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Lay Abstract


A substantial portion of the antimicrobial drugs located within our very own 

medicine cabinets are produced and secreted by bacteria. Scientists have long been 

drawn towards the isolation of these molecules, called specialized metabolites, for their 

therapeutic potential. Today, however, emerging diseases and the antibiotic resistance 

have rendered many of our conventional medicines ineffective. Now more than ever, 

there is a need for updated methods in discovering new specialized metabolites; we 

cannot afford to continue using outdated reductionist approaches. To this end, I have 

developed a set of software tools which can universally predict the structures of 

specialized metabolites from the genomes of bacteria, and even connect this 

information to anticipated biological activity. These tools combine the breadth of 

knowledge published by experts over decades of research, with state-of-the-art 

computer algorithms, in order to guide drug discovery in the era of big data and artificial 

intelligence. 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Abstract


Bacterial specialized metabolites (SMs) have long interested scientists due to their 

diverse chemistries which can harbour antimicrobial activity. The discovery of these 

molecules experienced a period of exponential success in the mid-1900s and today is 

guided by next-generation sequencing and liquid chromatograph-mass spectrometry 

technology. Despite these technological advances, however, they remain under-

leveraged. Now, merging disease and antibiotic resistance threaten the security 

provided by existing antimicrobial medicines. There is an urgent need for a more 

targeted approach in the discovery of novel SMs, which leverages the tremendous 

efforts of the past alongside modern big data analytics.


To this end, I set out to develop a foundation that could guide SM discovery in the 

future. I began by bridging all available bacterial metabolism data into a common latent 

space. Using known metabolic pathways, I generated a library of biosynthetic units used 

in a novel program to encode metabolites. Each unit was connected to its requisite 

genes, which were leveraged to reverse engineer this platform by predicting the 

chemical structures of SMs directly from their encoding genes. Finally, deep learning 

models were used to annotate some of these chemical-genomic connections as being 

associated with a particular activity, in this case siderophore activity. 


This suite of software tools offers promising opportunities to pursue downstream 

applications, including the connection of unknown genes to metabolites and the 

identification of novel chemical-genomic connections. In order for these prospects to be 

realized, however, this intricately-connected network of data necessitates more 

sophisticated interpretation. Indeed, interconnected chemical, genomic and activity data 
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lends itself particularly well to analysis by graph neural networks. The foundational work 

described in this communication builds the basis for this comprehensive analysis, which 

may uncover new insights into the bacterial metabolism we thought we knew.
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Chapter 1


Introduction


1.1    Thesis Context	 


	 Microbes are the dominant life forms on Earth. Their presence is so pervasive, in 

fact, that much of the human genome draws itself from these organisms1. Even the 

mitochondria is hypothesized to originate from bacteria of the phylum 

Alphaproteobacteria2. The presence of microbes within humans is not limited to these 

traces, however, as entire microbiomes of organisms exist in nearly every corner of the 

human body. In fact, the organisms of our microbiome outnumber our human cells ten-

to-one3. These constituent microbes within the human body only begin to scratch the 

surface, as these organisms modulate human life in more ways than we can imagine. 

Bacteria in particular have served specific purposes which have been foundational 

throughout human history.


	 For example, bacterial antibiotics can be traced back to an ancient population of 

Sudanese Nubia from as early as 550 BCE4. The molecule tetracycline, produced by 

antinomycetes soil bacteria, was identified in bone samples of that era using 

fluorescence microscopy4,5. It is hypothesized that this natural antibiotic unknowingly 
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found itself in the diet of these individuals, centuries before the modern concept of 

antibiotics was even established.


	 From an agricultural perspective, humans’ relationship with bacteria may have 

begun even earlier6. Milk products were incorporated into human diet as early as 

10,000-5,000 BCE, but their susceptibility to spoiling rendered them impractical. It was 

not until a group of Middle Eastern herdsman stumbled upon the fermentation of milk 

that its consumption became more feasible. It was discovered that their use of animal 

intestines to store milk exposed it to lacto-fermenting bacteria. Not longer after, milk-

derived products such as yogurt became a staple of the human diet, as yet again 

bacteria affected the lives of humans. 


Classical Inquiry Into Bacterial Metabolites


	 Whether it is ancient Sudanse antibiotic use or dairy fermentation in the Middle 

East, these bacterial functions were only possible due to the diverse chemical entities 

produced by these organisms. These so-called metabolites have been scarcely 

understood, even as recently as the early 1900s. At this point in time, laboratory 

techniques focused on the isolation and culture of entire bacterial organisms, rather 

than their secreted products7. Sporadic discoveries of individual molecules appeared in 

the form of gramicidin and others, but it was not until Sir Alexander Fleming’s chance 

discovery of penicillin that a global inquest into bacterial metabolites was sparked. 

Today, we classify bacterial metabolites into two broad classes: primary (or centralized) 

and secondary (or specialized). 


2
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	 Primary metabolites are responsible for maintaining the basic metabolic functions 

necessary to life. Sugars, amino acids, nucleic acids and fatty acids are the basic 

chemical building blocks of life, which have enabled bacteria to live and evolve for 

millions of years. Given that these metabolites are so fundamental to life, their 

expression is ubiquitous among bacterial species8. By extension, the genetic encodings 

of these metabolites is also relatively conserved. For example, the genes pfkA and 

pfkA2 are related homologs of the taxonomically-distant bacteria Escherichia coli and 

Streptomyces coelicolor, respectively9,10. Both genes encode phosphofructokinase 

enzymes essential to the glycolytic pathways inherent in each organism’s primary 

metabolism. Findings such as these have historically relied on human annotation and 

curation, but technological advances from the 1990s onwards have expedited the field.


	 Research surrounding these primary metabolites has benefited from software 

such as the Basic Local Alignment Search Tool (BLAST), which compares sequence 

data and calculates its similarity11. In the case of pfkA and pfkA2, BLAST can readily 

identify a high similarity score between these two genes in order to determine they are 

homologs. Conversely, BLAST-searching a gene across a library of known genes can 

identify if the gene is unrelated to anything previously observed. This strategy is 

dependant on having a large, curated library of known genes, which has not always 

been available. Significant work was required to build these libraries in early stages, and 

even today BLAST is limited in that it cannot identify a new gene in a bacterial genome 

if no similar sequence exists in the reference library. Nonetheless, as a result of these 

early curation efforts, and owing to the chemical and genetic ubiquity of primary 
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metabolism, the scientific community has been able to largely characterize primary 

metabolism within bacteria.


	 As a result, primary metabolism is now well-documented in accessible, manually-

reviewed databases. The BRENDA database is a repository of enzymatic reactions 

which describe metabolism broadly across all domains of life12. Over 16,000 reactions in 

the BRENDA database are manually classified with enzyme commission (EC) numbers. 

The Kyoto Encyclopedia of Genes and Genomes (KEGG) organizes many of these 

reactions into metabolic pathways13. Overall, KEGG organizes 18,918 molecules and 

11,774 reactions into 551 pathways. The MetaCyc database aims to break down the 

large metabolic pathways contained in KEGG into smaller, more manageable sub-

pathways14. This manually-curated database contains 17,780 reactions organized into 

3,006 metabolic pathways. Although exhaustive efforts have been undertaken to curate 

and organize the information within these databases, significant but incomplete overlap 

exists between sources. The MetAMDB database was introduced in 2021 in an effort to 

consolidate the information contained within BRENDA, KEGG and MetaCyc. Currently, 

MetAMDB contains 135,064 metabolites and 64,795 reactions organized into 3,237 

metabolic pathways15. Moreover, MetAMDB contains atom mapping information which 

tracks atoms between the reactants and products of each of its reactions. Throughout 

this work, MetAMDB is used as the gold standard dataset of comprehensively mapped 

primary metabolism, and serves as the template for curation of similar specialized 

metabolism data.


Contrary to primary metabolism, specialized metabolism is not required for basic 

bacterial life. Instead, specialized metabolites are produced and secreted by organisms 

4
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in order to confer a selective advantage in a given environment16. Sometimes, these 

specialized metabolites function to kill other microbes in the surrounding environment, 

and can be leveraged by humans to create new antibiotics and pesticides. Given that 

specialized metabolism is context-specific, it is often unique to a bacterial species or 

subset of species and its diversity tends to outnumber that of primary metabolism. 

Specialized metabolism, therefore, is especially labour intensive to research and not as 

comprehensively-documented as primary metabolism.


The challenges presented with specialized metabolism research, however, were 

not enough to suppress the growing interest following the discovery of penicillin. The 

golden-age of specialized metabolism discovery of the mid-1900s saw the identification 

of thousands of novel metabolites in a short amount of time7. During this period, 

bacteria were isolated and cultured at will, and their secreted metabolites investigated. 

Success rates were understandably high, given the thousands of bacterial species in 

existence and that relatively few attempts had previously been made to identify their 

specialized metabolites. By the time these widespread curation efforts began to lose 

momentum in the 1990s/2000s, over 23,000 specialized metabolites had been identified 

— the majority sourced from bacteria7. 


	 The conventional methods used to discovery specialized metabolites in the 

1900s, however, were pre-disposed to uncovering the same data. As certain bacteria 

are more commonly found in the environment, the probability of exhausting the readily-

available catalogue of bacterial species is high. In other words, as the scientific 

community discovered countless specialized metabolites from bacteria, their chances of 

discovering new metabolites decreased in favour of rediscovering known molecules. 
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Adding to this challenge is the fact that many specialized metabolites are only produced 

and secreted under very specific conditions. As a result, the genes that produce these 

metabolites are often “cryptic” and not induced under typical laboratory conditions17. In 

these cases, new specialized metabolites which may be fundamental to medicine, 

agriculture or industry may be hiding in plain sight. As a result of these challenges and 

others, many large pharmaceutical endeavours into specialized metabolites were driven 

to a halt by the early 2000s. 


Inquiry Into Bacterial Metabolites in the Genomic Era


The rise of next-generation sequencing (NGS) has reignited interest in novel 

specialized metabolites, by reducing the time and resources required for their 

discovery18. Several factors contribute to the efficiency provided by NGS. Firstly, 

sequencing a bacterial genome can occur with much less material than culturing and 

isolation methods. As little as a single bacterial cell may be needed to sequence the 

organism’s genome19. Moreover, sequencing a single bacterial genome may take as 

little as 30 minutes, as opposed to days of growing bacterial cultures. Finally, the cost of 

NGS has declined exponentially in recent years, and may continue to do so in the 

future. For these reasons, NGS has become well-positioned to quickly and cost-

effectively generate libraries of bacterial genome sequencing data. The challenge, then, 

is to use this data to identify novel metabolites and rule out those which have likely been 

explored already.


	 It turns out that the innate nature of bacterial specialized metabolism renders it 
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amenable to analysis at the genomic level. More specifically, the genes 

responsible for the biosynthesis of specialized metabolites are often clustered together 

in close proximity, in what is referred to as biosynthetic gene clusters (BGCs)20. As a 

result, each specialized metabolite is connected to a BGC which can be detected using 

NGS. Curated BGCs are publicly available in the MIBiG repository, which contains 

annotated BGCs for 1,927 specialized metabolites21. Computational programs such as 

PRODIGAL are able to identify new BGCs within a broader genome sequence22. Using 

these BGCs, BLAST can be used to compare the similarity of their sequences. BLAST 

comparisons, however, are not sufficient to discern if a given BGC will produce a novel 

metabolite or not. Subsequent technologies have been developed which are able to 

annotate BGCs and even predict their encoded structures.


	 The antibiotics and secondary metabolite prediction shell (antiSMASH) is a 

software program designed to annotate BGCs and predict their encoded structures23. 

AntiSMASH is built around a series of hidden Markov models (HMMs) which predict the 

likelihood that a gene sequence matches a family of sequences (unlike BLAST which 

compares against a single sequence at a time). Using these HMMs, antiSMASH can 

annotate query BGCs with the presence of specific biosynthetic genes used in bacterial 

specialized metabolism. Additionally, antiSMASH can annotate specific biosynthetic 

domains corresponding to modular-type specialized metabolites. These metabolites, 

which encompass the non-ribosomal peptide synthetases (NRPSs) and type 1 

polyketide synthetases (Type1PKs), are composed of discrete chemical monomer units 

which are appended together in an assembly-line manner24. Owing to this formulaic and 

largely-predictable biosynthetic process, antiSMASH is able to predict the encoded 

7
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chemical structures of these modular-type BGCs. Furthermore, antiSMASH is 

integrated into the MIBiG repository to automatically update all newly-added BGCs.


	 The PRediction Informatics for Secondary Metabolites (PRISM) engine takes 

antiSMASH’s structure prediction feature one step further to include nonmodular-type 

specialized metabolites25,26. Unlike modular SMs, these metabolites are biosynthesized 

through a series of enzyme-catalyzed reactions which act iteratively on top of each 

other. These metabolites are not readily representable by chemical monomer units and, 

as a result, are more difficult to predict the structures of. Nonetheless, PRISM uses a 

library of biosynthetic genes connected to chemical reactions to predict the structures of 

nonmodular classes of metabolites, such as aminoglycosides and betalactams. 

However, due to the need to manually program each biosynthetic reaction within the 

PRISM program, it is laborious to add new reactions and PRISM lacks the ability to 

predict certain nonmodular classes. Moreover, if the annotations for any genes in a 

BGC are missing, there is a chance that the associated reaction will not be registered 

and any downstream reactions will be missed.


	 In order to address the rigidity and resource demand of rule-based approaches 

such as PRISM, more generalizable methodologies have emerged in recent years. 

DeepBGC is a software tool which leverages state-of-the-art deep learning models to 

predict and classify different types of BGCs from sequence data27. Unlike PRISM’s 

predefined rule set, DeepBGC uses a natural language processing model to enable 

computer-derived insights into the data at hand. Although DeepBGC does not make 

structural predictions the way antiSMASH and PRISM do, it does challenge the use of 

rigid, rule-based methodologies in the analysis of such complex data.


8
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Holistic Inquiry Into Bacterial Metabolites in the Future


Many of the existing bioinformatics tools leveraged in bacterial metabolism 

research aim to interrogate discrete types of data; BLAST analyzes individual 

sequences, DeepBGC investigates entire BGCs, and PRISM takes it a step further to 

predict chemical structures. All of these programs treat bacterial metabolism data on the 

basis of discrete, unrelated entries. Given the pervasiveness and complexity of bacteria, 

however, this approach may be limited in its ability to fully identify patterns in the 

associated data. It is already known that there is significant interconnectedness among 

the metabolism of multiple bacterial organisms. In the case of organ transplants, for 

example, the composition of the host’s microbiome plays a critical role in the success of 

the operation28,29. Different collections of organisms within a microbiome give rise to 

different collections of secreted metabolites, leading to variable downstream effects on 

hosts. With this in mind, then, it may be better-suited to investigate bacterial metabolism 

as a whole, rather than discrete components of it.


	 There currently exists no framework which enables this collective analysis of all 

of bacterial metabolism data. The development of such a resource would allow all 

existing bacterial metabolism data to be integrated into a unified medium, such that 

broad computer-guided analyses could be performed to derive new patterns within the 

data (Figure 1). It turns out that modular SMs may offer a source of inspiration towards 

creating this unified medium. As polymers of chemical monomer units, modular SMs are 

inherently representable as series of biosynthetic units. Moreover, each of these units 

can be directly tied to its genetic origin. For example, the incorporation of a valine within 

9
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an NRPS will always require a thiolation (T) domain, a condensation (C) domain, and an 

adenylation (A) domain whose binding pocket is specific to valine24. The genes 

associated with these domains are readily-searchable within a gene sequence, using 

such tools as HMMs, BLAST or state-of-the-art deep learning models. This direct 

translation between chemistry and genomics enables one to readily predict the genes 

associated with a SM structure, and conversely the structures encoded for by a set of 

genes. Expanding these properties beyond just modular metabolites would present an 

opportunity to comprehensively connect the encoded chemistries of metabolism to their 

genomic origins.


	 This interconnected network of data could be further expanded upon to include 

additional information, such as taxonomical associations of genes and chemical units. 

Of particular interest would be the ability to associate certain combinations of genes and 

chemical units to biological activities. This may better facilitate analyses where the 

collective makeup of bacterial metabolism directly affects results, such as in the case of 

organ transplants. For example, if the encoded chemistries of a patient’s microbiome 

were annotated with associated biological activities, a computer model would be better 

able to predict their modulatory effects on each other and the host’s immune system. 

10
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FIGURE 1.1 | Hypothetical network graph of interconnected bacterial data 
pertaining to Fimsbactin. Depicted in red is the set of requisite biosynthetic 
genes, which are connected to their corresponding biosynthetic units (blue). All of 
these data nodes lead to the same metabolite, Fimsbactin (yellow). Associated 
activities of this metabolite are depicted in green. Note,  only the data associated 
with Fimsbactin is depicted for clarity purposes. In a comprehensive network 
covering all of bacterial metabolism, any of these data nodes may be connected to 
other nodes derived from different metabolites. For example, a given biosynthetic 
unit of Fimsbactin may be found in another metabolite with a different biological 
activity, and therefore assigned an activity not typically associated with Fimsbactin 
itself.	 
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Much of the work involved in characterizing metabolism has already been 

completed, but remains to be fully leveraged. The MetaAMDB database provides 

comprehensive mapping of bacterial primary metabolic pathways, and even some 

specialized metabolic pathways. Hundreds of additional specialized metabolic pathways  

have already been described in individual literature papers, which may be manually 

curated to augment the data contained within MetAMDB. Moreover, curated in-house 

datasets and large public repositories such as PubChem contain activity annotations of 

bacterial specialized metabolites, which could be harnessed to further annotate the 

integrated bacterial metabolism data. In fact, I believe that the breadth of existing data is 

comprehensive enough that it can be utilized to design a system which represents all 

metabolites, whether primary, modular or nonmodular, as a series of annotated, 

genomically-encoded biosynthetic units.


Put simply, I believe that the way in which we think about bacteria in the future will 

be drastically different from today. Rather than see them as individual organisms with 

discrete functions, we will appreciate them for the systems-wide interconnected entities 

which they are. In order to analyze bacteria as such, we will need new technological 

frameworks upon which we can build the necessary analytical platforms. It is this 

guiding principle that has led me to the work contained herein, whose purpose is the 

following:


To develop a framework which integrates known bacterial metabolism into an 

interconnected network of data, such that it may be used to collectively 

investigate bacterial metabolism in the future.


12
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1.2    Purpose of This Work


	 The work presented herein involves the collective efforts undertaken during my 

graduate studies to develop tools which integrate and expand upon the existing 

knowledge of bacterial metabolism. In order to achieve this, my work was broken down 

into the following 3 aims, each corresponding to a chapter in this work:


1. Develop a chemically-informed biosynthetic representation of SMs which 
can be connected to genomic information


2. Develop a system for reverse-engineering genomic annotations into the 
newly-formed biosynthetic representation of SMs


3. Explore the potential to expand this new biosynthetic representation of 
SMs to contain information regarding biological activity


I begin in Chapter 2 by presenting an approach which generates biosynthetic 

representations of metabolites. This work rests upon a foundational library of 

biosynthetic units manually curated by my peers and I. Chapter 2 also discusses my 

approach to deriving unconventional nonmodular biosynthetic units from metabolic 

pathways, in order to round out the unit library. Using these units, I present a jointly-

developed tool, Bear, which is used to generate the biosynthetic representation of 

metabolites. The Bear tool is tested on its ability to generate successful annotations of 

nearly 20,000 bacterial SMs from our in-house database. Finally, Bear is used alongside 

the curated metabolic pathways to generate so-called gene hooks — combinations fo 

genes which, when observed, can be expected to give rise to a particular chemical unit 

or reaction.


13
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Chapter 3 builds upon Bear’s gene hook library to reverse engineer the newly-

developed biosynthetic representations of SMs. An extension to Bear, BearClaws, is 

developed which predicts the encoded structure of SMs from a set of genomic 

annotations. BearClaws is run on 95 known SMs and the results are compared to the 

true structures of the SMs and those predicted by a state-of-the-art competitor program. 

Finally, selected examples are explored in greater depth to establish the strength and 

weaknesses of BearClaws, as well as recommend future directions for its improvement.


	 Chapter 4 concludes my work by exploring the potential to expand upon Bear’s 

biosynthetic unit library to connect genomic information directly to biological activity 

information. I begin by presenting a series of deep learning models which can classify 

the activity of SMs. A particular model specific to siderophore activity is used as a test 

case for the annotation of biosynthetic units with activity. The model’s ability to capture 

the importance of particular units to siderophore activity is investigated. Finally, the 

corresponding gene hooks for each siderophore-related unit are pooled and labelled to 

be activity-guided gene hooks — combinations of genes associated with a particular 

activity, in this case siderophore activity.


	 The collective works presented in Chapters 2,3 and 4 demonstrate a previously-

unexplored strategy for the representation of metabolites, as well as connect this 

encoded information to genomic and activity-related annotations. This work, however, 

merely sets the foundation for countless opportunities to expand upon it. Future work 

may seek to match novel metabolites to BGCs, or comprehensively investigate the 

relationship of biosynthetic units to all known molecular activities.


14
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Chapter 2


Molecular Representations of 
Metabolites Using Bear


2.1    Preface


The work presented in this chapter describes a collaborative effort undertaken in 

various degrees by several lab members. Mathusan Gunabalasingam conceptualized 

the initial Bear program in late 2020, and I joined the effort in early 2021. Tonya Malcolm 

and Xiaxia Di curated the sugars, tailoring groups and amino acids contained in Bear, 

as well as the specialized metabolic pathways. I curated additional amino acids and 

derivative reactions, as well as nucleosides and terpene units. I developed the software 

for biosynthetic pathway mapping and unit extraction. Mathusan curated polyketide 

units and associated reactions, as well as fatty acid units. Mathusan developed the 

initial Bear program, then we worked together on it over the course of several months 

and several iterations. The NPMage program referenced in this chapter was developed 

by Mathusan several years ago. Dr. Nathan Magarvey provided oversight, mentorship 

and scientific expertise throughout this work.
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2.2    Abstract


Bacterial specialized metabolites (SMs) are molecules produced and secreted by 

bacteria, which harbour unique chemistries and associated pharmacological activities. A 

key property of SMs is their ability to be reliably connected to their genomic origins by 

the biosynthetic gene clusters (BGCs) which produce them. Much of the foundational 

work to identify and characterize bacterial metabolism has already been completed, but 

work remains to integrate the totality of the known metabolic information in a way which 

aids further inquiry. Here, we present a program, Bear, which leverages the known 

bacterial metabolism information to generate chemically and genetically guided 

encodings of metabolites. As part of this program, we manually curated a 

comprehensive library of biosynthetic chemical units repeatedly observed within 

specialized metabolism. We further developed a system to track atoms in both primary 

and specialized bacterial metabolic pathways, in order to generate pathway-derived 

units which augment this unit library. Finally, we used the Bear program to identify the 

genes necessary for the production of these biosynthetic units, and suggest some of the 

many potential use cases for this novel metabolite-relevant molecular encoding.


2.3    Introduction


	 Experts have long sought to develop universal encoding methods which can 

represent all molecules. Chemistry is diverse, however, and subjecting all molecules to 

a generalized mode of representation can reduce resolution. Bacterial metabolites are a 

specific class of compounds which inherently contain biosynthetic information within 
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their composition. Representing metabolites in a way which captures this biosynthetic 

information would provide more accurate encodings within this specific class of 

molecules. In doing so, the gap between chemical and genomic data would be bridged. 

The successful development of a biosynthetic representation of metabolites would 

introduce countless downstream applications, including the connection of metabolites to 

biosynthetic gene clusters (BGCs), and of biosynthetic data to molecular activity.


	 Historically, molecules have often been represented using the Standardized 

Molecular-Input Line-Entry System (SMILES)30. This text-based encoding of molecules 

benefits from the fact that it can contain atom-level resolution, and each unique 

chemical structure can be represented by a unique SMILES entry. Unfortunately, the 

text-based nature of SMILES renders it less directly processable by statistical computer 

models. Molecular fingerprints aim to mitigate this shortcoming by representing 

molecules as feature vectors31. These linear stretches of 0’s and 1’s indicate whether a 

molecular feature is present (1), or absent (0), in a given molecule. Despite their ability 

to be more readily interpreted by statistical models, molecular fingerprints are often 

sparsely-populated and can lack resolution themselves31. However, one of the most 

significant shortcomings of both SMILES and molecular fingerprints is the fact that both 

are limited to representing chemical data and completely lack additional layers of 

information. In the case of genomically-encoded bacterial metabolites, there is a need 

for a molecular representation which contains both chemical and genomic information.


	 Modular SMs, such as those produced by non-ribosomal peptide synthetases 

(NRPSs), are innately composed of biosynthetic units containing both chemical and 

genomic information. For example, amino acids are always incorporated into NRPS 
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compounds by way of a condensation (C) domain, a thiolation (T) domain and an 

adenylation (A) domain24. BGCs can readily be queried for the presence of these 

domains. Other so-called modular units may include sugars, fatty acids and 

nucleosides, all of which are discrete chemical structures readily connected to genes. 

Modular SMs, therefore, could be represented by the biosynthetic units which they are 

composed of. Developing a methodology to expand these biosynthetic units to include 

nonmodular and primary metabolic compounds would present an opportunity to encode 

all metabolites using their biosynthetic origins. In order to do so, the biosynthetic 

pathways of the known nonmodular and primary metabolites can be analyzed.


	 The work contained within this chapter builds upon the curated biosynthetic 

pathways of primary metabolites contained within the open-access MetAMDB 

database15. In addition, our group’s previous curation efforts augment this data with 

pathways specific to specialized metabolites. A methodology is presented which 

extracts chemical units from these biosynthetic pathways. Using the collective library of 

biosynthetic units, a tool which represents metabolites as a series of units, Bear, is 

presented and validated.


2.4    Methodology


2.4.1 — Unit Library


A total of 18,385 biosynthetic units are contained within the Bear library. Of these, 

3,693 are manually-curated modular units, while 14,692 are pathway-derived units 
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generated computationally. Figure 2.1 illustrates the distribution of units among different 

classes.


Curated Modular Units


Modular units consisting of amino acids, fatty acids, polyketide monomers, sugars, 

nucleosides, terpenes, tailoring units and unique miscellaneous units were manually 

curated by our team. Amino acids and fatty acids were cross-referenced with the 

NORINE database to ensure completeness32. Additionally, alpha amino acids were 

subjected to a series of reactions to generate the following amino acid variants: beta 

amino acids, hydroxyacids, alpha-ketoacids, alkanolamines, dehydro aminoacids, cyclo 

aminoacids, azoles and hybrid peptide-polyketide units. Polyketide units were manually 

selected to include all substrates (Supplementary Table A1) and known specialized 

starter units. Additionally, polyketide monomers were subjected to reactions in order to 

form pyran rings. Sugars, nucleosides and tailoring groups (ex. methyl and hydroxyl 

groups) were manually selected in order to represent the totality of those found in the 

known specialized metabolites. Simple linear terpene chains were generated from 

isoprene units, to a maximum size of 20 isoprene units. Additionally, terpene chains 

were subjected to hydroxylation at the C5 locus of the isoprene units in every non-

redundant combination possible. Finally, unique miscellaneous units observed within 

specialized metabolic pathways, such as the decalin ring moiety found in tetrocarins, 

were added. 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FIGURE 2.1 | Bear unit library. Depicted are selected examples of 
biosynthetic units in the Bear library. The unit type is written in the top left of 
each box and the number of units of that type is written in the top right of 
each box. Certain types of units contain subtypes, which are written at the 
bottom of the corresponding box.
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Pathway-Derived Nonmodular Units


Nonmodular biosynthetic units were derived from metabolic pathways described in 

literature. Pathways were processed such that each unique atom and its source (the 

reaction or intermediate that it came from) was tracked throughout the pathway. For 

each intermediate in the pathway, atoms from the same source were grouped together 

and “extracted” as a unit. Redundant units were removed and the resulting units were 

added to Bear’s final library.


Biosynthetic Pathway Data


Primary metabolic pathways were sourced from the MetAMDB database. A 

total of 3,498 primary metabolic pathways were analyzed. In-house curation efforts 

by staff members were successful in recording the biosynthetic pathways of 263 

specialized metabolites described in literature. Each pathway was recorded as a 

series of unique reactions. The atoms between the reactants and products of each 

reaction were mapped using the ReactionDecoder tool33. Reactions which could 

not be mapped by ReactionDecoder were mapped manually. For each reaction 

within the specialized pathways, the gene sequences for the corresponding 

enzymes were recorded, if available.


	 Atom Mapping Throughout Pathways


Each metabolic pathway was processed as a set of reactions. Using the 

networkx package in Python, each set of reactions was loaded as a graph where 

nodes corresponded to reactions34. Edges between nodes were creating if the 
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product of one reaction (node) was the reactant of another. This was checked for 

using the rdkit package in Python35. To begin, connections were only drawn if the 

reactant and product represented the exact same molecule, including 

stereochemistry. Due to minor inconsistencies in the reporting of stereochemistry 

in the primary metabolic reactions of MetAMDB, a few cases existed where 

reactants and products were not connected when they should have been. To 

account for these situations, reactant/product matches were subsequently 

searched for without stereochemistry requirements, only in cases where there 

were multiple subgraphs rather than a single unified graph (i.e. the set of pathway 

reactions was not fully connected). With this contingency in place, all pathways 

were fully connected and additional nodes were added in between reaction nodes 

to correspond with each chemical intermediate.


Beginning with starter reactions (those without any preceding reactions), 

atoms from the reactants and products were tracked and assigned unique map 

numbers. The unique map numbers of the products were assigned to the 

intermediates following the starter reactions. Subsequent reactions were iterated in 

order of proximity, such that atoms carried forward their unique map numbers from 

intermediate to intermediate. New atoms which were introduced through a 

particular reaction, as in the case of a hydroxyl group added by a hydroxylase 

enzyme, were assigned the next-highest, unoccupied map number.


After all atoms within the pathway were assigned a unique map number, the 

earliest point at which each map number was observed was recorded. This was 

taken to be the source of the atom. For example, in the case of the hydroxyl group 
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added by a hydroxylase enzyme, the source of the map number corresponding to 

the hydroxyl’s oxygen atom is the hydroxylation reaction itself. A dictionary 

mapping atoms to their sources was generated for each intermediate in each 

pathway (Figure 2.2). Atom sources exist in two forms: starter unit sources and 

reaction sources. Starter units sources correspond to intermediates in the 

biosynthetic pathway with no reported predecessor (ex. the biosynthesis of some 

metabolites begins with an amino acid). Reaction sources correspond to reactions 

which incorporate chemical moieties into an intermediate part way through the 

biosynthetic pathway. Reaction sources are directly tied to their corresponding 

genes, whereas starter unit sources are not.


A subset of reactions act without adding or removing atoms. As a result, the 

map numbers between reactants and products remain the same. For example, a 

hydroxyl which is reduced to a ketone describes a chemical change in which atom 

map numbers remain the same. These changes are not captured by the existing 

source mapping methodology, but contain valuable information that should be 

documented. To this end, a secondary dictionary pertaining to additional 

modification reactions of atoms was generated. 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FIGURE 2.2 | Mapping of ascamycin biosynthetic pathway. Shown is the 
illustrated pathway mapping of ascamycin biosynthesis. Each unique colour 
corresponds to a unique reaction or starter molecule source within the 
pathway. The genes responsible for each reaction are shown in italics (ex. 
AcmN for reaction 4 (R4)). Note, the additional modification sources are not 
shown. 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For each pair of adjacent intermediates in a pathway, atoms were analyzed 

for chemical changes using the rdkit package. Chemical changes were defined as 

those situations in which the neighbouring atoms, bonds, valence, charge or 

hybridization state of an atom changed. Atoms whose map number remained the 

same, but exhibited a chemical change, were added to the additional modification 

reactions dictionary. The pathway reaction which gave rise to this chemical change 

was taken to be the additional modification source of the change. Not all atoms 

within intermediates were connected to additional modification reactions.


Unit Extraction


The intermediates and final compounds of each pathway were analyzed 

individually. Adjacent atoms from the same source were grouped together. 

Molecules were fragmented at the bonds corresponding to the boundaries 

between sources, and the resulting fragments were taken to be biosynthetic units. 

Bonds were only considered for fragmentation if they were single bonds and the 

generated fragments were representable by a valid SMILES string. 


After nonmodular units were extracted from each metabolic pathway, 

duplicates were removed. Each unit was represented by a standardized, canonical 

SMILES string devoid of map numbers, and a final set of non-redundant units was 

kept. Each unit was represented with the notation S.X.Y, where X represents an 

internal pathway ID number and Y represents the unit number from that pathway. 

The same unit found in multiple pathways was represented by the notation using 

the lowest pathway ID number. Data tracing units back to all pathways in which 
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they were found was saved. The dereplicated set of pathway-derived units was 

added to the library of chemical units contained in Bear.


Chemotype Association


Each pathway-derived unit was traced back to the pathways which it is found in. 

Each of these pathways corresponds to the biosynthesis of a specialized metabolite 

whose chemotype has been annotated using an in-house program called NPMage. The 

chemotypes of the associated pathways were pooled for each unit, and the most 

frequent chemotype was assigned to be the chemotype label for the unit itself.


SMARTS Representation


In order to successfully achieve the final goal of Bear — to map query structures 

as series of biosynthetic units — it was imperative to minimize the number of false 

positive unit annotations. Using native SMILES strings would limit the specificity of each 

unit, as SMILES strings only capture information regarding the configuration of atoms 

bound to each other. As a result, the false positive rate of biosynthetic units mapping to 

query structures would be high, and computational time would increase.


SMILES Arbitrary Target Specification (SMARTS) strings, on the other hand, are a 

more complex language for representing chemical structures36. Unlike SMILES, 

SMARTS strings can contain information regarding the valence state, degree, 

neighbours and hybridization state of atoms. During the extraction of pathway-derived 

units, a SMARTS string with strict chemical queries was generated for each unit, 

alongside the SMILES string. Chemical reactions contained within Bear were also 
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represented by SMARTS strings in order to increase specificity and limit false positives. 

It is these SMARTS strings which are utilized during Bear’s annotation of chemical 

structures.


Flexible Units


Although the use of strict chemical queries in SMARTS strings greatly 

reduces false positive annotations, it also limits the applicability of Bear units to 

structures outside of the labelled data used. For example, if a Bear unit is only 

ever observed within the known data as having a chlorine group attached to a 

particular carbon, the strict queries of the SMARTS string will ensure that the unit 

cannot map to derivative structures lacking the chlorine group. It is reasonable to 

infer, however, that a variation of that structure without the chlorine likely exists 

within the totality of metabolites in existence. In order for Bear to be able to map 

these structures as well, so-called flexible units whose carbons are attached to 

tailoring groups (such as a chlorine) had their chemical queries removed from the 

SMARTS strings. The chemical queries for all other atoms remained unchanged. 

This way, the SMARTS strings corresponding to these units are specific enough to 

avoid false positive mapping, but contain enough flexibility to be applicable to new 

structures not previously observed. These flexible units are used as a secondary 

round of annotations within the Bear tool, for query structures which are not fully 

mapped using the default library.  
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2.4.2 — Biosynthetic Representation


The Bear tool was designed for the purpose of mapping metabolites as series of 

biosynthetic units. The tool leverages its library of curated and pathway-derived units to 

annotate query structures. Redundant annotations are dereplicated and the combination 

of non-overlapping units which annotates the greatest number of atoms on the query 

structure is presented to the user (Figure 2.3).


Unit Mapping


To begin, the Bear tool iterates through the library of units to check which ones are 

found within the query structure. In order to do this, each unit is represented by its 

SMARTS string, and the rdkit package is used to check if the unit is contained within the 

query structure. All units and the atoms they overlap with in the query structure are 

recorded.


Inevitably there will often be more unit annotations per query structure than are 

required to fully map the structure. Using the total set of unit annotations, the optimal 

combination of non-overlapping units needs to be computed. In order to expedite this 

computation, a series of dereplication steps removes redundant annotations. 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FIGURE 2.3 | Selected examples of Bear biosynthetic representations. 
Shown are: 6-deoxytetracycline (a), Streptomycin (b), Cephalexin (c), 
Erythromycin (d) and Daptomycin (e).
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FIGURE 2.3 (continued) | Selected examples of Bear biosynthetic 
representations. Shown are: 6-deoxytetracycline (a), Streptomycin (b), 
Cephalexin (c), Erythromycin (d) and Daptomycin (e).
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Firstly, annotations whose corresponding atoms are complete subsets of other 

annotations are removed. Secondly, unit combinations which perfectly overlap with 

stretches of 3 or more connected peptide or polyketide units are removed. Thirdly, 

flexible unit annotations which overlap with non-flexible unit annotations are removed. 

Finally, annotations which partially or fully overlap so-called confident annotations are 

removed. Confident annotations describe certain units whose structure is so specific 

that it is highly unlikely to belong to another unit. Sugars, nucleosides and certain large 

miscellaneous units are designated as confident units. 


Finding The Optimal Solution


After the successful dereplication of units, the remaining annotations are use to 

compute the optimal subset of annotations which represent the query structure. The 

optimal solution is computed based on a series of rules which prioritize certain 

characteristics of the unit set (Supplementary Table A2). Most importantly, the optimal 

solution must annotate the greatest number of atoms in the query structure. Even after 

applying these prioritization rules, there may be multiple solutions to the query structure. 

In these cases, Bear displays the first solution available, but the remaining solutions are 

saved and readily-accessible by the user.


Unknown Units


Bear representations which contain unmapped regions hold unique chemical 

information. It is possible that these unmapped regions correspond to chemical units not 

yet contained within the scientific community’s body of knowledge. Owing to the fact 
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that all Bear units are representable by SMILES strings, it is possible to extract these 

unmapped regions as their own chemical moieties for future analyses. For example, the 

totality of unknown chemical units may be compared to known BGCs in order to derive 

new biosynthetic units and their genetic connections. To this end, Bear reports all 

unmapped regions as discrete units with their corresponding SMILES.


2.4.3 — Gene Connections


Units


With the successful completion of the Bear tool, the next step was to annotate its 

units with relevant genomic information. The natural inclination was to use the 

corresponding genes from a metabolite’s source map to annotate the derived units. 

However, the biosynthetic representations presented by Bear do not always perfectly 

overlap with a given metabolite’s source map (Figure 2.4). This is due to the fact that 

Bear leverages the entire library of units, and there may be units which span across 

multiple source regions (Figure 2.4). To account for this, the Bear solution for a given 

structure can be overlapped with its respective source map, and the biosynthetic units 

annotated with the genes corresponding to their atoms. For example, the grey 

biosynthetic unit in Figure 2.4b, S.1101, overlaps with Reaction 4 and Reaction 6 in the 

source map of Figure 2.4a. Therefore, its gene connections are registered as AcmN 

(corresponding with Reaction 4), as well as AcmD, AcmE and AcmF (corresponding 

with Reaction 6). 


Each intermediate and final compound from both primary and specialized 

nonmodular biosynthetic pathways was mapped by Bear and its biosynthetic 
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representation compared to its source map. The genes corresponding to the atoms of 

each unit were pooled to create so-called gene hooks — a combination of genes which 

gives rise to a given chemical unit. Given that it is possible for the same chemical unit to 

map to multiple compounds from different pathways, it is possible for the same unit to 

have multiple gene hooks. Therefore, each gene hook for a given unit was recorded.


FIGURE 2.4 | Source map to Bear representation comparison of 
Ascamycin. (a) The final compound in the ascamycin biosynthetic pathway 
is illustrated with atoms highlighted according to its source map. (b) The Bear 
breakdown of ascamycin is illustrated with atoms highlighted according to 
biosynthetic units. To account for the discrepancy, the sources of all atoms 
corresponding to a biosynthetic unit are mapped to that unit. For example, 
the sources of the grey biosynthetic unit, S.1101.19, are both Reaction 4 and 
Reaction 6.


Linker Reactions


In addition to chemical units, source map-to-Bear breakdown comparisons can 

also be leveraged to derive information regarding the bonds between units. Chemical 

reactions which join two Bear units can be annotated with the sources of these bonds. 

These chemical reactions, herein referred to as linker reactions, can be represented by 
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a reaction SMILES in which the individual Bear units are the reactants, and the 

connected dimer is the product. 


In order to derive the gene connections for these linker reactions, adjacent units 

within Bear solutions were analyzed. The sources of the atom from each unit attached 

to the linker bond were compared. In cases where both atoms shared an additional 

modification reaction source, this was taken to be the definitive source of the linker 

reaction. This is because a linker reaction would modify the chemical nature of the two 

atoms involved in the bond, so the additional modification reaction would register for 

both atoms. In certain cases, the solution presented by Bear deviated from the source 

mapping of the query structure. In these situations, no overlapping additional 

modification reactions existed, and the entire set of source reactions was taken to be 

the linker reaction’s source. Using these linker reactions, a second dataset of gene 

hooks pertaining to linker reactions was generated.


2.5    Results & Discussion


Assessing Pathway-Derived Units


Firstly, the validity of the pathway-derived unit extraction protocol was assessed 

with an atom coverage test. The atom coverage test refers to the percentage of atoms 

in a query structure which are annotated by Bear’s biosynthetic breakdown. All 

intermediates and final compounds from biosynthetic pathways were subjected to an 

atom coverage test, and it was confirmed that 100% of intermediates and compounds 
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could all be fully annotated using Bear’s unit library. This is to be expected, however, as 

the units in Bear’s library are sourced from these very pathways themselves.


Holdout Atom Coverage Test


Next, the robustness of the pathway-derived unit extraction logic was tested using 

a holdout dataset. Similar to those used in machine learning applications, a holdout 

dataset uses a portion of the entire data to test the model’s performance on the 

remaining, never-before-seen data37. In the case of Bear, the units from 80% of the 

biosynthetic pathways were used to map the intermediates and compounds from the 

remaining 20% of the pathways. The units from the 20% holdout dataset were excluded 

from the library, in order to test the extent to which the units from a portion of the 

pathways could explain the remaining pathway intermediates and compounds. Figure 

2.5 illustrates the results of the holdout atom coverage test per chemotype. Note, NRPS 

and Type1PK chemotypes did not undergo a train/test split, as their units are not 

pathway-derived. 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FIGURE 2.5 | Results of holdout atom coverage test. The percentage of 
compounds mapped at 50%, 80% and 100% is shown in blue. The 
percentage of intermediates mapped at 50%, 80% and 100% is shown in 
orange. NRPS and Type1PK results correspond only with known compounds 
from those chemotypes, as their units are not pathway-derived.


The results of the holdout atom coverage test indicate that sensitivity to random 

removal of units from the Bear library is dependant on chemotype. Type 2 polyketides 

(Type2PKs), for example, are particularly sensitive to unit removal, given they had the 

lowest atom coverage results for intermediates and compounds combined. This 

observation aligns with theoretical expectations as Type2PKs inherently contain specific 

scaffold backbones38. Often these scaffolds cannot be broken down and are 

represented as one large biosynthetic unit. If a given scaffold is removed from the Bear 

unit library, its corresponding pathway intermediate and final compound will no longer 

be fully annotated. Figure 2.6 illustrates this situation using 6-deoxytetracycline, and the 

change in atom coverage when units derived from the 6-deoxytetracycline biosynthetic 

gene cluster are removed from Bear. 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FIGURE 2.6 | Sensitivity to Bear unit library restrictions in 6-
deoxytetracycline. Shown on the left is the correct Bear annotation of 6-
deoxytetracycline, using the full Bear unit library. Shown on the right is the 
incorrect Bear annotation of 6-deoxytetracycline when units from its 
biosynthetic pathway were removed from the Bear unit library. This is an 
example of how restrictions to the Bear unit library can remove important 
Type2PK scaffolds which cause certain metabolites to go unmapped.


On the other hand, chemotypes for which metabolites are largely comprised of 

repetitive motifs were more resistant to decreases in atom coverage performance. The 

aminoglycoside, betalactam and NIS chemotypes were examples of such cases. 

Interestingly, the nucleoside chemotype, which often includes repetitive chemical motifs, 

was not as robust as expected. This suggests that future data curation efforts should 

perhaps prioritize biosynthetic pathways belonging to nucleosides.


It is important to note, however, that the results discussed thus far are with respect 

to 100% atom coverage. Even where a compound is not fully annotated at 100%, there 

is valuable information contained in the existing annotations. For example, when 

querying BGCs for potential matches to a metabolite, an incomplete set of Bear 

annotations may still be sufficient to identify a match, or at least narrow down the 

number of potential candidates. With this in mind, Bear was able to annotate most 

chemotypes nearly perfectly at the 50% threshold. At the 80% threshold level, Bear 
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continued to experience trouble with Type2PKs, but demonstrated a marked 

improvement among all other chemotypes. 


Full Database Atom Coverage Test


Despite promising results with the holdout atom coverage test, we wanted to 

explore Bear’s ability to annotate SMs outside of the known metabolites used in the 

pathway extraction protocol. To this end, a second atom coverage test was performed 

using a test set of the SMs contained within our in-house database. The test set was 

limited to bacterial compounds which had chemotype annotations and were able to be 

analyzed by Bear in 1 minute or less. A total of 19,485 compounds were analyzed. 

Figure 2.7 illustrates the results of this analysis across all chemotypes.


FIGURE 2.7 | Results of full database atom coverage test. The 
percentage of compounds mapped at 50%, 80% and 100% is shown in blue. 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A comparison between Figure 2.5 and Figure 2.7 yields several observations. 

Firstly, the chemotypes which performed more poorly on the holdout test also performed 

more poorly on the full database test. Type2PKs, terpenes and nucleosides in particular 

performed worse than other chemotypes. This observation indicates that the 

biosynthetic pathways which the Bear unit library is based on may not sufficiently 

represent the totality of existing Type2PKs, terpenes and nucleosides. Conversely, 

aminoglycoside, NRPS-Independant Siderophores (NIS) and NRPS chemotypes 

demonstrated relatively strong performance on both tests. This is in accordance with the 

tendency for these chemotypes to be largely defined by repetitive chemical motifs. 

Interestingly, the betalactam chemotype demonstrated much better performance on the 

full database test, indicating that although it may not be resistant to unit library 

restrictions, the units contained within the full library are sufficient to map the majority of 

betalactams. Note, the phenylpropanoid chemotype was not included in the holdout test 

due to insufficient data, so its results on the full database have no comparator.


Validity of Unit Annotations


Full annotation of query structures is only truly purposeful if the units contained 

within the annotations are genetically valid. In other words, structures may be incorrectly 

annotated by units which would never come together within a BGC to form the 

respective structure. In order to test the validity of Bear’s annotations, the set of genes 

corresponding to each Bear breakdown was compared to the expected genes from the 

BGC. If the units which make up a Bear breakdown of a known metabolite are fully 

representative of its biosynthesis, their genes should perfectly correspond with those in 
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the cluster. Figure 2.8 illustrates the percentage of genes from a given BGC which are 

found within the unit-derived genes of the Bear breakdown, on a per-chemotype basis.


FIGURE 2.8 | Percentage of genes called by Bear breakdowns. Shown is 
the percentage of genes from BGCs which are found in the associated Bear 
breakdown.


 The results in Figure 2.8 highlight several patterns regarding the unit annotations 

of Bear. Bear breakdowns within certain chemotypes, such as alkaloids and terpenes, 

are not associated with the totality of genes observed in the BGCs of these compounds. 

This is likely due to the fact that certain units are derived from intermediates of 

biosynthetic pathways where they are only connected to several genes from the BGCs. 

These units are still able to map the corresponding final metabolites perfectly, but the 

combination of units required to do so does not need to use all of the genes within the 
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BGC. The downstream effects of this situation can be better understood by predicting 

the encoded structures contained within BGCs, and searching for signs of decreased 

performance within these chemotypes.


All other chemotypes made use of significantly more genes from their respective 

BGCs, on average. Interestingly, the phenylpropanoid and NIS chemotypes used all 

genes from their BGCs. Results for modular chemotypes (NRPS and Type1PK) are not 

available, as their corresponding BGCs do not contain equivalent genes but rather 

specialized modular domains.


Although no direct comparator program exists, internal validation suggests that the 

Bear unit library is a promising initial work to examine most SMs in light of their 

biosynthetic composition. Further curation efforts are required to expand the unit library 

to cover specialized units within modular systems, as well as additional pathways in the 

chemotypes which are more difficult to fully annotate. Indeed, our group is currently 

undertaking such curation efforts in order to supplement the biosynthetic pathways 

leveraged by Bear with new data published in recent months. 


2.6    Conclusion


The development of Bear presents an exciting opportunity to explore SMs by 

leveraging their novel encodings. Work remains to curate additional biosynthetic 

pathways and modular units, in order to increase Bear’s performance on the atom 

coverage test. Indeed, this curation effort is already underway in our lab, but remains a 

long-term, ongoing endeavour. In the meantime, the Bear tool can be extended to a 

number of potential downstream applications, including identifying new units from the 
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totality of unknown units, connecting metabolites to BGCs, or annotating biosynthetic 

units with pharmacological activity data. 


A use case which is of particular interest to our group is the reverse engineering of 

a Bear biosynthetic representation. At it stands, Bear is able to effectively map chemical 

data to genomic data. If this process were reversed, by way of mapping genomic data to 

chemical data, the chemical and genomic content of metabolites could be bridged into 

the same latent space. Theoretically, this should be an achievable goal given that the 

Bear library already contains gene hooks related to both chemical units and linker 

reactions. Therefore, BGCs could readily be screened by these gene hooks, and the 

detected units and reactions could be used to generate a predicted structure for the 

BGC. This predicted structure would be represented by biosynthetic units, thereby being 

readily comparable to other metabolites. The successful development of such a system 

would enable further downstream applications such as matching unknown BGCs to 

metabolites, or connecting genomic data directly to biological activity data. 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Chapter 3


Predicting Encoded Chemistries 
Using BearClaws


3.1    Preface


The work presented in this chapter expands upon the collaborative Bear tool 

developed with the help of other lab members. Mathusan Gunabalasingam wrote most 

of the code for the BearClaws tool itself. I assisted with brainstorming and conceptual 

ideas related to the logic of the program. I generated pseudo clusters and ran all 

analyses described herein. Keshav Dial and Norman Spencer ran the PRISM program 

to generate its structural predictions. Dr. Nathan Magarvey provided oversight, 

mentorship and scientific expertise throughout this work.


3.2    Abstract


Conventional methods for characterizing the chemical structures of bacterial 

metabolites from their biosynthetic gene clusters (BCGs) is resource-intensive and 

requires expert knowledge. Often, these pursuits may be undertaken only to conclude 

that a particular metabolite is not of interest. Computer tools have been released which 

can predict the structures of certain bacterial metabolites from their BGCs, but their 

robustness across all metabolite classes varies. There is a need for a fast 
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computational tool which can predict the encoded chemistries of all classes of bacterial 

metabolites. In this work, we present BearClaws, an extension to our previously-

described tool, Bear, which leverages a library of gene hooks — combinations of genes 

which give rise to a chemical unit — in order to achieve this goal. Most importantly, 

BearClaws predicts chemical structures as series of biosynthetic units concurrent with 

those contained within Bear. This unified representation of metabolites readily allows for 

downstream analyses, which are discussed and suggested at the end of this work.


3.3    Introduction


Traditional efforts to identify novel specialized metabolites (SMs) and their 

chemical structures have been laborious and time consuming. Advancements in 

genomic sequencing technologies have enabled researchers to “mine” bacterial 

genomes for novel metabolite-producing biosynthetic gene clusters (BGCs)25. Even so, 

the subsequent production, isolation and characterization of a particular metabolite is 

resource intensive, and is only hampered by the increasing rate of rediscovery. In 

response, ambitious recent attempts have sought to leverage heuristics and computer 

models to increase the rate of novel SM discovery by predicting the encoded structures 

of metabolites directly from BGCs.


The antibiotics & Secondary Metabolite Analysis Shell (antiSMASH) and 

PRediction Informations for Secondary Metabolomes (PRISM) are two major software 

programs which annotate BGCs and predict the structure of encoded metabolites23,26. 

Both programs use hidden Markov models (HMMs) to identify genes contained within 

the BGCs. Using this gene annotation pipeline and a set of heuristics, both programs 
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then predict the chemical structure of the metabolite synthesized by the BGC. While 

antiSMASH is able to predict the structure of modular SMs (such as peptide and 

polyketide-based metabolites synthesized from repeating chemical monomer units), 

PRISM takes this approach one step further by also predicting the structure of 

nonmodular SMs. Unlike their modular counterparts, these metabolites are synthesized 

through a series of reactions that build upon one another, thereby removing the 

modularity of units. Instead, PRISM contains a library of chemical reactions associated 

with genes, which it leverages in order to actively synthesize nonmodular components 

of a predicted structure.


Currently, PRISM is the most comprehensive program for predicting SM structures 

from BGCs. In the context of nonmodular SMs, however, PRISM’s reaction-centred 

approach limits the program’s generalizability and robustness. In particular, the program 

is susceptible to interruptions in its series of iterative reactions if the gene(s) required for 

one of the reactions is missing or not detected. In this case, the predicted structure 

would not contain any of the chemical changes associated with reactions after the 

missing reaction. Moreover, if incorrect reactions are applied, they may overwrite the 

correctly-predicted chemical structure up to that point. This is in contrast to a modular 

structure predicted from a series of units, where a portion of the units may be incorrect 

but the remainder are still accurate. Therefore, a unit-based approach to predicting the 

chemical structure of both modular and nonmodular SMs would not only bridge the two 

types of metabolites into the same biosynthetic space, but would also eliminate some of 

the shortcomings of current reaction-centred approaches.
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Here, we present an extension to the previously-described Bear program, 

BearClaws, which leverages the genetically-traced biosynthetic units from the Bear 

library to predict encoded SM structures from BGCs in a unit-based manner. Each of 

these biosynthetic chemical units is connected to one or more so-called gene hooks — 

a combination of genes which is reported to give rise to the unit. Moreover, Bear also 

contains gene hooks for so-called linker reactions — chemical reactions which append 

two or more Bear chemical units together. Using these two sets of gene hooks, known 

BGCs belonging to both modular and nonmodular SMs were queried and their encoded 

structures predicted. The predicted structures were compared to both the true structure 

and those derived from PRISM. Finally, several examples were explored in order to 

identify strengths and weaknesses of BearClaws.


3.4    Methodology


BGC Annotations


The successful use of BearClaws relies on a BGC annotation pipeline which can 

identify biosynthetic genes from sequence data. Existing programs such as PRISM and 

antiSMASH do not annotate the entirety of genes contained within Bear’s 263 hand-

curated biosynthetic pathways. AntiSMASH in particular focuses entirely on modular 

compounds. As a result, there are ongoing in-house efforts to create an updated, more 

comprehensive BGC annotation pipeline. In the absence of a finalized model at this 

time, pseudo BGC annotations were generated to test the BearClaws program.
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Biosynthetic genes were sourced from the 263 specialized metabolic pathways 

contained in Bear. All of the genes from each pathway were pooled together and taken 

to be the respective BGC’s set of genomic annotations, herein referred to as the perfect 

pseudo clusters.


In practice, BGC annotation programs are not perfect. Genomic annotations may 

be superlative, absent or mislabelled. As such, the perfect pseudo clusters may not be 

representative of the results that can be expected with real genomic annotations from 

sequence data. In order to account for this, imperfect pseudo clusters were generated 

by removing a random 10% of genes from each BGC. For BGCs where 10% represents 

less than one gene (those BGCs with <10 total genes), a single random gene was 

removed.


Unit and Reaction Calling


Gene Hooks


The gene hooks contained within the Bear library were used to call units and linker 

reactions from the perfect and imperfect pseudo clusters. Each unit gene hook was 

called if all of its required genes were present in the cluster. Each linker reaction gene 

hook was called if any one of its required genes were present in the cluster. This liberal 

approach to calling linker reactions was required given that not all linker reactions had a 

clearly unanimous pathway reaction source. We can afford a greater rate of false 

positive linker reaction calling if the units are called very strictly. This is because even if 

a false positive linker reaction is called, its effect will only be observed in the predicted 

product if all of its reactants are called as units. The entire set of called units and linker 
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reactions for each perfect and imperfect cluster was then analyzed to synthesize a 

predicted structure.


Modular Domains


In contrast to the BGCs of nonmodular SMs, the order of detected genes in 

modular BGCs is very important and directly affects the structure of the encoded 

product. The open reading frames (ORFs) of modular BGCs are comprised of discrete 

modular genetic domains, each responsible for incorporating a distinct monomer unit 

into the growing backbone of the metabolite39. The order of these domains within an 

ORF, and the order of ORFs themselves, dictates the order in which the metabolite’s 

modular backbone is synthesized. To account for this, BearClaws accepts annotations 

pertaining to these modular domains. These annotations are processed before the gene 

hook annotations, in order to account for the order of modular unit connectivity in the 

backbone. 


Structure Synthesis


Upon successfully using gene hooks and modular domains to call units, linker 

reactions and modular backbones from a given cluster, BearClaws synthesizes the best 

predicted final structure. BearClaws will use all of the available units and reactions to 

synthesize every combination of predicted structures, such that the final set of units do 

not overlap in their requisite genes, and neither do the linker reactions. The genes of 

units are permitted to overlap with the genes of linker reactions, and vice versa. The 

predicted structures which makes use of the greatest number of genes are captured. In 
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some cases, the predicted structure is composed of multiple fragments which failed to 

be connected together due to missing or unknown linker reactions. In these cases, the 

largest fragment is taken to be the predicted final structure used for subsequent 

analyses.


3.5    Results & Discussion


Accuracy of Nonmodular Predicted Metabolites 


The principal metric of BearClaws’ performance involves assessing the accuracy 

of its predicted structures. 95 BGCs belonging to known SMs which had been 

previously annotated by PRISM were annotated using BearClaws. Both perfect and 

imperfect pseudo clusters were used to predict structures using BearClaws. The 

structures predicted by BearClaws and PRISM were compared to the true structure of 

the SM using a Tanimoto similarity index40. The average Tanimoto similarity score based 

on BEARClaws with a perfect cluster, BearClaws with an imperfect cluster, and PRISM, 

were plotted per chemotype (Figure 3.1).


The results indicate that with respect to most nonmodular SMs, as represented by 

pseudo clusters, BearClaws’ structural predictions share greater Tanimoto similarity to 

their true structures than those predicted by PRISM. Alkaloids and TypeIIPKs predicted 

by BearClaws demonstrated particularly higher scores than PRISM, regardless of 

whether the type of cluster used by BearClaws was perfect or imperfect. Results for 

Aminoglycosides favoured BearClaws regardless of cluster type, but to a lesser degree. 

The average Tanimoto similarity of Betalactams predicted by PRISM was sightly higher 
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than those from BearClaws, although the PRISM-predicted structures demonstrated a 

significantly larger interquartile range (IQR). Results for Nucleosides were relatively 

similar regardless of the method used.


FIGURE 3.1 | Average Tanimoto similarity of predicted structures 
compared to true structure. Depicted are distributions of structures 
predicted from: BearClaws using perfect pseudo clusters (dark blue), 
BearClaws using imperfect pseudo clusters (light blue) and PRISM using 
genomic sequences (orange).
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Comparison to PRISM


A more in-depth analysis of the predicted structures from both BearClaws 

and PRISM lends insight into the observed results. Figure 3.2 compares the 

predicted structures of a selected Alkaloid, Nucleoside and Type2PK, which 

correspond to Welwitindolinone A Isonitrile, Blasticidin S and Lysolipin I, 

respectively41,42,43 (further examples of BearClaws-predicted structures are 

included in supplementary figure B1). The BearClaws-predicted structure of the 

Welwitindoinone alkaloid remained the same regardless of the cluster type used, 

and outperformed that from PRISM. All methods failed to incorporate a missing 

ketone group into the final structure. Conversely, PRISM was able to outperform 

BearClaws in the prediction of the Blasticidin nucleoside. Both BearClaws results 

missed a methylation, and the imperfect cluster interestingly incorporated an extra 

valine. With respect to the Lysolipin TypeIIPK, BearClaws was able to outperform 

PRISM. Although both BearClaws results missed several methylations, PRISM 

generated an entirely-incorrect backbone. 


The comparison of BearClaws and PRISM predicted structures sheds light 

on the strengths and weaknesses of each approach. More specifically, PRISM is 

less resistant to missing or incorrect annotations (Welwitindlinone, Lysolipin), but 

yields quite accurate results when it works (Blasticidin). This may be largely in part 

due to PRISM’s iterative reaction-based synthesis of predicted molecules. In this 

approach, missing or incorrect reaction affects the product of all downstream 

reactions, and is directly observed as an inaccuracy in the final molecule. 
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BEARClaws, on the other hand, calls units first and only uses reactions to append 

units which have been called. Misannotations more often manifest in discrete units 

or regions of the final molecule (i.e. the additional valine predicted in Blasticidin). 

Although these regions may not be correct, the remaining backbone structure 

often is. PRISM’s iterative reaction approach, on the other hand, may manifest 

more often in misannotated backbone structures (i.e. Welwitindlinone, Lysolipin). 

Conversely, when annotations are accurate, PRISM results appear quite accurate. 

The predicted structure of Blasticidin S, for example, is exactly the same as the 

expected structure. Compared to PRISM, BearClaws sometimes misses 

annotations even when a perfect gene cluster is used (i.e. missing methylations in 

Blasticidin and Lysolipin). Overall, both programs have their individual strengths 

and weaknesses, with BearClaws perhaps being poised to more consistently 

predict some aspects of the correct structure of nonmodular SMs. 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FIGURE 3.2 | Selected examples of predicted structures from 
BearClaws and PRISM. Illustrated are the predicted structures of 
Welwitindolinone A Isonitrile (Alkaloid), Blasticidin S (Nucleoside) and 
Lysolipin I (Type2PK). 
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Perfect vs Imperfect Cluster Results


The effect of imperfect clusters on BearClaws results varied widely. In the 

case of Welwitindolinone, there was no effect. The use of an imperfect Blasticidin 

cluster, however, manifested in the superfluous attachment of a valine unit. 

Interestingly, the use on an imperfect Lysolipin cluster caused a correct 

methylation to be swapped for another correct methylation that was missing in at 

another locus. 


These effects may be the result of missing or incorrect units and reactions 

stemming from incomplete gene annotations in the imperfect clusters. As an 

explorative next step, the units and reactions called from perfect and imperfect 

clusters were compared (Table 3.1). The results indicate that imperfect clusters 

were missing a maximum of 1 unit as compared to perfect clusters. However, for 

most chemotypes this average was closer to 0.5, indicating there were some 

imperfect clusters which did not miss any units at all. More interestingly, some 

imperfect clusters led to the addition of extra units as compared to perfect clusters. 

This explains situations such as the Blasticidin nucleoside described in Figure 3.2, 

where an extra valine was found in the imperfect cluster case. These additional 

units may be called due to the configuration of available genes. In other words, the 

missing gene(s) in the imperfect cluster yield a missing unit, and the gene(s) which 

would have gone towards calling that unit are used to call the superfluous unit 

instead. This situation was unique to calling units, however, and did not occur with 

reactions. Imperfect clusters did miss on average 1-2 reactions as compared to 
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perfect clusters. This may have led to units being called which were not added to 

the backbone of the predicted structure. This was not, however, responsible for the 

lack of certain units such as the missing methyls in Lysolipin (Figure 3.2), as these 

were due to the units themselves not being called. Overall, a comparison of the 

units and reactions called using perfect and imperfect clusters demonstrates that 

those from imperfect clusters fall short of those from perfect clusters. However, the 

difference is not enough to explain some misannotations in BearClaws, namely the 

additional units added using imperfect clusters and the missing units observed 

even with perfect clusters. Evidently, further refinement to the BearClaws algorithm 

is needed to improve results in these specific cases.


Table 3.1 | Unit and reaction calling rates between perfect and imperfect 
clusters. The average number of missing, present and extra units and reactions 
called per imperfect cluster compared to perfect cluster, per chemotype, are 
shown. Missing units and reactions refer to those called by BearClaws when 
using a perfect cluster, but not when using the imperfect counterpart. Present 
units and reactions are called by both types of clusters. Extra units and reactions 
are called by the imperfect cluster, but not the perfect cluster counterpart. Values 
indicate the average number per cluster.
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Units Reactions

Chemotype Missing Present Extra Missing Present Extra

Alkaloid 1 3.1 0.6 1.3 7.2 0

Aminoglycoside 0.5 1.9 0.5 2.1 12.9 0

Betalactam 0.7 4 0.7 1.5 12.3 0

Nucleoside 0.9 4.8 0.8 1.6 10.1 0

Type2PK 0.6 3.9 0.5 1.4 10.2 0
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Accuracy of Modular Metabolite Prediction


Unlike the BGCs of nonmodular specialized metabolites, those of modular SMs 

are highly dependant on the order of their constituent genes. Given that most modular 

SMs are cyclic or branched, it is nearly impossible to create pseudo clusters for modular 

SMs with the correct organization of their genes and corresponding ORFs. In the 

absence of pseudo clusters for modular SMs, a test case was manually created using 

the hybrid NRPS-Type1PK SM, griseoviridin44. This metabolite was chosen as it would 

allow testing of both NRPS and TypeIPK biosynthesis, as well as that of a hybrid 

structure where NRPS and TypeIPK genes are interspersed between each other. The 

published BGC of griseoviridin was manually reviewed and converted to the input 

required by BearClaws. Figure 3.3a illustrates the structure predicted by BearClaws, as 

compared to the true structure and that predicted by PRISM. 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FIGURE 3.3 | Predicted structure of griseoviridin by BearClaws and 
PRISM compared to the true structure. (a) The griseoviridin structures 
predicted by BearClaws and PRISM are illustrated adjacent to its true 
structure. (b) The final two reactions in the biosynthetic pathway of 
griseoviridin are depicted. The gene(s) responsible for the second last 
reaction is not yet known, therefore its reaction cannot be detected by 
BearClaws. The subsequent reaction is indeed detected by BearClaws, but is 
never actually applied to the structure as the preceding intermediate is never 
formed. 
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Compared to the true structure of griseoviridin, the one predicted by BearClaws is 

quite similar overall but differs are three loci. Firstly, the azole ring formation in 

griseoviridin contains two dehydrated bonds, whereas the predicted structure only 

contains one. This is due to the fact that azole ring formation in modular SMs does not 

always follow a clear genetic pattern. In some cases, azoles are formed in their fully 

hydrated form and a dehydratase enzyme catalyzes the dehydration of a bond45. In 

other cases, such as that of griseoviridin, the dehydrated azole is formed from the start 

and no dehydratase domains are detected nearby44. Although the Bear library 

comprehensively covers all dehydration states of azoles, their differential detection 

within BGCs remains a challenge. 


The second discrepancy noted in the predicted structure of BearClaws is the lack 

of macrocyclization. This is due to a lack of reported genes corresponding to this 

reaction in the literature (Figure 3.3b)44. As a result, the reaction itself is never be called 

from the BGC, and the product never cyclizes. This limitation highlights the dependancy 

of BearClaws on the body of published literature.


The final thioether formation in griseoviridin (Figure 3.3b) is also absent from the 

structure predicted by BearClaws. This reaction, however, is linked to a gene (SgvP) 

and is detected by our program. However, the SMARTS pattern for the reaction 

necessitates the intermediate from the previous reaction as input. Due to the fact that 

the previous reaction fails to be called, this intermediate is never formed and the 

thioether reaction does not occur. This demonstrates a PRISM-like limitation of 

sequential reaction calling within BearClaws. However, these cases are limited to 

specialized modular post-modification situations46. In other words, the core scaffold of a 
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given modular unit can still be predicted by BearClaws and it is just tailoring 

modifications at the end of synthesis that may be absent in the program. This limitation 

is not observed with nonmodular-type SMs in BearClaws, however it is inherent in 

PRISM.


Although the structure of griseoviridin predicted by PRISM differs significantly from 

the true structure and that predicted by BearClaws, it is important to note PRISM’s use 

of real genomic data. In the absence of a unified genomic annotation pipeline, 

BearClaws’ literature-derived griseoviridin pseudo cluster offers the program an unfair 

advantage. When annotating genomic data directly, misannotations are a regular 

occurrence, particularly with regards to mislabelled modular amino acids. PRISM’s 

structure prediction engine could not be tested separately, as there was no way to pass 

perfect genomic annotations to just the structural prediction component of the software. 

Nonetheless, it is reasonable to expect that PRISM would perform better if presented 

with a perfect pseudo cluster, and BearClaws would perform worse if presented with 

real genomic sequence annotations. In the future, it will be important to test the extent 

to which this is true, once our in-house genomic annotation pipeline is completed.


3.6    Conclusion


Here, we presented one of the many potential extensions to the Bear program and 

library, BearClaws. This program leveraged gene hooks within the Bear library to 

successfully predict the structures for 95 SMs with considerable accuracy and 

outperform the state-of-the-art structure prediction program, PRISM. However, the 

absence of an appropriate genomic annotation pipeline to detect these gene hooks 
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rendered BearClaws dependant on pseudo clusters not fully representative of the 

expected set of genomic annotations. Consequently, the results of the comparison 

between BearClaws and PRISM should only be interpreted as support for the proof-of-

concept of BearClaws, and not a true competitive analysis against PRISM. This 

experiment will be completed once more, upon our finalization of a genomic annotation 

pipeline, in order to establish BearClaws’ robustness when working directly from 

genomic sequence data.


The ability to successfully bridge the chemical and genomic encodings of 

metabolites into the same space presents boundless opportunities for downstream 

analyses. For example, the predicted biosynthetic representations of encoded 

metabolites can be compared to the Bear representations of query metabolites in order 

to match unknown BGCs to metabolites. This is of particular interest to our group, given 

the potential to expand the library of known BGC-metabolite connections. These new 

connections would serve as additional training data for analyses such as the exploration 

of unknown Bear units, and the expansion of the Bear library. These exercises could 

serve as a means to improve the Bear suite of software tools, which would in turn yield 

improved results. 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Chapter 4


Activity-Guided Gene Hooks


4.1    Preface


The work presented within this chapter described my own attempt to connect 

Bear’s biosynthetic units to siderophore activity. Of course, the Bear and BearClaws 

programs were collaborative tools developed with the help of other lab members, as 

described in the preface of Chapters 2 and 3, respectively. Within this work, I formatted 

all data, trained all models and validated the results. Denesh Kumar helped curate the 

additional siderophore dataset. Mathusan Gunabalasingam kindly offered assistance 

and mentorship with many of the tools and methodologies used here. Dr. Nathan 

Magarvey provided oversight, mentorship and scientific expertise throughout this work.


4.2    Abstract


Despite historical success repurposing specialized metabolites (SMs) for 

pharmaceutical applications, the isolation of clinically-relevant novel SMs remains 

infrequent and difficult. Newly-identified SMs require extensive activity testing, which 

even if successful offers no guarantee that the respective metabolite can be isolated in 

sufficient quantity. There is a need for a more-targeted tool which can suggest potential 

active metabolites directly from the biosynthetic gene clusters (BGCs) which produce 
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them. In this work, I expand upon our previously-described tools, Bear and BearClaws, 

to introduce activity-guided gene hooks (AGGHs) — combinations of genes observable 

within BGCs which may be associated with a particular biological activity. Deep learning 

models were trained to classify broad activities of SMs, and augment known active 

metabolites with additional examples predicted by the model. These structures were 

then subjected to analysis by Bear, and the most frequently observed biosynthetic units 

for a particular activity were pooled. This protocol was more deeply explored and 

validated with siderophore activity as a specific test case. Downstream applications and 

future validation of this work are suggested.


4.3    Introduction


Bacterial specialized metabolites (SMs) have long been sought for their 

pharmacological and biological activities. In fact, nearly 50% of FDA-approved drugs in 

recent years trace their roots to SMs47. However, despite new SMs being routinely 

isolated, their clinic use is rarely observed. The lengthy drug approval process in most 

jurisdictions certainly plays a role in this situation, but there are other contributors48. 

Isolating a novel SM brings with it no guarantee of biological activity. Even in cases 

where a particular SM does display the desired activity, its large scale use is dependant 

on sufficient production. With the exception of rare and expensive synthetic methods, 

SM production remains contingent on inducing an organism’s biosynthetic gene cluster 

(BGC) to produce the corresponding metabolite49. It logically follows, then, that an 

efficient methodology for identifying novel active metabolites would involve inferring 

activity directly from genomic data.
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In previous work, we presented a model, Bear, which was able to infer genomic 

data from chemical structures of metabolites. Using a library of biosynthetic units, Bear 

mapped metabolites as series of chemical units connected to their genetic origins. We 

reversed the capabilities of Bear with BearClaws, which was able to infer chemical 

structures directly from genomic data. Using a library of gene hooks — combinations of 

genes which give rise to Bear’s biosynthetic units — we were able to predict the 

chemical structures of 95 known SMs directly from their BGCs, with considerable 

accuracy. In this work, I build upon both Bear and BearClaws, in order to expand the 

methodology into the activity space. 


I trained a deep learning classifier for each of 4 major biological activities, in order 

to predict if a metabolite is active directly from its chemical structure. I chose 

siderophore activity as a specific test case in order to explore the model’s robustness 

and predictive validity. From there, I pooled all manually-labelled and computationally-

predicted siderophores and ran Bear on each of their structures to generate their 

biosynthetic unit representation. The most frequently observed units were deemed 

siderophore-related units, and their associated gene hooks were pooled to generate 

activity-guided gene hooks (AGGHs)— combinations of genes associated with 

particular activity, in this case siderophore activity. This library of AGGHs is presented, 

and future steps for validation and exploration of this methodology are suggested.
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4.4    Methodology


4.4.1 — Activity Prediction Models


Deep learning models were trained for each of the following activities: 

antibacterial, anti fungal, antiviral, siderophore. Each model was built upon the open-

access Chemberta model50. Models were engineered to take as input the SMILES string 

corresponding to a chemical structure, and provide a binary output identifying whether 

the structure is predicted to be active or not. 


Data


Training and testing data was sourced from our in-house database of SMs. For 

each activity, metabolites labelled with the particular activity were grouped into the 

active class. The inactive class was composed of all other SMs in the database with 

other activity labels, as well as those without any activity labels which were sufficiently 

different from all metabolites in the active class (< 0.7 Tanimoto similarity). Using this 

protocol, SMs with no labelled activity but which shared significant structural similarity to 

any other active SM were excluded. This was due to the fact that it was not possible to 

discern whether these SMs were truly inactive, or simply had not been tested yet. 

Therefore, it was assumed that SMs sharing significant structural similarity to active 

counterparts were more likely untested rather than truly inactive. Table 4.1 contains the 

size of active and inactive classes for each activity. 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TABLE 4.1 | Sizes of active and inactive classes for each activity model. 
These value for the active siderophore class includes the entries from the 
augmented dataset.


Using the active and inactive class of each activity label, a train/test/validation 

dataset split was performed. This split corresponded to 70% of data points being used 

to train the model, 20% of data points being used to test the model’s accuracy during 

training, and 10% of data points being reserved for validation of the model’s 

performance after training. A stratified data split was performed in order to preserve the 

relative ratio of active to inactive SMs within each dataset. 


Canonical SMILES strings were used for each metabolite entry. For metabolites 

where isomeric SMILES strings were available, these were added to the respective 

train/test/validation dataset after the split, in order to avoid cross contamination of a 

given metabolite structure by way of having its canonical SMILES in one dataset and its 

isomeric SMILES in another.


Additional Augmentation of Siderophore Data


In order to ensure the most accurate siderophore model possible, our in-

house siderophore dataset was augmented with external resources. A catalogue of 

over 300 siderophore molecules was analyzed51. The name of each siderophore 

Activity Size of Active Class Size of Inactive Class

Antibacterial 18,670 14,999

Antifungal 12,952 20,734

Antiviral 2,727 31,653

Siderophore 379 46,127
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was cross-referenced to our database, and any matching entry in our database 

was annotated with a siderophore activity label if not already present. Any 

siderophores not present in our database were added to the total dataset. The 

values in Table 4.1 include these augmented siderophores.


Training Protocol


Activity models were built upon the pre-trained Chemberta model available through 

HuggingFace52. For each activity label, the original Chemberta model was fine-tuned 

using the dataset specific to that activity. Each model was trained for 20 epochs using a 

batch size of 64 on two graphics-processing units (GPUs). 


Validating Activity Models


The performance of each model was validated using the holdout validation 

dataset. The overall accuracy of each model was computed and can be found in 4.5 

Results & Discussion.


In an effort to investigate the robustness of our siderophore model, we investigated 

its performance on a series of situations. The siderophore ferrocin A was used as a test 

case53. Using its Bear representation, we substituted biosynthetic units from its structure 

with glycine and retested its siderophore activity. Unit substitution was chosen in favour 

of unit subtraction so that the model’s performance would not be influenced by large 

fluctuations in the size of the structure. Glycine was chosen as the substitute unit due to 

its neutral structure and lack of significant functional groups. Based on these results, a 

subset of units whose absence yielded a loss of siderophore activity in ferrocin A were 

66



MSc. — Victor Blaga; McMaster University — Biochemistry & Biomedical Sciences

considered to be the model’s interpretation of the molecular pharmacophore — the 

chemical region responsible for the molecule’s activity. This model-inferred 

pharmacophore was compared to literature-derived chemical moieties frequently 

associated with siderophore activity.


4.4.2 — Generating Activity-Guided Gene Hooks


Upon exploration and validation of the model’s ability to understanding chemical 

structures associated with siderophore activity, AGGHs were generated. Firstly, all SMs 

with labelled or model-predicted siderophore activity were pooled together. Next, these 

SMs were subjected to analysis by Bear. The units composing their biosynthetic 

representation were pooled, and the most frequently observed units were proposed to 

be siderophore-related units. Units were only deemed siderophore-related units if they 

appeared in at least 5 siderophores in our dataset. The gene hooks corresponding to 

these units were labelled as AGGHs specific to siderophore activity. 


4.5    Results & Discussion


Validation of Activity Models


The performance of each deep learning model on classifying the respective 

validation dataset varied based on the activity label (Table 4.2). Performance of the 

antibacterial and antifungal models suffered compared to that of the antiviral and 

siderophore models. This is likely due to the fact antibacterial and antifungal activity can 

be attributed to a wide variety of chemical backbones and pharmacophores. In turn, the 

model may experience difficulty understanding and quantizing these different chemical 
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patterns. Conversely, the smaller training dataset size of the antiviral model may 

indicate that fewer distinct pharmacophores are contained within this dataset. As a 

result, the model is better poised to comprehensively understand the nature of all of the 

corresponding chemistries. Siderophores are a particular class of molecules whose 

activity has been directly attributed to certain chemical moieties, such as that of N5-

acetyl-N5-hydroxyornithine54. The diversity of siderophore structures is consequently 

less than that of other classes, so the siderophore model is undoubtedly faced with a 

less challenging task than the other models. Nonetheless, is provides a simple proof-of-

concept of this methodology and is more easily explored in greater depth due to the 

clearly defined pharmacophore regions of siderophores. It is for this reason in particular 

that the siderophore model was chosen for a more in-depth analysis of its predictive 

patterns. 


TABLE 4.2 | Accuracy and F1 score of activity models. Values were 
calculated using the sklearn package in Python.


Ferrocin A was selected as a test case siderophore. Its predicted activity upon the 

substitution of various Bear units in its structure is illustrated in Figure 4.1. Remarkably, 

the substitution of an acetyl, hydroxyl and an ornithine (corresponding to N5-acetyl-N5-
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Activity Model Accuracy Model F1 Score

Antibacterial 0.59 0.59

Antifungal 0.64 0.64

Antiviral 0.79 0.82

Siderophore 0.99 0.99
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hydroxyornithine) at 3 different loci all yielded a loss in activity. This observation is in 

direct accordance with literature reporting N5-acetyl-N5-hydroxyornithine as a key 

constituent in many different siderophores54. It could have been the case, however, that 

any modifications to the structure of ferrocin A would have caused the model to register 

a loss in activity. To test whether this was the case, a serine and a valine were each 

substituted at separate occasions. Both substitutions retained the molecule’s activity, 

suggesting that the model understands at least some facet regarding the key chemical 

motifs of siderophores. Interestingly, the substitution of a fatty acid moiety with 3 

glycines totalling a similar number of atoms, eliminated the structure’s predicted activity. 

No published work has directly investigated the role of this fatty acid region in the 

activity of ferrocin A. However, fatty acid side chains have been reported to exhibit 

significant positive effects in synthetic siderophore mimics comprised of N5-acetyl-N5-

hydroxyornithine moieties55. 


Taken together, these observations indicate that our siderophore model indeed 

understands not only the chemical language of SMILES, but more remarkably the 

chemical nature of siderophores themselves. It is important to note, however, that these 

conclusions are limited to the siderophore model specifically, and offer no indications 

regarding other models. Our analysis of the siderophore model may owe its success to 

the fact that siderophores themselves are not as chemically diverse as other active 

metabolites, such as broadly-labelled antibacterials. Nonetheless, this successful proof 

of concept may inspire similar analyses of other activity models. In order for this 

endeavour to be successfully undertaken, however, more training data will need to be 

curated for other activities so that model validation accuracy and F1 score increase.
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It is equally important to note that the protocol presented here is not without its 

biases, which future work should aim to address. Specifically, the use of glycine as a 

substitute unit is merely one potential method amongst thousands of others. A more 

comprehensive analysis leveraging many biosynthetic units as substitutes may offer 

more detailed insight into the model’s prediction logic. 
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FIGURE 4.1 | Effect of biosynthetic unit substitution on predicted 
siderophore activity in ferrocin A. Note: Orn refers to N5-acetyl-N5-
hydroxyornithine comprised of the Acetyl, Charged O and Orn biosynthetic 
units, while FA refers to the fatty acid moiety comprised of the Mal-KS, Mal-
DH, Mal-ER and C3:0 biosynthetic units.
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Activity-Guided Gene Hook Library


TABLE 4.3 | Top 10 most common Bear units observed in siderophores.


Bear biosynthetic units used to represent each siderophore were analyzed and the 

top 10 most commonly observed units within siderophores are presented in Table 4.3. 

Supplementary Table C1 contains selected AGGHs for these units. Amongst the most 

frequent units were Acetyl, Hydroxyl and Ornithine/OH-Ornithine, corresponding to the 

known siderophore-related moiety N5-acetyl-N5-hydroxylornithine. Similarly, the fifth 

most common unit, 2,3-Dihydroxybenzoic acid, is also a known siderophore-related 

moiety56. Interestingly, many of the other units contain a hydrogen-donating hydroxyl 

group (Serine, Threonine, OH-Aspartate). These units may mimic similar effects to N5-

acetyl-N5-hydroxyornithine and 2,3-Dihydroxybenzoic acid, or may work cooperatively 

with these units.


Bear Biosynthetic Unit Percentage of Siderophores Containing Unit

Serine 32%

Hydroxyl 24%

Acetyl 23%

OH-Ornithine 19%

2,3-Dihydroxybenzoic Acid 18%

Threonine 17%

Lysine 15%

OH-Aspartate 13%

Glycine 12%

Ornithine 11%
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Beyond the readily-observed patterns described above, however, it is difficult to 

manually identify other, more complex patterns. For example, it may be the case that 

certain combinations of units, rather can single instances themselves, may be better 

associated with siderophore activity. Likewise, it may be possible that certain 

combinations of genes not perfectly corresponding to any reported gene hooks may 

give rise to the necessary chemistries of certain siderophores. As such, future work 

would benefit from an informatics strategy which can infer its own patterns from the data 

generated within this work. 


4.6    Conclusion


Here, we were able to introduce the concept of AGGHs by leveraging the Bear 

library of biosynthetic units from our previous work. Further inquiry into siderophore 

activity specifically indicated that our model was able to capture and understand some 

of the chemical nuances inherent in these molecules. Literature-base validation of the 

generated siderophore-related Bear units suggests promising potential for the use of 

their associated activity-related gene hooks.


Future work, however, should focus on validating these AGGHs in the lab. 

Experiments may involve using gene hooks to identify new candidate siderophores, and 

subjecting them to activity assay testing. These results could then be used to validate 

the AGGHs. Moreover, the BGCs of candidate siderophores could be analyzed by 

BearClaws to predict their structure. The corresponding SMILES could be passed to the 

activity model, and its prediction cross-referenced with assay results.
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In vitro validation of our AGGHs may inspire subsequent work exploring this 

methodology across all biological activities. In order for this to be feasible, the 

performance of the non-siderophore activity models presented here would need to be 

increased through additional training using an expanded dataset. Further, this 

methodology could be repeated with more specific activity labels corresponding to 

specific organism or molecular targets. Indeed, ongoing efforts in our lab aim to curate 

additional activity-related data in order to develop more targeted activity prediction 

models.  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Chapter 5


Significance & Future Perspective


Bacterial specialized metabolites (SMs) are chemically-unique molecules which 

have long drawn the interest of researchers and clinicians. Owing to their diverse 

chemistries, SMs have been pursued since the early-mid 1900s for their potential as 

potent therapeutics. Early on, the so-called golden age in SM discovery saw hundreds 

of novel therapeutics be uncovered at will, and in a short period of time. Since then, the 

rate of re-discovery of these previously-identified metabolites has increased due to a 

lack of sufficiently targeted discovery approaches. Advancements in next-generation 

sequencing and liquid chromatograph-mass spectrometry technologies have partially 

sustained the momentum of SM discovery, but impending antibiotic resistance and 

emerging diseases dictate the need for something greater. Today, the outdated method 

of searching for metabolites in an untargeted manner still prevails, despite failing to 

leverage the abundant data available from previous decades of research.


The work described within this thesis is positioned to be a foundation for future 

inquiries upon which to pursue more targeted inquiry into specialized metabolites. For 

my first aim, I developed a universal encoding method which could represent all 

metabolites in a biosynthetically-informed manner. This novel method, presented within 

the Bear program, leverages a library of chemical units derived from the curation of all 
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known bacterial metabolic pathways. Moreover, these chemical units were connected to 

their genomic requisites. No other methodology has analyzed the totality of bacterial 

metabolism to generate a library of biosynthetic units.


This library allowed me to pursue my second aim: the prediction of SM structures 

directly from the biosynthetic gene clusters (BGCs) which encode them. Towards this 

aim, a second program, BearClaws, was developed. Owing to the novel methodology 

using biosynthetic units, BearClaws was able to demonstrate comparable results to a 

state-of-the-art competitor. The two complimentary programs of Bear and BearClaws 

present the first opportunity to seamlessly integrate chemical and genomic metabolite 

data into the same latent space. 


Finally, this chemical and genomic data was supplemented with biological activity 

information in my third aim. Using a curated dataset of siderophores, I trained a deep 

learning model to predict siderophore activity from SMILES. This model was used to 

generate a finalized set of known and predicted siderophores whose Bear biosynthetic 

representations were analyzed. Commonly observed units and their associated genes 

were used to introduce activity-guided gene hooks — combinations of genes associated 

with a particular activity.


Future work should be directed towards further validating the methodologies 

presented here and building upon these initial proof-of-concepts. Firstly, a long-term 

strategy should be established for the continual curation of biosynthetic pathway data. 

This would ensure the most comprehensive Bear library possible and improve the 

accuracy of biosynthetic representations. Indeed, efforts are already underway within 

our lab to establish such a protocol. Secondly, the BearClaws tool should be re-tested 
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with genomic annotations from real biological sequence data. It is highly likely that these 

results will differ from those using pseudo clusters, and the extent to which this is true 

must be established. To this end, colleagues of mine are currently finalizing a 

comprehensive genomic annotation pipeline which will readily integrate with BearClaws. 

Finally, the activity-guided gene hooks introduced in this work should be expanded upon 

to include both comprehensive broad activities (such as antibacterial, antiviral and anti 

fungal), as well as more specific molecular and organism target activities. To achieve 

this, additional data curation and cleaning will be required. Efforts are currently 

underway in our lab to generate a large-scale activity dataset which can be leveraged 

by the activity-guided gene hook methodology.


Taken together, the data generated using the tools presented here can easily 

accumulate to levels of significant complexity. The intimate coupling of activity data to 

genomic and chemical data from the Bear suite of programs adds additional layers of 

information and complexity to the situation. With this in mind, it may no longer be 

feasible to analyze these information streams manually or using simple statistical 

metrics. Instead, deep learning models may be leveraged in the future to identify 

patterns within this data not previously-observed. For example, new connections 

between metabolites and BGCs may be identified, or more nuanced combinations of 

genes may be attributed to certain activities. Graph network models seem particularly 

well-suited for this task, given their propensity to integrate many layers of data and 

identify only key patterns within them. The work presented in this thesis provides a 

foundation upon which these subsequent developments may lie, and offers hope that 
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modern developments may continue to uproot SM discovery in this unprecedented 

landscape.   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FIGURE A1 | Polyketide substrates for Bear unit library. Depicted are 
SMILES of the original substrate in the form it exists in before incorporation in 
a natural product. 

Substrate SMILES

Ethylmalonyl-CoA SC(C(C(O)=O)CC)=O

R2-Ethylmalonyl-CoA SC(C(C(O)=O)CC[*])=O

Hydroxymalonyl-CoA SC(C(C(O)=O)O)=O

Isobuteryl-CoA SC(C(C(O)=O)(C)C)=O

Ketomalonic-CoA SC(C(C(O)=O)=O)=O

Isobutylmalonic-CoA CC(C)CC(C(S)=O)C(O)=O

Malonyl-CoA SC(CC(O)=O)=O

Methoxymalonyl-CoA SC(C(OC)C(O)=O)=O

R-Methylmalonyl-CoA SC(C(C(O)=O)([*])C)=O

Methylmalonyl-CoA SC(C(C)C(O)=O)=O

R2-Methylmalonyl-CoA SC(C(C[*])C(O)=O)=O

Epoxmalonyl-CoA SC(C1(C(O)=O)CO1)=O

R-Malonyl-CoA SC(C(C(O)=O)[*])=O

2R-Malanyl-CoA SC(C([*])([*])C(O)=O)=O

Hydroxy-Methylmalonyl-CoA SC(C(C(O)=O)CO)=O

Hydroxy-Methoxymalonyl-CoA SC(C(CO)(O)C(O)=O)=O
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FIGURE A2 | Prioritization rules for finding the optimal solution in Bear. 
Lower numbers indicate a more significant rule that is prioritized first. 

Rule Order of Priority

Greatest number of atoms annotated by units 1

Fewest number of flexible units used in annotation 2

Greatest number of sugars used in annotation 3

Fewest number of polyketide unit R-groups 4

Fewest number of specialized polyketide units 5

Prioritize if any polyketide starter units are used 6

Prioritize if any polyketide terminal units are used 7

Greatest number of amino acids used in annotation 8

Fewest number of units used in annotation 9
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FIGURE B1 | Additional examples of BearClaws predicted structures.
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FIGURE B1 (continued) | Additional examples of BearClaws predicted 
structures.
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FIGURE B1 (continued) | Additional examples of BearClaws predicted 
structures. 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FIGURE B1 (continued) | Additional examples of BearClaws predicted 
structures. 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FIGURE C1 | Selected activity-guided gene hooks for siderophore 
activity. Due to the number of AGGHs generated, not all could be included. 
One example is illustrated for each of the top ten Bear units most frequently 
associated wth siderophore activity. 

Bear Unit Activity-Guided Gene Hook

Serine NocA, NocB

Hydroxyl PenG

Acetyl Pur6

OH-Ornithine PenG, A(Orn), T, C

2,3-Dihydroxybenzoic Acid ObaD, ObaE

Threonine SimA4

Lysine A(Lys), T, C

OH-Aspartate PenG, A(Asp), T, C

Glycine TcpD, TcpP

Ornithine A(Orn), T, C
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