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Lay Abstract 

 In a circuit of dissimilar conductors, temperature differences create voltage 

differences that can drive electrical currents. Similarly, electrical currents in such circuits 

inherently lead to heating and cooling. These phenomena are known as thermoelectric 

effects because they couple heat and charge transport (electricity) in a symmetric and 

reversible way. The goal of some thermoelectric devices (TEDs) is to exploit these effects 

to generate electrical power or to provide controlled cooling. However, greater 

conversion efficiencies are required to compete against other existing technologies. 

 With the advent of nanofabrication, semiconductor nanowires (NWs) have 

emerged as an attractive material system for efficient TEDs. In this thesis, we explore 

their thermal and electronic properties. We demonstrate a novel way to measure the 

NW thermal conductivity and employ computational methods to examine heat transport 

in NWs with various crystal structures. Finally, we examine how synthesis conditions can 

determine the morphology of NWs. 
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Abstract 

 Thermoelectric devices (TEDs) are useful in a variety of niche applications, but 

low efficiencies limit their broader application. Semiconductor nanowires (NWs) could 

be the key to efficient thermoelectrics, through the benefits of one-dimensional band 

structures and a greatly reduced thermal conductivity. This thesis explores the transport 

fundamentals, experimental characterization, and computational approaches relevant to 

prospective III-V NW TEDs. 

 Predictive electronic transport models are outlined for NWs and bulk III-Vs. 

These models are used to determine the optimum carrier concentration for maximizing 

the thermoelectric figure of merit (𝑍𝑇) in the bulk and in NWs of arbitrary size. We 

demonstrate the physical mechanisms underlying electronic thermoelectric 

improvements in NWs and confirm the superior performance of InSb and InAs, among 

other III-Vs. 

 Next, thermal conductivity reduction in structurally complex NWs is investigated 

as a means of improving 𝑍𝑇. We compare polytypic and twinning superlattice (TSL) GaAs 

NWs in measurements obtained by a novel application of the 3𝜔 method. We find 

thermal conductivities of 8.4 ± 1.6 W/m-K and 5.2 ± 1.0 W/m-K for the polytypic and 

TSL NWs, respectively, demonstrating a significant difference and an almost ten-fold 

reduction compared to 50 W/m-K of bulk GaAs. 

 We employ molecular dynamics simulations and the atomistic Green’s function 

method to address phonon engineering in generalized GaAs NW structures. In 
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comparing twinning NWs, we find that a TSL period of 50 Å minimizes the lattice 

thermal conductivity across all the diameters considered. Our results also illustrate the 

importance of NW surfaces versus the internal crystal structure. Phonon coherence 

lengths are obtained by analyzing thermal conductivity trends in periodic and aperiodic 

structures. Transmission spectra are calculated to reveal the phonon frequencies 

targeted by structural engineering in NWs. These findings explain the range of thermal 

conductivities obtained for GaAs NWs with various crystal phases. 

 Finally, to inform future growths of TSL NWs, we study the influence of the 

substrate temperature and V/III flux ratio on TSL formation in Te-doped GaAs NWs. The 

crystal structure of several NWs is investigated using transmission electron microscopy, 

revealing a range of polytypic and TSL morphologies. We find that periodic TSLs form 

only at low V/III flux ratios of 0.5 and substrate temperatures of 492 to 537 °C. To 

explain these trends, we derive a phase diagram for TSL NWs based on a kinetic growth 

model.  
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1. Background 

1.1. Thermoelectrics 

The global demand for clean and renewable energy is an issue of ever-increasing 

importance in the modern world, and a variety of large-scale solutions have been 

developed to meet this demand in a more sustainable way. This includes nuclear, 

hydroelectric, wind, and photovoltaic power systems. At the same time, there is a 

growing necessity for smaller, portable, and remote electrical power systems in, for 

example, low-light conditions precluding the use of photovoltaics or in weight-limited 

applications, where sufficient battery life is unavailable. Thermoelectric generators 

(TEGs) represent a reliable alternative in such cases; being compact, having no moving 

parts, producing no waste, and requiring minimal maintenance. TEGs can also be used to 

recover energy from waste heat produced in automotive and industrial processes, 

thereby improving the overall efficiency or powering auxiliary systems.1 

 The basic operating principle of all thermoelectric devices (TEDs) relies on the 

direct and reversible conversion between differences in temperature and electrical 

potential. In the presence of a temperature gradient, TEGs provide a proportional 

potential difference via the Seebeck effect, which can be used to drive an electrical 

current. Conversely, when an external power source drives a current through a TED, a 

proportional amount of heat is pumped via the complementary Peltier effect. In this 

alternate mode of operation, the TED functions as a solid-state heat pump, cooling one 
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side of the device while heating the other. Thermoelectric coolers (TECs) based on the 

Peltier effect (sometimes called “Peltier elements”) provide a compact and silent means 

of refrigeration, in contrast to traditional systems.2 

Widespread use of TEDs—for both power generation and refrigeration—is 

hindered by the comparably low conversion efficiencies and coefficients of performance 

of TEGs and TECs, respectively. This limits their applications to niche cases, where size 

and reliability take precedence over the absolute efficiency. A dimensionless, 

temperature-dependent quantity called the “thermoelectric figure of merit” is most 

often used to holistically quantify thermoelectric materials.3 A material’s figure of merit 

is given by 

 𝑍𝑇 =
𝑆2𝜎𝑇

𝜅𝑒 + 𝜅𝐿
 (1.1) 

where 𝑇 is the absolute temperature, 𝑆 is the Seebeck coefficient (or sometimes 

“thermopower”), 𝜎 is the electrical conductivity, and 𝜅𝐿/𝜅𝑒 are the lattice/electronic 

thermal conductivities, respectively. In view of Eq. (1.1), a large 𝑍𝑇 corresponds to a 

higher open-circuit voltage, given large |𝑆|; a higher maximum power output, given high 

𝜎; and lower parasitic heat conduction, given a smaller total thermal conductivity, 

𝜅 = 𝜅𝐿 + 𝜅𝑒. All these quantities vary with temperature and are collectively referred to 

as the “thermoelectric transport coefficients”. The figure of merit, accordingly, has a 

maximum at some temperature for a given thermoelectric material, indicating the point 

of maximum efficiency. Improving 𝑍𝑇 is the central goal of thermoelectrics research. 
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 In principle, thermoelectricity is observed in any material with a finite electrical 

conductivity, provided there exists a connection to another conductor somewhere 

within the circuit. In practice, however, only semiconductors exhibit large enough 

Seebeck coefficients to be viable for energy conversion or cooling, with typical |𝑆| ≈

100 𝜇V/K. For metals, 𝑆 is usually one or two orders of magnitude smaller (and it is well 

known that 𝑆 = 0 in superconductors).4 The much higher 𝜎 of metals does not offset the 

low 𝑍𝑇 owing to their small values of 𝑆. Rather, high electrical conductivity is itself offset 

by a high electronic thermal conductivity (𝜅𝑒), which increases proportionally as per the 

Wiedemann-Franz law.5 Nonetheless, some specialized metallic alloys (for example, 

alumel and chromel) are staple materials for thermocouples used in temperature 

measurement.3 

Traditional TEDs are based on Bi2Te3 or related materials and achieve a maximum 

𝑍𝑇 ≈ 1 near room temperature (efficiency ∼ 10%). A comparable 𝑍𝑇 is achieved in 

PbTe near 𝑇 ≈ 600 K, which is perhaps more suitable for waste heat recovery. The most 

efficient commercial TEDs achieve 1 <  𝑍𝑇 < 2 around 500 to 900 K. These are based 

on complex chalcogenides6 or skutterudite compounds.7 Si1-xGex alloys are the dominant 

thermoelectric material for very high temperature applications, exhibiting a maximum 

𝑍𝑇 ≈ 1 near 1200 K. Perhaps most famously, Si1-xGex TEGs powered by a decaying 

radioisotope (as a heat source) have been used by NASA on Voyager, Cassini, and many 

other projects1,8 as reliable on-board power systems. 
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1.2. Nanoscale Thermoelectrics 
 

An ongoing interest in nanostructured or “low dimensional” materials—i.e., thin 

films, nanowires (NWs), and quantum dots—was sparked in theoretical studies9,10 by 

Hicks and Dresselhaus in the early 1990s, wherein a significant 𝑍𝑇 enhancement was 

predicted via an increase of the power factor, 𝑆2𝜎 (in the numerator of Eq. (1.1)). 

Nanoscale materials, in general, have distinct electronic properties compared to their 

bulk counterparts.11 The resulting thermoelectric improvements can be understood as 

follows. 

The electronic band structure of nanoscale materials is altered by confinement of 

the wave function in a potential well (the specimen) of comparable physical size. In 

quantum wires or two-dimensional quantum wells, the electron remains “free” in one or 

two directions, respectively. The result of this partial confinement is the splitting of bulk 

energy bands (allowed electron states) into sub-bands offset by the discrete 

confinement energies.11 Crucially, the electronic density of states (eDOS) in these sub-

bands differs drastically from the bulk, as shown qualitatively in Figure 1.1. 

The one- and two-dimensional eDOS, unlike the bulk, are non-zero at the lowest 

energy states in the conduction band. This strongly affects the thermoelectric transport 

coefficients, which depend directly on the energy distribution of charge carriers. One 

component of the power factor, 𝜎, increases with the number of conduction electrons, 

as determined by the overlap of the Fermi-Dirac distribution5 and the eDOS. The other 

component, 𝑆, grows in magnitude with the difference between the Fermi energy (or 
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chemical potential), 𝐸𝐹 , which characterizes the occupation probability, and the average 

energy of conducting electrons, 𝐸𝐽. The other component, |𝑆|, is maximized when 𝐸𝐹  is 

below the band edge, where the difference between 𝐸𝐹  and the 𝐸𝐽 becomes large. 

However, a lower 𝐸𝐹  also corresponds to lower 𝜎, because the overlap with the eDOS 

will be smaller. 

Figure 1.1: Shape of the electronic density of states (eDOS) for a one-, two-, and three-
dimensional (bulk) electron gas. 𝐸0 indicates the bulk conduction band edge. The 
remaining energy labels indicate sub-band edges in the one- and two-dimensional cases. 
 

 Thus, |𝑆| and 𝜎 have an opposing dependence on 𝐸𝐹 . This presents a 

compromise that is more favourable in low-dimensional band structures, which feature 

many more low-energy states (i.e., a large eDOS at the band edge). Accordingly, 𝜎 can 

be higher while 𝐸𝐹  is low enough to ensure a large |𝑆|, yielding higher 𝑆2𝜎 compared to 

the bulk. Figure 1.2 illustrates this result for a 10 nm diameter GaAs NW. This 

enhancement is in theory greater for NWs9,12 (quantum wires) than for thin layers10 

(quantum wells). In fact, the optimal shape for the electron distribution (shaded regions 

in Figure 1.2) is a “delta function” spike,13 which the 1D case approximates most closely. 
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Figure 1.2: Electron distributions at the carrier concentrations maximizing the power 
factor (𝑆2𝜎) for bulk (blue) and 10 nm diameter NW (red) GaAs, at 300 K. Areas of the 
shaded regions measure the equilibrium electron concentrations. Here, both the 1D and 
3D systems have 𝑆 ≈ −150 𝜇V/K. However, the maximum power factor is much larger 
in the 1D case (17.3 vs. 2.0 mW/m-K2), because 𝜎1D = 7300 S/cm, while 𝜎3D = 860 
S/cm. 
 

 In NW structures, charge carriers are bulk-like in the axial direction, given a long 

enough NW, and quantum confined perpendicular to the axis (radially), given a small 

enough diameter. The threshold confinement size can be approximated by the thermal 

de Broglie wavelength14 of the electron: 

 𝜆𝐷 = √
2𝜋ℏ2

𝑚∗𝑘𝐵𝑇
 (1.2) 

Here, ℏ is the reduced Plank’s constant (≈ 1.055 × 10−34 J ⋅ s), 𝑘𝐵 is the Boltzmann 

constant (≈ 1.381 × 10−23
m2kg

s2K
), and 𝑚∗ is the effective mass—the only material 

parameter. From Eq. (1.2) at room temperature, the wavelength of electrons is around 
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20 to 50 nm in III-V semiconductors (GaAs, InAs, InSb, InP, etc.). NWs of a comparable 

diameter remain difficult to produce reliably in ordered and free-standing arrays for 

macro-scale devices. Practical quantum confinement in p-type NWs is, for the same 

reason, even more difficult to achieve since much smaller values of 𝜆𝐷 result for holes 

(electron vacancies in semiconductors), the majority of which are significantly “heavier”. 

 Despite this difficulty, several studies on individual NWs have produced 

encouraging results in terms of 𝑍𝑇 increases due to a reduced lattice thermal 

conductivity (𝜅𝐿). Some of the key challenges in optimizing the power factor can also be 

gleaned from these works. 

 

1.3. Existing Results on Nanowire Thermoelectrics 

 Among the earliest works on NW thermoelectrics is a 2006 study by 

Mavrokefalos et al.,15 where InAs NWs with a rectangular cross section (equivalent-area 

diameter ≈ 90 nm) were examined. These NWs were formed by selective etching of an 

InAs film grown on lattice-mismatched GaAs. Strain-induced dislocations led to a low 

electrical conductivity (14 S/cm), thus reducing the thermoelectric efficiency. Later, in 

2007, Seol et al.16 identified one-dimensional thermoelectric transport in 40 nm 

diameter InSb NWs grown by a vapour-liquid-solid (VLS) method.17 However, a low 𝑍𝑇 

was once again reported; this time due to a small |𝑆| ≈ 30 𝜇V/K, attributed to 

unintentional donor impurities (non-optimal 𝐸𝐹). The following year, Hochbaum et al.18 

produced Si NWs by electroless etching—a method yielding much rougher NW surfaces 
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compared to VLS growth—and measured 𝑍𝑇 ≈ 1 at 300 K. Notably, this was despite a 

large decrease of the power factor (𝑆2𝜎) versus bulk Si, which is a decidedly poor 

thermoelectric material with 𝜅 ≈ 150 W/m-K.19 Here, 𝑍𝑇 enhancement was achieved 

from a reduction in the thermal conductivity by two orders of magnitude compared to 

the bulk, owing to increased phonon-boundary scattering at the rough NW surfaces. 

Three years later, Liu et al20 measured 𝑍𝑇 = 1.6 at 𝑇 = 700 K—one of the largest NW 

values ever reported—in 𝛽-Zn4Sb3 NWs grown by physical vapour deposition. A very low 

thermal conductivity was again observed, 𝜅 ≈ 0.6 W/m-K, and attributed to phonon 

scattering at grain boundaries along the NW. 

Around the same time, Tian et al.21 observed confinement effects on the 

electrical conductance of 20 nm InAs NWs. Specifically, the conductance was seen to 

increase stepwise with increasing backgate voltage; each step indicating the filling of a 

single sub-band. This was only evident up to 40 K, however, where electron scattering 

mechanisms were quenched in the NWs. A small Seebeck coefficient, |𝑆| < 10 𝜇V/K, 

was also measured. Subsequent measurements by Schmidt et al.22 yielded 𝜎 and 𝑆 

corresponding to a room temperature power factor of 525 𝜇W/m-K2 in their InAs NWs, 

about one seventh of the power factor reported by Hochbaum et al. (≈ 3500 𝜇W/m-K2). 

Most recently, Yazji et al.23 measured 𝑆2𝜎 ≈ 1300 𝜇W/m-K2 in Se-doped InSb NWs with 

larger diameters ranging from 150 to 200 nm. However, the figure of merit was once 

again low at 𝑍𝑇 ≈ 0.02, due to a large bulk-like thermal conductivity near 20 W/m-K in 

their VLS-grown NWs. 
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These results are summarized in Table 1.1. A comprehensive review of NW 

thermoelectric materials can be found in Ref. 24 and a figure summarizing the 𝑍𝑇 values 

therein is included in Appendix I (Figure A1). 

 
Table 1.1: Summary of NW measurements discussed in this section. 

 
nanowire 
material 

diameter 
[nm] 

𝑻 
[K] 

|𝑺| 
[𝝁V/K] 

𝝈 
[S/cm] 

𝜿 
[W/m-K] 

𝑺𝟐𝝈 
[𝝁W/m-K2] 

ZT ref. 

InAs 60 24 10 5000 - 50 - 25 

InAs 90 300 60 14 4 5 0.0003 15 

InAs 125 300 50 20 2.6 5 0.0006 26 

InAs 30 317 145 250 - 525 - 22 

InSb 40 350 30 370 - 32 - 16 

InSb 160 300 250 140 20 1300 0.02 23 

Si 50 300 245 588 1.5 3500 0.6 18 

𝛽-Zn4Sb3 125 700 200 330 0.9 1300 1.6 20 

 

 The preceding studies indicate that the power factor suffers in NWs due to either 

excess doping or unwanted electron scattering. Both are somewhat universal symptoms 

of nanoscale materials, and they serve to nullify or obscure any room temperature 

quantum effects in real NWs. Indeed, the theoretical 𝑍𝑇 enhancement predicted by 

Dresselhaus et al.9,10 remains largely unrealized experimentally. Improving the ideality of 

NWs in this respect requires significant advances in growth technologies, to allow more 

precise control over the donor/acceptor concentration and crystal structure. 

Nonetheless, near term NW TEDs can benefit from a small enough thermal conductivity, 
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despite exhibiting sub-optimal electronic transport properties. Thus, there is incentive to 

find means of lowering 𝜅𝐿 which do not severely impact 𝜎. 

 

1.4. Nanowire Thermal Conductivity 

 The lattice thermal conductivity can be written as27 

 𝜅𝐿 = ∫ 𝒟𝐶𝑣𝑣𝑙ph 𝑑𝜔
𝜔max 

0

 (1.3) 

with 𝒟 representing the phonon density of states, 𝐶𝑣 the lattice heat capacity, 𝑣 the 

phonon group velocity, and 𝑙ph the phonon mean-free-path. The value 𝜔max represents 

the highest frequency among vibrational modes in the lattice. Small values of 𝜅𝐿 are 

measured for NWs universally and orders of magnitude lower values versus the bulk 

thermal conductivity are common.24 A baseline reduction of the group velocities, 𝑣, is 

expected in NWs due to phonon confinement in the finite structure.28 Additional 

features, like surface roughness, serve to reduce the phonon mean-free-path, 𝑙ph—or to 

increase the effective scattering rate, 𝜏−1 =
𝑣

𝑙ph
. 

In long and crystalline NWs, 𝜅𝐿 is also suppressed by phonon-boundary 

scattering, for which the scattering rate,28 

 𝜏B
−1 =

𝑣

𝑤
(1 − 𝑝) (1.4) 

depends on the NW width (𝑤) and the specularity parameter, 0 ≤ 𝑝 ≤ 1. Note that 𝜏B
−1 

lacks any explicit temperature dependence. Indeed, a signature of predominant phonon-

boundary scattering is a thermal conductivity that quickly saturates with increasing 
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temperature.26 Some intuition about 𝑝 is provided by the Ziman expression29 for the 

specularity of plane wave scattering at a boundary with root-mean-squared (RMS) 

roughness 𝜂: 

 𝑝(𝑘) = exp(−4𝑘2𝜂2 cos2 𝜃) (1.5) 

Here, 𝑘 is the phonon wave vector and 𝜃 is the angle of incidence on the boundary. Let 

us consider normal incidence (cos 𝜃 = 1) for the sake of example. According to Eq. (1.5), 

fine roughness is ignored by long wavelength (small 𝑘) phonons, which scatter with high 

specularity, corresponding to 𝑝 → 1. Conversely, 𝑝 → 0 for short wavelength (large 𝑘) 

phonons, which scatter in random directions from the detail of a rough surface. In other 

words, low specularity means that outgoing phonons are diffused in many directions. In 

the limit of virtually no roughness (𝜂 → 0), boundary scattering is entirely specular and 

𝜏B
−1 is zero. If the NW is too wide (𝑤 ≫ 𝑙ph), then boundaries are seldom encountered 

and again 𝜏B
−1 is zero. However, phonon-boundary scattering is almost always significant 

in real NWs.15,18,20,26 Boundary scattering and phonon confinement can reduce the 

thermal conductivity of VLS-grown III-V NWs by up to 80% compared to the bulk.30–34 

Experiments on rough Si and Si1-xGex NWs have also shown additional thermal 

conductivity reductions compared to nominally smooth NWs.35 The roughness of radial 

and axial heterointerfaces can be treated similarly,36 and a core-shell mismatch of the 

acoustic impedance (i.e., the density and sound velocity) could reduce the thermal 

conductivity further.37 As well, mass variation38 due to impurities, isotopes,39 or alloying 

also suppresses the thermal conductivity. 
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1.5. Phonon Engineering in Nanowires 

In a somewhat alternate approach, other studies have examined the possibility 

of tuning the phonon spectra of nanostructures using coherent phonon engineering. 

Coherence is distinct from specularity and here refers to the phase of scattered 

phonons,27 although phase-preserving (i.e., elastic) scattering events are correlated with 

specularity.40 Unlike the previous approaches, pristine boundaries and interfaces are in 

fact preferred, and thermal conductivity reduction can be attributed to the stalling of 

certain vibrational modes, as determined by the structural periodicity.41 

A planar superlattice TEG was demonstrated by Subramanian et al.,42 who 

measured an impressive room temperature figure of merit, 𝑍𝑇 ≈ 2.4. Cross-plane 

thermal conductivity measurements by the same authors43 indicated a non-linear 

dependence on the superlattice period, with a minimum thermal conductivity achieved 

for a period ~50 Å. The carrier mobility exhibited similar behaviour and, unlike the 

thermal conductivity, varied with the relative thicknesses of superlattice layers. Notably, 

cross-plane thermal conductivity and mobility minima were attained at different 

superlattice periods. Regarding the limiting behaviour, the authors observed that small 

periods (≪ 50 Å) reproduced the alloy thermal conductivity, while large periods 

reproduced the length-weighted average of constituent layers. 

To reconcile the coherent (wave-like) picture of phonon transport with diffusive 

(corpuscular) expressions like Eq. (1.3), the effect of coherent backscattering can be 
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understood as an increase in the apparent “viscosity” of a diffusive medium.41 In the 

frequency domain, the phonon mean-free-path is expressed as43 

 𝑙ph = √
2𝐷

𝜔
 (1.6) 

using the diffusion coefficient, 𝐷 =
1

3
�̅�𝑙ph, with �̅� being the average group velocity of 

phonons.5 Eq. (1.6) then allows a cut-off frequency to be estimated: 

 𝜔min =
2�̅�

3𝑙ph
 (1.7) 

In this simple model, phonon transport at frequencies 𝜔 < 𝜔min is supressed, since 

frequencies lower than 𝜔min require a larger-than-𝑙ph mean-free-path to effectively 

conduct heat. The mean-free-path, in turn, varies non-linearly with the superlattice 

period and proportionally with the thermal conductivity. In quasi-one-dimensional NWs, 

where three-dimensional equipartition is violated (i.e., 𝐷 ≈ �̅�𝑙ph), this cut-off frequency 

could be even higher, leading to an even lower thermal conductivity. While Eq. (1.7) can 

be used to explain the room temperature results of Subramanian et al.,43 phonon 

transmission consistent with the Bragg reflection5 of narrow frequency bands has been 

observed at much lower temperature in GaAs/AlAs superlattices.44 

 In terms of heat transport, Si/Ge and related materials represent the most-

studied NW superlattices.35,45–50 Li et al.49 measured the thermal conductivity in 

Si/Si0.9Ge0.1 NWs from 20 K up to room temperature and found that the smooth 

superlattice NWs had thermal conductivities comparable to the rough Si NWs studied by 
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Hochbaum et al.18,51 However, boundary scattering and alloy scattering (in the Si0.9Ge0.1 

segments) were implicated in the observed thermal conductivity reduction, as opposed 

to any superlattice (i.e., wave interference) phenomena in the NWs. The authors noted 

that interfacial sharpness between segments was unlikely, as interfaces would be 

disturbed by atomic diffusion at the NW growth temperatures. 

 Computational studies on superlattices, where interfacial sharpness can be 

guaranteed, have shown a pronounced dependence of the thermal conductivity on the 

superlattice period.27,47,50 Indeed, the same trend as the experimental data of 

Subramanian et al.43 is reproduced in these studies; namely, a sharp descent to a 

minimum thermal conductivity, followed by a more gradual rise with increasing 

superlattice period. 

 

1.6. Tunable Thermal Conductivity 

 More recently, twinning superlattice (TSL) NWs52–56 have attracted attention as 

periodic structures suitable for phonon engineering. In Si, some III-Vs, and other cubic 

semiconductors, NWs grown along the <111> direction can exhibit twinning in the form 

of abrupt 60∘ rotations in the crystal structure about the NW axis. When this twinning is 

periodic, a TSL NW is produced as a stack of complementary A/B twin segments. Unlike 

heterojunction superlattices, diffusion is a non-issue for TSLs because there is no 

concentration gradient across the twin boundary. Hence, the principal advantage of TSL 

NWs is, in this respect, the inherent sharpness of crystal twin interfaces (see, for 
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example, Ref. 52). These interfaces may be more conducive to coherent phonon 

scattering and thus provide a means of tuning the phonon spectra of NWs. Additionally, 

corrugated (111)A/B surface faceting57 often accompanies twinning and some 

theoretical studies have predicted that these surfaces can contribute significantly to 

phonon backscattering.58,59 The formation of microfacets, as opposed to flat (11̅0) 

sidewalls in “pristine” NWs, may be central to the kinetics of NW TSL formation in 

general.60 

 Current growth technologies enable some control over the TSL period,60 as well 

as the overall density and randomness of twinning/stacking faults in III-V NWs.61,62 

Unlike traditional superlattice growth, the length of individual twin segments is not 

determined by changing precursor fluxes. Rather, the conditions as a whole—the 

temperature, flux ratios, growth rate, etc.—create a TSL growth regime corresponding 

to a set NW morphology. In III-V NWs, dopants like Zn, Te, and Be are known to induce 

TSL growth,63,64 but dopant-free TSL NWs have also been reported.56,61 

 Coherent phonon transport has been identified in GaP TSL NWs at room 

temperature, by using Raman scattering to probe the optical phonon modes.65 A 

reduced thermal conductivity in disordered twinning NWs, where crystal rotations 

appear to happen randomly, has also been measured.26,66 Computational studies on 

periodic Si TSLs67,68 have found minima in the thermal conductivity versus the twin 

period, as well as overall trends closely resembling experimental results on traditional 

superlattices.43 
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 In general, neither the electronic nor phononic band structure of the parent 

material is invariant under the crystal rotations that characterize twinning, so the twin 

interface is in many ways analogous to an interface of different materials. For example, 

electronic minibands in TSLs could allow for direct transitions in normally indirect band 

gap semiconductors.69,70 The phonon spectra of periodic TSLs are also distinct,67,71 owing 

to a much larger unit cell (comprising one twin period) and additional symmetries 

afforded by the twinning structure.65 

 

1.7. Thesis Overview 

 With the possible exception of InSb, which can have a very high electron 

mobility,72 III-V semiconductors are far from ideal thermoelectric compounds.73 

However, the ubiquity of III-Vs, which is spurred by their technological importance, 

guarantees mature tools for the synthesis, characterization, and modelling of these 

materials. While there is still room for improvement, quality macroscopic arrays of GaAs 

NWs (1 to 4 mm2 area) are readily grown using selective-area epitaxy and VLS methods. 

Dopant incorporation and crystal twinning are also increasingly well understood in these 

NWs, precisely because they are easier to synthesize. Thus, GaAs is a reasonable 

candidate for NW thermoelectrics research. 

Using transport calculations, experiments, and simulations on GaAs NWs, we aim 

to draw conclusions that are more broadly relevant to III-Vs and perhaps NW 
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thermoelectrics in general. These investigations comprise the next three chapters of the 

thesis. 

Chapter 2 provides a comprehensive review of the physical models underlying 

electronic transport calculations for select III-Vs, based on the Boltzmann Transport 

Equation.74 Chapter 3 introduces, for the first time, experimental thermal conductivity 

measurements on as-grown arrays of polytypic versus TSL GaAs NWs, using a NW-

composite device adapted to the 3𝜔 method.75,76 Chapter 4 explores thermal 

conductivity and phonon transmission in a variety of GaAs NW structures, using non-

equilibrium molecular dynamics simulations77 and the atomistic Green’s function 

method,78,79 respectively. In Chapter 5, we investigate the growth conditions leading to 

TSL formation in GaAs NW arrays and determine a phase diagram to inform future 

growths of high-yield TSL NW arrays. Finally, Chapter 6 provides concluding remarks and 

a discussion of future work in NW thermoelectrics. 
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2. Boltzmann Transport Model 

2.1. Summary 

 This chapter begins by developing a first principles understanding of 

thermoelectric phenomena, as originally observed via the Seebeck, Peltier, and 

Thomson effects in the nineteenth century. Subsequent sections introduce the relevant 

physics of bulk and nanoscale semiconductors, as well as a transport formalism based on 

Onsager’s reciprocal relations80 and the Boltzmann Transport Equation.81 Together with 

a description of scattering via the various prevailing mechanisms, this culminates in 

models for the thermoelectric transport coefficients 𝑆 (Seebeck coefficient), 𝜎 (electrical 

conductivity), and 𝜅𝑒 (electronic thermal conductivity) of bulk and NW semiconductors. 

Using these models, we calculate transport coefficients for GaAs, InAs, InP and InSb, and 

determine the thermoelectric figure of merit, 𝑍𝑇, where we find an enhancement by 

two orders of magnitude for the small NW case compared to the bulk. The optimal 

electron concentration, vis a vis the thermoelectric efficiency, is determined as a 

function of diameter for both background and modulation doped NWs. 

 The contents of this chapter are based on our publication82 in Nanotechnology, 

“Modelling thermoelectric transport in III-V NWs using a Boltzmann transport approach: 

a review”. Here, we aim to provide a comprehensive and unified description of the 

physics underlying thermoelectric phenomena. Derivations, solution methods, and 

complete sets of material parameters are provided to aid future implementations. 
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2.2. Introduction 

It has been known since the early nineteenth century83,84 that the transport of 

heat and electrical energy can be coupled directly, without intermediate mechanical 

processes involving turbines or compressors. Direct conversion of this sort forms the 

operating principle of thermoelectric devices (TEDs), wherein the “working fluid” is the 

Fermi gas of charge carriers (electrons and/or holes) in a solid-state material. This allows 

TEDs to be silent, compact, and virtually maintenance free. Despite these advantages, 

however, TEDs remain less efficient and often more expensive than their mechanical 

analogues. Nonetheless, they are extremely useful for both power generation and 

refrigeration in a variety of systems. For example, when coupled with simple control 

circuitry, thermoelectric coolers (TECs) provide a means of precise temperature control 

for cooling laser diodes.85 Thermoelectric generators (TEGs) with a radioisotope heat 

source86,87 have been used by NASA as the main power system for a number of rovers 

and space probes8—owing partly to the reliability of TEGs as compared to photovoltaics 

in dusty or low-light conditions. 

Hicks and Dresselhaus9,10 were first to identify potential improvements in 

nanoscale thermoelectrics due to beneficial changes in the electronic properties of 

carrier-confined systems. Further efficiency improvements through the reduction of 

thermal conductivity (by various mechanisms) have also been predicted28,37,88 and 

demonstrated experimentally.18,36,49 
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In this chapter we discuss models for the electronic thermoelectric properties of 

both bulk and NW materials. We shall concentrate, in particular, on III-V NWs that can 

be grown by the self-assisted vapour-liquid-solid (SA-VLS) method.17,89 

 

2.3. Thermoelectric Effects 

2.3.1. The Seebeck Effect 

 The Seebeck effect creates an electrical potential difference, given a difference in 

temperature. This effect forms the basis for thermoelectric generators (TEGs), as the 

resulting voltage can be used to drive a current. The Seebeck effect can also be 

described as the conversion of a temperature difference to an electric current.90 The 

Seebeck coefficient, 𝑆, is defined as the ratio of the open circuit voltage to the applied 

temperature difference: 

 𝑆 ≡
Δ𝑉oc
𝑇h − 𝑇c

 (2.1) 

The linear dependence of Δ𝑉oc on Δ𝑇 = 𝑇h − 𝑇c was observed experimentally long 

before the discovery of the electron.83 In the modern understanding of the Seebeck 

effect, it is caused by a difference in electron distributions between the hot and cold 

sides of a conductor. Figure 2.1 illustrates a simple thermoelectric circuit, where an ideal 

connection is made to an n-type conductor by hot and cold metal contacts, which 

remain at constant temperatures. The electron distributions at the hot and cold sides 
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are given by 𝑓0(𝐸, 𝐸𝐹 , 𝑇h) and 𝑓0(𝐸, 𝐸𝐹 , 𝑇c), respectively, where 𝑓0 is the Fermi-Dirac 

distribution: 

 𝑓0(𝐸, 𝐸𝐹 , 𝑇) =
1

exp (
𝐸 − 𝐸𝐹
𝑘𝐵𝑇

) + 1
 (2.2) 

The function 𝑓0 indicates the equilibrium occupation probability of an electron state with 

energy 𝐸. The Fermi energy, 𝐸𝐹 , is the energy corresponding to an occupation 

probability of exactly 50%, while the temperature (𝑇) determines the sharpness of the 

transition in probability from 1 to 0 across 𝐸𝐹 . 

Figure 2.1: A thermoelectric circuit illustrating the origin of the Seebeck effect. The 
larger area under the red distribution plot indicates an excess of free electrons on the 
hot side. Potential energy is stored in the electron concentration gradient and is 
measured per unit charge as 𝛥𝑉oc = 𝑆(𝑇h − 𝑇c). The current in the circuit, 𝐼, only 
appears once the switch is closed. 
 

The red and blue shaded areas under the two 𝑓0 plots in Figure 2.1 illustrate a 

relative excess of free electrons on the hot side. While the switch in the circuit remains 
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open, internal currents will flow to equalize the hot and cold side distributions. For 

simplicity, we assume that current is carried by electrons at a single energy 𝐸𝐽 in the n-

type conductor—i.e. that Figure 2.1 illustrates a single-channel device.91 Such a device 

can be realized in quantum dots,92 for example. To equalize the distributions at energy 

𝐸𝐽, we will eventually have: 

 
𝐸𝐽 − 𝐸𝐹

h

𝑇h
=
𝐸𝐽 − 𝐸𝐹

c

𝑇c
≈
𝐸𝐽 − 𝐸𝐹
𝑇

 (2.3) 

provided that the temperature difference is small. The quantity in Eq. (2.3) indicates the 

available electron energy per unit temperature in the n-type conductor. Thus, dividing 

by the charge of an electron, we find the voltage difference per unit temperature 

difference generated in the device: 

 𝑆 = −
1

𝑒𝑇
(𝐸𝐽 − 𝐸𝐹) (2.4) 

If electrons flow at energy 𝑘𝐵𝑇 above the Fermi energy, then 𝑆 = −𝑘𝐵/𝑒, which is 

approximately −100 𝜇V/K. Indeed, the Seebeck coefficient of viable thermoelectric 

materials is typically of the same order of magnitude. For materials with energy bands, 

unlike the single channel device, 𝐸𝐽 must be calculated as an average over the electron 

distribution. 

 The voltmeter in Figure 2.1 will read Δ𝑉oc = 𝑆Δ𝑇 while the switch remains open 

and no current flows in the circuit. Once the switch is closed, the (conventional) current 

will flow in the indicated direction. In this example, transport within the thermoelectric 

element is ballistic, meaning electrons do not exchange energy inside the n-type 
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conductor. Conversely, if any scattering takes place, then the voltage reading will be 

reduced by a factor 

 
Δ𝑉

Δ𝑉oc
=

𝑟𝑙
𝑟 + 𝑟𝑙

 (2.5) 

when current flows, with 𝑟 being the resistance of the thermoelectric element. Thus, it is 

necessary to have both a large Seebeck coefficient and a large electrical conductivity 

(𝜎 = 𝐿/𝑟𝐴) to maximize the power delivered to the load. This is an important 

requirement for optimizing the electronic properties of a candidate material. 

 Note that the Seebeck contribution of the hot and cold contacts (and indeed the 

remainder of the circuit) in Figure 2.1 was ignored. This can be justified as follows. First, 

most pure metals have Seebeck coefficients on the order of 1 to 10 𝜇V/K,4 at least an 

order of magnitude smaller than our estimate via Eq. (2.4). This limits the Seebeck 

voltage across the contacts. Second, if the metal contacts are thin (as is often the case), 

the temperature difference across them, and hence the proportional Seebeck voltage, 

will be very small. In general, the open circuit voltage across a series combination of 

elements is 

 Δ𝑉oc =∑𝑆𝑖Δ𝑇𝑖
𝑖

 (2.6) 

where Δ𝑇𝑖 is the temperature difference across element 𝑖 and 𝑆𝑖 is its Seebeck 

coefficient. 
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2.3.2. The Peltier Effect 

 The Peltier effect84 is the principle of operation for thermoelectric coolers (TECs) 

and was discovered shortly after the Seebeck effect. The Peltier coefficient, Π, relates 

the charge current flowing through a junction of dissimilar conductors to the heat 

current through the same junction:  

 𝐼𝑄 = Π𝐼 (2.7) 

Here, 𝐼𝑄  is the Peltier heat current in Watts. Eq. (2.7) states that there is a proportional 

transport of thermal energy accompanying the flow of electrons (and/or holes). 

The single-channel device is shown again in Figure 2.2, this time illustrating the 

Peltier effect under an applied voltage. To maintain current continuity, electrons with 

sufficient thermal energy are transmitted through the n-type conductor at energy 𝐸𝐽. 

The left contact then cools as thermal equilibrium is re-established. On the opposite 

side, hot electrons (arriving with energy 𝐸𝐽) rapidly thermalize, transferring the excess 

energy to the right contact, which heats up. Reversing the polarity of the applied voltage 

will, conversely, cool the right contact and heat the left. 

Each electron transports approximately 𝐸𝑄 = 𝐸𝐽 − 𝐸𝐹  thermal energy between 

the contacts. Accordingly, the heat transported per unit charge is the Peltier coefficient: 

 Π = −
1

𝑒
(𝐸𝐽 − 𝐸𝐹) (2.8) 

Note that Eq. (2.8) together with Eq. (2.4) implies 

 Π = 𝑇𝑆 (2.9) 
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for the single-channel conductor. This relationship holds generally and was first 

observed by Sir William Thomson (Lord Kelvin) in the mid-nineteenth century. Eq. (2.9) is 

sometimes given as the definition of the Peltier coefficient. Indeed, as we shall 

momentarily, the 𝑆 is in a sense the only fundamental thermoelectric parameter. 

Figure 2.2: A thermoelectric circuit illustrating the origin of the Peltier effect. Electrons 
absorb or expel energy as they traverse the discontinuous energy levels across different 
materials, leading to local cooling or heating of the surroundings. 
 

2.3.3. The Thomson Effect 

 Lastly, the Thomson effect is the change in heat content that occurs when an 

electric current travels through a temperature gradient in the volume of a conductor. 

This change can lead to both heating and cooling, depending on the relative directions of 

the temperature gradient and electric current. The Thomson coefficient is given by93 

 𝓉 = 𝑇
𝑑𝑆

𝑑𝑇
 (2.10) 
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Together, Eq. (2.9) and (2.10) comprise what are known as the “Kelvin relations”, 

expressing Π and 𝓉 in terms of 𝑆 and 𝑇. 

 For a more complete understanding of the Thomson effect, we consider the flow 

of both charge and heat as processes driven by gradients in the electrochemical 

potential and temperature of the system. The total charge (𝐽) and heat (𝑄) current 

densities through conductor can be expressed in terms of the two driving forces as80 

 𝐽 = 𝜎 (−
𝑑𝜓

𝑑𝑥
) − 𝜎𝑆

𝑑𝑇

𝑑𝑥
 (2.11) 

 𝑄 = 𝜎Π(−
𝑑𝜓

𝑑𝑥
) − (𝜅𝑒 + 𝜎𝑆Π)

𝑑𝑇

𝑑𝑥
 (2.12) 

Here, 𝜓 =  𝑉 + 𝐸𝐹/(−𝑒) is the electrochemical potential (in an n-type conductor) and 𝑉 

is an applied voltage. Eliminating the gradient of 𝜓 from (2.12), we find 

 𝑄 = Π𝐽 − 𝜅𝑒
𝑑𝑇

𝑑𝑥
 (2.13) 

The energy flux is then obtained from the charge and heat currents: 

 𝐽𝐸 = 𝐽𝜓 + 𝑄 (2.14) 

Using the continuity equation in one dimension, the change in the total energy density is 

 
𝜕𝜌𝐸
𝜕𝑡

+
𝑑𝐽𝐸
𝑑𝑥

= 0 (2.15) 

and, because the electric current density is uniform, we get 

 
𝜕𝜌𝐸
𝜕𝑡

= −
𝑑𝑄

𝑑𝑥
− 𝐽

𝑑𝜓

𝑑𝑥
 (2.16) 
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Then, using Eqs. (2.9), (2.11) and (2.13) to expand the above, we identify three 

independent mechanisms affecting the volumetric energy change in the current-carrying 

conductor: 

 
𝜕𝜌𝐸
𝜕𝑡

=
𝐽2

𝜎
+
𝑑

𝑑𝑥
[𝜅𝑒

𝑑𝑇

𝑑𝑥
] + 𝐽 [𝑆

𝑑𝑇

𝑑𝑥
−
𝑑

𝑑𝑥
(𝑇𝑆)] (2.17) 

On the right-hand side of Eq. (2.17), the first term is the resistive Joule heat, which 

increases the heat content regardless of the sign (direction) of 𝐽. The second term is 

independent of the electric current and represents simple heat conduction within the 

electron gas. The final term, being linear in 𝐽, represents the reversible change in 

volumetric heat content due to thermoelectric phenomena—this term quantifies the 

Thomson effect. Upon expanding the rightmost 𝑥 derivative, we find the thermoelectric 

contribution: 

 (
𝜕𝜌𝐸
𝜕𝑡
)
TE
= −𝐽 (𝑇

𝑑𝑆

𝑑𝑥
) (2.18) 

In a homogeneous conductor, the spatial gradient of the Seebeck coefficient is due to 

the spatial temperature gradient: 
𝑑𝑆

𝑑𝑥
=

𝑑𝑆

𝑑𝑇

𝑑𝑇

𝑑𝑥
. Hence, with Eq. (2.10): 

 (
𝜕𝜌𝐸
𝜕𝑡
)
TE
= −𝐽

𝑑𝑇

𝑑𝑥
𝓉 (2.19) 

An interpretation of the Thomson coefficient follows from Eq. (2.19) as the rate of 

change of the volumetric heat content, per unit temperature gradient, per unit current 

density. 
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2.4. The Figure of Merit 

The efficiency of a thermoelectric generator, 𝜂𝑇𝐸𝐺 ≡ 𝑃out/𝑄h, is defined as the 

ratio of electrical power output (𝑃out) to the rate of heat supplied to the hot junction 

(𝑄h). Similarly, the coefficient of performance (COP) of a thermoelectric cooler, 𝜙𝑇𝐸𝐶 ≡

𝑄c/𝑃in, is the rate of heat drawn from the cold junction (𝑄c) divided by the rate of 

electrical energy expenditure (𝑃in). Equations for these quantities are usually defined by 

assuming a lack of parasitic heat conduction, while also neglecting resistances outside 

the thermoelectric element. The reader is referred to Ref. 3 for derivations of the 

formulae in the following discussion. 

For a unipolar thermoelectric device, the efficiency and COP are given by 

 𝜂𝑇𝐸𝐺 = (1 −
𝑇c
𝑇h 
) ×

√1 + 𝑍�̅� − 1

√1 + 𝑍�̅� −
𝑇c
𝑇h

 (2.20) 

 𝜙𝑇𝐸𝐶 =
𝑆𝐼𝑇c −

1
2 𝐼

2𝑟 − 𝐾(𝑇h − 𝑇c)

𝑆𝐼(𝑇h − 𝑇c) + 𝐼2𝑟
 (2.21) 

where �̅� is the average temperature between the hot and cold sides of the device. The 

quantities 𝑟 = 𝐿/𝜎𝐴 and 𝐾 = 𝜅𝐴/𝐿 are the electrical resistance and thermal 

conductance of the thermoelectric element, respectively, where 𝐴 is the cross-sectional 

area and 𝐿 is the length. The quantity 𝑍 is defined as 

 𝑍 =
𝑆2

𝑟𝐾
 (2.22) 

 As with any heat engine, the efficiency of the TEG is limited by the Carnot 

efficiency, 
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 𝜂𝑇𝐸𝐺 ≤
𝑇h − 𝑇c
𝑇h

 (2.23) 

and the maximum coefficient of performance is limited by 

 𝜙𝑇𝐸𝐶 ≤
𝑇c

𝑇h − 𝑇c
×

√1 + 𝑍�̅� −
𝑇h
𝑇c

√1 + 𝑍�̅� + 1
 (2.24) 

Both 𝜂𝑇𝐸𝐺 and 𝜙𝑇𝐸𝐶 are monotonic functions of 𝑍𝑇, so it suffices to compare candidate 

materials based on 𝑍𝑇 alone. 

 For physical intuition, 𝑍 can be related to an easily measured quantity, the 

maximum of (𝑇h − 𝑇c). Considering the rate of cooling, 

 𝑄c = 𝑆𝐼𝑇c −
1

2
𝐼2𝑟 − 𝐾(𝑇h − 𝑇c) (2.25) 

it is straightforward to see that 𝑄c, as function of 𝐼, attains a maximum value of 

 (𝑄c)max =
𝑆2𝑇c

2

2𝑟
− 𝐾(𝑇h − 𝑇c) (2.26) 

at current 

 𝐼 =
𝑆𝑇c
𝑟

 (2.27) 

The maximum temperature difference, (𝑇h − 𝑇c)max, is such that parasitic heat 

conduction at the rate 𝐾(𝑇h − 𝑇c)max exactly matches the rate of heat removal via the 

Peltier effect. Accordingly, by setting (𝑄c)max = 0, we find that: 

 𝑍 =
2(𝑇h − 𝑇c)max

𝑇c2
 (2.28) 

 It is common practice to instead quote the dimensionless figure of merit as 
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 𝑍𝑇 =
𝑆2𝜎𝑇

𝜅𝑒 + 𝜅𝐿
 (2.29) 

The quantities 𝑆, 𝜎, and 𝜅𝑒 depend on the electronic band structure and the nature of 

electron scattering in the conductor. These considerations form central aspects of the 

transport models developed in subsequent sections. 

 

2.5. Electronic Band Structure 

 The conduction band is isotropic in direct band gap III-V semiconductors, 

meaning that the electron energy varies only with the magnitude of the electron wave 

vector, 𝒌. Equivalently, a single electron effective mass (𝑚∗) describes the conduction 

band minimum to a good approximation.94 Assuming parabolic energy bands, this leads 

to the dispersion relation of the bulk, 

 𝐸(𝒌) =
ℏ2|𝒌|2

2𝑚∗
 (2.30) 

where the energy varies with |𝒌| like that of a free particle, except with the electron 

mass “adjusted” in the presence of ion cores in a crystal lattice. Several technologically 

important III-Vs exhibit non-parabolicity at low energies, and are better described by a 

dispersion of the form95,96 

 𝐸(𝒌) =
ℏ2|𝒌|2

2𝑚𝑒
+
1

2
[𝛼(𝒌) − 1]𝐸𝑔 (2.31) 

where 𝑚𝑒  is the free electron mass, 𝐸𝑔 is the band gap, and 𝛼(𝒌) is given by 
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 𝛼(𝒌) = √1 +
2ℏ2|𝒌|2

𝑚𝑒
(
𝑚𝑒 −𝑚∗

𝑚∗𝐸𝑔
) (2.32) 

We shall use Eqs. (2.31) and (2.32) to describe the band structure of bulk materials. 

The distinguishing characteristic of carrier-confined systems is that electrons 

(and holes) do not propagate freely in one or more directions. There is, accordingly, a 

component to the electron energy that depends on the size of the system in the 

dimension of confinement. If an electron is confined in all three dimensions, the 

available energies will be wholly discrete. However, if there is at least one physically 

large dimension, the energy states will comprise continuous sub-bands offset by the 

eigenvalues that describe the confined part of the wave function. 

We approximate the NW as a cylinder with radius 𝑅. The Schrödinger equation 

for a potential 𝑉(𝜌, 𝜙) = 0 for 𝜌 ≤ 𝑅 and 𝑉 = ∞ for 𝜌 > 𝑅 is a separable partial 

differential equation that can be solved analytically.97 This leads to energy eigenvalues 

 𝐸𝑙,𝑢 =
ℏ2𝑘𝑙,𝑢

2

2𝑚∗
 (2.33) 

where 𝑘𝑙,𝑢 = 𝑤𝑙,𝑢/𝑅 and 𝑤𝑙,𝑢 is the 𝑢th (positive) root of the ordinary Bessel function98 

𝐽𝑙(𝑥) of order 𝑙. Together, 𝑙 and 𝑢 serve as quantum numbers describing solutions to the 

angular and radial parts of the wave function, respectively. The energy dispersion for the 

𝑗th sub-band is found by adding the axial contribution: 

 𝐸𝑗(𝑘𝑥) = 𝐸𝑙,𝑢
(𝑗)
+
ℏ2𝑘𝑥

2

2𝑚∗
 (2.34) 
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taking 𝒙 along the NW axis. The five lowest sub-bands (𝑗 = 1 to 5) in a cylindrical 

quantum wire correspond to quantum numbers (𝑙, 𝑢) = (0, 1), (1, 1), (2, 1), (0, 2), and 

(3, 1), respectively. 

 The bulk electronic density of states (eDOS) as a function of energy, is given by 

 𝜌3D(𝐸) =
𝒩

2𝜋2
(
2𝑚∗

ℏ2
)

3
2

√𝐸 (2.35) 

with the conduction band minimum taken as 𝐸 = 0. The valley degeneracy, 𝒩, is unity if 

the minimum is at the Γ point of the 1st Brillouin zone (𝒌 = 0), as is the case for direct 

band gap III-Vs. For the one-dimensional case, the density of states in the 𝑗th sub-band is 

 𝜌𝑗
1D(𝐸) =

1

𝜋𝑅2
×
𝒩

𝜋
(
2𝑚∗

ℏ2
)

1
2 1

√𝐸 − 𝐸𝑙,𝑢
(𝑗)

 (2.36) 

defined for 𝐸 ≥ 𝐸𝑙,𝑢
(𝑗)

. Here, division by a factor of 𝜋𝑅2 adjusts the expression to three-

dimensional units. 

In general, for any given band or sub-band, the equilibrium carrier concentration 

is 

 𝑛 = ∫ 𝜌(𝐸)𝑓0(𝐸, 𝐸𝐹 , 𝑇) 𝑑𝐸

∞

𝐸0

 (2.37) 

Note that 𝑛 corresponds uniquely to an 𝐸𝐹 . In the one-dimensional case, 𝑛 is the sum 

over 𝑛𝑗 using the eDOS 𝜌𝑗
1D. 
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 Both the concentration and the energy distribution of charge carriers have strong 

effects on the thermoelectric transport coefficients. To see this, however, we must first 

introduce the physics of near-equilibrium transport. 

 

2.6. Transport Formalism 

 From Eqs. (2.9), (2.11) and (2.12), the electronic and heat current densities can 

be expressed in terms of 𝑆, 𝜎, and 𝜅𝑒 alone: 

 𝐽 = 𝜎F − 𝜎𝑆
𝑑𝑇

𝑑𝑥
 (2.38) 

 
𝑄 = 𝜎𝑆𝑇F − (𝜅𝑒 + 𝜎𝑆

2𝑇)
𝑑𝑇

𝑑𝑥
 

(2.39) 

Here, the gradient of the electrochemical potential, −𝑑𝜓/𝑑𝑥, makes up the total 

electric field, 

 F = 𝜀 +
1

𝑒

𝜕𝐸𝐹
𝜕𝑥

 (2.40) 

where 𝜀 = −𝑑𝑉/𝑑𝑥 and 𝑒 > 0 is the fundamental charge. The remaining (non-

electronic) transport coefficient, 𝜅𝐿, describes heat conduction through the atomic 

lattice: 

 𝑄𝑙 = −𝜅𝐿
𝑑𝑇

𝑑𝑥
 (2.41) 

 Eqs. (2.38) to (2.41) can be used to determine the thermoelectric transport 

coefficients, provided that the current densities 𝐽 and 𝑄 can be calculated 
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independently. This can be done by solving for the non-equilibrium electron distribution 

via the Boltzmann Transport Equation (BTE): 

 
𝜕𝑓

𝜕𝑡
= (

𝜕𝑓

𝜕𝑡
)
force

+ (
𝜕𝑓

𝜕𝑡
)
diff

+ (
𝜕𝑓

𝜕𝑡
)
scatt

 (2.42) 

Here, the subscripts “diff” and “scatt” represent “diffusion” and “scattering”, 

respectively. The BTE is an equation for the distribution function, 𝑓, which in general 

depends on position, velocity, and time. We shall make use of it here with several 

standard assumptions which greatly simplify the problem of finding 𝑓; firstly, by looking 

for solutions of the form 

 𝑓 = 𝑓0 + 𝑔 (2.43) 

with 𝑔 that is linear in the (small) applied field and temperature gradient. Given isotropy 

of the conduction band, it suffices to discuss scalar quantities related to 𝑘 = |𝒌|. The 

individual terms in Eq. (2.42) are then expanded as follows.*  

First, the “force” term that motivates electron drift is written as 

 (
𝜕𝑓

𝜕𝑡
)
force

= −
𝑑𝑘

𝑑𝑡

𝜕𝑓

𝜕𝑘
 (2.44) 

where the net force, 𝐹 ≡ 𝑑𝑝/𝑑𝑡, is the Coulomb force 𝐹 = (−𝑒)𝜀 in an electric field 𝜀. 

Taking 𝑝 = ℏ𝑘 allows the force term to be rewritten in terms of the applied field. Using 

Eq. (2.43), this is 

 (
𝜕𝑓

𝜕𝑡
)
force

=
𝑒𝜀

ℏ

𝜕

𝜕𝑘
(𝑓0 + 𝑔) (2.45) 

Since 𝑔 is proportional to 𝜀, the force term is truncated to 

 
* as per the usual derivation of the linearized electron BTE99 
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 (
𝜕𝑓

𝜕𝑡
)
force

=
𝑒𝜀

ℏ

𝜕𝑓0
𝜕𝑘

 (2.46) 

in the linear approximation. 

 Next, the "diffusion” term is written as 

 (
𝜕𝑓

𝜕𝑡
)
diff

= −𝑣(𝑘)
𝜕𝑓

𝜕𝑥
 (2.47) 

The spatial gradient of the distribution is due to the gradients of 𝐸𝐹  and the 

temperature: 

 
𝜕𝑓

𝜕𝑥
=
𝜕𝑓

𝜕𝐸𝐹

𝜕𝐸𝐹
𝜕𝑥

+
𝜕𝑓

𝜕𝑇

𝑑𝑇

𝑑𝑥
 (2.48) 

Moreover, from the definition of 𝑓0 (Eq. (2.2)), it is easy to see the following 

equivalencies: 

 
𝜕𝑓0
𝜕𝐸𝐹

= (
𝑇

𝐸 − 𝐸𝐹
)
𝜕𝑓0
𝜕𝑇

= −
1

ℏ𝑣(𝑘)

𝜕𝑓0
𝜕𝑘

 (2.49) 

with 

 𝑣(𝑘) =
1

ℏ

𝜕𝐸

𝜕𝑘
 (2.50) 

Therefore, from Eqs. (2.47) to (2.50), the diffusion term is 

 (
𝜕𝑓

𝜕𝑡
)
diff

=
1

ℏ

𝜕𝑓0
𝜕𝑘

[
𝜕𝐸𝐹
𝜕𝑥

+ (
𝐸 − 𝐸𝐹
𝑇

)
𝑑𝑇

𝑑𝑥
] (2.51) 

with another truncation, this time to obtain a linear result with respect to the 

temperature gradient. 
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 Finally, if the field and/or temperature gradient are steady and uniform, it is 

assumed that the distribution does not otherwise evolve over time, so the partial time 

derivative in the BTE (Eq. (2.42)) is eliminated. Altogether, the linearized BTE is 

 (
𝜕𝑓

𝜕𝑡
)
scatt

= −
1

ℏ

𝜕𝑓0
𝜕𝑘

{𝑒𝜀 +
𝜕𝐸𝐹
𝜕𝑥

+ (
𝐸 − 𝐸𝐹
𝑇

)
𝑑𝑇

𝑑𝑥
} (2.52) 

To determine the current densities 𝐽 and 𝑄 from 𝑓, we consider the particle flux 

through an arbitrary surface with normal vector �̂�: 

 𝑗�̂� = ∫(𝒗 ⋅ �̂�)𝜌𝒌𝑓(𝒓, 𝒌, 𝑡) 𝑑𝒌 (2.53) 

where 𝜌𝒌 is the density of states and 𝒗(𝒌) is the group velocity: 

 𝜌𝒌 =

{
 
 

 
 1

4𝜋3
                (3D)

 

(
1

𝜋𝑅2
)
1

𝜋
        (1D)

  (2.54) 

 𝒗(𝒌) =
1

ℏ
𝛁𝒌𝐸 (2.55) 

Here, 𝜌𝒌 is the number of electron states per unit real-space volume, per unit 𝒌-space 

volume; with the former, but not the latter, always being three-dimensional. Hence, the 

particle current is obtained as a flux per unit area in both the bulk and one-dimensional 

(NW) case using Eqs. (2.53) to (2.55). This allows for a direct comparison of the transport 

coefficients which we shall later obtain. 

Given the particle current, prescribing a unit charge (𝑒) or unit thermal energy 

(𝐸 − 𝐸𝐹) gives the electric and heat currents: 
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 𝐽 = −𝑒∫𝜌𝒌𝑣(𝒌)𝑓(𝒓, 𝒌, 𝑡) 𝑑𝒌 (2.56) 

 𝑄 = ∫[𝐸(𝒌) − 𝐸𝐹]𝜌𝒌𝑣(𝒌)𝑓(𝒓, 𝒌, 𝑡) 𝑑𝒌 (2.57) 

 

2.7. The Relaxation Time Approximation 

 Solutions to the linearized BTE (Eq. (2.42)) can be obtained immediately by 

positing that 

 (
𝜕𝑓

𝜕𝑡
)
scatt

= −
𝑓(𝑘, 𝑡) − 𝑓0(𝑘)

𝜏(𝑘)
 (2.58) 

Eq. (2.58) asserts that scattering events relax the non-equilibrium distribution over a 

characteristic time 𝜏(𝑘), which represents the average time between scattering 

events.74 This is the aptly named “relaxation time approximation” (RTA). We note that 

Eq. (2.58) is a separable differential equation describing the exponential decay of the 

solution, 𝑓. With Eq. (2.43), the solution of Eq. (2.58) is of the form 

 𝑓(𝑘, 𝑡) = 𝑓0(𝑘) + 𝑔(𝑘, 0) × exp[−𝑡/𝜏(𝑘)] (2.59) 

The relaxation time, 𝜏(𝑘), must be independent of the distribution itself for this to be 

possible. Substituting Eq. (2.58) into Eq. (2.52) yields the solution of the BTE within the 

RTA: 

 𝑓(𝑘) = 𝑓0(𝑘) +
𝜏(𝑘)

ℏ

𝜕𝑓0
𝜕𝑘

{𝑒𝜀 +
𝜕𝐸𝐹
𝜕𝑥

+ (
𝐸 − 𝐸𝐹
𝑇

)
𝑑𝑇

𝑑𝑥
} (2.60) 

In III-V semiconductors, defining a 𝜏(𝑘) is complicated by the strong presence of 

electron scattering by polar-optical (PO) phonons.74 Unlike scattering by ionized 
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impurities, for example, PO phonon scattering involves the absorption or emission of a 

new particle (a phonon of frequency 𝜔po), and a corresponding (significant) change in 

the electron energy. This means that the PO scattering rate is in fact dependent upon 

the electron distribution.81 The RTA is therefore not a strictly valid approach for 

obtaining electron distributions in III-Vs. It is, however, possible to define a “quasi-

relaxation time” for PO scattering100 in one- or two-dimensional conductors, using an 

approach which is known to be accurate for two-dimensional systems.101 The total 

relaxation time can then be obtained using Matthiessen’s rule, 

 
1

𝜏(𝑘)
=∑

1

𝜏(𝑖)(𝑘)
𝑖

 (2.61) 

where 𝑖 = “PO”, “AC”, “PE”, and “II” represents the four major scattering mechanisms in 

extrinsic III-V semiconductors:102 polar-optical phonon scattering, acoustic deformation 

potential scattering, piezoelectric scattering, and ionized impurity scattering, 

respectively. 

 In some applications of the RTA (for example, Refs. 11 and 22), the total 

relaxation time is assumed to be of the form 

 𝜏(𝐸) = 𝜏0 (
𝐸

𝑘𝐵𝑇
)
𝑠

 (2.62) 

where 𝑠 characterizes the energy (or 𝑘) dependence of the dominant scattering 

mechanism.11,74 While this leads to more simple expressions for 𝑆, 𝜎, and 𝜅𝑒, it also 

introduces an adjustable parameter, 𝜏0, which affects the values of the mobility-related 

transport coefficients, 𝜎 and 𝜅𝑒. To avoid this, we shall use expressions for 𝜏(𝑖) found in 
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literature—based on well-known material parameters—then calculate the total 

relaxation time explicitly from Eq. (2.61), as described below, instead of using Eq. (2.62). 

 

2.8. Nanowire Transport Coefficients 

The relaxation rates for PO, AC and PE scattering in a cylindrical quantum wire 

are taken from Fishman.100 For PO scattering, it is assumed that the longitudinal optical 

branch of the phonon dispersion is flat, such that the polar optical phonon energy is 

uniformly 𝐸po = ℏ𝜔po. The PO scattering relaxation rate is then approximated by 

 

1

𝜏po(𝑘)
=
𝑒2𝑚∗𝐸po
2𝜋2ℏ3

(
1

𝜖∞
−
1

𝜖𝑠
 ) {
𝑁po[1 − 2𝐼1(𝑥𝑞

+)𝐾1(𝑥𝑞
+)]

𝑥𝑞
+√𝑘2 + 𝑞0

2

+
(𝑁po + 1)[1 − 2𝐼1(𝑥𝑞

−)𝐾1(𝑥𝑞
−)]

𝑥𝑞
−√𝑘2 − 𝑞0

2
Θ(𝐸𝑗(𝑘) − 𝐸𝑙,𝑢

(𝑗)
− 𝐸po)} 

(2.63) 

where 𝑘 =  𝑘𝑥 is the magnitude of the wave vector along the NW axis. 𝐸𝑗(𝑘) is given by 

Eq. (2.34) for the sub-band dispersion, and the expressions 

 𝑞0
2 ≡

2𝑚∗𝐸po
ℏ2

 (2.64) 

 𝑥𝑞
± ≡ 𝑅 (𝑘 +√𝑘2 ± 𝑞0

2) (2.65) 

are used to simplify the notation. The quantities 𝜖𝑆 and 𝜖∞ in Eq. (2.63) are the low and 

high frequency dielectric permittivities, respectively. 𝑁po is the occupation number of 

polar-optical phonons in thermal equilibrium, from Bose-Einstein statistics: 



Ph.D. Thesis – Ara Ghukasyan McMaster University – Engineering Physics  

 

 40 

 
𝑁po =

1

exp (
𝐸po
𝑘𝐵𝑇

) − 1

 
(2.66) 

Θ(𝐸) is the Heaviside step function, which in Eq. (2.63) excludes phonon emission when 

the electron energy is less than 𝐸po. The functions 𝐼𝜈(𝑥) and 𝐾𝜈(𝑥) are modified Bessel 

functions of the first and second kind,98 respectively, both of order 𝜈.  

 The AC scattering relaxation rate is given by 

 
1

𝜏ac(𝑘)
=
2𝑚∗𝐸ac

2 𝑘𝐵𝑇

𝜋𝑅2ℏ3𝑐𝑙𝑘
 (2.67) 

where 𝐸ac is the acoustic deformation potential and 𝑐𝑙 is the longitudinal elastic 

constant. 

 For piezoelectric scattering, the relaxation rate is: 

 
1

𝜏pe(𝑘)
=
2𝑚∗𝑒2𝒫2𝑘𝐵𝑇

𝜋ℏ3𝜖𝑠𝑘
[
1 − 2𝐼1(𝑥𝑘)𝐾1(𝑥𝑘)

𝑥𝑘
2 ] (2.68) 

with 𝑥𝑘 = 2𝑘𝑅 and 𝒫, the (dimensionless) piezoelectric coefficient.  

 Finally, for scattering by background ionized impurities, the relaxation rate is103 

 

1

𝜏ii(𝑘)
=

𝑒4𝑚∗𝑁𝐼
2𝜋ℏ3𝜖𝑠2𝑘3

{
2𝐾1(𝑥𝑘)𝐼0(𝑥𝑘)

𝑥𝑘
−
4𝐾1(𝑥𝑘)𝐼1(𝑥𝑘)

𝑥𝑘
2

− 𝐼1
2(𝑥𝑘)[𝐾1

2(𝑥𝑘) − 𝐾0
2(𝑥𝑘)]} 

(2.69) 

where 𝑁I is the density of ionized impurities. The II scattering rate is reduced if the 

impurities are remote (for example, with modulation doping). For remote impurities, the 

scattering rate is given by Eq. (2.69) with the first two terms in the braces omitted and 

the sign of the third term made positive. 
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To address the issue of screening, we consider the static dielectric response 

function103,104 of a one-dimensional conductor, 

 

𝜖(𝑥𝑘)

𝜖𝑠
= 1 +

2𝑒2

𝜋𝜖𝑠𝑥𝑘
2𝑅2

[𝐾1(𝑥𝑘)𝐼1(𝑥𝑘) −
1

2
]

× (
1

𝜋
∫

𝑓0(𝑘
′ + 2𝑘) − 𝑓0(𝑘

′)

𝐸(𝑘′ + 2𝑘) − 𝐸(𝑘′)
 𝑑𝑘′

∞

−∞

) 

(2.70) 

which will depend on temperature through 𝑓0. This, in effect, scales the dielectric 

constant of the medium by the right-hand side of Eq. (2.70). However, at room 

temperature, the ratio 
𝜖(𝑥𝑘)

𝜖𝑠
 is nearly unity for all nonzero 𝑘, so screening can be 

neglected to a very good approximation.100 

 In doped III-V NWs, II scattering dominates at low energies for both background 

and remote impurities. This is shown for the case of an InSb NW in Figure 2.3. Contrary 

to the bulk case, deformation potential scattering (AC) is significant in NWs and 

increases with the inverse square of the NW radius. The onset of PO scattering by 

phonon emission becomes the dominant mechanism above the optical phonon energy 

and, as a result, the non-equilibrium distribution (Eq. (2.60)) is strongly depleted at 𝑘po. 

While a power law relaxation time of the form in Eq. (2.62) can, in principle, be defined 

based on of the effective scattering relaxation rate, the resulting smooth curve will not 

accurately predict the actual scattering rate at a given energy. Hence, 𝜏0 and 𝑠 (from Eq. 

(2.62)) are best used as fitting parameters for experimental data,22 rather than a means 

of predictive calculation. 
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Figure 2.3: Total (dashed) and individual scattering rates in an InSb nanowire at 300 K 
with (a) background impurity and (b) remote impurity scattering. The nanowire diameter 
is 20.0 nm and 𝑛 = 4.36 × 1016 cm-3. 
 

In terms of electron wave numbers, the current densities due to a single one-

dimensional sub-band (labelled 𝑗) are given by 

 𝐽𝑗 =
−𝑒

𝜋2𝑅2
∫ 𝑣(𝑘)𝑓𝑗(𝑘) 𝑑𝑘

∞

−∞

 (2.71) 

 
𝑄𝑗 =

1

𝜋2𝑅2
∫[𝐸𝑗(𝑘) − 𝐸𝐹]𝑣(𝑘)𝑓𝑗(𝑘) 𝑑𝑘

∞

−∞

 (2.72) 

where the group velocity is 

 𝑣(𝑘) =
ℏ𝑘

𝑚∗
 (2.73) 

Here, 𝑣(𝑘) is found by differentiating the NW energy dispersion, Eq. (2.34). The 

expression 𝑓(𝑘) should be understood to mean 𝑓 (𝐸𝑗(𝑘)) via Eq. (2.2) and (2.34). Note 

that the equilibrium distribution 𝑓0(𝑘) will not produce any current since 𝑣(𝑘)𝑓0(𝑘) and 
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[𝐸𝑗(𝑘) − 𝐸𝐹]𝑣(𝑘)𝑓0(𝑘) are odd functions of 𝑘, which symmetrically spans both negative 

and positive values. Currents depend solely on the non-equilibrium component of the 

low-field solution, through 𝑣(𝑘)𝑔𝑗(𝑘), which is even in 𝑘. 

 Adapting the notation for the total electric field (Eq. (2.40)), we write the 

solution as 

 𝑔𝑗(𝑘) =
𝜏(𝑘)

ℏ

𝜕𝑓0
𝜕𝑘

{𝑒F + (
𝐸𝑗(𝑘) − 𝐸𝐹

𝑇
)
𝑑𝑇

𝑑𝑥
} (2.74) 

The NW transport coefficients are then obtained as follows. 

 The electrical conductivity is defined by Eq. (2.38) in isothermal conditions, 

where it reduces to an analogue of Ohm’s Law: 

 𝜎𝑗 ≡
𝐽𝑗
F
|
𝑑𝑇
𝑑𝑥=0

 (2.75) 

Using Eq. (2.71), (2.74) and (2.75), the electrical conductivity evaluates to 

 𝜎𝑗 = −
2𝑒2

𝜋2𝑅2
∫ 𝑣(𝑘) (

𝜏(𝑘)

ℏ

𝜕𝑓0
𝜕𝑘
)  𝑑𝑘

∞

0

 (2.76) 

Next, we note that the definition of the Seebeck coefficient (Eq (2.1))—the open-

circuit voltage per unit temperature difference—is equivalently re-expressed as the total 

field per unit temperature gradient. As per Eq. (2.38) with 𝐽 = 0, we obtain 

 𝑆𝑗
𝑑𝑇

𝑑𝑥
= F (2.77) 

Using Eq. (2.71) and (2.74), the vanishing electric current density is 
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 0 =
−𝑒

𝜋2𝑅2
∫ 𝑣(𝑘)

𝜏(𝑘)

ℏ

𝜕𝑓0
𝜕𝑘

𝑑𝑇

𝑑𝑥
{𝑒𝑆𝑗 + (

𝐸𝑗(𝑘) − 𝐸𝐹
𝑇

)}  𝑑𝑘

∞

−∞

 (2.78) 

which, under a constant temperature, gradient simplifies to 

 0 = ∫ 𝑣(𝑘)𝜏(𝑘)
𝜕𝑓0
𝜕𝑘

[𝑒𝑇𝑆 − (𝐸𝑗(𝑘) − 𝐸𝐹)] 𝑑𝑘

∞

−∞

 (2.79) 

where 𝑇, 𝑆 and 𝐸𝐹  are constant with respect to 𝑘. The Seebeck coefficient is then easily 

found by rearranging Eq. (2.79): 

 𝑆𝑗 = −
1

𝑒𝑇
[
∫ 𝐸𝑗(𝑘)𝑣(𝑘)𝜏(𝑘)

𝜕𝑓0
𝜕𝑘

 𝑑𝑘
∞

−∞

∫ 𝑣(𝑘)𝜏(𝑘)
𝜕𝑓0
𝜕𝑘

 𝑑𝑘
∞

−∞

− 𝐸𝐹] (2.80) 

The ratio of integrals in Eq. (2.80) is interpreted as the average energy of the non-

equilibrium electron distribution11 and is directly analogous to the quantity 𝐸𝐽 of the 

single-channel device92 discussed earlier. 

 Lastly, to obtain the electronic thermal conductivity, we once again take 𝐽 = 0, 

whereby Eq. (2.39) and (2.77) yield a familiar relation for the electronic heat flux: 

 𝑄𝑗 = −𝜅𝑒,𝑗
𝑑𝑇

𝑑𝑥
 (2.81) 

From Eq. (2.72), (2.74) and (2.77), we obtain: 

 
𝑄𝑗

𝑑𝑇 𝑑𝑥⁄
=

1

𝜋2𝑅2
∫(𝐸𝑗(𝑘) − 𝐸𝐹)𝑣(𝑘)

𝜏(𝑘)

ℏ

𝜕𝑓0
𝜕𝑘

[𝑒𝑆𝑗 + (
𝐸𝑗(𝑘) − 𝐸𝐹

𝑇
)]  𝑑𝑘

∞

−∞

 (2.82) 

which leads directly to the electronic thermal conductivity, 
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𝜅𝑒,𝑗 =
2

𝜋2𝑅2
{−𝑒𝑆𝑗∫(𝐸𝑗(𝑘) − 𝐸𝐹)𝑣(𝑘)

𝜏(𝑘)

ℏ

𝜕𝑓0
𝜕𝑘

 𝑑𝑘

∞

0

−
1

𝑇
∫(𝐸𝑗(𝑘) − 𝐸𝐹)

2
𝑣(𝑘)

𝜏(𝑘)

ℏ

𝜕𝑓0
𝜕𝑘

 𝑑𝑘

∞

0

 } 

(2.83) 

If the value of 𝑆𝑗 has not yet been computed, a straightforward expansion follows from 

Eq. (2.80): 

 

𝜅𝑒,𝑗 =
1

𝜋2𝑅2
(
1

ℏ𝑇
) 

{
 

 [∫ (𝐸𝑗(𝑘) − 𝐸𝐹)𝑣(𝑘)𝜏(𝑘)
𝜕𝑓0
𝜕𝑘

 𝑑𝑘
∞

−∞
]
2

∫ 𝑣(𝑘)𝜏(𝑘)
𝜕𝑓0
𝜕𝑘

 𝑑𝑘
∞

−∞

− ∫(𝐸𝑗(𝑘) − 𝐸𝐹)
2
𝑣(𝑘)𝜏(𝑘)

𝜕𝑓0
𝜕𝑘

 𝑑𝑘

∞

−∞ }
 

 
 

(2.84) 

 To determine the total transport coefficients, sub-band contributions to the 

electrical and thermal conductivities can be added directly (assuming, for the latter, that 

the hole contribution is insignificant105). The total Seebeck coefficient, however, is 

calculated as an average weighted by the conductivity contribution of each sub-band, 

i.e. ∑𝑆𝑗𝜎𝑗/∑𝜎𝑗. 

 

2.9. Bulk Transport Coefficients 

 For a baseline to compare with the NW case, the linearized BTE (Eq. (2.52)) can 

be solved in low-field conditions for a bulk, isotropic, and direct band gap semiconductor 

using the method given by Rode.102,106 The solution here has the form: 
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 𝑓(𝒌) = 𝑓0(𝑘) + 𝑔(𝑘) cos 𝜃 (2.85) 

where 𝜃 is the angle between the applied fields and the electron wave vector (𝒌). Eq. 

(2.85) can be understood as a first order expansion of 𝑓 in spherical harmonics.107 A 

distribution of this form characterizes the response of charge carriers inhabiting a 

spherical (i.e. isotropic) conduction band in three dimensions. 

In complete generality, the scattering term in the electron BTE is given by96,106 

 (
𝜕𝑓

𝜕𝑡
)
scatt

= ∫{𝑠(𝒌′, 𝒌)𝑓(𝒌′)[1 − 𝑓(𝒌)] − 𝑠(𝒌, 𝒌′)𝑓(𝒌)[1 − 𝑓(𝒌′)]} 𝑑𝒌′ (2.86) 

where 𝑠(𝒌, 𝒌′) is the differential scattering rate (the rate per unit 𝒌-space volume) and 

describes the probability per unit time for an electron being scattered from state 𝒌 into 

state 𝒌′. The weighting factor 𝑓(𝒌)[1 − 𝑓(𝒌′)] is the probability of state 𝒌 being 

occupied while 𝒌′ is empty simultaneously, as is required for the event described by 

𝑠(𝒌, 𝒌′) to occur. The other (positive) term in the integrand accounts for the converse 

case (a transition from 𝒌′ to 𝒌), which can occur just as well. 

Following Rode’s derivation,106 the differential scattering rate is separated into 

contributing elastic and inelastic rates, 

 𝑠(𝒌, 𝒌′) = 𝑠el(𝒌, 𝒌
′) + 𝑠inel(𝒌, 𝒌

′) (2.87) 

Since elastic scattering is energy-conserving, it can be shown by the principle of detailed 

balance81 that 

 𝑠el(𝒌, 𝒌
′) = 𝑠el(𝒌

′, 𝒌) (2.88) 
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The same relation does not hold for inelastic scattering—here attributed entirely to PO 

scattering, which changes the electron energy by ±ℏ𝜔po. In this case, detailed balance 

requires: 

 𝑠inel
+ (𝒌′, 𝒌) = 𝑠inel

− (𝒌, 𝒌′)× exp (−
𝐸po
𝑘𝐵𝑇

) (2.89) 

where the superscripts (+) and (−) indicate phonon absorption and emission, 

respectively. An electron can scatter both into and out of a state by both absorption and 

emission, though its energy must exceed 𝐸po for emission to be possible. 

 The equilibrium distribution, 𝑓0(𝑘), is the trivial solution of the BTE (Eq. (2.52)) 

without applied fields or temperature gradients. Upon substituting Eq. (2.85) into Eq. 

(2.86), we obtain the equation 

 ∫{𝑠(𝒌′, 𝒌)𝑓0(𝑘
′)[1 − 𝑓0(𝑘)] − 𝑠(𝒌, 𝒌

′)𝑓0(𝑘)[1 − 𝑓0(𝑘
′)]} 𝑑𝒌′ = 0 (2.90) 

The fact that the integral is zero can be deduced from three observations: (1) 𝑓0(𝑘) 

depends only on the magnitude of 𝒌 here; (2) the elastic scattering rates conserve the 

magnitude of 𝒌 in an isotropic crystal; and (3) the fact that 𝑓0(𝑘
′)[1 − 𝑓0(𝑘)] =

𝑓0(𝑘)[1 − 𝑓0(𝑘
′)] exp(−𝐸po 𝑘𝐵𝑇⁄ ), with PO scattering being the only inelastic 

mechanism. Essentially, Eq. (2.90) states that the equilibrium component of the solution 

can be ignored. Then, by taking terms linear in the perturbation, the BTE for 𝑓(𝒌) is 

reduced to an integral equation for 𝑔(𝑘), which in Rode’s method96,102,106,108 is solved by 

iterating: 



Ph.D. Thesis – Ara Ghukasyan McMaster University – Engineering Physics  

 

 48 

 𝑔𝑖+1 =
Sin
−𝑔𝑖

−Θ(𝐸 − 𝐸po) + Sin
+𝑔𝑖

+ − 𝜉

Sout
− Θ(𝐸 − 𝐸po) + Sout

+ +
1
𝜏el

 (2.91) 

Here, 𝜉 is equal to the right-hand side of Eq. (2.52) and 𝜏el(𝑘) is the total relaxation time 

due to the elastic scattering mechanisms (AC, PE, and II). The inelastic scattering 

functions Sin/out
± , which are given explicitly in Appendix II, are related to integrals over 

the differential scattering rates in Eq. (2.89). The ± superscripts indicate a value 

calculated at 𝑘′ = 𝑘 ± 𝑘po , where 𝑘po is the magnitude of the electron wave vector at 

energy 𝐸po. Note that 𝑘po must be determined by inversion of the non-parabolic bulk 

dispersion, Eq. (2.31) and (2.32), as also shown in Appendix II. 

 The iteration begins by taking 𝑔0(𝑘) = 0 for all 𝑘, yielding the first result: 

 𝑔1(𝑘) =  −
𝜉

𝑆out
− Θ(𝐸 − 𝐸po) + Sout

+ +
1
𝜏el

= −𝜏(𝑘)𝜉 (2.92) 

which is that same as the RTA (Eq. (2.74)). It is not necessary to re-compute the 

scattering rates nor the perturbation 𝜉 at each iteration, as these are known functions of 

𝑘 and independent of 𝑔𝑖(𝑘) (though not independent of 𝑓0(𝑘)). Convergence of Eq. 

(2.91) is monotonic, so one merely “updates” 𝑔𝑖(𝑘) until the difference between the 𝑖th 

and (𝑖 + 1)th iterations is negligible. In practice, the number of required iterations is 

around 10 to 100. 

We observe from Eq. (2.91) and (2.92) that 𝑔(𝑘) will remain proportional to 𝜉, 

given 𝑔0 = 0 and that the recursion relation, Eq. (2.91), is effectively 
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 𝑔𝑖+1 = 𝐶1𝑔𝑖
− + 𝐶2𝑔𝑖

+ + 𝐶3𝜉 (2.93) 

for some constants 𝐶1, 𝐶2 and 𝐶3. Therefore, in calculating the thermoelectric transport 

coefficients, which are “per unit field” quantities, one shall find that they depend neither 

on 𝜀 nor 
𝑑𝑇

𝑑𝑥
, as required physically in the low field (i.e. linear response) regime. From a 

computational perspective, the choices of 𝜀 and 
𝑑𝑇

𝑑𝑥
 in are completely arbitrary. 

 Integrating Eqs. (2.56) and (2.57) over spherical coordinates (𝑑𝒌 =

𝑘2 sin 𝜃 𝑑𝑘 𝑑𝜃 𝑑𝜙) with the vertical axis parallel to the applied fields, we obtain the 

expressions: 

 𝐽 = −
𝑒

3𝜋2
∫ 𝑘2𝑣(𝑘)𝑔(𝑘) 𝑑𝑘

∞

0

 (2.94) 

 
𝑄 =

1

3𝜋2
∫[𝐸(𝑘) − 𝐸𝐹]𝑘

2𝑣(𝑘)𝑔(𝑘) 𝑑𝑘

∞

0

 (2.95) 

by using the form of 𝑓(𝒌) in Eq. (2.85). Here the velocity obtained by differentiating the 

non-parabolic bulk dispersion (Eqs. 2.31 and 2.32): 

 𝑣(𝑘) =
ℏ𝑘

𝑚𝑒𝑑(𝑘)
 (2.96) 

 
𝑑(𝑘) =

𝛼(𝑘)
𝑚𝑒
𝑚∗ + [𝛼(𝑘) − 1]

 
(2.97) 

and 𝑚∗ = 𝑚𝑒𝑑(0) is the electron effective mass at the bottom of the conduction band. 

The converged distribution 𝑔(𝑘), together with the carrier velocity, determines the 
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differential current density. This is illustrated in Figure 2.4, along with the 𝑘-dependence 

of the relevant scattering rates. 

Figure 2.4: Elastic and inelastic scattering rates for bulk III-V semiconductors, shown 
here for InSb at (a) the optimum carrier concentration of 𝑛 = 1.79 × 1017cm-3 and (b) at 
the intrinsic carrier concentration, both at 300 K. Panels (c) and (d) show the differential 
electric current density (proportional to the transport distribution) in either case. The 
distribution is smoothed by stronger elastic scattering due to ionized impurities in (a) 
and (c). 
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 Before proceeding with derivations of the bulk transport coefficients, it is 

prudent to derive an expression for the gradient of the chemical potential, 
𝜕𝐸𝐹

𝜕𝑥
, in terms 

of the temperature gradient. In a homogenous conductor, 

 
𝜕𝐸𝐹
𝜕𝑥

=
𝜕𝐸𝐹
𝜕𝑇

𝑑𝑇

𝑑𝑥
 (2.98) 

where the right-hand side can be evaluated using the partial derivative identity: 

 
𝜕𝐸𝐹
𝜕𝑇

= −

𝜕𝑛
𝜕𝑇
𝜕𝑛
𝜕𝐸𝐹

 (2.99) 

Another useful relation is easily derived from the Fermi-Dirac distribution: 

 𝑓0(𝑘)[1 − 𝑓0(𝑘)] =  −
𝑘𝐵𝑇

ℏ𝑣(𝑘)

𝜕𝑓0
𝜕𝑘

 (2.100) 

From Eq. (2.54), carrier concentration (𝑛) is 

 ∫𝜌𝒌𝑓0(𝑘)  𝑑𝒌 =
1

𝜋2
∫ 𝑘2𝑓0(𝑘)
∞

0

 𝑑𝑘 (2.101) 

so its partial derivatives, via the relations in Eq. (2.49) and (2.100), are 

 
𝜕𝑛

𝜕𝑇
=

1

𝜋2𝑘𝐵𝑇2
∫ 𝑘2[𝐸(𝑘) − 𝐸𝐹]𝑓0(𝑘)[(1 − 𝑓0(𝑘)]

∞

0

𝑑𝑘 (2.102) 

 
𝜕𝑛

𝜕𝐸𝐹
=

1

𝜋2𝑘𝐵𝑇
∫ 𝑘2
∞

0

𝑓0(𝑘)[1 − 𝑓0(𝑘)] 𝑑𝑘 (2.103) 

Thus, the spatial gradient of the electrochemical potential is deduced from Eqs. (2.99), 

(2.102), and (2.103): 
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𝜕𝐸𝐹
𝜕𝑥

=
1

𝑇
[𝐸𝐹 −

∫ 𝑘2𝐸(𝑘)𝑓0(𝑘)[1 − 𝑓0(𝑘)]
∞

0
𝑑𝑘 

∫ 𝑘2
∞

0
𝑓0(𝑘)[1 − 𝑓0(𝑘)] 𝑑𝑘 

]
𝑑𝑇

𝑑𝑥
 (2.104) 

Eq. (2.104) is equivalent to the expression given in Ref. 106 without derivation. Note 

that the gradient of 𝐸𝐹  is, indeed, proportional to the temperature gradient. Therefore, 

in isothermal conditions, only the applied field (𝜀) comprises F. 

 We can now determine the transport coefficients. To obtain the electrical 

conductivity, 𝑔(𝑘) is calculated with 
𝑑𝑇

𝑑𝑥
 = 0, such that 

 𝜉 = −
𝑒𝜀

ℏ

𝜕𝑓0
𝜕𝑘

 (2.105) 

and the total field is F = 𝜀. Then, from Ohm’s law and Eq. (2.94) for the current density, 

we have: 

 𝜎 = −
𝑒

3𝜋2𝜀
∫ 𝑘2𝑣(𝑘)𝑔(𝑘) 𝑑𝑘

∞

0

  (2.106) 

The Seebeck coefficient was previously obtained by finding 𝑆 that satisfied 𝐽 = 0 

in the open circuit condition. However, it is here more convenient to calculate the 

Seebeck coefficient from the short circuit condition, where the electrostatic potential is 

uniform (𝜀 = 0). Accordingly, 𝑔(𝑘) is found by iterating with 

 𝜉 = −
1

ℏ

𝜕𝑓0
𝜕𝑘

{
𝜕𝐸𝐹
𝜕𝑥

+ (
𝐸(𝑘) − 𝐸𝐹

𝑇
)
𝑑𝑇

𝑑𝑥
} (2.107) 

Then, from Eq. (2.38): 

 𝑆 =
1

𝑒

𝜕𝐸𝐹
𝜕𝑥

(
𝑑𝑇

𝑑𝑥
)
−1

− 𝐽 (𝜎
𝑑𝑇

𝑑𝑥
)
−1

 (2.108) 

where 𝐽 now represents the short-circuit current and is calculated from Eq. (2.94). 



Ph.D. Thesis – Ara Ghukasyan McMaster University – Engineering Physics  

 

 53 

Finally, 𝜅𝑒 is determined under an applied temperature gradient and without 

current flow (𝐽 = 0), nor an applied field (𝜀 = 0). In these conditions, Eq. (2.38) yields 

the definition of the Seebeck coefficient, 

 𝑆 =
1

𝑒

𝜕𝐸𝐹
𝜕𝑥

 (
𝑑𝑇

𝑑𝑥
)
−1

 (2.109) 

which suggests that the ratio of integrals in Eq. (2.104) is 𝐸𝐽 for the bulk, in analogy to 

the RTA result in Eq. (2.80) and the single-channel device result in Eq. (2.4). With this 

expression for 𝑆, Eq. (2.39) collapses to the definition of the electronic thermal 

conductivity, whence, using Eq. (2.95), we obtain: 

 𝜅𝑒 = {
1

3𝜋2
∫[𝐸(𝑘) − 𝐸𝐹]𝑘

2𝑣(𝑘)𝑔(𝑘) 𝑑𝑘

∞

0

} (
𝑑𝑇

𝑑𝑥
)
−1

 (2.110) 

The same 𝜉 (i.e., Eq. (2.107)) should be used to compute the distributions from which we 

derive both 𝑆 and 𝜅𝑒. 

 The material constants used throughout this chapter are given in Table 2.1. Here 

the electron effective mass and band gap at 300 K are calculated from the band 

parameters in Ref. 94. The remaining parameters are taken from Refs. 102 and 106 with 

the exception of the bulk lattice thermal conductivities, which are widely available.4 
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Table 2.1: Material parameters used for all calculations in this chapter. 
 

parameter units InSb InAs GaAs InP 

𝑚∗(300 K) 𝑚𝑒  0.0118 0.0247 0.0653 0.07500 

𝐸𝑔 (300 K) eV 0.204 0.397 1.483 1.349 

𝜖𝑆 𝜀0 17.64 14.54 12.90 12.38 

𝜖∞ 𝜀0 15.75 12.25 10.92 9.55 

𝐸ac eV 9.5 11.5 8.6 14.5 

𝑐𝑙 1010 N/m2 7.89 9.98 14.0 12.10 

𝒫 1 0.027 0.017 0.052 0.013 

𝜅𝐿 (bulk) W/m-k 18 27 55 68 

 

2.10. Results and Discussion 

 The bulk transport coefficients and figure of merit were calculated at 300 K with 

electron concentrations ranging from 1016 to 1020 cm-3.. Bulk results are shown in 

Figure 2.5. It is clear from these curves that, despite having the highest Seebeck 

coefficients, bulk GaAs and InP exhibit much lower 𝑍𝑇 all carrier concentrations 

compared to InAs and InSb. This is attributed to the order of magnitude difference in 

electrical conductivity (more specifically, the electron mobility) between these 

compounds, with the latter two benefiting from a small electron effective mass. For 

direct band gap III-V semiconductors, the effective mass is correlated with the value of 

the energy gap, as evident from Table 2.1. Mahan and Sofo109 determined an optimum 

value for 𝐸𝑔 of 6 to 10 𝑘𝐵𝑇 for a thermoelectric material, using a transport formulation 

equivalent to the one discussed here. The band gap of InSb is in this range (with 𝑘𝐵𝑇 ≈

0.026 meV, at 300 K), while that of InAs is slightly above, and those of GaAs and InP are 
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too large. Indeed, the largest bulk 𝑍𝑇 is achieved in InSb, at 𝑛 = 1.79 × 1017 cm-3. 

However, this value is too small to merit practical applications of a bulk thermoelectric 

device based on InSb.  

Figure 2.5: Thermoelectric transport coefficients calculated for bulk III-V semiconductors 
at 300 K. The magnitude of the Seebeck coefficient (a) is calculated using Eq. (2.108), 
which yields negative values of 𝑆, as required. The electrical conductivity (b) and the 
electronic thermal conductivity (c) are given by Eq. (2.106) and (2.110), respectively. The 
dimensionless figure of merit (d) is calculated in the usual way (Eq. (1.1)) using the bulk 
lattice thermal conductivity. 
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 Results for NWs are presented in Figures 2.6 and 2.7 for NW diameters of 10 nm 

and 1 nm, respectively. 

Figure 2.6: Thermoelectric transport coefficients calculated for 10 nm diameter 
nanowires at 300 K. The total value of all transport coefficients is shown, using the total 
scattering rate obtained from Matthiessen’s rule applied over Eqs. (2.63) to (2.69), with 
𝑅 = 5 nm. The magnitude of the Seebeck coefficient (a) is the conductivity-weighted 
sum over terms given by Eq. (2.80). The total electrical conductivity and electronic 
thermal conductivity are calculated by summing over terms given by Eq. (2.76) and 
(2.83), respectively. The figure of merit (d) is calculated from the total values in the 
other panels, along with the thermal conductivity curves taken from Ref. 73. 
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 For NW calculations, lattice thermal conductivities as a function of diameter are 

taken from Ref. 73. The results therein indicate thermal conductivity reductions by 1 to 

2 orders of magnitude based on calculations using the complete phonon dispersion88,110 

for the NW structures.  

Figure 2.7: Thermoelectric transport coefficients calculated for 1 nm diameter 
nanowires at 300 K. The total value of all the transport coefficients is shown. The same 
equations were used as for Figure 2.6, except with 𝑅 = 0.5 nm. 
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 From both Figures 2.6 and 2.7, a large increase in the electrical conductivities is 

evident versus the bulk values (Figure 2.5). The magnitude of the Seebeck coefficient is 

also larger in the NW case. Accordingly, so is the power factor, 𝑆2𝜎. For 10 nm diameter 

wires (Figure 2.6), the calculated increase in 𝑍𝑇 is nearly 2 orders of magnitude larger 

than the bulk. A ten-fold reduction of the NW diameter to 1 nm shows an additional 𝑍𝑇 

increase by a factor of only about 3 (Figure 2.7) because the electron scattering rates 

(Eq. (2.63) to (2.69)) are increased dramatically as the NW becomes narrower.  

 The threshold size for electron confinement in nanostructures is usually taken as 

the thermal de Broglie wavelength, Eq. (1.2), which is a rough indicator of the practical 

extent of the electron wave function at energy 𝑘𝐵𝑇. Since 𝜆𝐷 varies inversely with the 

effective mass, electron confinement can be achieved at larger diameters in materials 

with lower effective masses. Figure 2.8 shows the maximum figure of merit and the 

corresponding 𝑛, versus the diameter as a fraction of 𝜆𝐷. 

 The room temperature values of 𝜆𝐷 for electrons in the III-Vs considered here are 

approximately 17 nm (GaAs), 27 nm (InAs), 40 nm (InSb), and 16 nm (InP). This 

represents a significant engineering challenge, as high-quality vertical arrays of narrow 

NWs are difficult to produce via SA-VLS growth, especially at higher impurity 

concentrations. 
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Figure 2.8: (a) Maximum thermoelectric figure of merit for nanowire diameters as 
fraction of the thermal de Broglie wavelength of the corresponding material, where the 
minimum diameter is 1 nm and the maximum is 𝜆𝐷. (b) The electron concentrations that 
maximize the figure of merit for the corresponding material. Dashed lines in both plots 
indicate the values for remote impurities. 
 

 

 At larger diameters, the electronic properties are better treated using the bulk 

dispersion and scattering rates. However, with phonon mean free paths on the order of 

100 nm,111 reductions in thermal conductivity persist well into the bulk electron 

transport regime. A significant 𝑍𝑇 increase can be predicted for the large NWs in Figure 

2.9 versus the bulk (Figure 2.5), owing strictly to thermal conductivity reduction, as per 

Ref. 73. The resulting 𝑍𝑇 values for NW diameters of 50 to 1000 nm, however, are too 

low to be practical. 
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Figure 2.9: Thermoelectric figure of merit of large diameter nanowires. 
 

2.11. Conclusions 

 Low field thermoelectric transport in III-V semiconductors can be modelled from 

first principles using the linearized BTE in a semi-classical approach. We have presented 

here a complete framework for the application of such an approach, using methods 

compiled from various sources. In both the bulk and NW case, the treatment of electron 

scattering presents the most significant challenge regarding the calculation of the 

transport distribution. 

 For the bulk case, we discussed a method of exact solution based on previous 

work by Rode,96,102,106,108 with an additional generalization to allow for the electronic 

thermal conductivity to be computed. 

 For the NW transport distribution, a quasi-relaxation time was calculated from 

the scattering relaxation rates for the most important mechanisms in highly doped and 
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polar semiconductors. These models were subsequently used to determine the optimal 

carrier concentrations that maximize the thermoelectric figure of merit (𝑍𝑇) in bulk and 

NW GaAs, InAs, InSb and InP, at 300 K. 

 We considered both background and modulation doped structures for NWs. In 

accordance with previous studies, our results indicate that, of the four compounds 

considered, InSb is the most promising for thermoelectrics. Moreover, the small electron 

effective mass in InSb allows for carrier confinement to be achieved in larger, more 

easily manufactured structures, leading to electronic improvements that increase 𝑍𝑇 

well beyond unity at NW diameters ≤ 40 nm. 
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3. Measurements of Nanowire Thermal Conductivity 

3.1. Summary 

 Power factor enhancements in NWs, to the degree predicted by theory, remain 

difficult to achieve with contemporary fabrication methods. Thermal conductivity 

reductions, on the other hand, are reported universally in NWs and attributed to a 

variety of mechanisms, including surface roughness, mass disorder, and many kinds of 

interfaces. Twinning superlattice (TSL) NWs, which feature periodic twinning along the 

growth direction, are of particular interest as phonon-blocking structures that retain 

good electronic transport properties simultaneously. This chapter demonstrates the 

array-scale synthesis of TSL-containing GaAs NWs, along with a direct comparison of the 

array thermal conductivity to polytypic GaAs NWs of similar length and diameter. 

 To facilitate thermal conductivity measurements on as-grown NW arrays, we 

adapted a common NW-composite device architecture for use with the 3ω method. We 

measured the thermal conductivities of two different vertical GaAs NW arrays, one 

exhibiting mixed zincblende/wurtzite (ZB/WZ) phase NWs and the other TSL NWs of 

comparable length and diameter. Values extracted from an effective-medium model 

indicate thermal conductivities of 8.4 ± 1.6 W/m-K and 5.2 ± 1.0 W/m-K for these two 

samples, respectively. Our results provide a proof-of-concept for NW thermal 

conductivity measurements in a device-appropriate setting.  
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3.2. Introduction 

Among the III-V compounds, measurements on InAs30–32,34 and GaAs33 NWs have 

shown 30-80% reduction in thermal conductivity compared to their bulk value. The 

influence of structural and compositional features has also been demonstrated. 

Measurements on Si18 and Si0.96Ge0.04
35 NWs have revealed that surface roughness can 

grant an additional 70% reduction compared to smooth NWs. Core-shell GaAs-AlAs NWs 

measured by Juntunen et al.36 showed a non-monotonic dependence on the shell 

thickness, and a minimal thermal conductivity near 1 W/m-K (versus ~50 W/m-K of bulk 

GaAs112,113). Li et al.49 measured the thermal conductivity of Si/Si0.9Ge0.1 superlattice 

NWs, determining values of 5 to 6 W/m-K at room temperature, much lower than Si 

NWs of similar size.51 

For a handful of III-V compounds including GaAs,55 both the zincblende (ZB) and 

wurtzite (WZ) phases are accessible during growth and can be selected by adjusting the 

growth conditions. Polytypic (ZB/WZ),66 phase modulated,114 and twinning-ZB53,55,56,60 III-

V NWs can be produced in this way, with the NW growth conditions determining phase 

selection.115 Disordered NW structures (Figure 3.1a) are associated with low thermal 

conductivity66 but also low electron mobility,26 which is undesirable for devices. In 

twinning superlattices (TSLs; Figure 3.1b-d), complementary twin segments form 

repeating sections that periodically rotate by 60∘ about the NW axis. From a 

thermoelectric point of view, TSLs may provide a means of coherent phonon 
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engineering65 based on adjusting the twin period for minimal lattice thermal 

conductivity.47,67,68 

Figure 3.1: Three-dimensional structures for (a) polytypic zincblende/wurtzite (ZB/WZ) 
and (b) twinning superlattice (TSL) nanowires, showing [111]A and [111]B surface 
faceting in the latter. (c) Bilayer stacking in the TSL, as seen in an orthogonal projection 
along [112̅], exhibiting reversal of the normal ABC stacking sequence across the twin 
plane. (d) Twinning is equivalent to a rotation of the crystal structure about the NW axis 

by 60, illustrated by tetrahedral primitives of bulk GaAs. The indicated growth direction 
applies to the entire figure. 
 

Many of the NW thermoelectric devices proposed to date116–122 employ a 

composite architecture, with an interstitial material introduced for mechanical support 

and planarization of the NW array. Among the thermal conductivity measurements 

reported above, the thermoreflectance-based approaches of Persson et al.30 and 

Juntunen et al.36 are applied directly to measurement devices of this type. Heat flow 
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remains highly one-dimensional here, so a linear effective-medium model can be used to 

extract the thermal conductivity of the NWs.30 

An alternative to thermoreflectance measurements is the AC 3𝜔 method,75,123 

which has been used previously to measure the thermal conductivity of NWs embedded 

in nanoporous Al2O3.124–126 Free-standing NW arrays can also be measured in this way, 

using a spin-on polymer for planarization, as in this work. To examine the influence of 

crystal structure on the NW thermal conductivity, and to illustrate a novel adaptation of 

the 3𝜔 method, we report measurements on GaAs NW arrays featuring polytypic ZB/WZ 

NWs (Figure 3.1a) versus twinning superlattice (TSL) NWs (Figure 3.1b-d). 

 

3.3. Nanowire Growth and Characterization 

 Arrays of GaAs NWs were grown on 300 𝜇m thick p+-Si substrates (𝜌 ≤ 0.005 Ω ⋅

cm) with a <111> surface orientation. GaAs NWs were grown in a 2 × 2 mm2 area on 

the substrate surface by the self-assisted vapor-liquid-solid method with a Ga droplet as 

the seed particle, using gas source molecular beam epitaxy. Two samples were grown 

with polytypic ZB/WZ NWs (sample A) and twinning superlattice (TSL) NWs (sample B) 

using identical processes, apart from a Be dopant flux introduced in the latter that 

induces a TSL structure due to changes in the NW sidewall surface energy.26 

 After growth, the NW arrays were characterized by scanning electron microscopy 

(SEM), bright-field transmission electron microscopy (TEM), and high-resolution TEM 

(HRTEM). Samples were prepared for TEM by mechanically transferring the NWs to a Cu 
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grid. TEM was performed using a JEOL 2010F with 200 kV accelerating voltage. 

Selective-area electron diffraction (SAED) was performed in the TEM to confirm crystal 

structure. SEM was performed using a JEOL 7000F. SEM confirmed a dense and uniform 

NW array (Figure 3.2a) from sample B with similar results from sample A with 

comparable NW length and diameter. 

Figure 3.2: (a) SEM image of the NW array from sample B. (b) SEM image of a NW top, 
showing surface faceting due to a TSL. (c) Size and morphology comparison in side-by-
side TEM images of a polytypic NW from sample A (left) and a TSL NW from sample B 
(right). (d) HRTEM image near the centre of the same NW from sample A, showing 
polytypic NW structure. (e) HRTEM image near the center of the TSL in sample B. (f) 
Selective-area electron diffraction pattern confirming ZB twins in the TSL region of 
sample B. 
 

 The growth procedure produced a TSL structure near the top of the NW in 

sample B, observed by the surface faceting in SEM (Figure 3.2b). A side-by-side 

comparison, shown in Figure 3.2c, highlights the structural differences between samples 
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A and B. The crystal structure of sample A is ZB twins with WZ insertions (denoted 

ZB/WZ, as depicted in Figure 3.1a) as confirmed by HRTEM in Figure 3.2d. The crystal 

structure of sample B was identical to sample A, except near the top third of the NW 

where the polytypic structure was replaced with a TSL structure (depicted in Figure 3.1b, 

c), confirmed by HRTEM in Figure 3.2e and SAED in Figure 3.2f. The Ga droplet that 

seeded the NW growth is observable at the top of the NW in Figure 3.2b and c. Further 

growth details are available in Appendix III-a. 

 

3.4. Device Fabrication 

The 3𝜔 measurement device is depicted in Figure 3.3. To fabricate the device, 

layers of benzocyclobutene (BCB) were applied to the NW arrays by repeated spin-

coating at 7000 rpm for 77 s, followed by a 1-hour cure at 250 ˚C in an inert N2 

atmosphere after each coat. In this way, the NWs were completely submerged and 

insulated by an additional 3.5 𝜇m of BCB above. A layer of microposit S1827 photoresist 

was then spin-coated on top of the cured BCB at 3500 rpm for 30 s, and a 1 mm2 

opening was developed in the photoresist, above a suitable area of the NW array. Using 

the photoresist as an etch mask, a 0.5 𝜇m deep cavity was etched into the excess BCB 

using reactive ion etching under 50 W power, with 35.8 sccm CF4, 5.4 sccm O2, and 1.8 

sccm N2. This step removed some of the BCB above the measurement section of the NW 

array, while allowing shorts to be avoided between the heater and longer parasitic NWs. 

The etch mask was then dissolved in an acetone bath. The height of the remaining BCB 
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excess was later measured by cross-sectional SEM, as seen in Figure 3.3b. In the final 

fabrication step, Cr (70 Å) and Pt (1500 Å) metal were deposited on the BCB by 

evaporation through a mask bearing the heater pattern, and the heater line was 

positioned diagonally across the cavity etched above the NW array. After deposition, 

another acetone bath was used to remove the resist and excess metal by lift-off, forming 

the 30 × 1000 μm heater line and four contact pads illustrated in the inset of Figure 

3.3a. 

Figure 3.3: Diagrams illustrating the device layers used to model heat conduction: (1) 
the electrically insulating BCB excess, (2) the target NW-BCB composite layer, and (3) the 
silicon substrate. (a) 3D schematic of the device, with inset showing the heater line and 
four contact pads. (b) Cross-sectional SEM image of a device from sample B. 
 

3.5. 3𝝎 Measurements 

  A Stanford Research Systems SR810 digital lock-in amplifier was used for AC 

measurements across a range of frequencies. The complex temperature rise (�̃�2ω,rms) of 

the heater line was then calculated from the relation127  

 
�̃�2ω,rms = [

𝐼1ω,rms

√2
×
d𝑅

d𝑇
]
−1

(𝑉3ω,rms,re − 𝑖𝑉3ω,rms,im) (3.1) 
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where 𝐼1ω,rms is the sinusoidal current through the heater line at the source frequency, 

and 𝑉3𝜔,rms,re and 𝑉3𝜔,rms,im are the in- and out-of-phase components of the third 

harmonic voltage across the heater line. In Eq. (3.1), the resistance coefficient 
d𝑅

d𝑇
 

enables the coupling of voltage and temperature via the temperature-dependence of 

the line resistance. Resistance coefficients were obtained using a Thorlabs TED4015 

temperature controller together with a Peltier element to sweep sample temperature 

from 15 to 30 ˚C while a Keithley 2000 series multimeter was used to measure line 

resistances (see Appendix III-b). All AC measurements were done with the sample in 

vacuum. The heater was contacted by copper probes in a typical four-point 

configuration with the substrate pressed against an aluminum block. Prior to the 3𝜔 

measurement, the electrical resistance was measured between the heater line and the 

aluminum block (i.e., ground) to confirm the lack of a leakage current through the 

sample. These measurements yielded resistances exceeding 40 MΩ, owing to the highly 

insulating BCB. (A small resistance would indicate significant power dissipation inside the 

sample, invalidating the assumed heat flow model.123) In addition to samples A and B, a 

third BCB-on-Si sample (sample C) was measured to obtain the baseline thermal 

conductivity of the BCB. A 400 𝜇m thick Si substrate (𝜌 > 1000 Ω-cm) was used for 

sample C. 
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3.6. 3𝝎 Data Fitting 

To fit the measured temperature data (from Eq. (3.1)), the two-dimensional heat 

equation can be solved analytically, assuming a uniform heat flux between the line 

heater and the top layer.123,128 This gives the complex temperature rise of the heater as 

a function of the angular frequency, 𝜔: 

 �̃�ℎ(𝜔) =  
Δ�̃� + 𝑝𝑟th

1 + 𝑖2𝜔𝐶ℎ𝑑ℎ (
Δ�̃� + 𝑝𝑟th

𝑝 )

 (3.2) 

where 

 Δ�̃�(𝜔) =  −
𝑃

𝜋𝑙𝜅⊥,1
∫

1

𝐴1𝐵1

sin2(𝑏𝜆)

𝑏2𝜆2
 𝑑𝜆 

∞

0

 (3.3) 

Here, 𝑃 is the peak electrical power, while 𝑝 = 𝑃/2𝑏𝑙 is the heat flux, 𝑏 is half the width 

of the heater line, and 𝑙 is the length of the heater line. The integration variable, 𝜆, is an 

inverse length. The parameters 𝐶ℎ, 𝑑ℎ, and 𝑟th represent the volumetric heat capacity, 

thickness, and thermal contact resistance, respectively, of the heater. In Eq. (3.3), 𝜅⊥,1 is 

the cross-plane thermal conductivity of the top layer (i.e. the insulating BCB). The 

remaining thermophysical properties are contained in the coefficients 𝐴1 and 𝐵1, which 

are defined by 

 

𝐴𝑛−1 =
𝐴𝑛

𝐵𝑛𝜅⊥,𝑛
𝐵𝑛−1𝜅⊥,𝑛−1

− tanh(𝐵𝑛−1𝑑𝑛−1)

1 − 𝐴𝑛
𝐵𝑛𝜅⊥,𝑛

𝐵𝑛−1𝜅⊥,𝑛−1
tanh(𝐵𝑛−1𝑑𝑛−1)

 (3.4) 

and 
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 𝐵𝑛 = √𝜓𝑛𝜆2 +
𝑖2𝜔𝐶𝑛
𝜅⊥,𝑛

 (3.5) 

for layer indices 𝑛 = 2,… , 𝑁, numbered in increasing order from the second layer down 

to the substrate (layer (𝑁)), as in Figure 3.3. The quantity 𝜓𝑛 is the anisotropy ratio, 

defined as 𝜓𝑛 = 𝜅∥,𝑛 𝜅⊥,𝑛⁄ . The coefficient 𝐴1 of the uppermost layer is determined 

recursively from Eq. (3.4) and the recurrence is terminated at the substrate layer, where 

𝐴𝑁 ≡  −1. The coefficients 𝐵𝑛, on the other hand, are calculated directly form Eq. (3.5). 

In this way, the base temperature rise in Eq. (3.3) considers the accumulated influence 

of layers in the sample, while Eq. (3.2) includes a correction accounting for the physical 

heater line.123 Thermophysical properties of the sample are extracted by fitting this 

model (Eqs. (3.2) to (3.5)) to the measured temperature data (Eq. (3.1)). 

The data was fitted by minimizing the mean-square-error (MSE) defined by 

 
𝜖(̅�⃗�) =  

1

𝑀
∑‖�̃�2ωk − �̃�ℎ(𝜔𝑘 , �⃗�)‖

2
𝑀

𝑘=1

 (3.6) 

where the vector �⃗� contains the fitting parameters. Each layer in a sample admits four 

individual parameters, namely the cross-plane thermal conductivity 𝜅⊥,𝑛, the volumetric 

heat capacity 𝐶𝑛, the layer thickness 𝑑𝑛, and the anisotropy ratio 𝜓𝑛 = 𝜅∥,𝑛 𝜅⊥,𝑛⁄ .  

Samples A and B were modelled as three-layer structures (𝑁 = 3), consisting of 

(1) the insulating BCB in contact with the heater, (2) the NW-BCB composite, and (3) the 

Si substrate, as shown in Figure 3.3. Sample C was modelled as a two-layer structure 

(𝑁 = 2), consisting only of (1) a uniform BCB layer and (2) a Si substrate. 
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The final thermal conductivity of the NW array (𝜅NW) was calculated from the 

total thermal conductivity of the NW-BCB composite layer using an effective-medium 

model:30 

 𝜅NW−BCB = 𝑥𝜅NW + (1 − 𝑥)𝜅BCB (3.7) 

Here, the variable 0 ≤ 𝑥 ≤ 1 represents the volume fraction of NWs in layer (2). The 

volume fraction must account for the NW growth yield because a fraction of oxide holes 

will not nucleate a NW due to parasitic effects. The yield was estimated by counting all 

NWs (roughly 4000 individuals) in a 30 × 30 μm2 area of each NW array versus the 

known density of nucleation sites. The measured thermal conductivities, 𝜅NW−BCB and 

𝜅BCB, were obtained by fitting layer (2) of samples A or B and layer (1) of sample C, 

respectively. 

 

3.7. Results and Discussion 

 The 3𝜔 measurement data is shown in Figure 3.4a for samples A (red), B (blue), 

and C (green) along with curves corresponding to the fitted material properties. We 

considered three separate paradigms for the fit model vis a vis Eqs. (3.2) to (3.5); fitting 

with (i) the heater contribution neglected (𝐶ℎ𝑑ℎ = 0, 𝑟th = 0), (ii) the heater thermal 

mass neglected (𝐶ℎ𝑑ℎ = 0, 𝑟th ≠ 0), and (iii) all heater corrections included (𝐶ℎ𝑑ℎ ≠ 0, 

𝑟th ≠ 0). Uncertainties on the fitted parameter values were estimated by taking the 

largest range within the measurement error, which is indicated by the shaded regions 

around the data points in in Figure 3.4a. 
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Figure 3.4: (a) Measured temperature amplitudes for samples A, B, and C, along with 
fitted curves, for the in-phase and out-of-phase (inset) components of each. (b) Thermal 
conductivity of GaAs NWs, with the polytypic ZB/WZ NWs (red, sample A) and the TSL 
NWs (blue, sample B) data points corresponding to measurements in panel (a). For 
comparison, the white markers indicate the experimental results of Juntunen et al.36 and 
Soini et al.33 The dashed and dotted lines represent theoretical results from Mingo et 
al.88 and Martin et al.,129 respectively, with Δ indicating surface roughness for the latter. 
 

 The best overall fit, in terms of the minimal MSE, was achieved using paradigm 

(ii). Paradigm (iii) produced comparable results for the NW and BCB thermal 

conductivities, agreeing with (ii) within uncertainty. As can be expected,123 the thermal 

mass of a 𝑑ℎ = 157 nm heater line had only a small effect on the extrapolated values. 

Inclusion of the thermal resistance, on the other hand, greatly improved the fit. 

Appendix III-c confirms the sensitivity of the heat model to the thermal conductivities of 

the upper two layers vis a vis the finite penetration depth123,128 of the temperature 

oscillations, as compared to the thicknesses of the layers (1) and (2) in our samples. 

To consider thermal contact resistance between the sample layers, we used the 

slightly modified model of Olson et al.130 to extend Eqs. (3.2) to (3.5). This approach 

effectively yielded zero resistance between layers (1)-(2) and between layers (2)-(3) in 
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both samples A and B. A finite thermal resistance between the Cr/Pt heater line and the 

BCB of layer (1) was necessary to fit the high frequency data (𝜔 > 104 Hz) shown in 

Figure 3.4a. 𝑟th = 0.02 ± 0.01 cm2-K/W was obtained for both samples A and B. The 

complete parameters are tabulated in Appendix III-d. 

The array thermal conductivities were determined from NW volume fractions 

𝑥A = 0.056 ± 0.006 and 𝑥B = 0.084 ± 0.009 for samples A and B, respectively. Volume 

fractions were calculated from yields 0.50 ±  0.05 and 0.63 ±  0.05, and NW diameters 

𝐷A = 126± 5 nm and 𝐷B = 138± 5 nm, for samples A and B, respectively. The 

thermal conductivity of BCB was 0.19 ± 0.03 W/m-K obtained from sample C. The 

thermal conductivities for the disordered polytypic ZB/WZ NWs (sample A) and the TSL 

NWs (sample B) were 𝜅A = 8.4 ± 1.6 W/m-K and 𝜅B = 5.2 ± 1.0 W/m-K, respectively. 

As a point of comparison, the bulk GaAs thermal conductivity of ~50 W/m-

K112,113 would give a thermal conductivity of ~3 W/m-K at the same volume fraction of 

samples A or B, where ~0.6 W/m-K was in fact measured for the NW-BCB layers. The 

NW thermal conductivities extracted from the samples are indeed much smaller than 50 

W/m-K. The thermal conductivity of the ZB/WZ NWs from sample A was in the same 

range as prior theoretical and experimental results, as shown in Figure 3.4b (red data 

point). Here, the theoretical curves taken from Mingo et al.88 (dashed) and Martin et 

al.129 (dotted) indicate the approximate size dependence of the thermal conductivity for 

NWs with fully diffuse phonon-boundary scattering and for NWs with boundaries 

characterized by a root-mean-square roughness, Δ, respectively. Based on these trends, 
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the ZB/WZ NWs have a proportionally larger thermal conductivity compared to the 105 

nm diameter NWs from Ref. 36. However, the TSL NWs from sample B (blue data point 

in Figure 3.4b) exhibited a decrease in thermal conductivity within statistical error, 

despite an even larger diameter. This result is among the lowest thermal conductivities 

achieved to date for GaAs NWs. 

Lower values may yet be attainable by carefully adjusting the TSL period. As in 

traditional superlattices,42,43 there should exist an optimum twin period that minimizes 

the thermal conductivity of TSL NWs.47,67,68 The mechanism of thermal conductivity 

reduction, while not fully understood,41 is usually attributed to both coherent and 

incoherent phonon transport in superlattices.27,50 A fraction of phonon modes 

experience repeated reflections between interfaces, leading to resonances that inhibit 

axial propagation. Conversely, the same interfaces form resistive barriers for phonons 

that decohere at shorter length scales. In this view, the superlattice period selects the 

phonon modes (frequencies and wavelengths) affected by either scattering regime, 

resulting in a tunable thermal conductivity depending on the contribution of these 

modes to heat conduction in the periodic structure. Compared to traditional 

heterojunctions in NWs,49 the inherent sharpness of TSL interfaces should improve 

phonon coherence and provide greater tunability. 
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3.8. Conclusions 

 In summary, we measured the thermal conductivity of GaAs NW arrays with 

polytypic ZB/WZ versus TSL structure, using a NW-BCB composite device structure 

adapted for the 3𝜔 method. From an effective medium model, we extracted the NW 

array thermal conductivities, 𝜅A = 8.4 ± 1.6 W/m-K and 𝜅B = 5.2 ± 1.0 W/m-K for the 

ZB/WZ and TSL NW arrays, respectively.  

 These results pave the way for future systematic studies aimed at understanding 

the effect of crystal structure on heat flow in III-V NWs. Further reductions in the 

thermal conductivity may be possible by tuning the period of the TSL structure (the twin 

segment length), varying the NW diameter, and inducing TSL formation in other NW 

materials. 
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4. Simulations of Heat Transport in Nanowires 

4.1. Summary 

 The zincblende and wurtzite crystal phases of III-V semiconductors correspond to 

repeating ABC or AB stacking sequences, respectively, of atomic bilayers along the cubic 

<111> direction. However, finite structures like NWs are subject to more relaxed 

sequence selection rules. Because of this, polytypism and/or twinning are common, with 

many (mostly disordered) stackings of A, B, and C planes being observed in NWs. In 

principle, this is a vast space of stable configurations, comprised of both periodic and 

aperiodic structures, which present atomically sharp interfaces in the form of phase 

and/or twin boundaries. Systematic experiments to investigate structural effects on the 

thermal conductivity may be difficult with currently available growth technologies. On 

the other hand, a computational approach affords a straightforward generalization to 

arbitrary NW structures.  

 In this chapter, we investigate and compare thermal transport in pristine, 

twinning superlattice (TSL), and disordered polytypic GaAs NWs, using non-equilibrium 

molecular dynamics simulations and phonon transmission spectra obtained from the 

atomistic Green’s function method. We find that a TSL period of 50 Å minimizes the 

thermal conductivity and determine phonon coherence lengths of about 20 to 50 nm, 

depending on the NW diameter. Our findings indicate a strong dependence of the 

thermal conductivity on the NW surface and internal structure. 
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4.2. Introduction 

 The unique one-dimensional geometry of semiconductor NWs enables the 

engineering of thermal conductivity for thermoelectric applications.24,131,132 

Thermoelectrics require a low thermal conductivity to sustain the temperature gradients 

that drive charge transport. The total thermal conductivity of a crystalline solid includes 

heat transported by electrons and heat transported by vibrations of the atomic lattice. 

The lattice contribution is, however, larger than the electronic contribution by at least 

an order of magnitude in typical semiconductors.11 This fact can be used to control the 

thermal conductivity with structural features that impede phonon propagation, ideally 

without reducing carrier mobility.  

 Values well below the bulk thermal conductivity are obtained even in crystalline 

NWs31,32,51 because phonon transport is suppressed by boundary scattering, which 

becomes more significant with increasing surface roughness.18,35,129 Modulating the 

internal structure of NWs can further reduce the thermal conductivity by introducing 

interfaces and mass disorder to the lattice. For example, Li et al.49 demonstrated an 

order of magnitude reduction in thermal conductivity for Si/Si-Ge superlattice (SL) NWs 

compared to single crystalline Si NWs of similar diameter. The authors attributed the 

difference to boundary and alloy scattering in the SL NWs, noting a loss of sharpness in 

the heterojunctions due to diffusion during NW growth. However, atomically sharp 

interfaces are desired to coherently control the phonon spectra of NWs27 without 

disrupting electron transport.133 
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 In III-V NWs, both a stable zincblende (ZB) phase (ABCABC… stacking) and a 

stable wurtzite (WZ) phase (ABAB… stacking) can be achieved.52 A wide range of 

twinning and polytypic structures can also be synthesized in controlled conditions that 

modify the bilayer stacking sequence during epitaxial growth.56,134,135 Twinning 

superlattice (TSL) NWs52–54 comprise a subset of these structures, in which the ZB 

stacking sequence reverses order periodically (for example, ABCBA). By symmetry of the 

lattice, this creates a stack of ZB twin segments corresponding to a 60∘ rotation about 

the NW axis (Figure 4.1a, b). Relative rotation between twins in the TSL creates a 

mismatch in the transverse electronic band structure,69 such that the twin boundaries 

effectively connect two dissimilar structures, as in traditional heterojunction SLs. 

However, due to the inherent sharpness of twin interfaces, TSL NWs may exhibit more 

coherent phonon transport than traditional SLs. Coherence of the optical TSL modes has 

been observed by Raman scattering in GaP TSL NWs at room temperature.65 

Computational studies on a variety of semiconductor SL systems,27,47,136,137 as well as TSL 

Si NWs,67 find thermal conductivities depending non-linearly on the twin period, 

suggesting that tunable (i.e., coherent) acoustic phonon modes could also be realized in 

practice. 

 Here, we investigate phonon transport in TSLs and related NW structures that 

can be observed in the III-V material system, with the goal of elucidating structural 

effects on the thermal conductivity. Using non-equilibrium molecular dynamics (NEMD) 

simulations, we simulated heat transfer in coherently twinned (Figure 4.1a, b), randomly 
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polytypic (Figure 4.1c) and pristine (Figure 4.1d, e) GaAs NWs across a range of twin 

periods and ZB/WZ ratios. Following previous studies,67 we also examined phonon 

transmission in detail using the atomistic Green’s function78,79 (AGF) method. 

Figure 4.1: Orthographic and perspective views of several representative NW structures 
studied in this chapter. (a) A faceted TSL NW with a twin segment length of 7 bilayers. 
(b) A non-faceted TSL NW structure with the same periodicity as (a). (c) A NW exhibiting 
random polytypism with a ZB/WZ ratio of 50%. (d) A single-crystalline ZB NW. (e) A 
single-crystalline WZ NW. Corresponding three-dimensional models are shown below 
each structure in (a)-(e). Horizontal lines in (a)-(e) represent the twin or polytypic 
boundaries. The faceted TSL NW in (f) spans the length of the simulation cell used in 
NEMD calculations and is shown here at the largest diameter studied (100 Å). 
 

4.3. Generalizing Nanowire Structures 

 Viewing the NWs as stacks of atomic bilayers along <111>B, three unique planes 

of lattice points can be identified up to translational symmetry along the NW axis, as 
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usually distinguished by the labels A, B, and C. Any permutation of the bilayer stacking 

sequence represents another valid stacking sequence in the NW, provided there are no 

adjacent identical planes. The WZ structure (Figure 4.1e) is obtained from AB stacking, 

and the ZB structure (Figure 4.1d) is obtained from ABC stacking. Random ZB/WZ 

polytypic NWs (Figure 4.1c) containing a ZB fraction 0 ≤ 𝑥 ≤ 1, here called ZBWZ(𝑥), can 

be obtained by randomized insertion of the required number of WZ segments. TSL 

structures (Figure 4.1a, b) are generated by flipping the ZB stacking order after every 𝑛 

bilayers. This produces a NW with a twin period of 2𝑛 atomic bilayers. Two structures of 

this type were considered here—those with (111)A and (111)B side facets (Figure 4.1a) 

and those with vertical sidewalls (Figure 4.1b). These are referred to as ZBTF(𝑛) and 

ZBT(𝑛), respectively. The ZBTF structure produces twin segments that are horizontal 

truncations (slices) of an octahedral supercell with one face perpendicular to the NW 

axis,54 as are readily observed in TSL NWs.52,53,55 For ZBTF(𝑛), there exists a maximum 𝑛 

(i.e., twin segment length), corresponding to the distance between two flat faces of the 

octahedral supercell. By comparison of the faceted ZBTF(𝑛) structure to the non-faceted 

ZBT(𝑛) structure, the relative importance of the NW surface can be deduced, since the 

ZBT(𝑛) surface is a close approximation to the non-twinning ZB (11̅0) surfaces, whereas 

ZBTF(𝑛) exhibits corrugated but more stable (111)A/(111)B faceting of the sidewalls. 
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4.4. Computational Methods 

 The LAMMPS138 package was used for all NEMD simulations together with the 

empirical Tersoff potential139 to describe the various configurations of GaAs studied 

here. This potential accurately reproduces the bonding and cohesive energies of several 

Ga-As configurations as well as the elastic constants of ZB GaAs when compared with 

calculations from density functional theory (see Tables I-IV in Ref. 139). The total length 

of the NWs was extended to approximately 350 nm, where size-dependent saturation of 

the thermal conductivity was observed (see Appendix IV-a). Periodic boundary 

conditions were imposed to connect the top and bottom layers of the NWs, with 

vacuum regions isolating the finite structure laterally. The simulated NWs had diameters 

of approximately 50, 75, or 100 Å. Figure 4.1f shows a scale model of the 100 Å diameter 

ZBTF(7) NW used in NEMD simulations. All structures were equilibrated at a constant 

pressure and temperature of 1 atm and 300 K, respectively, over 2.67 million timesteps 

with Δ𝑡 = 5 × 10−4 ps. Subsequently, to simulate heat transfer, the NWs were divided 

into 52 equal-sized bins along the 𝑧-direction, and an artificial heat flux was imposed 

between the first bin and the central bin by kinetic energy swapping according to the 

Müller-Plathe algorithm.77 This led to a steady heat flow and a linear temperature 

gradient extending from the hot center bin to both cold bins at opposite ends of the 

NW. Thermal conductivity was then obtained from the steady state by applying Fourier’s 

law. 
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 To calculate frequency-dependent phonon transmission across planar interfaces 

in the various NW structures, we employed the AGF method78,79 with the usual “contact-

device-contact” geometry adapted to our NW structures. The “device” portions were 

formed by one unit cell of a periodic NW (for example, an ABC triplet for ZB), while the 

“contacts” consisted of infinite repetitions of the same unit cell along ±𝑧. Harmonic 

approximations of the inter-atomic force constants were extracted using the Phonopy140 

code, following energy minimization implemented in LAMMPS. Further details are 

provided in the Appendix IV-b. 

 

4.5. Results and Discussion 

4.5.1. Thermal Conductivity 

 NW thermal conductivities from NEMD simulations are shown in Figure 4.2a for 

pristine ZB and TSL NWs (ZBT(𝑛) and ZBTF(𝑛)), and in Figure 4.2b for polytypic NWs 

(ZBWZ(𝑥)), at three different diameters of 50, 75, and 100 Å (indicated by the line 

weight). A large but diminishing increase of the thermal conductivity is clearly seen for 

each type of NW as the diameter increases, corresponding to a decreasing rate of 

phonon-boundary scattering with increasing NW diameter. 

The NW structures transition from predominantly WZ to ZB when moving left to 

right in Figure 4.2a or b. In Figure 4.2a, the ZBT(𝑛) thermal conductivity (red) converges 

to the value for pristine ZB (dashed lines, black) with increasing twin period (bottom 

axis) or twin segment length, 𝑛 (top axis). Similarly, the ZBWZ(𝑥) thermal conductivity 
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(blue) in Figure 4.2b converges to the pristine ZB value as 𝑥 approaches 1 on the right. 

This is expected, with ZBWZ(1) being exactly ZB by definition. On the left-hand sides of 

Figure 4.2a and b, thermal conductivities approach the WZ NW value, where the “twin 

segments” become single bilayers (𝑛 → 1) or where the ZBWZ ratio (𝑥) becomes zero. 

Key results from the NEMD simulations are tabulated in Table 4.1, including the left-

most data points in Figure 4.2a and b (corresponding to WZ), which are omitted from 

the plot for clarity. Notably, WZ NWs have higher thermal conductivity compared to ZB, 

which is discussed further below. 

Figure 4.2: (a) NEMD results for the thermal conductivity of non-faceted TSL NWs 
(ZBT(𝑛), red) and faceted TSL NWs (ZBTF(𝑛), green) versus twin period (bottom axis) or 
twin segment length in bilayers, 𝑛, (top axis). (b) Thermal conductivity versus ZB ratio in 
ZBWZ(𝑥) (blue) and ZBT(𝑛) (red). Diameters are indicated by the line weight. Dashed 
lines (black) correspond to the pristine ZB NW thermal conductivities. 
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Table 4.1: Summary of thermal conductivity extrema (in W/m-K) obtained by NEMD 
simulations. 

 𝑫 = 𝟓𝟎 Å 𝑫 = 𝟕𝟓 Å 𝑫 = 𝟏𝟎𝟎 Å 

 min max min max min max 

ZB 7.7 ± 0.1 10.1 ± 0.1 11.6 ± 0.1 

ZBT(𝑛) 6.9 ± 0.1 8.4 ± 0.1 9.2 ± 0.1 10.9 ± 0.1 10.4 ± 0.1 12.2 ± 0.1 

ZBWZ(𝑥) 6.9 ± 0.1 11.4 ± 0.2 9.2 ± 0.1 12.9 ± 0.1 10.6 ± 0.1 14.4 ± 0.3 

ZBTF(𝑛) 7.9 ± 0.1 11.7 ± 0.1 9.7 ± 0.1 13.5 ± 0.1 11.1 ± 0.1 15.2 ± 0.1 

WZ 22.9 ± 0.4 24.2 ± 0.5 26.5 ± 0.2 

 

 Various transitions between the pristine WZ and ZB phases are represented by 

the interior data points in Figure 4.2. Here, minima below the pristine ZB conductivity 

are attained for the ZBT(𝑛) and ZBWZ(𝑥) structures, corresponding to a twin period of 

~50 Å (𝑛 = 8) and a ZB ratio of 𝑥 ≈ 0.8, respectively. The ZBTF(𝑛) structures also 

approach such a minimum, but only at the two larger diameters. Thermal conductivity 

minima appear approximately constant among ZBT(𝑛) and ZBWZ(𝑥) NWs, regardless of 

diameter. Also, the difference between pristine ZB and the minimum ZBT(𝑛) or ZBWZ(𝑥) 

value—the depth of the red or blue “valleys” in Figure 4.2—increases with diameter. 

From this, we infer the increasing contribution of interface versus boundary scattering 

as diameter increases. For the faceted ZBTF(𝑛) NWs, a monotonically decreasing thermal 

conductivity is observed in Figure 4.2a up to the maximum possible period length. 

ZBTF(𝑛) also yields consistently higher thermal conductivities compared to ZBT(𝑛) at the 

same twin segment length, as well as exhibiting a stronger dependence on the twin 

segment length. This implies that the (111)A/(111)B side facets of the ZBTF(𝑛) structure 

scatter phonons with higher specularity29 compared to the atomically rougher (11̅0) 
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ZBT(𝑛) and ZB surfaces. Higher specularity better preserves phonon coherence, thereby 

amplifying the structural effect of periodicity (i.e., the dependence on 𝑛). Higher 

specularity also increases the overall thermal conductivity by decreasing the rate of 

boundary scattering. 

To discern the effect of TSL periodicity, the number of WZ bilayer inclusions52 

introduced by twinning were counted to determine the effective ZB fraction: 

 𝑥 = 1 −
1

𝑛
 (4.1) 

Using Eq. (4.1), the results in Figure 4.2a are recast in terms of the ZB/WZ fraction and 

plotted in Figure 4.2b. Here, the ZBT(𝑥) (red) and ZBWZ(𝑥) NWs (blue) yield distinct 

values at the same effective ZB/WZ fraction, despite exhibiting comparable minima in 

thermal conductivity. The ZBWZ(𝑥) and ZBT(𝑥) structures are evidently not equivalent in 

terms of heat conduction, which indicates importance of the periodic structure on 

phonon transport. 

To further understand the thermal conductivity results of Figure 4.2, we consider 

the limit of fully incoherent phonon transport and treat the NWs simply as a mixture of 

pristine ZB and WZ. In this view, ZBT(𝑥) NWs are a stack of ZB segments separated by 

twin interfaces (WZ inclusions), while the ZBWZ(𝑥) NWs are random stacks of ZB and WZ 

segments (including WZ-WZ or ZB-ZB adjacencies). The total thermal resistance is then 

the sum of series contributions from the ZB/WZ segments, plus the interfaces between 

them,50 Reff = ∑R𝑖 + ∑𝑟𝑗. It follows that the effective thermal conductivity can be 

written as 
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1

𝜅eff
=

1

𝐿NW
(
1

𝜅ZB
∑ℓZB𝑖 +

1

𝜅WZ
∑ℓWZ𝑖

𝑖𝑖

) +𝑁int (
𝑟𝐴NW
𝐿NW

) (4.2) 

In Eq. (4.2), 𝐿NW is the total NW length, 𝐴NW is the NW cross-sectional area, 𝜅ZB/WZ is 

the thermal conductivity of pristine ZB or WZ, ℓZB/WZ is the length of a given ZB or WZ 

segment, 𝑁int is the number of ZB-WZ interfaces, and 𝑟 is the effective interfacial 

thermal resistance. Eq. (4.2) reduces to 

 
1

𝜅eff
= (

1

𝜅ZB
−

1

𝜅WZ
) 𝑥 +

1

𝜅WZ
+ 𝑁int (

𝑟𝐴NW
𝐿NW

) (4.3) 

where 𝑥 is the fraction of ZB in the NW. This result models the thermal conductivity of 

ZBT(𝑥) and ZBWZ(𝑥) NWs in the limit where twin and polytypic interfaces, respectively, 

are spaced further apart than the effective coherence length, 𝑙𝑐, of incident phonons.27 

This would mean that phonons decohere between subsequent interfaces, so resonant 

modes cannot be sustained. We can therefore estimate 𝑙𝑐 as approximately the twin 

period at which the NEMD results diverge from the incoherent model for ZBT(𝑥). 

The number of interfaces in ZBT(𝑥) is given by 

 𝑁int
TSL(𝑥) = 2𝑛𝑧(1 − 𝑥) (4.4) 

where 𝑛𝑧 = 𝐿NW/𝑎𝑧 is the total number of bilayers in the NW, and 𝑎𝑧 is the bilayer 

atomic spacing along the <111>B axis. In the pristine ZB limit, 𝑁int
TSL → 0 as 𝑥 → 1; and 

𝑁int
TSL → 2𝑛𝑧 as 𝑥 → 0, when every consecutive bilayer is one segment of a new twin. 

Eqs. (4.3) and (4.4) are applicable in the limit of large 𝑥 (𝑛 ≈ 100 or greater), where ZB 

segments can be identified in ZBT(𝑥) unambiguously. 
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In ZBWZ(𝑥), the number of interfaces depends on the specific distribution of WZ 

segments. Accordingly, the average number of interfaces, 𝑁int
ZBWZ, for a given ZB fraction 

was determined. Each WZ cell consists of 2 bilayers and the number of randomly 

distributed WZ cells is given by 𝑘 = (1 − 𝑥)𝑚, where 𝑚 = 𝑛𝑧/2. By a counting 

argument, the average number of interfaces in ZBWZ(𝑥) is the sum of the number of 

interfaces over all possible combinations, divided by the number of combinations: 

 𝑁int
ZBWZ(𝑥) =  2𝑘 (

𝑚 − 1
𝑘

) / (
𝑚
𝑘
) =

2𝑘(𝑚 − 𝑘)

𝑚
 (4.5) 

We confirm that 𝑁int
ZBWZ → 0 as 𝑘 → 0 (no WZ in ZB) and that 𝑁int

ZBWZ → 0 as 𝑘 →

𝑚 (no ZB in WZ). For ZBWZ(𝑥), incoherent transport occurs as 𝑥 → 0 or 𝑥 → 1, since 

interfaces are most abundant on average near 𝑥 = 0.5. 

 Figure 4.3 reproduces the NEMD results from Figure 4.2, together with the fit 

from the incoherent model of Eq. (4.3) with the values of Table 4.2. The WZ inclusions at 

the twin interfaces in the ZBT(𝑥) NW introduce a lower but comparable equivalent 

thermal resistance than WZ segments in the random ZBWZ(𝑥) NW. However, the 

interfacial resistances converge for ZBT(𝑥) and ZBWZ(𝑥) with increasing diameter. At 

larger diameters, local differences between the outer NW surfaces (Figure 4.1b and c) 

become less important and the interface is characterized mostly by the internal 

structures, which are equivalent. Similarly, the increasing 𝑙𝑐 is due to decreasing 

boundary scattering as the diameter increases. Our results for the coherence length in 

GaAs TSL NWs are in good agreement with the experimental values for GaP TSL NWs 
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reported by De Luca et al.65 To the best of our knowledge, similar experiments have not 

been performed on GaAs TSL NWs to date. 

 

Figure 4.3: NEMD thermal conductivity for (a) ZBT(𝑥) and (b) ZBWZ(𝑥) versus thermal 
conductivity in the incoherent limit (dotted lines). Corresponding values of 𝑟 and 𝑙𝑐 are 
shown in Table 4.2. 
 

 

 
Table 4.2: Coherence length (𝑙𝑐) and interfacial thermal resistance (𝑟) between WZ and 
ZB segments. 
 

diameter [Å] 𝒓𝐙𝐁𝐖𝐙 [𝟏𝟎𝟔 K/W] 𝒓𝐙𝐁𝐓 [𝟏𝟎𝟔 K/W] 𝒍𝒄 [Å] 

50 12.0 5.5 195 

75 2.4 1.8 290 

100 1.3 1.2 520 
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4.5.2. Transmission Functions 

 To understand the globally higher thermal conductivity of WZ and WZ-like NWs, 

we calculated the transmission function 𝒯(𝜔) for ZBT(1) (or WZ), ZBT(2), ZBT(3), and ZB 

NWs at 50 Å diameter. Results for the transmission function, as well as transmittance 

compared to ZB, 𝒯𝑖/𝒯ZB, are shown in Figure 4.4a. 

Figure 4.4: (a) Values of the transmission function 𝒯(ω) for pristine WZ and ZB, as well 
as several intermediate twinning structures, for NW diameters of 50 Å. In the lower 
panel of (a), transmission functions are normalized by the ZB transmission. (b) Phonon 
dispersion and density of states (DOS) for the WZ NW. 
 

Several common features can be discerned among the various transmission 

spectra. 𝒯(𝜔) are much smaller at low frequencies (up to 𝜔 ≈ 0.1 × 1014 rad/s) and 

vanish as 𝜔 → 0. The same is true at high frequencies, where 𝒯(𝜔) → 0 at 𝜔 ≈

0.65 × 1014 rad/s. The largest values of the transmission function, as well as the largest 

differences in transmission between the structures, occur in the central frequency 

range. Differences are less severe in the low frequency range, because long wavelength 
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phonons are unaffected by structural modulation at smaller length scales. At the highest 

frequencies, transmission is uniformly low because flat optical bands (representing 

standing wave modes) are inefficient for axial energy transport. Peaks in the central 

frequency range match roughly to frequency regions containing dense and sloping 

optical bands (for example, in Figure 4.4b). 

Comparing across the four NW structures, vis a vis the lower panel in Figure 4.4a, 

the transmission function is largest overall for WZ and decreases for increasingly ZB-like 

NWs, in agreement with the NEMD results for small 𝑛. While all four curves exhibit the 

same general shape, frequency-selective enhancement of the transmission function is 

evident for ZBT(2) and ZBT(3) from 0.2 to 0.3 × 1014 rad/s, as compared to the ZB case 

(red curve) in Figure 4.4a. For the ZBT(3) case, selective suppression of the transmission 

function compared to that for ZB can also be seen around 0.4 and 0.5 × 1014 rad/s. 

Competition between these mechanisms may explain the minimum in thermal 

conductivity that is observed by NEMD near 𝑛 = 8, as well as the equivalence between 

the ZB and ZBT(𝑛) thermal conductivities near small 𝑛. 

 The density of WZ inclusions decreases as 
1

𝑛
 with increasing twin segment length 

𝑛 in ZBT(𝑛). The conductivity in the incoherent limit (large 𝑛) can be fitted with an 

effective interface resistance. However, no such interpolation can reproduce the minima 

of ZBT, because the number of interfaces changes monotonically. In the coherent 

picture, on the other hand, energy is transported by the discrete vibrational modes of 

the NW unit cell and 𝒯(𝜔) represents the relative number of transmission channels 
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available at energy ℏ𝜔. Across most of the frequency range, there are many more 

transmission channels for the WZ NW than for ZB and the other NWs. The ZBT NWs 

contain both WZ and ZB sub-structures. Thus, when 𝑛 is small, as in ZBT(2), the 

transmission is attenuated with respect to WZ (due to the ZB sub-structure) and 

amplified with respect to ZB (due to the WZ-substructure). Based on these trends and 

the NEMD data, we infer that TSL modes are most significant near 𝑛 = 8 (twin period ≈

50 Å). This is further supported by the fact that the minimum thermal conductivity 

occurs at 𝑛 = 8 independent of the NW diameter. 

 

4.6. Conclusions 

 A highly tunable NW thermal conductivity was observed by variation of the 

bilayer stacking sequence. Using NEMD simulations, GaAs NW thermal conductivities 

ranging from 6.9 to 22.9, 9.2 to 24.2, and 10.4 to 26.5 W/m-K were observed at NW 

diameters 50, 75, and 100 Å, respectively. Our results indicate that the NW boundaries 

are of crucial importance to the thermal conductivity, vis a vis the discrepancy between 

ZBT(𝑛) and ZBTF(𝑛) structures with the same periodicity. By comparing uniform and 

random structures with the same relative crystal phase mixture, we confirmed coherent 

phonon transport in the twinning ZBT(𝑛) NWs, which at twin period lengths of ~50 Å 

yielded the smallest conductivities overall. The phonon coherence length was estimated 

at ~520 Å for the largest diameter wires. This represents an encouraging result for 

emerging NW thermoelectrics, insofar as the low thermal conductivities may be 
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achievable in a controlled and tunable way. The higher thermal conductivity of WZ and 

WZ-like phases was attributed to higher phonon transmission compared to the ZB 

phase. Non-monotonic trends in the TSL NW thermal conductivity may be explained by 

competing suppression and amplification of the transmission function as the twin 

segment length increases. 

 Twinning and polytypism are also observed in NWs of several other III-V 

compounds, including InAs,52 InSb,56 InP,53 and GaP.65 Lower thermal conductivities can 

be expected in TSL NWs of InAs and especially InSb, where bulk thermal conductivities 

are around one half and one quarter, respectively, of the bulk GaAs value.4 For 

prospective thermoelectric device applications, higher efficiency is expected from InSb,73 

but Ohmic contact formation to InAs is better understood.141,142 In future work, the 

methods presented here can be extended to other III-V materials.   
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5. Phase Diagram for Twinning Superlattice Nanowires 

5.1. Summary 

 It is essential to understand the mechanisms controlling crystal phase selection 

during growth to realize any potential benefits from twinning superlattice (TSL) or other 

structurally complex nanowires (NWs). While previous work has shown that TSLs can be 

induced in GaAs NWs by the introduction of a Te or Be dopant flux,60 the V/III flux ratio 

and the growth temperature are also important variables in this respect. 

 This chapter examines TSL formation in Te-doped GaAs NWs grown by a self-

assisted vapor−liquid−solid mechanism (with a Ga droplet as the seed particle) using 

selective-area molecular beam epitaxy. We investigated the crystal structure of NWs 

across various growth conditions using transmission electron microscopy, finding 

periodic TSLs only at the low V/III flux ratio of 0.5 and at intermediate growth 

temperatures of 492 to 537 °C. Higher V/III flux ratios (up to 2) as well as both lower and 

higher temperatures produced polytypic NWs instead of periodic twinning. These results 

are explained by a kinetic growth model based on the diffusion flux feeding the Ga 

droplet. 

 The contents of this chapter are based on our publication63 in Nano Letters, 

“Phase Diagram for Twinning Superlattice Te-Doped GaAs Nanowires”. 
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5.2. Introduction 

 Semiconductor nanowires (NWs) are being examined for a wide range of 

applications such as photovoltaics, thermoelectrics, betavoltaics, and 

photodetectors.143–145 Recently, twinning superlattices (TSLs) have been explored as a 

new class of crystal structure in cubic and zincblende (ZB) semiconductors. In the case of 

III−V semiconductors (such as InP, GaAs, and GaP), the TSL structure is comprised of 

periodic ZB twins along the length of the NW (the [111]B growth direction), described 

by a 60° rotation of the ZB crystal structure and accompanied by (111)A and (111)B 

microfaceting of the NW sidewalls (Figure 5.1a).53,55,60,65,146 The bilayer stacking 

sequence in TSL NWs (Figure 5.1b) resembles that of normal ZB (Figure 5.1c), except for 

a reversal of the ABC stacking order between consecutive ZB twins.52 The ABA sequence 

across any twin plane (in this case, B) marks a substructure in the TSL with wurtzite (WZ) 

stacking (Figure 5.1d,e). The twin boundaries and microfaceted surface structure of TSLs 

have been proposed as a means of phonon engineering to improve thermoelectric 

efficiency.65,67,68 TSLs have also been proposed as a means of allowing direct (phonon-

free) inter-band absorption in indirect band gap semiconductors.70 

 Previous work has shown that TSLs can be induced in GaAs NWs by the 

introduction of a Te or Be dopant flux,60 following similar demonstrations of TSL 

formation by Zn doping of InP,53 GaP,146 and GaAs55 NWs. According to Ref. 60, TSL 

formation is related to a change in the side facet surface energies of doped ZB GaAs 

NWs, such that the formation of alternating (111)A and (111)B facets becomes 
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energetically preferred over vertical (11̅0) facets. In the present study, we further 

examine the growth conditions required for TSL formation in NWs, deriving a critical 

curve outlining the required substrate temperature and V/III flux ratio. 

Figure 5.1: (a) Three-dimensional morphology of a TSL NW, with arrows indicating the 
growth direction and the surface microfacet orientations in one period of the TSL. (b) 
Bilayer stacking sequence for a ZB TSL nanowire, illustrating reversal (mirroring) of the 
stacking sequence across the twin boundary. Included for comparison, bilayer stacking 
sequences in (c) ZB and (d) WZ NWs. (e) Stacking sequence of tetrahedral primitives for 
each structure type. Yellow and red atoms represent Ga and As, respectively. 
 

5.3. Methods 

 Self-assisted (SA) GaAs NWs were grown on <111> Si by the vapor−liquid−solid 

(VLS) method in a gas source molecular beam epitaxy (MBE) system, using a Ga effusion 

cell and As2 supplied by a hydride (AsH3) gas cracker. Selective-area growth was enabled 
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by 30 nm of SiOx deposited by plasma-enhanced chemical vapor deposition and 

patterned with a hexagonal array of holes, 360 nm in separation, using electron beam 

lithography. Before loading into the MBE, the substrate was subjected to an HF etch to 

remove any native oxide at the bottom of the holes. NW growth was limited to the 

extent of the patterned array where droplet nucleation was promoted by the holes, as 

confirmed by scanning electron microscopy (SEM) (Figure 5.2a). 

Figure 5.2: (a) SEM image of a self-assisted GaAs NW array grown at 537 °C, with a V/III 
ratio of 0.5. (b) A corresponding HRTEM image showing twinning at the top of a NW. 
 

The NWs contained an undoped GaAs base grown at a substrate temperature of 630 °C, 

V/III flux ratio of 2, Ga impingement rate of 0.125 𝜇m/h, and growth duration of 100 

min. Subsequently, a NW segment was grown for 30 min with a Ga impingement rate of 

0.5 𝜇m/h and Te dopant flux supplied by a GaTe effusion cell. Te fluxes were adjusted 

for nominal doping levels of 1 to 4 × 1019 cm−3, based on Hall effect measurements on 

thin film standards, corresponding to NW doping levels of 1 to 4 × 1018 cm−3 as 

determined by a prior line shape analysis of photoluminescence emission and Raman 
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scattering.64 This dopant flux was shown to induce TSL formation by reducing the surface 

energies of inward- and outward-tapered NW sidewalls in our previous study.60 To 

further examine the growth parameters required for TSL formation, the final NW 

segment was grown at temperatures ranging from 448 to 555 °C and with V/III flux 

ratios of 0.5 and 2. Growths were terminated by shutting the Ga beam and cooling 

under As2 flux. 

 Samples were prepared for transmission electron microscopy (TEM) by 

mechanically transferring the NWs to a Cu grid. The crystal structure of the NWs was 

determined by brightfield or high-resolution (HR)TEM (Figure 5.2b), using a JEOL 2010F 

with 200 kV accelerating voltage. Based on the TEM data, we determined a phase 

diagram indicating the approximate temperatures and V/III flux ratios conducive to TSL 

formation. 

 

5.4. Results and Discussion 

 Figure 5.3 shows representative TEM and HRTEM images obtained near the top 

of the Te-doped GaAs NWs for each of the growth conditions examined in this study. 

Green points in the phase diagram indicate the observation of a TSL, while red points 

indicate the absence of a TSL. The higher V/III flux ratio of 2 resulted in a small Ga 

droplet that was completely consumed by the As2 flux in the termination step. 

Consumption of the droplet produced a short polytypic segment at the tips of these 

NWs147 (for example, Figure 5.3a), which were otherwise purely ZB and exhibited 
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vertical (11̅0) side facets. No twinning was observed at any temperature with a V/III flux 

ratio of 2. 

Figure 5.3: Data points at different growth temperatures and V/III flux ratios. Green 
(TSL) and red (non-TSL) markers indicate the resulting NW morphology. The estimated 
TSL and non-TSL regions are colored green and red, respectively, with the boundary 
determined by critical curves calculated from Eqs. 5.5 and 5.6, for 𝜆3(𝑇0)/𝑅 from 11 to 
30. Corresponding images of GaAs NW tops showcase the different crystal structures: 
(a) TEM image showing ZB with low fault density, (b) TEM image showing random ZB 
twins, (c) HRTEM (left) and TEM (right) showing “pseudoperiodic” TSL, (d) TEM showing 
periodic TSL, and (e) HRTEM showing a high fault density. 
 

 The lower V/III flux ratio of 0.5 resulted in a larger Ga droplet that was not 

consumed during termination and remained visible in TEM (Figure 5.3b−d). At this flux 

ratio, we observed a transition into, then out of, a coherent TSL growth regime at 492 to 

537 °C (Figure 5.3c,d). Microfaceting of the NW sidewalls corresponding to the (111)A 

and (111)B facets of the TSL was also visible here, albeit somewhat obscured by the 

amorphous surface oxide. 
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 A low density of random twins is observed at a growth temperature of 448 °C 

(Figure 5.3b), with no indication of any microfaceting, to the left of the TSL region. To 

the right of the TSL region, on the other hand, a high density of random twins is 

observed (Figure 5.3e) at a growth temperature of 555 °C. Hence, the average twin 

density is seen to increase with temperature (i.e., droplet size) across Figure 5.3b−e, 

although coherent TLSs are only achieved in the growth regime represented by the 

interior green data points. Of these, the “pseudo-periodic” structure observed at 492 °C 

(Figure 5.3c) is more disordered than the TSL structure at 537 °C (Figure 5.3d). 

 Radially expanding TSLs form in Te- and Be-doped GaAs NWs during SA-VLS 

growth under a low V/III flux ratio, with a large droplet contact angle60 of 𝛽 ≈ 130°. The 

mechanism of TSL formation is related to a change in the surface energies of side facets 

in doped ZB GaAs NWs, which are modified by dopants incorporating mainly through the 

NW sidewalls. As such, alternating (111)A and (111)B facets become energetically 

preferred to the vertical (110) facets.57 This explanation differs from a previously 

proposed mechanism, where TSL formation was explained based on a modification of 

the droplet chemical potential.146 

 In our gas-source MBE growths of self-catalyzed III−V NWs,60,134 radial expansion 

of the NW top facet leads to an inverse tapered (widening) shape, in contrast to Ref. 

148, where an almost uniform NW radius was maintained from base to tip. Moreover, 

the TSL is formed only in the inverse tapered segment of our NWs (Figure 5.3c,d), the 

growth of which is marked by the start of the dopant flux during growth. While all the 
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NWs in Figure 5.3 had doping levels corresponding to TSL formation, as per Ref. 60, a TSL 

was observed only in the NW growths at the lower V/III flux ratio of 0.5 and at 

intermediate temperatures (492 and 537 °C). 

 To understand the observed dependence of TSL formation on the growth 

temperature and V/III flux ratio, we use the results of Ref. 60 and Refs. 149–151. The 

droplet contact angle corresponding to TSL formation is very close to the large and 

stable contact angle150 of ∼ 130°, at which ZB GaAs NWs begin expanding radially. GaAs 

NWs form in the WZ phase (Figure 5.1d) at intermediate contact angles149 from 

approximately 100° to 125°, where twinning is not possible given the ABAB stacking 

sequence of bilayers. Tapering (narrowing) of the NWs is observed at a contact angle 

𝛽 ≈  100°. Based on these data, we can conclude that a large contact angle 𝛽 ≥ 130° is 

required for TSL formation in inverse tapered ZB GaAs NWs. No TSLs can form in WZ nor 

highly polytypic ZB/WZ NWs growing from Ga droplets with smaller contact angles. The 

extreme case is represented here by the NWs grown with the high V/III flux ratio of 2, 

where the droplet was small enough to be consumed completely under the As2 flux 

(Figure 5.3a) during termination. 

 These considerations can be quantified using the following model, where the 

droplet volume (𝑉) changes with time (𝑡) according to 

 
d𝑉

d𝑡
= 𝜋𝑅2 [𝜒3𝑣3 +

2sin 𝛼3
𝜋

𝜆3
𝑅
𝑣3 −

d𝐿

d𝑡
] (5.1) 

Here, 𝑅 is the radius at the top of the NW, 𝑣3 is the atomic Ga flux, 𝛼3 is the Ga beam 

angle with respect to the substrate normal (35° in our MBE), 𝜆3 is the Ga collection 
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length on the NW sidewalls,114 and 𝜒3 is the geometrical function of the two angles 𝛼3 

and 𝛽, which is reduced152 to 
1

sin2 𝛽
 when 𝛽 > 𝛼3 + 90°. The axial NW growth rate, 

d𝐿

d𝑇
, in 

SA growth is As-limited and given by153  

 
d𝐿

d𝑡
= 𝜒5𝑣5(1 + 𝜖) −

2

1 + cos 𝛽
𝑣5
des (5.2) 

where 𝑣5 is the atomic As flux, 𝜒5 is the geometrical function for the As beam (𝜒5 = 𝜒3 

at 𝛼5 = 𝛼3), and 𝜖 describes the additional As flux re-emitted from the substrate surface 

or NW sidewalls. According to Ref. 153, this secondary As flux can be even higher than 

the primary flux. The second term on the right-hand side describes desorption of As 

from the droplet and depends on the unknown As concentration in the droplet. We do 

not consider the shadowing effect148 because the TSL is contained to the top of the NW. 

 Using Eqs. (5.1) and (5.2) and assuming 𝜒5 = 𝜒3 = 𝜒, we obtain 

 
d𝑉

d𝑡
∝

𝑣3
𝑣5(1 + 𝜖)

[1 +
2 sin 𝛼3
𝜋𝜒

𝜆3
𝑅
+

2

(1 + cos 𝛽)𝜒

𝑣5
des

𝑣3
] − 1 (5.3) 

with the right-hand side determining the sign of the derivative. Based on the 

experimental observations, the droplet volume must increase at 𝛽∗ = 130° to allow the 

ZB phase and inversetapered morphology necessary for forming the TSLs. According to 

Ref. 60, the TSL period in inverse tapered NWs increases linearly with the NW top radius. 

Therefore, the curve 

 (
d𝑉

d𝑡
)
𝛽=𝛽∗

= 0 (5.4) 
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separates the TSL domain in the phase diagram (V/III flux ratio versus temperature). 

From Eq. (5.3), we get the critical curve in the form 

 
𝑣5
𝑣3
=

1

1 + 𝜖
[1 +

2 sin 𝛼3 sin
2 𝛽∗

𝜋

𝜆3(𝑇)

𝑅
+
2 sin2 𝛽∗
1 + cos 𝛽∗

𝑣5
des(𝑇)

𝑣3
] (5.5) 

where 𝜆3(𝑇) and 𝑣5
des(𝑇) are the two temperature-dependent functions. 

 We further assume, for simplicity, that 𝑣5
des/𝑣3 ≪ 1 by neglecting the As 

desorption term in Eq. (5.5), which can be justified in many cases.153,154 Furthermore, the 

diffusion length of Ga adatoms is limited by surface incorporation at low temperatures 

and by desorption from the NW sidewalls at high temperatures,114 with a resulting 

maximum at 𝑇0 ≈ 522 °C (795 K). Thus, the temperature dependence of the Ga adatom 

diffusion length, 𝜆3, can be written as114 

 𝜆3(𝑇) =  𝜆3(𝑇0) ×
𝐵 + 𝐶

𝐵 exp [−𝐶 ( 
𝑇0
𝑇 − 1)] +𝐶 exp [𝐵 ( 

𝑇0
𝑇 − 1)]

 (5.6) 

where 𝐵 is the coefficient in the Arrhenius dependence for temperature-activated 

diffusion of Ga adatoms on the NW sidewalls and 𝐶 is the coefficient in the Arrhenius 

dependence for Ga desorption. 

 The critical curves shown in Figure 5.3 are obtained from Eqs. (5.5) and (5.6), 

taking 𝜖 = 3.25 (as in Ref. 153), 𝐵 = 20 (for a Ga diffusion activation barrier of 1.38 eV), 

and 𝐶 = 100 (for a Ga desorption activation barrier of 6.88 eV), with five different ratios 

𝜆3(𝑇0)/𝑅 from 11 to 30. The corresponding range of 𝜆3(𝑇0) is 770 to 2100 nm, using 

the mean radius of our NWs before widening, 𝑅 = 70 nm. All these values provide the 
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correct separation between the TSL and non-TSL regions, in view of the data in Figure 

5.3. However, the lowest value (770 nm) agrees best with previously published results 

regarding the Ga diffusion length on the sidewalls of MBE-grown SA GaAs NWs (usually 

in the range from 500 to 1000 nm).155–157 Including As desorption will not significantly 

change these results, since it should be almost negligible at low temperatures and 

enhanced at higher temperatures, resulting in a slight decrease of the droplet size in the 

latter case. Although our experimental phase diagram contains only a few points, the 

trend of TSL formation at an optimal temperature and only for low V/III flux ratios is 

clear and reproduced by the model for a plausible range of Ga diffusion lengths. Overall, 

the model qualitatively explains the low V/III flux ratio and intermediate growth 

temperatures required for TSL formation in Te-doped GaAs NWs, with both factors 

enabling large droplets by maximizing Ga input from surface diffusion. 
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5.5. Conclusions 

 To summarize, we examined the crystal structures of several Te-doped SA-VLS 

grown NWs and found coherent TSL formation in inverse tapered NWs, at a V/III flux 

ratio of 0.5 and substrate temperatures 492 and 537 °C. Growths outside these 

conditions did not yield TSL NWs, rather pristine ZB, polytypic, or nonperiodic twinning 

NWs. Based on the observed requirement of a large Ga droplet (and correspondingly 

large droplet contact angle), we developed a model to explain the apparent phase 

boundary outlining the TSL growth regime. Using our model, we calculated a critical 

curve determined by the maximum V/III ratio that allows for an increasing droplet 

contact angle at a given temperature. These findings may be useful to control TSL 

formation in GaAs and other III−V NWs doped with different impurities, such as Be or Zn. 
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6. Summary and Future Work 

6.1. Thesis Summary 

 Using a first principles analysis, the predicted power factor enhancement in NWs 

was identified and explained intuitively via benefits to the inherent trade-off between 

the Seebeck coefficient and the electrical conductivity. Existing theoretical results were 

incorporated into a predictive Boltzmann transport model for III-V NWs, allowing the 

optimal electron concentration to be determined at a specified temperature and NW 

diameter. Subsequent calculations revealed that: 

1) InSb is indeed the most promising III-V compound for thermoelectric 

applications, owing mostly to the high carrier mobility (and hence high 

conductivity) afforded by a small electron effective mass. 

2) While bulk III-Vs make for inefficient thermoelectrics, narrow III-V NWs (≈ 10 nm 

diameter) of InAs and InSb could in theory yield 𝑍𝑇 ≥ 1 near room temperature. 

3) Ultra-narrow III-V NWs (< 10 nm diameter) could yield much larger 𝑍𝑇 values, 

approaching 𝑍𝑇 = 12 for InSb, though this would require carrier concentrations 

that increase rapidly with decreasing diameter. 

 

 Motivated by encouraging results from prior studies, we demonstrated large 

reductions in the thermal conductivity of two GaAs NW arrays featuring structural 

modulation in the form of ZB/WZ polytypism and a twinning superlattice (TSL) induced 
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by Be doping during growth. This was enabled by a novel application of the 3𝜔 method 

to free-standing NW arrays planarized by a spin-on polymer. We found that: 

1) The polytypic and TSL GaAs NWs yielded thermal conductivities of 8.4 ± 1.6 

W/m-K and 5.2 ± 1.0 W/m-K, respectively (versus 50 W/m-K of the bulk). 

However, we were unable to distinguish, in the latter sample, the effect of 

impurity scattering due to Be doping from structural effects due specifically to 

the TSL segment. 

2) TSL segments can be introduced in MBE-grown GaAs NW arrays, while avoiding a 

significant detriment to the yield, by initiating the patterned NW growth with a 

250 s Ga pre-deposition and gradually ramping the temperature and dopant flux, 

as exemplified in Figure A2. 

 

 To explore structural effects theoretically, we employed NEMD simulations and 

the Atomistic Green’s function method to study phonon transport in III-V NWs with 

pristine, randomly polytypic, TSL, and faceted TSL crystal structures. Lattice thermal 

conductivity (𝜅𝐿) results from our simulations revealed that heat transport in TSL NWs is 

analogous to traditional superlattices, despite interfaces in the NW consisting entirely of 

GaAs-GaAs homojunctions. The following conclusions were drawn from this 

investigation: 

1) At the diameters studied, the pristine WZ phase exhibits much higher 𝜅𝐿 

compared to the pristine ZB phase; owing (i) to a stronger coupling between ‘AB’ 



Ph.D. Thesis – Ara Ghukasyan McMaster University – Engineering Physics  

 

 108 

bilayer units, which significantly improves phonon transmission, and (ii) 

smoother surface facets in WZ NWs, which decrease the scattering effect of 

boundaries. 

2) 𝜅𝐿decreases rapidly as the TSL period increases, achieving a minimum value at a 

period of 50 Å, regardless of diameter. In the randomly polytypic NWs, 𝜅𝐿 

decreases more gradualy with increasing ZB fraction (𝑥), achieving a comparable 

minimum value at 𝑥 ≈ 80%. 

3) While twin/phase interfaces were perfectly sharp by construction, room 

temperature phonon transport was only partially coherent in these NWs and 

subject to characterization by an effective coherence length (𝑙𝑐 = 20 to 50 nm), 

which varied with the diameter. 

4) The comparison of transmission spectra across various periodic structures 

showed the greatest variation near mid-range frequencies, suggesting that 

crystal modulation at this scale targets propagating optical modes more so than 

long-wavelength acoustic phonons. A relatively weaker attenuation of narrow 

frequency bands was also observed in TSL NWs. 

 

 Using a kinetic growth model to explain NW morphologies observed by 

transmission electron microscopy, we derived a phase diagram to inform future self-

assisted (SA) vapour-liquid-solid (VLS) growths of TSL NWs. Our findings illustrated the 

importance of the growth temperature and V/III flux ratio as control variables in this 
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respect, in addition to the dopant flux that promotes TSL formation. To summarize, we 

found that: 

1) A larger Ga flux is required to achieve a Ga droplet contact angle 𝛽 ≥ 130° for 

TSL formation in inverse tapered ZB GaAs NWs, so a lower V/III flux ratio is 

necessary as well as a growth (substrate) temperature that maximizes the Ga 

adatom diffusion length on NW sidewalls. 

2) Coherent TSL formation in inverse tapered NWs occurs at a V/III flux ratio of 0.5 

and substrate temperatures around 492 to 537 °C. A higher V/III flux ratio of 2 

and temperatures outside this range were seen to produce polytypic NWs, with 

temperatures below 492 °C leading to a low density of stacking faults and 

temperatures above 537 °C leading to a high density of stacking faults. 

 

6.2. Future Work 

 NWs hold significant promise as a platform for efficient thermoelectric devices 

(TEDs), provided continuing improvements in synthesis technologies to allow more 

precise control over crystal defects and impurities. The best NW thermoelectrics 

reported to date (see Appendix I) are, in terms of 𝑍𝑇 values, on par with the well-

established bulk materials. Further improvements are necessary, via the power factor 

and/or the lattice thermal conductivity, for prospective NW TEDs to transcend bulk 

performance. 
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 Reducing NW diameters could be the most direct way to address both these 

requirements, as this would lower 𝜅𝐿 and intensify the 𝑆2𝜎 increase at the same time. 

Unfortunately, it seems unlikely that SA-VLS growth methods, such as those employed in 

this work, will produce quality arrays of 1-10 nm diameter NWs in the immediate future. 

High yield, colinear NW arrays are typically produced with diameters in the range of 

about 50 to 250 nm, while narrower NWs tend to bend and grow non-vertically. 

producing arrays to which end-to-end contacts are impossible to apply.† Individual NWs 

could be plucked from a disordered array and fabricated into micro-TEDs, but higher 

power output will be required—via many cooperating NW thermoelectric elements—to 

challenge the current state of the art. 

 Dense composites of narrow and colinear NWs can be formed by deposition into 

nanochannels in porous media, as several studies have demonstrated.125,126,158 However, 

encouraging results have yet to be reported and a low electrical conductivity appears to 

affect these devices as well.158 Nonetheless, the embedded-NW concept may represent 

a more scalable alternative to TEDs based on planarized free-standing NWs.121 

 On the other hand, SA-VLS growth methods are favoured because much more 

versatility is offered in terms of the NW structure and composition.17 It may well be the 

case that, as most of the literature would suggest, greater reductions in 𝜅𝐿 should be 

pursued for high efficiency NW TEDs, as opposed to 𝑆2𝜎 increases through quantum 

confinement. Indeed, the phononic properties of TSL NWs have only recently been 

 
† However, recent studies have succeeded in growing narrow vertical NW segments on top of a wider 
base.150 
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characterized experimentally,65 and our thermal conductivity measurements in Chapter 

3 are among the first to be reported to date. 

 Controlled twinning and phase selection in NWs is a similarly novel concept that 

could see greater development in the coming years. Apart from pristine, TSL, and 

randomly polytypic NWs, it may be interesting to consider ZB/WZ phase superlattice 

NWs114 and varying-period TSL NWs. The structural tuning of phonon transport in this 

way is well suited for systematic computational investigation, as we demonstrated in 

Chapter 4. To this end, more advanced optimization strategies could be employed to 

discover idealized morphologies for phonon blocking in NWs. 

 Another concern is the distribution of impurities in twinning structures, which is 

likely non-uniform throughout the volume of the NW. While the presence of impurities 

can significantly lower 𝜅𝐿, a non-uniform impurity distribution may be detrimental to 

electron transport. Based on the available experimental data, dopants preferentially 

incorporate near twin interfaces63 and along certain crystal planes.159,160 We used Be-

doping to produce our TSLs in Chapter 3, and Te-doping to produce our TSLs in Chapter 

5. However, dopant-free TSLs have also been achieved.56,61 Indeed, the final 

crystallography is more directly a function of the droplet kinetics during growth, rather 

than the flux or identity of dopants.60 If dopant-free TSLs and polytypic NWs can be 

synthesized more readily, the electrical conductivity stands to benefit from modulation 

doping to introduce free charge carriers without corresponding impurity ions.  
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 Finally, as our own analysis demonstrates in Chapter 2, GaAs is not ideal as a 

thermoelectric compound. InSb NWs are more promising, but also more difficult to 

synthesize, owing to the surfactant effect of Sb atoms.161 Very large 𝑍𝑇 values are 

predicted for InSb NWs and, because the Γ-valley effective mass is so small (Table 2.1), 

the effective confinement diameter is large at room temperature (≈ 40 nm). InAs is next 

among the III-Vs in terms of potential performance and is easier to synthesize than InSb. 

InAs NW TEGs are therefore more likely to be used in demonstrating viable III-V TEDs, 

although high quality InSb NWs are more likely to benefit from power factor 

enhancement. More broadly, other semiconductors, such as Zn4Sb3, Bi2Te3, and Bi2Se3, 

also merit consideration for NW TEDs. 
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Appendix 
 

I. Figure of Merit for Various Nanowire Materials 

Figure A1: Maximal 𝑍𝑇 values (at various temperatures) for recent (a) p-type and (b) n-
type NW thermoelectrics. Reprinted with permission from Ref. 24.  
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II. Bulk Scattering and Band Formulae 

Here we present the explicit formulae for the scattering functions 𝑆in/out
± , which 

were determined by Rode106 based on the Kane band structure95:  

 𝑆in
± = [𝑁po +

1

2
± (

1

2
− 𝑓0)] 𝜆in

±  (A1) 

 𝑆out
± = [𝑁po +

1

2
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± −
1

2
)] 𝜆out

±  (A2) 

 𝜆in
± = 𝛾± [

 (𝑘±)2 + 𝑘2

2𝑘±𝑘
(𝐴±)2 ln |

𝑘± − 𝑘

𝑘± + 𝑘
| − (𝐴±)2 −

𝑐2(𝑐±)2

3
] (A3) 

 𝜆out
± = 𝛾± [(𝐴±)2 ln |

𝑘± − 𝑘

𝑘± + 𝑘
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 𝐴± = 𝑎𝑎± + (
 (𝑘±)2 + 𝑘2
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) 𝑐𝑐± (A6) 

The coefficients 𝑎(𝑘) and 𝑐(𝑘) of the s- and p-like basis functions are given by96 

 𝑎(𝑘) = √
1

2
+

1

2𝛼(𝑘)
 (A7) 

 𝑐(𝑘) =  √1 − [𝑎(𝑘)]2 (A8) 

The elastic scattering rate 𝜏el
−1 is the sum of the following three components, which 

correspond to piezoelectric scattering, acoustic deformation potential scattering, and 

ionized impurity scattering in the bulk, respectively: 

 
1

𝜏pe
=
𝑒2𝑘𝐵𝑇𝑃𝑧

2𝑚∗

6𝜋ℏ3𝜖0𝑘
(3 − 6𝑐2 + 4𝑐4) (A9) 
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 1

𝜏ac
=
𝑘𝐵𝑇𝐸1

2𝑚∗𝑘

3𝜋ℏ3𝑐𝑙
(3 − 8𝑐2 + 6𝑐4) 

(A10) 

 1

τii
=

𝑒4𝑁𝑚∗

8𝜋𝜖0
2ℏ3𝑘3

[𝐷 ln (1 +
4𝑘2

𝛽2
) − 𝐵] 

(A11) 

The inverse screening length 𝛽 for the Coulomb potential is given by 

 𝛽2 =
𝑒2

𝜋2𝜖0𝑘𝐵𝑇
∫ 𝑘2𝑓0(1 − 𝑓0) 𝑑𝑘
∞

0

 (A12) 

and the parameters 𝐷 and 𝐵 in Eq. (A11) are calculated from 

 𝐷 = 1 +
2𝛽2𝑐2

𝑘2
+
3𝛽4𝑐4

4𝑘4
 (A13) 

 𝐵 =
1

𝛽2 + 4𝑘2
[4𝑘2 + 8𝑐2(𝛽2 + 4𝑘2) +

(3𝛽4 + 6𝛽2𝑘2 − 8𝑘4)𝑐4

𝑘2
] (A14) 

The non-parabolic bulk dispersion (Eqs. (2.31) and (2.32)) can be inverted for the 

magnitude of the electron wave vector (𝑘 > 0) using 

 𝑘(𝐸) = √
(𝑥(𝐸))2 − 1

𝑎3
 (A15) 

 

𝑥(𝐸) = (
𝑎3
2𝑎1

) [√𝑎2
2 +

4𝑎1
𝑎3

(𝑎2 +
𝑎1
𝑎3
+ 𝐸) − 𝑎2] (A16) 

 
𝑎1 =

ℏ2

2𝑚𝑒
 (A17) 

 
𝑎2 =

1

2
𝐸𝑔 (A18) 

 
𝑎3 = (

2ℏ2

𝐸𝑔
)
(𝑚𝑒 −𝑚

∗)

𝑚𝑒𝑚∗
 (A19) 
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III. 3𝝎 Parameters and Supplementary Information 

a. Nanowire Growth 

 Arrays of GaAs NWs were grown on 300 𝜇m thick p+-Si substrates (𝜌 ≤ 0.005 Ω ⋅

cm) with a <111> surface orientation. Using plasma-enhanced chemical vapour 

deposition (PECVD), 30 nm of SiOx was deposited on the substrate surface. To provide 

nanowire (NW) nucleation sites, arrays of holes were etched through the surface oxide 

in a hexagonal array pattern with a pitch of 360 nm, using electron beam lithography 

and reactive ion etching. The total extent of the array was confined to a 2 × 2 mm2 area 

on the substrate surface, as defined by the oxide template. GaAs NWs were grown by 

the self-assisted vapor-liquid-solid method, with a Ga droplet as the seed particle, using 

gas source molecular beam epitaxy. Ga was supplied from an effusion source and group 

V elements were supplied as dimers from a hydride gas cracker. 

 The polytypic zincblende/wurtzite NWs (sample A) and twinning superlattice 

(TSL) NWs (sample B) arrays were grown using identical processes, apart from the 

dopant flux introduced in the latter that is used to induce a TSL structure.60 A 250 s Ga 

pre-deposition and the brief growth of a short GaP base were employed to improve the 

NW yield.162 GaAs NWs were then grown in three segments: (i) 50 min at a substrate 

temperature of 630 ˚C, (ii) a ramp down to 537 ˚C over the next 50 min, and (iii) a final 

30 min of growth at 537 ˚C. This process ensured a high NW yield at the beginning of 

growth, followed by a low temperature required for TSL formation in sample B. During 

the growth of sample B, a Be dopant flux supplied from an elemental effusion cell was 



Ph.D. Thesis – Ara Ghukasyan McMaster University – Engineering Physics  

 

 137 

introduced in segment (i) at a NW dopant concentration of 6.0 × 1017 cm-3, then 

ramped up in segment (ii), and finally held at 3.0 × 1019 cm-3 in segment (iii). The Be 

dopant flux was increased gradually to avoid Ga droplet instability associated with a high 

dopant flux. This process is detailed in Figure A2. The incorporated dopant concentration 

was based on previous calibrations64,163 and no intentional dopants were introduced in 

sample A. 

Figure A2: Growth conditions over time, showing the substrate temperature and actual 
dopant concentration. 
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b. Heater Line Resistance Coefficients 

 The measured 𝑅(𝑇) data points, from which the resistance coefficients are 

determined, are shown in Figures A2-A4, for samples A, B, and C, respectively. In each 

case, the dashed line represents the best-fit and corresponding slope, whereas the blue 

and red lines indicate the minimum and maximum slope, respectively, within limits of 

the measurement uncertainty. 

 Owing to the precision of the resistance measurements, a maximum error of 

±1.6% was observed for the slope 
d𝑅

d𝑇
 across all samples; hence we determine the 

resistance coefficients to within 2% error. 

 

Figure A3: Temperature dependence of the line resistance for sample A. 
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Figure A4: Temperature dependence of the line resistance for sample B. 
 

Figure A5: Temperature dependence of the line resistance for sample C. 
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c. Model Sensitivity 

 To illustrate the sensitivity of the mean-squared-error objective function 

 
𝜖(̅𝑥) =  

1

𝑀
∑‖�̃�2ωk − �̃�ℎ(𝜔𝑘 , �⃗�)‖

2
𝑀

𝑘=1

 (A20) 

to individual parameter values, 𝜒𝑖, we varied the 𝑖th component of best fit vector �⃗�∗ by 

±50% and recorded the resulting change in 𝜖.̅ Parameters exhibiting high sensitivity are 

marked by a steep descent into a pronounced minimum for 𝜖  ̅ at 𝜒𝑖
∗ (i.e., near 0% 

perturbation). Conversely, the variation yields much smaller changes for low-sensitivity 

parameters, namely the heat capacities of layers (2) and (3) in samples A and B. This is 

evident in Figure A6, where �⃗�∗(𝐵) was varied by perturbing the layer properties of 

sample B. Figure A6 also demonstrates that the properties of the uppermost layer have 

the greatest influence on 𝜖.̅ Thus, the accuracy of the measurement increases with 

proximity of the target layer to the heater line.  

While the theoretical heat model surmised by Eqs. (3.2) to (3.5) in the main text 

can in principle include an arbitrary number of layers, the effective penetration depth123 

𝑞−1 = √
𝜅

2𝜔𝐶
 (A21) 

must be taken into consideration vis a vis the total thickness of the sample and 

constituent layers. Figure A7 shows the approximate penetration depth through BCB 

and the NW-BCB composite, calculated from Eq. (A2), using our results in Tables A1-S3. 

In both samples A and B, the BCB and composite layers had a combined height of about 

6 𝜇m, whereas sample C had only the 3 𝜇m of BCB. Accordingly, the plot of the 
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penetration depth, Figure A7, indicates complete thermal probing in all three 

measurement devices, over nearly all the measured frequencies. 

Figure A6: Sensitivity of the objective function versus perturbations about the best fit 
values. The upper three curves indicate a strong sensitivity to the thermal conductivities 
of the BCB and NW-BCB layers, as well as the volumetric heat capacity of the BCB. A 
weaker sensitivity to the substrate (p+-Si) thermal conductivity is also seen. 
 

Figure A7: Thermal penetration depth (𝑞−1) in 𝜇m, calculated using Eq. (S2), using the 
range of values for BCB and the NW-BCB composite from Tables S1-S3. 
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d. Tables of Fitted Parameters 

 The thermophysical properties of all layers across the three samples, as 

determined by three fitting paradigms, (i)-(iii), are tabulated in Tables A1-A3. Error 

estimates are included on the parameter values for which the model exhibits high 

sensitivity (discussed in Appendix III-d). The results for the anisotropy ratio 𝜓 = 𝜅∥/𝜅⊥ 

were on the order of 10−7 for both sample A and sample B, suggesting highly one-

dimensional heat flow through the NW-BCB composites. For the uniform BCB layer in 

sample C, we fixed 𝜓 = 1. Reference value ranges are provided, where available, in the 

rightmost columns of each table. All entries in the columns (i)-(iii) represent fitted 

parameter values for the corresponding fit paradigm, except for underlined values, 

which indicate constant parameters, and values of the mean-squared-error (MSE), 𝜖.̅ 

Fitted parameters exceeding their reasonable physical range are emphasized in italic 

text. 

We note immediately that the inclusion of 𝑟th ≠ 0 improves the fitting error by at 

least an order of magnitude, so paradigm (i) was discounted. Regarding paradigms (ii) 

and (iii), we note that thermal conductivity results for the BCB and NW-BCB layers agree 

within uncertainty for all three samples. Indeed, the heater thermal mass has only a 

small effect on the measured thermal conductivity (as per Section V of Ref. 123), 

considering the relative dimensions and heat capacity of the heater line versus that of 

the target layers. Paradigm (ii) was chosen over (iii) because it produced no unphysical 

values as well as the lowest overall MSE across the three samples. 
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Table A1: Fitted parameter values for sample A. 
 

parameter units 
(i) 

𝑪𝒉𝒅𝒉, 𝒓𝐭𝐡 = 𝟎 
(ii) 

𝒓𝐭𝐡 ≠ 𝟎 
(iii) 

𝑪𝒉𝒅𝒉, 𝒓𝐭𝐡 ≠ 𝟎 
ref. value 

𝜅BCB W/m-K 0.546 ± 0.03 0.19 ± 0.04 0.17 ± 0.04 (0.18 - 0.29)164–167 

𝐶BCB J/cm3-K 1.10 ± 0.03 1.88 ± 0.04 1.99 ± 0.04 (2.19 - 2.29)164,168 
𝜅BCB−NW W/m-K 0.20 ± 0.05 0.65 ± 0.04 0.70 ± 0.06  
𝐶BCB−NW J/cm3-K 3.70 × 10-7 0.41 4.57 × 10-7  

𝜅p+Si W/m-K 266 67 46 (35 - 55)169 

𝐶p+Si J/cm3-K 0.0920 1.22 0.97 - 

𝑟th cm2-K/W 0 0.0114 0.028 - 
𝐶ℎ  J/cm3-K 0 0 2.82 (2.82)4 
𝑑ℎ nm 0 0 157 - 
𝜖  ̅ 10-3 K2 19.2 2.25 1.92  

 
 

Table A2: Fitted parameter values for sample B. 
 

parameter units 
(i) 

𝑪𝒉𝒅𝒉, 𝒓𝐭𝐡 = 𝟎 
(ii) 

𝒓𝐭𝐡 ≠ 𝟎 
(iii) 

𝑪𝒉𝒅𝒉, 𝒓𝐭𝐡 ≠ 𝟎 
ref. value 

𝜅BCB W/m-K 0.47 ± 0.02 0.19 ± 0.04 0.17 ± 0.04 (0.18 - 0.29)164–167 

𝐶BCB J/cm3-K 1.18 ± 0.04 1.93 ± 0.04 2.02 ± 0.04 (2.19 - 2.29)164,168 
𝜅BCB−NW W/m-K 0.20 ± 0.05 0.61 ± 0.04 0.68 ± 0.07  
𝐶BCB−NW J/cm3-K 2.91 0.38 0.37  

𝜅p+Si W/m-K 8.46 × 105 57 48 (35 - 55)169 

𝐶p+Si J/cm3-K 4.68 2.02 2.05 - 

𝑟th cm2-K/W 0 0.010 0.027 - 
𝐶ℎ  J/cm3-K 0 0 2.82 (2.82)4 
𝑑ℎ nm 0 0 157 - 
𝜖  ̅ 10-3 K2 39.2 2.23 3.01  

 
 

Table A3: Fitted parameter values for sample C. 
 

parameter units 
(i) 

𝑪𝒉𝒅𝒉, 𝒓𝐭𝐡 = 𝟎 
(ii) 

𝒓𝐭𝐡 ≠ 𝟎 
(iii) 

𝑪𝒉𝒅𝒉, 𝒓𝐭𝐡 ≠ 𝟎 
ref. value 

𝜅BCB W/m-K 0.20 ± 0.03 0.19 ± 0.03 0.17 ± 0.03 (0.18 - 0.29)164–167 

𝐶BCB J/cm3-K 2.22 ± 0.05 1.85 ± 0.05 2.05 ± 0.05 (2.19 - 2.29)164,168 

𝜅Si W/m-K 256 142 5.03 × 104 (145 - 156)19,170 
𝐶Si J/cm3-K 1.87 1.82 1.91 (1.66)171 
𝑟th cm2-K/W 0 0.012 0.025 - 
𝐶ℎ  J/cm3-K 0 0 2.82 (2.82)4 
𝑑ℎ nm 0 0 157 - 

𝜖  ̅ 10-3 K2 143 1.30 11.7  
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IV. Computational Details 

a. Molecular Dynamics 

 Thermal conductivity is size-dependent in non-equilibrium molecular dynamics 

simulations (NEMD), increasing with the size of the simulation cell. We find that this 

change becomes negligible near a nanowire length of 350 nm in our studies, as shown in 

Figure A8, for example. The nanowire length is truncated at 350 nm to minimize the 

duration of NEMD simulations. 

Figure A8: Saturation of the thermal conductivity in non-equilibrium molecular dynamics 
simulations. Data points correspond to a zincblende nanowire with diameter 50 Å. 
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b. Atomistic Green’s Function 

 An excellent introduction to the atomistic Green’s function (AGF) method can be 

found in Refs. 78 and 79. Here, we summarize the basic procedure and details relevant 

to our implementation. 

 The harmonic matrix for entire system can be partitioned into blocks: 

 𝐇tot = [

𝐇1 𝝉1
† 0

𝝉1 𝐇𝑑 𝝉2

0 𝝉2
† 𝐇2

] (A22) 

where subscripts 1, 𝑑, and 2 correspond to the first contact, the device region, and the 

second contact, respectively. For our purposes, these labels indicate contiguous regions 

along an arbitrary NW structure; shown as the “device” and two “contact” regions in 

Figure A9. Interactions among the 𝑁𝑑  atoms in the device region are described by the 

3𝑁𝑑 × 3𝑁𝑑  submatrix 𝐇𝑑  at the center of 𝐇tot, which is in principle infinitely large. 

Similarly, the off-diagonal submatrices 𝝉𝑖  contain the harmonic constants connecting 

atoms in the device region to either contact (𝑖 = 1, 2) and vice versa for 𝝉𝑖
†.  

 To obtain the transmission function, one computes the trace of a matrix product: 

 𝒯(ω) = Tr(𝚪1𝐆𝚪2𝐆
†) (A23) 

where the matrix 𝐆 represents the Green’s function for the device region: 

 𝐆(𝜔2) = [𝜔2𝐈 − 𝐇𝑑 − 𝚺1(𝜔
2) − 𝚺2(𝜔

2)]−1 (A24) 

and the matrices 𝚪𝑖 = 𝑖[𝚺𝑖 − 𝚺𝑖
†] in Eq. (A23) represent the phonon “escape rate” into 

either contact. Without the explicit inclusion of boundary scattering,172 nor other 
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disordered mechanisms, transmission is limited only by harmonic interface scattering. 

Hence, 𝒯(𝜔) indicates the “connectivity” of normal modes across the device region. 

Figure A9: An illustration of the nanowire (NW) system used for atomistic Green’s 
function calculations. Two semi-infinite “contacts” connect to either end of the “device”, 
here consisting of one zincblende unit cell. A NW with diameter 35 Å is shown for clarity. 
 

 Since the device region is finite, the connection matrices 𝝉𝑖  are populated by 

finitely many non-zero elements. (This can be understood in terms of atomic interaction 

distances being effectively finite.) Thus, the self-energy matrices, 𝚺𝑖 = 𝝉𝑖𝒈𝑖𝝉𝑖
†, can be 

computed from finite submatrices by obtaining the surface Green’s functions, 𝒈𝑖
𝑠, of the 

contacts. We employed the usual decimation technique173,174 to approximate 𝒈𝑖
𝑠  by 

recursive renormalization, avoiding explicit inversions of a very large 𝐇𝑖. Once 𝚺𝑖 are 

obtained, the device Green’s function is calculated by matrix inversion, as in Eq. (A24). 
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