
GypPO

GypPO: A DSL AND CODE GENERATOR FOR
PLATFORMER GAMES

BY
PAVANJOT GILL, B.Eng.

a thesis
submitted to the department of Computing & Software

and the school of graduate studies
of mcmaster university

in partial fulfilment of the requirements
for the degree of

Master of Engineering

c© Copyright by Pavanjot Gill, December 2018
All Rights Reserved

Master of Engineering (2018) McMaster University
(Computing & Software) Hamilton, Ontario, Canada

TITLE: GypPO: A DSL and Code Generator for Plat-
former Games

AUTHOR: Pavanjot Gill
B.Eng. (Software Engineering & Game Design),
McMaster University, Hamilton, Canada

SUPERVISOR: Dr. Jacques Carette

NUMBER OF PAGES: vii, 47

ii

Executive Summary

Forming genres for video games is a means of grouping their similarities. This
grouping allows for certain expectations regarding the elements or mechanics
that would be found in any game of a certain genre. Specifically for 2D plat-
formers, prior to even playing the game, players would expect that the levels
will contain platforms and likely a jump ability. The goal of the GypPO (a
unique acronym generated for Generative Platformers) project is to determine
if there is enough in common amongst the 2D platformer family to create a
domain-specific language (DSL) to define a complete platform game and a
generator to create them.

By observing 2D platformers throughout the years, from the pioneers of
the genre to modern games, it becomes clear which components have stuck and
become the norm for development today. It is these types of commonalities
that are used to design the GypPO language.

The developed GypPO language is derived from the analysis to ensure
all commonalities found in platformers are covered. A user of the GypPO
system first needs to provide the specifications for the enemies, upgrades, and
weapons that would be found in their platformer, written in the designed DSL.
To design the platformer levels, the user specifies the win condition of a level as
well as the placement of game objects. This data includes platform placement
and the positioning of the elements predefined by users.

The generator stores this specification data into data structures represent-
ing the GypPO DSL. With another set of data structures representing the
JavaScript language, the GypPO system translates the data from the GypPO
DSL to JavaScript. The output of this system is a generated browser-based
2D platform video game.

This report is organized so as to first provide the necessary background
information on video games and their genres as well as brief explanations on
DSLs and code generation. The analysis of the platformer genre follows, which
lays the foundation of the language and generator. By discovering the com-
monalities of platformers and grouping them together, the terms and structure
of the GypPO language are directly formed. The remainder of the report pro-
vides a look at the designed GypPO DSL and generator.

iii

Contents

Executive Summary iii

1 Introduction 1

2 Video Game Genres 2

3 Domain Specific Languages 3
3.1 What are DSLs? . 3
3.2 Domain Analysis . 4
3.3 DSL Design and Implementation 4
3.4 Relevance to GypPO . 5

4 Code Generation 6
4.1 What is Code Generation? . 6
4.2 Process of Generating Code 6
4.3 Why Generate Code? . 7

5 Platform Games 8
5.1 Action Games . 8
5.2 Platform Games . 9
5.3 Detailed Analysis of Platformers 12
5.4 Leading to the DSL . 17

6 GypPO DSL 19
6.1 Grid System . 19
6.2 Elements . 20
6.3 Logic . 25

7 GypPO DSL Design Decisions 30

8 GypPO Generator 33
8.1 GypPO AST . 33
8.2 JavaScript AST . 35

iv

8.3 Translation . 35
8.4 Printing . 36
8.5 Generated Game . 37

9 Conclusion 38
9.1 Future Work . 38

A Games List 40

B Summary of Variabilities 41

C Example GypPO File 44

v

List of Figures

5.1 Two very different action games 9
5.2 Screenshots of different Platformer games 10
6.1 Example of both a melee and a ranged weapon 22
6.2 Example of an antag defined using GypPO 24
6.3 Example of the different upgrades defined using GypPO 25
6.4 A level defined in GypPO . 26
6.5 Defining all three types of cameras for GypPO 27
6.6 A protag description in GypPO 29
6.7 Defining all three types of win conditions for GypPO 29
7.1 Placing platforms in a level 32
8.1 The data structure for a health upgrade 34
8.2 Parsing a health upgrade from a specification file 34
8.3 The JavaScript AST representation of an if statement 35
8.5 JavaScript field and object definitions in the JavaScript AST 36
8.4 Translating a health upgrade from the HealthUpgrade data

structure to a JavaScript expression 36
8.6 Pretty printing an if statement 37
8.7 Health upgrades defined in generated JavaScript 37
8.8 Screenshot of generated game 37

vi

List of Tables

5.1 The common properties used by all entities in Platformers . . 12
5.2 Movement patterns used by antagonists 14
5.3 The common properties of weapons in platform games 15
5.4 Movement patterns used by projectiles 16
6.1 The options for target . 22
6.2 The upgrades currently implemented in GypPO 25

vii

Chapter 1

Introduction

Video games with common functionalities and elements can be categorized un-
der the same genre. GypPO, a unique acronym for “Generative Platformers”,
is a research project focused on determining if games falling under the same
genre can be generated. The research process is broken into 2 parts. The
first is to determine if these family of games are similar enough for a Domain
Specific Language (DSL) to be created, which encapsulate these games’ core
elements and logic. The second portion of this research project is to generate
the game code based on specifications defined using the DSL.

A video game genre is a broad term without a standard definition for which
games can fall under a genre, chapter 2 will explain how genres are defined
for the purpose of GypPO. There are a large variety of different genres, so to
narrow the scope of this project, the 2D Platformer family of games will be
the main focus. By analyzing a number of Platformer games, the common
game components defining a Platformer are discovered leading to a complete
coverage of the domain’s main mechanics and elements in the designed DSL.

The DSL is created with the intention of reallocating and shortening the
time developers spend creating their 2D platformer game. With the use of
the GypPO DSL and code generator, developers can spend less time in the
implementation stage of core platformer functions and focus more on the design
of their game. Based on the analysis of Platformers, GypPO generates the
common elements and logic of Platformers, thus allowing the developer’s focus
to be solely on the aspects of their game which make it “unique” (be it art
or a unique game mechanic). GypPO’s target group of users is very broad,
thus by designing the language to be as readable as possible, knowledge of
programming video games is not necessary in order to define a game using
GypPO and having it generated.

It is important to note that GypPO is an extension of the work previously
done by Collman (2014) on generating Bullet Hell games with MAKU.

1

Chapter 2

Video Game Genres

Genres are used to categorize things based on similar attributes. These at-
tributes can range from content to art-style. With respect to games, Adams
(2014) defines genres based on similar gameplay elements/challenges. The is-
sue with video game genres is that there is no standard definition as to what
falls under the different video game genres. The existing guidelines for genres
are based on what a game is thought to fall under by either the creators or
the players. As games begin to get bigger, they have game challenges which
can fall under multiple genres, making hybrids that are hard to categorize.
For example, Grand Theft Auto V (2013) is labeled as an action game but it
consists of elements of shooters, racing, and sports games.

Common genres for video games are shooters, action, sports, strategy, role-
playing, simulation, and adventure. These genres are further broken into sub-
genres to group games together more accurately. This is to avoid the issue
where games like Risk of Rain (2013) and Soulcalibur (1998) can both be con-
sidered action games. However, they have very little in common to be useful
for players to determine what sort of mechanics/challenges these games have.
With subgenres, these games can be labeled correctly as a platform game (Risk
of Rain) and a fighting game (Soulcalibur).

As for the GypPO research project, the focus is on the subgenre of Plat-
formers rather than the entire broad action game genre. The games used for
a detailed analysis, found in chapter 5, were gathered based on using common
gameplay mechanics and elements to define what the platformer genre is.

2

Chapter 3

Domain Specific Languages

This chapter provides a brief introduction into Domain-Specific Languages
(DSLs) and the importance of domain analyses. Most of the information is
obtained from the existing work of Mernik et al. (2005), Fowler (2010) and
Collman (2014).

3.1 What are DSLs?

Mernik et al. (2005) define Domain-Specific Languages (DSLs) as “languages
tailored to a specific application domain.” A very particular domain is an-
alyzed and through this analysis, a language can be designed which solves
problems belonging to this domain. This differs from the more well-known
General Purpose Languages (GPL), such as C, Java, and Python, which are
not constrained to any one domain. GPLs, as their name suggests, are use-
ful when applied to a variety of general problem domains. Whereas the sole
purpose of a DSL is to solve one very specific problem, making them less use-
ful in solving problems belonging to other domains. Some existing DSLs are
the Excel macro language for spreadsheets, and LATEX for typesetting (Mernik
et al., 2005).

To develop a DSL, Mernik et al. (2005) breaks the process into steps:
identify and analyze the application domain, then design and implement the
DSL. The foundation of a well-designed DSL is a detailed domain analysis,
which, if done well, can translate directly to creating the vocabulary of the
DSL. After this task, design decisions need to be made regarding how the
DSL should be created, such as whether the DSL should be an extension of
an existing language or its own standalone language.

3

M.Eng. Report – P. Gill McMaster University – Software Engineering

3.2 Domain Analysis

As a DSL is intended to solve a specific problem domain, an in depth under-
standing of this domain is crucial. The domain could be analyzed informally or
formally using existing methodologies such as DARE (Domain Analysis and
Reuse Environment) developed by Frakes et al. (1998). Analyzing existing
source code related to the application domain can be used in both the infor-
mal and formal analysis and provides good insight into how existing solutions
go about solving the domain problem (Mernik et al., 2005). Through the use
of the domain analysis, common terminology used in the domain will help with
creating the syntax of the DSL.

3.3 DSL Design and Implementation

Once the domain analysis is done, an important decision needs to be made
regarding the creation of the DSL. Fowler (2010) separates DSLs into “inter-
nal” (embedded) and “external” (standalone) DSLs. These differ with regards
to their connection to other general purpose languages. Embedded DSLs are
created using an existing GPL as the foundation and the DSL is simply an
extension of the language, whereas standalone DSLs are independent of a GPL
(Mernik et al., 2005).

The use of a host language has both its advantages and disadvantages when
creating a DSL. This approach has the benefit of the DSL having access to
already existing features of the host language. The DSL also does not need
a new compiler to be created as the GPL will already have one. The issue
with the embedded approach is the lack of flexibility in creating syntax that
closely matches the domain terminology, as the freedom to use domain-specific
notations is restricted by the GPL (Mernik et al., 2005). Another problem is
that the users of the DSL will require some knowledge of the underlying GPL
in addition to knowledge of the problem domain to use the DSL correctly.

Standalone or external DSLs are made with no reliance on any existing
GPLs. These DSLs’ syntax is not constrained by any underlying GPL. The
terminology found in the domain can be freely used to form the language
(Mernik et al., 2005). The advantages to this approach is that the DSL can be
designed to closely resemble natural language. This allows users to easily read
and write a file written in the designed language without the requirement of
knowing how to program in a GPL. The downside to this approach is that it
is more complex and time-consuming to develop as the DSL creator requires
knowledge of compilers to create one for their designed language (Mernik et al.,
2005).

4

M.Eng. Report – P. Gill McMaster University – Software Engineering

3.4 Relevance to GypPO

While both types of DSLs have their own merits, the GypPO DSL was created
with the idea that its syntax will closely resemble the common terms used to
define a platformer. The domain analysis for GypPO, found in chapter 5, is
done informally through playing and observing gameplay as well as examining
source code. From the domain analysis step, many keywords used in describing
platformers are found to create a language that is able to clearly define a
platformer game. Therefore, by making an external DSL, GypPO can be
readable and used by domain users without the need to first learn how to code
using a host general programming language. While the difficulty increases
when creating a new compiler/processor for GypPO, it is necessary to increase
the readability of the created DSL.

5

Chapter 4

Code Generation

This chapter provides a brief introduction into code generation. It focuses
on the general information about the generation process, leaving the imple-
mentation details to chapter 8, the GypPO code generator. This information
on code generation is obtained from the earlier work of Czarnecki and Ulrich
(2000), Mur (2006), Fowler (2010), Szymczak (2014) and Collman (2014).

4.1 What is Code Generation?

Code generation is the automated production of source code from an input
file written in a higher-level language (Mur, 2006). With regards to GypPO,
the higher-level language is the DSL created for describing the platformer
domain. In essence, a generator, such as a compiler for example, takes an
input file written in a higher-level language (such as C or Java), processes the
input file, translates to and outputs the source code (machine-readable code for
compilers) (Fowler (2010), Czarnecki and Ulrich (2000)). For GypPO, instead
of generating machine-readable code, the generator creates JavaScript source
code based on the specifications detailed by an input file written in the DSL.

4.2 Process of Generating Code

From the information obtained from Czarnecki and Ulrich (2000) and Fowler
(2010) the process of code generation could be generalized into 5 steps:

1. Compile the generator framework and parser

2. Parse the high-level input file

3. Process the parsed information

4. Translate the processed information into the target output language

6

M.Eng. Report – P. Gill McMaster University – Software Engineering

5. Print/Output the translated code

4.3 Why Generate Code?

Code generation is useful for being able to take a higher-level language input
file and generate code in any target output language (Mur, 2006). For the case
of using domain-specific languages as the high-level language, the first three
steps of the code generation process stay the same regardless of any changes
to the target output language. The translation to, and printing of the output
file are the steps which require alterations depending on the target language of
generation. While chapter 8 goes into the specifics of how GypPO generates
the game code from the DSL, an important prerequisite to the translation step
is to have an abstract syntax tree (AST) for JavaScript. This tree provides
a representation of the syntax of the languages necessary to generate working
code which is written correctly in JavaScript. By swapping the AST of the tar-
get language by an AST of another, and modifying the translator and printer
accordingly, the code generator can generate to any language without needing
to alter the input file and parser. This allows for users to focus their efforts on
the domain problem and correctly providing specifications through the DSL,
while relying on the generator to produce the source code in whichever lan-
guage is required.

The downside to using code generation is the added complexity of gener-
ated code compared to handwritten code which performs the same functions.
Generated code may be harder to read and the increased complexity can lead
to an increase in difficulty debugging and testing the generated code (Szym-
czak, 2014).

7

Chapter 5

Platform Games

Based on the Adams (2014) definition of games being grouped by common
gameplay challenges to form genres, modern games are becoming hybrids of
many different genres with a variety of challenges. A testament to this are
games known as Platformers. As Adams (2014) provides descriptions of var-
ious game genres, the platform section is relatively short, stating that the
commonalities of these games consist of “unrealistic physics” (jumping) and
platforms to traverse in a game level. Therefore, all other challenges of these
games would come from other genres (commonly 2D shooters). This brief de-
scription of the domain of platform games is not detailed enough to provide
the required knowledge to form a complete domain-specific language. Thus,
this chapter thoroughly analyzes Platformers in the hopes of having a better
understanding of what this domain is. The complete list of games used for
this analysis are found in Appendix A. Some games were very briefly and
informally looked at while others were analyzed more thoroughly providing a
clearer picture of the commonalities of platformers.

5.1 Action Games

Before conducting an in depth analysis of platformers, it is important to first
understand the parent genre, action games, that platformers fall under. These
games are ones which require some form of physical skill to overcome their
gameplay challenges (Adams, 2014). With this general definition, action games
encompass a variety of different games, leading to the creation of subgenres for
more accurate groupings of games. Some action subgenres and their physical
challenges include: platformers - jumping from one platform to another while
overcoming obstacles, fighting games - requiring reaction time and timing skills
to combo moves and attacks, shooters - need hand-eye coordination and reflex
skills to accurately aim and shoot at enemies before they shoot back.

8

M.Eng. Report – P. Gill McMaster University – Software Engineering

(a) Super Mario Bros. (b) Soulcalibur 3

Figure 5.1: Two very different action games

5.2 Platform Games

Platformers have been a part of the gaming world since the 1980s, where
they became big hits in arcades. Arguably, beginning with the 2D arcade
game Space Panic developed by Universal Entertainment Corporation (1980),
the platform genre went through a roller coaster of popularity, picking up
throughout the 1980s and 1990s. 2D platformers in particular, the focus of
GypPO, had a flux in popularity throughout the years. With the introduction
of 3D platformers, 2D platformers took a backseat until the release of modern
games such as Risk of Rain (2013), and Cuphead (2017) bringing a revival
of the 2D platformer genre. While Space Panic can be considered the first
platformer, the game lacks the fundamental elements that define the platform
genre today. The two defining game elements of platformers are the jumping
mechanic, and platforms to traverse by means of jumping between them. While
Space Panic has a terrain which can be considered a “platform”, it extends
the entire width of the screen with travel between platforms constrained to
ladders placed around the level. It was not until Donkey Kong was released
by Nintendo R&D1 (1981), the most well known pioneer of the genre, that
jumping was introduced and became the norm. Another element of platformers
that is now expected, but not mandatory, is the placement of collection items
around a level for the player to acquire. These items are sometimes included
as bonus score increases while other times they are the objective of a game
level.

9

M.Eng. Report – P. Gill McMaster University – Software Engineering

(a) Space Panic (Universal
Entertainment Corporation,

1980)

(b) Donkey Kong (Nintendo
R&D1, 1981)

(c) Jump Bug (Hoei and
Alpha Denshi Corporation,

1981)

(d) Super Mario Bros.
(Nintendo Creative
Department, 1985)

(e) Metroid (Nintendo R&D1
and Intelligent Systems, 1986)

(f) Sonic the Hedgehog (Sonic
Team, 1991)

(g) Rogue Legacy (Cellar
Door Games, 2013)

(h) Risk of Rain (Hopoo
Games, 2013)

(i) Cuphead (StudioMDHR,
2017)

(j) Celeste (Matt Makes
Games, 2018)

Figure 5.2: Screenshots of different Platformer games

10

M.Eng. Report – P. Gill McMaster University – Software Engineering

When creating a 2D platformer, the first important design decision to be
made is regarding the camera type. The three camera options used for plat-
formers are fixed screens in which the entire level is displayed on the screen,
one-way scrolling where the camera can only move in one direction pre-
venting the player from traveling back, and free-scrolling where the camera
focuses on the player avatar in the centre of the screen but has no constraints
as to which directions it can move in.

In Platformers, the player is in control of a single entity on the screen,
labeled as the protagonist which needs to traverse over the platforms in a
single level to achieve a win condition. These win conditions can be broken
down into four different objectives: collection of some game object, destroy-
ing all enemies, eliminating a specific “boss” enemy, or reaching the
end of the level. Using the games shown in figure 5.2 as samples repre-
senting the platformer genre, many observations and commonalities can be
found between them. As stated above, while jumping may not have been a
feature belonging to the first platformer, it became a must in most platform
games following Donkey Kong. These protagonists have the ability to jump
to allow players to move across the platforms. Most of the platformers in 5.2
have these platformer-defining elements but also include some other gameplay
mechanic that is usually found in other types of games. Commonly this is an
attack method to defeat enemy entities in the levels. This attacking method is
through the means of a weapon (the protagonist can be a weapon if, like Super
Mario Bros. (1985) 5.2d, jumping onto enemies is an attack). Celeste (2018)
5.2j, on the other hand, does not provide the players with an attack method
to destroy enemies as the focus of that game is on having fluid movement me-
chanics and a dash ability to increase the distance a player can reach. Celeste
therefore, requires good level design to make the most of the basic platformer
movement mechanics. With the inclusion of a dash feature, Celeste increases
the possibility of where platforms can be placed, increasing the difficulty of
getting to the end of a level.

There are various different types of platforms found in the levels of these
games. These platforms include simple, stationary platforms, moving
platforms - requiring players to time their movement to reach the next plat-
form, and one-way platforms that allow players to phase through them when
moving in one direction but not allowing the player to move back in the direc-
tion they came from. To add to the variety of platforms used in these games,
any of these platforms could have size variations, with smaller platforms
requiring players to have more skill to successfully reach them.

While some games in 5.2 may not appear to have any form of enemies, that
can only be true if we are considering the traditional enemies found in games.
Every game shown in 5.2 has some form of enemies labeled as antagonists.
While most of these games have entities which actually attack the player, thus

11

M.Eng. Report – P. Gill McMaster University – Software Engineering

being traditional enemies, other games have elements in their environments
that still perform the same task as these common enemies (kill the protag-
onist). Celeste (2018) 5.2j may appear to lack any typical enemies, but the
obstacles found in Celeste perform the same functions as enemy entities, thus
they are also labeled as antagonists. Each antagonist consists of a movement
pattern and an attack type. While the antagonists that are just obstacles or
traps for the players may not appear to have any form of movement or attack,
being stationary is one common option for antagonists’ movement pattern,
while just coming into contact with a protagonist is a form of attack.

5.3 Detailed Analysis of Platformers

With section 5.2 providing an overview of platform games, this section expands
on the commonalities found through analyzing the games in Figure 5.2 and
Appendix A.

5.3.1 Entities

Entities of a platformer are split between protagonists and antagonists.
The biggest difference between these 2 types of entities is whether they are
player-controlled in movement and attacking or have specific patterns assigned
to them. The other difference is an optional score that can be associated with
an antagonist when they are destroyed, a feature found in Jump Bug (1981)
5.2c and Super Mario Bros. (1985) 5.2d. Through observation of the games
of 5.2, the common properties of platformer entities were discovered and used
to form an understanding of what defines an entity. Table 5.1 shows these
common properties.

Property Description
Health The initial health of the entity.
Lives The number of lives the entity has before being

permanently destroyed.
Speed Used by the engine to provide the correct move-

ment speed to the entity upon creation.
Spawn Location A set of coordinates of where to place the entity

at the start of a level.
Linked Weapon The name of the weapon which the entity uses to

attack. Optional.

Table 5.1: The common properties used by all entities in Platformers

Health and lives of entities are easy to understand, games like Metroid

12

M.Eng. Report – P. Gill McMaster University – Software Engineering

5.2e, Rogue Legacy 5.2g, Risk of Rain 5.2h, and Cuphead 5.2i explicitly show
the player’s health properties and lives, whereas the others, while not actively
showing these properties, still have them. In the games where the health
property is hidden, the game still assigns a value to each entity. Most of
these games have a “1-hit, 1-kill” policy, where coming into contact with any
antagonist results in death. For these games the health property is considered
to be set at a value of 1, while the damage value of the attacking weapon is also
considered to be at 1 health unit. Lives, like-wise may be shown like in Super
Mario Bros. or can be hidden. Any of these games where an entity death
leads to respawning rather than permanently having the entity destroyed (if it
is the protagonist, this leads to losing the game) means that the game assigned
a number of lives to the entity which is greater than one. For entities with no
respawning, this means that the life value is just one.

The speed value is required for any moving object within a game. The
game engine requires this property to move an entity at the correct speed.
Spawn location is another property required by the game engine. The engine
needs each entity to have intial position coordinates so as to place these entities
in their correct positions in a level.

The last common property found for entities is a weapon linked to the
entity. Section 5.3.3 goes into details regarding weapons found in platformers
but the “linked weapon” property for entities is to specify which weapon/at-
tack method an entity uses. This is an entirely optional property as not every
platformer has weapons and attacking as a gameplay feature. Celeste has no
attack methods and weapons, however all the others in Figure 5.2 have some
form of a weapon. Games such as Sonic the Hedgehog and Super Mario Bros.
both use the protagonist’s body as a weapon (more specifically the avatar’s
feet) as jumping onto enemies is a form of attack. Similarly, when player enti-
ties come into contact with enemies, the player takes damage, indicating that
the enemy bodies are also considered weapons.

Recognizing that both protagonists and antagonists are very similar is key
to the creation of the game engine for GypPO. This is to abstract specific
platformer elements from the engine and leave this information to the DSL
and code generator.

5.3.2 Antagonists

While subsection 5.3.1 discusses the commonalities found between all entities
in platform games, this section dives into further detail regarding the unique
properties of the antagonist entities. These are the movement patterns and
attack patterns followed by antagonists while still alive in a level. The attack
patterns are left for the weapons section 5.3.3 to discuss. To understand
movement of antagonists, it is broken into five properties: pattern - movement

13

M.Eng. Report – P. Gill McMaster University – Software Engineering

pattern assigned based on table 5.2, tracking - whether or not the antagonist
can track the protagonist and always face towards the protagonist (useful for
attacking as an enemy with tracking will always attack in the direction of the
protagonist), speed - discussed in the entities section, flying - whether or not
the antagonist is ground-based or in the air, and “vee” movement - which
is whether or not the entity moves in a “v” like pattern. This pattern occurs
when an entity is moving towards the left or the right of the screen but jumps
each time the entity lands on the ground, moving this way repeatedly will form
a v-shaped pattern. Flying entities could also have this movement pattern but
they need a maximum and minimum elevation value to correctly form the v-
shape. The “vee” pattern could have been a movement pattern itself, but an
antagonist with “vee” movement still requires a defined movement pattern of
the four shown, thus “vee” is its own property rather than another pattern.
The patterns found in table 5.2 are based on observations of enemy movement
in the games of figure 5.2.

Pattern Description
Patrol Antagonist moves between two coordinate points

in the level.
Charge Antagonist moves in the direction of the player.
Still Stationary antagonist.
Random The direction the antagonist moves in changes

randomly.

Table 5.2: Movement patterns used by antagonists

5.3.3 Weapons

Weapons can be found in all Platformers that also have killable enemies. In
subsection 5.3.1, the “linking weapons” property is there to link an entity to
the weapon it uses. The most important property of these weapons is the
damage dealt by the weapon when it attacks and comes into contact with an
entity. For games such as Risk of Rain, these weapons have a fixed weapon
value that the entity’s health value is decreased by. The games with no explicit
health property, leading to a fixed value of 1, means that the damage value
of weapons is also fixed to 1. This creates the “1-hit, 1-kill” policy mentioned
above. The other common attributes of the weapons in platformers are range,
rate of fire, speed, and attack type. The weapons used by these games are
very simple, divided into 2 types: melee weapons and ranged weapons. These
weapons have a specific range value that sets the furthest distance a weapon
can reach before being destroyed. For melee weapons, this range value specifies
the length of the melee weapon. For ranged weapons, this value provides

14

M.Eng. Report – P. Gill McMaster University – Software Engineering

the game with a maximum distance a projectile/bullet can travel before it is
destroyed. The rate of fire property is the frequency at which the weapon can
fire. This property is found to be common with any weapons that are external
from the entity’s body. In Super Mario Bros. and Sonic the Hedgehog, the
melee weapon is the protagonist’s body, so there is no actual firing of a weapon.
Similarly, speed is another property only required by external weapons. This
value provides the game engine with how quick a projectile should travel or
how fast a melee weapon swings/stabs.

Property Description
Damage Amount of health that is decreased upon coming

into contact with an entity.
Range The maximum distance the weapon can reach

from its initial firing location.
Rate of Fire Frequency at which the weapon can fire.
Attack Speed The speed of the attack\projectiles.
Attack Type Weapons can be either melee or ranged.
Attack Pattern If the weapon is ranged, a projectile pattern needs

to be defined.

Table 5.3: The common properties of weapons in platform games

As the weapons used in platformers vary between melee and ranged, ad-
ditional commonalities can be found between weapons of the same type. As
discovered for the movement patterns of antagonists, projectiles fired from
ranged weapons also have attack patterns they follow. The common patterns
used by these games are described in Table 5.4. One interesting weapon prop-
erty discovered is that the modern games (2010s) and Sonic the Hedgehog also
have weapons which can fire multiple projectiles at once. These weapons still
require the same properties defined for single-shot, with one additional piece
of information which is the directions that these bullets are fired. Without
the different bullets having different directions to move in, they would overlap
and appear as a single bullet on screen.

15

M.Eng. Report – P. Gill McMaster University – Software Engineering

Pattern Description
Straight Projectile fired in a straight line in the direction

the entity is facing.
Arc Projectile fired in a curve in the direction the en-

tity is facing.
V-attack Projectile fired with a “v” pattern.
Homing Projectile tracks the closest entity and moves to

their tracked position.

Table 5.4: Movement patterns used by projectiles

5.3.4 Upgrades

Upgrades are the game element which most differ between the different plat-
formers analyzed. The upgrades, which are common to platformers, are weapon
upgrades, health/life upgrades, and score upgrades/collectibles. As
games like Rogue Legacy and Risk of Rain have the win condition of beating
a boss antagonist to win a level, adding these weapon and health upgrades
provide the player with some progression and reward for overcoming the chal-
lenges. As weapons could vary in terms of the properties stated above, the
way of playing can also change depending on which weapon a player is using.
A player with a melee weapon may approach the game with more caution as
they need to get in close to an enemy, risking death, in order to attack. With
weapon upgrades in the game, this allows players to have a choice in which
weapon they use, rather than just sticking with the original weapon assigned
to the entity.

The collectibles have become the most famous upgrade within platform-
ers. Beginning with Donkey Kong, these collectibles provide the players with
another objective besides just getting to the end of a level or defeating an
enemy. They are a must to have in platformers since their introduction. With
games that keep score, attaining these collectibles provides the player with an
incentive to increase their score. Jump Bug interestingly uses the collectibles
in their game as a means to increasing the player’s lives. These collectibles also
lead to the unique upgrades that are not common to all platformers. Rogue
Legacy, Risk of Rain, and Cuphead use coins as both a collectible item as well
as currency. By providing a form of currency, these games introduce economies
that result in the currency being exchanged for other upgrades. All three of
these games provide weapon upgrades but they add a cost property to these
weapons. Rogue Legacy goes beyond by adding stat based upgrades amongst
other things to the game. This results in the currency being used to exchange
for more than just weapons. The game adds armor (a way of negating some
amount of damage), mana as a resource to use special types of attacks, and

16

M.Eng. Report – P. Gill McMaster University – Software Engineering

new game mechanics which are all considered upgrades.

5.3.5 HUD

The heads-up display (HUD) of these platformers can be seen in the screen-
shots found in figure 5.2. Games like Risk of Rain provide a lot more infor-
mation to the player compared to the others. The HUDs only display the
most important information required by the player. This usually includes the
protagonist’s health, life, and score information. However, a HUD should only
show information that is relevant to the game. If score is not an implemented
feature, then of course it would not be shown on the screen. It is interesting
to note that the latest two games have opted for a minimal HUD. Cuphead
only needs to show the health of the player, and their power-up level for a
special attack. Celeste was developed with consideration for speed-runners, so
a timer is shown on the upper right portion of the screen. These games show a
counter for collectibles when the player picks them up but they are only shown
for a limited time before going away.

5.3.6 Levels

Levels in platformers are where all of the above subsections come together.
When creating a level, a developer is required to define the camera model
used, every spawn location of entities, the placement of platforms, the place-
ment of upgrades, and the win condition. Platforms can consist of stationary
platforms, moving platforms, as well as some boosted jump platforms like the
springs found in Super Mario Bros. which allow the player to jump across
large gaps. The moving platforms used in these games use the patrol pattern
similar to the one used by antagonists. They move from one point to another
and repeat. Celeste also has clouds as platforms that act like the boosted jump
platforms with the added difficulty of disappearing as soon as they launch the
player up, not allowing the player to come back down onto the platform. Most
platformers have hand-crafted levels designed by the developers, but as pro-
cedural level generation is becoming more popular, some modern games are
changing the way levels are created. Both Rogue Legacy and Risk of Rain
have randomly generated levels, resulting in different levels being played in
each playthrough of these games.

5.4 Leading to the DSL

This detailed analysis on the platformer genre of games is crucial to design
a DSL that is a complete representation of this domain. Chapter 6 discusses

17

M.Eng. Report – P. Gill McMaster University – Software Engineering

the GypPO DSL and shows how the information obtained from this chap-
ter translates to the formation of a domain-specific language. The common
terms found to describe and analyze platformers are used as terms in the
GypPO language. A summary of the variabilities found from the analysis is
in Appendix B. These variabilities were discovered with help of the Family-
Oriented Abstract, Specification, and Translation (FAST) approach developed
by Coplien et al. (1998), the work of Ardis and Weiss (1997), and from the
commonalities analysis on mesh generators done by Smith and Chen (2004).

18

Chapter 6

GypPO DSL

As explained in the introduction to domain-specific languages in chapter 3,
the domain analysis in chapter 5 directly translates to the terminology used in
a DSL. The resulting product is the GypPO DSL, a text-based language with
a list of keywords related to the domain, used to create a specification file de-
scribing a platform game. Each section of the language is white-space sensitive
to clearly separate the different elements that make up a platformer. GypPO
uses Haskell to implement the data types representing the syntax of both the
designed language as well as the target JavaScript language. The ASTs were
created to closely resemble the languages, allowing for the system to efficiently
parse and process the information from the input specification file. Haskell’s
Parsec library is a big help with the parsing of the game specifications.

The language is separated into two sections: the elements and the logic

of a game. The elements portion is used to describe the game objects that
can be found throughout the game, not just specific to any one level. This
includes the antagonists, weapons, and upgrades. The logic section focuses on
the specifications for each level within the game, from win conditions to the
placement of platforms and entities. This chapter will go into further detail
of what each of these consists of by using small examples of text written in
the GypPO language. The explanation of the design decisions regarding why
GypPO is organized in this specific way is left for chapter 7.

6.1 Grid System

Before the specifications of any elements or logic of the game, GypPO requires
a relative grid system to be defined. GypPO uses such a system to provide
relative coordinates for placing any elements into the game. As every entity in
the game requires an initial spawn location, this coordinate is based on the grid
system defined, rather than absolute coordinates. Using a grid system allows
for the game to scale to any size without needing to change the placement

19

M.Eng. Report – P. Gill McMaster University – Software Engineering

positions of anything in the game from the specifications file. This method
leaves any absolute coordinate placement to the GypPO engine which is the
only portion of the GypPO system that needs to know the screen size used to
play.

6.2 Elements

The elements portion of the GypPO language is for defining the properties
of the weapons, antagonists, and upgrades used in a platform game. An ex-
ample of each element that can be defined using GypPO is found below as
the descriptions are explained. Properties such as name, colour, shape, and
speed are used for describing all elements of the game. Each element of the
game has a name assigned to them used for linking and placing these elements
into the levels. There are a variety of colours that the user can choose from;
all of which are found in the Haskell colour package. The common property
shape can be either squares (square) or rectangles (rectangle). A triangle

option is also available, however CraftyJS, the JavaScript game engine used to
display the generated code, is restricted to only showing squares and rectan-
gles. The triangle shape is only there to create a triangular hitbox for collision
detection. These invisible hitbox options are important as they should be
used when defining hitbox shapes but using custom art for the game elements.
Since the generated game does not create art for a user, it can only use squares
and rectangles to have visible game elements. The last common property is
speed which can be found when defining any moving entity (weapon projec-
tiles, antagonists, and protagonists). The speed property has six options for
users to choose from: rest, very slow (vslow), slow, medium, fast, and very
fast (vfast). The speed values, when generated, scale with the game size and
are based on how much of the screen an entity is able to move within a second.
With rest being 0 pixels per second, each successive speed value is an addi-
tional 5% of the game screen covered in a single second, with the maximum
value being 25% of the game screen being traversed in a second.

6.2.1 Weapons

When defining the elements of a platform game in GypPO, it is necessary
to group the various element types together. Figure 6.1 shows two different
weapons being defined, where the difference lies in defining the attack type as
brought up in the domain analysis. The common properties mentioned above
are all found when describing weapons. A name for each weapon is required so
it can be used when defining entities through linking a weapon to that entity
if necessary.

20

http://hackage.haskell.org/package/colour-2.3.4/docs/Data-Colour-Names.html

M.Eng. Report – P. Gill McMaster University – Software Engineering

The remaining properties of defining weapons are exclusive to the weapon
elements. These include damage, attack type (melee or ranged), attack range
(atkrange), rate of fire (rof), and target. Damage is a non-negative integer
indicating how much health of an entity the weapon collides with is taken
away by one successful attack. The attack type is the property which can be
further defined based on what type is chosen. A melee weapon does not need
any further specifications, but as the second weapon in Figure 6.1 shows, a
ranged weapon needs the speed and bulletpattern to be defined. The bullet
pattern is an attack pattern selected out of the ones built into the language
and generator. The patterns found in Table 5.4 have all been implemented in
the GypPO system for a user to select. The keywords for these are: straight,
arc, vatk, and homing. The attack range is the maximum range in grid units
that an attack can reach before being removed from the game. For a melee
weapon, it is the length of the weapon element in the game whereas, for ranged
weapons this value indicates how far a projectile can travel without colliding
with any entity before it is destroyed by the game. Rate of fire is a property
for how many times in a second a weapon can fire. This property prevents
the enemies or players from firing a constant stream of attacks without any
rest between them (unless that is the intention). The last property, target,
is for the collision functions and homing bullet target-finding. The options
for target and their descriptions are found in Table 6.1. Having options for
attacking entities or other weapons is to provide some variety to weapons and
giving users the options to define weapons with the sole purpose of blocking
bullets.

21

M.Eng. Report – P. Gill McMaster University – Software Engineering

weapon

name "mel"

damage 10

colour green

shape square

melee

atkrange 20

rof 3

target all

weapon

name "str"

damage 20

colour green

shape square

ranged

speed medium

bulletpattern straight

atkrange 40

rof 1

target characters

Figure 6.1: Example of both a melee and a ranged weapon

Target Option Description
characters Can only collide with entities in the game (antag-

onists and protagonists). Adjusts entity’s health
based on damage value.

weapons Can only collide with other weapons in the game.
Destroys both weapons.

all Can collide with both entities and other weapons
in the game.

Table 6.1: The options for target

6.2.2 Antagonists

Antagonists, labeled as antag, are the next element of a platformer described
in GypPO. Figure 6.2 showcases an example antagonist and what properties
are required to completely define the entity. An antagonist must have the

22

M.Eng. Report – P. Gill McMaster University – Software Engineering

common properties name, speed, shape and colour described as well as a few
properties exclusive to these types of elements. One property to note that goes
along with the colour and shape of the element is the size property. With
the options being small (s), medium (m), and large (l), these values use the
relative grid system to scale the antagonist appropriately for display on screen.
This size property is required for the same reason as shapes, due to the lack
of art generation, antagonists can have varying sizes that are only displayed
on screen by different sized shapes. With game art being implemented, the
size property remains important for simple collision hitboxes (the alternative
being custom hitboxes with unique polygons). Antag health is the initial non-
negative integer health value of the entity. This is the value which is always
checked and adjusted after collisions with weapons, leading to the removal of
the antagonist once this value reaches 0.

The important property for the antagonist is the movement, which is further
broken down into the properties found in subsection 5.3.2. For the properties
which have a simple true or false definition (flying, vee, track), the GypPO
keyword for these properties is yes or no. The GypPO engine has each pat-
tern found in Table 5.2 implemented to allow the ability for GypPO users to
assign the commonly found movement patterns of platformers to any antag-
onist in their game. The list of keywords denoting each of these patterns is:
still, patrol, charge, and random. As the patrol pattern requires two co-
ordinates for the antagonist to move between, this information is left for the
level description as that is where the spawn locations of these antagonists is
described.

If an antagonist uses a weapon, the weapon name needs to be linked to
a weapon described above in a GypPO file. Every other piece of information
regarding the weapon is stored in the weapon definition rather than in the
antagonist definition. Lastly, if the game keeps track of score points, an an-
tagonist should have a score value to denote how many points are awarded
to the player for successfully eliminating this enemy.

23

M.Eng. Report – P. Gill McMaster University – Software Engineering

antag

name "antag1"

health 20

weaponname "mel"

flying no

movement

pattern patrol

track no

vee no

speed slow

colour blue

size m

shape square

score 100

Figure 6.2: Example of an antag defined using GypPO

6.2.3 Upgrades

As discovered in the domain analysis chapter, the upgrades used in platformers
are one of the more varying elements between these games. GypPO focused
on the most important upgrades, found in Table 6.2, while leaving room for
additional upgrades being added as future work with relative ease. An example
of defining each of these upgrades is shown in Figure 6.3. The description of
each of these elements follows the same pattern. Beginning with the keyword
indicating which type of upgrade it is, next is the name of the upgrade, used for
the same reason as every other element of the GypPO language, for identifying
and placing in a level. The next property for an upgrade is the value assigned
to the upgrade. For a collectible, this is a score value for how much the
player’s score is increased by upon pickup. health and life require a non-
negative integer value specifying how much of their respective property to
increase for the entity which picks up these upgrades. The weapon upgrade
requires a name of a pre-defined weapon that will be replacing the entity’s
linked weapon. The last property for every upgrade is a colour assigned to
each upgrade to display in the game screen.

24

M.Eng. Report – P. Gill McMaster University – Software Engineering

upgrades

collectible "coin" 50 violet

health "hlth" 50 red

life "lifeup" 1 yellow

weapon "newW" "arc" blue

Figure 6.3: Example of the different upgrades defined using GypPO

Upgrades Description
Weapons (weapon) Replaces the weapon linked to the entity with the

one picked up.
Collectibles
(collectible)

Collectible pickup item that is one of the most
defining elements of a platformer.

Health (health) Increases the entity’s remaining health property
by a specified amount

Life (life) Increases the entity’s remaining lives by a speci-
fied amount.

Table 6.2: The upgrades currently implemented in GypPO

6.3 Logic

The logic portion of the DSL is where each level in the generated game is de-
fined. This is where the elements defined earlier would be linked and actually
placed into the game. Every level consists of a camera model, platform place-
ment, a protagonist definition and a win condition. The remaining properties
in Figure 6.4 (antagonist placement and upgrade placement) are optional as
not every level in a platformer necessarily requires any of these. It is impor-
tant to note that GypPO does not determine whether or not the placement of
elements in a level is feasible. The game designer using GypPO is responsible
for the feasibility of the placement of their game elements, meaning it is also
possible to make levels which are impossible to play (such as spawning over
nothing and falling to death). The exception is trying to place elements at
coordinates which are not in the grid, GypPO must catch this error.

25

M.Eng. Report – P. Gill McMaster University – Software Engineering

level

camera fixed

platforms

0 1 m green

1 2 l green

5 1 m green

4 3 s green

4 2 m green

antags

"antag1" 1 0

patrol

start 0 0

end 2 0

"antag2" 2 2

lvlUpgrades

"coin" 0 1

"hlth" 1 2

protag

spawn 0 0

jump 1

speed slow

lives 3

health 100

colour red

shape rectangle

weaponname "hom"

score 150

Figure 6.4: A level defined in GypPO

26

M.Eng. Report – P. Gill McMaster University – Software Engineering

camera fixed

canera one-way 5 5

camera free-scroll 5 5

Figure 6.5: Defining all three types of cameras for GypPO

6.3.1 Camera Models

All three camera models discussed in chapter 5 have been implemented into
the game engine and the DSL as options. Figure 6.5 shows how to define each
of these as well as what data needs to go along with the camera (if any). The
fixed camera is straightforward to define and implement. The entire level
is scaled to fit on the screen without any need for scrolling. The other two
camera models each require an X and Y value indicating how many grid units
of the relative grid system are in the view.

6.3.2 Platform Placement

The placement of the platforms is the most important element of this game
genre. The current method of placing platforms is by listing every platform
required by a level with its placement coordinates (in the relative grid system),
the size of the platform and the colour. By providing the platform location in
the coordinates of the grid system used by GypPO, the generator and engine
are tasked with translating these to absolute coordinates of the game screen.
The next value of a defined platform is the size (s, m, l). The three options
are small, medium, and large, with each taking a certain number of grid units.
The small platforms take up one grid unit in width, with each increasing size
adding another grid unit to the length of the platform. The colour data is
the same as all other definitions of colour in GypPO, being required when the
game element does not have any art to show, so it must have a colour instead.
While this may not be the ideal way of placing platforms in games, improved
methods are discussed in the section titled “Future Work”.

6.3.3 Antagonist and Upgrade Placement

The placement of elements defined in the elements portion of a GypPO DSL
file is fairly straightforward. With the exception of antagonists with the patrol
pattern, all other elements require the name of the defined element (antagonist
or upgrade) and their initial position in the level. The exception, patrol,

27

M.Eng. Report – P. Gill McMaster University – Software Engineering

requires necessary additional information for antagonists to have them move
correctly. patrol has two properties which need to be defined; the start

grid coordinates and the end grid coordinates. The antagonist will then move
between these points until they are destroyed or the level is over.

6.3.4 Protagonist

In the domain analysis, antagonists and protagonists are both labeled as enti-
ties of the game. While antagonists are defined in the elements section of the
DSL, a protagonist is defined in each level created for a platformer. This is
because, while the same enemies can be found in multiple levels, protagonists
in different levels can vary. In games such as Celeste, when the player is in
an underwater portion of the level, they have altered properties to account
for the change of environment such as the maximum jump height or there
is a variation in speed. In Rogue Legacy, different protagonists start with
a variety of different properties. These protagonists can differ with regards
to their weapons, health, speed, and maximum jump height. The DSL took
these variations of protagonists into account leading to each level having their
own defined protagonist, rather than one general protagonist defined in the
elements part.

Figure 6.6 shows a description of a protagonist in a single level. As noted
above and in chapter 5, antagonists and protagonists can both be considered
entities, thus they have similar properties that need to be defined. With the
exception of spawn, jump, lives, the rest of the properties found under a
protag are the same ones found under an antag in the elements side of the
DSL. Like the antagonist placement above, the protagonist requires an initial
position (spawn) for the engine to place the player when the level is loaded.
Platforms as terrain in levels and jumping protagonists are the two crucial
elements which define the entire genre of platformers. The jump property
takes a non-negative integer as a value indicating the maximum height in grid
units that the player can jump. If platforms are placed just one unit above or
below the preceding platform, then this jump value is typically 1, but that is
not always the case, going back to Celeste’s change in maximum jump height in
different environments (“levels”). The last unique property for the protagonist
is lives. While some games may provide only a single life to the player (Rogue
Legacy, Risk of Rain), others can have multiple lives before ”game over”. To
take both types of games into account, lives can range from 1 - n.

28

M.Eng. Report – P. Gill McMaster University – Software Engineering

protag

spawn 0 0

jump 1

speed slow

lives 3

health 100

colour red

shape rectangle

weaponname "hom"

Figure 6.6: A protag description in GypPO

6.3.5 Win Condition

Through analyzing the various ways of winning a level in platformers, three
win conditions were implemented as options for GypPO. The win conditions
boss kill (boss) and end of the level (eol) are directly taken from section 5.2.
The boss win condition requires the name of an antag that is placed in the
level to define it as the boss. This results in moving onto the next level once
that antagonist is destroyed. The end of the level definition requires an (X,Y)
coordinate of the relative coordinate system indicating where the end of the
level is, so once the player enters this cell in the grid, they progress onto the
next level of the game. The last win condition implemented in GypPO is
score, which is that the player moves on once a certain score is reached. This
is a combination of the two win conditions pickup every collectible and kill all
of the enemies from section 5.2. As both collectibles and enemies have score
values assigned to them, GypPO uses this property to determine whether those
win conditions are met. Figure 6.7 shows how each win condition is defined in
GypPO.

score 200

boss "antag1"

eol 19 18

Figure 6.7: Defining all three types of win conditions for GypPO

29

Chapter 7

GypPO DSL Design Decisions

The influence of the MAKU DSL by Collman (2014) is very evident on the
design of GypPO. Throughout the design process, the initial goal was to make
GypPO similar to MAKU in the hopes of combining the two DSLs later on.
The resulting DSL would cover both the bullet hell and the platformer domain.
Ideally, this DSL would be able to generate games such as Cuphead, which is
a hybrid of the shoot ’em up and platformer families of games.

The basic organization of a game described in GypPO is to have separate
definition sections for the constant game elements and the varying logic (lev-
els) of a game. The purpose of separating these two portions of a platformer
is to have them not knowing and affecting any of the specifics regarding the
other section. This is so that modifications to the definitions of one portion do
not result in any changes to the other. If a level uses an antagonist, the level
description only requires the name of the antag. This results in any changes
in the antagonist’s specifications immediately being displayed when the level
is generated without needing to modify the level’s specifications. Entities in
platformers, such as basic enemy units, can be found throughout the different
levels of a game. GypPO thus places these sort of game elements’ definitions
under the elements portion so they are only defined once. By adding a unique
name attribute to each game element, they can be linked to any game levels
defined under the logic section without the need to redefine the element each
time. Weapons, enemies, and upgrades all fall under the elements section of
the DSL as their definitions remain unchanged throughout the GypPO speci-
fications file and the generated game. While the domain analysis was crucial
in discovering the required element properties in GypPO, these attributes also
needed to be independent of any specific level information so they could truly
be used anywhere in the game. The prime example of this is the movement
pattern patrol. While the pattern type is defined in the elements section of
GypPO, the necessary patrol point information is left to each level definition
so the same antagonist could be placed at different locations across the game

30

M.Eng. Report – P. Gill McMaster University – Software Engineering

while still having the exact same properties (movement data, health, weapon,
shape and size).

As mentioned in chapter 6, while the protagonist is considered an entity
in the domain analysis, this is the one element of the game that is not de-
fined under the elements section. Since the elements should be unchanging in
their definitions, protagonists were moved to the logic portion as they had the
potential to change throughout the game. A protagonist may not vary much
between levels, but with there being a possibility of variation, it is easier to
define the protagonist in each level including the specific spawn location for
that level. The alternative method would be to define a single protagonist in
the elements section but then include the ability for users to modify the pro-
tagonist entity in the logic portion as well. This would result in providing the
logic portion with permission to read and write the properties of an element
already defined, defeating the purpose of having these definitions be separate.

The logic definitions are for describing levels using the elements already
defined in a specification file. As mentioned above, it is crucial that this sec-
tion only uses the names of the elements to use them, without needing to go
into any further details regarding their definitions. It is up to the generator
and engine to implement the game elements correctly for each level. The only
exception to just needing the name is of course the patrol definition for antag-
onists which require it. Most of the definitions for a level are easily understood
such as element placing, with the requirement of a defined element and coor-
dinates for placement. This is the case for upgrades and enemy placements.
The interesting decisions occur with regards to camera models and platform
placement.

Camera models were decided to be placed under level descriptions as a
change in camera models between levels does occur in platformers. Most
commonly in boss levels, even when most of the game is free-scrolling, these
levels become fixed. Metroid is an example of this as the majority of the game
uses a free-scrolling camera model but during boss fights, this becomes fixed.

Platform placement is similar to protagonists as it could be defined under
elements as an obstacle or map element and reused throughout the game. The
reason for not doing this is that even if the same platform is used to create
an entire level, it would still need to be linked in the level definition with
a coordinate for placement. This just needlessly adds additional definitions
to the DSL with the user first needing to define a platform as an element
(using the same properties already defined in the current GypPO logic section).
Then the level definitions would still need to call that defined platform and
provide coordinates. The current method, Figure 7.1, is much simpler with all
platforms in a level being listed with the coordinates, the size, and the colour.
There is no need to also have the platforms defined under elements.

An important note considering the design of GypPO is that the ability

31

M.Eng. Report – P. Gill McMaster University – Software Engineering

platforms

0 1 m green

1 2 l green

5 1 m green

4 3 s green

4 2 m green

Figure 7.1: Placing platforms in a level

to add additional content is relatively easy. Although in its current state,
GypPO only allows for simple platforms to be placed, there is still room to
add the more “complicated” platforms described in chapter 5 in the future.
More details regarding how these other platform types could be added can be
found in section 9.1.

32

Chapter 8

GypPO Generator

With an explanation of code generation provided in chapter 4, this chapter pro-
vides a brief look into how GypPO’s generator follows the steps of section 4.2 to
generate a complete game. The process involves first parsing the GypPO DSL
specification file, and storing the relevant information into the data structures
of the GypPO abstract syntax tree (AST). A translator then converts the data
from the designed AST to the target language’s (JavaScript) AST. Finally, a
pretty printer needs to output the generated code. This chapter uses snippets
of the project code to explain each portion of the generator. The entire project
code can be found at https://gitlab.cas.mcmaster.ca/G-ScalE/GypPO.

The target language of GypPO did not necessarily have to be JavaScript.
One alternative could have been Unity scripts generated in C#. JavaScript
was the chosen output language as it allows for browser-based Platformers to
be generated. Having games which run on browsers allows for them to be
run on any machine capable of opening a web page, and on any screen size.
Alongside JavaScript, the Crafty engine is used to create the graphics of the
generated video game.

8.1 GypPO AST

Figure 8.1 provides a glimpse into the AST created for the GypPO DSL. The
figure shows the data structure created to store the necessary information of
a health upgrade. It is up to the parser function, Figure 8.2, to read the
input specification file for each health upgrade definition (explained in subsec-
tion 6.2.3) and store the information as a HealthUpgrade. A health upgrade
requires a String for the name, a natural number (Nat) for the amount that
the health upgrade increases the property by, and finally a Colour to show in
the game level. Each section of the DSL in chapter 6 has a corresponding data
structure in the designed AST as well as a parser function similar to the one
above in order to store the information correctly. The complete GypPO AST

33

https://gitlab.cas.mcmaster.ca/G-ScalE/GypPO

M.Eng. Report – P. Gill McMaster University – Software Engineering

data HealthUpgrade = HealthUpgrade {
getHealthName : : String ,
g e tHea l th Inc r ea s e : : Nat ,
getHealthColour : : Colour

} deriving (Show)

Figure 8.1: The data structure for a health upgrade

healthUpgrade : : SourcePos −> Parser D. HealthUpgrade
healthUpgrade p = try $ do

<− i n l i n e p
r e s e rved ” hea l th ”
n <− between quote quote (many alphaNum)
spaces
h l th <− d i g i t ’
spaces
c l r <− co lour ’
spaces
return $ D. HealthUpgrade n h l th c l r

Figure 8.2: Parsing a health upgrade from a specification file

34

M.Eng. Report – P. Gill McMaster University – Software Engineering

data JSIfStatement = JSIfStatement JSExpress ion
JSFunctionBody

(Maybe (Either JSFunctionBody JSStatement))

Figure 8.3: The JavaScript AST representation of an if statement

is found in Design.hs under the AST folder, while the three DSL parsers are
found in Game.hs, Elements.hs, and Logic.hs under the Parser folder of the
project repository. It is important to note, these files are based on the MAKU
AST and parsers by Collman (2014). The data types NEList (non-empty list)
and Nat along with the functions related to them; the function toNat and the
entirety of the file Helper.hs were taken directly from Collman (2014).

8.2 JavaScript AST

The JavaScript AST is an abstract representation of the JavaScript language,
similar to how the GypPO AST represents the GypPO language. This AST
file was created by Seefried (2012) with modifications to suit the needs of
the GypPO generator. Figure 8.3 shows a snippet of the AST showing the
data structure for a conditional statement. The if statement data structure
has three fields of data required. The data structure requires a condition (as a
JSExpression), and a list of statements to execute when that condition is met
(JSFunctionBody). The third field has the options of being either Nothing,
another set of statements for an else statement or another JSIfStatement

to generate an else if statement in JavaScript. The complete AST can be
found in JSAST.hs of the project repository.

8.3 Translation

The translation step is crucial to successfully generating code. By first parsing
the platformer information and storing it into the data types of the GypPO
AST, this step translates the designed AST into the AST of any target lan-
guage. As the target AST can be swapped for any other, a new translator
needs to be written for every target language. Going back to the health up-
grades example, figure 8.4 shows how the HealthUpgrade data structure from
the designed AST is translated into a JSExpression (a data structure from
the JavaScript AST). This example takes the properties of a health upgrade

35

https://gitlab.cas.mcmaster.ca/G-ScalE/GypPO
https://gitlab.cas.mcmaster.ca/G-ScalE/GypPO

M.Eng. Report – P. Gill McMaster University – Software Engineering

f i e l d : : JSName −> JSExpress ion −> JSObjectFie ld
f i e l d a b = JSObjectFie ld (Left a) b

ob j e c t : : [JSObjectFie ld] −> JSExpress ion
ob j e c t = JSExpre s s i onL i t e ra l . JSL i t e ra lObjec t . JSObjec tL i t e ra l

Figure 8.5: JavaScript field and object definitions in the JavaScript AST

and makes them fields of a health upgrade object in JavaScript. Figure 8.5
shows how the field and object definitions are written in the JavaScript AST.
The translation of every GypPO AST data structure to a JavaScript AST data
structure is found in the code file Plat Pretty.hs in the GypPO repository.

healthUpgrade : : HealthUpgrade −> JSExpress ion
healthUpgrade h =

ob j e c t
[

f i e l d (nm ”name”) (ex s t r $ getHealthName h) ,
f i e l d (nm ” hea l th ”) (n $ unNat $ ge tHea l th Inc r ea s e h) ,
f i e l d (nm ” co lour ”) (ex s t r $ unClr $ getHealthColour h)

]

Figure 8.4: Translating a health upgrade from the HealthUpgrade data
structure to a JavaScript expression

8.4 Printing

The pretty printing step of the generation process is where the target lan-
guage’s AST data is printed in the language’s correct syntax. Figure 8.3
shows the data structure in the JavaScript AST, while Figure 8.6 depicts the
pretty printing of an if statement as JavaScript code. The method first prints
the necessary keyword if, followed by the condition and the statements to
execute when the condition holds true. The next part is where the three op-
tions described in section 8.2 are used. Depending on if the last field of the
JSIfStatement is Nothing, an else statement, or another if statement, the
pretty printer can print the correct code syntax. The entire pretty printing
code was also based on Seefried (2012) and is found in the JSAST.hs file of
the GypPO repository.

The health upgrade example follows the entire process of code generation.
First parsing and processing the upgrade into the GypPO AST, then translat-
ing to the JavaScript AST. The pretty printer will then convert the JavaScript
object into the source code, shown in figure 8.7.

36

https://gitlab.cas.mcmaster.ca/G-ScalE/GypPO
https://gitlab.cas.mcmaster.ca/G-ScalE/GypPO

M.Eng. Report – P. Gill McMaster University – Software Engineering

instance Pretty JSIfStatement where
pret ty (JSIfStatement cond thenStmts e l s eO r I f) =

text ” i f ” <+> parens (pre t ty cond) <+> pret ty thenStmts <+> eOI
where

eOI = case e l s eO r I f of
Nothing −> empty
Just (Left e l s eStmts) −> t ext ” e l s e ” <+> pret ty e l s eStmts
Just (Right i fStmt) −> pret ty i fStmt

Figure 8.6: Pretty printing an if statement

healthUpgrades : [{
name : ’ hlth ’
, hea l th : 50 .0
, co l ou r : ’# f f0000 ’

}]

Figure 8.7: Health upgrades defined in generated JavaScript

8.5 Generated Game

An example GypPO specifications file can be found in Appendix C. The
antagonists and weapons defined in this sample file are based off existing game
elements found in Rogue Legacy . Figure 8.8 displays a screenshot of this
generated level with all entities being displayed as shapes (the protagonist
being red). An important observation is that Figure 5.2g looks alot more
polished and playable, stressing the importance of the art assets in a video
game.

Figure 8.8: Screenshot of generated game

37

Chapter 9

Conclusion

This research project was done to determine if the platformer family of games
could be generated. That is, to see whether or not the games could be gener-
alized enough that a designed domain-specific language could define all games
falling under this genre. GypPO, in its current state, does the job of defining
and creating platforms well enough. There are some features which could be
improved or added (discussed below in section 9.1), but the GypPO system
proves that these games do, in fact, have many common elements and can be
generated.

9.1 Future Work

As the current form of GypPO is entirely text-based, it makes it difficult
to accurately design a level, forcing the DSL users to find other methods of
visualizing the grid system and spawn locations of every entity in a level.
The current method is functional however, for future work, the largest feature
to add to GypPO would be a map editor. A map editor would open the
door for accurate visual placement of game objects, new platform types, and
movement information. Essentially this would simplify and graphically display
the logic portion of the DSL. Users could add patrol points, platforms, and
spawn locations accurately and easily. This could either be an entirely new
map editor designed for GypPO or allow GypPO to support existing map
editors.

One feature that the current state of GypPO is lacking is a variety of
platform options. Besides the stationary platforms already implemented, the
more complicated platforms found in Platformers would be difficult to define
using only text. They require additional information, such as maximum jump
increase a spring platform could give, or the coordinates and speed a moving
platform needs. These platforms are left from the current version until an
easier method of creating a level is implemented. The addition of a map editor

38

M.Eng. Report – P. Gill McMaster University – Software Engineering

would allow the functionality and properties of elements to still be defined with
the GypPO language while allowing users to essentially drag and drop these
elements into the levels when designing them.

An alternative way of improving level design could be having GypPO pro-
cedurally generate levels. Ways to generate levels in an automated way exist,
such as the rhythm-based generator developed by Smith et al. (2009).

Another future update would be to add in more upgrades to the GypPO
DSL. While the most common upgrades were implemented into GypPO, the
newer upgrades found in modern games could be added. This includes some
form of armor that negates some damage from enemies, as seen in Rogue
Legacy. GypPO could also allow for economies and currency to be imple-
mented adding costs to upgrades, in addition to the current “pickup” upgrades.

The modern platformers have also added new movement mechanics, such
as the air-dash found in Celeste and Rogue Legacy. The ability to provide
users with more control over the movement details of entities in platformers
would be implemented into GypPO in the future.

39

Appendix A

Games List

Game Developer and Year
Space Panic Universal Entertainment Corporation (1980)
Donkey Kong Nintendo R&D1 (1981)
Jump Bug Hoei and Alpha Denshi Corporation (1981)
Super Mario Bros. Nintendo Creative Department (1985)
Metroid Nintendo R&D1 and Intelligent Systems (1986)
Super Mario Bros. 2 Nintendo R&D4 (1988)
Sonic the Hedgehog Sonic Team (1991)
Donkey Kong Country Rare (2000)
Rogue Legacy Cellar Door Games (2013)
Risk of Rain Hopoo Games (2013)
BLACKHOLE FiolaSoft Studio (2015)
SpeedRunners DoubleDutch Games (2017)
Cuphead StudioMDHR (2017)
Celeste Matt Makes Games (2018)

40

Appendix B

Summary of Variabilities

N0 - Natural number starting from 0 (0,1,2,3...)
N+ - Natural positive number (1,2,3...)

Variability Platformers can have different types of plat-
forms

Parameter of Variation Options: Stationary | Moving | Temporary |
Spring

Variability Weapons may be optional for entities
Parameter of Variation Entities can have a weapon linked to them dur-

ing specification. Options: Nothing | Unique
ID of weapon : String

Variability A timer may be used as a loss condition
Parameter of Variation A time limit could be specified when defining

a level. Options: Nothing | Specified amount
of time (seconds) : N+

Variability Score is an optional element found in Plat-
formers

Parameter of Variation Scoring could occur through killing enemies,
collecting items, winning a timed level with
time remaining. Options: Nothing | Antag-
onists have a score value : N0 | Collectibles
have a score value : N0 | Time remaining is
translated into score value. Example of time
scoring: Space Panic sets a base score value,
and the percentage of time left from how much
was given is the percentage of the score value
the game awards.

41

M.Eng. Report – P. Gill McMaster University – Software Engineering

Variability Platformer levels can have upgrades or col-
lectibles

Parameter of Variation Upgrades can be defined and placed in levels.
Options: Nothing | Health upgrade | Life up-
grade | Weapon upgrade | Collectible

Variability Platformers can implement additional re-
sources for use in game

Parameter of Variation Additional resources are used as currency for
the use of common elements found in Plat-
formers. For instance, in Rogue Legacy,
mana is a consumable resource to use special
weapons and gold coins are used as currency
to purchase upgrades. The cost and resource
could be specified when defining weapons and
upgrades. Cost value : N0, with 0 indicating
no additional resource required.

Variability Entities can have additional attributes as-
signed to them

Parameter of Variation When defining the entities, optional attributes
could also be defined such as armour which re-
quires a natural number to indicate how much
damage is absorbed before affecting health.

Variability Players can have a double jump or a dash jump
Parameter of Variation While not common in all Platformers, the

specification for the players could have these
additional movement mechanics be enabled :
Boolean.

Variability Players can have multiple weapons at once.
Parameter of Variation When linking weapons, multiple weapons

could be linked as a list

Variability Enemies can drop loot when killed
Parameter of Variation Loot is essentially an upgrade. A loot item

could be linked to the antagonist so it ap-
pears once the antagonist is destroyed. Op-
tions: Nothing | Unique ID of upgrade

42

M.Eng. Report – P. Gill McMaster University – Software Engineering

Variability Levels can have checkpoint spawn locations
when the player dies

Parameter of Variation Checkpoint coordinates could be included
when defining a level. Options: Nothing | Co-
ordinates for checkpoint position

43

Appendix C

Example GypPO File

grid 20 20

elements

weapon

name "str"

damage 20

colour green

shape square

ranged

speed medium

bulletpattern straight

atkrange 100

rof 1

target characters

weapon

name "arc"

damage 20

colour white

shape square

ranged

speed slow

bulletpattern arc

atkrange 100

rof 1

target all

antag

name "facingTurret"

health 18

weaponname "str"

flying no

movement

pattern still

track yes

vee no

speed rest

colour blue

size m

shape square

score 100

antag

name "archer"

health 20

weaponname "arc"

flying no

movement

pattern patrol

track no

vee no

speed vslow

colour gray

size m

shape rectangle

score 100

upgrades

health "hlth" 50 red

logic

level

44

M.Eng. Report – P. Gill McMaster University – Software Engineering

camera free-scroll 4 4

platforms

0 15 l gold

3 15 m gold

4 16 l gold

7 16 l gold

9 15 s gold

10 14 m gold

8 13 m gold

6 14 m gold

antags

"archer" 5 16

patrol

start 4 16

end 8 16

"archer" 10 14

patrol

start 10 14

end 12 14

"facingTurret" 9 15

lvlUpgrades

"hlth" 6 14

protag

spawn 0 15

jump 1

speed slow

lives 3

health 100

colour red

shape rectangle

weaponname "str"

score 300

45

Bibliography

Adams, E. (2014). Fundamentals of Game Design. New Riders, Third edition.

Ardis, M. A. and Weiss, D. M. (1997). Defining families: The commonality
analysis (tutorial). In Proceedings of the 19th International Conference on
Software Engineering, ICSE ’97, pages 649–650. ACM.

Cellar Door Games (2013). Rogue Legacy. Game [PC]. Cellar Door Games,
Toronto, Canada.

Collman, N. (2014). MAKU: A Code Generator for Bullet Hell Games. Mas-
ter’s thesis, McMaster University. http://hdl.handle.net/11375/16048.

Coplien, J., Hoffman, D., and Weiss, D. (1998). Commonality and variability
in software engineering. IEEE software, 15(6), 37–45.

Czarnecki, K. and Ulrich, E. (2000). Generative Programming: Methods, Tools,
and Applications. Addison-Wesley, Reading, MA, USA, First edition.

DoubleDutch Games (2017). SpeedRunners. Game [Xbox One]. tinyBuild,
Bothell, United States.

FiolaSoft Studio (2015). BLACKHOLE. Game [PC]. FiolaSoft Studio, Prague,
Czech Republic.

Fowler, M. (2010). Domain-specific languages. Pearson Education, First edi-
tion.

Frakes, W., Prieto, R., Fox, C., et al. (1998). Dare: Domain analysis and reuse
environment. Annals of software engineering, 5(1), 125–141.

Hoei and Alpha Denshi Corporation (1981). Jump Bug. Game [Arcade].
Alpha Denshi, Ageo, Japan. ROM uploaded September 13, 2014. https:
//archive.org/details/arcade_jumpbug.

Hopoo Games (2013). Risk of Rain. Game [PC]. Chucklefish, London, Eng-
land.

46

http://hdl.handle.net/11375/16048
https://archive.org/details/arcade_jumpbug
https://archive.org/details/arcade_jumpbug

M.Eng. Report – P. Gill McMaster University – Software Engineering

Matt Makes Games (2018). Celeste. Game [PC]. Matt Makes Games, Van-
couver, Canada.

Mernik, M., Heering, J., and Sloane, A. M. (2005). When and how to develop
domain-specific languages. ACM computing surveys (CSUR), 37(4), 316–
344.

Mur, R. A. (2006). Automatic inductive programming. In Proceedings of the
23rd international conference on machine learning, tutorial.

Nintendo Creative Department (1985). Super Mario Bros. Game [NES]. Nin-
tendo, Kyoto, Japan.

Nintendo R&D1 (1981). Donkey Kong. Game [Arcade]. Nintendo, Kyoto,
Japan.

Nintendo R&D1 and Intelligent Systems (1986). Metroid. Game [NES]. Nin-
tendo, Kyoto, Japan.

Nintendo R&D4 (1988). Super Mario Bros. 2. Game [NES]. Nintendo, Kyoto,
Japan.

Rare (2000). Donkey Kong Country. Game [GBC]. Nintendo, Kyoto, Japan.

Seefried, S. (2012). js-good-parts. https://github.com/sseefried/

js-good-parts.

Smith, G., Treanor, M., Whitehead, J., and Mateas, M. (2009). Rhythm-based
level generation for 2d platformers. In Proceedings of the 4th International
Conference on Foundations of Digital Games, pages 175–182. ACM.

Smith, S. and Chen, C.-H. (2004). Commonality analysis for mesh generating
systems. Technical Report CAS-04-10-SS, McMaster University, Depart-
ment of Computing and Software.

Sonic Team (1991). Sonic the Hedgehog. Game [Genesis]. Sega, Tokyo, Japan.
ROM uploaded May 6, 2014. https://archive.org/details/sg_Sonic_
the_Hedgehog_Rev_1_1991_Sega_JP-KR_en.

StudioMDHR (2017). Cuphead. Game [PC]. StudioMDHR, Oakville, Canada.

Szymczak, D. (2014). Generating Learning Algorithms: Hidden Markov
Models as a Case Study. Master’s thesis, McMaster University. http:

//hdl.handle.net/11375/14101.

Universal Entertainment Corporation (1980). Space Panic. Game [Ar-
cade]. Universal, Tokyo, Japan. ROM uploaded August 7, 2014. https:
//archive.org/details/arcade_panic.

47

https://github.com/sseefried/js-good-parts
https://github.com/sseefried/js-good-parts
https://archive.org/details/sg_Sonic_the_Hedgehog_Rev_1_1991_Sega_JP-KR_en
https://archive.org/details/sg_Sonic_the_Hedgehog_Rev_1_1991_Sega_JP-KR_en
http://hdl.handle.net/11375/14101
http://hdl.handle.net/11375/14101
https://archive.org/details/arcade_panic
https://archive.org/details/arcade_panic

	Executive Summary
	Introduction
	Video Game Genres
	Domain Specific Languages
	What are DSLs?
	Domain Analysis
	DSL Design and Implementation
	Relevance to GypPO

	Code Generation
	What is Code Generation?
	Process of Generating Code
	Why Generate Code?

	Platform Games
	Action Games
	Platform Games
	Detailed Analysis of Platformers
	Entities
	Antagonists
	Weapons
	Upgrades
	HUD
	Levels

	Leading to the DSL

	GypPO DSL
	Grid System
	Elements
	Weapons
	Antagonists
	Upgrades

	Logic
	Camera Models
	Platform Placement
	Antagonist and Upgrade Placement
	Protagonist
	Win Condition

	GypPO DSL Design Decisions
	GypPO Generator
	GypPO AST
	JavaScript AST
	Translation
	Printing
	Generated Game

	Conclusion
	Future Work

	Games List
	Summary of Variabilities
	Example GypPO File

