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Abstract 

Exposomics aims to characterize the totality of exposures over the lifespan, and their impact on 

human health. Currently, chronic exposure to harmful chemicals from air pollution and/or 

tobacco smoke, along with a suboptimal diet, remain leading causes for preventable mortality 

and morbidity worldwide. As a result, new analytical methods are needed to measure robust 

biomarkers of smoke exposure and food intake for improved risk assessment of clinical events. 

This thesis aims to develop high throughput methods to rapidly quantify urinary biomarkers of 

environmental smoke in high-risk occupations, and diverse global populations using 

multisegment injection-capillary electrophoresis-mass spectrometry (MSI-CE-MS) technology. 

Chapter II outlines an inter-laboratory method comparison for the targeted analysis of urinary 1-

hydroxypyrene (HP) when using gas chromatography-high resolution mass spectrometry (GC-

HRMS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) on urine samples 

collected from firefighters. This work revealed the critical role of incomplete enzymatic 

deconjugation on method bias and underreporting of true smoke exposures. Chapter III 

introduces a high throughput MSI-CE-MS/MS method (< 3 min/sample) to directly analyze the 

intact glucuronide conjugate of HP (HP-G) in urine without complex pre-column enzyme 

deconjugation and derivatization procedures. Importantly, firefighters deployed under emergency 

conditions at the 2016 Fort McMurray wildfire had creatinine normalized HP-G concentrations 

below the biological exposure index, likely caused by delays in urine collection under emergency 

conditions, at early stages of firefighting. Chapter IV extends from targeted biomonitoring of 

occupational smoke exposure, towards elucidating the relative risk of tobacco smoking in an 

international cohort of participants (n=1000) from the Prospective Urban and Rural 

Epidemiological (PURE) study. Comprehensive analysis of nicotine metabolites in urine by 
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MSI-CE-MS allowed for reliable determination of the total nicotine equivalent and nicotine 

metabolic ratio as robust indicators of recent tobacco smoke exposure and nicotine dependence, 

respectively. This method also offers a more accurate approach for biochemical verification of 

smoking status in large-scale epidemiological studies that are prone to social desirability and 

gender bias when relying on standardized questionnaires. Lastly, Chapter V employs a 

nontargeted metabolomics workflow using MSI-CE-MS to identify urinary metabolites that may 

serve as objective dietary biomarkers of food intake in participants across 14 countries from the 

PURE cohort. A panel of robust and generalizable metabolites were validated for biomonitoring 

of complex dietary exposures, that may further exacerbate the hazards of tobacco smoking. In 

summary, this thesis contributes high throughput analytical tools for characterizing the human 

urine exposome to better decipher the roles of smoke exposure, and suboptimal diet on chronic 

disease burden among diverse populations and regions worldwide.   
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Chapter I: Introduction to Exposure Assessment: Where the Exposome Meets the 
Metabolome 

 

1.1 Origins of Chronic Disease  

Prior to the early 1800’s mortality was driven by pathogens from acute bacterial, viral and 

parasitic infections.1 However, with the onset of industrialization came a better understanding of 

hygiene and sanitation practices, minimizing infectious disease rates prior to the development of 

vaccines and antibiotics. In addition, the industrial revolution brought forth improved water 

quality, food availability and nutritional sufficiency resulting in the doubling of human lifespans 

in most developed countries.1–3 The causes of mortality subsequently shifted from pathogen-

driven infections to chronic diseases of aging, accelerated by long-term exposure to 

environmental toxins and tobacco usage.1  

Elucidating the potential environmental causes of chronic diseases is best exemplified by 

Percivall Pott, who made an account of a rare form of scrotum cancer prevalent among young 

chimney sweepers in 1775, which is now known as the first association between occupational 

exposure and cancer.4,5 However, it was not until the early 1950’s when Sir Richard Doll, first 

reported a causal link between tobacco smoking and lung cancer, which subsequently led him to 

quit smoking.6  The past 40 years has brought on major changes in dietary habits in 

contemporary society from a traditional plant-based diet rich in fiber, fruits and vegetables to a 

high-fat, energy-dense diet containing refined grains, alcohol, and ultra-processed foods.7,8 

Collectively with a more sedentary lifestyle, tobacco use and air pollution from urbanization, 

chronic diseases including cardiovascular disease, respiratory illnesses, and various cancers have 

become predominant causes of disability and premature death worldwide.8 Moreover, 

socioeconomic differences between developing and developed countries have resulted in a 
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substantial divide in chronic disease burden.7 While biological risk factors are fixed (age, sex and 

genetics), behavioral (e.g. diet, tobacco use and physical activity), societal (e.g. socioeconomic, 

gender, cultural) and environmental (e.g. air and water quality) variables are modifiable.8 

Consequently, a deeper understanding of  the complex interaction between genetic and 

environmental exposures may help more accurately predict disease incidence and progression on 

an individual level.9,10  

1.2 Biomarkers in the Context of Environmental Health 

The National Institute of Health (NIH) defines a biomarker as a characteristic that is objectively 

measured and evaluated as an indicator of biological, pathogenic or pharmacological processes 

and/or responses to external exposures or stimuli.11 Although the term “biomarker” was first 

coined in the late 1960s, the concept itself has dated back centuries.12 In their earliest form 

biomarkers were objective physical findings and observations such as heart rate, temperature 

and/or physical patient features, which later evolved into the qualitative analysis of biological 

fluids such as urine (e.g., colour, surface foam).12,13 However, the 20th century brought on 

technical advances in analytical techniques (e.g., chromatography, mass spectrometry) which led 

to the quantitative assessment of biological samples, vastly increasing the number of detectable 

biomarkers.11 Accordingly, a transition from anatomical and/or physiological measurements to 

discrete molecular biomarkers (e.g., genes, proteins, carbohydrates, lipids, hormones) has led to 

the routine monitoring of biological responses in both a clinical and environmental context.11 

Biomarkers used in environmental health studies can be divided to three main classes; 

biomarkers of exposure, effect and susceptibility.14,15 While biomarkers of exposure can be 

determined through the measurement of contaminants in various environmental samples, (e.g., 

air, water, food) interindividual variability in absorption, distribution and excretion are not 
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captured. A more accurate representation of internal dose and subsequent risk to an exposure can 

be determined by measuring the compound of interest, or its transformed biproducts in a 

biological sample (e.g., urine, saliva, sweat, blood ).16 For example, tobacco biomarkers such as 

nicotine and its respective metabolites can indicate both exposure and dosage when using a 

simple non-invasive urine collection.17 Overall, an ideal biomarker of exposure should be both 

specific and quantitative, while also remaining in the body long enough (i.e., pharmacokinetics) 

to obtain a reliable measurement with a straightforward sample collection.16,18 Conversely, 

biomarkers of effect are often less specific, and measure biochemical, physiological or 

behavioral alterations which may be associated with potential health outcomes or clinical 

events.19 In particular, oxidative stress is a common underlying consequence, indicative of 

cumulative exposure effects over time. For instance, urinary 8-hydroxy-2-deoxyguanosine (8-

OHdG) and 8-isoprostane function as biomarkers of DNA damage and lipid peroxidation, 

respectively which may result from various acute or chronic exposure to harmful xenobiotics, 

such as polycyclic aromatic hydrocarbons (PAHs), phthalates, and flame retardants.20,21 Lastly, 

biomarkers of susceptibility may suggest the intensity and form of response, as certain 

individuals may have an inherent or acquired ability to mitigate the biological consequences 

associated with an exposure.19 Genetic biomarkers (e.g., variants) are widely accepted indicators 

of susceptibility and chronic disease risk, independent of the original exposure. As a result they 

can denote differences in uptake, metabolism, and bioactivation of chemical carcinogens.15,22 In 

humans, genetic variants for tumor suppressor proteins, DNA repair enzymes, and cytochrome 

P450 (CYP P450) enzymes involved in phase I metabolism, have all been implicated with 

increased cancer risk.23 For example, a greater risk for lung cancer among smokers has been 

linked to variants of CYP 2A6, given its key role in the metabolic activation of several tobacco 
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carcinogens.24 However, genetic biomarkers alone have limited applicability given the 

phenotypic heterogeneity as a result of complex environmental interactions.9,25 Thus, additional 

external factors such as age, sex, diet, metabolic health, occupational exposures and lifestyle are 

important considerations in accurately predicting disease onset susceptibility.  

1.3 Human Biomonitoring for Exposure Assessment  

As early as the 18th century, the link between environmental exposures and increased risk for 

chronic disease was observed.26 However, the turning point in exposure assessment was the 

publishing of “Silent Spring” by Rachel Carson (1962), who raised concerns on the adverse 

health consequences linked to synthetic organic chemical pesticides (e.g. DDT), which 

ultimately led to the establishment of the US Environmental Protection Agency (EPA).26 Despite 

the introduction of regulatory agencies, and efforts toward replacing harmful chemicals, the rapid 

expansion of industry, agriculture and population growth have brought forth the continued 

emergence of new substances yet to be fully characterized, commonly referred to as “regrettable 

substitutions”.27 With a current list of 83000 chemicals in the US Toxic Substances Control Act 

(TSCA), only 3% have available data, often favoring such substitutions.27 A well-known 

example is the substitution of Bisphenol A (BPA), with Bisphenol S (BPS), where a push 

towards “BPA-Free” products lead to a rapid and simple solution, largely driven by consumer 

demand. 27 As a result, human exposure studies in monitoring the presence, severity and health 

impact of these substances has been defined as human biomonitoring.28 Overall, this is 

considered the most direct way of identifying the quantity of the exposure, it’s associated risk 

and the underlying respective mechanism, in an attempt to provide early warning signs, both at 

the individual and population level.29 Thus solutions towards providing early warning signs, and 

evidence-based policies are critical. As a result, human biomonitoring, described as exposure 
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studies for the purpose of monitoring the presence, severity and health impact of a contaminant, 

is considered the most direct way of identifying the quantity, risk and underlying mechanisms of 

an exposure.28  

Conventional methods for biomonitoring of exposures (e.g., diet, smoking, air pollution) 

have relied on self-reports using standardized questionnaires, given their low-cost and 

convenience.30 While, still commonly implemented in environmental epidemiological analyses 

(e.g., Global Adult Tobacco Survey), survey methods are often prone to misreporting, error and 

bias.31 Consequently, biomonitoring transitioned toward targeted chemical analysis in various 

biological matrices and has been since used by a number of regulatory agencies for emerging 

chemicals of concern, with new additions continuously being added to public databases (>250 

chemicals).32 The majority of biomonitoring programs are currently conducted by high-income 

countries (HICs), such as those lead by the Center for Disease Control and Prevention (CDC). 

However, they remain in their infancy among most low-income countries (LICs).28 Given the 

prevalence of contaminants in our environment, we are subject to cumulative exposure to 

thousands of chemicals over time. As a result, a paradigm shift from traditional hypothesis 

driven biomonitoring techniques to multi-omics investigations of exposure are critical.  

1.4 Characterizing the Human Exposome  

In the last 20 years exposure analysis has evolved from the concept of “one exposure one-

outcome” to examining a myriad of environmental exposures over time and space.33 In 2005, Dr. 

Christopher Wild first described this idea as the “exposome”, to capture the totality of exposures 

from conception to death, and their impact on human health.9 The three primary domains 

encompassing the exposome include our internal exposome (e.g., metabolism), specific external 

(e.g., environmental pollutants) and general external (e.g., socioeconomic status) exposomes 
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Figure 1.1. Schematic of the human exposome including both general and specific individual exposures 
(external exposome), which subsequently impact the complex internal exposome comprised of the -omics 
cascade. Overall, exposomics aims to capture the totality of exposures over one’s entire lifetime which 
results in various phenotypic responses (e.g., chronic disease burden). Created with BioRender.com 
 

(Figure 1.1).30 Wild34 recognized that although mapping the human genome revolutionized our 

ability to determine one’s genetic susceptibility to disease, it also revealed its limitations in 

predictive power. As such, similar to genome wide association studies (GWAS) which generated 

extensive data on genetic variants, exposure wide association studies (EWAS) can provide 

information on the effects of multiple environmental exposures and their relationship to health 

risks.10,33 Thus, integration of both genome and exposure data can help better characterize the 

human exposome, including susceptibility to chronic disease risk. 

Although exposome approaches do include traditional targeted biomonitoring strategies, 

they also incorporate nontargeted discovery, and theoretically aim to encompass all detectable 

chemical exposures of significance.30 As a result, current objectives in exposome research 

include; scaling up the coverage of exposures, while also expanding the diversity and size of 

study cohorts to better understand the genetic and environmental impacts on disease risk.35,36 To 
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date, multi-omics technologies have been deployed in exposome research as outlined in Table 

1.1.30 Overall, genome sequencing (genomics) has been complemented by analogous tools that 

characterize downstream biological events in the form of genetic modifications (epigenomics), 

RNA expression (transcriptomics), adduct formation (adductomics), protein characterization 

(proteomics) and metabolite characterization (metabolomics) in biological matrices.10 

Consequently, each of these -omics methodologies provides information on thousands of 

molecular components that can be correlated with specific clinical events, similar to GWAS.35  

While whole-genome sequencing is available, routine implementation on a large-scale is 

difficult given the price, storage and computational efforts that are required (Table 1.1).30 

Alternatively, single nucleotide polymorphisms (SNPs)-based arrays are widely used to impute 

genotypes for a majority of genes with a known function. However, gene-environmental 

interactions are dependent on epigenetic mechanisms that are beyond the scope of conventional 

gene sequencing approaches.28 This can include alterations in chromatin structure, DNA 

methylation and histone modifications.28 Research suggests that epigenomics can provide insight 

on early life exposures (Table 1.1), where offspring of undernourished mothers have 

demonstrated unique epigenetic profiles compared to their siblings.37,38 Similarly, chemical 

exposures can change RNA expression by activation of signaling pathways, thus requiring 

monitoring via transcriptomic technologies.39 For instance, a recent study by Pintarelli et al.40 

investigated the differences in transcript levels of lung tissue from current and never smokers to 

identify a gene panel that reflects recent exposure to cigarette smoke. While informative, these 

technologies often required more invasive sampling and can be difficult to implement in large-

scale population studies.46  
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Less invasive monitoring can be performed in biological fluids such as serum using 

proteomic and adductomic technologies (Table 1.1).46 Environmental exposures eliciting 

changes in the post-translational state of proteins (e.g., methylation) have been previously 

evaluated in serum, saliva, and feces.29 Similarly, adduct formation of macromolecules with 

reactive chemicals can lead to an altered biological state of a cell, tissue or organism.47 Given the 

longer half-lives of many adducts in serum, adductomics has been previously reported to identify 

individuals experiencing high levels of exposure long after the initial exposure event.48 Recently, 

adducts in human serum albumin have been correlated with several human diseases including 

diabetes, cancer, and cardiovascular disease.28,49,50 However, both proteomics and adductomics 

are limited in specificity, and are best used as biomarkers of effect with few candidates having 

been successfully applied for routine clinical use.51 Additionally, while adducts and mutated 

proteins may confirm greater risk of developing disease, little information regarding the initial 

source of exposure, rate of disease progression, or severity is determined.28  

While numerous -omics technologies have proven useful, many of those described 

require multi-omics collaborative efforts to provide insight on susceptibility, exposure, and 

biological response simultaneously. This is often costly, and impractical for large-scale 

analysis.52 In contrast, the metabolome consists of small molecules (< 1.5 kDa) involved in 

chemical reactions that maintain cell and organ functions (Table 1.1).53 Alterations made in the 

human genome, proteome, and transcriptome are readily detected in the metabolome, with close 

associations between clinical outcomes and aberrant metabolism having been previously 

reported.54 Overall, current analytical technologies are capable of detecting several thousands of 

small molecules in a variety of biological matrices.55 Currently, databases such as the Human 

Metabolome Database (HMDB) provide information on over 200,000 endogenous and 
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exogenous metabolites.56 Given the extensive amount of information the human metabolome has 

to offer, it is a very useful tool for exposome characterization, and can provide high resolution 

multifactorial phenotypic signatures for complex disease etiologies.55 However metabolomic 

changes are very dynamic, interdependent, and often subject to numerous external factors.57 

Such -omics strategies have also struggled with inadequate study power, poor method validation 

and lack of reproducibility.22 

1.5 Pre-analytical Considerations  

While no standardized protocol can resolve, detect and identify the totality of endogenous and 

exogenous chemicals that comprise the human exposome, a general workflow can be outlined 

consisting of study design, sample preparation/storage, data acquisition, post analytical 

processing, unknown identification, biological interpretation and translation (Figure 1.2).57 

Overall, exposomic studies, no matter the approach, should be assumption-driven, where any 

possible confounding exposures is considered in the study design.58 Although it is not feasible to 

quantitatively measure every exposure, the variables most relevant should be incorporated, while 

attempting to expand coverage by other means (e.g., questionnaires, metadata).58 Study designs 

in exposomic analysis can vary between observational, cross-sectional, longitudinal, cohort-

based, or case-controlled.36,43 However, the majority of observational and cross-sectional studies 

are limited by the temporal discrepancy between exposure and effect.33,58 As a result, exposomic 

approaches benefit from longitudinal and temporal variability in sampling.22,30,59 For instance, 

the human early life exposome study (HELIX) combines six longitudinal population-based birth 

cohorts from six European countries.60 In addition, the selection of sample size is crucial during 

study design, as it can later impact the statistical power of the analysis. This is a common 

challenge in exposomics as it can be difficult to estimate the sample size required given the 
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analytical variability and wide concentration range of exposures.57,61 Moreover, during cohort 

selection, several factors such as age, sex, ethnicity, overall health status, comorbidities, diet and 

lifestyle, are all important considerations to record and adjust for, as they can influence both the 

metabolome and consequently the exposome.57 As such, mitigation strategies to minimize bias 

can include stratified randomization to ensure balance of experimental groups in respect to 

confounding variables, and the collection of clinical meta-data to enable post-processing 

corrections.57 Lastly, given that complex study designs can lead to challenging experimental 

models, a priori considerations of controls, reference standards, and data fidelity (e.g., quality 

assurance or QA, and quality control or QC) need to be carefully considered to minimize false 

discoveries.41,62  

 When conducting metabolomic based exposome analysis, various biological matrices can 

be used, with the most common being blood and urine.63,64 Additional matrices of interest that 

have been previously reported include, feces, hair, saliva, sweat, and teeth.58 Given the wide 

dynamic range of metabolite concentrations reported in exposomic studies, the choice of biofluid 

must be selected based on the research question and context of analysis.65 Importantly, the  

detection of xenobiotics in biological matrices typically requires larger sample volumes, thus the 

simplicity of collection and availability of the biofluid should be considered.66 For example, less 

persistent environmental compounds such as phthalates and bisphenols are easily detected in 

urine, while more persistent compounds are commonly detected in blood.57,67 Irrespective of the 

choice of specific biofluid, the chemical stability of metabolites, time of sample collection, 

handling, pretreatment and storage are all critical variables to be evaluated.67 Overall, biological 

samples should be aliquoted into small volumes to minimize effects from repeated freeze-thaw 

cycles.68 In addition, it is recommended that biological samples be stored at -80°C immediately 
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Figure 1.2. Overview of major steps in the exposomic workflow for biomarker discovery from cohort 
selection and study design to pre-analytical considerations, including proper sampling and storage 
techniques, followed by optimized sample processing techniques for targeted or nontargeted analysis. 
Subsequent instrumental analysis with validated analytical platforms are then performed with appropriate 
post-analytical processing techniques, including mass detection, peak picking, peak filtering and 
processing, allowing for statistical analysis of filtered data. Lastly, unknown identification and biological 
interpretation can be conducted on top-ranked features prior to validation and translation in the context of 
risk assessment, public policy and precision medicine. Created with BioRender.com 
 

after collection whenever possible.69 For long-term storage Hebels et al. 70  has reported that as 

long as consistent procedures have been implemented, biobank samples stored at -80°C are 

suitable for analysis for up to 15 years. While long-lived persistent contaminants (e.g., 

pesticides) are stable and can remain in sample for prolonged periods of time, more polar and 

labile contaminants (e.g., nicotine) are subject to greater variability as a result of poor analytical 

practices.63,71 Thus, the number of repeat freeze-thaw cycles must be recorded, and stability 

studies for metabolites of significance are recommended to be evaluated as sources of potential 

pre-analytical bias.  
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1.6 Sample Processing and Analytical Method Considerations  

The biggest challenge in translating the exposome from concept to practice remains the diversity 

and scale of chemical burden an individual may experience, with current estimates upward of a 

million chemicals over a lifetime.72 With recent advances in analytical chemistry metabolomics 

has been identified as a key readout of the exposome.69 Due to the extensive diversity in 

physiochemical properties and abundances of metabolites, exacerbated by the dynamic range of 

xenobiotics, a single analytical platform to monitor the entirety of the metabolome does not 

currently exist.73 Differences in polarity, stability and volatility challenge metabolomic analyses 

and necessitate the need for complementary analytical platforms for detection, identification and 

quantification of both known and unknown metabolites.73 However, implementation of cross-

platform studies is costly, inefficient and not always feasible in large-scale analysis.74  

When using metabolomics for characterization of the human exposome, both nontargeted 

and targeted acquisition strategies have been commonly employed.74–78 A nontargeted approach 

enables broad scope chemical profiling for unbiased and comprehensive monitoring of 

metabolites without any a priori information.67,73 However, the main challenge remains the 

identification and assignment of molecular features with unambiguous structural identification. 

Conversely, targeted approaches rely on a priori knowledge to detect chemicals expected in a 

sample.67 An advantage of targeted analysis is the ability to optimize analytical strategies for 

improved sensitivity and quantification of low abundance metabolites without interferences. 

Overall, nontargeted acquisition can generate a data driven hypothesis which can facilitate 

subsequent biomonitoring of novel compounds of significance.75,79 As a result, the choice of 

analytical platform can dictate the window through which the metabolome is viewed and should 

be carefully considered based on study objectives and practical constraints (e.g., sample matrix,  
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sample volume, budget, time).69  

The most widely used analytical tools are nuclear magnetic resonance (NMR) 

spectroscopy and mass spectrometry (MS) coupled along with various separation platforms, 

including liquid chromatography (LC), gas chromatography (GC), capillary electrophoresis 

(CE), and ion mobility (IM) (Table 1.2).67,74,80 Although NMR is frequently used for 

metabolomics analysis due to its high selectivity, reproducibility, simple sample preparation, and 

non-destructive nature, the poor concentration sensitivity and large sample volume requirements 

it has limited utility in exposomics.74 In contrast, high resolution MS (HRMS) is widely used in 

exposomic studies due to its improved sensitivity, better selectivity, and wide dynamic range that 

is amenable to measuring a broader range of metabolites in complex biological samples.67,81 

Additionally, current strategies of full scan and parallel reaction monitoring workflows allows 

for simultaneous targeted and nontargeted data acquisition.36 However, as described by 

Rappaport et al.47 critical challenges remain, including the vast number of metabolites to be 

characterized and identified, as well as the difference in concentrations profiles of xenobiotics as 

compared to endogenous metabolites. Consequently, sample extraction and/or enrichment are 

often required for comprehensive detection for low abundance intoxicants.67 Thus, low 

throughput methodologies and complicated sample work up procedures must be balanced with 

achieving highly reproducible yet robust workflows applicable for large-scale analysis.57,67  

While the analytical platform, biological matrix, and metabolites of interest do result in 

an abundance of sample preparation possibilities, all protocols aim to maximize metabolite 

recovery and minimize interferences.73 Generally, more concentrated endogenous analytes (e.g., 

creatinine in urine) require a dilution, whereas lower concentration analytes (e.g., hydroxylated 

PAHs or OH-PAHs) may require of-line sample preconcentration to improve sensitivity.73,84,85
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Additionally, for more heterogenous matrices (e.g., tissues, fecal samples and cell cultures) 

sample homogenization is needed to obtain consistent extraction efficiencies, while precipitation 

of solutes and proteins is essential for other sample types (e.g., urine, serum).64,67 However, an 

ongoing challenge in sample preparation remains the balance between selectivity and sensitivity. 

 A number of sample preparation techniques involving varying degrees of selectivity span 

from protein precipitation (PP) or dilution, to solid-phase extraction (SPE) and liquid-liquid 

extraction (LLE).86 The development of complementary LLE protocols, allows for fractionation 

of different classes of analytes based on their hydrophobicity and polarity, which can in turn be 

processed separately for expanded metabolome coverage.67 Additionally, certain analytes may 

require chemical or enzymatic pretreatment to promote their release from the matrix or to 

enhance senstivity.67 For instance, enzyme deconjugation is commonly employed in several 

targeted assays (e.g. bisphenols, OH-PAHs, nicotine metabolites) to measure the total 

concentration of parent compounds.85,87,88 However, varying reaction rates make it difficult to 

deconjugate a wide range of analytes under a single operating condition, unless rigorously 

validated. Also, challenges in standardization of incubation protocols has contributed to 

substantial intra- and inter-lab variability.77,85,89 As described by Vitale et al.67 future chemical 

exposomic studies should advance towards a more comprehensive screening of phase II 

metabolism, as understanding underlying mechanisms of detoxification can provide insight on 

potential biological response to environmental stressors. Comparatively, chemical derivatization 

is often needed in GC-MS to generate more volatile compounds or improve retention in reverse-

phase LC-MS, with the overall intention of enhancing sensitivity and resolution of analytes.67 

Although enzyme deconjugation and chemical derivatization protocols may enhance overall 

analytical performance, the slow and variable reaction speeds greatly limit sample throughput.  
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For example, GC-HRMS methods for the analysis of OH-PAHs in urine require enzyme 

deconjugation, precolumn derivatization and SPE making them both costly and time 

consuming.90 Similarly, previous LC-MS/MS methods have predominantly used enzyme 

deconjugation followed by either SPE or LLE extraction with a preconcentration for the 

detection of low abundance tobacco specific metabolites (e.g., nitrosamines).91,92 Due to the 

extensive sample processing, risk for analyte loss, compound degradation and poor technical 

precision, the need for recovery standards is essential.73 Accordingly, simpler single-step 

protocols are favored to minimize inaccuracies. However, regardless of the assay, randomization 

of sample order, and batch number should be conducted in addition to the inclusion of internal or 

external measures to objectively evaluate method performance. The use of pooled representative 

samples (e.g., QCs) and/or a National Institute of Standards and Technology (NIST) reference 

standards with repeat measurements allows for day-to-day monitoring and subsequent post-

processing correction of batch effects and long-term instrumental signal drift.93–95  

1.7 Instrumental Platforms in Exposomics  

Following sample processing protocols, several instrumentation platforms are used in 

contemporary exposomic studies (Table 1.2). GC-MS is ideal for more volatile, low molecular 

weight and thermally stable compounds. While it is highly sensitive, selective, and reproducible 

it is restricted by the range of compounds amenable for separation. In addition, GC-MS often 

relies on more extensive sample work-up procedures for gas-phase partitioning, which can be 

costly and time consuming, and unideal for high polarity compound resolution.57,67,80 In contrast, 

LC-MS methods are highly versatile given the variety of mobile and stationary phases 

available.80 For example, although hydrophilic interaction liquid chromatography (HILIC) is 

preferential for polar metabolites and reversed-phase columns are more suitable for non-polar 
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metabolites, a HILIC based method was proposed by Cai et al.96 for the concurrent profiling of 

both polar metabolites and lipids in plasma. Overall, given the different column phases, 

modifiers and chromatographic temperatures available, LC-MS methods can be fairly adaptable 

in regards to sensitivity and resolution. However, methods typically require larger sample 

volumes, while also producing more solvent waste, making them less cost-effective.57,73,74 As 

highlighted by Vitale et al.67 novel developments should be directed toward the combination of 

different stationary phases and mobile phases to capture a larger diversity of chemicals having 

varying polarity within a single analysis.  

Capillary electrophoresis (CE) is a microseparation technique which remains an 

underexploited tool in exposome studies despite its high resolving power compared to LC and 

GC separations. Coupled to electrospray ionization (ESI)-MS, CE separations have demonstrated 

excellent resolution of polar ionic compounds spanning amino acids, nucleotides and organic 

acids in addition to exogenous compounds such as drugs of abuse, plasticizers, and OH-PAH 

glucuronide conjugates.95,97–99 With extensive tunability, CE has also been applied to low 

polarity ionic compounds using previously reported nonaqueous capillary electrophoresis 

(NACE) techniques.100,101 Due to the nanoliter (nL) sample volumes which are hydrodynamically 

introduced on-capillary, CE is particularly well suited for the analysis of volume-restricted 

samples such as tissue biopsies, infant sweat and dry blood spot (DBS) punch.102–104 Overall, 

minimal solvent consumption and waste enables lower daily maintenance costs when using low-

cost fused-silica capillaries. Also, when working with highly saline samples such as sweat and 

urine, CE permits the separation of involatile electrolytes (e.g., sodium) prior to ESI-MS, 

minimizing matrix effects which facilitates simple sample work up procedures.74 Conversely, 

limitations in concentration sensitivity and metabolome coverage for non-ionic/neutral 
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compounds, with few validated protocols for large-scale analysis makes applications in 

exposomics a challenge. However, recent studies by Harada et al.105 and Ishibashi et al.106 have 

shown the validity and reproducibility of CE-MS for large-scale population-based cohorts (n > 

6000 samples), in both plasma and urine demonstrating its suitability for application in 

epidemiology. 

As compared to LC and GC methods, CE is performed under isocratic and isothermal 

conditions within an aqueous buffer (BGE) filled capillary which facilitates a consistent 

environment for electromigration and ionization.107 Accordingly, this presents a unique 

advantage of CE for mutliplexed separations in order to increase sample throughput, as observed 

by multisegment injection-capillary electrophoresis mass spectrometry (MSI-CE-MS).108 Figure 

1.3 outlines recent advances in MSI-CE-MS where following a hydrodynamically injected 

sample, an electrokinetic BGE spacer is utilized, and migration of analytes begins, taking 

advantage of  a longer effective capillary length for separations. Along with rapid analysis times 

(< 3 min/sample), improved peak capacity and resolution are also obtained relative to a single 

injection.109 Overall this helps facilitate high throughput screening, where recently a large-scale 

analysis of the maternal serum metabolome demonstrated excellent long-term reproducibility.95 

MSI-CE-MS also offers improved data fidelity and unique data workflows when taking 

advantage of temporal signal pattern recognition which can be utilized in nontargeted analysis 

protocols to rapidly filter spurious features.110 Nontargeted applications have recently included 

high throughput screening of drugs of abuse, serum metabolome analysis in physically inactive 

older persons, and nontargeted nutritional epidemiology.98,109,111 Thus, MSI-CE-MS offers a 

valuable analytical platform in the field of exposomics that will be the major focus of this thesis.  
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Figure 1.3 Schematic of MSI-CE-MS operation. (A) sample is hydrodynamically injected into a narrow-
fused silica capillary using a positive pressure (50mbar/10seconds). (B) the sample vial at the inlet of the 
capillary to swapped with a BGE vial and a voltage (30 kV) is applied. During this time cationic analytes 
begin to migrate forward (backwards for anions) at rates according to their unique electrophoretic 
mobilities. (C) steps (A) and (B) are repeated until 11 injections have been completed, where separation 
occurs during each subsequent injection. (E) EIEs showing 11 peaks corresponding to the 11 injections. 
In some instances, as shown with nicotine, fewer than 11 peaks are detected indicating nicotine <LOD.   
 

1.8 Post-Analytical Considerations 

The processing of post-acquisition exposomic data can be complicated and time-consuming, 

especially in nontargeted analysis, which includes the conversion of raw and vendor-specific 

data files to a curated tabulated file.77 General data pre-processing involves a series of steps 

including filtering, peak picking, spectral deconvolution, and time alignment.73 Following which 

data normalization, transformation and scaling can be performed prior to multivariate statistical 
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analysis. Regardless of targeted or nontargeted analysis, MS-based exposomic studies require the 

conversion of raw data (signal intensities over mass and time dimensions) into a series of ion 

features characterized by an integrated peak area, accurate mass (m/z) and retention or migration 

time (RT or MT).73 For nontargeted analysis, data must then be filtered to identify authentic 

peaks while rejecting background signals, chemical noise, and spurious ions.57,73 Often, MS-

based methods requiring ESI (e.g. CE, LC) can generate in-source fragments contributing to 

artifact signals.76,81,95 Moreover, isotopic and adduct signals from the same metabolite also result 

in chemical redundancy in the data.76 As such, with careful peak filtering, data overfitting and 

false discoveries can be largely avoided. Consequently, this is considered a major bottleneck in 

metabolomics and often involves various software tools for storage, processing and filtering of 

large amounts of data (e.g., XCMS, MzMine, MetAlign, MassHunter).93,112 Although these 

programs can help eliminate redundancies, manual peak filtering is often still required. 

Subsequent time alignment procedures involving peak clustering between runs can be utilized to 

correct for retention time RT or migration time MT drifts.80,95 Alignment to an internal standard 

may also be applied to authentic peaks to correct for RT/MT and injection variation ensuring 

consistent selection of a peak across multiple runs. This offers a second orthogonal parameter to 

accurate mass (m/z:RT) which can aid in molecular feature annotation.113  

Metabolomic and exposomic studies often include QC samples to monitor and correct for 

variance between samples and batches.95,114,115 In large-scale analysis, data collected 

intermittently over time is subject to long-term signal drift in intensity and mass accuracy.115 

Numerous approaches for batch correction have been employed based on the consistent inclusion 

of QCs, either using empirical Bayes methods or regression models.116,117 Processed QC data 

also allows for a secondary filtering approach, where features can be removed according to 
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parameters such technical precision (e.g., < 30%) and frequency of detection (e.g., > 75%). 

Notably, parameters are subject to variation based on study objectives, where lower abundance 

xenobiotics may allow for higher precision cut-offs or intermittently detected drugs of abuse can 

be satisfied with lower detection frequency. In the case of missing values, care must be taken to 

avoid data skewing and overfitting. For example, consistently detected features (> 75%), where 

instrumental limitations (e.g., < limit of detection or LOD, ion suppression) are the likely cause 

of missing data, can employ the imputation of a small value (e.g., minimum value, LOD/2).118–120 

Conversely, features with extensive missing values as a result of biological response, or lack of 

exposure (e.g., drugs of abuse) should be more carefully considered. Customizable 

computational algorithms such as weighted k-nearest neighbors (KNN) or multiple imputation 

by chained equations (MICE) can be applied in such instances.119 Next, normalization can be 

performed depending on the specific sample type. It is well known that hydration status of an 

individual can cause variation in effective metabolite concentrations. As a result, urinary 

metabolites can be normalized to creatinine, total solute content or by means of a probabilistic 

quotient normalization (PQN).121 Similarly, heterogenous tissue and fecal samples are 

normalized to wet or dried weight, while hemodynamically controlled samples such as serum do 

not require normalization.  

1.9 Statistical Analysis of Complex Exposomic Data Sets 

Due to biological variation, dynamic range, and heteroscedasticity typically associated with 

complex exposome data, transformation and scaling techniques are often essential.122,123 

Correctly employed transformation methods can prevent misleading statistical outcomes as a 

result of artifacts, while correcting for skewed and non-normalized data distributions. Most 

commonly log10 and generalized log transformations are employed. For example, negative and 
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zero values are undefined when using log10 transformation, while glog transformation can accept 

positive, negative and zero values while stabilizing variance from high and low intensity 

signals.122 Subsequently, scaling techniques such as autoscaling, Pareto scaling, range scaling 

can help account for differences in metabolite abundances.123  

To determine the appropriate statistical model (e.g., parametric vs non-parametric) to be 

applied in follow up analysis, data normality can be determined using a Shapiro-Wilk or 

Kolmogrov-Smirnov tests.124 Univariate or multivariate analysis can then be used to uncover 

significant metabolite features in a study. Single variable statistical analysis using univariate 

techniques can be applied by ANOVA/students t-test or Kruskall-Wallis/Mann-Whiney U tests 

depending on the structure of the data.124 This offers an efficient solution to determine biological 

modulations as a result of toxicants by comparing predefined groups (e.g., smokers vs never 

smokers). As a result, true differences can be delineated from random variation. In exposome 

analysis, often hundreds of simultaneous univariate tests are required, and if done one by one, 

risk of false discovery is drastically increased. For large high-dimensional data sets, multivariate 

approaches can better elucidate subsets of metabolites which may be biologically linked and 

reduce dimensionality.55,125,126 Unsupervised multivariate techniques aim to identify subgroups 

within a data set irrespective of known phenotypes or clinical data.41 For example, principle 

component analysis (PCA) can help reduce data dimensionality through the projection of 

individual data points on to principle components (PCs), where the first few PCs explain the 

greatest degree of variance, ultimately aiming to preserve a high degree of variance, while 

reducing data dimensionality.114Thus reducing noise, identifying outliers, and allowing for the 

recognition of patterns in an efficient manner. Similarly, cluster analysis can identify groups 

based on similarity between features, determined according to a distance metric.41 Additional, 
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network or association analysis (e.g., Heatmap) offers another unsupervised technique to 

determine relationships between molecular features to interpret the influence of xenobiotics on 

specific biological pathway components.127,128 This offers a more exploratory data analysis 

approach, and is effective for visualization of data structure (e.g., group clustering). In contrast, 

supervised approaches such as partial least squares-discriminant analysis (PLS-DA), where a 

priori information is incorporated into the data matrix (e.g., pre- vs post-), to provide insight on 

top-ranked features contributing to the variation between groups, such as variable importance in 

projection (VIP) score in the first principle component.126 In addition, receiver operating 

characteristic (ROC) curves can be applied to identify the performance of putative biomarkers 

for binary classification (e.g., smokers vs never smokers) once select features of significance 

have been identified.129 Regardless of the form of analysis, exposome data involves a multitude 

of comparisons, thus risk for type 1 error (false positive) is a large concern.73 However, overly 

conservative correction methods can also lead to type 2 errors (false negatives). For instance, 

Bonferroni may produce exceedingly conservative thresholds, when exploratory approaches in 

exposomics typically requires a less conservative approach, such as a Benjamini-Hochberg or 

false discovery rate (FDR) adjustment.43,55  

1.10 MS Strategies for Unknown Identification  

Characterizing unknown compounds of significance remains an ongoing challenge given the 

limited number of exposome databases.30 Nontargeted approaches in exposomic studies may 

identify novel and unreported molecular features for hypothesis generation, yet biochemical 

interpretation is hampered without their structural elucidation. Even when using the most 

comprehensive mass spectral libraries, the number of identified peaks rarely exceeds 30% in 

contemporary metabolomic publications.75 As a first step monoisotopic mass or most likely 



Ph.D. Thesis – Biban Gill; McMaster University – Chemical Biology 

27 
 

molecular formula can be used to acquire a list of potential chemical candidates from various 

databases (e.g. PubChem, ChemSpider, HMDB, Exposome Explorer).22,93  However, given the 

number of unknowns and the risk of redundant signals, further exacerbated in ESI-MS (e.g. in-

source fragments, adducts), this process can be time consuming, therefore statistical significance 

is often first determined prior to devoting efforts towards structural identification.  

MS-based approaches are largely employed for elucidation of select compounds of 

significance, where fragmentation patterns obtained from collision induced dissociation (CID) 

experiments can be utilized to aid in identification of unknowns.28 However, given the 

complexities of biological samples, compounded with the risk of redundant signals, spectral 

elucidation is often a major challenge in exposomics, even when spectral libraries (e.g METLIN, 

HMDB) are available.28,76 Importantly, the confidence level in compound identification can be 

determined according to the quality and orthogonality of data to support a unique chemical 

structure (Table 1.3).130 For instance level 1 metabolites are unambiguously identified with a 

minimum of two orthogonal properties such as accurate mass and RT/MT,  along with matching 

MS/MS spectra with an authentic chemical standard under identical operating conditions. 81,113 

Figure 1.4 outlines a recent example by DiBattista et al.103 of an unambiguous level 1 

identification of an unknown, putatively identified as ophthalmic acid (OPA) prior to 

confirmation using a representative DBS and authentic OPA chemical standard where CID 

spectra are obtained under matched experimental conditions with low mass error (< 5ppm).  

Level 2 identification refers to putatively identified compounds with annotated fragmentation 

spectra matched to a publicly available spectral library or database in conjunction with a 

matching accurate mass and RT/MT.76 Often, this can be difficult given different conditions for 

spectra with various platforms and limited spectral database availability. Additionally, matching  
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Table 1.3 Recommended standards for unknown metabolite identification confidence levels.81,130 

Figure 1.4. A mirror plot comparing MS/MS spectra of an unknown putatively identified as ophthalmic 
acid (OPA, m/z 290.1349), measured from a pooled DBS extract (red trace), with an authentic OPA 
standard (blue trace) at a CID of 10V. Unambiguous Level 1 identification is confirmed with a low mass 
error (1.7 ppm) and excellent match in both abundance and accurate mass for three diagnostic product 
ions (m/z 58.0644, m/z 161.0917, m/z 215.1022) Reproduced with permission from DiBattista et al. 2019. 

Confidence 
Level Minimum Requirements 

Level 1 
“Validated Structure”; Matched identification using authentic standards under 
identical analytical conditions with minimum two orthogonal properties (e.g 

m/z, retention/migration time) 

Level 2 “Putative ID”; Probable structure based on physiochemical characteristics and 
a matched library MS/MS structure. 

Level 3 “Tentative Structure”; Spectral and/or physiochemical properties indicating 
compounds class. 

Level 4 “Unknown”; Reproducible and quantifiable signal with an assigned accurate 
mass, retention/migration time and most likely molecular formula. 
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RT and MTs are not currently available for LC and CE based separations making it difficult to 

obtain a second level of identification. Level 3 features include compounds with a tentative 

structure relying on a comparison of measured physiochemical properties and/or obtained 

MS/MS spectra to other compounds with similar chemical characteristics (e.g., same chemical 

class).76 Lastly, level 4 features are classified as unknowns with a reproducible signal and 

assigned accurate mass, RT/MT and most likely molecular formula.76 Consequently, tools for 

predicting spectral fragmentation and RT have also been developed (e.g., MS FINDER, CFM 

ID) when databases fall short.75 In addition, bioinformatics tools can be used with biological 

pathway information to filter and rank lists of candidates for feature identification (e.g., XCMS, 

xMSannotator).72,81. However, despite the improvements in high resolution mass spectrometry, 

identification without a commercially available standard presents a major challenge, as one 

accurate mass may be common with multiple structures (e.g., isobar, stereoisomer),30,130 

Moreover, acquisition of MS/MS spectra for reliable interpretation may be difficult for low 

abundance precursor ions. Consequently, filtering based on chemical reactivity, enzymatic 

reactivity, in silico modeling can also be applied to help remove isobaric and isomeric 

features.130,131 

1.11 Risk Assessment for Occupational and Population Health 

Risk assessment can be defined as the likelihood of an environmental hazard causing adverse 

effects to the health and safety of individuals and populations.132 The process involves 

integrating information on the causally linked health effects of an exposure (hazard 

identification) with the route, duration and magnitude of that exposure (dose-response). Risk 

assessment is used in a variety of contexts including occupational settings, food safety and public 

health policy.133,134 As a result, occupational health programs such as National Institute for 
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Occupational Safety and Health (NIOSH) have been implemented to evaluate risk and establish 

biological exposure index (BEI) thresholds.135 For instance occupational exposure to smoke (e.g. 

firefighters) further increases the incidence of cardiorespiratory illnesses (e.g. chronic obstructive 

pulmonary disease, cardiac infarction) and is associated with a higher risk for cancer.84,136 

Despite mitigation strategies such as self-contained breathing apparatuses’, hygienic practices 

and personal protective equipment (e.g., bunker gear) (Figure 1.5A) to reduce inhalation, 

ingestion and dermal absorption of intoxicants, higher cancer rates are still prevalent among 

firefighters as compared with the general public.137 Similarly, risk assessment is applied in the 

context of public health policy. For instance, air pollution remains one of the largest fields of 

environmental risk assessment worldwide.138 Consequently, public health policies such as the 

Clean Air Act (CAA) have been employed to limit emissions of air pollutants from various 

industrial sources.139  

Various methods of risk assessment have been employed, including cumulative risk 

assessment (CRA), toxicity testing, biomonitoring and most recently exposomics.28,140 CRA is a 

broader approach which addresses multiple aggregate exposures and combines risks for common 

health outcomes.140 While CRAs emphasize multiple exposures, it is often challenging to 

identify groups and develop common metrics to evaluate dissimilar risks.140 CRAs are also yet to 

be applied in an occupational context.140  Conversely toxicity testing is a targeted testing system 

to determine underlying pathways and adverse health effects of acute exposures.28 Additionally, 

biomonitoring can be used as a tool to observe the efficacy of public health policies and 

investigate work protection factors to better mitigate chronic disease risk and improve long-term 

health outcomes.141 Accordingly, many population-based biomonitoring efforts such as the 

national survey conducted by the CDC, such as the National Health and Nutrition Examination  
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Figure 1.5. (A) Personal protective gear commonly worn by firefighters, where the use of a self-
contained breather apparatus (SCBA), and heavy outer bunker gear may vary depending on fire event (ex. 
Wildland vs structural fire). (B) Subsequent intake of PAHs either due to inhalation, ingestion or dermal 
exposure results in bioactivation by phase I metabolism (CYP P450 isoforms: CYP 1A1, CYP 1B1, CYP 
1A2) leading to the formation of reactive intermediates which can have mutagenic and carcinogenic 
effects. Reactive intermediates are subsequently conjugated to form a glucuronide or sulfate conjugate 
prior to excretion into urine and/or feces 

 

Survey (NHANES) are ongoing to establish reference ranges of chemicals in the United States.32  

Understanding the composition of an initial exposure (e.g., tobacco, wood smoke), can 

provide insight on the potential biomarkers which may be most amenable for biomonitoring for 

reliable risk assessment. In the context of smoke exposure, biomarkers reflecting recent 

exposure, either from air pollution, wood smoke or cigarettes should demonstrate adequate 

sensitivity, and specificity, while also being able to delineate from background sources of 

exposure are critical.90 For instance, OH-PAHs have been widely reported for biomonitoring 

smoke exposure in both wildland and structural firefighters, however their ubiquitous nature (e.g. 

barbecuing, fossil fuels, second-hand-smoke), makes them less specific and more difficult to 

interpret in population-based studies.90 Importantly, PAHs such as benzo[a]pyrene require 

metabolic activation by specific CYP isoforms (e.g. CYP 1A1, CYP 1A2, CYP 1B1), in order to 

induce carcinogenic effects.142 As a result cancer risk is strongly impacted by interindividual 
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differences in bioactivation and subsequent detoxification (e.g., glucuronidation) (Figure 1.5B.). 

Notably, cigarette smoke is an inducer of PAH bioactivation and its subsequent carcinogenicity, 

thus it may provide evidence for current smokers who are at greater risk for cancer.142 

Accordingly, PAH-DNA adducts, formed from the bioactivation of PAHs by CYP P450 

enzymes can provide a more accurate measure of the biological effect associated with the smoke 

exposure, thus serving as both biomarkers of exposure and physiological response (Figure 

1.5B).90 In contrast, nicotine and its respective metabolites (Figure 1.6) serve as more specific 

biomarkers for smoke derived from tobacco use.143 For example, cotinine is a widely measured 

biomarker for tobacco exposure, which has shown a correlation with self-reported cigarettes per 

day (CPD), and has also demonstrated a dose-dependent association with lung cancer risk.144 

However, excretion rates of individual nicotine metabolites are often largely impacted by several 

factors including genetics, diet and medication use, which has resulted in demographic variations 

of  cut-points used to distinguish current and never smokers.145 In contrast, the sum of nicotine 

metabolites (e.g., total nicotine equivalents or TNE) mitigates the impact of metabolism 

differences and serves as a more reliable measure of exposure, especially in more diverse 

populations. 146 Additionally, phenotypic biomarkers based on metabolite ratios can be employed 

to better evaluate the impact of nicotine metabolism.147 Overall, careful consideration in the 

selection of biomarkers for biomonitoring either in the context of occupational exposure or 

population health should be taken.  

In both occupational and population health, risk assessment, often a linear relationship 

between the initial exposure and biomarkers of exposure/effect is assumed. However, diet and 

lifestyle factors remain major sources of variation which may limit the utility of many 

recognized that nutrition plays a significant role metabolism, oxidation and inflammation, 



Ph.D. Thesis – Biban Gill; McMaster University – Chemical Biology 

33 
 

 
Figure 1.6. Overview of nicotine metabolism and its subsequent excretion profile in urine, where 
individual metabolites range in their excretion as a result of genetic and environmental factors 
 

biomarkers as specific indicators of exposure.36 Consequently, it has become increasingly where 

a suboptimal diet is currently one of the leading causes of preventable deaths worldwide.148 

Importantly, the relationship between diet and host physiology is considered bidirectional, and 

further influenced by cultural and lifestyle factors.148 Consumption of nutrients such as vitamins, 

antioxidants, amino acids and bioactive compounds (e.g., chlorogenic acids), can largely 

influence chronic disease risk. For instance, chlorogenic acids found in coffee have demonstrated 

beneficial health effects against cardiovascular disease and overall mortality.149 Conversely, 

ultra-processed foods containing artificial sweeteners have been associated with increased risk of 

irritable bowel syndrome, diabetes and certain cancers.150 Many of these dietary exposures may 

also impact metabolism and bioactivation of contaminants.151 For instance, cruciferous 

vegetables are known to modulate CYP P450 activity, specifically the induction of CYP 1A.151 

However, often environmental biomonitoring and occupational risk assessment either do not 

consider the contribution of diet, or it is recorded based on self-reported questionnaires, which 

are subject to various forms of bias and misreporting, which are further exacerbated in certain 

regions of the world.152 As result robust biomarkers reflective of recent dietary intake can 
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provide further insight on the complex relationships between exposure and disease. Given the 

complexity in exposures and the influence of diet, lifestyle and genetics, a more comprehensive 

approach towards exposome characterization can provide more accurate and risk assessment.66 

As outlined by Martyn et al.153 populations with the highest “totality of exposures” (e.g., 

firefighters, current smokers) should be the focus of future exposome studies as they are at 

increased risk for chronic disease. Overall, the utilization of exposomics for risk assessment in 

diverse populations can contribute to the mapping the genetic vs environmental risk factors of 

chronic disease burden.   

1.12 Thesis Motivation: Exposome Characterization for Risk Assessment in Occupational 

and Population Health   

In the last century, with the rapid expansion of industry, humans have been exposed to an 

increasing number of man-made and naturally occurring chemicals, in the workplace, at home 

and the wider envrionment.28 The impact of such complex exposures from sources such as air 

pollution and tobacco smoke, compounded with poor diet quality are among the leading causes 

of preventable disability and mortality worldwide.7 However, the underlying mechanisms of 

exposure-disease relationships remain poorly understood, and emphasizes the need for 

advancements in human exposome characterization for improved strategies in risk assessment. 

With the ability of metabolomics to depict a diverse series of endogenous and exogenous 

metabolites reflective of genetics, environment, and phenotype, it offers a promising approach 

toward understanding the developmental origins of health and disease.154 Consequently, 

identification and validation of metabolites serving as reliable biomarkers, along with reliable 

analytical methods amenable to comprehensive biomonitoring are urgently needed. Thus, the 

work presented in this thesis centers around the development of high throughput technologies to 
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quantify robust biomarkers of environmental smoke exposure in high-risk occupations, with 

additional applications towards global health initiatives. In this context, the validation and inter-

laboratory method comparison of urinary 1-hydroxypyrene (HP) for PAH exposure assessment 

was conducted and applied to firefighters deployed under emergency conditions to the 2016 Fort 

McMurray wildfire, where minimal access to protective equipment was available (Chapter II). 

This work sheds light on limitations in current analytical techniques for smoke exposure 

analysis, including reporting bias and the need for standardization in sample pre-processing 

protocols (e.g., enzyme deconjugation). As a result, an MSI-CE-MS/MS method was developed 

and rigorously validated for the direct analysis of urinary HP as its intact glucuronide conjugate 

(HP-G) in firefighters, minimizing bias and greatly improving sample throughput, while 

avoiding complex sample workup procedures often used for GC-MS. (Chapter III) From 

biomonitoring smoke exposure in an occupational health context, this thesis expanded to 

elucidating health risks among tobacco users on an international scale. In this case, MSI-CE-MS 

was first validated for analysis of a comprehensive panel of nicotine metabolites in urine to 

biochemically verify smoking status and smoking behavior in a large cohort (n=1000) from the 

Prospective Urban and Rural Epidemiological (PURE) study (Chapter IV). Lastly, nontargeted 

profiling of the urine metabolome was employed in the PURE cohort for a wide range of 

polar/ionic metabolites using MSI-CE-MS. This enabled the identification of a panel of robust 

and generalizable dietary biomarkers for recent food intake, which may also reflect regional 

variation in nutrition, and complex diet-disease relationships among smokers (Chapter V).  

1.13 Biomonitoring Smoke Exposure in Firefighters 

PAHs are a class of contaminants formed from the incomplete combustion of organic materials 

known for their carcinogenic and mutagenic properties.155 The ubiquitous nature of PAHs in 
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numerous forms of smoke, charred meats and ambient air pollution has made them a global 

health concern for chronic disease risk.90 Occupational exposure to PAHs has demonstrated 

increased rates of cancer and cardiovascular disease among industrial workers and firefighters.136 

Mitigation strategies such as personal protective gear and self-contained breathing apparatus are 

not consistent among urban and wildland firefighters, where wildland firefighters often have 

limited access to protective equipment.84,156 For instance, a recent collaboration with Cherry et 

al.157 demonstrated dermal absorption as an important route for PAH exposure, outlining a 

reduction in exposure among individuals with better access to proper hygiene practices. 

However, under emergency circumstances such as those observed during the 2016 Fort 

McMurray wildfire, firefighters are often subject to heavy smoke exposure with limited access to 

protective equipment, making biomonitoring in these contexts critical for risk assessment.157 

Despite the widespread use of urinary HP as a biomarker of recent smoke exposure90 few studies 

have reported a rigorous validation of HP, with no inter-laboratory method studies having been 

done to ensure reliable quantification. Chapter II describes an inter-laboratory method 

comparison for urinary HP when using GC-HRMS and LC-MS/MS on urine specimens collected 

from firefighters (n = 42) deployed to the Fort McMurray wildfire. Overall, despite acceptable 

accuracy and precision for both methods, a modest bias was observed, likely attributed to 

variations in enzyme hydrolysis protocols between both laboratories. In addition, given the 

complex nature of wood smoke, distribution of HP and its correlation to several other PAH and 

methoxyphenols (MP) metabolites was also investigated. However, only two OH-PAH isomers 

exhibited a significant correlation, demonstrating distinct excretion profiles among PAH 

metabolites likely outlining variations in PAH metabolism and bioactivation by CYP isoforms. 

Accordingly, the work presented in Chapter II highlights the need for standardization of complex 
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analytical protocols (e.g., enzyme hydrolysis) and the potential importance of biomarker 

selection based on differences in urinary metabolite excretion.  

1.14 Rapid Screening of HP-G in Urine 

Previously reported methods for urinary HP analysis, including LC with native fluorescence 

detection, LC-MS/MS and GC-MS have demonstrated excellent sensitivity and selectivity, but 

are limited by low sample throughput and complicated sample workup protocols.85,90 Chapter III 

introduces a high throughput MSI-CE-MS/MS method to directly analyze the intact glucuronide 

conjugate of HP (HP-G) following a simple acidified ether extraction on urine specimens 

obtained from firefighters following recent smoke exposure during the Fort McMurray wildfire. 

The multiplexed injection approach enables the analysis of 13 independent urine extracts within 

a single run (< 3 min/sample) with stringent QC, while avoiding enzyme deconjugation and 

precolumn chemical derivatization. Rigorous method optimization to achieve adequate 

sensitivity, comparable to that of previous LC-MS/MS methods was performed to reach low 

ng/mL detection limits. Subsequent method validation demonstrated good linearity, technical 

precision, and recoveries over a wide concentration range. A cross-platform inter-laboratory 

method comparison between the direct analysis of HP-G by MSI-CE-MS/MS and total 

hydrolyzed urinary HP by GC–MS further establishes excellent mutual agreement with minimal 

bias. Subsequent quantification of HP-G among firefighters revealed creatinine corrected 

concentrations below the biological exposure index, likely a consequence of delays in sample 

collection under emergency conditions. Overall, MSI-CE-MS/MS offers a multiplexed 

separation platform, ideal for large-scale biomonitoring studies and risk assessment among 

occupationally exposed firefighters.  
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1.15 Biomonitoring Tobacco Exposure and Smoking Patterns in the PURE Cohort  

Tobacco use is the leading cause of preventable death and disease worldwide, with over one 

billion current smokers.158 However, tobacco related disease risk is not uniform across 

populations, where recent work by Sathish et al.159 has demonstrated discrepancies in the hazards 

associated with smoking between countries of varying income status. Common practice for 

epidemiological studies investigating tobacco use patterns relies on self-reported questionnaires, 

which are often prone to error and reporting bias.160 Robust biomarkers for quantitative 

assessment of recent tobacco smoke exposure include analysis of the total nicotine equivalent 

(TNE-7), which comprises the sum of seven major nicotine metabolites excreted in urine.161 

Specific nicotine metabolite ratios have also exhibited excellent utility as phenotypic biomarkers 

of enzyme activity (e.g. CYP 2A6) to assess smoking behavior, such as the nicotine metabolic 

ratio (NMR).88  However, current methods for comprehensive analysis of nicotine and its 

metabolites in urine rely on complex sample preparation techniques or two-step enzyme 

deconjugation protocols, which are limited in sample throughput and suffer from high operating 

costs.88 Chapter IV introduces a simple and cost-effective method for direct analysis of up to 

seven nicotine metabolites by MSI-CE-MS that was applied in a large-scale PURE cohort with 

acceptable technical precision, good stability and adequate limits of detection. Due to the 

influence of smoking behavior on tobacco related disease risk, several urinary metabolites and 

their ratios were explored to monitor enzyme activity among current smokers to better evaluate 

the impact of metabolism on smoking habits (e.g., puff volume) and nicotine dependence. 

Overall, TNE-7 demonstrated a moderate correlation with self-reported CPD with the highest 

rates of misreporting occurring among LICs. Additionally, tobacco smoke exposure was highest 

in HICs among heavy smokers based on biochemical verification. Subsequent stratification of 
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NMR enabled the identification of fast metabolizers, where those with an elevated ratio, are 

more likely to exhibit increased CYP 2A6 activity. High rates of nicotine metabolism have been 

previously associated with larger puff volumes per cigarette, and greater nicotine dependence.162 

Similarly, this work demonstrated elevated tobacco exposure based on increased TNE-7 

concentrations among individuals classified as fast metabolizers. Consequently, these select 

participants were predicted to have the highest risk for toxicant exposure because of increased 

tobacco intake. Chapter IV outlines a robust and reliable method for the biochemical verification 

of tobacco smoke exposure to distinguish smoking status, while providing new insights into 

smoking behaviors and regional differences in tobacco-related disease risk worldwide.  

1.16 High-Throughput Metabolomics for Dietary Biomarker Classification  

In addition to tobacco smoking, a suboptimal diet poses a considerable burden on human health, 

where several chronic non-communicable diseases (NCDs) including cancer, cardiovascular 

disease and diabetes have demonstrated strong associations with select lifestyle factors (e.g., 

smoking, diet, physical activity).163 Specifically, poor diet quality defined as the habitual intake 

of high caloric, nutrient-poor, ultra-processed foods, is a leading modifiable risk factor for 

preventable morbidity and mortality worldwide.164 Current methods for monitoring dietary 

exposures primarily rely on self-reports either through 24 h diet records or food frequency 

questionnaires (FFQs).165 Accordingly, scoring methods such as the Alternative Healthy Eating 

Index (AHEI) have been developed, where adherence to an AHEI based diet have indicated 

reduced risk for mortality.166 However, diet recall methods are prone to random and systematic 

error, exacerbated in low socioeconomic groups.167 Thus, Chapter V utilizes MSI-CE-MS to 

demonstrate a nontargeted, high-throughput metabolomics data workflow for the characterization 

of dietary exposures in an international cohort of participants from 14 different countries in the 
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PURE study. Overall, a total of 116 polar/ionic urinary metabolites were reliably measured 

(CV<30%) and compared against semi-quantitative food records from FFQs (n=60), with 

subsequent evaluation of dose response. This work identified a panel of eight top-ranked 

candidate dietary biomarkers in urine, indicative of five distinct food classes, while also 

delineating regional trends in dietary habits, their association with smoking and overall diet 

quality. Importantly, Chapter V outlines the identification of objective dietary biomarkers, as a 

means of providing more comprehensive and reliable assessments of nutrition across diverse 

populations, which may provide further insight on the complex relationships between 

environmental exposures, diet, and chronic disease risk.   

 

1.17 References 

(1)  Trumble, B. C.; Finch, C. E. The Quarterly Review of Biology The Exposome in Human 
Evolution: From Dust to Diesel. Q Rev Biol. 2019, Vol. 94. 

(2)  Fogel, R. W.; Costa, D. L. A Theory of Technophysio Evolution, with Some Implications 
for Forecasting Population, Health Care Costs, and Pension Costs. Demography 1997, 34 
(1), 49–66. 

(3)  Drevenstedt, G. L.; Crimmins, E. M.; Vasunilashorn, S.; Finch, C. E. The Rise and Fall of 
Excess Male Infant Mortality. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (13), 5016–5021. 

(4)  Brian, C.; Clarke, B.; Blackadar, B.; Blackadar, C. B.; Researcher, V. Historical Review 
of the Causes of Cancer.World Journal of Clinical Oncology. 2016, 7(1), 54. 

(5)  BROWN, J. R.; THORNTON, J. L. Percivall Pott (1714-1788) and Chimney Sweepers’ 
Cancer of the Scrotum. Br. J. Ind. Med. 1957, 14 (1), 68. 

(6)  Doll, R.; Hill, A. B. Smoking and Carcinoma of the Lung. Br. Med. J. 1950, 2 (4682), 
739. 

(7)  Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, 
L.; Gilroy, D. W.; Fasano, A.; Miller, G. W.; Miller, A. H.; Mantovani, A.; Weyand, C. 
M.; Barzilai, N.; Goronzy, J. J.; Rando, T. A.; Effros, R. B.; Lucia, A.; Kleinstreuer, N.; 
Slavich, G. M. Chronic Inflammation in the Etiology of Disease across the Life Span. Nat. 
Med. 2019, 25 (12), 1822–1832. 

(8)  World Health Organization. Diet, Nutrition, and the Prevention of Chronic Diseases : 
Report of a Joint WHO/FAO Expert Consultation.; World Health Organization, 2003. 



Ph.D. Thesis – Biban Gill; McMaster University – Chemical Biology 

41 
 

(9)  Wild, C. P. Complementing the Genome with an “Exposome”: The Outstanding 
Challenge of Environmental Exposure Measurement in Molecular Epidemiology. Cancer 
Epidemiology Biomarkers and Prevention. 2005, 14(8), 1847–1850. 

(10)  Wild, C. P. The Exposome: From Concept to Utility. International Journal of 
Epidemiology. 2012, 41(1), 24–32. 

(11)  Strimbu, K.; Tavel, J. A. What Are Biomarkers? Curr Opin HIV AIDS. 2010 Nov; 5(6): 
463–466. 

(12)  Vaidya, V. S., & Bonventre, J. V. Biomarkers: In Medicine, Drug Discovery, and 
Environmental Health. John Wiley & Sons, 2010. 

(13)  Haber, M. H. Pisse Prophecy: A Brief History of Urinalysis. Clin. Lab. Med. 1988, 8 (3), 
415–430. 

(14)  Silins, I.; Högberg, J. Combined Toxic Exposures and Human Health: Biomarkers of 
Exposure and Effect. International Journal of Environmental Research and Public Health. 
MDPI 2011, 8(3), 629–647. 

(15)  Au, W. W. Usefulness of Biomarkers in Population Studies: From Exposure to 
Susceptibility and to Prediction of Cancer. Int. J. Hyg. Environ. Health 2007, 210 (3–4), 
239–246. 

(16)  Timbrell, J. A. Biomarkers in Toxicology. Toxicology 1998, 129 (1), 1–12. 
(17)  Murphy, S. E. Nicotine Metabolism and Smoking: Ethnic Differences in the Role of P450 

2A6. Chemical Research in Toxicology. 2017, 30(1), 410–419. 
(18)  Biomarkers of Exposure - Canada.ca https://www.canada.ca/en/health-

canada/services/publications/healthy-living/biomarkers-exposure.html (accessed 2022 -04 
-28). 

(19)  World Health Organization. Biomarkers In Risk Assessment: Validity And Validation – 
Environmental Health Criteria 222. 2001. 

(20)  Barros, B.; Oliveira, M.; Morais, S. Urinary Biohazard Markers in Firefighters. Adv. Clin. 
Chem. 2021, 105, 243–319. 

(21)  Lu, S. Y.; Li, Y. X.; Zhang, T.; Cai, D.; Ruan, J. J.; Huang, M. Z.; Wang, L.; Zhang, J. Q.; 
Qiu, R. L. Effect of E-Waste Recycling on Urinary Metabolites of Organophosphate 
Flame Retardants and Plasticizers and Their Association with Oxidative Stress. Environ. 
Sci. Technol. 2017, 51 (4), 2427–2437. 

(22)  Vineis, P.; Robinson, O.; Chadeau-Hyam, M.; Dehghan, A.; Mudway, I.; Dagnino, S. 
What Is New in the Exposome? Environment International. 2020.143,105887. 

(23)  Basu, A. K. DNA Damage, Mutagenesis and Cancer. Int. J. Mol. Sci. 2018, 19 (4). 
(24)  Yuan, J. M.; Nelson, H. H.; Carmella, S. G.; Wang, R.; Kuriger-Laber, J.; Jin, A.; Adams-

Haduch, J.; Hecht, S. S.; Koh, W. P.; Murphy, S. E. CYP2A6 Genetic Polymorphisms and 
Biomarkers of Tobacco Smoke Constituents in Relation to Risk of Lung Cancer in the 
Singapore Chinese Health Study. Carcinogenesis. 2017, 38 (4), 411–418. 

(25)  Novelli, G.; Biancolella, M.; Latini, A.; Spallone, A.; Borgiani, P.; Papaluca, M. Precision 
Medicine in Non-Communicable Diseases. High-throughput. 2020, 9(1), 3. 



Ph.D. Thesis – Biban Gill; McMaster University – Chemical Biology 

42 

(26) Ragas, A. M. J. Trends and Challenges in Risk Assessment of Environmental
Contaminants. Journal of Integrative Environmental Sciences. 2011, 8(3), 195–218.

(27) Maertens, A.; Golden, E.; Hartung, T. Avoiding Regrettable Substitutions: Green
Toxicology for Sustainable Chemistry. ACS Sustain. Chem. Eng. 2021, 9 (23), 7749–
7758.

(28) Bocato, M. Z.; Bianchi Ximenez, J. P.; Hoffmann, C.; Barbosa, F. An Overview of the
Current Progress, Challenges, and Prospects of Human Biomonitoring and Exposome
Studies. J. Toxicol. Environ. Heal. - Part B Crit. Rev. 2019, 22 (5–6), 131–156.

(29) Paustenbach, D. J.; Galbraith, D. Biomonitoring and Biomarkers: Exposure Assessment
Will Never Be the Same. Environ. Health Perspect. 2006, 114 (8), 1143–1149.

(30) Dennis, K. K.; Marder, E.; Balshaw, D. M.; Cui, Y.; Lynes, M. A.; Patti, G. J.; Rappaport,
S. M.; Shaughnessy, D. T.; Vrijheid, M.; Barr, D. B. Biomonitoring in the Era of the
Exposome. Environmental Health Perspectives. 2017, 25(4), 502–510.

(31) Palipudi, K. M.; Morton, J.; Hsia, J.; Andes, L.; Asma, S.; Talley, B.; Caixeta, R. D.;
Fouad, H.; Khoury, R. N.; Ramanandraibe, N. Methodology of the Global Adult Tobacco
Survey—2008–2010. Glob. Health Promot. 2016, 23 (2), 3–23.

(32) Sobus, J. R.; DeWoskin, R. S.; Tan, Y. M.; Pleil, J. D.; Phillips, M. B.; George, B. J.;
Christensen, K.; Schreinemachers, D. M.; Williams, M. A.; Hubal, E. A. C.; Edwards, S.
W. Uses of NHANES Biomarker Data for Chemical Risk Assessment: Trends,
Challenges, and Opportunities. Environ. Health Perspect. 2015, 123 (10), 919–927.

(33) Haddad, N.; Andrianou, X. D.; Makris, K. C. A Scoping Review on the Characteristics of
Human Exposome Studies. Current Pollution Reports. 2019, 5(4), 378–393.

(34) Vermeulen, R.; Schymanski, E. L.; Barabási, A.-L.; Miller, G. W. The Exposome and
Health: Where Chemistry Meets Biology. Science. 2020, 367(6476), 392-396.

(35) Wild, C. P.; Scalbert, A.; Herceg, Z. Measuring the Exposome: A Powerful Basis for
Evaluating Environmental Exposures and Cancer Risk. Environmental and Molecular
Mutagenesis. 2013, 54(7), 480–499.

(36) Zhang, P.; Carlsten, C.; Chaleckis, R.; Hanhineva, K.; Huang, M.; Isobe, T.; Koistinen, V.
M.; Meister, I.; Papazian, S.; Sdougkou, K.; Xie, H.; Martin, J. W.; Rappaport, S. M.;
Tsugawa, H.; Walker, D. I.; Woodruff, T. J.; Wright, R. O.; Wheelock, C. E. Defining the
Scope of Exposome Studies and Research Needs from a Multidisciplinary Perspective.
Environmental Science and Technology Letters. 2021, 8(10), 839–852.

(37) Heijmans, B. T.; Tobi, E. W.; Stein, A. D.; Putter, H.; Blauw, G. J.; Susser, E. S.;
Slagboom, P. E.; Lumey, L. H. Persistent Epigenetic Differences Associated with Prenatal
Exposure to Famine in Humans. Proc. Natl. Acad. Sci.. 2008, 105 (44), 17046–17049.

(38) Holland, N. Future of Environmental Research in the Age of Epigenomics and
Exposomics. Reviews on Environmental Health. 2017, 32(1-2), 45–54.

(39) O’Donnell, S. T.; Ross, R. P.; Stanton, C. The Progress of Multi-Omics Technologies:
Determining Function in Lactic Acid Bacteria Using a Systems Level Approach. Front.
Microbiol. 2020, 10, 3084.



Ph.D. Thesis – Biban Gill; McMaster University – Chemical Biology 

43 
 

(40)  Pintarelli, G.; Noci, S.; Maspero, D.; Pettinicchio, A.; Dugo, M.; De Cecco, L.; Incarbone, 
M.; Tosi, D.; Santambrogio, L.; Dragani, T. A.; Colombo, F. Cigarette Smoke Alters the 
Transcriptome of Non-Involved Lung Tissue in Lung Adenocarcinoma Patients. Sci. 
Reports 2019, 9 (1), 1–10. 

(41)  Santiago-Rodriguez, T. M.; Hollister, E. B. Multi ‘omic Data Integration: A Review of 
Concepts, Considerations, and Approaches. Semin. Perinatol. 2021, 45 (6). 

(42)  Jain, R. B. Use of Urinary Thiocyanate as a Biomarker of Tobacco Smoke. Epidemiol. 
Open Access 2016, 6 (5), 151456. 

(43)  DeBord, D. G.; Carreón, T.; Lentz, T. J.; Middendorf, P. J.; Hoover, M. D.; Schulte, P. A. 
Use of the “Exposome” in the Practice of Epidemiology: A Primer on -Omic 
Technologies. Am. J. Epidemiol. 2016, 184 (4), 302–314. 

(44)  Vlaanderen, J.; Portengen, L.; Rappaport, S. M.; Glass, D. C.; Kromhout, H.; Vermeulen, 
R. The Impact of Saturable Metabolism on Exposure-Response Relations in 2 Studies of 
Benzene-Induced Leukemia. Am. J. Epidemiol. 2011, 174 (5), 621–629. 

(45)  Sadeghi, L.; Jenzer, H. Omics Technologies: The Most Convincing Tools for a (Fully) 
Individualized Diet? J. Mol. Biomark. Diagn. 2016, 8(311),2. 

(46)  Sawyers, C. L. The Cancer Biomarker Problem. Nature 2008, 452 (7187), 548–552. 
(47)  Rappaport, S. M. Discovering Environmental Causes of Disease. J. Epidemiol. 

Community Health 2012, 66 (2), 99–102. 
(48)  Beland, F. A.; Poirier, M. C. Significance of DNA Adduct Studies in Animal Models for 

Cancer Molecular Dosimetry and Risk Assessment. In Environmental Health 
Perspectives, 1993, 99, 5–10. 

(49)  Pereira, S. A.; Antunes, A. M. M. Special Issue “Adductomics: Elucidating the 
Environmental Causes of Disease.” High-Throughput. 2019, 8 (3), 2–3. 

(50)  Preston, G. W.; Phillips, D. H. Protein Adductomics: Analytical Developments and 
Applications in Human Biomonitoring. Toxics 2019, 7 (2), 29. 

(51)  Hanash, S. M.; Pitteri, S. J.; Faca, V. M. Mining the Plasma Proteome for Cancer 
Biomarkers. Nature 2008, 452 (7187), 571–579. 

(52)  Olivier, M.; Asmis, R.; Hawkins, G. A.; Howard, T. D.; Cox, L. A. The Need for Multi-
Omics Biomarker Signatures in Precision Medicine. Int. J. Mol. Sci. 2019, 20 (19), 4781. 

(53)  Idle, J. R.; Gonzalez, F. J. Metabolomics. Cell Metab. 2007, 6 (5), 348–351. 
(54)  Ryan, D.; Robards, K. Metabolomics: The Greatest Omics of Them All? Anal. Chem. 

2006, 78 (23), 7954–7958. 
(55)  Tzoulaki, I.; Ebbels, T. M. D.; Valdes, A.; Elliott, P.; Ioannidis, J. P. A. Design and 

Analysis of Metabolomics Studies in Epidemiologic Research: A Primer on-Omic 
Technologies. Am. J. Epidemiol. 2014, 180 (2), 129–139. 

(56)  Wishart, D. S.; Guo, A. C.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, 
Z.; Tian, S.; Lee, B. L.; Berjanskii, M.; Mah, R.; Yamamoto, M.; Jovel, J.; Torres-
Calzada, C.; Hiebert-Giesbrecht, M.; Lui, V. W.; Varshavi, D. D.; Varshavi, D. D.; Allen, 
D.; Arndt, D.; Khetarpal, N.; Sivakumaran, A.; Harford, K.; Sanford, S.; Yee, K.; Cao, X.; 



Ph.D. Thesis – Biban Gill; McMaster University – Chemical Biology 

44 
 

Budinski, Z.; Liigand, J.; Zhang, L.; Zheng, J.; Mandal, R.; Karu, N.; Dambrova, M.; 
Schiöth, H. B.; Greiner, R.; Gautam, V. HMDB 5.0: The Human Metabolome Database 
for 2022. Nucleic Acids Res. 2022, 50 (D1), D622–D631. 

(57)  Hyötyläinen, T. Analytical Challenges in Human Exposome Analysis with Focus on 
Environmental Analysis Combined with Metabolomics. Journal of Separation Science. 
John Wiley and Sons Inc April 1, 2021, 44(8), 1769–1787. 

(58)  Zhang, P.; Arora, M.; Chaleckis, R.; Isobe, T.; Jain, M.; Meister, I.; Melén, E.; 
Perzanowski, M.; Torta, F.; Wenk, M. R.; Wheelock, C. E. Tackling the Complexity of 
the Exposome: Considerations from the Gunma University Initiative for Advanced 
Research (GIAR) Exposome Symposium. Metabolites 2019, 9(6), 106. 

(59)  Oliveira, M.; Slezakova, K.; Delerue-Matos, C.; Pereira, M. C.; Morais, S. Children 
Environmental Exposure to Particulate Matter and Polycyclic Aromatic Hydrocarbons and 
Biomonitoring in School Environments: A Review on Indoor and Outdoor Exposure 
Levels, Major Sources and Health Impacts. Environment International. 2019.124,180-204 

(60)  Maitre, L.; De Bont, J.; Casas, M.; Robinson, O.; Aasvang, G. M.; Agier, L.; 
Andrušaitytė, S.; Ballester, F.; Basagaña, X.; Borràs, E.; Brochot, C.; Bustamante, M.; 
Carracedo, A.; De Castro, M.; Dedele, A.; Donaire-Gonzalez, D.; Estivill, X.; Evandt, J.; 
Fossati, S.; Giorgis-Allemand, L.; Gonzalez, J. R.; Granum, B.; Grazuleviciene, R.; 
Gützkow, K. B.; Haug, L. S.; Hernandez-Ferrer, C.; Heude, B.; Ibarluzea, J.; Julvez, J.; 
Karachaliou, M.; Keun, H. C.; Krog, N. H.; Lau, C. H. E.; Leventakou, V.; Lyon-Caen, S.; 
Manzano, C.; Mason, D.; McEachan, R.; Meltzer, H. M.; Petraviciene, I.; Quentin, J.; 
Roumeliotaki, T.; Sabido, E.; Saulnier, P. J.; Siskos, A. P.; Siroux, V.; Sunyer, J.; 
Tamayo, I.; Urquiza, J.; Vafeiadi, M.; Van Gent, D.; Vives-Usano, M.; Waiblinger, D.; 
Warembourg, C.; Chatzi, L.; Coen, M.; Van Den Hazel, P.; Nieuwenhuijsen, M. J.; Slama, 
R.; Thomsen, C.; Wright, J.; Vrijheid, M. Human Early Life Exposome (HELIX) Study: A 
European Population-Based Exposome Cohort. BMJ Open 2018, 8 (9), 1–17. 

(61)  Yuxia Cui, 1 David M. Balshaw, 1 Richard K. Kwok, 2 Claudia L. Thompson, 3 Gwen W. 
Collman, 4 and Linda S. Birnbaum5. Perspectives | Brief Communication The Exposome : 
Embracing the Complexity for Discovery in Environmental Health. Environ. Health 
Perspect. 2007, 137–140. 

(62)  Plebani, M. Quality Indicators to Detect Pre-Analytical Errors in Laboratory Testing. Clin. 
Biochem. Rev. 2012, 33 (3), 85–88. 

(63)  Athersuch, T. Metabolome Analyses in Exposome Studies: Profiling Methods for a Vast 
Chemical Space. Archives of Biochemistry and Biophysics. 2016, 589, 177–186. 

(64)  Smith, L.; Villaret-Cazadamont, J.; Claus, S. P.; Canlet, C.; Guillou, H.; Cabaton, N. J.; 
Ellero-Simatos, S. Important Considerations for Sample Collection in Metabolomics 
Studies with a Special Focus on Applications to Liver Functions. Metabolites. 2020. 
10(3),104. 

(65)  Orešič, M.; McGlinchey, A.; Wheelock, C. E.; Hyötyläinen, T. Metabolic Signatures of 
the Exposome—Quantifying the Impact of Exposure to Environmental Chemicals on 
Human Health. Metabolites 2020, 10 (11), 1–31. 

(66)  Sillé, F. C. M.; Karakitsios, S.; Kleensang, A.; Koehler, K.; Maertens, A.; Miller, G. W.; 



Ph.D. Thesis – Biban Gill; McMaster University – Chemical Biology 

45 

Prasse, C.; Quiros-Alcala, L.; Ramachandran, G.; Rappaport, S. M.; Rule, A. M.; 
Sarigiannis, D.; Smirnova, L.; Hartung, T. The Exposome - A New Approach for Risk 
Assessment. ALTEX 2020, 37 (1), 3–23. 

(67) Maria Vitale, C.; Price, E. J.; Miller, G. W.; David, A.; Antignac, J.-P.; Barouki, R.; Klá
nová, J. Analytical Strategies for Chemical Exposomics: Exploring Limits and Feasibility.
Exposome 2021, 1 (1) osab003.

(68) Teahan, O.; Gamble, S.; Holmes, E.; Waxman, J.; Nicholson, J. K.; Bevan, C.; Keun, H.
C. Impact of Analytical Bias in Metabonomic Studies of Human Blood Serum and
Plasma. Anal. Chem. 2006, 78 (13), 4307–4318.

(69) Athersuch, T. J.; Keun, H. C. Metabolic Profiling in Human Exposome Studies.
Mutagenesis. Oxford University Press 2015, 30(6), 755–762.

(70) Hebels, D. G. A. J.; Georgiadis, P.; Keun, H. C.; Athersuch, T. J.; Vineis, P.; Vermeulen,
R.; Portengen, Ü.; Bergdahl, I. A.; Hallmans, G.; Palli, D.; Bendinelli, B.; Krogh, V.;
Tumino, R.; Sacerdote, C.; Panico, S.; Kleinjans, J. C. S.; de Kok, T. M. C. M.; Smith, M.
T.; Kyrtopoulos, S. A. Performance in Omics Analyses of Blood Samples in Long-Term
Storage: Opportunities for the Exploitation of Existing Biobanks in Environmental Health
Research. Environ. Health Perspect. 2013, 121 (4), 480–487.

(71) Shen, H.; Xu, W.; Peng, S.; Scherb, H.; She, J.; Voigt, K.; Alamdar, A.; Schramm, K. W.
Pooling Samples for “Top-down” Molecular Exposomics Research: The Methodology.
Environ. Heal. A Glob. Access Sci. Source 2014, 13 (1),1-8.

(72) Walker, D. I.; Valvi, D.; Rothman, N.; Lan, Q.; Miller, G. W.; Jones, D. P. The
Metabolome: A Key Measure for Exposome Research in Epidemiology. Curr. Epidemiol.
Reports 2019, 6 (2), 93–103.

(73) Olesti, E.; González-Ruiz, V.; Wilks, M. F.; Boccard, J.; Rudaz, S. Approaches in
Metabolomics for Regulatory Toxicology Applications. Analyst 2021, 146 (6), 1820–
1834.

(74) David, A.; Chaker, J.; Price, E. J.; Bessonneau, V.; Chetwynd, A. J.; Vitale, C. M.;
Klánová, J.; Walker, D. I.; Antignac, J. P.; Barouki, R.; Miller, G. W. Towards a
Comprehensive Characterisation of the Human Internal Chemical Exposome: Challenges
and Perspectives. Environ. Int. 2021, 156, 106630.

(75) Bloszies, C. S.; Fiehn, O. Using Untargeted Metabolomics for Detecting Exposome
Compounds; 2018; 8, 87–92.

(76) Ljoncheva, M.; Stepišnik, T.; Džeroski, S.; Kosjek, T. Cheminformatics in MS-Based
Environmental Exposomics: Current Achievements and Future Directions. Trends in
Environmental Analytical Chemistry., 2020, 28.

(77) Pourchet, M.; Debrauwer, L.; Klanova, J.; Price, E. J.; Covaci, A.; Caballero-Casero, N.;
Oberacher, H.; Lamoree, M.; Damont, A.; Fenaille, F.; Vlaanderen, J.; Meijer, J.; Krauss,
M.; Sarigiannis, D.; Barouki, R.; Le Bizec, B.; Antignac, J. P. Suspect and Non-Targeted
Screening of Chemicals of Emerging Concern for Human Biomonitoring, Environmental
Health Studies and Support to Risk Assessment: From Promises to Challenges and
Harmonisation Issues. Environ. Int. 2020, 139, 105545.



Ph.D. Thesis – Biban Gill; McMaster University – Chemical Biology 

46 
 

(78)  Sun, J.; Fang, R.; Wang, H.; Xu, D. X.; Yang, J.; Huang, X.; Cozzolino, D.; Fang, M.; 
Huang, Y. A Review of Environmental Metabolism Disrupting Chemicals and Effect 
Biomarkers Associating Disease Risks: Where Exposomics Meets Metabolomics. 
Environment International. 2022,158. 

(79)  Chen, L.; Zhong, F.; Zhu, J. Bridging Targeted and Untargeted Mass Spectrometry-Based 
Metabolomics via Hybrid Approaches. Metabolites (2020) 10.9, 348 

(80)  Misra, B. B. Metabolomics Tools to Study Links Between Pollution and Human Health: 
An Exposomics Perspective. Current Pollution Reports. Springer September 15, 2019, pp 
93–111. 

(81)  Xue, J.; Lai, Y.; Liu, C. W.; Ru, H. Towards Mass Spectrometry-Based Chemical 
Exposome: Current Approaches, Challenges, and Future Directions; Toxics. 2019; 7(3),41. 

(82)  Zheng, X.; Wojcik, R.; Zhang, X.; Ibrahim, Y. M.; Burnum-Johnson, K. E.; Orton, D. J.; 
Monroe, M. E.; Moore, R. J.; Smith, R. D.; Baker, E. S. Coupling Front-End Separations, 
Ion Mobility Spectrometry, and Mass Spectrometry for Enhanced Multidimensional 
Biological and Environmental Analyses. Annual Review of Analytical Chemistry. 2017, 
10(1), 71–92. 

(83)  Fernández Maestre, R. Ion Mobility Spectrometry: History, Characteristics and 
Applications. Rev. U.D.C.A Actual. Divulg. Científica. 2012, 15 (2).467-479. 

(84)  Adetona, O.; Simpson, C. D.; Li, Z.; Sjodin, A.; Calafat, A. M.; Naeher, L. P. 
Hydroxylated Polycyclic Aromatic Hydrocarbons as Biomarkers of Exposure to Wood 
Smoke in Wildland Firefighters. J. Expo. Sci. Environ. Epidemiol. 2017, 27 (1), 78–83. 

(85)  Gill, B.; Mell, A.; Shanmuganathan, M.; Jobst, K.; Zhang, X.; Kinniburgh, D.; Cherry, N.; 
Britz-McKibbin, P. Urinary Hydroxypyrene Determination for Biomonitoring of 
Firefighters Deployed at the Fort McMurray Wildfire: An Inter-Laboratory Method 
Comparison. Anal. Bioanal. Chem. 2019, 411 (7), 1397–1407. 

(86)  Nováková, L.; Vlčková, H. A Review of Current Trends and Advances in Modern Bio-
Analytical Methods: Chromatography and Sample Preparation. Anal. Chim. Acta 2009, 
656 (1–2), 8–35. 

(87)  Gys, C.; Kovačič, A.; Huber, C.; Yin Lai, F.; Heath, E.; Covaci, A. Suspect and 
Untargeted Screening of Bisphenol S Metabolites Produced by in Vitro Human Liver 
Metabolism. 2018, 295,115-123. 

(88)  Taghavi, T.; Novalen, M.; Lerman, C.; George, T. P.; Tyndale, R. F. A Comparison of 
Direct and Indirect Analytical Approaches to Measuring Total Nicotine Equivalents in 
Urine. Cancer Epidemiol. Biomarkers Prev. 2018, 27 (8), 882–891. 

(89)  Dwivedi, P.; Zhou, X.; Powell, T. G.; Calafat, A. M.; Ye, X. Impact of Enzymatic 
Hydrolysis on the Quantification of Total Urinary Concentrations of Chemical 
Biomarkers. Chemosphere 2018, 199, 256-262. 

(90)  Gill, B.; Britz-McKibbin, P. Biomonitoring of Smoke Exposure in Firefighters: A Review. 
Curr. Opin. Environ. Sci. Heal. 2020, 15, 57-65. 

(91)  Xia, B.; Xia, Y.; Wong, J.; Nicodemus, K. J.; Xu, M.; Lee, J.; Guillot, T.; Li, J. 
Quantitative Analysis of Five Tobacco-Specific N-Nitrosamines in Urine by Liquid 



Ph.D. Thesis – Biban Gill; McMaster University – Chemical Biology 

47 

Chromatography–Atmospheric Pressure Ionization Tandem Mass Spectrometry. Biomed. 
Chromatogr. 2014, 28 (3), 375–384. 

(92) Lai, F. Y.; Been, F.; Covaci, A.; Van Nuijs, A. L. N. Novel Wastewater-Based
Epidemiology Approach Based on Liquid Chromatography-Tandem Mass Spectrometry
for Assessing Population Exposure to Tobacco-Specific Toxicants and Carcinogens. Anal.
Chem. 2017, 89 (17), 9268–9278.

(93) Monteiro Bastos da Silva, J.; Chaker, J.; Martail, A.; Costa Moreira, J.; David, A.; Le Bot,
B. Improving Exposure Assessment Using Non-Targeted and Suspect Screening: The
ISO/IEC 17025: 2017 Quality Standard as a Guideline. J. Xenobiotics 2021, 11 (1), 1–15.

(94) Godzien, J.; Alonso-Herranz, V.; Coral, B.; Armitage, G. Controlling the Quality of
Metabolomics Data: New Strategies to Get the Best out of the QC Sample.
Metabolomics. 2015, 11(3), 518-528.

(95) Shanmuganathan, M.; Kroezen, Z.; Gill, B.; Azab, S.; de Souza, R. J.; Teo, K. K.;
Atkinson, S.; Subbarao, P.; Desai, D.; Anand, S. S.; Britz-McKibbin, P. The Maternal
Serum Metabolome by Multisegment Injection-Capillary Electrophoresis-Mass
Spectrometry: A High-Throughput Platform and Standardized Data Workflow for Large-
Scale Epidemiological Studies. Nat. Protoc. 2021, 16 (4), 1966–1994.

(96) Cai, X.; Li, R. Concurrent Profiling of Polar Metabolites and Lipids in Human Plasma
Using HILIC-FTMS. Sci. Reports 2016 61 2016, 6 (1), 1–10.

(97) Yamamoto, M.; Pinto-Sanchez, M. I.; Bercik, P.; Britz-McKibbin, P. Metabolomics
Reveals Elevated Urinary Excretion of Collagen Degradation and Epithelial Cell Turnover
Products in Irritable Bowel Syndrome Patients. Metabolomics 2019, 15 (6),1-18.

(98) Dibattista, A.; Rampersaud, D.; Lee, H.; Kim, M.; Britz-Mckibbin, P. High Throughput
Screening Method for Systematic Surveillance of Drugs of Abuse by Multisegment
Injection-Capillary Electrophoresis-Mass Spectrometry. Anal. Chem. 2017, 89 (21),
11853–11861.

(99) Gill, B.; Jobst, K.; Britz-Mckibbin, P. Rapid Screening of Urinary 1-Hydroxypyrene
Glucuronide by Multisegment Injection-Capillary Electrophoresis-Tandem Mass
Spectrometry: A High-Throughput Method for Biomonitoring of Recent Smoke
Exposures. Anal. Chem. 2020, 92 (19), 13558–13564.

(100) Azab, S.; Ly, R.; Britz-Mckibbin, P. Robust Method for High-Throughput Screening of
Fatty Acids by Multisegment Injection-Nonaqueous Capillary Electrophoresis-Mass
Spectrometry with Stringent Quality Control. Anal. Chem. 2019, 91 (3), 2329–2336.

(101) Azab, S. M.; De Souza, R. J.; Teo, K. K.; Anand, S. S.; Williams, N. C.; Holzschuher, J.;
McGlory, C.; Philips, S. M.; Britz-McKibbin, P. Serum Non-Esterified Fatty Acids Have
Utility as Dietary Biomarkers of Fat Intake from Fish, Fish Oil, and Dairy in Women. J.
Lipid Res. 2020, 61 (6), 933–944.

(102) Saoi, M.; Kennedy, K. M.; Gohir, W.; Sloboda, D. M.; Britz-McKibbin, P. Placental
Metabolomics for Assessment of Sex-Specific Differences in Fetal Development During
Normal Gestation. 2020, 10 (1), 1–10.

(103) Dibattista, A.; McIntosh, N.; Lamoureux, M.; Al-Dirbashi, O. Y.; Chakraborty, P.; Britz-



Ph.D. Thesis – Biban Gill; McMaster University – Chemical Biology 

48 
 

Mckibbin, P. Metabolic Signatures of Cystic Fibrosis Identified in Dried Blood Spots for 
Newborn Screening Without Carrier Identification. J. Proteome Res. 2019, 18 (3), 841–
854. 

(104)  Macedo, A. N.; Mathiaparanam, S.; Brick, L.; Keenan, K.; Gonska, T.; Pedder, L.; Hill, 
S.; Britz-Mckibbin, P. The Sweat Metabolome of Screen-Positive Cystic Fibrosis Infants: 
Revealing Mechanisms beyond Impaired Chloride Transport. 2017, 3(8), 904-913. 

(105)  Harada, S.; Hirayama, A.; Chan, Q.; Kurihara, A.; Fukai, K.; Iida, M.; Kato, S.; 
Sugiyama, D.; Kuwabara, K.; Takeuchi, A.; Akiyama, M.; Okamura, T.; Ebbels, T. M. D.; 
Elliott, P.; Tomita, M.; Sato, A.; Suzuki, C.; Sugimoto, M.; Soga, T.; Takebayashi, T. 
Reliability of Plasma Polar Metabolite Concentrations in a Large-Scale Cohort Study 
Using Capillary Electrophoresis-Mass Spectrometry. PLoS One 2018, 13 (1).e0191230. 

(106)  Ishibashi, Y.; Harada, S.; Takeuchi, A.; Iida, M.; Kurihara, A.; Kato, S.; Kuwabara, K.; 
Hirata, A.; Shibuki, T.; Okamura, T.; Sugiyama, D.; Sato, A.; Amano, K.; Hirayama, A.; 
Sugimoto, M.; Soga, T.; Tomita, M.; Takebayashi, T. Reliability of Urinary Charged 
Metabolite Concentrations in a Large-Scale Cohort Study Using Capillary 
Electrophoresis-Mass Spectrometry. Sci. Reports.  2021, 11(1), 1-9. 

(107)  Chiari, M.; Ceriotti, L. Capillary Electrophoresis Capillary Electrophoresis. Food 
Toxicants Anal. Tech. Strateg. Dev. 2014, 1997 (2), 561–597. 

(108)  Kuehnbaum, N. L.; Kormendi, A.; Britz-Mckibbin, P. Multisegment Injection-Capillary 
Electrophoresis-Mass Spectrometry: A High-Throughput Platform for Metabolomics with 
High Data Fidelity. Anal. Chem. 2013, 85 (22), 10664–10669. 

(109)  Saoi, M.; Li, A.; McGlory, C.; Stokes, T.; von Allmen, M. T.; Phillips, S. M.; Britz-
Mckibbin, P. Metabolic Perturbations from Step Reduction in Older Persons at Risk for 
Sarcopenia: Plasma Biomarkers of Abrupt Changes in Physical Activity. Metabolites 
2019, 9 (7), 134. 

(110)  Ramautar, R.; Somsen, G. W.; de Jong, G. J. CE-MS for Metabolomics: Developments 
and Applications in the Period 2012–2014. Electrophoresis 2015, 36 (1), 212–224. 

(111)  Wellington, N.; Shanmuganathan, M.; De Souza, R. J.; Zulyniak, M. A.; Azab, S.; 
Bloomfield, J.; Mell, A.; Ly, R.; Desai, D.; Anand, S. S.; Britz-McKibbin, P. Metabolic 
Trajectories Following Contrasting Prudent and Western Diets from Food Provisions: 
Identifying Robust Biomarkers of Short-Term Changes in Habitual Diet. Nutrients 2019, 
11 (10), 2407. 

(112)  Yi, L.; Dong, N.; Yun, Y.; Deng, B.; Ren, D.; Liu, S.; Liang, Y. Chemometric Methods in 
Data Processing of Mass Spectrometry-Based Metabolomics: A Review. Anal. Chim. Acta 
2016, 914, 17–34. 

(113)  Blaženović, I.; Kind, T.; Sa, M. R.; Ji, J.; Vaniya, A.; Wancewicz, B.; Roberts, B. S.; 
Torbašinović, H.; Lee, T.; Mehta, S. S.; Showalter, M. R.; Song, H.; Kwok, J.; Jahn, D.; 
Kim, J.; Fiehn, O. Structure Annotation of All Mass Spectra in Untargeted Metabolomics. 
Anal. Chem. 2019, 91 (3), 2155–2162. 

(114)  Espín-Pérez, A.; Portier, C.; Chadeau-Hyam, M.; van Veldhoven, K.; Kleinjans, J. C. S.; 
de Kok, T. M. C. M. Comparison of Statistical Methods and the Use of Quality Control 
Samples for Batch Effect Correction in Human Transcriptome Data. PLoS One 2018, 13 



Ph.D. Thesis – Biban Gill; McMaster University – Chemical Biology 

49 
 

(8), e0202947. 
(115)  Han, W.; Li, L. Evaluating and Minimizing Batch Effects in Metabolomics. Mass 

Spectrom. Rev. 2022, 41 (3), 421–442. 
(116)  Kirwan, J. A.; Broadhurst, D. I.; Davidson, R. L.; Viant, M. R. Characterising and 

Correcting Batch Variation in an Automated Direct Infusion Mass Spectrometry (DIMS) 
Metabolomics Workflow. Anal. Bioanal. Chem. 2013, 405 (15), 5147–5157. 

(117)  Johnson, W. E.; Li, C.; Rabinovic, A. Adjusting Batch Effects in Microarray Expression 
Data Using Empirical Bayes Methods. Biostatistics 2007, 8 (1), 118–127. 

(118)  Armitage, E. G.; Godzien, J.; Alonso-Herranz, V.; López-Gonzálvez, Á.; Barbas, C. 
Missing Value Imputation Strategies for Metabolomics Data. Electrophoresis 2015, 36 
(24), 3050–3060. 

(119)  Do, K. T.; Wahl, S.; Raffler, J.; Molnos, S.; Laimighofer, M.; Adamski, J.; Suhre, K.; 
Strauch, K.; Peters, A.; Gieger, C.; Langenberg, C.; Stewart, I. D.; Theis, F. J.; Grallert, 
H.; Kastenmüller, G.; Krumsiek, J. Characterization of Missing Values in Untargeted MS-
Based Metabolomics Data and Evaluation of Missing Data Handling Strategies. 
Metabolomics 2018, 14 (10), 1–18. 

(120)  Wei, R.; Wang, J.; Su, M.; Jia, E.; Chen, S.; Chen, T.; Ni, Y. Missing Value Imputation 
Approach for Mass Spectrometry-Based Metabolomics Data. Sci. Reports 2018 81 2018, 8 
(1), 1–10. 

(121)  Vollmar, A. K. R.; Rattray, N. J. W.; Cai, Y.; Santos-Neto, Á. J.; Deziel, N. C.; Jukic, A. 
M. Z.; Johnson, C. H. Normalizing Untargeted Periconceptional Urinary Metabolomics 
Data: A Comparison of Approaches. Metabolites 2019, 9 (10),198. 

(122)  Karaman, I. Preprocessing and Pretreatment of Metabolomics Data for Statistical 
Analysis. Adv. Exp. Med. Biol. 2017, 965, 145–161. 

(123)  van den Berg, R. A.; Hoefsloot, H. C. J.; Westerhuis, J. A.; Smilde, A. K.; van der Werf, 
M. J. Centering, Scaling, and Transformations: Improving the Biological Information 
Content of Metabolomics Data. BMC Genomics 2006, 7 (1), 1–15. 

(124)  Hu, X.; Walker, D. I.; Liang, Y.; Smith, M. R.; Orr, M. L.; Juran, B. D.; Ma, C.; Uppal, 
K.; Koval, M.; Martin, G. S.; Neujahr, D. C.; Marsit, C. J.; Go, Y. M.; Pennell, K. D.; 
Miller, G. W.; Lazaridis, K. N.; Jones, D. P. A Scalable Workflow to Characterize the 
Human Exposome. Nat. Commun. 2021 121 2021, 12 (1), 1–12. 

(125)  Cai, Y.; Rosen Vollmar, A. K.; Johnson, C. H. Analyzing Metabolomics Data for 
Environmental Health and Exposome Research. Methods Mol. Biol. 2020, 2104, 447–467. 

(126)  Jain, P.; Vineis, P.; Liquet, B.; Vlaanderen, J.; Bodinier, B.; Van Veldhoven, K.; 
Kogevinas, M.; Athersuch, T. J.; Font-Ribera, L.; Villanueva, C. M.; Vermeulen, R.; 
Chadeau-Hyam, M. A Multivariate Approach to Investigate the Combined Biological 
Effects of Multiple Exposures. J. Epidemiol. Community Health 2018, 72 (7), 564–571. 

(127)  Martino, D.; Ben-Othman, R.; Harbeson, D.; Bosco, A. Multiomics and Systems Biology 
Are Needed to Unravel the Complex Origins of Chronic Disease. Challenges 2019, 10 (1), 
23. 



Ph.D. Thesis – Biban Gill; McMaster University – Chemical Biology 

50 
 

(128)  Van Der Hooft, J. J. J.; Wandy, J.; Young, F.; Padmanabhan, S.; Gerasimidis, K.; Burgess, 
K. E. V.; Barrett, M. P.; Rogers, S. Unsupervised Discovery and Comparison of Structural 
Families Across Multiple Samples in Untargeted Metabolomics. Anal. Chem. 2017, 89 
(14), 7569–7577. 

(129)  Mortimer, M., Fang, W., Zhou, X., Vodovnik, M., & Guo, L. H. (2022). Omics 
Approaches in Toxicological Studies. In Advances in Toxicology and Risk Assessment of 
Nanomaterials and Emerging Contaminants. Springer, Singapore. 2022, 61-94. 

(130)  Dunn, W. B.; Erban, A.; Weber, R. J. M.; Creek, D. J.; Brown, M.; Breitling, R.; 
Hankemeier, T.; Goodacre, R.; Neumann, S.; Kopka, J.; Viant, M. R.; Dunn, W. B.; 
Brown, Á. M.; Erban, A.; Kopka, Á. J.; Weber, R. J. M.; Viant, Á. M. R.; Creek, D. J.; 
Breitling, R.; Hankemeier, T.; Goodacre, R. Mass Appeal: Metabolite Identification in 
Mass Spectrometry-Focused Untargeted Metabolomics. Metabolomics 2013, 9(1), 44–66. 

(131)  D’Agostino, L. A.; Lam, K. P.; Lee, R.; Britz-McKibbin, P. Comprehensive Plasma Thiol 
Redox Status Determination for Metabolomics. J. Proteome Res. 2011, 10 (2), 592–603. 

(132)  Selection, P. Risk Assessment Risk Assessment Risk Assessment. Risk Manag. 2008, 24 
(4), 1–7. 

(133)  Hallenbeck, W. H. Quantitative Risk Assessment for Environmental and Occupational 
Health; CRC Press., 1993. 

(134)  Brunekreef, B. Environmental Epidemiology and Risk Assessment. Toxicol. Lett. 2008, 
180 (2), 118–122. 

(135)  Pinto, A., Nunes, I. L., & Ribeiro, R. A. Occupational risk assessment in construction 
industry–Overview and reflection. Safety science., 2011, 49(5), 616-624. 

(136)  Laitinen, J.; Mäkelä, M.; Mikkola, J.; Huttu, I. Firefighters’ Multiple Exposure 
Assessments in Practice. Toxicol. Lett. 2012, 213 (1), 129–133. 

(137)  Guidotti, T. I. Evaluating Causality for Occupational Cancers: The Example of 
Firefighters. Occup. Med. 2007, 57.7, 466-471. 

(138)  Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and 
Health Impacts of Air Pollution: A Review. Front. Public Heal. 2020, 8(1), 14. 

(139)  McCarthy, J. E., Copeland, C., Parker, L., & Schierow, L. J., Clean Air Act: A summary 
of the act and its major requirements. Congressional Research Service, Library of 
Congress. 2007. 

(140)  Williams, P. R., Dotson, G. S., & Maier, A. Risk Assessment's New Era: part 2: Evolving 
Methods and Future Directions. Synergist, 2012; 25(5), 46. 

(141)  Barr, D. B.; Wang, R. Y.; Needham, L. L. Biologic Monitoring of Exposure to 
Environmental Chemicals throughout the Life Stages: Requirements and Issues for 
Consideration for the National Children’s Study. Environ. Health Perspect. 2005, 
113(8),1083-1091. 

(142)  Luo, K.; Luo, X.; Cao, W.; Hochalter, J. B.; Paiano, V.; Sipe, C. J.; Carmella, S. G.; 
Murphy, S. E.; Jensen, J.; Lam, S.; Golin, A. P.; Bergstrom, L.; Midthun, D.; Fujioka, N.; 
Hatsukami, D.; Hecht, S. S. Cigarette Smoking Enhances the Metabolic Activation of the 



Ph.D. Thesis – Biban Gill; McMaster University – Chemical Biology 

51 
 

Polycyclic Aromatic Hydrocarbon Phenanthrene in Humans. Carcinogenesis 2021, 42 (4), 
570–577. 

(143)  Chang, C. M., Edwards, S. H., Arab, A., Del Valle-Pinero, A. Y., Yang, L., & Hatsukami, 
D. K. Biomarkers of tobacco exposure: summary of an FDA-sponsored public workshop. 
Cancer Epidemiology and Prevention Biomarkers. 2017, 26(3), 291-302.  

(144)  Yuan, J. M.; Gao, Y. T.; Murphy, S. E.; Carmella, S. G.; Wang, R.; Zhong, Y.; Moy, K. 
A.; Davis, A. B.; Tao, L.; Chen, M.; Han, S.; Nelson, H. H.; Yu, M. C.; Hecht, S. S. 
Urinary Levels of Cigarette Smoke Constituent Metabolites Are Prospectively Associated 
with Lung Cancer Development in Smokers. Cancer Res. 2011, 71 (21), 6749–6757. 

(145)  Benowitz, N. L.; Bernert, J. T.; Caraballo, R. S.; Holiday, D. B.; Wang, J. Optimal Serum 
Cotinine Levels for Distinguishing Cigarette Smokers and Nonsmokers Within Different 
Racial/Ethnic Groups in the United States Between 1999 and 2004. Am. J. Epidemiol. 
2009, 169 (2), 236–248. 

(146)  Mazumder, S.; Shia, W.; Bendik, P. B.; Achilihu, H.; Sosnoff, C. S.; Alexander, J. R.; 
Luo, Z.; Zhu, W.; Pine, B. N.; Feng, J.; Blount, B. C.; Wang, L. Nicotine Exposure in the 
U.S. Population: Total Urinary Nicotine Biomarkers in NHANES 2015–2016. Int. J. 
Environ. Res. Public Health. 2022, 19 (6), 3660. 

(147)  Allenby, C. E.; Boylan, K. A.; Lerman, C.; Falcone, M. Precision Medicine for Tobacco 
Dependence: Development and Validation of the Nicotine Metabolite Ratio. Journal of 
Neuroimmune Pharmacology. Springer New York LLC September 1, 2016, 11(3), 471–
483. 

(148)  Maruvada, P.; Lampe, J. W.; Wishart, D. S.; Barupal, D.; Chester, D. N.; Dodd, D.; 
Djoumbou-Feunang, Y.; Dorrestein, P. C.; Dragsted, L. O.; Draper, J.; Duffy, L. C.; 
Dwyer, J. T.; Emenaker, N. J.; Fiehn, O.; Gerszten, R. E.; Hu, F. B.; Karp, R. W.; 
Klurfeld, D. M.; Laughlin, M. R.; Little, A. R.; Lynch, C. J.; Moore, S. C.; Nicastro, H. 
L.; O’brien, D. M.; Ordovás, J. M.; Osganian, S. K.; Playdon, M.; Prentice, R.; Raftery, 
D.; Reisdorph, N.; Roche, H. M.; Ross, S. A.; Sang, S.; Scalbert, A.; Srinivas, P. R.; 
Zeisel, S. H. Perspective: Dietary Biomarkers of Intake and Exposure-Exploration with 
Omics Approaches. Adv Nutr 2019, 11(2), 200-215. 

(149)  Poole, R.; Kennedy, O. J.; Roderick, P.; Fallowfield, J. A.; Hayes, P. C.; Parkes, J. Coffee 
Consumption and Health: Umbrella Review of Meta-Analyses of Multiple Health 
Outcomes. BMJ. 2017, 359, 5024. 

(150)  Narula, N.; Wong, E. C. L.; Dehghan, M.; Mente, A.; Rangarajan, S.; Lanas, F.; Lopez-
Jaramillo, P.; Rohatgi, P.; Lakshmi, M.; Varma, R. P.; Orlandini, A.; Avezum, A.; 
Wielgosz, A.; Poirier, P.; Almadi, M. A.; Altuntas, Y.; Ng, K. K.; Chifamba, J.; Yeates, 
K.; Puoane, T.; Khatib, R.; Yusuf, R.; Boström, K. B.; Zatonska, K.; Iqbal, R.; Weida, L.; 
Yibing, Z.; Sidong, L.; Dans, A.; Yusufali, A.; Mohammadifard, N.; Marshall, J. K.; 
Moayyedi, P.; Reinisch, W.; Yusuf, S. Association of Ultra-Processed Food Intake with 
Risk of Inflammatory Bowel Disease: Prospective Cohort Study. BMJ 2021, 374, 1554. 

(151)  Hodges, R. E.; Minich, D. M. Modulation of Metabolic Detoxification Pathways Using 
Foods and Food-Derived Components: A Scientific Review with Clinical Application. J. 
Nutr. Metab. 2015, 2015. 



Ph.D. Thesis – Biban Gill; McMaster University – Chemical Biology 

52 

(152) Turner, C.; Kalamatianou, S.; Drewnowski, A.; Kulkarni, B.; Kinra, S.; Kadiyala, S. Food
Environment Research in Low- and Middle-Income Countries: A Systematic Scoping
Review. Adv. Nutr. 2020, 11 (2), 387–397.

(153) Smith, M. T.; de la Rosa, R.; Daniels, S. I. Using Exposomics to Assess Cumulative Risks
and Promote Health; Environmental and molecular mutagenesis, 2015, 56(9), 715–723.

(154) van Roekel, E. H.; Loftfield, E.; Kelly, R. S.; Zeleznik, O. A.; Zanetti, K. A.
Metabolomics in Epidemiologic Research: Challenges and Opportunities for Early-Career
Epidemiologists. Metabolomics 2019, 15 (1), 1–7.

(155) Gao, P.; da Silva, E.; Hou, L.; Denslow, N. D.; Xiang, P.; Ma, L. Q. Human Exposure to
Polycyclic Aromatic Hydrocarbons: Metabolomics Perspective. Environment
International. 2018, 119, 466-477.

(156) Wingfors, H.; Nyholm, J. R.; Magnusson, R.; Wijkmark, C. H. Impact of Fire Suit
Ensembles on Firefighter PAH Exposures as Assessed by Skin Deposition and Urinary
Biomarkers. Ann. Work Expo. Heal. 2018, 62 (2), 221–231.

(157) Cherry, N.; Aklilu, Y. A.; Beach, J.; Britz-Mckibbin, P.; Elbourne, R.; Galarneau, J. M.;
Gill, B.; Kinniburgh, D.; Zhang, X. Urinary 1-Hydroxypyrene and Skin Contamination in
Firefighters Deployed to the Fort McMurray Fire. Ann. Work Expo. Heal. 2019, 63(4),
448-458.

(158) Perez-Paramo, Y. X.; Lazarus, P. Pharmacogenetics Factors Influencing Smoking
Cessation Success; the Importance of Nicotine Metabolism. Expert Opinion on Drug
Metabolism and Toxicology. 2021, 17(3), 333–349.

(159) Sathish, T.; Teo, K. K.; Britz-McKibbin, P.; Gill, B.; Islam, S.; Paré, G.; Rangarajan, S.;
Duong, M. L.; Lanas, F.; Lopez-Jaramillo, P.; Mony, P. K.; Pinnaka, L.; Kutty, V. R.;
Orlandini, A.; Avezum, A.; Wielgosz, A.; Poirier, P.; Alhabib, K. F.; Temizhan, A.;
Chifamba, J.; Yeates, K.; Kruger, I. M.; Khatib, R.; Yusuf, R.; Rosengren, A.; Zatonska,
K.; Iqbal, R.; Lui, W.; Lang, X.; Li, S.; Hu, B.; Dans, A. L.; Yusufali, A. H.; Bahonar, A.;
O’Donnell, M. J.; McKee, M.; Yusuf, S. Variations in Risks from Smoking between High-
Income, Middle-Income, and Low-Income Countries: An Analysis of Data from 179 000
Participants from 63 Countries. Lancet Glob. Heal. 2022, 10 (2), e216–e226.

(160) Jena, P. K.; Kishore, J.; Jahnavi, G. Correlates of Digit Bias in Self-Reporting of Cigarette
per Day (CPD) Frequency: Results from Global Adult Tobacco Survey (GATS), India and
Its Implications. Asian Pacific J. cancer Prev. 2013, 14 (6), 3865–3869.

(161) Schick, S. F.; Blount, B. C.; Jacob, P.; Saliba, N. A.; Bernert, J. T.; El Hellani, A.; Jatlow,
P.; Steven Pappas, R.; Wang, L.; Foulds, J.; Ghosh, A.; Hecht, S. S.; Gomez, J. C.; Martin,
J. R.; Mesaros, C.; Srivastava, S.; St Helen, G.; Tarran, R.; Lorkiewicz, P. K.; Blair, I. A.;
Kimmel, H. L.; Doerschuk, C. M.; Benowitz, N. L.; Bhatnagar, A.; Hellani, E. A.; Helen,
S. G.; Schick, S. F. Biomarkers of Exposure to New and Emerging Tobacco Delivery
Products. Am J Physiol Lung Cell Mol Physiol. 2017, 313, 425–452.

(162) Chen, A.; Krebs, N. M.; Zhu, J.; Muscat, J. E. Nicotine Metabolite Ratio Predicts
Smoking Topography: The Pennsylvania Adult Smoking Study. Drug Alcohol Depend.
2018, 190, 89–93.

(163) Ng, R.; Sutradhar, R.; Yao, Z.; Wodchis, W. P.; Rosella, L. C. Smoking, Drinking, Diet



Ph.D. Thesis – Biban Gill; McMaster University – Chemical Biology 

53 
 

and Physical Activity—Modifiable Lifestyle Risk Factors and Their Associations with 
Age to First Chronic Disease. Int. J. Epidemiol. 2020, 49 (1), 113–130. 

(164)  Guillermo, C.; Boushey, C. J.; Franke, A. A.; Monroe, K. R.; Lim, U.; Wilkens, L. R.; Le 
Marchand, L.; Maskarinec, G. Diet Quality and Biomarker Profiles Related to Chronic 
Disease Prevention: The Multiethnic Cohort Study. J. Am. Coll. Nutr. 2020, 39 (3), 216–
223. 

(165)  Rafiq, T.; Azab, S. M.; Teo, K. K.; Thabane, L.; Anand, S. S.; Morrison, K. M.; De Souza, 
R. J.; Britz-Mckibbin, P. Nutritional Metabolomics and the Classification of Dietary 
Biomarker Candidates: A Critical Review. Adv. Nutr. 2021, 12 (6), 2333–2357. 

(166)  Onvani, S.; Haghighatdoost, F.; Surkan, P. J.; Larijani, B.; Azadbakht, L. Adherence to 
the Healthy Eating Index and Alternative Healthy Eating Index Dietary Patterns and 
Mortality from All Causes, Cardiovascular Disease and Cancer: A Meta-Analysis of 
Observational Studies. J. Hum. Nutr. Diet. 2017, 30 (2), 216–226. 

(167)  Archer, E.; Marlow, M. L.; Lavie, C. J. Controversy and Debate: Memory-Based Methods 
Paper 1: The Fatal Flaws of Food Frequency Questionnaires and Other Memory-Based 
Dietary Assessment Methods. J. Clin. Epidemiol. 2018, 104, 113–124. 



Ph.D. Thesis – Biban Gill; McMaster University – Chemical Biology 

54 

Chapter II: 

An Inter-laboratory Method Comparison of Urinary 1-
Hydroxypyrene Determination for Biomonitoring of Firefighters 

Deployed at the Fort McMurray Wildfire 
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Chapter II: An Inter-laboratory Method Comparison of Urinary 1-Hydroxypyrene 
Determination for Biomonitoring of Firefighters Deployed at the Fort McMurray Wildfire 

2.1 Abstract 

Urinary 1-hydroxypyrene (1-OH-Pyr) is a widely used for biomonitoring human exposures to 

polycyclic aromatic hydrocarbons (PAHs) from air pollution and tobacco smoke. However, there 

have been few rigorous method validation studies reported to ensure reliable 1-OH-Pyr 

determination for risk assessment. Herein, we report an inter-laboratory method comparison for 

urinary 1-OH-Pyr when using gas chromatography-high resolution mass spectrometry (GC-

HRMS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) on urine specimens 

collected from firefighters (n=42) deployed at the 2016 Fort McMurray wildfire. Overall, there 

was good mutual agreement in urinary OH-Pyr quantification following enzyme deconjugation 

with an average bias of 39% with no significant deviation from linearity (slope = 1.36; p > 0.05), 

whereas technical precision (< 12%) and average recovery (> 85%) were acceptable when using 

a stable-isotope internal standard.  Faster analysis times (4 min) were achieved by LC-MS/MS 

without chemical derivatization, whereas lower detection limits (0.64 ng/L, S/N =3) was realized 

with solid-phase extraction prior to GC-HRMS. A median creatinine normalized 1-OH-Pyr 

concentration of 128 ng/g was measured for firefighters that was below the recommended 

biological exposure index due to extended delays between early stages of firefighting and urine 

sample collection. Similar outcomes were measured for 3-hydroxyphenanthrene and 9-

hydroxyfluorene that were positively correlated with urinary 1-OH-Pyr (p < 0.05), implying 

similar uptake, distribution and liver biotransformation processes. Optimal specimen collection 

strategies post-deployment together with standardized protocols for OH-PAH analysis are critical 

to accurately evaluate smoke exposure in firefighters. 
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2.2 Introduction 

The Fort McMurray wildfire made international headlines in May 2016 over a three month 

period as it engulfed 590,000 ha of land in the province of Alberta with over 88,000 people being 

forced from their homes, which resulted in the most expensive natural disaster in Canadian 

history [1,2]. Firefighters from a number of Canadian provinces along with personnel from the 

Canadian Armed Forces, and numerous rescue volunteers provided support in both fire 

suppression and evacuation. During the initial days of the fire, deployed firefighters experienced 

heavy smoke exposure during work shifts over 24 h with limited access to respiratory equipment 

or hygienic practices [3].  Polycyclic aromatic hydrocarbons (PAHs) are major chemical 

constituents of smoke resulting from incomplete combustion of organic materials [4], which 

have been measured in air samples, skin wipes and urine specimens collected from wildland and 

structural firefighters [5–7]. The International Agency for Research on Cancer has evaluated 

exposures in firefighting as possibly carcinogenic [8], with many jurisdictions adopting 

presumptive disability benefits for certain cancers in structural (urban) firefighters [9]. In this 

context, new strategies are needed for better risk assessment and mitigation of chemical 

exposures to firefighters for chronic disease prevention. 

PAHs are excreted in human urine as their hydroxylated PAH (OH-PAH) metabolites due 

to biotransformation processes involving xenobiotic detoxification and elimination, including 

formation of their water-soluble O-glucuronide and sulfate conjugates [10]. OH-PAH 

metabolites derive primarily from enzyme-mediated reactions by various cytochrome P450 

(CYP450) isoforms in the liver, which catalyze PAH oxidization with concomitant formation of 

reactive epoxide intermediates responsible for the mutagenic capacity of certain bioactivated 

PAH metabolites [11]. Numerous studies have investigated smoke exposure using human urine 
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as a convenient and non-invasive biofluid for sample collection in occupational health and 

population-based epidemiological studies [12–14]. In this case, 1-hydroxypyrene (1-OH-Pyr) is a 

widely used indicator of smoke exposure since it can be readily measured in the urine of 

occupationally unexposed populations. Additionally, it generates a single OH-PAH isomer with 

an average half-life within 24 h resulting in peak urinary excretion following exposure [4,15].

Most carcinogenic PAHs and their DNA or protein adducts are present at extremely low 

concentrations in urine, and are preferentially eliminated in feces, such as benzo[a]pyrene and its 

various hydroxylated metabolites and positional isomers [16].  Thus, measurement of 1-OH-Pyr 

from random/single-spot urine samples provides a convenient way for biomonitoring of recent 

smoke exposure that is derived from various sources, including habitual diet (charred meats), 

lifestyle (tobacco smoke), urban environments (vehicle exhaust) and notably specific 

occupational exposures (coke oven/asphalt workers) [17]. Due to the complex chemical 

composition of wood smoke, other classes of organic compounds may also serve as smoke 

exposure biomarkers for firefighters besides OH-PAH metabolites, including sterols, alcohols, 

alkylbenzenes, levoglucosan and methoxyphenols (MPs) [5]. Indeed, MPs are less widely 

studied despite being a major combustion by-product of lignin which constitutes up to 35% of 

wood by mass [18], which may represent more sensitive indicators of recent smoke exposure 

notably under suboptimal sampling and storage conditions [19].    

Current analytical methods for urinary 1-OH-Pyr determination have relied on 

instrumental methods needed for detection of low exposure levels in the population, including 

liquid chromatography with fluorescence detection (LC-FD), gas chromatography-mass 

spectrometry (GC-MS) and LC with tandem mass spectrometry (LC-MS/MS). Direct analysis of 

1-OH-Pyr and its intact glucuronide conjugate can be achieved when using immunoaffinity [20]
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or reverse-phase LC-FD [21–23], whereas LC-MS/MS offers greater selectivity with fewer 

chemical interferences while analyzing a wider range of OH-PAHs in complex urine samples 

[24], including 6-hydroxynitropyrene [25]. Alternatively, GC-MS offers higher separation 

efficiency with better resolution of OH-PAH isomers and lower detection limits [26, 27], which 

is also optimal for the analysis of airborne PAHs from particular matter when using adsorbent 

filters/collection devices [5–7]. Various GC-MS configurations, including complementary ion 

sources and mass analyzers have been used for accurate quantification of parent PAH or their 

biotransformed OH-PAH metabolites, however most protocols require extensive sample workup, 

including enzyme hydrolysis, solid-phase extraction (SPE) and pre-column chemical 

derivatization [28].  To the best of our knowledge, no previous study has performed a cross-

platform validation study to ensure reliable urinary 1-OH-Pyr determination despite its 

widespread application as a biomarker of PAH exposure relevant to global health initiatives, 

including indoor air pollution from wood smoke in household settings [29].  Herein, we report a 

rigorous inter-laboratory method comparison for 1-OH-Pyr quantification in human urine 

following enzyme deconjugation on a cohort of firefighters recently deployed at the Fort 

McMurray wildfire when using reverse-phase LC coupled to electrospray ionization-tandem 

mass spectrometry (LC-MS/MS) and GC with atmospheric pressure chemical ionization-high 

resolution mass spectrometry (GC-HRMS). Method performance and analytical figures of merit 

for urinary 1-OH-Pyr determination are presented with good mutual agreement demonstrated 

between the two instrumental platforms. Assessment of the distribution of urinary 1-OH-Pyr 

concentrations measured among recently deployed firefighters and its correlation to other OH-

PAHs and MPs are also discussed. 
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2.3 Materials and Methods 

2.3.1 Chemicals and Reagents 

HPLC grade reagents including acetonitrile, toluene, and glacial acetic acid in addition to sodium 

acetate (reagent grade, > 99%), L-Ascorbic acid (> 99%), potassium dihydrogen phosphate (ACS 

reagent, ≥ 99%), Surine® negative urine, β-glucuronidase (from Helix pomatia, Type HP-2, 

aqueous solution, > 100,000 units/mL) and Methyl-N-(trimethylsilyl)trifluoroacetamide 

(MSTFA, > 98.5%) were purchased from Sigma Aldrich (Mississauga, ON, Canada). 

Dichloromethane (distilled in glass) and HPLC grade methanol were purchased from Caledon 

(Canada). OH-PAH standards, including 1-hydroxypyrene (OH-Pyr), deuterated 1-

hydroxypyrene (OH-Pyr-d9, as recovery standard), 2-hydroxynapthalene (OH-Nap), 3-

hydroxyphenanthrene (OH-Phe), 9-hydroxyfluorene (OH-Flu), and other OH-PAH standards 

were obtained from Toronto Research Chemicals Inc. (Toronto, ON, Canada), whereas pyrene-

d10 (as internal standard for GC-HRMS) was supplied by Cambridge Isotope Laboratories 

(Tewksbury, MA, USA). Methoxyphenols (MPs), including, guaiacol, methylguaiacol, 

ethylguaiacol, syringol and methylsyringol were purchased from Sigma Aldrich Inc. All stock 

solutions were prepared by dissolving in acetonitrile to obtain a 1 mg/mL concentration 

following further serial dilutions in acetonitrile. 

2.3.2 Sample Collection 

This study was granted ethics approval (#Pro00065284) by the Health Ethics Review Board at 

the University of Alberta prior to collection of urine specimens from firefighters recently 

deployed to the Fort McMurray wildfire. All firefighters completed questionnaires to determine 

health status, smoking status and overall lifestyle information in addition to time and duration of 
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deployment. For this study, we focused on a cohort of 42 firefighters from amongst those 

deployed from one structural fire service in the Edmonton area. These firefighters provided a 

random, spot, mid-stream urine sample in a 100 mL sterile container. This was immediately 

aliquoted and stored at -70°C in the mobile clinical laboratory stationed at the fire hall. De-

identified urine samples were transported on dry ice for analysis by GC-HRMS (McMaster 

University/Ministry of Environment) and LC-MS/MS (Alberta Centre for Toxicology) for an 

independent inter-laboratory method comparison. Of the 42 individuals, 20 participants also 

provided a second repeat single-spot urine specimen about three months following the initial 

sampling period, which was included in the inter-laboratory method comparison. All 42 

firefighters were male with an average age of 25 years (range of 22-53 years) and average BMI 

range 29 kg/m2 (range of 24-37 kg/m2) with one self-reported current smoker. The deployment 

pattern for these firefighters was a rapid rotation of 2-3 days prior to return to base. Sample 

collection was carried out between 1-13 days following the return from deployment with an 

average collection time of 6 days after exposure, which was a major limitation in this study.  

2.3.3 Sample Preparation  

Sample preparation prior to LC-MS/MS analysis involved an enzyme deconjugation step 

followed by protein precipitation and dilution. To a 1.0 mL aliquot of urine, 5 µL of ascorbic 

acid (1.5 M), 200 µL of 1.0 M acetate pH 5.2 acetate buffer and 10 µL of diluted β-

glucuronidase/arylsulfatase were added in addition to 10 µL of recovery standard (1-OH-Pyr-d9, 

100 ng/mL). The diluted mixture was subsequently incubated on a shaking water bath for 2 h at 

60°C and then cooled to room temperature. A 100 µL aliquot of the hydrolyzed sample was 

further diluted with 5 µL of ascorbic acid and 900 µL of a dilution solvent (acetonitrile/0.1 M 
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phosphate buffer, pH 6 buffer, 2:1) representing an overall dilution of 12-fold. The mixture was 

then vortexed and centrifuged at 2,630 g for 10 min. The supernatant was transferred to a 2 mL 

auto sample vial for LC-MS/MS analysis. Similarly, the GC-HRMS procedure involved enzyme 

deconjugation of urine samples following solid-phase extraction (SPE) prior to pre-column 

chemical derivatization using MSTFA as described with minor modifications by Fernando et al. 

[5]. Briefly, urine samples were first centrifuged to sediment particulates for 5 min at 10 000 g 

from which a 1.0 mL urine aliquot was transferred into an 8 mL glass vial consisting of 5 mL of 

sodium acetate buffer (0.1 M, pH 5.5) and 10 µL of recovery standard, 1-OH-Pyr-d9. 

Subsequently, each urine sample was incubated with 10 µL glucuronidase/arylsulfatase at 37°C 

for 17-18 h to ensure complete deconjugation of OH-PAH metabolites. SPE extraction was then 

carried out manually on a vacuum manifold using Varian Focus (50 mg, 6 mL) cartridges 

(Agilent Technologies Inc., Santa Clara, CA, USA). The SPE cartridges were conditioned with 1 

mL of methanol, followed by 1 mL of water each at a flow rate of 10 mL/min. The sample was 

introduced at a flow rate of 1 mL/min with a subsequent addition of 1 mL nanopure water and 3 

mL of 20% methanol in sodium acetate buffer (0.1 M, pH 5.5). Sorbents in the cartridges were 

dried by aspirating air through the cartridge for 5 min followed by nitrogen for an additional 5 

min. The deconjugated OH-PAH metabolites and MPs retained on the stationary phase were 

eluted with dichloromethane (DCM) at a rate of 0.5 min/mL. The DCM extract was then dried 

with 10-20 mg of magnesium sulfate anhydrous. Next, the contents were passed through a glass 

pipette containing glass wool into an 8 mL vial to prevent salt carryover during sample 

pretreatment. The final extract was then blown down to 100 µL under a gentle stream of nitrogen 

prior to transfer to a GC vial insert in which the sample was blown down further to dryness and 

reconstituted to 10 µL in HPLC grade toluene. An internal standard, 1 µL (pyrene-d10, 100 pg/ 
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µL), was also spiked into the sample. Finally, the sample was derivatized with 15 µL of MSTFA 

following incubation at 60°C for 20 min, which resulted in a 25-fold overall enrichment of the 

original urine sample as required for measuring low concentrations of urinary 1-OH-Pyr in non-

smokers/non-occupationally exposed subjects. Additionally, creatinine was measured in all 

single-spot urine specimens to correct for hydration status between subjects using an AU 480 

Olympus Chemistry Analyzer (Beckman Coulter Inc., Mississauga, ON, Canada). This assay is 

based upon a kinetic method using the Jaffé reaction, where the creatinine concentration was 

determined colorimetrically via formation of a red complex from reaction of picrate and 

creatinine under alkaline conditions. DRI® creatinine-detect calibrator set including DRI® 

creatinine-detect 7.5 mg/dL and DRI® creatinine-detect 23.0 mg/dL were purchased from 

Thermo Scientific Inc. (Mississauga, ON, Canada) and used for calibration and quality control. 

All urinary OH-PAH concentrations in this study were reported as their normalized 

concentrations to creatinine (ng/g creatinine). 

2.3.4 Instrumental Analysis  

Samples were analyzed on both GC-HRMS and LC-MS/MS platforms. LC-MS/MS analysis was 

performed using Agilent 1200 high performance liquid chromatograph system (Agilent 

Technologies, Santa Clara, CA, USA) coupled with a Sciex 5500 Q-trap mass spectrometer (AB 

Sciex, Concord, Ontario, Canada). Separation of OH-Pyr was achieved on an Agilent SB-C18 

column (Poreshell 120, 3.0 X 100 mm, 2.7 μm) using isocratic elution of water (40%) and 

acetonitrile (60%) at a flow rate of 0.4 mL/min, and an injection volume of 10 µL with the 

column kept at room temperature. The mass spectrometer was operated in negative ion mode 

with multiple reaction monitoring (MRM). The source temperature was 550°C with ion spray 
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potential of -4.5 kV, curtain gas at 20 psi, gas 1 at 45, gas 2 at 55. MRM transition for the 

detection of 1-OH-Pyr was 217.0/188.9 with a collision energy (CE) at -45 V and declustering 

potential (DP) at -140 V. While MRM transitions for 1-OH-Pyrene-d9 was 226.1/198.1 with CE 

at -48 V and DP at -150 V. Data processing was conducted with Multiquant 3.0.1 (AB Sciex, 

Canada). In addition, GC-HRMS analysis was performed on an Agilent 7890B gas 

chromatograph (Agilent Technologies, Santa Clara, CA, USA) coupled to a Water Xevo G2-XS 

quadrupole time-of-flight mass spectrometer (Waters Corporation, Wilmslow, UK) operated 

with an atmospheric pressure chemical ionization (APCI) source. The primary column (DB-17 

30 m 0.25 mm x 0.15 µm film) was connected to a Custom MXT tubing (sulfinert treated, 

Restek Corporation, Bellefonte, PA) 0.8 m x 0.18 mm, inserted into the heat transfer line 

(340°C). Helium was used as the carrier gas, and the optimal flow was set at 1 mL/min. An 

injection volume of 1 μL of sample extract was used with a splitless injector set to 280°C. The 

initial oven temperature was set to 70°C, and then ramped at a rate of 8°C/min to 300°C, and 

held for 5 min. The corona current was set to 3 μA and the ion source temperature was 150°C, 

whereas the cone and auxiliary gas flows were 100 L/hr and 175 L/hr. Full scan spectra was 

acquired over a mass range from m/z 50 to 1200 at a mass resolving power > 20 000 (FWHM). 

Trimethylsilylated (TMS)-1-OH-Pyr and its 1-OH-Pyr-d9 deuterated analog were monitored as 

MRM transitions (290.1/275.1305 and 299.1/284.1305, respectively) recorded in parallel with 

the full-scan measurements. These transitions correspond to a loss of a methyl radical as base 

peak in the mass spectrum at an optimum collision energy of 30 V. Data processing was 

conducted using MassLynx 4.2 (Waters Corporation, USA) with quantification by relative 

response factor using a recovery standard (1-OH-Pyr-d9). 
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2.3.5 Method Validation and Quality Control 

For LC-MS/MS analysis a set of eight matrix matched calibrators were prepared by spiking 

known amount of 1-OH-Pyr into Surine® negative urine from 20 ng/L to 10,000 ng/L. 10 µL 

was injected on-column, which is equivalent to 0.016 pg to 8 pg of 1-OH-Pyr on column for 

calibrators.  Two in-house quality controls (QCs) were prepared at 0.1 ng/mL and 0.5 ng/mL by 

a different analyst. A standard reference material (SRM 3673, organic contaminants in non-

smoker’s urine) which contains 29.3 ± 1.8 ng/L of 1-OH-Pyr in urine was purchased from 

National Institute of Standards & Technology (NIST) and used as an external QC.  Each batch 

consisted of 40 Fort McMurray samples, a set of calibrators, a solvent blank, a synthetic urine 

blank, two in-house QCs and SRM 3673. All blanks, calibrators and QCs were hydrolyzed and 

cleaned up along with the samples. The blanks and QCs were run after calibrators, in the middle 

of the sequence and at the end of sequence to insure all samples were bracketed with blanks and 

QCs. QCs were considered acceptable within ± 20% of targeted concentration. The 

quantification of 1-OH-Pyr was based on the measured ion response ratio relative to the recovery 

standard (1-OH-Pyr-d9) through the use of an external calibration curve with R2 > 0.999. In the 

case for GC-HRMS, a QC was first prepared by pooling together a mixture of residual urine 

samples from the firefighter cohort, which was subsequently aliquoted and processed together as 

a batch of samples comprising individual urine specimens (seven), and a synthetic urine blank 

(one). All samples were spiked with a recovery standard (1-OH-Pyr-d9) prior to performing the 

standardized sample workup protocol, including enzyme deconjugation, SPE, solvent 

reconstitution and chemical derivatization. Overall, a total of ten pooled QC specimens were 

analyzed intermittently by GC-HRMS in this study in order to evaluate overall technical 

precision, which was also used in spike/recovery studies. Additionally, prior to each set of 
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analyses on the GC-HRMS system, a 1 μL injection of 1-OH-Pyr standard at 50 ng/L was 

injected to assess the instrument performance. Throughout the study, at the end of each batch 

sequence, a toluene blank was also injected to assess sample carry-over throughout the sequence, 

for which no significant carry over was noted. Individual urine extracts from firefighters, 

synthetic urine blanks and pooled QC were run in a randomized order within a batch sequence 

when using GC-HRMS. A total of two external calibration curves were acquired for 1-OH-Pyr, 

as well as other OH-PAHs and MPs, which were derived from nine different calibrant 

concentrations over a linear dynamic range of three orders of magnitude with correlation 

coefficient greater than R2 > 0.999. All stock calibration solutions were prepared in acetonitrile 

and derivatized using MSTFA resulting in formation of their O-trimethylsilyl derivatives. 

Statistical analyses were carried out using SPSS 18.0 (IBM Corporation, NY, USA), Minitab 17 

(Minitab Inc., PA, USA), MedCalc (MedCalc Software, Ostend, Belgium), and MetaboAnalyst 

4.0 [30]. 

 

2.4 Results and Discussion  

2.4.1 Urinary 1-OH-Pyr Determination by GC-HRMS 

1-OH-Pyr is a widely measured indicator of recent PAH exposure in human urine, which shows 

consistently higher levels of excretion in occupationally exposed relative to non-exposed 

workers [4, 31], as well as smokers, including secondhand smoke exposure at home as compared 

to non-smokers [32]. However, other factors also contribute to total PAH exposures, including 

diet, lifestyle, and genotype that impact OH-PAH metabolic activity even with low exposures 

due to polymorphic genes encoding CYP enzymes [33]. As a result, careful interpretation of 

findings is needed when analyzing urinary 1-OH-Pyr concentrations in small cohorts given large 
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between-subject variations in pharmacokinetics that is also dependent on exposure mechanisms 

[34]. Optimally this would be applied to biomonitoring studies for PAH exposure on a 

population level. Data interpretation is also dependent on method accuracy notably when 

comparing reference ranges for 1-OH-Pyr acquired by different instrumental methods. In this 

work, two complementary analytical strategies were performed independently at different 

laboratory sites in order to quantify 1-OH-Pyr from de-identified urine specimens collected from 

firefighters recently deployed at the Fort McMurray wildfire. In both cases, a matching 

deuterated recovery standard (1-OH-Pyr-d9) was spiked in all urine specimens prior to enzyme 

hydrolysis in order to analyze total 1-OH-Pyr content given differences in secondary metabolism 

as its glucuronide conjugate is a major excreted metabolite [22]. Extensive in-source 

fragmentation often arises from electron ionization (EI), a hard ionization technique commonly 

used in GC/MS. In this study, APCI was employed to significantly reduce in-source 

fragmentation of the incipient molecular ions by stabilizing collisions with ambient nitrogen. 

This enabled the sensitive detection of trace levels of OH-PAH metabolites in conjunction with 

the selectivity afforded by high mass resolution, accurate mass measurements of the Q-TOF-MS 

[35]. The APCI mass spectra of 1-OH-Pyr and 1-OH-Pyr-d9 (not shown) are dominated by their 

molecular ions (M•+) at m/z 290.113 and m/z 299.169, respectively. Upon collision-induced 

dissociation (CID), the molecular ions undergo loss of a methyl radical (15.024 Da) 

(Supplementary Figure S2.1). These dissociations were monitored by MRM experiments 

performed in parallel with the full-scan HRMS measurements in order to achieve greater 

sensitivity. Extracted ion chromatograms (EICs) for representative urine samples analyzed by 

GC-HRMS are depicted for 1-OH-Pyr-d9 (Figure 2.1A) and 1-OH-Pyr (Figure 2.1B) as their 

trimethylsilyated (TMS) derivatives that elute within 24 min. Note that the native and deuterated  
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Figure 2.1. Representative extracted ion chromatograms (EIC) for urinary 1-OH-Pyr with its stable-
isotope internal standard, 1-OH-Pyr-d9 following enzyme deconjugation when using GC-HRMS and LC-
MS/MS. The GC-HRMS method included pre-column SPE to lower detection limits together with 
atmospheric pressure chemical ionization for improved detection of 1-OH-Pyr in urine specimens, 
whereas the LC-MS/MS method using an isocratic elution analyzed samples rapidly without chemical 
derivatization when using electrospray ionization and multiple reaction monitoring. 

analogues of TMS-1-OH-Pyr differ in mass by 9 Da while having a minor retention time 

deviation of only 0.03 min. Method validation of GC-HRMS included assessment of long-term 

technical (inter-day) precision based on intermittent analysis of pooled urine specimens as QCs 

over the duration of the study with an average coefficient of variance (CV) of 11.5% (n=10). This 

is acceptable given the extensive sample workup that is required for processing urine samples 

prior to analysis. Method bias was evaluated by recovery experiments in representative urine 

specimens after spiking at two concentration levels for 1-OH-Pyr in triplicate relevant to 
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occupationally unexposed smokers (500 ng/L) and non-smokers (200 ng/L) [31] that resulted in 

an overall accuracy of 108% ranging from 85-122%. Additionally, an external calibration curve 

for 1-OH-Pyr normalized to 1-OH-Pyr-d9 has a wide linear dynamic range (R2 > 0.999) over 

three orders of magnitude from 2.0 to 2000 ng/L (Supplementary Figure S2.2). The limit of 

detection (LOD, S/N = 3) and limit of quantification (LOQ, S/N = 10) for the GC-HRMS method 

when using calibrators prepared in acetonitrile was 0.64 ng/L and 2.16 ng/L, respectively. 

However, average blank-limited concentrations measured for 1-OH-Pyr in processed synthetic 

urine extracts (n=7) was about 30 ng/L reflecting higher background levels present in real-world 

samples. As summarized in Table 2.1, GC-HRMS offers higher sensitivity (i.e., sharper slope) 

when using APCI-MS and lower detection limits (LOD) since SPE was used as an off-line 

sample preconcentration step (i.e., 25-fold sample enrichment) prior to chemical derivatization. 

As a result, reliable quantification was realized for 1-OH-Pyr in 98.4% of urine samples 

collected from firefighters (61 of 62) above the blank-limited background (30 ng/L). Overall, ten 

OH-PAH metabolites/isomers and MPs were measured consistently in the majority (> 80%) of 

urine specimens, including 1- and 3-hydroxyphenanthrene (1-, 3-OH-Phe), 2- and 9-

hydroxyfluorene (2-, 9-OH-Flu), 2-hydroxynapthalene (2-OH-Nap), as well as a series of MPs, 

including guaiacol, methylguaiacol, ethylguaicol, syringol and methylsyringol. 

 

2.4.2 Urinary 1-OH-Pyr Determination by LC-MS/MS 

Total 1-OH-Pyr analysis in human urine samples following enzyme deconjugation was also 

performed by reverse-phase LC-MS/MS when using a fast isocratic elution program within 4 

min as shown in Figure 2.1C and Figure 2.1D for 1-OH-Pyr-d9 and 1-OH-Pyr, respectively. 

This method offers higher throughput for 1-OH-Pyr biomonitoring in human urine when using  
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Table 2.1. Summary of various figures of merit for the determination of urinary OH-Pyr as a 
marker of smoke exposure when using GC-HRMS and LC-MS/MS platforms.  

Figures of Merit GC-HRMS LC-MS/MS 

Technical precisiona 11.5% 5.1% 

Recovery/bias (range)b 108% (85-122%) 93% (88-98%) 

LOD (S/N = 3) 0.64 ng/L 10 ng/L 

LOQ (S/N =10) 2.16 ng/L 20 ng/L 

Linearity (slope; R2)c 0.997; 0.9999 0.728; 0.9991 

% Non-detected in urined 1.6% (1/62) 29% (18/62) 
a  Inter-day precision was determined based on CV for intermittent analysis of 10 pooled urine samples as QC performed over the study when 
using GC-HRMS, whereas LC-MS/MS precision was determined using a NIST SRM (29.3 ng/L) in triplicate?. 
b Spike/recovery experiments to estimate average bias and range were performed in triplicate two concentration levels in pooled urine samples 
for GC-HRMS, and three concentration levels in synthetic urine matrix for LC-MS/MS. 
c External calibration curves were based on normalization to OH-Pyr-d9 over a 1000 and 500-fold linear dynamic range for OH-Pyr using seven 
calibrators when using GC-HRMS and LC-MS/MS, respectively, where slope units are (ng/mL)-1. 
d Analysis of 42 single-spot urine specimens from recently deployed firefighters, as well as 20 repeat urine specimens > 3 mo. 
 

ESI under negative ion mode with multiple reaction monitoring, which avoids the need for 

additional sample pretreatment steps, such as SPE or pre-column chemical derivatization. 

However, there was a small yet significant retention time difference of about 0.11 min between 

1-OH-Pyr and 1-OH-Pyr-d9 that was used as a stable-isotope internal standard to correct for ion 

suppression or enhancement effects. In this case, a deuterium isotope effect results in earlier 

elution of 1-OH-Pyr-d9, which may contribute to ion suppression when analyzing diverse urine 

specimens that vary widely in matrix composition/hydration status by LC-MS/MS without 

extensive sample cleanup [36].  However, recovery studies for 1-OH-Pyr demonstrated minimal 

bias with an overall accuracy of 93% when spiked at three different concentration levels in 

representative urine samples. In addition, replicate analysis of SRM 3673 by LC-MS/MS had an 

accuracy of 88% with excellent precision (CV = 5.5%, n=6), as compared to the certified value 

(29.3 ± 1.8 ng/L) , determined from three governmental agencies (NIST, CDC and INSPQ) using 

different protocols based on GC-MS/MS with SPE or GC-HRMS with liquid-liquid extraction 
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and enzyme deconjugation [37]. Similar to GC-HRMS, excellent linearity (R2 > 0.999) was 

demonstrated for 1-OH-Pyr quantification over a 500-fold dynamic range when normalizing ion 

responses relative to its stable-isotope internal standard. In this case, selective reaction 

monitoring was used to monitor the product ion (m/z 188.9) for OH-Pyr corresponding to [M-H-

CO]-, which is a common fragmentation pathway following collisional-induced dissociation of 

OH-PAHs resulting in a neutral loss of carbon monoxide [38].  Although LC-MS/MS provides 

excellent recovery and precision with faster analysis times, lower sensitivity was the major 

limitation as compared to the GC-HRMS protocol, where 29% (18 of 62) of diluted urine 

samples had 1-OH-Pyr concentrations measured below the method detection limit. Further 

improvements in concentration sensitivity in LC-MS/MS is realized by SPE for sample 

enrichment of OH-PAHs in urine [24] and/or pre-column chemical derivatization of OH-PAHs as 

their pentaflurobenzyl ethers to increase solute ionization efficiency when using APCI in 

negative ion mode [39]. 

2.4.3 Inter-laboratory Method Comparison and Mutual Agreement 

Following method validation, an inter-laboratory method comparison was performed based on 

analysis of paired urine samples using GC-HRMS and LC-MS/MS protocols to ensure consistent 

1-OH-Pyr quantification. Due to the skewed data distribution for urinary 1-OH-Pyr

concentrations measured in the firefighter cohort (Shapiro-Wilks test, p > 0.05), a Passing-

Bablok regression analysis, and a Bland-Altman % difference plot were performed to assess 

mutual agreement [40] as shown in Figure 2.2. Of the total 62 urine samples analyzed from the 

firefighters, 44 were reliably quantified by both methods with 1-OH-Pyr concentrations ranging 

from 47 ng/L to 940 ng/L with 18 non-detected samples among diluted/processed urine samples 
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when using LC-MS/MS. Elevated urinary 1-OH-Pyr concentrations due to occupational PAH 

exposures have been reported to range from a median of 560 ng/L for chimney sweeps [41] to 

over 7,000 ng/L for coke oven workers [42]. Importantly, all measured concentrations from 

deployed firefighters were found to be well below the recommended biological exposure index 

(BEI) [43] threshold of 2,500 ng/L based on hydrolyzed (total) urinary 1-OH-Pyr for end of shift 

at end of work week sampling [4]. Figure 2.2A demonstrates that there was a random data 

distribution independent of 1-OH-Pyr concentration with a mean bias of 39% for the GC-HRMS 

method relative to LC-MS/MS. Despite this positive bias, there were few outliers (p < 0.05; or 2 

of 44) that exceeded agreement limits at a 95% confidence interval. Additionally, Figure 2.2B 

reveals that there was no statistically significant difference from the line of unity (p > 0.05) 

despite a positive slope of 1.36. Thus, this work confirms good mutual agreement in measured 

urinary 1-OH-Pyr concentrations between two laboratory sites with a modest bias likely 

attributed to matrix-induced ion suppression and different enzyme hydrolysis efficiencies. The 

LC-MS/MS deconjugation protocol involved a two hour incubation time while GC-HRMS 

carried out an 18 hour deconjugation contributing to incomplete release of the major O-

glucuronide of 1-OH-Pyr with the LC-MS/MS deconjugation method (Supplementary Figure 

S2.3). A bias of 24% was evaluated with the LC-MS/MS protocol from the two hour to 18 hour 

deconjugation time points (CV = 8.2%, n=3) largely explaining the 39% bias observed by the 

GC-HRMS method. Moreover, urine drug testing and biomarker measurements have reported 

differences in analyte recoveries and systematic error due to batch variations in commercial 

enzymes, including recombinant and wild-type β-glucuronidases/arylsulfatases that possess 

variable substrate affinities [44, 45]. Thus, standardized pre-analytical protocols for urine  
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Figure 2.2. (A) A Bland-Altman percent difference plot for comparing the mutual agreement between 
urinary 1-OH-Pyr concentrations measured independently by GC-HRMS and LC-MS/MS methods at two 
different laboratories from firefighters deployed in the 2016 Fort McMurray wildfire. Overall, the data is 
randomly distributed with a modest average positive bias of 39% with two outliers outside agreement 
limits (B) A Passing-Bablok regression analysis demonstrates no significant deviation (dotted lines; 95% 
confidence interval) from the line of equality (p > 0.05) with a slope of 1.36 (grey line; regression line). 
There was one self-reported tobacco smoker (n=1; yellow symbol) among recently deployed firefighters 
(n=28; blue symbol), whereas repeat urine specimens (red symbol) collected from a sub-set of firefighters 
(n=15) 3 months following their initial deployment. Overall, 18 urine samples were not detected by LC-
MS/MS due to its higher detection limits from the total number of urine sample collected from study 
(n=62).  
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processing using enzyme reagents are critical for achieving consistent measurements between 

laboratories. 

2.4.4. Correlation Analysis of Other Urinary Smoke Markers to 1-OH-Pyr 

Since wood smoke is comprised of a complex mixture of PAHs that can modulate the 

metabolism of other carcinogens [11], a wider range of urinary OH-PAHs can provide more 

accurate assessment of total chemical exposures than 1-OH-Pyr alone. For instance, a panel of 

eight urinary OH-PAH metabolites have been shown to have modest positive associations with 

cardiovascular disease risk among US adults that is independent of smoking status and other 

confounders [46]. Similarly, eight urinary OH-PAHs were also associated with significant 

decreases in lung function in a Canadian population with larger effects reported for the sum of 

compound classes [47]. Due to variations in hydration status when relying on random single-spot 

urine collections, creatinine is frequently used to reduce biological variances in measured analyte 

concentrations provided subjects have normal kidney function and protein intake [48]. 

Additionally, since firefighters in this study were all male adults, creatinine was deemed 

appropriate for data normalization as it was also found to show linear correlations (R2 > 0.800) to 

both urinary specific gravity (data not shown) and osmolality (Supplementary Figure S2.4) – 

two independent bulk solution properties also used to correct for urine hydration status. Figure 

2.3A depicts a correlation matrix/heat map with hierarchical cluster analysis (HCA) in order to 

explore the relationship among ten urinary smoke markers (including 1-OH-Pyr) measured 

consistently among firefighters by GC-HRMS based on their creatinine normalized 

concentrations (ng/g creatinine). As expected, both syringol (syringol/methylsyringol; ρ = 0.462, 

p = 0.0002) and guaicol (methylguaicol/ethylguaicol; ρ = 0.667, p = 3 × 10-9) analogs as major  
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Figure 2.3. (A) A correlation matrix heat map with hierarchical cluster analysis (HCA) for classifying the 
relationship of ten urinary smoke markers measured by GC-HRMS comprising different OH-PAHs and 
MPs from firefighters recently deployed at the Fort McMurray wildfire. Correlation plots based on a 
Spearman rank test confirm that (B) 9-OH-Flu, and (C) 3-OH-Phe were the two most significant 
compounds associated with urinary 1-OH-Pyr excretion following a Bonferroni adjustment (p < 0.005) 
implying similar uptake, distribution and metabolic pathways.   

MPs were strongly correlated with each other when using a Spearman rank test with a high 

degree of similarity in their urinary excretion patterns as shown in the dendrogram. 

Additionally, 9-OH-Flu (ρ = 0.395, p = 0.002) and notably 3-OH-Phe (ρ = 0.516, p = 

0.0002) were two specific isomers of OH-PAHs directly correlated with urinary 1-OH-Pyr as 

shown in Figure 2.3B. This data is consistent with previous studies that have demonstrated a 

dose-response relationship of urinary 1-OH-Pyr excretion which is elevated among smokers, and 

also correlated with 3-OH-Phe, but not for 1-OH-Phe [49].  In this study, urinary 1-OH-Phe was 

only correlated to 9-OH-Flu excretion (ρ = 0.434, p = 0.0004) unlike 1-OH-Pyr (ρ = 0.146, p = 

0.258). Thus, smoke exposure among firefighters contribute to distinctive excretion patterns 

among OH-PAHs and their isomers since they are dependent on the expression, induction and 
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inhibition of specific PAH-metabolizing CYP isoforms (1A1, 1B1, 1A2 and 3A4) that are further 

modulated by diet, lifestyle, and other environmental exposures [34]. 

 

2.4.5 Urinary 1-OH-Pyr Concentrations of Firefighters 

As there were no significant differences in measured urinary 1-OH-Pyr concentrations among a 

subset of repeat urine specimens (p > 0.05, paired t-test, n=20) as shown in Figure 2.2A, original 

urine specimens collected from recently deployed firefighters at the Fort McMurray wildfire 

(n=42) were evaluated. Indeed, 1-OH-Pyr is reported to be excreted within 12 h following 

controlled feeding experiments on non-occupationally exposed/non-smokers [34], whereas much 

longer yet more variable median lifetimes (up to 35 h) [50] have been reported following 

inhalation and/or dermal exposure in coke oven workers [51], as well as controlled smoke 

exposure studies involving non-smoking volunteers [19]. However, the average delay to urine 

collection of 6 days (ranging from 1 to 13 days) from firefighters in this study exceeded all 

reported half-life times for 1-OH-Pyr. For instance, Figure 2.4A depicts the creatinine adjusted 

concentration distribution in urinary 1-OH-Pyr for firefighters as measured by GC-HRMS, which 

ranged from 30 to 485 ng/g creatinine with a median/interquartile range (IQR) of (128 ± 100) 

ng/g creatinine, and a geometric mean of 118 ng/g creatinine. In this non-random sampling of 42 

firefighters, from the best equipped and organized fire service [3], there were 18 non-smokers 

who provided a urine sample within 24 hr of exposure. Even among this sub-set of recently 

deployed firefighters, 1-OH-Pyr has a median concentration of 129 ng/g creatinine that is similar 

to overall data trends in Figure 2.4. These findings are lower than reported from a recent study 

of structural firefighters with a geometric mean for 1-OH-Pyr of 270 ng/g creatinine [7], 

including post-shift wildland firefighters with a geometric mean of 750 ng/g creatinine [52].  
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Figure 2.4. Histograms depicting creatinine-normalized concentrations measured using GC-HRMS for 
(A) 1-OH-Pyr, (B) 3-OH-Phe, and (C) 9-OH-Flu in urine for biomonitoring of 42 firefighters deployed at 
the Fort McMurray wildfire. Overall, firefighters had lower OH-PAH concentrations than anticipated due 
to prolonged delays in urine collection that does not accurately reflect recent smoke exposure during early 
stages of intense firefighting. 
 

Urinary concentrations for firefighters are also depicted for the two OH-PAH isomers that were 

directly correlated with 1-OH-Pyr, namely 3-OH-Phe and 9-OH-Flu as shown in Figure 2.4B 

and 2.4C, including the total urinary concentration of all three OH-PAHs (Supplementary 

Figure S2.5). However, it must be recognized that even the same day samples were collected 

from firefighters exposed only after the second week of the fire, and that their OH-PAH 

concentrations can in no way be taken as indicative of smoke exposure during the earlier days of 

intense firefighting under very difficult conditions [3].  

 

2.5 Conclusion 

In summary, two complementary instrumental methods were compared for urinary 1-OH-Pyr 

determination as required for biomonitoring of recent PAH exposure among a cohort of 

firefighters deployed at the Fort McMurray wildfire. Direct analysis by isotope-dilution LC-

MS/MS following enzyme deconjugation allows for rapid screening of 1-OH-Pyr without 
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complicated sample pretreatment. In contrast, GC-HRMS together with SPE allows for 

consistent detection of low concentration levels of 1-OH-Pyr and the resolution of a wider range 

of low abundance OH-PAHs and their isomers. Overall, there was good mutual agreement 

between methods for urinary 1-OH-Pyr determination performed independently at two different 

laboratories with excellent technical precision while incorporating intermittent quality controls. 

Good accuracy was demonstrated following method validation, and a modest extent of bias was 

evident between methods, which was likely attributed to incomplete enzyme deconjugation when 

using shorter incubation times. Only two OH-PAH isomers were found to be significantly 

correlated with urinary 1-OH-Pyr excretion patterns among firefighters, including 3-OH-Phe and 

9-OH-Flu. Overall, firefighters were found to have urinary 1-OH-Pyr concentrations well below 

the recommended BEI for health hazard, which was a study limitation due to the practical 

logistic challenges in coordinating urine collection following the intense early stages of 

firefighting under emergency conditions. Future studies that allow for facile collection/storage of 

multiple spot urine samples in the field (e.g., filter paper cards) and the analysis of alternative 

biospecimens for assessing PAH exposures of firefighters over a longer time window post-

deployment (e.g., stool) or continuously during deployment (e.g., sweat pads) are recommended 

for new advances in risk assessment and personalized health. 
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2.7 Supporting Information 

2.7.1 Chemicals and Reagents.   

Reagents used for HPLC analysis were ≥ 98.5% purity, acetonitrile, L-Ascorbic acid (> 99%), 

Surine® negative urine, β-glucuronidase (from Helix pomatia, Type HP-2, aqueous solution, > 

100,000 units/mL) and Methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA, > 98.5%) were 

purchased from Sigma Aldrich (Mississauga, ON, Canada). Dichloromethane (distilled in glass) 

was purchased from Caledon (Canada). OH-PAH standards, including 1-hydroxypyrene (1-OH-

Pyr), isotope labelled 1-hydroxypyrene (13C6 1-OH-Pyr, as recovery standard), 1-OH-Pyr 

glucuronide were obtained from Toronto Research Chemicals Inc. (Toronto, ON, Canada), 

whereas pyrene-d10 (as internal standard) was supplied by Cambridge Isotope Laboratories 

(Tewksbury, MA, USA). All stock solutions and serial dilutions were prepared in acetonitrile. 

 

2.7.2 Sample Preparation 

Sample preparation prior to GC-MS analysis involved an enzyme deconjugation with multiple 

time points over 18 hours. Three 200 µL aliquots of Surine® negative urine containing 10 µg/mL 

1-OH-Pyr-glucuronide were prepared with 1 µL of ascorbic acid (1.5 M), 40 µL of 1.0 M acetate 

pH 5.2 buffer and 2 µL of  β-glucuronidase/ arylsulfatase with the addition of 20 µL of recovery 

standard (13C6-1-OH-Pyr, 10 µg/mL). The mixture was subsequently incubated at 60°C for 18 

hours. At time points 0, 0.5, 1, 2, 4, 8, 12, 18 hours, the reaction was stopped with the addition of 

300 µL of ice-cold dichloromethane (DCM), followed by centrifugation at 2750 g for 5 min at 

4°C; after which samples were stored on ice and extracted by shaking for 30 min. A 10 µL 

aliquot of the DCM extract was collected in a GC-vial insert to which 1 µL of internal standard 

(Pyrene-d10, 10 µg/mL), was spiked into the sample and derivatized with 15 µL of MSTFA 

following an incubation at 60°C for 20 min 
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2.7.3 Instrument Conditions 

Samples were analyzed by gas chromatography mass spectrometry (GC-MS) using an Agilent 

6890 gas chromatograph equipped with a DB-17 column (30 m x 0.25 mm x 0.15 µm film) 

coupled to an Agilent 5973 single quadrupole mass spectrometer with electron impact ionization 

(EI-MS) operating in selected ion monitoring (SIM) mode. Helium was used as the carrier gas 

with an optimal flow set to 1 mL/min. An injection volume of 1 µL was used with a splitless 

injector set to 280°C. The initial oven temperature was set to 70°C and held for 1 min, and then 

ramped at a rate of 20°C/min to 300°C and held for 5 min. Trimethylsilylated (TMS)-1-OH-Pyr 

and its isotope labelled 13C6-1-OH-Pyr analog were monitored at m/z 290 and 296 respectively. 

Data processing was conducted using ChemStation software, version D.03.00 (Agilent 

Technologies, USA) with quantitation based on relative ion response using the isotope labelled 

1-OH-Pyr as the recovery standard. All were depicted using Igor Pro 5.0 software (Wavemetric 

Inc., Lake Oswego, OR, USA). 
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Figure S2.1. (A) Mass spectrum of 1-OH-Pyr as its TMS derivative with the molecular ion indicated at a 
m/z of 290.1019 along with the 13C isotope at m/z 291.1058 when using GC-HRMS with APCI (positive 
ion mode). The loss of a methyl radical from TMS, and the loss of neutral methane are demonstrated by 
the fragments ions, m/z 275.0789 and m/z 274.0730, respectively. (B) Similarly, the mass spectrum of 1-
OH-Pyr-d9 as its TMS derivative shows an analogous fragmentation pattern with a mass shift of 9 Da. 

 

 

 

 



Ph.D. Thesis – Biban Gill; McMaster University – Chemical Biology 

85 
 

 
Figure S2.2.  External calibration curves for 1-OH-Pyr when using (A) GC-HRMS (that includes pre-
column SPE in the protocol for a 25-fold enrichment of urine and chemical derivatization), and (B) LC-
MS/MS (direct analysis after enzyme hydrolysis), where ion responses were normalized to 1-OH-Pyr-d9 

for all calibrators prepared in toluene. Both methods demonstrate a wide linear dynamic range over three 
orders of magnitude with good linearity (R2 = 0.999).  In all cases, enzyme deconjugation was performed 
for all urine specimens prior to analysis by GC-HRMS and LC-MS/MS for determination of total 1-OH-
Pyr. 
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Figure S2.3.  The enzymatic reaction under LC-MS/MS conditions using β-glucuronidase (from Helix 
pomatia, Type HP-2, aqueous solution, > 100,000 units/mL) is depicted with 1-OH-Pyr spiked Surine® 
negative urine (10 µg/mL). A time course of 18 hours at a temperature of 60°C with multiple time points 
(0, 1, 1.5, 2, 4, 8, 12, 18 hours) was used, where the reaction was stopped with the addition of ice-cold 
dichloromethane (DCM), followed by centrifugation at 4°C at 2750 g for 5 min prior to liquid-liquid 
extraction with DCM (1:1 ratio). The product, 1-OH-Pyr, ion response ratio normalized to 13C6-1-OH-Pyr, 
as a function of time is indicated with a 24% increase observed between the 2 hour and 18 hour time 
points with triplicate measurements (CV = 8.2%). Error bars indicating one standard deviation are 
highlighted for all time points. Extracted ion chromatograms (EICs) demonstrated in the green trace 
indicates the 1 hour enzyme reaction time point, followed by the 2 hour reaction product in red and 8 hour 
reaction product indicated in the blue trace following which a plateau is observed. The recovery standard 
13C6-1-OH-Pyr trace indicated in brown and the internal standard (Pyr-d10) spiked prior to injection 
depicted in the black trace. A clear increase in product is observed as a result of increase incubation time 
and likely contributes to the 39% bias observed by the GC-HRMS method.  
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Figure S2.4.  Creatinine normalized 1-OH-Pyr concentrations was used for correction of hydration status 
when evaluating smoke exposure from firefighters based on collection of random/single-spot urine 
specimens after deployment to the Fort McMurray wildfire. Also, osmolality normalized urine 
concentrations for 1-OH-Pyr was also measured for the same subset of 45 urine samples. A Spearman 
rank correlation plot between measured creatinine and osmolality adjusted 1-OH-Pyr concentrations 
demonstrate a strong positive correlation (ρ  = 0.898, p < 0.001) between these two orthogonal 
normalization methods. 
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Figure S2.5.  Histogram depicting the urinary excretion profile based on total excretion of the three major 
OH-PAH metabolites strong correlated with each other, including 1-OH-Pyr, 3-OH-Phe and 9-OH-Flu. 
This distribution is displayed for 42 firefighters (excluding repeat urine samples) with total concentrations 
lower than anticipated as a result of delays in urine collection following their return from deployment 
(average 6 days) after the second week of the Fort McMurray wildfire that does not accurately reflect 
their occupational exposure during early stages of intense firefighting. 
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Table S2.1- Table of values of urinary 1-OH-Pyr as a marker for exposure when using GC-
HRMS and LC-MS/MS platforms.  

Sample Number LC-MS/MS (ng/L) GC-HRMS (ng/L) 

1 112 203 
2 199 222 
3 77.1 210 
4 n.d. 83.7 
5 92.3 93.3 
6 92.0 173 
7 110 225 
8 47.4 59.1 
9 121 315 
10 n.d. 67.6 
11 n.d. 62.1 
12 178 189 
13 n.d. 43.6 
14 n.d. 72.3 
15 84.4 150 
16 n.d. 48.7 
17 n.d. 49.1 
18 108 96.5 
19 54.9 86.9 
20 84.1 127 
21 66.1 148 
22 244 294 
23 92.1 124 
24 345 403 
25 91.4 129 
26 99.3 187 
27 557 597 
28 88.5 115 
29 156 251 
30 69.5 161 
31 n.d. 53.1 
32 66.0 76.9 
33 207 486 
34 170 159 
35 249 227 
36 47.1 104 
37 124 156 
38 84.6 50.9 
39 126 156 
40 n.d. 114 
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Sample Number LC-MS/MS (ng/L) GC-HRMS (ng/L) 
41 n.d. 78.6 
42 149 199 
43 62.6 86.2 
44 n.d. 45.2 
45 n.d. 30.2 
46 n.d. 72.3 
47 n.d. n.d. 
48 83.8 138 
49 56.7 221 
50 51.3 274 
51 n.d. 62.6 
52 45.8 47.8 
53 838 1040 
54 78.2 191 
55 151 332 
56 179 295 
57 n.d. 77.7 
58 84.7 203 
59 n.d. 57.3 
60 295 234 
61 293 275 
62 n.d. 136 

          n.d. indicates non-detects determined by the LOQ. 
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Chapter III: Rapid Screening of Urinary 1-Hydroxypyrene Glucuronide by Multisegment 
Injection-Capillary Electrophoresis-Tandem Mass Spectrometry: A High Throughput 
Method for Biomonitoring of Recent Smoke Exposures  

3.1 Abstract 

Urinary 1-hydroxypyrene (HP) is a widely used biomarker of polycyclic aromatic hydrocarbon 

exposures relevant for biomonitoring the deleterious health impacts from tobacco smoke, 

ambient air pollution, and the hazards of certain occupations. Conventional methods for urinary 

HP analysis based on liquid chromatography with native fluorescence detection or tandem mass 

spectrometry (MS/MS), as well as gas chromatography-mass spectrometry (GC-MS) are limited 

by low sample throughput and complicated sample workup protocols that are prone to bias. 

Herein, we introduce a high throughput method to directly analyze the intact glucuronide 

conjugate of HP (HP-G) in human urine after a simple acidified ether extraction procedure when 

using multisegment injection-capillary electrophoresis-tandem mass spectrometry (MSI-CE-

MS/MS). Multiplexed analysis of thirteen independent urine extracts was achieved in a single 

run (< 3 min/sample) with stringent quality control while avoiding enzyme deconjugation and 

pre-column chemical derivatization. Method validation demonstrated good technical precision 

(CV = 7.7%, n = 45) and accuracy with a mean recovery of (93 ± 3%) for urinary HP-G at three 

concentration levels with adequate detection limits (7 ng/L, S/N = 3). An inter-laboratory method 

comparison of urine samples collected from firefighters deployed in the 2016 Fort McMurray 

wildfire also confirmed good mutual agreement with an acceptable negative bias (mean bias = 

15%, n = 55) when measuring urinary HP-G by MSI-CE-MS/MS as compared to total 

hydrolyzed urinary HP by GC-MS due to low residual levels of free HP and its sulfate conjugate. 

This multiplexed separation platform is optimal for large-scale biomonitoring studies of air 

pollution relevant to global health, as well as occupational smoke exposures in firefighters 

susceptible to dermal PAH absorption when using personal protective equipment.  
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3.2 Introduction 

Polycyclic aromatic hydrocarbons (PAHs) are a complex group of environmental toxicants 

formed by incomplete combustion of organic materials, some of which possess carcinogenic, 

mutagenic, inflammatory and endocrine disrupting properties.1 The ubiquitous nature of PAHs in 

the environment contributes to their deleterious impacts on global health from chronic exposures 

to urban air pollution, indoor smoke and/or tobacco.2,3 However, occupational exposure to PAHs 

is most pronounced among industrial workers and notably firefighters, corresponding to their 

greater risk for cardiorespiratory diseases4,5 and certain cancers6,7 relative to the general 

population. Although inhalation and ingestion are common mechanisms of PAH absorption, 

whole body dermal exposure is predominant in firefighters using personal protective equipment, 

including a self-contained breathing apparatus.8-11 Monohydroxylated PAH (OH-PAH) 

metabolites and their isomers derived from naphthalene, fluorene, phenanthrene and pyrene, are 

widely measured as biomarkers of recent PAH exposure given the convenience of non-invasive 

urine sampling.12,13 Overall, urinary 1-hydroxypyrene (HP) is frequently reported in human 

biomonitoring studies given that pyrene is abundant in most smoke mixtures, and its 

biotransformation results in formation of a single isomer with an average urinary half-life of 

about 18 h.14 Ciarocca et al.15 performed a meta-analysis confirming urinary HP as a sensitive 

yet specific biomarker of air pollution after considering other potential sources and confounders, 

including environmental, genetic and lifestyle factors. For these reasons, the American 

Conference of Governmental Hygienists recommends HP as the biological exposure index for 

human exposure to PAHs,16 and occupational guidelines propose a minimum no-observed 

genotoxic effect for HP of 1000 nmol/mol creatinine in end-of-shift urine samples.17 
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The biotransformation of pyrene is mediated by specific monooxygenase cytochrome 

P450 enzyme isoforms resulting in the formation of HP in the liver.18 This is followed by phase 

II metabolism generating a water-soluble glucuronide conjugate of HP (HP-G) that comprises the 

majority (> 85%) of total pyrene excreted in human urine,19 with about 10% attributed to its 

sulfate conjugate and less than 1% as free HP.20 Conventional methods for urinary HP 

determination includes immunoaffinity chromatography with synchronous fluorescence 

spectroscopy,21,22 liquid chromatography (LC) with native fluorescence detection (LC-FLD),23 

and increasingly LC with tandem mass spectrometry (LC-MS/MS)24 as it offers better selectivity 

with fewer chemical interferences.25 However, stable isotope dilution GC-MS/MS remains the 

gold standard since it is a robust separation platform used in large-scale population health 

studies,12,26 while GC with high resolution mass spectrometry (GC-HRMS) allows for more 

comprehensive surveillance of urinary OH-PAHs and other environmental contaminants.27 Most 

methods to date have been constrained by low sample throughput, high operating costs, and 

complicated sample workup protocols, including solid-phase extraction (SPE), enzyme 

deconjugation and/or pre-column chemical derivatization.28 Importantly, enzyme hydrolysis can 

contribute to greater inter-batch variations with different substrate efficiencies and unexpected 

by-products depending on the purity and activity of the enzyme source.29  

Herein, we introduce multisegment injection-capillary electrophoresis-tandem mass 

spectrometry (MSI-CE-MS/MS) as a high throughput platform for direct analysis of HP-G 

following a simple acidified ether extraction step of human urine. MSI-CE-MS/MS takes 

advantage of a serial sample injection format with stringent quality control (QC) that is ideal for 

the analysis of mass-limited tissue30 and volume-restricted bio-banked specimens.31 Our recent 

inter-laboratory method comparison for urinary HP determination by LC-MS/MS and GC-
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HRMS revealed that enzyme hydrolysis is a major source of bias when using suboptimal 

incubation conditions,28 which is relevant when assessing other urinary exposure biomarkers 

excreted mainly as their phase II conjugates.29 Urinary OH-PAH conjugates are also more 

chemically stable when refrigerated than their corresponding free OH-PAHs while being 

resistant to multiple freeze-thaw cycles thereby reducing pre-analytical variances.32 This 

motivated us to develop a rapid yet direct method for urinary HP-G determination that forgoes 

the need for time-consuming sample workup procedures and slow data acquisition when relying 

on single sample injection separation methods.  

 

3.3 Experimental Section 

3.3.1 Chemicals and Reagents 

HPLC-grade methanol and water, were used to prepare sheath liquid and background electrolyte 

(BGE) solutions, respectively (Caledon Inc., Georgetown, ON, Canada). HPLC grade toluene, 

and acetonitrile were used for stock solutions and were purchased from Caledon. Methyl-tert-

butyl-ether (MTBE) was purchased from Caledon for urine liquid extraction protocol using 1.0 

M hydrochloric acid (HCl) for acidification. Ammonium bicarbonate and ammonium hydroxide 

were purchased from Sigma-Aldrich Inc. (Oakville, ON, Canada), whereas standards for HP-G 

and HP-G-d9 were obtained from Toronto Research Chemicals (Toronto, ON, Canada). All stock 

solutions were prepared by dissolving in toluene, followed by serial dilutions of calibrant 

solutions in acetonitrile and subsequently HPLC grade water.   

3.3.2 Instrumental Method for Direct Determination of Urinary HP-G by MSI-CE-MS/MS 

An Agilent 6370 triple quadrupole mass spectrometer with a coaxial sheath liquid electrospray 

(ESI) ionization source coupled to an Agilent G7100A CE unit was used for all experiments 
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(Agilent Technologies Inc., Mississauga, ON, Canada). An Agilent 1260 Infinity isocratic pump 

and 1260 Infinity degasser were used to deliver 70:30 MeOH:water at a flow rate of 10 µL/min 

using a CE-MS coaxial sheath liquid interface. The nebulizer spray was turned off during serial 

sample injection to avoid suctioning effects and current instabilities.33 The spray was then turned 

on at 4 psi upon initiation of CE separation with the source temperature set to 300 °C, and the 

drying gas delivered at 4.0 L/min. The instrument was operated under negative ion mode 

detection with a Vcap set at 3500 V while MS/MS was acquired via multiple reaction monitoring 

(MRM). Quantifier and qualifier transitions for the detection of HP-G were 393/217 and 

393/198, whereas HP-G-d9 used 402/226 and 402/198, respectively. Both sets of transitions 

required a collision energy (CE) of -60 V and -80 V respectively, a fragmentor voltage of 120 V 

and a delta electron multiplier voltage (EMV) of -400 V as summarized in Table S1 of the 

Supporting Information. CE separations used a 50 µm internal diameter fused-silica capillary 

with an outer diameter of 360 µm and a total length of 135 cm (Polymicro Technologies Inc., 

AZ). A capillary window maker (microSolv, Leland, NC) was used to remove 7.0 mm of 

polyimide coating on both ends of the capillary since it is prone to swelling with organic solvent 

and aminolysis with strongly alkaline (pH > 9) solutions containing ammonia.34 A 50 mM 

ammonium bicarbonate buffer, pH 8.5 was used as an alkaline BGE that was adjusted with 

ammonium hydroxide. A serial sample injection sequence was performed by MSI-CE-MS/MS 

with 13 urine extracts introduced hydrodynamically for 20 s at 100 mbar that alternated with a 

transient electrokinetic separation using the BGE at 30 kV for 45 s. The process was repeated to 

introduce all 13 urine extracts in series within the capillary (temperature set to 25 °C) once 

applying a constant voltage of 30 kV with a pressure gradient of 2.0 mbar/min to reduce total 

analysis times.35   
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3.3.3 Urine Collection and Sample Workup for Urinary HP-G Determination from 

Firefighters 

Single spot mid-stream urine samples (n = 62) were collected and aliquoted prior to their storage 

at -80°C from a cohort of firefighters (fire station A) who were deployed to the 2016 Fort 

McMurray wildfire.11 This study design was approved by the Health Ethics Review Board of the 

University of Alberta (Pro00065284). Aliquots of these urine samples were originally used to 

develop and validate two complementary analytical procedures for urinary HP determination 

based on LC-MS/MS and GC-HRMS following enzyme deconjugation.28 In this work, a single-

step liquid extraction procedure was optimized for direct analysis of urinary HP-G using a 

modified MTBE extraction protocol36 for the rapid determination of serum fatty acids under 

nonaqueous buffer conditions.33 Overall, 42 of the 62 urine samples were collected from 

individual male firefighters (mean age = 36 years; mean BMI = 29 kg/m2) following their 

deployment; however, there were unexpected logistic delays in urine collection (median = 4.5 

days) ranging from one day (~ 36% of samples collected < 24 h) to up to 13 days.11 The 

remaining urine samples were repeat samples collected from a subset of the same firefighters (n 

= 20) at a later time interval as a control, which did not show differences in recent PAH 

exposures.11,28 All 62 urine samples were thawed on ice and then centrifuged to remove 

particulates. A 0.5 mL aliquot was then transferred for extraction and enrichment in a pre-

washed 2.0 mL glass GC vial. Next, 1.0 µL of 100 ng/mL HP-G-d9 recovery standard and 125 

µL of 1.0 M HCl were added to urine prior to vortex mixing for 5 min. Following urine 

acidification (pH ~ 2-3), 1.0 mL of MTBE was then added and mixed by vortex for 20 min at 

room temperature. The upper MTBE layer was transferred in several 100 µL aliquots to 100 µL 

GC vial inserts to improve overall recovery, and then dried under a gentle stream of nitrogen. 
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The urine extracts were pooled together and then reconstituted to a final volume of 10 µL with 

50 mM ammonium bicarbonate buffer, pH 8.5 as the alkaline BGE that corresponded to an 

overall 50-fold sample enrichment from 0.5 mL urine. Urine extracts were stored at -80 °C prior 

to MSI-CE-MS/MS analysis. Sample preparation for total urinary HP determination using GC-

HRMS with atmospheric pressure chemical ionization28 included an overnight enzyme 

hydrolysis, solid-phase extraction (SPE), and pre-column chemical derivatization. Further details 

on urine sample workup procedures and GC-HRMS instrumental configuration are described in 

the Experimental of the Supporting Information. 

 

3.3.4 Method Validation, Quality Control and Interlaboratory Method Comparison 

Stock solutions for calibrants were initially prepared in toluene and then diluted in acetonitrile 

(1000 mg/L) followed by serial dilution in HPLC grade water (10 mg/L), which were used to 

prepare calibrant solutions ranging from 20 ng/L to 2000 ng/L in triplicate. A pooled urine 

sample derived from all firefighters was also used as a quality control (QC) specimen. All 

integrated peak areas for the deprotonated molecular ion [M-H]- for quantifier and qualifier ions 

for HP-G were normalized to a HP-G-d9 that was added to all calibrant solutions (10 µg/L). The 

limit of detection and limit of quantification for HP-G was determined based on serial dilutions 

of calibrant solutions that generated a signal-to-noise ratio of 3 and 10, respectively. Technical 

blank extracts (water) were also analyzed to ensure a lack of sample carry-over effects when 

using multiplexed separations in MSI-CE-MS/MS. Reproducibility was assessed based on intra-

day precision (n = 45) and inter-day (n = 108) using spiked standard and quality control (QC) 

runs conducted at the start, middle and end of each day performed over the course of three days. 

Method accuracy for HP-G determination by MSI-CE-MS/MS was evaluated based on spike-
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recovery studies at three different concentrations (40 ng/L, 200 ng/L, 20 µg/L) that were spiked 

into pooled human urine samples collected from non-smoking volunteers without occupational 

smoke exposure. The percent recovery for HP-G determination was calculated based on 

percentage difference between spiked and known concentration divided by known spiked 

concentration. Furthermore, an inter-laboratory method comparison was also conducted to 

evaluate method accuracy relative to a previously validated GC-HRMS method using matching 

urine samples (n = 62) from firefighters.28 All urinary HP-G and HP concentrations were 

reported as their normalized concentrations values to creatinine (ng/g creatinine) to correct for 

hydration status when collecting random single-spot urine samples from firefighters post-

deployment.  

 

3.3.5 Data Processing and Statistical Analysis 

All data acquired by MSI-CE-MS/MS was analyzed with Agilent Mass Hunter Workstation 

Software (Qualitative Analysis, version B.06.00, Agilent Technologies Inc.). HP-G and HP-G-d9 

MRM transitions were extracted in profile mode using 10 ppm mass window. Extracted ion 

electropherograms (EIEs) were integrated after smoothing using the quadratic/cubic Savitzky-

Golay function (7 points) while peak areas, migration times and signal to noise were transferred 

to Excel (Microsoft office, Edmond, WA, USA) for calculation of relative peak areas (RPAs) 

that corrects for differences in injection volume between samples, as well as matrix-induced ion 

suppression/enhancement effects when using a co-migrating deuterated internal standard (HP-G-

d9) that is introduced to all calibrants and acidified urine samples prior to MTBE extraction. All 

electropherograms were depicted using Igor Pro 5.0 software (Wavemetric Inc., Lake Oswego, 

OR, USA). Analysis for external calibration data, calculation of figures of merit, and control 
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charts for HP-G measured in QC samples were performed using Excel. Bland-Altman % 

difference plots and Passing-Bablok regression were performed using MedCalc version 12.5 

(Ostend, Belgium) for the inter-laboratory method comparison of urinary HP-G and total 

(hydrolyzed) HP measured by MSI-CE-MS/MS and GC-HRMS, respectively.  

3.4 Results and Discussion 

3.4.1 High Throughput Biomonitoring of Urinary HP-G by MSI-CE-MS/MS 

In this work, we implemented a serial sample injection program in MSI-CE-MS/MS that enables 

the analysis of 13 urine extracts within an effective duty cycle ~ 2.7 min/sample, including a 20 

min analytical run following a 10 min automated injection program and 5 min capillary 

flush/equilibration time. This is achieved when an alternating series of samples are introduced 

hydrodynamically (20 s at 100 mbar) followed by a transient electrokinetic separation (30 kV for 

45 s) that is then repeated on-capillary when coupled to a single MS/MS instrument.35 Unlike 

complicated column switching or elution hopping methods in gradient elution LC-MS/MS that 

offer limited throughput gains,37 multiplexed electrophoretic separations relies on an isocratic 

alkaline BGE (50 mM ammonium acetate, pH 8.5) together with a coaxial sheath liquid solution 

(70:30 MeOH:water) to enable steady-state ionization of migrating HP-G zones under negative 

ion mode detection (Figure 3.1A). Robust separations of acidic urinary metabolites is achieved 

in MSI-CE-MS/MS by preventing polyimide aminolysis when using strongly alkaline ammonia-

based buffers (pH > 10)34 while turning off the nebulizer spray during serial sample introduction 

to avoid suctioning of air within capillary and frequent current failures.33 Importantly, this hybrid 

serial injection format retains the total capillary length to further boost sample throughput and 

separation resolution unlike hydrodynamic injections used to spatially displace sample and BGE 

segments prior to voltage application in MSI-CE-MS/MS.38 Multiple reaction monitoring was 
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performed using quantifier (m/z 217) and qualifier (m/z 198) ion transitions optimized for HP-G 

(m/z 393 as intact quasimolecular ion, [M-H]-) that co-migrates with its matching stable-isotope 

internal standard, HP-G-d9 (Supporting Information Table S3.1; Figure 3.1B) without sample 

carry-over in process/extraction blanks (Figures 3.1C). In this case, no deuterium effect is 

evident since electrophoretic separations occur in free solution, where HP-G and HP-G-d9 from 

13 independent samples co-migrate into the ion source, but are offset in time over a 12 min 

period (~ 6-18 min). This in turn enables better correction of potential sample matrix effects 

given retention time differences for deuterated OH-Pyr analogs in chromatographic separations28 

especially when using gradient elution conditions in LC-MS/MS. 

 

3.4.2 Optimization of a Quantitative Urinary HP-G Extraction Protocol 

We also optimized a simple yet efficient liquid extraction protocol for sample enrichment of low 

levels of urinary HP-G (< 20 ng/L) in non-smoking populations not exposed to occupational 

smoke. A modified methyl-tert-butyl ether (MTBE) extraction protocol33 used an initial 

acidification step of urine (pH ~ 2-3, 12.5 µL of 1.0 M HCl) prior to liquid extraction to improve 

partitioning of urinary HP-G (pKa ~ 3.8) to the top ether layer as reflected by a 7.6-fold greater 

recovery as compared to unmodified urine (pH ~ 6.5) as a control (Supporting Information 

Figure S3.1). Further optimization of the MTBE:urine volume ratio was conducted to simplify 

extractions using standard 2.0 mL GC vials. The original MTBE extraction protocol by Matyash 

et al.36 for lipid analysis used a 5:1 volume ratio of MTBE:serum or plasma, however HP-G 

recovery studies in pooled urine demonstrated that a 2:1 MTBE:urine volume ratio was adequate 

to achieve high solute recoveries (Supporting Information Figure S3.1). Importantly, a single 

aliquot of MTBE solvent is sufficient to yield quantitative recovery of HP-G (~ 90%, 10 µg/mL) 
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with no residual amounts detected in second or third extract fractions applied to the same urine 

sample (Supporting Information Figure S3.1). Thus, a single-step acidified MTBE extraction 

protocol using 0.5 mL of urine provided an overall 50-fold enrichment of HP-G after a 

reconstitution step to 10 µL prior to MSI-CE-MS/MS analysis.  

3.4.3 Versatile Data Workflows and Method Validation for Reliable Urinary HP-G 

Determination 

Various serial injection configurations can be designed in MSI-CE-MS/MS to reflect different 

experimental designs, where mass spectral information is encoded temporally in the separation35 

allowing for accelerated data workflows for metabolite authentication and biomarker discovery 

together with stringent QC and batch correction.30,31 For example, extraction efficiency is 

evaluated using HP-G spiked into a pooled urine sample (0.5 mL) at three different concentration 

levels (40 ng/L, 200 ng/L, 20 µg/L) in triplicate within a single run (Figure 3.1D), including 

blank extracts as controls. Overall, an average recovery of (93 ± 3)% demonstrates good method 

accuracy consistent with exhaustive extraction of urinary HP-G (Figure 3.1G). Moreover, a six-

point calibration curve for HP-G normalized to HP-G-d9 is acquired in duplicate in a single run 

over a 100-fold linear dynamic range when using MSI-CE-MS/MS (Figure 3.1E) with excellent 

linearity (R2 = 0.999) and good repeatability with a mean CV of 6.8% at all calibrant levels 

(Figure 3.1H). 

Also, the limit of detection (LOD, S/N ~ 3) and limit of quantification (LOQ, S/N ~ 10) 

for HP-G were about 7 ng/L and 20 ng/L, respectively following processing of all calibrants 

using the optimized acidified MTBE extraction protocol; this is comparable to recent methods 

developed for direct urinary HP-G determination by LC-FLD with SPE using 1.0 mL of urine,25
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as well as UPLC-MS/MS with liquid-phase extraction.39 Importantly, MSI-CE-MS/MS offers 

more than an order of magnitude greater sample throughput than GC-MS/MS for urinary HP 

determination in large-scale epidemiological studies to assess smoke exposures by the Centers 

for Disease Control and Prevention (~ 40 samples per day per analyst).26 Additional cost and 

time savings are anticipated with implementation of an automated liquid handling system as 

compared to multi-step sample workup procedures for processing urine prior to GC-MS/MS. The 

figures of merit achieved for urinary HP-G by MSI-CE-MS/MS are summarized relative to 

previously validated LC-FLD, LC-MS/MS, and GC-MS/MS protocols for urinary HP or HP-G 

determination (Supporting Information Table S3.2). 

3.4.4 Inter-laboratory Method Comparison for Biomonitoring of Smoke Exposures in 

Firefighters 

Our method was further validated by independently quantifying HP-G in matching urine samples 

collected from firefighters (n = 62) deployed at the Fort McMurray wildfire previously measured 

by GC-HRMS after an extended enzyme hydrolysis incubation (~ 17 h) to ensure quantitative 

urinary HP deconjugation.28 In our case, all urine extracts were analyzed by MSI-CE-MS/MS in 

randomized sample positions (i.e., 11 samples per run) together with a blank extract and a pooled 

urine extract derived from all firefighters that served as internal QC (Figure 3.1F).  Overall, non-

detectable levels of HP-G was measured in 7 out of 62 urine samples (11%), which was better 

than a fast isocratic LC-MS/MS method also developed for urinary HP quantification that had 

higher detection limits (29% of all urine samples were non-detected) since it did not include 

liquid extraction or SPE for sample enrichment.28 Overall, the technical precision for MSI-CE-

MS/MS was acceptable (mean CV = 7.7%, n = 45) as depicted in the control chart for repeated 
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analysis of QC urine extracts in every run (Figure 3.1I) as compared to intermittent QC samples 

(~ 8-10 runs) analyzed in sample batches when using single injection chromatographic 

methods.28 An inter-laboratory method comparison between (total) urinary HP by GC-HRMS as 

compared to direct determination of urinary HP-G by MSI-CE-MS/MS using a Passing-Bablok 

regression (Figure 3.2A) confirms good mutual agreement as reflected by a slope of 1.10 with 

no significant difference from the line of unity (p = 0.72). Moreover, a Bland-Altman 

%difference plot (Figure 2B) highlights that there is a mean bias of 15% between both methods 

with few outliers (3.3%; 2 of 55 urine samples) exceeding the agreement limits (± 2 s). A modest 

positive bias for GC-HRMS as compared to MSI-CE-MS/MS is reasonable given that up to 10% 

of total HP measured in urine is derived from the hydrolysis of the sulfate conjugate of HP19

when using a mixed enzyme solution with glucuronidase/sulfatase activity. Thus, the exclusion 

of other minor urinary HP metabolites apart from HP-G only contributes to a small extent of 

negative bias relative to total HP that does not impact decision making in terms of smoke 

exposures. A box plot of urinary HP-G concentrations in non-repeat samples collected from 

deployed emergency firefighters (n = 36) in a single fire station (mean age = 36 years; mean 

BMI = 29 kg/m2) depicts median (range) concentrations of 125 (42-444) ng/L or 108 (25-342) 

ng/g creatinine (Figure 3.2C). As expected, there is considerable between-subject variability, yet 

with low overall PAH exposures below the biological exposure index (< 1000 ng/g creatinine). 

This result is likely attributed to delays in urine collection during emergency conditions (median 

= 4.5 days; only 14 of 36 samples collected < 24 h following deployment) when estimated PAH 

exposures were lower than peak levels at earlier stages of the wildfire as discussed by Cherry et 

al.11  This cohort of non-smoking male firefighters also had lower dermal PAH loadings as they 

were able to maintain good hygiene practices (e.g., change of clothing, access to showers) during  
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Figure 3.2. Inter-laboratory method comparison between urinary HP-G by MSI-CE-MS/MS relative to 
total HP by GC-HRMS measured consistently from firefighters (n = 55) following their deployment to the 
2016 Fort McMurray wildfire. (A) A Passing-Bablok regression analysis and (B) Bland-Altman 
%difference plot confirm good mutual agreement in smoke exposure assessment between both methods 
based on total urinary HP following overnight enzyme hydrolysis as compared to the direct analysis of 
HP-G using an acidified ether extraction procedure. (C) Box plot comparing urinary HP-G measured in 
non-repeat urine samples from firefighters (n = 36) based on their absolute concentrations (ng/L) and 
creatinine-normalized concentrations (ng/g) indicative of normal PAH exposures due to delays in urine 
collection, as well as firefighters practicing good hygiene practices with use of personalized protective 
equipment at later stages of the wildfire. (D) Comparison of urinary HP-G profiles measured from a 
subset of firefighters (n = 16) post-deployment relative to matching repeat urine samples collected at a 
later time period with no significant change in overall PAH exposures (p > 0.05). 

less intense stages of firefighting while also using respiratory protective equipment.11 In fact, 

there were no differences (p > 0.05) in overall PAH exposures in a subset of firefighters (n = 16) 

based on their creatinine-normalized urinary HP-G concentrations measured post-deployment 

relative to repeat samples collected at later periods while off-shift (Figure 3.2D). The extent of 
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smoke exposure assessed in this study is comparable to normal levels for the US population 

(urinary HP ~ 119 ng/L in 2009-2010),40 but far below populations sampled from inland regions 

of China with poor air quality (urinary HP-G ~ 510 ng/g creatinine),39 as well as urine samples 

collected post-shift from structural (urinary HP ~ 270 ng/g creatinine)9 or wildland firefighters 

(urinary HP ~ 576 ng/g creatinine)27 in North America. Future studies that enable practical 

collection and storage of repeat urine specimens in the field are needed for more accurate risk 

assessment of smoke exposures following active firefighting activities.  Robust nanospray ion 

source designs are also needed to further boost concentration sensitivity in CE-MS for ultra-trace 

environmental analyses41 as required for new advances in exposomics research. 

 3.5 Conclusion 

MSI-CE-MS/MS offers a cost-effective approach for rapid screening of recent smoke exposures 

based on direct analysis of urinary HP-G following a simple acidified ether extraction procedure 

using 0.50 mL of urine. This multiplexed separation method offers rapid analysis times (< 3 

min/sample), as well as acceptable reproducibility (CV < 8%) and recovery (~ 93%) with good 

mutual agreement (mean bias ~ 15%) as compared to GC-HRMS that avoids complicated sample 

workup procedures, including enzyme hydrolysis, solid-phase extraction and pre-column 

chemical derivatization. To the best of our knowledge, this is the first report of urinary HP-G as 

a convenient surrogate for total HP when biomonitoring PAH exposures in firefighters, where 

delays in urine collection can underestimate true smoke exposures during prolonged emergency 

fire suppression activities in the field. Also, good hygiene practices and proper use of personal 

protective equipment by firefighters can prevent dermal PAH absorption. MSI-CE-MS/MS 

offers a high throughput platform for reliable determination of urinary OH-PAHs and other 
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classes of anionic environmental contaminants42 that is optimal for large-scale biomonitoring of 

populations in support of evidence-based policies to mitigate smoke exposures and chronic 

disease burden.  
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3.8 Supporting Information 

3.8.1 Instrumental Method for Total Hydrolyzed Urinary HP Determination by GC-HRMS 

Sample preparation for total urinary HP determination using gas chromatography with high 

resolution mass spectrometry (GC-HRMS) included enzyme hydrolysis, solid-phase extraction 

(SPE), and pre-column chemical derivatization.1,2 Briefly, a 1.0 mL urine aliquot was incubated 

with 5.0 mL sodium acetate buffer (0.10 M, pH 5.5), 10 µL of recovery standard (OH-Pyr-d9) 

and 10 µL glucuronidase/arylsulfatase (Helix pomatia, Sigma-Aldrich Inc.) for 17-18 h at 37 °C 

to ensure complete hydrolysis.2 Next, solid-phase extraction (SPE) was conducted on a vacuum 

manifold using Varian Focus (50 mg, 6.0 mL) cartridges (Agilent Technologies, Santa, Clara, 

CA, USA). Deconjugated (total) HP were eluted with dichloromethane at a rate of 0.5 min/mL. 

This was followed by drying the urine extract with 10-20 mg of magnesium sulfate anhydrous 

that was filtered in a glass pipette containing glass wool. The final extract was dried under a 

gentle stream of nitrogen to 100 µL, transferred to a GC vial insert, blown down to dryness and 

reconstituted to 10 µL in toluene. An internal standard of Pyr-d10 (1.0 µL, 9100 µg/L) was spiked 

into all reconstituted urine extracts. The samples were then derivatized with 15 µL of N-methyl-

N-(trimethylsilyl)trifluoroacetamide (MSTFA), using an incubation step of 20 min at 60 °C, 

which corresponded to an 25-fold sample enrichment from 1.0 mL of urine. The GC-HRMS 

analysis was performed on an Agilent 7890B gas chromatograph (Agilent Technologies, Santa, 

Clara, CA, USA) coupled to a Waters Xevo G1-XS quadrupole time of flight (qTOF) mass 

spectrometer with an atmospheric pressure chemical ionization source for urinary HP 

determination.2 Also, creatinine was measured in all urine samples using an AU 480 Olympus 

Chemistry Analyzer (Beckman Coulter Inc., Mississauga, ON, Canada). All urinary HP-G and 

HP concentrations were reported as their normalized concentrations values to creatinine (ng/g 
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creatinine) to correct for hydration status when collecting random single-spot urine samples from 

firefighters post-deployment. 

Table S3.1. MRM transitions for HP-G and HP-G-d9 in urine using MSI-CE-MS/MS 

Compound Transition CE(eV) Fragmentor (V) Delta EMV(V) 

Quantifier 1-Hydroxypyrene
Glucuronide 393 →217 -60 120 -400

Qualifier 1-Hydroxypyrene
Glucuronide 393 →189 -80 120 -400

Quantifier 1-Hydroxypyrene
Glucuronide- d9 

402 →226 -60 120 -400

Qualifier 1-Hydroxypyrene
Glucuronide- d9

402 →189 -80 120 -400
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Figure S3.1 Optimization of the urine extraction protocol for sample enrichment of HP-G as a biomarker 
of recent PAH exposures in smoke by MSI-CE-MS/MS when using a 7 or 13 sample plug serial injection 
format. (A) Extracted ion electropherogram (EIE) confirming an average 7.6-fold increase in the recovery 
of HP-G upon the acidification of pooled urine using HCl (pH ~ 3) as compared to unmodified urine as 
control in replicate (R) samples, where naphthalene monosulfonic acid (NMS) was used as an internal 
standard in all reconstituted urine extracts. (B) Good recovery (~  90%) was achieved for spiked HP-G in 
non-occupational exposed urine samples with no evidence of sample carry over and background 
contamination in the blank extract when using an optimal solvent ratio of 2:1 MTBE-urine that allows for 
use of standard 2.0 mL GC vials. (C) Quantitative extraction of urinary HP-G is achieved in a single 
aliquot of MTBE with no HP-G detected in repeat extractions of urine samples using a second or third 
aliquot of MTBE that was performed in triplicate with suitable blanks by MSI-CE-MS/MS. (D) Bar graph 
highlights that optimal urine acidification not only improved recovery of weakly acidic HP-G in human 
urine samples, but also allowed for faster equilibration times (< 5 min) prior to MTBE extraction. (E) Bar 
graph confirms good mean recoveries as required for accurate urinary HP-G quantification that is 
achieved using a minimum volume ratio of 2:1 for MTBE:urine with a single aliquot of ether solvent. 
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Chapter IV: Urine Biomonitoring of Tobacco Smoke Exposure in the Prospective Urban 
and Rural Epidemiological (PURE) Study: Regional Variations in Nicotine Dependence, 
Smoking Topography and Misreporting 

4.1 Abstract 

4.1.1 Background 

Tobacco use remains a leading preventable cause of death and chronic disease burden globally. 

Total nicotine equivalent (TNE) and nicotine metabolic ratio (NMR) represent phenotypic 

biomarkers to objectively assess recent tobacco smoke exposures and smoking behavior as 

compared to self-reports that are prone to bias. However, current analytical methods for 

determining urinary TNE and/or NMR are low throughput and require complicated sample 

workup procedures limiting their applicability for large-scale epidemiological studies.  

4.1.2 Methods 

We introduce a rapid screening method for urinary nicotine metabolites using multisegment 

injection-capillary electrophoresis-mass spectrometry (MSI-CE-MS) with full-scan data 

acquisition under positive ion mode. Morning spot urine samples were directly analyzed for up 

to seven major nicotine metabolites and their intact conjugates from participants (n=1000) in the 

Prospective Urban and Rural Epidemiological (PURE) study from fourteen countries at different 

income status. Chemical stability and sensitivity studies were performed to confirm reliable 

analysis of a panel of seven urinary nicotine metabolites with few non-detects in current smokers 

as compared to single nicotine species. Complementary correlation and univariate statistical 

analyses with covariate adjustments were applied to compare TNE-7 with self-reported smoking 

intensity (i.e., cigarettes per day, CPD), as well as stratify urinary NMR into quartiles to classify 

fast (Q4) from slow (Q1-Q4) nicotine metabolizers in current smokers from high-, medium- and 
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low-income countries (HICs, MICs, and LICs). A similar approach was also performed for 

assessment of the UDP-glucuronosyltransferase activity for cotinine as related to tobacco 

detoxification capacity. 

4.1.3 Results 

 Method validation of MSI-CE-MS demonstrated acceptable inter-day reproducibility for major 

nicotine metabolites (median CV=18%, n=156), good chemical stability that tolerates repeat 

freeze-thaw cycles (<15%), with adequate limits of detection (0.05-0.11 μM). Overall, TNE-7 

had a moderate correlation with self-reported CPD (r = 0.391, p = 4.91×10-22, n = 564) that was 

elevated in heavy smokers from HICs (F = 10.2, p = 2.51×10-10, n = 322) as compared to MICs 

and LICs. Fast nicotine metabolizers were also identified in the PURE study, who had greater 

tobacco smoke exposure (F = 38.2, p = 1.0 ×10-33, n = 568) after adjustment for smoking 

intensity and other covariates. 

4.1.4 Conclusions 

This work outlines a high throughput method to biochemically verify smoking status and assess 

smoking topography, which is urgently needed to elucidate regional variations in tobacco-related 

disease risk in diverse populations not feasible by standardized questionnaires. 

4.1.5 Impact 

A high throughput platform for comprehensive nicotine analyses enables accurate assessment of 

the hazards of smoking for global health that is confounded by varying smoking habits, genetic 

variations in the population, and a myriad of tobacco products consumed in different countries. 
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4.2 Introduction 

The tobacco epidemic remains the leading cause of preventable, premature death and chronic 

disease burden worldwide (1), despite its well-established health risks (2). Smoking causes 

diminished overall health, with current and former smokers demonstrating an increased risk over 

never smokers for several chronic diseases, including heart disease, stroke, and lung cancer (3). 

While intensive public health efforts (e.g., pack warning, ad bans, public space policies) have 

reduced overall smoking prevalence (4), global disparities in policy performance remain an 

ongoing concern, including regional variations within developed countries with higher smoking 

rates impacting vulnerable populations (5). These challenges are further exacerbated by a dismal 

3-5% (6) success rate in smoking cessation (7), with relapse and smoking rates reported to have

increased during the COVID-19 pandemic (8). 

Globally, there is an estimated 1.14 billion current tobacco users with > 80% of current 

smokers residing in developing countries (9). Smoking habits and tobacco-related disease risk 

differ widely between countries with varying cultural and socioeconomic conditions (10,11). As 

a result, large-scale longitudinal surveillance studies have been conducted using standardized 

surveys (12). Although questionnaires related to smoking history remain an inexpensive tool for 

large-scale epidemiological studies, they are prone to error and misreporting (13,14), including 

gender and social desirability bias (15). Also, self-reports are unable to account for variations in 

commercial cigarette product designs or regional hand rolled varieties (e.g., bidis), nicotine 

content and tar chemical composition, as well as smoking topography (e.g., puff volume and 

frequency) that impacts carcinogen exposure (16). For instance, a recent study comparing 

tobacco related all-cause mortality and clinical events globally, the hazard ratios were reported to 

be elevated in current smokers from high-income countries (HICs) as compared to middle- 
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(MICs) and low-income countries (LICs), which could not be explained by self-reported 

smoking history (e.g., age at initiation, quantity, duration) (17). Surprisingly, few 

epidemiological studies studying smoking behaviors across multi-ethnic populations or different 

countries, such as the National Health and Nutrition Examination Survey (NHANES), 

Population Assessment of Tobacco and Health (PATH), and Global Adult Tobacco Survey 

(GATS), have made use of tobacco-specific biomarkers for biochemical verification of smoking 

status and smoking behavior (18–21). 

Regardless of the form of tobacco usage (e.g., chewing tobacco, bidi, cigarette), nicotine 

and its metabolites are considered to be the most reliable measures of recent tobacco smoke 

exposure (22). Although various biospecimens (e.g., serum, urine, saliva, hair) have been used 

for surveillance (23), urine is best suited for non-invasive sampling whilst providing the most 

concentrated and comprehensive assessment of recent tobacco exposure within ~ 2 days 

depending on smoking intensity and frequency (24). Nicotine, inhaled from tobacco smoke or 

ingested from smokeless tobacco, is rapidly metabolized in circulation into cotinine by 

cytochrome P450 (CYP) 2A6, which is then then biotransformed into 3-hydroxycotinine (25). 

Subsequent phase II metabolism generates the glucuronide conjugates of nicotine, cotinine, and 

3-hydroxycotinine via UDP glucuronosyltransferase (UGT) to facilitate their renal elimination

(25). A minor pathway for nicotine detoxification occurs via flavin monooxygenase (FMO) 

mediated N-oxidation to form nicotine-N-oxide. Other low abundance urinary metabolites of 

nicotine are also generated, including nornicotine, norcotinine, and cotinine-N-oxide, however all 

these species comprise less than 10% of total excreted nicotine (26).  

Measurement of a single major nicotine metabolite in urine, such as cotinine is frequently 

performed in routine drug screening to confirm smoking status (27,28), however it suffers from 
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reduced sensitivity and extensive interindividual and ethnic variability that does not reflect true 

levels of nicotine exposure (29–32). As a result, the current gold standard for recent tobacco 

exposure is the molar sum of nicotine and its major metabolites in urine, referred to as total 

nicotine equivalents (TNE) (22,26,33–35).  While accurate and reliable TNE measurements are 

critical, assessment of the rate of nicotine clearance has also been shown to provide insight on 

nicotine dependence, smoking relapse, and toxicant exposure (16,35–38). Consequently, the 

nicotine metabolite ratio (NMR) is a validated phenotypic biomarker of CYP 2A6 activity, which 

accounts for ~ 90% of nicotine clearance (16,39–41). The highest concordance with plasma 

NMR can be achieved when measuring the sum of 3-hydroxycotinine and its glucuronide to 

cotinine in urine (42). Moreover, ratiometric indicators of UGT activity have also been used as 

measures of phase II metabolism, which may be indicative of differential inactivation of tobacco 

smoke toxicants, such as carcinogenic tobacco-specific nitrosamines (35,43,44).  

Conventional approaches for determination of nicotine and its metabolites in urine 

include commercial immunoassay kits, immunoaffinity chromatography, gas chromatography-

mass spectrometry and increasingly liquid chromatography-tandem mass spectrometry (LC-

MS/MS) (45). LC-MS/MS is the gold standard for the analysis nicotine metabolites in various 

biological samples (35,45,46), which often relies on indirect methods following enzyme 

deconjugation (42). While LC-MS/MS methods are sensitive, selective and enable 

comprehensive surveillance of nicotine metabolites in urine, most methods to date are 

constrained by high costs, long analysis times (> 15 min/sample) and complicated sample-

pretreatment protocols, including solid-phase extraction, liquid-liquid extraction, and enzyme 

deconjugation (47).  
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Herein, we introduce a high-throughput platform for the direct analysis of seven urinary 

nicotine metabolites and their intact glucuronide conjugates by multisegment injection-capillary 

electrophoresis-mass spectrometry (MSI-CE-MS) with full-scan data acquisition under positive 

ion mode conditions (48). This multiplexed separation platform takes advantage of serial 

injection of 11 samples in a single run (< 5 min/sample) with stringent quality control that is 

ideal for large-scale epidemiological studies (49) and comprehensive drug surveillance 

applications (50). Following method validation, MSI-CE-MS was applied for biochemical 

verification of smoking status in 1000 participants from the Prospective Urban and Rural 

Epidemiological (PURE) cohort, including self-identified never smokers and current smokers. 

For the first time, we characterize recent tobacco smoke exposures and nicotine dependence in 

verified current smokers from fourteen different countries based on their urinary TNE, NMR, 

and UGT distributions. This work offers new insights into regional differences in nicotine 

metabolism, smoking topography, and tobacco-related disease risk across diverse populations 

when compared to self-reports (17). 

4.3 Materials and Methods  

4.3.1 Study Design 

The PURE study is an international prospective cohort that enrolled 166,762 participants (aged 

35-70 years) from 21 countries between January 2001 and October 2016 (17). A sub-study of

8073 participants from fourteen countries were selected based on a nested case-cohort design 

(17), from which urine samples of 1000 participants with one or less freeze-thaw cycles were 

randomly selected in about equal proportions of never smokers (n=335), as well as light (< 10 

cigarettes per day, n=324), and heavy (≥ 10 cigarettes per day, n=341) current smokers (17). All 
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samples were morning void urine collected from consenting adults and subsequently aliquoted 

prior to storage at -80°C using a standardized procedure across all clinical sites. Standardized 

questionnaires were completed by all participants in the PURE study, including age, sex, 

education, household income, location, smoking status, alcohol use, diet, physical activity, 

psychosocial stress, and use of medications, as described in detail elsewhere (51).  

4.3.2 Chemicals and Reagents 

Ultra HPLC grade LC-MS solvents (water, methanol, acetonitrile) were obtained from Caledon 

Laboratories Ltd (Georgetown, ON, Canada) for preparation of buffer, sheath liquid and stock 

solutions. nicotine, cotinine, nicotine-N-oxide, in addition to their matched deuterated internal 

standards (nicotine-d3, cotinine-d3, nicotine-N-oxide-d3) were purchased from Cayman 

Chemicals (Ann Arbor, MICH, USA). Glucuronide conjugates including nicotine glucuronide, 

nicotine-d3-glucuronide, Cotinine-glucuronide, and 3-hydroxycotinine glucuronide were 

purchased from Toronto Research Chemicals Inc. (Toronto, ON, Canada) while all other 

chemicals were obtained from Sigma-Aldrich Inc. (St. Louis, MO, USA). 

4.3.3 Multisegment Injection-Capillary Electrophoresis-Mass Spectrometry (MSI-CE-MS) 

Urine aliquots were thawed slowly on ice, vortexed for 30 seconds and then centrifuged to 

sediment particulates (14000 g for 5 min). Samples were subsequently diluted five-fold with 

HPLC-grade water and an internal standard mixture containing nicotine-d3, cotinine-d3, nicotine-

N-oxide-d3, 3-hydroxycotinine-d3, nicotine-d3-glucuronide, 3-chlorotyrosine (Cl-Tyr), D-

glucose-13C6, choline-d9, gaba-d6, and 2-napthalenesulfonic acid (NMS) with a final 

concentration of 20 μM. All diluted urine samples were analyzed directly on an Agilent G1700A 
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capillary electrophoresis (CE) unit (Agilent Technologies Inc., Santa Clara, CA, USA) coupled 

to an Agilent 6230 time-of-flight mass spectrometer (TOF-MS) with a coaxial sheath liquid 

electrospray ionization interface. An Agilent 1260 infinity isocratic pump and a 1260 infinity 

degasser were used to deliver 60 % vol MeOH with 0.1 % vol formic acid sheath liquid for 

positive ion mode at a flow rate of 10 μL/min. For real-time mass correction, reference ions 

purine and hexakis (2,2,3,3-tetrafluoropropoxy)phosphazine (HP-921) were spiked into the 

sheath liquid at 0.02 % vol. The nebulizer spray was turned off during serial sample injections to 

avoid suctioning effects and current instabilities (52). It was then programmed to turn on at 4 psi 

following voltage application with the source temperature set to 300 °C, and the drying gas 

delivered at 8 L/min. The Vcap was set to 2000 V, and the nebulizer gas was delivered at 10 psi, 

while the sheath gas was set to 195 °C and delivered at 3.5 L/min. Additionally, MS voltage 

settings were set to a fragmentor voltage of 120 V, the skimmer at 65 V, and Oct1 RF at 750 V. 

Data acquisition was performed in full-scan mode on the TOF-MS system set to a mass range of 

50-1700 m/z at an acquisition rate of 500 ms/spectrum.

Separations were performed on bare fused-silica capillaries with a 50 μm internal 

diameter, 360 μm outer diameter and 135 cm total length (Polymicro Technologies Inc., AZ). A 

capillary window maker (MicroSolv Leland, NC, USA) was used to remove ~7 mm of the 

polyamide coating on both ends of the capillary. The background electrolyte (BGE) used for 

electrophoretic separation consisted of 1.0 M formic acid with 15 % vol acetonitrile (pH 1.80) 

for cationic metabolite analysis. The applied voltage during CE separations was set to 30 kV at 

25 °C. A serial sample injection sequence was also used, which consisted of 11 discrete 

hydrodynamic sample injections (5 seconds at 100 mbar) interspaced with a BGE spacer injected 

electrokinetically at 30 kV for 75 seconds (53) (Figure S4.1A). Between all runs the capillary 
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was flushed for five minutes with BGE at 950 mbar. In addition, the TOF-MS system was 

calibrated daily prior to analysis using an Agilent tune mix within a mass error of ± 0.2 ppm. 

Preventative maintenance was also performed each morning including cleaning of the ion source 

with 50 % vol isopropanol using a lint-free cloth and cleaning of the CE electrode with MeOH 

and HPLC-grade water. Subsequently, the capillary was flushed with BGE for 15 min prior to 

running a pooled quality control (QC) sample (prepared from all 1000 PURE participants) and a 

blank to assess system stability before beginning a randomized analysis of batches of diluted 

urine samples from PURE. Overall, the individual urine samples were analyzed over six 

consecutive days by MSI-CE-MS under positive ion mode conditions. High resolution tandem 

mass spectrometry (MS/MS) spectra were acquired for verification of nicotine metabolites from 

a pooled heavy smoker QC urine sample on an Agilent G7100A CE system with a coaxial sheath 

liquid Jetstream electrospray ion source connected to an Agilent 6550 iFunnel QTOF instrument. 

A single urine sample was injected hydrodynamically at 100 mbar for 90 seconds, followed by a 

BGE spacer at 100 mbar for 5 seconds. Precursor ions were then selected for collision-induced 

dissociation experiments at varying collision energies (10-40 V). The ESI conditions were set to 

a Vcap of 3500 V, with a nozzle voltage at 2000 V, nebulizer gas set to 8 psi, drying gas 

delivered at 14 L/min at 225 °C, while the MS voltage settings included a fragmentor of 380 V 

and Oct1 RF set to 750 V. Subsequently, acquired MS/MS spectra were annotated based on 

characteristic product ions, neutral mass losses, and given an unambiguous identification (level 

1) if confirmed with a matching MS/MS spectra and co-migration with an authentic standard

obtained under the same experimental conditions. While a level 2 identification was determined 

based on the comparison of acquired MS/MS spectra to an open-access public database (e.g., 

HMDB) (54).  
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4.3.4 Method Validation and Quality Control 

Stock solutions for calibrants were initially prepared in MeOH (1.0 mg/mL) and then diluted in 

HPLC-grade water (0.1 mg/mL) followed by serial dilution to prepare calibrant solutions in 

triplicate ranging from 40-3000 ng/mL for nicotine (0.25-18.5 μM) and cotinine (0.23-17.0 μM), 

40-600 ng/mL (0.22-3.36 μM) for nicotine-N-oxide, 40-5000 ng/mL for both 3-hydroxycotinine

(0.52-26.0 μM), 3-hydroxycotinine glucuronide (0.27-13.6 μM), 40-1000 ng/mL (0.12-2.95 μM) 

for nicotine glucuronide and 40-6000 ng/mL (0.28-17.0 μM) for cotinine glucuronide. A pooled 

QC sample was run in every MSI-CE-MS to monitor for technical precision together with 10 

individual urine samples from PURE participants that were analyzed in a randomized injection 

order. All integrated peak areas were normalized to their respective deuterated internal standard, 

apart from 3-hydroxycotinine glucuronide and cotinine glucuronide which were normalized to 

Cl-Tyr. The limit of detection (LOD) and limit of quantification (LOQ) for each nicotine 

metabolite was determined based on the serial dilutions of calibrant solutions that generated a 

signal-to-noise ratio (S/N) of ~ 3 and ~ 10, respectively. Method accuracy was also evaluated 

through spike-recovery studies at three distinct concentrations for each nicotine metabolite. All 

spikes were performed in pooled never smoker urine samples, and percent recovery was 

determined based on the percentage difference between the spiked and known concentrations. 

Additionally, inter-day reproducibility (CV%) was evaluated over the entire course of data 

acquisition by MSI-CE-MS based on repeated analysis of all seven nicotine metabolites in 

pooled urine QCs (n = 156). The chemical stability of all seven nicotine metabolites was 

evaluated through analysis of spiked pooled never smoker urine following three repeat freeze-

thaw cycles together. Also, a delay to storage study using freshly collected urine from a never 
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smoker analysis that was repeatedly analyzed at room temperature (23 °C) prior to freezing (0, 2, 

4, 8, 12, 24 h).  

4.3.5 Data Processing and Statistical Analysis 

All data acquired by MSI-CE-MS was analyzed with the Agilent Mass Hunter Workstation 

Software (Qualitative Analysis version B.06.00, Agilent Technologies Inc.). Nicotine 

metabolites were extracted using a 10 ppm mass window and integrated after smoothing using 

the quadratic/cubic Savitzky-Golay function (15 points), whereas peak areas, migration times 

and S/N were transferred to Microsoft Excel for calculation of relative peak areas (RPAs) and 

relative migration times (RMT) to correct for differences in injection volume, as well as matrix 

induced ion suppression. Analysis of external calibration data, and calculation of TNE, enzyme 

ratios and of figures of merit were all performed in Excel, while box plots, histograms, scatter 

plots, receiver operating curves (ROC), and control charts were all made in MedCalc version 

12.5 (Ostend, Belgium). Repeated measures ANCOVA and partial Pearson correlation were 

performed with covariant adjustment (age, sex, BMI, and CPD) on log-transformed data, in 

addition to a Spearman rank correlation analysis on untransformed data using SPSS (IBM SPSS 

statistics for windows, version 20.0 NY, USA).  

4.4 Results  

4.4.1 Study Design and Metabolomics Workflow 

This nested case-cohort study included a subset of PURE participants (n=1000) from fourteen 

countries (3 HICs,7 MICs, 4 LICs; Table S4.1) with completed tobacco history and available 

spot morning urine samples (17). More women (65%) self-identified as never smokers, while a 
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majority of heavy smokers (CPD ≥ 10, 70%) were men as highlighted in Table 4.1. Also, heavy 

smokers had disproportionally a longer smoking history (i.e., pack years of smoking) than light 

smokers. Amongst current smokers, cigarettes were the most common form of tobacco smoke 

exposure (91%, n=607 of 665), with less than 5% using exclusively smokeless tobacco products 

(e.g., snuff, chewing tobacco). However, hand-rolled cigarettes (e.g bidi), were found 

exclusively in LICs in 30% (n=40 of 132) of current smokers. Overall, 33% of never smokers 

reported second-hand smoke exposure (SHS) with 19% reporting daily SHS exposure (≥ 1 

time/day). Otherwise, no significant difference in age (mean of 53 years, p=0.846) or BMI (mean 

of 26 kg/m2, p=0.850) was found between current and never smokers from PURE (Table 4.1). 

This multiplexed separation format allowed for unique serial sample injection 

configurations designed to encode mass spectral information temporally (50) depending on 

experimental design. For example, a pooled sub-group analysis of urine samples from PURE 

participants (i.e., never versus light versus heavy smokers) were analyzed in triplicate together 

with a blank sample by MSI-CE-MS, which showed a progressive increase in urinary cotinine 

levels as a function smoking intensity. In contrast, urinary cotinine was not detected in the 

pooled urine from never smokers as well as blank sample (Figure S4.1B).  Subsequent 

confirmation of urinary cotinine was achieved by high-resolution MS/MS based on two 

diagnostic products ions after comparison to an authentic standard under the same collision 

energy conditions (20 V) as shown in a mirror plot (Figure S4.1C). Overall, seven nicotine 

metabolites were analyzed in urine samples from most habitual smokers in the PURE study, 

including nicotine-N-oxide, as well as nicotine, cotinine, 3-hydroxycotinine and their respective 

glucuronide conjugates, whose sum is defined as TNE-7. Moreover, migrations time shifts were 

evident when comparing different singly charged nicotine species in MSI-CE-MS (e.g., cotinine 



Ph.D. Thesis – Biban Gill; McMaster University – Chemical Biology 

130 

versus 3-hydroxycotinine; cotinine versus cotinine glucuronide) based on their characteristic 

electrophoretic mobilities (i.e., hydrodynamic size) (Figure S4.1D).   

4.4.2 Method Validation for Reliable Nicotine Metabolite Determination 

Next, method validation was performed for all nicotine metabolites based on several figures of 

merit summarized in Table S4.2. Matching deuterated internal standards available for most 

nicotine metabolites allowed for correction for potential matrix-induced ion suppression from 

involatile salts and abundant urinary creatinine due to their co-migration (i.e., no deuterium 

effect).  Recovery studies using authentic nicotine standards spiked into pooled never-smoker 

urine samples (in triplicate) at three concentration levels (3.9 μM, 13 μM, 130 μM), were used to 

evaluate method accuracy as shown by 3-hydroxycotinine (Figure S4.2A), with acceptable 

recoveries observed for all nicotine metabolites (> 80%; Table 4.1). Overall, excellent linearity 

(R2 > 0.980) was achieved for all nicotine metabolites when using 7-point calibration curves over 

a wide linear dynamic range. Method limits of detection (LOD; S/N~3) and quantification (LOQ; 

S/N~10) for all nicotine metabolites ranged between 0.03-0.11 μM and 0.06-0.25 μM 

respectively, while in sample detection limits were 5-fold higher (Table S4.2) due to urine 

dilution. Additionally, technical precision over six days of data acquisition with daily 

preventative maintenance and mass tuning demonstrated acceptable reproducibility (CV=12.1%, 

n=152) for 3-hydroxycotinine as shown in the control chart of pooled QC samples randomized in 

every run (Figure S4.2C). Precision for the six additional nicotine metabolites was between 15-

34%, with low abundance (S/N < 15) metabolites such as nicotine-N-oxide and nicotine 

glucuronide having the highest variance (CV of 34% and 32% respectively; Table S4.2). 

Furthermore, analysis of spiked pooled never smoker urine (in triplicate) demonstrated adequate 

chemical stability over 24 h at room temperature and following three repeat freeze-thaw cycles  
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Table 4.1 Summary of characteristics and smoking status of participants from the PURE study. 

Variable Never Smokers 
(n=335) 

Light Smokers 
(<10cigarettes/day) 

(n=324) 

Heavy Smokers 
(>10cigarettes/day) 

(n=341) 
HICs (n; %) 11.1% (n=111) 12.6% (n=126) 13.9% (n=139) 

MICs (n; %) 11.3% (n=113) 14.2% (n=142) 12.6% (n=126) 

LICs (n; %) 11.1% (n=111) 5.60% (n=56) 7.60% (n=76) 

Sex (n; %) - - - 
F 21.9% (n=219) 15.9% (n=159) 10.2% (n=102) 
M 11.6% (n =116) 15.5% (n=165) 23.9% (n=239) 

Age (mean) 52 ± 10 53 ± 10 53 ± 9 
≥ 50y 59 ± 6 (n=191) 59 ± 6 (n=200) 59 ± 6 (n=204) 
< 50y 42 ± 5 (n=144) 42 ± 4 (n=124) 43 ± 4 (n=137) 

BMI (mean) 27 ± 6 26 ± 5 26 ± 5 

Lean (<25 kg/m2) 21 ± 2 (n=118) 21 ± 2 (n=132) 21 ± 2 (n=156) 

Overweight (25-44 kg/m2) 30 ± 6 (n=208) 29 ± 4 (n=185) 30 ± 4 (n=183) 

# of Cigarettes per day (mean) 0 5±2 19±8 

Packs per year 0 9±6 37±21 

Tobacco (n; %) - - - 

Smokeless Only - 3.0% (n=30) 0.40% (n=4) 

Cigarettes Only - 29.0% (n=290) 31.7% (n=317) 

Both Smokeless and Cigarette - 0.40% (n=4) 2.0% (n=20) 

Location (n; %) - - - 

Urban 19.8 % (n=198) 18.2% (n=182) 20.6% (n=206) 

Rural 13.7% (n=137) 14.2% (n=142) 13.5% (n=135) 

Second-hand Smoke (n; %) - - - 

Not exposed - - - 

Daily (≥ 1 time/day) 6.50 % (n=65) - - 

Weekly (≥ 1 time/week) 4.60 % (n=46) - - 
a Mean values ± standard deviation are shown unless otherwise indicated 
* Statistical significance at p < 0.0001 after adjusting for age, sex, BMI, and CPD

(Figure S4.3). Overall average change (%) in response between time points was less than 15% 

for all nicotine metabolites (Table S4.2), thus allowing for reliable analysis of urine samples 

after multiple thawing that can also tolerate delays to freezing.  
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4.4.3 Total Nicotine Equivalents for Robust Tobacco Smoke Exposure Assessment 

Relative distribution of individual urinary nicotine species determined based on mean urinary 

concentrations measured from current smokers (n = 665) in the PURE study are summarized in 

Figure S4.4. As expected, minor nicotine metabolites including nicotine-N-oxide and nicotine 

glucuronide comprising less than 12% of total nicotine, whereas 3-hydroxycotinine was the most 

abundant urinary nicotine species overall (~ 40-53% of total nicotine). Interestingly, nicotine, 

was excreted on average at higher levels (17-26%) than cotinine (11-16%) despite cotinine’s 

lower frequency of non-detects (18.3% versus 46.6%; Figure 4.1A). As expected, the rate of 

non-detects among individual nicotine species was dependent on their abundance (~ 15-65%), 

but they were higher as compared to using a panel of two or more nicotine metabolites (TNE-2-

7; ~ 10-12%). As a result, urinary TNE-7, which accounts for over 85% of total excreted 

nicotine, was used to assess recent tobacco smoke exposure in this study. Overall, TNE-7 

demonstrated acceptable long-term precision (CV=14%, n=156; Figure 4.1B) with greater 

sensitivity for biochemical verification of smoking status as it is less susceptible to variations in 

metabolic rate when comparing multi-ethnic populations in the PURE study. The distribution for 

urinary TNE-7 for verified current smokers and likely misreported never smokers from the 

PURE study (n=686) is shown in Figure 4.1C. Interestingly, the rate of detectable of urinary 

TNE-7 among self-identified never smokers was higher than anticipated at 26.5% (n=89).  

To determine the potential contribution of second-hand smoke (SHS) exposure on 

detectable urinary TNE-7 concentrations in never smokers, individuals self-reporting recent SHS 

exposure were compared against, those who indicated no SHS exposure (Figure S4.5). Although 

an upward trend in TNE-7 was observed with self-reported SHS exposure, no significant 

difference was observed between sub-groups (p = 0.144, n = 89; Figure S4.5). A regional 
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Figure 4.1 (A) Overview of the non-detects in self-identified current smokers (heavy and light smokers) 
for individual nicotine metabolites compared to the nicotine metabolite panels [TNE (2-7)]. (B) A control 
chart highlighting acceptable long-term (intermediate) precision (CV=14%) based on repeated analysis of 
TNE-7 (n=156) from a pooled quality control (QC) when using MSI-CE-MS for biochemical verification 
of smoking status. (C) Distribution of TNE-7 concentrations in participants with detectable 
concentrations (one or more quantifiable nicotine metabolites; n=686) both before and after log-
transformation where a median 39.0 µM TNE-7, ranging from 0.55-323 µM in the PURE cohort.  

comparison of tobacco smoke exposures in the PURE study revealed that heavy smokers 

exhibited elevated TNE-7 concentrations in HICs, followed by MICs and LICs (p < 0.001) after 

adjusting for age, sex, BMI and CPD (Figure 4.2A). In contrast, self-reported light smokers 

showed no differences in urinary TNE-7 status between country income regions (Figure 4.2B). 

This data also demonstrated greater tobacco smoke exposure among self-identified never 

smokers in LICs relative to HICs (FC = 6.60, p = 9.43×10-6; Figure 4.2C) following adjustments 

for age, sex, BMI and CPD. In this case, TNE-7 concentrations from these self-reported never 
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smokers (median of 22.8 µM) were similar in magnitude to light smokers from other regions 

(median of 24.6 to 30.6 µM, Figure S4.6). 

A Spearman rank correlation analysis between self-reported smoking intensity (i.e., CPD) 

and urinary TNE-7 was next applied to evaluate potential misreporting. Figure S4.7 highlights 

that there was a moderate correlation between urinary TNE-7 and smoking intensity (CPD) 

among self-identified current smokers (r =0.391, p = 4.91×10-22, n=564) with the strongest 

correlation occurring for biochemically verified smokers in HICs (r =0.497, p = 3.72x10-16, 

n=236) followed by MICs (r = 0.425, p = 7.61x10-11, n=215). In contrast, there was no 

correlation observed for urinary TNE-7 with smoking intensity for participant from LICs     

(r = 0.093, p = 0.328, n=113). An analogous strategy was also used to identify true never 

smokers from current smokers and misclassified current smokers (Figure 4.3). Receiver-

operating characteristic (ROC) curves were used to classify regional and sex-dependent cut-off 

values for urinary TNE-7 in males and females from HICs, MICs and LICs, with missing data 

replaced by minimum TNE-7 divided by two. Overall, there was good classification of authentic 

current smokers from never smokers based on the area under the curve (AUC) in all income 

groups (AUC > 0.77, p < 0.0001). Optimal urinary TNE-7 cut-off values from HICs were 6.58 

μM and 4.64 μM for males and females (Figure 4.3A), respectively. While in MICs, males had a 

a significantly lower TNE-7 cut-off (2.09 μM) compared to women smokers (6.99 μM; Figure 

4.3B). However, lower cut-off values for urinary TNE-7 of 3.65 μM and 2.27 μM were measured 

for both males and female tobacco smokers from LICs, respectively (Figure 4.3C). Importantly, 

confidence intervals (CI 95%) in LICs, were far more variable compared to MICs and LICs, with 

females exhibiting the largest variance in recent tobacco smoke exposures.  Overall, misreporting 

was consistently more prevalent for self-reported female never smokers across all regions (Table
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S4.3). The highest frequency of misreporting was found in LICs with 45% of never smokers 

having detectable levels of urinary TNE-7 with a median concentration of 22.8 μM. Conversely, 

a misreporting rate of 17% and 18% was observed in self-reported never smokers from MICs 

and HICs respectively, with lower median TNE-7 concentrations ranging from 3.46 to 9.24 μM.  

4.4.4 Phenotypic Biomarkers of Nicotine Metabolism 

Phenotypic biomarkers of enzyme activity for CYP 2A6 (NMR) and UGT (UGT-cotinine) were 

determined for verified tobacco smokers in the PURE study using calculated ratios for specific 

nicotine metabolites as shown in Figure S4.4, where a minimum of one metabolite was required 

in the numerator and denominator. Urinary NMR exhibited the highest frequency of detection (~ 

79%) among self-identified current smokers, as well as the widest range of activity (0.23-22; 

Table S4.4). In contrast the less common enzyme ratios UGT nicotine (35,55) was minimally 

detected (30%, n=201) and demonstrated a smaller range in activity (0.01-2.75; Table S4.4). 

Additionally, technical precision was considered acceptable when measuring NMR, UGT-

cotinine and UGT-hydroxycotinine (mean CV=14-19%, n=148) in pooled QC samples. 

Interestingly, biological variation was highest for UGT 3-hydroxycotinine (173%), as compared 

to UGT cotinine (87%), and the lowest biological variation occurring for NMR (73%) following 

partial Pearson correlation analysis between enzyme ratios (after adjustments for age sex, BMI, 

and CPD) an expected correlation between all glucuronidation related ratios was observed (r = 

0.253-0.332, p < 0.001; Table S4.5). Furthermore, unlike UGT-hydroxycotinine, UGT-cotinine 

demonstrated a moderate correlation with both urinary TNE-7 (r = 0.397, p < 0.0001) and NMR 

(r = 0.406, p < 0.001). Additional regional differences in CYP 2A6 activity were evaluated 

(ANCOVA adjusted for age, sex, BMI, CPD) based on urinary NMR in HICs, MICs and LICs 

(Figure S4.8). Enzyme activity was significantly elevated for PURE participants from HICs, 
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followed by MICs, and LICs, respectively (Figure S4.8A), with an overall 1.75-fold (p = 

9.29×10-9) increase among smokers in HICs relative to LICs. Furthermore, a moderate increase 

in CYP 2A6 activity was observed for females (FC of 1.10, p = 0.005) compared to males across 

all fourteen countries after adjustments for age, BMI and CPD (Figure S4.8B).  

Due to the risk associated with nicotine dependence due to higher CYP 2A6 activity (29), 

classification of fast versus slower nicotine metabolizers was evaluated following stratification 

of urinary NMR (56) into quartiles (Figure 4.4A). Participants in the fourth quartile (NMR > 

5.55) were classified as fast metabolizers, while quartiles 1-3 were slower metabolizers, with a 

progressive stepwise increase observed between all quartiles (Figure 4.4B). Overall, urinary 

NMR was correlated moderately with TNE-7 (r = 0.580, p=2.69×10-50) and fast nicotine 

metabolizers had elevated tobacco smoke exposures (FC = 1.90, p = 1.10×10-33) following 

adjustments for age, sex, BMI and CPD (Figure 4.4D). Moreover, a TNE-7 threshold of 59.2μM 

was determined to have excellent performance in discriminating between fast and slower 

metabolizers of nicotine in the PURE study [AUC = 0.80 (0.76-0.83), p < 0.0001]. Given the 

previously outlined regional differences in enzyme activity (Figure S4.8), urinary NMR was re-

stratified within each country income group, with overall fast metabolizers (Q4) having the 

highest NMR predominately in HICs relative to LICs (Figure S4.9). Subsequently, regional 

urinary TNE-7 cut-offs values were established in this study, with good classification of current 

smokers from never smokers found for all three country income regions (AUC > 0.80, p < 

0.0001; Figure 4D). In general, fast metabolizers of nicotine were predominantly from tobacco 

smokers in HICs (~ 56%), with no significant difference in age or BMI compared to MICs and 

LICs (~9-33%; Table 4.2). Although, no overall difference in self-reported smoking intensity 

(i.e., CPD) was reported between county income levels, two markers of tobacco smoke exposure  
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Table 4.2 Stratification of active smokers from PURE (n=568) based on their NMR; classified as 
fast metabolizers (Q4) of nicotine at higher risk for tobacco exposure and nicotine dependence 
compared to slower metabolizers (Q1-Q3) with lower risk for tobacco derived toxin exposure 
and biological harm. 

Variable
a
 

Fast Metabolizers 
(n=142) 

Slower Metabolizers 
  (n=426) 

Sex (n;%) - - 

F 48% (n=69) 39% (n=168) 

M 51% (n=73) 61% (n=258) 

Age 55±15 52±15 

BMI 32±13 32±12 

Income Status (n;%) - - 

HICs 56% (n=80) 31% (n=133) 

MICs 35% (n=49) 36% (n=155) 

LICs 9% (n=13) 32% (n=138) 

NMR* 7.86±4.3 2.99±2.1 

UGT Cotinine* 1.71±1.6 0.81±0.8 

TNE-7* 74.1± 55µM 39.2±39 µM 

Thiocyanate* 92.0±104 μM 52.6±87 μM 

Smoking Status (n;%) - - 

Heavy Smokers 61% (n=87) 51% (n=218) 

Light Smokers 36% (n=51) 40% (n=169) 

Misreported Never Smokers 3% (n=4) 9% (n=39) 

# of Cigarettes per day 10±15 10±10 

Pack Years 23±32 16±21 
a Median values ± interquartile range (IQR) are shown unless otherwise indicated 
* Statistical significance at p <0.0001 after adjusting for age, sex, BMI, and CPD
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including TNE-7 and thiocyanate, were significantly elevated in fast metabolizers (Table 4.2). 

Following a secondary stratification of fast metabolizers, urinary NMR continued to correlate 

with TNE-7 (r = 0.356, p=2.38×10-5; Figure S4.10), and a sub-set of high-risk tobacco smokers 

prone to nicotine dependence (NMR > 10.9, n=35) having the highest CYP 2A6 activity within 

the PURE study were identified. As expected, high-risk fast metabolizers of nicotine consisted of 

primarily heavy smokers (~ 77%), with significantly elevated smoking intensity and duration 

(CPD, PY), recent tobacco smoke exposure (TNE-7), cyanide exposure (thiocyanate) and 

detoxification capacity (UGT-cotinine) (Table S4.6). Analogous to NMR, HICs had 

significantly elevated glucuronidation rate, relative to MICs and LICs (FC > 1.55, p < 0.0001; 

Figure S4.11A). Similarly, female smokers from across all 14 countries in the PURE study also 

demonstrated elevated UGT-cotinine activity as compared to males (FC = 1.19, p = 8.38×10-9, n 

=506; Figure S4.11B). However, following stratification of UGT-cotinine for verified tobacco 

smokers in the PURE study, individuals in quartile one were classified as tobacco smokers with 

slow detoxification capacity at greater risk for potential harm (Figure S4.11C) as compared to 

faster detoxifiers (quartiles 2-4). A lower moderate correlation with urinary TNE-7 was found (r 

= 0.384, p = 4.73×10-19, n=506; Figure S4.11D) relative to urinary NMR following adjustments 

for age, sex, BMI and CPD. 

4.5 Discussion 

4.5.1 High-Throughput Analysis of Urinary Nicotine Metabolites 

Accurate measurement of nicotine and its complete array of metabolites is critical for accurate 

biomonitoring of tobacco smoke exposure, as well as nicotine dependence along and smoking 

topography (23,25,57). However, given the extensive variability in nicotine elimination, most 

notably for polar glucuronide conjugates (~ 22-40% in urine) (44) the choice of analytical 
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method is critical. Most commonly, direct, and indirect LC-MS/MS assays (22,35,46) have been 

reported for the quantification of various nicotine species, with several large-scale 

epidemiological studies (e.g., PATH and NHANES) currently utilizing both protocols (21,33). 

Indirect approaches estimate glucuronide concentrations based on a repeat analysis with (total) 

and without (free) enzyme deconjugation, while direct quantification techniques analyze free 

nicotine metabolites and their intact glucuronides within a single assay (22,35). For the first time, 

we demonstrate that MSI-CE-MS offers a simple and cost-effective platform for the direct 

analysis of urinary nicotine metabolites and their glucuronide conjugates with higher sample 

throughput than conventional single injection and gradient elution LC-MS/MS methods. Overall, 

eliminating the need for enzyme hydrolysis and protein denaturation, while avoiding bias 

associated with inter-batch variations and suboptimal incubation times resulting in incomplete 

deconjugation (58). In a recent comparison of eleven LC-MS/MS methods (22), direct assays 

were found to have improved precision and measure consistently higher glucuronide content than 

indirect assays, with the most notable difference reported for 3-hydroxycotinine glucuronide (CV 

= 25-52%). However, direct LC-MS/MS methods using reversed-phase chromatographic 

separations often face limitations caused by poor retention and resolution of polar/ionic 

glucuronide conjugates requiring longer total analysis times (> 10 min) (22,35). To date, only 

one prior CE-MS method has been applied in this context (59). Garcia-Perez et al. (60) 

demonstrate a proof-of principle metabolomics approach towards discriminating smokers from 

never smokers using cigarettes of varying tar content through urine analysis. However, this was 

done with modest samples sizes (n = 121), within a single country, and required longer analysis 

times (~ 15 min). 
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In this work, method validation outlined by several figures of merit (Table S4.2) 

confirmed the reliable quantification of seven nicotine metabolites with good selectivity, 

accuracy, technical precision, and long-term chemical stability, consistent with previous studies 

(22,61). On average CVs range from 9-56%, for LC-MS/MS methods, with minor nicotine 

metabolites (e.g., nicotine-n-oxide and nicotine glucuronide) and more polar glucuronide 

conjugates (e.g., 3-hydroxycotinine) often having higher variability (22). Comparatively, MSI-

CE-MS demonstrated technical precision within a similar range (12-34%), where low abundance 

nicotine species had the highest technical precision (31-34%). In contrast, more polar 

glucuronide conjugates (e.g., cotinine glucuronide, 3-hydroxycotinine glucuronide) had 

consistently lower CVs (< 21%). As expected, detection and quantification limits in our method 

are 10 to 100-fold higher than other LC-MS/MS assays (35,46,47,61,62) given the necessary 

dilution, and lack of sample pre-treatment (e.g., sample preconcentration). Commonly reported 

method concentration ranges for nicotine, cotinine and 3-hydroxycotinine are between 1-5000 

ng/mL (47,61), while we report concentrations above 100 ng/mL in sample. Despite, higher 

detection limits this method can detect habitual smokers, with measurable levels of cotinine and 

3-hydroxycotinine in the range of concentrations found in active smokers (> 200 ng/mL)

(22,45,63). Moreover, when comparing mean molar percentages of individual nicotine 

metabolites (Figure S4.4), our analysis demonstrated excretion profiles comparable to other 

studies (46,61), with 3-hydroxycotinine consistently found to be the most abundance product in 

urine (35-50%). Comparatively, nicotine was found to be ~10% higher relative to previous 

reports (29), likely attributed to sampling time for urine collection relative to tobacco exposure. 
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4.5.2 Robust Biomarkers for Tobacco Smoke Exposure 

Given the extensive interindividual variability in nicotine metabolism, the sum of excreted 

nicotine species (TNE) is considered the gold standard in tobacco exposure assessment (34). 

Although the definition and nomenclature for TNE varies in the literature, TNE-2/4 (total 

cotinine, total 3-hydroxycotinine) and TNE-3/6 (total nicotine, total cotinine, total 3-

hydroxycotinine) are most frequently used and account for > 75% of excreted metabolites 

(21,22,33,35). The inclusion of three additional minor nicotine species has been referred to as 

TNE-9 (64,65), and considered the most complete, however it is minimally utilized given cost 

and time for analysis. Large-scale studies such as NHANES has reported TNE-2, TNE-3 and 

TNE-9 in active smokers, with mean (geometric) concentrations of 34 μM, 41 μM, and 47 μM 

respectively (21). Similarly, self-identified current smokers from HICs in this work had similar 

mean (geometric) concentrations of 37.8 μM and 42.1 μM for TNE-2 and TNE-3 respectively. 

Expectedly the geometric mean of TNE-7 reported by MSI-CE-MS was 43.3 μM, just slightly 

lower than TNE-9 levels described by NHANES, given the exclusion of three additional minor 

nicotine metabolites (e.g., nornicotine, norcotinine, cotinine-n-oxide) excreted at less than 10% 

in urine (21). However, it should be noted that accuracy of TNE-2 has been reported to decrease 

in light smokers and slow metabolizers (26). It is evident that the three additional minor nicotine 

metabolites have minimal impact on the total sum, while more importantly total nicotine, 

cotinine and 3-hydroxycotinine make up a substantial portion of the excreted metabolites    

(> 80%) and are more likely to influence the biochemical verification of smoking status (35). In 

contrast, for never smokers, NHANES reported TNE-2 levels of 0.013 μM, while our method 

measured levels at 4.36 μM among never smokers in HICs, indicative that given our detection 

limits these cases are likely misreported current smokers (21). 
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Previous studies have evaluated and reported the correlation between self-reported CPD 

and various urinary biomarkers of tobacco use, with substantial variability depending on the 

biomarker and ethnicity (66–68). Similarly, amongst all PURE participants a moderate yet 

significant correlation was determined (ρ = 0.391,  p= 4.91×10-22), with the strongest 

correlations occurring in HICs and MICs (ρ > 0.425, p < 0.0001; Figure S4.7). Notably, no 

correlation was observed between CPD and TNE-7 among LICs. Although sampling time may 

influence correlation, especially among intermittent smokers, socioeconomic status (SES) has 

been shown to have an impact on misreporting (13,69). As a result, discrimination between 

current and never smokers was performed to better identify potential misreported smokers from 

true never smokers, where we observe distinct cut-off thresholds dependent on both country 

income status and biological sex, with the highest TNE-7 levels occurring for females from 

MICs and HICs, while smokers of both sexes from LICs, (e.g., Bangladesh) had consistently 

lower threshold cut-offs (Figure 4.3).  This highlights potential self-reporting errors as a result 

regional cultural factors, social desirability, and/or recall biases, more likely to be prevalent in 

LICs at the time of sampling. This is further supported by a detection rate of ~ 27% among never 

smokers, where 56% are from LICs (Table S4.3), with TNE-7 concentrations in the range of 

light smokers (22.8 μM; Figure 4.6). Similarly, a recent study by Park et al. (70), emphasizes the 

importance of optimal cut-off values, with consideration for age and sex, as they demonstrate a 

critical role in monitoring the effectiveness tobacco control policies. Moreover, evolving changes 

in public policies warrant on-going biomonitoring studies using objective biomarkers of tobacco 

smoke exposure, as relying solely on self-reports may provide inaccurate information especially 

when comparing tobacco smoking trends between countries globally. 
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Notable, regional differences were also observed among heavy smokers after adjusting 

for CPD, age, sex and BMI (Figure 4.2). The 2-fold increase in nicotine exposures in smokers 

from HICs as compared to other regions despite adjustment for smoking intensity may be 

attributed to differences in metabolism and/or cigarette brands which can influence smoking 

behavior (17). For example, ventilated and low-yield cigarettes, more common in HICs, 

(17,71,72) have been associated with increased puff volumes, resulting in elevated nicotine 

exposure (71,73,74). In addition, increased CYP 2A6 metabolism has been associated with 

upward of 51% of variance in interindividual puff volume, where fast metabolizers exhibit 

deeper inhalation per cigarette (6). Discrepancies in biomarker-based tobacco exposure between 

regions may help to explain an apparent increase in the hazards of tobacco smoking (relative to 

never smoking), such as greater all-cause mortality and clinical events (e.g., cardiovascular 

disease, cancer, and respiratory disease), in richer as compared to poorer countries when relying 

of self-reports alone (17).  

4.5.3 Tobacco-Related Disease Risk Among Current Smokers 

The urinary NMR ratio involving 3-hydroxycotinine and cotinine has been well established as a 

predictor of CYP 2A6 activity, capturing both genetic and environmental influences on nicotine 

metabolism (6,16,29,41). In our work, a median urinary NMR of 3.63 was measured with a 96-

fold range in CYP 2A6 activity ranging from 0.23-22.0. Given that greater disease risk has been 

associated with elevated NMR ratios (16,29,75,76), stratification of NMR into quartiles has been 

recommended to classify fast from slower nicotine metabolizers (56). Although, no standardized 

cut-offs have been reported, tobacco smokers in the upper quartile have consistently shown 

greater nicotine/intoxicant exposures, nicotine dependence, and oxidative stress or biological 
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harm (56). Our urinary NMR data comprised participants from fourteen different countries, 

where TNE-7 verified current smokers were classified as higher-risk, fast (Q4) as compared to 

slower (Q1-Q3) nicotine metabolizers (Figure 4.3). To evaluate tobacco-related disease risk, 

urinary TNE-7 was monitored between fast and slower metabolizers, following adjustments for 

age, sex, BMI and CPD. Although self-reported CPD was not different between NMR sub-

groups (Table 4.2), tobacco exposure was significantly elevated in fast as compared to slower 

metabolizers that also demonstrated a dose-response relationship with increasing NMR (Figure 

4.3). This is indicative of greater inhalation volumes per cigarette and consistent with recent 

studies, where fast nicotine metabolizers demonstrated elevated puff volumes of about 25% (6). 

In addition, urinary thiocyanate, a biomarker for cyanide exposure excreted in high levels with 

active tobacco smoking was also significantly elevated among the fast nicotine metabolizers, 

indicating an increase in toxicant exposure (Table 4.2). Consequently, tobacco smokers 

classified as fast metabolizers are at greater risk for smoking dependence and increased toxicant 

exposure as a result of heightened tobacco intake (75). Continued exploration of fast 

metabolizers (Figure S4.10) shows a continued step wise increase in NMR, correlated with 

TNE-7, emphasizing how tobacco-related disease risk may not plateau, but rather continue to 

increase. Interestingly, only among these further stratified high-risk individuals is an increase 

observed for CPD, indicating how self-reports may not capture important smoking behavioral 

patterns as a result of differences in nicotine metabolism. Overall, high-risk, fast metabolizers of 

nicotine were primarily from HICs, where elevated median urinary NMR levels were detected in 

quartile four (Figure S4.9, Figure S4.10). These results are consistent with Sathish et al. (17) 

who reported that current smokers from HICs had the highest hazard ratios reflected by greater 

urinary TNE-7 concentrations as compared to smokers from other country income regions. Our 
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work provides greater insight into these trends based on urinary NMR stratification that likely 

reflects differences in population genetics and the brands of commercial cigarette products 

consumed in HICs. 

Given the involvement of glucuronidation in secondary nicotine metabolism, and 

detoxification of toxicants (e.g., nitrosamines), UGT activity may also impact disease risk 

(31,35) as direct analysis of cotinine and its glucuronide have demonstrate a strong dose 

relationship with UGT 2B10 (35). As such UGT cotinine activity was evaluated, where quartile 

one individuals were identified as slow detoxifiers, and are more likely to have a loss of function 

genetic variant of UGT 2B10 (Figure S4.11). These individuals may be at greater risk for 

retaining bioactivated toxicants from smoke (e.g., tobacco specific nitrosamines) (31,44,77,78). 

Although a minimal correlation was observed between urinary TNE-7 and UGT cotinine, it 

likely plays a more important role in detoxification of other toxicants compared to smoking 

topography. This highlights a secondary mechanism which may put current smokers at greater 

risk for tobacco-related disease outcomes. 

Overall, MSI-CE-MS offers a simple, cost-effective approach with stringent quality 

control for the rapid analysis of a broad panel of nicotine metabolites that can support large-scale 

epidemiological and clinical trials for personalized smoking cessation interventions. This method 

demonstrates rapid analysis times (< 5 min/sample), and acceptable reproducibility compared to 

direct LC-MS/MS methods, with improved precision for the detection of intact glucuronide 

conjugates, while mitigating the need for complex sample workup procedures which may 

introduce bias and lower recovery (e.g., enzyme hydrolysis, solid-phase extraction). Moreover, 

this approach takes advantage of the multiplexing capabilities as compared to conventional 

separation techniques, whereby we outline a rigorous validation for high throughput 
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biomonitoring of nicotine metabolism in an international cohort of current and never smokers. 

Although limitations in concentration sensitivity did not allow for detection of low levels of SHS 

exposure in this work, the use of MSI-CE-MS in conjunction with nanospray interfaces and 

multi-reaction monitoring with tandem mass spectrometry (MS/MS) are recommended. 

Additionally, future work with prospective clinical data and larger cohort sizes can increase 

study power and allow for linking elevated toxicant exposures among fast nicotine metabolizers 

who may be a greater risk for tobacco related deaths and clinical events. 

In summary, TNE-7, NMR and UGT provide biochemical verification of regional 

differences in smoking topography, nicotine metabolism and detoxification, as well as risk for 

nicotine dependence that are not captured by standardized questionnaires. Quantification of 

urinary TNE-7 revealed a pattern of a greater misreporting rate among never smokers in LICs, 

which may be a result of gender and social desirability bias commonly associated with self-

reported questionnaires. In such instances, self-identified never-smokers exhibit TNE-7 

concentrations similar to light smokers found in other countries, thus demonstrating the 

limitations of epidemiological survey-based biomonitoring strategies. Furthermore, biochemical 

verification following adjustments for covariates demonstrated increased tobacco smoke 

exposure and faster nicotine metabolism among current smokers predominantly from HICs, as 

compared to MICs and LICs, which may elucidate their apparent elevated tobacco disk risk as 

compared to other regions that also assumed no disproportionate rate of misreporting in never 

smokers (17). In summary, this work is the first biomarker-based study to assess tobacco smoke 

exposure and nicotine clearance from participants across fourteen different countries with 

diverse multi-ethnic populations for characterization of regional variations in smoking 

topography, and biochemically verified misreporting. Given the prevalence of tobacco smoking 
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worldwide, MSI-CE-MS offers a strategy for rapid and reliable biochemical verification of 

tobacco exposure, ideal for large-scale biomonitoring to better guide evidence based global 

health policies and improve smoking cessation outcomes in active smokers.  
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4.8 Supporting Information 

Table S4.1 Summary of participants from the PURE study (n=1000) based on their self-reported 
smoking status and country income status. 

Country 
Never Smokers 

(n=335) 

Light Smokers 
(<10cigarettes/day) 

(n=324) 

Heavy Smokers 
(≥10cigarettes/day) 

(n=341) 

High Income Countries (HICs) 

Canada 26.0% (n=87) 23.1% (n=75) 21.7% (n=74) 

Sweden 3.3% (n=11) 14.8% (n=48) 17.3% (n=59) 

UAE 4.8% (n=13) 0.9% (n=3) 1.8% (n=6) 

Middle Income Countries (MICs) 

South Africa 2.7% (n=9) 3.7% (n=37) 0.8% (n=3) 

Brazil 2.4% (n=8) 11.4% (n=11) 6.5% (n=22) 

Colombia 9.0% (n=30) 7.1% (n=23) 2.3% (n=8) 

Chile 1.2% (n=4) 2.2% (n=7) 0.6% (n=2) 

Argentina 10.4% (n=35) 16.7% (n=54) 19.1% (n=65) 

Iran 5.4% (n=18) 2.5% (n=8) 6.5% (n=22) 

Philippines 2.7% (n=9) 0.6% (n=2) 1.2% (n=4) 

Low Income Countries (LICs) 

Bangladesh 29.2% (n=98) 13.6% (n=44) 21.4% (n=73) 

Pakistan 0.9% (n=3) 2.5% (n=8) 0.3% (n=1) 

Tanzania 3.0% (n=10) 0.9% (n=3) 0.3% (n=1) 

Zimbabwe - 0.3% (n=1) 0.3% (n=1) 
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Table S4.3 Characteristics of never smokers with detectable levels of urinary TNE-7 (n=89) 
indicative of misreporting within each income group from the PURE study. 

Variablea HICs 
(n=20/111) 

MICs 
(n=19/112) 

LICs 
(n=50/111) 

% Misreported Never Smokers 18% 17% 45% 

TNE-7* 3.46±3.7 μM 9.24±33 μM 22.8±49 μM 

Sex (n;%) - - - 

F 65% (n=13) 68% (n=12) 66% (n=33) 

M 35% (n =7) 32% (n=6) 34% (n =17) 

Age* 55±17 58±9 50±16 

BMI* 29±6 26±8 22±6 

PM 2.5* 9±2 27±23 78±14 

Location (n,%) - - - 

Urban 75% (n=15) 79% (n=15) 50% (n=25) 

Rural 25% (n=5) 21% (n=4) 50% (n=25) 

Second-hand Smoke (n;%) - - - 

Exposed (>1 time/week) 20% (n=4) 32% (n=6) 48% (n=24) 
a Median values ± interquartile range (IQR) are shown unless otherwise indicated 
*Significant at p<0.05
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Table S4.4. Summary of key figures of merit for ratiometric biomarkers of enzyme activity 
(CYP 2A6, UGT) measured in verified current smokers from the PURE study. 

Figures of Merit NMR UGT Cotinine UGT OH-Cotinine UGT Nicotine 

Range (mM) a 0.23-22.0 0.01-7.85 0.04-8.67 0.01-2.75 

Technical Precisionb 
(CV) 14.6% 19.4% 16.7% 41.1% 

Biological Variation 
(CV) 73% 87% 173% 147% 

ICC 0.95 0.94 0.99 0.92 

Frequency of 
Detection c 

79% 
(n=525) 

71% 
(n=470) 

67% 
(n=443) 

30% 
(n=201) 

a Enzyme activity range in the PURE cohort for participants with quantifiable levels of individual nicotine metabolites necessary 
for calculating the ratio.  
b Precision was monitored through pooled quality control samples over the course of the 6-day study (n=156) based on mean CV 
c Frequency of detection (%) among self-identified current smokers for those with a ratio that could be mathematically 
calculated. 
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Table S4.5 Partial Pearson correlation matrix between ratiometric biomarkers of enzyme activity 
(CYP 2A6, UGT) and TNE-7 for biochemically current smokers from the PURE study.  

NMR UGT 
Cotinine 

UGT OH-
Cotinine UGT Nicotine TNE-7 

NMR 1 0.406* 0.095 0.002 0.580* 

UGT Cotinine 1 0.332* 0.253* 0.396* 

UGT OH-
Cotinine 1 0.095 -0.029

UGT Nicotine 1 -0.024

TNE-7 1 

*A signification correlation based on partial Pearson correlation analysis with adjustments for age, sex, BMI, CPD, when using
pairwise deletion (p-value<0.001)
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Table S4.6 Stratification of urinary NMR in fast nicotine metabolizers from PURE (n=142) 
classified as high-risk tobacco smokers (Q4) due to their greater toxicant exposure compared to 
slower nicotine metabolizers (Q1-Q3) (n=426) at lowest risk for biological harm. 

Variable
a High Risk 

Metabolizers (n=35)
Fast Metabolizers 

(n=107)
Slower Metabolizers 

  (n=426)

Sex (n;%) - - -

F 51% (n=17) 48% (n=51) 39% (n=168)

M 49% (n=18) 52% (n=56) 61% (n=258) 
Age 56±10 53±12 52±15

BMI 32±20 32±15 32±12 
Income Status (n;%) - - - 

HICs 54% (n=19) 57% (n=61) 31% (n=133)

MICs 40% (n=14) 33% (n=35) 36% (n=155)

LICs 6% (n=2) 10% (n=11) 32% (n=138)

NMR* 13.3 ±3.7 7.15 ±2.1 2.99±2.1 
UGT Cotinine* 2.39 ± 3.2 1.61 ± 1.4 0.81±0.8 

TNE-7* 108 ± 88 μM 72.5 ± 56 μM 39.2±39 µM 
Thiocyanate* 107 ± 149 μM 84.9 ±98 μM 52.6±87 μM 

Smoking Status (n;%) - - -

Heavy Smokers 77% (n=27) 56% (n=60) 51% (n=218)

Light Smokers 23% (n=8) 40% (n=43) 40% (n=169)

Misreported Never Smokers 0% 4% (n=4) 9% (n=39) 
# of Cigarettes per day 18±10 10±11 10±10 

Pack Years 31±31 20±24 16±21

a Median values ± interquartile range (IQR) are show unless otherwise indicated. 
*Significant at p<0.0001, after adjusting for age, sex, BMI, and CPD.
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Figure S4.3 Stability studies were performed by spiking all seven nicotine metabolites in pooled never 
smoker urine, including (A) delays to freezing at room temperature and (B) repeat freeze-thaw cycles. All 
nicotine metabolites were measured in triplicate (CV <15%) by MSI-CE-MS, which confirmed no 
significant change (%change <15%) in concentration between all-time points.  
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Figure S4.4 Schematic of nicotine metabolism as mediated by CYP 2A6, UGT, and FMO and their 
phenotypic biomarkers of smoking behavior and nicotine dependence (e.g., NMR). The sum of all seven 
nicotine metabolites in urine is referred to the total nicotine equivalents (TNE-7), which is a robust 
biomarker of recent tobacco smoke exposure independent of metabolic rate.  
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Figure S4.5 TNE-7 detected among never smokers (n=89) in the PURE cohort was compared between 
individuals self-reporting recent SHS exposure, as compared to individuals indicating no exposure. No 
significant difference in TNE-7, NMR, and UGT demonstrates the current instrumental detection limits 
likely cannot distinguish between current smokers and those exposed to second-hand smoke, but rather a 
more likely contribution of misreports among never smokers.  
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Figure S4.6. TNE-7 detected among never smokers (n=50) in LICs, demonstrates median levels (22.8 
µM) within the range of biochemically verified light smokers found in HICs and MICs (24.8-30.6 µM), 
likely indicated misreporting in LICs.  
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Figure S4.7 (A) A moderate association was found between self-reported smoking intensity (CPD) to 
recent tobacco smoke exposure (TNE-7) among all self-identified current smokers from PURE when 
using a Spearman rank correlation analysis. Overall, the strongest correlation was demonstrated in (B) 
HICs, followed by (C) MICs, with no significant correlation to self-reports of smoking intensity in (D) 
LICs indicative of misreporting discrepancies between regions.  
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Figure S4.8 Regional and sex differences were identified for CYP 2A6 activity amongst active smokers 
in PURE (n=568) based on urinary NMR. (A) Following ANCOVA with adjustments for age, sex, BMI 
and CPD enzyme activity is highest in HICs relative to MICs and LICs. This is indicative of regional 
metabolism differences that be a result of genetics or environmental factors (e.g., diet, medication) (B) 
While overall females tend to have slightly elevated CYP 2A6 activity compared to males after correction 
for age, BMI and CPD due to the role of elevated estrogen in the induction of CYP 2A6 metabolism.  
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Chapter V: High-Throughput Metabolomics for the Identification of Robust Dietary 
Biomarkers of Food Intake from the Prospective Urban and Rural Epidemiological 
(PURE) Study 

5.1 Abstract 

A suboptimal diet is characterized by the habitual consumption of high caloric and low nutrient 

processed foods, which is an important modifiable risk factor for chronic diseases worldwide. 

Current methods for elucidating the health effects from food exposures largely rely on 

standardized food frequency questionnaires (FFQs) that may be prone to bias and misreporting. 

Although there is growing interest in using dietary biomarkers as more objective indicators of 

food intake in nutritional epidemiology, sparse studies have validated their generalizability in 

diverse populations from developing and developed countries. Herein, we applied a nontargeted 

metabolomics workflow by multisegment injection-capillary electrophoresis-mass spectrometry 

(MSI-CE-MS) in conjunction with multivariate and univariate statistical analysis methods for 

identifying robust dietary biomarkers in urine samples collected from participants in the 

Prospective Urban and Rural Epidemiology (PURE) study. A total of 116 urinary metabolites 

were reliably quantified by MSI-CE-MS (CV < 30%) from participants (n=1000) from fourteen 

countries with varying income status and compared to semi-quantitative food intake measures 

from FFQs (n=60). A total of 215 significant correlations were initially classified (r > 0.20, p < 

0.05) with subsequent filtering used to identify 19 dietary biomarker candidates in urine 

associated with five distinct food classes and overall diet quality based on the Alternative 

Healthy Eating Index score. Overall, eight top-ranked candidates were considered as robust 

dietary biomarkers based on their dose response, plausibility and generalizability, such as urinary 

trigonelline which had the strongest correlation (r = 0.662, p = 1.20×10-31) to self-reported coffee 

intake while also reflecting regional trends in coffee consumption and smoking habits in the 
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PURE study. Similarly, urinary proline betaine, carnitine, 3-methylhistidine, saccharin, 

acesulfame K, uracil, and the sum of quinic acid and trigonelline (r = 0.272-0.308, p < 6.42×   

10-6) were replicated across a large multiethnic cohort reflecting variable and regional dietary

patterns associated with the consumption of fruits and vegetables, red meat, total sugar, 

processed foods, nuts and soy, and raw vegetables. Our study highlights that a panel of urinary 

dietary biomarkers of food intake may provide more reliable assessment of dietary patterns 

globally while providing new insights into chronic disease risk across diverse populations.  

5.2 Introduction  

A global epidemic of chronic non-communicable diseases (NCDs) is having a disproportionate 

burden on morbidity and mortality notably in developing countries due to increases in population 

growth and urbanization [1]. NCDs are now responsible for over 70% of deaths globally [2], 

including cardiovascular diseases (CVD), obesity, type 2 diabetes, and certain cancers that share 

several common modifiable risk factors associated with lifestyle, such as tobacco smoking, 

alcohol consumption, physical inactivity and unhealthy eating patterns [3]. Suboptimal diet 

linked to excessive intake of sodium, carbohydrates and red meat, as well as low consumption of 

fruits, vegetables, legumes, whole grain and fiber  is a leading preventable risk factor to chronic 

disease burden and disability-adjusted life-years worldwide [4–8]. Contemporary unhealthy diets 

that contribute to cardiometabolic diseases are also associated with increased consumption of 

nutrient-poor, ultra-processed foods containing artificial sweeteners [9], whereas adherence to an 

Alternative Healthy Eating Index (AHEI) dietary pattern can reduce the risk of all-cause 

mortality [10]. Indeed, dietary modifications are often utilized for both the prevention and 

management of NCDs, particularly in instances of multiple comorbidities [4]. Nevertheless, there 
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remains on-going controversy on the what exactly constitutes a healthy diet to better guide 

evidence-based public health policies and guidelines for chronic disease prevention [11]. 

Evaluating the synergistic effects of food exposures is important when assessing diet 

quality [12,13] since nutrients are not consumed in isolation and many non-nutrients (e.g., 

phytochemicals, fiber) play a myriad of roles in human health. For instance, individuals scoring 

in the top quintile of the AHEI exhibit a lower risk for multiple NCDs, including coronary heart 

disease, stroke, and type 2 diabetes [14–16]. While scoring methods such as AHEI have proved 

effective and low cost to implement in large-scale nutritional epidemiological studies, they are 

limited by their reliance on self-reported dietary intake measures using 24 h diet records or food 

frequency questionnaires (FFQs) [17]. These surveys are prone to random and systematic errors 

related to underestimated energy intake, inaccurate portion sizes, as well as gender and social 

desirability bias when comparing dietary patterns in certain demographic groups and multi-

ethnic populations [18–21]. For instance, a positive social approval bias may overestimate the 

self-reported intake of fruits and vegetables [22], which have long troubled the validity of FFQs 

in nutritional epidemiology. Additionally, such reporting methods do not fully capture the 

complex chemical composition of foods, variations in preparation and cooking methods, as well 

as habitual consumption of stimulants with meals, such as coffee [23]. Moreover, survey 

questions are unable to directly assess the interactions of food exposures with genetics and the 

gut microbiome that impact nutrient bioavailability and disease susceptibility [17,24].  

Comprehensive metabolic profiling of non-invasive biological fluids, such as urine may 

offer more objective dietary biomarkers of food intake that are complementary to self-reported 

diet recall methods [21]. Modern nontargeted metabolomic techniques enable the concurrent and 

unbiased determination of hundreds of small molecules to provide unexpected insights into 
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complex food exposures and better decipher underlying diet-disease relations in nutritional 

epidemiology [25,26]. Overall, an ideal dietary biomarker of food intake is not extensively 

metabolized, exhibits a distinct temporal and dose dependence, demonstrates specificity to a 

distinct food item or food category, while also being applicable to diverse populations globally 

[17,27]. To date, recent studies have focused on validating the utility of dietary biomarkers in 

well-controlled clinical trials and observational studies, while assessing the bias associated with 

standardized FFQs [28,29]. However, most epidemiological studies have focused on targeted 

metabolite-FFQ associations defined a priori in high-income countries (HICs) with few multi-

ethnic and multi-center cohorts involving participants from middle- (MICs) or low-income 

countries (LICs) [17,30].  

Herein, we outline a high throughput and nontargeted metabolomics data workflow using 

multisegment injection-capillary electrophoresis-mass spectrometry (MSI-CE-MS) to 

characterize food exposures in urine samples. A cohort of 1000 participants recruited from the 

Prospective Urban and Rural Epidemiology (PURE) study [31] were examined to classify and 

validate dietary biomarkers of food intake in urine that were correlated to semi-quantitative food 

intake and diet quality measures. Importantly, this work was able to validate the utility of urinary 

dietary biomarkers generalizable to participants from 14 countries at different socioeconomic 

developments, reflecting large regional variations in dietary patterns, including tobacco smoking. 

5.3 Materials and Methods  

5.3.1 PURE Study Cohort & Dietary Self Reporting 

This PURE study comprises an international cohort of current and never smokers that is on a 

nested-case control study design as described elsewhere [31]. In a sub-study involving 1000 
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participants from 14 countries, morning void urine samples were collected and stored frozen (-20 

to -70 °C), and shipped at -160 °C using liquid nitrogen to Hamilton, Ontario. Urine samples 

were selected at random in approximately equal proportions of never smokers (n=335), as well 

as light (< 10 cigarettes per day; n=324), and heavy (≥10 cigarettes per day; n=341) current 

smokers, with a maximum of one freeze-thaw cycle and 7 h thaw time. Detailed questionnaires 

were provided, with information regarding age, sex, education, location, smoking status, disease 

history, alcohol consumption, and current medication use as previously described [32]. 

Standardized FFQs were also used to collect detailed information on dietary patterns and 

nutritional status, with subsequent calculations to determine AHEI score provided based on self-

reports [32]. To account for variations in locally eaten foods, a master international nutrient 

database was used and modified to local food composition tables and supplemented with recipes 

of locally eaten dishes [32]. 

5.3.2 Chemicals and Reagents 

Ultra HPLC grade LC-MS solvents (water, methanol, acetonitrile) were obtained from Caledon 

laboratories (Georgetown, ON, Canada) for preparation of buffers, sheath liquid and stock 

solutions. Additional chemicals were all obtained from Sigma-Aldrich Inc. (St Louis, MO, 

USA). 

5.3.3 Nontargeted Metabolite Profiling of Urine by MSI-CE-MS 

Prior to analysis, urine aliquots were thawed on ice, vortexed for 30 seconds, and centrifuged 

(14,000 g for 5 min) to remove particulates. Samples were then prepared for nontargeted 

metabolite profiling with a 5-fold dilution using HPLC-grade water and an internal standard 
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mixture containing 3-chloro-l-tyrosine (Cl-Tyr), D-glucose-13C, choline-d9, gaba-d6, and 2-

napthalenesulfonic acid (NMS) at a final concentration of 20 μM in sample. All diluted urine 

aliquots were then analyzed by MSI-CE-MS [33], on an Agilent 7100 capillary electrophoresis 

(CE) instrument (Agilent Technologies Inc. Mississauga, ON, Canada) coupled with an Agilent 

6230 Time of Flight Mass Spectrometer (TOF-MS), equipped with a coaxial sheath liquid 

electrospray ionization (ESI) source with heated nitrogen gas. An Agilent 1260 infinity isocratic 

pump and a 1260 infinity degasser were used to deliver 60 % volume MeOH with 0.1 % volume 

formic acid sheath liquid for positive ion mode, while 70% volume MeOH was used for negative 

ion mode at a flow rate of 10 μL/min. For real time mass correction, reference ions including 

purine and hexakis (2,2,3,3-tetrafluoropropoxy)phosphazine (HP-921) were spiked into the 

sheath liquid at 0.02 % volume. The nebulizer spray was turned off during serial sample 

injections to avoid suctioning effects and current instabilities [34]. It was then subsequently 

turned on at 4 psi following voltage application with the source temperature set to 300 °C, and 

the drying gas delivered at 8 L/min. The Vcap was set to 2000 V, and the nebulizer gas was 

delivered at 10 psi, while the sheath gas was set to 195 °C and delivered at 3.5 L/min. 

Additionally, MS voltage settings were set to a fragmentor of 120 V, the skimmer at 65 V, and 

Oct1 RF at 750 V. The TOF-MS system was operated with full scan data acquisition over a m/z 

range of 50-1700 and an acquisition rate of 500 ms/spectrum.   

Separations were performed on an uncoated fused silica capillary (Polymicro 

Technologies, Phoenix Az, USA) with an inner diameter of 50 μm, outer diameter of 360 μm, 

and total length of 135 cm with a voltage of 30 kV at 25 °C. The polyimide coating was removed 

from both ends (7 mm) to avoid sample carry-over and swelling effects [35]. All diluted urine 

samples were analyzed under both positive ion mode (cationic/basic or zwitterionic metabolites) 
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and negative ion mode (anionic/acidic metabolites) conditions with a background electrolyte 

(BGE) of 1M formic acid with 15% volume acetonitrile (pH 1.8) and 50 mM ammonium 

bicarbonate (pH 8.5), respectively. Separations were performed under normal polarity, with a 

pressure gradient of 2 mbar/min from 0 to 40 min for negative ion mode. Serial sample injections 

consisted of 11 discrete hydrodynamically injected sample plugs, (5 s at 100 mbar) followed by 

background electrolyte BGE spacers injected electrokinetically at 30 kV for 75 s for cationic 

metabolites and 45 s for anionic metabolites [36]. A five min flush time with BGE at 950 mbar 

was used at the start and end of each run. Preventative maintenance included daily cleaning of 

the ion source with 50% volume isopropanol, CE electrode cleaning, and capillary flushing for 

15 min at the start of the day. A daily quality control (QC) run was also performed with a blank 

to assess stability prior to running samples, with the additional inclusion of a pooled QC within 

each individual run. High resolution tandem mass spectrometry (MS/MS) spectra were acquired 

for structural elucidation of unknown metabolites of significance from a pooled QC urine sample 

on an Agilent G7100A CE system with a coaxial sheath liquid Jetstream electrospray ion source 

connected to an Agilent 6550 iFunnel QTOF instrument. A single urine sample was injected 

hydrodynamically at 100 mbar for 90 s, followed by a BGE spacer at 100 mbar for 5 s. Precursor 

ions were then selected for collision-induced dissociation experiments at varying collision 

energies (10-40 V). The ESI conditions were set to a Vcap of 3500 V, with a nozzle voltage at 

2000 V, nebulizer gas set to 8 psi, drying gas delivered at 14 L/min at 225 °C, while the MS 

voltage settings included a fragmentor of 380 V and Oct1 RF set to 750 V. Subsequently, 

acquired MS/MS spectra were annotated based on characteristic product ions, neutral mass 

losses, and compared to open-access public databases, such as the Human Metabolome Database 

(HMDB) [37]. 
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5.3.4 Metabolomic Data Processing and Statistical Analysis  

Raw data was converted to a mzXML format using MSconvert (Proteowizard) [38] prior to 

importation in MZmine 2.0 for nontargeted metabolite profiling [39].  Subsequently, settings 

were set to a minimum signal intensity of 200 counts for spectra generation to extract molecular 

features by exact mass. The generation of extracted ion electropherograms (EIEs) was preformed 

based on a minimum signal intensity of 200 counts, a minimum time span of 0.01 min, and 

a m/z tolerance of 5 ppm. Adduct filtering was then applied within MZmine2 based on a 

migration time tolerance of 1.0%, m/z tolerance of 10 ppm, and maximum relative adduct peak 

height of 50%. Molecular features were processed using Agilent Mass Hunter Workstation 

Software (Qualitative Analysis, version B.07.00) after extracting in profile mode using a 10-ppm 

mass window. EIE’s were integrated after smoothing using a quadratic/cubic Savitzky Golay 

function (15 points) with the peak areas and migration times being transferred to Excel 

(Microsoft Office, Redmond, WA, USA) for the calculation of relative peak areas (RPAs) and 

relative migration times (RMTs). In all cases, the integrated ion response (i.e., peak area) for 

each metabolite was normalized to Cl-Tyr in positive ion mode, and NMS in negative ion mode. 

Next, the determination of a coefficient of variation (CV) from QC urine samples was calculated, 

where urinary metabolites with high technical variance (CV > 30%), and low detection 

frequency (< 60%) were removed from the data matrix. Remaining urinary metabolites were 

annotated based on their characteristic accurate mass (m/z) for their protonated [M+H+], or 

deprotonated [M-H-] molecular ion, relative migration time (RMT) and detection mode 

(positive:p or negative:n). Overall, 116 urinary metabolites satisfied selection criteria in our 

nontargeted metabolomics workflow, which were classified based on their technical precision 

(CV%) in QCs, biological variance (CV%) in samples, and interclass coefficients (ICC) as 



Ph.D. Thesis – Biban Gill; McMaster University – Chemical Biology 

183 

summarized in Table S5.2. Given the positive skew among dietary variables due to a substantial 

number of zero values reported to indicate a lack of dietary intake, a cubic root transformation 

was performed on all metabolomic and FFC data prior to further analysis in R version 4.0.3 (R 

Foundation for Statistical Computing, Vienna, Austria). [40–42]. Food records were then 

correlated against metabolites using a partial Pearson correlation in R with the “ppcor” package 

[43] following listwise adjustments for age, sex, body mass index (BMI), alcohol intake (current

vs former/never), education (secondary and above vs primary education), total energy (kcal), 

smoking status (current vs never smoker), and history of comorbidities (hypertension and 

diabetes). Metabolites were filtered based on a significance threshold (p < 0.05) and a correlation 

cut-off (r > 0.2). A hierarchical correlation analysis (HCA) plot for FFQ data was subsequently 

performed in R with the “corrplot” package [44]. ANCOVA for determining dose response and 

regional comparisons, as well as univariate statistical analyses (t-test, Mann Whitney U test) and 

normality testing (Shapiro-Wilk test) was conducted using the Statistical Package for Social 

Sciences (SPSS, version 18.0), with adjustments for covariates (age, sex, BMI, alcohol intake, 

education, total energy (kcal), smoking status, comorbidities), including specific food categories 

(e.g., soft drinks, tea, raw vegetables, fish, fruit, coffee). Receiver-operating characteristic curves 

(ROC), control charts, histograms, and box plots were created using Medcalc version 12.5 

(MedCalc Software). In addition, autoscaling and missing value imputation with minimum ion 

response divided by two was performed prior to multivariate statistical analysis in 

MetaboAnalyst 5.0 [45], including a principal component analysis (PCA) and HCA/2D heat map 

for data visualization.  
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5.4 Results 

5.4.1 Cohort Characteristics and Metabolomics Workflow 

The participants selected for the PURE pilot study (n=1000) were comprised of current (65%) 

and never smokers (35%) recruited from HICs (Canada, Sweden, United Arab Emirates), MICs 

(Argentina, Columbia, Brazil, Chile, South Africa, Iran, Philippines) and LICs (Bangladesh, 

Pakistan Zimbabwe, Tanzania) as described elsewhere [31]. The mean (± SD) age of the study 

population was 52 (± 9.6) years, with a mean BMI of 26 (± 5.8) kg/m2, and a mean AHEI score 

of 32.3 (± 9.1). A nearly equal number of males (52%) and females (48%) were included, with ~ 

38% (n=376) of participants coming from HICs, ~ 38% (n=381) from MICs, and ~24% (n=243) 

from LICs. The cohort was subsequently stratified according to AHEI score (Figure 5.1A), with 

participants in the top quintile (Q5) classified as eating a “healthy” diet (n=196), compared to 

individuals in the bottom four quintiles (Q1-Q4) categorized as an “unhealthy” diet (n=782) [46]. 

The mean diet score (± SD) amongst individuals consuming a healthy diet was found to be (44.7 

± 4.3), while participants eating a poorer diet had a lower score of (29.2 ± 7.1). No significant 

difference (p > 0.05) in age, sex or BMI was measured between these diet quality sub-groups 

(Table S5.1).  However, a greater frequency of participants in the unhealthy eating group were 

from HICs (35%) and MICs (41%) relative to LICs (23%). Importantly, 71% of participants 

consuming a suboptimal diet self-identified as current tobacco smokers (Table S5.1). Although 

there were no differences (p > 0.05) in self-reported dairy, coffee, or total lipids between the two 

diet quality sub-groups from PURE, daily average consumption of red meat, processed meat, and 

processed foods, were all elevated (p < 0.05) in participants consuming an unhealthy diet (Table 

S5.1). In contrast, participants with a high diet quality based on their AHEI classification 

reported a greater consumption of fiber, nuts, fruits, vegetables, carbohydrates, and total sugar, 
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with an increased overall total caloric intake (p < 0.001; Table S5.1). In addition, diet quality 

also demonstrated regional variations in the PURE study, with significantly higher scores found 

in LICs (40.4 ± 4) as compared to similar dietary quality patterns in MICs (30.5 ± 5), and HICs 

(31.6 ± 6) (Figure 5.1B). 

Comprehensive metabolite profiling of urine samples (n=1000) by MSI-CE-MS (Figure 

5.1C) characterized a total of 116 urinary metabolites (71 cations, 45 anions) with adequate 

technical precision (CV < 30%) and frequency of detection (> 60%) with the exception of 

acesulfame K (ASK) and saccharin that were detected in only a subset of participants from HICs 

and MICs. A summary of all authenticated urinary metabolites is listed in Table S5.2, where 

each metabolite was annotated based on their accurate mass and relative migration time under 

positive (m/z: RMT:p) or negative (m/z:RMT:n) ion mode along with their most likely molecular 

formula, compound name, mass error, technical precision (CV%), biological variation (CV%), 

frequency of detection (% FOD) and intraclass coefficient (ICC). Overall, acceptable technical 

precision (mean CV=15.6%, n=160) was achieved based on the repeated analysis of pooled QC 

urine samples, whereas the mean biological variance in all urine samples analyzed was 94.7% 

(n=1000) as shown in a 2D scores plot when using PCA (Figure 5.1D).   
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5.4.2 Correlation between Urine Metabolites and Food Records 

Self-reported dietary intake for 60 food groups or specific food items was obtained from FFQs 

collected from PURE participants, with individual descriptions summarized in Table S5.3 [32]. 

Following a partial Pearson correlation analysis between food records (n=60) and urinary 

metabolites (n=116), metabolite sums (n=9) and previously reported iodide, thiocyanate, and 

nitrate concentrations with adjustments for age, sex, BMI, smoking status, total energy (kcal), 

alcohol usage, education, and comorbidities (hypertension and diabetes), a resultant 7998 

correlations were observed (Figure 5.2). With the application of a significance threshold (p< 

0.05), 47.6% of correlations were removed, resulting in 4195 significant associations. 

Subsequently, a more stringent cut-off of r > 0.20 [47] was applied, resulting in a total of 215 

meaningful pairings between urinary metabolites and self-reported food intake measures (Figure 

5.2). Among those remaining, 29 food records were correlated with ≥ 1 metabolite (n=48 

metabolites). An HCA of the 29 food records indicated five distinct food classes, including 

coffee, processed foods and sugars, meats and fat, nuts and soy, along with fruits and vegetables 

(Figure 5.2). In instances with more than one urinary metabolite per food record, as many as five 

metabolites were selected based on the rank order of correlation coefficients (r ≥ 0.25), leaving a 

19 candidate dietary biomarkers of food intake excreted in urine. Table S5.4 summarizes these 

19 candidate urinary biomarkers, including predetermined sums (e.g., trigonelline and quinic 

acid) and their three strongest FFQ associations. Overall, meat and fat intake generated the most 

correlations, with a total of seven urinary metabolites, and two sums satisfying statistical 

thresholds (p < 0.05, r > 0.20; Table S5.4). Next, coffee consumption was significantly 

associated with two distinct metabolites (trigonelline and quinic acid), in addition their sum (r 

=0.32-0.41; Table S5.4). Notably, all three urinary biomarkers associated with coffee were
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also correlated with self-reported raw vegetable intake (r = 0.26-0.31; Table S5.4). 

Comparatively, only urinary proline betaine and the sum of proline betaine with pantothenic acid 

were associated with fruits, and the sum of fruits and vegetables (r = 0.21-0.24). In addition, 

food records related to nuts and soy (n = 3) all showed a significant relationship to uracil (r 

>0.20, p < 0.0001; Table S5.4). Lastly, ASK, saccharin and their tabulated sum displayed a

significant correlation and high specificity for processed foods (r = 0.24), soft drinks and total 

sugar (r = 0.23-0.29), and both metabolites did not demonstrate a relationship with any 

additional food categories (Table S5.4).  

Selection of the strongest associations within each food class resulted in a total of eight 

distinct urinary biomarker-diet pairings (Table 5.1). Subsequent validation according to dose 

response and discriminatory performance were performed as outlined in the data workflow in 

Figure 5.3. After checking for adequate reproducibility in QC samples (median CV < 15%), data 

from semi-quantitative self-reported food records were correlated with metabolomic data 

following further corrections for specific dietary covariates. For instance, the correlation between 

coffee intake and urinary trigonelline underwent an additional adjustment for tea, soft drinks, and 

raw vegetables, while carnitine and red meat were adjusted for fish intake. Similarly, the 

correlation of raw vegetables to the sum of urinary quinic acid and trigonelline was adjusted for 

coffee and fruit consumption. Next, self-reports were stratified and categorized by consumption 

patterns in a binary manner (i.e., high versus low intake) corresponding to either quartiles or 

literature thresholds indicative of health benefits (e.g., < 1cup/day vs ≥ 1cup/day for coffee) 

[48,49]. Accordingly, dose response and discriminatory performance were evaluated based on an 

ANCOVA with covariate adjustments and ROC analysis, respectively. A significance threshold 

(p < 0.05) and median fold-change cut-off (FC > 1.5) were applied while classification 
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performance was determined according to the area under the curve (AUC > 0.65). Amongst the 

eight selected dietary biomarkers of food intake from the PURE study, seven apart from uracil 

met these criteria. Overall, adjustments for covariates did not result in the loss of significant 

correlations, or fold changes, however a moderate drop in correlation strength was observed for 

six out eight top candidates, with the exception of saccharin and the sum of quinic acid and 

trigonelline, where the unadjusted values are outlined in (Table S5.5). 

5.4.3 Top Candidate Biomarkers for Habitual Food Intake 

Urinary metabolites surpassing the established significance threshold (p < 0.05), correlation 

coefficient cut-off (r > 0.20), and minimum discriminatory performance (AUC > 0.65, p < 0.05) 

included candidate biomarkers for coffee (n = 1), fruits and vegetables (n = 2), meats and fats (n 

= 2), as well as processed foods and total sugar (n = 2) as summarized in (Table 5.1). Next, these 

top-ranked dietary biomarkers in urine were compared with diet quality (AHEI score), where an 

ANCOVA and partial Pearson correlation were employed with adjustments for covariates (Table 

S5.6). Overall, the eight initially selected candidates demonstrated significant differences 

between self-reported healthy diet and unhealthy diet quality with the exception of ASK. 

However, urinary ASK, carnitine, trigonelline, saccharin, and the sum of quinic acid and 

trigonelline, showed a significant negative correlation with AHEI (r = -0.07 to -0.16, p < 0.002), 

whereas urinary proline betaine exhibited a modest positive correlation (r = 0.07) for participants 

in the PURE study. Comparatively, urinary 3-methylhistidine and uracil revealed no signification 

association (Table S5.6).  Of the seven top-ranked correlations found between self-reported food 

records and urinary metabolites, trigonelline established the most robust biomarker-food record 

pairing as illustrated in Figure 5.3. 
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An overall 3.4-fold increase in urinary trigonelline excretion, was measured between high (≥ 

1cup/day) versus low (< 1cup/day) consumers of coffee, with a strong classification capacity 

(AUC=0.80, p < 0.0001). In addition, regional trends in coffee consumption were suggested by a 

3.4-fold increase in trigonelline for participants from HICs, compared to LICs, and a 2.7-fold 

increase as compared to MICs (Table S5.6). In contrast, only a 1.2-fold increase was seen 

between MICs and LICs, with 86% (n=210) of participants from LICs (most from Bangladesh) 

reporting no coffee intake.  

Urinary trigonelline, along with quinic acid and their sum also displayed a significant 

association with raw vegetable intake specifically (r = 0.26-0.31, p < 0.0001). Following a 

covariant adjustment for self-reported fruit and coffee consumption, the significant associations 

remained, the strongest being between raw vegetables and the sum of urinary quinic acid and 

trigonelline in the adjusted model (r = 0.296). Accordingly, a significant dose response (FC=2.6, 

p < 0.0001), and moderate discrimination performance between high and low consumers of 

vegetables (AUC=0.70, p < 0.0001) was achieved using a cut-off value of 75 g/day of raw 

vegetable intake, equivalent to that of one serving per day (Figure S5.1A) [6]. As expected, a 

regional variation was also noted, where HICs exhibited the highest levels of raw vegetable 

intake as compared to MICs and LICs (Figure S5.1B). In comparison, the sum of fruits of 

vegetables displayed the strongest association to urinary proline betaine, while carnitine was 

selected as the top-ranked dietary biomarker for red meat intake. Established thresholds of 375 

g/day for fruits and vegetables, as well as 70 g/day for red meat (Figure 5.4) were selected in 

accordance with previously reported health benefits associated with reduced CVD risk [6,50,51] 

Consequently, both dietary biomarkers in urine demonstrated a considerable 2.4- and 2.7-fold 

increase in biomarker response for red meat as well as fruits and vegetables respectively (Figure 
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5.4), both having a good classification performance (AUC = 0.68; Table 5.1). In addition, 

regional variations in urinary proline betaine and carnitine between country income status was 

evident, with more than a 5-fold increase in abundance was measured between HICs and LICs. 

Comparatively, urinary carnitine only displayed a 1.1-fold elevation when comparing HICs to 

MICs, while proline betaine was found to be on average 1.9 times greater (Table S5.6). A 

significant correlation was also observed between self-reported intake of monounsaturated fats 

(MUFA) and 3-methylhistidine (Figure S5.2). In accordance with literature, formal intake 

recommendations fall within a narrow range of 16-22 g/day or 15-20% of total daily caloric 

intake [52,53]. As such, self-reports were stratified and categorized by low intake (Q1; < 10 

g/day) compared to moderate/high intake (Q2-4; > 10 g/day). A notable 3.3- fold increase along 

with a strong discrimination performance (AUC=0.83, p < 0.0001) between predefined exposure 

levels was achieved, indicating a significant relationship between urinary metabolite excretion 

and dietary MUFA intake. Moreover, regional trends in urinary 3-methylhistidine were similar to 

that of carnitine, with a 1.2- and 3.6-fold increase in urinary metabolite levels in HICs relative to 

MICs and LICs, respectively (Table S5.6). In contrast, nut and soy intake according to the AHEI 

nut score (0-10) was shown to be associated with urinary uracil, whose chemical structure was 

putative identified based on an annotated MS/MS spectrum (CID 10-40 V) (Figure S5.3) [54]. In 

this case, there was a modest correlation of urinary uracil with self-reported nut and soy intake (r 

= 0.223) having a dose response of 1.4-fold between high and low intake scores corresponding to 

AHEI guidelines [55]. However, despite regional variations in urinary uracil excretion between 

HICs, MICs and LICs (Figure S5.3), a poor discriminatory performance was found as reflected 

by an AUC of 0.662 (Table 5.1).  



Ph.D. Thesis – Biban Gill; McMaster University – Chemical Biology 

195 

Dietary biomarkers in urine for self-reported processed food and total sugar were found 

to be ASK and saccharin, respectively. While a low FOD (%) was observed for both 

exogenous/artificial sweeteners, (< 60%) significant correlations with their respective food 

consumption patterns (processed food and total sugar) were evident (r > 0.25; Table 5.1). While 

ASK exhibited the fewest detects (22%), MS/MS confirmed its putative identification (Level 2; 

Figure 5.5), based on a comparison to previously published MS/MS spectra at an optimal CID of 

10 V [56]. As expected, urinary ASK was predominantly measured in participants from HICs 

and MICs with few detects (n=16, ~7%) in LICs (Figure 5.5). While specific dietary thresholds 

are not currently recognized for these artificial sweeteners, self-reports were stratified and 

categorized based on low (Q1-2) and high (Q3-4) intake coinciding with a cut-off of 75 g/day. In 

this case, a notable 4.1-fold dose response was determined with good discriminatory 

performance based on ROC curves (AUC = 0.70; Table 5.1). Similarly, urinary saccharin was 

associated with total sugar intake (Table 5.1). With recommended guidelines of 50 g/day [57], a 

median fold change of 2.8 was measured, whereby a moderate discrimination was achieved 

based on an AUC of 0.68. Urinary saccharin was also correlated with ASK (r = 0.193, p < 0.05) 

and follows a similar regional distribution, where HICs and MICs are elevated relative to LICs, 

with MICs displaying the greatest overall saccharin exposures (Figure S5.4).  

Given the strong association found for urinary tetrahydroaldosterone glucuronide and 

dihydrotestosterone glucuronide with raw vegetable intake, fruits and vegetables, as well as red 

and processed meats, these metabolites were explored as biomarkers of physiological effect. 

According to previous reports of the relationships between tetrahydroaldosterone glucuronide 

and potassium [58], along with their role in cardiovascular health, the correlation between 

potassium, extrapolated from food frequency questionnaire data [32], was correlated with both
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Figure 5.4 Comparison of dose response based on recommended health guidelines for (A) red meat along 
with (B) total fruit and vegetable consumption following stratification of self-reports. An overall fold 
change of 2.4- and 2.7- fold biomarker response (RPA) from low to high self-reported intake is observed. 
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steroid hormones, along with diastolic and systolic blood pressure (Table S5.7). A significant 

correlation was observed between both steroid conjugates and potassium excretion following 

adjustments for age, sex, BMI, smoking, education, alcohol, and comorbidities, (r = 0.232-

0.224, p<0.05; Figure S5.5). As expected, both urinary metabolites were also highly co-linear 

with each other (r = 0.764, Figure S5.5). However, only dihydrotestosterone glucuronide 

showed a weak negative correlation with diastolic blood pressure (r = -0.112, Figure S5.5). In 

addition, both metabolites demonstrate notable relationships to hypertension progression, defined 

as normal blood rpessure (< 120 mmHg systolic, < 80 mmHg diastolic), elevated/stage 1 

hypertension (systolic: 120-139 mmHg, diastolic: 80-89 mmHg), and stage 2 hypertension 

(systolic > 140 mmHg, diastolic> 90 mmHg). A significant fold change was observed between 

normal blood pressure levels and stage 2 for both tetrahydroaldosterone glucuronide (FC = 1.3, p 

< 0.05), and dihydrotestosterone glucuronide (FC = 1.2, p < 0.05).  

Lastly, HCA clustering of the eight top-ranked dietary biomarkers, along with their 

associated food records and two additional potential biomarkers of biological effect are depicted 

in Figure S5.6. Overall, three distinct clusters are outlined pertaining to features associated with 

healthy dietary patterns, smoking habits, and unhealthy diet choices. As expected, metabolites 

including proline betaine and uracil were found amongst the healthy diet cluster along with 

AHEI, potassium, fruits and vegetables, as well as nuts and soy. In contrast, biomarkers 

representing meat and fat intake, including urinary carnitine and 3-methylhistidine were 

clustered with ASK and saccharin. These biomarkers were associated with an unhealthy diet and 

have a distinct negative association with AHEI diet scores as shown in Figure S5.6. Moreover, 

smoking related features including self-reported cigarettes per day (CPD), total nicotine 

equivalents (TNE-7) were clustered with features associated with coffee consumption. Upon 
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further investigation, seven out of eight candidate biomarkers in urine demonstrated a significant 

association with smoking status following adjustments for age, sex, BMI, education, alcohol use, 

total energy, co-morbidities, and specific food covariates (Table S5.8). However, urinary ASK 

was the exception, likely a result of its low detection rate in participants from the PURE study 

(n=252). Urinary proline betaine that was associated with fruits and vegetable consumption, 

demonstrated a lower intake amongst current smokers, whereas urinary biomarkers for nuts and 

soy, raw vegetables, coffee, red meat, MUFA, and total sugar were consumed to a greater extent 

relative to never smokers (Table S5.8). However, habitual coffee intake as reflected by urinary 

trigonelline excretion had the strongest association to current smoking (r = 0.364, p < 0.0001). 

Comparatively, raw vegetables, red meat, MUFA, along with nuts and soy also showed modest 

positive correlations (r > 0.10, p < 0.014) with urinary (TNE-7), which is a robust biomarker of 

recent tobacco smoke exposure (Table S5.8). 

5.4 Discussion 

5.4.1 Identification of dietary biomarkers of food intake 

This works presents a high-throughput and nontargeted data workflow for the identification of 

robust dietary biomarkers of food intake in urine that are applicable to diverse populations with 

variable dietary patterns and lifestyle. Top-ranked urinary metabolites correlated with specific 

food categories were subsequently validated based on dose-response, discriminatory 

performance, and generalizability in participants from 14 different countries in the PURE study. 

In addition, we revealed regional trends for five important food classes relevant to diet quality 

scores based on AHEI, that likely impact chronic disease risk and potentially exacerbate the 

unadjusted hazards of tobacco smoking. Overall, 19 urinary metabolites exhibited meaningful 
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associations with 29 food intake records (Table S5.4), irrespective of age, sex, BMI, smoking, 

education, alcohol intake, total energy, and comorbidities. Overall, eight top-ranked dietary 

biomarkers of food intake were selected in accordance with the strength of their correlation to 

self-reports of daily food consumption (Table 5.1), which were further evaluated for dose-

response and classification performance. While we have independently replicated previously 

reported food intake urinary biomarkers using an untargeted metabolomics data workflow, 

including trigonelline, proline betaine, carnitine, 3-methylhistidine, ASK, and saccharin, this 

work demonstrates for the first time their generalized utility in an international cohort of 

participants from 14 different countries for routine biomonitoring of habitual diet [23,56,59]. 

Diet quality according to AHEI was shown to differ across regions globally, with lower 

median scores found in HICs and MICs as compared to LICs (Figure 5.1), likely a consequence 

of the predominantly Western diet in these countries (e.g., Canada, Argentina, Sweden) reflected 

by greater average consumption of red meat, processed foods, added sugars, and unhealthy fats 

[60].  Of the top eight candidates (Table 5.1) all selected urinary biomarkers did exhibit 

moderate fold-changes (FC = 0.71-1.36) between stratified healthy and unhealthy diet quality, in 

addition to nominal correlations with diet quality scores (Table S5.6). Urinary metabolites 

associated with fruit and vegetable intake, nuts and soy, coffee consumption and MUFA were 

elevated in a healthy diet, while those associated with red meat, processed foods and total sugar 

were consumed to a greater extent for participants consuming a suboptimal diet. Given that 

AHEI is determined from cumulative ranked scores involving multiple food categories, these 

results reveal how a single biomarker may not reflect overall diet quality [14]. However, despite 

AHEI having been previously used to assess chronic disease risk [14,55], it does not capture 

nutrient bioavailability and metabolism, cooking methods or certain food sources used in distinct 
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regions or cultures [23]. For instance, coffee intake which has shown an inverse association with 

both total and cause-specific mortality is not included in the AHEI assessment score [61].  

5.4.2 Urinary Trigonelline Reflects Coffee Consumption Patterns 

Coffee is the most widely consumed beverage worldwide [61], with a higher prevalence among 

HICs and MICs, with tea being more common in LICs [62]. Often coffee consumption is 

mistakenly considered an unhealthy habit due to the presence of caffeine, a popular stimulant 

[61,63]. However, it has been shown to contribute a large proportion of the recommended daily 

intake of dietary antioxidants, even greater than tea, fruits and vegetables [61,64,65]. Likewise, 

decaffeinated coffee is compositionally similar to regular coffee and has also shown beneficial 

health effects [61,66]. Comparable to previous studies, trigonelline demonstrated the strongest 

correlation (r = 0.662) with self-reports, in addition to quinic acid (r = 0.323) and their respective 

sum (r = 0.401) [67]. Aside from caffeine, trigonelline is a bitter alkaloid naturally present in 

high abundance in coffee beans, and has been reported as a candidate biomarker of exposure up 

to three days following ingestion [68]. Trigonelline is also able to better capture intake of both 

decaffeinated and caffeinated coffee unlike other excreted metabolites (e.g., 1-methyluric acid), 

with little to no contribution from other caffeine sources (e.g., energy drinks, soft drinks), 

making it a more specific biomarker in both acute and habitual dietary exposure. Moreover, its 

direct excretion into urine following coffee consumption without extensive biotransformation, is 

an ideal trait for a dietary biomarker of food intake. Conversely, chlorogenic acids (e.g., quinic 

acid), a class of polyphenols, are the most abundant antioxidants found in coffee beans [61,69]. 

However, they are found in other plant sources consumed and are strongly influenced by host 

metabolism and gut microbiome activity, resulting in greater inter-individual variations [68]. 
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Amongst PURE participants (n=1000), those found in HICs had the highest intake of 

coffee according to urinary trigonelline levels, as compared to MICs and LICs (Tables S5.6). 

However, a large variation in signal produced by trigonelline was observed from those reporting 

no coffee intake (Figure 5.3B). This may be a result of survey misreporting, as well as the 

contribution of trigonelline from other dietary sources such as fenugreek, a commonly used spice 

in South Asian cuisine, likely contributing to background levels found in LICs who reported no 

coffee consumption (e.g., Bangladesh) [70–72]. In addition, regional disparities may be a 

consequence of coffee preparation and roasting processes, where increased roasting resulting in 

lower trigonelline and chlorogenic acids [73,74]. Overall, coffee consumption ≥ 1 cup/day has 

been linked to reduced CVD risk, with the most salutary dose reported between 3-4 cups/day 

[61,63]. Specifically, trigonelline and quinic acid have known antioxidant and anti-inflammatory 

properties contributing to the reduced risk of cardiovascular disease and type 2 diabetes [61]. 

Overall, urinary trigonelline represents a robust urinary biomarker of coffee intake in the PURE 

study with excellent discriminatory performance (AUC = 0.80) between < 1 cup/day and ≥ 1 

cup/day that may provide new insights into the potential health benefits of coffee consumption 

not considered in the AHEI diet quality score.  

5.4.3 Urinary Biomarkers for Fruit and Vegetable Intake 

The adequate intake of fruits and vegetables has been reported to have protective effects against 

NCDs due to the high concentrations of dietary fiber, vitamins, minerals, and antioxidants [75–

77]. Although the World Health Organization (WHO) recommends a daily intake of 400 g/day 

[6,78], existing guidelines are largely based on European and US data [6]. Currently, most 

countries report consumption below the WHO recommendations, partly due to the availability 
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and cost of fresh fruits and vegetables in many LICs [79]. Based on recent work in the PURE 

cohort by Yusuf et al. [6] intake as low as 375 g/day has demonstrated similar benefits against 

risk for CVD risk and all-cause mortality. In addition, while fruits are commonly eaten fresh, 

vegetables are often consumed both raw and cooked in HICs, while they are primarily ingested 

after cooking in LICs (e.g., Bangladesh) [6]. Surprisingly, few studies have investigated the 

intake of raw vegetables alone, despite potential differences in nutrient absorption and 

bioavailability, resulting in a lack of established dietary guidelines [80]. In this work, we 

identified the sum of urinary trigonelline and quinic acid as a biomarker for raw vegetables, 

following adjustment for coffee and fruit consumption (Figure S5.1). Sources of quinic acid 

include various plant-based foods containing chlorogenic acids (e.g., carrots, artichoke) [81]. 

Similarly, trigonelline has been found in many plant seeds, lettuce as well as peas [82]. Although 

these metabolites are less specific, they do demonstrate a moderate correlation with self-reported 

raw vegetable intake (r = 0.296), as well as a significant fold-change between low and high 

vegetable intake (FC=2.6-fold). This combination of urinary metabolites has not been previously 

reported as a dietary biomarker for raw vegetables likely due to the strong influence of coffee 

consumption. However, when FFQ data is available, these measurements may be used 

synergistically to monitor raw vegetable consumption with adjustments for confounding food 

exposures.  

In contrast, urinary proline betaine was shown to be a more specific biomarker for intake 

of fruits and vegetables (r = 0.243). Although previous reports have implicated proline betaine as 

a robust measure for citrus fruit intake, it has also been reported in Chinese artichoke, as well as 

to a small degree in fresh vegetables [83]. Consequently, we reveal a correlation to self-reported 

fruit and vegetable intake, with a significant dose response (median FC = 2.7) based on recent 
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dietary recommendations in the PURE study by Yusuf et al. [6] (> 375 g/day). Notably, an 

increase in fruit and vegetable intake was prevalent among participants from HICs and MICs 

according to biomarker response (Table S5.6). These observed regional patterns may be 

associated with the diversity of this international cohort of participants, differences in food 

preparation (e.g., cooked vs raw) and the types of foods comprising the various diet categories. 

Moreover, South Asian diets (e.g., Bangladesh) consist of more whole grains, fewer raw fruits 

and vegetables along with less alcohol and red meat consumption compared to Western diets 

[24]. Importantly, although individual food categories often considered to be a staple of healthy 

diet (e.g., fruits and vegetables) may be consumed in higher amounts in HICs, Western diet 

quality is considered low overall when unhealthy food categories (e.g., processed foods, red 

meat, added sugar) are also taken into account for AHEI scores (Figure 5.1B).   

5.4.4 Urinary Biomarkers for Meat and Fat Consumption 

The consumption of certain meats and dietary fats (e.g., MUFA, PUFA) can be a valuable source 

of macro- and micronutrients in human health [84], if consumed in the correct form and quantity 

with minimal processing, chemical preservation or charring when cooking. For instance, 

increased amounts of red and processed meats have been associated with certain cancers (e.g., 

colorectal cancer), CVD, and type 2 diabetes risk [84,85], as compared to the consumption of 

white meat (e.g., chicken). Similarly, dietary sources of MUFA (e.g., fish, olive oil) have 

exhibited health benefits if consumed within recommended ranges of 15-20% of total energy 

intake (16-22 g/day) [46]. In contrast, red meat provides an excellent source of iron, vitamin 

B12, and zinc, however consumption below 70 g/day is recommended [51], as elevated intake 

may contribute to atherogenic effects [84]. Several dietary biomarkers previously reported for 
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meat intake have been replicated in the PURE study, including urinary carnitine, acetylcarnitine, 

imidazole propionic acid, and 3-methylhistidine (Table S5.4) [23,86,87]. Overall, urinary 

carnitine demonstrated the strongest association with red meat (r = 0.272), followed by red meat 

without the inclusion of processed meat (r = 0.247). While carnitine and acetylcarnitine are 

naturally more abundant in red meat as compared to white meat, previous studies have shown 

several other sources of dietary carnitine, including fish and dairy products [87–89]. Although a 

significant increase was observed between low (< 70 g/day) and high (> 70 g/day) intake of red 

meat, a moderate classification performance in ROC curves may be explained by the endogenous 

production of carnitine and other dietary sources [23,86]. Comparatively, urinary 3-

methylhistidine was found to correlate with MUFA, PUFA and meat related fatty acids (Table 

S5.4), with the strongest relationship observed with total MUFA. A notable dose response 

(median FC=3.3) and discriminatory performance (AUC = 0.83) between low (Q1) and high 

(Q2-4) MUFA consumption was also observed. Since 3-methylhistidine is reported as a 

biomarker of muscle protein turnover, this association with self-reported fats is likely a 

consequence of meat consumption [86]. Given, MUFA and PUFA are both classified as healthy 

fats, this indicates that the association of urinary 3-methylhistidine to a higher diet quality is 

likely associated with a health promoting Prudent diet as compared to a Western diet pattern 

[56]. Based on carnitine and 3-methylhistidine responses, a significant increase in meat and fat 

intake was observed for participants from HICs (median FC = 3.6-5.1), as compared to MICs 

and LICs. For instance, Ranbhate et al. [90] have reported a negative correlation of red meat 

with life expectancy, specifically in HICs and MICs indicating potential for increased NCD risk 

for these demographics. Our work also revealed regional variation in eating habits, where despite 

substantial increases in global meat consumption in the last 30 years (500%) [91], individuals in 
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LICs have a reduced intake of specific meat products (e.g., red meat, processed meat) [91]. 

However, both carnitine and 3-methylhistidine are normal constituents in urine as result of 

muscle metabolism, and thus may lack specificity as they are also influenced by host physiology. 

[23,56] This demonstrates a major challenge in nutritional epidemiology when validating robust 

and food-specific dietary biomarkers. As a result, biomonitoring of compounds that are not 

produced endogenously are preferred as they can indicate food specific dietary exposures with 

greater certainty with less potential for confounding.  

5.4.5 Biomonitoring Processed Food and Sugar Consumption in PURE 

Ultra-processed foods and added sugars are considered to be another major risk factor for 

chronic diseases and increased gut inflammation, resulting in its incorporation to the AHEI diet 

score [92,93]. Several previously reported biomarkers including sucralose, cyclamates, steviol 

glycosides, saccharin, and ASK [92] have been identified in various processed foods. We 

reported the detection of urinary saccharin and ASK in the PURE study, whereby we found they 

were significantly associated with total sugar and processed food respectively (Table 5.1). Given 

the widespread use of artificial sweeteners found in not only soft drinks, but also several 

processed foods including, low-sugar snacks and ready to eat meals [92,94,95], an expected, 

highly specific correlation between ASK and both processed foods (r = 0.285) as well as soft 

drinks (r = 0.233) was observed in our work. While specific recommendations for processed 

foods are not available, the consensus of restricted intake is emphasized. As such a cut-off 

between low Q1-2 (< 75 g/day) and high Q3-4 (> 75 g/day) consumers was used to determine a 

dose response since increased risk of inflammation was previously reported at high intake levels 

[96,97]. Overall, a significant 4-fold dose response between low (< 70 g/day) and high (> 75 
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g/day) intake was identified in the PURE study. Comparatively, recommendations of < 50g/day 

have been made for total sugar, with more specific guidelines available for added sugar (<10%) 

by the WHO [98]. Since saccharin has reported a greater widespread use internationally as a 

result of its low cost, along with its prevalence in various low-calorie sweeteners, artificially 

sweetened beverages and desserts [92], a more robust correlation was shown for urinary 

saccharin with total sugar (r = 0.308). A significant dose response between < 50 g/day and > 50 

g/day (FC=2.8) was also demonstrated in the PURE study. However, moderate classification 

performance was noted for both candidate biomarkers (AUC = 0.68-0.70), likely attributed to the 

lower frequency of detection (< 60%), especially among LICs (Figure S5.4). Currently, South 

American countries which make up most of the MICs in this study have reported to have the 

highest consumption of artificial sweeteners, followed by HICs [95]. This is also suggested by 

the regional trends observed in PURE for ASK and saccharin, where median signals were 

highest among MICs as compared to LICs which were either relatively low or undetectable (i.e., 

below method detection limit). Despite an infrequent detection rate in certain regions, urinary 

ASK and saccharin are ideal dietary biomarkers of food intake given they are produced 

exogenously, are not metabolized extensively and their presence is a clear indicator of dietary 

exposure. While artificial sweeteners have been advertised as low calorie, healthy alternatives to 

sugar, their presence in processed foods, soft drinks and refined sweetened foods make them a 

likely contributor to the increased inflammatory bowel disease risk associated with processed 

food consumption [99]. In addition, the consumption of these foods has been recently linked to 

increased urinary concentrations of several endocrine disrupting plasticizers (e.g., phthalates), 

which may further exacerbate chronic disease risk [100].  Additional evidence of their potential 

deleterious effects on health outcomes was reported in a recent epidemiological study 
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highlighting the connection between artificial sweeteners, such as aspartame, and ASK with 

elevated cancer risk [101]. Thus, the consequences of unhealthy eating patterns may be 

compounded by the inadvertent consumption of environmental contaminants, emphasizing the 

need for reliable dietary biomarkers of exposure to predict disease risk. 

5.4.6 Candidate Biomarkers of Biological Effect 

A biomarker related to diet can either provide an objective measure of specific foods or 

conversely, they can reveal the impact of dietary exposures on host physiology and potential 

implications toward disease risk [17]. For instance, tetrahydroaldosterone-3-glucuronide, a major 

aldosterone metabolite excreted in urine, was found to have a considerable correlation with raw 

vegetable intake (r = 0.262; Table S5.4) as well as the sum of fruits and vegetables (r = 0.203). 

Tetrahydroaldosterone-3-glucuronide is a primary mineralocorticoid, responsible for promoting 

sodium and potassium transport, with an important role in blood pressure regulation [102]. 

Specifically, elevated potassium levels, have been reported with a reduction in blood pressure 

and cardiovascular disease risk [103]. A previous study by Mente et al. [58] implicating 

potassium as a clinically useful predicter of diet quality found a positive relationship to 

vegetables, fruits, whole grains, low-fat diary, and fish, with a significant inverse relationship to 

blood pressure [58]. Similarly, this work demonstrates a moderate positive correlation between 

tetrahydroaldosterone glucuronide and estimated potassium intake based on self-reports (r = 

0.232, Figure S5.5), with a notable decrease in metabolite levels observed for participants with 

stage 2 hypertension (Table S5.7). Given that increased potassium levels are typically found in 

fruits and vegetables, this is likely suggestive of a surrogate physiological measure of potassium 

intake [58,102,104]. 
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Interestingly, dihydrotestosterone glucuronide, a major testosterone conjugate excreted in 

urine, also revealed moderate correlations with the dietary intake of raw vegetables in addition to 

MUFA, as well as red and processed meat (r = 0.212-0.213; Table S5.4) suggestive of a 

biomarker of biological effect or physiological response Previous studies pertaining to high 

consumption of animal fat and red meat have shown an upregulation in testosterone levels, 

indicative of potential health risks [105]. However, the role of testosterone on cardiovascular 

disease risk is largely inconclusive, as the effects of exogenous and endogenous testosterone 

have produced contradicting results [106]. In this work, the excretion of dihydrotestosterone 

glucuronide was found to be significantly correlated to both potassium, as well as 

tetrahydroaldosterone-3-glucuronide (r =0.224-0.764; Figure S5.5), with a notable decrease in 

excretion among individuals at stage 2 hypertension (median FC = 1.2; Table S5.7). In addition, 

a modest negative association was also observed with diastolic blood pressure in the PURE study 

(r = -0.112; Table S5.7). Consequently, this indicates a possible protective effect against 

hypertension, which may be a result of either increased cholesterol metabolism or an indirect 

association with an overall healthy diet given the significant relationship observed with raw 

vegetable intake (r = 0.212, Table S5.4).  

Similarly, urinary uracil which was found to be correlated consistently with food records 

indicative of nut and soy intake, demonstrating a moderate dose-response of 1.4-fold (Table 

5.1). However, this was likely a result of increased purine/pyrimidine metabolism commonly 

observed after ingestion of purine-rich foods (e.g., nuts, seafood, soy protein), which is 

associated with a healthier diet for those consuming more nuts and soy proteins [107,108]. As 

observed in Figure S5.6, where the clustering of uracil, along with the excreted conjugates of 

testosterone and aldosterone with both self-reported food records and metabolite biomarkers 
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relating to healthy diet demonstrates the complex associations between dietary intake and host 

physiology. Thus, the relationships shown by select metabolites and dietary exposures are likely 

biomarkers of effect owing to an overall higher diet quality, as compared to a specific markers of 

food intake, with potential implications towards cardiovascular disease risk. 

5.4.7 Identifying Relationships Between Smoking and Diet 

Among the top risk factors for NCDs, tobacco smoking is considered the largest contributor to 

preventable death worldwide [3]. Current smokers often also consume a poor diet quality as 

compared to never smokers, which can further exacerbate chronic disease risk synergistically 

[109,110]. In addition, tobacco smoking is commonly associated with elevated coffee intake with 

current smokers having a greater propensity for caffeine consumption [111]. As outlined in 

Figure S5.6, three distinct clusters demonstrate the patterns of dietary metabolites, smoking and 

self-reported food records. Overall, a clear relationship with coffee intake is observed based on 

HCA assigned clusters, however a negative association is showed with AHEI, self-reported fruits 

and vegetables, raw vegetables, and potassium (Figure S5.6). More specifically Table S5.8 

illustrates the significant relationship of all dietary biomarkers with smoking status, where fruits 

and vegetables intake were lower in current smokers (median FC = 0.9) while meats, fats, nuts, 

processed foods and coffee consumption were consistently higher compared to never smokers 

(median FC=1.1-1.4). Moreover, urinary biomarkers for coffee, red meat, MUFA, raw 

vegetables and nut intake also had a significant correlation with urinary TNE-7 (Table S5.8), a 

robust biomarker for recent tobacco smoke exposure that is independent on metabolic rate 

[112,113]. Given that urinary uracil was used to monitor nut and soy consumption, this 

correlation is more likely a consequence of increased purine/pyrimidine metabolism common 



Ph.D. Thesis – Biban Gill; McMaster University – Chemical Biology 

211 

among smokers, rather than a diet specific relationship [114]. Similarly, raw vegetable intake 

was associated to the sum of urinary quinic acid and trigonelline, following adjustment for coffee 

and fruit intake, where quinic acid is also found in tobacco leaves and may be a confounder in 

this association [115]. In contrast, coffee shows the strongest correlation based on urinary 

trigonelline (r = 0.380). Although coffee has putative health benefits, the presence of caffeine, a 

known stimulant has been known to increase metabolic activity amongst smokers and increase 

restlessness which can impact smoking patterns [111]. Consequently, the complex relationship 

between diet and smoking requires further investigation with controlled feeding studies and 

prospective clinical data to better elucidate the impact of specific food items on smoking habits, 

and overall tobacco related disease risk. 

5.4.8 Limitations and Future Work 

Overall, this work demonstrates a cost-effective, high-throughput approach towards the 

comprehensive assessment of the urine metabolome to determine the potential utility of several 

dietary biomarkers in a diverse international population. However, limitations include the use of 

FFQs for the identification and validation of candidate biomarkers. Self-reported survey data is 

prone to misreporting, as well as gender and social desirability bias, often exacerbated in lower 

socioeconomic regions. This, compounded with the delay between sample collection and FFQ 

implementation, may also explain the weaker correlations observed by urinary metabolites 

detected in this study. Moreover, analysis of urinary electrolytes can provide a more accurate 

depiction of essential minerals and their role in cardiac health (e.g., sodium, potassium), as 

compared to estimated values determined based on self-reported data.  In addition, nontargeted 

urine profiling by MSI-CE-MS was limited to polar ionic metabolites and was unable to detect 
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lower abundance food exposures. Thus, future investigations with expanded metabolome 

coverage on both urine and blood samples, will utilize nonaqueous multi-segment injection 

capillary electrophoresis (MSI-NACE-MS) [34], to provide a larger panel of candidate 

biomarkers better suited for certain food groups not ascertained in this work (e.g., fish intake, 

dairy). Lastly, future studies with expanded cohort sizes and prospective clinical data will allow 

for increased study power, while also enabling a more accurate assessment of hazard ratios due 

to compounded modifiable risk factors (e.g., suboptimal diet, heavy smoking, poor air quality), 

on all-cause mortality and clinical events over an average 8-year time frame, such as incidence of 

cardiovascular disease, IBS, diabetes, and specific cancers. 

5.5 Conclusions 

Our work provides compelling evidence for the utility of a panel of urinary biomarkers of food 

intake in a diverse free-living population, that also reflects large regional variations in dietary 

patterns in the PURE study. Overall, while the AHEI diet score can depict general dietary habits 

and overall differences in diet quality between regions, it is prone to self-reporting bias, 

exacerbated in LICs, and is not able to capture food preparation methods, nutrient absorption, 

dose response or coffee consumption. In this context, we demonstrate the applicability of more 

specific dietary biomarkers for select food items, while also addressing potential confounding 

sources of exposure which may be unique to certain regions (e.g., fenugreek vs coffee in LICs). 

Comparatively, dietary biomarkers indicating broader food categories (e.g., proline betaine, 

carnitine, quinic acid, trigonelline), can provide insight on habitual eating patterns, more closely 

reflecting overall diet quality (e.g., meats and fats). The findings in this work have critical 

implications towards the management and prevention of NCDs. Through the elucidation of 
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robust and generalizable dietary biomarkers we can provide more accurate assessments of food 

intake and nutritional status across diverse populations worldwide. With majority of current 

interventions and recommendations for nutrition relying on data from HICs, our work addresses 

understudied populations in LICs at greater risk for misreporting and chronic disease burden. 

Thus, objective dietary biomarkers that have been replicated in multi-ethnic populations are 

critical in guiding future evidence based public health policies, which are also applicable across 

regions of varying income status.  
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5.7 Supporting Information 

Table S5.1 Participant summary characteristics for the PURE pilot study (n=1000) reflecting self-
reported food records and clinical meta data between individuals classified as consuming a healthy diet 
(Q5) based on their AHEI score as compared to unhealthy dietary patterns (Q1-Q4). 

Variable Unhealthy Diet 
(n=782) 

Healthy Diet 
(n=196) p-value

AHEI (mean) 29.2 ± 7.1 44.7 ± 4.3 6.43×10-136 
Age (mean) 52.2 ± 9.6 52.9 ± 9.8 0.311 

≥ 50y 42.5 ± 4.2 41.8 ± 4.2 0.211 
< 50y 58.9 ± 5.7 59.2 ± 5.7 0.588 

Sex (%; n) - - 0.847 
Female 48% (n=377) 49% (n=96) - 
Male 53 % (n=405) 51% (n=100) - 

BMI (mean) 26.3 ± 5.8 25.5 ± 5.8 0.106 
Lean (<25 kg/m2) 21.1 ± 2.4 21.0 ± 9.7 0.641 

Overweight (25-44 kg/m2) 29.8 ± 4.6 29.1 ± 5.1 0.128 
Current Smokers (%; n) 71% (n=552) 52% (n=101) - 

Average TNE-7 (μM) 47.9 ± 40 49.1 ± 51 0.797 
HICs (%; n) 35% (n=279) 43% (n=84) - 
MICs (%; n) 41% (n=323) 29% (n=56) - 
LICs (%; n) 23% (n=180) 29% (n=56) - 

Current Alcohol Users 
(%; n) 71% (n=387) 65% (n=80) - 

Average Fiber (total/day) 20.6 ± 12 35.5 ± 19 2.67×10-40 
Average Nut Intake 

(g/day) 5.03 ± 9.8 28.0 ± 37 5.99×10-39 

Average Raw Vegetable 
Intake (g/day) 259 ± 193 509 ± 315 2.04×10-38 

Average Fruit Intake 
(g/day) 239 ± 254 462 ± 421 4.05×10-22 
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Self-reported diet quality according to the alternative healthy eating index (AHEI) was used to categorize individuals as healthy 
(Quintile 5) vs unhealthy (Quintiles 1-4), where participant characteristics were found within each group. Means are all reported 
with standard deviation while statistical comparisons assuming equal (t-test) or unequal variance (Welch’s t-test) were 
performed on cubic root transformed data.  

Average Carbohydrates 
(g/day) 296 ± 121 374 ± 144 1.14×10-14 

Average Processed Meat 
intake (g/day) 19.9 ± 24 8.70 ± 10 1.62×10-7 

Total Sugar (g/day) 57.5 ± 62 73.6 ± 72 5.20×10-5 

Average Caloric Intake 
(kcal) 2148 ± 965 2460 ± 970 5.60×10-5 

Average Red Meat Intake 
(g/day) 81.6 ± 101 56.8 ± 63 2.12×10-4 

Average Processed Food 
(g/day) 223 ± 355 131 ± 191 1.69×10-3 

Total Lipids (g/day) 64.7 ± 48 65.9 ± 44 0.493 

Average Coffee Intake 
(mL/day) 303 ± 423 318 ± 410 0.620 

Dairy (g/day) 268 ± 313 272 ± 296 0.621 
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Table S5.3 Food records collected from Food Frequency Questionnaires (FFQ) used for 
correlation analysis against urine metabolites (n=60). 

FFQ Food Record Description 

tea_ml Tea intake in mL/day 
coffee_ml Coffee in mL/day 
sfdrink_g Soft drinks in grams/day 

fruitjuice_g Fruit juice in grams/day 
wojfruit_g Without fruit juice in grams/day 

fruits_g Fruit in grams/day 
vegets_g Vegetables in grams/day 
vegraw_g Raw vegetables in grams/day 

otherveg_g Other vegetables in grams/day 
glveg_g Green leafy vegetables in grams/day 
dyveg_g Dark yellow vegetables in grams/day 

crucveg_g Cruciferous vegetables in grams/day 
vegcooked_g Cooked vegetables in grams/day 

Sum_Fruit_Veg Sum of fruit in and vegetables in grams/day 
nutnosoy_g Nuts without soybean in grams/day 

nuts_g Nuts in grams/day 
legumes_g Legumes in grams/day 

fiber_td Total fibre in grams 
fibcereal Cereal fibre in grams/day 

pakbred_g Packaged bread in grams/day 
frshbred_g Fresh bread in grams/day 
carbohydrt Carbohydrates in grams 
starch_g Breads and cereals in grams/day 

whitemeat_g White meat in grams/day 
redmeat2_g Red meat without processed meat in grams/day 
redmeat_g Red meat in grams/day 

wtredr Ratio of white to red meat 
protein Protein in grams 
meats_g Meats in grams/day 

fishonly_g Fish only in grams/day 
fish_g Fish in grams/day 

animalprotein Animal protein 
procmeat_g Processed meat in grams/day 
whtmeatsfa White meat saturated fatty acids in grams/day 
transfat_g Trans fats in grams/day 
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FFQ Food Record Description 

fa_sat Total saturated fatty acids 
fa_poly Total polyunsaturated fatty acids (PUFA) 

fa_mono Total monounsaturated fatty acids (MUFA) 
lipid_tot Total fat in grams 

redprocsfa Red processed meat saturated fatty acids in grams/day 
redmeatsfa Red meat saturated fatty acids in grams/day 

psfat Ratio of polyunsaturated fat to saturated fat 
meatnoprocsfa Not processed meat saturated fatty acids in grams/day 

meatsfa Meat saturated fatty acids in grams/day 
fishsfa Fish saturated fatty acids in grams/day 

dairysfa Dairy saturated fatty acids in grams/day 
cholestrl Cholesterol 
animalfat Animal fat 

procfood_g Processed food in grams/day 
dairy_g Dairy in grams/day 
protdary Protein from dairy in grams/day 
alcohol_g Alcoholic beverages in grams/day 
aheiscore Alternative healthy eating index (AHEI) diet score 

vegs Score for vegetables in AHEI Diet Score (/10) 
fruitsc Score for fruits in AHEI Diet Score (/10) 

frys Score for fried foods in AHEI Diet Score (/10) 
nutsc Score for nuts in AHEI Diet Score (/10) 
fibs Score for cereal fiber in AHEI Diet Score (/10) 

wtredrs Score for ratio of white to red meat in AHEI Diet Score (/10) 
psfats Score for ratio of P:S in AHEI Diet Score (/10) 
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Table S5.4 Selected candidate biomarkers meeting significance criteria (p < 0.05) and 
correlation thresholds (r > 0.20) following partial Pearson correlation analysis for 5 diet 
categories (Coffee, Fruits and Vegetables, Nuts and Soy, Meats and Fat, Processed Food and 
Total Sugar). 

Candidate Biomarker a 
Identifier 

(m/z:RMT:mode) 
   r b        
(n=) p-value Food Records c 

Trigonelline 
138.0550:0.775: p 

C7H7NO2 

0.230 (n=917) 
0.258 (n=713) 
0.408 (n=896) 

2.17 x10-12 
3.34 x10-12 
8.02 x10-37 

Total Saturated FA (g/day) 
Raw Vegetables (g/day) 

Coffee (mL/day) 

Sum (Trigonelline and 
Quinic acid) - 

0.232 (n=862) 
0.310 (n=737) 
0.401 (n=924) 

6.97 x10-12 
1.07 x10-17 
1.23 x10-36 

Fish Saturated FA (g/day) 
Raw Vegetables (g/day) 

Coffee (mL/day) 

Quinic acid 
191.0552:0.806: n 

C7H12O6 
0.286 (n=621) 
0.323 (n=702) 

5.83 x10-13 

2.78 x10-18 
Raw Vegetables (g/day) 

Coffee (mL/day) 

Saccharin 
181.9917:1.154: n 

C7H5NO3S 
0.308 (n=548) 2.80 x10-13 Total sugar (g/day) 

Sum (Trigonelline, 
Quinic acid, 1-methyluric 

acid, and 1,7-
dimethyluric acid) 

- 
0.272 (n=952) 
0.273 (n=938) 
0.294 (n=931) 

2.00 x10-17 
2.15 x10-17 
6.84 x10-20 

Total Saturated FA (g/day) 
Animal Fat (g/day) 
Coffee (mL/day) 

Acesulfame-K 
161.9869:1.267: n 

C4H5NO4S 
0.233 (n=252) 
0.285 (n=251) 

2.55 x10-4 
6.42 x10-6 

Soft Drinks (g/day) 
Processed Food (g/day) 

3-Methylhistidine
170.0924:0.440: p 

C7H11N3O2 

0.261 (n=899) 
0.274 (n=914) 
0.284 (n=914) 

2.48 x10-15 
4.25 x10-17 
2.74 x10-18 

Meat Saturated FA (g/day) 
Total PUFA (g/day) 

Total MUFA (g/day) 

Carnitine 
162.1125:0.570: p 

C7H15NO3 

0.227 (n=878) 
0.247 (n=878) 
0.272 (n=903) 

8.94 x10-12 
1.57 x10-13 

1.37 x10-16 

Meat saturated FA (g/day) 
Red meat w/o processed meat 

(g/day) Red meat (g/day) 

Sum (Methyl histidine, 
Acetyl carnitine, and 

Carnitine) 
- 

0.252 (n=952) 
0.263 (n=952) 
0.265 (n=952) 

3.82 x10-15 
1.98 x10-16 
1.26 x10-16 

Total PUFA (g/day) 
Red meat (g/day) 

Total MUFA (g/day) 

Tetrahydroaldosterone-3-
Glucuronide 

539.2493:0.491: n 
C27H40O11 

0.203 (n=923) 

0.262 (n=725) 

1.03 x10-9 

1.17 x10-12 

Sum (Fruits & Veg.) (g/day) 

Raw Vegetables (g/day) 
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a Top ranked food records from food frequency questionnaires surpassing the initial thresholds (r>0.2, p<0.05), with subsequent 
selection according to ranked correlation coefficients, where 1-5 biomarkers per diet category were chosen resulting in 19 total 
candidate biomarkers. bA partial Pearson correlation analysis of urinary metabolites to specific food records following a cubic 
root transformation with listwise deletion when adjusted for age, sex, BMI, smoking status (current vs never smoker), alcohol 
intake (current user vs former/never user), total energy (kcal), education (secondary education and above vs primary), and 
history of comorbidities (hypertension and diabetes) was performed. The strongest correlation coefficient for each metabolite is 
displayed in bold, with all metabolites ordered from strongest to weakest association to their respective food record. c The top 
three self-reported food records with a significant correlation are reported.  

Candidate Biomarker a 
Identifier 

(m/z:RMT:mode) 
   r b        
(n=) 

p-value Food Records c 

Sum (Carnitine and Acetyl 
carnitine) - 

0.215 (n=925) 
0.238 (n=925) 
0.261 (n=950) 

4.86 x10-11 
2.96 x10-13 
3.60 x10-16 

Red Meat Saturated FA (g/day) 
Red Meat w/o Processed Meat 

(g/day) 
Red Meat (g/day) 

Proline Betaine 
144.1019:0.930: p 

C7H13NO2 

0.219 (n=903) 
0.224 (n=903) 
0.243 (n=903) 

3.30 x10-11 
1.23 x10-11 
1.81 x10-13 

Score for Fruits (AHEI) 
Fruits (g/day) 

Sum (Fruits & Veg.) (g/day) 

Imidazole Propionic acid 
141.0660:0.528: p 

C6H8N2O2 

0.221 (n=898) 
0.225 (n=913) 
0.242 (n=913) 

2.78 x10-11 
7.52 x10-12 
1.81 x10-13 

Meat Saturated FA (g/day) 
Total PUFA (g/day) 
White Meat (g/day) 

Sum (Acesulfame-k and 
Saccharin) - 

0.235 (n=614) 
0.238 (n=624) 

3.53 x10-9 
3.21 x10-9 

Processed Food (g/day) 
Total Sugar (g/day) 

Hippuric Acid 
178.0510:0.845: n 

C9H9NO3 

0.225 (n=920) 
0.233 (n=905) 
0.236 (n=906) 

6.21 x10-12 
1.57 x10-12 
8.82 x10-13 

Red Meat (g/day) 
Total Sugar (g/day) 
Animal Fat (g/day) 

Sum (Proline betaine and 
Pantothenic acid) - 

0.205 (n=948) 
0.212 (n=948) 
0.234 (n=948) 

2.38 x10-10 
5.08 x10-11 
3.82 x10-13 

Score for Fruits (AHEI) 
Fruits (g/day) 

Sum (Fruits & Vegetables) 
(g/day) 

Uracil 
111.0194:0.340: n 

C4H4N2O2 

0.213 (n=732) 
0.222 (n=756) 
0.223 (n=827) 

7.71 x10-9 
9.01 x10-10 
1.12 x10-10 

Nuts w/o Soybean (g/day) 
Total Nuts (g/day) 

Score for Nuts (AHEI) 

Dihydrotestosterone 
Glucuronide 

465.2483:0.522: n 
C25H38O8 

0.212 (n=734) 
0.212 (n=928) 
0.213 (n=928) 

7.87 x10-9 
8.19 x10-11 
7.47 x10-11 

Raw Vegetables (g/day) 
Red and Processed Meat (g/day) 

Total MUFA (g/day) 

Betaine 
118.0862:0.918: p 

C5H11NO2 
0.203 (n=664) 
0.207 (n=654) 

1.62 x10-7 
1.18 x10-7 

Total MUFA (g/day) 
Processed Food (g/day) 
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Figure S5.1 Validation of a dietary biomarker for Raw vegetable intake based on the sum of responses 
(RPA) for quinic acid and trigonelline. (A) Distribution of self-reports and subsequent categorization of 
low and high intake according to a single serving of raw vegetable intake demonstrates a 2.6-fold increase 
in biomarker response. (B) Significant regional trends were observed, with correlation of 0.296 amongst 
all PURE participants, where HICs were found to have elevated raw vegetable consumption relative to 
MICs and LICs according to detected biomarker levels in single spot urine samples.   
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Figure S5.3 Putative identification (Level 2) of an unknown anion detected in urine samples from PURE 
participants, with a significant increase found in HICs compared to MICs and LICs demonstrates a 
moderate association with self-reported nut and soy intake based on a partial Pearson correlation analysis 
(r=0.223) with a characteristic MS/MS spectrum revealing a likely ID of Uracil at a CID of 10 V under 
negative ion mode conditions.  
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Figure S5.5 (A) Partial Pearson correlation of steroid hormones detected in urine with potassium 
determined from self-reported food records, demonstrates a significant (p<0.05) association of potassium 
intake with both (i) tetrahydroaldosterone-3-glucuronide and (ii) dihydrotestosterone glucuronide, where 
(B) both steroid hormones also show a strong correlation with another (r=0.764, p<0.05).
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Figure S5.6 A 2D heatmap based on partial Pearson correlation coefficients and Hierarchical Cluster 
Analysis (HCA), where clusters are outlined in black indicating groupings associated with heathy diet, 
smoking and unhealthy diet. Features include diet score (AHEI), top ranked self-reported food records, 
metabolite responses for top eight candidate biomarkers, in addition to the two candidate biomarkers of 
biological effect, self-reported cigarettes per day and biochemically verified smoking status TNE-7. 
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Chapter VI: 

Exposomics for Population Health and Chronic Disease Risk Assessment 
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Chapter VI: Exposomics for Population Health and Chronic Disease Risk Assessment 

6.1 Overview of Major Thesis Contributions 

The work presented in this thesis has contributed to the development of high throughput 

analytical strategies for characterization of the human exposome in urine samples, including: (1) 

targeted biomonitoring of environmental smoke exposures in firefighters, (2) comprehensive 

nicotine metabolite profiling for improved assessment of tobacco smoke exposure and nicotine 

dependence, and (3) nontargeted workflows for the discovery and validation of robust dietary 

biomarkers of food intake that may contribute to chronic disease burden. Thus, this thesis lays 

the foundation for more accurate and reliable risk assessment in occupational and population 

health, while minimizing reliance on self-reports to estimate food and/or smoke exposures that 

are prone to bias. Urine metabolic phenotyping offers an important tool in exposomic studies to 

discover novel biomarkers that can reflect exposure, biological effect, and susceptibility to 

modifiable risk factors that contribute to mortality and morbidity worldwide.1 Given the well-

recognized impact of environmental smoke and poor diet quality on chronic disease risk,2,3 this 

thesis has examined different cohorts for the targeted and nontargeted exploration of the human 

urine exposome in high-risk professions and diverse global populations.  

Chapter I of this thesis describes a comprehensive overview of recent progress in 

exposure analysis, from traditional human biomonitoring of toxicants to a more recent paradigm 

shift outlining more comprehensive exposome analyses for more reliable risk assessment. 

Current omics-based technologies, followed by the major steps and challenges of an untargeted 

metabolomics data workflow are outlined to demonstrate the importance of rigorous study design 

coupled with pre-analytical, analytical, and post-analytical considerations in exposure science.  



Ph.D. Thesis – Biban Gill; McMaster University – Chemical Biology 

246 

Chapter II demonstrates a rigorous interlaboratory method comparison for the validation 

of urinary 1-hydroxypyrene (HP), a widely used biomarker for evaluating exposure to polycyclic 

aromatic hydrocarbons (PAHs) from smoke exposure and other sources (e.g., diet).4 PAHs are 

formed from the incomplete combustion of organic materials, and comprise the largest class of 

cancer-causing chemicals, with several natural (e.g. wood smoke) and anthropogenic (e.g. 

tobacco smoke) sources of pollution.5 Occupational exposure to PAHs, some which are 

carcinogenic upon bioactivation, increases risk for chronic disease events, including several 

cancers and cardiovascular disease.6 Specifically, firefighters deployed under emergency 

conditions often experience heightened exposure with minimal access to protective equipment 

(e.g. self-contained breathing apparatus) and proper hygiene practices relevant to mitigating 

dermal uptake of toxicants from environmental smoke.7 Chapter II compared two 

complementary instrumental protocols for the analysis of urinary HP among a cohort of 

firefighters deployed at the Fort McMurray wildfire. In this case, analysis of urinary HP was 

performed following enzyme deconjugation, which allowed for rapid screening without complex 

sample pretreatment by liquid chromatography-tandem mass spectrometry (LC-MS/MS). 

Alternatively, a solid-phase extraction (SPE) and chemical derivatization protocol, with 

subsequent analysis by gas chromatography with high resolution mass spectrometry (GC-

HRMS) allowed for a 15-fold lower detection limit. The GC-HRMS procedure enabled 

simultaneous analysis of several OH-PAHs and their isomers revealing distinct urinary excretion 

profiles in firefighters following their deployment, highlighting differences in the expression, 

induction, and inhibition of cytochrome P450 (CYP P450) enzymes responsible for their 

metabolism (e.g., CYP 1A1, 1A2, 1B1, 3A4). Although both methods exhibited adequate 

technical and acceptable accuracy, poor mutual agreement was found as reflected by a bias of 
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39%. Further studies confirmed that this bias was largely attributed to incomplete enzymatic 

hydrolysis (i.e., deglucuronidation) prior to LC-MS/MS due to suboptimal incubation protocols 

recommended by manufacturer (2 h at 60°C versus 18 h at 37°C as used in GC-HRMS). This 

work highlights the importance of inter-laboratory standardization especially for pre-analytical 

sample workup procedures to minimize bias and false discoveries following rigorous method 

validation. 

Chapter III of this thesis introduces a simple yet high throughput protocol based on 

multisegment injection-capillary electrophoresis-tandem mass spectrometry (MSI-CE-MS/MS) 

following a simple acidified ether extraction, to directly analyze the glucuronide conjugation of 

HP (HP-G) in urine samples collected from firefighters prone to smoke exposure.8 As discussed 

in Chapter II, current methods often rely on complex, time-consuming sample preparation, 

enzyme deconjugation and chemical derivatization steps which may contribute to greater 

variability and bias resulting in potential misreporting of “true exposures”. For the first time, we 

demonstrated a multiplexed separation method for the quantification of urinary HP-G as a 

convenient surrogate for total HP in occupationally exposed individuals. Analysis of up to 13 

urine extracts within a single run (<3 min/sample) was achieved with stringent quality control 

(QC), which offers a cost-effective and rapid screening method for risk assessment of PAH 

exposure. Rigorous validation demonstrated excellent reproducibility and recovery, with good 

mutual agreement when compared to the previously reported GC-HRMS protocol for total 

urinary HP determination following quantitative enzyme deconjugation. Overall, firefighters 

were determined to be below the recommended biological exposure index (BEI) for health 

hazards according to creatinine normalized HP-G concentrations in urine. This unexpected result 

was mainly attributed to the challenges associated with delayed and variable urine collection at 
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early stages of firefighting under emergency conditions. However, this work offers a rapid and 

reliable measure of recent environmental smoke exposure with potential applications for large-

scale population-based studies.  

Chapter IV transitions to verifying tobacco smoke exposure in the Prospective Urban and 

Rural Epidemiology (PURE) study to provide insight on the hazards associated with smoking 

relative to never smoking.9 Unlike less specific biomarkers of smoke exposure (e.g., PAHs), this 

work focused on comprehensive analysis of tobacco-specific nicotine metabolites excreted in 

urine as a robust measure of recent tobacco smoke exposure. Importantly, we directly analyzed 

the total nicotine equivalent (TNE-7) in urine samples after a simple dilution step by MSI-CE-

MS, which is defined as the sum of up to seven major nicotine metabolites.10 In addition, the 

nicotine metabolite ratio (NMR) offers a complementary phenotypic biomarker for enzyme 

activity to better ascertain smoking behaviors and nicotine dependence.11 Current methods for 

the analysis of nicotine and its metabolites in urine typically rely on two-step enzyme 

deconjugation protocols, which are prone to bias, have limited sample throughput and suffer 

from high operational costs, and thus are not amenable to large-scale epidemiological studies.12 

MSI-CE-MS was validated for the rapid analysis of a comprehensive panel of urinary nicotine 

metabolites and their intact conjugates, which demonstrated excellent stability along with 

acceptable technical precision and accuracy. Importantly, this approach was applied for robust 

biochemical verification of smoking status and smoking behaviors in an international cohort of 

participants from 14 different countries (n=1000). Moreover, urinary TNE-7 exhibited a 

moderate correlation with self-reported smoking intensity (cigarettes per day, CPD), with the 

strongest association occurring in high-income countries (HICs), followed by middle-income 

countries (MICs), while no relationship to self-reports was found in low-income countries 
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(LICs), likely indicative of increased misreporting. Importantly, this work also discovered 

elevated tobacco smoke exposure among heavy smokers from HICs relative to MICs and LICs 

after covariate adjustments, including CPD.9 Additionally, with the subsequent evaluation of 

urinary NMR, ‘fast’ metabolizers of nicotine were identified in the PURE study and compared 

against ‘slow’ metabolizers. In this case, fast metabolizers with high NMR scores were found to 

have greater tobacco exposure based on TNE-7 following adjustments for CPD and other 

covariates. This likely indicates that ‘fast’ metabolizers are prone to increased puff volumes and 

puff frequency associated with compensatory smoking behavior when using ventilated and low 

yield cigarettes prevalent in HICs. As a result, urinary TNE-7 and NMR provide new insights 

when assessing the exposure to and the potential harm from tobacco smoking as compared to 

self-reports that are prone to gender and social desirability bias. Furthermore, this work is 

urgently required for improved risk assessment of tobacco smokers more susceptible to nicotine 

dependence, greater toxicant exposure, and more likely to suffer from tobacco related chronic 

disease burden and clinical events. 

Lastly, Chapter V describes a nontargeted data workflow for characterization of the urine 

metabolome by MSI-CE-MS, for the identification of objective dietary biomarkers in the PURE 

cohort. Given the important roles that diet plays as a modifiable risk factor of chronic disease, 

robust urinary biomarkers indicative of recent food intake, which are also generalizable across 

diverse populations are critical.13 As such, a dietary biomarker should ideally be specific, not 

extensively metabolized, and demonstrate dose dependency, while also remaining applicable to 

multiethnic cohorts with variable cooking methods and food exposures.14 In this work, semi-

quantitative estimates of food intake using a standardized food frequency questionnaire in the 

PURE study were compared against 130 authenticated urinary metabolites to identify candidate 
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biomarkers of habitual diet, which were generalizable across countries of varying income status. 

Overall, eight top-ranked candidates were identified and underwent further validation for their 

dose-response. Urinary trigonelline revealed the strongest association with self-reported coffee 

intake, which is not currently incorporated in diet quality scoring systems, such as alternative 

healthy eating index (AHEI), yet has been reported to provide protective health benefits.15,16 

Additional urinary metabolites including carnitine, 3-methylhistidine, saccharin, acesulfame K 

and proline betaine were also determined to be moderately correlated with self-reports of intake 

for meats and fat, total sugar and processed food, as well as fruits and vegetables respectively. 

This panel of urinary metabolites also exhibited significant fold-changes between high versus 

low consumption with moderate classification performance based on recommended healthy diet 

guideline thresholds for specific foods (when available). Moreover, exogenous metabolites 

measured in urine, such as saccharin and acesulfame K, revealed the strongest specificity for 

total sugar, soft drinks, and processed foods, with distinct regional trends highlighting their 

disproportionate greater consumption in MICs, such as Argentina. Moreover, a moderate 

relationship of individual dietary biomarkers with overall diet quality was noted, where 

biomarkers of healthy foods, such as fruits and vegetables (e.g., proline betaine) were elevated 

amongst participants with higher diet quality scores, while indicators of unhealthy foods, such as 

red meat (e.g., carnitine) were reduced. Importantly, urinary metabolites associated with 

suboptimal diet patterns revealed a significant relationship to smoking, where TNE-7 confirmed 

current smokers relative to never smokers had increased levels of metabolites related to red meat, 

processed foods, and total sugar. Notably, coffee intake, which may have an impact on nicotine 

metabolism and smoking behavior exhibited a considerable positive correlation with recent 

tobacco smoke exposure (i.e., TNE-7). Urinary dietary biomarkers of food intake identified in 
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this work can complement self-reports to better capture lifestyle and drinking habits (e.g., coffee 

consumption) not currently monitored by diet quality scores, for a more reliable assessment of 

food exposures, and to better elucidate complex relationships between dietary habits and chronic 

disease risk across different countries. 

6.2 Future Advancements for Biomonitoring Occupational Smoke Exposure in Firefighters 

While both Chapter II and III present a rigorous interlaboratory method validation for urinary 

HP and HP-G determination in a cohort of firefighters respectively, a key study limitation was 

the delay in urine collection under emergency conditions, which resulted in an underreporting of 

smoke exposures. Consequently, future studies that enable simplistic sampling/storage methods 

such as spot urine specimens (e.g., filter paper cards), or wearable devices including silicone 

wristbands and non-stimulated sweat collection systems (e.g., Macroduct), can provide 

alternative approaches towards more accurate and real-time biomonitoring for occupational 

exposure (e.g., firefighters).17,18 For instance, a recent study utilized silicone wristbands to 

monitor on and off-duty firefighters for exposure to 134 chemicals including PAHs, flame 

retardants and several plasticizers (e.g., phthalates).19 This also highlights the constraints of 

personalized protective equipment, where due to a lack of standardized hygiene practices, 

coupled with extreme heat stress when using bunker gear, dermal uptake of numerous harmful 

contaminants is often exacerbated.7,17 Thus, standardized hygiene protocols and proper cleaning 

techniques are urgently needed to mitigate the harmful impact of smoke exposure from dermal 

uptake. In addition, Chapter II demonstrates limitations in current analytical protocols, where a 

lack of consistency in enzyme hydrolysis procedures can introduce bias and misreporting of 

“true exposures”. Accordingly, future studies using simple, cost-effective technologies, such as 

those developed in Chapter III are recommended to eliminate the need for enzyme deconjugation 
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altogether. However, simple strategies including further optimization of multiple reaction 

monitoring (MRM) transitions, and the utilization of nanospray designs to improve ionization 

efficiency and lower detection limits may allow for more comprehensive analysis of OH-PAH 

glucuronides when using MSI-CE-MS/MS as introduced in Chapter III.  

Overall, current biomonitoring studies in occupational health have largely focused on 

small cohorts of male participants, where variables such as tobacco smoke, alcohol consumption, 

medication use and diet are either not routinely monitored, or these important modifiable risk 

factors for chronic disease are estimated via self-reported questionnaires.17 As shown in Chapter 

II, different OH-PAH isomers and species may be not colinear as expected, likely due to 

differences in CYP P450 isoform specificity, often influenced by diet, lifestyle and genetic 

factors.  Consequently, future work using nontargeted data workflows with stringent quality 

control, similar to those applied in Chapter V, may offer a more comprehensive understanding of 

the relationship between smoke exposures and chronic disease risk. Expanded metabolome 

coverage will also allow for the quantification of biomarkers of smoke exposure and biological 

effect (e.g., inflammation), while also aiding in the discovery of unknown metabolites of clinical 

significance. If further combined with prospective studies, future studies can better evaluate and 

identify modifiable risk factors that reduce clinical events among high-risk firefighters.  

6.3 Future Directions in Determining Chronic Disease Risk among Current Smokers  

Chapter IV of this thesis outlined a robust analysis of a comprehensive panel of nicotine 

metabolites in urine (i.e., TNE-7), where their total sum is less impacted by interindividual 

differences in metabolism and therefore provides a more reliable measure of recent tobacco 

smoke exposure than single nicotine species alone (e.g., cotinine).20 Accordingly, this work 
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enabled the reliable determination of smoking status for participants from HICs, MICs and LICs. 

However, given the higher detection limits, this study was unable to characterize individuals 

subject to self-reported passive/second-hand smoke exposure (SHS). Importantly, majority of 

smoke-free polices to mitigate SHS have been passed in HICs, while 89% of deaths due to SHS 

exposure occur in LICs and MICs.21 With these current disparities in public health policy 

worldwide, further improvements in sensitivity, either through the use multiple reaction 

monitoring by MS/MS, nanospray interfaces for CE-MS to enhance ionization efficiency, or on-

line sample preconcentration protocols in MSI-CE-MS, would provide deeper insights into the 

extent of low background levels of SHS exposure among never smokers in HICs, MICs and 

LICs. Improved sensitivity could also expand the analysis of lower abundance nicotine alkaloids 

(e.g., anatabine) which can help distinguish between types of tobacco products (e.g. smokeless 

tobacco, cigarettes) and nicotine replacement therapies.22 In a recent study by Lorkiewicz et al.22  

anatabine was not detected in e-cigarettes and may be a useful biomarker for identifying 

combustible cigarettes from e-cigarettes. Also, the advent of ‘heat-not-burn’ devices promoted as 

a safer non-combustible option for tobacco use than cigarettes or e-cigarettes may represent a 

gateway to increase cigarette smoking in the population rather than a replacement.23   In addition 

to public health policies related to reducing active smoking and SHS exposures, air quality also 

varies drastically across countries especially in urban environments.24 As described in Chapters 

I-IV, environmental smoke exposure from air pollution is another major source of harmful

chemicals (e.g. PAHs), and may have additive effects when compounded with smoking, resulting 

in greater disease burden among current smokers in areas with poor air quality. Consequently, 

future studies should aim to determine the contribution of environmental smoke exposure to 

better understand the lifestyle and local environmental factors contributing to disease risk. PAHs 
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present in both environmental and tobacco smoke can increase CYP 2A6 activity and thus 

impact smoking habits, such as increasing nicotine dependence. Therefore, applications of 

methods such as MSI-CE-MS/MS from Chapter III, with advancements for expanded OH-PAH 

coverage can be applied to monitor PAH metabolism and its impact on smoking habits (e.g., 

NMR). Moreover, the increased presence of PAHs can also help decipher between combustible 

and smokeless cigarettes in conjunction with other toxic classes of chemicals in smoke vapor, 

such a 2-ethylpyridine and pyrazine.25  

Chapter IV monitored nicotine metabolism based on phenotypic biomarkers determined 

from the ratios of specific nicotine metabolites as substrates and products of enzyme activity 

(e.g., NMR). While ratios such as NMR have proven to be useful tools in clinical trials for 

guiding personalized smoking cessation interventions,26 they are unable to differentiate between 

genetic and environmental (e.g., diet, alcohol, medication use) factors which may contribute to 

differences in metabolism and future clinical events.11 Future studies which incorporate genetic 

data for the calculation of a polygenic risk score based on proteins involved in nicotine 

metabolism and nicotinic receptors can help decipher genetic risk factors from modifiable 

lifestyle factors which may be useful in mitigating tobacco related deaths.27 Analysis of an 

additional 2000 urine samples is currently underway, with genetic and clinical follow-up data 

available over an eight year period from the PURE study. The incorporation of prospective data 

and additional participants will help to improve study power and validate urinary biomarkers of 

exposure and/or harm as prognostic indicators of tobacco-related disease risk that are associated 

with specific incident clinical events (e.g., lung cancer, stroke, myocardial infarction, COPD).  

As described in Chapter V, a panel of urinary dietary biomarkers were found to be 

associated with self-reported intake of specific food categories as well as smoking status, while 
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also exhibiting extensive regional variation between HICs, MICs, and LICs. Follow-up analysis 

for the quantification of validated dietary biomarkers of food intake will establish regional 

reference ranges for urinary metabolites of significance which can better reflect dietary habits, 

nutritional uptake, and cooking practices, specific to country income levels. However, to 

properly address the contribution of diet on smoking, future controlled feeding studies are 

required to elucidate the underlying mechanisms contributing to these associations. While 

unhealthy fat intake is one of the largest contributors to poor diet quality (e.g., omega-6 fatty 

acids from vegetable seed oils and trans-fats from hydrogenated fats), consumption of healthy 

fats in moderation (e.g., omega-3 fatty acids from fish oil) can provide health benefits. For 

instance, omega-3 fatty acid supplementation from fish oil and pharmaceutical grade synthetic 

analogs of eicosapentaenoic acid (EPA) have been explored for prevention and treatment of 

CVD.28 In Chapter V, self-reported monounsaturated fatty acids (MUFA) were associated with 

urinary 3-methylhistidine excretion, however this is likely a consequence of meat intake and thus 

lacks specificity. Consequently, the incorporation of alternative dietary biomarkers specific to fat 

intake can complement those found in Chapter V of this thesis. By incorporating this study with 

paired serum samples, which are currently available for future analysis, determination of non-

esterified fatty acids (NEFAs) by multisegment injection-nonaqueous capillary electrophoresis-

mass spectrometry (MSI-NACE-MS) will allow for expanded lipid analysis, such as dietary 

NEFA biomarkers for dairy fat (e.g., C15:0) and fish oil (e.g., EPA).29,30 Thus, a more diverse 

range of food specific dietary biomarkers from both urine and serum samples can be determined 

to comprehensively evaluate diet quality and potential chronic disease risk in diverse 

populations.  
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6.4 General Conclusions 

In summary, this thesis outlines the development and validation of novel multiplexed MSI-CE-

MS techniques for targeted and nontargeted biomonitoring of smoke exposure in occupational 

and population health. Rigorous interlaboratory method validation of previously reported 

methods revealed limitations in current analytical protocols, while novel, direct analysis 

technologies mitigated the need for sample workup procedures as required for large-scale 

epidemiological studies. Additionally, this thesis also contributed to innovative approaches for 

reliable assessment of tobacco smoke exposure, smoking behavior, and food exposures as 

compared to self-reports. Metabolite coverage was expanded through nontargeted analysis to 

identify robust and generalizable dietary biomarkers, which may influence smoking habits and 

overall chronic disease risk. Overall, this thesis contributed targeted and nontargeted strategies 

for characterization of the urinary exposome, which sets the stage for more comprehensive and 

reliable risk assessment to guide personalized interventions for chronic disease prevention, 

including effective smoking cessation and optimal diets that are health promoting.   
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