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Abstract

This thesis present a new feature coding scheme for video-content matching tasks.

The purpose of this feature coding scheme is to compress features under a strict

bitrate budget. Features contain two parts of information: the descriptors and the

feature locations. We propose a variable level scalar quantizer for descriptors and a

variable block size location coding scheme for feature locations. For descriptor cod-

ing, the SIFT descriptors are transformed using Karhunen-Loéve Transform (KLT).

This K-L transformation matrix is trained using the descriptors extracted from the

25K-MIRFLICKR image dataset. The quantization of descriptors is applied after de-

scriptor transformation. Our proposed descriptor quantizer allocates different bitrates

to the elements in the transformed descriptor according to the sequence order. We

establish the correlation between the descriptor quantizer distortion and the video

matching performance, given a strict bitrate budget. Our feature location coding

scheme is built upon the location histogram coding method. Instead of using uniform

block size, we use different sizes of blocks to quantize different areas of a video frame.

We have achieved nearly 50% reduction in the bitrate allocated for location informa-

tion compared to the bitrate allocated by the coding schemes that use uniform block

size. With this location coding scheme, we achieve almost the same video matching

performance as that of the uniform block size coding. By combining the descriptor
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and location coding schemes, experimental results have shown that the overall feature

coding scheme achieves excellent video matching performance.
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Notation and abbreviations

SIFT: Scale Invariant Feature Transform

SURF: Speeded Up Robust Features

CHOG: Compressed Histogram of Gradients

PCA: Principal Component Analysis

LSH: Locally Sensitive Hashing

KLT: Karhunen-Loéve Transform

GOP: Group Of Pictures

GCC: Geometric Consistency Check

TPR: True Positive Rate

FPR: False Positive Rate
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Chapter 1

Introduction

For the past few decades, digital media has been playing important role in mod-

ern life. This could be seen in the rapidly growing volume of multimedia content

(visual content) on the Internet, most of which is uploaded from smart phones and

tablets. Moreover, lots of computer vision applications have been receiving more in-

terest recently due to the advances in computational capabilities and machine learning

technologies. Object recognition [1], online image search and retrieval [2], and object

tracking [3] are some good examples of those applications.

In the most of visual applications, local image features are widely used. They are

designed to represent different characteristics of appearance or shapes in an image

[4]. A local feature is composed of two parts: the location of an interest point and

a descriptor. An interest point is located by an invariant region detector while the

descriptor provides a concise representation of the image patch around each interest

point. Since there are changes in illumination, scale and any other transformations

in videos and images, visual features are expected to be robust and distinctive. Some
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efforts have been made on finding invariant local features. (author?) [5] have devel-

oped a scale invariant feature transform descriptors (SIFT) in 20th century. Of the

many proposed features, it is probably the most commonly used in multiple visual

research applications. Others like Speeded Up Robust Features (SURF) by (au-

thor?) [6] and Gradient Location and Orientation Histogram descriptor (GHOG) by

(author?) [4] are also well-known in the computer vision community.

Many multimedia-based applications require transmission of visual data through

networks with limited bandwidth. This imposes serious restriction on the transmis-

sion bitrate, which, in turn, demands efficient data compression techniques. Hence,

the traditional choice is to compress the visual data before communicating them to

the receiver, where the data is analyzed, called the ” Compress then Analyze” (CtA)

paradigm. In recent years, CtA scenarios is considered out of date. One of its disad-

vantages is that the visual content after transmission is a lossy representation. This

usually compromises the receiver’s ability to carry out the analysis task accurately[7].

Meanwhile, an alternative paradigm Analyze then Compress (AtC ) has been gain-

ing more attention. It builds on the fact that some visual applications work perfectly

based on local features, disregarding the pixel to pixel content. The steps of AtC are

performed by first extracting local features immediately. Then, they are compressed

for efficient transmission. The compression of visual features becomes the key con-

cern to successfully deploy AtC scheme since the network poses strict constraints on

the available bandwidth. Several researches tackled this problem, making efforts to

propose the efficient feature coding methods [8], [9], [10].

In this context, the Compact Descriptors for Visual Search (CDVS) standard

is a great breakthrough proposed by the Moving Picture Experts Group (MPEG).

2
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Generally, it builds a framework for descriptor extraction and performance evaluation,

which helps to develop efficient and interoperable visual search application on image

level. Extending this to videos, MPEG has been planning to standardize technologies

for visual content matching in purpose, called Compact Descriptors for Video Analysis

(CDVA). CDVA aims to design a compact representation of video features. A video

can be viewed as multiple single frames. Analysis of videos requires a set of local

descriptors representing each frame. As a result, a huge volume of data is produced,

and, therefore, compression becomes necessary. Hence, CDVA places greater emphasis

on smaller descriptor sizes and shorter runtimes.

There are three main advantages of feature compression [10] for video analysis

tasks:

1. Reduced transmission latency: given available bandwidth of the network, it is

infeasible to return matching results in a few minutes, since the huge volume of

transmission data is needed for a video .

2. Reduced storage space: the local features extracted from a video need a large

number of bits to present. Compression make it efficiently to store as much as

video data in a limited storage space of database.

3. Reduced computational complexity: a matching application requires the com-

parison of thousands of descriptors in the query video to a comparable or greater

number of descriptors extracted from the reference video. It would be too com-

putationally demanding to keep the full information without compressing them.

As a starting point, MPEG dedicated the CDVA standard to basic visual analysis

tasks, like search and retrieval. The video retrieval task is enabled by using the

3
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video matching application to find the best match among all candidate videos in the

database. Performing video matching needs a pair of two videos. One is defined as

query video and the other is the reference video.

The way of matching videos using the CDVA framework is to use CDVS features

in each frame of a video. Most of the work in CDVA focuses on the technologies for

efficient extraction of compact video features. However, video cannot be treated as

a large set of single continuous pictures. The most remarkable differences between

images and videos, temporal correlation and motion consistency, have not been fully

utilized so far.

Therefore, the core idea in this work is an improved coding scheme for video fea-

tures. It uses the property of feature persistentcy [11]. The proposed feature coding

scheme can be used in many video analysis tasks. Our experimental results rely on

the SIFT descriptors, which are commonly used in visual applications. However, this

work is not constrained to this specific kind of descriptors. We mainly focus on video

pairwise matching, but it can be easily extended to video retrieval applications. We

show that our coding scheme provides a reliable matching performance with low data

rate.

1.1 Prior work in feature compression

Local descriptors are usually high dimensional vectors. For instance, a SIFT de-

scriptor is a 128-dimensional vector. Meanwhile, the corresponding feature location

information takes 20 bits per descriptor to represent the special information of the hor-

izontal and vertical coordinates (x,y) in each image. When extracting more features to

4
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enhance matching accuracy, the data for storing uncompressed location information

grows fast.

Several methods are proposed to reduce the dimensionality of descriptors and to

form Low-bit-rate descriptors. Most of designs use SIFT descriptors as benchmark.

Descriptor compression first started with PCA-SIFT [12] descriptors. Ke and Suk-

thankar used 39×39 patch of pixel to compute horizontal and vertical gradient instead

of 41×41 employed in SIFT. Then they implemented Principal Component Analysis

(PCA) to convert SIFT descriptor to a 20-dimensional descriptor. PCA-SIFT descrip-

tor beats SIFT on shorter computational runtime and higher matching accuracy. The

author of [12], they learned that the patches around keypoints have the same scale

properties. This allows the PCA-SIFT descriptors to represent the patch correctly

with a small number of dimensions. (author?) [13] proposed a linear discriminant

embedding system to build a linear projection used on non-linear transformed version

of input features. Their method provided 5–10× dimensionality reduction relative to

a original SIFT descriptor, while reaching a comparable image matching performance.

(author?) [8] first observed that using distributed source coding could reduce bitrate

when matching visual correspondence. Therefore, they proposed an approach of us-

ing quantized random projection on SIFT and further construct a compact descriptor

hash. Hamming distance of binary hashes is adopted when computing the similarities

between features. In their paper,they proved that using descriptor hashes to deter-

mine visual correspondence is more rate efficient and less computational consuming.

This ramdom projection method for finding matching features is more rate-friendly

than other prior methods. By studying the entropy characteristics of SURF de-

scriptors and using an information theoretic approach, Takacs developed an entropy

5
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encoder for SURF in[1] that reduces the size of a descriptor 7 times without affecting

matching performance. (author?) [14] introduced machine learning into represent-

ing image information. They found that Locally Sensitive Hashing (LSH) produces

binary descriptors that work fine when used in a number of computer vision applica-

tions. When limited to a small bitrate, LSH performed poorly. In their method, they

generated binary descriptors from a new learning approach: Restricted Boltzmann

Machines (RBM). Most recently, a brand new descriptor was created by Chandrasekar

in [15], called Compressed Histogram of Gradients (CHOG). They exploited the gra-

dient statistic properties obtained around interest keypoints in canonical patches and

considered a histogram of gradient as a descriptor. This unique design of histogram

allowed them to use more efficient distance measurements in terms of matching or

retrieval research. Note that building from gradient statistic model enables encod-

ing descriptors more efficiently by taking advantage of the information theoretical

method. They finally chose a lossless encoding scheme as Huffman tree algorithm

and achieved a comparable matching porformance as with uncompressed descriptors.

Another interesting approach introduced by Chandrasekhar [9] is a lossy com-

pression scheme based on transformed features. They first applied Karhunen-Loéve

Transform (KLT) on each individual feature descriptor in order to decorrelate its el-

ements and quantize them using a uniform scalar quantizer. The bitrate is reduced

by using an entropy encoder. They have also studied the trade-off between rate and

distortion. At the decoder, inversing the transformation is applied to decoded fea-

ture descriptors. By comparing to the original SIFT descriptor, they achieve a 16×

compression rate with negligible matching error introduced.

On the other hand, compressing the information of feature locations has not gained

6
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much attention compered to descriptor compression. Location coding is prompted

by the process of CDVS. The most remarkable achievements are coming from the

research teams of Stanford University, Peking University and Huawei [16]. To sum-

marize, all proposed methods utilize the fact that features are concentrated around

interesting objects in images rather than being randomly scattered. CDVS adopted

location histogram coding scheme introduced by (author?) [17], which lays a special

uniform-sized grid on the top of the image and generates a location histogram map

to represent location information. For compressing the histogram map they intro-

duced a context-based arithmetic coder ,which encodes each block of the histogram

with conditional probabilities given a specific map pattern. Later, they designed an

improved encoding method built upon their previous work, called sum-based context

coding technologies [18]. By using this improved location histogram coding method,

they overcame the drawback that the reference context table grows exponentially fast

as the context consists of greater number of neighborhood points stages. While sum-

based context is suitable for larger range of map patterns, it is time consuming to

collecting training data to form the context table.

1.2 Overview and contributions

Fig 1.1 depicts a block diagram of our video feature coding scheme, and Fig 1.2 shows

a more detailed block diagram for the compression process. As shown in Fig 1.1, video

feature coding scheme is composed of two parts: the encoder and the decoder. Query

features are extracted and compressed at the encoder side and transmitted to the

decoder. This work uses the concept of descriptor persistentcy [11], which utilizes

7
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Figure 1.1: Video matching System Diagram.

temporal correlation and motion consistency (more details will be given in Ch.2).

We first segment videos into groups, called Groups Of Pictures(GOP). Each GOP

contains several consecutive frames. Then, we extract SIFT descriptors and select a

subset of the persistent descriptors in GOPs. The main purpose of feature coding

scheme is to compress them efficiently.

In this work, we mainly focus on video feature compression, which is presented in

Fig.1.2. The proposed feature coding scheme has two parts: the encoder and decoder.

Firstly, we introduce a descriptor compression scheme based on the Karhunen-Loéve

8
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Figure 1.2: Local feature compression scheme.

Transformation (KLT). The encoder generates a lossy version of the descriptors. This

is achieved by reducing the dimensionality after descriptor transformation. Then, we

apply a scalar quantizer to each element of the transformed descriptor. This scalar

quantizer uses the empirical distribution estimated for every element of the trans-

formed descriptor using a training dataset (25K-MIRFLICKR database [19]). We

use the water-filling algorithm to allocate the rate to every element. The quantiza-

tion level varies in order to suit the different bitrates assigned to each descriptor.

Now we turn the attention to coding the locations of the extracted features. The

importance of designing location coding is that if we use floating number to repre-

sent location coordinates (x, y), it would produce a comparable size to that of the

compressed descriptors [17]. Our coding method builds upon the location histogram

coding scheme adopted in CDVS standard. The innovation in our location coding is

that we use variable block-size grid to build the histogram instead of the uniform size

grid used in CDVS. This choice was inspired by the observation on the distribution

of the persistent descriptors in a frame. The scheme is designed to first use a large

block size grid. Within this grid, for the block with many features, we use smaller

size blocks to finer quantize the locations of those features. To compress the location

information, we follow the same encoding method as in CDVS, a context-based arith-

metic encoder is used for the histogram map and an ordinary arithmetic encoder is

used for the histogram counts.

9
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The video matching part happens at the decoder side, where reference videos

are quantized using our proposed feature coding method. The reference and query

videos are declared to be a matching pair if half of the GOPs find matches in the

reference video. The entire matching scheme can be described as follows. Firstly, we

match the persistent set of each GOP in the query with the features extracted from

every frame in the reference. For every matching operation, we introduce ratio test

and Geometric consistency check (GCC) to determine the number of matching pairs

of descriptors [11]. The features from the query GOPs and the reference frame are

examined using the ratio test. It produces a set of probable matching descriptor pairs

with some mismatches. Then this set of matching descriptor pairs is refined using

GCC to obtain a more accurate set of matching descriptor pairs. We use the number

of the matching pairs to indicate how similar the query and the reference videos are

[11].

The rest of this thesis is organized according to the architecture in Fig 1.2. In Chap

2, and Chap 3, we present our descriptor and location coding schemes respectively.

The organization of those two chapters is similar. First, we start by presenting the

background and a brief introduction of the techniques implemented. Then, we move

to describing our coding methods. In Chap 4, the experimental results of descriptor

coding and feature location coding are presented separately. Moreover, we combine

these two parts as a whole feature compression method and use it into the video

matching scheme in [11]. The matching performance evaluation of the feature coding

scheme is shown in the end of this chapter.

10



Chapter 2

Coding of Feature Descriptors

This chapter introduces a variable level scalar quantizer for each element of the SIFT

descriptor. Our aim is to code each feature individually. Given a bitrate budgets, the

descriptor coding scheme has the flexibility to choose the quantization levels according

to the number of descriptors used to represent a frame in videos. Since the descriptors

extracted in a frame are distinct, it is better if we can develop an encoding scheme

for every descriptor itself. Independently code each feature has its own apparent

advantage. It leads to the efficient quantization of each descriptor without any pre-

knowledge from other neighbor descriptors by using the intrinsic feature statistics.

2.1 Overview of Scale Invariant Feature Transform

(SIFT)

SIFT[5] starts with detecting interested keypoints. In order to identify the points that

their locations and scale are reliable under different views of a same object or scene,

11
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SIFT constructs a Gaussian scale space L(x, y, σ), consisting of continuous possible

scales. It is generated from the convolution of the original input image I(x, y) with

Gaussian functions with valuable widths G(x, y, σ):

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (2.1)

To detect constant keypoints in scale space, SIFT computes scale-space extrema

in the Difference-of-Gaussian (DoG) function D(x, y, σ), which is obtained by sub-

tracting a smaller scaled Gaussian convolved image from a k scaled one: D(x, y, σ) =

L(x, y, kσ)− L(x, y, σ). Each octave of scale-space is divided into an integer number

s, every octave has s + 3 images and forms s + 2 DoG images. Next octave is pro-

cessed by resampling Gaussian-convolved images and taking every second pixels in

each row and column. The extrema in DoG pyramid are defined as keypoints. An

extremum is usually defined as the maximum or the minimum point compared to its

26 neighbor pixels, 8 in current scale and 9 in the scale above and below accordingly,

shown in Fig.2.1. Then the localization accuracy is improved by applying a second

order Taylor series expansion, which gives the final location:

x̂ = −∂
2D

∂x2

−1
∂D

∂x
, (2.2)

where D and its derivatives are calculated at this point and x is represented as

x = (x, y, σ)T . To eliminate weak extrema corresponding to edges, the function value

at an extremum is used. If its value is below a fixed threshold, this point is excluded.

After detecting keypoints from normalized input patch, the gradient location and

the orientation need to be assigned. The orientation histogram contains 36 bins,

12
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Figure 2.1: An extreme is detected by comparing with 26 neighbors in 3 × 3 image
regions at current and adjacent scales.

covering 360 degrees of orientation. It is formed by the gradient orientations of this

point within a 4 × 4 location grid region. Both gradient magnitude m(x, y) and

orientation θ(x, y) are precomputed using pixel differences. The contribution to the

location and orientation of each sample is weighted by the gradient magnitude and

a Gaussian-weighted circular window. The highest peak in histogram is considered

the dominant direction of the gradients. A keypoint is created with this dominant

direction. All steps described above produce keypoints characterized by their location,

orientation and scale.

A keypoint descriptor is computed based on the gradient magnitude and orienta-

tion of a collection of pixels within a 4×4 image region around this keypoint location

that is as distinctive as possible. The orientation of every pixel within this region is

quantized into 8 angles and the gradient magnitude of each histogram entry is the

summation of each pixel’s magnitudes whose orientation is quantized to this direc-

tion. The descriptor is formed as a vector consisting of the values of all entries in an

13
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orientation histogram. The length of each SIFT descriptor is 4×4×8 = 128. Finally

the feature vector is normalized to unit length to be invariant to illumination.

2.2 Descriptor Persistency

In [11], the concept of descriptor persistency have been introduced. A descriptor is

usually called persistent if it exists in several consecutive frames (GOP). The persis-

tent set is a collection of persistent descriptors in a GOP. The most straightforward

method to find that persistent set of a GOP requires matching all descriptors ex-

tracted fron all frames of the GOP, which is infeasible due to the computational

complexity of this matching process. Hence, [11] has introduced a method to approx-

imate the persistent set. This approximation of a persistent set is obtained using

two nonadjacent frames in a GOP, which are referred to as keyframes. The step

of Keyframe labeling in Fig 1.1 defines a fixed number of consecutive K frames as

a GOP. The keyframes are chosen as the first and last frames in a GOP. The first

frame in a GOP further is viewed as the base frame while the last frame is the refer-

ence frame. We use ratio test and Geometric Consistency Check (GCC) to find the

matching descriptor pairs in the baseframe and the reference frame. Additionally,

the motion estimation approach is used to rank the matching descriptors found after

ratio test and GCC. This ranking allows the encoder to control the size of the output

persistent set. This is the main purpose of the Persistent Set Identification step.

14
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2.3 Statistics of SIFT

As introduced in Sec.1.1, many efforts focus on dimensionality reduction, since the

analyzing tasks with high dimensional descriptors is extremely computational de-

manding [12], [20], [9]. KLT is used widely to reduce descriptor dimension with

limited performance error introduced[21].

2.3.1 The Karhunen-Loéve Transform

The objective of the KLT is to find a lower-dimensional representation that accounts

for the variance of the elements in the descriptors. The measure of importance of these

elements is given by the eigenvalues of the covariance matrix across the image space.

The low dimensionality can be achieved by dropping some elements with relatively

small eigenvalues.

We adopt the KLT in our descriptor coding scheme with two strong reasons. One

important consideration is that the mean squared error (MSE) is the minimum com-

pared to any other dimensional truncation using linear and unitary transformation[21],

since only the elements with the eigenvalue smaller than a given threshold are dis-

carded. In other words, K-L transformation gives the best representation of the orig-

inal feature descriptors in a shorter length version while the lowest loss is achieved.

Another advantage is taken from the fact that KLT is easy to implement. KLT

is feature dependent, and obtaining the covariance matrix from a collection of an

exhaustive set of training data is computation consuming. However, once the com-

putation of KLT is done for a large training set, the covariance matrix of the data

source is known both at encoder and decoder side.

We view each SIFT descriptor as a 1 × 128 vector. Every element in a feature

15
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vector represents a single dimension in SIFT. Given a large set of training descriptors

(d1,d2,d3, . . . ,dN), we compute the mean value and the covariance matrix as:

d̄ =
1

N

N∑
n=1

dn, Cd =
1

N

N∑
n=1

(dn − d̄) ∗ (dn − d̄)T , (2.3)

where d̄ is a vector of 1× 128, Cd is a symmetric matrix of 128× 128. all eigenvalues

of Cd are nonnegative since it is a covariance matrix. The orthogonal eigenvectors of

Cd forms the basis function of features, while the eigenvalues, λ1, λ2, . . . , λk, shows

the average distribution of each element in feature vectors. By multiplying original

SIFT descriptor with the eigenvectors, all dimensions in the SIFT descriptors are

transformed and decorrelated. We further compute the covariance matrix Cd tran to

the transformed descriptor. The eigenvalues of Cd tran are shown in Fig 2.2. As shown

in Fig. 2.2, all eigenvalues of Cd tran are in descending order, which reveals the fact

that elements at the head of a K-L transformed feature vector have more importance

than those in the tail. Moreover, since the eigenvalues decrease sharply, most of the

energy is concentrated in the first k coefficients. Only using the first k coefficients of

transformed descriptors helps us to achieve the purpose of dimensionality truncation.

Since the eigenvalue drops sharply as the number of elements increases, the maxi-

mum number of elements in the transformed descriptor used to design the descriptor

quantizer is 40.

2.3.2 Empirical distributions of the transformed elements

Since KLT is applied to all descriptors in the training set, we collect all values of each

element in the transformed descriptors to build the empirical distribution histogram

for them, as shown in Fig.2.3.
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Figure 2.2: Eigenvalues of Transformed Descriptor covariance matrix.

We use the mean of the interval to represent the interval in x − axis while the

y − axis shows the frequency of the element value located in this histogram interval.

As shown in Fig 2.3, the distributions of elements in transformed descriptors are

Gaussian-liked. Taking advantage of this finding, we introduce the theory of Optimal

Water-Filling to design a variable level quantizer for the transformed feature vectors

instead of a uniform scalar quantization that describes in [9].

2.4 Descriptor Coding Scheme

We build a descriptor coding method for K-L transformed descriptors. KLT not only

can be used for dimensionality reduction, but also enable us to treat each dimension

individually. By performing KLT, the elements of the SIFT descriptor become decor-

related. The goal of our coding is to compress elements according to their importance

in the transformed descriptor.
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(a) 1st element Distribution (b) 4th element Distribution

(c) 35th element Distribution (d) 40th element Distribution

Figure 2.3: Distribution Histograms of sample bins.
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2.4.1 Descriptor Quantizer Design

Exploit the Algorithm of Optimal Water-Filling

The Water-Filling algorithm is widely applied to solve the problem that the total rate

is shared with multiple users, and each of users has different noise conditions. This

total rate constraint is placed among all users [22]. In the proposed feature descriptor

coding scheme, our descriptor quantizer assigns different bitrate to represent different

elements in a transformed descriptor. The loss of accuracy is an analogue to the noise

of each user while the total volume of bitrate is an analogue to the rate constraints

in the optimal water filling problem. This ensures the descriptor coding scheme can

achieve the minimum loss of matching accuracy with the lowest bitrate.

For the first k elements, where most of energy compacts, a finer quantizer helps to

obtain a better approximation to the real value in an element of transformed descrip-

tor. The objective of developing descriptor quantizer is to set different quantization

levels according to the element sequence. More levels are needed for the elements in

the head. As the element number increases, less levels are needed. For each element,

we apply a scalar quantization. The descriptor encoder transmits a sequence of in-

terval indexes to the decoder. For the index of nth element, en, needs log2(en) bits

to represent. Additionally, any choice of quantization levels Ln used to quantize this

element in S = {2r−1 + 1, . . . , 2r − 1, 2r} requires r bits to represent en. Therefore,

we set the number of quantization levels to be 2r given the number of bit r. Given the

number of elements used for quantization k, the number of descriptors M , and the

number of quantization levels for each element, this descriptor design can be modeled

as the following problem.
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min D =
L∑
l=1

∑
bn∈αl

(bn − ên)2p(bn), (2.4)

s.t.
M∑
d=1

k∑
n=1

log2 Ln ≤ R

where bn is the value of nth element in a descriptor; p(bn) is the probability of nth

element takes the value of bn; ên is the reconstruction value which is used to construct

the quantized version of descriptors; R is the bit budget for the transmission of all

descriptors.

The Distortion of the Descriptor Quantizer

Quantizing an element of a transformed descriptors means that the empirical distri-

bution histogram is segmented into several quantization intervals, each of which is

delimited with thresholds and has a representative referred to as the reconstruction

value. The calculation of thresholds and reconstruction values of intervals is based

on a large set of training descriptors.

We use Lloyd-Max Algorithm [23] to compute thresholds and representation val-

ues. From Fig 2.3, we obtain the distribution y−axis and mean value x−axis of each

element. The design of Lloyd-Max’s scalar quantizer is to find its decision thresholds

and the reconstruction values for every intervals given the number of quantization

levels for every interval. Since the empirical distributions we estimated are discrete,

the maximum number of intervals for each distribution is limited to 32 intervals. The

stopping criterion for this algorithm is based on the change in distortion between

two iterations. If this change (difference) is below a certain level, the algorithm is
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terminated.

Let an L-level scalar quantizer Q(bn) be characterized in terms of a set of L real-

valued quantization points for element bn, i.e., reconstruction values {y1, y2, y3, . . . , yL}

and decision thresholds {t0, t1, t2, . . . , tL}. In our case, t0, tL represent respectively the

minimum and maximum shown in distribution histogram, according to different sit-

uations of bins. Decision thresholds are used to define the intervals of the quantizer.

We have an ordering of the thresholds, that is,t0 < t1 < t2 < · · · < tL−1 < tL. Thus,

intervals are given by:

αm = (tm−1, tm] ,m = 1, 2, . . . , L (2.5)

Intervals of {α2, . . . , αL−1} are called the inner intervals, while α0, αL are referred to as

the outer intervals. An element is quantized to the reconstruction value ym if its value

falls in the quantization interval αm . Hence, an L-level scalar quantizer is defined as

a functional mapping of an input bin value bn onto an output representation:

Q(bn) = ym, bn ∈ αm. (2.6)

The quality of a quantizer is measured by the distortion of the output reconstruc-

tion value comparing to the original. The most common and convenient measurement

of distortion between the input value and reproduction is the average mean-squared

error. We consider a quantizer to be optimal if there is no L-level scalar quantizer

that can provide lower distortion. The total distortion is defined as:

D =
L∑

m=1

∑
bn∈αm

(bn − ym)2p(bn), (2.7)
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where p(bn) is discrete normalized distribution histogram with
∑
bn

p(bn) = 1. Mini-

mizing the distortion D is to take derivatives of Eq. 2.7 with ym , αm, leading to

those conditions for the optimal quantizers:

tm =
ym + ym+1

2
(2.8)

ym =

∑tm
tm−1

p(bn)bn∑tm
tm−1

p(bn)
(2.9)

The way of implementing the L-M algorithm is by first generating an initial set

of intervals that uniformly partition the distribution histogram into L intervals. And

then, using Eq. 2.8 and Eq. 2.9 alternatively until the distortion convergence is

obtained. Once the scalar quantizer is determined for every elements, the thresholds

and reconstruction values are stored for use at encoder and decoder.

The Relation Between Bitrate and distortion

In this section, we discuss the relation between the bitrate and the distortion of the

descriptor quantizer. In Sec.2.4.1, we mention that the maximum number of intervals

is 32 so that the maximum number of bits used for each index is 5. Hence, we consider

four options to the number of levels used to quantize the elements. They are 32, 16,

8, and 4. We compute the distortion for each setting of the quantization level using

Eq.2.7 for every empirical distribution of elements. We generate the figures presenting

the number of bins and corresponding distortion.

Shown in Fig.2.4 are the relation between the rate and distortion of the example

bins. We can see that the number of bits used for different elements is different
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(a) 1st bin

(b) 20th bin

Figure 2.4: The rate-distortion of the sample bins.
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given a specific distortion. The more bitrates are allocated to the elements in the

head while the fewer are allocated for the elements in the tail. We aim to design

different descriptor quantizer for different number of descriptors using the same bitrate

budgets. Given a fixed number of descriptors M , we compute the minimal distortions

using different number of elements while maintaining the bitrate to be lower than the

bitrate constraint using the generalized Water-Filling idea in Sec.2.4.1. For different

number of element used in the descriptor quantizer k, the number of quantization

levels for each element is determined by the minimum distortion to this k elements

and the bitrate-distortion figures as shown in Fig.2.4.

Then, several descriptor quantizers are designed according to different number of

elements while the number of descriptors is M . To decide the descriptor encoding

scheme of using M descriptors of frames to perform video matching tasks, we ap-

ply these descriptor quantizers into the tasks of video matching and compare their

matching performance. The descriptor quantizer for this number of descriptors M is

determined to be the one that provide us the best matching performance.

2.4.2 Encoding of Descriptors

The encoder applies scalar quantization only to the first k elements of the transformed

descriptors. The encoder takes each element individually and finds the corresponding

interval. Then, it generates the sequence of interval indexes and passes them to the

decoder.
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2.4.3 Decoding of Descriptors

Since the descriptor quantizer is known both at the encoder and decoder side, once

it receives an index of the quantization intervals, it maps these indexes to real-valued

reconstructions to form the quantized descriptors.
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Chapter 3

Feature Location Coding

In this chapter, we propose a scheme of compressing the location information to reduce

the bitrate required to transmit feature locations. Features are usually extracted from

corners or edges in an image, and their location information is always represented in

floating numbers. Besides, the accurate representation of feature locations is related

to the performance of matching applications, since they are used in GCC step. Hence,

the location information of a large set of descriptors usually takes use of a huge amount

of data to transmit. A natural approach to lossily coding the feature locations is to

quantize the locations and entropy code the quantized data. In [20], a lossy encoding

feature locations method, called the histogram location coding is adopted in the

CDVS standard. It first covers the image uniformly with non-overlapping blocks and

converts the feature location into the histogram map. To compress the data used for

transmitting the histogram map, the context-based arithmetic coder is used.

In our feature location coding scheme, we make a improvement on the location

coding method used in CDVS standard. Since we only use a small set of features to

represent the keyframe in videos, we can prove that some large areas of the frame
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Figure 3.1: Context Template.The darker block is not considered as neighbors. For
each block, nearby previously coded blocks are used as context.

do not contain any descriptor. The improvement is achieved by using a large size of

blocks to quantize the ” somehow useless ” parts of frame while using the smaller size

of blocks for the areas where lots of features are gathered.

3.1 Location Histogram Coding Overview

Given an input patch, SIFT extraction is applied first to detect the interest points.

Then, this image would be overlaid with the non-overlapping blocks. A squared block

of size 3×3 is typically used. The feature location is represented by a histogram map

and the histogram counts. Each histogram block represents the block used to cover

the image. The histogram map is a binary map that indicates whether a histogram

block is empty or non-empty. They use ’1’ as a flag for the non-empty block and ’0

’ otherwise. The location histogram counts shows the number of features within the

non-empty blocks. Since features are re-ordered by their location information, the

order of descriptors is changed correspondingly.
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Figure 3.2: The clockwise circular Scanning method.

Building the histogram map requires to scan the blocks using the predetermined

scan order. The scanning method used in CDVS is a clockwise circular scanning since

features are dense in the central area of an image as in Fig 3.2. The histogram map is

encoded by the context-based arithmetic coder. It uses the states of the 14 neighbor

blocks within a template to encode this current scanned block. The template used is

shown as Fig 3.1. The neighbors are set based on the order of the Euclidian distance

to the coded block. However, the indexes of neighbors are not strictly defined as in

Fig 3.1, because some neighbors have the same distance to the target coding block,

i.e., neighbors pairs with the index of 1 and 2 and another pair with indexed of 3 and

4 to the current block X.

Let (xm, ym) be the mth neighbor blocks in the histogram map, the context for

the current block is defined as :

pc =
14∑
m=1

2m−1 × I(m) (3.1)

where I(m) indicates the state of mth neighbor block, taking a value of 0 or 1. For
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each symbol in the histogram map, we collect the states of its neighbors and compute

pc given the neighbor template. The context-based arithmetic coding uses the condi-

tional probability P (t|pc) to encode symbol t. To encode the histogram counts, a 64

symbol, single model, static arithmetic coder is used. In [9], they learn the effect of

the template size on the coding performance. They get the conclusion that using the

larger template improves the coding performance, but the gain is negligible when the

size of it increases over 16.

At the decoder, the histogram location decoder reconstructs the states of the

histogram blocks. To obtain the reconstructed location of the features that are in

the same non-empty block, the decoder quantizes them all to the coordinates of the

center points. The number of features in this non-empty block is represented in the

histogram counts.

3.2 Feature Location Coding Design

Our proposed method is built upon the location histogram coding scheme described

in Sec 3.1, called variable block-sized location coding. It uses different sizes of blocks

to encode the location of features for different areas of a keyframe. As shown in

Fig 3.3 are the examples of the subset of persistent descriptors within a GOP. The

numbers of persistent descriptors in each frame are 80,150, and 200 accordingly. Our

advantage is taken from the insight that most of the area in the keyframe does not

have the features that exist within a GOP. If the same histogram location coding

method in Sec 3.1 is performed for this small set of features, most of the histogram

blocks are shown as empty. This is a waste that if we transmit many 0s through

network, since only the information of the non-empty histogram blocks is useful in
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(a) Case 1: 80 descriptors (b) Case 1:150 descriptors (c) Case 1:200 descriptors

(d) Case 2: 80 descriptors (e) Case 2:150 descriptors (f) Case 2:200 descriptors

Figure 3.3: The examples of the persistent descriptor distributions using different
numbers of descriptors.

video matching.

3.2.1 Variable Block-sized Location Histogram Coding

Encoder

We apply the raster scan order as start from top left to the bottom right of a frame.

We first use the large size of blocks to partition the keyframes. At the same time,

we record the number of descriptors in every non-empty block as the same described
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in Sec.3.1. However, as for the case when several features are gathered in one large

block, only using the same coordinates to represent the location of them causes the

mismatched feature increased when using GCC in video matching. Hence, we provide

the method to subdivide the large block into smaller blocks. In this way, those features

that are gathering in one large block obtain a better quantization to their locations.

We introduce the subdivision threshold Thressub to determine when a large block

needs to be subdivided, that is, when the counts value of it exceeds Thressub. The

states of the smaller histogram blocks are recorded right behind the state to their

parent block. The scanning method used for these smaller blocks is the raster scan

as well. The example of how to use variable sizes of blocks to build the histogram

map is shown in Fig 3.4.

At this time, one problem needs to be solved, in which the size of the histogram

map is no longer a predetermined parameter. For the case of coding with uniform

blocks, the columns and rows of the histogram map are determined by the size of the

frame:

Rm =
Wf

Wb

, Cm =
Hf

Hb

(3.2)

where Rm and Cm is the number of rows and columns of the histogram map

respectively, Wf and Hf indicates the width and height of a frame, and Wb and Hb is

for blocks correspondingly. The subdivision operation increases the size of histogram

map. The number of small blocks for finer quantizing a larger block is computed as:

Ns =
Wb ×Hb

Wsb ×Hsb

(3.3)
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Figure 3.4: An example of location encoding using variable block-size.
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Wsb and Hsb is the notations for the width and height of a subblock. The subdivision

operation increases the size of the histogram map. To maintain the neighbor template

for coding the histogram blocks using the context-based arithmetic coding, we keep

the number of the column same as Cm while the number of the histogram rows are

determined by:

R
′

m =
Sm
Cm

(3.4)

Sm is the total volume of 0s and 1s to store the states for both large and small

blocks. The states of the small blocks only needs to use Ns − 1 symbols to describe

since the state of the last one can be predicted by the previously coded small blocks.

The histogram map of the variable block-sized location coding scheme is fed into the

context-based arithmetic coder. At the same time, the histogram count records the

number of features whenever encoder scans to a non-empty block.

Decoder

The histogram map is first decoded by the context-based arithmetic decoder. Then,

the decoder continues to reconstruct the grids laid on the image with noticing the

numbers from the histogram counts. When the decoder sees a 1 in the histogram

map, it would learn the feature number within this block by referring to the histogram

counts. The subdivision scheme and its threshold is known both at the encoder and

the decoder. Hence, the number of small blocks to better represent the descriptor

location within this large block, Ns, is known at decoder as well. Once the decoder

reads the end of following Ns − 1 symbols, it would automatically consider the next

symbol as describing the state of the next large block. The general working flow is

described as Fig 3.5. To finish the location quantization, the location of all descriptors
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Figure 3.5: The workflow of a location histogram decoder
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in the same large block are mapped to the central point.
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Chapter 4

Experimental Results

In this chapter, we study the performance of the proposed feature coding scheme.

In section 4.1, we give a brief overview of the dataset and the experiment setup. In

section 4.2, we present different feature descriptor quantizers according to different

number of descriptor with different lengths. We also study their effects on the video

matching process. In section 4.3, we evaluate the feature location coding scheme, and

we study the performance of different block size combinations. In the last section,

we present the overall evaluation of the entire feature coding scheme which combines

the best feature descriptor and location quantization schemes.

4.1 Experiment and Data Set Description

In this experiment, we use 4.6KBps/sec as the bitrate budget for the feature cod-

ing scheme, which is the lowest bitrate adopted in other CDVA analysis tasks. Since

compressed descriptors usually demand more bitrate than that of their compressed lo-

cations, we allocate the bitrate budgets as follows,: 4.4KBps/sec for descriptors and
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0.2KBps/sec for location information. The evaluation of our feature coding scheme is

performed with the MPEG-CDVA dataset, which is prepared for CDVA standardiza-

tion [24]. It consists of more than 10 thousand of videos with different contents, e.g.,

buildings, people, birds, books, etc. For the limited computational resources we have,

the experiments are conducted on a small subset of randomly selected 360 videos from

several categories: people, buildings, books and birds. To further lessen the compu-

tational burden, all videos are resized to the same frame resolution of 640× 360. For

the feature descriptor coding scheme, an image training dataset, 25K-MIRFLICKR

database [19], is used to estimate the covariance matrix of the SIFT descriptor ele-

ments, which is used to find the K-L transformation matrix. This dataset contain

more than 25000 images that cover almost all categories of objects, such as people,

animals, buildings, etc. The average number of features extracted from each image is

more than a thousand. After obtaining the transformation matrix, it is used to decor-

related the elements of all those extracted descriptors. Then, as described in Chap 2,

empirical distributions are estimated for the elements of the transformed version of

the SIFT descriptor. For the feature location coding scheme, to compute the bitrate

used to compress feature location information, the context-based arithmetic encoder

from JBIG standard is used. This JBIG coder works with the context template size

of 10.

There are two performance measurements defined in CDVA-Evaluation Frame-

work [25], namely True Positive Rate (TPR) and False Positive Rate (FPR). They

have been used to assess the pairwise-matching performance. The two rates are given
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by:

TPR =
TP

TP + FN
, (4.1)

FPR =
FP

TP + FN
,

where TP is the number of true positives, FN is the number of false negatives, FP

is the number of false positives, and TN is the number of true negatives. Each of

the above two rates has to be evaluated using a list of pairs of videos. The first list

is of matching videos, i.e., pairs from the same category, while the second is for non-

matching pairs of videos, i.e., cross category pairs. The evaluation of the matching

performance is based on The TPR for a FPR that is less than or equal to 1%.

4.2 Descriptor Coding Scheme Evaluation

The design of the variable level scalar quantizer needs to take in consideration three

variables. These are the number of descriptors, the number of elements in a trans-

formed descriptor (Length of the descriptor), and the number of quantization levels

for each element. The problem seems to be complicated if we optimize the descrip-

tor quantizer for the three variables simultaneously. Hence, we design the descriptor

quantizer for 80, 150 and 200 descriptors. For each number of descriptors, we design

the descriptor quantization using different descriptor length. The descriptor coding

scheme is determined to be the quantizer that provides the best matching perfor-

mance among all quantizers with different length of the descriptors while the bitrate

is under the descriptor bitrate budget.

The different size of the persistent set is controlled by the local feature selection
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in Fig.1.1. Unlike the selection method described in [11], we control the number of

descriptors by randomly selecting the persistent descriptors within the persistent set

of a GOP. The maximum number of elements used for the descriptor quantizer is

40, since we see that most of energy is contained in the first 40 elements in Fig.2.2.

Different quantizers are designed to provide the lowest distortion in Eq.2.4 according

to different number of elements. The maximum number of levels used to quantize

the elements in the transformed descriptor is 32. We cannot partition the empirical

distribution of the elements more than 32 intervals.

4.2.1 The Relation Between Performance and The Number

of Descriptors

In this section we provide the performance of applying the finest quantization to

descriptors using different number of descriptors. We show that the effects of using

more descriptors to represent a video frame on the matching performance.

Shown in Fig 4.1 is the matching performance of different number of descriptors

using different number of quantized elements. We can see that the performance with

the finest quantization of the elements increases as the number of descriptors increases.

This is expected, since the more descriptors are used to represent a frame in videos, the

better description of this frame is obtained. We find that more accurate representation

of the frames in the video improves the video pairwise matching performance.

4.2.2 Design of The Feature Descriptor Encoder

Given the data budget, the finest quantization cannot be used for a large set of

descriptors, since its bitrate would exceed the limitation. Hence, we consider designing
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Figure 4.1: The TPR corresponding to the number of elements.

a variable level descriptor quantizer.

Shown in Fig 4.2, Fig 4.3, and Fig 4.4 are the descriptor quantizer matching

performance of 80, 150, and 200 descriptors using different length of descriptors. Each

of them are designed with the minimum distortion according to different number of

elements. To illustrate, we take the performance of 150 descriptors in Fig 4.3 as an

example. We see that the matching performance increases when the bitrate used

increases, which means that the more bitrate is used to represent a frame, the higher

matching performance can be obtained. Moreover, when the bitrate reaches the

budgets, the higher distortion results in the poorer performance. In other words, the

variable level descriptor quantizer with the minimal distortion always guarantees the

best video matching performance, as long as the bitrate used to represent the feature

descriptors reaches the data budget. However, the quantizers with bitrates smaller

than the bitrate budget usually have lower distortions, yet they cannot achieve good
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Figure 4.2: The TPR corresponding to the number of elements using 80 descriptors.
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Figure 4.3: The TPR corresponding to the number of elements using 150 descriptors.
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Figure 4.4: The TPR corresponding to the number of elements using 200 descriptors.
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performance since they do not fully use the bitrate budget (see the bitrate of the

descriptor quantizers for 10 or 15 elements in Fig.4.3). The performance of these

descriptor quantizers cannot be better than the performance of the quantizer which

uses the maximum bitrate permitted with the lowest distortion possible. To this end,

the variable level descriptor quantization for different number of descriptors is found

to be the one with the lowest distortion and the maximal bitrate used, shown in

Table4.1.

Number of
Descriptors

Number
of

elements

Bitrate Distortion Quantizer

80 30 4.39 25 No.1 - 30 32 level

150 20 4.39 110

No.1, 4, 9 32 level

No.2 - 3, 5 - 8,
10 - 17

16 level

No.18 - 20 8 level

200 20 4.39 280

No.1 - 2 16 level

No.3 - 18 8 level

No.19 - 20 4 level

Table 4.1: The variable level descriptor quantizer designed for different number of
descriptors

However, the discussion above does not hold completely to the case of 200 descrip-

tors shown in Fig.4.4. We can see that the matching performance of using 10 and 15

elements is the same while the bitrate used for 10 elements does not fully meet the

target bitrate. By comparing the quantizers for 10 and 15 elements, the quantizer for

15 elements is much coarser than that for 10 elements, since design of the quantizer

is restricted by the bitrate limitation. It indicates that it is important to quantize

the first 10 elements finner than the following elements.
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4.2.3 Performance of The Feature Descriptor Coding Using

Different Number of Descriptors

In this section, we discuss the proper number of descriptor used to represent a video

frame given a bitrate budget. We compare the matching performance for different

numbers of descriptors using the corresponding descriptor quantizers shown in Table

4.1.

Shown in Table 4.2 is the matching performance of different number of descriptors.

All three descriptor quantizers use the same bitrate to represent the descriptors.

The difference is the distortion. The quantizer for 80 descriptors has the lowest

distortion, 25, while the distortion for 200 descriptors is the highest, 280. However,

the performance of these two descriptor quantizers is not as good as that of 150

descriptors, which means the elements in the transformed descriptor do not need

to be quantized as precise as possible. Instead, the video matching task tolerates

a relatively less accurate representation of the feature descriptors as long as more

descriptors are added. However, if the distortion is continuously increased, this higher

distortion results in a poorer performance.

Number of
Descriptors

TPR

80 87.78%

150 88.89%

200 87.78%

Table 4.2: The matching performance using different number of descriptors
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4.3 The Evaluation of the Location Coding Scheme

The objective of using variable block-sized location scheme is to keep as much use-

ful location information as possible while reduce its bitrate. As we know, the more

persistent descriptors are selected in the keyframe, the higher is the number of de-

scriptors falling in the same block. Besides, in [17], they show that using a large size

of blocks introduces higher error rates in the image matching than using small size of

blocks. Since the location of all features that are in one block is quantized to the same

value, the inaccurate approximation of feature locations occurs if we use a large size

blocks. Moreover, it also has a negative impact on matching performance because the

GCC technology relies heavily on the reconstructed feature locations. Hence, in our

location coding scheme, we consider how to set the subdivision threshold properly. In

this way, we quantize the area where the features are dense precisely while only lose

some location information in areas with sparse features. On the other hand, as there

are several sizes of the blocks, we can create different combinations of block sizes.

Therefore, we evaluate the coding performance for different block combinations. By

setting a proper subdivision threshold and the the choice of the block combination,

we show that our location coding scheme can provide a reliable matching performance

with a low bitrate needed.

The Proper Subdivision Threshold and The Block Size Combination

According to [17], there are four sizes of squared blocks, 32× 32, 16× 16, 8× 8, 4× 4.

Blocks with sizes of 32 and 16 are considered as large blocks while blocks with sizes

4 and 8 are used as small blocks. Hence, we come up with four combinations as well,

shown in Table 4.3. As in the example of 16 sub 4, we use the blocks of size 16× 16
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as the large blocks while use the blocks of size 4 × 4 to subdivide a large block to

quantize the feature location more accurately.

Block combination

16 sub 4

16 sub 8

32 sub 4

32 sub 8

Table 4.3: The four combinations of different block sizes

4.3.1 The Threshold for Block Subdivision

Setting a proper subdivision threshold is the first consideration to design an efficient

variable block-size location coding scheme. We first compute the average number

of descriptors in the non-empty large blocks. The mean value represents the most

common status in all non-empty histogram blocks. The greater amount of descriptors

than the average in one block means the location of those descriptors requires finer

quantization. In Table 4.4, we show the average number of descriptors of the two

large histogram blocks using the following equation:

Md =
Nd

S1
m

, (4.2)

where Nd is the number of features in a frame, and S1
m is the number of non-empty

blocks. As using different operating points, the subdivision threshold for each com-

bination is determined by the video matching performance using the nearest two in-

tegers of the average. On the other hand, setting an improper threshold may causes
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Number of
Descriptors

32× 32 16× 16

80 1.424 1.141

150 1.788 1.223

200 2.271 1.341

Table 4.4: The average number of descriptors in one non-empty block for different
modes

Number of Block Bitrates ( Bytes/GOP) TPR

descriptors combination Thres=1 Thres=2 Thres=1 Thres=2

150 16 sub 4 66.85 63.17 86.67% 86.67%

Table 4.5: The performance of varying the set of thresholds

higher bitrate without gaining much in matching. Shown in Table 4.5 is a sample

of the matching performance and bitrates of the location coding scheme using two

thresholds with a combination of 16 sub 4. We can see that transmitting the feature

locations using higher bitrates cannot guarantee the improvement in video matching

performance. We pick the thresholds that produce a comparable matching TPR while

using fewer bits. As in the case of Table 4.5, the subdivision threshold is set to be 2.

We also learn the subdivision thresholds for all the blocks combinations using

different number of descriptors, which are shown in Table 4.6:

4.3.2 Performance of Variable Block-size Location Coding

To show how much bitrate can be saved by using our location coding scheme, we

compare the variable block-sized location coding scheme with the histogram location

coding method using the uniform block sizes. To be able to compare these two
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Numbers of
Descriptors

Block
combinations

Subdivision
Threshold

80

16 sub 4 1

16 sub 8 1

32 sub 4 2

32 sub 8 1

150

16 sub 4 2

16 sub 8 2

32 sub 4 1

32 sub 8 1

200

16 sub 4 2

16 sub 8 2

32 sub 4 2

32 sub 8 2

Table 4.6: The subdivision thresholds for different number of descriptors
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coding schemes, we use the same persistent descriptor selection method in Fig. 1.1

and measure the bitrate and video matching performance for both cases.

Table 4.7 is the coding performance for different block sizes using different number

of descriptors. We use the case of 80 descriptors as the example to illustrate the

advantages of our location coding scheme. We can see that the matching performance

of the variable block-size location coding scheme using every block combination is

better or equivalent to the highest TPR using CDVS location coding method. For

the variable block-size location coding scheme, the best performance is produced using

the block combination 16 sub 8. Accordingly, the highest TPR using uniform block

size location coding method is produced with the block size of 8 pixels. However,

the bitrates used in our coding scheme are significantly less than those used in the

method of uniform block size. When both two methods reach the best matching

performance, the bitrate used in our location coding scheme is reduced in 39.1%.

Meanwhile, comparing the uniform block size location coding scheme using the block

size of 4 with our location coding scheme using the block combination 32 sub 4, the

bitrate is decreased by 56.8% decreased while maintaining the same video matching

performance. As for the cases of 150 and 200 descriptors, we can also achieve a

comparable matching performance while the bitrate used is much lower.

In the end of the feature location coding evaluation, we set the block combination

for each operating point. Since we put a strict bitrate limitation to the entire feature

coding scheme, we favor the quantization scheme that generates the lowest bitrate

but with comparable performance to that of the other schemes. We have found that

the block combination of 32 sub 8 can achieve a similar matching performance to

other combinations while the bitrate used is much lower than the others. Thus, we
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Number of
descriptors

Block size Bitrate
(Bytes/GOP)

TPR

80

Uniform 4 102.63 84.17%

Uniform 8 103.03 83.83%

16 sub 4 62.84 83.16%

16 sub 8 62.75 84.17%

32 sub 4 44.23 83.83%

32 sub 8 44.34 83.16%

150

Uniform 4 104.68 87.22%

Uniform 8 104.76 86.67%

16 sub 4 63.98 86.67%

16 sub 8 63.83 86.67%

32 sub 4 61.45 87.22%

32 sub 8 51.70 86.67%

200

Uniform 4 105.85 87.88%

Uniform 8 105.69 87.88%

16 sub 4 65.18 87.22%

16 sub 8 64.29 86.67%

32 sub 4 61.25 86.67%

32 sub 8 54.06 86.67%

Table 4.7: The performance for using different location schemes with different block
sizes
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suggest to use the block combination of 32 sub 8 in the variable block-sized location

coding scheme, but the subdivision threshold is changed when operating on different

number of descriptors, shown in Table 4.7.

4.4 Performance of Overall Coding Scheme

To evaluate the overall feature coding scheme, we combine the best descriptor and

location information quantizers, discussed in Sec.4.2 and 4.3. The matching perfor-

mance using different number of descriptors is shown in Table 4.8. The matching

performance of the overall feature coding scheme using 150 descriptors is the best,

which implies that it is unnecessary to use as much features as possible to represent

a video frame. For the case of 80 descriptors, we apply the finest quantizer to de-

scriptors. As more descriptors are added to represent a frame in the case of 150, the

matching performance using a relatively coarser descriptor quantizer is better. How-

ever, if the number of descriptor is continuously increasing while the quantization

accuracy is sacrificed, this results in the degradation of the matching performance.

Number of
Descriptors

Bitrate
(KBps/sec)

TPR

80 4.51 84.44%

150 4.54 86.11%

200 4.54 85.56%

Table 4.8: The performance of the feature coding scheme using different number of
descriptors

By comparing the matching performance in Table 4.2 and Table 4.8, we see the ef-

fect of introducing location quantization to the feature coding system. The matching
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performance after location quantization decreases compared to that without location

quantization. The effect of location quantization on the matching performance de-

pends on the number of descriptor generated. The matching performance is dropped

by 3.34% and 2.78% using 80 and 150 descriptors respectively compared to the match-

ing performance of only applying descriptor quantization, which means feature loca-

tion information is more important and requires a fine quantization when using a

small set of descriptors to match videos. As the number of descriptors increases, a

relatively poor representation of feature locations does not affect much to the video

matching task.
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Conclusion

In this thesis, we present a new feature coding scheme for videos. For descriptors,

we design a variable level scalar quantizer using empirical distributions of K-L trans-

formed SIFT descriptors. We have achieved the low bitrate by only quantizing the

first few elements which contain most of energy. We have learned that a good repre-

sentation of a frame improves the matching performance. In particular, for a given

bitrate budget, variable quantization of the elements in the transformed descriptors

results in a low distortion, which, in turn, leads to a better video pairwise matching

performance. We have shown that for a target bitrate, there is a nonlinear relation

between the matching performance and the number of descriptor used to represent

a frame; after a specific number of descriptors, the quantization becomes relatively

coarse as more descriptors are added, causing the performance to degrade. For the

feature locations, we design a variable block size location coding scheme. Compared

to the coding scheme using uniform block sizes, we have reduced the bitrate for cod-

ing feature location information nearly by half with a negligible video matching error
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rate introduced. We have combined the best descriptor and feature location cod-

ing schemes to form the overall system, which has achieved excellent video pairwise

matching performance given a target bitrate. However, to suit our feature coding

scheme to several bitrate budgets, more experiments must be done.
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