FIXME

FIXME: MEMOIRS OF A CODE PLUMBER

BY
GABRIEL DALIMONTE, B.Eng.

A THESIS
SUBMITTED TO THE DEPARTMENT OF COMPUTING & SOFTWARE
AND THE SCHOOL OF GRADUATE STUDIES
OF MCMASTER UNIVERSITY
IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTER OF ENGINEERING

© Copyright by Gabriel Dalimonte, October 2019
All Rights Reserved

Master of Engineering (2019) McMaster University

(Computing & Software)

TITLE:

AUTHOR:

SUPERVISOR:

NUMBER OF PAGES:

Hamilton, Ontario, Canada

FIXME: Memoirs of a Code Plumber

Gabriel Dalimonte

B.Eng. (Software Engineering & Game Design),
McMaster University, Hamilton, Canada

Dr. Jacques Carette

vii, 107

ii

Executive Summary

This report investigates the design and use of the Drasil software framework,
which uses knowledge capture to facilitate automation of scientific computing
software creation. Drasil is developed in a collaborative setting amongst sev-
eral developers with range of backgrounds and experience. Contributing to a
collaborative codebase poses many challenges, from the unfamiliarity of code
layout, to the overarching design, to the myriad of preexisting undocumented
choices. With Drasil’s design being driven on an as-needed basis, it can be
hard to discern whether an odd design is intentional and relevant, historical,
or ad-hoc. Drasil’s ad-hoc development process leads to designs lack foresight
leading to designs that are difficult to extend.

We inspect several odd Drasil designs from the dual perspective of a devel-
oper and user of Drasil. We uncover several design oddities stemming from the
just-in-time nature of Drasil’s development. Many of the faults appear shallow
at first glance; however, they have a cascading effect requiring large swathes of
changes to address. We inspect how an odd constructor propagates through-
out the Drasil codebase to discover that, while each individual component is
designed appropriately, the macro-level design is incoherent and requires devel-
opment attention. Discovered design faults, related to consistency, coalesced,
seeing resolution through an introspective data-structure, used to ensure the
consistency of all sections in a requirements document.

Aside from investigating design faults, this report looks for automation
candidates, considering both perspectives. From the user-facing perspective
we identify nonsensical incantations required for otherwise automated sections
of a requirements document. We improve the user experience by removing
the unnecessary incantations while maintaining, and abstracting, the function
the boilerplate performed. We realize developer automation improvements
by through convenience of the build system, the number and depth of tests
the continuous integration process performs, automating and improving select
forms of feedback for developers, and automatically producing an up-to-date
demonstration website of Drasil and its capabilities whenever a change occurs.

Even a reasonable design, or minor fault, is worth investigating in depth.
The investigation may reveal additional faults, or design oversights, before
they compound to a point of untenable technical debt.

il

Contents

Executive Summary

1

Introduction

1.1 Drasil
1.2 Shortcomings
1.3 Problems Addressed

Details of Drasil

2.1 How Does Drasil Work?
2.2 Small Example

Code Duplication is Evil

3.1 Pullinga Thread
3.2 A Generic Flexible Chunk
3.3 “I Understood That Reference”
3.4 Putting It All Together

A Declarative Specification Language

4.1 Making Assumptions Consistent
4.2 Tracing Troubles
4.3 Removing Boilerplate
4.4 More Boilerplate?
4.5 SRSDecl
4.6 A Plateful of Changes

Build System

5.1 Leveraging Makefile Primitives
5.2 Batch BTEX Compilation
5.3 Compiling Generated Code
5.4 From Convenience to Code Caliber

v

iii

Ot W N =

(=)

6 Embracing Continuous Integration 78

Q w »

6.1 Linting For More Standard Code 78
6.2 “Beep Boop” — drasil-bot 80
6.3 Generating Artefacts From Generated Artefacts From Gener-

ated Artefacts Lo 84
6.4 Quality 89
Conclusion 90
Double Implementation 93
Post-Report Double Implementation 98
Double Makefiles 103
C.l CH+ o 103
C.2 CH . . 104
C3 Java 105
C4 Python. 105

List of Figures

4.1 A portion of the automated traceability matrix for the Drasil
example Slope Stability analysis Program (SSP).
4.2 A portion of an automated traceability matrix constructed with
traceMatRefinement in the Drasil example SSP.

vi

List of Tables

2.1 Drasil sub-packages oo

vii

Chapter 1

Introduction

Scientific Computing (SC) is a diverse domain of software development focused
on using computers to aid in solving science and engineering problems. Math-
ematical models and algorithms are designed and implemented to calculate
various properties about the modeled real-world systems, such as maximum
load and failure rate. Some examples of scientific software are modeling the
physics for a bridge, protein folding, and an algorithm for an ordinary differ-
ential equation solver.

Due to the important nature of SC software, SC focuses on correctness,
consistency, and traceability, among other properties, to ensure high-quality
software. In an effort to design software following the listed properties, SC
software should include other deliverables besides the code implementation,
such as a test plan to ensure the software’s behaviour.

Ensuring the quality of (SC) software can be a time-intensive effort. Con-
structing all required — or desired — documentation, such as a high-level design
document and test plan, can greatly increase the amount of work required.
Any inconsistency found in any deliverable will require a reexamination of all
deliverables to ensure the mistake did not propagate elsewhere. For exam-
ple, a sign error in a requirements document may propagate into the code
implementation and not be discovered until testing occurs.

Some scientific software, such as those that are involved in power genera-
tion, or are otherwise safety relevant, must pass a certification process prior to
being used in real-world situations. Certification is an extensive process neces-
sitating a requirements document, a high-level design document, the complete
source code for the software, a test plan, and the testing results, to name some
possible deliverables. Due to the rigor involved with software certification, it
is an expensive process. Small inconsistencies between — or within — any
of the provided items can result in a rejection. It becomes imperative for a
software product and associated documentation to be pristine before entering
the certification process.

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

Certified software rarely sees modification post-certification. Any software
modifications tend to require a complete recertification of the system because
the system-wide impact of an alteration is unknown. Due to the cost of apply-
ing for certification again, the time to proofread the existing documentation
to ensure they maintain consistency in the modified version, and the scale of
changes to the existing software, it does not make financial sense in many
situations to attempt recertification.

1.1 Drasil

To combat the difficulties of producing high-quality SC software, we look to
Drasil [5][11]. Drasil is a framework of embedded domain-specific languages
(eDSLs) used to describe a software system. From the description of a soft-
ware system, Drasil generates a requirements document, implementation code
in four different imperative-style languages (C++, C+#, Java, Python), and
Doxygen comments for the generated code. All of the artefacts are derived
from a single description of a software system. Drasil aims to be modular
by-design to allow users to implement additional artefact types and document
formats without requiring comprehensive changes to the core language.

Drasil addresses the difficulties of producing consistent SC software through
the use of a single structure (SystemInformation) that provides a descrip-
tion of a software system. By only specifying information once, any documents
generated must be consistent by-construction. Further, a change to the de-
scription will update all artefacts appropriately, reducing the burden incurred
by modification. Due to Drasil’s centralised knowledge, tasks that are tedious
for humans, like constructing a table showing dependencies of requirements
on assumptions, can be performed automatically during artefact generation.
Through the process of “faking” the rational design process [8], Drasil reduces
the tedious bookkeeping-type work required for certification through its arte-
fact generation process.

Listing 1.1 contains a brief piece of code describing the name, or idea, of a
software system bundled with and elaborated in Drasil, named “GlassBR.” A
commonldea, or CI, encodes the concept of a noun for use with Drasil. The first

glassBR :: CI
glassBR = commonIdeaWithDict "glassBR" (pn "GlassBR")
"GlassBR" [idglass]

Listing 1.1: A Drasil chunk representing the idea of a software system

“GlassBR.”

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

argument applied to commonIdeaWithDict specifies a unique identifier, which
is used internally within Drasil to perform database lookups during artefact
construction. In the case of glassBR, the string "GlassBR" is a proper noun
and specified as such using the pn smart constructor, comprising the second
argument, or what the idea is and the semantics related to displaying it. The
third argument may be an abbreviation, or acronym, of the idea. The final
argument is a list of domains that the idea belongs to for information categori-
sation purposes. The particular definition displayed in Listing 1.1 is further
used to specify the name of generated software system. The GlassBR example
bundled with Drasil generates a Software Requirements Specification (SRS)
and implementation code for the system. Of the artefacts generated — IXTEX
SRS, HTML SRS, C++ implementation, C# implementation, Java implemen-
tation, and Python implementation — the glassBR definition specified above
is responsible for 50 appearances of the string. Each SRS contains 18 instances
of the phrase “GlassBR,” while the remaining 14 locations of the noun occur
in the generated code; the Java implementation uses the idea to place all gen-
erated code inside the “GlassBR” package accounting for nine instances, while
the remaining five appear in generated Doxygen configurations. With Drasil,
renaming software system is a trivial task requiring only one line of modifica-
tion! Modifying the line in Listing 1.1 is more straightforward and predictable
than manually attempting a “find and replace” across many artefacts in many
languages, and hoping for the best.

Drasil’s reusability facilities can be used beyond a single software prod-
uct. Information, like that specified in Listing 1.1, may be reused in other
software products to form software families. A software family is a related
set of software products with design parameters modified. Drasil contains a
software family as two related examples: one is a Solar Water Heating Sys-
tem (SWHS), which involves a Phase Change Material (PCM), the other is a
modification of SWHS to remove the PCM, named “NoPCM.” NoPCM reuses
large portions of SWHS — such as the requirements, assumptions, and models
— by sharing constructs between both examples. “Common” knowledge may
be further refactored into drasil-data, a sub-package of Drasil that contains
common domain-specific concepts, such as the mathematical constant 7 and
Newton’s Second Law of Motion as a physics concept.

1.2 Shortcomings

Drasil’s emphasis on reuse provides an excellent basis to dissect and discern
what knowledge is required to properly design and specify a software system.
Unfortunately, some of Drasil’s earliest efforts were focused on simply encoding
information to display in a certain way within an SRS rather than to properly
capture knowledge that is sufficiently described to be reusable. The result of

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

the ad-hoc design is display-oriented facilities that do not provide the correct
level of abstract encoding to reuse the information outside of a requirements
document. Such design-oriented information does not truly embody the idea
of reuse that Drasil strives to achieve, where knowledge may permeate all
artefacts of a system described.

Due to the ad-hoc design, Drasil includes substandard code as the result
of substandard design decisions, which ironically violates Drasil’s own design
goal for reuse. Early additions to Drasil based on existing features tended to
be implemented using copy-paste rather than integrating and considering the
new feature with the existing codebase. The result is swathes of duplicated
code that vary in few situations and requires a higher maintenance effort to
enact the same change across multiple pieces of copy-pasted code.

Further stemming from the ad-hoc design of early Drasil is a lack of con-
sistency within sub-packages of the project. Part of early Drasil was heavy
experimentation with language constructs and the way ideas were exposed to
users. Sometimes an experimental change would be made to one facility and
left that way without any further modifications. These modifications may
have improved the language in terms of reusability or ease-of-use, however,
complicated internal design by requiring multiple methods to interact with
similar data. In one particular case, the implicit passing of data through a
more general data structure was a desirable change, although only applied to
one constructor. The other constructors duplicated data already available in a
common database; thus, forcing authors to specify the same information twice
while allowing room for error. The unique data constructor that retrieved the
data required from the database was typically ignored while designing sys-
tems that interacted with it, resulting in last-minute hacks to “make it work,”
forming a feedback loop of hacks. The feedback loop of hacks reached a point
where the technical debt was too high and it became reasonably difficult to
include items associated with the anomalous constructor in some derived data.
The derived data simply omitted information “belonging” to the anomalous
constructor.

Much of the developmental effort for Drasil has been focused on improving
what is generated. An oft ignored aspect of Drasil’s development is the ease-
of-use when attempting to encode knowledge in Drasil as well as the (in)con-
venience to describe artefacts and how they should use available information.
A user would notice, when producing an example from scratch, the odd in-
cantations needed to make certain pieces of artefact generation work correctly.
When improvements are made to document generation, which displays infor-
mation automatically derived from user-specified knowledge, the layout of the
new information is not always a concern and seen as something to revisit. The
deferral of correcting the layout and how the information is displayed leaves
Drasil producing unappealing sections of documents, which are hard to read

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

or interpret.

The build system of Drasil is ad-hoc and lacks developer attention as it does
not immediately improve the artefacts generated. The build system for Drasil
provides the bare minimum required to build the sub-packages and lightly test
the artefacts generated by Drasil. Building any artefacts Drasil generates is
a tedious process for a human, resulting in many instances where developers
make changes that break the correctness of artefacts Drasil produces.

1.3 Problems Addressed

With the shortcomings of Drasil in mind, Chapter 3 examines a seemingly
small issue encountered in Chapter 2. Through examining how the associated
data is passed between sub-packages and functions, we discover a larger design
problem resulting from an ad-hoc, early Drasil implementation. We conclude
by unifying several related pieces of code and data structures, anticipating
future development, in an attempt to reduce maintenance effort. Chapter 4
addresses an inconsistent (but better) abandoned, experimental design that
added an unexpected hurdle in the implementation of Chapter 3. During the
course of addressing the hurdle, Chapter 4 examines a wide range of boilerplate
and awkward design, remediating each to realize a better design, more aligned
with Drasil’s design philosophies. Finally, Chapter 5 begins by examining how
to automate the tedious, repetitive, Drasil developer action of compiling the
BTEX and generated code for the bundled examples. The task escalates in
Chapter 6 producing a better testing process for potential changes to Drasil
to improve code quality and consistency while reusing the generated artefacts
to demonstrate the project to prospective users interested in Drasil. The end
result of Chapter 6 is a test suite that analyses the Drasil codebase statically,
the generated artefacts, and produces an archive of artefacts readily accessible
online.

Chapter 2

Details of Drasil

Drasil is a complex system involving a number of sub-packages, which can
be combined in ways to produce a number of artefacts. Understanding the
intricacies of the language and systems can be a daunting task. In an ef-
fort to acclimate the reader to Drasil as a system and a language, we present
two views of Drasil. Section 2.1 examines Drasil at the sub-package level,
describing briefly what each sub-package provides to Drasil as a system. Sec-
tion 2.2 walks through a trivial example produced using Drasil to familiarise
the reader with how the sub-packages interact, some common constructs of the
Drasil language, and introduces the reader to constructs that will be referenced
frequently through the rest of the report.

2.1 How Does Drasil Work?

We have looked at the what of Drasil, but not much of the how. Drasil is
composed of many sub-packages, written in Haskell’, which provide increasing
levels of abstractions.

At the heart of Drasil is the drasil-lang sub-package, as shown in Table 2.1.
The drasil-lang sub-package contains language primitives focused on mathe-
matical knowledge capture. Some of the core facets of drasil-lang include a
language for symbols (Symbol) and a language for mathematical expressions
embedding symbols (Expr). One differentiating feature present in Drasil is the
Sentence datatype. The Sentence type encodes structure about a natural
language sentence. Further, Sentence treats mathematical formulae (Expr
in Drasil) and symbols (Symbol) with the utmost importance and allows for
embedding of such constructs into Sentences. Sentences enables a realm of
possibilities, such as embedding knowledge chunks. One possibility is intro-
ducing an acronym into a document automatically if an abbreviation for a

Thttps://www.haskell.org

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

phrase is used.

Sub-package

Description

drasil-lang

The main DSL components such as Sentence, Reference,
and Document; pervasive through all sub-packages.

drasil-data

Common (reusable) knowledge such as mathematical con-
stants and documentation concepts.

drasil-utils

Common utilities used by non-drasil-lang sub-packages.

drasil-database

Contains SystemInformation and a chunk database
structure (ChunkDB).

drasil-docLang

A DSL describing the Software Requirement Specification
(SRS) template proposed by Smith et al [10]. It includes a
translation routine for converting to a Document DSL from
drasil-lang.

drasil-theory

Contains chunk types for describing refinements of math-
ematical theories and instantiation of definitions.

drasil-code

A DSL for describing (and generating) object-oriented
code.

drasil-printers

A set of routines to translate drasil-lang Documents to a
common markup language such as HTML or IXTEX.

drasil-gen

Entry point for artefact generation.

drasil-example

A set of examples maintained in Drasil to demonstrate the

capabilities of the language.

Table 2.1: Drasil sub-packages

The other focus of drasil-lang is capturing knowledge. Knowledge is cap-
tured through the use of chunks — a term borrowed from literate program-
ming. A chunk (in Drasil) is any data type that holds knowledge about some-
thing. We have already seen a chunk with Listing 1.1, CI is a chunk encoding
a common idea. As was alluded in Section 1.1, CI may be embedded within
a Sentence adding traceability, context, and consistent appearance when em-
bedded. drasil-lang includes many other chunks such as UncertainChunk (a
value with some range of uncertainty), QuantityDict (an idea and a mathe-
matical symbol), and UnitalChunk (a symbol with a numeric unit). Chunks
can be combined and extended to further the captured knowledge, as an ex-
ample a UnitalChunk embeds a QuantityDict through transitivity. Sub-
packages outside of drasil-lang, such as drasil-theory, implement additional
chunks for more targeted purposes.

The primitives of Drasil can be combined and laid out to form a Document.
Document is akin to other typical markup languages, such as KITEX and Hy-
pertext Markup Language (HTML), providing the structure and a layout of

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

a rendered document. Much like its analogues, Document contains the ability
to link and refer to other portions of a Document (or external resources) by
using an amalgamation of a Reference typeclass, Label data structure, and
a ShortName (the visible text accompanying a link).

drasil-lang provides Document, which describes the layout of an arbitrary
rich text document, while drasil-docLang produces Documents conforming to
the Smith et al. [10] requirements document template. A benefit of the sub-
package design is drasil-lang not being concerned with code generation or
document rendering, those features are provided by drasil-code and drasil-
printers, respectively. A complete list of Drasil sub-packages is available in
Table 2.1.

2.2 Small Example

Armed with a basic understanding of Drasil, let us frame a simple example
using Drasil. The problem we will be solving is the need to double an integer.
To keep this problem simple, we assume the number being doubled, when
doubled, will fit in a signed 32-bit integer without overflow (the primitive
integer type’s width in many programming languages). While the assumption
is implementation related, we provide it as an assumption to elide introducing
software constraints. Encoding this assumption in Drasil yields:

assumpNum :: AssumpChunk

assumpNum = assump "assumpNum" (foldlSent [S "This",
phrase system, S "only considers", phrase input_,
S "integers between", E $§ (-2) $~ 29, S "and",
E (2 $~ 29)]) "reasonableNumber"

The first argument being a unique identifier (UID), second argument is the
assumption text, and the last one is related to the name displayed when the
assumption is referenced. system and input_ are nouns of concepts deemed
important for what we are describing. The chunks contain both a phrase to
represent the concept as well as a definition to disambiguate. In the partic-
ular instance of assumpNum, phrase extracts the noun phrase of the concept,
preparing it to be displayed in the middle of a sentence.

Our assumption is something that is likely to be changed as we adapt it
to different execution environments, or decide to use a large number library
to handle arbitrarily large (or small) integers; we should specify that in our
requirements document, using the likely change smart constructor, as well:

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

chg :: Change

chg = 1lc "chg" (foldlSent [chgsStart assumpNum (S "The"),
phrase software, S "may be changed to remove the range",
S "restriction on the", phrase input_, S "to support",
S "doubling any integer"]) $ "removeRestriction"

Similar to assump, the arguments to 1c are: UID, the likely change de-
scription, and the last is referencing related. chgsStart is a constructor to
tie the change to the assumption assumpNum, both textually in the generated
SRS and internally for Drasil to use for consistency purposes. chgsStart is
not mandatory when defining a change; however, for chg, it provides useful
context.

Next we should specify the requirement of our system, that is, taking an
integer and returning twice the input. In Drasil, this would look like:

reqMul :: ReqChunk

reqMul = frc "regMul" (foldlSent [S "The", phrase output_,
S "shall be twice the", phrase input_, phrase value])
"mulNum"

The arguments follow the same conventions of the previous two chunk
constructors.

Now that we have encoded our scope of the design, we shift our attention
to the math of the problem. The math required to fulfill our requirements is
fairly simple; expressed as y = 2 - x. The equation follows common mathe-
matical notation where x is the independent and y is the dependent variable.
To properly capture the semantics of this simple equation Drasil requires: x
be described as an abstract symbol — one to be “plugged in” as an input
when we tie the software description together (QuantityDict), a definition
(QDefinition) for y, and a DataDefinition chunk (from drasil-theory) to
adapt it for display in a requirements document formatted using the Smith et
al. template [10].

x :: QuantityDict

x = vc "x" (cn''' "input value") (Atomic "x") Integer
y :: QDefinition
y = fromEqn' "y" (nounPhraseSent $ foldlSent_

[phrase input_, phrase value, S "doubled"]) EmptyS
(Atomic "y") Integer $ (Int 2) * sy x

doubleDD :: DataDefinition

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

doubleDD = ddNoRefs y [{-Derivation-}] "doubleDD" [{-Notes-}]

The first argument for both vc and fromEqn' is a UID, followed by a
description of what the quantity (mathematical variable) denotes in words.
The last two arguments to vc are the mathematical symbol to denote the
variable and the type. For fromEqn', the EmptyS (empty sentence constructor)
argument is a detailed definition of what the variable means conceptually, the
Atomic "y" is the mathematical symbol used, Integer is (again) the type,
and the last argument is the expression used to obtain our output.

For ddNoRefs, the first argument is the equation that is the basis of the
definition, y. The second argument is a list of equational derivation steps
(as Exprs embedded in Sentences), accompanied by a textual commentary
in each step, empty for doubleDD. The third argument is "doubleDD", the
displayed name of the data definition in our SRS. Finally, the last argument is
a list of Sentences informing a reader of anything important about the data
definition, not relevant or captured by the derivation steps.

Our next step is to begin constructing the document using the chunks we
have created. As a brief aside we should decide on a name for our software
system. How about “Double?”

pname :: String

pname = "Double"

double :: CI

double = commonIdeaWithDict "double" (pn pname) pname
[mathematics]

With the software name decided, it is time to construct a requirements
document. The document ought to contain a table of symbols, it would be a
bad decision to omit context to a reader. In a similar vein, we should introduce
any readers to the software system being designed. Due to the inclusion of a
likely change, it would also be nice to provide a traceability matrix to helpfully
show future maintainers how each chunk interacts with all others. These three
ideas introduce pieces of knowledge we have not directly encoded in Drasil
and are more documentation-related in nature rather than the system we are
constructing. The table of symbols and the traceability matrices can be derived
automatically by Drasil and are encoded in the document within the reference
section and traceability sections, respectively. The introduction (section) is
purely for human readers and is thus encoded mainly using plain strings.

In Drasil we declare what we want in a document as:

10

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

traceTable :: LabelledContent
traceTable = generateTraceTable thisSI

thisSRS :: DocDesc
thisSRS = [
RefSec $§ RefProg intro [tsymb [TSPurposel],
IntroSec $ IntroProg (foldlSent [atStart double,
S "is a trivial example for",
S "demonstrating Drasil's capabilities"])
(short double) [],
SSDSec $ SSDProg [
SSDSolChSpec $ SCSProg [

Assumptions,

DDs [] [Label, Symbol, Units, DefiningEquation,
Description Verbose IncludeUnits] [doubleDD]
HideDerivation

11,

ReqrmntSec $ ReqsProg [
FReqsSub [reqMul] []

o

LCsSec $ LCsProg [chgl,

TraceabilitySec $ TraceabilityProg [traceTable] [foldlSent
S "items with each other"]] [L1C traceTable] []

]

\. .

Of interest in our SRS declaration is that we have not defined thisSI yet;
it will be defined shortly. One of the benefits of Drasil should be apparent
with the definition of traceTable. generateTraceTable creates a traceabil-
ity matrix automatically from the knowledge Drasil has available. No need to
manually update information in one place and update the corresponding cells
in the traceability matrix. In RefProg, the tsymb smart constructor generates
a table of symbols from the symbols present in the SRS. Another peculiar-
ity is while other section constructors generate their content from a list of
chunks, the Assumptions data constructor is a placeholder that is expanded
during document processing using chunks found in the (not yet created) chunk
database. Finally, due to data definitions (the DDs constructor) containing a
multitude of information, Drasil provides means to select what information
should be displayed when generating the document.

The next block of code does not encode new information used for generating
a document, but ensures Drasil is consistent. We extract information, such as
chunks, from the DocDesc, which will be part of what populates our chunk
database.

11

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

checkSi :: [UnitDefn]
checkSi = collectUnits allSymbols symbols

label :: TraceMap
label = generateTraceMap thisSRS

refBy :: RefbyMap
refBy = generateRefbyMap label

scs :: SCSSub
scs = getSCSSub thisSRS

dataDefn :: [DataDefinition]
dataDefn = getTraceMapFromDD scs

reqs :: [ReqChunk]
reqs = getTraceMapFromReqs scs

chgs :: [Change]
chgs = getTraceMapFromChgs scs

. J

It is time to create the chunk database (allSymbols) as well as produce a
list of symbols (symbols) we have created for use with code generation:

symbols :: [QuantityDict]
symbols = [x, y]

allSymbols :: ChunkDB

allSymbols = cdb symbols (nw double : map nw symbols ++
map nw doccon ++ map nw fundamentals ++ map nw derived ++
map nw doccon') srsDomains (siUnits ++ checkSI) label
refBy dataDefn [] [] [] [assumpNum] reqs chgs [] []

. J

The argument composed of many concatenated lists for the cdb constructor
are chunks that contain a term (i.e. a NamedIdea), many provided by drasil-
data. The empty fields of the chunk database are for chunk types not present
in our example.

Next is the SystemInformation, used to hold global information about
the system:

12

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

thisSI :: SystemInformation
thisSI = SI {
_sys = double,
_kind = srs,
_authors = [person "Gabriel" "Dalimonte"],
_quants = symbols,
_datadefs = [doubleDD],
_inputs = [x],
_outputs = [y],
_sysinfodb = allSymbols,
_usedinfodb = allSymbols,

b

SystemInformation contains six other field all of which are empty in our
example. They have been omitted for brevity.

With all the information needed to generate the SRS, we can invoke drasil-
docLang to translate our DocDesc to a drasil-lang-friendly Document:

srsBody :: Document
srsBody = mkDoc thisSRS for thisSI

The final step for generating the SRS is to print the document in IXTEX or
HTML. To print the document we must specify some generation properties like

indentation when pretty printing. For our example we use the Drasil provided
defaults:

pS :: PrintingInformation
pS = PI allSymbols defaultConfiguration

A brief detour before we finish artefact generation. We have a beautiful
requirements document, but that is documentation, we were hoping for an
implementation to save us from our doubling woes. To do that, we need to
specify some implementation choices:

thisChoices :: Choices
thisChoices = Choices {
lang = [Python, Cpp, CSharp, Javal],
impType = Program,
logFile = "log.txt",
logging = LogNone,
comments = CommentNone,

13

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

onSfwrConstraint = Warning,
onPhysConstraint = Warning,
inputStructure Bundled

}

thisCode :: CodeSpec
thisCode = codeSpec thisSI thisChoices []

The most interesting field is lang. From our system description, Drasil
will generate an implementation in each of the languages we have selected.
It is time to generate the artefacts we have created:

main :: I0 O

main = do
gen (DocSpec Website $ pname ++ "_SRS") srsBody pS
gen (DocSpec SRS $ pname ++ "_SRS") srsBody pS
genCode thisChoices thisCode

. J

With the main function we have concluded our small problem, solved using
Drasil. A complete version of this example (including imports) can be found
in Appendix A

14

Chapter 3

Code Duplication is Evil

Many Drasil sub-packages begun as part of either drasil-lang or drasil-example,
but were later spun off as seen fit. drasil-docLang’s implementation was orig-
inally a part of drasil-ezample, before it was decided that the requirements
template is reusable and could become its own sub-package, setting a stan-
dard that document templates should be modular and independent from a
particular example.

drasil-printers originally resided within drasil-lang. The rich-text docu-
ment output facilities were extracted from the drasil-lang sub-package as they
are not a part of the language. The printers take a drasil-lang Document as
input to produce a rendered version of the document in some other language.
The separation allows for changes to occur within the document renderers,
including the ability to add new renderers, without requiring or even tempting
an author to modify the Document structure of drasil-lang.

drasil-database was extracted from drasil-lang. The components moved are
more related to aggregation of information and specification of a software sys-
tem. While the description of a software system seems like a core facet of
Drasil and thus should belong in drasil-lang, it is not. By migrating database
features to a separate sub-package, drasil-lang becomes more abstract and not
tied to the (primary) design, a language to encode software system descrip-
tions, and instead becomes a language of general mathematical and natural
language knowledge capture, document description, and capturing the rela-
tionship between chunks of knowledge.

drasil-theory is the result of extracting chunks from drasil-lang aligned with
deriving scientific information and formulae. An example of a chunk resid-
ing in drasil-theory is DataDefinition, a chunk that supports the knowl-
edge captured in other drasil-theory chunks, such as a GenDefn (General
Definition [10]). DataDefinition is a piece of knowledge we can hand drasil-
code and say “please generate code for this!” drasil-lang captures primitive
chunks such as quantities, units, and uncertainty; drasil-theory adds general

15

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

chunks with semantic meaning and traceability relating to the derivation of
information.

With the role of drasil-lang refactored to a small, generic, flexible, core
language, it is peculiar to find chunks such as AssumpChunk, ReqChunk, and
Change (Chunk) residing in the sub-package, as evidenced at the beginning
of Appendix A. The chunks capture requirements-oriented documentation
knowledge. AssumpChunk is a semantic chunk capturing a system’s assump-
tion within a requirements document. In a similar fashion, ReqChunk is a
semantic chunk capturing knowledge of a requirement (either functional or
non-functional) while Changes is a semantic chunk encoding a likely or un-
likely change as described by Smith et al [10]. We emphasize the semantics of
these chunks as they largely encode natural language (drasil-lang) Sentences.

It seems rather odd for the requirements-oriented chunks to appear in
drasil-lang. From Table 2.1 and the historical evolution of sub-packages, a
more appropriate location for these chunks may be drasil-docLang as the sub-
package encodes requirements document knowledge. It is possible the semantic
requirements document chunks were simply missed as drasil-docLang is de-
rived from drasil-ezample, while the chunks reside in drasil-lang. Maybe these
chunks parallel those moved to drasil-theory and a new sub-package, named
drasil-requirements, is in order? Perhaps the requirements chunks intention-
ally reside in drasil-lang due to an implementation detail and deemed “not
worth the effort” to resolve?

The inclusion of the requirements-oriented documentation chunks in drasil-
lang “breaks” the encapsulation and desired scope of the sub-package. It would
be ideal to migrate these odd chunks to a more predictable and philosophically-
consistent location within the Drasil sub-package structure. Before delving
into detail about where to move the chunks, Section 3.1 investigates to see
how the chunks listed in Section 2.2 are used throughout the sub-packages to
discern if there s a convincing reason why the requirements-oriented chunks
reside in drasil-lang. Section 3.2, and the remainder of Chapter 3, considers
the observations of Section 3.1 and work towards remedying peculiar chunks.

3.1 Pulling a Thread

We begin investigating the requirements-oriented chunks, pulling on AssumpC-
hunk to see how it — and the information it captures — propagates. We begin
by examining the definition of AssumpChunk and the assump smart constructor
(used in Section 2.2).

data AssumpChunk = AC { _aid :: UID
, assuming :: Sentence

16

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

, _refName :: ShortName

b
assump :: UID -> Sentence -> String -> AssumpChunk
assump i a s = AC i a (shortname' s)

The underscores prior to the refName and aid fields are indicators to
the Lens library [6]. The Lens library is used to the extent within Drasil to
provide automatic getters and setters for records requiring only makeLenses
' ' AssumpChunk be added to automatically create the functions. The under-
scores indicate to makeLenses which fields to create functions for. As it will
appear throughout this report, the infix operator ~. is a getter, for example
assumpNum ~. aid retrieves the value of the field named _aid.

AssumpChunk is a purely semantic chunk, it “extends” a Sentence with
the ability to be referenced. Despite the simple specification, an AssumpChunk
means the referable Sentence is a requirements document assumption; it adds
contert to an otherwise ambiguous Sentence.

As for AssumpChunk’s implementation, it is composed of types exposed by
drasil-lang making them accessible to other sub-packages. From the definition
of AssumpChunk and assump alone, we would be able to cleanly transplant
them to another sub-package if it is the correct solution. Further, there appears
to be no reason, based on the definition, why the chunk exists in drasil-lang.

Examining Section 2.2, we can see that AssumpChunk, specifically assu-
mpNum, is an argument in two functions (chgsStart and cdb). chgsStart is
a utility function that extracts a reference from the chunk. The name is a
slight misnomer, the function produces a Sentence of the form “<reference>
— <sentence>,” such as “A:assumpNum — The software...” in the case of
Section 2.2. In fact, chgsStart does not explicitly require an AssumpChunk;
it accepts any referable chunks, for example DataDefinition is valid for
chgsStart. cdb is a database constructor, residing in drasil-database. cdb
creates a ChunkDB, which is used by Drasil sub-packages to lookup references
to chunks. chgsStart and cdb do not further our understanding of Assump-
Chunk’s residency in drasil-lang.

In Section 2.2 we explained the oddity of DocDesc’s Assumptions con-
structor, meaning while not explicitly specified, functions taking DocDesc as
an argument may interact with AssumpChunk if the Assumptions construc-
tor is specified. Indeed, mkDoc, the function that interprets all the docu-
mentation constructs and produces a drasil-lang Document layout, interprets
AssumpChunks. mkDoc acts as a boundary between drasil-docLang and drasil-
lang. drasil-lang has no knowledge about concepts such as traceability matrices
or data definitions, those ideas all exist in higher-level sub-packages. In an ide-
alized version of Drasil, mkDoc should be the function where AssumpChunk’s

17

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

thread is complete. The thread of AssumpChunk continues through a function
invoked within mkDoc:

mkSubSCS :: SystemInformation -> SCSSub -> Section
mkSubSCS si' (Assumptions) =
SSD.assumpF tmStub gdStub ddStub imStub lcStub ucStub $
map (\y -> L1C $ mkRawLC (Assumption (helperAssump y $
_sysinfodb si')) $ makeRef y) $ asOrderedList $
(_assumpTable (cdb si'))

helperAssump :: AssumpChunk -> ChunkDB -> AssumpChunk

. J

The interesting bit from the code block above is the AssumpChunks are
pulled from the referencing database (_assumpTable) and (in effect) promptly
wrapped by an Assumption constructor of the datatype LabelledContent.
LabelledContent is a drasil-lang construct — supporting referencing — which
can be embedded in Documents. An assumption seems like an odd primitive to
encode for a rich-text document, especially considering other efforts to make
drasil-lang more abstract with the creation of drasil-theory, removing chunks
encoding derivation knowledge, and drasil-database, removing knowledge of
software system descriptions.

drasil-lang Documents are an input to the drasil-printers sub-package,
which renders the document. drasil-printers is the only sub-package using
Document meaning any remaining uses of AssumpChunk or LabelledContent’s
Assumption should occur in the sub-package.

From an implementation perspective, drasil-printers consumes a Document
to produce an internal layout-oriented object (LayoutObj), something that
maps closely to primitives of the (layout) languages implemented. From a de-
sign perspective, the layout-oriented object decouples individual printers from
Document and changes made in drasil-lang. The translation of Assumption
from Document to LayoutObj occurs in the following pattern match:

import qualified Language.Drasil.Printing.LayoutObj as T

lay :: HasSymbolTable ctx => ctx -> Contents -> T.LayoutObj
lay sm x@(Assumption a) = T.ALUR T.Assumption
(spec sm (assuming a)) (P.S (refAdd x)) (spec sm $
getShortName a)

lay finishes the journey of AssumpChunk as a concrete chunk. The fields
comprising AssumpChunk are repackaged into the ALUR constructor of Layou-
t0bj.

18

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

We still do not know why the idea of a requirements document assump-
tion is necessary until document layout, both in Document and in LayoutObj.
Whatever the use of ALUR, one observation is becoming clear: drasil-lang not
exposing or providing any interesting interactions involving AssumpChunk or
Assumption hints that the constructs are likely nothing more than a historical
“hack,” perhaps to make something easier in drasil-printers. Such a “hack”
is a flawed idea when examining the sub-package hierarchy, drasil-lang is not
aware of drasil-printers existence, and if truly necessary can likely be expressed
in a more appropriate fashion.

The investigation of AssumpChunk has not concluded, the thread continues.
What is the definition of ALUR?

N

data ALUR = Assumption | LikelyChange | UnlikelyChange
| Requirement
data LayoutObj =

| ALUR ALUR Contents Label Label -- two labels?

The definition of ALUR reveals that all three drasil-lang requirements
document-oriented chunks seem to converge into the data constructor. The
document printers seem to be aware of these three chunks that exist in drasil-
lang, but no others. Why? Perhaps how ALUR is used provides the answer.

Starting with the HTML renderer, ALUR for Assumption is rendered using:

printl0O :: LayoutObj -> Doc
printL0 (ALUR _ x 1 i) = wrap "ul" ["hide-list-style"] $
makeRefList (p_spec x) (p_spec 1) (p_spec i)

-— | Renders assumptions, requirements, likely changes

makeReflist :: Doc -> Doc -> Doc -> Doc
makeRefList a 1 i = wrap "1i" [] (refwrap 1 (i <>
text ": " <> a))

Doc is a pretty-printing data structure originating from a pretty-printer
design in [1].

How peculiar, when the HTML renderer is printing assumptions it follows
the same code path as other ALUR constructors. ALUR does not describe a “lay-
out object,” we observe in the HT'ML printer that assumptions are rendered as
an unordered list. Looking back at the definition of Document and Layout0Obj,
they both contain list constructors supporting formatting used for the HTML
printer’s ALUR output.

Perhaps the reason for ALUR can be found in the KIEX printer? ALUR

19

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

appears in two locations within the BKTEX printer:

-- 1st
parseDoc' :: LayoutObj -> ([Package], [Def])
parseDoc' (ALUR Assumption _ _ _) = ([], [AssumpCounter])

-— 2nd

lo :: HasSymbolTable s => LayoutObj -> s -> D

lo (ALUR Assumption n 1 _) _ = toText $
makeAssump (spec n) (spec 1)

makeAssump :: D -> D -> D

makeAssump n 1 = description $ item' ((pure $
text ("\\refstepcounter{assumpnum}" ++
"\\atheassumpnum")) <> label 1 <>
(pure $ text ":")) n

. J

The first instance adds a counter (using the KTEX command \newcounter
— named assumpnum; unrelated to Section 2.2’s assumpNum) to automatically
index and number the assumptions when printed (with the macro \atheass-
umpnum). The second implicitly references the counter created when printing
assumptions through ALUR.

With the examination of the IXTEX printer, we have reached the end of the
thread that spanned three of Drasil’s sub-packages. Now that we are aware of
why AssumpChunk is where it is, we must examine what benefit the automatic
numbering provides. Automatic numbering is a useful tool when manually
writing KTEX as it allows for the author to ignore manually inputting num-
bers but have them correctly numbered in the rendered document in the order
they appear. It can be a useful tool in a requirements document when lists are
re-organized, or if an assumption is added between two others. Drasil is not
asking authors to manually edit the ITEX source and already abstracts over
the concrete numbers (using the existing list constructors), ergo the feature of
automatic numbering has already lost value in the context of Drasil generated
BTEX. Causing further concern, the HTML printer’s output does not match
the ITEX printer in terms of numbering! The HTML printer does not num-
ber assumptions, it prefixes assumption contents with their short name. As an
added comment, discussion amongst Drasil contributors resulted in the HT'ML
printers output being preferable due to the prefix being the same string that
appears when an assumption is referenced; the short name being more descrip-
tive than a number thus providing more context than a number indicating the
order of the assumption.

Based on the reasons ALUR exists for Assumptions and the desired output

20

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

for assumptions, we can conclude that the counter is unnecessary and numeric
(ordered) and unordered lists can already be displayed through the Layout0Obj
constructor List. If we remove the ALUR constructor then we would be in a
place where AssumpChunk would no longer be a dependency of drasil-printers
making it no longer a type within a Document constructor meaning it could
be moved to drasil-docLang.

Excellent! We have a plan of action! Before actioning the plan we must
also consider ReqChunk and Change (Chunk). As already hinted within drasil-
printers, Requirement (which ReqChunk semantically provides) and Likely-
Change/UnlikelyChange (which Change provides) are handled in an identical
way to Assumption within the HTML printer as the pattern match in printL0
ignores the ALUR datatype entirely. The IXTEX printer is not much different,
while each ALUR constructor dispatches to a different function, the functions
are copy-paste with the counter name changed.

With duplicated code comprising the printers, what do the data structure
definitions for ReqChunk and Change look like; are they also duplicates of
AssumpChunk?

data ChngType = Likely -- = Likely Change
| Unlikely -- ~ Unlikely Change

data Change = ChC

{ _id :: UID
, chngType :: ChngType
, chng :: Sentence
, _refName :: ShortName
X
data ReqType = FR -- = Functional Requirement
| NFR -- ~ Non-Functional RequirTement

data ReqChunk = RC

{ _id :: UID

, reqType :: ReqType

, requires :: Sentence
, _refName :: ShortName
b

21

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

Indeed they are!’ The differences being that ReqChunk and Change both
contain an additional field over AssumpChunk indicating the subtype — pro-
viding additional semantic context — of what each chunk encodes.

Perhaps moving these chunks to drasil-docLang is not the correct choice.
The common code and structure of all three chunks indicate they contain
fairly similar information. Perhaps the correct action is to unify the chunks
into something more generic and flexible!

3.2 A Generic Flexible Chunk

With the decision to create a generic chunk, what should such a chunk provide?
First off, the chunk should be capable of expressing everything possible with
the existing chunks. Secondly, we should provide a mechanism to maintain the
semantics provided by the existing chunks. It is important to provide semantics
to know whether a chunk is a requirement or an assumption, without ad-
hoc mechanisms such as code locality or code comments. Providing a proper
semantic mechanism allows drasil-docLang to ensure the “assumptions” being
passed to it are indeed assumptions. Third, the design should not be targeted
at any particular chunk type and be generic and reusable outside of the case
study of uses performed in Section 3.1.

We should start the design by combining and unifying the three existing
chunks, providing a placeholder name GenericChunk with fields similar to
AssumpChunk:

data GenericChunk = Gc
{ _id :: UID
, body :: Sentence
, _refName :: ShortName
}

GenericChunk models AssumpChunk well. There is a bijection between
an AssumpChunk and GenericChunk. GenericChunk is not yet an adequate
substitution for ReqChunk or Change. Where is the selection of subtype (let
alone the “main” type)?

We enumerate the “main” type and subtypes of the chunks we are attempt-
ing to abstract in an effort to visualize the relationship:

e Assumption

« Requirement

"'When copying the definitions for ReqChunk and Change into this report, both chunks
had a trailing whitespace on the same lines. One on the first line specifying the constructor
name and one on the third line specifying the subtype.

22

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

— Functional

— Non-functional
e Change

— Likely
— Unlikely

The chunks form what appears to be small (two-level) trees. Further,
we have been considering AssumpChunk, ReqChunk, and Change, all concepts
within the domain of a (software) requirements document. If we encode the
software requirements domain we can form a larger tree with all chunks we are
abstracting being the “main” type or the first level of the tree. By providing
a domain to GenericChunk we would capture the semantics as the existing
chunks do!

drasil-lang provides a typeclass named ConceptDomain with the following
definition:

class ConceptDomain c where
-= | cdom provides Getter for the concept domain tags
-—- for a chunk
cdom :: c -> [UID]

cdom is constrained on the [UID] being those belonging to chunk imple-
menting the typeclass Concept. One such instance of the ConceptDomain
typeclass is ConceptChunk. ConceptChunk is defined as:

data ConceptChunk = ConDict
{ _idea :: IdeaDict
, _defn' :: Sentence
, cdom' :: [UID]
}

. J

An IdeaDict provides an (optional) abbreviation and a NounPhrase, which
is a phrase describing the concept. Combined with a definition (_defn') we
have a sufficient amount of information to capture the enumerated SRS do-
mains. If we assume we have an abstract srsDom(ain) defined, we could define
an assumpDom by providing the noun phrase as “assumption,” abbreviation as
“A,” and a definition describing what an assumption is. Finally, the cdom' field
is a list of ConceptDomain UIDs, in this case, assumpDom is in the srsDomain!
By structuring domains into a tree we are able to “select” a domain such
as “requirement” and gather both functional and non-functional requirements
by taking, as an example, a chunk tagged as a functional (requirement) and

23

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

walking the domains upwards — towards the root — to find functional (re-
quirements) is in the requirements domain. We can perform similar definitions
for all of the enumerated domains. In fact, we do, and we place the domains
in drasil-data. We realize the implementation of assumpDom as:

assumpDom :: ConceptChunk
assumpDom = ccs (mkIdea "assumpDom" (assumption ~. term) $
Just "A") EmptyS [srsDom]

assumption is a CI being reused and "assumpDom" is a UID (a component
of an IdeaDict). One argument of interest is EmptyS representing an empty
Sentence, or in this particular instance, an empty definition. We have omit-
ted writing a definition for the domains as Drasil does not currently use any
domain’s definition.

We have given assumpDom an abbreviation, but what purpose does it
serve? When referencing a chunk within Drasil, the reference contains a pre-
fix to provide context to a reader. For example, using the assumption from
Section 2.2 the reference would appear as “A:reasonableNumber,” similar to
how a reference to a section — say this section — within IXTEX may ren-
der as “Section 3.2 With the removal of the semantics provided by the type
“AssumpChunk,” the replacement must provide sufficient context and informa-
tion to construct an appropriate reference.

The ConceptDomain typeclass provides context for GenericChunk. We
have effectively met all three design constraints.

The ConceptChunk definition contains very similar fields to the proposed
GenericChunk. An expanded (i.e. inlined definition of IdeaDict) Conc-
eptChunk contains a (Maybe String) abbreviation field and a NounPhrase
field. The abbreviation field is optional and can be ignored. The NounPhrase
is a name of the assumption. This “name” is similar to a displayed string
identifying the chunk to a reader in the final document. For GenericChunk
this can be the same as the value to ShortName.

The UID, cdom', and body (defn' in ConceptChunk) fields are shared
between ConceptChunk and GenericChunk definitions. We differentiate from
the list of domains ConceptChunk allows for cdom' by restricting the number
of domains in GenericChunk to exactly one as we have not encountered a case
where this is not true with the current examples.

Drasil is unable to produce references for ConceptChunk as it is not some-
thing that can be referenced or printed as a group of knowledge. GenericC-
hunk extends ConceptChunk in this regard to provide referencing capabilities
required by the chunks it is replacing. ShortName is a field providing much of
the referencing capabilities to GenericChunk. We add a reference address field
to GenericChunk to provide the possibility of a distinct document address not

24

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

tied to the UID to complete the realization of referencing GenericChunk.
With these similarities to ConceptChunk, we can write GenericChunk as
an extension of ConceptChunk:

data GenericChunk = Gc
{ cc :: ConceptChunk
, ra :: String
, shnm :: ShortName

3

In this format GenericChunk is simply an instantiation of a concept (both
conceptually and syntactically) extended to provide referencing information.
Further, the chunk is an instance of a particular ConceptDomain! We provide a
final name for the new chunk to reflect these observations: ConceptInstance.

3.3 “I Understood That Reference”

During the development of ConceptInstance, many Drasil contributors en-
countered friction from the chunk referencing system Drasil has in place.
ConceptInstance experiences some limitations in terms of implementation
as a result of the use of ConceptDomain. ConceptDomain’s abbreviation field
is supposed to encode referencing context information for display names. Ex-
amining the core facet of Drasil’s referencing architecture, the RefType con-
structor, reveals the problem with the existing implementation:

data RefType = Tab -— " Table
| Fig -- 7 Figure
| Sect -- ~ Section
| Req -- ~ Requirement
| Assump -- ~ Assumption
| LC -- 7 Likely Change
| UC -— T Unlikely Change
| PSD -— T Physical System Description

We can see the chunk types (in the conceptual sense, not the Haskell type
system sense) we have removed, such as Assump, are hardcoded as a construc-
tor within RefType. This results in calling the hardcoded function aref within
the KTEX printer.

aref :: D -> D
aref x = custRef "A\\ref" x

25

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

Although this was not exposed during our initial exploration, it is very
much something that requires addressing to facilitate the implementation of
ConceptInstance. The specification of chunk types is another instance, sim-
ilar to AssumpChunk, where knowledge is inappropriately captured by drasil-
lang introducing notions of software system descriptions that otherwise do not
appear in drasil-lang. Small slip-ups such as RefType open doors to thoughts
such as, “drasil-lang already knows about assumptions! What is the harm
in adding another structure that has domain-specific knowledge?” Blurred
boundaries produced by RefType can weaken the idea of keeping the sub-
package abstract and lead to a reduction in modularity. Furthermore, the
RefType data type is not extensible requiring drasil-lang to be aware of all
referable chunks.

With the interest ConceptInstance has in the referencing system intro-
ducing an unaccounted stake, we provide a unique perspective and require-
ments for guiding improvements to the refined implementation. A working
group of Drasil contributors formed to provide a number of perspectives in an
effort to address the referencing system deficiencies. For the purpose of this
report we will discuss the RefType resolution.

The core issue with RefType, and thus with referencing from the perspec-
tive of ConceptInstance, is the hardcoded nature of the structure, which
forces spreading knowledge around the Drasil codebase. Instead of Assump-
Chunk, or any particular chunk, being responsible for providing the context
with which to render its ShortName, it is the individual printer that decides.
The existing architecture requires drasil-lang and drasil-printers to be aware
of chunks that are defined in, say, drasil-theory despite the correct design in-
volving drasil-lang being unaware of any chunks defined externally.

A new design should provide the following:

1. Remove referencing knowledge of all chunks (which require referencing)
from drasil-lang

2. Provide a flexible means to describe how a chunk should have its name
displayed

3. Defer final rendering of name to drasil-printers to make the final lay-
out/display decisions

Based on requirements 2 and 3, it seems appropriate to implement the re-
placement as a small language for displaying names. The flexibility required is
provided by the constructs of the language, which is evaluated and interpreted
by drasil-printers. How do we achieve the first item of the design criteria with
this language? We provide a typeclass that referable chunks implement to
describe themselves with the referencing language.

26

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

We add constructs to the referencing language on an as-needed basis. We
begin with a symbol for ShortName: Name. A Name, when interpreted, will
render the value of the chunk’s ShortName. The next construct to add is a
way to lift plain Strings into the language: RS. We require means to combine
smaller programs: RConcat. These three constructs cover all existing uses of
RefType. ConceptInstance requires a referencing construct to include a UID
for a ConceptDomain to lookup during rendering; this construct is Deferred.

All existing chunks use RefType to provide a prefix to a displayed Sho-
rtName. We provide a smart constructor to produce these common display
names:

prepend :: String -> IRefProg
prepend s = RS s +::+ RS ": " +::+ Name

In drasil-printers we must construct a function to evaluate RefProg to
Sentence. The function performing the transformations is straightforward
with the only complexity (albeit minimal) stemming from the Deferred con-
structor. The Deferred constructor requires looking up the provided UID
in the appropriate Concept-containing table within ChunkDB. The looked-up
chunk is then consumed to retrieve the abbreviation.

Satisfying requirement 1 for the improved referencing system requires we
provide a way to create a Reference wherever a chunk type is defined. We
introduce the typeclass Referable, constrained to those types that implement
an existing typeclass HasUID. We define the typeclass as:

class HasUID s => Referable s where
refAdd :: 8 —> String
renderRef :: s -> LblType

refAdd defines the reference address and renderRef provides RefProg
(contained in another structure) specifying the displayed name semantics.

Referable is used to implement decentralised referencing information for
DataDefinition (defined in drasil-theory) using the following instance:

instance Referable DataDefinition where
refAdd = getRefAdd
renderRef 1 = RP (prepend "DD") (refAdd 1)

With the inclusion of Referable and RefProg we have achieved our goals
and satisfied the requirements required to properly remove RefType from
drasil-lang — and all together — and replace its uses with a much more ver-
satile and powerful system. The working group produced other improvements
to the referencing system in Drasil, however, the author was not as heavily

27

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

involved with the other improvements, and they will not be discussed in this
report.

3.4 Putting It All Together

With the new referencing system in place we can construct a Referable in-
stance for ConceptInstance that produces display names in the familiar for-
mat “<abbrev>: <name>":

-)

sDom :: [UID] -> UID

sDom [d] = d

sDom d = error $ "Expected ConceptDomain with single " ++
"domain, found " ++ show (length d) ++ " instead."

(+::4) :: IRefProg -> IRefProg -> IRefProg
a +::+ b = RConcat a b

instance Referable ConceptInstance where
refAdd = ra
renderRef 1 = RP (Deferred (sDom $ cdom' $ cc 1) +::+
RS ": " +::+ Name) (refAdd 1)

With the definition of ConceptInstance being complete, we add a smart
constructor. We name it cic for Concept Instance Chunk. The smart con-
structor provides a simpler, stricter interface for describing ConceptInstances
than the regular constructor. One example of strictness enacted by cic is ac-
cepting ConceptChunk as an argument to enforce that the cdom' field contains
a single valid UID rather than allowing opportunities for users to specify in-
consistent or invalid chunks.

We turn our focus to the Document structure within drasil-lang. The
Document structure, and consequently LayoutObj, only requires minor modifi-
cations, enhancements even, to accommodate the features previously provided
by the Assumption, Requirement, and Change constructors. We require the
ability to reference particular items within a list or enumeration. With the
design of Drasil, it is not difficult to add. We begin by adding an additional
field to all ListType constructors to encode an address that can be linked to
by references in the generated documents.

Most of the other changes to enable referencing of individual list elements
is not particularly of interest as it is general plumbing and propagation of
the new list item identifier into the printers. The individual printers expose
the new identifiers by generating an id attribute for the HTML printer and a
\phantomsection\label{} within the ITEX printer.

28

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

We make a small change to drasil-database to replace all the removed chunk
tables with a new table called conceptinsTable holding all ConceptInstan-
ces regardless of which section a ConceptInstance should appear.

Two small convenience functions were added to drasil-utils to facilitate
creating non-referable lists without requiring an author to type Nothing for
each list item:

noRefs :: [ItemType]l -> [(ItemType, Maybe String)]
noRefs a = zip a $ repeat Nothing

noRefsLT :: [(Sentence, ItemType)] -> [ListTuple]
noRefsLT a = uncurry zip3 (unzip a) $ repeat Nothing

. J

With much of the infrastructure work complete, we now look to drasil-
docLang to use ConceptInstance. The changes are fairly minimal, we must
update DocDesc constructors that take any of the removed chunks to instead
use ConceptInstance.

The next adaptation we must perform is to convert ConceptInstance to
a list of Document items. While this is to be used in drasil-docLang, there is
nothing specific about the operation we are performing making drasil-utils a
suitable home for these functions. We provide a level of flexibility with these
functions to allow for high-level document layout sub-packages (like drasil-
docLang) to customize the Document constructs produced. We aim to match
the output and formatting produced by the previous ALUR LayoutObj con-
structs in the HTML printer, meaning we should produce an enumeration
of type Simple with each ConceptInstance being referable. We decom-
pose the function to perform this transformation, mkEnumSimpleD, into two
helpers: mkEnumSimple, which produces an Enumeration of type Simple, and
mkListTuple, which translates each ConceptInstance into a ListTuple.

The addition of ConceptInstance to replace the out-of-place chunks is a
large distance from the original, seemingly simple, planned change. Overall, it
collapses three-to-four different code paths encoding the same type of informa-
tion. We performed these changes at the correct time in Drasil’s development
coinciding with a redesign of Drasil’s referencing system. We contributed im-
portant requirements and design decisions that led to the creation of RefProg.
We can translate the assumption from Section 2.2 to a ConceptInstance as:

~)

assumpNum :: ConceptInstance

assumpNum = cic "assumpNum" (foldlSent [S "This",
phrase system, S "only considers", phrase input_,
S "integers between", E $§ (-2) $~ 29, S "and",
E (2 $° 29)]) "reasonableNumber" assumpDom

29

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

assumpNum continues to encode the same information, even in a very similar
way to the removed AssumpChunk, while providing more flexibility.

We observed another Drasil contributor implement a new goals section to
the requirements document, adding a domain and leveraging ConceptInsta-
nce, by performing the following modification:

In drasil-data:

-— Insert

goalStmtDom :: ConceptChunk

goalStmtDom = ccs (mkIdea "goalStmtDom" (goalStmt ~. term) $
Just "GS") EmptyS [srsDom]

-— Modify

srsDomains = [cw srsDom, goalStmtDom, reqDom, funcReqDom,
nonFuncReqDom, chgProbDom, assumpDom, likeChgDom,
unlikeChgDom]

Inserting the following constructor into drasil-docLang:

data PDSub =

Goals [Sentence] [ConceptInstance]

Lastly, add a single pattern match within drasil-docLang:

mkSubPD (Goals ins g) = SSD.goalStmtF ins (mkEnumSimpleD g)

SSD.goalStmtF performs general section layout unrelated to the actual
ConceptInstance-transformed content. To add an entire section dependent
on ConceptInstance simply required five additional lines of code and one
modified line of code. None of which were in drasil-lang or drasil-printers.
Five lines were inserted or altered in the reusable data sub-package, and two
were required within the requirements document template sub-package related
to transforming the chunks for layout.

30

Chapter 4

A Declarative Specification
Language

Noticed in Section 2.2 and commented on in Chapter 3, we encountered the
anomalous constructor Assumptions when building a DocDesc. The Ass-
umptions constructor is constant and unlike other DocDesc “chunk” con-
structors, such as: FReqsSub, LCsProg, and DDs. The other constructors
include an argument concerning the list of chunks to be displayed, whereas
Assumptions retrieves the information from the ChunkDB database contained
within SystemInformation.

The unique Assumptions DocDesc constructor introduces consistency prob-
lems at two separate levels. From a user-facing perspective the constructor is
completely inconsistent. There are not any other constructors within DocDesc
that omit the chunks to display. There is no user-perceptible reason that the
Assumptions constructor behaves differently, placing the constructor into a
group of “things that do not make sense but that is the way they are.” From
a Drasil maintainer perspective, the constructor’s unique properties makes
it a regular after-thought when designing or implementing components for
drasil-docLang. We further lose consistency (through unavailability) within
generated Drasil documents. The loss of consistency is because for every in-
stance where assumptions are of interest, we are required to re-acquire the
chunks from the database, because they are not stored in DocDesc and thus
not immediately available. An example of the inconsistency caused by the
Assumptions constructor is that no generated traceability matrices mention
assumptions as they are not available at the time when the dependencies are
calculated.

Despite the problems introduced by the Assumptions constructor, it is a
desirable addition. The constructor makes a lot of sense when coupled with a
ChunkDB. The ChunkDB stores information about the desired system whereas
the DocDesc should largely be a high-level declarative language about which

31

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

sections to include in a requirements document encoding only display-oriented
information being pertinent to an SRS. By storing the chunk information in
a more accessible place we shift the encoding structure to a more correct ap-
proach (an idealized version of Drasil) where the SystemInformation (which
contains ChunkDB) knows everything about the system and parts of it are used
to generate certain artefacts. By only storing chunks in the database we im-
prove consistency by only having chunks specified in a single location removing
opportunities for users to make mistakes, such as having the lists of chunks
differ from one another when specified in multiple places.

With the Assumptions constructor being desirable, we examine DocDesc
for other constructors that should not explicitly specify their chunks before
constructing possible designs. From Section 2.2, we have DDs, FReqsSub, and
LCsProg as constructors that take an explicit list of chunks as an argument.
In the same structure as DDs there is GDs, IMs, and TMs, which also take a list
of chunks. In a similar data structure — with a similar name — to FReqsSub
is NonFRegsSub. Semantically similar to LCsProg is UCsProg, which provides
the unlikely changes section. There are a total of eight constructors that take
a list of chunks as an argument where the chunks also exist in the ChunkDB.
We aim to standardize how this style of DocDesc constructor behaves and is
exposed to a user.

At present, the interactions used to achieve consistency between the
DocDesc constructors mentioned and ChunkDB is unclear and assigned to the
user to ensure. The existing method for non-Assumptions constructors is to
either specify the chunks in the constructor as well as specify them explicitly
in the correct ChunkDB field, or use functions similar to getTraceMapFromDD
(depending on the chunk type) to gather the chunks from the DocDesc con-
structors and place the returned list in the ChunkDB. Neither of these existing
methods make much sense. They further force responsibilities onto users rather
than doing what Drasil is designed to do: automate away common errors and
inconsistencies!

4.1 Making Assumptions Consistent

We have already hinted at a desired solution; one where ChunkDB stores the
knowledge and DocDesc describes what and how to display information in an
SRS artefact. If we model the desired user experience for the eight constructors
after what exists with Assumptions we will remove the argument containing
the list of chunks to display and pull that information from a ChunkDB when
needed. This is an excellent start! However, we have noted a shortcoming
with the Assumptions constructor; namely the chunks are not alway present
when needed. One solution is to introduce smart constructors for the data
constructors of interest that instantiate the data constructors with an empty

32

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

list of chunks that is later populated when DocDesc processing occurs. The
delayed population of chunks in data constructors invites opportunities for
situations where it is unclear if a passed DocDesc has chunks populated or
not, forcing an odd mental model for contributors of drasil-docLang.

Instead of the delayed population approach, we create the notion of a user-
facing declarative language that is traversed and “expanded” into DocDesc.
The user-facing structure contains all information required to generate an
SRS. With a multi-step approach to document generation we can allow the
user-facing document to diverge from the internal representation and create
additional intermediary structures in the future to further enhance and au-
tomate document generation as needed. The new structure, named SRSDecl
(SRS Declaration), allows for the constructor design we desire and improves
on a deficiency prevalent with the existing Assumptions constructor.

Beginning the process of realizing SRSDecl, we make DocDesc consistent
for the planned changes and add a [ConceptInstance] argument to the
Assumptions constructor. If we are improving the user interface for construct-
ing SRS documents, we should address the odd TraceabilityProg construc-
tor used to create the traceability matrix section as well because SRSDecl
sheds the baggage of DocDesc’s encoding of information.

4.2 Tracing Troubles

Although it seems like a tangent, the traceability matrix DocDesc constructor
is too concrete and final, while the method to generate a traceability matrix
itself is inflexible and requires extraneous work from a user.

To briefly review, the traceability matrix constructor is specified in Sec-
tion 2.2 with:

TraceabilitySec $ TraceabilityProg [traceTable] [foldlSent
S "items with each other"]] [L1C traceTable] []

The signatures for TraceabilitySec and TraceabilityProg are:

type DocDesc = [DocSection]
data DocSection =
| TraceabilitySec TraceabilitySec

data TraceabilitySec = TraceabilityProg [LabelledContent]
[Sentence] [Contents] [Section]

33

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

For the arguments to TraceabilityProg, the [LabelledContent] ar-
gument is the same value as the [Contents] of the third argument. The
LabelledContent argument is used to created references to individual ma-
trices in the introduction of the traceability section to provide context. The
second argument, [Sentence], is a description of each matrix, the third argu-
ment is each matrix (copied verbatim into the generated document), and the
final argument is for “other” content to be copied verbatim — originally for
manual traceability graphs, however, no bundled example provides a traceabil-
ity graph. The argument arrangement makes little sense, and the duplicated
(albeit slightly modified) specification of the traceability matrices themselves
is awkward and easily derivable from one or the other.

We discourage manual creation and maintenance of traceability informa-
tion due to the difficulties to accurately reflect the state of the document, the
tediousness of the task, and the time consumed attempting. These reasons
are why Drasil implements the function generateTraceTable. Its purpose
is to generate a traceability matrix from an SRS, eliminating the need for a
human to concern themselves with it. The idea that we can create a trace-
ability matrix automatically largely invalidates the need to manually spec-
ify arguments one and three. One issue surrounding generateTraceTable:
the function creates a single traceability matrix without any configuration,
best described as “everything against everything.” This sort of configuration
can be overwhelming and not overly apparent about what useful informa-
tion it provides. It would be nice to create smaller matrices where we can
track dependence of chunks on various assumptions, how knowledge is refined
and instantiated, among other configurations to emphasize certain relation-
ships for a given software solution expressed in Drasil. Even better would
be to expose the ability for users to select the matrix configurations to in-
clude in an SRS. This may seem counterintuitive and unrelated to what we
discussed previously about generateTraceTable invalidating two arguments
in TraceabilityProg; however, the constructor should be higher-level where
the user specifies their “views” of dependencies that drasil-docLang will use to
generate traceability matrices (i.e. generateTraceTable should be performed
by drasil-docLang as needed).

The final issue with the existing traceability matrix — shown in Figure 4.1
— is small from a solution standpoint but something that impedes interpre-
tation of the matrix in the generated documents: the traceability matrix cur-
rently does not order the items in any particular way. The lack of sensible
ordering makes it difficult to locate a particular item at a glance and makes
quickly checking if an item has a given dependency a non-instantaneous task.

34

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

FR: FR:
Verify- | Verify-
Input | Output

NFR: GD: GD: GD: GD: IM: GD:

Correct | normForcEq | momentEql | bsShrFEq | resShearWO nrmShrForNum | mobShearWO

Section: Properties of a
Correct Solution

Fig:ForceDiagram X X X

DD: intersliceWtrF X X X

Table:InDataConstraints X

Table:OutDataConstraints X

DD: convertFuncl

Section: Physical System
Description

DD: convertFunc2

Figure 4.1: A portion of the automated traceability matrix for the Drasil
example Slope Stability analysis Program (SSP).

We mentioned a solution that introduces “views” to a traceability matrix.
Ideally we would like a constructor where we specify a list of chunk categories
(i.e. assumptions, data definitions, etc.) where the list itself can be thought
of as a one-dimensional view of a traceability matrix. The user facing syntax
for such a constructor could be:

TraceProg [{-Columns-} viewAssump]
[{-Rows-} viewReqgs, viewLikelyChgs]

When TraceProg is evaluated, viewAssump, viewReqgs, and viewLikely-
Chgs are evaluated to retrieve traceability information that is then combined
into a complete matrix. The constructor TraceProg addresses the issues de-
scribed with the existing TraceabilityProg and generateTraceTable imple-
mentation thus eliminating the need for a user to perform specific incantations
to create a traceability matrix. TraceProg enforces the content present in a
traceability section is traceability related. Further, such a constructor inher-
ently adds a sense of ordering and grouping to the displayed items within a
matrix. Finally, such a generic TraceProg description allows for specification
of many differing (even within the same document) matrices.

With a general guiding design of what we desire as a user-facing inter-
face, we turn our attention to how generateTraceTable builds the trace-
ability matrix. Most of the cross-referencing and chunk dependency track-
ing is performed by the following two functions: generateTraceMap and
generateRefbyMap. These two functions produce tables that are added to
ChunkDB and accessible through the traceTable and refbyTable fields, re-
spectively. The information collected in these tables is accurate; we are ad-
justing the processes with which the information is displayed and organized

35

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

from these tables in a more human-friendly manner.

We begin by deciding on a type signature for the views. The inputs are a list
of UIDs of chunks, which may be a row or column (of traceability information)
and a ChunkDB. The return type is a list of UIDs to include in a given dimension
of the traceability matrix. Further we add a type synonym, TraceViewCat
(Traceability View Category), to present a more convenient idea of what the
view functions perform.

The implementation for all TraceViewCat functions is to retrieve all chunks
of a given type from a table in ChunkDB. The chunks retrieved match the
ordering of the list passed to the cdb constructor, which will match the or-
dering of the chunks when displayed in the SRS, ensuring consistency in the
displayed order, while allowing authors to control the ordering. Chapter 3
simplified ChunkDB for ConceptInstances by providing a single table for all
of the chunks regardless of their domain; this design requires the ability to fil-
ter retrieved chunks. We wish to leverage the hierarchical structure of the
ConceptInstance domains. Based on the domain being located, such as
regDom, we wish to include any domains within the reqDomain, for exam-
ple including both functional and non-functional requirements whose domains
are both in the regDomain.

The two patterns of chunk lookups required for the traceability matrices
are encoded in the functions: traceView, which retrieves and orders all chunks
in a certain table, and traceViewCC, which specializes and extends traceView
to lookup chunks in the ConceptInstance table and filter the results based
on a desired domain. These two intermediary functions allow for specifying
view categories in a trivial fashion:

tvDataDefns :: TraceViewCat
tvDataDefns = traceView dataDefnTable

tvRegs :: TraceViewCat
tvReqs = traceViewCC reqDom

Revisiting the desired interface, TraceProg [{-Columns-}] [{-Rows-}],
we are able to specify the view categories; however, we must provide means
to flatten the list of UIDs returned. While flattening the list is an easy task,
the results must be filtered to ensure only chunks that appear in the SRS are
included. While the design of drasil-docLang currently seeds the SRS’s content
from the ChunkDB, this may not be the case in the future, or the chunks may
be filtered in a description so only some chunks are included from the whole
set of available chunks. With the current implementation of TraceViewCat
functions, the traceability matrix may contain chunks that are part of the
software system’s description but not in the SRS. Thus we require a way to

36

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

filter all of the returned chunks to those that appear in the SRS.

The traceTable field of ChunkDB captures the dependencies (values) of
all chunks (keys) in an SRS. To generate traceTable, drasil-docLang walks
over a DocDesc collecting all chunks and their dependencies. If a chunk does
not contain any dependencies it is still added to the table but with an empty
value. We can leverage the keys of traceTable to ensure the chunks in the
traceability matrices do appear in the SRS. We implement the required filtering
alongside the flattening operation in layoutUIDs:

layoutUIDs :: [TraceViewCat] -> ChunkDB -> [UID] -> [UID]
layoutUIDs a c e =
filter (Telem” (Map.keys $ c ~. traceTable)) §
concatMap (\x -> x e ¢) a

The final step is providing a function to specify a traceability matrix. A
traceability matrix must include a UID (it can be referenced), a caption for
the traceability matrix, the rows and columns of the matrix (TraceViewCat),
and SystemInformation containing the ChunkDB needed for various table
lookups. The function is named generateTraceTableView and produces a
LabelledContent compatible for direct insertion into a Document. Care is
taken within the function to ensure the number of views specified for rows and
columns is not empty as a dimension of zero for a traceability matrix makes
little sense.

The end goal of this chapter is to reduce the effort required for authors
to encode systems in Drasil. One part of achieving the goal is to lift calls
of generateTraceTableView into drasil-docLang such that it is not exposed
or used by authors directly. Instead, we encode the traceability information
into DocDesc using a similar structure to TraceProg as outlined previously.
An author is required to provide additional (human-oriented) context such as
introduction text and a matrix’s caption. We encode the DocDesc constructor
as:

data TraceConfig = TraceConfig UID [Sentence] Sentence
[TraceViewCat] [TraceViewCat]

The second argument is the text describing what the traceability matrix
shows. This text appears in the traceability section introduction. The third
argument is the caption of the matrix; the fourth argument is the list of column
views, and the final argument is the list of row views for the matrix.

We extend the existing definition of TraceabilitySec to accommodate
a list of TraceConfigs allowing for the specification of multiple traceability
matrices, each providing a different view of chunk dependencies. Many of the
bundled examples within Drasil (still) contain — despite the single automated

37

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

DD: DD: DD: DD: DD: DD: DD: DD: DD:
intersliceWtrF | angleA | angleB | lengthB | lengthLb | lengthLs | sicHeight | stress | torque

DD: intersliceWtrF

DD: angleA

DD: angleB

DD: lengthB

DD: lengthLb X

DD: lengthLs X X

DD: sicHeight

DD: stress

Figure 4.2: A portion of an automated traceability matrix constructed with
traceMatRefinement in the Drasil example SSP.

matrix — three traceability matrices maintained! manually. The new view
functionality for traceability matrices allows the manual matrices to be re-
placed with automated variants. As the three configurations are common
amongst all bundled examples, we encode a function describing each: trace-
MatAssumpOther, traceMatRefinement, and traceMatOtherReq. We encode
a convenience function that packages all three together as traceMatStandard.
traceMatRefinement replaces at least 50 lines (with the other standard ma-
trices each removing approximately 50 lines each as well) in many bundled
examples while producing more accurate output (Figure 4.2) without requir-
ing manual upkeep. The definition is:

traceMatRefinement :: TraceConfig

traceMatRefinement = TraceConfig "TraceMatRefvsRef"
[plural Doc.dataDefn, plural Doc.thModel, plural
Doc.genDefn, plural Doc.inModel +:+. S "with each other"]
(titleize' item +:+ S "and Other" +:+ titleize' section)
[tvDataDefns, tvTheoryModels, tvGenDefns, tvInsModels]
[tvDataDefns, tvTheoryModels, tvGenDefns, tvInsModels]

The implementation of a refined, higher-level DocDesc constructor for
traceability matrices improves the display and flexibility of the matrices while
moving DocDesc in the correct direction towards a declarative language.

'Not really

38

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

4.3 Removing Boilerplate

If we implement the desired declarative solution, one where DocDesc is hid-
den from authors and instead present a cleaner declarative SRSDecl, then we
ought to investigate what functions exposed and used within drasil-ezample
take DocDesc as an argument. Any function that does will either need to be
removed or altered to be used solely within drasil-docLang as DocDesc will
no longer be available in the sub-package. From Section 2.2 we have a set of
incantations that take DocDesc, or a sub-structure of DocDesc, as an input:

label :: TraceMap
label = generateTraceMap thisSRS

refBy :: RefbyMap
refBy = generateRefbyMap label

scs :: SCSSub
scs = getSCSSub thisSRS

dataDefn :: [DataDefinition]
dataDefn = getTraceMapFromDD scs

regs :: [ReqChunk]
reqs = getTraceMapFromReqs scs

chgs :: [Change]
chgs = getTraceMapFromChgs scs

The desired model where information is contained within ChunkDB and re-
trieved to populate DocDesc renders getSCSSub, getTraceMapFromDD,
getTraceMapFromReqs, getTraceMapFromChgs, and others as unneeded. The
functions previously served two purposes: gather chunks to populate a ChunkDB
and gather chunks that are subsequently consumed for their UIDs within
generateTraceMap. The functions’ use within individual examples is unnec-
essary and may be removed under the new model of chunk propagation.

The remaining SRS boilerplate within examples is generateTraceMap and
generateRefbyMap. Both generateTraceMap and generateRefbyMap are
computed from the SRS using DocDesc to populate a table, which are passed
as arguments to the cdb constructor.

generateTraceMap is an excellent candidate to relocate to drasil-docLang.
It is a function that is required for automated traceability matrices to function.
It does not provide any means of customization to a user calling it, as it
simply extracts chunks from DocDesc. It is truly boilerplate, which users must

39

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

remember to call. The reason for its existence within each example is because
it becomes a table in ChunkDB, which is always constructed for a software
system. We would instead like to delay construction of these tables to occur
after a ChunkDB has been constructed and during drasil-docLang processing
of DocDesc. generateRefbyMap transitively depends on the DocDesc, as it
inverts the map produced by generateTraceMap, allowing both to be moved
together, while generateRefbyMap can be an afterthought to a design for
generateTraceMap.

All tables within ChunkDB implement Lenses [6] allowing for modifica-
tion after initial construction. If we leverage this existing feature, we can
move traceability information generation (and subsequent table updates within
ChunkDB) to immediately after DocDesc is constructed. Due to the new in-
formation propagation flow this chapter is enacting, traceability information
should not be completely available until DocDesc is constructed and refers
specifically to the SRS document. If we were to modify which chunks ap-
peared in an SRS (through possible elaboration when constructing DocDesc
from SRSDecl) we would like the traceability information to include the most
recent data as opposed to “stale” data from an earlier point in the artefact
generation process. Another benefit of delaying traceability information ex-
traction is we remove the need for users to be concerned about how traceability
information is gathered and stored and can simplify the cdb constructor to re-
move the two tables that are later populated.

In an effort to realize the relocation of generateTraceMap and
generateRefbyMap, we should examine the definition of the candidate desti-
nation function, mkDoc, a function that transforms a DocDesc — when we are
done elaborating an SRSDecl — to a drasil-lang Document, ideally behaving
as the drasil-docLang transformation function. mkDoc’s input is the finalized
DocDesc making it an appropriate location to derive traceability information
and amend the ChunkDB prior to construction of the traceability matrices. We
construct a function, £illTraceMaps, which sets the two traceability related
tables after invoking generateTraceMap and generateRefbyMap, and call the
function early within mkDoc before any DocDesc constructors are translated
to Document constructors.

The last function, although not taking DocDesc as input, is an incantation
from Section 2.2 requiring migration or removal. The function, collectUnits,
requires a list of symbols to determine which units are involved in an SRS and
a ChunkDB. It is not mandatory to migrate to drasil-docLang; however, the
action performed is specifically for a DocDesc section. With the introduction
of SRSDecl, this should not be something an author is manually required to
perform. collectUnits extracts units from the provided symbols, which are
used to display a table of units within the SRS. Similar to the traceability
matrix, collectUnits’ action is specifically for a section. Failure for a user to

40

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

perform an action should not result in an inaccurate or empty table of units
section, as such, collectUnits should be invoked by drasil-docLang as needed
to ensure consistency throughout the document and effectively be “magic” for
the system implementor.

To migrate collectUnits to drasil-docLang, we require means to extract
the used symbols as opposed to having them explicitly passed by the user.
Symbols within DocDesc are contained within Sentences and Expressions.
Conveniently, two functions exist to scan DocDesc and extract such elements:
getDocDesc and egetDocDesc, respectively. Another function (ccss') exists
that extract symbols, contained in QuantityDict, from Sentence and Expr.
Combining these components together we have, extractUnits, a function that
extracts units given a DocDesc:

extractUnits :: DocDesc -> ChunkDB -> [UnitDefn]
extractUnits dd cdb = collectUnits cdb $
ccss' (getDocDesc dd) (egetDocDesc dd) cdb

extractUnits allows for the collectUnits boilerplate to be removed from
each example. The function is invoked during the expansion of DocDesc’s
constructor to produce a table of units. Deferral of unit collection allows it to
occur in the function that generates the table of units reducing the surface of
functions that know how the table of units is generated and concentrate the
knowledge in the area of interest.

The migration of collectUnits has removed all incantations required for
proper SRS function shown in Section 2.2 through relocation of many functions
to drasil-docLang, moving the goal of SRSDecl closer to reality.

4.4 More Boilerplate?

In Section 4.1 we made DocDesc’s Assumptions constructor consistent with
the other chunk constructors, as DocDesc will soon be hidden within drasil-
docLang. We ought to address the introspection passes we used in Section 4.3
— namely generateTraceMap, getDocDesc, and egetDocDesc — to ensure
their inclusion of content present in Assumptions, something that has not
been done due to the anomalous constructor.

Repeatedly in this chapter we have discussed the traceability matrix and
the enhancements provided, however, the Assumptions constructor has com-
plicated efforts to include ConceptInstances related to assumptions within
the traceability matrix. generateTraceMap extracts traceability information
from the SRS, we will use it as a starting point to investigate including as-
sumptions in the matrices. Examining the function shows:

41

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

generateTraceMap :: DocDesc -> TraceMap
generateTraceMap a = Map.unionsWith (\(w,x) (y,z) -> (w ++ y,
ordering x z)) [traceMap' extractSFromNotes tt,

traceMap' extractSFromNotes gd,
traceMap' extractSFromNotes ddef,
traceMap' extractSFromNotes imod,
traceMap' extractSFromDeriv gd,
traceMap' extractSFromDeriv ddef,
traceMap' extractSFromDeriv imod,
-]
where
tt = getTraceMapFromTM $ getSCSSub a
gd = getTraceMapFromGD $ getSCSSub a
imod = getTraceMapFromIM $ getSCSSub a
ddef = getTraceMapFromDD $ getSCSSub a
ordering x y = if x == y then x else error "..."

Examining getTraceMapFrom functions reveals:

getTraceMapFromTM (TMs _ _ t:
getTraceMapFromTM (_:tl)
getTraceMapFromTM []

getTraceMapFromGD (_:tl)
getTraceMapFromGD []

getTraceMapFromTM :: [SCSSub] -> [TheoryModel]

getTraceMapFromGD :: [SCSSub] -> [GenDefn]
getTraceMapFromGD (GDs _ _ gd _

) =t
getTraceMapFromTM tl
error "No TM found."

) = gd
getTraceMapFromGD tl
(]

Although only two of the functions have been reproduced, all the getT-
raceMapFrom functions follow a similar template. Between the two functions
shown, their empty behaviour differs for unexplained reasons. Each function’s
“useful” results come from the first pattern match, the other two pattern
matches can be seen as structural noise.

Before continuing with the original idea to include Assumptions in intro-
spective DocDesc passes, we should survey the other two passes to discern
whether boilerplate is just as pervasive.

Beginning with getDocDesc we have:

42

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

getDocDesc :: DocDesc -> [Sentence]
getDocDesc = concatMap getDocSec

getDocSec :: DocSection -> [Sentence]
getDocSec (RefSec r) getRefSec r
getDocSec (IntroSec i) getIntrosec i

getDocSec (StkhldrSec s) = getStk s
getDocSec (GSDSec g) = getGSD g
getDocSec (SSDSec s) = getSSD s

getSSD :: SSDSec -> [Sentencel
getSSD (SSDProg ssd) = concatMap getSSDSub ssd

getSSDSub :: SSDSub -> [Sentencel
getSSDSub (SSDProblem pd) getProblem pd
getSSDSub (SSDSolChSpec sss) = getSol sss

getProblem :: ProblemDescription -> [Sentence]
getProblem (PDProg s x _) = s : concatMap getSec x

getSol :: SolChSpec -> [Sentence]
getSol (SCSProg x) = concatMap getSCSSub x

Observation of the functions shown indicates getDocDesc is simply a fold
over DocDesc. Some functions such as getSSD are a simple concatMap! In all
the code displayed, comprising a part of getDocDesc, only one line actually
extracts a Sentence! The (portion of a) line is the second pattern match
of getProblem. The rest is dealing exclusively with traversing the structure.
Does egetDocDesc improve on the situation?

egetSSD :: SSDSec -> [Expr]
egetSSD (SSDProg ssd) = concatMap egetSSDSub ssd

egetSSDSub :: SSDSub -> [Expr]
egetSSDSub (SSDProblem p) = egetProblem p
egetSSDSub (SSDSolChSpec s) = egetSol s

egetProblem :: ProblemDescription -> [Expr]
egetProblem (PDProg _ s _) = concatMap egetSec s

43

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

egetSol :: SolChSpec -> [Expr]
egetSol (SCSProg s) = concatMap egetSCSSub s

A sample of functions called through egetDocDesc demonstrates a similar
situation albeit worse. Not only do none of the functions returning [Expr]
produce anything of value and only traverse the structure, they omit travers-
ing Sentences and thus miss all Exprs embedded in Sentences! Sentences
include a constructor (E) used to embed Expr. This can be observed in the
code comprising getProblem and egetProblem, the Sentence extracted in
the former is ignored in the latter.

With no framework in place for DocDesc to provide convenient means to
add an introspective pass, we impair the desired behaviour for DocDesc to be a
structure designed to be interrogated. If it remains as tedious and boilerplate-
heavy to introduce a pass, it is entirely possible other developers and maintain-
ers in a rush may “hack together” a partial (in the functional sense) solution
that easily breaks. Further, each introduced pass will inhibit DocDesc’s ability
to change and evolve. Developer’s desire to alter DocDesc will also be stifled
due to the sheer amount of boilerplate requiring modification.

A desirable solution is one that abstracts the boilerplate away, yet allows
“random access” into the substructures that make up DocDesc. Another useful
feature would be a mechanism to fold DocDesc as current passes all return a
list of something. A design with both features would allow for a streamlined
re-implementation of the three existing passes and reduce the effort and time
to write additional passes.

The solution exists within the Haskell ecosystem as the package Multi-
plate [7]. Multiplate provides a typeclass, Multiplate, that when imple-
mented on structure provides the two features (random access, folding) de-
sired. The data structure implementing Multiplate is a record where each
field becomes a point of random access. Without delving too far into the de-
tails of multiplate, the structure includes a type variable f where each field is
a function from a -> £ a, relying on applicative functors to aid in the removal
of the boilerplate.

Delving straight into Drasil’s use of multiplate, we create a data struc-
ture DLP1late including a field for each sub-structure of DocDesc exposing the
widest surface for random access.

data DLPlate f = DLPlate {
docSec :: DocSection -> f DocSection,

ssdSec :: SSDSec -> f SSDSec,
ssdSub :: SSDSub -> f SSDSub,

44

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

pdSec :: ProblemDescription -> f ProblemDescription,
pdSub :: PDSub -> f PDSub,
scsSub :: SCSSub -> f SCSSub,

3

The Multiplate typeclass requires definitions for two functions multip-
late and mkPlate. multiplate describes how each data structure relates to
each field within the plate. We realize this for DLPlate as:

instance Multiplate DLPlate where
multiplate p = DLPlate ds res intro intro' stk stk' gs gs'
ss ss' pd pd' sc rs rs' lcp ucp ts es acs aps where

ds (SSDSec x) = SSDSec <$> ssdSec p x

res (RefProg c x) = RefProg <$> pure c <*> pure x

ss (SSDProg prog) = SSDProg <$> traverse (ssdSub p) prog

ss' (SSDProblem prog) = SSDProblem <$> pdSec p prog

ss' (SSDSolChSpec (SCSProg spec)) = SSDSolChSpec .
SCSProg <$> traverse (scsSub p) spec

pd (PDProg s sect progs) = PDProg <$> pure s <*>
pure sect <*> traverse (pdSub p) progs

pd' (TermsAndDefs s cs) = TermsAndDefs <$> pure s <>
pure cs

pd' (Goals s ci) = Goals <$> pure s <*> pure ci

pd' (PhySysDesc nm s lc c) = PhySysDesc <$> pure nm <>
pure s <*> pure lc <*> pure c

sc (Assumptions c) = Assumptions <$> pure c

sc (TMs s f t) = TMs <$> pure s <*> pure f <*> pure t

sc (GDs s f g d) = GDs <$> pure s <*> pure f <*>
pure g <*> pure d

sc (DDs s f dd d) = DDs <$> pure s <*> pure f <*>
pure dd <*> pure d

sc (IMs s f i d) = IMs <$> pure s <*> pure f <*>
pure i <*> pure d

sc (Constraints s c) = Constraints <$> pure s <*> pure c

sc (CorrSolnPpties c cs) = CorrSolnPpties <$> pure c <x>
pure cs

45

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

Many of the functions alluded to in the first line have been elided for
brevity.

The second function required for Multiplate is mkPlate, which takes a
function used to construct each field of the completely instantiated plate. For
DLPlate this function is implemented as:

instance Multiplate DLPlate where
mkPlate b = DLPlate (b docSec) (b refSec) (b introSec)
(b introSub) (b stkSec) (b stkSub) (b gsdSec) (b gsdSub)
(b ssdSec) (b ssdSub) (b pdSec) (b pdSub) (b scsSub)
(b regSec) (b reqSub) (b lcsSec) (b ucsSec) (b traceSec)
(b offShelfSec) (b auxConsSec) (b appendSec)

We have completed all the boilerplate required to produce introspection
passes for DocDesc!

We begin the task of migrating the existing passes to DLPlate. In the in-
stantiated plates, we make heavy use of the Glasgow Haskell Compiler Haskell
language extension LambdaCase?. LambdaCase introduces syntax sugar allow-
ing replacement of

\a -> case a of
pl —=> ...
p2 —> ...

-— With
\case
pl —> ...
p2 —> ...

Multiplate provides the function foldFor to fold a plate instantiation into
a Monoid. Due to the folding operation performed on the plate, the functor
used to realize the type transformation is Constant, defined as®:

newtype Constant a b = Constant {getConstant :: a}

We begin by implementing a DLPlate to extract “things” from Sections
and Contents within drasil-lang’s Document — as DocDesc contains many
constructors including Contents — which may contain Sentence or Expr.
We describe the function with as generic a type as possible, being able to fold

’https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_
exts.html#lambda-case

3http://hackage.haskell.org/package/transformers-0.5.6.2/docs/src/Data.
Functor.Constant.html#Constant

46

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html#lambda-case
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html#lambda-case
http://hackage.haskell.org/package/transformers-0.5.6.2/docs/src/Data.Functor.Constant.html#Constant
http://hackage.haskell.org/package/transformers-0.5.6.2/docs/src/Data.Functor.Constant.html#Constant

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

to any monoid and allowing the caller to specify functions to describe what
is taken from the two Document types when encountered:

secConPlate :: Monoid b => (forall a. HasContents a =>
[a] -> b) -> ([Section] -> b) -> DLPlate (Constant b)

(forall a. HasContents a => [a] -> b) is a second rank type, as the
passed function should handle any structure implementing the HasContents
typeclass. Glassgow Haskell Compiler requires specifying the Rank2Types*
language extension for the specified type signature to typecheck.

Next is to produce a plate observing the sub-structures of interest. The
multiplate library includes a function purePlate providing a pure default for
each field we do not implement. Further, we would like the DocDesc to be
exhaustively folded, requiring either multiplate’s preorderFold or postord-
erFold. For the plates being written, the order does not matter, and as such
preorderFold has been arbitrarily chosen. Having described the functions
required to produce a plate instantiation, we realize secConPlate as:

secConPlate mCon mSec = preorderFold $ purePlate {

gsdSec = Constant <$> \case
(GSDProg s1 cl c2 s2) -> mconcat [mSec s1, mCon [cl],
mCon c2, mSec s2]
(GSDProg2 _) -> mempty,

pdSec = Constant <$> \(PDProg _ s _) -> mSec s,

pdSub = Constant <$> \case
(TermsAndDefs _ _) -> mempty
(PhySysDesc _ _ 1lc c¢) -> mCon [lc] “mappend” mCon c
(Goals _ _) —-> mempty,

+

Many fields have been omitted for brevity.

With a plate to extract Contents and Sections, we may now describe a
plate to extract Sentences. In a similar manner we keep sentencePlate as
abstract by defining it over all Monoids and including a function to translate
Sentence to another type for embedding the plate within another plate. We
describe the plate as:

‘https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_
exts.html#extension-Rank2Types

47

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html#extension-Rank2Types
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html#extension-Rank2Types

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

sentencePlate :: Monoid a =>
([Sentence] -> a) -> DLPlate (Constant a)
sentencePlate f = appendPlate
(secConPlate (f . concatMap getCon') $
f . concatMap getSec) $
preorderFold $ purePlate {

stkSec = Constant . f <$> \case
(StkhldrProg _ s) -> [s]
_ >,
stkSub = Constant . f <$> \case
(Client _ s) -> [s]
(Cstmr _) -> [1,
pdSec = Constant . f <$> \(PDProg s _ _) -> [s],

scsSub = Constant . f <$> \case
(Assumptions c) -> map (. defn) c

We include secConPlate with sentencePlate as Document constructs em-
bed Sentences. getCon' and getSec are functions to extract Sentences from
the Document constructs. Similar to the previous plate, we have omitted many
fields for brevity. Of interest is the pdSec field that provides the same func-
tionality as getProblem from the previous implementation, but without the
boilerplate. Further, we have included Assumption in the new plate beginning
to address the original purpose for examining the introspective passes. The
final step is using the sentencePlate in getDocDesc

fmGetDocDesc :: DLPlate (Constant [a]) -> DocDesc -> [al
fmGetDocDesc p = concatMap (foldFor docSec p)

getDocDesc :: DocDesc -> [Sentence]
getDocDesc = fmGetDocDesc (sentencePlate id)

foldFor folds DLPlate starting with the docSec field (the top-level struc-
ture) and strips the Constant functor off the result.
We repeat the same process as sentencePlate for Expr:

exprPlate :: DLPlate (Constant [Expr])

exprPlate = sentencePlate (concatMap sentToExp) ~“appendPlate-
secConPlate (concatMap egetCon')
(concatMap egetSec) ~“appendPlate”

48

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

(preorderFold $ purePlate {
scsSub = Constant <$> \case
(TMs _ _ t) -> let r = concatMap (
\x -> x . invariants ++
defExp (x ~. defined_quant ++
x ~. defined_fun) ++
r (x 7. valid_context)) in r t

(DDs _ _d _) -> map sy d ++ defExp d
(GDs _ _ g _) -> expRel g
(IMs _ _ i _) -> expRel i
_ > 1,
auxConsSec = Constant <$>

\ (AuxConsProg _ qdef) -> defExp qdef
})where
defExp :: DefiningExpr a => [a] -> [Expr]
defExp = map (~. defnExpr)
expRel :: ExprRelat a => [a] -> [Expr]
expRel = map (7. relat)

sentToExp extracts any Exprs from Sentences. exprPlate is only 10
lines longer (and displayed in full) than the snippet showing the previous Expr
introspection pass, which contained only boilerplate. exprPlate also remedies
the the previous method missing extraction of expressions from Sentences.
Any Sentence extracted by sentencePlate has any Exprs extracted without
knowing where the sentences are!

Similar to getDocDesc, egetDocDesc becomes:

egetDocDesc :: DocDesc -> [Expr]
egetDocDesc = fmGetDocDesc exprPlate

Finally, we are back to where we started, adding Assumptions to the
traceability information. We combine this addition with an introspection pass
extracting what each chunk traces to:

dependencyPlate :: DLPlate (Constant [(UID, [UID])])
dependencyPlate = preorderFold $ purePlate {

scsSub = Constant <$> \case
(Assumptions a) -> getDependenciesOf [defs] a

(DDs _ _ d _) -> getDependenciesOf ... d
(GDs g _) —> getDependenciesOf ... g

49

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

(IMs _ _ i _) -> getDependenciesOf ... i
- —> 10,
} where
getDependenciesOf :: HasUID a => [a -> [Sentence]] ->

(a]l -> [(UID, [UID])]
getDependenciesOf fs = map (\x -> (x
concatMap (lnames' . ($ x)) fs))
defs :: Definition a => a -> [Sentence]

defs x = [x ~. defn]

~

. uid,

generateTraceMap :: [DocSection] -> TraceMap
generateTraceMap = traceMap .
concatMap (foldFor docSec dependencyPlate)

lnames' extracts references from Sentences. While some chunks have
been elided for brevity, it is clear this is much cleaner than the previous im-
plementation. Further, adding dependencies of Assumptions required only a
single line of code heavily reducing the effort to add additional constructors
and chunks to the traceability matrix.

What began as a simple task to add Assumptions to traceability matrices
quickly revealed the complexity and tedium required to interrogate DocDesc.
The effort required did not align with the desired model of document process-
ing we have in mind for drasil-docLang. To remedy the issue, we leveraged
multiplate to abstract away the boilerplate and provide clean, random-access
introspection to DocDesc.

4.5 SRSDecl

With dependencyPlate implemented, we have achieved what we set out to
perform and completed all the refactoring work necessary for DocDesc to be in-
formation complete while giving way to SRSDecl to be the declarative exposed
language of SRS documents.

Due to SRSDecl and DocDesc being closely related at the moment, we
leverage DocDesc when implementing SRSDecl to ease the expansion process.
This allows both data structures to share many sub-structures (which do not
differ) making the transformation only that of using the appropriate construc-
tor.

We provide the outer most data structure of SRSDecl to demonstrate the
level of overlap with the DL prefix indicating the data structure is that of

20

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

DocDesc:

type SRSDecl = [DocSection]

data DocSection = RefSec DL.RefSec
| IntroSec DL.IntroSec

| StkhldrSec DL.StkhldrSec

| GSDSec DL.GSDSec

| SSDSec SSDSec

| ReqrmntSec ReqrmntSec

| LCsSec

| UCsSec

| TraceabilitySec DL.TraceabilitySec

| AuxConstntSec DL.AuxConstntSec

| Bibliography

| AppndxSec DL.AppndxSec

| 0OffShelfSolnsSec DL.0ffShelfSolnsSec

For brevity we examine the SRSDecl SCSSub (a substructure of SSDSec)
that exhibits all behavioural features of SRSDecl’s transformation we wish to
show:

data SCSSub = Assumptions
| TMs [Sentence] Fields
| GDs [Sentence] Fields DL.DerivationDisplay
| DDs [Sentence] Fields DL.DerivationDisplay
| IMs [Sentence] Fields DL.DerivationDisplay
| Constraints Sentence [UncertainChunk]
| CorrSolnPpties [ConstrainedChunk] [Contents]

The Constraints and CorrSolnPpties constructors continue to contain
an explicit list of chunks as the chunks specified are not stored with full infor-
mation within ChunkDB. The only required expansion operation, for the other
constructors in SCSSub, is to look up chunks in a table of ChunkDB and pro-
vide the ordered list of chunks as an argument to the DocDesc constructor.
The chunks implemented as ConceptInstance contain a second step similar
to Section 4.2 requiring domain filtering to obtain the correct list of chunks.
The chunks passed to the DocDesc constructors are in the order they were
inserted into ChunkDB, allowing the author to control the display order of the
chunks and matching the ordering in all locations where they appear, such as
the traceability matrices.

The final step is to adapt mkDoc for SRSDecl. mkDoc takes as input

o1

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

SRSDecl, elaborating the structure to DocDesc before proceeding with docu-
ment processing as before. The previous infrastructure work performed in this
chapter have made the inclusion of SRSDecl rather trivial.

4.6 A Plateful of Changes

Many tangents were explored to realize a declarative SRS document language.
We enhanced and refined the traceability matrix creation and display. The
enhanced version requires less incantations to construct a traceability section
and provides flexibility to describe what, and in what order, to produce a
traceability matrix. We modified the constructor to be less layout-oriented and
specifying the same opaque chunk of layout in multiple places and replaced it
with means to describe the matrices themselves using high-level knowledge.

We further removed boilerplate incantations an author must specify to
generate a correct SRS. In some cases such as getTraceMapFrom we were able
to remove them entirely, while in cases such as generateTraceMap we moved
the invocation to drasil-docLang. From the boilerplate removed we save 23
lines in Section 2.2, and at least 6 in every bundled example with as many as
26 lines being removed.

Through examination of existing passes we observed a lot of repetitive
boilerplate to realize the passes. By leveraging the multiplate [7] package we
were able to obtain passes that produced more accurate data and were simpler
to implement. Re-implementing all passes with multiplate and DLP1ate added
229 lines of code total with 146 being the definition of Multiplate (meaning
only 83 for all the passes combined) while removing the previous passes reduced
code by 356 lines.

While the language of SRSDecl is similar to DocDesc, by exposing only
SRSDecl we have removed opportunities for users to provide inconsistent in-
formation and receive an inconsistent artefact. The languages are likely to
diverge to a greater extent as drasil-docLang evolves to further enforce consis-
tency and usability. The change itself took longer than expected with many de-
tours fixing deficiencies previously “accepted” by Drasil developers and users.

The combination of intermediary data structures and introspection is some-
thing we hope becomes more common in other Drasil sub-packages. If intro-
spection is a desired feature within other sub-packages, we hope implementors
will look to drasil-docLang as the standard for introspection design, following
its steps by leveraging multiplate.

o2

Chapter 5

Build System

Chapter 3 and Chapter 4 both had the potential to effect (and did) how SRS
documents are laid out and rendered. We are required to build IXTEX into a
Portable Document Format (PDF) file to verify expected visual changes to the
BTEX produced by Drasil. Drasil generates a Makefile for each IXTEX artefact
produced to aid in compiling them. While Drasil produces these Makefiles,
there is no mechanism in the central Drasil Makefile to generate a PDF file
for each SRS artefact produced by Drasil within the bundled examples. As
such, compiling KTEX is often a task not performed by developers when con-
tributing changes as they would be required to enter (up to) seven folders and
individually build each PDF file. It is not certain if any contributor to Drasil
regularly builds IXTEX files into PDFs, as there have been at least two separate
occasions where the generated KIEX has failed to compile for over one month
at a time.

Drasil containing broken artefact generation, which effects bundled ex-
amples for over a month at a time, is unacceptable. One reason is because it
reflects poorly on Drasil and the developers, another because it adds complica-
tions for users wishing to investigate and evaluate Drasil. A more important
technical reason: the bundled Drasil examples act as a set of test cases for
Drasil. The artefacts generated by Drasil are compared (using diff) against a
known “good” output. If there are differences between the compared artefacts,
the reviewer of the change is expected to ensure the changes are desirable. If
the changes are desirable, they become the new “good” output. Nowhere in
the process do we ensure the artefacts (KTEX or otherwise) build properly.
Reviewers typically rely on language knowledge to visually verify any changes
are correct; we never enforce that the artefacts are built before changes are
integrated. While authors (including the author of this report) are supposed
to verify artefacts build, it seems unlikely that any regular developer of Drasil
ever builds the artefacts as demonstrated by the prolonged periods of time
to detect WTEX errors. By providing a top-level Makefile target to build all

23

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

ITEX (and other artefacts) we would lower the tedium required to verify gen-
erated artefact changes in an effort to reduce the time between a produced
artefact being invalid and when it is discovered as invalid. Further, a conve-
nient, consistent, and reliable method for producing artefacts may be useful
in a continuous integration and deploy setting (as discussed in Chapter 6) to
ensure artefacts shown are continually up to date.

5.1 Leveraging Makefile Primitives

As has been performed in Chapter 3 and Chapter 4, we begin by examining
the existing implementation and surrounding code. The first set of targets we
encounter when examining the central Drasil Makefile are the ones to build
the sub-packages of Drasil:

build: FORCE
stack install -j2 $(stackArgs) drasil-lang

build_code: build
stack install -j2 $(stackArgs) drasil-code

build print: build_code
stack install -j2 $(stackArgs) drasil-printers

build_gen: build_print
stack install -j2 $(stackArgs) drasil-gen

. J

stack, officially named “The Haskell Tool Stack,” is a build system for
Haskell!. The command stack install installs built programs and libraries,
transparently invoking stack build if any transitive dependencies have
changed since the last build. The FORCE target is one that ensures Make?
will always rebuild a target when invoked.

Most of the body of the displayed rules is duplicated. The difference be-
tween stack install -j2 $(stackArgs) drasil-lang and stack install
-j2 $(stackArgs) drasil-code is the remainder of the sub-package name
after drasil-. If we were to abstract the rules such that the sub-package name
(the part after drasil-) was the suffix to build_ we would be closer to creating
a generic rule.

'https://haskellstack.org
Drasil uses GNU Make (https://www.gnu.org/software/make/), which is the com-
mon make program on both macOS and Linux.

o4

https://haskellstack.org
https://www.gnu.org/software/make/

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

Another observation arising from the Makefile snippet is the dependen-
cies. By specifying a single dependency to each build_rule, we serialize the
build such that only one package is compiling at any time. As an exam-
ple, drasil-code and drasil-printers do not depend on each other and could be
built simultaneously given enough processing power. If we were to properly
track sub-package dependencies to use in rules we may lose opportunities for
abstraction. As mentioned previously, stack performs dependency and tran-
sitive dependency management for us! If we invoke stack install drasil-
example, stack would notice drasil-example has not been built and attempt
to build it. When attempting to build drasil-example, stack may notice that
its dependencies have not been built or are out-of-date and attempt to build
those first. stack’s dependency management means we are able to remove the
target dependencies and simplify the set of Makefile rules into a single rule:

build_%: FORCE
stack install -j2 $(stackArgs) drasil-$x

In Make, 7% is a wildcard character (for rules) matching anything and $* is
an automatic Makefile variable that expands to the string matched by %.% For
example, if we invoke Make with make build_lang, $* will expand to lang
in the above rule.

While this rule achieves the desired level of abstraction there are outstand-
ing issues. First, this rule will match any such string after build _, for exam-
ple, make build foo will attempt to build the Drasil sub-package drasil-foo,
which does not exist. Make supports filtering wildcard rules to restrict the
targets build_7% will invoke. Syntactically filter prefixes each target with:
$(filter build_ %, <whitelist>): where the first argument is the pattern
to match and the second argument is the whitelist of valid values for the
pattern match. We describe a WHITELIST consisting of all valid targets (i.e.
build_lang, build_code, etc) as a starting point. This is less than ideal, we
still have to write out build_ for every sub-package target. What if we extend
the abstraction another layer by defining a list of sub-packages and building
the list of targets from that list? That would give reuse for any other rules
that act upon different sub-packages as well.

PACKAGES = lang code printers gen ...
BUILD P_SUFFIX = _build
BUILD_PACKAGES = $(addsuffix $(BUILD_P_SUFFIX), $(PACKAGES))

We split the WHITELIST variable into three to compartmentalize data while
ensuring consistency in the event of changes. The PACKAGE variable describes

Shttps://www.gnu.org/software/make/manual/html_node/Automatic-Variables.
html

95

https://www.gnu.org/software/make/manual/html_node/Automatic-Variables.html
https://www.gnu.org/software/make/manual/html_node/Automatic-Variables.html

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

the name of all sub-packages, BUILD_P_SUFFIX describes a suffix to be used
for build rules — we have switched build rules to build rules to make
the Makefile target formatting consistent with other rules already present in
the Makefile — and BUILD_PACKAGES creates target names by appending the
BUILD P _SUFFIX to each space-separated item in PACKAGES. If a new sub-
package is added to Drasil, the only line in the Makefile requiring a change is
PACKAGES.
Using the variables defined, we refine the Makefile target to:

$(filter %$(BUILD_P_SUFFIX), $(BUILD_PACKAGES)): \
%$ (BUILD P _SUFFIX): FORCE
stack install -j2 $(stackArgs) "drasil-$x"

The backslash (in the above snippet) is added to indicate line continuation
of the target specification. We have quoted the "drasil-$*" fragment to
ensure any character escaping performed by a user to encode a particular
character is properly passed to stack allowing stack to decide whether the
character can be part of a valid package name.

Finally, we address the target dependency FORCE, defined as: FORCE: ;,
and why it is sub-optimal. Due to FORCE being a target that does nothing,
there is no file ever created by Make with the name “FORCE” effectively forc-
ing Make to attempt to rebuild it, and any rules that transitively depend on it,
each time make is invoked. If a file were ever created with the name “FORCE”
then this would break the functionality desired of the FORCE target. Make con-
tains a special target that provides the functionality desired of FORCE without
being a “hack.” The special target is .PHONY. The .PHONY target ensures files
with the same name as a target do not prevent the accompanying rule from
being executed and hints to Make that the rule does not produce a file of the
same name. We can remove the FORCE target and add BUILD_PACKAGES to
.PHONY to achieve the same functional result:

$(filter %$(BUILD_P_SUFFIX), $(BUILD_PACKAGES)): \
%$ (BUILD P_SUFFIX):
stack install -j2 $(stackArgs) "drasil-$*"

.PHONY: $(BUILD_PACKAGES)

5.1.1 Examining Sub-package Compilation in Depth

Over the course of working on Drasil, developers have unintentionally left code
that resulted in compiler warnings when building sub-packages. While this
can be considered “only compiler noise,” it is rather inconsiderate to commit

o6

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

code to the Drasil repository that introduces warnings. Because warnings are
not critical and can be ignored, having any when compiling code results in
additional warnings from further changes being less noticeable and thus less
likely to be detected and corrected. In the Drasil repository there are at least
six separate instances where warning removal was the sole reason for making
changes to the codebase.

Drasil uses TravisCI* (Travis) to build Drasil whenever changes are made,
commonly called Continuous Integration (CI). Any time a contributor to Drasil
would like to have their proposed changes integrated into the main codebase,
they produce a “pull request” (PR). Contributors assign a core Drasil member,
or supervisor to review the changes. Travis builds user’s changes to Drasil any
time they update their work on GitHub — where Drasil’s code repository lives
— in addition to when they produce a pull request.

We can leverage the CI infrastructure currently in place to indicate to
reviewers whether changes introduce warnings to Drasil by specifying the
-Werror flag to the Haskell compiler. The -Werror flag treats any warn-
ing as an error and halts the compilation process, marking the build on Travis
as a failure, which propagates feedback to GitHub and displays it to the user.
The easy way to achieve such a result is to add -Werror to the stack install
command specified in the rule we refactored. Specifying it there may fail lo-
cal builds as developers are actively working on changes to Drasil. Enabling
-Werror locally adds friction to a Drasil contributor’s workflow. For example,
if a maintainer is in the process of moving code around to realize a better struc-
ture or solution, the build may fail for a file including an import that is not
necessary at the moment. Such a failure locally can distract a developer and
result in a train-of-thought loss. Therefore, ~-Werror should only be enforced
when code has been contributed for review to ensure the developer has not
introduced any warnings after their change has been completed. As a further
step to increase code quality, we wish to enable the flag -Wall, indicating to
the compiler to turn on all (common and stable) warnings when building the
Haskell code.

We begin by locating the appropriate place to add the -Wall flag. To
specify the flag in the stack install command, through stackArgs, we must
wrap it in another parameter indicating flags to pass to the Glasgow Haskell
Compiler (ghc), named --ghc-options. While an excellent start, to add
-Werror to the command line as we plan to do on Travis, we would have to
write make stackArgs="--ghc-options=-Werror". Specifying -Werror in
this way is rather clunky and overwrites any stackArgs we specify by default
in the Makefile (i.e. -Wall to --ghc-options). Instead we expose another
Make variable, GHCFLAGS, which stores the default options and provides a more
convenient specification location for ghc flags to users:

4https://travis-ci.org

57

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

override GHCFLAGS += -Wall

$(filter %$(BUILD_P_SUFFIX), $(BUILD_PACKAGES)): \
%$ (BUILD P _SUFFIX):
stack install -j2 $(stackArgs) \
--ghc-options="$ (GHCFLAGS)" "drasil-$x"

The GHCFLAGS variable simplifies the CI invocation to make GHCFLAGS=
-Werror. The uncommon syntax for the GHCFLAGS variable ensures the -Wall
flag is added to any existing GHCFLAGS value. The override directive is so
the -Wall value is appended even though the variable was initially set on the
command line (or in the environment). Make’s default behaviour is to ignore
setting variables with values defined in the Makefile if the value was previously
set on the command line.’

Both -j2 and --ghc-options are arguments to stack and thus stackArgs,
we should be consistent and provide the same treatment to stackArgs as
GHCFLAGS yielding defaults for stackArgs:

override stackArgs += -j2 --ghc-options="$(GHCFLAGS)"

The introduction of -Wall and -Werror (on TravisCI) have raised the bar
for Drasil code quality. The arguments added to GHC ensures all common
warnings are brought to developers’ attention and no warnings exist before
code is merged into the main Drasil repository.

5.1.2 A Pattern of Makefile Targets

We perform similar refactoring for other Makefile rules present in the central
Drasil Makefile, matching them to the build targets. In particular, we ex-
amine the rules involved with generating example binaries and running them
to produce their artefacts. These rules exhibit slightly different requirements
than those of the build rules. We begin by examining (a subset of) the current
generation targets:

hghc_gen: example_build
mkdir -p build/$ (HGHC_DIR)
cd build/$(HGHC DIR) && \
stack exec -- $(HGHC_EXE) $(EXECARGS)

glassbr_gen: hghc_gen

Shttps://www.gnu.org/software/make/manual /make.html#0verride-Directive

o8

https://www.gnu.org/software/make/manual/make.html#Override-Directive

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

mkdir -p build/$(GLASS_DIR)
cd build/$(GLASS DIR) && \
stack exec -- $(GLASS_EXE) $(EXECARGS)

nopcm_gen: glassbr_gen
mkdir -p build/$ (NoPCM_DIR)
cd build/$(NoPCM_DIR) && \
stack exec -- $(NoPCM_EXE) $(EXECARGS)

The _gen targets suffer from many of the same problems as the sub-
package build targets! A problem arises attempting to mimic the pat-
tern of _build rules: each example rule retrieves a different set of variables
to determine properties about itself. To address this, we take advantage of
the way Makefile variables work. As a demonstration, if we have a variable
A = FOO and another variable FOO_BAR = BAZ, then evaluating the following
substitution: $($(A) _BAR) first expands A; the substitution becomes
$ (FOO_BAR). FOO_BAR is then expanded to become BAZ. We can use the planned
target pattern match (hghe, glassbr, etc) for the _gen rule to “lookup” the
correct value for a given variable suffix using nested expansion. To start, we
rename the variables to be all uppercase and character-consistent with the
target pattern match (NoPCM becomes NOPCM and GLASS becomes GLASSBR).

The next step is translating pattern matches to uppercase to parallel the
variable convention used in the Makefiles. Make allows for invoking shell
commands as part of variable expansion meaning we are able to use the Unix
command tr. tr allows for translating groups of characters, supporting ranges
for compact syntax. Using standard input as the input to tr, we express the
desired translation to uppercase as tr a-z A-Z, where the output is printed
to standard out.

Similar to what was performed for build targets, we use the automatic
Makefile variable $* — containing the matched part of % — in the refactoring
of the _gen rules. In this instance, we do not quote the variable as it does not
map to a “real” object, unlike _build targets, which may contain a space. In
_gen targets, the example name is only used for variable “lookups” and the
target itself. We opt to ignore space as a valid character as we do not see a
case where a contributor to the Makefile would want a target with a space in
the name. Allowing spaces exposes the contributor to a multitude of problems
with escaping and “fixing up” spaces for values in various places. Consider the
omission of space support to be a simplifying assumption, if anything.

Lifting the tr command into a sub-shell executed by the Makefile is done
as: $(shell echo $* | tr a-z A-Z). In an effort to avoid copy-pasting and
re-executing the translation anywhere a variable lookup is required, we can
leverage target-specific variables. A target-specific variable is a variable that

29

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

is only defined when the target is invoked — thus we have special variable
$* available — and in any dependencies required by the target. Combining
target-specific variables, pattern matching, automatic variables, and nested
expansions, we can produce a compact, generic rule.

The rule includes the path build/. As a final step, we abstract the path
build/ to a Makefile variable as it may be useful for other rules interacting
with the artefacts. The benefit of a variable should be obvious: we can change
the path of the artefacts and only require the modification of a single line in
the Makefile.

All of the changes to the _gen rules results in:

BUILD_FOLDER = build/

%$(GEN_E_SUFFIX): EXAMPLE=$(shell echo $* | tr a-z A-Z)

%$ (GEN_E _SUFFIX): EDIR=$($(EXAMPLE) DIR)

%$(GEN_E SUFFIX): EEXE=$($(EXAMPLE) EXE)

$(filter %$(GEN_E_SUFFIX), $(GEN_EXAMPLES)):\

%$ (GEN_E_SUFFIX): example$(BUILD P_SUFFIX)

@mkdir -p "$(BUILD_ FOLDER)$(EDIR)"
cd "$(BUILD FOLDER)$(EDIR)" && stack exec -- \
"$ (EEXE) " $(EXECARGS)

With the completion of the %_gen targets, we have examined all the tricks
required to refactor the remaining Makefile rules used in Drasil into a more
sensible, generic state. In the process of refactoring the Makefile we reduced
it from 178 lines to 80 lines. We also enforced, within the central Drasil repos-
itory, that changes must not introduce warnings when building Drasil or its
bundled examples. The result is a cleaner codebase and more correct code
through, for example, not allowing functions that only perform partial pat-
tern matches. Further, we have begun encoding Drasil structural and layout
information within the Makefile, making the Makefile a knowledge store for
build-related information, which we will leverage in subsequent sections.

5.2 Batch ITEX Compilation

We have examined how the central Drasil Makefile works (refactored and ab-
stracted too); we can begin designing a new target template to invoke each
example’s ITEX Makefile. To begin, we require a suffix for the template rule,
we use %_tex. As for dependencies of the target, we require that the example
being compiled has had its artefacts generated (%$(GEN_E_SUFFIX)).
Constructing the command run when the target is invoked, we examine
what is required to build the IXTEX: change to the directory of the Makefile

60

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

constructed to build the IXTEX and invoke it. These simple requirements work
when invoked from an interactive terminal, but encounters a limitation when
invoked on TravisCI. An issue occurs when lualatex — the supported IXTEX
compiler used by Drasil due to its support of Unicode literals — encounters an
error in the BTEX; 1ualatex stops the build and queries the user for input on
how to proceed. When run as part of an automated process, particularly when
running on TravisCl, if compiling BTEX fails, the build will hang waiting for
user input. The lualatex documentation reveals that passing the argument
--interaction=nonstopmode will cause lualatex to exit when an error is
encountered instead.
We can piece together a command to execute within Make as:

cd $(BUILD_FOLDER)$(EDIR)/SRS/} && \
$ (MAKE) TEXFLAGS="--interaction=nonstopmode"

$ (EDIR) is assumed to be defined as a target-specific variable (similar to
how it was with _gen), $ (MAKE) is an implicit Makefile variable pointing to the
path of the make binary, and TEXFLAGS is a variable exposed by the generated
BTEX Makefiles as a way to specify variables to lualatex.

An issue with the existing command line is TravisCI only pretty-prints the
first ten thousand lines of terminal output on any particular build before trun-
cating the output. IXTEX builds tend to produce a large amount of text during
each invocation. The final invocation of lualatex for one bundled Drasil ex-
ample produces 1753 lines of output with multiple invocations occurring to
find the fixpoint of the generated PDF. Why are we concerned with the out-
put of lualatex when building BTEX on TravisCI? We would like to capture
any error messages in the event compiling a PDF — referred to as “the build”
for the rest of this section — fails.

As it happens, if one invocation of lualatex fails, no further invocations of
lualatex will occur for the document. We are only interested in the output of
the final invocation of lualatex for any particular bundled example. lualatex
produces a .log file whenever invoked overwriting the file if it already exists.
We are able to leverage this behaviour to extract the last invocation! As for
silencing the terminal output, lualatex provides another interaction mode,
batchmode, which stops executing on error like nonstopmode, but also sup-
presses printing the output. It may be convenient to specify whether to print
to standard output or only to the log from the central Drasil Makefile without
requiring the user to understand the (not so clear in our opinion) nuance of
nonstopmode and batchmode. We expose this through the Makefile variable
SUMMARIZE TEX, set to display the output by default.

We briefly switch focus to bibtex, the program responsible for compiling
the WTEX bibliography information. The generated Makefiles ignore the return

61

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

code of bibtex as an empty file will trigger a build failure. Specifically, one of
Drasil’s bundled examples does not contain any bibliography information by
design. We wish to keep the command line output of bibtex to a minimum
and check the log generated for errors. bibtex supports a -terse flag to
reduce the amount of output generated, which would be useful to specify if
SUMMARIZE_TEX is set to yes.

In an effort to catch possible errors from a bibtex invocation, we look for
the string “error” in the produced log file. If it is found, we fail the build.
While possibly not exhaustive, all observed bibtex errors emit a message
containing the string “error” to the log file. Similar to how we try to detect
error messages in bibtex logs, we should perform a comparable action for
lualatex invocations. lualatex invocations have not been observed to exit
with a non-zero exit code in undesirable circumstances; thus, we examine the
lualatex logs for warnings instead. To our knowledge, lualatex warnings
contain no discernible, consistent format to easily extract; hence, we look for
the following strings in the log file if lualatex exits successfully and was
invoked with SUMMARIZE_TEX set to yes: “warning” and “erfull.” Like bibtex,
the two strings match all instances of warnings currently observed. “erfull”
may seem like an odd warning match; however, it matches IXTEX warnings of
the form “{und,ov}erfull {h,v}box,” indicating content may appear off-screen
or in an unexpected manner.

To reiterate, the generated PDFs produced from Drasil artefacts can either
all be built sending the log output to standard out unedited or they can all
be invoked in a more terse fashion. When SUMMARIZE_TEX is set to yes in
the central Drasil Makefile, lualatex and bibtex omit printing any full logs
to standard out. If lualatex exits with an error, the log file is printed to
standard out. If the bibtex log contains the string “error,” the build fails.
If an example produces a complete PDF, we scrape the lualatex log for any
warnings and display them on standard out.

We implement this logic, to build and validate the output of a single gen-
erated PDF, in a shell script. We chose a shell script rather than producing
it all under the _tex rule template to avoid requiring ‘\” at the end of each
line to indicate to Make the next line is a continuation of the same command,
as would be necessary in a (pretty-printed) inline shell script. We invoke the
shell script from the central Drasil Makefile in the template rule _tex. We
achieve the goal of building all PDF artefacts by adding a target tex, whose
dependencies are all the _tex targets.

Finally, we enable building of all IfTEX artefacts on Travis by adding the
following line to Drasil’s CI configuration: make tex SUMMARIZE TEX=yes.

With the addition of a fifty line shell script (which includes checks to en-
sure variables expected to be passed from the Makefile are in scope) and six

62

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

lines in the central Drasil Makefile, we created a single rule that will com-
pile the IXTEX for all bundled examples. The single target for producing SRS
PDFs for all bundled examples reduces the effort a contributor must exert to
verify changes to the IXTEX output. As a bonus, we have accommodated the
limitations of TravisCI to enable the building of ETEX whenever a contributor
makes a change to Drasil. With the enforcement that changes to Drasil must
generate IXTEX that compiles, we have further increased the quality and relia-
bility of Drasil. Gone are the days of wondering if the IXTEX will compile when
contributors must look at the generated PDFs. The emission of warnings on
Travis (when the WTEX compiles) unexpectedly uncovered three incorrect ref-
erences within the examples bundled with Drasil, which were remedied shortly
after their discovery.

5.3 Compiling Generated Code

The other type of artefact Drasil generates is implementations of the software
system in one or more of: C+, C#, Python, or Java. In a similar manner to
the IXTRX artefacts, Drasil does not ensure the code compiles as part of the
continuous integration process. The generated code is in a worse place than
the generated IXTEX, as no Makefile is generated to accompany the code. We
begin by adding support to Drasil to generate a Makefile for each generated
implementation.

5.3.1 drasil-build

Before investigating the existing Makefile generation facilities present within
Drasil, we should specify the high-level design of the Makefile we aim to gen-
erate. The default target for the Makefile should only compile the code into a
binary. For a language like Python, which does not require compilation, the
default target should be a no-op. The default target’s name should be the
filename of the binary being generated. The dependencies to the compilation
target, if not a no-op, should be all source files Drasil generates for a given
implementation. The command executed in the rule should invoke the com-
piler with either the file containing the main method (like in Java), or specify
all generated (source) files (like for C# and C++). Further, some compilers
may require specifying the name of the output file (like C++ with the -o flag).
We wrap the target filename in another target, named build, to maintain
a consistent “address” for building a generated implementation regardless of
implementation details.

The second target contained in the Makefile is run. The run target ab-
stracts away the generated binary name and possibly associated interpreter
(Java and Python) to create a simple interface for running an implementation

63

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

regardless of language. The only dependency for the target is any binary built
with the build target. The examples bundled with Drasil require an input file
specified when invoking the built program necessitating a free variable, which
is set when make run is invoked.

Piecing these features together yields a Makefile with format:

build: <binary name>

<binary name>: <generated files>
<compiler> <compiler arguments>

run: build
<interpreter> <binary name> $(RUNARGS)

$ (RUNARGS) is the free variable to be parameterized with input files, such
as make run RUNARGS=input.txt.

To begin implementing these Makefiles, we start by examining how the
BTEX artefacts construct their Makefiles. We trace the existing Makefile gen-
eration for IXTEX to a small block of code in drasil-printers:

makeRule :: DocSpec -> [Rule]
makeRule (DocSpec SRS fn) =

[(Phony, "srs", [fn ++ ".pdf"]), (TeX, fn, [1)]
makeRule (DocSpec Website _) = []

"srs" is the rule name and fn is the filename as a String. The Makefile
generation occurs within drasil-printers:

printRule :: Rule -> Doc
printRule (Phony, namelLb, deps) =
text (".PHONY: " ++ nameLb) $+$ printTarget namelLb deps
printRule (TeX, namelb, _) =
printTarget (namelb ++ ".pdf") [(namelb ++ ".tex")] $+$
printLatexCmd nameLb

The operator $+$ combines fragments with a certain formatting imple-
mented by Text.PrettyPrint [1].

The Makefile generation system in place for the IXTEX SRS documents is
quite inadequate for code generation Makefiles. One large issue is its residence
in drasil-printers. Having drasil-code depend on drasil-printers for Makefile
generation capabilities does not make sense and entangles the two unrelated
sub-packages, increasing their coupling. Further, Makefile generation is not
Document generation and, thus, does not belong in drasil-printers; however,

64

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

it does not belong in drasil-code as a Makefile is not a (reasonable) form of
code generation. It lies closer to a language for build generation. The logical
choice is to migrate Makefile functionality to a new sub-package: drasil-build,
a sub-package for generating build systems. While we will only implement
Makefile in drasil-build for this report, the sub-package could be extended to
accommodate other build systems as well.

The other issue with the current Makefile generation routines is the deep
knowledge encoded. The TeX constructor encodes a Type that the Makefile
generator “knows about,” including what commands to emit to satisfy (or
build) the Type. An (unimplemented) Type is CCode, which would emit the
correct commands to build a piece of C language code. This embedding of
knowledge is a bad idea. We must maintain a list of Types outside of the rel-
evant Document or code generation implementations; thus, sprinkling knowl-
edge around the codebase, introducing opportunities for changes to “miss”
updating build commands. With the movement of the Makefile generation
functions to drasil-build, this spread knowledge further indicates Type is a bad
idea due to requiring modification of drasil-build with implementation of a new
language in drasil-code or document language in drasil-printers.

We begin by migrating the existing Makefile generation routines to drasil-
build. We briefly recall Section 5.1 to reinforce the effort we exerted to refactor
the central Drasil Makefile. Adding a new sub-package to the central Makefile,
we only modify a single line:

PACKAGES = lang code printers gen build ...

That is it. The text build is all that is required to add support for drasil-
build to any package target template within the Makefile.

We begin by moving most of the existing Makefile generation to drasil-
build. In the process we encounter a drasil-build function calling drasil-printers’
makeRule:

genMake :: [DocSpec] -> Doc
genMake = build . toMake

toMake :: [DocSpec] -> Makefile
toMake rl = M $ makeRules rl

makeRules :: [DocSpec] -> [Rule]
makeRules 1 = concatMap makeRule 1

The notion of DocSpec (a drasil-printers concept) is embedded in the type
of genMake, toMake, and makeRules. Makefile generation embeds document
generation concepts much more than we thought. We aim to keep the same

65

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

structure for generating the Makefile by instead calling genMake with some
type that can be transformed into a list of Rules, while leaving the transfor-
mation up to the sub-package implementing the type. A typeclass addresses
both issues! We introduce a RuleTransformer typeclass where any data struc-
ture implementing it contains a function makeRule to generate a set of rules
from the structure! Updating drasil-build yields:

class RuleTransformer c where
makeRule :: c -> [Rule]

genMake :: RuleTransformer c => [c] -> Doc
genMake = build . toMake

toMake :: RuleTransformer c => [c] -> Makefile
toMake rl = M $ makeRules rl

makeRules :: RuleTransformer c => [c] -> [Rule]
makeRules 1 = concatMap makeRule 1

Updating DocSpec to implement RuleTransformer in drasil-printers yields:

instance RuleTransformer DocSpec where
makeRule (DocSpec SRS fn) =
[(Phony, "srs", [fn ++ ".pdf"]), (TeX, fn, [1)]
makeRule (DocSpec Website _) = []

The typeclass, RuleTransformer, begins the process of making drasil-build
target-language agnostic. The idea is to make drasil-build only concerned with
exposing high-level build system concepts, which RuleTransformer instances
can use to produce a set of Rules that drasil-build can further transform into
Makefile fragments.

With the addition of drasil-build and coupling between drasil-code and
drasil-printers being avoided, we should continue the effort of abstracting
Makefile generation constructs by discerning high-level build system concepts
to replace the TeX and CCode embedding from drasil-build. We begin by de-
signing a mkRule function. The function should implement encoding of entire
Makefile rules of the form:

target: dependencyl dependency?2
commandl
command?2

.PHONY: target

66

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

We explicitly specify the .PHONY target in the minimal example as mkRule
should create abstract rules, something similar to a function and not a file.
mkRule should take a name for the target, as well as a list of targets and files
as dependencies. Finally, it should take a list of command line commands.
The type signature for such a function being;:

[mkRule :: Target -> Dependencies -> [Command] -> Rule]

To compliment mkRule we create another function, mkFile, taking the
same arguments, but whose target is a file to be created.

The next functions to create are those of commands. While the signatures
will be simple, we include two functions providing slightly differing behaviour.
The first is mkCommand, which represents a terminal command to invoke, the
exit code will be ignored. The other is mkCheckedCommand, which ensures the
return value of the command is zero.

Before we describe the signatures for the command functions, we ought
to discuss how we define and use Makefile variables within the existing con-
structs, as well as how to interpolate them into plain text (String). Due
to the relaxed syntactic constructs in the Make “language,” many items are
string literals with variable expansion mixed in to provide an abstraction and
configuration mechanism. For the purpose of this report, we consider Targets,
Dependencies and Commands to be string literals with variables intermixed as
required. To realize this within drasil-build we construct a simple monoid,
MakeString, which “extends” string literals with a variable type:

data MakeString = Mr String -- String
| Mv MVar -- Variable
| Mc MakeString MakeString -- Append

MVar is a data structure encoding (some of) the types of variables. The
first type included is implicit variables, where variables are defined implicitly
by Make — such as CC for the C compiler path. The second type is free
variables, variables that have no value by default but can be specified through
the environment or command line, if these values are unset, Make’s implicit
value for these is the empty string. An example of a free variable within the
Makefile format we are targeting is RUNARGS. The final type required for the
code Makefiles is an “operating system” variable, providing semantics of how
the variable is set by default. An “operating system” variable sets its default
value based on the system where the Makefile is invoked. An example of this
type of variable, as could be used in the generated code Makefiles, is indicating
the binary file extension based on the operating system. We realize MVar as:

67

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

type VarName = String
type VarVal = String

data MVar = Os VarName VarVal VarVal VarVal
| Implicit VarName
| Free VarName
deriving Eq

The first value to Os is Windows, second is macOS, and third is Linux

The specification of MakeString allows us to return to defining the Make-
file constructs at the rule level. We realize the Command structure — which
captures semantics about those executed in a Makefile — where a command
itself is encoded as a MakeString to support variable expansion as provided
by Make. We include a field in Command to capture whether to check the exit
value of a command. The structure, CommandOpts, is expected to be used for
flags that can be set together (through a list) indicating properties about the
command’s invocation. In this report we only provide a single constructor,
IgnoreReturnCode, as that is the only “flag” required in the Makefiles Drasil
generates at present.

The definitions for mkCommand and mkCheckedCommand differ in whether
the IgnoreReturnCode flag is set in the CommandOpts field of the Command.

We define Rule in a similar way to Command, including collections of
MakeString with an argument specifying the type of target:

type Target = MakeString
type Dependencies = [Target]

data Type = Abstract
| File deriving Eq

data Rule = R Target Dependencies Type [Command]

The definitions of mkFile and mkRule follow from Rule and Type.

The design choices made thus far, including how Makefile rules are encoded,
require us to deconstruct the Rules to correctly create the Makefile. We must
extract the “operating system” variables from the Rules and define them in the
preamble of the Makefile. We must also extract Rules that are Abstract to
properly encode them as .PHONY. Further, as much of the encoding of Makefile
rules has changed, we no longer require specifying the “type” of rule, such as
TeX or CCode. The language combinators in drasil-build are expressive enough
to allow the “types” to be encoded in the appropriate sub-packages.

The new Makefile generation language forces us to revisit and update the

68

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

RuleTransformer instance for DocSpec. Due to effort invested to de-embed
the TeX and CCode Types from drasil-build, the description of the Makefile
rules includes more lines of code, but more accurately reflects the information
drasil-printers should be encoding to describe how to build its generated KX ITEX
files, in a more appropriate location too.

instance RuleTransformer DocSpec where
makeRule (DocSpec Website _) = []
makeRule (DocSpec SRS f) = [
mkRule (makeS "srs") [pdfName] [],
mkFile pdfName [makeS $ f ++ ".tex"] §
map ($ f) [lualatex, bibtex, lualatex, lualatex]] where
lualatex = mkCheckedCommand .
(+:+) (makeS "lualatex" +:+ mkFreeVar "TEXFLAGS")
makeS
bibtex = mkCommand . (+:+)
(makeS "bibtex" +:+ mkFreeVar "BIBTEXFLAGS")
makeS
pdfName = makeS $ f ++ ".pdf"

The preceding block of code describes a Makefile with two rules, one ab-
stract and one generating a PDF. Generating a PDF is performed by exe-
cuting four commands in sequence. The encoding describes, and generates,
the exact same Makefile as before, except removes the hardcoded operating
system (OS) definition preamble. The omission of the OS preamble is due to
DocSpec’s Makefile definition including no “operating system” variables and
thus the superfluous preamble was removed by improvements introduced in

drasil-build.

5.3.2 A Higher-Level Specification for drasil-code

The separation of drasil-build from drasil-printers revealed some deep embed-
ding regarding types of targets that spawned a large re-design of the Makefile
specification infrastructure. The re-design culminated in a more powerful, ro-
bust, and extensible language that we saw used to specify the Makefile format
for DocSpec. We began this investigation of Drasil’s Makefile generation fa-
cilities to add Makefile generation support to drasil-code, but we have yet to
do that. Let us re-examine the desired generated Makefile format:

build: <binary name>

<binary name>: <generated files>

69

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

<compiler> <compiler arguments>

run: build
<interpreter> <binary name> $(RUNARGS)

With the RuleTransformer typeclass we should introduce a data structure
able to encode both build and run information for a given language and its
produced executable. drasil-code separates the renderer for each language into
its own file and data structure. With the clear separation of implementation
languages, it would be logical for each language’s implementation to describe
how to build and run its produced binary. The encoding of build knowledge
within each language does not make sense with the constructs provided by
drasil-build, rather drasil-code should provide an interface on top of drasil-build
for individual languages to express build configurations. If we plan to expose
an abstract interface for individual languages, we should gather the features
required to express these configurations for C++, C#, Java, and Python.

C++ is a compiled language. Makefiles contain an implicit variable CXX,
which specifies the path to the default C++ compiler on a system. The C++ com-
piler expects all .cpp files when compiling a concrete executable (i.e. not an
object or an executable derived from object files). The C++ compiler expects
the -o flag to indicate the name of the output program; failure to provide a
name will result in the compiler default name, typically a.out, being used. On
Windows, we are required to include the .exe suffix to satisfy convention. As
for running a binary produced from a C+ compiler, they are typically invoked
on the command line as ./<binary name> with ./ indicating a binary in the
current directory.

Describing the compiler syntax required for C# is a little more complicated.
Microsoft (the developer of C#) maintains a compiler for the language, csc,
which was only available on Windows until 2017 [9]. For macOS and Linux the
C# compiler is Mono Project’s mcs compiler (prior to the open-sourcing and
inclusion of csc into Mono). The infrastructure hosting Drasil’s continuous
integration process only supplies packages of Mono that contain mcs; therefore
the compiler for C# effectively changes based on the operating system the
Makefile is invoked on. csc is strict about argument ordering requiring an
output name to be specified prior to the input files, whereas mcs does not
care about argument ordering. Both compilers require specifying all source
files when building a binary. The programs created by both compilers are
native binaries that can be invoked as . /<binary_name>. Due to the generated
binaries being native, we must account for the binary extension.

Java has a universally available compiler: javac. The compiler only re-
quires specification of the file containing the main method if the code is for-
matted as a package. Further, Java automatically generates the name of the

70

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

output file as <inputname>.class without requiring any command line argu-
ments to do so. Finally, Java code is invoked through an interpreter java with
the form java <package>.<inputname>, omitting the .class file extension.

The final language to examine is Python. Python is an interpreted lan-
guage requiring no ahead-of-time preparation for the interpreter. As such, a
build configuration is not applicable. Running a Python program is done by
specifying the interpreter and the file intended to be the entry point: python
<inputname>.py.

With only two “ways” to run the generated binaries, we will begin designing
the implementation for the run target. We begin with a structure encoding
the type of artefact produced by building the generated code. We name the
structure RunType. If the runnable artefact is interpreted, we ought to have a
field to specify the interpreter itself. Putting these pieces together we have:

type CommandFragment = MakeString

data RunType = Standalone
| Interpreter CommandFragment

Separately we ought to encode the name of the file to run. For Python
this is the main source file; Java includes the package name before the name
of the main file. We encode this into a BuildName structure. We provide
three constructors: BMain, BPack, and BWithExt. BMain represents the name
(excluding extension) of the main file. BPack constructs a BuildName pre-
fixed with the name of the software package — package being the drasil-code
nomenclature for the name of the software implementation, from the exam-
ple in Section 2.2 this would be “Double.” BWithExt describes a BuildName
with an extension matching that of the language’s source file extension, which
describes the input to the python interpreter.

For both C+ and C#, the generated binary will be the package name
followed by any required OS file extensions. We refine BuildName to be:

data BuildName = BMain
| BPackName
| BPack BuildName
| BWithExt BuildName Ext

data Ext = CodeExt
OtherExt MakeString

BPackName is a base case variant representing the package name. Ext’s
CodeExt constructor renders the extension of a language’s source files — like
for the Python run command — and the OtherExt constructor encodes an

71

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

arbitrary extension.

We tie both BuildName and RunType together with Runnable, adding a
smart constructor, nativeBinary, encoding the semantics to run a native
binary.

data Runnable = Runnable BuildName RunType

nativeBinary :: Runnable
nativeBinary = Runnable (BWithExt BPackName $ OtherExt §
osClassDefault "TARGET EXTENSION" ".exe" "") Standalone

osClassDefault encodes a variable with two possible values: one if the
operating system invoking the Makefile is Windows, the second if the operating
system “class” is Unix (macOS or Linux).

We provide two convenience functions for languages that produce an inter-
preted runnable artefact:

type InterpreterCommand = String

interp :: BuildName -> InterpreterCommand -> Runnable
interp r i = Runnable r $ Interpreter i

interpMM :: InterpreterCommand -> Runnable
interpMM = Runnable (BWithExt BMain CodeExt) . Interpreter

The language data structure, Config, is extended to include a field
runnable :: Runnable. C++ and C# use nativeBinary, while Java uses
interp (BPack BMain) "java", and Python’s runnable definition is
interpMM "python", where the “MM?7” is short for “main module.”

The final step to generate a run target for the code implementations is to
create a data structure to instantiate as a RuleTransformer. We create a
structure, CodeHarness, which bundles together a language configuration as
well as an ancillary drasil-code structure, providing access to information to
correctly render the Makefile structure described previously.

A build target is the piece remaining to complete the code implementation
Makefile generation routines. We begin by examining the Java compiler input
and output in detail. The compiler takes as input the path to the main Java
source file. Drasil generates Java code in a package (folder) that indicates a
grouping to the javac compiler. From the example in Section 2.2, the Java in-
put would be javac Double/Control.java where Control. java contains the
code entry point. The output would be Double/Control.class. The argu-
ment passed to the Java interpreter for Section 2.2 is java Double.Control

72

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

The difference between the file output by javac and java is the folder sepa-
rator and whether an extension is included. BuildName already has the capa-
bility to describe the output path and run path specified, however, that would
require two separate paths describing the same thing. Instead, we specify an
ancillary record for name rendering options, NameOpts, providing context on
how to render the name according to these differences:

data NameOpts = NameOpts {
packSep :: String,
includeExt :: Bool

nameOpts :: NameOpts

nameOpts = NameOpts {
packSep = "/",
includeExt = True

b

packSep indicates the separator character between a package and an inner
BuildName. We further define nameOpts as a default instantiation describing
the semantics of how a package is translated to a file path using ‘/’ as a
separator character. We adapt Runnable to take a NameOpts and modify
interp to take a NameOpts as an argument.

The runnable field in the Java language Config becomes:

runnable = interp (BWithExt (BPack BMain) $ OtherExt $
makeS ".class") jNameOpts "java'

jNameOpts :: NameOpts

jNameOpts = NameOpts {
packSep = ".",
includeExt = False

b

The name specified to Runnable can be the target specified for the build
rule as a dependency and ensure consistency between build and run. Switch-
ing to the input specified to the Java compiler, the compiler requires a single
file; the file is the one containing the Java main method. BuildName already
contains the constructors to properly encode <package>/<main>. java.

We shift to compiling C+. C++ requires all input source files to be specified
to the compiler. To specify a meaningful name (i.e. not a.out) we are required
to include -o on the command line as well. The command line we are target-
ing for Drasil’s C++ Makefiles is: $(CXX) <filel>.cpp <file2>.cpp ... -o

73

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

./<package>$ (TARGET_EXTENSION). The output filename has already been
encoded in the Runnable structure. The inputs are more complicated than
the Java compiler. It would be inconvenient and illogical to manually specify
each C++ source file to the compiler. The language implementation is not even
aware of all the generated files! To accommodate the different styles of file in-
puts required to the compiler, we introduce the notion of BuildDependencies
The structure itself is relatively simple containing two cases; one describing
the single input file case required by the Java compiler. The other case is
including all source files:

data BuildDependencies = BcSource
| BcSingle BuildName

We can encode compiler inputs and Runnable encodes the name of the out-
put (if it is an output), yet we cannot describe the compiler command including
flags in a reasonable manner leveraging the BuildDependencies structure we
created. Solving the problem introduces a structure, BuildConfig, taking a
BuildDependencies and a function taking a list of input files and an output
file as arguments and returns a complete compile command.

type BuildCommand = [CommandFragment]

data BuildConfig = BuildConfig ([CommandFragment] ->
CommandFragment -> BuildCommand) BuildDependencies

The C# compiler command is not that different from the C++ compiler.
The C# compiler takes all source files as input and requires the first argument
be the output name. The compiler command for C# looks similar to: $(CSC)
-out :<package>$ (TARGET_EXTENSION) <filel>.cs <file2>.cs ...
BuildConfig supports all the necessary constructors to properly capture the
command.

We perform a similar implementation to runnable and add a new field
buildConfig :: Maybe BuildConfig to Config.

To save space, we show all convenience functions and the four implemen-
tation language’s buildConfig below:

buildAll :: ([CommandFragment] -> CommandFragment ->
BuildCommand) -> Maybe BuildConfig
buildAll = Just . flip BuildConfig BcSource

buildSingle :: ([CommandFragment] -> CommandFragment ->
BuildCommand) -> BuildName -> Maybe BuildConfig

74

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

buildSingle f = Just . BuildConfig f . BcSingle

cppCompiler :: CommandFragment
cppCompiler = mkImplicitVar "CXX"

-— C#

buildConfig = buildAll $ \i o ->
[osClassDefault "CSC" "csc" "mcs",
makeS "-out:" <> o] ++ i

-— C++
buildConfig = buildAll $ \i o -> cppCompiler : i ++
map makeS ["--std=c++11", "-o"] ++ [o]

-- Java
buildConfig = buildSingle (\i _ -> asFragment "javac" : i) §
BPack BMain

-— Python
buildConfig = Nothing

—--std=c++11 specifies to the C++ compiler that we are using the C++11
language standard [4].

From examining of the commands required by different languages to com-
pile them, we have devised a small language within drasil-code to express
compilation commands. We extend the definition of CodeHarness to include
the structure that stores the generated code filenames and use it to produce
a list of inputs if BcSource is specified. We further enhance the definition
of RuleTransformer’s makeRule to generate two additional rules. One for
build and one for the output file created by building the program in a given
language. The output file rule is only produced if buildConfig is present. If
buildConfig is not present, build is still generated but is simply a no-op.

We have concluded the infrastructure required to produce Makefiles for
the generated code. The Makefiles generated for Section 2.2 can be found in
Appendix C.

5.3.3 Integrating the Generated Makefiles

Makefiles being generated with the code allows us to return to the original
purpose of adding a general Makefile target to compile all the implementations
for all the examples, as well as enforce the generated code compiles on Travis
to further improve the reliability and quality of Drasil. We follow a process

75

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

similar to Section 5.2, however, we start at the step where we create a shell
script.

Unlike each bundled example containing an SRS in ITEX, not all examples
generate code. If an example generates code, the code resides within the ex-
ample’s src folder. Examples generating no code lack the src folder, meaning
the existence of src can be used to detect whether code is generated. Further,
individual examples may generate a subset of all possible languages. Each gen-
erated language implementation resides in its own folder within src, meaning
the central Drasil Makefile should be generic and enter any folder under src
and invoke the Makefile. The generated Makefiles take care of language im-
plementation details (by design) allowing for easy extension of drasil-code to
generate a new language without requiring any modifications to the Drasil
build system to accommodate compilation of the new generated language.

The shell script used to compile all languages for a given example is:

RET=0

if [-d "$BUILD FOLDER$EDIR/$EXAMPLE CODE_SUBFOLDER"]; then
cd "$BUILD FOLDER$EDIR/$EXAMPLE CODE_SUBFOLDER"
OLD_DIR=$(pwd)
for d in */; do
cd "$qa"
"$MAKE"
RET=$(($RET || $7))
cd "$0LD DIR"
done
fi
exit $RET

. J

All “free” variables in the shell script will be passed from the central Make-
file and there is an omitted preamble (from the preceding snippet) that ensures
all the variables are bound.

We follow the target template created for Section 5.2 and adapt it to code
generation:

-)

CODE_E_SUFFIX = _code
CODE_EXAMPLES = $(addsuffix $(CODE_E_SUFFIX), $(EXAMPLES))

EXAMPLE CODE_SUBFOLDER = src/

%$ (CODE_E_SUFFIX): EXAMPLE=$(shell echo $* | tr a-z A-Z)
%$ (CODE_E_SUFFIX): EDIR=$($(EXAMPLE) DIR)

76

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

$(filter %$(CODE_E SUFFIX), $(CODE_EXAMPLES)): \
%$ (CODE_E_SUFFIX): %$(GEN_E_SUFFIX)
Q@EDIR=$ (EDIR) BUILD FOLDER=$(BUILD FOLDER) \
EXAMPLE_CODE_SUBFOLDER=$ (EXAMPLE_CODE_SUBFOLDER) \
MAKE="$ (MAKE) " "$(SHELL)" \
$ (SCRIPT_FOLDER)code_build.sh

code: $(CODE_EXAMPLES)

Adding support for building the code on TravisCI is as simple as adding the
command make code. The addition of code building to TravisCI immediately
uncovered several implementation problems in drasil-code (which have since
been remedied) and errors in the encoding of information in two examples
(also resolved).

Achieving code compilation locally and on CI builds required two levels
of infrastructure work, which improved the knowledge capture of the Makefile
generator (drasil-build). We encoded build and run information for languages
within drasil-code in an abstract but expressive way required for code compi-
lation. The implementation of the code target in the central Drasil Makefile
reduced the effort to build generated code locally, and invoking the target for
the first time immediately uncovered issues with the code Drasil generated.

5.4 From Convenience to Code Caliber

Chapter 5 started with desiring a shortcut to compile the IXTEX Drasil gen-
erates. A tangent on the path to realizing IXTEX compilation resulted in a
refactoring of the Drasil Makefile endowing it with build information and
knowledge about the structure of Drasil, which were useful throughout the
chapter in both the compactness of future rules and by providing scripts with
variables about where to locate certain files and artefacts. Compiling IXTEX
led to attempting to compile the generated code. To realize generated code
compilation, we designed and implemented drasil-build along with designing a
small interface for drasil-code to express compiler command lines and targets.
We leveraged the added Makefile targets in Drasil’s continuous integration
process to ensure changes to Drasil do not break the output of any artefacts.

7

Chapter 6

Embracing Continuous
Integration

Until recently, Drasil has used TravisCI and continuous integration as a way to
ensure changes to Drasil compile, the generated artefacts match the expected
results, and to generate documentation from the Haskell code. Chapter 5
improves the continuous integration process by extending it to include com-
pilation of many generated artefacts. The CI improvements from Chapter 5
were a side-effect of improving the usability of Drasil’s Makefile for developers
and users, they were not changes designed for continuous integration. We fur-
ther enhance Drasil’s CI process with additions designed to primarily run in
a continuous integration environment, in an effort to continue improving the
quality of code Drasil accepts and automate away common repository tasks.

6.1 Linting For More Standard Code

Continuing with the theme of increasing the quality of code contributed to
the Drasil repository, we turn our attention to the code of Drasil itself. With
various contributors to the Drasil codebase, each with a varying programming
style, the codebase becomes an amalgamation of differing styles. With many
contributors, there also comes differing levels of comfort and knowledge of
Haskell. In the Drasil codebase there is an instance of the following lambda:
\(x, _) -> x, which is simply a redefinition of £st, but with more characters
and less clear. Another anti-pattern found within Drasil is code of the form
concat $ map f x, as opposed to concatMap f x, which can allow the com-
piler to generate more efficient code. It would improve the legibility of Drasil’s
codebase to correct these types of sub-optimal expressions and further stan-
dardise the style of the code.

Linters are tools that analyze the layout and constructs of code. A linter
will suggest style improvements, code suggestions, and possibly warn about

78

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

functions that have limitations, such as head and tail, which are partial
functions and can cause runtime errors. Some linters may even point out
redundant code, such as superfluous brackets. One linter for Haskell is HLint!.

One feature of HLint is the ability to encode additional suggestions through
a configuration file. One common gaffe within the Drasil codebase is [a] ++
[b] ++ [c], where a, b, and ¢ are all the same type. In HLint we can encode
the suggestion as:

- suggest: {lhs: "[x] ++ [y]l", rhs: "[x, y]",
name: Combine Lists}

The extensibility of HLint allows Drasil contributors to include custom
hints for oddities individuals notice within the codebase.

HLint, run over the entire Drasil codebase, returns approximately 3500
warnings and suggestions. The most frequent suggestion is to remove re-
dundant brackets, accounting for 1907; the second most frequent being 462
instances of functions not adhering to camelCase capitalization. One warn-
ing highlighted by HLint is the redefinition of fst as an anonymous function.
The author and the Drasil repository maintainers evaluated each item and
concluded that all warnings and suggestions provided by HLint are worth ad-
dressing.

With HLint’s value demonstrated from the provided hints, it is worth in-
corporating it into Drasil’s continuous integration process after all existing
suggestions have been addressed. Correcting the suggested hints is rather
tedious, mechanical, and time consuming; thus, a small working group was
formed to quickly address the hints. The working group addressed the exist-
ing hints allowing for HLint to become a step in the continuous integration
process.

The author of HLint maintains a script to download, install, and run the
latest release of HLint. If we leverage the script within Drasil’s continuous inte-
gration infrastructure we automatically “update” to the latest release without
any modifications or maintenance. One reason this may not be desired is
due to bugs, or inclusion of new hints that are flagged within Drasil’s code-
base. The uncovering of new ill-practices within the codebase can be seen as
a benefit. In the event a bug in HLint triggers a false failure, we modify the
Drasil TravisCI configuration to use a previous version until a Drasil contribu-
tor manually verifies an update has addressed the false failure. Automatically
updating the version of HLint removes the need for a human to be concerned
with updating HLint or even what version the repository currently uses and if
there is any reason why a specific version is being used. In the event of a false
failure we can modify the configuration clearly detailing the reason for the

'https://github.com/ndmitchell/hlint

79

https://github.com/ndmitchell/hlint

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

version freeze within the commit message, allowing a future author to detect
and reinstate automatic version updates with certainty that the reason for the
freeze has been addressed.

6.2 “Beep Boop” — drasil-bot

All of the CI work being performed has added multiple new failure conditions
to the continuous integration process. Prior to the additions we included, the
continuous integration checks in order were: build, checking difference with
known good copies (diffing stable), and building the documentation. The
changes thus far update the checks to, in order: HLint, build, diffing stable,
compile IXTEX, compile code, and build documentation. We have doubled the
number of checks performed on new contributions to Drasil. Each check may
fail for some reason.

Drasil’s repository is hosted on GitHub [5]. TravisCI integrates with
GitHub to provide status checks on commits and pull requests indicating
whether a given change or theoretical merge (of a pull request into the main
Drasil codebase) pass all stages of the CI process, or if the change fails. Un-
fortunately, the information provided by TravisCl on GitHub is two-bit with
statuses being: a build is in progress, all checks in a build succeeded, at
least one check failed, or a non-build related error occurred. For individu-
als staging changes this is a fine process; they may be using CI to verify a
change has not introduced unintended differences or the change may still be a
work-in-progress. While pull requests are expected to be checked manually by
the change’s author, sometimes authors miss checks or are eager to get their
changes into Drasil and do not perform adequate checks.

A side-effect of the CI status indicator on pull requests is occasionally re-
viewers notice a CI failure, investigate the CI logs, and add a comment to the
pull request notifying the change author of the failure. Reviewers investigat-
ing others’ build failures is a waste of time as authors should be attentive and
self-sufficient in noticing and addressing build failures. We wish to add addi-
tional context to build failures giving reviewers immediate insight and loosely
indicate to authors why their build has failed at a glance.

GitHub provides two interaction options that could be viable. The first is to
comment of failed builds indicating the build stages which failed. A benefit of
this approach is we can be more descriptive, attempt to extract “reasons” from
the build log, and the author is likely to be notified (depending on the author’s
notification settings). A drawback of comments is many people (including
reviewers) would be notified devaluing notifications as the build failure should
only be of interest to the author. Another disadvantage is the visual space
taken by a comment and the non sequiturs that may be interspersed in a
larger conversation.

30

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

The other approach is to use labels on pull requests. Labels are small
“tags” that appear alongside pull requests on the page enumerating all open
pull requests and on the pull requests themselves. The advantages of labels are
they are short and concise, they are a “breadcrumb” for authors to investigate a
specific section of the build log, non-intrusive, and more visible than comments.
A disadvantage of labels is not being able to provide additional details along
with not sending any notifications. Despite not sending notifications, labels
are more visible as they can be seen from an overview page and not just in the
pull request itself. Being visible from the overview page provides context to
reviewers indicating the types of errors in a pull request before they even open
the pull request page. Further, the labels are displayed right next to the two-
bit status indicator (on the overview page) providing added context. While
only speculation, failure reasons being apparent on the pull request overview
page may help diagnose something such as a false positive HLint warning in a
new HLint release, due to all pull request CI builds after a certain point failing
due to HLint. We choose labels largely due to their unintrusive nature of not
sending notifications.

We begin by specifying the label behaviour on the pull requests. Labels
added by the CI process should be clearly “marked” as being related to a CI
build. The CI process should update the labels based on changes to the pull
request to reflect newer builds. Finally, the CI process should not affect any
labels that are not “managed” by the CI process.

From an implementation perspective, the code should be run as a part the
continuous integration process to avoid requiring additional infrastructure,
such as a server. The implemented system should not affect the commands
specified in the CI configuration, if anything the encoding of label names should
be a part of the same command it represents.

TravisCI's commands are executed using the Bourne-Again Shell (Bash)?.
We intend to make use of the extensions the Bash shell provides. We de-
scribe a function ci_fstep — short for CI Failable Step — where the first
argument is the label to add if a command fails. ci_fstep takes a variable
number of arguments allowing for “wrapping” of regular commands, for ex-
ample make code becomes ci_fstep "CI: Code" make code. The definition
we have conceived for the encoding of labels in the CI configuration satisfies
all the implementation requirements specified. We save the label specified to
ci_fstep in a file containing all labels ci_fstep is called with, representing
the set of “managed labels.” We execute the original command line, which has
been encoded as a series of arguments, by passing the command to a spawned
shell. The spawned shell is to ensure the invoked command does not overwrite
any variables, an exit does not exit the current shell, and output is printed
to the current shell’s standard out and standard error.

’https://www.gnu.org/software/bash/

81

https://www.gnu.org/software/bash/

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

Launching a spawned shell as a part of ci_fstep faces a slight hiccup.
The TravisCI build environment sets a specific set of shell options — some of
which alter the syntax allowed in Bash scripts — which are required to properly
parse the functions Bash loads as part of its startup within the CI environment.
Without the proper options to the spawned shell, the shell returns an error due
to allowed syntax disparities when a startup script is run. Compounding this
issue, the spawned shell does not contain the shell functions loaded into the
current shell, which makes ci_fstep inconsistent with a non-wrapped com-
mand, leaks implementation details, and prevents us from using convenience
functions provided by TravisCI. To combat these issues when launching an
inner shell, we add a new Bash function: ci_export_funcs. The function is
to be placed in the CI configuration and run before any of the build steps. The
function will examine the features of the existing session and exfiltrate settings
to a file that will be loaded in the spawned shell. We exfiltrate the functions
exposed by the continuous integration environment. Further, we extract the
options specified to the current shell and save them to another file. Within
ci_fstep we load the options and set them when launching the inner shell.
We specify the first command executed within the launched shell will load the
functions from the file we saved in ci_export_funcs.

The return code from a shell process is the return code of the last command
launched within the shell. With the shell we launch containing two commands,
the command to load the functions from the file and the command passed
to ci_fstep, resulting in the return code from the shell being that of the
command of interest. A non-zero return code from the launched shell indicates
a failure executing the command. In the event the exit code is non-zero, we
write the label to another file denoting a set of “failed steps.”

With one file containing the set of labels representing failures for the cur-
rent build and another containing the set of all labels the CI process manages,
we must set them on the pull request on GitHub. The GitHub API include
commands to create, add, and remove labels from a pull request [2][3]. Us-
ing the interface provided by GitHub requires an account to interact through.
As opposed to tying the label action to any particular contributor’s personal
account, we create a new account drasil-bot, which is solely managed through
automated processes.

We use Python? to create a script that prepares the data stored in the
files during the build process and communicate it to GitHub. We use Python
due to its interpreted nature, it being a language Drasil can render code as
(to not introduce too many languages to the Drasil codebase), and Python’s
set primitives. In the script we query the pull request (the ID is exposed by
TravisCI as an environment variable) to gather a list of existing labels. We
filter the labels to only include those indicated from the managed file (produced

3https://www.python.org

82

https://www.python.org

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

during the build process). From there we create two sets, one of labels to add
to the pull request and another of labels to remove.

We use v4 [2] of the GitHub API to remove labels as v3 [3] only allows
removing labels one HTTP request at a time; v4’s remove mutation takes a
list of labels to remove. We use the v3 API to add labels to the pull request
due to the interface taking a list of labels (as strings) with a side-effect being
if a label does not exist it is automatically created within the repository; v4
requires a query to lookup labels, a mutation to create any labels that do
not exist, and finally another mutation to add the labels to the pull request.
GitHub’s APT (both versions) include forms of rate limiting to prevent abuse.
We mix the two APIs to only use commands that GitHub treats at constant
cost to avoid an unpredictable number of queries and tie our API use strictly
to the number of times TravisCI builds Drasil within a given time frame.

One unexpected development while designing the upload script is TravisCI’s
isolation of build environments. While not surprising, the isolation of build
environments coupled with the fact that CI builds are race-y makes the upload
script vulnerable to race conditions. Take the following example as one such
condition. A pull request is created, within a minute of creation the author
realizes they have a lint error. The author addresses it and pushes a change to
their pull request before two minutes has elapsed. TravisCI has created two
builds: one for the original and one for the “correct” code. If we add network
unreliability to the build for the original pull request commit, we may expe-
rience a case where the newer commit’s build is further along. If the newer
build finishes first it would be a pass, no labels would be added to the pull
request that are managed by the CI process. Then the second build finishes,
there are failed steps, the upload script dutifully adds the labels to the pull
request despite the build not being the freshest code. Although many things
must happen for such an example to occur, if it did, that would be a confusing
experience. In an effort to mitigate this issue, we leverage additional informa-
tion returned when we query labels that exist on a pull request. A pull request
returns the hash of the most recent commit. TravisCI exposes the commit it
is currently building as an environment variable. The hash of a Git commit is
just that; a seemingly random hexadecimal string, which is difficult to predict
and changes any time a commit changes. When the script checks the labels
on a pull request it also ensures the build commit is the most recent on the
pull request, if it is not, it does not change the labels as there is another build
running (or possibly finished). Even with this check the race condition still
theoretically exists. If a commit is added to the pull request in the time when
the script checks the hash and before it alters the labels then the issue could
still theoretically occur. However, in practice, when a commit is added to a
pull request it can take TravisCI up to thirty seconds to start a build and an-
other two minutes before the build is executing any of the (failable) build steps

33

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

we have specified. Completely eliminating this race condition would require
running a dedicated label process on a dedicated server that performs internal
ordering of label changes and maintains persistence of active builds and recent
commits. The extravagance of such a solution to fix a perceived rare race
condition for updating labels is not worth the hosting costs or maintenance
due to the extraordinary alignment of events for the race condition to occur.

The addition of drasil-bot maintaining Drasil’s continuous integration la-
bels has caused many pull requests to contain a label indicating the type of
build failure at some point before being merged. Subjectively speaking, the
author has found the feature useful when submitting pull requests. Further,
one reviewer — when asked about the labels — noted they had internalized
the CI labels as part of the review process. While only being a small change to
the user interface contributors may see when attempting to have code merged
into the Drasil codebase, it provides more context than GitHub’s two-bit build
status indicator and has had the unexpected benefit of working and providing
build failure feedback when TravisCI fails (for unknown reasons) to commu-
nicate the final build status to GitHub (which has occurred at least five times
since drasil-bot was implemented).

6.3 Generating Artefacts From Generated Arte-
facts From Generated Artefacts

In Section 5.2 and Section 5.3 we ensured the artefacts generated by Drasil can
be built. The artefacts Drasil generates are built during every CI build. At
the end of the CI build the artefacts are effectively discarded, we do nothing
with the artefacts at all. What if we could use the products produced by
the CI process in even a fraction of the builds? Drasil (as a project) does not
provide means to view the generated artefacts without trawling the repository,
and even then without building Drasil and building the artefacts produced. If
we could automatically upload the artefacts generated during (successful) CI
builds, we would have a form of gallery for prospective users and contributors
to see results of Drasil without having to download and build the artefacts
themselves. Further, it doubles as an advertising tool to demonstrate the
state of Drasil and what is currently capable using the system. Finally, the
latest stable artefacts being readily available lowers the effort required by
contributors to verify any changes to artefacts, since they are not required
to build multiple copies of an artefact to compare the current stable version
and their modified version.

The artefacts that should be showcased include the PDF copies of the SRS
document, since it is much more meaningful to display than a file of IXTEX
meant as an intermediary. The HTML SRS document should be included as

84

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

well, perhaps represented in another format if the medium we choose for the
gallery does not provide HIT'ML support. Any code generated for the bundled
examples should appear. The code is selected over a compiled binary as a
binary is not likely to be meaningful to the “average” viewer who may not
understand enough about a subject area to produce a valid input or configu-
ration.

Due to GitHub being the location of the Drasil repository, it would be
logical to provide the gallery of artefacts as a website. A website would make
the artefacts available to anyone who can access the Drasil repository, easily
linked from the Drasil repository, and requires little effort to view (as in not
requiring a viewer to download anything outside the webpage). A website
could raise Drasil’s reach, once search engines index it, making it an excellent
way to raise awareness about the project.

GitHub provides a service called GitHub Pages? allowing repositories to
host a website for themselves. The websites GitHub Pages allows to be hosted
are static — meaning they provide no server processing and only serve files as-
is to the viewer. This is perfect for Drasil as we intend for the gallery to display
static (albeit regularly updating) information. Updating a website hosted on
GitHub Pages is referred to as a deploy. Deploying to GitHub Pages is as
simple as pushing a commit to the repository (i.e. Drasil) on the gh-pages
branch.

The design of the mechanism to perform the deploy should be compart-
mentalized to allow staging — where Drasil contributors can change what is
deployed and test it locally without deploying (committing) the changes —
while integrating into a shell script that can be invoked from TravisCI to per-
form the actual deploy step.

For the deploy script, we automate the creation of a deploy folder that
will stage all the files for deploy and can be safely ignored by Git, to avoid
accidentally adding the folder. We follow by copying any PDFs, HTML doc-
uments, and CSS (styling for the HTML) into the deploy folder under the
pattern <example>/srs/. We should copy the code Drasil generates, but to
properly display it we would have to either leverage some existing solution to
pretty-print the code or create one. There is a third option: TravisCI builds
are triggered from commits to GitHub, Drasil contains a version of the gener-
ated code, GitHub contains a code viewer with pretty-printing, and Drasil’s CI
process contains a check to make sure the built code matches the stable code
stored in the repository. If we tie deployment to a successful build then we
are certain the stable folder in the repository accurately reflects the currently
generated code. We can simply link to the files of the commit being built as
opposed to reinventing the wheel.

‘https://pages.github.com

85

https://pages.github.com

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

To provide links to GitHub we must discern the path from the Git repos-
itory root to the folder that stores the source files for a particular implemen-
tation. Subsection 5.1.1 designed the Makefile to be a store of build-related
information allowing us to add a Makefile target to extract the path to the code
folder for a particular example. After extracting the path to the implemen-
tation code folder, we concatenate it with the individual languages generated
(for a given example) and create a file, src, in the folder of a given example
with one path per implementation language per line. The static site generator
will use these paths to generate GitHub links to the built commit.

While we include artefacts the bundled examples produce, the continuous
integration process builds documentation for the Drasil language and sub-
packages as well as produces file dependency graphs for each sub-package
of Drasil. These Drasil code derived artefacts are worth including on the
generated website because they remove a task individual developers would be
required to perform (building the artefacts) while also providing context and
information about Drasil to prospective contributors. Adding both types of
non-example artefacts only requires copying the directory where the artefacts
are generated into the deploy folder.

The last artefact required for the website is to generate a web page to act
as an index for the artefacts, something not yet done. We use the Hakyll®
static site generator to produce the web page. Hakyll works by instantiating
HTML templates we design. Hakyll is implemented in Haskell — leveraging
Haskell’s typesystem as a consequence — and was selected in part due to its
implementation language being the same as Drasil; thus, preventing a language
barrier from hindering improvements to the web page from other Drasil con-
tributors. Hakyll is similar to Drasil in the sense it contains a build phase that
builds an executable that, when run, produces the artefacts we describe. At a
high-level, Hakyll works by parsing HTML templates, evaluating conditional
and loop constructs, and performing variable substitutions. HTML templates
can embed other templates allowing for page composition where a header and
footer may be defined in one template while another template only considers
the “content” of the page.

We emphasize the traceability of autonomous web page updates through a
footer containing the Git hash (and link to the commit), as well as a TravisCI
build number and link to the Travis build that produced the current web page.
If at any point a build goes awry, producing undesirable results, we provide
the context a maintainer is likely to require to triage the problem. The link
to the GitHub commit that generated the web page provides an avenue for
viewers to locate the exact commit and codebase that produced the artefacts
they are viewing. The rest of the web page is simplistic and displays a category
of artefacts with a bullet list providing the name of the artefact and a link.

Shttps://jaspervdj.be/hakyll/

36

https://jaspervdj.be/hakyll/

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

The organization of build artefacts within the deploy folder encodes a form
of structure that the website generator will leverage to “discover” properties
such as number of bundled examples and their artefacts without knowing too
much about Drasil. This design decouples the webstie from knowing how
Drasil works and what it will generate. The deploy script acts as an exten-
sion of the build system, providing the glue that supplies knowledge about
Drasil’s artefact layout — partially derived from the central Makefile — while
adapting its structure and layout for use by a completely automated process.
Drasil’s central Makefile containing pertinent information for builds is useful
once again. We provide the Hakyll website generator with paths to various
folders, indicating where to find certain artefact types within the deploy folder.

TravisCI provides many environment variables useful for the website, such
as the commit hash and build number for the current build. This information
is used when building the website on CI, but is not available locally. To
provide valid links and approximations of values such as Git hashes, which
are not calculated until a commit occurs, we provide “default” values and
more generic links (like to the most recent Drasil commit and build) to enable
testing of the generated website locally with minimal differences to what would
be produced on CI.

Most of the artefact-related information on the website is generated from
the name and path of files within the deploy folder. The notable exception
is the links to generated implementations for the examples. Examples with
implementations include a file, src, in that example’s folder within deploy. As
previously mentioned, the contents of the file is one file path per line indicating
the location within the Git repository to an implementation (in some language)
of a given example. The website generator finds this file and uses those paths
to properly construct hyperlinks to the folders on GitHub.

One unexpected deficiency of Hakyll is the lack of support for Maybe val-
ues. We would like Maybe values because with Hakyll’s default combinators we
are required to split the Maybe type into two variables, such as valExists and
val, to be able to use a value in both a conditional (to check for definedness)
and as a variable substitution. Using two variables is less than ideal due to
nothing constraining the values together. It is rather ad-hoc. We would like
to check if a value exists before displaying the contents as we may include a
preamble, or some boilerplate HT'ML, to prepare a section that would not exist
otherwise. To address this, we define a function, maybeField, that properly
encodes Maybe as values exposed to Hakyll’s templating engine. maybeField
addresses the deficiency by determining on variable lookup — occurring both
during variable substitution and conditional checks — that a value is Just. In
the event a value is Nothing, the function soft-fails (using the Alternative
typeclass’ fail function) to indicate undefined to the template engine. Hakyll
conditionals treat undefinedness as a falsey result. If a value is Nothing and a

87

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

substitution attempt is made outside of a conditional, the template instantia-
tion will fail due to the undefined value; thus, ensuring the expected behaviour
rather than simply expanding the variable to an empty string.

The rest of the generator is constructing small data structures to encode the
knowledge extracted from the deploy folder’s structure and is rather straight-
forward. With the website implementation being complete, we update the de-
ploy script to copy the generated site file, index.html, to the deploy folder.
We add central Makefile targets to invoke a staging of the deploy script, en-
suring all artefacts are produced as well as feeding the deploy script variables
related to build layout.

With all the pieces required for a CI deploy now being produced and lo-
cated in the deploy folder, it is time to wrap the deploy script for use with
TravisCI, to actually perform the deploy. One of the checks when running the
CI deploy script is to ensure it is running on TravisCI. We check the environ-
ment by looking for certain environment variables provided by TravisCI, which
usually begin with TRAVIS . Further, the deploy script ensures certain prop-
erties about the prospective deploy candidate, such as the type of build. We
typically only deploy cron-type builds to limit the deploy amount to comply
with GitHub Pages abuse rate limiting policies. The TravisCI deploy script
clones the gh-pages branch as the deploy folder, writes some metadata — such
as commit hash and build number — to files within the deploy folder, before
setting additional environment variables and transferring control to the local
deploy script that performs much of the heavy lifting. By making the gh-pages
branch the deploy folder, there is no additional file movement required after
the deploy has been staged. The contents of the deploy folder can be directly
uploaded. The GitHub account created in Section 6.2, drasil-bot, gains an ad-
ditional task: it commits the deploy after the script completes running. The
commit message generated for each deploy indicates the branch and commit
hash that generated the artefacts. The commit message adds another place
where the commit hash exists, making it very obvious the origin of the artefacts
whether trawling the commits, the source, or viewing the web page.

We enable the deploy on TravisCI to occur once per day with the latest
code on the main branch (only if the code is newer than the code used for
the previous deploy), provided it passes all CI tests. To add the deploy to
CI, we are required to wrap the script in a small shim. The shim launches
a nested shell with certain Bash options set because TravisCI treats deploys
as a separate phase. The deploy phase does not provide the Bash functions
previously defined and also supplies a different set of shell options to the
invoked shell. The shim uses the options and functions gathered in Section 6.2
to reuse existing tools within the TravisCI deploy script.

In an effort to make deploys a transparent process, we check during pull
request builds to see if the website generator or the local deploy script has

38

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

changed. In the event either has changed, we do a staged deploy (as if it
were local) as a means to ensure the changes have not negatively affected the
generated web page or artefacts. As a part of the process, we emit the gener-
ated web page for reviewers and authors to use as a form of visual inspection
for their changes. Unlike the artefacts Drasil generates, many moving parts
can affect the exact values substituted into Hakyll templates making it a poor
candidate for comparing against a stable version.

The web page hosts many artefacts the bundled examples produce as well
as system information about Drasil. The website is generated automatically
from what Drasil builds as part of its testing process. The current rendition of
the website is located at https://jacquescarette.github.io/Drasil and
contains artefacts no older than 24 hours from the most recent commit to the
main branch in the repository.

6.4 Quality

The build system work from Chapter 5 naturally evolved in Chapter 6 to focus
on improving the continuous integration process. The first change to CI added
HLint as an automated tool to ensure consistency of code as well as express
code in a more efficient fashion. We leveraged all the build improvements to
ensure the quality of code in Drasil improves and that new code meets a higher
standard before being included. In an effort to manage the complexity of the
CI process, we developed drasil-bot to label pull requests with build failures,
providing context to authors and reviewers without requiring all of them to
read the log. Finally, we took the artefacts generated during the CI process
and hosted them to improve the visibility of Drasil. The generated website
demonstrates what Drasil is capable of producing while providing convenient
compiled artefacts for contributors and prospective users alike.

39

https://jacquescarette.github.io/Drasil

Chapter 7

Conclusion

This report has discussed many improvements incorporated into Drasil. Chap-
ter 3 started with the goal of moving chunks that drasil-lang knew too much
about and ended by abstracting three chunk types that were essentially the
same into ConceptInstance. The work done in Chapter 3 occurred during
a refinement pass of referencing in Drasil, allowing for our requirements of a
deferred type lookup to be included in RefProg, the language for forming ref-
erence names. The work performed for ConceptInstance, and the associated
infrastructure, allows for easy encoding of textual, description-based chunks.
The benefit of ConceptInstance was demonstrated by adding goal statements
to the SRS, requiring only five lines of code to adapt ConceptInstance for the
use case. Future improvements could be made to ConceptInstance allowing
for the capture of lists, providing more structure to the knowledge that can be
encoded by ConceptInstance.

Chapter 4 began as an effort to provide more consistency for DocDesc, spec-
ification for the layout of an SRS, and deciding which comes first: the ChunkDB
or DocDesc? The decision was made for ChunkDB to come first, resulting in
DocDesc being derived from the information available in ChunkDB. To facil-
itate the derived nature of DocDesc, a new user-facing structure (SRSDecl)
was added to declaratively specify the layout of the SRS. DocDesc became an
elaborated version of SRSDecl used to hold chunks retrieved from ChunkDB.
The introduction of SRSDecl ensures consistency as the user no longer specifies
information to both DocDesc and ChunkDB, removing opportunities for consis-
tency violations, while also simplifying the design of the specification language
for SRS documents. With DocDesc being an elaborated version of the SRS,
we used multiplate [7] to provide a simple means to perform introspective
passes to derive information from the elaborated SRS. Multiplate reduced the
total number of lines for introspective passes by 127 and removed unwieldy
boilerplate required by the previous pass mechanism. Implementing SRSDecl

90

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

required moving user-required boilerplate into drasil-docLang further provid-
ing consistency while removing up to 26 lines specified in every bundled Drasil
example. We used the introduction of SRSDecl to ameliorate the traceability
matrix generation, reducing boilerplate code required by the designer of a soft-
ware system while making the display more flexible. The improvements to the
traceability matrix produced more readable traceability matrices and removed
more boilerplate required by users to generate them while also removing more
opportunities for users to accidentally specify inconsistent matrices.

Further improvements could be made to SRSDecl by continuing to refine
what is explicitly specified versus what is captured in ChunkDB and System-
Information. This improvement would migrate the SRS to be a view of all
information specified about a software system, rather than providing SRSDecl
with either exclusive knowledge or manually repeating specified information
within a system description. drasil-docLang could be more thorough and au-
tomated in generating reference section material, such as the table of symbols,
table of units, and table of acronyms, by leveraging the multiplate infrastruc-
ture put in place in Section 4.4. In the future, multiplate could be implemented
in other structures, such as Contents, to allow for other sub-packages to in-
trospect data structures as needed.

Improvements to the build system performed in Chapter 5 refactored the
Makefile to abstract many targets, reducing the length from 178 lines to 80
lines. The central Drasil Makefile encodes structural and build information
about Drasil, which is used in various places within the build system. Chap-
ter b exposed new Makefile targets to build artefacts produced by the bundled
Drasil examples. The new tex and code targets are used by the continuous
integration process to ensure changes to Drasil do not break compilation of
generated IXTEX or code. The changes made in Section 5.2 and Section 5.3
ensure a certain quality of code is met in changes to Drasil through their in-
clusion in CI. The new targets lowered the effort to build artefacts, making it
more convenient and less time consuming for contributors of Drasil to verify
changes. To build the generated code, we were required to refactor Makefile
generation in Drasil into an abstract sub-package: drasil-build. We encoded
how to build code for each generated language, which required a moderate
amount of infrastructure work to facilitate. The work performed in Chapter 5
was immediately validated through the discovery of artfeact generation issues
in Drasil, which have since been remedied.

Future work for the build system includes running the generated code.
Drasil plans to generate a test plan as a new piece of documentation. The
test plan could be used by CI to confirm the generated code meets the design
parameters encoded by each example.

Chapter 6 further restricted code allowed in Drasil sub-packages by using
HLint to enforce a common style of code in the Drasil codebase. With all the

91

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

checks the CI process performs we introduced drasil-bot to provide context for
failed builds on pull requests in an effort to reduce the time between build
failures and corrections. With all the artefacts CI produces, we decided a
portion of builds would produce a website with the most recent artefacts to
both advertise Drasil and provide quick access to the latest artefacts for con-
tributors to use as reference. The improvements to the continuous integration
system raised the bar for code to be included in Drasil, improving the reliabil-
ity of Drasil as a whole product. The checks, such as whether the KTEX and
generated code compiles, ensures prospective users are unlikely to encounter
situations where bundled examples produce incorrect output. HLint ensures
the style of Drasil is consistent, reducing the instances of individual’s stylistic
preferences from appearing in the code. The inclusion of drasil-bot provides
additional feedback to pull request authors about problems with their code
in a non-intrusive way. Finally, the generated website further lowers the bar-
rier to viewing the artefacts Drasil produces as they are readily accessible and
frequently updated.

Future work building on Chapter 6 includes drasil-bot commenting on pull
requests providing a visual diff, of the rendered documents, comparing the
latest main branch documents and the changes in the pull request. The de-
ploy website could be improved to provide more details about Drasil and the
generated artefacts. One possible improvement is for each example to pro-
vide information about the Choices they select for code generation and the
differences they make to the produced output.

All of the changes to Drasil made in this report have aligned with Drasil’s
philosophies. Many changes reduced the number of times knowledge was re-
peated, either in bundled examples or within the structure of the code itself.
We have reduced instances where inconsistencies could slip into the code, both
within the examples and throughout the artefact generation process. We im-
proved the reliability of the artefacts Drasil generates. Since the enhancement
to CI, with the exception of accidental merge conflicts, both KTEX and gen-
erated code have not had build failures on the main branch. Finally, we have
reduced the amount of boilerplate users are required to specify when encoding
systems in Drasil. As evidence of this, we have included an updated version
of Double from Section 2.2 in Appendix B. Appendix B is notably missing
boilerplate originally required in Section 2.2. We have improved all levels of
Drasil, from the input users specify, to the output produced, to the quality of
the code passing the standards put in place.

92

Appendix A

Double Implementation

This appendix contains a complete version of Double as described in Sec-
tion 2.2.

module Main(main) where

import Language.Drasil (
-— Primitive types
Contents(L1C), Document, Expr(Int), LabelledContent,
Sentence(S, E, EmptyS), Space(Integer), Symbol(Atomic),
—-— Chunks
AssumpChunk, Change, CI, ConstrainedChunk, QDefinition,
QuantityDict, ReqChunk, UnitaryConceptDict, UnitDefn,
—-— Smart constructors
assump, commonldeaWithDict, cn''', frc, fromEgn', lc,
nounPhraseSent, pn, nw, qw, person, shortname, vc,
-- Sentence functions
atStart, short, phrase,
-— Ezpr combinators

($7), sy)

import Database.Drasil (Block, ChunkDB, RefbyMap,
SystemInformation(SI), TraceMap, cdb, collectUnits, rdb,
refdb, _authors, _concepts, _constants, _constraints,
_datadefs, _definitions, _defSequence, _inputs, _kind,
_outputs, _quants, _sys, _sysinfodb, _usedinfodb)

import Theory.Drasil (DataDefinition, ddNoRefs)

import Utils.Drasil (chgsStart, foldlSent, foldlSent_ , for)

import Data.Drasil.Concepts.Documentation (doccon, doccon',
input_, output_, software, srs, system, value)

93

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

import Data.Drasil.IdeaDicts (mathematics)
import Data.Drasil.SI_Units (derived, fundamentals, siUnits)

import Drasil.DocLang (
DocDesc, DocSection(RefSec, IntroSec, SSDSec, ReqrmntSec,
LCsSec, TraceabilitySec),
DerivationDisplay(HideDerivation), Field(DefiningEquation,
Description, Label, Symbol, Units),
InclUnits(IncludeUnits), IntroSec(IntroProg),
RefSec(RefProg), ReqrmntSec(ReqsProg), ReqsSub(FRegsSub),
SCSSub(Assumptions, DDs), SolChSpec(SCSProg),
SSDSec (SSDProg) , SSDSub(SSDSolChSpec), TSIntro(TSPurpose),
TraceabilitySec(TraceabilityProg), Verbosity(Verbose),
generateRefbyMap, generateTraceMap, generateTraceTable,
getSCSSub, getTraceMapFromChgs, getTraceMapFromDD,
getTraceMapFromReqs, intro, mkDoc, tsymb)

import Language.Drasil.Code (Choices(..), CodeSpec,
Comments (CommentNone), ConstraintBehaviour (Warning),
ImplementationType (Program), Lang(Cpp, CSharp, Java,

Python), Logging(LogNone), Structure(Bundled), codeSpec)

import Language.Drasil.Printers (DocSpec(DocSpec),
DocType (SRS, Website), PrintingInformation(PI),
defaultConfiguration)

import Language.Drasil.Generate (gen, genCode)

symbols :: [QuantityDict]
symbols = [x, y]

pname :: String

pname = "Double"

double :: CI

double = commonIdeaWithDict "double" (pn pname) pname
[mathematics]

assumpNum :: AssumpChunk

assumpNum = assump "assumpNum" (foldlSent [S "This",
phrase system, S "only considers", phrase input_,
S "integers between", E $§ (-2) $~ 29, S "and",
E (2 $ 29)]) "assumpNum" $

94

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

shortname '"reasonableNumber"

regMul :: ReqChunk

reqMul = frc "regMul" (foldlSent [S "The", phrase output_,
S "shall be twice the", phrase input_, phrase value])
"reqMul" $ shortname "mulNum"

chg :: Change

chg = lc "chg" (foldlSent [chgsStart assumpNum (S "The"),
phrase software, S "may be changed to remove the range",
S "restriction on the", phrase input_, S "to support",
S "doubling any integer"]) "chg" $
shortname "removeRestriction"

x :: QuantityDict

x = vc "x" (cn''' "input value") (Atomic "x") Integer
y :: QDefinition
y = fromEqn' "y" (nounPhraseSent $ foldlSent_ [phrase input_,

phrase value, S "doubled"]) EmptyS (Atomic "y") Integer $
(Int 2) * sy x

doubleDD :: DataDefinition
doubleDD = ddNoRefs y [{-Derivation-}] "doubleDD" [{-Notes-}]

thisSI :: SystemInformation
thisSI = SI {

_sys = double,

_kind = srs,

_authors = [person "Gabriel" "Dalimonte"],
_quants = symbols,

_datadefs = [doubleDD],

_inputs = [x],

_outputs = [y],

_sysinfodb = allSymbols,

_usedinfodb = allSymbols,

_defSequence = [] :: [Block QDefinition],
_constraints = [] :: [ConstrainedChunk],
_constants = [],

_concepts = [] [UnitaryConceptDict],
_definitions = [] :: [QDefinition],

95

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

refdb = rdb [1 []
}

allSymbols :: ChunkDB

allSymbols = cdb symbols (nw double : map nw symbols ++
map nw doccon ++ map nw fundamentals ++ map nw derived ++
map nw doccon') srsDomains (siUnits ++ checkSI) label refBy
dataDefn [] [] [] [assumpNum] reqs chgs [] []

thisSRS :: DocDesc
thisSRS = [
RefSec $§ RefProg intro [tsymb [TSPurposel],
IntroSec $ IntroProg (foldlSent [atStart double,
S "is a trivial example for demonstrating Drasil's",
S "capabilities"]) (short double) [],
SSDSec $ SSDProg [
SSDSolChSpec $ SCSProg [
Assumptions,
DDs [] [Label, Symbol, Units, DefiningEquation,
Description Verbose IncludeUnits] [doubleDD]
HideDerivation
11,
ReqrmntSec $ RegsProg [
FRegsSub [reqMul] []
15
LCsSec $ LCsProg [chg],
TraceabilitySec $
TraceabilityProg [traceTable] [foldlSent
[S "items with each other"]] [L1C traceTable] []

traceTable :: LabelledContent
traceTable = generateTraceTable thisSI

checkSi :: [UnitDefn]
checkSi = collectUnits allSymbols symbols

label :: TraceMap
label = generateTraceMap thisSRS

refBy :: RefbyMap

96

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

refBy = generateRefbyMap label

scs :: SCSSub
scs = getSCSSub thisSRS

dataDefn :: [DataDefinition]
dataDefn = getTraceMapFromDD scs

reqgs :: [ReqChunk]
reqs = getTraceMapFromReqs scs

chgs :: [Change]
chgs = getTraceMapFromChgs scs

srsBody :: Document
srsBody = mkDoc thisSRS for thisSI

pS :: PrintingInformation
pS = PI allSymbols defaultConfiguration

thisCode :: CodeSpec
thisCode = codeSpec thisSI thisChoices []

thisChoices :: Choices
thisChoices = Choices {
lang = [Python, Cpp, CSharp, Javal,
impType = Program,
logFile = "log.txt",
logging = LogNone,
comments = CommentNone,

onSfwrConstraint = Warning,
onPhysConstraint = Warning,
inputStructure Bundled

main :: I0 QO

main = do
gen (DocSpec Website $ pname ++ "_SRS") srsBody pS
gen (DocSpec SRS $ pname ++ "_SRS") srsBody pS
genCode thisChoices thisCode

97

Appendix B

Post-Report Double
Implementation

This appendix contains a complete version of Double described in Section 2.2,
but modernizes the example by using the improvements discussed in this re-
port.

module Main(main) where
import Language.Drasil (
-— Primitive types
Document, Expr(Int), Sentence(S, E, EmptyS),
Space(Integer), Symbol(Atomic),
—— Chunks
CI, ConceptInstance, ConstrainedChunk, QDefinition,
QuantityDict, UnitaryConceptDict,
—-— Smart constructors
cic, commonIdeaWithDict, cn''', fromEqn', nounPhraseSent,
pn, nw, qw, person, vc,
-- Sentence functions
atStart, short, phrase,
-— Ezpr combinators

($7), sy)

import Database.Drasil (Block, ChunkDB,
SystemInformation(SI), cdb, rdb, refdb, _authors,
_concepts, _constants, _constraints, _datadefs,
_definitions, _defSequence, _inputs, _kind, _outputs,
_quants, _sys, _sysinfodb, _usedinfodb)

import Theory.Drasil (DataDefinition, ddNoRefs)

import Utils.Drasil (chgsStart, foldlSent, foldlSent_, for)

98

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

import Data.Drasil.Concepts.Documentation (doccon, doccon',
input_, output_, software, srs, system, value,
—— Domains
assumpDom, funcReqDom, likeChgDom, srsDomains)

import Data.Drasil.IdeaDicts (mathematics)

import Data.Drasil.SI_Units (derived, fundamentals, siUnits)

import Drasil.DocLang (
DocSection(RefSec, IntroSec, SSDSec, ReqrmntSec, LCsSec,
TraceabilitySec), DerivationDisplay(HideDerivation),
Field(DefiningEquation, Description, Label, Symbol, Units) |
InclUnits(IncludeUnits), IntroSec(IntroProg),
RefSec(RefProg), ReqrmntSec(RegsProg), RegsSub(FReqsSub),
SCSSub (Assumptions, DDs), SolChSpec(SCSProg), SRSDecl,
SSDSec (SSDProg), SSDSub(SSDSolChSpec), TSIntro(TSPurpose),
TraceabilitySec(TraceabilityProg), Verbosity(Verbose),
intro, mkDoc, tsymb, traceMatStandard)

import Language.Drasil.Code (Choices(..), CodeSpec,
Comments (CommentNone), ConstraintBehaviour(Warning),
ImplementationType (Program),
Lang(Cpp, CSharp, Java, Python), Logging(LogNone),
Structure(Bundled), codeSpec)

import Language.Drasil.Printers (DocSpec(DocSpec),
DocType (SRS, Website), PrintingInformation(PI),
defaultConfiguration)

import Language.Drasil.Generate (gen, genCode)

symbols :: [QuantityDict]
symbols = [x, qw calcQ]

pname :: String

pname = "Double"

double :: CI

double = commonIdeaWithDict "double" (pn pname) pname
[mathematics]

assumpNum :: ConceptInstance

assumpNum = cic "assumpNum" (foldlSent [S "This",

99

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

phrase system, S "only considers'", phrase input_,
S "integers between", E $§ (-2) $~ 29, S "and",
E (2 $ 29)]) "reasonableNumber" assumpDom

regMul :: ConceptInstance

reqMul = cic "regqMul" (foldlSent [S "The", phrase output_,
S "shall be twice the", phrase input_, phrase value])
"mulNum" funcRegDom

chg :: ConceptInstance

chg = cic "chg" (foldlSent [chgsStart assumpNum (S "The"),
phrase software, S "may be changed to remove the range",
S "restriction on the", phrase input_, S "to support",
S "doubling any integer"]) "removeRestriction" likeChgDom

-- Calculations

X :: QuantityDict

X = vc "x" (cn''' "input value") (Atomic "x") Integer
calc :: Expr

calc = (Int 2) * sy x

calcQ :: QDefinition

calcQ = fromEgn' "y" (nounPhraseSent $ foldlSent_ [
phrase input_, phrase value, S "doubled"]) EmptyS
(Atomic "y") Integer calc

y :: DataDefinition
y = ddNoRefs calcQ [{-Derivation-}] "doubledd" [{-Notes-F}]

thisSI :: SystemInformation
thisSI = SI {
_sys = double,

_kind = srs,

_authors = [person "Gabriel" "Dalimonte"],
_quants = symbols,

_datadefs = [y],

_inputs = [x],

_outputs = [qw y],

_sysinfodb = allSymbols,

_usedinfodb = allSymbols,

100

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

_defSequence = [] :: [Block QDefinition],
_constraints = [] :: [ConstrainedChunk],
_constants = [],

_concepts = [] :: [UnitaryConceptDict],
_definitions = [] :: [QDefinition],

refdb = rdb [1 []

b

allSymbols :: ChunkDB

allSymbols = cdb symbols (nw double : map nw symbols ++
map nw doccon ++ map nw fundamentals ++ map nw derived ++
map nw doccon') srsDomains siUnits [y] [1 [1 []
[assumpNum, reqMul, chgl] [1 []

pS :: PrintingInformation
pS = PI allSymbols defaultConfiguration

thisSRS :: SRSDecl
thisSRS = [
RefSec $ RefProg intro [tsymb [TSPurposel],
IntroSec $ IntroProg (foldlSent [atStart double,
S "is a trivial example for demonstrating Drasil's",
S "capabilities"]) (short double) [],
SSDSec $ SSDProg [
SSDSolChSpec $ SCSProg [
Assumptions,
DDs [] [Label, Symbol, Units, DefiningEquation,
Description Verbose IncludeUnits] HideDerivation
15
ReqrmntSec $ ReqsProg [
FReqsSub []
15
LCsSec,
TraceabilitySec $ TraceabilityProg $
traceMatStandard thisSI]

srsBody :: Document
srsBody = mkDoc thisSRS for thisSI

thisCode :: CodeSpec
thisCode = codeSpec thisSI thisChoices []

101

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

thisChoices :: Choices
thisChoices = Choices {
lang = [Python, Cpp, CSharp, Javal,
impType = Program,
logFile = "log.txt",
logging = LogNone,
comments = CommentNone,

onSfwrConstraint = Warning,
onPhysConstraint = Warning,
inputStructure Bundled

main :: I0 QO

main = do
gen (DocSpec Website $ pname ++ "_SRS") srsBody pS
gen (DocSpec SRS $ pname ++ "_SRS") srsBody pS
genCode thisChoices thisCode

102

Appendix C
Double Makefiles

This appendix displays the Makefiles generated as the result of Section 5.3.

C.1 C++

ifeq "$(0S)" "Windows_NT"
TARGET EXTENSION=.exe
else
UNAME_S := $(shell uname -s)
ifeq ($(UNAME_S), Linuz)
TARGET_EXTENSION=
endif
ifeq ($(UNAME_S), Darwin)
TARGET EXTENSION=
endtf
endif

build: Double$ (TARGET_EXTENSION)

Double$ (TARGET _EXTENSION) : InputParameters.hpp \
InputFormat.hpp DerivedValues.hpp OutputFormat.hpp \
Control.cpp InputParameters.cpp InputFormat.cpp \
DerivedValues.cpp OutputFormat.cpp

"$(CXX)" Control.cpp InputParameters.cpp \
InputFormat.cpp DerivedValues.cpp OutputFormat.cpp \
—--std=c++11 -o Double$ (TARGET_EXTENSION)

run: build
./Double$ (TARGET_EXTENSION) $(RUNARGS)

103

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

.PHONY: build run

C.2 C#

ifeq "$(0S)" "Windows_NT"
TARGET _EXTENSION=.exe
CSC=csc

else
UNAME S := $(shell uname -s)

ifeq ($(UNAME_S), Linuz)
TARGET _EXTENSION=
CSC=mcs

endif

ifeq ($(UNAME_S), Darwin)
TARGET _EXTENSION=
CSC=mcs

endif

endif

build: Double$ (TARGET EXTENSION)

Double$ (TARGET EXTENSION): Control.cs InputParameters.cs \

InputFormat.cs DerivedValues.cs OutputFormat.cs
$(CSC) -out:Double$ (TARGET _EXTENSION) Control.cs \
InputParameters.cs InputFormat.cs DerivedValues.cs \

OutputFormat.cs

run: build
./Double$ (TARGET_EXTENSION) $(RUNARGS)

.PHONY: build run

104

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

C.3 Java

build: Double/Control.class

Double/Control.class: Double/Control.java \
Double/InputParameters. java Double/InputFormat.java \
Double/DerivedValues. java Double/OutputFormat. java

javac Double/Control. java

run: build
java Double.Control $(RUNARGS)

.PHONY: build run

C.4 Python

build:

run: build
python Control.py $(RUNARGS)

.PHONY: build run

105

Bibliography

1]

[10]

John Hughes. The design of a pretty-printing library. In Advanced Func-
tional Programming, pages 53-96. Springer Verlag, 1995.

GitHub Inc. GitHub GraphQL API v4 | GitHub Developer Guide. https:
//developer.github.com/v4/. Accessed: 2019-08-31.

GitHub Inc. Issue Labels | GitHub Developer Guide. https://
developer.github.com/v3/issues/labels/. Accessed: 2019-08-31.

ISO. ISO/IEC 14882:2011 Information technology — Programming lan-
guages — C++. International Organization for Standardization, Geneva,
Switzerland, February 2012.

Spencer Smith Jacques Carette and Dan Szymczak. JacquesCarette/-
Drasil: Generate all the things (focusing on scientific software). https:
//github.com/JacquesCarette/Drasil. Accessed: 2019-07-07.

Edward Kmett. ekmett/lens: Lenses, Folds, and Traversals - Join us on
freenode #haskell-lens. https://github.com/ekmett/lens. Accessed:
2019-08-22.

Russell O’Connor. Functor is to lens as applicative is to biplate: Intro-
ducing multiplate. CoRR, abs/1103.2841, 2011.

David Lorge Parnas and Paul C Clements. A rational design process:
How and why to fake it. IEEFE transactions on software engineering,
(2):251-257, 1986.

Mono Project. Mono 5.0.0 release notes | mono. https://
www.mono-project.com/docs/about-mono/releases/5.0.0/#csc. Ac-
cessed: 2019-08-30.

W Spencer Smith and Lei Lai. A new requirements template for scientific
computing. Citeseer, 2005.

106

https://developer.github.com/v4/
https://developer.github.com/v4/
https://developer.github.com/v3/issues/labels/
https://developer.github.com/v3/issues/labels/
https://github.com/JacquesCarette/Drasil
https://github.com/JacquesCarette/Drasil
https://github.com/ekmett/lens
https://www.mono-project.com/docs/about-mono/releases/5.0.0/#csc
https://www.mono-project.com/docs/about-mono/releases/5.0.0/#csc

M.Eng. Report — G. Dalimonte McMaster University — Software Engineering

[11] Dan Szymczak, Spencer Smith, and Jacques Carette. A knowledge-based
approach to scientific software development: position paper. pages 2326,
05 2016.

107

	Executive Summary
	Introduction
	Drasil
	Shortcomings
	Problems Addressed

	Details of Drasil
	How Does Drasil Work?
	Small Example

	Code Duplication is Evil
	Pulling a Thread
	A Generic Flexible Chunk
	``I Understood That Reference"
	Putting It All Together

	A Declarative Specification Language
	Making Assumptions Consistent
	Tracing Troubles
	Removing Boilerplate
	More Boilerplate?
	SRSDecl
	A Plateful of Changes

	Build System
	Leveraging Makefile Primitives
	Examining Sub-package Compilation in Depth
	A Pattern of Makefile Targets

	Batch LaTeX Compilation
	Compiling Generated Code
	drasil-build
	A Higher-Level Specification for drasil-code
	Integrating the Generated Makefiles

	From Convenience to Code Caliber

	Embracing Continuous Integration
	Linting For More Standard Code
	``Beep Boop" — drasil-bot
	Generating Artefacts From Generated Artefacts From Generated Artefacts
	Quality

	Conclusion
	Double Implementation
	Post-Report Double Implementation
	Double Makefiles
	C.22ex+.22ex+
	C#
	Java
	Python

