (n= 84 BD), based on 

the presence or absence of current lithium treatment. In the group receiving lithium 

treatment, there were no statistically significant brain-PAD differences compared to HC 

(mean brain-PAD difference = +0.98). However, statistically significant differences were 
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evident in the group not receiving lithium treatment (mean brain-PAD difference= +5.11). 

These findings suggest a possible role of lithium in preventing accelerated brain aging, 

but given the cross-sectional study design, no definite conclusions can be drawn. Finally, 

a recent study conducted by Tønnesen et al. (2020) explored the use of white matter 

extracted by diffusion imaging for brain age prediction (33). By training a model with all 

available white matter features, a mean brain-PAD difference of 2.75 years was 

identified. However, the largest group difference in this study was observed when using 

only fractional anisotropy data, with a mean brain-PAD difference of 3.44 years. 

In an attempt to capture different characteristics during brain age prediction, Rokicki 

et al. (2020) built a machine learning model from white matter variables captured by 

diffusion MRI (n=135 BD) (34). The results supported previous findings for BD in larger 

sample sizes, where the BD group showed a larger brain-PAD than HC (+1.6). This 

model, built with a different modality and thus taking into account a different set of 

features, reinforces the robustness of previous findings of brain-PAD in BD. 

 

2.3.4 Meta-analysis of brain-PAD in bipolar disorder 

Figure 3 summarizes the studies that investigated brain age in BD. Our results 

suggest that there is a process of accelerated brain aging in BD, as demonstrated by the 

fixed effects model (2.12; 95% CI [1.46; 2.77]; p<0.01) and the random effects model 

(1.93; 95% CI [0.53; 3.34]; p<0.01). 
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2.3.5 Systematic review of brain-PAD in major depressive disorder 

The evidence for accelerated brain aging in MDD has been somewhat contradictory. 

From the seven identified studies, three reported increased brain-PAD (29,30,35) and the 

other four reported non-significant differences (6,31,36,37). Of note, regardless of the 

significance of findings, all included studies reported a positive brain-PAD difference 

between MDD and control groups. In total, n=3,565 cases were included across all 

included studies. However, about 75% of the sample came from a single large study 

containing n=2,675 cases (30). 

Koutsouleris et al. (2014) assessed brain aging in MDD, SCZ, borderline personality 

disorder, and an additional group with individuals at-risk for psychosis. SCZ (n = 141) 

presented the largest brain-PAD difference, followed by MDD (n = 104).  The training 

set consisted of 800 healthy controls, for which their estimated age was calculated using 

an average of repeated nested cross-validation predictions when the individual was out of 

the training set. To the best of our knowledge, this was the first accelerated brain aging 

study conducted in MDD and also the first to find statistically significant brain-PAD 

differences between HC and MDD. Subsequently, a study with MDD using an MRI 

trained relevance vector regression model using 743 HC used the model to estimate brain 

age in the MDD group (n=38) and in an independent control group (n=40). Possibly due 

to the small sample size, there were no significant differences between groups, but 

participants in the MDD group presented a mean brain-PAD of +0.41 years (10). 

 In a subsequent study with a larger sample size, Kaufmann et al (2019), investigated 

brain-PAD in MDD (n=208), but no significant differences between MDD and HC 
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groups were identified, although a mean brain-PAD of +0.86 was reported (6).  Similarly, 

Bashyam et al. (2020; n=204) and Christman et al. (2020; n=194) assessed the brain-PAD 

in MDD, with both reporting non-significant findings in their adult samples (29,36). 

However, an analysis with a geriatric subset has shown a brain-PAD difference of +4.92 

years in an older sample of MDD patients (29). These authors claim that the signs of 

accelerated brain aging in MDD are more visible later in life, an idea that seems to be 

supported by their findings. The largest study to date involves the ENIGMA consortium 

(30) involving n=2,675 cases aged 18-75. A mean brain-PAD difference of +0.88 years 

between MDD and HC was identified and considered statistically significant. After the 

adjustment for age, age2, sex, and scanning site, this difference increased to +1.08 years. 

Novel methods for brain age prediction were also proposed in the context of brain age 

in MDD. Kuo et al. (2020) used structural covariance networks to build a model that 

takes into account the relationship between brain regions to predict brain age (37). In this 

new approach, a large brain-PAD difference between MDD and HC was identified 

(+1.99) although it was not statistically significant, likely due to the small sample size 

(n=30). Similarly, Dunlop et al. (2021) used a less conventional approach to predict brain 

age by using resting-state functional MRI data (31). A large brain-PAD standard 

deviation in the MDD group was reported (12.65) due to the high mean absolute error of 

their final model. However, Dunlop et al. (2021) still report significant differences 

between MDD and HC, highlighting the potential of functional imaging as a biomarker 

for accelerated aging in MDD. 
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2.3.6 Meta-analysis of brain-PAD in major depressive disorder 

Figure 4 summarizes the studies that investigated brain age in MDD. Results from the 

fixed effects model (0.95; [0.55; 1.35]; p<0.01) and the random effects model (1.12; [0.41; 

1.83]; p<0.01) suggest that there is a process of accelerated brain aging in MDD. Even 

though the majority of the studies reported non-significant differences between MDD and 

HC, they all reported an increased brain-PAD in MDD, with the largest studies to date 

finding significant differences. It seems that the effect of accelerated brain aging in MDD 

is less pronounced than it is in psychosis or BD. 

 

2.3.7 Association between age and brain-PAD 

Due to the conceptualization that brain-PAD is linked to an accelerated brain aging 

process, one study analyzed brain-PAD in older participants independently from younger 

ones (29). In this study, brain-PAD was noticeable in the older, but not in the younger 

sample. These findings are also consistent with epigenetic studies that showed a larger 

brain-PAD in older individuals with BD (41). The association of brain-PAD with age is 

already known to exist, as part of the current standard of procedures for the estimation of 

brain-PAD is the correction for age. However, the correction mainly targets the effect of 

prediction bias that comes from age overestimation of participants aged below the 

training set age mean and underestimation of those above it (42). Therefore, even after 

correction for age effects due to the prediction biases, a more pronounced effect in older 

cases should be present. All papers included in the meta-analysis were also included in 
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this analysis, with the exception of two studies that did not provide the age standard 

deviation of the case sample (27,36). 

Most studies in mood and psychotic disorders have investigated brain-PAD across the 

lifespan without creating subgroups. With that in mind, we investigated whether brain-

PAD was positively correlated with the average age of the case groups across studies. The 

brain-PAD difference between cases and controls was normally distributed within each 

diagnostic group, as were the mean ages in the studies. Thus, a Pearson correlation 

between those two variables was conducted. Positive associations were identified for all 

groups, with statistical significance observed for SCZ (r(8)=0.697 [0.120; 0.922]; p<0.03) 

and MDD (r(4)=0.815 [0.009; 0.979]; p<0.05), but not BD (r(4)=0.213 [-0.723  0.874]; 

p=0.684; Figure 5). 

 

2.4 Discussion 

The results from our meta-analyses show that there are signs of accelerated brain 

aging in mood and psychotic disorders with different magnitudes. For instance, SCZ 

expresses the highest levels of brain-PAD (3.08 years), followed by BD (1.93 years) and 

MDD (1.12 years). Our findings also indicate that brain-PAD is more pronounced in 

older individuals, a tendency observed across all major psychiatric disorders. 

Findings from our meta-analysis provide support for the neuroprogression theory. 

Based on this theory, mood and psychotic disorders have a progressive nature consisting 

of a series of clinical, functional, and biological changes during the course of illness (13). 

While the genetic and molecular underpinnings of neuroprogression in major psychiatric 
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disorders still remain unclear, current research suggests a role of cumulative stress in 

epigenetic aging (43), which could be one of the underlying factors for the observed 

neuroanatomical changes that lead to a higher brain-PAD (44). These ideas are also 

consistent with our findings of a more pronounced brain-PAD in older compared to 

younger samples. Despite its progressive nature, there is evidence to suggest that signs of 

brain-PAD may be already present early in the course of illness. For instance, Chung et 

al. (2018) conducted a longitudinal study on youth at clinical high risk to develop 

psychosis and found that an increased brain-PAD in those between 12-17 was 

significantly associated with the onset of psychosis at follow-up (45). Beyond 

neuroprogression of major psychiatric disorders, other factors may play a role in 

increasing brain-PAD. It is important to consider that machine learning models take into 

account neuroanatomical features to make age predictions, and thus are bound to be 

confounded by lifestyle, comorbidities, treatment history, and genetic predispositions, 

most of which can be difficult to control for (7). Brain-PAD has been strongly linked to 

tobacco and alcohol use (7); future research is likely to identify other possible 

associations such as traumatic events, obesity and comorbid medical conditions. Not only 

are these relevant factors for any population, but they are particularly important when 

investigating brain-PAD in populations with neuropsychiatric disorders (46,47). 

Medication use is also likely a significant factor in brain-PAD. Most available studies, 

however, do not thoroughly assess the effects of psychotropic medications, which have 

been shown to have neuroprotective effects (48–50), but see (51). 
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Other methodologies and approaches have been used to assess accelerated brain 

aging in mood and psychotic disorders, some of which have similar findings to 

neuroimaging-derived brain-PAD. Kochunov et al. (2013) used regression models with 

diagnosis-by-age interaction to assess fractional anisotropy (FA) in individuals with SCZ 

as a proxy for the detection of age-related decline of white matter (52). They showed a 

significant age-related trajectory between SCZ and HC groups, which was replicated in a 

subsequent study (53). Using the same methodology, they found no differences between 

MDD and HC. Following a similar approach, Sacchet et al. (2017) found a significant 

group x age interaction in the putamen volume in MDD, which given the context of 

previous studies, supports the hypothesis of a more localized accelerated brain age in the 

disorder (54). At the molecular level, the epigenetic clock has also been investigated in 

the context of accelerated brain aging by extracting DNA methylation data from 

postmortem brain tissue (11,55,56). Some studies have identified no changes in the 

epigenetic clock in the superior temporal gyrus (11) and frontal cortex (57) in SCZ. 

Contradicting these findings, Fries et al. (2020) identified accelerated aging in the 

hippocampus of BD (58), while Han et al. (2020) also identified accelerated aging in the 

frontal and cingulate cortex for MDD (56). Findings from the epigenetic clock may be 

specifically relevant clinically, since a gap in epigenetic age has been linked to increased 

risk for diseases such as cancer and dementia, and to increased mortality risk (17). 

Although both epigenetic aging and neuroimaging-derived brain age are considered 

biological markers of aging, to our knowledge the relationship between these two 

variables has not been explored. Previous studies have demonstrated that different 
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biological age estimates, such as telomere length, epigenetic clock, and neuroimaging-

derived brain age, may be mismatched in individuals (8,59), thus findings from epigenetic 

age may not necessarily translate into neuroimaging.  

Our study should be interpreted in the light of some limitations. First, there was 

considerable variability in terms of the training dataset size and methods used for brain 

age prediction. In order to provide a fair comparison, we only used the size of the test sets 

in the meta-analysis, but this may not necessarily reflect the total sample that was used to 

generate a better prediction model. In addition, limited independence of  samples, some of 

which share HC groups (28) or are reported in the same publication, is a limitation (32). 

On that note, the total overlap between studies is also unclear, as most studies use several 

distinct datasets to train and test the models. Some studies apply brain-PAD coefficients 

corrected by age during group comparison and others correct brain age predictions 

beforehand, this is a particularly important consideration in the age effects section. It is 

also possible that some studies have underestimated older participants and thus led to a 

smaller effect of brain-PAD in those individuals. This effect, if corrected, would likely 

increase the relationship between brain-PAD and age , as older individuals tend to have 

an underestimated brain age (42). Despite these limitations, this is the first meta-analysis 

to integrate the findings of neuroimaging-derived brain age in mood and psychotic 

disorders. 

Future studies should take into account lifestyle factors, medication use, substance 

use, and body mass index. Larger methodological papers should assess not only the 

quality of different approaches for brain age prediction, but also their ability to 
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discriminate cases and controls. In addition, new studies should better investigate age 

effects in their samples and assess variables that might jointly explain its effects, such as 

age of onset, episode severity, number of episodes and medication use. Finally, new 

studies should use more sophisticated model explanations to understand what exactly the 

brain areas and circuits are that are driving the age gap at an individual level (60,61).  

In conclusion, this systematic review and meta-analysis found evidence to support the 

hypothesis of significant accelerated brain aging in SCZ, MDD, and BD. The fact that 

brain-PAD differences are more pronounced in older subjects indicates a greater impact 

associated with cumulative illness burden. 
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Figures 

Figure 1. Flow diagram of identification, screening, and eligibility of the systematic 

review. 
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Figure 2. Forest plot for the difference of brain-PAD between psychotic disorders 

and healthy controls (SD: Standard deviation; MD: Mean difference). 

 

 

Figure 3. Forest plot for the difference of brain-PAD between bipolar disorder and 

healthy controls (SD: Standard deviation; MD: Mean difference). 
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Figure 4. Forest plot for the difference of brain-PAD between major depressive 

disorder and healthy controls (SD: Standard deviation; MD: Mean difference). 

 

 

Figure 5. Brain-PAD association with age for SCZ, BD, and MDD. Horizontal error 

bars represent the standard deviation of age in each study.  
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Abstract 

Problem: Chronological aging in later life is associated with brain degeneration 

processes and increased risk for disease such as stroke and dementia. With a worldwide 

tendency of aging populations and increased longevity, mental health, and psychiatric 

research have paid increasing attention to understanding brain-related changes of aging. 

Recent findings suggest there is a brain age gap (a difference between chronological age 

and brain age predicted by brain imaging indices); the magnitude of the gap may indicate 

early onset of brain aging processes and disease. Artificial intelligence has allowed for a 

narrowing of the gap in chronological and predicted brain age. However, the factors that 

drive model predictions of brain age are still unknown, and there is not much about these 

factors that can be gleaned from the black-box nature of machine learning models. The 

goal of the present study was to test a brain age regression approach that is more 

amenable to interpretation by researchers and clinicians.  

Methods: Using convolutional neural networks we trained multiple regressor models to 

predict brain age based on single slices of magnetic resonance imaging, which included 

gray matter- or white matter-segmented inputs. We evaluated the trained models in all 

brain image slices to generate a final prediction of brain age. Unlike whole-brain 

approaches to classification, the slice-level predictions allows for the identification of 

which brain slices and associated regions have the largest difference between 

chronological and neuroimaging-derived brain age. We also evaluated how model 

predictions were influenced by slice index and plane, participant age and sex, and MRI 

data collection site.  
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Results: The results show, first, that the specific slice used for prediction affects 

prediction error (i.e., difference between chronological age and neuroimaging-derived 

brain age); second, the MRI site-stratified separation of training and test sets removed site 

effects and also minimized sex effects; third, the choice of MRI slice plane influences the 

overall error of the model.  

Conclusion: Compared to whole brain-based predictive models of neuroimaging-derived 

brain age, slice-based approach improves the interpretability and therefore the reliability 

of the prediction of brain age using MRI data. 

 

Keywords: brain age, deep learning, neuroimaging, convolutional neural networks, 

model interpretability  
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3.1 Introduction 

Brain age prediction involves estimating chronological age based on information 

typically gleaned from neuroimaging data. The prediction may be referred to as the 

biological or neuroanatomical age of the brain. Although brain age can be computed from 

other approaches, such as the epigenetic clock from brain tissue (1) in this paper we use 

brain age as a synonym for neuroimaging-derived brain age. The difference between the 

predicted age and the actual chronological age is called brain age gap, which has been 

associated with a number of lifestyle factors (2) [e.g., tobacco and alcohol consumption 

(3), obesity (4), diabetes, schooling, physical activity (5), higher mortality risk (6), lower 

fluid intelligence, psychiatric disorders (7), and neurological diseases (8)]. 

Recent advances in machine learning, specifically on deep convolutional neural 

networks, have gradually improved brain age prediction by lowering prediction error (9). 

However, brain age prediction methods still receive criticism due to the lack of 

interpretability (10). The criticism stems from the limited information about what the 

model uses to predict brain age, and which regions might bias findings. Hidden biases and 

poor generalization are a recurrent theme in machine learning and deep learning 

research(11), including its medical imaging applications (12). Thus to fulfill the promise 

of translational research, AI needs to establish reliable and reproducible prediction 

methods, and to generate models that are more amenable to clinical interpretation (10). 

Identification of clinical neural markers and association with clinical and behavioral data 

may render AI applications more meaningful (10,13,14). 
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In this article, we report on a model developed for the PAC- 2019 brain age 

prediction competition. Our goal was to generate competitive predictions using 

meaningful neuroanatomical information. We developed a deep learning framework 

whose predictions draw on features from every single slice of brain imaging combined 

with average or linear regression models. The resulting model associates each slice with 

an independent age prediction for the same patient, allowing researchers to scrutinize the 

areas of the brain responsible for the overall brain-age gap. Our hypothesis was that our 

approach would help understand the behavior of brain age prediction at each part of the 

brain. We also believe that this method, alongside other approaches that try to move away 

from single predictions of brain age (15), may help us get a comprehensive picture of the 

parts and characteristics of the aging brain that inform prediction. Such picture should 

allow for identification of diverse, slice-level, and eventually voxel-level, 

neuroanatomical traits of age-related diseases. 

 

3.2 Background 

The known patterns of brain development associated with aging, such as a decline in 

gray matter volume (16), are readily identifiable by magnetic resonance imaging (MRI). 

These images are extensively used for diagnostic and research of disorders associated 

with brain tissue loss, such as Alzheimer’s disease, Parkinsonian dementias, and Fronto- 

temporal lobe degeneration (17). More recently, machine learning techniques have been 

used to draw on the rich MR images to predict the brain age of healthy people (18), and 

the aging processes of neurodegenerative disorders (19). The mismatch in chronological 
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and brain age has been investigated in schizophrenia (8), bipolar disorder (20), and in 

association with factors associated with mortality risk, physical and mental fitness, and 

biological health (6). 

Recent advances in deep learning models, specifically Convolutional Neural 

Networks (CNNs) achieve state-of-the- art performance in computer vision tasks (21), 

while requiring little to no prior hand-engineering of data. CNN architectures using 3D 

convolutions have been used to predict brain age with segmented GM and white matter 

(WM), and raw T1-weighted MRI scans (10,22). The use of 3D convolutions allows the 

model to take in whole-volume information for convolutional filtering operations, which, 

given enough data, learn feature detection and extraction. CNN models provide highly 

accurate predictions for regression and classification tasks on multiple medical imaging 

datasets (21,23). 

CNN models have remarkable predictive power, but the results are typically difficult 

to interpret. Whereas manual feature selection in classic machine learning simplifies 

interpretation of the model’s results, CNNs require further processing steps to interpret 

the model’s decision processes due to the use of less processed data (24). Examples of 

interpretation-seeking mechanisms include saliency maps  

(Zeiler Matthew D. and Fergus, 2014) and activation mappings (26), which aim to 

identify the regions in an image that are responsible for assisting model predictions, thus 

allowing for some visualization of key input features. These maps trace network outputs 

back to the input image voxels through the computation of their partial derivatives. For 

example, regression activation mapping applied to age prediction models on newborn 
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structural MRI generated brain maps of rapid growth during early development (27). 

Saliency maps have three key limitations. First, they depend on human validation, a time 

consuming task that also entails the potential for confirmation bias. a Second, these 

methods can produce results that are independent of model and data, and thus inadequate 

for model debugging and inspection (28). Finally, additional techniques must be used for 

combining individual subject saliency maps of into population-level visualizations (29). 

 

3.3 Method 

We tested several models and found that the ones with a RESNET18 architecture had 

a good trade-off between size and prediction error (30). In order to use it in our context 

with the dimensions of our input, we modified it in three simple ways: (1) the input size 

had one or two channels, depending on the experiment, (2) the kernel size from the 

average pool was changed from 7 to 4, (3) the final fully connected layer was changed 

from 512 to 1,024. The code to build this architecture as well as the steps to reproduce all 

experiments are available on GitHub (see data availability statement). The input was one 

brain slice with segmented GM in the first channel and white matter in the second 

channel. The segmentation was provided by PHOTON-AI1 and we made no adjustments 

to it apart from scaling. The output of each model was a brain age estimation for a single 

segmented slice (GM, WM, or both) from the structural MRI. We illustrate our 

framework in Figure 1. The framework relies on three different, simultaneously-run 

models that are combined by three linear regression models and a final average. Each 

 
1 https://photon-ai.com/ 
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model is trained independently to predict brain age from a single MRI slice and draws on 

different MRI slice orientation (coronal, sagittal, or axial) as input. Each of these models 

used the validation set to generate error estimates for each slice and each volume. We 

then used the error estimates to determine the importance of each slice for the model. All 

three views were combined to locate specific regions in the brain responsible for a 

particular classification based on the contribution of each slice for the brain age 

prediction, which provides an additional source of interpretation. The final age prediction 

for a single individual was calculated as follows: 

𝑎! = 𝑀!(𝑠"*	𝑖	 ∈ [0, 𝑆!] (1) 

𝑎𝑔𝑒 = 	
!
"#
∗$#(&#)(

!
"$
∗$$(&$)(

!
"%
∗$%(&%)

!
"#
( !
"$
( !
"%

 (2) 

where x ∈ a,s,c represents the axial, sagittal, and coronal views, ax is the age vector for 

each slice for the subject, 𝑀! is one of the CNN models, 𝐿! is the linear regression model, 

ex is the error of model 𝑀! in the validation set, and 𝑆! is the total number of slices for an 

orientation x. Our rationale was that each model’s contribution was inversely proportional 

to the error in the validation set with a weighted average. The influence of each slice for 

the final prediction is weighted by the linear regression model. This slice-level rationale 

can also be applied to understand the independent contributions of gray and white matter 

to the brain age estimate. While using gray or white matter alone causes the model to lose 

predictive power, it improves interpretability by estimating the independent gray and 

white matter contributions to the age prediction. 
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All segmented MRI scans for the dataset provided by the competition were shaped 

(121, 145, 121). To reduce the amount of empty space on the corners of the input, we 

removed 20% of the image corners, resulting in a (72, 88, 72) image. The input for the 

model is thus shaped (batch,c, 72, 88) where c = 1 when using either gray or white matter 

alone or c = 2 when using both types of brain tissue. For the coronal view, we zero-pad 

the image so that the (72, 72) slice also becomes (72, 88) to keep the consistency across 

all models. The participants from the PHOTON-AI dataset included healthy individuals 

from a wide age range, males and females, and from 17 different centers. We included 

basic demographic information about the sample in Table 1. 

We trained the CNN models using an Adam Optimizer set with the learning rate at 6e 

− 4 and weight decay of 6e − 4. The training also used a sigmoid learning rate rampup for 

20 epochs followed by a cosine rampdown until a total of 100 epochs. The batch size was 

set to 64. We conducted a data augmentation with Elastic Transform (31) with an α range 

between [28, 30], σ with a range of [3.5, 4.0], and p = 0.3, representing the scaling 

factors, the Gaussian spatial smoothing of the deformation field, and the probability of the 

augmentation being applied.; Random Affine transformations with 4.6 degrees, [0.98, 

1.02] scale, and translation of 0.03; finally, we used a Random Tensor Channel Shift with 

the range of [−0.1, 0.1]. Some examples of the augmentation procedure can be seen in 

Figure 2. All data augmentation procedures were implemented in the medicaltorch 

framework2. 

 

 
2 https://github.com/perone/medicaltorch 
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3.4 Results 

For the competition, we achieved a mean absolute error of 4.44 years on the test set, 

with a Spearman correlation of −0.25 between the age estimates and chronological age. 

The model that won the competition achieved 2.90. Due to time restrictions, we employed 

axial slice predictions only, combining gray and white matter. In what follows, we present 

the results for the combined gray and white matter models for each separate orientation, 

the combined predictions; we also present how predictions improve interpretability and 

decrease model errors. The results of this article are based on predictions made on the 

competition’s validation set. We did not have access to the test set’s ground truth at any 

point during our experiments, prior to nor after the competition. 

Instead of using the validation set to train the linear regression, we applied the 

regression to the training set, in order to avoid circular analysis. However, we believe this 

can limit the accuracy that otherwise would be achievable with the linear regression 

model. We leave the comparison of using the validation dataset and reusing the training 

set to train the linear regression model for future work with more data available, as we 

restricted ourselves to use data exclusively from the challenge for this study. 

 

3.4.1 Combined Gray and White Matter 

Our approach used slices for both gray and white matter in individual channels. The 

use of the two tissues simultaneously may have sacrificed obtaining more fine-grained 

information about brain aging from the each independent tissue, but it was done in favor 

of feeding additional data to the model. Gray and white matter were concatenated on the 
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first channel, resulting in an input of (2,72,88). We then trained and evaluated the model, 

and then assessed the effects of age, sex, and site on its predictions. In the sections, we 

explain the key findings from our experimental analysis. 

 

3.4.1.1 Models for Different Views of the Brain Have Different Errors 
We trained three independent models, taking the input from either axial, coronal, or 

sagittal views (Note: for the competition, in the interest of time, we used only the axial 

orientation information). After training, we estimated the error for each slice. The 

estimate is used to gauge how much each slice contributes to the prediction of brain age. 

We identified a pattern, most present in axial and coronal models, but to some extent 

also visible in the sagittal. With more distal slices, the average prediction error seems to 

be higher. This could arguably be attributed to several reasons: (1) differences of brain 

matter across regions of the brain, (2) more age-related changes in some regions than 

others, and (3) the tendency of noise from the scanner to be concentrated on the 

extremities of the image (and this tendency is fairly visible in Figure 3). 

The three models afforded different final prediction errors (Table 2, which we will 

further discuss in section 4.1.2. The models also resulted in different estimates for the 

contribution of slices for predicting brain age. Figure 3 shows the error variation for slices 

for the axial, coronal and sagittal slice models. We hypothesize that the differences in 

mean error may stem from: intrinsic and extrinsic factors that contributed to a poorer 

segmentation (and therefore an input of lesser quality); the randomness of the modeling 

process; and from sample heterogeneity for each of the regions with respect to age. 
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3.4.1.2 Final Predictions 
Using Equations (1) and (2), we generated the predictions for the final dataset. After 

pre-training each of three models (one for each view), we evaluated every slice in the 

dataset and generated a dataset of predictions with a row for each individual and a column 

for model predictions of every slice. We trained the linear regression for the generated 

dataset using scikit-learn3 library. 

Table 2 shows the results for the three models. The sagittal slice prediction showed 

the lowest error, and it outperformed the outputs combined using Equation (2). We argue 

that this discrepancy in the error is due to the lack of another validation set for proper out-

of-sample error estimation. Additionally, the differences present in a model trained with 

this dataset may not accurately translate to other data sources. To ensure that the sagittal 

slice prediction is actually superior to the axial and coronal slice predictions, the model 

needs to be further validated and trained using yet another dataset. 

 

3.4.1.3 Age Effects 
Brain age prediction methods usually perform better around the mean chronological 

age of the dataset. Research shows that models tend to overestimate brain age for 

participants younger than the mean, and underestimate it for participants older than the 

mean (32,33). 

The behavior of our model’s prediction error changed with respect to age, as shown 

in Figure 4. Not surprisingly, we found the same pattern of over and underestimation of 

age reported in the literature. One major implication of this type of error is the possibility 

 
3 https://scikit-learn.org/ 
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of inserting biases when trained models are applied to external test sets that have a 

different age distribution than the training set. Thus, brain age prediction models should 

consider or aim for age-matched test sets (if possible), even if the model has been 

validated in external datasets. That way, if any underestimation or overestimation of age 

is happening with the target set, it can be identified and properly dealt with before any 

conclusions are drawn. Other means of mitigating the effect of testing models on datasets 

with different age ranges has been addressed elsewhere (33,34). 

 

3.4.1.4 Site Effects 
The dataset included contributions from 17 different sites. To investigate any biases 

associated with the different sites, we extracted the age and predicted age for each of our 

models and each of the 17 sites. We ran a two-tailed dependent t- test to compare age and 

predicted age among sites and found statistically significant differences for just 6 out of 

the 17 centers. The data are presented in Table 3 and Figure 5. In four out of the six 

significantly different centers, all views had significant differences simultaneously, thus 

suggesting that the models tend to operate in similar manner, and that an actual 

superiority of the sagittal slice model needs to be further investigated. 

 

3.4.1.5 Sex Effects 
Previous papers suggest that sex can play a role in biasing brain age prediction 

models. For that reason, we assessed how sex influenced our predictions. We executed a 

two-tailed paired t- test for age and model predictions for both males and females 

independently and found no significant differences (p < 0.03). We ran a two-tailed 
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unpaired t-test for males and females to see whether predictions or age was significantly 

different between groups, also with negative findings (p < 0.03). Table 4 summarizes our 

tests. we applied a two-tailed dependent t-test to compare group means, the test showed 

no significant differences. 

3.4.1.6 Voxel-WiseLevel Brain Age Predictions 
We investigated whether a voxel-level model could benefit from the three slice 

predictions. For each axial slice, information was gathered from each intersecting coronal 

and sagittal slice, and the combined with the axial prediction to generate an average for 

each voxel. We show an example of its use in Figure 6. We believe there is a multitude of 

applications and benefits that come with this sort of approach, such as: (1) the exploration 

of distinct brain aging patterns in different regions of the brain; these patterns do not need 

to be bounded by anatomically or functionally defined regions, (2) the investigation of 

region-specific brain aging in neuropsychiatric disorders that present a brain age gap, and 

(3) the identification of voxel- or region-specific prediction biases (e.g., regions that 

consistently present higher error). But this approach led to unstable predictions, possibly 

because the model was not being trained using voxel-level information. There were high 

frequency changes in predictions for neighboring slices; it is expected that neighboring 

slices be the opposite. This problem has been documented in deep learning patch-based 

prediction methods (35). A possible simple but sub-optimal solution is to use gaussian 

spatial smoothing to remove the high- frequency changes, as we demonstrate in Figure 6. 

We contend that future approaches may aim to develop means to mitigate the artifacts 

that come “stitching” slice-level predictions into voxel-level ones. Such a successful 

approach could improve the current model. 
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3.4.2 Independent Gray and White Matter 

To estimate the contribution of gray and white matter tissue to the prediction, we 

created another model (for axial slices) to test age predictions using gray matter and white 

matter separately. Based on the results in Figure 7, the regions that are best predictors of 

brain age are similar between gray and white matter. The model using solely white matter 

presented higher errors in most slices. Previous studies have shown that gray matter is a 

better predictor of brain age than white matter (9). 

 

3.5 Discussion and Conclusion 

Identifying the most predictive regions of the brain for brain age models may help 

interpreting results, but may also introduce model biases that are unrelated to a 

neurological condition. Our study presents a model that attempted to balance accuracy 

and interpretability of the results. Our model provides a level of scrutability for the 

decision-making process, and can thus help researchers and clinicians understand its 

limitations. 

Given the number of perspectives on interpretability for machine learning (36,37), we 

must clarify exactly what we mean by interpretability. Although the interpretability or 

explainability are commonly used to refer to strategies that explain model predictions, we 

use it more broadly to define that the final predicted brain age can be attributed to specific 

slices or regions of the brain. In case additional explanation is needed for a single slice, 

the usual strategies, carrying the limitations we discussed in section 2, should be applied. 
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We believe that for research purposes, knowing the influence of each part of the brain in 

the final prediction is imperative to guide and interpret findings of research using the 

brain age gap. 

As a whole, neuropsychiatric research on the brain age gap has mostly focused on 

associating the difference between the chronological and predicted age to clinical 

populations. Moreover, most of this research was conducted on the assumption that the 

brain age gap actually encompasses a larger brain-wide phenomenon responsible for 

accelerated brain aging. 

The body of work on the prediction of brain age at specific regions is growing, two 

contributions of which are of note in comparison to our contribution. First, a preprint 

paper (37)uses a similar approach to ours, but instead of using slices, they rely on 3d 

patches that are later combined with averages or linear regression. Second, a recently 

published approach (38) uses slice-level predictions, but instead of combining it with 

linear regression, uses a recurrent neural network for the job. 

Attention-based, especially Transformers, models, originally purposed for text-based 

modeling (39), have recently shown to offer substantial improvement on classification 

accuracy for image-based problems (40). However, at the time we developed our 

approach, attention models were more popular for text- based than image-based tasks. 

More importantly, we were not aware of any work with neuroimaging data that had 

shown substantial improvements using those approaches. Indeed, future work should 

focus on comparing the explanations we provide in terms of slides to the attention maps 

generated by attention- based models. 
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Our experiments corroborate some findings from the field. First, we showed that age 

effects are significant and should need to be accounted for in predictive models of brain 

age. Second, our results suggest that proper training and test splits that keep site data 

proportional may mitigate site effects. Third, gray matter seems to be more predictive of 

age than white matter. Interestingly, our model had similar performance in both male and 

female sex, although sex is not explicitly used by the model and no separate models were 

trained. 

Since the competition dataset was preprocessed by segmenting gray and white matter, 

future work should look at less processed data to try to replicate these results. Differences 

between the unprocessed and segmented inputs might help us understand the extent that 

possible segmentation errors may influence the behavior of models of brain age. 

 

3.6 Limitations 

The convolutional neural network fails to combine information from different regions 

of the brain due to its 2D nature. Although aggregated at later stages of our framework, 

3D CNNs might be able to capture patterns that our proposed method misses. 

We also found that the aggregated information from each slice prediction to form a 

voxel-level age prediction to be noisy enough to be unusable. Adjacent voxels had usually 

the same error but occasionally, while changing the slice index, the prediction had a 

drastic change. This behavior can probably be attributable to several issues, such as lack 

of regularization for more stable predictions or possible unidentified problems with the 

segmentation maps. 
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Figures 

 

 

Figure 1. Depiction of the brain age prediction framework. Each view has an 

independent CNN model and an independently-trained linear regression model. S is the 

number of slices and N and M are the dimensions of the slice (e.g., if evaluating the axial 

slice, the N and M are the dimensions for the sagittal and coronal views). 

 

 

Figure 2. Examples of the augmentation procedure. First row are gray matter 

segmented images before augmentation; the second row are their augmented counterparts.  
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Figure 3. Change in Mean Absolute Error (MAE) with respect to changing the slice 

that is evaluated by the network. Each slice index value are an average of either all 

training set or all validation set. The shade represents the 0.95 confidence interval for 

those points. The slices in the image are examples of the index that best or worst predicts 

brain age. 
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Figure 4. Regression curves for the validation set. Every point represents a person 

(each person is presented three times, one for each view). Dashed red orthogonal to the x-

axis is the age average of the dataset, while the horizontal dashed line is aligned to 0 error 

as a reference.  
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Figure 5. Site effects for axial, coronal, and sagittal views. For each orientation, the 

chronological age and predicted age are shown side-by-side by site.  
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Figure 6. Lightbox view of axial slices age predictions following the voxel-level 

approach. The value for σ indicates the amount of gaussian spatial smoothing applied to 

the predictions. Images on a range from 20 (red) to 60 (yellow).  
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Figure 7. Change in Mean Absolute Error (MAE) with respect to changing the slice 

that is evaluated by the network. Two independent models are evaluated, one for gray 

matter (solid lines) and another one for white matter (dashed lines). Each slice index 

value is an average of the entire training set or the entire validation set. The shade 

represents the 0.95 confidence interval for those points.  
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Tables 

Table 1. Participants information. 

Center Age mean (std) Sex (F-M) 

0 34.24 (12.67) 197 – 133 

1 26.76 (9.23) 79 – 55 

2 25.51 (12.18) 331 – 244 

3 25.76 (6.62) 18 – 129 

4 21.24 (2.01) 85 – 58 

5 31.25 (7.46) 21 – 18 

6 62.70 (6.75) 3 – 7 

7 43.44 (11.27) 15 – 10 

8 24.82 (5.16) 121 – 137 

9 49.13 (16.62) 255 – 194 

10 33.19 (11.34) 23 – 51 

11 69.92 (7.97) 9 – 9 

12 28.77 (7.77) 16 – 15 

13 41.00 (17.80) 52 – 76 

14 44.41 (22.81) 142 – 88 

15 23.27 (1.27) 16 – 3 

16 22.76 (2.80) 20 – 9 

Total 35.88 (16.21) 1,403 – 1,236 
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Table 2. Final validation results for all views. 

View Average slice 

error 

Average error Regression 

error 

𝑹𝟐 

Axial 6.28 4.88 5.09 0.82 

Coronal 6.38 4.91 5.04 0.83 

Sagittal 5.71 4.45 4.52 0.86 

Combined   4.62 0.86 

The Average Slice Error column evaluates the final error of our model by doing a simple 

average across all slices of the volume. The Average Error column uses the same 

information for the slice column, but instead of calculating the average error for each 

slice, calculates the mean prediction of all slices, and compare with the actual age. The 

Regression Error column is the error of using linear regression instead of an average to 

classify the whole volume. All values are mean absolute errors.  



Ph.D. Thesis – P. L. Ballester; McMaster University – Neuroscience.  

101 
 

Table 3. Site effects for each orientation and each site. p < 0.03 in bold. 

Site View t-Statistic p-value 

0 Axial 

Coronal 

Sagittal 

-2.825 

-1.581 

-1.985 

0.006 

0.119 

0.051 

1 Axial 

Coronal 

Sagittal 

0.829 

1.904 

1.788 

0.415 

0.068 

0.085 

2 Axial 

Coronal 

Sagittal 

3.248 

3.248 

3.097 

0.002 

0.002 

0.002 

3 Axial 

Coronal 

Sagittal 

-3.006 

-2.335 

-2.845 

0.005 

0.027 

0.008 

4 Axial 

Coronal 

Sagittal 

-5.293 

-6.040 

-5.188 

0.000 

0.000 

0.000 

5 Axial 

Coronal 

Sagittal 

-1.945 

-1.111 

-1.323 

0.093 

0.303 

0.227 

6 Axial 

Coronal 

5.178 

2.203 

0.121 

0.271 
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Sagittal 22.157 0.029 

7 Axial 

Coronal 

Sagittal 

-0.010 

1.080 

0.529 

0.092 

0.341 

0.625 

8 Axial 

Coronal 

Sagittal 

-1.436 

-1.921 

-0.957 

0.157 

0.060 

0.343 

9 Axial 

Coronal 

Sagittal 

0.698 

1.845 

0.914 

0.487 

0.068 

0.363 

10 Axial 

Coronal 

Sagittal 

0.801 

0.961 

1.675 

0.437 

0.353 

0.116 

11 Axial 

Coronal 

Sagittal 

3.146 

3.574 

1.575 

0.051 

0.037 

0.213 

12 Axial 

Coronal 

Sagittal 

0.873 

1.203 

1.387 

0.416 

0.274 

0.215 

13 Axial 

Coronal 

Sagittal 

-1.973 

-1.293 

-1.296 

0.060 

0.208 

0.207 
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14 Axial 

Coronal 

Sagittal 

4.478 

3.960 

4.114 

0.000 

0.000 

0.000 

15 Axial 

Coronal 

Sagittal 

-2.058 

-0.393 

-0.336 

0.132 

0.721 

0.759 

16 Axial 

Coronal 

Sagittal 

-0.527 

-0.858 

-0.418 

0.621 

0.430 

0.693 

  



Ph.D. Thesis – P. L. Ballester; McMaster University – Neuroscience.  

104 
 

Table 4. Sex effects for each combination of age and prediction and males and females. 

Group 1 Group 2 Variable 

1 

Variable 

2 

Test 

type 

t p-value 

Sex M Sex F Age Age I t(531) = -

1.957 

0.051 

Sex M Sex F Pred Pred I t(531) = -

2.088 

0.037 

Sex M Sex M Age Pred D t(237) = 0.558 0.578 

Sex F Sex F Age Pred D t(293) = 1.423 0.156 

All tests are two-tailed. Results presented here are for the axial orientation model in the 

validation set. Values in parentheses are the degrees of freedom for each test. I, 

independent (or unpaired); D, dependent (or paired); Pred, Prediction. 
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Abstract 

Objectives: Previous studies suggest that major depressive disorder (MDD) may be 

associated with volumetric indications of accelerated brain aging. This study investigated 

neuroanatomical signs of accelerated aging in MDD and evaluated whether brain age gap 

is associated with antidepressant response. 

Methods: Individuals in a major depressive episode received escitalopram treatment (10-

20mg/d) for 8 weeks. Depression severity was assessed at baseline and at weeks 8 and 16 

using the Montgomery-Asberg Depression Rating Scale (MADRS). Response to 

treatment was characterized by a significant reduction in the MADRS (≥ 50%). 

Nonresponders received adjunctive aripiprazole treatment (2-10mg/d) for a further 8 

weeks. The brain-predicted age difference (brain-PAD) at baseline was determined using 

machine learning methods trained on 3377 healthy individuals from seven publicly 

available datasets. The model used features from all brain regions extracted from 

structural magnetic resonance imaging data. 

Results: Brain-PAD was significantly higher in older MDD participants compared to 

younger MDD participants [t(147.35)= -2.35, p<0.03]. BMI was significantly associated 

with brain-PAD in the MDD group [r(155) = 0.19, p<0.03]. Response to treatment was 

not significantly associated with brain-PAD.  

Conclusion: We found an elevated brain age gap in older individuals with MDD. Brain-

PAD was not associated with overall treatment response to escitalopram monotherapy or 

escitalopram plus adjunctive aripiprazole. 
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4.1 Introduction 

Distributed abnormalities in brain structures are common neuroimaging findings in 

patients with a significant history of major depressive disorder (MDD) (Fu, Fan, & 

Davatzikos, 2020). Illness-associated brain changes can be detected with various 

neuroimaging measurements. For example, studies by large consortia of neuroimaging 

data collection for MDD have identified changes in fractional anisotropy, gray matter 

volume and white matter microstructure (Schmaal et al., 2020). It has been suggested that 

certain structural characteristics (e.g., reduced hippocampal volume and cortical 

alterations in frontal, occipital and cingulate regions) have potential as predictive 

biomarkers in the context of treatment response to antidepressant use and recurrence of 

MDD (Kang & Cho, 2020). However, due to inconsistent findings, whether structural 

information can be predictive of treatment response is still unknown. So far, cortical 

thickness and volumes of certain brain regions have been linked to antidepressant 

response in some studies (Bartlett et al., 2018; Jung et al., 2014) but not others (Suh et al., 

2020). 

Studies of brain age gap estimation (brainAGE) suggest a hypothesis of accelerated 

brain aging in neuropsychiatric disorders (Dunlop, Victoria, Downar, Gunning, & Liston, 

2021; Han et al., 2020, 2021; Teeuw et al., 2021). The hypothesis posits that a greater gap 

between the chronological age and estimated brain age is associated with unfavorable 

clinical outcomes in patients with neuropsychiatric illnesses. The brain-predicted age 

difference (brain-PAD; the difference between chronological age and estimated brain age) 

has been associated with several clinically meaningful variables, such as mortality risk 
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and fluid intelligence (J. H. Cole et al., 2018). Additionally, brain-PAD has been 

consistently identified in psychotic disorders and neurological diseases (Franke & Gaser, 

2012; Gaser et al., 2013; Koutsouleris et al., 2014; Nenadić, Dietzek, Langbein, Sauer, & 

Gaser, 2017; Schnack et al., 2016). In this context, brain-PAD has also been associated 

with clinical scales, such as the positive and negative syndrome scale (PANSS) in 

schizophrenia (Kay, Fiszbein, & Opler, 1987), the mini-mental state examination 

(MMSE) in mild cognitive impairment and dementia (Folstein, Folstein, & McHugh, 

1975), and the expanded disability status scale (EDSS) in multiple sclerosis (Kurtzke, 

1983). In all significant associations between brain-PAD and clinical symptoms, a larger 

brain-PAD was associated with worse clinical outcomes (Kaufmann et al., 2019). There 

may also be an effect of age on brain-PAD, such that it is more pronounced in older 

compared to young/mid-life individuals (Christman et al., 2020). 

Recently, brainAGE studies have begun to investigate this hypothesis of accelerated 

brain aging in MDD. The findings so far have been inconclusive, with some studies 

claiming to have identified signs of accelerated aging in MDD and others indicating the 

opposite (Besteher, Gaser, & Nenadić, 2019; Christman et al., 2020; Kaufmann et al., 

2019; Schmaal et al., 2020). A subgroup comparison of medication-free individuals with 

MDD versus those currently on medications found no differences in brain-PAD (Han et 

al., 2020) and there is scarce information regarding associations with other clinical 

characteristics. The disagreements of the field may be attributed to previously identified 

limitations of imaging research in MDD, such as: (1) the heterogeneity of MDD 

presentation; (2) variation of clinical characteristics among cohorts; (3) limited sample 
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size; (4) methodological and scanner variability; and/or (5) medication use (type, dosage, 

duration). Additionally, any time-sensitive relationship between antidepressant use, 

clinical scales and brain-PAD in MDD has yet to be explored. Finally, epigenetic findings 

suggest that biological age gaps may be more easily identified in older samples, which 

also contributes to disagreements in the field (Fries et al., 2020, 2017).  

The neuroanatomical markers used for brain age prediction might capture relevant 

characteristics of an individual's brain health (James H. Cole, Marioni, Harris, & Deary, 

2019). A recent study found that brain-PAD in MDD was lower in patients using 

antidepressants compared with medication-free patients (Han et al., 2021). At a functional 

level, brain-PAD was associated with impulsivity and disorder severity (Dunlop et al., 

2021). All of these findings may be partly explained by an overall worse treatment 

response throughout the lifespan of the participants, as the lack of neuroprotection from 

treatment might be one of the factors in accelerated brain aging (Young, 2002). Another 

study found that older individuals were less likely to respond to escitalopram treatment 

when they exhibited greater white matter hyperintensities (Gunning-Dixon et al., 2010), 

which in turn have been associated with advanced brain aging (Habes et al., 2021). 

However, no previous studies have explicitly tested whether brain age gap itself is a 

useful biomarker for antidepressant treatment response. Therefore, the current study aims 

to address two major questions in the literature regarding the brain-PAD and MDD: (1) 

are there neuroanatomical signs of accelerated brain aging in MDD, and (2) is brain-PAD 

a useful biomarker of treatment response in MDD? We hypothesized that MDD 

participants would display larger brain-PAD values than HC. Based on previous research 
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outlined above, in conjunction with the observation of worse clinical outcomes being 

linked to larger brain-PAD (Kaufmann et al., 2019), we also hypothesized that larger 

brain-PAD will be associated with worse treatment response. 

 

4.2 Methods 

4.2.1 Participants 

Data were collected from participants in the Canadian Biomarker Integration 

Network in Depression (CAN-BIND) study (Kennedy et al., 2019; Lam et al., 2016). 

Recruitment was conducted at six academic centers across Canada. The details of 

recruitment strategy and full spectrum of clinical assessments have been previously 

published (Lam et al., 2016). Briefly, outpatients meeting DSM-IV-TR criteria for a 

major depressive episode, aged 18-60 and free of psychotropic medications for at least 5 

half-lives were recruited for the treatment group if they scored greater or equal to 24 on 

the Montgomery-Asberg Depression Rating Scale (MADRS) (Montgomery & Asberg, 

1979). The six academic centers and their sample sizes were: Centre for Addiction and 

Mental Health (CAMH; HC=7, MDD=5), McMaster University (HC=19, MDD=27), The 

University of British Columbia (UBC; HC=12, MDD=49), Toronto General Hospital and 

Toronto Western Hospital (HC=23, MDD=39) University of Calgary (HC=35, 

MDD=25), and Queen’s University (HC=15, MDD=15). Major exclusion criteria 

included another primary diagnosis of a psychiatric disorder, high suicidal risk, substance 

dependence/abuse in the past 6 months, current psychosis, treatment resistance (failure of 

4 pharmacologic interventions) or previous failure to respond to escitalopram or 
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aripiprazole. Age-matched healthy comparison (HC) participants were required to have 

no history of psychiatric or any unstable medical condition. The full list of inclusion and 

exclusion criteria can be found elsewhere (Lam et al., 2016). Participants in the treatment 

group that had complete clinical data up to week 16 and complete imaging data at 

baseline were included in the analysis. Participants in the HC group that had complete 

data at baseline (clinical and imaging) were also used for the analysis.  

 

4.2.2 MRI data acquisition 

The MRI data acquisition and preprocessing protocols have been previously 

published (MacQueen et al., 2019). Briefly, 3T images were obtained using four different 

scanners at six sites: Discovery MR750 3.0T (GE Healthcare, Little Chalfont, 

Buckinghamshire, UK), Signa HDxt 3.0T (GE Healthcare, Little Chalfont, 

Buckinghamshire, UK), TrioTim 3.0T (Siemens Healthcare, Erlangen, Germany), and 

Intera 3.0T (Philips Healthcare, Best, Netherlands). Structural T1-weighted images were 

acquired using a whole-brain turbo gradient echo sequence with the following ranges of 

parameters: acquisition time = 3:30-9:50min, repetition time (TR) = 6.4-1760ms, echo 

time (TE) = 2.2-3.4s, flip angle = 8-15 degrees, inversion time (TI) = 450-950ms, field of 

view (FOV) = 220-256mm, acquisition matrix = 256x256 – 512x512, 176-192 contiguous 

slices at 1mm thickness with voxel dimensions of 1mm isotropic. For an initial quality 

assurance step, raw images were manually checked for artifacts and efforts were made to 

re-scan participants as necessary, as permitted by study timeline. 
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4.2.3 Treatment protocol 

MDD participants were free of psychotropic medication for at least five half-lives 

before entering the study. MDD participants were offered an open-label treatment, 

escitalopram 10-20 mg, flexible dosage, as a monotherapy for 8 weeks (Lam et al., 2016). 

Participants who demonstrated a ≥ 50% reduction in their MADRS scores as compared to 

their baseline measurements were considered responders to first-line antidepressant 

treatment and continued the same treatment for the second 8-week period of the study. 

Participants who did not respond to 8-week escitalopram monotherapy were prescribed 

aripiprazole 2-10 mg as an adjunctive therapy for the 8 additional weeks (Lam et al., 

2016). In addition to the continuous variables of MADRS score changes at weeks 8 and 

16, a dichotomous classification of treatment response was defined at each timepoint as 

the change in MADRS score equal or greater than 50% of the baseline value. 

 

4.2.4 Brain age estimation 

A brain age package available for R (brainageR; v2.1) was used for the prediction of 

brain age for every individual with available neuroimaging data at baseline. The complete 

steps to reproduce the brain-PAD values using the brainageR package are available at 

GitHub4. In summary, the package is based on previously published approaches and uses 

SPM12 for segmentation and spatial normalization (J. H. Cole et al., 2018). Images are 

segmented into grey matter, white matter, and cerebrospinal fluid compartments, which 

then undergo normalisation to MNI space using DARTEL. The normalized images were 

 
4 https://github.com/james-cole/brainageR 
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handled in R using the RNifti package. Principal component analysis (PCA) is used to 

retain 80% of the variance for dimensionality reduction and overfit prevention. After 

PCA transformation, a gaussian process regression (GPR) model from the kernlab 

package generates the brain age value (Karatzoglou, Smola, Hornik, & Zeileis, 2004). 

The GPR model was trained using 3377 healthy comparison participants from several 

neuroimaging databases in an attempt to build a model that is invariant to scanner effects 

and perform well across a wide range of ages [mean age = 40.6 (21.4) years, range 18-92 

years]. The databases included in the brainageR model were the following: Australian 

Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL), Dallas Lifespan Brain 

Study (DLBS), Brain Genome Superstruct Project (GSP), Information eXtraction from 

Images (IXI), Nathan Kline Institute Rockland Sample Enhanced (NKI-Rockland), Open 

Access Series of Imaging Studies-1 (OASIS-1), and Southwest University Adult Lifespan 

Dataset (SALD) (Ellis et al., 2009; Holmes et al., 2015; Marcus et al., 2007; Nooner et 

al., 2012; Wei et al., 2018). More detailed information on brainageR and its training sets 

is available in the supplement material. The brain-PAD is thus the individual difference 

between the predicted value generated by the pre-trained GPR model and the 

chronological age of the participant. The model was not trained with any of the scans 

from the CAN-BIND database to prevent biased results. All analyses used brain-PAD 

generated with CAN-BIND baseline images, since changes in brain age during the 16-

week period were likely to be minimal. Table 1 displays the results for the GPR brain age 

prediction model in mean absolute error (MAE; the mean absolute difference between 

predicted and expected values) for the CAN-BIND sample. 
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4.2.5 Statistical analysis 

Statistical analyses were performed in R (3.6.3). Outlier predictions of brain age 

(based on the brain-PAD) were removed following the interquartile range (IQR) criterion, 

otherwise known as Tukey’s box-plot method (Shevlyakov et al., 2013). Individuals with 

a brain age gap smaller than Q1 - 1.5*IQR or larger than Q3 + 1.5*IQR were removed 

from analyses, where Q1 and Q3 are the values for the first and third quartile, 

respectively. 

Group differences of brain-PAD between the MDD and HC groups were assessed 

following Welch's two sample t-test to avoid formal testing of equal variance for every 

comparison. For individual items of the MADRS, absolute instead of relative change of 

each item at weeks 8 and 16 were used due to zeros at baseline. The statistical 

significance of associations between absolute change of individual items of the MADRS 

score and brain-PAD were assessed using Pearson correlations and Bonferroni-corrected 

for multiple comparisons. For MADRS items that were identified to have significant 

associations with brain-PAD, an additional multiple regression analysis was conducted to 

include covariate terms: age, sex, site, BMI, and treatment arm (escitalopram or 

escitalopram + aripiprazole), and baseline values of the item. All correlations are 

reported, but findings from the multiple regression analyses should be regarded as most 

reliable due to the correction for important covariates. 

It should be noted that, in general, brain age prediction models suffer from an age 

bias. Specifically, brain age prediction models often overestimate the brain age of 
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individuals who are younger than the mean age of the training set and underestimate brain 

age for those who are older. Ideally, brain-PADs should be close to 0 throughout the 

lifespan in HC to be an adequate point of comparison for assessing accelerated aging in 

clinical populations. A bias-adjustment procedure is required to mitigate this issue by 

removing the age-dependency of brain-PADs in HC (Beheshti, Nugent, Potvin, & 

Duchesne, 2019). We generated brain-PAD values for our HC sample which were used to 

fit a regression model with age as the independent variable and brain-PAD as the 

dependent variable; the age coefficient and intercept were then used to correct brain age 

predictions and mitigate age-related prediction bias. The age-corrected brain age (𝑎𝑔𝑒*+) 

for a participant is given by 𝑎𝑔𝑒+ − (𝛽 ∗ 𝑎𝑔𝑒* + 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡), where 𝑎𝑔𝑒+is the 

uncorrected predicted brain age and 𝑎𝑔𝑒* is the chronological age. The corrected brain-

PAD is subsequently given by 𝑎𝑔𝑒*+ 	− 	𝑎𝑔𝑒* . These age-corrected brain-PAD values 

were used in all subsequent analyses. 

In Table 1, we present the performance metrics of the brain age model with and 

without correction in our dataset. Importantly, although age-corrected values are more 

reliable for comparisons between clinical groups and the investigation of clinical 

outcomes, performance metrics of age predictions are artificially inflated by the age-

correction procedure (Butler et al., 2020). Thus, uncorrected brain-PAD values provide a 

better indication of age prediction errors than the age-corrected ones. To test the 

dependence of age on brain-PAD, we separated all participants from the MDD group into 

two cohorts, those who were below or above the median age of the MDD group (33 

years). This resulted in two subgroups: the younger group, below 33 years of age (mean 
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age = 25.57 (4.72)) and the group older than the median age (mean age = 46.99 (7.98)). A 

similar procedure was performed for the HC group (mean ages 26.06 (3.87) and 44.98 

(7.92) for the younger and older group, respectively), using the median of the MDD 

group. The median age was chosen due to previous work that have identified signs of 

accelerated aging in older, but not younger participants with MDD (Christman et al., 

2020). In addition, splitting the groups by the median age also aligns our study with a 

previously published methodology studying hippocampal epigenetic aging (Fries et al., 

2020). Pearson correlations of age and brain age (both uncorrected and age-corrected) 

were calculated for each of the four groups. As uncorrected brain age predictions suffer 

from age-bias, we expected to find significant differences of brain-PAD in both analyses 

for the MDD group, but only in the uncorrected analysis for the HC group.  

 

4.3 Results 

4.3.1 Demographics and clinical characteristics 

A total of 160 participants in the MDD group completed the 16-week follow-up and 

had neuroimaging data collected at baseline. For the HC group, 111 participants 

completed baseline clinical and neuroimaging data. Table 2 describes the characteristics 

of the study sample. There were no significant differences in demographic variables. Only 

a single participant was removed during the outlier removal procedure (brain-PAD=22.88 

belonging to the MDD group).  
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4.3.2 Brain-PAD group differences 

There were no differences in brain-PAD between HC and MDD groups at baseline 

(t(225.51) = -0.86, p = 0.39). The findings remained non-significant with and without 

outlier removal and before and after correction for age-related prediction bias. 

 

4.3.3 Age-dependent brain-PAD differences 

As expected for uncorrected values (Beheshti et al., 2019), the HC group exhibited 

overestimation of brain age in younger participants (+1.63 (SD=6.85)) and 

underestimation in older participants (-2.72 (SD=6.90)). The difference of brain-PAD 

between older versus younger controls was significant (t(83.394)= 3.22, p< 0.01). The 

same pattern was identified in the MDD group: overestimation in the younger group 

(+1.40 (SD=6.25)) and underestimation in the older group (-1.28 (SD=6.95)). This 

difference was also statistically significant (t(148.18)= 2.54, p<0.03). Importantly, when 

testing group differences, corrected brain-PAD values are more reliable because they 

remove the age-dependency of uncorrected values (Beheshti et al., 2019). When using 

age-corrected brain-PAD, the difference between older and younger HC is no longer 

significant [t(85.88)= -0.12, p= 0.91], which indicates that the age-correction method 

properly removed the age-dependency. The difference between older and younger MDD 

participants is significant after age-correction [t(147.35)= -2.35, p<0.03]. The younger 

MDD subjects exhibited mean brain-PADs close to 0 (-0.40 (6.07)), while the older MDD 

subjects exhibited a brain-PAD of +2.02 (6.83). The association between brain-PAD and 

age was significant in the full MDD group [r(157)=0.17, p=0.017]. Similarly, the 



Ph.D. Thesis – P. L. Ballester; McMaster University – Neuroscience.  

120 
 

association between brain-PAD and age2 was also significant in the full MDD group 

[r(157)=0.18, p=0.011] group (Figure 1). 

BMI was significantly associated with age-corrected brain-PAD in MDD [r(155) = 

0.19, p< 0.03]. This replicates a previous finding that BMI is associated with larger brain-

PAD in some psychiatric disorders (Kolenic et al., 2018). Illness duration was not 

associated with age-corrected brain-PAD in MDD.  

 

4.3.4 Association of brain-PAD with treatment response 

There was no difference in brain-PAD between responders and nonresponders at 

either week 8 or week 16, before or after correction for age bias. A secondary analysis 

was conducted using individual items of the MADRS at week 16. Only reported sadness 

showed an association with brain-PAD after outlier removal [r(157)= 0.22, p< 0.01]. 

After controlling for baseline values of reported sadness, site, age, sex, BMI, and 

treatment arm in a multiple linear regression model and a Bonferroni correction 

considering all MADRS items, this association was no longer significant (padj= 0.052). 

Additionally, an interaction between changes in reported sadness and response status 

(responder or nonresponder) including all covariates was conducted. The interaction term 

of that analysis was not significant. 

 

4.4 Discussion 

The present study examined brain-PAD in medication-free individuals with MDD 

and its association with subsequent antidepressant treatment response. We found that age-
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corrected brain-PAD was significantly larger than controls in older but not in younger 

individuals with MDD. These findings are consistent with previous neuroimaging studies 

(Christman et al., 2020; Han et al., 2020; Koutsouleris et al., 2014), as well as epigenetic 

studies showing larger epigenetic age gaps in older individuals with neuropsychiatric 

disorders (Fries et al., 2020, 2017). This finding contrasts with studies in individuals 

diagnosed with schizophrenia, where the highest rates of accelerated aging were observed 

in the first few years after disease onset (Schnack et al., 2016). 

We found no association between brain-PAD and overall treatment response, as 

defined as a decrease in MADRS total scores. Interestingly, brain-PAD was highly 

correlated with changes in reported sadness, a single item of the MADRS. Reported 

sadness explained 60% of the variance of total MADRS scores (R2 = 0.61) and represents 

a core symptom of depression. Ultimately, the link between brain-PAD and changes in 

reported sadness may suggest that brain-PAD reflects only certain dimensions of 

depression and treatment response to antidepressants. Other variables that were explored 

as covariates, including sex, site, and BMI, did not affect the significance of the findings. 

However, BMI was independently associated with brain-PAD in both the full MDD 

group and the older subgroup, but more strongly with the older subgroup. This supports 

the hypothesis of an additive effect of BMI and psychiatric disorders in brain-PAD 

(Kolenic et al., 2018). 

Brain-PAD has been previously associated with clinically meaningful variables, such 

as increased mortality risk (J. H. Cole et al., 2018) and cognitive decline (Elliott et al., 

2019), possibly mediated by lifestyle choices, such as meditation (Luders, Cherbuin, & 
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Gaser, 2016). Brain-PAD has also been shown to be associated with dementia risk and the 

conversion from mild cognitive impairment to Alzheimer’s disease, suggesting its 

applicability in the screening for dementia (Gaser et al., 2013; Wang et al., 2019). In 

depression, brain-PAD is associated with the severity of depressive symptoms and 

impulsivity (Dunlop et al., 2021). Similar findings for illness severity were observed in 

schizophrenia as measured by the PANSS (Kaufmann et al., 2019). Some of the 

associations observed in schizophrenia are only present when brain age is predicted using 

specific brain regions, an approach affording greater statistical power. Longitudinal 

assessments in schizophrenia also point to an increased rate of brain aging right after 

illness onset that decreases over time, still resulting in higher brain age later in life due to 

cumulative effects (Schnack et al., 2016). Taken together, these studies not only 

demonstrate the similarities in brain-PAD findings across disorders, but also highlight 

potential applications of brain-PAD in investigating etiology, treatment and diagnosis of 

MDD. In MDD, some remaining gaps include determining conversion of MDD to other 

psychiatric disorders, prediction of treatment response with region-specific brain-PAD 

and longitudinal changes in brain-PAD. 

Our study has some limitations. First, the mean absolute error of the brain age 

predictions is larger than what was reported in the original test set for the software 

package, possibly due to scanner variability in this sample. A possible step for improving 

the prediction error would be to run separate models for males and females (Ritchie et al., 

2018), which would require a larger sample size. Beyond improving predictions, our 

findings may also have been different with other proportions of males and females. 
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Evidence suggests that male brains appear to be metabolically older than female brains 

and that the male brain age is more dependent on individual health (Franke, Ristow, 

Gaser, & Alzheimer’s Disease Neuroimaging Initiative, 2014; Goyal et al., 2019). We 

may also have encountered type II error, given correction for the large number of 

comparisons. Important mediator links that have not been investigated in this study may 

influence findings, such as: lifestyle factors, including exercise (Steffener et al., 2016) 

and meditation (Luders et al., 2016), tobacco smoking, and alcohol consumption (Ning, 

Zhao, Matloff, Sun, & Toga, 2020). Overall, the CAN-BIND study had a relatively young 

sample of participants with MDD, which may lead to findings that are not generalizable 

across the lifespan and are more relevant for earlier in the course of illness. 

Future studies should conduct further age-dependent brain-PAD analyses in MDD to 

characterize the relationship between age and brain-PAD more precisely. This can include 

additional analyses for nonlinear associations between brain-PAD and age, which can 

subsequently be compared between cases and controls. As suggested by findings in 

Figure 1, higher-order associations between brain-PAD and age are promising and may 

exhibit better fit, as brain structure is known to display nonlinear developmental 

trajectories (Fjell et al., 2013). Additionally, future studies should analyze dimensions of 

clinical scales of MDD with brain-PAD using region-based predictions, particularly those 

that measure affective symptoms. Further, although we did not observe a significant 

relationship between brain-PAD and illness duration, the question of whether accelerated 

aging is related to age of onset is still a promising avenue of research as demonstrated by 

previous findings in schizophrenia (Schnack et al., 2016). Future studies with larger 
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samples and longer follow-up could test this hypothesis in MDD, as the effect may be 

more difficult to detect due to clinical heterogeneity, as well as the more subtle brain 

changes that are typically observed in MDD in comparison with what is seen in 

psychosis.  

 

4.5 Conclusion 

This study found a greater brain-PAD for older individuals compared to the younger 

in the MDD group. No significant associations between brain-PAD and overall 

antidepressant treatment response were found. Future work should probe further 

associations of brain-PAD with other dimensions of the depressive illness and investigate 

age-dependent rates of accelerated aging longitudinally. 
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Figure 1. Associations between age-corrected brain-PAD and chronological age for 

healthy control and treatment groups. On the left, chronological age is significantly 

associated with brain-PAD in the treatment group. Similarly, on the right, chronological 

age2 was significantly associated with brain-PAD in the treatment group. Outliers have 

been removed from this analysis. 
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Table 1. Model parameters for the prediction of brain-PAD within the MDD and HC 

groups, with and without age-correction. Note that the corrected versions are likely 

artificially inflated due to CAN-BIND examples being used for correction. For 

comparison purposes, the original model presented a test set performance (based on a 

random subset of the data) of r = 0.973, mean absolute error = 3.933 years, R^2 = 0.946. 

Metric Correction for age HC (N=111) MDD (N=160) 

Mean Absolute 

Error 

Uncorrected 5.82 5.35 

Corrected 5.58 5.29 

r 
Uncorrected 0.78 0.86 

Corrected 0.85 0.90 

R2 
Uncorrected 0.60 0.73 

Corrected 0.72 0.82 
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Table 2. Demographic characteristics of the study sample 

 
Control 
(N=111) 

Treatment 
(N=160) Total (N=271) p-value 

Age    0.074 
   Mean (SD) 33.05 (10.78) 35.68 (12.60) 34.60 (11.94)  
   Range 18.00 - 60.00 18.00 - 61.00 18.00 - 61.00  
Sex    0.806 
   Female 71 (64.0%) 100 (62.5%) 171 (63.1%)  
   Male 40 (36.0%) 60 (37.5%) 100 (36.9%)  
Predicted brain age    0.052 
   Mean (SD) 33.07 (10.59) 35.94 (12.78) 34.76 (11.99)  
   Range 14.54 - 59.77 12.94 - 75.72 12.94 - 75.72  
Brain-PAD    0.783 
   Mean (SD) 0.02 (7.16) 0.26 (6.81) 0.16 (6.94)  
   Range -15.49 - 18.80 -13.39 - 17.07 -15.49 - 18.80  
Predicted brain age 
(c)1 

   0.050 

   Mean (SD) 33.05 (12.69) 36.55 (15.43) 35.11 (14.45)  
   Range 11.41 - 65.45 10.53 - 81.88 10.53 - 81.88  
Brain-PAD (c)    0.298 
   Mean (SD) 0.00 (6.68) 0.86 (6.74) 0.51 (6.72)  
   Range -13.91 - 18.29 -13.45 - 22.88 -13.91 - 22.88  
MADRS2 score    < 0.001 
   Mean (SD) 0.84 (1.69) 29.89 (5.48) 17.99 (14.96)  
   Range 0.00 - 10.00 21.00 - 47.00 0.00 - 47.00  
MADRS change at 
week 16 

    

   Mean (SD) NA -19.46 (8.89) -19.46 (8.89)  
   Range NA -47.00 – 10.00 -47.00 - 10.00  
     

1. (c) stands for age-corrected values 

2. MADRS: Montgomery-Asberg Depression Rating Scale 

  



Ph.D. Thesis – P. L. Ballester; McMaster University – Neuroscience.  

138 
 

Chapter 5: Gray matter volume and ventricle size drive the brain 
age gap in schizophrenia: A SHAP study 
 

Pedro L. Ballester1; Jee Su Suh1, James P. Reilly2, Benicio N. Frey3,4 

 

1. Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada 

2. Department of Electrical and Computer Engineering, McMaster University, Hamilton, 

Ontario, Canada 

3. Department of Psychiatry and Behavioural Neurosciences, McMaster University, 

Hamilton, Ontario, Canada 

4. Mood Disorders Treatment and Research Centre, and Women's Health Concerns 

Clinic, St. Joseph's Healthcare, Hamilton, Canada 

 

The chapter in its entirety has been submitted to the Schizophrenia journal. 

 

Ballester, P. L., Suh, J. S., J.P. Reilly, B.N. Frey. Gray matter volume and ventricle size 

drive the brain age gap in schizophrenia: A SHAP study. Under review.  



Ph.D. Thesis – P. L. Ballester; McMaster University – Neuroscience.  

139 
 

Abstract 

Brain age is a neuroimaging biomarker that is generated by machine learning 

predictions. The brain age gap (BAG) is typically defined as the difference between the 

brain age prediction and chronological age. Studies have consistently reported a positive 

BAG in individuals with schizophrenia (SCZ). However, there is little understanding of 

which specific factors drive the machine learning-based brain age predictions, leading to 

limited biological interpretations of the BAG. We gathered data from three publicly 

available databases - COBRE, MCIC, and UCLA - and calculated brain age with pre-

trained gradient-boosted trees. Then, we applied SHapley Additive Explanations (SHAP) 

to identify which brain features influence brain age predictions. We investigated the 

interaction between the SHAP score for each feature and group as a function of the BAG. 

These identified total gray matter volume (group x SHAP interaction term b=2.36 [1.16; 

3.56]; pcorr < 0.01) and right lateral ventricle volume (b=1.02 [0.30, 1.74]; pcorr < 0.05) as 

the two features that most influence the BAG observed in SCZ. Other brain features also 

presented differences in SHAP values between SCZ and HC, but they were not 

significantly associated with the BAG. This study has important implications in the 

understanding of brain age prediction models and the BAG in SCZ and, potentially, in 

other psychiatric disorders.  

 

Keywords: brain age; brain age gap; machine learning; model explanation; 

schizophrenia. 
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5.1 Introduction 

Schizophrenia (SCZ) is a major psychiatric disorder characterized by psychotic 

episodes, marked alterations in cognition and impaired functioning with high rates of 

disability1. Brain imaging studies have shown that schizophrenia presents a chronic 

course accompanied by progressive brain alterations, such as gray and white matter 

volume loss and ventricle enlargement2–4. Some of these alterations have been postulated 

to be associated with a process named “accelerated aging”5,6. This hypothesis has led to a 

growing number of studies evaluating brain patterns suggestive of accelerated aging in 

psychotic and other major mental disorders6–9. These analyses involve the training of 

machine learning (ML) regression models to generate brain age predictions. The ML 

models are trained with structural neuroimaging data from healthy individuals paired with 

their chronological age. The underlying assumption is that the brain age of healthy 

individuals should match their chronological age. It was then demonstrated that these 

models overestimate brain age in individuals with SCZ (i.e., their brain age, based on ML 

model predictions, is higher than their chronological age)8,10–12. This difference between 

predicted brain age and chronological age is called the brain age gap (BAG). Meta-

analyses of BAG in SCZ found that it was associated with chronological age13, and 

longitudinal findings have demonstrated that the BAG increases in the first few years 

after illness onset6. 

At first glance, these findings support the hypothesis of the neurobiological theory of 

accelerated aging in schizophrenia14. However, the reasons behind these increased 

prediction values have yet to be explored. Thus far, studies have solely investigated 
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model-level explanations by extracting feature importance metrics from ML models, 

summarizing the contribution of all training data15,16. These findings have identified the 

thickness of cortical areas, the size of the ventricles, and the volume of subcortical 

regions such as the thalamus and the putamen as the most relevant features for brain age 

prediction. The feature relevance analyses published thus far carry two limitations: 1) 

model-level feature importance precludes any investigation of whether or how certain 

features differentially contribute to individual model predictions; and 2) the most relevant 

features for the prediction of brain age in healthy subjects or in individuals with SCZ may 

not be the same features that are associated with the BAG in SCZ. Participant-level 

explanations may help circumvent both limitations. SHapley Additive exPlanations18 

(SHAP) is a participant-level explanation method that measures the marginal contribution 

of each feature to a given prediction generated by a tree-based nonlinear model. In other 

words, SHAP values are obtained for all features for each individual participant, resulting 

in a data matrix of the same dimensions as the original dataset of imaging features. 

Therefore, SHAP values can: 1) enable the comparison of the mean and standard 

deviation of SHAP values of brain features between groups; and 2) enable a more 

granular characterization of the relationships between BAG and the influence of 

individual features on each participant’s brain age prediction. 

Given the consistent findings of larger BAG in SCZ but with little understanding of 

the behavior of the brain age prediction models, we used 3 publicly available datasets 

(COBRE, MCIC, UCLA) with individuals with SCZ and healthy comparison participants 

(HC) to understand what drives the BAG in SCZ using SHAP values. Our primary 
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objective was to identify which features from the brain age model more strongly drive the 

higher BAG in SCZ. Our secondary objectives were: 1) to replicate previous findings on 

the positive BAG observed in SCZ and 2) to estimate the group differences in feature 

contributions (SHAP values) to the brain age prediction.  

 

5.2 Results 

5.2.1 Group differences in brain age gap (BAG) 

The mean absolute errors (MAE) of the brain age prediction model for HC in the 

COBRE, MCIC, and UCLA datasets were 7.21, 5.61, and 8.02 years, respectively. Their 

respective mean absolute percentage errors were 21.87%, 16.84%, and 28.16%, with 

Pearson correlations of r=0.71 (p<0.01); r=0.80 (p<0.01); and r=0.73 (p<0.01) between 

predicted brain age and chronological age. The group difference in BAG was significant 

in two of the three datasets, after adjusting for chronological age and sex. For COBRE, 

the group term was significantly associated with BAG (b= 4.80 [2.40; 7.20]; p < 0.01), 

with SCZ presenting a higher BAG than HC; chronological age was also significantly 

associated with BAG (b=-0.27 [-0.36; -0.17]; p < 0.01). The results were similar for the 

MCIC dataset: the SCZ group exhibited a larger BAG compared to HC (b=6.87 [4.67; 

9.04]; p < 0.01) and age was also significantly associated with the BAG (b=-0.11 [-0.21; -

0.02], p < 0.03). However, in the UCLA dataset, the BAG was not associated with group 

(b=2.10 [-0.40; 4.54]; p=0.10), but it was significantly associated with both age (b=-0.15 

[-0.27; -0.03]; p < 0.03) and sex (b=-3.67 [-5.87; -1.46]; p < 0.01). 
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5.3 Group differences in SHAP values for brain age prediction 

Following the generation of brain age predictions, we calculated the SHAP value for 

each feature, i.e., the absolute value of its contribution to the brain age prediction, for 

each participant. These absolute values were then averaged over all participants, 

regardless of group, in each dataset. The top ten most relevant features based on mean 

absolute contribution to the prediction were extracted from all three databases. The union 

of the top 10 most relevant features of each database led to a total of 11 features. Mean 

SHAP values for these 11 features were compared between SCZ and HC (Figure 1). We 

adjusted for multiple comparisons with the false discovery rate method. The SHAP for 

total gray matter volume was the only variable that was consistently different between 

groups across the three datasets (pcorr < 0.05). For the COBRE dataset, the group 

difference in SHAP values was additionally significant for volume of the right putamen. 

For the MCIC dataset, the following features exhibited SHAP values that were also 

significantly different between groups: volumes of the brain stem and right thalamus, and 

thickness of both the right superior temporal sulcus (ventral anterior and dorsal posterior 

parts) and the left superior temporal sulcus (ventral posterior part). In the UCLA dataset, 

no mean SHAP value other than that of total gray matter volume was significantly 

different between groups. 

 

5.4 BAG as a function of group and SHAP 

All three databases were combined to test the interaction between the mean SHAP 

values of each feature and group with respect to the BAG. This analysis identified brain 
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features whose contributions to brain age prediction were more strongly associated with 

the BAG in one group more than in the other. For each of the 11 top brain features 

identified in the previous section, we tested a model of the relationship between BAG and 

the group x SHAP interaction, with group, SHAP, age, sex, and database as independent 

variables. In this analysis, only two group x SHAP interactions were significant: total 

gray matter volume (b=2.36 [1.16; 3.56]; pcorr < 0.01) and right lateral ventricle (b=1.02 

[0.30, 1.74]; pcorr < 0.05). The univariate relationships between 1) BAG and SHAP values 

of total gray matter volume and 2) BAG and SHAP values of right lateral ventricle 

volume are displayed in Figure 2. 

 

5.5 Discussion  

The findings from this study shed light on the brain features underlying the 

consistent, yet mechanistically poorly understood, finding of a positive BAG in SCZ. 

Using SHAP analyses, we found that total gray matter volume and right lateral ventricle 

volume were the strongest features influencing the BAG in SCZ. The thickness of the 

bilateral superior temporal sulcus and the volumes of certain subcortical structures - brain 

stem, putamen, and thalamus - also differed in SHAP values between SCZ and HC, but 

these respective interactions did not seem to be associated with the BAG. These findings 

have important implications in the way we interpret the BAG in SCZ and, possibly, other 

psychiatric disorders. 

The strongest interaction signal in the BAG analysis came from the SHAP for total 

gray matter volume. The second strongest signal from the interaction analysis was the 
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SHAP for the right ventricle volume. These results are aligned with a large body of 

research describing both gray matter reduction and ventricle enlargement in SCZ20–23. 

Total gray matter volume reduction has been widely reproduced in SCZ research2 as well 

as being associated with the natural process of aging24. Ventricle enlargement is also a 

product of gray matter volume loss, as CSF fills the space vacated by impacted areas25,26. 

These two related features represent large portions of the brain, which may partly explain 

their contribution to the BAG in SCZ. Likewise, other interactions with features 

representing smaller portions of the brain might exist that were not significant in our 

analysis due to the limitations imposed by the resolution of the MRI data and/or a 

stringent correction for multiple comparisons. Based on current pipelines of brain age 

prediction in SCZ, the BAG is mostly a reflection of the alterations observed in these two 

brain features. Moreover, our analysis revealed at least two other characteristics of the 

relationship between the BAG and brain age predictions. First, the feature importance 

order for brain age prediction (ranks from Figure 1) does not determine the most relevant 

features for BAG group differences. For instance, the top 3 variables for brain age 

prediction (third ventricle volume, right hemisphere dorsal posterior superior temporal 

sulcus, and left hemisphere ventral posterior superior temporal sulcus) had no significant 

interaction with group when regressed on the BAG, meaning they did not influence the 

BAG in SCZ more than in HC. Secondly, group differences in SHAP values of certain 

features (p-values from Figure 1) do not reflect the influence of those features on the 

BAG observed in SCZ. For instance, the right lateral ventricle volume was one of the two 

significant variables driving the BAG in SCZ as per the interaction analysis, but there 
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were no statistically significant differences in SHAP values of this variable between SCZ 

and HC in any dataset. 

Beyond providing an explanation for the BAG in SCZ, our analyses have also 

contributed to the understanding of the behavior of brain age prediction models in SCZ. 

Our first analysis replicated previous findings of BAG in SCZ. Most previous studies, 

with a few exceptions in epigenetic analyses27,28, have consistently demonstrated patterns 

suggesting “accelerated aging” in SCZ6–8,10,11. Although the UCLA dataset did not present 

a significant group difference in BAG, it also has the smallest sample size and an age-

matching issue. Our secondary analysis presents a novel finding that the SHAP values of 

certain brain features differ significantly between HC and SCZ, which indicates that the 

ML model behaves differently between the groups. Overall, these results suggest that 

specific structural brain characteristics of individuals with SCZ affect the behavior of the 

model when predicting brain age in those individuals. Total gray matter volume was the 

only feature whose SHAP values were consistently different between groups across all 

databases, while the thickness of the superior temporal sulcus and subcortical structures 

presented differences in contribution in one out of three datasets. These results can likely 

be attributed to the heterogeneity within and between cohorts and differences in MRI 

acquisition across datasets. This analysis on its own, however, does not indicate that the 

brain features identified are implicated in the observed difference of the BAG in SCZ. For 

that, testing the interaction between SHAP values and group as a function of the BAG 

was necessary, as discussed above. 
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Our study should be interpreted in the light of some limitations. First, algorithms 

other than XGBoost might exhibit different behavior than what was uncovered in this 

study, although recent studies have demonstrated that different model types lead to 

similar results in brain age and feature importance30. Specific characteristics of the 

training sets used in different studies may lead to different outcomes. Also, the training 

dataset from Kaufmann et al.12 may have included some of the samples from the COBRE 

and MCIC datasets. We analyzed the potential for overfitting and only a small subset of 

participants had a prediction error of less than one year. This indicates that our findings 

are unlikely to be affected by this issue. Potential MRI scanner/site effects were not 

investigated, although database was included as a factor in the interaction analyses using 

the combined sample to account for at least part of this effect. Finally, this study was 

based on structural brain features, which may not capture the association of brain 

age/BAG with functional brain features as assessed with functional MRI or 

electroencephalography. This study also presents several strengths. The use of public 

datasets and publicly available models allows this study to be fully reproducible and its 

findings may be independently verified. Additionally, to the best of our knowledge, the 

use of SHAP for comparing groups is a relatively novel approach in brain age research. 

Irrespective of the technical specifics of how the BAG is defined and how the model 

behaves, BAG has been shown to be an important imaging marker for the disorder29,31. 

From predicting mortality risk32 to predicting risk of dementia33, there are many potential 

applications of the BAG in health-related research. 
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Future studies should consider exploring a wider set of machine learning models and 

their different behaviors in predicting brain age. Feature importance methods other than 

SHAP may also be useful to further investigate model behavior, such as LIME34 and 

counterfactual generation35. Other datasets and analyses in SCZ with more in-depth 

clinical characterization may also help to identify the effects of medication use, lifestyle, 

quality of life, BMI, smoking status, and other measures that may impact findings. A 

natural next step is to investigate model behaviour in other neurological diseases and 

psychiatric disorders, such as bipolar disorder and Alzheimer’s disease, both of which 

have been reported to exhibit a BAG36,37. 

In conclusion, this study has demonstrated the potential of feature explanation 

methods to better explain brain age prediction models and the BAG. In this case, the 

BAG in SCZ was found to be driven mainly by two brain imaging features, total gray 

matter volume and right lateral ventricle volume. These findings may open new venues to 

improve the interpretation of BAG findings in SCZ and other psychiatric disorders. 

 

5.6 Methods 

5.6.1 Databases 

Three databases were included in this study: a study from The Center for Biomedical 

Research Excellence (COBRE)38,39, the MCIC database40, and the UCLA Consortium for 

Phenomics database41,42 (UCLA). The demographic characteristics of the participants 

from each independent database that were included in this study is presented in Table 1.  
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The COBRE dataset includes HC participants (N=93) and participants diagnosed 

with SCZ (N=90). A multi-echo MPRAGE sequence was used to collect neuroimaging 

data from all participants alongside basic sociodemographic and clinical information. The 

database also includes functional neuroimaging data that was not used in this study. 

The MCIC is a database of participants in the early course of their illnesses and 

includes HC participants (N=109) and participants diagnosed with SCZ/schizoaffective 

disorder (N=94) The MCIC database also includes functional and diffusion-weighted 

imaging data that were not used in this study. Data used in the preparation of this work 

were obtained from the Mind Clinical Imaging Consortium database through the Mind 

Research Network (www.mrn.org). The MCIC project was supported by the Department 

of Energy under Award Number DE-FG02-08ER64581. MCIC is the result of efforts of 

co-investigators from University of Iowa, University of Minnesota, University of New 

Mexico, Massachusetts General Hospital, where participants were recruited. 

The UCLA database includes HC participants (N=125) and participants diagnosed 

with SCZ (N=50). The database includes extensive neuropsychiatric and cognitive 

assessments alongside anatomical and functional neuroimaging data. Participants were 

recruited through the community and local clinics. A 3T Siemens Trio scanner was used 

to collect the data. Functional and diffusion-weighted imaging data are also available and 

were not used in this study. This data was obtained from the OpenfMRI database 

(https://openfmri.org/dataset/ds000030/). Its accession number is ds000030. 
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5.6.2 Brain age prediction and age correction 

The brain age prediction models (one for males and one for females) were pretrained 

in a large database in another study12. The authors of this study made their models 

available online5. The code was executed in R (version 3.6.3). In line with the original 

study, we used separate models for males and females. The models are gradient boosted 

trees generated by the XGBoost43 method. The models rely on 1084 features from the 

Human Connectome Project (HCP) atlas44. There are 360 features for volume, 360 for 

surface area, and 360 for cortical thickness (180 from each hemisphere), alongside 30 

subcortical volumes and 8 summary variables. The average chronological ages from the 

pretrained models were 48.01 for males and 46.63 for females. 

Brain age predictions suffer from an age-dependency45, for which an age-correction 

procedure was conducted45. This procedure fits a linear model between predicted age and 

age of HC participants. Then, an age-corrected predicted age is derived for both HC and 

SCZ based on the slope, intercept, and predicted age extracted from the HC group. The 

rationale for this method is to ensure that the model has a consistent error across the 

lifespan for HC participants. This procedure was done independently for each database. 

All further analyses, except for group comparisons of the BAG to avoid circular analysis, 

used the age-corrected BAG. 

 

 
5 https://github.com/tobias-kaufmann/brainage 



Ph.D. Thesis – P. L. Ballester; McMaster University – Neuroscience.  

151 
 

5.6.3 Image preprocessing 

All three databases underwent the same pipeline of feature extraction with slight 

adjustments in their processing steps. Images that were available in DICOM format were 

converted into NIFTI format using the dcm2niix tool. For the COBRE dataset, which had 

multi-echo scans, the root mean squared (RMS) equivalent volume was used. Then, the 

recon-all command from FreeSurfer (version 6.0.0) was run for each scan. We used the 

multimodal HCP44 atlas to extract the features that are expected by the brain age 

prediction model, spanning volume, area, and thickness measures. The segmentations 

were checked for major registration and out-of-the-brain segmentation errors using the 

platform VisualQC6 (0.5.2). 

 

5.6.4 Deriving participant-level explanations using SHAP 

Unlike linear regression models, where each feature is associated with a coefficient 

that may be interpreted as its average contribution across samples, nonlinear models are 

not as simple. In the case of nonlinear tree-based models, each feature may have a 

different contribution depending on the path an individual prediction took in the tree. 

Therefore, model-level interpretations based on average feature contribution do not fully 

explain each prediction. To circumvent this issue, model explanations need to be derived 

at a participant level, detailing how each independent prediction was derived. SHAP is a 

method based on game theory that extracts marginal contributions of features from 

predictions46. The SHAP value for a specific feature for an individual prediction may be 

 
6 https://github.com/raamana/visualqc 
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understood as the difference in the prediction when that feature is left out of the decision 

tree (marginal contribution). To illustrate, in a database with N participants and M 

features, SHAP generates a table of N x M explanations, where each value V(i,j) represents 

the contribution of feature j to the model prediction of participant i. SHAP values were 

extracted using the SHAPforxgboost package in R7. In the case of XGBoost, SHAP 

values represent the contribution of each feature to the deviation of the prediction from 

the mean age of the database (the starting point of the XGBoost model).  

 

5.6.5 Statistical analyses 

All statistical analyses were performed in Python (version 3.7.4) with Scipy (version 

1.3.1) and Statsmodels (version 0.10.1). The statistical analyses are separated in three 

parts: 1) replication of previous findings of BAG differences between SCZ and HC, 2) 

group comparison of SHAP values for each of the 11 most important features, and 3) 

BAG as a function of the interaction between group and SHAP and other covariates. 

First, we analyzed whether there were significant differences in the BAG between 

HC and SCZ participants separately for each database. This difference was assessed using 

a general linear model, with BAG as the dependent variable and group as the independent 

variable, with age and sex included as covariates. To avoid circular analysis, this part was 

done with the BAG prior to age-correction. Subsequent analyses were conducted with the 

age-corrected values. 

 
7 https://cran.r-project.org/web/packages/SHAPforxgboost/index.html 
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Second, we investigated whether the SHAP values were different between groups 

separately for each database. We limited the comparisons to the union of the 10 most 

relevant features based on their mean absolute contribution across groups from the three 

databases. We employed a Mann-Whitney U-test due to the non-normal distribution of 

SHAP values. 

Finally, we combined datasets to assess whether there was a differential effect of 

feature contribution to the BAG between groups using an interaction term. This modeling 

was done using robust regression to avoid the shortcomings of linear models47. The age-

corrected BAG was the dependent variable, while age, sex, group, SHAP, and group x 

SHAP were the independent variables. The group x SHAP term was of interest, as it 

represents the difference between groups in how SHAP values relate to the BAG.  
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Tables 

Table 1. Demographic characteristics of participants from included databases. 

Database   Control  Treatment  Total  p-value 

COBRE* N 93 90 183  

 Age       0.99 
 Mean (SD) 37.63 (11.66) 37.61 (13.66) 37.62 (12.65)  

  Range 18 - 65 18 - 65 18 – 65  

  Sex      0.28 
  Female 26 (27.96%) 18 (20.00%) 44 (24.04%)  

  Male 67 (72.04%) 72 (80.00%) 139 (75.96%)  

MCIC N 109 94 203  

  Age      0.47 
  Mean (SD) 32.64 (11.97) 33.81 (11.20) 33.27 (11.55)  

  Range 18 - 60 18 - 60 18 – 60  

  Sex       0.26 
  Female 30 (31.91) 26 (23.85) 56 (27.59)  

  Male 64 (68.09) 83 (76.15) 147 (72.41)  

 UCLA N 125 50 175  

  Age       < 0.01 
  Mean (SD) 31.53 (8.80) 36.46 (8.88) 32.94 (9.07)  

  Range 21 – 50 22 – 49 21 – 50  

  Sex       0.01 
  Female 59 (47.20) 12 (24.00) 71 (40.57)  

  Male 66 (52.80) 38 (76.00) 104 (59.43)  
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Figures 

 

Figure 1. P-values for the difference in SHAP between SCZ and HC groups across 

datasets for the top 10 most relevant features of each source (11 in total, ranked in 

descending order of importance) after correcting for age and sex. P-values are corrected 

by the false discovery rate method. DP=dorsal posterior, VP=ventral posterior, 

VA=ventral anterior, RH=right hemisphere, and LH=left hemisphere. 
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Figure 2. Univariate association between age-corrected brain age gap and total gray 

volume SHAP values (left) and univariate association between age-corrected brain age 

gap and right lateral ventricle volume SHAP values (right). 
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Chapter 6: Discussion 

6.1 Summary of Findings 

The brain age gap is a phenomenon observed in MRI scans of individuals with mood 

and psychotic disorders, but findings thus far have been heterogeneous. Our systematic 

review and meta-analysis is consistent with the presence of a brain age gap in SCZ, BD, 

and MDD. We also took steps to analyze the clinical utility of brain age. In our study, the 

brain age gap was not a predictor of antidepressant treatment response in MDD. We also 

identified that the brain age gap is mostly driven by total gray matter volume reduction 

and ventricle enlargement in SCZ.  

In chapter 2, we systematically reviewed three publication databases and conducted a 

meta-analysis on studies of brain age in MDD, BD, and SCZ. A total of 18 studies were 

included. Each of the included studies used machine learning for brain age prediction 

with MRI data and reported the brain age gap as their main outcome. This was calculated 

by subtracting brain age predictions from chronological age. We identified a significant 

brain age gap in all three disorders, with SCZ presenting the highest gap, followed by BD 

and MDD. Additionally, we demonstrated a significant and positive correlation between 

the mean age of each study sample and the reported brain age gap for both SCZ and 

MDD. This association was not significant for BD, arguably due to a power issue. 

In chapter 3, we proposed a new method for brain age prediction that tackles some of 

the issues of model interpretability. In our proposed model, each brain scan is first 

divided into independent slices of coronal, sagittal, and axial planes. Then, three 

independent models, one for each plane, predict the brain age for each of their designated 
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slices. For example, a scan with a resolution of 255x255x150 would lead to 255 coronal 

predictions, 255 sagittal predictions, and 150 axial predictions, or a total of 660 individual 

predictions of brain age. Each of these three models is a convolutional neural network 

based on a ResNet-18 (He et al., 2016). From the individual predictions, a fourth model is 

applied with all predictions as input and generates a single final value. As a first step, we 

used a linear regression model, as this allows for easy interpretation. Thus, the predictive 

performance capabilities of convolutional neural networks were preserved, while the 

regression model allowed for the inspection of coefficient magnitudes. The strongest 

coefficients belonged to the areas closer to the ventricles, which are widely known to be 

ageing markers (Peters, 2006). 

In chapter 4, we investigated the relationship between the brain age gap and treatment 

response in a well characterized cohort of individuals with MDD (Lam et al., 2016; 

MacQueen et al., 2019). In the clinical context, the brain age gap is often associated with 

worse results on clinical scales, such as the Positive and Negative Syndrome Scale 

(PANSS) in SCZ and the Mini-Mental State Examination (MMSE) in mild cognitive 

impairment and dementia (Kaufmann et al., 2019). It is also associated with medication 

use (van Gestel H. et al., 2019), likely due to their neuroprotective properties (Castrén & 

Kojima, 2017). Given these associations with clinical scales, medication use, and the 

consistent finding of the brain age gap in MDD (Ballester et al., 2021; Han et al., 2020), 

we sought to understand if antidepressant treatment response could be predicted by the 

brain age gap. We hypothesized that a larger brain age gap would be associated with a 

worse treatment response. However, the brain age gap at baseline was not predictive of 
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treatment response at weeks 8 or 16. A secondary analysis identified that the older 

participants in the MDD group presented a larger brain age gap than the younger ones 

from the same group. This replicated previous findings that the brain age gap increases 

with age in MDD (Ballester et al., 2021; Christman et al., 2020). 

In chapter 5, we examined brain age predictions in SCZ using a model explanation 

method called SHAP (Lundberg & Lee, 2017). Thus far, the literature on brain age had 

explored both the presence of a brain age gap in mental health disorders and the most 

relevant predictors of brain age models. However, SHAP allows us to understand model 

behaviour at the prediction level instead of at the model level, which opens the possibility 

for group comparisons. Consequently, we observed how predictions changed between HC 

and SCZ. We noticed that model behaviour differed in many brain structures, both 

cortical and subcortical, but that these differences depended on the database being used. 

Notably, a group x feature interaction demonstrated that the brain age gap of SCZ was 

significantly associated with changes in feature importance of two variables: total gray 

matter volume and third ventricle volume. These findings indicate that individuals with 

SCZ present higher levels of gray matter volume reduction and ventricle enlargement 

compared to HC of their corresponding age; those are thus the main drivers of the 

observed brain age gap in SCZ. 

 

6.2 Significance and General Discussion 

The significance of each study is discussed in-depth in their respective chapters. 

Taken together, our studies have significantly contributed to two major areas of brain age 
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research: 1) interpretation of brain age and the brain age gap, and 2) the clinical 

significance of the brain age gap in mood and psychotic disorders. 

In chapter 2, we conducted the first systematic review and meta-analysis of MRI-

derived brain age findings in mood and psychotic disorders, confirming the presence of a 

brain age gap. This was an important milestone for research on accelerated brain ageing, 

as we detailed the consistency of the findings alongside estimating the extent of the gap. 

We have also demonstrated how age is a significant variable in the determination of the 

brain age gap in clinical populations. The results from chapters 4 and 5 are also aligned 

with the meta-analysis. In chapter 4, older participants with MDD displayed signs of a 

brain age gap, while younger individuals did not. This is an expanded finding of previous 

studies in MDD and suggests a significant link between the brain age gap and age 

(Christman et al., 2020). Whether this link can be better explained or modulated by other 

clinical factors, such as illness duration, number of episodes, severity, medication use, 

and others remains to be investigated in more depth in future studies. In chapter 5, 

participants with SCZ also presented signs of a brain age gap. The total brain age gap 

identified in chapter 5 was also larger than the one in chapter 4, corroborating that SCZ 

presents stronger effects of accelerated brain ageing than MDD, also in accordance with 

our meta-analysis. 

In chapter 3, we discussed the interpretability of the brain age gap, and the ability of 

models to yield more region-specific brain age predictions instead of a single brain age 

value. The necessity of region-specific brain age reflects the possibility that the brain age 

gap does not develop uniformly in all areas of the brain, with some areas being more 
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affected than others. In this sense, we also proposed to leverage the individual predictions 

of each region and generate a 3D map of brain age, one for each voxel. We found that 

more recent work has proposed the use of 3D-UNets for the same purpose (Çiçek et al., 

2016; Popescu et al., 2021), however, the predictive performance of these methods is still 

below the performance of single brain age value prediction models (Niu et al., 2020; Peng 

et al., 2019). With a similar goal, we proposed in chapter 5 a way to shift brain age 

model-level interpretations to participant-level explanations of predictions. This time, the 

proposal was model-agnostic, applicable to both traditional machine learning and deep 

learning, unlike chapter 3’s technique that relied on regression coefficients. Until this 

study, there were no propositions for understanding how the brain age gap differed 

between groups. Instead, interpretations of the brain age gap were solely guided by the 

feature importance of the models used (Ball et al., 2021). We demonstrated in this study 

that feature importance in brain age models does not translate into brain age gap 

influence, and that the brain age gap in SCZ is mostly driven by changes in total gray 

matter volume and ventricle volume. 

The brain age gap has been previously shown to be a biomarker of conversion from 

mild cognitive impairment to Alzheimer’s disease and a predictor of mortality risk (Cole 

et al., 2018; Gaser et al., 2013), but its clinical utility for mood and psychotic disorders is 

still unclear. Recent findings in MDD suggest a link between the brain age gap and 

impulsivity and symptom severity (Dunlop et al., 2021). An association between the brain 

age gap and symptom severity was also previously identified in SCZ (Kaufmann et al., 

2019). Although these are significant links between clinical presentation and the brain age 
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gap, symptom severity and symptom profiles are still more easily observed through 

questionnaires than through MRI. Therefore, more practical applications of the brain age 

gap beyond a deeper understanding of illness neurobiology are necessary. In chapter 4, 

we conducted the first study to investigate a practical use of the brain age gap in MDD: a 

predictor of antidepressant treatment response. The findings of this study do not support 

the hypothesis that the brain age gap is associated with treatment response prediction. 

Beyond the specific findings of this study, significant associations between clinical 

outcomes and the brain age gap need to be taken lightly in terms of clinical utility. As 

associations are usually measured in terms of correlations, it is difficult to estimate how 

effective they would be at the individual level, a problem known as the ecological fallacy 

(Robinson, 2009). That is, the brain age gap is still far from being used to inform clinical 

decisions. 

 

6.3 Limitations 

Beyond the specific limitations of each study, as described in detail at each chapter, 

there are also general aspects that should be considered. Overall, any study that builds on 

top of machine learning models suffer from the consequences of a limited understanding 

of model behaviour. We attempted to tackle this problem in chapters 3 and 5 by 

developing a more interpretable model and by using SHAP with XGBoost (Chen & 

Guestrin, 2016; Lundberg & Lee, 2017). There are also limitations concerning the 

meaning of brain age predictions and whether they are properly capturing the process of 

ageing. As the underlying mechanisms of ageing and the characteristics of brain ageing 
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are still being studied, the current interpretation of brain age findings needs to match this 

uncertainty. For instance, ventricle enlargement is a known predictor of brain age (Ball et 

al., 2021), but ventricle size may be modulated by other factors. Familial risk for SCZ is 

associated with cortical thinning and increased ventricle size (de Zwarte et al., 2019), 

known markers of an ageing brain (Peters, 2006). This means that brain age prediction 

methods can be mistakenly overestimating the age of individuals with specific genetic 

markers, leading to skepticism surrounding what is the utility of the brain age gap. 

Beyond the genetics of brain development, the brain age in psychiatrically healthy 

volunteers could be affected by other factors, such as BMI, smoking, and mindfulness 

practices (Luders et al., 2016; Ning et al., 2020). 

In chapter 2, the meta-analysis may have been affected by study heterogeneity. 

Although differences in the methods for brain age estimation have been shown to lead to 

similar predictors (Ball et al., 2021), the predictive capability of each model varies. This 

heterogeneity concern is augmented by the varying training set sizes among studies, 

which are not considered in the meta-analysis. Beyond modelling differences, age-

dependency of findings may also have impacted both the effect sizes of the brain age gap 

and the association between age and the brain age gap (Beheshti et al., 2019). We 

employed age-dependency correction methods to remove the effect of overestimation of 

brain age below the training mean and underestimation above it. Among the studies 

included in the meta-analysis, some pre-dated the first age-dependency correction 

methods, which means they did not account for this potential issue. Other studies simply 

do not apply the corrections. In the studies that a correction is applied, different available 
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correction procedures were chosen, which may also have contributed to the heterogeneity 

of the findings. 

In chapter 3, the attempts of stitching brain age results for independent voxels and 

generating an accurate depiction of brain age were flawed due to high noise. Also, our 

proposed method did not surpass the existing state-of-the-art predictive performance. 

However, Bashyam and colleagues (2020) have demonstrated that models with the best 

predictive performance are not the same models that lead to the best separation of the 

brain age gap between HC and clinical groups (Bashyam et al., 2020). This finding 

highlights that model interpretability and understanding model behaviour may be of more 

relevance than generating tightly fit models. 

In chapter 4, there are limitations derived from the CAN-BIND database (Lam et al., 

2016; MacQueen et al., 2019). The clinical characterization of participants was extensive, 

however, some relevant variables, such as illness duration, were not entirely reliable. 

Additionally, the distribution of age in HC was visually distinct from the distribution of 

age in MDD, which may have affected the results. In terms of the conducted analyses, we 

believe that there might have been a power issue in finding associations between the brain 

age gap and clinical scales due to the small effect size of the brain age gap in MDD 

(Ballester et al., 2021). Finally, more power would have allowed us to be more certain of 

the findings in individual item changes of the MADRS, such as the correlation between 

reported sadness and the brain age gap. 

In chapter 5, the use of SHAP creates difficulties for group comparisons. Although 

SHAP values are linear components of a prediction, the behaviour of the SHAP values in 
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tree-based models is highly nonlinear, since the underlying model is nonlinear. Therefore, 

hypothesis testing for this type of data is complicated, thus most of our findings had to be 

represented by statistical tests with less power. Additionally, there are some limitations 

surrounding the feature importance from SHAP and the association with the brain age 

gap. Some of the variables that did not present significant findings might have been 

overshadowed by a larger signal. Total gray matter volume, due to its much larger scale, 

might limit the contribution of other variables that are at least in part dependent on gray 

matter. For instance, cortical thickness features may have been ignored due to the 

relevance of total gray matter volume. 

 

6.4 Future Directions 

There are many avenues for future research in the field of brain ageing in 

neuropsychiatric disorders. First, brain age prediction inherits an issue from the field of 

neuroimaging by presenting a high heterogeneity in preprocessing steps. On the one hand, 

the standardization of preprocessing steps would mitigate this issue and allow for easier 

comparison and reproduction of findings. On the other hand, neuroimaging data 

processing is a fast-developing field, and standardization might damage the speed at 

which developments in that area affect the field of brain age and other adjacent research 

fields. More effort in code sharing and virtual containers would facilitate the comparisons 

of results and the proposal of new, validated and compared brain age prediction methods. 

Several studies have been employing the state-of-the-art of brain age prediction 

(Lombardi et al., 2021; Niu et al., 2020). Models are now much better at predicting brain 
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age than they were in the early stages of the field (Gaser et al., 2013; Koutsouleris et al., 

2014). The goal of these studies is to ultimately use brain age predictions as a biomarker 

of relevant clinical outcomes. However, a recent study by Bashyam and colleagues (2020) 

suggests that the brain age gap in neuropsychiatric disorders is better captured by using 

models that are less fit to the training data (Bashyam et al., 2020). How this impacts the 

other outcomes that are known to be associated with the brain age gap is yet to be 

researched. Therefore, the field would benefit from systematic search for combinations of 

best matches between model fitness and specific outcomes of interest. Identifying what 

models best capture each outcome and explaining these models may help us understand 

what are the key factors that are contributing to the brain age gap and how they differ 

across outcomes (e.g., brain age gap in different psychiatric disorders or correlates 

between the brain age gap and measures of functioning and cognition).  

In chapters 4 and 5, we analyzed how treatment response correlated with the brain 

age gap in MDD and how each brain feature contributed to the brain age gap in SCZ, 

respectively. The reasons for choosing MDD and SCZ were not specific to these 

disorders, as the same rationale could be applied for other neuropsychiatric disorders. The 

choice of MDD was based on access to data of a clinical trial with extensive clinical 

characterization, treatment response and neuroimaging data. The choice for SCZ was 

based on the effect size of the brain age gap in this population, which tends to be larger 

than other common neuropsychiatric conditions, and the access to large public datasets of 

neuroimaging data. Therefore, the natural next steps are to independently replicate these 
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findings across mood and psychotic disorders and investigate other important clinical 

outcomes, such as risk of relapse and psychosocial and cognitive functioning. 

In chapters 3 and 5, we have developed methods for the interpretation of the brain age 

gap. However, future work needs not only to interpret the brain age gap at the feature 

level, but to understand its biological underpinnings. As the literature of the brain age gap 

in clinical populations expand, explaining the brain age gap in these populations becomes 

a priority. This comes with a set of challenges, since many variables may have an 

interplay with the brain age gap and should be interpreted under a model explanation lens 

(e.g., using SHAP). These variables may include sex, gender, ethnicity, socioeconomic 

status, etc. Importantly, to accurately investigate the brain age gap in heterogenous 

populations, one must train the model with heterogenous samples. Currently, the largest 

database used for training brain age models (UK Biobank) is of predominantly white 

individuals (94.6% of the sample) (Fry et al., 2017). Thus, new efforts on more 

heterogeneous data acquisition for modelling are paramount. Other variables such as 

smoking status, BMI, mindfulness, could also play a role in model behaviour and should 

be properly investigated, both in and out of the context of mood and psychotic disorders 

(Kolenic et al., 2018; Luders et al., 2016; Ning et al., 2020). Understanding exactly how 

these factors affect the brain age gap is a direct and logical extension of our work on brain 

age gap and SHAP in chapter 5. 

We focused on investigating the brain age gap based on MRI data. However, as we 

move closer to understanding the meaning of the brain age gap, we should also analyze 

what is being captured by other methods such as the epigenetic clock and telomere length. 
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It is possible that a combination of these measures may lead to a clearer picture of ageing 

in the body. Additionally, studies that compare the brain age gap with the epigenetic 

clock extracted from different brain regions may also shed light on the differences and 

similarities of these measures.  

 

6.5 Conclusion 

The results of this thesis have advanced the field of brain age in mood and psychotic 

disorders by: 1) systematically synthesizing existing studies and confirming the brain age 

gap in MRI studies of MDD, BD, and SCZ through a meta-analysis; 2) proposing a new 

method of brain age prediction that is more interpretable while preserving good predictive 

capabilities; 3) showing that the brain age gap is not a good predictor of pharmacological 

response in MDD; and 4) identifying ventricle enlargement and total gray matter volume 

reduction as the two most robust factors driving the brain age gap in SCZ. 
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