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Abstract

Graphs provide powerful abstractions, and are widely used in different areas. There

has been an increasing demand in using the graph data model to represent data

in many applications such as network management, web page analysis, knowledge

graphs, social networks. These graphs are usually dynamic and represent the time

evolving relationships between entities. Enforcing and maintaining data quality in

graphs is a critical task for decision making, operational efficiency and accurate data

analysis as recent studies have shown that data scientists spend 60-80% of their time

cleaning and organizing data [2]. This effort motivates the need for effective data

cleaning tools to reduce the user burden. The study of data quality management

focuses along a set of dimensions, including data consistency, data deduplication,

information completeness, data currency, and data accuracy. Achieving all these

data characteristics is often not possible in practice due to personnel costs, and for

performance reasons. In this thesis, we focus on tackling three problems in two data

quality dimensions: data consistency and data deduplication.

To address the problem of data consistency over temporal graphs, we present a new
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class of data dependencies called Temporal Graph Functional Dependency (TGFDs).

TGFDs generalize functional dependencies to temporal graphs as a sequence of graph

snapshots that are induced by time intervals, and enforce both topological constraints

and attribute value dependencies that must be satisfied by these snapshots. We estab-

lish the complexity results for the satisfiability and implication problems of TGFDs.

We propose a sound and complete axiomatization system for TGFDs. We also present

efficient parallel algorithms to detect inconsistencies in temporal graphs as violations

of TGFDs. To address the data deduplication problem, we first address the prob-

lem of key discovery for graphs. Keys for graphs use topology and value constraints

to uniquely identify entities in a graph database and keys are the main tools for

data deduplication in graphs. We present two properties that define a key, includ-

ing minimality and support and an algorithm to mine keys over graphs via frequent

subgraph expansion. However, existing key constraints identify entities by enforcing

label equality on node types. These constraints can be too restrictive to characterize

structures and node labels that are syntactically different but semantically equivalent.

Lastly, we propose a new class of key constraints, Ontological Graph Keys (OGKs)

that extend conventional graph keys by ontological subgraph matching between entity

labels and an external ontology. We study the entity matching problem with OGKs.

We develop efficient algorithms to perform entity matching based on a Chase proce-

dure. The proposed dependencies and algorithms in this thesis improve consistency

detection in temporal graphs, automate the discovery of keys in graphs, and enrich

the semantic expressiveness of graph keys.
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Chapter 1

Introduction

Data quality is an important challenge in data management since real-life data is

often dirty. Poor-quality data is often the source of inaccurate reports, which cause

economic loss to many companies. Based on a report in 2017, IBM suggests the yearly

cost of data quality issues in the U.S. during 2016 alone was about $3.1 trillion [74].

Lack of trust by business managers in data quality is commonly cited among chief

impediments to decision-making.

As real-life data is often dirty, there exists a need for data quality manage-

ment. Data consistency and data deduplication are two important parts of this

process [49, 28, 47]. Data consistency aims to ensure the same representation or

value of an attribute across multiple occurrences or over time [47]. Data dependen-

cies (i.e., integrity constraints) are used to formalize this representation to preserve
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data consistency and accuracy. A data dependency, such as Functional Dependency

(i.e., FD), is a constraint that defines a relationship between attributes that is ex-

pected to hold over the data. Violations of these constraints (i.e., inconsistencies) can

occur due to wrong attribute values or value changes over time. Data deduplication,

also known as record linkage or record matching, refers to the process of identifying

data records in the same or different databases that refer to the same real-world en-

tity. Data deduplication techniques usually require a comparison between each pair

of data records, which is infeasible in a large dataset [73, 44]. However, keys provide

information on how to uniquely identify entities in a database. They can be used for

deduplication over one database or while integrating data from different sources [37].

Erroneous and duplicate data can lead to false conclusions, inaccurate business

decisions making and ineffective marketing. By using integrity constraints such as

FDs and keys, we can preserve data quality over a dataset. for example, FDs define

relationships among a set of attribute values for a given entity and have been used to

detect inconsistencies and repair data [54]

There has been an increasing demand recently for the graph data model in different

applications including knowledge graphs [79, 84, 112], social networks [114], peer-

to-peer networks [29], and e-commerce [41]. In the graph data model, entities are

represented as nodes of a graph and there will be an edge between the nodes if

there exists a relationship between their corresponding entities. However, unlike the

relational data model, real-life graphs usually do not come with the schema.

Poor data quality continues to be a serious problem in graph data [57, 36, 49, 107].

2
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To preserve data quality over graphs, Graph Functional Dependencies (i.e., GFDs)

have been defined by extending FDs from the traditional relational data model [57, 53].

GFDs impose a topological constraint in the form of a graph pattern and then impose

a data constraint between the attribute values of the matches of the pattern. GFDs are

being used as a main data dependency for static graphs. However, real-world graphs

evolve, where node attribute values and edges are changing over time. Based on the

application semantics, some changes are erroneous and some are valid changes. It is

important to differentiate clean and anomalous values in order to preserve data quality

on graphs over time. Similar to the relational data model [11], data dependencies

(such as GFDs) can be extended to preserve data consistency over evolving (temporal)

graphs.

Data deduplication is one of the most common data quality issues facing large

organizations [42]. Keys serve a vital role to make a connection between a real-

world entity and its representation in a database. Keys are a fundamental integrity

constraint used in database systems to define the set of attributes that uniquely

identify an entity in a graph [48]. While keys are often defined by a domain analyst

according to application and domain requirements, manual specification of keys is

expensive and laborious for large-scale datasets. Moreover, as the data naturally

evolves over time, maintaining the keys becomes a real challenge. This highlights the

need for automated solutions in order to discover keys over large graphs.

Data quality is known to be subjective and highly contextual based on individual

preferences or domain specific definitions [14]. Existing constraints for graphs can

be too restrictive to characterize structures and node labels that are syntactically

3
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different but semantically equivalent. For example, in a knowledge graph, we might

have nodes with different types that are semantically similar and refer to the same

real world entity e.g., we note that labels artist and band, and types hit and song

are semantically similar. Existing key constraints that impose label equality cannot

capture such cases. The semantics are available as an ontology that provides domain

specific concepts and relationships, defining semantic equivalence among node labels.

Recent work has motivated the need to do contextual data cleaning rather than

declarative approaches by integrating ontologies into data dependencies and cleaning

decisions [14, 27, 122]. This highlights the need to integrate data semantics to enrich

existing declarative dependencies over graphs, in particularly over keys.

1.1 Temporal Graph Functional Dependencies

Graphs have been widely used to model real-world entities and their relationships,

such as knowledge graphs [79, 84, 112], e-commerce [41] and social networks [114].

Data constraints have been extended for graphs to capture inconsistencies and errors

in graph data [57, 48, 83]. Given a graph G, a graph data dependency (GFD) is

often in the form of (Q,X → Y ), where Q is a graph pattern that specifies a set of

subgraphs in G via graph pattern matching (e.g., subgraph isomorphism), such that

each subgraph should satisfy the value constraints enforced by X → Y (where X and

Y are literals). Notable examples include graph functional dependencies [57], graph

keys [48] and graph association rules [56, 113], among others.

4
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Figure 1.1: Temporal data constraints in real-world evolving graphs.

Nevertheless, existing graph dependencies are often designed for static graphs.

Real-world graphs are evolving, where (1) both node attribute values and edges are

changing over time; and (2) a data constraint may persist only over a fraction of

“snapshots” of evolving graphs and for specific time intervals. While some changes

naturally occur as the data evolves to model events and application semantics, other

changes are erroneous given expected time intervals. Differentiating between clean

and anomalous values is critical towards preserving data quality. The need to model

such data constraints is prevalent to support decision making in government [4],

education, and health care [3, 25]. Consider the following real-world examples.

Example 1: Figure 1.1(a) shows a graph pattern to illustrate data constraints in

real graphs. Q1 specifies the relationship between a politician, their position in the

country, and their political party. While existing dependencies such as GFDs model

topological constraints (such as Q1), and dependencies among the attributes, enforc-

ing temporal consistency of schema and attribute constraints are not captured. This

can lead to undetected errors when compared to neighbouring matches and values.

Politicians often have a maximum time duration for which they hold office, e.g., nor-

mally 10 years for a Canadian Prime Minister. Similarly, in the US, to qualify as a

5
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state governor, candidates must be a resident of the state, and a citizen for a mini-

mum number of years, e.g., a minimum 5 year state residency, and 5 year citizenship

are required in California. Figure 1.1(b) shows matches of Q1 with Brian Mulroney

as the 18th Prime Minister of Canada from Sept. 1984 (t1) until Feb. 1993 (t3). How-

ever, an update happened at t3 where we have John Turner as 18th Prime Minister of

Canada, which is an error. The error is only identified by comparing the match at t3

with t1 and t2 for the 18th PM. However, at t4, Kim Campbell is elected as the first

female and the 19th Canadian Prime Minister. □

Achieving temporal consistency with respect to (w.r.t.) topology and attribute

value relationships is pivotal in many areas as one example is highlighted above to

ensure stability, adherence to policy, and efficacy. The “minimum” and “maximum”

time bounds pose additional requirements where structural and literal conditions

specified via graph pattern matching should hold. These constraints cannot be read-

ily captured by prior graph dependencies [57, 53, 87]. GFDs impose schema and

attribute constraints over a single snapshot involving a single match in a graph G.

In contrast, to model temporal consistency, we must compare values between pairs of

matches occurring at two timestamps in a temporal graph. This requires new tempo-

ral data constraints that model temporal consistency of graph patterns and attribute

dependencies, and new algorithms that incrementally identify inconsistencies (errors)

in the presence of change across the graph snapshots, and efficiently determine which

pairs of matches to validate without enumerating all pairwise combinations.

6
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In this thesis, we address the above challenges, and are interested in several ques-

tions. (1) How to formalize such temporal data constraints in dynamic graphs? (2)

What is the hardness of the fundamental problems (satisfiability, implication, vali-

dation and axiomatization) for such temporal graph data constraints? (3) How to

efficiently detect violations (errors) with these dependencies in evolving graphs?

1.2 Discovery of Keys for Graphs

Keys are one of the fundamental integrity constraints used in database systems, which

define the set of attributes that uniquely identify an entity. Keys serve a vital role in

databases to maintain data quality standards by preventing incorrect insertions and

updates as the data naturally evolves over time. In addition, keys provide clues for

duplicate detection (also referred to as entity resolution), one of the most common

data quality issues [42].

While keys are often defined by a domain analyst according to application and

domain requirements, manual specification of keys is expensive and laborious for

large-scale datasets. Existing techniques have explored mining for keys in relational

data (as part of functional dependency discovery) [72], and in XML data [34].

The proliferation of graph databases has lead to the study of integrity constraints

over graphs, including functional dependencies [53], and keys [48]. These constraints

have shown to have wide applications to deduplication, citation of digital objects,

7
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knowledge fusion, and knowledge base expansion [42]. Evolving graphs such as knowl-

edge bases and citation graphs require keys to uniquely identify objects to ensure

reliable and accurate deduplication and query answering. In these dynamic settings,

where object properties change frequently and new objects are added, manual spec-

ification of keys is expensive and labor intensive. Automated solutions are needed

to discover keys. Although recent work has proposed techniques to find keys over

RDF data [23], these techniques are not applicable for graphs as they do not sup-

port: (i) topological constraints; and (ii) recursive keys (a distinct feature in graph

keys). To the best of our knowledge, there is no existing work that discovers keys for

directed graphs. Consider the following example where keys help to identify entities

in a database.

Figure 1.2: (a) Movie instances from the IMDb dataset. (b) Possible keys for movie
and director

Example 2: Figure 1.2(a) shows a sample of five movies from the IMDb movie graph

database [5]. In this figure, each movie is represented by a node which is associated

with a type (e.g., movie). For each movie, there exist a set of properties which are

8



Doctoral Thesis – M. Alipourlangouri McMaster University – Computer Science

represented by nodes and have a string value for the property and there exists an

edge between the movie and the property. The label of the edge shows the property

name. For example, for the movie m1, we have two properties name and year which

are shown by two edges with the same label from m1 to two nodes with the value

of Black & White and 1999 resp. Intuitively, a key can be defined by a topological

pattern, and a set of edge labels, and node types [48]. We can define a key for a type

of entity using a graph pattern, and apply pattern matching algorithms to identify

unique entities in a graph. Figure 1.2(b) shows a sample of possible keys to uniquely

identify a movie:

Q2(x) : By the movie name (title of the movie).

Q3(x) : By movie name, and year of release.

Q4(x) : By movie name, and awards won.

Q5(x) : By movie name, and a specific director.

Q6(x) : A director can be uniquely identified by his/her name.

This example highlights that many keys are possible, and this often depends on the

data and its semantics. According to Q2(x), all movies with the same name resolve

to the same movie. This of course does not hold true over time, as Figure 1.2(a)

shows two different movies titled Bad Boys in 1983 (m3) and in 1995 (m4). Secondly,

the domain semantics influence the quality of a key. For example, Q4(x) indicates a

movie is uniquely identified by its name and awards won. However, not all movies

win awards, and the second condition will lead to null values for many movies (that

have not won awards), thereby leading to poor support and representation across all

movies. □

9
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The example demonstrates the need for automatic discovery of keys over large

scale graphs as there are many possible keys for each entity type. In this thesis,

we address the above challenges, and are interested in several questions. (1) What

properties define a meaningful key in a graph? (2) How can we efficiently discover

such keys?

1.3 Ontological Keys for Graphs

Existing keys for graphs use syntactic equivalence or similarity of labels to identify

entities. However, entities in real-world graphs often contain multiple attributes and

different labels. These labels could be syntactically different, but semantically similar

given a domain specific relationship. This poses two challenges for entity matching

over graphs: (1) nodes that should refer to the same entity may not be captured

by key constraints that only enforce label equality [88]; and (2) nodes with equal

labels that match key patterns may not necessarily refer to the same entity, due to

differing attributes. Furthermore, such graphs are often interpreted w.r.t. an ontology

that provide domain specific concepts and relationships, defining semantic equivalence

among node labels. Consider the following example.

Example 3: Consider a knowledge graph G consisting of triples (subject, predicate,

object) where subject and object are nodes, and predicate is an edge connecting

subject to object. Figure 1.3(a) illustrates a fraction of IMDb dataset G, with two

subgraphs describing two movie entities {m6,m7}, where each node has an associated

10
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Figure 1.3: Entity matching with ontologies.

type denoted in parentheses. For example, entity m6 is of type movie and m7 has the

type film. Consider graph keys Q7 and Q8 depicted as graph patterns in Figure 1.3(b).

Q7 states that “if two movies share the same name, year and director, then they refer

to the same movie”. Similarly, a director can be identified by its name and date of

birth (DoB), characterized by Q7. Note the dependence of Q7 on Q8, to identify a

movie, we need to first identify its director, reflecting the recursive property of graph

keys [48]. Applying Q7 and Q8 via subgraph isomorphism on G, we obtain only m6

and d6 as matches, since (1) m7 is of type film (rather than movie); (2) d7 is of type

executive director rather than director. Hence, Q7 and Q8 fail to identify m6 and m7

as the same movie as they rely only on label matching.

Given an ontology O, as shown in Figure 1.3(c), we exploit ontological relation-

ships and semantic equivalance to extend graph keys. For example, we recognize

an executive director is a type of director participating in a hyponym (subClassOf)

relationship. Similarly, we note that labels film and movie are semantically similar.

11
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By extending Q7 and Q8 with these ontological equivalences, we identify m6 and m7

are indeed the same song. □

The above example highlights the need for a new class of dependencies for graphs

that go beyond existing subgraph isomorphism to consider entity matching with on-

tological similarity. We extend existing notions of keys for graphs, which uniquely

identify an entity, to exploit the relationships among node labels given in an ontology.

The recursive property of graph keys allows us to precisely define related entities for

the keys. By incorporating ontologies, we further increase the scope of entities that

can be matched to recursive keys to include matches that are ontologically similar.

While ontological extensions have been studied for traditional functional dependen-

cies [35, 27], little work has been done to enrich graph keys with ontologies.

In this thesis, we would like to address the above challenges and address the

following questions. (1) How to extend graph keys by exploiting ontologies to include

data semantics to increase the expressiveness of the keys? (2) How to effectively

detect duplicates using ontological matching over graphs?

1.4 Contributions

In this thesis, we address three problems:

1. Problem 1: Existing dependencies do not cover consistency over time intervals.

12
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Given a temporal graph, how can we enforce topological and attribute value

constraints over a duration of time? How to efficiently detect violations of these

constraints?

2. Problem 2: Given a graph, we study the problem of discovering keys for graphs.

We define new properties for graph keys in the context of the discovery problem

and propose an efficient algorithm to mine keys based on these properties.

3. Problem 3: To help data deduplication over graphs using contextual-based data

cleaning, we study the problem of extending graph keys by an ontology to

increase the expressiveness of graph keys. Moreover, we study the problem of

ontology-based entity matching in attributed graphs to detect duplicate entities.

We make the following contributions:

1. In Chapter 2, we introduce a new class of dependencies, called Temporal Graph

Functional Dependencies(TGFDs) that specify topological and attribute require-

ments over temporal graphs induced by time intervals. We discuss the relation-

ship between TGFDs and existing graph dependencies. We study the satisfi-

ablity, implication, and validation problems for TGFDs, and show their com-

plexity is no harder than their non-temporal counterparts. We introduce two

TGFD error detection algorithms: (a) an incremental algorithm (IncTED) that

re-uses the matches and errors from earlier graph snapshots; and (b) a parallel

algorithm (ParallelTED) that distributes the matching and error detection task

13
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among a set of nodes to minimize the runtime. We conduct an extensive eval-

uation over real data collections showing the efficiency of our algorithms. This

work is under review for ICDE 2023 [18].

2. In Chapter 3, we propose an efficient algorithm to mine keys for graphs. We

define meaningful properties for graph keys and formalize the discovery problem

of graph keys. We develop an algorithm called GKMiner to mine graph keys

efficiently based on the defined properties. We show that our method is scalable

and it is feasible to mine meaningful keys in graphs of millions nodes and edges.

The preliminary paper of this work is published at a VLDB 2018 workshop called

Advances in Mining Large-Scale Time Dependent Graphs (TD-LSG) [16] and

the short paper is to appear at DaWaK 2022.

3. In Chapter 4, we extend keys for graphs with ontological pattern matching. We

propose Ontological Graph Keys (OGKs), a new class of key constraints that

exploit ontologies to enhance keys for graphs. We formally introduce the entity

matching problem using OGKs by revising the Chase process of conventional

data dependencies for OGKs. We experimentally verify the efficiency and effec-

tiveness of our OGK entity matching algorithms using two real-world graphs. We

compare against two existing baselines, demonstrate the improved efficiency of

our techniques, and our ability to identify semantically equivalent entities that

are ignored by existing solutions. This work was published on VLDB 2019 [83].
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1.5 Thesis Outline

This thesis is a sandwich thesis consisting of the conference and journal publica-

tions [18, 83, 16]. In Chapter 2, we present our work on temporal graph functional

dependencies. In Chapter 3, we present our technique to automatically discover graph

keys over large graphs. In Chapter 4, we introduce our model to extend graph keys

by ontologies to define OGKs. Finally, in Chapter 5, we conclude the thesis with final

remarks and directions for future works.

15



Chapter 2

Temporal Graph Functional

Dependencies

2.1 Introduction

Data constraints have been extended for graphs to capture inconsistencies and errors

in graph data [57, 48, 83]. Given a graph G, a graph data dependency is often of the

form of (Q,X → Y ), where Q is a graph pattern that specifies a set of subgraphs in

G via graph pattern matching (e.g., subgraph isomorphism) such that each subgraph

should satisfy the value constraints enforced by X → Y (where X and Y are literals

from the graph pattern). Notable examples include graph functional dependencies

(GFDs) [57], graph keys (GKeys) [48] and graph association rules (GTARs) [56, 113].
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Figure 2.1: Temporal data constraint to validate drug dosage at t3.

Existing graph dependencies are often designed to capture inconsistencies in static

graphs. Nevertheless, data errors also occur in evolving real-world graphs. In such

scenarios, node attribute values and edges in graphs experience constant changes

over time, and data consistency may persist only over a fraction of graphs specified by

certain time periods. The need for modeling data consistency in temporal graphs that

are time-dependent is evident in time sensitive applications such as policy-making [4]

and anomaly detection in health care [3, 25]. Data constraints for static graphs are

often insufficient to satisfy such needs, as illustrated next.

Example 4: Figure 2.1 illustrates a temporal graph that monitors medicare ac-

tivities [25]. A snapshot denotes patient activity describing their diagnosis, medica-

tion, and dosage taken at a timestamp. Federal drug regulating agencies, such as

the Food and Drug Administration, receive numerous medication error reports due

to missed doses, incorrect preparation and administration of drug formulations. To

counter this, safe practice recommendations state that administered dosages are ver-

ified against patient characteristics, and require that past and subsequent doses are

correctly timed [7].

Consider a graph pattern Q that specifies patients who are treated with a specific

medication Veklury, and a dosage that is administered within a time interval. If the
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intravenous (IV) infusion is between 30 to 120 minutes, then the dosage must be

100mg [3]. Figure 2.1 shows that continual validation of the dosage at the current

time tc = t3 compares to past drug administrations (at least 30 but no more than 120

minutes away) that must be 100mg. An incorrect dosage of 50mg is captured at t6.

This time-sensitive rule can be expressed by posing a value constraint on the dosage

to the patients who match Q, conditioned by a time infusion period. To capture

violations requires comparing a fraction of “snapshots” induced by a time period.

Existing data constraints cannot express such consistency criteria for temporal graphs.

□

The above example calls for the need to model data consistency w.r.t. topological

constraints and attribute values that are contextualized over a time interval duration.

In such cases, for each “current time” tc, there is a need to compare matches at tc

against historical and future matches that are at least p but no more than q time units

away. These “minimum” and “maximum” time bounds pose additional requirements

where structural and literal conditions specified via graph pattern matching should

hold. Such schema and temporal constraints are prevalent in real data.

These constraints cannot be readily captured by prior graph dependencies and

rules [57, 53, 87]. For example, GFDs cannot express the temporal constraints that

perform necessary pairwise comparisons of single snapshots induced by minimum

and maximum time ranges. Even if time periods were captured via graph attributes,

modeling such semantics would involve an excessive number of GFDs, making them

infeasible to be verified in practice. GTARs detects delayed co-occurrences of events
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via graph pattern matching, and do not model value dependencies [87]. We address

the above challenges, and study several questions. (1) How to formalize such temporal

data constraints in dynamic graphs? (2) What is the hardness of the fundamental

problems (satisfiability, implication, validation) for these temporal data constraints?

(3) How to efficiently detect violations with these dependencies in evolving graphs?

Contributions. This chapter introduces Temporal Graph Functional Dependencies

(TGFDs), a class of data dependencies to model the time-dependent consistency of

temporal graph data, and studies its fundamental problems as well as TGFD-based

inconsistency detection.

(1) We introduce a formal model of TGFDs. TGFDs model time-dependent data

consistency of temporal graphs by enforcing value dependencies that are conditioned

by topological and temporal constraints in terms of temporal graph pattern matching.

TGFDs apply conditionally to temporal graphs, and hold on graph snapshots that are

induced by time intervals with lower and upper bounds. A special case of TGFDs

with size-bounded graph patterns and their benefit in capturing data errors has been

justified by our pilot study [89]. Providing a formal model for general TGFDs is our

first contribution.

(2) We study the satisfiablity, implication, and validation problems for TGFDs. We

introduce an implication algorithm for TGFDs, and the notion of temporal closure

that considers the time intervals of inferred values. We also develop a sound and
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complete TGFD axiom system for the implication of TGFDs (Section 2.3).

(3) We introduce two TGFD-based inconsistency detection algorithms for temporal

graphs: (i) an incremental detection algorithm (IncTED) that re-uses the matches and

inconsistencies captured from earlier graph snapshots to compute updated matches

and errors given graph changes; and (ii) a parallel algorithm (ParallelTED) that per-

forms fine-grained estimations of the workload by computing the fraction of data

induced by the literal conditions and the time interval duration in a TGFD. We show

that these algorithms have time costs that are independent of the size of temporal

graphs, and are feasible for large graphs (Section 2.4).

(4) We conduct an extensive evaluation over real data collections. We verify the

efficiency of ParallelTED over a wide range of parameters achieving 120% and 29%

speedup over sequential and GFD-based baselines, respectively, demonstrating TGFD

error detection is feasible over real graphs. We show the effectiveness of ParallelTED

over error detection using GFDs and GTARs with up to 55% and 74% gain in F1-score,

respectively. Lastly, we conduct a case study with real examples of TGFDs, and the

detected inconsistencies to demonstrate the utility of TGFDs in practice (Section 2.5).
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2.2 Temporal Graph Functional Dependencies

We start with a notion of temporal graph pattern matching, and then introduce TGFD

syntax and semantics.

2.2.1 Temporal Graph Pattern Matching

Temporal Graphs. We consider a temporal graph GT = {G1, . . . , GT} as a sequence

of graph snapshots. Each snapshot Gt (t ∈ [1, T ]) is a graph (V,Et, Lt, FAt) with

a fixed node set V and edge set Et ⊆ V × V . Each node v ∈ V (resp. edge

e ∈ Et) has a label Lt(v) (resp. Lt(e)) at time t. For each node v, FAt(v) is a tuple

(A1,t = a1, . . . , An,t = an) specifying a value of each attribute of v at time t.

Temporal graph pattern matching. A graph pattern is a directed, connected

graph Q[x̄] = (VQ, EQ, LQ, µ) with a set of nodes VQ and edges EQ ⊆ VQ × VQ. For

each node u ∈ VQ and each edge e ∈ EQ, the function LQ assigns a label LQ(u) and

LQ(e) to u and e, respectively. x̄ is a set of variables, and µ is a function that maps

each u ∈ VQ to a distinct variable in x̄. We shall refer to µ(u) as u for simplicity.

Matches. Given a temporal graph GT and pattern Q, a match ht(x̄) between a

snapshot Gt of GT and pattern Q is a subgraph G′
t = (V ′

t , E
′
t, L

′
t, F

′
At
) induced by V ′

t

of Gt that is isomorphic to Q. That is, there exists a bijective function (a matching)
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Table 2.1: Notations and symbols.

Symbol Description

GT , Gt, G
′
t, temporal graph, snapshot, and subgraph

Q[x̄] graph pattern
σ,Σ a single TGFD, and a set of TGFDs
ht a match of Q[x̄] in Gt at time t
E(GT , σ), E(GT ,Σ) violations of σ,Σ in GT

M(Q,Gt) match set of Q in Gt

Ihi
, Ihj

time domain of hi, hj
ρ(i) permissable range of hi
ΠX , πXY matches with shared values in X, XY
Γ(ΠX) timestamps of matches in ΠX

µX(hi) returns πXY where hi belongs

ht from VQ to V ′
t such that: (1) for each node u ∈ VQ, LQ(u) = L′

t(ht(u)); and (2)

for each edge e = (u, u′) ∈ Q, there is an edge e′ = (ht(u), ht(u
′)) in G′

t such that

LQ(e) = L′
t(e

′). If LQ(u) is ‘ ’, then it matches with any label for any timestamp t.

As a matching ht uniquely determines a match (subgraph) for x̄ at any time t, we

refer to a match as ht for simplicity.

2.2.2 Temporal Graph Functional Dependencies

Syntax. A Temporal Graph Functional Dependency (TGFD) σ is a triple (Q[x̄],∆, X →

Y ), where:

• Q[x̄] is a general graph pattern (e.g., may include cycles, be a tree, DAG);
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• ∆ = (p, q) is a time interval, specified by a lower bound p, and an upper bound

q (p, q are integers and q ≥ p ≥ 0);

• a value dependency X → Y , where X and Y are two (possibly empty) sets of

literals defined on x̄.

We consider literals of the form u.A = c (a constant literal) or u.A = u′.A′ (a variable

literal), where u ∈ x̄, A and A′ are attributes, and c is a constant.

A TGFD σ enforces three constraints:

1. topological and label constraint of pattern Q,

2. a value dependency specified by X → Y , and

3. a time interval constraint ∆, which specifies, for a time t, two time windows

[t − q, t − p] and [t + p, t + q]. The time windows induce the set of snapshots

over which the constraint should hold (see “Semantics”).

For simplicity, we consider w.l.o.g. TGFDs in a normal form, i.e., with a de-

pendency X → Y where Y contains a single literal. We justify the normal form in

Section 2.3.3.

Example 5: We define a TGFD σ = (Q[x̄], ∆ = (30, 120), [x.name, z.name =

Covid19, y.name = V eklury] → [w.val = 100mg]). If a patient has Covid-19 and

is treated with Veklury over IV infused between 30 to 120 mins, then the dosage is

100mg. □
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Semantics. Given a temporal graph GT , a TGFD enforces value dependencies be-

tween any pair of snapshots that are (1) matches via graph pattern matching, and (2)

having timestamps within time ranges specified by ∆, for any timestamp in [1, T ].

Consider a TGFD σ = (Q[x̄],∆, X → Y ), and a pair of matches (hi, hj) of Q in Gi

and Gj, respectively (i, j ∈ [1, T ]). We say (hi, hj) matches σ if

• (hi, hj) satisfies X (denoted as (hi, hj) |= X), that is, for each constant literal l

= (u.A = c) (resp. variable literal u.A = u′.A′) in X, hi(u) = hj(u) = c (resp.

hi(u) = hj(u
′)); and

• |j − i| ∈ ∆.

The term |j− i| ∈ ∆ conveniently express temporal semantics including “future” and

“past” from their conventional counterparts in temporal integrity constraints [116] to

temporal graphs. For any specific timestamp i ∈ [1, T ], (a) if i ≤ j, then |j − i| ∈ ∆

specifies any timestamp j from a “future” time window [i+ p, i+ q]; (b) if i > j, then

|j − i| ∈ ∆ specifies timestamps j from a “past” time window [i − q, i − p]. Given

a time interval ∆, a TGFD σ enforces data consistency over all pairs (hi, hj) ∈ [1, T ]

that matches σ in terms of ∆.

For any pair (hi, hj) that does not match σ, (hi, hj) “trivially” satisfies σ. We say a

temporal graph GT nontrivially satisfies a TGFD σ, denoted as GT |= σ, if (a) there

exists at least a pair of matches (hi, hj) that also matches σ, and (b) (hi, hj) |= Y .

GT satisfies a set of TGFDs Σ if for every σ ∈ Σ, GT |= σ.

24



Doctoral Thesis – M. Alipourlangouri McMaster University – Computer Science

Example 6: Figure 2.1 shows matches (h1, h3) and (h3, h5) satisfy σ (denoted

with a green check mark), but (h3, h6) ̸|= σ, having the wrong dosage of 50mg at t6

(denoted with a red x) given the required infusion time of 30 to 120 minutes. □

Remarks. As justified in our pilot study [89] on a special case of the general TGFDs

with bounded pattern size over a real knowledge graph DBpedia, we found over 140

temporal data constraints in real knowledge base DBpedia. Of these constraints, 28%

can capture at least one inconsistency; and each constraint can capture on average 7

distinct erroneous attribute values that span over 5 timestamps.

Relationship to Other Dependencies. GFDs define topological and attribute

dependence over static graphs without temporal semantics, involving a single match

[57]. As expected, TGFDs subsume GFDs as a special case when ∆ = (0, 0). Graph

keys (GKeys), and their ontological variant [48, 83] specify topological and value

constraints to enforce node equivalence but do not consider attribute dependencies.

Graph Entity Dependencies (GEDs) extend GFDs to support equality of entity ids, and

subsume GFDs, but again, are defined over static graphs. GTARs are soft rules that

use an approximate subgraph isomorphism matching, in contrast to TGFDs which

are hard constraints enforcing strict subgraph isomorphism matching based on Q. In

addition, GTARs only consider matching with time intervals p = 0, and do not include

historical matches as part of their temporal semantics.
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2.3 Foundations

We next study the satisfiability, implication and validation problems for TGFDs, and

present an axiomatization.

2.3.1 Satisfiability

A set Σ of TGFDs is satisfiable, if there exists a temporal graph GT , such that GT

|= Σ. The satisfiability problem is to determine whether Σ is satisfiable. Satisfiability

checking helps to decide whether a set of TGFDs Σ are “inconsistent” before being

applied for error detection in temporal graphs.

Example 7: Consider the pattern Q′ of Figure 2.1 and a TGFD σ′ = (Q′[x̄],∆ =

(30, 120), [x.name, r.name, z.name = Covid19, y.name = V eklury] → [w.val = 20mL]),

with Q ⊆ Q′. The consequent literal requires the value of w to be equal to 100mg and

20mL simultaneously, leading to “conflicting” value constraints. Since any match of

σ will also match σ′, there is no temporal graph GT that satisfies both. Thus, {σ, σ′}

are not satisfiable. □

The “conflicting” value constraints do not necessarily lead to unsatisfiable TGFDs.

In the above example, suppose the ∆ time interval durations for σ, σ′ were (30, 120)

and (20, 25), respectively, then one can verify that they do become satisfiable as the

time intervals are not overlapping. This requires computing the time intervals of
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when derived values and literals are expected to hold. This illustrates that TGFD

satisfiability analysis is more involved than GFDs: the “conflicting” value constraints

are conditioned upon both pattern matching and the temporal constraints.

To characterize this, we introduce a notion of TGFDs embeddings. The notion has

its foundation in [57], and is extended for TGFDs with temporal constraints.

Pattern embedding [57]. We say a graph pattern Q′[x̄′] = (V ′
Q, E

′
Q, L

′
Q, µ

′) is

embeddable in another pattern Q[x̄] = (VQ, EQ, LQ, µ), if there exists a mapping f

from V ′
Q to a subset of nodes in VQ that preserves node labels of V ′

Q, all the edges

induced by V ′
Q and corresponding edge labels. Moreover, f induces a “renaming”

of each variable x ∈ x̄ to a distinct variable x′ in x̄′, i.e., for each variable x ∈ x̄,

µ′(f(µ−1(x))) = x′ ∈ x̄′.

TGFDs Embedding. Given two TGFDs σ = (Q[x̄], ∆, f(X ′) → f(Y ′)) and σ′ =

(Q′[x̄],∆′, X ′ → Y ′), We say that σ is a (temporally) overlapped TGFD of σ′ w.r.t.

graph pattern Q, if (1) Q′ is embeddable in Q, and (2) (∆ ∩ ∆′) ̸= ∅. Moreover, σ

is a (temporally) embedded TGFD of σ′ w.r.t. Q if ∆′ ⊆ ∆. Given a set of TGFDs Σ

and a graph pattern Q, we denote as ΣQ (resp. ΣQ,{∆,∆′}) the set of embedded (resp.

overlapped TGFDs) w.r.t. Q.

Example 8: In Figure 2.1, Q is an embedded pattern in Q′ as there exists a subgraph

isomorphism mapping from Q to a subgraph of Q′. Moreover, consider a TGFD σ′′

with ∆′′ = (20, 60), then σ′′ is a (temporally) overlapped TGFD of σ. Lastly, σ is a
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(temporally) embedded TGFD of σ′. □

In contrast to GFDs, TGFD satisfiability requires checking whether conflicting

literal values occur during overlapping time intervals, leading to non-satisfiability.

However, if differing attribute values occur during non-overlapping intervals for a

set of TGFDs, then each unique literal value is expected to hold over a distinct time

interval, independent of time intervals from other TGFDs. This requires us to consider

the notion of temporal closure for TGFDs, introduced next.

Definition 3.1: (Temporal Closure) Given a set of overlapped TGFDs ΣQ,{∆,∆′}

w.r.t. a graph pattern Q, the temporal closure of a set ΣQ,{∆,∆′}, denoted as clo-

sure(X,ΣQ,{∆,∆′}), refers to the set of literals that are derivable via transitivity of

equality atoms in X over ΣQ,{∆,∆′}. The temporal closure of a set of TGFDs Σ (de-

noted as closure(Σ)), refers to all the literals closure(X,ΣQ,{∆,∆′}) with Q ranging

over the patterns from the TGFDs in Σ. □

We outline an algorithm below to compute closure(Σ). First, given a set of TGFDs

Σ, it first adds all Y seen in a TGFD σ ∈ Σ, if (Q[x̄], δ, ∅ → Y ) ∈ Σ. Second, for

each pattern Q seen in Σ, it then computes the overlapped TGFDs ΣQ,{∆,∆′}. For

each literal Y seen in X → Y in a TGFD σ ∈ ΣQ,{∆,∆′}, if X ⊆ closure(Σ) or can be

derived via transitivity of equality atoms in closure(Σ), then it adds Y to closure(Σ).

For example, if x.A = u and y.B = u are in closure(Σ), then x.A = y.B can be

derived and added to closure(Σ). This will give us the set of literals that are to be

enforced in ΣQ,{∆,∆′}.
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For each derived value, we must compute the time intervals over which each

literal value is expected to hold. We say closure(X,ΣQ,{∆,∆′}) is in conflict, if

closure(X,ΣQ,{∆,∆′}) contains literals x.A = a and y.B = b, and a ̸= b. Given a

set of TGFDs Σ, the temporal closure closure(Σ) is in conflict, if there exists a graph

pattern Q in a TGFD from Σ such that closure(X,ΣQ,{∆,∆′}) is in conflict. We show

the following result.

Lemma 1: A set Σ of TGFDs is not satisfiable if and only if closure(Σ) is in conflict.

□

The result below verifies that checking TGFD satisfiability is not harder than

their GFD counterparts. For brevity, all proofs in this section are in the extended

version [18].

Theorem 1: The satisfiability problem for TGFDs is coNP-complete. □

Proof sketch: We introduce an NP algorithm for checking the complement of

TGFD satisfiability, which is to decide if a given set of TGFDs Σ is not satisfiable.

Based on Lemma 1, the algorithm guesses (1) a graph pattern Q seen in Σ, (2) a

subset Σ′ ⊆ Σ, (3) a subgraph isomorphism mapping from each pattern Q′ seen in

Σ′ to Q. It then verifies if Σ′ is a set of overlapped TGFDs w.r.t. Q, by verifying,

for each pair of TGFDs σ1, σ2 ∈ Σ′ with time intervals ∆1 and ∆2, (a) whether their

respective patterns Q1, Q2 are isomorphic to a subgraph in Q, and (b) whether the

time intervals (∆1 ∩∆2) ̸= ∅. If so, It then invokes the aforementioned algorithm to
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check if the temporal closure closure(X,ΣQ,{∆,∆′}) is in conflict. If so, it returns “yes”

(Σ is not satisfiable). The above process is in NP given bounded number of pairwise

verification and conflict checking in PTIME.

The lower bound is verified by a reduction from GFD satisfiability with constant

literals and DAG pattern only [57]. The lower bound is verified by reduction from

subgraph isomorphism to the complement of the satisfiability problem. A TGFD

counterpart can be constructed by introducing, for each GFD, a time interval [0, 0],

and a temporal graph with a single snapshot. As GFD satisfiability with constant

literals is already coNP-hard, the lower bound follows. □

2.3.2 Implication

Given a set of TGFDs Σ and a σ ̸∈ Σ, we say Σ implies σ, denoted Σ |= σ, if for

any GT , if GT |= Σ, then GT |= σ. If Σ |= σ, then σ is a logical consequence of Σ.

Given Σ and σ, the implication problem is to determine whether Σ |= σ. Implication

analysis helps us to remove redundant TGFDs and perform error detection with a

smaller number of rules.

To check whether Σ |= σ, we extend the temporal closure in Section 2.3.1 to a

counterpart for embedded TGFD set ΣQ (denoted as closure(X,ΣQ)). The temporal

closure closure(X,ΣQ) is a set of pairs (Y,∆), where Y is a literal, and ∆ is an

associated time interval called the validity period in which Y should hold. We outline
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a new algorithm that computes closure(X,ΣQ). In contrast to GFD implication, we

must compute the sub-intervals on which derived literals are expected to hold after

applying each TGFD. The increased space of literals is managed by indexing literals,

and searching for overlapping time intervals at each apply step.

(i) Initialize: for each literal x ∈ X, add (x,∆) to closure(X,ΣQ).

(ii) Apply: for each σ′ ∈ ΣQ, where σ′ = (Q′[x̄], ∆′, X ′ → Y ′), if all literals

x′ ∈ X ′ can be derived via transitivity of equality of values from the literals in

closure(X,ΣQ), then add (Y ′,∆′ ∩∆′′) to closure(X,ΣQ).

(iii) Merge: for a literal Y ′′ and all {(Y ′′, ∆′′
1), . . . , (Y

′′,∆′′
m)} in the closure(X,ΣQ),

merge the time intervals and replace the pairs with a single pair (Y ′′, (∆′′
1 ∪ ...∪

∆′′
m)).

The above process is in PTIME. We say a literal Y is deducible from Σ and X,

if there exists a ΣQ derived from Σ, and a pair (Y,∆′′) ∈ closure(X,ΣQ) such that

∆ ⊆ ∆′′.

Lemma 2: Given a set of TGFDs Σ and a TGFD σ = (Q(x̄),∆, X → Y ), Σ |= σ if

and only if Y is deducible from Σ and X. □

Theorem 2: The implication problem for TGFDs is NP-complete. □

Proof sketch: We provide an NP algorithm that, given Σ and σ = (Q(x̄),∆, X →

Y ), guesses a subset Σ′ of Σ, and a mapping from the patterns of each TGFD in Σ′ to
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the pattern of σ, to verify if Σ′ is the embeddable set of TGFDs in ΣQ. If so, it invokes

the aforementioned procedure to compute the temporal closure of ΣQ, and verify if Y

is deducible. Specifically, it checks the validity period of the enforced literals during

the Apply step, i.e., checking whether (∆′ ∩ ∆′′) ̸= ∅ for time intervals ∆′,∆′′ from

σ′ ∈ ΣQ, and literal (Y ′′,∆′′), respectively. The verification is in PTIME for a finite

number of literals in the closure and |ΣQ|. For the lower bound, the implication of

TGFD is NP-hard by reduction from the implication of GFDs, which is known to be

NP-complete [57]. For a GFD with constant literal and DAG pattern only, the lower

bound is verified by reduction from a variant of subgraph isomorphism, which is shown

NP-complete. Similar to the implication, a TGFD counterpart can be constructed by

having a set of GFDs, where each GFD has a time interval [0, 0], and a temporal graph

with a single snapshot. □

2.3.3 Axiomatization

We present an axiomatization for TGFDs. The first five axioms also apply to GFDs (no

axioms were defined for GFDs [57]). Our axiomatization is sound and complete [18].

Axiom 1: (Literal Reflexivity) For a given Q[x̄], X, Y are sets of literals, if Y ⊆ X,

then X → Y . □

In Axiom 1, a set of literals Y that is a subset of literals X, will induce a trivial

dependency X → Y for any ∆.
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Axiom 2: (Literal Augmentation) If σ′ = (Q[x̄],∆, X ′ → Y ), σ = (Q[x̄],∆, X → Y ),

and X ′ ⊆ X, then σ′ |= σ. □

If X ′ → Y holds, then literals in X ′, Y are in closure(X,ΣQ). Since X ′ ⊆ X, we

can derive Y , and σ holds.

Axiom 3: (Pattern Augmentation) If σ′ = (Q′[x̄′],∆, X → Y ), and σ =

(Q[x̄],∆, X → Y ), Q′ ⊆ Q, then σ′ |= σ. □

In Axiom 3, if Q′ is isomorphic to a subgraph of Q, and if σ′ (with pattern Q′)

holds, it will continue to hold under Q.

Axiom 4: (Transitivity) If σ′ = (Q′[x̄′],∆, X → W ), σ = (Q[x̄],∆,W → Y ), where

Q′ ⊆ Q, then for any σ′′ = (Q[x̄],∆, X → Y ), it follows that {σ, σ′} |= σ′′. □

In Axiom 4, all matches that satisfy σ′ will also be contained within matches

satisfying σ since Q′ ⊆ Q. By transitivity of equality w.r.t. the literals in W , these

matches of Q will satisfy X → Y , thereby showing {σ, σ′} |= σ′′.

Axiom 5: (Decomposition) If σ = (Q[x̄],∆, X → Y ) with Y = {l1, l2}, then for

σ′ = (Q[x̄],∆, X → l1) and σ′′ = (Q[x̄],∆, X → l2), it follows that σ |= {σ′, σ′′}. □

Verifying the literals in Y can be done simultaneously in one verification (via σ),

or in conjunction (via σ′, σ′′).
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Axiom 6: (Interval Intersection) If σ = (Q[x̄], (p, q), X → Y ), σ′ = (Q[x̄], (p′, q′),

X → Y ), then for σ′′ = (Q[x̄], (p′′, q′′), X → Y ), where (p′′, q′′) = (p, q) ∩ (p′, q′), it

follows that {σ, σ′} |= σ′′. □

For σ, σ′ with matches satisfying X → Y over ∆,∆′, respectively, requires ver-

ifying all pairwise matches over all sub-intervals ∆′′ ⊆ (∆ ∩ ∆′), thereby showing

{σ, σ′} |= σ′′.

Axiom 7: (Interval Containment) If σ = (Q[x̄],∆, X → Y ), and σ′ = (Q[x̄],∆′, X →

Y ), ∆′ ⊆ ∆, then σ |= σ′. □

If σ holds over a time interval ∆, then it will continue to hold over any subsumed

sub-interval ∆′ that is more restrictive. Pairwise matches over all sub-intervals ∆′ ⊆

∆ must also satisfy the dependency, thus showing σ′ holds.

Theorem 3: The axiomatization is sound and complete. □

Proof: The axioms are sound as described above. To show completeness of Ax-

ioms 1-4, recall that the closure(X,ΣQ) is defined over all embedded TGFDs for a

pattern Q, i.e., by Axiom 3, if σ′ holds over Q′ ⊆ Q, then σ holds for pattern Q.

In computing closure(X,ΣQ), inference of valid time intervals is done by checking

Axiom 6, where the interval overlap is non-empty. For σ = (Q[x̄],∆, X → y) can be

inferred from Σ, if and only if there exists a literal (y,∆′′) ∈ closure(X,ΣQ) such that

∆ ⊆ ∆′′.
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To show completeness, it is sufficient to show that for any σ, if Σ ̸|= σ, then there

exists a GT such that GT |= Σ, but GT ̸|= σ, i.e, Σ does not logically imply σ. First,

we show that GT |= σ′, for all σ′ ∈ Σ, and then show σ is not satisfied by GT . Suppose

σ′ = (Q[x̄],∆, V → W ) is in Σ but not satisfied by GT . Then (V,∆) ∈ closure(X,ΣQ),

and (W,∆) nor any subset of literals of W can be in closure(X,ΣQ), otherwise, σ
′

would be satisfied by GT . Let (w,∆) be a literal of W not in closure(X,ΣQ). We have

σ′′ = (Q′[x̄],∆, X → V ), since V is in the closure, and by Axiom 3 and Axiom 4,

we have σ′′′ = (Q[x̄],∆, X → W ). By Axiom 1, we can infer W → w over the

interval ∆, and by transitivity w.r.t. W over pattern Q, we have X → w, which

implies that (w,∆) ∈ closure(X,ΣQ), which is a contradiction. Hence, GT |= Σ, for

all σ′ ∈ Σ. Second, we show that for a σ, if Σ ̸|= σ, then GT ̸|= σ. Let’s suppose GT

|= σ, then (y,∆) ∈ closure(X,ΣQ). However, if this is true, then Σ |= σ, which is a

contradiction. Hence, GT ̸|= σ, and the axiomatization is complete.

2.3.4 Validation

Given Σ, and a temporal graph GT , the validation problem is to decide whether GT

|= Σ. A practical application of validation is to detect violations of Σ in GT . We say a

pair of matches (hi, hj) is a violation (“error”) of a TGFD σ = (Q(x̄),∆, X → Y ) ∈ Σ,

if (hi, hj) matches σ and (hi, hj) ̸|= Y . We denote the set of violations of Σ in GT as

E(GT ,Σ). The validation problem is to decide whether E(GT ,Σ) is empty.

Theorem 4: The validation of TGFDs is coNP-complete. □
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Proof sketch: The lower bound can be verified from the GFDs counterpart,

where the validation problem is coNP-complete [57]. For TGFDs, an NP algorithm

returns “yes” if GT ̸|= Σ as follows. It (1) guesses a TGFD σ, and guesses and verifies

a pair of mappings (hi, hj) over a finite number of sub-intervals {[i, j] | 1 ≤ i, j ≤

T, |j − i| ∈ ∆}, and (2) checks whether (hi, hj |= X, but (hi, hj) ̸|= y, if so, return

“yes”. Checking all matches over the intervals is in PTIME. Since the complement to

the decision problem still remains in NP, the validation problem for TGFDs is coNP-

complete, no harder than its GFDs counterpart. □

2.4 Parallel TGFD Error Detection

We introduce a parallel TGFD error detection algorithm, ParallelTED, that includes

fine-grained workload estimation, temporal pattern matching with match mainte-

nance over evolving graph fragments, and incremental error detection that avoids all

pairwise match enumerations.

A Sequential Algorithm. Given a TGFD σ = (Q(x̄),∆, X → Y ), a sequential

algorithm computes E(GT ,Σ) as follows. (1) For each snapshot Gt∈ GT , it computes

from scratch all matches of Q in Gt, and those in the subsequent snapshots Gj where

|j − t| ∈ ∆ (if not computed yet). (2) It then verifies, for each pair of matches

of Q {(hi, hj)} with |j − i| ∈ ∆, if (hi, hj) |= X (i.e., (hi, hj) matches σ), and
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(hi, hj) ̸|= Y . If so, a violation (hi, hj) is identified and added to E(GT ,Σ). This

approach separately performs pattern matching and TGFD validation, and is infeasible

for large graphs due to an excessive number of subgraph isomorphism tests (which

is known to be NP-complete [62]), and comparisons over each pairs of snapshots. As

most changes in real-world temporal graphs affect a small portion (e.g., 5-10% of

nodes weekly [51]) and 80-99% of the changes are highly localized [32], this naturally

motivates incremental and parallel solutions for TGFD-based error detection.

We next present ParallelTED, a Parallel TGFD Error Detection algorithm, for

error detection in large GT . The algorithm fully exploits the temporal interval con-

straints to interleave parallel pattern matching and incremental error detection, in at

most T rounds of parallel computation.

Overview. The algorithm ParallelTED (Algorithm 1) works with a set of n worker

machines M1 . . .Mn and a coordinator Mc. It executes in total T supersteps. Each

superstep t processes a fragmentation of a snapshot Gt as a set of subgraphs {Ftr}

of Gt (t ∈ [1, T ] and r ∈ [1, n]), Intuitively, we perform parallel computation to de-

tect and maintain the set of violations (E({G1, . . . , Gt},Σ)) over “currently observed”

snapshots {G1, . . . , Gt}, at each superstep t. The algorithm terminates after T su-

persteps, and ensures the correct computation of E(GT ,Σ) given the correct update

of violation set at each superstep.

Algorithm. ParallelTED maintains the following structures that are dynamically

updated. (1) Each worker Mr maintains (a) a set of local matches of Q of snapshot
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Gt Mr(Q,Gt), (b) a set of local violations Er(GT , Σ), by only accessing local graphs

(initialized as fragment {Ftr}), and (c) a set of “cross-worker” violations Er(GT , Σ),

which requires the comparison of two matches from Mr and a different worker. The

coordinator maintains a set of global violations E(GT ,Σ) to be assembled from local

violations.

ParallelTED first invokes a procedure GenAssign to initialize and assigns a set of

joblets (a set of lightweighted validation tasks; see Section 2.4.1) to all the workers,

and initializes global structures for incremental maintenance of the pattern matches

(see Section 2.4.2) (lines 1-2). This cold-starts the parallel error detection upon the

processing of the first fragmented snapshot in GT . It then runs in T supersteps in par-

allel (lines 3-10), following a bulk synchronous model, and processes one fragmented

snapshot a time.

In each superstep t, each worker Mr executes the following two steps in parallel

(lines 4-7): (1) incrementally updates a set of local matches Mr(Q,Gt) and violations

Er(GT ,Σ) over fragmented snapshot {Ftr}, by invoking a procedure LocalVio (line

4); and (2) requests a small amount of edges from other workers, and invokes a

procedure IncTED to incrementally detect the violations Ec(GT ,Σ) across two workers

(line 5; see Section 2.4.2). Mr then returns the updated local violations (augmented

with cross-worker violations) to Mc (lines 6-7).

The coordinator Mc incrementally maintains a set of global violations upon re-

ceiving the updated local violations (line 8). It also invokes procedure GenAssign to

rebalance the workload for the next superstep (lines 9-10) upon a triggering condition.
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This completes a validation of Σ over the snapshots {G1, . . . , Gt} “seen” so far.

Optimizations. To cope with skewed localized updates that lead to stragglers and

reduce communication overhead, ParallelTED adopts two strategies below.

(1) An adaptive time-interval aware workload balancing strategy (proce-

dure GenAssign; line 6) to automatically (re-)partition the TGFD validation workload

to maximize parallelism. The idea is to decompose validation tasks to a set of highly

parallizable, small subtasks that are induced by path patterns, time-intervals, and

common literals (“Joblets”), and dynamically estimates a bounded subgraph induced

by the joblets to be assigned and executed in parallel.

(2) ParallelTED also adopts an incremental pattern matching scheme (Algo-

rithm IncTED; line 5) to maintain the local violations. The strategy performs case

analysis of edge updates and only processes a necessary amount of validation, to re-

duce the communication and local detection cost. We next introduce the details of

GenAssign and IncTED.

2.4.1 Time interval-Aware Workload Balancing

Given a set of TGFDs Σ and GT , procedure GenAssign creates a set of “joblets” and

estimates their processing cost for balanced workload assignment (as illustrated in
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Algorithm 1: ParallelTED (GT , Σ)

1 Initialize ΠX , πXY , Γ(ΠX), Γ(πXY );
2 GenAssign(GT , Σ);
3 foreach t ∈ T do

/* at worker r in parallel */
4 Er(Fr,Σ):= Er(Fr,Σ) ∪ LocalVio(Ftr,Jtr , t);
5 Ec(GT ,Σ):= Ec(GT ,Σ) ∪ IncTED(Gt, Σ,Mr(Q,Gt));
6 Er(Fr,Σ):= Er(Fr,Σ) ∪ Ec(GT ,Σ);
7 return Er(Fr,Σ);

/* at the coordinator side */
8 E(GT ,Σ) := Ec(GT ,Σ) ∪

⋃
r Er(Fr,Σ);

9 if (tJtr < ((1− ζ) · tl))∨(tJtr > ((1 + ζ) · tu)) then
10 Assign(Jtr, CCost); /* rebalance workload */

11 return E(GT ,Σ)
Procedure GenAssign(GT , Σ)
/* at the coordinator side */

1 E(GT ,Σ):= ∅; Ec(GT ,Σ):= ∅; CCost := ∅;
2 foreach σ ∈ Σ do
3 Define Jtr(σ, Ftr, GT ) and estimate |Jtr |;
4 Estimate communication cost CCost(Jtr )

5 Assign(Jtr, CCost);
6 Send Jtr across workers Mr;

Algorithm 1).

Joblets and Jobs. A joblet characterizes a small TGFD validation task that

can be conducted by a worker in parallel. A joblet at superstep t is a triple

ωtrk(Qk,Ftr,G(v′, d)), where

• Qk(vk, d) is a sub-pattern of a pattern Q with a designated center node vk and

a radius d w.r.t. vk, for a TGFD σ = (Q[x̄],∆, X → Y ) in Σ;

• Ftr is a fragment of snapshot Gt on worker Mr; and
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• G(v′, d) =
⋃

s,s′≤t{{Gs(v
′, d), G′

s(v
′, d)}||s′ − s| ∈ ∆}, where v and v′ have the

same label, and G′
s(v

′, r) is a subgraph of Gs induced by v′ and its d-hop neigh-

bors.

Intuitively, a joblet encodes a fraction of a validation task to identify violations

of a TGFD σ ∈ Σ. It is dynamically induced by incorporating a small fragment of Q

and only the relevant fraction of snapshots in GT that should be checked to detect

possible violations of a TGFD σ with pattern Q and time interval ∆.

A job Jtr(σ, Ftr, GT ) refers to a set of joblets that encode the workload to validate

a TGFD σ with pattern Q. A job contains all joblets for all subqueries Qk from Q.

We denote as Jtr(Σ, Ftr, GT ) the jobs for validating a set of TGFDs Σ, i.e., Jtr(Σ,

Ftr, GT ) = ∪σ∈Σ Jtr(σ, Ftr, GT ).

We next introduce a path decomposition strategy adopted by GenAssign. The

joblets are created accordingly for a given decomposition of Q = {Q1, . . . Qk}.

K-Path decomposition (not shown in Algorithm 1). It has been shown that the

cost of graph query processing can be effectively estimated using path queries [101].

GenAssign adopts a K-path pattern decomposition strategy for joblet creation and

cost estimation. For each σ ∈ Σ, GenAssign decompose a pattern Q into a set of paths

{Q1, . . . QK}, such that Q is the union of Qk (k ∈ [1, K]). Each Qk is a maximal path

from a node vk1 to a destination node vkm that cannot be further extended by pattern

edges. Each Qk is augmented with value constraints posed by the literals from X∪Y .
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Figure 2.2: Pattern paths and partial matches.

Let vk be a center node with minimum radius in each path pattern Qk (k ∈ [1, K]),

where the radius d is the longest shortest path between vk and any node in Qk. The

joblets are then created with K-path decomposition and induced subgraphs w.r.t. vk

and Qk (k ∈ [1, K]) accordingly. Figure 2.2(a) shows two (maximal) pattern paths

Q′
1 and Q′

2 of the pattern Q′ with the literal set {z =McMaster}.

Workload Estimation (line 4 of Procedure GenAssign). The workload is estimated

as the size of joblets/jobs, and the expected communication cost among the workers.

To estimate the joblet size, we adapt the cardinality estimation for graph queries [101].

We compute a probability distribution of the expected number of matches for each

edge (vl, vl+1) in Qk with label al. The distribution provides a probabilistic estimation

of the number of matches of vl+1, given the matches of vl that are connected via an
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edge with label al and satisfy the literals over vl and vl+1. We estimate using the

mean and standard deviation of the number of matches of vl+1 w.r.t. vl. We compute

the distribution function of Qk as the product of the distribution functions of each

consecutive edge in Qk. We estimate the size of a job |Jtr(σ, Ftr, GT ) | as the

cardinality of the pattern Q, i.e., the number of matches of Q, computed as the

upper-bound of the minimum cardinality of all Qk.

Communication cost estimation (line 10 of Algorithm ParallelTED; line 4 of Proce-

dure GenAssign). For a joblet ωtrk(Qk,Ftr,G(v′, d)), fragment Ftr may contain a par-

tial match of a path Qk, i.e., some nodes and edges that match Qk reside in ma-

chine Mr′ , r
′ ̸= r. We must exchange these small number of edges between workers

that we estimate as the communication cost of a joblet, defined as CCost(ωtrk) =∑
(v1,v2)∈Gt(v′,d),
¬((v1,v2)∈Ftr)

|(v1, v2)|. We aggregate over all the joblets containing pattern paths

Qk of Q to define the communication cost of a job, CCost(Jtr) =
∑

k
CCost(ωtrk).

Workload Assignment and Rebalancing (lines 9-10 of Algorithm ParallelTED;

line 5 of Procedure GenAssign). We distribute jobs to workers such that the commu-

nication cost C, and the makespan τ is minimized. We solve a general assignment

(GA) problem [102]. Given C and τ , the GA problem is to find an assignment of each

job such that the total parallel cost is bounded by C, and minimizes the makespan.

Following [102], we develop a pseudo-polynomial-time, 2-approximation algorithm. It

performs a bisection search on the range of possible estimated makespan by keeping

only the assignments with an objective function value less than half of the current

best solution. It solves a linear program at most log(wP ) times (w is the number of
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jobs and P is the job with maximum estimated workload) and select the one with

the smallest makespan.

The initial workload distribution guarantees the makespan is at most 2τ provided

tl ≤ tJtr ≤ tu,∀tJtr , for given (tl, tu). Changes among the fragments (increased density

of edges, attributes updates) can create workload imbalance among the workers, and

increase the makespan τ . To avoid excessive workload re-distributions, we define a

burstiness time buffer, ζ, representing the allowable percentage change in job runtime

due to workload bursts. We add ζ to (tl, tu) to define t
′
l = ((1− ζ) · tl), and t′u = ((1+

ζ) · tu). For any job where its runtime tJtr lies beyond (t′l, t
′
u), Mc triggers a workload

distribution and rebalances the workload. In Section 2.5.3, we study the overhead and

frequency of workload re-distributions over real workloads for ζ = 0.1 under varying

rates of change, and found the overhead is about 6% of the total runtime.

2.4.2 Parallelized Incremental Temporal Matching

Another bottleneck is to compute the pattern matches over evolving and distributed

fragments. We next introduce the procedures LocalVio and IncTED that efficiently

maintain the matches in ParallelTED.

Incremental Local Matching. The local violation computation (Proce-

dure LocalVio (Algorithm 2), line 4 of Algorithm ParallelTED) relies on fast com-

putation of local pattern matches. At each superstep t, jobs are executed at each
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worker to compute matches of each query path Qk corresponding to Q. For each

Qk in a joblet, it performs subgraph isomorphism matching on G(v′, d) to find local

matches. Matches that require edges from multiple workers are shipped to a single

worker. The matches of Q are obtained by (1) taking the intersection of the nodes

identified by the matches across all paths Qk of Q, and (2) a verification to find true

matches.

Coping with edge updates. New matches of Qk can appear and existing matches dis-

appear (or be updated) as changes occur to fragment Ftr. To adapt to these changes,

we present an incremental matching strategy that avoids redundant computations,

and tracks partial matches for each Qk with their missing topological and literal

conditions.

We introduce a boolean vector β̄(hi) = (b1, . . . , bκ) over a candidate match hi of

Q in Ftr. β̄(hi) contains κ components, where the k-th component is the matching

status of ωtrk(Qk,Ftr,G(v′, d)). That is, if there exists a match hi of Qk in Ftr, then

β̄(hi) = 1 (true), otherwise, β̄(hi) = 0 (false). In the latter case, a partial match hi

may be isomorphic to Qk but not satisfy its literals. We define unSatk(hi) as the set of

unsatisfied literals x′ ∈ x̄ in hi w.r.t. Qk, e.g., unSatk(hi) = {x′.A = c | hi(x
′).A ̸= c}.

We use β̄ and unSatk when hi is clear from the context.

Each worker initializes and populates β̄ and unSatk as matches are found. As

changes occur over the fragments, ParallelTED checks β̄, and unSatk to determine if

new matches arise, and updates existing matches to minimize the need for (expensive)

subgraph isomorphism operations. If the k-th component of β̄ equals false, there are
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Algorithm 2: LocalVio(Ftr,Jtr, i)

/* compute matches and errors over G1 */
1 (Mr(Q,G1), hi) := IsoUnit (Q, G1)
/* incrementally compute matches for G2 onwards */

2 foreach c ∈ changes do
3 Mr(Q,Gi) := Mr(Q,Gi) ∪ LMatch(Ftr,Jtr,Mr(Q,Gi−1), c);
4 Er(Fr, σ):= Er(Fr, σ) ∪ IncTED(Ftr, σ, Mr(Q,Gi)); return Er(Fr, σ);

two cases to consider: (i) a topological match of Qk exists, but there are unsatisfying

literals in unSatk; or (ii) an empty unSatk represents no topological match of Qk in

Ftr. For a job Jtr, we evaluate the following cases for an input change c:

(a) attribute insertion/deletion/update: we check whether c adds/removes literals

from unSatk, and update β̄ to denote the insertion/deletion of a match hi w.r.t.

Qk.

(b) edge insertion: we perform subgraph isomorphism matching to determine

whether a partial match is upgraded to a complete match w.r.t. Qk.

(c) edge deletion: if c causes a prior match hi w.r.t. Qk to be removed, we then

set β̄(hi)[k] to false, and add any unsatisfying literals to unSatk(hi).

Algorithm 2 provides details of the local matching and error detection at each

worker. For the first snapshot, we compute matches using a localized subgraph iso-

morphism matching algorithm, IsoUnit [51] (line 1). For the subsequent snapshots,

matches are incrementally maintained based on a local change c via LMatch (lines 2-

3). After processing all the changes, we compute the violations for σ via IncTED

(line 4), and return the local error set (line 5).
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Algorithm 3: LMatch(Ftr,Jtr,Mr(Q,Gi−1), c)

1 Mr(Q,Gi) := ∅;
2 Initialize β̄ and unSatk from Mr(Q,Gi−1);
3 Mchg = {hi−1 ∈ Mr(Q,Gi−1) | c applied to Gt−1}
4 switch c do
5 when insert/update(x.A = a);
6 if bk = 0 and (x.A = a) ∈unSatk then
7 unSatk:= unSatk\ (x.A = a);
8 bk = 1;

9 else if bk = 1 and (x.A = b) ∈ Qk then
10 unSatk:= unSatk∪ (x.A = a);
11 bk = 0;

12 when delete(x.A = a);
13 if bk = 1 and (x.A = b) ∈ Qk then
14 unSatk:= unSatk∪ (x.A = b);
15 bk = 0;

16 when insert(e);
17 if new match for Qk occurs then
18 Duplicate all vectors β̄, bk = 1;
19 when delete(e);
20 if β̄(hi)[k] = 1 then
21 bk = 0; unSatk(hi)= ∅;
22 foreach hi ∈ Mchg do
23 if (β̄(hi)[k] = 1, ∀k) then
24 Mr(Q,Gi) := Mr(Q,Gi) ∪ hi;

25 return Mr(Q,Gi);

The algorithm LMatch is illustrated in Algorithm 3. We initialize (lines 1-2), and

apply the change c to existing matches to determine whether the match remains or is

removed (line 3). For attribute updates, we update β̄ and unSatk without performing

any subgraph isomorphism operations (lines 5-15). For edge insertions, we perform

subgraph isomorphism along Qk to check for a new match (lines 16-18). For edge

deletions, which can only remove matches, we update bk for Qk (lines 19-21). A

match hi of Q exists if bk = 1 for all k, and we add hi to Mr(Q,Gi) (lines 22-24).
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Algorithm 4: IncTED(GT , σ,M(Q,Gt))

1 E(GT , σ) := ∅;
2 foreach hi ∈ M(Q,Gt) do
3 {ΠX , πXY } := {ΠX , πXY } ∪ hi

4 {Γ(ΠX), Γ(πXY ) } := {Γ(ΠX), Γ(πXY ) } ∪ i;
5 ρ(i) := [max(1, i− p),min(i+ q, T )];
6 if {µX(hj)}\ µX(hi) } ≠ ∅,∀j ∈ ρ(i) } then
7 E(GT , σ) := E(GT , σ) ∪ {(hi, i), (hj, j)};
8 foreach (x.A = a) ∈ Y do
9 if hi .A ̸= a then

10 E(GT , σ) := E(GT , σ) ∪ {(hi, i)};
11 return E(GT , σ);

Example 9: Figure 2.2(b) shows (partial) matches of patterns Q′
1, Q

′
2. At t1, β̄(h1)

denotes no match of either Q′
1 nor Q′

2, while β̄(h1)[2] indicates a topological match

of Q′
2 with non-empty unSat2 containing literal z = McMaster. At t2, with an edge

insertion labeled study from Bob to Waterloo, we perform a subgraph isomorphism

matching and find a topological match of Q′
1. However, β̄(h2(x̄)) remains false due to

the unsatisfying McMaster literal in unSat1(h2). Lastly, the update at t3 to University

from Waterloo to McMaster clears all unsatisfying literals, and updates β̄(h3) to true

for Q′
1 and Q′

2, without requiring any additional matching. □

Validating each σ ∈ Σ may require us to store and pairwise compare all the local and

cross-worker matches. We next introduce procedure IncTED, an Incremental TGFD

Error Detection algorithm. The algorithm avoids the need to store the matches, and

reduces the cost of the exhaustive pairwise match comparisons by performing efficient

set difference operations.
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Permissible Ranges. Rather than exhausting the comparison of any pair of

matches, IncTED verifies match pairs with respect to a “current” time, c = i, and

induces an allowable time range between hi and hj as defined by ∆. We define Ihi

and Ihj
as follows:

Ihi
= [1, |T | − p]

Ihj
= [(i+ p), j′],where j′ =

 T, (i+ q) > T

(i+ q), o.w.

(2.4.1)

If matches hi, hj have the same values in X, we want to identify matches hj

to compare against hi by defining the allowable time range. We call this ρ(i), the

permissable range of hi, as ρ(i) = {j | |j − i| ∈ ∆}.

Auxiliary Structures. IncTED uses the following notations and auxiliary structures.

To avoid enumeration of all pairwise matches in ρ(i), we define a hash map, ΠX (i),

that partitions all matches of Q according to their values in X up to and including i.

Specifically, let ΠX = {hj | hi .A = hj.A, ∀ (hi .A, hj.A) ∈ X, i ≤ j}. We simply use

ΠX when i is clear from the context. We sub-partition the matches in ΠX according

to their distinct values in Y to identify error matches with different consequent values

within the permissable range. We record the timestamps of such matches ΠX (resp.

πXY ) in Γ(ΠX) (resp. Γ(πXY )), i.e., Γ(ΠX) = {j |hj ∈ ΠX }. We define a mapping

function that returns the πXY partition in which hi belongs as µX(hi) = πXY such
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that hi ∈ πXY . For example, Figure 2.1 shows matches of σ with ΠX = {h1, . . . , h6},

Γ(ΠX) = {t1, . . . , t6}, and πXY = {{h1, . . . , h5}{h6}}, Γ(πXY ) = {{t1, . . . , t5}{t6}}.

These global structures and variables are maintained by the coordinator Mc and

shared among all workers.

Algorithm. The algorithm IncTED is illustrated in Algorithm 4. After initializing

the local error set (line 1), it iterates over the local matches and records the times-

tamps of each match in the auxiliary structures (lines 3-4). For each match hi, the

ρ(i) is bookkept based on the timestamp of hi (line 5). For variable TGFDs, if there

exists another match hj within the permissable range of hi such that hi and hj have

different set of timestamps for πXY , then IncTED adds the pair to the violation set

(lines 6-7). For constant TGFDs, if the match hi violates a constant literal in Y , then

it adds hi to the violation set (lines 8-10).

Using IncTED algorithm, each worker computes its local set of errors, Er(Fr, σ).

For matches that span two workers, the coordinator verifies matches hi, hi′ from Mr,

Mr′ , r ̸= r′, respectively. This is done by selecting matches from µX(hi) = πXY (hi)

and µX(hi′) = πXY (hi′) such that |i− i′| ∈ ∆, and computing {µX(hi′)} \ {µX(hi)},

i.e., checking whether the set difference is non-empty. If so, we add {(hi, i), (hi′ , i
′)}

to the cross-machine error set Ec(GT ,Σ). At each timestamp, we update E(GT ,Σ)

with Ec(GT ,Σ)
⋃

r Er(Fr,Σ).

We found that the incremental strategy effectively improves the efficiency of a
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Figure 2.3: Error detection in ParallelTED

batch counterpart for TGFD-based error detection by 3.3 times (see Section 2.5).

Example 10: Figure 2.3 shows matches {h1, h4} and {h′
1, h

′
5} for a σ with ∆ = (0, 3)

computed locally (via LMatch [18]) at M1 and M2, respectively. M1 computes

local error set E1 via IncTED, and E2 = ∅ since |t5 − t1| ̸∈ ∆. Mc receives

{h1, h
′
1}, {h4, h

′
1}, {h4, h

′
5}, validates the pairs (shown by dotted lines) via IncTED,

and adds the violations to E(GT , σ) += Ec(GT , σ)
⋃
E1. □
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2.5 Experiments

We evaluate our algorithms with three objectives: (1) scalability and impact of vary-

ing parameters; (2) the effectiveness of TGFD-based error detection compared to GFDs

and GTARs; and (3) case study that verifies real-world TGFDs and errors that can be

captured.

2.5.1 Experimental Setup

Datasets. We use two real, and one synthetic graph. All datasets and source code

are publicly available at [6].

(1) DBpedia [79]: The graph contains in total 2.2M entities with 73 distinct entity

types, and 7.4M edges with 584 distinct labels from 2015 to 2016, with snapshots

every 6 months.

(2) IMDb [5]: The data graph contains 4.8M entities with 8 types and 16.7M edges.

IMDB provides diff files, where we extract 38 monthly updates from Oct. 2014 to

Nov. 2017.

(3) Synthetic: We use the gMark benchmark [26], and generate data graphs with up to

21M vertices, 40M edges, and 11 attributes per node. We transform the static graph

into a temporal graph of T timestamps by randomly generating updates 4% the size

of the graph (w.r.t. the number of edges) to create subsequent graph snapshots.

TGFDs generation. We generated 40 TGFDs (DBpedia, IMDb), and 20 TGFDs
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(Synthetic) by using a discovery algorithm in our pilot study [89]. The pattern

size, time intervals and size of TGFDs are reported in Table 2.2.

Comparative Baselines. We implemented the following.

(1) NaiveTED: We compute matches at each snapshot using the VF2 matching al-

gorithm [59]. We verify matches between two snapshots if their time intervals lie

within ∆.

(2) SeqTED: We implement a sequential TGFD error detection algorithm by running

IncTED over a single machine. We compute matches over a single node by using

an incremental matching for subgraph isomorphism algorithm, IsoUnit [51]. We run

SeqTED on a Linux machine with AMD 2.7 GHz, 256GB RAM.

(3) GFD-Parallel: We implement the parallel GFD error detection algorithm [57]. For

a set of GFDs ΣGFD (defined in [6]), we compute matches for each φ ∈ ΣGFD over

each Gi, and check whether Gi|= ΣGFD (pairwise matches between snapshots are not

compared).

(4) GTAR-SubIso: Given a set of TGFDs Σ, we transform each σ ∈ Σ to a GTAR. We

remove the X → Y dependency, and define a ∆t time interval (0, q), for a pattern Q

(serving as both the antecedent and consequent) containing the same constants for
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each literal in x̄. We evaluate this class of of subgraph isomorphism-based GTARs for

its error detection accuracy and performance.

Error Injection, Parameters, and Metrics. We inject positive and negative

errors according to varying error rates. For instance, for positive errors, we randomly

select err% of pairwise matches with equal values in X, and update their values in Y

to create violations, and add the pair to the set of positive errors Γ+. For negative

errors, we similarly pick err% of pairwise matches w.r.t. a TGFD σ, and update a value

in Y to a value in the domain of X ′ w.r.t. another TGFD σ′, where {Y ∩ X ′ ̸= ∅},

and add to Γ−.

We use the following commonly adopted measures: precision=
|E(GT ,Σ) ∧ Γ+|

|E(GT ,Σ)|
and

rec=
|E(GT ,Σ) ∧ Γ+|

|Γ+|
. The false positive rate is computed as fpr=

|E(GT ,Σ) ∧ Γ−|
|Γ−|

,

and F1= 2× precision× rec

precision+ rec
.

Table 2.2 summarizes the parameters and their default values.

Implementation. We implement all our algorithms using Java v.13 and Scala. We

run the tests on a cluster of 16 Amazon EC2 Linux machines, each with 32GB RAM,

8 cores at 2.5 GHz. The full set of data constraints including TGFDs, source code,

and datasets are available at [6].

54



Doctoral Thesis – M. Alipourlangouri McMaster University – Computer Science

Table 2.2: Parameter values (defaults in bold)

Symbol Description Values

|Σ| #TGFDs 10, 20, 30, 40
(DBpedia, IMDb)
20 (Synthetic)

|Q| graph pattern size 2, 4, 6, 8, 10

∆ time interval 5, 10, 15, 20, 25
month (IMDb)

T total timestamps 5, 10, 15, 20 (Synthetic)

|G| = (|V |, |E|) graph size (in M) (5, 10), (10, 20),
(15, 30), (20, 40)

chg change rate 2%, 4%, 6%, 8%, 10%

err(GT ) error rate 1%, 3%, 5%, 7%, 9%

n #processors 2, 4, 8, 16

2.5.2 Exp-1: Scalability

Vary |Σ|: Figure 2.4a and Figure 2.4b show ParallelTED outperforming SeqTED by an

average 170%, achieving larger gains in IMDb over a larger number of snapshots. We

stopped executions of NaiveTED over IMDb after 22hrs. ParallelTED runs 22% and

29% faster than GFD-Parallel over DBpedia and IMDb, respectively, despite having

to evaluate more matches. This demonstrates the effectiveness of IncTED, and our

techniques for maintaining (query path) matches in the presence of changes.

Vary |Q|. Figure 2.4c and Figure 2.4d show that larger graph patterns incur higher

runtimes as the cost of local pattern matching increases. This is especially evident

for sequential algorithms NaiveTED and SeqTED. ParallelTED is 80% and 18% faster

than SeqTED and GFD-Parallel, respectively.
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Figure 2.4: TGFD error detection efficiency and effectiveness (1).

Vary ∆. We vary ∆ from 5 to 25 (Figure 2.4e), and found the performance of

NaiveTED is sensitive due to the increased number of pairwise matches that need to

be compared for larger ∆. In contrast, SeqTED and ParallelTED are largely insensitive

due to their incremental checking strategies.

Vary chg. We vary the number of changes between snapshots, from 2% to 10%.

Figure 2.4f shows that with more changes, all techniques incur longer runtimes, as

expected. SeqTED and ParallelTED runtimes increase by 27% and 26%. respectively.

SeqTED uses IsoUnit to compute matches which become more expensive as the number

of changes localized to a subgraph increases. ParallelTED uses boolean vectors to track
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Figure 2.5: TGFD error detection efficiency and effectiveness (2).

changes to existing matches to avoid isomorphic computations (Section 2.4.2), and

achieves the fastest runtime.

Vary |G|. Figure 2.5a shows that for increasingly large graph sizes, sequential algo-

rithms are not feasible, i.e., we stopped execution of SeqTED after 20hrs due to its

exponential growth. However, ParallelTED shows that error detection and matching

is feasible over large graphs, outperforming GFD-Parallel by 18%.

Vary T . Figure 2.5b shows that as we increase the number of snapshots T , the

runtimes of SeqTED and ParallelTED scale linearly. With larger T , we expect more
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matches to occur (assuming a uniform spread of changes across all T timestamps),

where validating a new match vs. existing matches in πXY can be done in constant

time.

Vary n. Figure 2.5c shows that both ParallelTED and GFD-Parallel scale well with

an increasing number of machine workers over the DBpedia dataset. ParallelTED runs

29% faster than GFD-Parallel despite evaluating matches both within and between

graph snapshots (GFD-Parallel only compares matches within a snapshot). This high-

lights the efficiency of IncTED to avoid redundant pairwise comparisons, and adap-

tively tuning matches to avoid expensive subgraph isomorphism computations. Fig-

ure 2.5d shows that the same trend exists over the IMDb dataset, where ParallelTED

runs 31% faster than GFD-Parallel.

Communication Overhead. We evaluate ParallelTED communication overhead for

an increasing number of workers as shown in Figures 2.5e and 2.5f. Using DBpedia and

IMDb, the communication cost comprises between 10-48%, and 5-28%, respectively,

of the total error detection time. As expected, for an increasing number of workers,

we see that both ParallelTED and GFD-Parallel incur increased overhead as the need

to exchange data increases.
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2.5.3 Exp-2: Adapting to Workload Changes

Rate of Change. We study the impact of the burstiness time buffer ζ by generat-

ing a graph of size (5M,10M), and implement a version of ParallelTED without ζ (no

workload rebalancing) called ParallelTEDNoBal. Figure 2.6a shows ParallelTED run-

times with ζ = 0.1 performs 16% faster as change rates less than 8% are accounted

for by the burstiness buffer, requiring only at most two workload re-distributions.

Beyond this change point, larger ζ values are needed, which require more frequent

workload re-distributions (up to six), and incur approximately 6% overhead.

Vary Type and Distribution of Changes. Using the same generated graph,

we distribute changes according to: (i) a Uniform distribution that assigns attribute

updates (AU) (40%), edge deletions (ED) (30%), and edge insertions (EI) (30%);

(ii) each of Skewed AU, Skewed ED, Skewed EI assigns 85% of changes to their respec-

tive type, and 7.5% to the other two types. Figure 2.6b shows EI changes lead

to the slowest runtimes as pattern matching becomes more expensive to find new

matches. Attribute updates cause matches to be added/removed, and incur higher

runtimes compared to ED, which only lead to fewer matches. Across all change

types, Figure 2.6b shows ParallelTED is more efficient, about 20% on average, than

ParallelTEDNoBal. We also evaluated data partitioning schemes that distribute the

changes across the workers such that hot spots are: (i) uniform across four nodes;

(ii) 80% of hot spots across two nodes; and (iii) 70% on a single node. As ex-

pected, ParallelTED incurs 13% more time, compared to ParallelTEDNoBal at +19%

(Figure 2.6c).
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Figure 2.6: TGFD error detection efficiency and effectiveness (3).

2.5.4 Exp-3: Comparative Performance

Comparing with GFDs and GTARs. Figure 2.6d shows the comparative error de-

tection F1-score of ParallelTED, GFD-Parallel and GTAR-SubIso for varying error rates

over IMDb. ParallelTED outperforms GFD-Parallel (resp. GTAR-SubIso) with an aver-

age gain of 55% (resp. 74%). With GFD-Parallel achieving 23% recall, TGFDs capture

more errors “across” graph snapshots than GFDs. GFDs exhibit greater sensitivity

to negative errors and false positives for increasing error rates as more match pairs

are incorrectly detected as violations when temporal intervals are not considered.
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In comparison to GTAR-SubIso, which achieved an average recall of 12%, TGFDs

have greater expressive power with e.g., variable and constant literals, to capture

errors with non-zero lower bounds, and detect historical errors located in “past”

matches. Figure 2.6e shows ParallelTED achieves 32% and 119% faster runtimes than

GFD-Parallel and GTAR-SubIso, respectively. Overall, ParallelTED incurs a 4% loss in

F1-score at a 3% cost in runtime.

2.5.5 Case Study: Example TGFDs

We profiled DBpedia to identify TGFDs, and to validate their prevalence, and errors

in real data [89, 15].

(1) TGFD 1 Figure 2.7(a) shows a sample pattern Qts for σts =

(Qts[x̄], (1, 365), [x.name, y.season, z.name] → [w.actor], which specifies “if a

TV series in a given season is broadcast over a one-year period with a character role,

then the actor playing this role must be unique.” Figure 2.7(c) shows a violation in

Season 3 of the series Trollhunters: Tales of Arcadia, where character Jim Lake Jr.

was first played by Anton Yelchin in May 2018, and then by Emile Hirsch in Dec.

2018.

(2) TGFD 2 Figure 2.7(b) shows Qsp for σsp = (Qsp[x̄], (1, 4), [x.name] →

[y.league, z.team] that specifies “for a given football player, who has played between

one to four months in a given year, must play for the same team and league.”

This requirement enforces player to team consistency for a given duration of time,

and only permits team changes during authorized transfer windows in a year.
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Figure 2.7: Case study: TGFDs in real-world graphs.

Figure 2.7(d) shows a violation for football (soccer) player Gareth Bale who played

for the team Tottenham Hotspur on Sep. 2020, and then transferred to Real Madrid

on Nov. 2020. The latter team change happened within four months, therefore

leading to a violation. In both cases, existing graph constraints are unable to capture

such inconsistencies either due to the lack of support to temporal constraints, or

historical matches are not verified for data consistency, particularly with variable

literals [57, 87].

2.6 Related Work

Graph Dependencies. Existing integrity constraints are mainly designed for static

graphs. GEDs [53] extend GFDs by the support of literal equality of entity id over
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two nodes in the graph pattern to subsume GFDs and GKeys. Graph keys (GKeys) and

their ontological variants are defined to uniquely identify entities [48, 83]. NGDs [52]

are defined to extend GFDs with the support of linear arithmetic expressions and

built-in comparison predicates. None of these dependencies are applicable to catch

inconsistencies over temporal graphs. Hence, TGFDs are based on pairwise com-

parisons across timestamps satisfying the time duration bounds, which induce the

scope of historical and future matches relative to a current time. Association rules

GPAR [56] are defined over static graphs. GTARs are soft rules designed for predic-

tive analysis, and are unable to capture inconsistencies, particularly rare occurrences,

across a given time duration.

Temporal Dependencies. FDs over temporal databases include Dynamic Func-

tional Dependencies (DFDs) that hold over consecutive snapshots (states) of a

database, where attribute values from a current state determine values in the next

state, e.g., a new salary is determined by the last salary and the last merit in-

crease [75]. Wijsen et. al., define Temporal Functional Dependencies (TFDs) that

rely on object identity, include a valid-time on tuples, and apply to the sequence of

snapshots defining a temporal relation [117]. DFDs constrain pairs of adjacent states,

while TFDs constrain a sequence of multiple valid-time states. TGFDs impose topo-

logical constraints that are not captured in relational settings, and TGFDs model a

different matching and temporal semantics. DFDs and TFDs impose consistency over

tuples from adjacent snapshots. TGFDs are not restricted to compare consecutive

matches, but constrain the time difference of matches to lie within the ∆ interval.
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Second, TGFDs model the time interval duration when topological and attribute con-

sistency is expected, whereas DFDs and TFDs do not model such semantics.

Temporal Graph Mining. Frequent dynamic subgraphs extend pattern mining

over static graphs to dynamic graphs, which discover frequent patterns that occur

beyond a given threshold over a time interval [33]. Mining temporal motifs capture

dynamic interactions with patterns [63, 90], with extensions to time windows known as

δ-temporal motifs [90]. Various mining algorithms have studied finding dense tempo-

ral cliques with partitioning schemes over temporal graphs such as GraphScope [108],

MDL-based approaches to identify associations between changes [58], and mining for

cross-graph quasi-cliques [92]. TimeCrunch associates each subgraph across time to

a template structure, and uses clustering to stitch these temporal graphs together to

create an entity trajectory [100]. While our work shares a similar spirit to identify con-

sistent temporal patterns, TGFDs impose data dependency and temporal constraints

over identified matches of a given pattern. We performed a pilot study for a special

class of size-bounded TGFDs to assess their frequency in practice [89]. We validated

the presence of these TGFDs in large-scale graphs such as DBpedia, as shown in the

case study. In this work, we present a formal model, and complete study of general

TGFDs, and propose new error detection algorithms.

Constraint-Based Graph Cleaning. There has been extensive work to infer miss-

ing data in graphs [91]. Graph Fact Checking rules [81] have been introduced to

answer true/false to generalized fact statements. [105] proposed a constraint based
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approach to infer missing data in graphs. Graph identification [96] has been intro-

duced to use probabilistic approaches to infer missing facts in knowledge graphs.

Graph Quality Rules (GQRs) [54] are defined to deduce certain fixes over graphs by

supporting conditional functional dependencies, graph keys and negative rules. These

techniques are designed for static graphs, with a goal to suggest changes or provide

useful provenance information based on enforcing a set of rules. TGFDs serve a differ-

ent purpose to model time-dependent data consistency requirements over temporal

graphs that are conditioned by a given time interval.

Parallel Algorithms for Subgraph Isomorphism. There has been an exten-

sive line of research on parallel algorithms for subgraph isomorphism [98, 109] and

SPARQL queries [60, 64, 71, 78]. In Trinity memory cloud [109], they used twig

decomposition to prune the intermediate results in order to reduce the latency of

the parallel algorithm of the subgraph isomorphism. In [98], they developed an in-

memory algorithm to parallelize a backtracking procedure. They used the memory

to distribute partial answers in a balanced way among threads for local expansion.

Moreover, by replicating the partial answers to a global storage, they allowed a bal-

anced workload distribution for the next round. For parallel SPARQL on RDF data,

past techniques have used strategies such as hash-based partitioning, query decom-

position and load balancing [60, 71]. Query decomposition is introduced in [64] to

avoid communication cost by replicating graphs in the distributed setting. For multi-

pattern matching, optimization techniques introduced in [78], by finding common sub-

patterns and leveraging common matches to find the final set of matches. However,
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our algorithms are different from these techniques as TGFDs use general graph pat-

tern and general property graphs. SPARQL-based techniques leverage RDF schema

and query semantics, which are not available in a general graph pattern and property

graphs.

2.7 Conclusion

We have proposed TGFDs, a class of graph dependencies to characterize errors induced

by graph patterns and specific time intervals for temporal graphs. We have established

complexity results for fundamental problems, and introduced a sound and complete

axiom system to infer TGFDs. We introduced a parallel and incremental algorithm for

TGFD-based error detection. Our experimental results have verified the effectiveness

and efficiency of our error detection algorithms. As next steps, we intend to explore

non-parametrized methods to extend our workload rebalancing scheme to dynamically

adapt to workload burstiness. Given the utility of TGFDs, and the identified errors,

graph data cleaning with respect to TGFDs would be an interesting next step.
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Chapter 3

Discovery of Keys for Graphs

3.1 Introduction

Keys are a fundamental integrity constraint defining the set of properties to uniquely

identify an entity. Keys serve an important role in relational, XML and graph

databases to maintain data quality standards to minimize redundancy and to pre-

vent incorrect insertions and updates. In addition, keys are helpful for deduplication

(also referred to as entity resolution) and have been widely studied for entity iden-

tification [42, 13, 23]. While keys are often defined by a domain analyst according

to application and domain requirements, manual specification of keys is expensive

and laborious for large-scale datasets. Existing techniques have explored mining for

keys in relational data (as part of functional dependency discovery) [72], and in XML
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data [34].

The expansion of graph databases has lead to the study of integrity constraints

over graphs, including functional dependencies [53, 18], keys [48] and their ontological

invariant [83]. The theoretical foundation of these constraints have been studied and

there has been a wide application of key constraints for deduplication, citation of

digital objects, data validation and knowledge base expansion [42, 68]. Graphs such

as knowledge bases and citation graphs require keys to uniquely identify objects to

ensure reliable and accurate deduplication and query answering. There is a need

to automatically discover keys from such graphs as manual specification of keys is

expensive and labor intensive. Although recent work has proposed techniques to find

keys over RDF data [23], these techniques are not applicable for graphs as they do

not support: (i) topological constraints; and (ii) recursive keys (a distinct feature in

graph keys). Consider the following example on how keys help us to identify entities

in a graph.

Example 11: Consider a knowledge graph consisting of triples (subject, predicate,

object) where subject and object are nodes, and predicate is an edge connecting sub-

ject to object. Figure 3.1 shows a sample of such graph from the DBpedia dataset [79]

of three colleges {college1, college2, college3}, five cities {city1, . . . , city5}, and three

countries {country1, country2, country3} along with the attributes of each entity.

Consider graph keys with patterns P1 and P2 in Figure 3.1. P1 states that if two

colleges share the same name and motto, then they refer to the same college. P2

states that if two colleges share the same name and city, then they refer to the same
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Figure 3.1: Sample graph from DBpedia.

college., Similarly, a city can be identified by its name and country as it is shown in

P3. Moreover, P4 states that a country can be identified by its name. Note that P2 is

dependant to P3 and P3 is dependant on P4, which reflects the recursiveness of graph

keys [48]. However, one can confirm that not all combinations of the attributes can

form a graph key for an entity. For example, name cannot uniquely identify college

(resp. city) as we have three colleges (resp. two cities) with the same name. □

The example highlights that many keys are possible to identify entities, and this

depends on the data and its semantics. For example, P1 uses the name and motto

to uniquely identify the college. However, due to missing values, not all colleges have

motto. This leads us to null values for some colleges, thereby leading to poor support

and representation across all colleges. This highlights the need to define meaningful

properties for a key and an efficient algorithm to discover such keys over graphs.

However, the main challenges to automatically discover keys in large scale graphs
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include: (1) How to reduce the search space? (2) How to generate the most likely

candidate keys? (3) How to efficiently evaluate each candidate key?

Contributions. To address the challenges above, our contributions are as follows:

• We define new properties for graph keys, support and minimality, and formalize

the discovery problem of graph keys (Section 3.4.1).

• We develop an algorithm called GKMiner with optimizations that mines graph

keys (Section 3.4.2).

• We show that our algorithm is scalable and feasible to mine keys in graphs of

millions nodes and edges. We show GKMiner runs up to six times faster with

up to 61% gain in F1-score than the existing technique that mines keys over the

RDF data (Section 3.5).

The rest of this chapter is structured as follows. We discuss related work in Sec-

tion 3.2, and preliminaries in Section 3.3. In Section 3.4, we provide key properties

and then the discovery algorithm. We present our experimental evaluations in Sec-

tion 3.5, and conclude in Section 3.6.
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3.2 Related Work

Keys and Dependencies. Keys are defined to uniquely identify entities in a

database. For relational data, keys are defined as a set of attributes over a schema [12],

or by using unique column combinations [30, 115] to uniquely identify the tuples. For

XML data, keys are defined based on path expressions in the absence of schema [34].

Traditional keys are also defined over RDFs [24, 93, 106] in the form of a combination

of object properties and data properties defined over OWL ontology. Recent works

have studied functional dependencies for graphs (GFDs) that define value constraints

on entities that satisfy a topology constraint [53, 57]. Keys for graphs (GKeys) aim to

uniquely identify entities represented by vertices in a graph, using the combination of

recursive topological constraints and value equality constraints. GKeys are a special

case of GFDs [48]. The recursiveness of GKeys makes it more complex compared to

relational and RDF based counterparts. Graph matching keys, referred to as GMKs,

are extension of graph keys using similarity predicates on values, and supporting

approximation entity matching [39].

PG-Keys [19] proposes a modular and flexible model to formalise keys for property

graphs. Their keys are defined to be used for a property graph query language that

is currently underway through the ISO Graph Query Language (GQL) project. PG-

Keys define keys that are applicable to nodes, edges, and properties in a property

graph. However, they do not consider any topology constraints to define a key, while

GKeys are focused to uniquely identify entities (i.e., nodes) in the absence of schema.

For the property graphs, a uniqueness constraint is a set of attributes whose values
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uniquely identify an entity in the collection. Neo4j keys [82] are based on uniqueness

constraints and require the existence of such constraints for all vertices the graph. A

new principled class of constraints called embedded uniqueness constraints have been

proposed that separates uniqueness from existence dimensions and are used in the

property graphs to uniquely identify entities [104]. However, GKeys are different than

these constraints by supporting topology constraints via a graph pattern.

Dependency Discovery and Pattern Mining. Key mining approaches have been

studied for relational databases as data-driven [67] and schema-based [103] tech-

niques. TANE [72] proposed a level-wise schema-based approach to mine keys in

relational data (as part of functional dependencies) and it has been extended for

RDFs [24]. KD2R [93] extends the relational data-driven approach of [103] by ex-

ploiting axioms (such as the subsumption relation) and considers multi-valued prop-

erties. SAKey [110] extends K2DR by introducing additional pruning techniques to

discover approximate keys with exceptions. VICKEY [111] has extended SAKey to

mine conditional keys over RDFs. To avoid scanning the entire dataset, all three

techniques (i.e., K2DR, SAKey, and VICKEY) first discover the maximal non-keys

and then derive the keys from this set. Non-keys are the set of attributes that are not

keys and maximal non-keys are super-sets of all other non-keys. Instead of exploring

the whole set of combinations of properties, the idea behind these techniques is to

find those combinations that are not keys and then derive the keys from that set. To

verify that a set of properties is a non-key, it suffices to find two subjects that share

values for these properties.
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Comparison with GFDs. Fan et. al, have developed a parallel algorithm to discover

GFDs in graphs [50]. Although GKeys are a special case of GFDs, their technique is

not able to mine GKeys as (1) the GFD discovery algorithm cannot mine recursive

patterns; and (2) to model a GKey with a GFD, the GFD must have a pattern consist

of two connected components to define equality over pairs of matches. However,

the GFD discovery algorithm only mines GFDs with a single connected component

pattern [50]. Therefore, there needs to be an extended semantics of GFDs to compare

pair of matches in the discovery algorithm.

To the best of our knowledge, there is only one technique to discover keys for

graphs [16], which is our preliminary work published at a VLDB workshop called Ad-

vances in Mining Large-Scale Time Dependent Graphs (TD-LSG). This work differs

from [16] as we define new metrics to mine GKeys, and propose an efficient algorithm

with optimizations and perform extensive experimental evaluations over real world

graphs and compare with SAKey [110].

3.3 Preliminaries

Graphs. A directed graph is defined as G = (V,E, L, F ) with labeled nodes and

edges, and attributes on its nodes. The set V is a finite set of vertices and L is a

finite set of labels. A set of edges is denoted as E ∈ V × L × V , i.e., e = (u, l, v)

represents an edge from u to v with the label l that is not equal to edge (v, l, u). Each

node v ∈ V may have a label l ∈ L referred as v.type. For a node v, F (v) is a tuple
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to specify the set of attributes as (A1 = a1, ..., An = an) of v. More specifically, Ai

with a constant ai determines the attribute Ai of v written as v.Ai = ai. Attributes

can carry the properties of a node such as name, age, etc., as found in social networks

and knowledge graphs. We represent each attribute as a separate node with no type,

i.e., for each attribute (Ai = ai) ∈ F (v), there exists a node vi with the value of ai

and there exists a corresponding edge (v,Ai, vi) ∈ G.

Example 12: We return to Figure 3.1, where we have three colleges with unique ids

{college1, college2, college3} and all of them have the property name = Trinity Col-

lege. However, college1 and college2 havemotto, while college3 hasmascot. Moreover,

entities are connected to each other via edges, e.g., city1 with the name = Toronto

has an edge city of to country1 named Canada. □

Graph pattern. A graph pattern is defined as a connected, directed graph P (uo) =

(VP , EP , LP ) where (1) VP is a finite set of pattern nodes; (2) EP is a finite set of

pattern edges; (3) LP is a function which assigns a specific label LP (v) (resp. LP (e))

to each vertex v ∈ VP (resp. each edge e ∈ EP ). Note that we consider graph patterns

to be a general pattern (e.g., pattern with loop, tree, DAG, etc.).

The pattern nodes VP may be one of three types: (1) a center node uo ∈ VP ,

representing the main entity to be identified; (2) a set of variable nodes Vx ⊆ VP ; and

(3) a set of constant nodes Vc = VP \ ({uo}∪Vx). A variable node is being mapped to

an entity and it carries the label as a type along with an eid, while a constant node

only contains a value without any eid to map to a value.
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Example 13: Consider the two entity patterns P1 and P2 in Figure 3.1(a), charac-

terizing entities of type college. P1 contains constant nodes name and motto, while

P2 has a constant node name and a variable node city. P3 is a pattern for the entities

of type city with constant node name and variable node country, while country has

pattern P4 with a constant node name. □

Graph pattern matching. Given two labels ι and ι′ from LP , we say ι matches

ι′, denoted as ι ≍ ι′ if either (1) ι = ι′; (2) ι = ‘ ’, i.e., wildcard matches any label.

Given a graph G and a pattern P (uo), a match h is a subgraph G′ = (V ′, E ′, L′, F ′
A),

which is isomorphic to P , i.e., there exists a bijective function h from VP to V ′ such

that (i) for each node v ∈ VP , LP (v) ≍ L′(h(v)); and (ii) for each edge e(u, u′) ∈ EP ,

there exists an edge e′(h(u), h(u′)) ∈ G′ such that LP (e) = L′(e′).

Example 14: Given pattern P1 of Figure 3.1(a), we can find matches h1 and h2 in

graph G of Figure 3.1(b), such that h1(college) = college1 and h2(college) = college2.

college3 is not a match of P1 as there is no match for the node mascot. However,

there exist three matches h1, h2 and h3 for pattern P2 in G for college1, college2 and

college2 respectively. Similarly, we have three cities city1, city3, city4 matched with

the pattern P3(city) in G and all three countries country1, country2 and country3 are

matched with pattern P4(country). □

Graph keys (GKeys). A key for a graph is defined using a pattern P (uo) for a

designated entity uo [48]. Given two matches h1 and h2 of P (u0) in graph G, (h1, h2)
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satisfies P (u0) denoted as (h1, h2) |= P (u0), if (a){∀v ∈ Vx, h1(v).eid = h2(v).eid};

(b) {∀v ∈ Vc, L(h1(v)) ≍ L(h2(v))}; and (c){∀e ∈ EP , L(h1(e)) = L(h2(e))}; then

h1(uo).eid = h2(uo).eid. This means the two matches refer to the same entity in G.

We say a graph G satisfies a key P (uo), denoted as G |= P (uo), if for every pair of

matches (h1, h2) ∈ G, we have (h1, h2) |= P (u0). Similarly, G satisfies a set of GKeys

Σ denoted G |= Σ, if G |= P (uo) for each P (uo) ∈ Σ. A GKey P (uo) is considered as

a recursive key if it contains at least one variable v ̸= uo, otherwise, P (uo) is called a

value-based key [48].

Example 15: Going back to Figure 3.1 and continuing with Example 14, a GKey

P1(college) can uniquely identify college1 and college2 as they have different motto,

despite the same name. P2(college) is a recursive GKey that can identify all three

colleges. It is recursively dependant to city in GKey P3(city), while city is recursively

defined via country of the GKey P4(country). Although city3 and city4 have the same

name Dublin, but they belong to different countries USA and Ireland, respectively.

With two levels of recursiveness (i.e., from college to city and then from city to

country), P2(college) is able to uniquely identify all three colleges in the graph G. □

3.4 Discovery of GKeys

In this section, we discuss the discovery problem for GKeys. The discovery problem

is to find a set of GKeys for a given type uo in an input graph G. Graph keys impose
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topological constraints along with attribute value bindings that are needed to identify

entities. Existing works miss the topology and only discover keys as a set of attribute

value that work over RDF data. While we mine keys by considering both topology

and attribute values in the form of a graph pattern [48]. However, it is not desirable

to mine all GKeys for uo as a large amount of them are redundant and not meaningful.

Mining meaningful keys in graphs relies on defining key properties independent of the

application domain. We propose two key properties: minimality and support, and a

key discovery algorithm over graphs. The algorithm calls itself recursively to mine

recursive keys and keeps track of recursive calls to avoid falling into an infinite loop.

3.4.1 Key Properties

We now present our approach to mine all minimal GKeys Σ in G for a given entity

type uo such that G |= Σ. Minimality avoids mining redundant GKeys and reduces

the discovery time. Support mines keys that satisfy a minimum number of instances

in G. We define the key properties followed by the discovery algorithm.

GKey embedding. We say a GKey P (uo) = (VP , EP , LP ) is embeddable in another

GKey P ′(uo) = (V ′
P , E

′
P , L

′
P ), if there exists a subgraph isomorphic mapping f from

VP to a subset of nodes in V ′
P that preserves node labels/values of VP , and all the

edges that are induced by VP with the corresponding edge labels.

Minimality. A GKey P (uo) is minimal if there exists no GKey P ′(uo) such that
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P ′(uo) is embeddable in P (uo). A set Σ of GKeys with G |= Σ is minimal, if it does

not contain any redundant GKeys. A redundant GKey P (uo) exists in Σ, if removing

P (uo) from Σ results in a Σ′ that is logically equivalent to Σ, i.e., Σ′ uniquely identifies

the same entities as Σ in G.

Support. For a candidate GKey P (uo), we define support to represent the number of

entities in the graph G that are uniquely identified by P (uo) over the total number of

entities of type uo. We define |P (uo)| as the total number of entities that are uniquely

identified by P (uo). for a GKey |P (uo)| such that G |= P (uo), we define support as:

sup(P (uo)) =
|P (uo)|

N
(3.4.1)

Let N be the total number of instances with the type uo in graph G.

k-bounded GKeys. For a given user defined natural number k, a GKey P (uo) is

k-bounded if size(P (uo)) ≤ k, where size is defined as:

size(P (uo)) = |Ep|+ size(P (vP )) ∀vp ∈ VP (3.4.2)

This equation counts the number of edges in the pattern P (uo) and in the pattern

of all variable nodes i.e., recursive GKey. To validate a recursive GKey, one must

validate the matches of the recursive patterns[48]. A set Σ of GKeys is k-bounded, if

each P (uo) ∈ Σ is k-bounded.
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Problem statement. Given a graph G, a node type uo, a support threshold δ, and

a natural number k, mine all minimal k-bounded GKeys Σ of the node type uo, such

that for each GKey P (uo) ∈ Σ, P (uo) has the minimum support δ in G.

3.4.2 Algorithm

For a given entity type uo, the naive algorithm mines all frequent graph patterns

centered by uo and explores all combinations of variable and constant nodes in each

pattern to verify whether they form a GKey. The naive approach leads us to explore

a large search space, which is shown to be infeasible in real world graphs [50]. We

introduce GKMiner, an efficient algorithm to mine all minimal GKeys in a graph.

Our algorithm takes as input a graph G, an entity type uo, a natural number k and

a support threshold δ to discover GKeys. It proceeds in three steps: (a) Create a

summary graph S to explore the structure of G. This will help us to prune nodes

that cannot form a GKey based on the given threshold δ. (b) Create a lattice L of

candidate GKeys from S that prunes further candidate GKeys. (c) Mine minimal k-

bounded GKeys from L in a level-wise search. By traversing the lattice in a level-wise

manner, we implement strategies to cut the space of candidates to prune redundant

candidates (supersets of already discovered keys) from lower levels of the lattice. Our

experiments show that our algorithm runs up to six times faster than SAKey, despite

mining topological constraints of GKeys compared to the value constraint based keys

mined by SAKey.
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Summary Graph. As the first step of mining GKeys, we traverse G to create a

summary graph S that reflects the structure of G. S provides an abstract graph

of G, where: (1) nodes represent the entity types that exist in G, and (2) an edge

between two nodes in S shows that there exists at least one edge between two entities

with the corresponding types in G. S helps us to model the relationship between

entity types in a smaller graph. S will be used to define graph patterns for candidate

GKeys. S is built in O(V + E) time and is an auxiliary data structure S(VS, ES),

where VS (resp. ES) is a set of nodes (resp. edges) and have the following properties:

1. For each node type t ∈ L in the graph G, there exists a node vt in VS.

2. For each node vt ∈ VS, vt.count is the number of nodes in G of type t.

3. For each edge e(u1, le, u2) ∈ G:

(a) if u1 is of type t1 and u2 does not carry a type, i.e., a constant node, then

create an attribute Ae with the name le and without any value (e.g., set

value as ∗) and add to vt1 in VS. Increase the Ae.count by one (initial value

is 0).

(b) if u1 is of type t1 and u2 is of type t2, then add an edge e(vt1 , le, vt2) to ES

and increase the e.count by one (initial value is 0).

Example 16: Figure 3.2(a) shows the summary graph generated for the graph G of

Figure 3.1 where we have three entities of type college, five entities of type city and

three of type country. Out of three colleges, one of them has the attribute endowment,

one has mascot, two have motto and all three have attribute name. □

80



Doctoral Thesis – M. Alipourlangouri McMaster University – Computer Science

Figure 3.2: (a) Summary graph S of graph G of Figure 3.1 (b) Lattice for the type
college based on sup = 75%

3.4.3 Pruning Strategy

After computing the summary graph, we prune the summary graph to find a set

of attributes and variable nodes that meet the support threshold δ. For a given

summary graph S(VS, ES), and a given center node vuo , we first prune the attributes

of vuo based on δ. Following the support definition of Equation 3.4.1, we compute the

support of an attribute A of vuo in VS as following:

sup(A) =
A.count

vuo .count
(3.4.3)

This equation computes the support of an attribute A, if we add A as a singleton
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attribute in a candidate GKey. If we have sup(A) < δ, then adding A to any candidate

GKey P (uo), makes sup(P (uo)) < δ, hence P (uo) will not be a valid GKey. Therefore,

we select a set of candidate attributes A = {A1, . . . , An} of vuo in VS such that for

each Ai, sup(Ai) ≥ δ.

Similar to the Equation 3.4.3, we compute the support of the variable nodes, that

are immediate neighbors of vuo . If vuo is connected to a node v with an edge e, then

the support of v is computed as:

sup(v) =
e.count

vuo .count
(3.4.4)

Following the same reasoning of Equation 3.4.3, adding a variable node v with

sup(v) < δ to a GKey P (uo), makes sup(P (uo)) < δ. Hence, we define a set of variable

nodes V = {v1, . . . , vn}, where vuo is connected to each vi and sup(vi) ≥ δ.

Lattice L. For the entity type uo, we create a lattice L(uo) of candidate patterns

based on the set A and V that are extracted from the summary graph S(VS, ES).

L(uo) is rooted at node uo and expands level-wise based on the attributes in A and

immediate variable nodes connected to vuo in V . We create the lattice L(uo) as

follows:

1. Create a lattice L(uo) rooted at node x of type uo (level 0).

2. At the first level, we create a candidate GKey using the attributes and variable
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nodes in A and V . For each attribute Ai ∈ A, we create a candidate GKey by

connecting uo to Ai with an edge labeled by the name of Ai. For each variable

node vi ∈ V , we connect uo to vi with the corresponding edge label from S.

3. At level l, we create a graph pattern for each l-combinations of the attributes

and nodes in A and V respectively. Similarly, we connect uo to each of the

nodes with a direct edge and add the pattern to L. A candidate pattern P (uo)

of level l − 1 is connected to a pattern P ′(uo) of level l with a direct edge, if

P (uo) is embedded in P ′(uo).

4. Each pattern P (uo) ∈ L(uo) has a boolean flag P (uo).prune set by default to

false. This flag helps us to mine minimal GKeys and prune the candidates in

the lattice.

The lattice L(uo) is created for the entity type uo to generate candidate GKeys that

initially meet the support threshold δ. However, since L(uo) might contain other

recursive entity types from the set V , we need to create a lattice L(vi) for each entity

type vi ∈ V .

Example 17: Figure 3.2(b) shows the sample lattice created for the type college

based on the summary graph of Figure 3.2(a) given the support threshold sup = 75%.

If we calculate the sup for the attributes of the college, we have sup(name) =
3

3
,

sup(endowment) =
1

3
, sup(motto) =

1

3
, and sup(mascot) =

1

3
. Based on the sup

=75%, we have A = {name}. Similarly, if we compute the support of variable nodes

connected to college, we have sup(city) =
3

3
, and sup(country) =

3

3
, leads us to have
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V = {city, country}. Using A and V , we created the lattice in Figure 3.2(b), where

we have three levels in the lattice with seven candidates GKeys. □

3.4.4 GKMiner Algorithm

GKMiner is a sequential GKey mining algorithm that traverses a lattice in a level-wise

manner to mine all GKeys for a given type uo. We first create the summary graph

S from the input graph G. Next, we create the main lattice L(uo) and traverse the

lattice level by level to discover GKeys and prune redundant candidates containing

already discovered, embedded keys. For each candidate Pi(uo) at level i, we check if

it forms a GKey via incremental matching algorithm IsoUnit which enables localized

subgraph isomorphism [55]. For each candidate Pi(uo) that has the prune flag equal

to false, we first check size(Pi(uo)) to ensure it is k-bounded. If size(Pi(uo)) > k,

then we set prune=true for all the descendant nodes of Pi(uo) in L(uo). Next, we

calculate sup(Pi(uo)) by computing the matches as described in Section 3.4.1. If

sup(Pi(uo)) ≥ δ, then we report Pi(uo) as a GKey and prune its descendant nodes

in L(uo) to ensure the minimality of GKeys. However, if sup(Pi(uo)) < δ, we ignore

Pi(uo) and continue with the next candidate.

Handling recursive GKeys. In the process of mining GKeys for the type uo, if the

candidate Pi(uo) contains a variable node of type t (i.e., Pi(uo) is a recursive key), we

first need to evaluate and find the GKeys for the dependant type t. To this end, we

create the lattice L(t) and recursively call the GKMiner for the type t. We maintain
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a data structure called dependency graph D(VD, ED), where VD is the set of nodes

representing entity types and ED is the set of edges to capture the dependencies

between the types from the recursive calls. Dis being used to detect and avoid cycles

in recursive calls as cycles lead us to fall into an infinite loop of recursive calls similar

to deadlocks in process management [95]. Cycle happens when there exists a set of

types that the GKey of each type is dependent to the GKey of another type in the

cycle. Using dependency graph, we follow a cycle prevention strategy and avoid cycles

in recursive calls [95]. To avoid such cycles, whenever we call GKMiner for the type

t while mining GKeys for type uo, we add uo and t to VD of Dand then add a direct

edge (uo, t) to ED. In general, if adding an edge (ti, tj) leads us to have a cycle in

D, we break the cycle by removing the dependency (ti, tj). To this end, we remove

tj from the nodes in L(ti). In this case, the GKeys of ti won’t be dependant to the

GKeys of tj.

Limitations. If the recursive calls in GKMiner algorithm form a cycle in the de-

pendency graph, we used a heuristic approach to avoid such cycle by removing the

last edge that created the cycle. However, all the edges that form the cycle are a

candidate edge to be removed. Our method heuristically removes the last edge as we

observed:

1. The last edge connects the node with the largest recursion depth to uo and there

exists a smaller chance for it to contribute in a recursive key for the given type.

2. If we expand the recursive GKey of uo by substituting all the recursive nodes

with the corresponding GKeys, then connecting the last node to uo will not make
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Algorithm 5: GKMiner (G, uo, k, δ)

1 Σ := ∅; /* set of keys for each type*/
2 Initialize D(VD, ED) := ∅ /*empty dependency graph*/
3 Initialize S(VS, ES) := ∅ /*empty summary graph*/
4 foreach node v ∈ G.V do
5 t = v.type;
6 if t ̸= null then
7 if ut ̸∈ VS then
8 add ut to VS;
9 ut.count++;

10 foreach edge (v1, l, v2) ∈ G.E do
11 t = v1.type;
12 if v.type == null then
13 if l ̸∈ F (ut) then
14 add A(l, ∗) to F (ut); /*add l as an attribute of ut*/
15 A.count++;

16 else
17 t′ = v2.type;
18 if e(ut, l, ut′) ̸∈ ES then
19 add e(ut, l, ut′) to ES;
20 e.count++;

21 Discovery (G, uo, S, D, Σ, k, δ, 0);
22 return Σ;

more matches for that GKey.

Considering these observations, we used the aforementioned heuristic approach to

handle cyclic recursive GKeys.

Example 18: Going back to Figure 3.2(b) and assuming sup =60%, when we want to

check a GKey for the type college that contains the type city, we find that there exists

no GKey for city yet. Hence, we need to call GKMiner for city and we add an edge

(college, city) to the dependency graph D as shown in Figure 3.3(a). While mining
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GKey for city, we need to call GKMiner for the type country and we add an edge

(city, country) to D in Figure 3.3(b). However, while mining GKeys for the country

and as there is no GKey for the type city yet, we cannot call GKMiner for city. As

shown in Figure 3.3(c), the edge country, city makes a cycle in D. Hence, we need to

remove city from all the candidate for the type country and continue the mining to

avoid cycle in D. □

Figure 3.3: Dependency graph D

Algorithm 5 provides the pseudo code of the GKMiner. After initialization (line

1-3), we create the summary graph S by iterating over the nodes and edges of G.

For each node v ∈ G.V , we add a node of the corresponding type of v to S and

maintain the count of the nodes (lines 4-9). Next, we iterate over the edges of G and

add/maintain the edges and their count in S based on the type of the two end points

of each edge in G (lines 10-20). After creating the summary graph S, we call the

Discovery algorithm and pass S and uo along with other inputs to find GKeys.

The pseudo code of the Discovery algorithm is provided in Algorithm 6. It is a

recursive algorithm to evaluate k-bounded GKeys for a given type. The algorithm

takes as input the graph G, a center type uo, summary graph S, (initially empty)
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Algorithm 6: Discovery (G, uo, S, D, Σ, k, δ, size)

1 L(uo) := createLattice(S, uo, δ); /*create lattice for the given type uo*/
2 foreach pattern P (uo) ∈ L(uo) do
3 if P (uo).prune == false then
4 if |EP (uo)|+ size > k then
5 P (uo).prune = true; continue;
6 if P (uo) contains type t and Σ[t] == null then
7 add (uo, t) to D;
8 if D has cycle then
9 remove (uo, t) from D;

10 remove t from P (uo) and L(uo);

11 else
12 Discovery (G, t, S, D, Σ, k, δ, |EP (uo)|+ size);
13 if Σ[t] == null then
14 P (uo).prune = true; continue;

15 M := IsoUnit(G,P (uo));
16 computeUniqueEntities(M, P (uo));
17 if sup(P (uo)) ≥ δ then
18 Σ[uo].add(P (uo)); /*P (uo) is a valid GKey for uo*/

19 return Σ;

dependency graph D, (initially empty) set of keys, and three integers k, δ, and size.

The value of size is initially set to 0 and it will be updated for the recursive calls

to avoid mining recursive GKeys of size greater than k. We first create a lattice for

the given type uo (line 1). The function takes uo, the summary graph S and δ as an

input. It first computes the set of attributes A and variable nodes V from S based on

the support parameter δ. It then creates the lattice based on the l-combinations of A

and V at each level l. Next, we traverse the lattice in a level-wise manner and check

whether each candidate pattern forms a GKey. Despite traversing the lattice level-

wise, the candidate key patterns are of height one.. For each pattern that is not to

be pruned (line 3), we first check if it is k-bounded (lines 4-5). If the pattern contains

a recursive type t without a GKey, then we need to call the Discovery algorithm for
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t. We first check if adding the edge (uo, t) creates a cycle in D. If so, we remove the

edge from D and remove t from the pattern to avoid cycles in recursive calls (lines

7-10). Otherwise, we call the Discovery algorithm by passing t and the current size

of the GKey (line 12). If we were not able to find a GKey for t, then we prune the

pattern and its descendants (lines 13-14). After these steps, we find the matches of

the pattern and compute the number of entities that are uniquely identified by the

candidate GKey (lines 15-16). We add the pattern as a GKey for uo if it meets the

support threshold δ (lines 17-18). At the end, we return the set of keys that are

found.

3.4.5 Optimizations

In this section, we propose an optimization for the GKMiner algorithm. While creating

the summary graph S, and as we check the existence of the attributes for each node

in G, we maintain a hash-map of the values in the attribute domain. This helps us

to find which values are unique for each specific attribute. For an attribute A, we

hash the values {a1, . . . , an}, where ai is the value of the attribute A for the node

vi in G. The result of the hash is a set of classes {π1, . . . , πm}, where each πj has

one or more equal attribute values, assuming the collision is handled in the hashing

process. If a value ai uniquely exists in a class πj, then ai is a unique value for the

attribute A among all the nodes that carry A. For each node vi ∈ G, we maintain a

bit vector flag called unique. We set vi.unique(A) = true, if the corresponding value ai

is unique among all nodes that share the same type as vi and carry attribute A. We
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can use the unique bit vector when computing the set of matches for P (uo). Assume

P (uo) contains a set of constant nodes {vc1, . . . , vcn}. For a match h ∈ M, if we have

h(uo).unique(vci) = true for any attribute vci, then h is uniquely identified by P (uo)

without further exploration. If an attribute vci is unique for a node h(uo) in G, then

any combination of the attributes that contains vci is unique for h(uo). Note that

hashing is done in constant time. Hence, we maintain the unique bit vector for all the

attributes in G while creating the summary graph S with the same time complexity

O(V + E).

3.5 Experiments

We have implemented the GKMiner algorithm in Java 17. We used the JGraphT [8]

library to load input graph data and used the built-in VF2 implementation in the

library for subgraph isomorphism. Besides the library, we have implemented the

following indices for faster data access and query runtimes.

1. Index on node’s URI: In all of our graphs, we used node’s URI to access the

nodes. The URI is considered as string and we created a hash-map based on

the URI to access the nodes.

2. Attributes’ name: For each node, we have created an index on the name of its

attributes so we have constant time access to the attribute value by attribute

name.
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3. For each match of a given pattern, we have created an index from the nodes

of the match to the corresponding node in the pattern for a faster access when

checking the attribute values.

We use real world graphs to evaluate our algorithm on (1) the efficiency of GKMiner

compared to the existing general rule-based mining approach SAKey [110]; and (2)

the effectiveness of GKMiner for the task of data linking compared to SAKey.

Experimental Setup. We implement all our algorithms in Java v17, and ran our

experiments on a Linux machine with AMD 2.7 GHz CPU with 128 GB of memory.

Our source code and test cases are available online1.

Datasets. We used three real graphs for our experiments.

1. DBpedia [79]: The graph contains in total 5.04M entities with 421 distinct

entity types, and 13.3M edges with 584 distinct labels. DBpedia is extracted

from the Wikipedia pages.

2. IMDb [5]: The data graph contains 6.1M entities with 7 types and 21.3M

edges. This dataset contains information of the movies extracted from the

IMDB website and in total we have 44.2M facts.

3. DBpediaYago [111]: This dataset contains entities from the DBpedia [79] and

1https://github.com/mac-dsl/GraphKeyMiner.git
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Yago [84] datasets that are linked together. There exists a gold standard avail-

able for the entity links between these two datasets on the Yago Web page [10].

This dataset uses the ground truth to link the entities across the two knowledge

bases. For each entity, we rewrite the properties of the entity in the Yago using

its DBpedia counterparts.

Algorithms. We implemented the following algorithms for the experimental evalu-

ations.

1. GKMiner : Our mining algorithm of Section 3.4 with the optimization.

2. GKMiner-NoOpt : the GKMiner algorithm without the optimization and usage

of the unique vector of Section 3.4.5.

3. SAKey [110]: Discovers maximal non-keys first and then derive the keys from

this set. SAKey does not consider topological constraints to mine keys for

graphs.

We excluded Vickey [111] from our tests as it mines conditional keys over RDFs.

Vickey works on top of SAKey by first finding non-keys and then mines conditional

keys. As we do not mine conditional graph keys, we do not compare the evaluation

of our method with Vickey.

Experimental Results. Firstly, we evaluate the efficiency of GKMiner against

GKMiner-NoOpt and SAKey. Next, we compare the quality of the mined keys in
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data linking using the DBpediaYago dataset with ground truth [83, 17].

Exp-1: Number of types. All three algorithms take an entity type as input

and mine keys for that type. To compare the scalability of the algorithms, we vary

the number of types and evaluate the runtime. Using DBpedia (resp. IMDb) dataset,

we fixed the sup = 10% and k = 5 and vary the number of types from 5 to 30 (resp.

1 to 7). For SAKey, we set n = 1 to find exact keys as we do in GKMiner. Figure 3.4a

shows the runtime of the three algorithms. GKMiner is on average 30% faster than

GKMiner-NoOpt and 6 times faster than SAKey. This demonstrates the effectiveness

of our method with optimizations over the existing method to find graph keys. We

stopped executions of SAKey over IMDb after 120 minutes. SAKey was only able

to finish mining keys for the types distributor, genre, and country which in total

contain only 6.77% of the facts in the IMDb dataset. However, both GKMiner and

GKMiner-NoOpt were able to mine GKeys for all types in less than 200 seconds.
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Figure 3.4: GKMiner efficiency.

Exp-2: Size of pattern. By fixing sup = 10%, we varied the size of the pattern

k from 3 to 10 over DBpedia and IMDb dataset on 30 and 7 types respectively. We

excluded SAKey from this test as there is no pattern size on the keys that SAKey

mines. Figure 3.4c shows the runtime over the DBpedia dataset, and here is our

findings: (1) By increasing the value of k, the runtime increases as we have larger

patterns to match against in G. (2) On average, GKMiner runs 33% faster than

GKMiner-NoOpt due to an efficient approach to find unique values for the attributes,

which helps to reduce the number of entities to be checked for the validity of each

94



Doctoral Thesis – M. Alipourlangouri McMaster University – Computer Science

candidate GKey. The same trend exists in the IMDb dataset of Figure 3.4d, except

the fact that the runtime does not increase for k > 6. We have only 7 types in this

dataset and recursion depth (i.e., the maximum diameter of the dependency graph)

is limited compare to the DBpedia dataset with over 400 distinct types.

Exp-3: Support of GKey. In this experiment, we varied the sup value from 0.01

to 0.7 (i.e., 1% to 70%) on the DBpedia and IMDb datasets with 30 and 7 types resp.,

and a fixed pattern size k = 5. The results are shown in Figure 3.4e for DBpedia and

Figure 3.4f for the IMDb dataset. We also excluded SAKey from this test, as there

was no option to control the support of a key mined by SAKey. The following is our

findings: (1) By increasing the value of sup, the runtime decreases on both datasets

as we have more pruning and fewer number of candidates need to be checked through

the lattice. (2) On average, GKMiner runs 66% and 42% faster than GKMiner-NoOpt

on DBpedia and IMDb respectively.

Exp-4: Effectiveness of GKMiner To investigate the quality of the GKeys, we

compare the keys mined by GKMiner with the keys of SAKey in the application of

entity linking. Primary application of keys is to link entities across two knowledge

bases. If two entities are uniquely identified by a key in two different knowledge bases

and they share the same attributes, then they refer to the same entity. For this test,

we used DBpediaYago dataset with the available ground truth [111].

Table 3.1 shows the precision (P), recall (R) and F1-score(F) measure of the entity

linking task using keys mined by SAKey [110] against GKeys mined by GKMiner. Here

are our findings: (1) The precision is always over 98% in both algorithms. (2) The

95



Doctoral Thesis – M. Alipourlangouri McMaster University – Computer Science

Entity Type
(# triples)

GKMiner SAKey
P/R/F P/R/F

Book(258.4K) 0.99/0.07/0.13 1/0.03/0.06
Actor(57.2K) 1/0.36/0.52 0.99/0.27/0.43

Museum(12.9K) 1/0.21/0.34 1/0.12/0.21
Scientist(258.5K) 0.99/0.09/0.16 0.98/0.05/0.11
University(85.8K) 0.99/0.12/0.21 0.99/0.09/0.16
Movie(832.1K) 0.99/0.12/0.21 0.99/0.04/0.08

Table 3.1: Comparative accuracy of GKMiner against SAKey

recall is low in some cases. This happens as we use a strict string equality when

comparing the values of properties. Moreover, the incompleteness of the data in

both Yago and DBpedia leads to lower recall as well. However, the use of recursive

keys in GKMiner leads to an increase in recall. For example, for the class Movie,

recall increases from 4% to 12% when recursive keys are considered. (3) On average,

we observe an increase of 7 percentage points in recall, and of 9 points in F1-score

using GKMiner against SAKey. This shows the effectiveness of the GKeys mined by

our proposed algorithm GKMiner when we consider recursive keys compared to the

classical attribute based keys mined by SAKey.

3.6 Conclusion and Future Work

We proposed a new algorithm GKMiner to mine graph keys (GKeys) over real world

graphs that is efficient and scalable. We introduced the notion of minimality and

support for GKeys and adapt GKMiner for early termination and pruning of candi-

date keys. As next steps, we intend to extend GKMiner to mine conditional GKeys
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and study the the application of conditional GKeys to data linking, and the parallel

discovery of GKeys in distributed graphs. We also intend to study the foundations

analysis, including implication of GKeys, and an algorithm to compute the minimal

cover for GKeys based on our implication analysis.
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Chapter 4

Ontology-based Entity Matching in

Attributed Graphs

4.1 Introduction

Keys are a fundamental integrity constraint defining the properties to uniquely iden-

tify an entity. Keys serve an important role in relational and XML databases during

database design, normalization, and query optimization where they are commonly

used for object reconciliation, to minimize redundancy, and to improve query run-

times. All these benefits transfer to graphs, where key constraints have been studied

for entity identification [13, 34, 93, 23, 48]. The application of keys to graphs extends

beyond deduplication to include emerging knowledge fusion [42] and fact checking [81].
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Keys for graphs are inherently more complex than their relational counterparts

due to the absence of schema, variances in topology and node types, and they may

be recursively defined. Keys for graphs incorporate a topological constraint expressed

by a graph pattern Q to uniquely identify entities. For example, keys for XML data

identify duplicate entities via regular paths [34]; and for graphs, key constraints are

posed on node matches induced by subgraph isomorphism [48]. Existing work has

studied the theoretical foundations and applications of key constraints, and their gen-

eralized counterpart, graph functional dependencies [68, 57, 119]. These constraints

have been applied to data cleaning [66], data validation [22], and entity matching [48].

Entities in real-world knowledge graphs often contain heterogeneous labels and

multiple attributes. This poses two challenges for entity matching over graphs: (1)

nodes that should refer to the same entity may not be captured by key constraints

that only enforce label equality [88]; and (2) nodes with equal labels that match

key patterns may not necessarily refer to the same entity, due to differing attributes.

Furthermore, such graphs are often interpreted with respect to (w.r.t) an ontology

that provide domain specific concepts and relationships, defining semantic equivalence

among node labels. Consider the following example.

Example 19: Consider a knowledge graph G consisting of triples (subject, predi-

cate, object) where subject and object are nodes, and predicate is an edge connecting

subject to object. Figure 4.1 illustrates a fraction of DBpedia G, with three sub-

graphs describing three music entities {v1, v2, v3}, where each node has an associated

type denoted in parentheses. For example, entities omg mike and omg in v1 and v3,
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Figure 4.1: Entity matching with ontologies.

respectively, are both of type song.

Consider graph keys φ1 and φ2 depicted as graph patterns P1 and P2 in Figure

4.1. φ1 states that “if two songs share the same name and album, then they refer to

the same song”. Similarly, an album can be identified by its name, year of release

and artist, characterized by φ2. Note the dependence of φ1 on φ2, to identify a song,

we need to first identify its artist, reflecting the recursive property of graph keys [48].

Applying φ1 and φ2 via subgraph isomorphism on G, we obtain only v3 as a match,

since (1) v1 end of days is of type OST (rather than album); (2) v2 is of type hit

rather than song; and (3) the v1 album predicate band fails to match the required

label artist. Hence, φ1 and φ2 fail to identify v1 and v2 as the same song as they rely

only on label matching.
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Given an ontology O, as shown in Figure 4.1, we exploit ontological relationships

and semantic equivalance to extend graph keys. For example, we recognize an OST

is a type of album participating in a hyponym (subClassOf) relationship. Similarly,

we note that labels artist and band, and types hit and song are semantically similar.

By extending φ1 and φ2 with these ontological equivalences, we identify v1 and v2 are

indeed the same song.

Not all labels in O are useful. Ontological similarity is often characterized within

a scope such that concepts that are ‘far apart’ in O (w.r.t. a distance function) are

not conceptually close. For example, if we replace the OST entity with a film entity

to create an entity v4, this will not match φ2 using a distance threshold of two, since

the distance between album and film in O exceeds this bound. □

Beyond entity deduplication, ontological extension of graph keys enrich the neigh-

borhood of equivalent entities. For example, merging v1 and v2 yield two new edges

for the song entity: one with company Geffen, and the second with producer S. Bea-

van, completing the song information. These semantic extensions have widespread

applications to link prediction, learning and inference for knowledge base completion

[77, 61, 81], and knowledge fusion [42].

The above example highlights the need for a new class of dependencies for graphs

that go beyond existing subgraph isomorphism to consider entity matching with on-

tological similarity. We extend existing notions of keys for graphs, which uniquely

identify an entity, to exploit the relationships among node labels given in an ontology.
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The recursive property of graph keys allows us to precisely define related entities for

the keys. By incorporating ontologies, we further increase the scope of entities that

can be matched to recursive keys to include matches that are ontologically similar.

While ontological extensions have been studied for traditional functional dependen-

cies [35, 27], little work has been done to enrich graph keys with ontologies.

Contributions. We extend keys for graphs with ontological pattern matching. We

define the semantics, and study the foundations of these new ontological key con-

straints, and demonstrate their practical applications.

(1) We propose Ontological Graph Keys (OGKs), a new class of key constraints that

exploit ontologies to enhance keys for graphs. An OGK includes an event pattern

that defines an entity u, which is used to identify similar concepts w.r.t. an ontology

O. We characterize entity equivalence by matching: (i) pairs of equivalent subgraphs

w.r.t. the key constraints, which may be recursively defined; and (ii) value constraints

defined on the node attributes.

(2) We formally introduce the entity matching problem using OGKs. Given a set of

OGKs Σ, a scope (G,O, θ) that consists of graph G, ontology O, and a matching cost

threshold θ to ensure semantic closeness, the problem is to compute an equivalence

relation R, such that the quotient graph induced by R of G satisfies Σ. While this

problem is NP-complete, we introduce efficient algorithms to enforce Σ.
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(a) To characterize the matching process, we revise the Chase process of conventional

data dependencies for OGKs, by incorporating ontology matching that trigger a se-

quence of non-destructive “merge” operations over equivalent entities. We show that

the Chase with OGKs satisfies the Church-Rosser property, i.e., Chase sequences are

finite and terminating, resulting in a unique graph satisfying the OGKs.

(b) We define early terminating criteria for the revised Chase, and the corresponding

entity matching algorithms over recursively defined OGKs. Our dynamic program-

ming algorithm consists of two efficient phases: (i) a top-down phase that decomposes

OGKs to smaller, tree constraints to refine matches, and perform early validation; and

(ii) a bottom-up synthesizing phase that assembles the matches, and induced entity

equivalence classes for recursive entity matching. We develop optimization techniques

to prune unpromising matches that reduce the verification cost.

(c) Given limited resources for entity matching, we propose a practical variant of

the Chase that includes a cost model for matching and editing entities in G. We

compute a Chase sequence that minimizes the cost under budget B, enforcing OGKs

that tend to merge highly similar entities. We develop an anytime algorithm that can

be interrupted to return the Chase sequence identified thus far, with tunable memory.
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(3) We experimentally verify the efficiency and effectiveness of our OGK entity match-

ing algorithms using two real-world graphs. We compare against two existing base-

lines, demonstrate the improved efficiency of our techniques, and our ability to iden-

tify semantically equivalent entities that are ignored by existing solutions. We show

how these missed entities enable entity fusion over disparate knowledge bases, and

facilitate knowledge base completion.

4.2 Ontological Graph Keys

We provide definitions, and introduce ontological graph keys.

4.2.1 Preliminaries

Graphs. We consider directed, attributed graphs G = (V,E, L, FA), where V is a

set of nodes, and E ⊆ V × V is a set of edges. For each node v ∈ V (resp. edge

e ∈ E), L(v) (resp. L(e)) is a type (resp. a relation) from a finite alphabet τ . For

each node v, its value is denoted as v.val. The v.val is an example of an attribute of

v, describing a node property. For each node v, its attributes Ai ∈ A, i ∈ [1, n] are

captured in its property tuple, FA(v), defined as a sequence of attribute-value pairs

{(v.A1, a1), . . . (v.An, an)}. Each pair (v.Ai, ai) states that the attribute v.Ai = ai.

Entity identifiers. To define the mapping between a node v and a real-world entity
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u, we introduce entity identifiers. Given a set of entities {u1, . . . , um}, we associate a

unique entity identifier eidi to entity ui (i ∈ [1,m]). Each node v carries a (possibly

empty) list of entity identifiers {v.eid1, . . ., v.eidm}, For each eidi ̸= Null, this indicates

that v encodes an instance of entity ui. We enforce two types of node equality: (1)

two nodes v and v′ are value equivalent if v.val = v′.val; and (2) v and v′ are entity

equivalent w.r.t. entity u (with entity identifier eidu), if v.eidu = v′.eidu.

Remarks. Nodes in G may encode a node identifier, and an entity identifier(eid) to

distinguish different nodes and different entities, respectively. In real world graphs, a

single node may model instances of two different entities, and similarly, two distinct

nodes may model the same instance of an entity. These specifications often occur in

multi-typed entities, which are common in property graphs [20], knowledge bases [70]

and social networks [80]. Existing keys for graphs only enforce node identity, and do

not differentiate between entity vs. node identifiers [34, 48].

Ontologies. An ontology is a directed graph O = (Vo, Eo), where Vo is a set of concept

labels and Eo ⊆ Vo × Vo is a set of semantic relations among the concept nodes. In

practice, an edge (v, v′) ∈ Eo may encode three types of relations [76]: (a) equivalence,

which state that v and v′ are semantically equivalent, representing relations such as

“refers to” or “known as”; (b) hyponyms that state v is a kind of v′, modeling “is-a” or

“’subClassOf” relations that define a preorder over Vo; and (c) descriptive, which state

that v is described by v′ in terms of ‘association’ or ‘part-of’ relations. In practice,

an ontology may encode a taxnonomy, thesauri, or RDF schema. By incorporating

ontologies, OGKs are more expressive than traditional graph keys [48], and capture
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semantic similarity relations during entity matching.

Example 20: We return to Figure 4.1, where entities v1 − v3 all have the property

genre = pop, but v1 and v3 are both of type song, and v2 is of type hit. By using the

ontology O associated with G, we expand the notion of similarity to include semantic

relationships among the node labels. For example, OST is a subclass of album via a

hyponym edge, and band is semantically similar to artist. □

Relevant set. Given an ontology O and a concept label l, the relevant set to l

refers to the set of concepts similar to l in O, denoted as lsim(l), according to a

distance function dist(·). Formally, lsim(l)= {l′|dist(l, l′) ≤ α}, where dist(·) : Vo ×

Vo → [0, 1] computes the distance between l and l′, and the threshold α defines the

scope of similarity. Possible definitions of dist(l, l′) include the normalized sum of the

edge weights along the shortest, undirected path between l to l′ in O [70, 118]. To

differentiate among the relations in O, we can assign weights w1, w2, w3 to the edges

representing equivalence, hyponym, and descriptive relations, respectively [76].

Example 21: For ontology O in Figure 4.1, we set the weights w1 = 0.1, w2 = 0.3

and w3 = 0.6 to represent the relative cost among the ontological relations. The

dist(album, OST) = 0.3, since there is a path length 1 between these two concepts

sharing a hyponym relation. Similarly, dist(film,OST ) = 0.6, for a descriptive rela-

tion. Given threshold α = 0.3, the relevant set to OST is lsim (OST) = {OST, album}.

□
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Entity patterns. An entity pattern P (uo) is a connected general graph (VP , EP , LP )

containing a set of pattern nodes VP , and pattern edges EP . Each pattern node u ∈ VP

(resp. pattern edge e ∈ EP ) has a label LP (u) (resp. LP (e)). The pattern nodes VP

may be one of three types: (1) a designated center node uo ∈ VP , representing the

primary entity to be identified; (2) a set of variable nodes Vx ⊆ VP ; and (3) a set of

constant nodes Vc = VP \ ({uo} ∪ Vx). Note that the entity pattern could be in any

forms e.g., general pattern with loop, tree, DAG, etc.

Example 22: Consider the two entity patterns P1 and P2 in Figure 4.1, characterizing

instances of song, and album, respectively. P1 contains a constant node name, and a

variable node album. Intuitively, the equivalent instances of song should be recursively

determined by the equivalent instances of album as defined by pattern P2. □

Matching cost. To identify entities in a graph G that match an entity pattern P (uo),

we must define a mapping function from nodes and edges in P (uo) to those in G.

Formally, a matching between P (uo) and G is an injective function f from VP to V ,

such that, for each node u ∈ VP , L(f(u)) ∈ lsim(LP (u)) (concepts in G are similar to

the concept modeled by u), and if (u, u′) ∈ EP , then (f(u), f(u′)) ∈ E.

We quantify the matching cost by applying the the principle of spreading activa-

tion [97], which propagates concept relevance by following links of semantic networks

to quantify concept closeness. We treat a pattern node uo with concept label l as a

“compound” concept, characterized by its neighboring pattern nodes. Given a match-

ing f and entity pattern P (uo), the matching cost of f is quantified by the distance
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between uo and f(uo), which is defined as

c(uo, f(uo)) =
1

|VP |
∑
u′∈VP

cr(u
′, f(u′))

where cr(u
′, f(u′)) is the relative cost of matching u′ with f(u′) w.r.t. uo, and is

computed as

cr(u
′, f(u′)) =

 βdu′ · dist(LP (u
′), L(f(u′))) u′ /∈ Vx

βdu′ · c(u′, f(u′)) u′ ∈ Vx

Here du′ is the distance between u′ and uo in P (uo) (treated as an undirected

graph), β ∈ [0, 1] is a decay factor, and dist computes the distance of concept la-

bels in O. When u′ = uo, cr(u
′, f(u)) is simply dist(LP (uo), L(f(uo))). Intuitively,

c(uo, f(uo)) simulates a partial spreading activation focused on uo, by aggregating

the propagated cost (“dissimilarity”) between each pattern node and its matches to

uo. When u′ is a variable node, the cost is aggregated by recursively expanding the

pattern(s) modelling u′.

Example 23: Consider w2 = 0.3, and decay factor β=0.9. (1) Given a matching f

between P2(album) in G such that f(album) = end of days(OST), f(name)=oh my

god(name), f(year) = 1999(name), and f(artist) = Guns N’ Roses(band), (a) For

constant nodes name and year in P2, the matching cost cr(name, oh my god(name))

= cr(year, 1999(year)) = 0.91∗0 = 0 (the concept labels name and year are omitted in

ontology O); and cr(artist, Guns N’ Roses(band)) = 0.91∗0.3 = 0.27, due to matching

band to artist via the subclassOf relation. (b) c(album, end of days(OST)) is thus

108



Doctoral Thesis – M. Alipourlangouri McMaster University – Computer Science

Notation Description
G=(V,E, L, FA) attributed graph G

P (uo)=(VP , EP , LP ) entity pattern P (uo); uo: center node
Vx ⊆ VP ; Vc ⊆ VP variable nodes Vx; constant nodes Vc

Q(uo, G) query answer of Q in G
c(uo, f(uo)), cr(u, f(u)) matching cost & relative cost
φ(uo) = (P (uo), X) ontological graph key with literals X

(G,O, θ) scope of OGKs with cost bound θ

Table 4.1: Summary of notation.

computed as 1
4
(0.90∗0.3+0.9∗0+0.9∗0+0.9∗0.3) = 0.14, where 0.90∗0.3 is the relative

matching cost from album to end of days(OST). (2) Similarly, given a match between

P1(song) and G that matches song to v1, name to oh my god(name) and album to

end of days(OST), c(song, omg) = 1
3
(0.91*0+0.91*0+0.9 ∗ 0.14)=0.042. That is, the

matching cost of a song depends on the propagated cost from its relevant variable

and constant nodes. □

To identify matches of P (uo) in G w.r.t. ontology O, where the matching cost

is within a given threshold θ, we define the notion of a matching scope, (G,O, θ).

A matching of P (uo) under scope (G,O, θ) is an injective function f from VP to V ,

such that: (i) for each node u ∈ VP , there exists a node match f(u) ∈ V where

L(f(u)) ∈ lsim(LP (u)); (ii) for each edge ep=(u, u′) ∈ EP , there exists an edge match

e = (f(u), f(u′)) ∈ E; and (iii) c(uo, f(uo)) ≤ θ. A match of P in G induced by

f , denoted as P (G, f), is the induced subgraph of G with nodes and edges from

matching function f . We summarize the main notations in Table 4.1.
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4.2.2 Ontological Graph Keys

We extend keys for graphs with ontologies, and present their semantics, matching

criteria, and properties. Lastly, we highlight their relationship to existing graph

dependencies.

An ontological graph key (OGK) φ(uo) for an entity uo is a pair (P (uo), X), where

P (uo) is an entity pattern with center node uo that is associated with a unique

identifier eido, and X is a set of literals. Each literal l ∈ X is either a constant literal

of the form of u.A = c (for a constant c), or a variable literal u.A = u′.A′, where u

and u′ are two nodes in P (uo), and A and A′ are node attributes from A.

Semantics. Given an OGK φ(uo) = (P (uo), X), and scope (G,O, θ), a matching

function f satisfies X, denoted as f |= X, if (i) f(uo) ̸= ∅ under threshold θ; and

(ii) for each constant and variable literal in X, f(u).A = c and f(u).A = f(u′).A′,

respectively.

Ontological Bisimilarity. Let φ(uo) = (P (uo), X) be an OGK defined on the entity

uo with identifier eido. We define the criteria to identify equivalent entities. We say

two matches P (G, f1) and P (G, f2) are bisimilar under scope (G,O, θ), denoted as

P (G, f1) ∼ P (G, f2), if the following hold: (a) f1 |= X, and f2 |= X; and (b) for each

pair of nodes (v1, v2) where f1(u) = v1 and f2(u) = v2, (i) if u is a constant node,

then v1, v2 are value equivalent, i.e., v1.val = v2.val; or (ii) if u is a variable node, then

v1, v2 are entity equivalent, i.e., v1.eidu = v2.eidu (eidu is the entity identifier of u).
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A scope (G,O, θ) satisfies φ, denoted as (G,O, θ) |= φ, if and only if for every

pair of matches P (G, f1) and P (G, f2) are bisimilar (P (G, f1) ∼ P (G, f2)), and the

matches are entity equivalent w.r.t. eido (f1(uo).eido = f2(uo).eido) Intuitively, OGK

φ(uo) enforces the requirement that “all nodes participating in bisimilar matches

satisfying X under given scope (G,O, θ) should refer to the same entity as uo”.

OGK Properties. We introduce two properties of OGKs.

Non-trivial. An OGK φ = (P (uo), X) is non-trivial, if P (uo) contains uo, and at least

one variable or constant node (|VP | ≥ 2), and X is satisfiable. To define satisfiability,

we first define the closure of X (denoted as cl(X)) as all literals that can be derived

via transitivity of the equality relation. We can perform a fixed point inference that

includesX in cl(X), and then adds v.A=v′.A′ to cl(X) if v.A = c and v′.A′=c in cl(X),

or v.A=v′′.A′′ and v′′.A′′=v′.A′ are both in cl(X), until cl(X) no longer changes. We

say X is satisfiable if there is no pair (v.A=c, v.A=c′) in X such that c ̸= c′.

Well-defined. A set of OGKs Σ is well-defined, if for every OGK φ(uo) = (P (uo), X) in

Σ, and every variable node u′ in P (uo), there exists an OGK φ(u′) ∈ Σ. Henceforth,

we consider well-defined Σ that contain nontrivial OGKs. We denote φ(uo) as φ, when

uo is clear.

Example 24: The two pattern constraints in Figure 4.1 extend to two OGKs: (1)

φ1 = (P1(song), song.genre = pop), and (2) φ2 = (P2(album), ∅). φ1 states that
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Figure 4.2: Ontological Graph Keys

if two nodes ontologically match song, with the same song name, and refer to the

same album entity, then they are equivalent songs. Figure 4.2 shows three additional

OGKs φ3, φ4 and φ5, with entity patterns P3(artist), and P4, P5 referring to entity

Writer, respectively. When φ2 and φ3 both exist in Σ, the artist node in P2 necessarily

becomes a variable node. □

Relationship to other dependencies. We highlight the relationship between OGKs

and other graph dependencies. For an OGK φ with θ = 1, ontology O is ∅ (f only

enforces label equality), and all eids refer to node identifiers, φ can be considered as:

(i) a general case of keys for graphs that only enforces X [48]; (ii) a special case of

graph functional dependencies (GFDs), by “duplicating” its pattern P to P (uo) and

P ′(u′
o) via graph isomorphism, and by enforcing attribute equality on eid (i.e., uo.eid

= u′
o.eid) [57]; and (iii) a special case of graph entity dependencies (GEDs), which

subsume GFDs, using more general graph homomorphism [53].

Example 25: OGKs φ3 and φ4 in Figure 4.2 define constraints for artist and Writer,

respectively. Consider nodes v4, v5 and v6, all referring to the name Bob Dylan, where

(v4, v5) are entity equivalent w.r.t. artist, and (v5, v6) are entity equivalent w.r.t.
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writer. Entity v5 is both a Writer and artist, thereby enforcing eidartist and eidwriter.

Existing graph keys that enforce only node identity are unable to differentiate distinct

entities encoded within a node. □

4.3 Entity matching with OGKs

We apply OGKs to entity matching, and introduce dynamic matching that extends

the Chase process [12] over graphs.

Entity graphs. We define the notion of an entity (hyper) graph that identifies

nodes from a graph G = (V,E, L, FA) referring to the same entity in each hyperedge.

Formally, given a set of entities E = {u1, . . . , um}, and scope (G,O, θ), the entity

graph VE is a hypergraph (V,
⋃

u∈E V [u]), where V [u] the quotient set of V induced by

the entity equivalent relation R(u). Two nodes, (v, v′) ∈ R(u) if and only if v.eidu =

v′.eidu; (v, v
′) are entity equivalent w.r.t. u. We can obtain a base graph G′ of VE that

models entity equivalence for each pair of nodes in the hypergraph. We obtain G′

by enforcing entity identifier equivalence for each pair of nodes in V [u] ∈ VE in the

original graph G.

The Chase for OGKs. We characterize entity matching by extending the Chase

to an entity graph VE . Consider a set of OGKs, Σ defined on a set of center enti-

ties E = {u1, . . . , um}, and scope (G,O, θ). Intuitively, given an initial hypergraph
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containing singleton nodes in a hyperedge (for each entity u), the Chase(Σ, G) con-

tinually merges edges containing entity equivalent nodes, according to φ ∈ Σ, until

no further changes are induced by φ. Specifically, we start with an initial hypergraph

V 0
E , where each hyperedge [v]u in V 0

E is a singleton {v} for every entity u ∈ E . Given

a triple (φ, (v, v′)), where φ = (P (u), X), for φ ∈ Σ, f (resp. f ′) are two ontology

matchings of P (u), v = f(u), v′ = f ′(u), and P (G, f) ∼ P (G, f ′), a Chase step of G

by (φ, P (G, f), P (G, f ′)) at a hypergraph graph V i
E is

V i
E

(φ,(v,v′))
=⇒ V i+1

E

Specifically, the following two Chase rules must be satisfied:

(1) if v.eido is not in fA(v), create a new equivalence class [v] with v.eidu = cu, where

eidu is the entity identifier for u ∈ E with a unique value c. (Inclusion of new eids.)

(2) for all existing equivalence classes, [v]u and [v′]u in V i
E for entity u, merge [v]u and

[v′]u to a single equivalence class [v]u, and update the set of edges EE accordingly.

(Merge hyperedges with entity equivalent nodes.)

By following these rules, the Chase(G,Σ) algorithm will generate a sequence of

Chase steps that induce a sequence of hypergraphs {V 0
E , . . . , V

n
E }. The Chase(G,Σ)

terminates if there exists no (φ, (v, v′)) that elicits changes to V n
E (no new eids, nor

merges to enforce entity equality). Intuitively, Chase(G,Σ) verifies whether a set of

nodes match the same pattern node via bisimilar matches. Since the matching process
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reduces to a Boolean function to determine whether two nodes a and b match pattern

node u (via bisimilarity), a transitive closure holds over Chase(G,Σ). 1

Example 26: Figure 4.3 illustrates a fraction of the entity graphs induced by two

Chase steps over graph G in Figure 4.1 (with changed fraction marked in red). The

first Chase step (φ1, end of days(OST), end of days(album)) creates three equivalent

classes in V 1
E that merges equivalent constant nodes e.g., 1999, and a pair of equivalent

OST and album entities. The second Chase step enforces OGK φ2, and further merges

equivalent song and hit entities given the equivalent classes in V 1
E , and yields V 2

E . □

We now introduce Lemma 3, which verifies that Chase with OGKs under scope

(G,O, θ) preserves the Church-Rosser property. That is, all Chase sequences are

terminating, and all terminating Chase produce the same V n
E .

Lemma 3: Given scope (G,O, θ), (1) chasing with any set of OGKs Σ is finite and has

the Church-Rosser property; and (2) any terminating Chase guarantees (G′, O, θ) |= Σ,

where G′ is the base graph of V n
E when the Chase terminates. □

Entity matching with Chase. Given scope (G,O, θ), and OGKs Σ, defined on a

set of entities E={u1, . . . , um}, the entity matching problem is to compute the entity

graph VE induced by a terminating Chase sequence Chase(G,Σ).

1“If a and b match pattern node u via bisimilar matches (i.e., a and b are equivalent), and b and
c match u via bisimilar matches (b and c are equivalent), then a and c match u via bisimilar matches
(a and c are equivalent)”.
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     (OST) 

end_of_days

    (album) 

end_of_days

    

'end_of_days'
    

'1999'

    

'Guns N' Roses'

omg (song)  oh_my_god (hit)  

... ...

(φ  , 'end_of_days'(OST), 

  'end_of_days(album)')
1

   omg (song)  oh_my_god (hit)  

...

     (OST) 

end_of_days

    (album) 

end_of_days

    

'oh my god'

    (company) 

        Geffen

 (producer) 

 S.Beavan

 (φ  , 'omg'(song), 

'oh_my_god(hit)')
2

Figure 4.3: Entity graphs induced by two Chase steps.

This problem is, not surprisingly, NP-hard, as the validation for OGKs alone is

already NP-hard. Even for small OGKs (subgraph isomorphism test is in polynomial

time), there are O(|Σ|N2) pairwise comparison of matches, where N is the maximum

number of subgraph isomorphism for a given pattern in OGK, and can be up to

(2d+1−1)
|V |
d+1−|V | for G with |V | nodes [31]. We show that the number of comparisons

can be significantly reduced by pruning matches given existing equivalent classes

(Section 4.4).

4.4 Entity Matching Algorithm

A naive approach to entity matching enumerates all possible pairs (φ, (v, v′)) to eval-

uate a Chase step. This is clearly infeasible for large G. Given the recursive nature

of OGKs, an OGK cannot be enforced before all variable nodes are resolved. In this

section, we introduce the OGK-Entity Matching (OGK-EM) algorithm that avoids

exhaustive match enumeration of candidate pairs, and provides early termination.

Our OGK-EM algorithm focuses early Chasing with non-recursive (sub)keys. These
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Chase sequences (involving constant nodes) can be enforced directly, once bisimilar

matches are identified, or help to prune matches for their recursive counterparts.

Moreover, such sequences can be computed independently without being “blocked”

by dependent entities, and thus can be computed as early as possible.

4.4.1 Dependency Graph

To model interactions among OGKs, OGK-EM maintains an auxiliary structure called

dependency graph. Given a set of OGKs Σ, we define a dependency graph GΣ =

(Σ, EΣ), where (i) each node represents an OGK φ(uo) in Σ, and (ii) there exists an

edge (φ(uo), φ
′(u′

o)) ∈ EΣ if u′
o ∈ Vx, where Vx is the set of variable nodes in P (uo).

For each OGK φ = (P (uo), X), OGK-EM maintains: (a) match set P (u,G) for each

pattern node u in P (uo); (b) V [uo], a partition (hyperedge) of P (uo, G) induced by

relation R(uo); and (c) a pair of boolean flags (isC, Val) that is set to true when,

respectively, φ contains only constant nodes, and (G′, O, θ) |= φ given all enforced

Chase steps thus far.

For ease of presentation, we construct a directed acyclic graph (DAG) Gd from

GΣ by collapsing each strongly connected component (SCC) into a single SCC node.

Abusing terms from trees, we say a root (resp. leaf) of Gd is a node without an

incoming (resp. outgoing) edge. We set the constant node flag, isC = true for all

leaves in Gd. Moreover, for each node vd in Gd, a rank r(vd) is defined as: (i) r(vd)

= 0 if vd is a root; (ii) r(vd) = max(r(v′d))+1 otherwise, where v′d ranges over the

parents of vd in Gd; and (iii) for an SCC node vd, all nodes in vd have the same rank
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r(vd).

4.4.2 Matching Algorithm

OGK-EM initializes entity graph, VE , with over estimated equivalence classes, where

each class represents the set of nodes having concept labels l in the relevant set of

entity node ui ∈ E , l ∈ lsim(lui
). We dynamically refine these classes by retaining

true ontological matches and splitting equivalence classes, with two major phases.

First, a “top-down” decomposition phase decomposes each OGK to a set of tree keys

(entity keys with tree patterns). We efficiently chase bisimilar tree matches to refine

VE by merging equivalence classes whenever possible. Second, in a “bottom-up”

synthesizing phase, OGK-EM refines VE by assembling bisimilar matches from the

leaves of the dependency graph Gd, until all the nodes in Gd are processed.

Algorithm Phases. The main phases of OGK-EM is illustrated in Figure 4.4. It first

constructs Gd and computes the node ranks. The decomposition and partial valida-

tion phase proceeds in ascending node rank order similar to a breadth-first traversal

of Gd. The synthesizing phase starts at the leaf level proceeding in descending node

rank order.

(1) Top-down Decomposition. For each root φ = (P (uo), X) in Gd, OGK-EM initializes

the match sets P (u,G) for each node u in P (uo) as {v|L(v) ∈ lsim(LP (u))}. It

initializes V [uo] as {[v]|[v] = {v}} for each v ∈ P (uo, G). The procedure Decomp
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Algorithm OGK− EM

Input: a set of OGKs Σ over entities E , scope (G,O, θ);
Output: the entity graph VE induced by Chase(Σ, G).

1. initializes V [ui] (ui ∈ E); integer i=0;
2. construct Gd; integer rm:=max(r(vd)) (vd in Gd);
3. while (i < rm) do /*“top-down” phase*/
4. Σi := {φ|r(φ) = i};
5. for (φ ∈ Σi) do
6. Pφ := Decomp(φ); /*spawning tree keys*/
7. P (uo, G) := PVal(Pφ); i := i+ 1; /*partial validation;*/
8. while (i >= 0) do /*“bottom-up” phase*/
9. Σi := {φ|r(φ) = i}; i := i− 1;
10. for φ(uo) ∈ Σi do
11. V [uo]:= SVal(φ,Gd);
12. VE :=

⋃
ui∈E V [ui];

13. return VE ;

Figure 4.4: Algorithm OGK-EM

decomposes φ to a set of tree keys Pφ = {φ1, . . . , φn}. Each tree key φi = (Pi(u), Xi)

contains: (i) a tree-structured pattern Pi(u) centered on entity u; and (ii)Xi ⊆ X with

literals involving pattern nodes in Pi only. Intuitively, these tree patterns constitute

a tree cover of P (uo) with shared pattern node uo, and
⋃n

i Xi=X.

(2) Partial Validation. Given a set of tree keys Pφ = {φ1, . . . , φn} of φ = (P (uo), X),

OGK-EM first partitions constant tree keys Pc ⊆ Pφ, from variable tree keys Pv =

Pφ \ Pc, which contain at least a variable node besides uo (via procedure PVal).

We then partially validate each tree key and refine the match sets to update V [uo].
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Specifically, for each constant tree key φi, PVal sets its flag isC = true. Next, for each

pattern node u, we refine match set P (u,G) as
⋂n

i=1 Pi(u,G), from all tree keys in Pφ

containing pattern node u. For each child φ′ = (P ′(u′
o), X

′) of φ in GΣ, we initialize

the match set P ′(u′
o, G) with the refined match set of the corresponding variable node

in P . Lastly, this decomposition and partial validation process is then repeated for

all children of φ following a breadth-first traversal of Gd.

(3) Bottom up Synthesizing. After completing the top-down decomposition where

all leaves in Gd are processed, OGK-EM traverses Gd “bottom up” from the leaves

to the root. For each node φ = (P (uo), X) in Gd, visited in descending node rank,

OGK-EM invokes procedure SVal to compute P (uo, G) and the bisimilar matches,

to update V [uo] by enforcing equivalence classes. For each tree key φ, we refine

its match set by using the match sets from its children. We update V [uo] ∈ VE

by iteratively merging two equivalence classes ([v], [v′]) induced by pairs (v, v′) from

bisimilar matches P (uo, G, f) and P (uo, G, f ′), where each pair simulates a Chase step.

When we can no longer enforce such pairs, OGK-EM sets Val=true for φ. The bottom

up traversal terminates once Val=true for all root nodes in Gd, i.e., the enforced base

graph G′, G |= Σ.

We illustrate the running of top-down phase below and present the details of

Decomp, PVal, and SVal.

Procedure Decomp. Decomp extracts the non-recursive portion of OGKs as tree

patterns to aggressively prune matches. Given an OGK φ with pattern (P (uo), it
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generates a set of tree keys Pφ by computing a set of tree covers Pφ = {φ1, . . . , φn}

for P (uo) [45]. To this end, it invokes a 4-approximation to compute tree cover.

Procedure PVal. Given a (tree key) OGK φ = (P (uo), X → lo), PVal simulates

a partial Chase process that refines the matches and initializes equivalence classes

(representing equivalent entities) enforced by φ, without having to enumerate all

possible pairwise matches. Given the match sets initialized by Decomp, PVal verifies

using the subgraph isomorphism test (with early termination) whether each candidate

node v ∈ P (u,G) is a match under the scope (G,O, θ). It further prunes P (u,G) by

retaining only those matches satisfying the literals in X. If any set P (u,G) becomes

∅, the verification of the current OGK ends.

Example 27: Consider the OGKs φ, φ′ and φ′′ for entities album, producer, and

band in Figure 4.5. A partial dependency graph Gd is illustrated with two (dotted)

edges (φ, φ′) and (φ, φ′′), for entities producer and band, respectively. In the top-

down phase, Decomp decomposes φ to two tree keys with patterns P1 and P2. Their

common matches, computed by PVal, refine the match set of P to {a2, . . . , a5}. The

process continues following Gd until it reaches leaves. □

Procedure SVal. Once the traversal reaches the leaf level (each interior variable node

has been decomposed into its own tree keys, and every child φ′ of φ in Gd has φ′.Val

= true), SVal verifies the bisimilar matches for P (uo, G) with the following invocation

cases (Figure 4.6).
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(album)

name* producer

{p }4

{b }5

Figure 4.5: OGK-EM: Entity matching and pruning.

φ is a leaf. For φ = (P (uo), X), PVal computes matches by verifying for each pair

(v, v′) from P (uo, G), whether there exists a pair of bisimilar matches P (G, f) ∼

P (G, f ′). To avoid enumerating all pairwise comparisons, we extend the VF2 al-

gorithm with backtracking [38] to consider partial matches (v, v′) with an added

feasibility condition: for all (v1, v2) that match a constant node u in P (uo), v1.val

= v2.val. If (v, v′) are induced by bisimilar matches, we merge [v] and [v′] in V [uo].

After all pairs have been evaluated, SVal sets φ.Val = true in Gd. We further optimize

the matching by using an ontology index [118] ( see details in [1]).

Leveraging children equivalence classes. If each child φ′(u′
o) of φ(uo) in Gd has φ′.Val

= true, then no further equivalence classes for φ′(u′
o) can be merged from bisimilar

matches. SVal uses these equivalence classes to refine VE(uo). First, for each variable

node u′
o ∈ Vx of P (uo), SVal induces a local view Vφ[u

′
o] of enforced equivalence classes
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V [u′
o], where Vφ[u

′
o] is defined as

⋃
v[u]∈V [u] v[u] ∩ P (u,G), i.e., the partitions V [u]

that are induced by nodes in P (u′
o, G). Second, SVal then constructs an equivalence

relation R(φ, uo), where a pair of nodes (vo, v
′
o) ∈ R(φ, uo) if the following hold:

• {vo, v′o} ⊆ P (uo, G), and

• for each variable node ux ∈ Vx, there exists v and v′ such that (v, v′) ∈ Vφ[u
′
o],

and vo, v (resp. v′o, v
′) are from the same match Pi(G, f) (resp. Pj(G, f ′)) of at

least a tree key Pi (resp. Pj) of P (uo).

The relation R(φ, uo) partitions Vφ[uo] of P (uo, G), and SVal verifies each pair

(vo, v
′
o) using only equivalence classes vφ[u] ∈ Vφ[uo], without having to do pairwise

comparisons from P (uo, G) (using the extended VF2 algorithm). Lastly, we update

V [uo] to enforce equivalence classes of uo, and set φ.Val = true. Lemma 4 shows that

the reduced number of verification steps continues to preserve correctness.

Lemma 4: For any OGK φ(uo) ∈ Σ, and any entity equivalent pairs (v, v′) ∈ R(uo),

(v, v′) ∈ R(φ, uo). □

Early termination. Given Lemma 4, OGK-EM terminates the matching process early

for φ whenever R(φ, uo) is an identity relation without verification. Indeed, entity

graph VE will remain unchanged for all such OGKs. The estimated V [uo] (with nodes

from P (uo, G) that may contain non-matches) is used to prune the match sets of its

parents.
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Procedure SVal(φ(uo), Gd)

1. if V [uo] = ∅ then V [uo] := {[v]|[v] = {v}, v ∈ P (uo, G)};
2. if r(φ) = rm then /*a leaf node in Gd*/
3. for (vo, v

′
o) ∈ P (uo, G) do

4. if (Verify(vo, v
′
o, uo)=true) then

5. [vo]uo := [v′o]uo ∪ [v′o]uo ;
6. enforce equality of eido on [vo]uo ;
7. update V [uo] with [vo]uo ; break;
8. if (r(φ) < rm) then
9. for (variable node u′o ∈ Vx) do
10. compute Vφ[u

′
o] and Vφ[uo] (R(φ, uo));

11. for (vφ[uo] ∈ Vφ[uo] and (v, v′) ∈ vφ[uo]) do
12. if (Verify(v, v′, uo)=true) then
13. merge [v]uo and [v′]uo ; update V [uo];
14. return V [uo];

Figure 4.6: Procedure SVal

Coping with SCC nodes. For an SCC node vd in Gd that contains multiple OGKs,

OGK-EM resolves equivalence classes in a similar manner as single OGKs, but conducts

a fixpoint computation. For each φ ∈ vd, we execute Decomp once, propagate the

refined match sets, and update VE among the OGKs via PVal and SVal, where the

match sets monotonically decrease due to refinement. When no further changes can

be made to any node match sets, the process terminates. We enforce the equivalence

classes for all OGKs in vd in a single batch, and set φ.Val = true for all φ ∈ vd.

Example 28: Continuing our example in Figure 4.5, in the bottom-up phase, a set

of equivalence classes for producer ({{p2, p4},{p5, p6}}) and band ({{b1, b2}, {b3, b4},
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{b5}}) are derived from the two children of OGK φ, respectively. For the node pro-

ducer in φ with potential matches {p3, . . . , p7}, SVal first induces a local equivalence

partition given that all equivalent producer entities are known by enforcing φ′. This

induces a non-singleton equivalence class {p5, p6} and a singleton {p4}. Similarly, it

induces local equivalence classes {b3, b4} and {b5} derived from φ′′ for band.

The match set for album {a2, . . . , a5} (obtained in the top-down phase; Exam-

ple 27) is then refined to {{a2, a3}, {a4},{a5}}. Specifically, (1) a2 and a3 have a

child p5 and p6 respectively, both from a same equivalent class for producer; and

share a same child b3 (band); (2) a4 and a5 each has children either from producer

or band that distinguish them from equivalent entities. Thus, only a single pair of

entities {a2, a3} need to be verified for entity equivalence. □

Analysis. The algorithm OGK-EM correctly computes a Chase process and enforce

Σ to update G. It suffices to observe the following invariants. (1) Procedures PVal

and SVal correctly identifies entity equivalent pairs (v, v′) for each OGK. (2) Whenever

OGK-EM sets φ.Val = true, G′ |= φ, where G′ is the base graph of the current

hypergraph VE . (3) When OGK-EM terminates, Σ is correctly enforced (G |= Σ).

Let the set C(uo) be {v|L(v) ∈ lsim(uo), v ∈ V } for scope (G,O, θ). Denote the

maximum diameter of a pattern in Σ as d. It takes O(|Σ|2) time to construct Gd, and

for each OGK φ ∈ Σ, in total O(|Nd(C(uo))|2|P (uo)|) time to identify entity equivalent

pairs and enforce φ to G, where Nd(C(uo)) refers to the d hop neighbors of node set

C(uo). The overall time cost of OGK-EM is thus O(|Σ|2+ |Σ||Nd(Cm)||Pm|), where Cm
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(resp. Pm) refers to the largest C(uo) (resp. P (uo) in Σ).

In practice, |Σ|, |Pm| and d are typically small. It is quite feasible to compute

Chase over large graphs, as verified by our experimental study (Section 4.6).

4.5 Budgeted Entity Matching

Resources are often limited in practice, and constraints are imposed to minimize

the effort and cost to perform entity matching [85]. In this section, we introduce a

budgeted version of OGK-EM that performs entity matching with bounded matching

cost.

4.5.1 Adding a Cost Model to Chase

We start with a cost model for Chase with OGKs.

Cost Model. Given OGK φ = (P (uo), X), scope (G,O, θ), let Chase(i) = (Gi (φ,f)
=⇒

Gi+1), represent a single Chase step. We define the cost c(Chase(i)) of a single Chase

step as c(uo, f(uo)), which is the cost to match uo and f(uo). For a Chase sequence,
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Chase(ij), we define ρ = (Gi (φ,(v1,v2))
=⇒ . . .

(φ′,(v′1,v
′
2))=⇒ Gj), and the cost is computed as

c(ρ) = c(Gi,Gi+1) ·
j−1∑
i

c(Chase(i))

where c(Gi,Gj) = |U |
|V | , and U refers to the total number of entity identifiers (v.eid)

updated in Gi to enforce the Chase rules. Intuitively, we measure the cost to enforce

Σ, which requires merging and transforming nodes in Gi to those in Gj, and includes

the matching cost of each Chase step.

Budgeted Entity Matching Problem. Given a set of OGKs Σ, scope (G,O, θ),

and a budget B, we want to compute a Chase sequence ρ that generates a G, such

that ρ has a smallest cost c(ρ) bounded by B.

Our goal is consistent with evaluating entity resolution with “merging” cost of

entities [85], while (1) c(ρ) aggregates the editing cost weighted by ontological match-

ing cost; and (2) B encodes a threshold to distinguish “good” entity matching results

and infeasible ones. Intuitively, we identify feasible entity matching result with a

minimum cost. Budgeted entity matching generalizes the entity matching problem

in Section 4.3: the latter carries unit Chase step cost with B = ∞, This leads to the

following result.

Lemma 5: Budgeted matching with OGKs is NP-hard. □

To find a Chase with minimal cost, we model this as a planning problem that
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outputs a sequence of OGKs π = {φ1, . . . , φn} to be enforced with minimum cost. We

show that the search can be optimized by revising OGK-EM with beam search and

backtracking.

4.5.2 Budgeted Entity Matching Algorithm

Overview. We introduce a budgeted version of OGK-EM called BOGK-EM, opti-

mized by beam search with backtracking. Beam search is a heuristic optimization of

breadth-first search that traverses a search tree by expanding and exploring the most

promising nodes, up to a fixed number b, called the beam size. BOGK-EM follows beam

search to select the top-b “best” OGKs following node ranks in dependency graph,

but dynamically reduces the allowed budget according to current best solution, and

backtracks to explore alternative Chase sequences. Moreover, BOGK-EM dynamically

estimates an upper bound of Chase cost to prioritize the selection of promising beam

elements as OGKs.

Auxiliary structures. BOGK-EM uses the dependency graph Gd to coordinate the

search. For each node vd in Gd, it extends the auxiliary information of vd to a vector

{isC,Val, U)}, where U is an estimate of the additional Chase cost to enforce all OGKs

in vd. At each layer i, BOGK-EM records: (1) an open set open(i) of candidate OGKs

to be explored; (2) a set L ⊆ open(i) of OGKs to be validated and enforced with

tunable memory size; and (3) a stack S containing values (i, cmin, cmax) that define

the allocated cost range to OGKs (open(i)) evaluated at layer i.
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Algorithm BOGK− EM

Input: dependency graph Gd, scope (G,O, θ); budget B; beam size b;
Output: the entity graph VE under budget B.

1. initializes V [ui] (ui ∈ E);
2. integer r :=l + 1 (l: the maximum node rank of Gd);
3. set π∗ :=∅; set π := ∅; stack S.push(r, 0, B); cost U :=0;
4. while S.top() ̸= ∅ do
5. π:= Bchase (π, r, S, b,Gd);/*compute a Chase under budget*/
6. if π ̸= ∅ then
7. π∗ = π; U := π.cost; /* current optimal chase*/

/* set new cost range to explore Chase */
8. while S.top().cmin ≥ U do S.pop();
9. S.top().cmin:= S.top.cmax; S.top().cmax:= U ;
10. if S=∅ then
11. construct VE by enforcing sequence π∗;
12. return VE .

Procedure Bchase(π, r, S, b,Gd)
/*compute a chase from level l + 1 of Gd*/
1. open(r):={vs};
2. set open(r − 1) as the leaves of Gd;
3. while open(r) ̸= ∅ do
4. set L(r) as top b nodes with smallest vd.U in sorted open(r);
5. S.top().cmax:=vb+1.U (vb+1 ∈ open(r) is the b+ 1th node);
6. π:=π ∪ {L};
7. open(r + 1):= setopen(open (r);
8. S.push(r+1, 0, B);

Figure 4.7: Algorithm BOGK-EM

Algorithm. The algorithm BOGK-EM is illustrated in Figure 4.7. Let the leaves in

Gd be of rank l, and vs be a pseudo node of rank l + 1, connecting to the leaf nodes.

BOGK-EM initializes the auxiliary structures, as well as the current best Chase and

the newly constructed Chase with π∗ and π, respectively (lines 1-3). It then executes

129



Doctoral Thesis – M. Alipourlangouri McMaster University – Computer Science

a layered, beam search with backtracking starting at vs, invoking procedure Bchase

(lines 4-9) to update π∗. It then enforces π∗ to perform entity matching (lines 10-12).

We next describe procedure Bchase.

Beam selection. At each layer i, Bchase evaluates all nodes in Gd with rank i. If

i = (l + 1), we initialize the candidate set of OGKs to explore, open(l), to all the

leaves in Gd with rank l, set OGKs π and π∗ to ∅, and push (l, 0, B) to stack S. For

each candidate node vd in open(i− 1), representing an OGK φ = (P (uo), X → lo), we

compute the matches for each node u in P (uo) using Decomp and PVal. We derive

an upper bound of the matching cost vd.U as

vd.U =
|P (uo, G)|

|V |
max

vo∈P (uo,G)
ĉ(uo, vo)

where ĉ(uo, vo) is an overestimated cost, computed as

ĉ(uo, vo) =
1

|VP |
∑
u′∈VP

max
v′∈P (u′,G)

cr(u
′, v′)

We overestimate the matching cost by assuming that every pruned node in Decomp

and PVal are indeed matches. The cost of an SCC node vd is computed similarly, as

the sum of the estimated cost for each OGK φ ∈ vd.

Bchase initializes L with the b OGKs in open(l) of smallest cost within the range

(S.top().cmin, S.top().cmax]. For beam selection when backtracking to layer i, we

define the cost range for the next batch of OGKs by pushing a triple (i, maxvd∈L(vd.U),
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Figure 4.8: BOGK-EM: budgeted Chase with backtracking.

B) onto the stack S.

Backtracking. We refine each OGK in L(i − 1) by refining its matches using proce-

dure SVal. We also update vd.U to its true cost B′, and add the selected OGK to the

current Chase π. We must update the list of candidates for the next level, open(i−2),

as the set of nodes in Gd with validated children (using flag Val), and deduct B′ from

the current budget B. If B > 0, and candidates remain in open(i− 2) or open(i− 1),

Bchase will continue processing the next layer i − 2. Otherwise, we set the optimal

Chase π∗ = π, if π∗=∅, or c(π) < c(π∗). We backtrack to layer i − 1, to populate

the cache L(i− 1) with the b OGKs of lowest cost vd.U ∈ (S.top().cmin, S.top().cmax),

and update the stack S. After processing all candidate OGKs in layer i − 1, we set

open(i−1) = ∅. BOGK-EM terminates when open(l) is ∅, and enforces the equivalence

classes for each OGK in π∗.
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Example 29: Consider the dependency graph Gd in Figure 4.8. Let the beam

size b = 2 and a budget B = 9, BOGK-EM computes a budgeted Chase as follows.

(1) Starting from the pseudo node vs (φ0), it initializes the stack S with (3, 0, 9),

stating “Chase with cost in [0,9] will be explored”. As the costs of φ1, φ2, and φ3 are

validated to be 3, 4 and 5 respectively and b=2, It sets open (2) as {φ1, φ2, φ3}, L(2)

= {φ1, φ2}, and updates S.top() to be (3, 0, 5), to prevent traversing Chase with cost

less than 5 when backtracking to level 2. (2) At level 2, BOGK-EM pushes (2, 0, 9) to

S, identifies L(2) to be {φ4, φ5}, and updates the top of S to (2, 0, 6) similarly. (3)

At level 3, it constructs the current best Chase {φ1, φ4}. As the only successor of φ4

exceeds the budget, it backtracks to level 1. (4) Given the current minimum cost 7, it

updates S.top().cmin to 5, and S.top().cmax to 7, “switching” to explore Chase with

cost in [5, 7]. This finally yields a better Chase {φ5, φ7} with cost 6. □

Analysis. BOGK-EM is an anytime algorithm that can return the current Chase

π upon request, and can continue to refine π if needed, with decreasing incremental

cost to generate new solutions. It is also memory efficient, with the memory cost in

O(2b · (Nd(Cm) + |Pm||Cm|) + |Σ|), where d is the diameter of Pm.

4.6 Experimental Study

We use real graphs and ontologies to evaluate: (1) the efficiency of entity matching

using OGKs; (2) the effectiveness of entity matching (with ground truth), and the

trade-off between effectiveness and efficiency (using injected redundancy); and (3)
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case studies for real entity matching.

Experimental Setup. We implement all our algorithms in Java v8, and ran our

experiments on a Linux machine with AMD 2.7 GHz CPU with 256 GB of memory.

Datasets. We use two real benchmark datasets containing the ground truth to evalu-

ate the efficiency and effectiveness of our techniques. We also develop a data generator

to inject duplicates into one of the benchmark datasets to evaluate scalability. Ta-

ble 4.2 summarizes the data characteristics.

DBpedia-Yago2: this benchmark graph (used in [111]) contains 50, 248 verified ground

truth entity pairs with aligned properties between DBpedia and Yago. These equiva-

lent pairs cover 10 types of entities. To create a “hybrid” ontology, we added “is A”

relations between two types for each ground truth entity pair, one from the DBpedia

ontology, and the other from the Yago ontology.

DBpedia-IMDb3: this second benchmark graph (used in [43]) contains 33,437 entities

covering 10 types, totaling 9, 515 redundant pairs between DBpedia and IMDb. We

create the corresponding ontology that links entities between DBpedia and IMDb

following a similar process for DBpedia-Yago.

DBpYago-Dup: To evaluate the trade-off between efficiency and effectiveness, we create

a data generator that injects a controlled number of duplicate entity pairs, facts, and

2https://github.com/lgalarra/vickey
3https://www.csd.uoc.gr/~vefthym/minoanER/datasets.html
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Dataset #entities #triples #labels #duplicates
DBpedia-Yago 592K 4.5M 10 50248
DBpedia-IMDb 33K 200K 10 9515
DBpYago-Dup 4.6M 29M 935 65248

Table 4.2: Data characteristics.

labels into DBpedia-Yago, and its corresponding ontology. The duplicate entries are

duplicated from the ground truth entities with varied labels from the original ontology.

The generator injects pairs of “seed” equivalent entity pairs (v, v′), and duplicates v

and v′ in DBpedia and Yago respectively, along with their neighborhood up to 3 hops.

The generator then disturbs the entity types of these duplicates to a concept label

in the ontology, and randomly updates 50% of the literals of duplicated entities. We

then identify a set of true examples Γ+ (containing equivalent entity pairs), and false

examples Γ− (that do not refer to the same entity as a result of injecting noise into

the labels and literals).

We use the two benchmark graphs to evaluate the comparative accuracy of OGK

based techniques against the baselines, and the controllable DBpYago-Dup to verify

efficiency.

OGKs Generation. We extend the key mining algorithm, KeyMiner [16] to generate

OGKs. Given ground truth, it discovers OGKs via level-wise graph pattern mining to

identify maximal entity patterns and literals that preserve bisimilar matches for entity

equivalent pairs. We only extracted the OGKs with at least 80% support of finding

the entities and 90% confidence over the matched entities. We used hyponym edges to

identify entity types, and equivalence and descriptive edges to identify concept labels,
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to be assigned to the OGK patterns. We extracted 10, 8, and 250 OGKs covering at

least 40K, 7.6K and 52K of the ground truth in DBpedia-Yago, DBpedia-IMDb and

DBpYago-Dup, respectively. We retain the OGKs with high support and confidence

conditioned by proper literals. The OGKs for DBpYago-Dup are generated over the

examples Γ+ and Γ−.

Algorithms. We implemented the following methods.

OGK-EM: our exact entity matching algorithm (Section 4.4).

EnumEM: a variant of OGK-EM without the top-down phase that follows a bottom-

up strategy to perform pairwise verification of bisimilar matches without hypergraph

refinement.

GK-EM: a variant of EnumEM that simulates graph key-based entity matching [48], by

enforcing type equality without literals, and merges nodes instead of entity identifiers.

BOGK-EM: our weighted entity matching algorithm. We compare BOGK-EM against

BEnumEM and BGK-EM, which are the budgeted versions that uses pairwise verifi-

cation without hypergraph refinement, and enforces type equality, respectively. For

pattern matching, we implement an algorithm that extends VF2 with ontology simi-

larity [38].

Vickey [111] detects conditional keys via breadth-first search using logical rules with
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strict label equality. It considers neither topological nor ontological similarity.

Holistic [94] performs graph alignment by personalized page-rank from seed entities,

and expands subgraphs (modeled as “pair graphs”) to capture the impact of correlated

entities.

We set a support threshold 2% for Vickey, and a similarity threshold as 0.85 for

Holistic to assert equivalence. We choose these settings to favor both methods under

which they achieve the highest average precision and recall. All our source codes and

test cases are available online4.

4.6.1 Efficiency of Entity Matching

We evaluate the performance efficiency of OGK-EM and BOGK-EM against EnumEM,

GK-EM, and BEnumEM, BGK-EM, respectively. Our objective is to evaluate the

effectiveness of our optimizations on runtime, and the overhead of having ontology-

enriched key semantics.

Exp-1: Efficiency of OGK-EM. Using DBpedia-Yago, we define 10 OGKs. We set

lsim(l), and θ to include similar labels that are within 2 hops of l in the corresponding

ontologies. The center nodes have on average 12000 matches. Figure 4.9a reports

the time of entity matching and the impact of pattern size (number of edges). (1) It

4https://github.com/HanchaoMaWSU/OGKEM.git
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Figure 4.9: Efficiency of Entity Matching using OGKs.

is quite feasible to identify equivalent entities over real-world graphs using OGK-EM.

For example, it takes on average 10 seconds to enforce OGKs Σ over DBpedia-Yago,

and 9.1 seconds over DBpedia-IMDb. (2) OGK-EM outperforms EnumEM by 2.4 times,

and has comparable performance with GK-EM. This is notable since GK-EM enforces

only label equivalence, thereby inspecting fewer entities than OGK-EM. (3) OGK-EM

outperforms Vickey by 4.2 times on average. While the major bottleneck for both

methods are pairwise comparison of entities, OGK-EM performs less comparisons due

to an enriched OGK semantics and pruning strategy. Vickey identifies relatively more

entity pairs that must be compared.
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Figure 4.10: Efficiency of Entity Matching using OGKs.

We also found that Holistic cannot run to completion after 350 seconds. The major

bottleneck is the construction of auxiliary structures, such as pair graphs.

Exp-2: Scalability. We evaluate the scalability of our algorithms by varying: the

number of variable nodes (|Vx|), thresholds (α, θ), recursion depth (rm), the number

of OGKs (|Σ|), graph size (|G|=(|V |, |E|)), budget (B), and beam size (b). We set

|Σ| = 10, |Vx| = 2, |G| = (16M, 20M), rm = 2, and (α, θ) = (2, 0.5) by default, unless

otherwise specified.

Varying variable size |Vx|. Figure 4.9b reports the impact of the number of variable
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nodes |Vx| (varied from 1 to 4 by selecting corresponding OGKs groups) to the perfor-

mance of OGK-EM. While all algorithms take more time for OGKs with larger variable

nodes, OGK-EM is less sensitive compared to EnumEM and GK-EM, due to its aggres-

sive pruning that reduce the pairwise comparison costs. More equivalence classes

can also be refined during the “bottom-up” phase over larger |Vx|, further reducing

verification. On average, OGK-EM outperforms EnumEM by 2 times. Varying (α, θ).

Figure 4.9c shows that OGK-EM scales well as OGKs relax strict equality matching

to allow approximate entity matching using similar concept labels by tuning θ and α.

OGK-EM must verify more matched entities, leading to longer running times. GK-EM

lacks such tuning flexibility due to its strict enforcement of label equality and is quite

insensitive to the change of α. We vary α and θ from 0.1 to 0.5. Increasing alpha

by 0.1 will expand the search space by 1-hop in ontology graph. Given a pair of

equivalent entities from the positive examples (benchmark), we calculate the distance

between their labels in the corresponding ontology. We then induce the ranges of θ

and α for our tests. Specifically, we varied θ and α from 0.1 to 0.5 as an applicable

and reasonable configuration.

Varying recursion rm. We vary the OGK recursion depth in Σ (i.e., the maximum

node rank rm in dependency graph Gd) from 1 to 3. This occurs when new references

are identified among the entities in Σ. Figure 4.9d show increased runtimes for all

algorithms as deeper recursion rm is enforced. However, OGK-EM terminates earlier

for larger rm, due to greater refinement of equivalence classes.

Varying |Σ| and |G|. Figs 4.10a and 4.10b verify that all methods take longer time
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for larger |Σ| and |G|. Specifically, OGK-EM outperforms EnumEM by 1.7 times and

4.8 times when |Σ| = 250 and |G| is varied to (20M, 25M), respectively. OGK-EM

has a reduced number of comparisons, and comparable runtime with GK-EM, which

only enforces label equality.

We now evaluate the anytime BOGK-EM for budgeted entity matching, and com-

pare it with BEnumEM and BGK-EM. For a fair comparison, we report the runtime

for each algorithm to converge to the best Chase for a given budget B.

Varying budget B. Figure 4.10c shows that all three budgeted algorithms take more

time as we vary B from 100 - 900, due to additional verification from more merge

operations. BOGK-EM outperforms BEnumEM by 5 times on average. ngive time over

dataset; more about BGK-EM.

Varying beam size b. Fixing |G| = (16M, 20M), Figure 4.10d shows that larger

beam sizes allow BOGK-EM to prioritize Chase and select more promising OGKs first.

Aggressive pruning can also occur during the bottom-up phase due to more OGKs at

the leaf level. BGK-EM is not affected by b since it does not execute a beam search.

4.6.2 Effectiveness of Entity Matching

Exp-3: Impact of Parameters to Accuracy. We investigate the impact of the

thresholds (α, θ) and the budget B using DBpYago-Dup. We injected 15K true and
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Figure 4.11: Effectiveness of Entity Matching using OGKs.

false examples each to DBpYago-Dup (|Γ+| = |Γ−| = 15K). By default, we set α = 3,

θ = 0.8, and B = 500.

Varying threshold pair (α, θ). Recall that larger values of α and θ relax the strict

equality conditions for label and ontological matching, respectively, e.g., label equal-

ity is enforced at α = 0. By allowing this flexible similarity matching, we achieve

precision gains over existing techniques. For example, OGK-EM achieves an 18% gain

in precision on average over GK-EM by capturing more correct entities via ontological

matching. Figure 4.11a shows that as (α, θ) increase, precision decreases, as more

weakly related entities (false positive examples) are captured due to approximate
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Entity Type
(# positive)

OGK-EM Vickey Holistic
P/R/F P/R/F P/R/F

Book(13.2K) 0.97/0.85/0.9 0.96/0.36/0.5 0.8/0.58/0.67
Actor(5K) 1/0.66/0.79 0.95/0.12/0.2 0.6/0.36/0.46

Museum(3.2K) 0.99/0.42/0.58 1/0.1/0.18 0.82/0.14/0.2
Scientist(16.1K) 0.99/0.67/0.8 0.99/0.2/0.33 0.72/0.56/0.6
University(12.6K) 0.96/0.5/0.66 0.93/0.11/0.2 0.79/0.3/0.43

Movie(9.5K) 0.95/0.74/0.8 0.95/0.1/0.18 0.65/0.1/0.17

Table 4.3: Comparative accuracy against baselines

matching. We also verify this trend as fpr increases for larger (α, θ) values. In con-

trast, Figure 4.11b shows that increasing α and θ improve recall. We observe a 53%

increase in recall and 25% increase in F1 score (not shown) when (α, θ) is varied from

(1,0.4) to (3,1), as more true positive entities are captured by OGKs via ontological

matching.

Comparing the above analysis with their efficiency counterparts in Exp-2 (Fig-

ures 4.9c and 4.10c), we verify that OGK-based techniques support a flexible trade-off

between matching efficiency and accuracy by tuning (α, β) and budget B.

Exp-4. Case Analysis. We study the accuracy of OGK-EM against the baselines,

and report a case analysis over 6 common entity types in Table 4.3, in terms of

precision (P), recall (R) and F -measure (F ). All entities are from DBpedia-Yago

except for Movie entities, which are from DBpedia-IMDb. For each entity type, we

consider 40% of the dataset as a training dataset and mine the keys over the training

dataset. Then we validate the keys over 10% of the dataset and if the validation

meets the criteria of OGKs, we run each algorithm over the rest 50% of the dataset

by using the mined keys. As mentioned before, we consider 80% support and 90%

confidence to mine OGKs over the training dataset and use the same thresholds for
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the validation. We set α=2, θ=0.8, and B=500. These settings over real benchmark

graphs are guided by cases that have high accuracy using DBpYago-Dup. When no

ground truth is available, a configuration can be initialized by duplicating entities

with equal labels and examining cases with reasonable accuracy that cover these

ground truth subsets.

We observe the following. (1) OGK-EM achieves the best precision and recall in

most cases using OGKs: the joint topological and value constraints improve precision,

while the ontological matching mitigate loss of recall. (2) Vickey achieves comparable

precision at a cost of low recall due to enforcing label equality. For example, Vickey

fails to identify Michael Burrows(scientist) and Michael Burrows(person). (3) Holistic

achieves higher recall but lower precision compared with Vickey. Indeed, not all “simi-

lar” entities are equivalent. For example, a pair of scientistsWilliam Arthur(botanist)

and William Arthur(mathematician) are matched by Holistic due to having the same

name, work place and nationality. However, this case is correctly distinguished by

OGKs due to a high ontological matching cost.

We manually verified OGKs and equivalent entities. Two such keys are shown

in Fig. 4.12a from DBpedia-Yago. (1) φ1=(P6(scientist), scientist.nationality=
′british′)

states that if two scientists with the nationality equals to ’british’ share the same

name, birth year and university, then they refer to the same scientist. (2) φ2 with

pattern P7 identifies universities with their names, referred by φ1. φ1 identifies a

pair of scientists (V4 and V5), which are equivalent in DBpedia-Yago, via ontological

matching where person is ’superClassOf’ scientist and organization is ’superClassOf’
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Figure 4.12: Effectiveness of Entity Matching using OGKs.

university. Vickey can apply conditional keys to detect duplicate entity pairs. How-

ever, it has limitations due to ignoring ontological similarities. For an instance, two

matches V4 and V5 in Fig. 4.12a represent two scientist entities in Yago-DBpedia.

When Vickey applying conditional keys of scientist, it regards only V5 as a scientist

entity and ignoring V4 since the ontological type of Michael Burrows in V4 is person.

This verifies that OGKs benefits entity matching with finer grained conditions and

tunable tolerance to label similarity.

Consider an alternative OGK φ3=(P8(scientist), scientist. nationality=’british’)

which requires that two scientist refer to the same scientist if they share the same

name and graduate from the same university. Fig. 4.12b shows two scientist enti-

ties (V6 and V7) in DBpedia-Yago. Given the pair of seed entities, Holistic initializes

string similarity base on common literals which are linked by common edges. Then,

it propagates the similarity to obtain the similarity score between the entity pair. V6
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and V7 share one edge and the only common literal ′William Arthur′. By applying

Holistic, V6 and V7 inaccurately refer to the same scientist due to the high similarity

score. Nevertheless, by applying φ3, V6 and V7 are not regarded as the same scientist

as V6 does not have edges linking to university entities.

This verifies that OGKs benefits entity matching with enforcing rigorous topolog-

ical constraints.

4.7 Related work

Ontological Dependencies. Existing work has coupled ontologies with functional

dependencies (FDs), and equality-generating dependencies (EGDs) over RDF triples,

along with an axiomatization, and inference algorithms, for both types of dependen-

cies [13, 69]. An extension to OWL ontologies with integrity constraints is proposed

to validate ontology completeness, by defining inclusion dependencies and domain

constraints to check for missing and valid domain values [86]. These constraints,

however, are limited to value bindings with no topological restrictions. Recent work

has proposed ontological FDs (OFDs), a tighter integration of FDs and ontologies in

relational data. OFDs relaxing the strict equality conditions in FDs to include syn-

onym and inheritance (is-a) notions of semantic equivalence [27]. OFDs have shown

to significantly reduce false positive errors, improve recall in entity resolution, and

data cleaning [121, 14, 122].
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This work extends keys for graph to include both graph patterns and ontologies to

capture topological constraints and semantic equivalence. OFDs restrict ontological

extensions to only the consequent attribute of the dependency. Furthermore, OFDs

cannot be directly applied to characterize OGKs with topology and value constraints.

Our work also benefits from pattern matching with ontologies [118].

Graph Dependencies. Recent work has proposed variants of graph functional

dependencies (GFDs) that define value relationships over entities satisfying topology

constraints, such as trees [119], and subgraph isomorphism [57, 53]. Keys for graphs

are a special case of GFDs, but differ in that they consider value equality (based

on value bindings of properties), and node identity to identify an entity [48]. In

addition, keys for graphs may be recursively defined, allowing entity identification

to be dependent on sub-entities. This recursive dependency makes keys for graphs

inherently more complex than GFDs. In OGKs, this recursive complexity manifests

in entity matching to efficiently resolve all dependent sub-entities, and to accurately

propagate semantic similarity across the matched nodes. Graph entity dependencies

(GEDs) unifies GFDs and keys [53].

Closer to our work is conditional keys for RDFs [111]. These constraints are

defined by a conjunctive condition over attribute properties, and enforce attribute

identity. A notion called key graphs, similar to entity patterns is proposed. Neverthe-

less, conditional keys are not characterized by patterns and topological constraints,

but by conjunctive conditions. A special case of OGKs with label equality falls into

GEDs that enforce identifier equivalence. These GED bindings, however, are fixed and

146



Doctoral Thesis – M. Alipourlangouri McMaster University – Computer Science

inflexible to exploit external ontologies to reconcile semantically equivalent entities.

Graph Matching and Entity Categorization.

Probabilistic graph matching seeks a mapping that induces similar subgraphs

from a pair of graph instances, and their node features [120]. Entity matching dif-

fers from graph matching as two entities that are “similar” in graph matching may

not necessarily refer to the same entity. By using graph patterns and ontologies, we

can precisely define the context of entity equivalence and also enable feasible entity

matching for big graphs. Unlike entity categorization [65], OGKs incorporate ontolog-

ical similarity during the matching process, and dynamically propagate this similarity

to neighboring nodes to identify entity pairs that are semantically equivalent.

4.8 Conclusion

We proposed a class of ontological graph keys (OGKs), which are a variant of graph

keys by relaxing node identity to entity identifier equivalence, and type equality to

ontological matching. We extended Chase to characterize entity matching with OGKs,

and show Chase preserves the Church Rosser property with fixed scope. We developed

efficient algorithms with early termination, for both exact matching and budgeted

matching. OGKs are a first class of approximate graph key constraints with tunable

tolerance on type mismatching. As next steps, we intend to study the application of

OGKs to knowledge fusion (e.g., compared with graph embeddings), and the parallel
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discovery of OGKs in distributed graphs.
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Chapter 5

Conclusion

In this thesis, we addressed the challenges associated with data quality management

over graphs in two dimensions, data consistency and data deduplication. For data

consistency, we defined a new integrity constraint, called temporal graph functional

dependencies (i.e., TGFDs) for evolving temporal graphs and presented an efficient

algorithm to detect inconsistencies w.r.t. TGFDs. For data deduplication, we proposed

two properties to define a key and then an algorithm to mine all the keys for a given

entity type that satisfy the properties. Our experimental evaluation shows that our

algorithm, GKMiner, runs up to 6 times faster than the existing technique SAKey, and

gains up to 61% gain in F1-score. For the next research problem, we exploited external

ontologies to enhance existing keys for graphs. We defined ontological graph keys (i.e.,

OGKs) and presented an efficient algorithm to perform ontological entity matching
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over the attributed graphs. The evaluation shows that our proposed algorithm (OGK-

EM) achieves the best precision and recall in most cases using OGKs compared to

Vickey [111] and Holistic [94].

Temporal Graph Functional Dependencies. TGFDs generalize functional de-

pendencies to temporal graphs as a sequence of graph snapshots that are induced by

time intervals, and enforce both topological constraints and attribute value dependen-

cies that must be satisfied by these snapshots. We establish the complexity results for

the satisfiability and implication problems of TGFDs. We propose a sound and com-

plete axiomatization system for TGFDs. We also present efficient parallel algorithms

to detect inconsistencies in temporal graphs as violations of TGFDs. The algorithm

exploits data and temporal locality induced by time intervals, and uses incremental

pattern matching and load balancing strategies to enable feasible error detection in

large temporal graphs. Using real datasets, we experimentally verify that our algo-

rithms achieve lower runtimes compared to existing baselines, while improving the

accuracy over error detection using existing graph data constraints, e.g., GFDs and

GTARs with 55% and 74% gain in F1-score, respectively.

GKMiner. Keys for graphs uses the topology and value constraints needed to uniquely

identify entities in a graph database for deduplication. We present our algorithm,

GKMiner, to mine keys over graphs. GKMiner discovers keys in a graph via frequent

subgraph expansion. We present two properties that define a key, including min-

imality and support. Lastly, using real-world graphs, we experimentally verify the

efficiency of our algorithm on real world graphs.
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Ontological Graph Keys. We propose a new class of key constraints, Ontologi-

cal Graph Keys (OGKs) that extend conventional graph keys by ontological subgraph

matching between entity labels and an external ontology. We study the entity match-

ing problem with OGKs, and a practical variant with a budget on the matching cost.

We develop efficient algorithms to perform entity matching based on a (budgeted)

Chase procedure. Using real-world graphs, we experimentally verify the efficiency

and accuracy of OGK-based entity matching.

5.1 Future Work

There is more work to do in both areas. Firstly, there needs to be more attention

for qualitative approaches in the graph data quality management. While contextual

data cleaning, incorporating semantics into the data cleaning process via external

information, has been well studied in data quality over relational data [14, 27, 122], it

has been less so for graph data quality management. More specifically, existing data

consistency rules, such as TGFDs [18], GFDs [57] and GEDs [53] can be extended to

support external ontologies, while we address this for graph keys [83] in this thesis.

Secondly, as real world graphs are large and change frequently, there needs to be

parallel algorithms to discover graph dependencies, including parallel discovery of

TGFDs, GKeys, and OGKs. This would help to make practical use of these constrains

in the graph data quality management.
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5.1.1 TGFDs

As next steps, we intend to investigate following:

1. Explore non-parametrized methods to extend our workload rebalancing scheme

to dynamically adapt to workload burstiness.

2. Given the utility of TGFDs, and the identified errors, graph data cleaning with

respect to TGFDs would be an interesting next step.

3. Exploit ontologies to extend TGFDs to serve as a means to perform contextual

data cleaning over temporal graphs. OFDs have been defined to extend tra-

ditional FDs with external ontologies for relational data and OGKs have been

defined for graph keys. The use of ontologies could be explored for both GFDs

and TGFDs.

4. Explore the use of TGFDs in existing graph databases e.g., Neo4j [99] and

Wikibase [40].

5. Similar to GEDs [53], we can extend the predicate in the dependency X → Y

to go beyond equality. We intend to explore this extension to other predicates

such as ̸=, <, >, ≤, and ≥. With such new predicates, TGFDs can express

denial constraints [21] and include a richer temporal semantics. Moreover, the

time interval can be tied to the predicate as attribute values might have bigger

changes over a large time window compared to smaller time windows.

6. We intend to explore the use of conditional graph patterns [46], where one can
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Figure 5.1: Example of the conditional graph pattern with cardinality on edges.

specify a simple condition on each edge such that the edge exists if and only

if the condition is satisfied. Conditional graph patterns increase the expres-

siveness of TGFDs, and provide a succinct representation of graph patterns.

Conditional graph patterns can be extended to contain edge cardinality as well.

The cardinality of an edge equals to one by default, and one can express the

cardinality via a natural number [1, n]. If the cardinality of an edge n > 1, then

we expect n match occurrences of that edge. For example, Figure 5.1(a) shows

a graph pattern to capture PhD. students that need to take four courses to

graduate. Similarly, Figure 5.1(b) captures MSc. students that need to take six

courses for graduation. However, one can extend and merge these two patterns

into a conditional graph pattern with edge cardinality and define Figure 5.1(c),

where the edge between student and course has the cardinality of four (resp.

six) if the student is doing PhD. (resp. MSc.) at the university. This example

shows that the use of conditional graph patterns increases the expressiveness

of TGFDs. Moreover, the matching algorithm could benefit from this high level

representation and re-use the matches of the simpler patterns, whenever neces-

sary.
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5.1.2 GKMiner

As next steps, we intend to extend GKMiner to mine conditional GKeys and study the

the application of conditional GKeys to data linking. Recent work proposed extending

graph patterns with conditions [46]. Such conditions can be modeled as a constant

literal over the attributes of the nodes, or the edges in the pattern. Using conditional

patterns, we can extend the definition of GKeys and then mine for such keys in the

graphs. Moreover, the parallel discovery of GKeys in a distributed graphs is another

avenue to extend GKMiner. We also intend to extend GKMiner to mine OGKs.

5.1.3 OGKs

As next steps, we intend to study the application of OGKs to knowledge fusion com-

pared with graph embeddings and graph learning techniques that transform nodes,

edges, and their attributes into vector space and then train a model for knowledge

fusion. We intend to extend the OGK-EM to a parallel scalable algorithm to perform

entity matching in a distributed setting. A parallel discovery algorithm of the OGKs

would be another line of research for the next step. Moreover, similar to TGFDs,

we would like to explore the use of OGKs in existing graph databases like Neo4j [99]

and Wikibase [40]. However, these databases are based on RDF triples and support

SPARQL query language [99, 82], while our techniques consider general graph pat-

terns and general property graphs. SPARQL leverages the schema of the RDF and

the semantics of the query for optimization purposes, while general graph pattern
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subsumes RDF and SPARQL. In order to use OGKs in such databases, we need to

implement a general entity matching module based on general graph patterns that

is far more intriguing than conventional subgraph isomorphism. Lastly, we intend to

explore other ontological relationships to be used for OGKs, e.g., (1) inheritance or

IS-A relationship, where values form a taxonomy in the ontology and the distance be-

tween values are computed via the number of hops between the values and their least

common ancestor in the taxonomy tree [27]; (2) owl:disjointWith , which states that

the extensions of the two class descriptions have no individuals in common, there-

fore a distance equals ∞ would be the natural distance between the two values [9];

(3) owl:differentFrom relationship, that shows two properties are different from each

other and are not equal [9].
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