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Abstract

Competency-based medical education (CBME) is a paradigm of assessing resi-

dent performance through well-defined tasks, objectives and milestones. A large

number of data points are generated during a five-year period as a resident accom-

plishes the assigned tasks. However, no tool support exists to process this data

for early identification of a resident-at-risk failing to achieve future milestones. In

this thesis, the implementation of CBME at McMaster’s Royal College Emergency

Medicine residency program was studied and the development of a machine learn-

ing algorithm (MLA) to identify patterns in resident performance was reported.

The adaptivity of multiple MLAs to build a tool support for monitoring residents’

progress and flagging those who are in most need of assistance in the context of

emergency medicine education was evaluated.
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Chapter 1

Introduction

Medical education is transitioning from a time-based system to a competency-

based framework (Iobst et al., 2010). Competency-based medical education (CBME)

(Frank et al., 2010) is a paradigm of assessing resident performance through well-

defined tasks, objectives, and milestones. It uses assessment processes that are

more continuous, frequent and work-based. The ultimate goal of CBME is to en-

sure that residents are fully competent at the end of their training period, and also

to support and foster their development throughout training by identifying per-

formance gaps (Holmboe, Sherbino, Long, Swing, & Frank, 2010). In emergency

medicine (EM) CBME is even more important because it is a generalist specialty,

requiring physicians in this field to be competent with a wide range of fields and

skills. The Royal College of Physicians and Surgeons of Canada (RCPSC) has

started phasing in CBME as the preferred training method and developed Can-

MEDS framework (Frank & Danoff, 2007). CanMEDS defines the roles that a

competent physician is expected to embody in the practice of medicine. These

roles are further refined by each medical specialty into job-specific tasks related to

their domain of expertise.

One example of a CBME assessment system is McMaster Modular Assessment

Program (McMAP) (Chan & Sherbino, 2015) which collects data from 74 differ-
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ent work-based assessments (WBA) categorized by the CanMEDS roles (Frank &

Danoff, 2007). Assessments contain task specific checklists, behaviourally anchored

task-specific and global performance ratings, and written comments. McMAP col-

lects approximately 400 data points per resident per year. The current method of

identifying residents-at-risk in McMAP is the following: at the end of a certain

period of time (usually around 12-16 shifts), data from the daily faculty member

observations are compiled into a report card of scores, and based on cut-points

that have been defined by the program’s competency committee (CC), an admin-

istrative assistant compares the average scores a resident receives with a certain

threshold. Those who receive a score below the cut point are flagged for review,

and considered a “resident-at-risk”. Given the importance of these scores, this

unwieldy amount of data needs to be aggregated, analyzed, and interpreted more

rapidly. Finding a better way to identify and address the needs of individual

trainees, to flag areas in need of support or flag those who are at risk for under-

performing, or to talent-manage high performing residents would be ideal, but no

tool support exists to process this data.

Due to the importance of early identification of residents at risk, we have wit-

nessed significant efforts from research communities to propose and design a model

for detecting residents-at-risk. A number of studies reviewed in this paper predict

performance of students in medical education (Derderian & Kenkel, 2016; Corri-

gan, Smeaton, Glynn, & Smyth, 2015; Hamdy et al., 2006; Hayden, Hayden, &

Gamst, 2005) and other disciplines (Crawford, Tindal, & Stieber, 2001; Calvo-

Flores, Galindo, Jiménez, & Piñeiro, 2006; Lykourentzou, Giannoukos, Mpardis,

Nikolopoulos, & Loumos, 2009). Machine learning algorithms (MLA) and regres-

sion analysis have been used to analyze undergraduate university students’ data to

predict their performance (Yost et al., 2015; Crawford et al., 2001; Romero, Ven-

tura, & Garćıa, 2008). Our review of the existing protocols shows that the main

focus of studies was to find external elements that might predict the competency

Chapter 1 Ali Ariaeinejad 2
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of learners. To date, there has been no study on the correlation of competencies

(scores) with each other, or to study the effects of resident performance during a

more continuous longitudinal data set.

To address the gap in the current methods, we aimed to utilize the imple-

mentation of CBME at McMaster’s Royal College Emergency Medicine residency

program to develop a machine learning algorithm (MLA), in hope of identifying

patterns in resident performance. The model investigates all fluctuations of resi-

dents scores and creates a rich dataset of features. Instead of transferring all of the

collected features directly to the MLA, the model performs neighborhood compo-

nent analysis to find the best combination of features, which increases the accuracy

of the model. We subsequently evaluated the adaptivity of multiple MLAs and

regression analysis to build a support tool for monitoring residents’ progress and

flagging those who are in most need of assistance in the context of emergency

medicine education.

1.1 Thesis organization

The thesis is structured as follows: Chapter 2 reviews the literature. Chapter 3

provides an overview of the proposed model and the specifications of its four main

components (i.e. inputs and data characteristics, preprocessing, machine learning,

and output). Chapter 4 presents the experimental procedures and the results

of evaluation of the model. We conclude this thesis in Chapter 5 and discuss a

number of directions for related future research.

Chapter 1 Ali Ariaeinejad 3



Chapter 2

Literature Review

In this chapter, we review the related work in three areas: predicting performance

in medical education, pedagogical prediction using machine learning algorithms

and background of machine learning algorithms.

2.1 Predicting performance in medical education

Much of the early work in the area of medical education has been focused on

learning analytics that do not seem to hold any predictive capacity. Metro et al.

(Metro, Talarico, Patel, & Wetmore, 2005) and Brenner et al. (Brenner, Mathai,

Jain, & Mohl, 2010) have studied the ability of resident selection process to predict

the future performance of residents. They could not find statistically significant

correlation among the selection committee scores and any of the areas evaluated

during their residency. Elfenbein and colleagues studied the correlation between

faculty evaluations of resident medical knowledge and resident American Board of

Surgery In-service Training Examination (ABSITE) performance. Results of this

study showed that “faculty evaluations of resident medical knowledge correlate

poorly with resident ABSITE performance, and should not be used as an ongoing

predictive tool” (Elfenbein et al., 2015). Meanwhile, other educators have used the
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Pearson correlation (Parker, Alford, & Passmore, 2004) to find correlation between

residents’ predicted performance and their actual performance based on resident’s

self assessments. Results showed that the ability of residents to predict their

performance was poor. They concluded that, self-assessment is not able to predict

future performance of residents, which is in line with much of the educational

psychology literature on self-assessment in medical education (Eva & Regehr, 2008;

Regehr & Eva, 2006; Davis et al., 2006).

There are also a number of studies that found some measures to be more use-

ful for predicting clinical ratings; especially when the measures are more related

to actual performance. Wallenstein and colleagues (Wallenstein, Heron, Santen,

Shayne, & Ander, 2010) evaluated the ability of an objective structured clinical

examination (OSCE) to predict future resident performance. They found statisti-

cally significant correlation between overall OSCE scores and overall clinical per-

formance scores. Promisingly, Hamdy and colleagues (Hamdy et al., 2006) studied

whether performance scores from medical schools could be useful for predicting fu-

ture performance in residency. They found mild to moderate correlations between

medical school assessment measurements and performance in the residency.

Investigation in this group of related work revealed that identifying residents

who are struggling in improvement is immensely important since it can help pro-

grams improve the quality of education. There is, however, a gap in this body of

literature. The main focus of studies to date was to find external elements that

might predict the competency of residents. To date, there has been no study on

the correlation of residency assessment items (competencies) with each other or

studying the effects of resident performance during a more continuous longitudinal

data set. This study has filled this gap in the literature, showing the potential of

CBME metrics and how they might be augmented by MLAs to inform teachers

and administrators about how best to allocate scarce educational programming

and resources.

Chapter 2 Ali Ariaeinejad 5
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2.2 Pedagogical prediction using machine learn-

ing algorithms

Machine Learning Algorithms (MLAs) are being used in many educational appli-

cations in order to help faculty members in finding weaknesses and strengths of

students. Calvo et al. (Calvo-Flores et al., 2006) were able to predict user exam

performance, detecting students who were struggling and in need of additional

educational support. They established that features derived from the Moodle

(Learning Platform or course management system (CMS)) logs were enough to

predict success with a high degree of confidence. They used features like ratio of

resources viewed and total resource viewed. Romero et al. (Romero et al., 2008)

have studied the learning environment data that includes a four-step framework

which are: collect data, process data, perform data mining/machine learning steps

and deploy results. This study demonstrates different ways of applying data min-

ing and machine learning methods to predict students’ performance. Corrigan et

al. (Corrigan et al., 2015) used time spent on a particular task and past perfor-

mance to predict student’s scores. They successfully predict likely [success rates]

on a weekly basis. In another study by Lykourentzou et al. (Lykourentzou et

al., 2009), the data from several multiple choice tests taken during a year and

inputted to predict a student’s success on the course’s final multiple choice test.

Three feed-forward neural networks were used in this method. Results showed that

Neural networks have a higher correlation at all prediction stages in comparison

with linear regression.

Our review of the literature showed that machine learning algorithms such as

artificial neural networks, support vector machines and statistical methods like

linear or logistic regression may be useful for predicting future performance of stu-

dents. Overall, the most important factor for improving the accuracy of prediction

is selecting the best combination of features extracted from the students’ data.

Chapter 2 Ali Ariaeinejad 6
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2.3 Machine learning algorithms (MLAs)

Machine learning is a subset of artificial intelligence (AI) which gives computers

the ability to learn without being specifically programmed. It is classified as a com-

puter’s ability to independently adapt and learn in order to interpret data including

sound, images and text (S. B. Kotsiantis, Zaharakis, & Pintelas, 2007). Example of

MLAs are the artificial neural networks (ANN), classification and clustering algo-

rithms (Gomes, 2014). Machine learning has been used in many different aspects

of science such as speech recognition (Bahdanau, Chorowski, Serdyuk, Brakel,

& Bengio, 2016), image processing (Russ, 2016; Burger & Burge, 2016), pho-

netic recognition (Shim, Koh, Fister, & Seo, 2016), semantic classification (Dave,

Lawrence, & Pennock, 2003), natural language and human writing processing,

robotics, and audio processing (Chowdhury, 2003; Shotton et al., 2013; Greenberg

et al., 2014).

Generally there are three types of machine learning algorithms: supervised,

semi-supervised and unsupervised. The supervised method is used with large

amounts of labeled data. Semi-supervised usually interprets a small amount of

labeled data with a large amount of unlabeled data. Unsupervised methods are

mainly used for clustering the data. One of the drawbacks of supervised learning

is the information that the machine needs to learn must be labeled by a human,

which is difficult, expensive and labor intensive. Supervised learning requires the

algorithm to be provided with pre-existing information about a particular sys-

tem or a set of problems, which the algorithm uses to learn or solve subsequent

problems. Supervised learning is similar to how humans learn; teachers supply

us information, providing us with feedback (i.e. identifying the desired response),

which results in training that will help us to generate “rules” about the data we

have encountered. Figure 2.1 shows a supervised learning block diagram where the

environment (information or data) is fed to both the teacher and learning system.

Chapter 2 Ali Ariaeinejad 7



McMaster eHealth

The true error of such an algorithm is the average difference between the desired

response and the actual response of the system (error signal) over all possible

input-output examples (Haykin, 2009).

Figure 2.1: Supervised learning block diagram

2.3.1 Potential bias in labeling the data

Given the human labeling requirement in supervised learning, we are potentially

facing the labeling bias. Using expert annotators can decrease the labeling bias

considerably. Another way to reduce this bias is using an average of different

annotations collected for each data-point from non expert annotators. This method

is more reasonable because the cost of non expert annotators is relatively lower

than the experts (Yamauchi, 2005).

2.3.2 Artificial neural networks (ANN)

Artificial neural networks (ANN) are built with a number of neurons that are

connected to each other in different layers. Connections between neurons is a

numeric changeable weight which gives the network ability to be adaptive to inputs

and capable of learning (Yegnanarayana, 2009). Each layer in the ANN has a

number of neurons; there is only one input layer, one output layer and at least

one hidden layer. Figure 2.2 is an example of an ANN system with two neurons

Chapter 2 Ali Ariaeinejad 8
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in the input layer, three neurons in the hidden layer and one neuron in the output

layer. All neurons are connected to each other unless the network designer sets

the weight of connection between two neurons to zero (which would mean the

two items are disconnected). Neural networks are usually used in bioengineering

problems such as image processing (Lindblad, Kinser, Lindblad, & Kinser, 1998)

and speech recognition (Hinton et al., 2012).

Figure 2.2: Artificial Neural Network

The available data are fed to the input layer and output of each layer fed to

the next layer then finally the conclusion is the output of the whole network. The

majority of neutral networks use non-linear activation functions. Figure 2.3 shows

three popular activation functions used in neural networks (Karlik & Olgac, 2011).

Figure 2.3: Activation Functions

The benefits of neural networks

Neural networks determine their computing power through their parallel conveyed

structure and capacity to learn. Moreover, one of the most significant advantages

Chapter 2 Ali Ariaeinejad 9
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of neural networks is their ability to generalize. They have the capacity to produce

reasonable outputs even for inputs that the network was not even trained on. In

addition, non-linearity is a positive property of neural networks as it enables neural

networks to adapt to non-linear functional relationships (Haykin, 1998).

2.3.3 Support Vector Machines (SVM)

The Support Vector Machine (SVM) is a discriminative classifier formally char-

acterized by an isolating hyperplane. SVM outputs an optimal hyperplane which

classifies new examples based on labeled training data (supervised learning) (Joachims,

1998a).

In the Figure 2.4 we can see that there exist different lines that offer an answer

to the issue. Are any of them superior to the others? We can intuitively define a

criterion to estimate the worth of the lines: A line is not appropriate if it passes too

close to the points because the line will be noise sensitive and it will not generalize

effectively. Along these lines, the SVM objective is discovering the line that goes

quite far from all points.

Figure 2.4: Support Vector Machines

The operation of the SVM algorithm depends on finding the hyperplane that

gives the biggest least separation to the training examples. In SVM theory, this

distance is named the margin. Accordingly, Figure 2.5 shows the ideal isolating hy-

perplane which maximizes the margin of the training data (Suykens & Vandewalle,

Chapter 2 Ali Ariaeinejad 10
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1999).

Figure 2.5: Optimal hyperplane

The formula used to formally define a hyperplane is as follows:

f(x) = β0 + βtx

where βt is referred to the weight vector and β0 to the bias. The optimal hyperplane

can be represented in an infinite number of different ways by the scaling of β and

β0. Among all representations of the hyper plane, the selected one is

∣∣β0 + βtx
∣∣ = 1

where x symbolizes the training examples nearest to the hyperplane. Generally,

the training examples that are nearest to the hyperplane are called support vectors.

This representation is known as the canonical hyperplane.

The geometry that gives the distance between a point x and a hyperplane (β,β0)

is:

(β, β0) : distance =
|β0 + βtx|
‖β‖

Specifically, for the canonical hyperplane, the numerator is equal to one and the

Chapter 2 Ali Ariaeinejad 11
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distance to the support vectors is:

distancesupportvector =
|β0 + βtx|
‖β‖

=
1

‖β‖

Note that the margin presented in the previous section, here indicated as M , is

twice the distance to the closest examples:

M =
2

‖β‖

Finally, the issue of maximizing M is equal to minimizing a function L(β) subject

to some constraints. The constraints modeling the requirement for the hyperplane

to classify correctly all the training examples xi is:

minβ,β0L(β) =
1

2
‖β‖2 subject yi(β0 + βtx) ≥ 1∀i

where yi represents each of the labels of the training examples. This is an issue of

Lagrangian optimization that can be solved using Lagrange multipliers to obtain

the weight vector β and the bias β0 of the ideal hyperplane (Joachims, 1998a,

1998b).

2.3.4 k-Nearest Neighbor (kNN)

kNN analysis classifies a new instance among a number of known examples. As

shown in Figure 2.6, examples are pluses and minuses and the red circle is the new

sample. kNN classifies the new sample based on a selected number of its nearest

neighbors. Generally, we need to know whether the new sample can be a plus or

minus (Larose, 2005; Beyer, Goldstein, Ramakrishnan, & Shaft, 1999).

To proceed, let’s consider the outcome of kNN based on 1-nearest neighbor. It

is clear that in this case kNN will classify the new sample as a plus (since the closest

point carries a plus sign). Now let’s increase the number of nearest neighbors to 2,

Chapter 2 Ali Ariaeinejad 12
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Figure 2.6: K-Nearest Neighbor analysis

this time kNN will not be able to classify the new sample since the second closest

point is a minus, and so both the plus and the minus signs achieve the same score.

For the next step, let’s increase the number of nearest neighbors to 5, which will

define a nearest neighbor region, indicated by the circle shown in the Figure 2.6.

Since there are 2 plus and 3 minus signs, in this circle kNN will classify the new

sample as a minus.

k-Nearest Neighbors (kNN) is a memory-based model characterized by an ar-

rangement of items known as cases, for which the results are known (i.e., the

examples are labeled). Every case comprises of an information case having an

arrangement of independent qualities labeled by a collection of dependent results.

The independent and dependent factors can be either continuous or categorical.

For continuous dependent variables, the task is regression; otherwise it is a classi-

fication.

The decision of choosing k is very important in building the kNN. k can be

considered as the most critical element of the model that can firmly impact the

nature of predicts. One approach to choose the best k is to consider it as a

smoothing parameter. For any given problem, a small value of k will prompt an

expansive fluctuation in predictions. On the other hand, choosing a very large k

may prompt a substantial model bias. In this manner, k should be set to a value

large enough to minimize the probability of misclassification and small enough

Chapter 2 Ali Ariaeinejad 13
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with respect to the number of cases in the example sample. Therefore, similar

to any smoothing parameter, there is an ideal incentive for k that accomplishes

the correct trade-off between the bias and the variance of the model (Beyer et al.,

1999).

Chapter 2 Ali Ariaeinejad 14



Chapter 3

The Proposed Model

In this chapter the proposed model as shown in Figure 3.1 is described. Using

different machine learning algorithms and regression analysis the model monitors

features extracted from resident’s assessment data and then classifies the future

situation of a resident as “at risk” or “not at risk”. The model allows the program

to create a more tailored educational curriculum for each resident, while at the

same time becoming more active contributors. The model has four main compo-

nents: input, preprocessing, machine learning and output which are discussed in

sections 3.1, 3.2, 3.3, and 3.4 respectively.

Figure 3.1: The training phase of the proposed model

15
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3.1 Data characteristics and inputs

Data have been extracted from McMAP between years 2012 to 2016. The data in-

clude different attributes such as task name and code, task score, global score, post

graduate year (PGY), block, group name and date of assessment. As described in

Table 3.1, tasks are 74 work-based assessment instruments which are completed

by faculty following direct observation of residents during shifts. For example,

a faculty member might observe a resident providing discharge instructions to a

patient. Each task is coded primarily to one CanMEDS role (Frank & Danoff,

2007). The global rating instrument is completed to capture the resident’s global

performance of all tasks during a shift. The scoring system is based on a consistent

scale of 1 to 7, for both the uniquely anchored task scores and global performance

scores. Post graduate year (PGY) shows the level of resident experience which

can be 1 to 5 (i.e. their training level). A resident’s year is divided into 13 four-

week blocks. For each task score we have a group name (CanMEDS label) that

categorizes the tasks, which can be professional, leader, manager, communication,

collaboration, medical expert, scholar and health advocate.

Table 3.1 displays the descriptive analysis of available attributes. There are

1998 valid task score records with a minimum of 3 and maximum of 7. The mean

of task scores is 6.23 and the median of task scores is 6. To investigate more about

the distribution of input data we calculated the skewness using Eq. 3.1 where

µ is mean, ν is median and σ is standard deviation (Mardia, 1974). The result

of this equation was 0.28 which means that the distribution skewed to the right,

and as illustrated in Figure 3.2, task score distribution is not symmetric (Boyer,

Mitton, & Vorkink, 2009). We repeat the same distribution test on global scores.

The mean of global scores is 6.08 and the median is 6. In terms of distribution,

standard deviation tells us that most global scores are clustered around 5.4 and 7,

which appears similar to task scores.
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Skewness = (µ− ν)/σ (3.1)

To investigate the correlation of task scores and global scores we conducted

the Spearman correlation test since task and global scores are ordinal variables

and the Spearman correlation test evaluates the monotonic relationship between

two continuous or ordinal variables. Results of the test showed that correlation

coefficient R (COR) was 0.67 (p < 0.0001). It means that these two variables have

a semi-strong linear relationship (Taylor, 1990). This reveals that global scores

are substantially correlated with task scores, and that the task assessments are

inextricably tied to the global scores. Therefore, we decided to use task scores as

predictor value for training the model.

Table 3.1: Descriptive analysis of available data

Attributes Description Mean St. Dev Valid N Median Min Max

Task score
The resident’s level of
performance in a specific task

6.23 0.8 1998 6 3 7

Global Score
The resident’s global performance
of all tasks during the shift

6.08 0.77 2252 6 1 7

PGY Post graduate year - - 2355 - 1 5

Block
A resident’s year is divided into
13 four-week blocks

- - 2355 - 1 13

Date Date of assessment - - 2355 - 2012 2016
Group Associated CanMEDS role - - 1998 - - -

Figure 3.2: Density plot of Task Scores
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Figure 3.3: Density plot of Task Scores within the groups

The density plot of task scores is illustrated in Figure 3.2. It reveals that the

majority of task-scores are 6 and 7. It seems that predicting score under 6 would

be a challenge because the incidence of such scores is so low. By investigating

task-scores within the groups as shown in Figure 3.3 we found that distribution of

scores is similar within the different groups. Investigating global scores as displayed

in density plot of global score in Figure 3.4, showed that most residents got 6

for their global performance rating. Figure 3.5 showed the distribution of global

scores within the groups, which are distributed the same as the whole distribution

of global scores.

3.2 Preprocessing

A key challenge of data preparation in the medical education context is trans-

forming raw data to a set of features. The model’s input is a sequence of scores

for different tasks that residents received over a certain period of time. The se-

quence can have different lengths depending on a resident’s level of training (i.e.

post graduate year). Therefore, we need to extract a fixed set of features from

each sequence. Additionally investigating and quantifying all fluctuations of each
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Figure 3.4: Global Scores

Figure 3.5: Global Scores within the groups

resident’s scores and combining all extracted features for residents in one dataset,

may give the machine learning algorithms the potential for finding hidden patterns.

In this study, we are looking for 18 different features which are listed below:

1. Average of professional task scores

2. Average of communicator task scores
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3. Average of collaborator task scores

4. Average of health advocate task scores

5. Average of medical expert task scores

6. Average of scholar task scores

7. Average of manager task scores

8. Average of leadership task scores

9. Frequency of ones

10. Frequency of twos

11. Frequency of threes

12. Frequency of fours

13. Frequency of fives

14. Frequency of sixes

15. Frequency of sevens

16. Slope of the sequence

17. Sequence length

18. Next group label (i.e. the CanMEDS role)

In each step of features extraction we used a growing window to read the task

scores. In the first step, size of the window was one and in each step we increased

the size of window by one. It means that in each step we read one more score.

Then we calculated 18 features and the class for each step. If the resident’s score

was under 6, the class would be 1 which means that the resident is “at risk”.

Chapter 3 Ali Ariaeinejad 20



McMaster eHealth

If the score was 6 or 7, the class would be 0, which means resident is “not at

risk”. We continued the process until read the last score in the sequence. Then

we repeated the process for all residents and added all extracted features to the

features dataset. Figure 3.6 displays running one complete round of feature extrac-

tion for an example sequence of scores. The stepwise feature extraction process is

illustrated in Appendix A.

Figure 3.6: Features dataset

The next step is normalizing the features. Each feature has its own numeric

range which can have a knock-on effect on machine learning algorithm ability to

learn and the objective functions will not work properly without normalization

(Bolstad, Irizarry, Åstrand, & Speed, 2003). Therefore, each attribute should be

normalized by scaling its values so that they fall within a specified range of 0 to 1.

There are many methods for data normalization including min-max normalization,

z-score normalization and normalization by decimal scaling. In a study by Al

Shalabi et al. (Al Shalabi, Shaaban, & Kasasbeh, 2006) they concluded that

min-max normalization always has the highest accuracy. Therefore, we used this

method for normalizing the features.

Achieving a high precision and accuracy requires an appropriate collection of

features. Using too many features leads to over-fitting the model and too few

features leads to under-fitting the model. Generally, feature selection restricts the
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features in the models to those, which are most relevant. Using as few features

as possible will also reduce the complexity of the model, which means it needs

less time and computational power to run and is easier to understand. There are

several ways to identify how much each feature contributes to the model and to

restrict the number of selected features such as heteroscedastic discriminant anal-

ysis (HLDA), principal components analysis (PCA) and neighborhood component

analysis (NCA). The results of a study by Singh-Miller et al. (Singh-Miller, Collins,

& Hazen, 2007) showed that NCA has significant improvements in accuracy of the

model over PCA and HLDA. Therefore, the feature selection method used in this

study was NCA. NCA minimizes the expected leave-one-out classification error un-

der a probabilistic neighborhood assignment (Goldberger & Salakhutdinov, 2005).

Figure 3.7 shows the results of running NCA. Features which are weighted zero

did not participate in the training or testing phases. NCA selected features were

established by computing the average of scores related to professional, communi-

cator, collaborator, medical expert, scholar and manager groups and the counted

number of fours in the resident’s scoring sequence.

Figure 3.7: Weighted Features by NCA
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3.3 Machine Learning

Determining the appropriate machine learning algorithm to accurately predict the

future performance of a resident is another challenge that needs to be addressed.

There has been little prior work in medical education using machine learning.

Therefore, we studied the literature to find the most commonly used MLAs for

similar problems. The Support Vector Machine (SVM) has been used by (S. Huang

& Fang, 2013; Corrigan et al., 2015) and found useful in predicting student perfor-

mance. Kotsiantis et al. (S. Kotsiantis, Patriarcheas, & Xenos, 2010) and Romero

et al. (Romero, Espejo, Zafra, Romero, & Ventura, 2013) concluded that the k-

Nearest Neighbor algorithm can be appropriate for the construction of a software

support tool in predicting future performance of students. In different disciplines,

like surgical training and e-learning, artificial neural networks showed better re-

sults in predicting student success (Yost et al., 2015; Lykourentzou et al., 2009).

Regression analysis has been used in a wide variety of studies for predicting future

performance of students (Hayden et al., 2005; Hamdy et al., 2006; Wallenstein et

al., 2010). This literature review led us to conclude that the present study is the

first to develop and compare Support Vector Machine (SVM), Neural Networks,

k-Nearest Neighbor and regression analysis to predict the future performance of

emergency residents. In the following sections we describe how we configured and

used these methods.

3.3.1 Support Vector Machine (SVM)

The SVM uses a kernel function to transform finite input space to higher or infinite

spaces (Cortes & Vapnik, 1995). In this study, we investigated multiple kernels

such as the radial basis function (RBF), polynomial, linear, and quadratic. The

best results were achieved by the polynomial kernel function which defined in

Eq. 3.2. The polynomial kernel has two parameters: the penalty constant C and
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polynomial degree d. In the polynomial kernel function, C is chosen to be 1 by

default, and we need to optimize d.

k(x, xi) = (xTxi + C)d (3.2)

3.3.2 Neural Network

In order to select an appropriate network topology, different topologies such as

multilayer perceptrons, recurrent networks, and time-lagged recurrent networks

were considered. Due to the nature of our data, which is static and not suffi-

ciently large to enable the use of complex topologies, the multilayer perceptron

was selected (Hornik, Stinchcombe, & White, 1989). The neural network struc-

ture selected for this study consists of six input nodes, one hidden layer with ten

nodes and one output node. One hidden layer was selected because a large number

of hidden layers will progressively slow down the training time.

3.3.3 k-Nearest Neighbor (kNN)

kNN is a non-parametric classification algorithm. The model of the kNN classifier

is based on feature vectors and class labels from the training data set. This clas-

sifier induces the class of the query vector from the labels of the feature vectors in

the training data set to which the query vector is similar. To check similarity in

a multidimensional feature space, there are different metrics such as: Euclidean,

City-block, Correlation, Minkowski, Chebychev and Jaccard. In this thesis, the

best results were achieved using the Euclidean distance metric.

The three MLAs were implemented in MATLAB in order to predict resident

performance. The Logistic regression analysis was also used as a separate bench-

mark as previous work in medical education has shown promising results with

correlation and regression (Hamdy et al., 2006). The objective was to determine
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which algorithm is most appropriate to predict residents’ performance accurately,

and also in which case it could be useful as an educational supporting tool for

instructors.

3.4 Output

The model was trained with data gathered from residents who are “at risk” (Class

1) and “not at risk” (Class 0) for their performance. Class 1 residents are identified

as needing further attention from their supervisors in order to become better fo-

cused on their work. Class 0 residents are those that show a positive trend in their

assessments. The MLAs are used to classify the future performance of residents in

a specific group. The MLAs have a binary output (0,1), which is interpreted and

displayed to the user.

Chapter 3 Ali Ariaeinejad 25



Chapter 4

Results and Evaluation

In this chapter, we describe the experimental setup and discuss the results of two

experiments: 1) task-level performance experiment which requires the model to

predict the future performance of a resident in a specific group of tasks, and 2)

a block-level performance experiment where the model predicts the next block

average of scores for a resident based on the features extracted from the current

block.

4.1 Experimental setup

In all stages of this study, a desktop computer with Intel Core2 Quad CPU Q8400

@ 2.66GHz processor and 4GB of installed Memory was used. Operating system

was Windows 10 Professional 64bit. Feature extraction, feature selection (Neigh-

borhood Component Analysis) and MLAs were implemented and evaluated with

the machine learning and bioinformatics toolbox in MATLAB R2017a. The evalu-

ation method was k-fold cross-validation (Kohavi, 1995). In k-fold cross validation

the data set is divided into k subsets, and the training-testing phase is repeated k

times. Each time, one of the k subsets is used as the test set and the other k − 1

subsets are put together to form a training set. Each time, the model is trained
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using the training set only. Then the model was asked to predict the output values

for the data in the testing set. Finally, the average error across all k trials was com-

puted. Diagnostic accuracy relates to the ability of a test to discriminate between

the labeled classes and model output. This discriminative potential can be quan-

tified by the measures of diagnostic accuracy such as sensitivity, specificity, and

the Receiver Operating Characteristic (ROC) curve, which is usually expressed as

the area under the curve (AUC) (Pencina, D’Agostino, & Vasan, 2008).

Sensitivity and specificity are statistical measures of the performance of a bi-

nary classification test. In this study, sensitivity (also called the true positive

rate) measures the proportion of “at risk” residents that are correctly identified

and specificity (also called the true negative rate) measures the proportion of “not

at risk” residents that are correctly identified. A receiver operating characteristic

curve (ROC) is a graphical plot that illustrates the accuracy of a binary classifier.

The ROC curve is created by plotting the true positive rate (TPR) against the

false positive rate (FPR). In this study, the accuracy of models is measured by the

area under the ROC curve (AUC). The AUC is used in classification analysis in

order to determine which of the used models predicts the classes best. The AUC of

a classifier is equal to the probability that the classifier will rank a randomly cho-

sen positive example higher than a randomly chosen negative example (J. Huang

& Ling, 2005). An area of 1 represents a perfect test; an area of 0.5 represents

a worthless test because in a binary classification there is a 50 percent chance of

true classification by just randomly selecting the classes (Hanley & McNeil, 1982).

4.2 Task-level performance experiment

In this experiment, the model is asked to predict the future performance of a

resident in a specific group of tasks based on the features extracted from the

current situation of a resident. Results are displayed in Table 4.1. In order to
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make sure about the usability of feature selection phase we tested this experiment

without feature selection phase and results, as illustrated in Appendix B, showed

that when we used all features the total accuracy decreased.

Table 4.1: Results of task-level performance experiment

Model Sensitivity Specificity AUC

SVM 0.54 0.74 0.64
kNN 0.30 0.84 0.57
Neural Network 0.35 0.86 0.61
Logistic regression 0.43 0.24 0.34

In order to further increase the accuracy of the SVM based model we conducted

a grid search to find the optimal degree for the polynomial kernel and the best k

value for separating data into training and testing subsets. The best result was

achieved with k = 5 and degree = 5. As shown in Figure 4.1 sensitivity was

0.54, specificity was 0.74 and area under curve was 0.64. In the kNN based model,

results of running a grid search for finding the optimal combination of the k for k-

fold and number of neighbors showed that the best results achieved on 5-fold cross

validation with 2-nearest neighbors. As shown in Figure 4.2 sensitivity was 0.30,

specificity was 0.84 and AUC was 0.57. Running k-fold cross-validation for neural

network showed that the best k was 5. As shown in Figure 4.3 sensitivity was

0.35, specificity was 0.86 and AUC was 0.61. Results of running logistic regression

analysis on the available data showed that this method was weaker than machine

learning algorithms. As shown in Figure 4.4 for logistic regression, sensitivity was

0.43, specificity was 0.24 and area under curve was 0.34.

4.3 Block-level performance experiment

The current method of identifying residents-at-risk in McMAP is described below.

At the end of each block (usually around 28 days), data from the daily faculty

member observations are compiled into a report card of scores. A comparison of
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Figure 4.1: Exp1. ROC of SVM Figure 4.2: Exp1. ROC of kNN

Figure 4.3: Exp1. ROC of Neu-
ral Network

Figure 4.4: Exp1. ROC of Logis-
tic Regression

the average scores a resident receives in a block is made against a threshold defined

by the program’s competency committee (CC), Those who receive a score below

the threshold are flagged for review, and considered a “resident-at-risk”. The cur-

rent threshold in McMaster’s emergency residency program is 6.

In this experiment, we evaluated the model against the current method of iden-

tifying “resident-at-risk” in McMAP and predicted the next block average class

for each resident. To do that, the model trained with features extracted from task

scores for each block. The label 1 means that the average of scores in next block is

under six and the label 0 means that the average is six or seven. Table 4.2 displays

the results of this experiment.
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Table 4.2: Results of block-level performance experiment

Model Sensitivity Specificity AUC

SVM 0.50 0.76 0.63
kNN 0.42 0.83 0.61
Neural Network 0.49 0.69 0.54
Logistic Regression 0.17 0.97 0.57

Results of running Neighborhood Component Analysis (NCA) showed that all

features are participating in the training and testing phase. Also, results of run-

ning k-fold cross-validation showed that the best results were achieved on k = 5.

Results of running SVM as shown in Figure 4.5 revealed that SVM was the most

accurate method in predicting future average class. Tabel 4.2 presents the SVM

results with sensitivity of 0.50 and specificity of 0.76 and 0.63 area under curve.

Figure 4.6 shows the results of kNN based model with sensitivity of 0.42 and

specificity of 0.83 and 0.61 area under curve. Figure 4.7 shows the results of neu-

ral network which is 0.49 sensitivity, 0.69 specificity and 0.54 area under the curve.

Figure 4.8 shows the results of Logistic regression which is 0.17 sensitivity, 0.97

specificity and 0.57 area under the curve.
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Figure 4.5: Exp2. ROC of SVM Figure 4.6: Exp2. ROC of kNN

Figure 4.7: Exp2. ROC of Neu-
ral Network

Figure 4.8: Exp2. ROC of Logistic
regression
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Chapter 5

Conclusions and Future Work

This chapter provides conclusions of the results. Also, a number of directions for

future work is suggested.

5.1 Conclusions

In this study, we proposed a model for predicting future performance of emergency

residents based on their past performance. We extracted features from different

sequences of scores for each resident and combined all of them in one dataset then

applied the NCA feature selection algorithm for dimension reduction and selecting

the best combination of features which increase the accuracy of the model then

trained multiple MLAs for making decision about each set of features. Results

showed that the SVM based model was the most accurate method in successfully

identifying residents “at risk” in a specific group of tasks with 0.54 sensitivity,

0.74 specificity and 0.64 area under curve. In block-level prediction also the SVM

was the most accurate method with 0.50 sensitivity, 0.76 specificity and 0.63 area

under curve.
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5.2 Future Work

In this study, we were facing different kinds of limitations. One of the most im-

portant limitations was inter-rater reliability. It is well known, that when people

evaluate someone, their evaluations reflect the person being assessed, and the as-

sessor’s built in biases. As human beings, our judgments about many things are

affected by our own perceptual ideas. The effects of assessing teacher’s perceptions

introduces highly subjective factors that make many evaluations unreliable or in-

consistent. Rater effect is a major problem in medical education, because there

are idiosyncrasies to observations (Gingerich, Regehr, & Eva, 2011; Gingerich,

van der Vleuten, Eva, & Regehr, 2014; Gingerich, Kogan, Yeates, Govaerts, &

Holmboe, 2014). When faculty members rate residents using scales that are vague

or holistic, this results in unreliable data. Undoubtedly, McMAP is subject to these

previously described biases. The rater “problem” can be tackled by a number of

different methods ranging from increased assessor training to better behavioural

anchors, which can align the assessor’s thinking to create shared mental models

(Gingerich, Kogan, et al., 2014). Recent work in the same group of emergency

physician teachers has shown that the assessors themselves have specific rating

tendencies (i.e. some are more lenient [doves] and some are harsher [hawks]). An

interesting future study might be to add the assessors’ personality into a MLA

algorithm and see if this provides another data point that can increase the accu-

racy of the algorithms in predicting resident performance. Just as we can predict

resident performance, we anticipate that there are similar patterns in assessor

behaviors that can also be detected using MLAs.

Yet another opportunity is the addition of qualitative data. The McMAP

system asks the rater to describe the resident’s performance or score using free-

text comments that may offers qualitative input. Recent work by Ginsburg and

colleagues has shown that human readers using qualitative comments can reliably
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sort through residents (Ginsburg, van der Vleuten, Eva, & Lingard, 2016). Another

future direction would be to add qualitative comments as sources of data input for

the MLAs.

Finally, multi class MLAs could be tested to identify not only residents at

risk but also find the talented residents. Identifying talented residents helps the

program to have a better focus on residents who are in need of more challenging

educational programs leading a resident to be certified and enter the workforce as

an unsupervised doctor earlier.
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Bolstad, B. M., Irizarry, R. A., Åstrand, M., & Speed, T. P. (2003). A comparison

of normalization methods for high density oligonucleotide array data based

on variance and bias. Bioinformatics , 19 (2), 185–193.

Boyer, B., Mitton, T., & Vorkink, K. (2009). Expected idiosyncratic skewness.

The Review of Financial Studies , 23 (1), 169–202.

Brenner, A. M., Mathai, S., Jain, S., & Mohl, P. C. (2010). Can we predict

“problem residents”? Academic Medicine, 85 (7), 1147–1151.

Burger, W., & Burge, M. J. (2016). Digital image processing: an algorithmic

introduction using java. Springer.

Calvo-Flores, M. D., Galindo, E. G., Jiménez, M. P., & Piñeiro, O. P. (2006).
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Appendix A

Stepwise feature extraction

Images below show that how feature extraction function step by step extracts the

18 different features from a sample sequence with 9 scores.

In this step, average of communicator task scores is updated because the first
score belongs to communicator group. The number of sevens is updated to 1.
Slope is 0 and length of sequence is 1. Next task belongs to professional group
and the calculated class is 1 because next score is less than 6.
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Then, the feature extraction function adds the calculated features to feature
dataset.

In this step, average of professional task scores is updated to 5. The number of
fives is updated to 1. Slope is -2 and length of sequence is 2. Next task belongs
to communicator group and the calculated class is 0 because next score is 6.

Then, the feature extraction function adds the calculated features to feature
dataset.
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In this step, average of communicator task scores is updated to 6.5. The number
of sixes is updated to 1. Slope is updated to -1 and length of sequence is updated
to 3. Next task belongs to collaborator group and the calculated class is 0
because next score is 6.

Then, the feature extraction function adds the calculated features to feature
dataset.
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In the next step, average of collaborator task scores is updated to 6. The number
of sixes is updated to 2. Slope is same and length of sequence is updated to 4.
Next task belongs to medical expert group and the calculated class is 1 because
next score is less than 6.

Then, the feature extraction function adds the calculated features to feature
dataset.
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In the next step, average of medical expert task scores is updated to 4. The
number of fours is updated to 1. Slope is updated to -3 and length of sequence is
updated to 5. Next task belongs to medical expert group and the calculated class
is 0 because next score is 7.

Then, the feature extraction function adds the calculated features to feature
dataset.
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In the next step, average of medical expert task scores is updated to 5.5. The
number of sevens is updated to 2. Slope is updated to 0 and length of sequence is
updated to 6. Next task belongs to leadership group and the calculated class is 0
because next score is 6.

Then, the feature extraction function adds the calculated features to feature
dataset.
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In the next step, average of leadership task scores is updated to 6. The number
of sixes is updated to 3. Slope is updated to -1 and length of sequence is updated
to 7. Next task belongs to communicator group and the calculated class is 0
because next score is 6.

Then, the feature extraction function adds the calculated features to feature
dataset.
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In the next step, average of communicator task scores is updated to 6.3. The
number of sixes is updated to 4. Slope is updated to -1 and length of sequence is
updated to 8. Next task belongs to collaborator group and the calculated class is
0 because next score is 6.

Then, the feature extraction function adds the calculated features to feature
dataset.

Appendix A Ali Ariaeinejad 50



Appendix B

Results of MLAs on predicting performance in specific group of tasks without

feature selection showed that SVM based model was the most accurate method

with sensitivity of 0.39 and specificity of 0.84 and 0.60 area under curve as shown in

Figure B.1. kNN based model as shown in Figure B.2 achieved 0.26 for sensitivity,

0.82 for specificity and 0.55 for area under the curve. Neural network based model

as shown in Figure B.3 achieved 0.36 for sensitivity, 0.83 for specificity and 0.58

for area under the curve.

In conclusion, it seems that using Neighborhood Component Analysis (NCA)

leads to find the best combination of features to increase the accuracy of all ma-

chine learning algorithms.

Figure B.1: Receiver Operating Characteristic of SVM
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Figure B.2: Receiver Operating Characteristic of KNN

Figure B.3: Receiver Operating Characteristic of Neural Network
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