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For we are His workmanship, created in Christ Jesus unto good works, which God

hath before ordained that we should walk in them.

(Ephesians 2:10)

For of Him, and through Him, and to Him, are all things: to whom be glory for

ever. Amen.

(Romans 11:36)



Abstract

Finite mixture modelling is a powerful and well-developed paradigm, having proven

useful in unsupervised learning and, to a lesser extent supervised learning (mixture

discriminant analysis), especially in the case(s) of data with local variation and/or

latent variables. It is the aim of this thesis to improve upon mixture discriminant

analysis by introducing two types of random forest analogues which are called Mix-

Forests. The first MixForest is based on Gaussian mixture models from the famous

family of Gaussian parsimonious clustering models and will be useful in classify-

ing lower dimensional data. The second MixForest extends the technique to higher

dimensional data via the use of mixtures of factor analyzers from the well-known

family of parsimonious Gaussian mixture models. MixForests will be utilized in the

analysis of real data to demonstrate potential increases in classification accuracy as

well as inferential procedures such as generalization error estimation and variable

importance measures.
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Chapter 1

Introduction

1.1 Discriminant Analysis

The primary objective of discriminant analysis (DA) is the development of a rule or

classifier whereby a newly considered entity can be allocated to a previously observed

subpopulation. Over the many decades of statistical theory, the conditions and

considerations of DA have varied depending on the context. In this setting, DA will

be defined using the following conditions.

The set of observations will be comprised of N p-dimensional vectors of measure-

ments, denoted x1, . . . ,xN . Of the N observations, n will be known a priori to come

from one of G observed classes, while N−n will be unlabelled. DA is based upon only

the n labelled observations and will be used to infer the membership of the remaining

observations. In many ways the evolution of DA mirrors the progress of statistical

inference as a whole. One author even suggested that the entire topic of multivariate

1
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analysis can be considered an extension of the discriminant function. DA arose from

the science of biological taxonomy and is widely applicable to many diverse fields

including physics, social science, engineering, medicine, pattern recognition, etc. DA

is at the core of the science of statistics.

1.2 Mixture Discriminant Analysis

Mixture discriminant analysis (MDA) is the use of finite mixture models (FMMs) in

DA. While the term MDA is a relatively recent invention, finite mixtures have been

employed in DA as long ago as the late 1800s by Newcomb (1886) and by Pearson

(1894). The p-dimensional random vector X = (X1, . . . , Xp)
′ is said to arise from a

mixture distribution if its density can be written

f(x|ϑ) =
G∑

g=1

πgfg(x|θg),

where πg > 0 represents the gth mixing proportion,
∑G

g=1 πg = 1, ϑ = (π,θ1, . . . ,θG)

is the vector of parameters with π = (π1, . . . , πG), and fg(x|θg) is the gth compo-

nent density, and f(x|ϑ) is then called the G-component finite mixture density.

Parametrically speaking, MDA is natural since FMMs (1.2) suppose the existence

of subpopulations within an overall population. Although component densities are

assumed to be the same type, they can be chosen to suit the need of a particular

application (i.e., outlier detection).

With the tremendous work done in the area of finite mixtures, it is a well thought

out and flexible modelling paradigm. Parameter estimation has been laid out for

2
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mixtures of various types including multivariate Gaussians (Celeux and Govaert,

1995), multivariate t-factor analyzers (McLachlan et al., 2007), skew-t factor an-

alyzers (Murray et al., 2014), hidden truncation hyperbolic distributions (Murray

et al., 2017), generalized hyperbolic distributions (Browne and McNicholas, 2015),

multivariate Poisson-log normal (Silva et al., 2017), gamma (Webb, 2000), variance-

gamma factor analyzers (McNicholas et al., 2017), etc. For the purposes of this

thesis, two families of models will be employed: the family of Gaussian parsimonious

clustering models (GPCM; Celeux and Govaert, 1995) and the family of parsimo-

nious Gaussian mixture models (PGMM; McNicholas and Murphy, 2010). Finite

mixture models have been applied to diverse fields and studies.

1.3 Random Forests

The main idea of random forests is to generate an ensemble of tree-type classifiers

using a modification of bootstrap aggregating (bagging) which minimizes correlation

between trees (Breiman, 2001). For DA, significant improvements in classification

accuracy can be made by allowing the trees to take a committee vote to place a

newly considered entity into a previously observed class (Breiman, 2001).

This method addresses the bias-variance dilemma present in model prediction.

The two sources of prediction error are bias and variance. The dilemma is that

decreasing one tends to increase the other. Bagging works very well at decreasing

prediction error for classifiers which can be characterized as having high variance

3
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and low bias, such as classification trees (Friedman et al., 2001). By taking a con-

sensus amongst the trees the variance of their individual predictions is reduced, thus

improving prediction error (Breiman, 1996b).

Random forests also possess other inferential advantages including speedy per-

formance, being able to handle thousands of input variables, variable importance

scores, internal unbiased estimates of generalization error, proximity measures be-

tween observations, etc. In addition to this, random forests have only one parameter

which needs tuning since the trees are not pruned. Thus, they are simple to employ

automatically (Breiman and Cutler, 2004). Random forests are considered to be one

of the most accurate general-purpose methods available (Biau, 2012).

1.4 Thesis Outline

1.4.1 Chapter 2

Chapter 2 begins with a definition of classification, setting the tone for the rest of

the thesis. Next, background information pertaining to classification trees, bagging,

bootstrapping, random forests, and inference using random forests is provided.

1.4.2 Chapter 3

Chapter 3 covers material pertaining to Gaussian mixture models, the family of

Gaussian parsimonious clustering models, parameter estimation using the expecta-

tion maximization algorithm, model-based clustering, mixture discriminant analysis,

4
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model selection, and performance assessment. The mixForest technique is intro-

duced, as well as inference using mixForests. The mixForest is illustrated in the

analysis of three datasets: the Pima Indians diabetes data, the wireless indoor lo-

calization data, and the Italian wine data. This chapter concludes with a discussion

and summary of the results therein.

1.4.3 Chapter 4

Chapter 4 covers the material necessary to create a mixForest for high dimensional

data: the factor analysis model, mixtures of factor analyzers, the family of parsi-

monious Gaussian mixture models, and parameter estimation using the alternating

expectation-conditional maximization algorithm. The new mixForest is introduced

and utilized in the analysis of the following datasets: the forest types mapping data,

the ionosphere data, and the pen-based handwritten digit recognition data. The

chapter concludes with a brief discussion of the results therein.

1.4.4 Chapter 5

Advantages, disadvantages, overall performance and other issues implementing the

mixForest technique are discussed. Also, future work regarding further development

of mixForests will be suggested.

5
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1.5 Impact

The goal of this thesis is to make MDA better. To do this an ensemble of finite

mixture models will be constructed based on the random forests method. This will

produce a classifier called a MixForest which will yield increases in accuracy, variable

importance scores, estimates of generalization error, and the ability to deal with

missing data. Additionally, one version of the MixForest will also have the benefit of

dimensionality reduction, due to the use of mixtures of factor analyzers.

6



Chapter 2

Background

2.1 Classification

Because the focus of this paper is improving MDA, we restrict our attention to the

process of classification, where the aim is predicting a class label for a previously

unlabelled observation. In other words, the job of a classification method is to take a

previously unlabelled observation xi, which consists of p features or measurements,

and apply one of G previously observed labels to it. The data is denoted T =

{(yi,xi)|i = 1, . . . , N}, where yi is a class label and xi is a p-dimensional feature

vector. For each observation, yi may or may not be known. When none of the yi

are known, then an unsupervised classification (or clustering) technique is needed.

If n < N labels are known then either supervised or semi-supervised classification

can be used. In semi-supervised classification, the N − n unlabelled observations

are labelled based on a model developed using all N observations. However, in

7
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supervised classification, the N − n unlabelled observations are labelled based on

a model developed using only the n labelled observations. See McNicholas (2016)

for a detailed discussion of clustering, semi-supervised classification and supervised

classification using mixture models.

2.2 Classification Trees

According to Hssina et al. (2014), there are two notable lineages leading to modern de-

cision trees. From a machine learning perspective, the most popular line of tree-type

classifiers began with the work of Quinlan (1986) which introduced the ID3 (Itera-

tive Dichotomiser 3) algorithm. The ID3 algorithm would lead to the C4.5 algorithm

(Quinlan, 1993) and the C5.0 algorithm (Quinlan, 1997). Quinlan relates his work to

that of Hunt (1962). Alternatively, statisticians widely regard tree-type classifiers to

have originated with the work of Morgan and Sonquist (1963), which introduced the

automatic interaction detector (AID) algorithm. This evolved into the works of Mor-

gan and Messenger (1973) which introduced the theta AID (THAID) and the work

of Kass (1980) which introduced the chi-squared AID (CHAID). Eventually these

algorithms gave rise to classification and regression trees (CART; Breiman et al.,

1984).

For the purposes of this paper, the scope will be limited to classification trees

using the CART methodology. The observations T = {(yi,xi)|i = 1, . . . , N} consist

of p-dimensional feature vectors, with the target/class variable yi taking values in

{1, . . . , G}.

8
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The premise behind a classification tree is to perform recursive binary splitting

of the feature space according to a measure of goodness until a stopping criterion is

met (Breiman et al., 1984). As a result, the feature space is split into rectangular

regions/partitions and a simple prediction model (e.g., constant) is used in each

region (Friedman et al., 2001). For the purposes of this section the R implementation

of the CART algorithm in package rpart (Therneau et al., 2018) was used to create

the trees and the R package rpart.plot (Milborrow and Milborrow, 2018) for the

illustrations.

Figure 2.1: An unpruned classification tree grown from the Pima Indians diabetes
data.

The root node at the very top of the tree diagram (Figure 2.1), representing the

entire sample, is repeatedly split into two sub-nodes. This is done by considering

9
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functions of the proportion of class g in node m:

p̂mg =
1

Nm

∑
xi∈Rm

I (yi = g) ,

where Nm = # {xi ∈ Rm} and Rm is the region represented by node m. Typically,

when dealing with a multi-class problem the Gini index is utilized (Breiman et al.,

1984).

The Gini index is a natural choice as a measure of statistical dispersion and can

be used to determine node purity. Node purity is the greatest when the node contains

only one class, and least when all classes are equally mixed (Breiman et al., 1984).

The Gini index is given by

∑
g 6=g′

p̂mgp̂mg′ =
G∑

g=1

p̂mg (1− p̂mg) .

According to Breiman et al. (1984), for each split, all possible features and all pos-

sible splits are considered, and the one resulting in the greatest node purity according

to the Gini index is chosen. This splitting is done until no further improvements in

node purity can be made and the tree will terminate in a set of terminal nodes or

leaves. At this point, all observations in node m are classified according to the rule

g (m) = argmax
g

p̂mg,

which represents the majority class in that region (Friedman et al., 2001).

Growing a tree this way often results in a tree with a higher true misclassification

10
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rate (Breiman et al., 1984). Thus, trees are usually pruned by removing sub-nodes of

the tree which offer lower classification power. This pruning will result in a reduction

in complexity and overfitting, resulting in greater predictive power (Breiman et al.,

1984). Figure 2.2 illustrates pruning. In addition to the other benefits, there is a

clear improvement in the interpretability of the tree.

Figure 2.2: A pruned classification tree, grown from the Pima Indians diabetes data.

Classification trees offer many advantages: variable importance can be inferred

based on splits, interactions between variables are evident, natural visualization,

and easy interpretation to give clear decision rules (Breiman et al., 1984). However,

there are drawbacks to using trees. A small change in the training data will lead

to a different set of splits, making tree structures unstable (Breiman et al., 1984).

This high variance behaviour can be tempered by using the techniques described in

Section 2.3 (Friedman et al., 2001).

11
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2.3 Random Forests

2.3.1 Overview

A random forest is a form of supervised learning that generates an ensemble of tree

type classifiers using a modification of the bagging method. Also, by adding some

randomness, the tree classifiers are grown to be independent of one another yielding

better results. The main idea behind random forests and bagging is that the trees

can be grown to be independent of one another while maintaining their strength as

classifiers, thus producing an aggregated classifier which will yield a performance

increase (Breiman, 2001).

2.3.2 Bagging

Bagging is a method for creating an ensemble of learners using the same base learning

algorithm, by training each learner on a bootstrap replicate of the original data, and

aggregating the ensemble (Breiman, 1996a). There are two steps in bagging: (a)

bootstrapping and (b) aggregation. Each time a bootstrap replicate is created, a

number of observations are left out of the sample and these are called out-of-bag

(OOB) observations (Breiman, 2001). Bagging generally gives us increased accuracy

over decision trees as well as the natural ability to obtain an ongoing estimate of the

classification error via the OOB error.

Random feature selection at each split can further increase the accuracy of the

ensemble, by allowing us to strategically inject randomness (Breiman, 2001). The

result, which is the aggregation of more diverse trees, is known as random forests.

12
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Further benefits of random forests include robustness to outliers and noise, speed,

internal estimates of error, strength, correlation, variable importance, and simplicity

(Breiman, 2001). In the following sections, the construction of random forests is bro-

ken into (a) bootstrapping, (b) training the learners with random feature selection,

and (c) aggregation.

2.3.3 Bootstrapping

The original set of observed data is denoted T = {(yi,xi)|i = 1, . . . , N}, with xi =

(xi,1, . . . , xi,p)
′. K bootstrap replicates denoted TB,1, . . . ,TB,K are each generated

by making d = N uniformly random draws with replacement on T. The ensemble

is constructed so that there is a one-to-one correspondence between the bootstrap

replicates (TB,k) and the learners. Each time a bootstrap replicate is generated,

roughly 37% of the original data points are left out (Breiman, 1996b). To understand

this, consider the probability that a data point is left out of a bootstrap replicate,

assuming that there are N observations with d = N random draws with replacement:

P (leave out an observation) =
(
N − 1

N

)d

.

Looking at Figure 2.3, we see that this number approaches 37%. The intuition from

Figure 2.3 makes sense because

lim
N→∞

(
N − 1

N

)N

=
1

e
≈ 37%

The fact that we expect around 37% of observations to be omitted from each

13
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Figure 2.3: Plot of P = [(N − 1)/N ]N against N .

bootstrap sample is, perhaps counter-intuitively, an advantage in a number of ways.

Besides the usual advantages of the bootstrap, these OOB data points provide a

built-in “pseudo test set” because we have the known labels under our MDA scheme.

Also, these OOB data points will be the basis of one of our primary inferential

quantities.

2.3.4 Random Feature Selection

As described in Section 2.2, when growing a tree all possible splits of all predictors

are considered during each split. Additionally, trees are often pruned to increase

14
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their predictive power. In bagging, each decision tree is grown from a corresponding

bootstrap replicate TB,k in stages (Breiman et al., 1984). The results are then

aggregated to give the bagging classifier (Section 2.3.5). The random forests method

proceeds analogously to bagging except that only a random subset of the variables is

considered at each (binary) split of each decision tree Breiman (2001). This strategic

injection of randomness will lead to greater diversity amongst the trees, which in turn

has been shown to decrease the misclassification rate of the random forest (Breiman,

2001).

2.3.5 Aggregation

After all decision trees are grown, the K learners must be combined to produce an

aggregated classifier, FA(x), where the subscript “A” denotes aggregation. Random

forests, as described by Breiman (1996a), use a majority vote when the target at-

tribute is a class label. A majority vote for the classification of a new observation x

is taken by calculating

Ng(x) =
∣∣∣ {Fk(x) = g|k = 1, . . . , K}

∣∣∣,
FA(x) = argmax

g
Ng(x),

for g = 1, . . . , G, where G is the number of class labels and Fk(x) is the kth tree

classifier Breiman (1996a).
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2.3.6 Out-of-Bag Estimates

After construction, there are two primary inferential objects that we concern our-

selves with: (a) OOB data and (b) proximities. By using the OOB data we can es-

timate important quantities such as the generalization error (Breiman, 1996b). This

generalization error estimate using the OOB data points is called the OOB error

estimate. Breiman and Cutler (2004) describes that this estimate can be calculated

while the ensemble is being trained, and requires only two steps:

1. For each observation xi ∈ T = {(yi,xi)|i = 1, . . . , n} that is OOB at least once,

take a majority vote amongst the classifiers for which it is OOB.

2. Using the majority vote above and the true labels, calculate the misclassifica-

tion rate of the OOB points, and this is the OOB error estimate.

This OOB error estimate has proven to be unbiased (Breiman, 2001) and nearly

optimal (Breiman, 1996b) for the generalization error. Also, the use of the OOB

error estimate is as accurate as using a test set equal in size to the training set

(Breiman, 2001). Furthermore, the OOB data can be used to calculate other im-

portant quantities such as the number of random features sampled to create Tk and

variable importance scores (Breiman, 2001).

2.3.7 Variable Importance

The concept of variable importance is described very well by Archer and Kimes

(2008). Variable importance indicates the magnitude of the role of a particular vari-

able in emulating the underlying mechanics behind the ensemble method. Variable
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importance scores for a fixed number of predictors indicate, by relative size, which

variables are important for classification. In other words, our goal in calculating

variable importance scores is to gain insight into which covariates best contribute to

the classification.

In random forests, Breiman (2001) outlines a procedure by which variable im-

portance can be estimated using OOB data. This method has been slightly adapted

herein to allow for the case when the predictors are FMMs. Consider the ith feature

vector xi = (xi,1, . . . , xi,p). In order to calculate the raw importance score for the jth

variable xi,j = xj, perform the following steps:

1. Identify all predictors Fk(x) which utilize xj in their construction, along with

the corresponding training data, Tk.

2. Define Toob,k = T \Tk.

3. Predict the classes for Toob,k using Fk. Record the number of correct classifi-

cations.

4. Permute the values of xj in each Toob,k, to get Tperm,k. Repeat 3 using Tperm,k.

5. Subtract the number of correct classifications found using Tperm,k, from those

using Toob,k.

6. Average the differences from 5 over all predictors using xj in their construction.

The average found in 6. is the estimated raw importance score for xj. The intuition

is that if the variable is important, then permuting the values will cause a large

change in the predicted classifications. If the values of the raw importance scores
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from predictor to predictor are independent, then we can treat the scores as being

normally distributed according to the central limit theorem. The standard error can

be calculated in the usual way, and each score can be divided by the standard error

to give z-scores (Breiman and Cutler, 2004).

Variable importance can be used for tasks such as variable selection and this can

help reduce the dimension of a high-dimensional data set. Dimensional reduction can

be done to elucidate the underlying predictive structure or to decrease computation

time without compromising the predictive power of the algorithm. Therefore, OOB

data allow us to estimate generalization error and to estimate variable importance

scores. However, this is just one of two important data objects generated by the

random forests ensemble method. The other data object is proximities.

2.3.8 Proximities

From Breiman and Cutler (2004), for a dataset with N observations, the proximities

of the observations are described by an N × N matrix P. The entry in the ith

row and the jth column, Pi,j is the proximity between the ith and jth observation.

After each model is trained, the entire dataset is classified and whenever cases xi

and xj are placed in the same terminal node, the proximity measure between these

two observations is increased by 1. At the end of this process, all proximities are

normalized using the ensemble size. These proximity measures are useful for missing

data and for outlier location.
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Chapter 3

Mixture Discriminant Analysis Using

Gaussian Mixture Models

3.1 Gaussian Mixture Models

MDA is a supervised classification technique where each class is represented by a

finite mixture model. Recall that the finite mixture model density is

f(x|ϑ) =
G∑

g=1

πgfg(x|θg),

where πg > 0 represents the gth mixing proportion,
∑G

g=1 πg = 1, ϑ = (π1, . . . , πG,θ1, . . . ,θG)

is the vector of parameters, fg(x|θg) is the gth component density, and f(x|ϑ) is then

called the G component finite mixture density.

In traditional implementations of MDA (see, e.g., Fraley and Raftery, 2002), we
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will constrain fg(x|θg) to a multivariate Gaussian density:

fg(x|θg) =
1√

(2π)p |Σg|
exp

{
−1

2
(x− µg)

>Σ-1
g (x− µg)

}
,

where θg = (µg,Σg), µg is the mean vector, and Σg is the covariance matrix. One

problem with using the Gaussian mixture model in real applications is that there are

Gp(p+1)/2 parameters in the component covariance matrices. Banfield and Raftery

(1993) and Celeux and Govaert (1995) consider an eigen-decomposition of Σg:

Σg = λgDgAgD
>
g , (3.1.1)

where λg = |Σg|
1
p , Ag is a diagonal matrix of the normalized eigenvalues of Σg in

decreasing order, and Dg is a matrix of associated eigenvectors matching the order in

Ag. The elements in the decomposition in (3.1.1) have a very useful interpretation.

Specifically, the volume of the clusters is determined by λg, the orientation of the

clusters is determined by Dg, and the shape of the clusters is determined by Ag.

Further to this, as detailed in Celeux and Govaert (1995), by constraining λg, Dg and

Ag the GPCM family is realized (Table 3.1). This family of models has advantages

like tractability during parameter estimation, parsimony and interpretability.

As can be seen from the table, there are certain implicit assumptions when choos-

ing the model (synonymous with “covariance structure”). McNicholas (2016) further

describes the models in the family. The three types of models are spherical, diagonal

and general. The general models in the GPCM family are flexible in their orienta-

tion, but the spherical and diagonal model types are not. Spherical and diagonal
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Table 3.1: Characteristics of the members of the GPCM Family.

Σg Type Model Volume Shape Orientation
λI Spherical EII Equal Spherical
λgI Spherical VII Variable Spherical
λA Diagonal EEI Equal Equal Axis-Aligned
λgA Diagonal VEI Variable Equal Axis-Aligned
λAg Diagonal EVI Equal Variable Axis-aligned
λgAg Diagonal VVI Variable Variable Axis-aligned
λDAD> General EEE Equal Equal Equal
λgDAD> General VEE Variable Equal Equal
λDAgD

> General EVE Equal Variable Equal
λDgAD>g General EEV Equal Equal Variable
λgDAgD

> General VVE Variable Variable Equal
λgDgAD>g General VEV Variable Equal Variable
λDgAgD

>
g General EVV Equal Variable Variable

λgDgAgD
>
g General VVV Variable Variable Variable

models implicitly assume that the variables are independent, resulting in their lack

of flexibility in their orientation. On the other hand, the advantage of spherical and

diagonal models is their parsimony.

3.2 MDA Framework

In MDA, a Gaussian mixture model is fit for each known class. Therefore, in effect,

a model-based clustering analysis is carried out for each known class. Each classifier,

Fk(x), is fitted/trained using maximum likelihood estimation via an expectation-

maximization (EM) algorithm (Dempster et al., 1977). Though our primary interest

is in MDA, we are effectively employing model-based clustering and so parameter

estimation for both is discussed.
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A prerequisite for understanding MDA is the definition of the component mem-

berships. While it is our goal to use the mixture model to estimate the component

memberships, it factors into parameter estimation — this is well covered in McNi-

cholas (2016), which is the basis for the remainder of this section. In a G component

mixture model, we define the component membership vector of the ith observation

to be zi = (zi,1, . . . , zi,G), where zi,g = 1 if xi is in the gth component, and zi,g = 0

otherwise. According to McLachlan and Peel (2000a), for independent feature data,

Z1, . . . ,ZN are distributed as i.i.d. multinomial random variables with parameters 1

and π. We have the following support: zi1, . . . , ziG ∈ {0, 1} and
∑G

i=1 zig = 1. The

probability function is

P (Zi = zi) =
G∏

j=1

π
zij
j

zij!

and the a posteriori probability given xi is

P (Zig = 1 | xi) =
πgfg(xi|µg,Σg)∑G
j=1 πjfj(xi|µj,Σj)

,

which is also equal to the posterior expected value, i.e., E(Zig | xi) = P (Zig = 1 | xi).

As such, a natural estimator for the zig, once the parameters have been estimated, is

ẑig =
π̂gfg(xi|µ̂g, Σ̂g)∑G
j=1 π̂jfj(xi|µ̂j, Σ̂j)

. (3.2.1)

After the zig are estimated, it can be seen that ẑig ∈ [0, 1] since they are probabilities

of belonging to a component. These are known as soft classifications, and can be
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hardened into maximum a posteriori classifications (i.e., MAP{ẑig}), such that

MAP{ẑig} =


1, if g = argmaxh{ẑih},

0, otherwise.

For the model-based clustering case, where we have not observed any class labels,

the observed data is comprised of the following set of feature vectors: T = {xi|i =

1, . . . , N}. The likelihood equation is

L (ϑ) =
N∏
i=1

G∑
g=1

πgfg(xi|µg,Σg),

where ϑ = (π,µ1, . . . ,µG,Σ1, . . . ,ΣG) is the vector of parameters. Because we

do not know the component memberships of the observations, we are dealing with

an incomplete data problem. If the component memberships are known, then the

complete-data can be written as D = {(zi,xi)|i = 1, . . . , N} = (Z,X), where

Z = (Z1, . . . ,ZG). This allows us to write the complete-data likelihood equation

for model-based clustering, as follows:

Lc(ϑ) =
N∏
i=1

G∏
g=1

[
πgfg(xi|µg,Σg)

]zig .
Now, for MDA, we account for the fact that within each observed class there may

be sub-classes by performing model-based clustering within each class g. There will

be Gg ≥ 1 components in each class, making the number of model components

H = G1 + · · · + GG. Then the likelihood equation for MDA, using only the n
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observations for which we have an observed label, is

L (ϑ) =
n∏

i=1

H∏
h=1

[πhfh(xi|µh,Σh)]
zih . (3.2.2)

There are potential difficulties in maximizing these equations with respect to ϑ. As

described by Titterington et al. (1985), for simple parametric models the estimates

are often easy to compute, but for mixture models the asymptotic theory and com-

putational issues are more difficult. Titterington further describes that even in the

most commonly applied mixture of two univariate Gaussian densities the resulting

likelihood surface is pitted with singularities. Thus, in Section 3.3, we turn to a

popular iterative algorithm in order to compute the maximum likelihood estimates.

3.3 EM Algorithm

The EM algorithm is a general iterative method of finding the maximum likelihood

estimates (MLEs) of the parameters in the underlying distribution of observed ran-

dom variables. Specifically, it is used to handle cases when there is unobserved or

missing data, making it useful in handling the zig. For the purposes of this paper, the

model fitting was performed using the mclust package in R (Scrucca et al., 2016).

The Initialization step of the EM is a critical step. While the EM algorithm is easy

to implement, numerically stable and has desirable convergence properties, there are

some issues. The likelihood surface from the mixture model can have singularities

and many local maxima. This means the parameter estimation depends heavily on

the starting point of the algorithm.
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In the mclust package, the EM algorithm is initialized using the partitions re-

sulting from model-based hierarchical agglomerative clustering. In this clustering

method, no a priori information is assumed, and clusters are chosen by merging ob-

servations together based on the minimum decrease in the classification likelihood

function. A detailed explanation is given in Fraley and Raftery (2002). The nice part

of this initialization technique is that the same underlying model is used in both this

step and the model fitting step. While this initialization technique has some good

properties, it doesn’t always result in the global maximum being chosen. There are

a number of ways to initialize the EM Algorithm, similar to deterministic annealing

which is discussed in McNicholas (2016) and Zhou and Lange (2010).

As discussed by McLachlan and Peel (2000a) and McNicholas (2016), the EM

algorithm is usually stopped when from one iteration to the next, the parameter

estimates or the log-likelihood exhibit very little change. When the log-likelihood

is considered, the EM algorithm is stopped when the log-likelihood at the kth step

l(k) = logL(v(k)) is only a little smaller than the log-likelihood at the k + 1th step

l(k+1) by a predetermined threshold, i.e.,

l(k+1) − l(k) < ε

for ε small. But, this only captures the lack of progress made by the algorithm.

When convergence is not smooth this might lead to prematurely stopping the EM

algorithm, so we can also consider criteria based on Aitken’s acceleration:

a(k) =
l(k+1) − l(k)

l(k) − l(k−1)
,
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which is the acceleration at the kth step. If it is assumed that the log-likelihood will

eventually converge (which is reasonable), then the asymptotic log-likelihood at the

k + 1th step is

l(k+1)
∞ = l(k) +

l(k+1) − l(k)

1− a(k)

and one version of a stopping criterion is

l(k+1)
∞ − l(k) < ε

for ε small, if this difference is positive (McNicholas et al., 2010). For alternative

stopping rules see McNicholas (2016).

3.3.1 EM Algorithm for MDA

Beginning with initial parameter estimates, ϑ(0), we iterate between two steps:

1. Expectation (E-) step: Compute

Q(ϑ|ϑ̂(i−1)
) = E

[
logLc(ϑ|x, z)

∣∣∣x, ϑ̂(i−1)]
, (3.3.1)

where x is the matrix of observed feature vectors and z is the matrix of asso-

ciated component memberships.

2. Maximization (M-) step: Choose ϑ̂
(i)

to be a value of ϑ belonging to the

parameter space and maximizing Q(ϑ|ϑ̂(i−1)
).
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This assumes that we begin the EM algorithm with an initial estimate of the param-

eter values, denoted ϑ(0). Thus, we need to consider where to start the algorithm

and when to stop it.

The specific EM algorithm defined for both model-based clustering case and MDA

are clearly detailed in McNicholas (2016). For the model-based clustering case, the

E-step is defined by calculating Q(ϑ|ϑ̂(i−1)
):

Q(ϑ|ϑ̂(i−1)
) = E

[
logLc(ϑ|X,Z)

∣∣∣X, ϑ̂(i−1)]
,

=
N∑
i=1

G∑
g=1

E(zig|X, ϑ̂
(i−1)

) log πg

+
N∑
i=1

G∑
g=1

E(zig|X, ϑ̂
(i−1)

) log fg(xi|µg,Σg),

=
N∑
i=1

G∑
g=1

ẑig log πg +
N∑
i=1

G∑
g=1

ẑig log fg(xi|µg,Σg),

=
G∑

g=1

ng log πg −
Np

2
log(2π)−

G∑
g=1

ng

2
log |Σg| −

G∑
g=1

ng

2
tr
{
SgΣ

−1
g

}
,

(3.3.2)

where ng =
∑N

i=1 ẑig and

Sg =
1

ng

N∑
i=1

ẑig
(
xi − µg

) (
xi − µg

)>
.

In (3.3.2), the complete-data log-likelihood is linear in the zig, so computing

Q(ϑ|ϑ̂(i−1)
) is the same as replacing the zig’s with their expected values (McLach-

lan and Peel, 2000a). As discussed above, given the parameter estimates from the

previous EM iteration, we can use (3.2.1) to do this.
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Then, in the M-step, we maximize Q(ϑ|ϑ̂(i−1)
), i.e., (3.3.1), with respect to the

parameters πg, µg, and Σg. This yields the following parameter estimates:

π̂g =
ng

N
,

µ̂g =
1

ng

N∑
i=1

ẑigxi,

Σg =
1

ng

N∑
i=1

ẑig(xi − µ̂g)(xi − µ̂g)
>.

The EM algorithm for Gaussian mixture models consists of a set of initial es-

timates
{
π̂
(0)
g , µ̂(0)

g , Σ̂
(0)

g

∣∣∣g = 1, . . . , G
}

and then performing the E-step and M-step,

updating the parameter estimates until the convergence criterion is met.

In MDA, we use only the labelled observations to perform our inference. There are

N total observations: n labelled, and N−n unlabelled. Without loss of generality we

can write our observations as follows: x1, . . . ,xn,xn+1, . . . ,xN , placing the labelled

observations first.

The one-to-one correspondence between model components and observed classes

can be relaxed, and likelihood (3.2.2) can be used. When deciding the number

of components, it is necessary to use model selection criteria (more on this later).

Otherwise, the E-step and the M-step are very similar to those used for MBC.
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The E-step requires the calculation of Q(ϑ|ϑ̂(i−1)
):

Q(ϑ|ϑ̂(i−1)
) =

H∑
h=1

nh log πh −
np

2
log(2π)−

H∑
h=1

nh

2
log |Σh|

−
H∑

h=1

nh

2
tr
{
ShΣ

−1
h

}
.

For the M-step we maximize with respect to the parameters, yielding:

π̂h =
nh

N
,

µ̂h =
1

nh

n∑
i=1

zihxi,

Σ̂h =
1

nh

n∑
i=1

zih (xi − µ̂h) (xi − µ̂h)
> .

Component memberships for the remaining N − n unlabelled observations are esti-

mated as follows:

ẑig =
π̂gfg(xi|µ̂g, Σ̂g)∑H
h=1 π̂hfh(xi|π̂h, Σ̂h)

,

for i = n+ 1, . . . , N and g = 1, . . . , H.

Therefore, in order to perform the MDA the following steps/tasks are performed:

1. Cluster the Observations in Each Observed Class

For each g ∈ {1, . . . , G}, a model-based clustering is done whereby a Gg compo-

nent mixture is selected for each class according to the BIC, and the associated

labels are observed.

2. Fit the Mixture Model
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Fit a model withH =
∑G

g=1Gi components to the observations x1, . . . ,xn using

the group labels recorded in the previous step, and calculate the parameter

estimates: π̂, µ̂1, . . . , µ̂H , and Σ1, . . . ,ΣH .

3. Estimate Component Memberships of Unlabelled Observations

For j = k + 1, . . . , N , calculate ẑjg for each component in the mixture model

from the previous step, and assign xj to the class for which it’s ẑjg is maximum.

3.4 Bayesian Information Criterion (BIC)

A central question in the FMM context, is the selection of the number of components.

There are a number of formal hypothesis testing approaches, but information criteria

are in widespread use, especially the Bayesian information criterion (BIC; Schwarz,

1978). The BIC is given by

BICM,G = 2`M,G(ϑ̂|x)− ρ log n, (3.4.1)

where M is the model, G is the number of components, ρ is the number of free

parameters, and N is the number of observations. The pair {M, G} that maximizes

(3.4.1) is chosen.

Essentially, information criteria are penalized forms of the log-likelihood. The

log-likelihood increases as G (the number of components) increases, so the BIC is

penalized for the number of parameters needed for the particular FMM. Otherwise,

the most complex model would always be selected. The relationship of the BIC with
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Bayes factors is particularly important in mixture model selection (see McNicholas,

2016).

Justification for the BIC comes from the framework of Bayesian model selection,

specifically the use of the quantity known as the Bayes factor. Details for the use of

the Bayes factor can be found in Raftery (1995). Supposing that the observed data

(X) is likely, two competing models M1 and M2, with parameters θ1 and θ2, can

be compared using Bayes’ theorem to calculate the posterior probability thatM1 is

the correct model:

Pr (M1 | X) =
Pr (X | M1)Pr (M1)

Pr (X | M1)Pr (M1) + Pr (X | M2)Pr (M2)
,

provided that one of them is indeed the correct model. The marginal probability of

X given model k (Mk), for k = 1, 2 is given by

Pr (X | Mk) =

∫
θ∈Ω

Pr (X | θk,Mk)Pr (θk | Mk) dθk. (3.4.2)

The posterior odds can also be used to determine which of modelM1 orM2 is

more suitable according to the observed data X. The posterior odds is given by

Pr (M2 | X)

Pr (M1 | X)
=

[
Pr (X | M2)

Pr (X | M1)

]
×
[
Pr (M2)

Pr (M1)

]
.

That is,

posterior odds = Bayes factor× prior odds.

In the case where M1 and M2 are equally likely, the prior odds are equal to 1.
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This means that the Bayes factor, denoted B21, is the main inferential quantity

in determining whether or not the data supports M2 over M1 or vice versa. In

Appendix B of Jeffreys (1961), there are guidelines which outline how much evidence

is constituted by B21 based on its value.

The main issue with using Bayes factors as an inferential quantity is the calcu-

lation of the marginal likelihood given by (3.4.2). In high dimensions the marginal

likelihood may not be easily solved, having no closed form solution. Thus, an ap-

proximation to the Bayes factor is required.

Raftery (1995) shows that under certain conditions the BIC is the approximation

to 2 logB21, where B21 is the Bayes factor. Meaning, the BIC gives evidence to

support the use of one model over another according to the Bayesian model selection

framework.

3.4.1 Performance Assessment

There is sometimes a need to compare two partitions of the same data points. This

can be a way of comparing the clustering results from one model with those of

another model. It can also be a way of comparing the clustering that results from

fitting a model with a priori class labels, i.e., comparing clustering labels with class

labels. The Rand index (RI; Rand, 1971) and the adjusted Rand index (ARI; Hubert

and Arabie, 1985) are measures of how well two partitions agree with one another.

According to Fern (2012), we define two partitions P1 and P2, and the following

variables:

• Let A represent the number of vector pairs that are in the same class in both
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P1 and P2.

• Let B represent the number of vector pairs that are in the same class in P1,

but in different classes in P2.

• Let C represent the number of vector pairs that are in different classes in P1,

but are in the same class in P2.

• Let D represent the number of vector pairs that are in different classes in P1

and P2.

McNicholas (2016) gives formulae, using the notation in Steinley (2004), as follows:

RI =
A+D

N
,

ARI =
N(A+D)− [(A+B)(A+ C) + (C +D)(B +D)]

N2 − [(A+B)(A+ C) + (C +D)(B +D)]
,

where N = A+B+C+D. The adjustment in the ARI takes into account any chance

agreements. McNicholas (2016) further explains that under random class assignment

the ARI has an expected value of 0, a maximum value of 1 indicating perfect class

agreement, and can be negative indicating worse than random classification.

Another way to assess model performance, as in to test classification accuracy,

is to perform K-fold cross validation. This involves randomly partitioning the data

into K equally sized subsets {D1, . . . , DK}. The model is fit K times, leaving out

one Dk, for k = 1, . . . , K, each time. This left out set is called the validation set and

the remaining sets used to fit the model are considered together as the training set.
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As the name suggests, the models are validated using their Dk and the classification

accuracy is gauged.

3.5 MixForests

3.5.1 Random Feature Selection

There is no mixture modelling analogue of a “split” in a decision tree; accordingly, our

random forests analogue (MixForests) employs random feature selection exactly once

in training each learner. In this scheme, each model in the analogue ensemble will be

fitted to a random subset of the data in its corresponding bootstrap replicate TB,k.

Before each model is trained, r features are randomly chosen, and Tk is created, i.e.,

TB,k 7→ Tk.

As an example, take a feature vector xi = (xi,1, . . . , xi,6)
′ consisting of six features

and r = 3. One possible outcome of the random feature selection might be xnew
i =

(xi3, xi1, xi5). So, only the first, third and fifth features would be used to train Fk(·).

Every time a new learner is trained, a random selection of features is taken from its

corresponding TB,k. Then, we understand Fk(x,Tk) to mean Fk(x) and our ensemble

is {Fk(x,Tk)|k = 1, . . . , K} = {Fk(x)|k = 1, . . . , K}.

3.5.2 Aggregation: 2 Types

For MixForests, there are two options for aggregation. The first option is to do

a majority vote as described in Section 2.3.5. The second option is to aggregate

our analogue ensemble using a direct averaging of the zig that are estimated during
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model fitting. However, there is a small complication with the second approach. As

described in Section 3.2, when fitting a Gaussian mixture model many components

can be fitted to one class. This produces an ensemble where the learners have a

varying number of components. So, the number of components must be decided and

the models in the ensemble must either be discarded or undergo a posteriori merging.

To select the number of components, we first categorize the models according to

the number of components. We can either use the smallest number of components,

or we can use the number of components in the largest subset of models. Either way,

the reference model will be taken as the model with the largest BIC in the category

of interest. When the number of components is decided, call it gA, we proceed as

follows:

(a) discard the models with fewer than gA components;

(b) keep the models with exactly gA components; and

(c) perform a posteriori merging of components for models which have more than

gA components.

In the last case, a posteriori merging of components is given by an algorithm laid

out in Wei and McNicholas (2015). As in their description, the process is best laid

out as an example.

Example

Suppose it is our goal to perform a posteriori merging on a model with 5 components,

so that it will have only 3 components. Set gA = 3 and gnew = 5. Then we perform
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the following steps.

1. Create a Combination Matrix A

The matrix A will have dimensions
(
gnew
gA

)
× gA. Meaning, A will have di-

mensions 10 × 3. The rows will represent all possible subsets of size 3, of the

components in the model, and will give an indication of a mapping to a 3

component model. The matrix A will be as follows.

A =



1 2 3

1 2 4

1 2 5

1 3 4

1 3 5

1 4 5

2 3 4

2 3 5

2 4 5

3 4 5



.

The seventh row, a7 = (2, 3, 4), indicates the mappings: 2 7→ 1, 3 7→ 2, and

4 7→ 3.

2. Create Matrix Ac and Permutation Matrix B

The matrix Ac will represent the components that were not selected in A and

will have dimensions
(
gnew
gA

)
× (gnew− gA) = 10× 2. The permutation matrix B
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will have dimensions ggnew−gA
A × (gnew − gA) = 9× 2.

Ac =



4 5

3 5

3 4

2 5

2 4

2 3

1 5

1 4

1 3

1 2



, B =



1 1

2 1

3 1

1 2

2 2

3 2

1 3

2 3

3 3



.

The elements in Ac are mapped according to each row of B. For example, take

the first row of Ac. According to row 1 of B, the mapping is 4 7→ 1 and 5 7→ 1.

According to row 2 of B, the mapping is 4 7→ 2 and 5 7→ 1. Etc.

3. Create matrix C

A new partition will result from a combination of rows from A and B. So, this

method generates
(
gnew
gA

)
× ggnew−gA

A = 90 new partitions.

The ARIs between the reference partition (coming from the reference model)

and these newly calculated partitions will be recorded in a matrix C, with

dimensions
(
gnew
gA

)
× ggnew−gA

A . The merging of components will take place ac-

cording to the entry with the largest ARI.
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After all the models in the analogue ensemble have been discarded or have undergone

a posteriori merging, the zig can be easily averaged. This should produce results

similar to those of a majority vote, but this will have to be tested empirically.

3.5.3 Proximities

From Breiman and Cutler (2004), for a dataset with N observations, the proximities

of the observations are described by an N ×N matrix P . The entry in the ith row

and the jth column, Pi,j, is the proximity between the ith and jth observation. After

each model is trained, the entire dataset is classified and whenever cases xi and xj are

classified/placed in the same component in any given model, the proximity measure

between these two observations is increased by 1. At the end of this process, all

proximities are normalized using the ensemble size. These proximity measures are

useful, inter alia, for missing data and for outlier location.

3.6 Data Analyses and Illustrations

3.6.1 Training and Test Sets

For each analysis herein, the data sets were partitioned into a training set and test set.

Each test set was constructed using stratified sampling, i.e., by randomly sampling

20% of the data points belonging to each class, rather than randomly sampling 20%

of the entire data set.
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3.6.2 Pima Indians Diabetes Data

The original data came from the National Institute of Diabetes and Digestive and

Kidney Diseases. For more information see Smith et al. (1988). The version of

data used is the corrected version found at the UCI Machine Learning Repository

(Lichman, 2013). The data consists of 768 observations made on Pima Indian women,

with 9 variables. The training set consists of 614 observations and the test set consists

of 154 observations. The variables are as follows.

1. diabetes : class variable, test for diabetes.

2. pregnant : number of times pregnant.

3. glucose: plasma glucose concentration.

4. pressure: diastolic blood pressure in mmHg.

5. triceps : triceps skin fold thickness in mm.

6. insulin: 2-Hour serum insulin in µU/ml.

7. mass : body mass index.

8. pedigree: diabetes pedigree function.

9. age: in years.

From the pairs plot (Figure 3.1) it is not evident that there are any clear decision

boundaries, so we cannot move forward with any particular intuition regarding rela-

tionships between the variables.
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Figure 3.1: A pairs plot of the Pima Indians Diabetes data.
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Now we consider the construction of the analogue ensemble, specifically which

value of r should be used to make inferences. We fitted up to K = 5000 models for

each choice of r and graphed the results (Figure 3.2). It is important to note that

convergence in the OOB error is achieved for a much smaller choice of ensemble size

K.
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Figure 3.2: OOB error convergence for Pima Indians diabetes data for different values
of ensemble size and r.

Taking a look at the final values, we can examine the best choice of r more closely

(Table 3.2). There appears to be a sweet spot for the choice of r, though we have

a wide range of reasonable choices. For the time being, we base our inference on a

choice of r = 5 because the final error and minimum error are the lowest.
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Table 3.2: Final and minimum OOB errors for different values of r.

r Final OOB error Minimum OOB error
1 0.349 0.340
2 0.275 0.269
3 0.259 0.249
4 0.257 0.249
5 0.254 0.244
6 0.256 0.252
7 0.261 0.254
8 0.287 0.264

Now, we take a look at the variable importance scores using r = 5 (Table 3.3).

Unsurprisingly, the variable glucose is the most relevant, followed by age and mass

(to a lesser degree). It is possible to fit a model with a reduced data set for greater

parsimony using these results.

Table 3.3: Variable importance for the MixForests analysis of the diabetes data.

Variable Raw score z-score p-value
pregnant 6.009 0.890 0.373
glucose 21.319 2.691 0.007
pressure 0.635 0.114 0.909
triceps 2.594 0.344 0.731
insulin 2.278 0.325 0.745
mass 6.367 0.984 0.325
pedigree 3.620 0.600 0.549
age 10.841 1.374 0.169

Applying MixForests to the test set, we have error rates between 0.227 and 0.344

(Table 3.4). We now compare the performance of mixForest and the mixture dis-

criminant analysis, in terms of classification accuracy, using the test set. The test

error for mixture discriminant analysis is 0.234. If we compare this to our choice of

r = 5, we see that mixture discriminant analysis performs slightly better. However,
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for a choice of r = 4 we have the same performance and for r = 6 we have slightly

better performance. For completeness, the confusion matrix for mixForest for r = 6

is given in Table 3.5 .

Table 3.4: Test errors for the mixForest method.

r Test error
1 0.344
2 0.299
3 0.253
4 0.234
5 0.240
6 0.227
7 0.247
8 0.247

Table 3.5: Cross-tabulation of true versus predicted classifications for r = 6, where
overlines denote predictions.

Counterfeit Genuine
Counterfeit 88 12
Genuine 23 31

3.6.3 Wireless Indoor Localization Data

The original data came from a study (Rohra et al., 2017) that attempted user lo-

calization in indoor environments using cellular phone signals. The data consists of

seven wireless signals taken from handsets, labelled: WS1, WS2, WS3, WS4, WS5,

WS6, WS7. The corresponding responses/labels indicate the location of the handset

in one of four zones. There are a total of 1999 observations split into a training set of

size 1599 and a test set of size 400. Our first look at the data is a simple pairs plot,
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to see if any correlation or patterning is visually identifiable (Figure 3.3). There is

clear patterning, especially when examining the box plots.
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Figure 3.3: A pairs plot of the wireless indoor localization data.

Next, we consider the number of randomly selected features r. There should be
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a range of values of r which will lead to superior inferences about the data. To do

this, ensembles of up to K = 5000 were fitted for r = 1, . . . , 7. We can see that for

higher values of r we achieve better results (Figure 3.4).
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Figure 3.4: OOB error plot for the wireless indoor localization data.

Taking a look more closely at the exact values in the numerical chart of the

OOB error series produced by each ensemble (Table 3.6), we see that we get similar

performance for r > 4. However, the optimal choice appears to be r = 5, which

yields the lowest minimum value for OOB error as well as the lowest final value. As

far as convergence, an ensemble size of K = 5000 seems excessive, as convergence

appears to happen rapidly. An ensemble of K = 1000 appears to be more than

sufficient. From here on, we will use r = 5 to perform any further inferences.

From here, we examine the variable importance scores resulting from the ensemble
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Table 3.6: Final and maximum OOB errors for the wireless indoor localization data.

r Final OOB error Minimum OOB error
1 0.101 0.0932
2 0.0294 0.0275
3 0.0175 0.0175
4 0.0156 0.0138
5 0.0138 0.0131
6 0.0144 0.0144
7 0.0156 0.0144

fitting (Table 3.7). From the variable importance table, we see that WS5, WS1, WS4

and WS6 are the most important variables, in decreasing order. The rest of the

variables are insignificant, at the p = 0.10 significance level.

Table 3.7: Variable importance for the MixForests analysis of the wireless localization
data.

Variable Raw score z-score p-value
WS1 227.293 4.588 4.477× 10−6

WS2 3.638 0.806 4.200× 10−1

WS3 52.586 1.222 2.216× 10−1

WS4 160.114 2.431 1.505× 10−2

WS5 164.429 8.691 3.608× 10−18

WS6 43.140 1.658 9.731× 10−2

WS7 26.174 1.419 1.560× 10−1

Finally, using our test set of size 400, we will compare mixture discriminant

analysis and the mixForest method, using test error as our gauge (Table 3.8). The

test error for mixture discriminant analysis is 0.02. If we compare this to our choice

of r = 5, we see that the mixForest method performs slightly better. For choices

r = 6 and r = 7 we also get better performance for the mixForest method, confirming

that there is a sweet spot for choice of r.
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Table 3.8: Test errors for the mixForest method.

r Test error
1 0.0900
2 0.0225
3 0.0250
4 0.0175
5 0.0150
6 0.0150
7 0.0150

For completeness, the confusion matrix for mixForest for r = 5 is given in Ta-

ble 3.9.

Table 3.9: Confusion matrix for r = 5, where predicted classes are denoted by
overlines.

Zone 1 Zone 2 Zone 3 Zone 4
Zone 1 99 0 1 0
Zone 2 0 96 4 0
Zone 3 0 0 100 0
Zone 4 1 0 0 99

3.6.4 Italian Wine Data

The data consists of 27 chemical and physical observations on 3 types of wine: (1)

Barolo, (2) Grignolino, and (3) Barbera. The original data came from Forina et al.

(1986) and consist of 178 observations. These observations were split into a training

set of size 142 and holdout set of size 36. With so many features, a scatter plot of

the variable pairs is perhaps of limited use. Therefore, we move onto an analysis

of the OOB error convergence for the number of randomly selected features used in

ensemble construction. We will focus our attention on the lowest OOB error values.
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Figure 3.5: OOB error convergence for the Italian wine data.

To make it clearer, we examine an abbreviated table of the lowest OOB errors.

There appears to be a sweet spot for choices of r close to 4 or 5. For the rest of this

analysis, we will work with r = 5.

Table 3.10: Final and minimum OOB error for the wine data for different values of
r and K = 2000.

r Final OOB error Minimum OOB error
2 0.0282 0.0141
3 0.0282 0.0211
4 0.0211 0.00704
5 0.0211 0.00704
6 0.0282 0.0141
7 0.0493 0.0352
12 0.0423 0.0211
13 0.0493 0.0493
14 0.0493 0.0352
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To further investigate, we examine the variable importance calculations, but only

for the most critical variables (Table 3.11). Beyond these variables, the p-values are

greater than 0.10. As can be seen, there are a number of seemingly very significant

variables. The most significant include proline, flavanoids, color intensity and alcohol.

Table 3.11: Variable importance for the eight most important variables for the wine
data.

Variable Raw score z-score p-value
Proline 13.663 3.191 0.00142
Flavanoids 14.199 3.0425 0.00235
Color intensity 12.170 2.739 0.00616
Alcohol 10.175 2.264 0.0236
OD280/OD315 of diluted wines 9.975 2.166 0.0303
Hue 7.594 1.972 0.0486
OD280/OD315 of flavanoids 7.877 1.793 0.0730
Total phenols 6.813 1.718 0.0858

Finally, we compare the performance of mixture discriminant analysis with the

mixForest method using our holdout set of size 36.

Table 3.12: Test errors for the mixForest method.

r Test error
1 0.0278
2 0.000
3 0.000
4 0.0278
5 0.0278
6 0.0556
7 0.0278
8 0.0278
9 0.0556
10 0.0556
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The test error for mixture discriminant analysis is 0.0278. This value is exactly

the same as our earlier choice of r = 5. However, for r = 2 and r = 3 there appears

to be perfect classification of the holdout set. Below is the confusion matrix for our

earlier choice of r = 5.

Table 3.13: Confusion matrix for r = 5, where predicted classes are overlined.

Barolo Grignolino Barbera
Barolo 12 0 0
Grignolino 0 14 0
Barbera 0 1 9

3.7 Discussion and Summary

3.7.1 Bootstrapping Remarks

There are two possible concerns: (a) the number of random draws d, and (b) the

number of bootstrap replicates K. Breiman (1996a) explains that there is no real

increase in accuracy for making up to 2N random draws on T. However, there is the

side affect of decreasing the number of OOB observations for each TB,k. Therefore,

the number of random draws is left atN . Other than making each bootstrap replicate

larger, it might be possible to increase the number of bootstrap replicates. If this is

done, perhaps K can be too large?

Breiman (2001) shows that overfitting is not a concern. As more trees are added

to the ensemble a limiting value of the generalization error is produced. In fact, the

upper bound for the generalization error can be derived using the strength of each

learner and the dependency between learners. This means that there is no concern
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of generating too many bootstrap replicates. However, enough bootstrap replicates

must be generated to increase the accuracy of our ensemble.

3.7.2 Remarks about Random Feature Selection

Breiman (1996a) shows that bagging provides many advantages, including signifi-

cant gains in accuracy, under the right conditions. The key to gains in accuracy is

the instability of the prediction method used to construct the predictor Fk(x,Tk).

Meaning, if small changes in the learning set Tk cause significant changes in the pre-

dictor Fk(x,Tk), then bagging can improve accuracy. For the most part, this seems

like a safe assumption. Breiman et al. (1996) show that many popular prediction

methods including neural nets, classification and regression trees, subset selection in

linear regression are unstable. It is our belief that prediction using Gaussian mixture

models will also gain accuracy through bagging.

When referring to accuracy, it is generalization error that is the main concern.

Generalization error refers to the error made when predicting outcomes of previously

unseen data. This is typically gauged using a cross validation approach, whereby the

data is split into training and test sets. In more complicated versions, the data is

randomly split into many subsets, and the predictive models are trained and validated

many times over. This makes cross validation computationally expensive. However,

by bagging we have a built in way of estimating generalization error, which is not

only convenient, but which works surprisingly well.

Our primary concern in random feature selection is r, the number of features to

randomly select. Larger values of r will yield stronger trees, but stronger correlation
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between trees. Because the forest error rate depends on the strength of the trees and

the correlation between them, an appropriate value of r must be chosen (Breiman,

2001).

Breiman and Cutler (2004) state that r is the only sensitive parameter in random

forests, because it affects the forest error rate. There is an optimal range for r;

however, it is wide. Using the OOB error rate (2.3.6), the value of r can be determined

empirically.

3.7.3 Remarks Specifically about MixForest

We introduced a new ensemble method called MixForest, with the aim of improv-

ing the classification accuracy of MDA. We covered the technical details of using

maximum likelihood estimation via an EM algorithm to perform parameter estima-

tion. We also covered using OOB error estimates to fine tune the performance of the

analogue ensemble.

Then we demonstrated the accuracy of the analogue ensemble through analysis

of three real datasets: the Pima Indians diabetes data, the wireless indoor localiza-

tion data, and the Italian wine data. We calculated OOB error estimates, variable

importance scores, and compared the performance of the analogue ensemble with

a Gaussian mixtures and random forests. In so doing, we showed that mixForests

perform at least as well as MDA, if not better, while adding inferential advantages.

We also showed that the OOB error estimate is a reasonable estimate of the classi-

fication accuracy; however, as one might expect, it does not match performance on

the test set. In addition, the analogue ensemble allows us to make inferences about
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the importance of the variables and to reduce the dimension of the data.

Even so, there is room for improving the ensemble, and while using Gaussian

mixtures is adequate for exploring ensemble methods, other types of mixture models

can also be employed. In addition to this, there are a number of other possible tweaks

that can be made, in order to coax greater classification accuracy from these types

of methods. Certainly, the introduction of the random forest analogue for MDA is

a take off point for further work, and greater understanding of statistical learning

methods.
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Chapter 4

MDA for High Dimensional Data

4.1 Motivation

In Chapter 3, a method called the mixForest was proposed with the aim of improving

MDA in the context of Gaussian mixture models. The improvements were significant,

but not entirely extensible to the case of high-dimensional data. In this chapter, a

mixForest is proposed based on using mixtures of factor analyzers. The method will

retain all of the benefits of a mixForest, including increases in accuracy, variable

importance scores, estimates of generalization error, and dealing with missing data.

The new mixForest will also have the added benefit of dimensionality reduction, due

to the use of mixtures of factor analyzers. This will allow the mixForest presented

in this chapter to handle high dimensional data.
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4.2 Factor Analysis Model

As detailed by McNicholas (2016), the factor analysis model is a data reduction

method. The goal is to replace p observed variables with q latent factors, such that

q < p. The more variability the q latent factors explain in the p observed variables,

the better the factor analysis model performs. Given N independent p-dimensional

random variables X1, . . . ,XN , McNicholas (2016) states the factor analysis model as

Xi = µ+ ΛUi + εi (4.2.1)

for i = 1, . . . , N , where Λ is a p × q matrix of factor loadings, the latent factor

Ui ∼ N (0, Iq), and εi ∼ N (0,Ψ), where Ψ = diag(ψ1, . . . , ψp). Further, both Ui

and εi are independently distributed and independent of each other.

Given (4.2.1) and the accompanying constraints, the marginal distribution of Xi

is N
(
µ,ΛΛ> + Ψ

)
. Further, the covariance matrix ΛΛ> + Ψ has

pq + p− 1

2
q(q − 1)

free parameters (Lawley and Maxwell, 1962). The reduction of free parameters in

the covariance structure, using the factor analysis model, will be

1

2
p(p+ 1)−

[
pq + p− 1

2
q(q − 1)

]
=

1

2

[
(p− q)2 − (p+ q)

]
.

Meaning, the following constraint must hold for the factor analysis model to result
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in dimension reduction:

(p− q)2 > (p+ q)

(Lawley and Maxwell, 1962).

4.2.1 Parameter Estimation for the Factor Analysis Model

A complete treatment of parameter estimation for the factor analysis model is found

in McNicholas (2016). Our goal is to obtain estimates for µ, Λ, and Ψ. It is

straightforward to estimate µ by using maximum likelihood estimation, but for Λ

and Ψ an EM algorithm must be used.

To begin, the log-likelihood of the factor analysis model, given observed data

x1, . . . ,xN , is

`(µ,Λ,Ψ) =
N∑
i=1

log φ
(
xi | µ,ΛΛ> + Ψ

)
,

= −Np
2

log 2π − N

2
log
∣∣ΛΛ> + Ψ

∣∣− N

2
tr
{

S
(
ΛΛ> + Ψ

)-1
}
,

(4.2.2)

where

S =
1

N

N∑
i=1

(xi − µ) (xi − µ)> .

Differentiating (4.2.2) with respect to µ and setting the resulting function equal to

zero, yields

µ̂ = x.

To get the estimates for Λ and Ψ the EM algorithm is employed beginning with the

E-step.
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E-step

As summarized in Section 3.3.1, the E-step is the calculation of the expected value

of the complete-data log-likelihood conditioned on the parameter estimates from

the previous step. To construct the complete-data log-likelihood we first take into

account the conditional distribution: Xi | ui ∼ N (µ+ Λui,Ψ), giving the following

log-likelihood:

log f (xi | ui) =−
p

2
log 2π − 1

2
log |Ψ| − 1

2
(xi − µ−Λui)

>Ψ-1 (xi − µ−Λui) ,

=− p

2
log 2π − 1

2
log |Ψ| − 1

2
tr
{

Ψ-1 (xi − µ) (xi − µ)>
}

+ (xi − µ)>Ψ-1Λui −
1

2
tr
{
Λ>Ψ-1Λuiu

>
i

}
.

Secondly, we take into account the complete-data: (1) the observed data x1, . . . ,xN

and (2) the latent factors ui, . . . ,uN . Note that the observed data is formed of

p-dimensional vectors xi = (xi1, . . . , xip)
′ and the latent factors are formed of q-

dimensional vectors ui = (ui1, . . . , uiq)
′. This yields the following complete-data

log-likelihood:

` (µ,Λ,Ψ) =
N∑
i=1

log [f (xi | ui) f (ui)]

=C − N

2
log |Ψ| − 1

2
tr

{
Ψ-1

N∑
i=1

(xi − ui) (xi − ui)
>

}

+
N∑
i=1

(xi − ui)
>Ψ-1Λui −

1

2
tr

{
Λ>Ψ-1Λ

N∑
i=1

uiu
>
i

}
,

where C is constant with respect to µ, Λ, and Ψ.
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Following the approach and using the notation of McNicholas (2016), parameter

estimation of the factor analysis model continues with the calculation of Q (Λ,Ψ),

which is the expected value of ` (µ,Λ,Ψ).

Q (Λ,Ψ) =C− N

2
log |Ψ| − 1

2
tr

{
Ψ-1

N∑
i=1

(xi − µ) (xi − µ)>
}

+
N∑
i=1

(xi − x)>Ψ-1ΛE [Ui | xi]−
1

2
tr

{
Λ>Ψ-1Λ

N∑
i=1

E
[
UiU

>
i | xi

]}
.

To continue the calculation of Q (Λ,Ψ), both E [Ui | xi] and E
[
UiU

>
i | xi

]
must

be resolved using the joint distribution of Xi and Ui:Xi

Ui

 ∼ N

µ

0

 ,
ΛΛ> + Ψ Λ

Λ> Iq


 .

Then the conditional expectations are

E [Ui | xi] = β (xi − µ) .

where β = Λ>
(
ΛΛ> + Ψ

)-1, and

E
[
UiU

>
i | xi

]
=Var [Ui | xi] + E [Ui | xi]E [Ui | xi]

>

=Iq − βΛ + β (xi − µ) (xi − µ)> β>.
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Finally, using these expected values yields:

Q (Λ,Ψ) =C+
N

2
log |Ψ-1| − N

2
tr {Ψ-1Sx}+N tr

{
Ψ-1β̂Sx

}
− N

2
tr
{
Λ>Ψ-1ΛΘ

}
,

where Θ = Iq − β̂Λ̂ + β̂Sxβ̂
>
is a symmetric q × q matrix, β̂ = Λ̂

> (
Λ̂Λ̂

>
+ Ψ̂

)-1

,

and

Sx =
1

N

N∑
i=1

(xi − x) (xi − x)> .

M-step

To get parameter estimates for Λ and Ψ the expected value of the complete-data

log-likelihood is differentiated and solved in the usual manner:

S1 =
∂Q
∂Λ

=N
∂

∂Λ
tr
{

Ψ-1Λβ̂Sx

}
− N

2

∂

∂Λ
tr
{
Λ>Ψ-1ΛΘ

}
=N (Ψ-1)>

(
β̂Sx

)>
− N

2

∂

∂Λ
tr
{
ΛΘΛ>Ψ-1

}
=NΨ-1S>x β̂

>
− N

2

[
(Ψ-1)>ΛΘ> + Ψ-1ΛΘ

]
=NΨ-1Sxβ̂

>
−NΨ-1ΛΘ,

and

S2 (Λ,Ψ) =
∂Q
∂Ψ-1

=
N

2
Ψ− N

2
S>x +N

(
Λβ̂Sx

)>
− N

2

(
Λ>
)>

(ΛΘ)>

=
N

2
Ψ− N

2
S>x +NΛβ̂Sx −

N

2
ΛΘ>Λ>.
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Setting S1
(
Λ̂

new
, Ψ̂

new
)
= 0 and diag

{
S2
(
Λ̂

new
, Ψ̂

new
)}

= 0 and solving, yields

Λ̂
new

= Sxβ̂
>
Θ-1,

Ψ̂
new

=diag
{

S>x − 2Λ̂
new
β̂Sx + Λ̂

new
Θ> (Θ-1)> β̂Sx

}
=diag

{
Sx − Λ̂

new
β̂Sx

}
.

The EM Algorithm as given in McNicholas (2016), alternates between the E-step

and the M-step, until convergence is attained, and can be phrased in the following

manner.

Algorithm 1 EM Algorithm for Factor Analysis Model
compute Sx

initalize Λ and Ψ
while convergence criterion not met do

compute β̂ = Λ̂
>
=
(
Λ̂Λ̂

>
+ Ψ̂

)-1

compute update Θ = Iq − β̂Λ̂ + β̂Sxβ̂
>

update Λ̂
new

= Sxβ̂
>
Θ-1

update Ψ̂
new

= diag
{

Sx − Λ̂
new
β̂Sx

}
check convergence criterion Λ̂← Λ̂

new
, Ψ̂← Ψ̂

new

end while

There are two considerations when employing an EM Algorithm: starting and

stopping.

Starting the EM Algorithm

For the purposes of this paper, the pgmm package (McNicholas et al., 2018) is used. To

initialize the parameters in the EM algorithm three methods are available: random,
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k-means, and user-specified. For the last option of a user-specified starting point

any form of clustering, including hierarchical clustering, can be employed to get the

starting points.

Stopping Criterion for the EM Algorithm

As described by McLachlan and Peel (2000a) and McNicholas (2016), the EM algo-

rithm is usually stopped when from one iteration to the next, the parameter esti-

mates or the log-likelihood exhibit very little change. When phrased in terms of the

log-likelihood the EM algorithm is stopped when

l(k) = logL(v(k)),

the log-likelihood at the kth step is only a little smaller than the log-likelihood at

the k + 1th step by a predetermined threshold, i.e.,

l(k+1) − l(k) < ε

for ε small. But, this only captures the lack of progress made by the algorithm.

When convergence is not smooth, this might lead to prematurely stopping the EM

algorithm, so we can also consider criteria based on Aitken’s acceleration:

a(k) =
l(k+1) − l(k)

l(k) − l(k−1)
,
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which is the acceleration at the kth step. If it is assumed that the log-likelihood will

eventually converge (which is reasonable), then the asymptotic log-likelihood at the

k + 1th step is

l(k+1)
∞ = l(k) +

l(k+1) − l(k)

1− a(k)

and given the difference is positive a preferred stopping criterion is

l(k+1)
∞ − l(k) < ε

for ε small (McNicholas et al., 2010). For alternative stopping rules see McNicholas

(2016).

The Woodbury Identity

During the E-step of the EM algorithm for the factor analysis model, the estimate

β̂ = Λ̂
> (

Λ̂Λ̂
>
+ Ψ̂

)-1

requires the inversion of a p × p matrix. Large values of p

make this inversion computationally expensive (McNicholas, 2016).

The Woodbury identity introduced in Woodbury (1950), allows us to avoid these

expensive matrix inversions. Given matrices A (m×m), U (m× k), C (k× k), and

V (k ×m), the Woodbury identity is

(A + UCV)-1 = A-1 −A-1U (C-1 + VA-1U)-1 VA-1.

In the case of factor analysis, set U = Λ, V = Λ>, A = Ψ, and C = Iq, so that the
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Woodbury identity becomes

(
Ψ + ΛΛ>

)-1
= Ψ-1 −Ψ-1Λ

(
IqΛ

>ΨΛ
)-1

Λ>Ψ-1. (4.2.3)

The right side of (4.2.3) requires the inversion of a p×p matrix, while the left side

only requires the inversion of a q × q matrix. If the factor analysis model performs

well, i.e., if q � p, this identity will save significant amounts of computation time.

The related identity for the determinant

∣∣ΛΛ> + Ψ
∣∣ = |Ψ|∣∣∣Iq −Λ>

(
ΛΛ> + Ψ

)-1
Λ
∣∣∣ .

allows further time saving (McLachlan and Peel, 2000a).

4.3 Mixture of Factor Analyzers

As detailed in McNicholas (2016), for the mixture of factor analyzers model, we

assume that each Xi can be written as

Xi = µg + ΛgUig + εig

with a probability of πg, for i = 1, . . . , N and g = 1, . . . , G where
∑G

g=1 πg = 1, Λg is

matrix of factor loadings of dimensions p× q, Uig are independent N (0, Iq), εig are

independent N (0,Ψg), where Ψg is a p × p diagonal matrix with positive diagonal

elements, and Uig are independent of εig.
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If the above conditions are true, then each observation xi is represented by the

following mixture of G densities with mixing proportions πg (g = 1, . . . , G):

f (xi | ϑ) =
G∑

g=1

πgφ
(
xi | µg,ΛgΛ

>
g + Ψg

)
,

where ϑ is a vector of model parameters consisting of µg, Λg, Ψg, and πg for g =

1, . . . , G.

McLachlan and Peel (2000b) further details that when this mixture of factor an-

alyzers is adopted it gives a local dimensionality reduction. When fitting a mixture

of factor analyzers with normal components, placing no restriction on the parame-

ters, each Σg = ΛgΛ
>
g + Ψg has 1

2
p(p + 1) free parameters. When the number of

components (G) grows large compared to the sample size (N), overfitting becomes

an issue. Since each Λg has dimensions p × q, when q << p there are savings in

computation time.

4.3.1 Parsimonious Gaussian Mixture Models

From Section 4.3 we see that the covariance structure is represented by Σg = ΛgΛ
>
g +

Ψg. By placing constraints on Σg it’s possible to create models with a variety of

behaviours. In addition to the local dimensional reduction inherent in the mixture

of factor analyzers model, placing constraints on Σg creates parsimony and this will

lead to an efficient use of resources.

McNicholas and Murphy (2008) details three specific constraints: (1) Λg = Λ,

(2) Ψg = Ψ, and (3) Ψg = ψgIp. Each combination of constraints produces one
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of eight models, with varying numbers of free parameters, summarized in Table 4.1.

These eight models are called the family of PGMMs.

Table 4.1: The covariance structure of the PGMM family of models, where ‘C’
denotes constrained and ‘U’ denotes unconstrained.

Λg = Λ Ψg = Ψ Ψg = ψgIp Σg Free Cov. Parameters

C C C ΛΛ> +ψIp pq − q(q − 1)/2 + 1

C C U ΛΛ> + Ψ pq − q(q − 1)/2 + p

C U C ΛΛ> +ψgIp pq − q(q − 1)/2 +G

C U U ΛΛ> + Ψg pq − q(q − 1)/2 +Gp

U C C ΛgΛ
>
g +ψIp G [pq − q (q − 1) /2] + 1

U C U ΛgΛ
>
g + Ψ G [pq − q (q − 1) /2] + p

U U C ΛgΛ
>
g +ψgIp G [pq − q (q − 1) /2] +G

U U U ΛgΛ
>
g + Ψg G [pq − q (q − 1) /2] +Gp

The usefulness of this family of models has been demonstrated previously in

model-based classifcation (McNicholas, 2010), and model-based discriminant analysis

(Andrews and McNicholas, 2011).

Parameter Estimation for the PGMM Family

The EM algorithm is useful in the context of estimation problems when missing

data are present. In the case of mixtures of factor analyzers, there are two sources

of missing data: the component memberships zig, and the latent factors uig, for

i = 1, . . . , N , g = 1, . . . , G. Thus, a variant of the EM algorithm must be used. The

alternating expectation-conditional maximization (AECM) algorithm was proposed

by Meng and Van Dyk (1997), and is an extension of the expectation-conditional
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maximization algorithm introduced by Meng and Rubin (1993). The AECM algo-

rithm allows for alternation between two stages, where each source of missing data

can be addressed. Details for this procedure are laid out by McNicholas (2016), and

for the more general case details can be found in McLachlan and Peel (2000b).

AECM: Stage 1

Adhering to the notation and methodology used in McNicholas (2016), for the first

stage of the AECM the complete data are comprised of the observed feature vectors

(x1, . . . ,xN) and the unobserved component membership vectors (z1, . . . , zN), as

defined in Section 3.2. In this stage the expected value of the complete-data log-

likelihood will be used to estimate πg and µg for g = 1, . . . , G. The likelihood

equation for this stage is

`1 =
N∑
i=1

G∑
g=1

zig log
[
πgφ

(
xi | µg,ΛgΛ

>
g + Ψg

)]
. (4.3.1)

The conditional expected values of the component membership labels are

ẑig =
π̂gφ

(
xi | µ̂g, Λ̂gΛ̂

>
g + Ψ̂g

)
∑G

h=1 π̂hφ
(
xi | Λ̂hΛ̂

>
h + Ψ̂h

) , (4.3.2)
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for i = 1, . . . , N and g = 1, . . . , G. Using (4.3.1) and (4.3.13), the expected value of

the complete-data log-likelihood for stage 1 of the AECM is

Q1 =
N∑
i=1

G∑
g=1

ẑig
[
log πg + log φ

(
xi | µg,ΛgΛ

>
g + Ψg

)]
=

G∑
g=1

Ng log πg −
Np

2
log 2π −

G∑
g=1

Ng

2
log
∣∣ΛgΛ

>
g + Ψg

∣∣
−

G∑
g=1

Ng

2
tr
{

Sg

(
ΛgΛ

>
g + Ψg

)-1
}
,

where Ng =
∑G

g=1 ẑig and

Sg =
1

Ng

N∑
i=1

ẑig
(
xi − µg

) (
xi − µg

)>
. (4.3.3)

Maximizing Q1 w.r.t. πg gives

π̂g =
Ng

N
(4.3.4)

and maximizing Q1 w.r.t. µg gives

µ̂g =

∑N
i=1 ẑigxi∑N
i=1 ẑig

. (4.3.5)

AECM: Stage 2

Following the methods used in McNicholas (2016), the complete-data log-likelihood

for the second stage of the AECM algorithm is constructed by including the ob-

served feature vectors (x1, . . . ,xN), the unobserved component membership vectors

(z1, . . . , zN), and the latent factors (uig) for i = 1, . . . , N and g = 1, . . . , G. The
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parameters Λg and Ψg are estimated for g = 1, . . . , G. Since the PGMM family

inherits the covariance structure in the factor analysis model, stage 2 of the AECM

is analogous to the EM algorithm shown in 4.2.1. The complete-data log-likelihood

for stage 2 is

`2 =
N∑
i=1

G∑
g=1

ẑig [log πg + log f (xi | ui) + log f (ui)]

= C +
G∑

g=1

[
−Ng

2
log |Ψg| −

Ng

2
tr

{
Ψ-1

g Sg +
N∑
i=1

zig
(
xi − µg

)>
Ψ-1

g Λgui

}]

−
G∑

g=1

[
1

2
tr

{
Λ>g Ψ-1

g Λg

N∑
i=1

ziguiu
>
i

}]
,

where C is constant with respect to the parameters Λg and Ψg. After conditioning

on the parameter estimates, the expected value of the complete-data log-likelihood

is

Q2 =C +
G∑

g=1

[
− Ng

2
log |Ψg| −

Ng

2
tr
{
Ψ-1

g Sg

}
+

N∑
i=1

ẑig
(
xi − µ̂g

)>
Ψ-1

g ΛgE [Uig | xi, zig = 1]

− 1

2
tr

{
Λ>g Ψ-1

g Λg

N∑
i=1

ẑigE
[
UigU

>
ig | xi, zig = 1

]}]

=C +
1

2

G∑
g=1

Ng

[
log |Ψ-1| − tr {Ψ-1Sg}+ 2 tr

{
Ψ-1

g Λgβ̂gSg

}
− tr

{
Λ>g Ψ-1

g ΛgΘg

}]
,
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where β̂g = Λ>g

(
ΛgΛ

>
g + Ψ̂g

)-1

and Θg = Iq − β̂gΛ̂g + β̂gSgβ̂
>
g . At this point, all

the parameters have been replaced by their estimates.

The next part of the second stage of the AECM depends on the particular con-

straints of the model being estimated (refer to Table 4.1). McNicholas (2016) details

the remainder of the AECM algorithm for model ’CCU’. For this model, Λg = Λ

and Ψg = Ψ. Using these constraints the expected value of the complete-data log-

likelihood becomes

Q2 (Λ,Ψ) =C +
N

2

[
log |Ψ-1| − tr

{
Ψ-1S̃

}
+ 2 tr

{
Ψ-1Λβ̂S̃

}
− tr

{
Λ>Ψ-1ΛΘ̃

}]
,

where S̃ =
∑G

g=1 π̂gSg, Θ̃ = Iq − β̂Λ̂ + β̂S̃β̂
>
, and β̂ = Λ̂

> (
Λ̂Λ̂

>
+ Ψ̂

)-1

.

Differentiating Q (Λ,Ψ) w.r.t. Λ and Ψ-1, respectively, gives the score functions

S1 (Λ,Ψ) =
∂

∂Λ
Q2 (Λ,Ψ) = N

[
Ψ-1S̃β̂

>
−Ψ-1ΛΘ̃

]
, (4.3.6)

S2 (Λ,Ψ) =
∂

∂Ψ-1Q2 (Λ,Ψ) =
N

2

[
Ψ− S̃> + 2Λβ̂S̃−ΛΘ̃>Λ>

]
. (4.3.7)

Solving S1
(
Λ̂

new
, Ψ̂

new
)
= 0 and diag

{
S2
(
Λ̂

new
, Ψ̂

new
)}

= 0 yields

Λ̂
new

= S̃β̂
>
Θ̃-1,

and

Ψ̂
new

=diag
{

S̃− 2Λ̂
new
β̂S̃ + Λ̂

new
Θ̃>

(
S̃β̂
>
Θ̃-1
)>}

=diag
{

S̃− Λ̂
new
β̂S̃
}
.
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Therefore, the algorithm for the AECM for model CCU is presented in Algo-

rithm 2 (McNicholas, 2016).

Algorithm 2 AECM Algorithm for PGMM Model CCU
initialize ẑig
initialize π̂g, µ̂g, S̃, Λ̂, Ψ̂
while convergence criterion not met do

update π̂g, µ̂g

if not iteration 1 then
update ẑig

end if
compute S̃, β̂, Θ̃
update Λ̂

new
, Ψ̂

new

update ẑig
check convergence criterion
Λ̂← Λ̂

new
, Ψ̂← Ψ̂

new

end while

Initializing the AECM

As described earlier in Section 4.2.1, there are three methods for initial parameter

estimates: random, k-means (default), and user-specified. The component member-

ship estimates ẑig are found easily enough using one of these methods, allowing the

calculation π̂g and µ̂g as given in (4.3.11) and (4.3.12), respectively.

The matter of initializing stage 2 of the AECM with estimates of Λ̂ and Ψ̂

requires an approach outlined in McNicholas and Murphy (2008). The suggested

approach is the eigen-decomposition of S̃. First, the ẑig are used to intitalize S̃ using

Ng =
∑G

g=1 ẑig, S̃ =
∑G

g=1 π̂gSg, (4.3.3), (4.3.11), and (4.3.12).

As shown in McNicholas (2016), after S̃ is intialized, using eigen-decomposition

results in S̃ = PDP-1. Initial values for Λ and Ψ are then calculated as Λ̂ = dP and
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Ψ̂ = diag
{

S̃− (dP) (dP)>
}
, where d is element wise square root of the diagonal of

D.

For other members of the pgmm family, similar approaches are taken. Some of

these are illustrated in McNicholas and Murphy (2008) and McNicholas et al. (2010).

4.3.2 Expanded Parsimonious Gaussian Mixture Models

The original family of 8 PGMMs was expanded in McNicholas and Murphy (2010)

by parametrizing Ψg. In this expanded family, Ψg = ωg∆g, where ωg ∈ IR+ and ∆g

is a diagonal matrix with |∆g| = 1. This changes the covariance structure for each

component to Σg = ΛgΛ
>
g + ωg∆g.

This creates four possible constraints: (1) Λg = Λ, (2) Ψg = Ψ, (3) Ψg = ψgIp,

and (4) Ψg = ωg∆g. All legitimate combinations of these four constraints create

a model, of which there are 12. This family of 12 models is the expanded PGMM

family, shown in Table 4.2.

Parameter Estimation in the Expanded PGMM Family

This topic is covered in McNicholas (2016) and McNicholas and Murphy (2010).

For the 8 models in the expanded PGMM (EPGMM) family which have PGMM

analogues (see Section 4.3.1), parameter estimates can be obtained by using the

methods described in the Section 4.3.1 and then computing the following updates

for ωg and ∆g.

ω̂g =
∣∣∣Ψ̂g

∣∣∣1/p , (4.3.8)
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Table 4.2: The covariance structures and nomenclature for each member of the
expanded PGMM family, along with the name of the equivalent member of the
PGMM family (Table 4.1), where applicable.

Expanded PGMM Nomenclature

Λg = Λ ∆g = ∆ ωg = ω ∆g = Ip
PGMM
Notation Σg

Number of Covariance
Parameters

C C C C CCC ΛΛ> + ωIp
[pq − q (q − 1) /2]

+1

C C U C CUC ΛΛ> + ωgIp
[pq − q (q − 1) /2]

+G

U C C C UCC ΛgΛ
>
g + ωIp

G [pq − q (q − 1) /2]
+1

U C U C UUC ΛgΛ
>
g + ωgIp

G [pq − q (q − 1) /2]
+G

C C C U CCU ΛΛ> + ω∆
[pq − q (q − 1) /2]

+p

C C U U - ΛΛ> + ωg∆
[pq − q (q − 1) /2]
+ [G+ (p− 1)]

U C C U UCU ΛgΛ
>
g + ω∆

G [pq − q (q − 1) /2]
+p

U C U U - ΛgΛ
>
g + ωg∆

G [pq − q (q − 1) /2]
+ [G+ (p− 1)]

C U C U - ΛΛ> + ω∆g
[pq − q (q − 1) /2]
+ [1 +G (p− 1)]

C U U U CUU ΛΛ> + ωg∆g
[pq − q (q − 1) /2]

+Gp

U U C U - ΛgΛ
>
g + ω∆g

G [pq − q (q − 1) /2]
+ [1 +G (p− 1)]

U U U U UUU ΛgΛ
>
g + ωg∆g

G [pq − q (q − 1) /2]
+Gp

and

∆̂g =
Ψ̂g∣∣∣Ψ̂g

∣∣∣1/p . (4.3.9)
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Note that ω̂g∆̂g = Ψ̂g. For the remaining four models of the EPGMM family

parameter estimation isn’t as straightforward. Since the parametrization Ψg = ωg∆g

requires |∆g| = 1, this complicates the second stage of the AECM described earlier.

This complication is resolved by using the method of Lagrange multipliers.

The four models which are solely in the EPGMM are CCUU, UCUU, CUCU,

and UUCU. As an example, consider model CCUU.

AECM: Stage 1

This derivation will proceed in a manner similar to Section 4.3.1 following the meth-

ods and notations in McNicholas and Murphy (2010). In this stage, the complete

data are taken to be the observations x1, . . . ,xN and the unobserved z1, . . . , zN . In

the E-step of stage 1, the zig are replaced by their conditional expected values:

E
[
Zig | ϑ̂

]
= ẑig =

π̂gφ
(
xi | ϑ̂

)
∑G

h=1 π̂hφ
(
xi | ϑ̂

) , (4.3.10)

where ϑ̂ =
(
πg, µ̂g, Λ̂g, ∆̂g, ω̂g

)
. Using ẑig, Q1 is computed and then maximized in

the CM-step to yield

π̂g =
Ng

N
, (4.3.11)

µ̂g =

∑N
i=1 ẑigxi

Ng

, (4.3.12)

where Ng =
∑G

g=1 ẑig.
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AECM: Stage 2

For the stage 2 of the AECM, the complete-data will be taken as the observations

x1, . . . ,xN , the unobserved z1, . . . , zN , and the latent factors uig, for i = 1, . . . , N

and g = 1, . . . , G. The unobserved z1, . . . , zN addressed in stage 1, and the uig will

be addressed here. Both uig and uigu
>
ig will be replaced by their expected values:

E
[
Uig | xi, µ̂g, Λ̂g, ω̂g, ∆̂g

]
= β̂g

(
xi − µ̂g

)
,

E
[
UigU

>
ig

]
= Iq − β̂gΛ̂g + β̂g

(
xi − µ̂g

) (
xi − µ̂g

)>
β̂
>
g ,

where β̂g = Λ̂
>
g

(
Λ̂gΛ̂

>
g + ω̂g∆̂g

)-1

. These expected values then yield the expected

value of the complete-data log-likelihood (Q2) which can now be maximized in the

CM-step to yield the remaining parameter estimates. This will depend specifically

on the model. For the CCUU model, the constraints are Λg = Λ and ∆g = ∆. In

this case,

Q2 (Λ, ωg,∆) = C+
1

2

G∑
g=1

Ng

[
p logω-1

g + log |∆-1| − ω-1
g tr {∆-1Sg}

+2ω-1
g tr

{
∆-1Λβ̂gSg

}
− ω-1

g tr
{
Λ>∆-1ΛΘg

}]
,

where C is constant with respect to Λ, ωg, and ∆ and Θg = Iq − β̂gΛ̂ + β̂gSgβ̂
>
g .

In order to maximize Q2 with respect to Λ, ωg, and ∆, the method of Lagrange
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multipliers is employed. The Lagrange function is

L (Λ, ωg,∆, κ) = Q(Λ, ωg,∆)− κ(|∆| − 1).

Similar to McNicholas (2016), taking the partial derivatives yields

S1 (Λ, ωg,∆, κ) =
∂L

∂Λ
=

G∑
g=1

Ng

ωg

[
∆-1Sgβ̂

>
g −∆-1ΛΘg

]
,

S2 (Λ, ωg,∆, κ) =
∂L

∂ω-1
g

=
Ng

2

[
pωg − tr {∆-1Sg}+ 2 tr

{
∆-1Λβ̂gSg

}
− tr

{
∆-1ΛΘgΛ

>}] ,
S3 (Λ, ωg,∆, κ) =

∂L

∂∆-1

=
1

2

G∑
g=1

Ng

[
∆− ω-1

g Sg + 2ω-1
g

(
Λβ̂gSg

)>
− ω-1

g ΛΘgΛ
>
]
+ κ |∆|∆,

S4 (Λ, ωg,∆, κ) =
∂L

∂κ

= |∆| − 1.

Setting the score functions to zero: S1
(
Λ̂

new
, ω̂g, ∆̂, κ

)
= 0, S2

(
Λ̂

new
, ω̂new

g , ∆̂, κ
)
=

0, and S3
(
Λ̂

new
, ω̂new

g , ∆̂
new
, κ
)
= 0 yields the estimates

Λ̂
new

=

[
G∑

g=1

Ng

ω̂g

Sgβ̂
>
g

][
G∑

g=1

Ng

ω̂g

Θg

]-1

,

ω̂new
g =

1

p
tr

{
∆̂

-1
[
Sg − 2Λ̂

new
β̂gSg + Λ̂

new
Θg

(
Λ̂

new
)>]}

,
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∆̂
new

=
1

N + 2κ
diag

{
G∑

g=1

Ng

ω̂new
g

[
Sg − 2Λ̂

new
β̂gSg + Λ̂

new
Θg

(
Λ̂

new
)>]}

.

However, it is required that
∣∣∣∆̂new

∣∣∣ = 1. To ensure this property it is required

that

N + 2κ =

(
p∏

i=1

ξi

) 1
p

,

where ξi are the diagonal elements of the matrix

G∑
g=1

Ng

ω̂new
g

[
Sg − 2Λ̂

new
β̂gSg + Λ̂

new
Θg

(
Λ̂

new
)>]

.

Solving for κ gives κ = 1
2

[
(
∏p

i=1 ξi)
1
p −N

]
. The estimates for the other three

EPGMM models are derived in a similar manner (McNicholas and Murphy, 2010).

4.3.3 MDA Framework

The primary aim of MDA is to ascertain the component membership vectors, de-

noted z1, . . . , zN , where zi = (zi1, . . . , ziG) and zig = 1 if xi belongs to group g

and zig = 0 otherwise. The observations are denoted T = {(yi,xi)|i = 1, . . . , N},

where only n of the memberships are known a priori. These can be arranged

(y1,x1), . . . , (yn,xn),xn+1, . . . ,xN without loss of generality. Then, the first n ob-

servations will be used to carry out the estimation of zn+1, . . . , zN .

In MDA, a mixture of factor analyzers is fitted for every observed class. In an

attempt to detect sub-classes, a model-based cluster analysis is first carried out for

each of these observed classes, though sometimes this is not applicable. As shown

76



Ph.D. Thesis - Muz Mallo McMaster - Mathematics and Statistics

by McNicholas (2016), this procedure is outlined by Algorithm 3.

Algorithm 3 Model-Based Discriminant Analysis
for g in 1 to G do

carry out a model-based clustering for x1, . . . ,xn in class g
choose a Gg-component model
record corresponding labels LABg

end for
compute Gnew =

∑G
g=1Gi

fit a Gnew-component mixture to x1, . . . ,xn using labels LAB1, . . . ,LABG

record resulting parameter estimates ϑ̂
for i = n+ 1 to N do

for g in 1 to Gnew do
compute ẑig

end for
assign xi to the class corresponding to component argmaxg ẑig

end for

At the end of the model-fitting procedure described in Section 4.3.2, the resultant

estimates take the form of conditional expectations (see McNicholas, 2016)

E
[
Zig | ϑ̂

]
= ẑig =

π̂gφ
(
xi | ϑ̂

)
∑G

h=1 π̂hφ
(
xi | ϑ̂

) . (4.3.13)

The ẑig ∈ [0, 1] and can be interpreted as probabilities of the observation xi belonging

to component g. As such, they are called soft classifications, which can be hardened

into maximum a posteriori classifications (i.e., MAP{ẑig}), such that

MAP{ẑig} =


1, if g = argmaxh{ẑih},

0, otherwise.
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4.4 MixForests

4.4.1 Partitioning the Data

The observations x1, . . . ,xN were partitioned into a training set and a holdout set,

using a holdout percentage of 20%. The partitioning was done carefully, to get an

accurate representation of each of the classes represented in the data. This was done

by randomly selecting 20% of the observations from each class, to get a stratified

sample. In this way, the test error calculation should better reflect reality.

4.4.2 Generating a MixForest

A bootstrap replicate is first generated from the training data by making Ntrain ran-

dom draws on the training set, where Ntrain is the number of observations in the

training set. Then a random selection of r features from the p features in the boot-

strap replicate are used to fit a mixture of factor analyzers. K such mixtures are

generated to create the mixForest. This will leave roughly 37% of the observations

out-of-bag for each bootstrap replicate. These out-of-bag observations will be used

to find the correct number of randomly selected features for the final inferences.

In addition to this, for every classifier (mixture of factor analyzers) in the mix-

Forest, a range of values for q is attempted for each of the model types listed in

Table 4.2. This range of q is chosen so that

(p− q)2 > (p+ q),
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in order to ensure that there is a reduction in the number of free covariance param-

eters (Lawley and Maxwell, 1962).

Furthermore, a range of values for Gnew is attempted (refer to Algorithm 3). For a

particular bootstrap replicate, all combinations of model type, values of q, and Gnew

are fitted, and the mixture of factor analyzers with the maximum BIC is used in the

mixForest.

4.4.3 Random Feature Selection

As described in Section 2.3.4, the number of randomly selected features (r) is the

most important parameter in the generation of the mixForest. It will be shown later

that changing this one parameter will greatly affect the test error produced by the

mixForests fitted in Section 4.5.

Unfortunately, it is not reasonable to assume that there is a performance pattern

based solely on the magnitude of r, so it will be necessary to fit p mixForests for

each dataset before the value of r can be tuned.

4.4.4 Exploratory Fittings vs. Full Fitting

To save on computation time, an exploratory fitting using specific of values for r is

generated first. For example, when using a dataset with p = 30, three mixForests

with r = 10, 20, 30 and a relatively large value of K are fitted allowing insight into

the convergence properties of the OOB error sequences for different values of r.

This will allow an appropriate choice of K for a complete set of mixForests to

be generated for r = 1, . . . , 30. The second full fitting is necessary since it is not
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apparent which values of r will produce a mixForest with relatively low OOB errors.

4.4.5 Aggregation

For a single mixture of factor analyzers, an observation xi is classified using (4.3.13).

The class g, for which MAP[ẑig] = 1, is considered to be this classifier’s vote for

observation xi.

The votes are tallied for all the classifiers in the mixForest using a majority vote,

and the class g with the most votes is considered the predicted class of the mixForest

for observation xi. This process is the same regardless of whether xi is an OOB

observation, or if it belongs to the testing data, or if it belongs to the training data.

4.5 Data Analyses and Illustrations

4.5.1 Forest Type Mapping Data

The original data was gathered and used by Johnson et al. (2012). Part of the data

were collected during a remote sensing study of forested areas in Ibaraki Prefecture,

Japan spanning an area of approximately 13 km x 12 km. Orthorectified ASTER

imagery was acquired using the ASTER (Advanced Spaceborne Thermal Emission

and Reflection Radiometer) sensors on board the Terra satellite launched by NASA

in 1999 (Wikipedia, 2019).

The goal of the study was to classify images into one of four land cover types: (1)

Cryptomeria japonica (Sugi, or Japanese Cedar), (2) Chamaecyparis obtusa (Hinoki,

or Japanese Cypress), (3) mixed deciduous broadleaf natural forest, and (4) other
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land use/land cover types. So, for this data there are four classes (G = 4). Each forest

type has a different economic usage as well as environmental profile, so classification

of these areas is important for the economy and for ecological study.

This dataset consists of 523 observations with each feature vector consisting of 9

spectral bands (ASTER) and 18 similarity measures (based on IDW (inverse distance

weighted interpolated values), for a total of 27 features. The original classification

was performed using support vector machines (SVM) and attained an overall accu-

racy of 85.9%.

To begin the analysis of the data, the mixForest requires that two parameters be

addressed. The first is the ensemble size. The second is the number of randomly

selected features for which the models in the mixForest are fitted. Thus, a preliminary

fitting of the data is performed in order to gauge the properties of convergence. In

this endeavour, the main inferential quantity is OOB error, which estimates test

error.

For the exploratory fitting, mixForests with numbers of randomly selected fea-

tures in {5, 10, 15, 20, 25} were generated with an ensemble size of 200. The OOB

error plot are given in Figure 4.1.

From Figure 4.1, it can be seen that the OOB error of each mixForest stabilizes

quickly at approximately K = 17 learners. After this point, there is no deviation in

the OOB error of the mixForest. The tail end of Figure 4.1 is shown in Figure 4.2

for further examination. Clearly, there are notable and significant differences in the

OOB error produced by mixForests based on different numbers of randomly selected

features.
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Figure 4.1: OOB error graph of the forest type mapping data, with r ∈
{5, 10, 15, 20, 25}.

For the wide range of the number of randomly selected features r in the ex-

ploratory fitting, it can be seen that convergence of OOB error is rapid and stable

for all choices of r. This means that when a more thorough fitting is performed, K

can be much smaller than before, saving computation time.

Next, we examine the sequential differences in the OOB error sequences and

record the first value of K for which the difference is less than 10−5 (see Table 4.11).

Since the OOB error does not deviate after the tolerance is reached, ensemble sizes

can be kept small.
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Figure 4.2: OOB error graph of the forest type mapping data, with r ∈
{5, 10, 15, 20, 25} for K = 150, . . . , 200.

Table 4.3: Limiting ensemble size for choices of number of random features.

# of Random Features Ensemble Size

5 9
10 15
15 9
20 17
25 9

For the second consideration of selecting an optimal value of the number of ran-

domly selected features (r), a second set of 27 mixForests is generated for each of

r = 1, . . . , 27 with K = 75. As a rule of thumb, except for computation time, there
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is no detriment in fitting more models. Figure 4.3 and Figure 4.4 illustrate the

corresponding OOB error sequences.

Figure 4.3: OOB error graph of the forest type mapping data, for r = {1, . . . , 27}.

Figure 4.4: OOB error graph of the forest type mapping data, with r =
7, 8, 9, 10, 12, 14, 16, 17, 20, 23 and K = 50, . . . , 75.
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There are no evident patterns in either graph. For further examination, Table 4.4

and Table 4.5 give the exact values of OOB error for each value of r. The only obvious

trend is that any choice of r between 7 and 26 (inclusively) seems to work, though

r = 14 produces the lowest OOB error.

The final test is a comparison of the test error produced by the mixForest versus

MDA. For this comparison, the data were partitioned into a training set (comprised

of 80% of the data) and a holdout set (comprised of 20% of the data), where the

data were chosen at random and an equal number of observations were taken from

each class. The test errors are given in Table 4.6.

All test errors for mixForests with r = 1, . . . , 27 are given in Table 4.7. For

7 ≤ r ≤ 27, all test errors appear acceptable, with r = 14 producing the best test

error. This confirms the previous hypothesis that r = 14 would be the best choice,

according to the OOB errors shown in Table 4.5.

The confusion matrix for the mixForest with r = 14 is shown in Table 4.8.

It is evident that for the forest types mapping data the mixForest technique

compares very favourably with MDA, yielding an increase in accuracy of 19.05%.

In addition, the mixForest is able to produce variable importance scores (shown in

Table 4.9).

From the Table 4.9, it can be seen there are many variables which are significant at

the p = 0.05 level. These variables are {1, 2, 3, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 20, 21, 25},

which comprise roughly 63% of the dataset. These represent a good mix between

the ASTER band readings and similarity measures.

Finally, to examine the dimensional reduction taking place, a table of the number
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Table 4.4: OOB error table of the forest types mapping data.

# of Random Features (r) OOB Error

1 0.3732

2 0.4426

3 0.3511

4 0.1746

5 0.1631

6 0.1851

7 0.1370

8 0.1415

9 0.1298

10 0.1322

11 0.1439

12 0.1316

13 0.1559

14 0.1199

15 0.1538

16 0.1340

17 0.1322

18 0.1707

19 0.1511

20 0.1391

21 0.1535

22 0.1518

23 0.1391

24 0.1667

25 0.1425

26 0.1446

27 0.2182
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Table 4.5: Sorted OOB error table for the forest types mapping data.

# of Random Features (r) OOB Error

14 0.1199

9 0.1298

12 0.1316

10 0.1322

17 0.1322

16 0.1340

7 0.1370

20 0.1391

23 0.1391

8 0.1415

25 0.1425

11 0.1439

26 0.1446

19 0.1511

22 0.1518

21 0.1535

15 0.1538

13 0.1559

5 0.1631

24 0.1667

18 0.1707

4 0.1746

6 0.1851

27 0.2182

3 0.3511

1 0.3732

2 0.4426
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Table 4.6: Test error comparison, using r = 14.

MDA MixForest

Test Error 0.2762 0.0857

of latent factors the leading mixForest produced is included (Table 4.10).

4.5.2 Ionosphere Data

The primary motive of the original study (Sigillito et al. (1989)) is to classify radar

returns as either good (suitable for further analysis), or bad, with the aim of studying

the physics of the ionosphere. Automated classification of the radar returns will save

valuable manpower. Sigillito et al. (1989) states the data were collected by the Space

Physics Group of the Johns Hopkins University Applied Physics Laboratory using

the radar system located in Goose Bay, Labrador.

The original paper describes that the radar transmits a multipulse pattern into

the ionosphere, after which a receiver is turned on intermittently and the complex

electromagnetic signal is recorded. The complex ACF (auto-correlation function) is

created by measuring 17 discrete returns, each of which has a real and an imaginary

part (all of which are continuous). The dataset are comprised of 350 observations,

with the 34 features described. The class variable is binary.

Sigillito et al. (1989) states that a multilayer feedforward neural network (MLFN)

used to perform the classification, achieved 100% accuracy on the training data and

up to 98% accuracy using the testing data.

As in the previous data analysis, the first step is to determine the minimum
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Table 4.7: Test error table of the forest types mapping data.

# of Random Features (r) Test Error

1 0.3429

2 0.4571

3 0.3524

4 0.1524

5 0.1524

6 0.0952

7 0.1810

8 0.1333

9 0.1143

10 0.1143

11 0.1048

12 0.0952

13 0.2000

14 0.0857

15 0.1619

16 0.1238

17 0.1333

18 0.1238

19 0.1429

20 0.1333

21 0.1714

22 0.1143

23 0.1143

24 0.0952

25 0.1048

26 0.0952

27 0.2286
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Table 4.8: Forest types mapping data confusion matrix for mixForest with r = 14
and K = 75.

Actual

d h o s

P
re
di
ct
ed

d 30 0 0 1

h 0 13 0 2

o 1 0 17 0

s 1 4 0 36

ensemble size required to produce a mixForest with optimal results. For the first ex-

ploratory fitting of this dataset, mixForests of sizeK = 100 for r = 5, 10, 15, 20, 25, 30

randomly selected features were generated. The OOB error plot for these mixForests

are shown in Figure 4.5.

Figure 4.5: OOB error graph of the ionosphere data, with r = {5, 10, 15, 20, 25, 30}.
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Table 4.9: Variable importance table of the forest types mapping data.

Variable Raw Score Z Score P Value

3 46.62 7.75 0.0000

1 30.35 6.49 0.0000

11 46.65 6.42 0.0000

18 39.10 6.38 0.0000

9 42.86 5.29 0.0000

7 52.96 5.24 0.0000

8 22.19 4.91 0.0000

15 22.41 4.31 0.0000

16 52.45 3.86 0.0001

14 30.21 3.59 0.0003

25 15.38 2.95 0.0032

2 47.22 2.63 0.0085

21 7.07 2.43 0.0150

10 26.00 2.39 0.0169

13 13.57 2.23 0.0256

20 5.75 2.19 0.0283

17 24.25 2.15 0.0318

6 27.00 1.43 0.1538

22 3.00 1.41 0.1573

23 1.00 1.41 0.1573

12 24.12 1.40 0.1611

5 35.83 1.38 0.1663

4 13.75 1.36 0.1753

19 4.75 0.79 0.4281

26 2.24 0.74 0.4604

27 6.43 0.72 0.4722

24 3.50 0.69 0.4901
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Table 4.10: Number of latent factors (q) used by the mixForest with r = 14 in the
forest types mapping data.

q Frequency

6 3
7 6
9 66

In Figure 4.6, the tail end of Figure 4.5 is shown. There are clear and significant

differences in OOB error, ranging from 9.0% to 19.1%, though the plot does not

indicate a pattern based on values of r.

Figure 4.6: Tail of the OOB error graph of the ionosphere data, with r =
{5, 10, 15, 20, 25, 30}.

Looking at Figure 4.5, there is quick stabilization of the OOB error plots for every
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value of r. As classifiers are fitted and added to the MixForest using the sequence of

bootstrap replicates, the OOB error of the MixForest is updated. The first value ofK

for which the difference between two sequential OOB error estimates is less than 10−5

is shown in Table 4.11. A second set of mixForests were fitted using r = 1, . . . , 33

Table 4.11: Limiting ensemble size for choices of number of random features for the
ionosphere data.

# of Random Features Ensemble Size

5 12
10 7
15 14
20 19
25 15
30 10

and K = 50. The OOB error plots are shown in Figure 4.7 and Figure 4.8. Exact

values are given in the Appendix in Table A.1, Table A.2, Table A.3, and Table A.4.

From the OOB error plots and tables, there is an optimal value between r =

8, . . . , 12. The OOB error for r = 10 may be an anomaly for this particular set of

training data. Also, there seems to be a higher range (r = 25, . . . , 31) that performs

quite well. It is difficult to deduce exactly which value of r will perform the best in

practice. This is not an exact science, and the matter is not as clear cut as in the

previous data analysis.

For the purpose of illustration, further analysis will be done using several values

of r, though r = 12 seems to perform the best. Arguably, the only way to select the
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Figure 4.7: OOB error graph of the ionosphere data, with r = 1, . . . , 33.

Figure 4.8: OOB error graph of the ionosphere data: 10 lowest sequences.

correct value of r is to fit mixForests for all possible values of r. The test errors of

several mixForests and MDA are given in Table 4.12.

Table 4.12 yields interesting results, as the purported favourite (mixForest with
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Table 4.12: Test error comparison of models fitted to the ionosphere data.

Model Test Error

MDA 0.0286
MixForest (r = 8) 0.0857
MixForest (r = 9) 0.0714
MixForest (r = 10) 0.1000
MixForest (r = 11) 0.0714
MixForest (r = 12) 0.0429
MixForest (r = 25) 0.0000
MixForest (r = 26) 0.0143

r = 12) did not perform as well as expected. Additionally, the spike in OOB error

at r = 10 does not seem like an anomaly. The final point is that the mixForests for

r = 25 and r = 26 performed the best. Confusion matrices for r = 12, 25, 26 are

given in Table 4.13, Table 4.14 and Table 4.15.

Table 4.13: Ionosphere data confusion matrix for mixForest with r = 12 and K = 50.

Actual

ba
d

go
od

P
re
di
ct
ed bad 23 1

good 2 44

Variable importance scores are shown in Table A.5 and Table A.6 in the Appendix.

The results are very surprising since there are very few variables that are significant,

but the mixForests fitted with a higher value of r performed better.

Finally, Table 4.16 shows the number of latent factors that were utilized by the
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Table 4.14: Ionosphere data confusion matrix for mixForest with r = 25 and K = 50.

Actual

ba
d

go
od

P
re
di
ct
ed bad 25 0

good 0 45

Table 4.15: Ionosphere data confusion matrix for mixForest with r = 26 and K = 50.

Actual

ba
d

go
od

P
re
di
ct
ed bad 25 1

good 0 44

mixForest with r = 25. As can be seen, q = 2 is almost exclusively used by every

learner in the ensemble, indicating that great dimensional reduction occurred.

Table 4.16: Number of latent factors (q) used by the mixForest with r = 25 for the
ionosphere data.

q Frequency

1 5
2 39
3 1
4 1
5 1
12 2
15 1
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4.5.3 Pen-based Handwritten Digit Recognition Data

The original source of this data is Alimoglu et al. (1996). A digit database was

created by collecting 250 samples from 44 authors of the digits 0, 1, . . . , 9. This data

was collected using a WACOM PL-100V pressure sensitive tablet with an integrated

LCD display and a cordless stylus. The tablet records (x, y) coordinate information,

which is then resampled using simple linear interpolation between pairs of points.

The data is represented as a sequence of 8 points, with 2 coordinates each (x and

y), for a total of 16 features in each observation. The dataset consists of 10992

observations, 1 target attribute (with 10 classes), and 16 features.

As was demonstrated in the previous analyses, the ensembles do not have to be

too large before the error rates stabilize and converge. An exploratory fitting was first

performed with r = 5, 10, 15 of size K = 50 in an effort to ensure similar convergent

behaviour is present. These results are shown in Figure 4.9. A closer look at the tail

end of the plot is show in Figure 4.10.

From Figure 4.9 and Figure 4.10, the OOB error stabilizes rapidly for all values

of r into clear and significant levels. Next, a more complete set of fittings is done for

r = 1, . . . , 16 and K = 30. The OOB error sequences for these fittings are shown in

Figure 4.11 and Figure 4.12.

From Figure 4.11 and Figure 4.12, it is seen for for a value of r = 2, the ensemble

does not seem to reach a convergent OOB error, though it appears bounded. All

other values of r are performing as expected. Also, there appears to be one ensemble

which is performing much better than the rest.

From Table 4.17, there is one sweet spot for r = 6, 7, 8 and another for r =
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Figure 4.9: OOB error graph of the pen digits data, with r = {5, 10, 15}.

Figure 4.10: Tail of the OOB error graph of the pen digits data, with r = {5, 10, 15}.

13, 14, 15, 16. However, looking at Table 4.18, r = 16 appears to be the best, and

r = 14 appears to be the second best, by large margins. The test errors from the

20% holdout set, are given in Table 4.19.
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Figure 4.11: OOB error graph of the pen digits data, with r = 1, . . . , 16.

Figure 4.12: OOB error graph of the pen digits data: 10 lowest sequences.

Again, OOB error serves as an accurate predictor of which mixForests will per-

form the best when calculating test error using the holdout set. For this dataset it

appears that the mixForest method does not score a lower test error than the default
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Table 4.17: OOB errors for the pen digits data with r = 1, . . . , 16 and K = 30.

# of Random Features OOB Error

1 0.7543
2 0.4809
3 0.3581
4 0.2734
5 0.2246
6 0.1789
7 0.1652
8 0.1507
9 0.2211
10 0.1896
11 0.1822
12 0.1654
13 0.1515
14 0.0879
15 0.1279
16 0.0279

MDA method. A confusion matrix for the mixForest with r = 16 is shown in Ta-

ble 4.20. Nonetheless, the mixForest method has advantages like variable importance

scores, shown in Table 4.21.

Because the data were comprised of sequential coordinates, we can conclude from

the variable importance scores in Table 4.21 that the first and last pen strokes indicate

most clearly which digit was being written.

Finally, Table 4.22 shows the number of latent factors that each mixForest used.
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Table 4.18: Sorted OOB errors for pen digits data with r = 1, . . . , 16 and K = 30.

# of Random Features OOB Error

16 0.0279
14 0.0879
15 0.1279
8 0.1507
13 0.1515
7 0.1652
12 0.1654
6 0.1789
11 0.1822
10 0.1896
9 0.2211
5 0.2246
4 0.2734
3 0.3581
2 0.4809
1 0.7543

Table 4.19: Test error comparison of models fitted to the pen-digits data.

Model Test Error

MDA 0.0232
MixForest (r = 14) 0.0277
MixForest (r = 16) 0.0241

The best performing mixForest used models which used only q = 10. This represents

a significant reduction in dimensionality.
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Table 4.20: Pen digits data confusion matrix for mixForest with r = 16 and K = 30.

Actual

0 1 2 3 4 5 6 7 8 9

P
re
di
ct
ed

0 224 0 0 0 0 0 0 0 0 0

1 0 217 9 2 0 0 0 6 0 1

2 0 4 219 0 1 0 0 0 0 0

3 0 1 0 205 0 0 0 0 0 0

4 0 0 0 0 224 0 0 0 0 0

5 0 1 0 1 0 209 1 0 0 0

6 1 0 0 0 0 0 209 0 0 0

7 0 0 1 1 0 0 0 218 0 0

8 3 1 0 0 0 0 1 0 211 0

9 1 5 0 2 4 2 0 4 0 210

4.6 Discussion

The mixForest method appears to work quite well in comparison to MDA, in the

context of using mixtures of factor analyzers to deal with high dimensional data. For

the forest types mapping data mixForests yielded an increase of 19.05% classification

accuracy compared to MDA. For the ionosphere data mixForests yielded an up to

2.86% increase in classification accuracy. However, for the pen-based handwritten

digit data mixForests resulted in a decrease in classification accuracy of 0.45% when

compared to MDA. Regardless of a nominal increase or decrease in accuracy, the

mixForest method yields benefits above and beyond potential accuracy, including

variable importance scores. As usual, the difficulty is in tuning the parameters.

For the mixForest method, there are only two parameters of concern: the number
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Table 4.21: Pen digits data variable importance for mixForest with r = 16 and
K = 30.

Variable Raw Score Z Score P Value

15 759.47 13.86 0.0000
2 262.97 11.73 0.0000
4 513.70 11.32 0.0000
1 313.87 10.98 0.0000
16 779.33 9.77 0.0000
10 731.37 9.38 0.0000
14 910.23 7.11 0.0000
11 726.67 6.00 0.0000
12 683.70 5.93 0.0000
9 686.93 5.51 0.0000
6 847.53 5.50 0.0000
5 849.00 5.04 0.0000
7 666.90 5.03 0.0000
3 457.70 4.73 0.0000
13 301.53 4.36 0.0000
8 895.00 4.26 0.0000

Table 4.22: Number of latent factors (q) used by the mixForest with r = 16 for the
pen-based handwritten digits data.

q Frequency

10 30

of randomly selected features (r) and the ensemble size (K, to a lesser extent).

The ensemble size has to be large enough for the OOB error to converge, signifying

stability in the prediction results, but small enough to avoid large computation times.
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In the data analysis and illustrations section, the evidence shows that OOB error

converges after only 15 to 30 classifiers are added to a mixForest. The real issue is

choosing r.

For different values of r, mixForests produce a wide range of OOB errors. The

issue is that the pattern in the OOB error rates isn’t predictable by the magnitude of

r. Thus, fitting p mixForests is necessary to find the one which will perform the best.

Even so, for a single set of data, it is possible that more than one ’sweet spot’ exists,

which makes the selection of r more difficult. The saving grace of the process is that

the OOB errors accurately predicted the test errors. For the forest types mapping

data with p = 27, a value of r = 14 performed the best. For the ionosphere data with

p = 34, a value of r = 25 performed the best. For the pen-based handwritten digits

recognition data with p = 16, a value of r = 16 performed the best. Empirically, it

is difficult to maintain a default value of r, that might work in general practice.

Finally, the mixForest method was successful in reducing the dimension of the

data. In the case of the forest types mapping data , the number of features is p = 27

and the most accurate mixForest (r = 14) was comprised mainly of classifiers using

q = 9 or less latent factors. In the case of the ionosphere data, the number of features

is p = 34 and the most accurate mixForest (r = 25) was comprised of classifiers with

q ≤ 15 latent variables, though 78% of the classifiers used q = 2 latent variables.

In the case of the pen-based handwritten digit recognition data with p = 16, the

most accurate mixForest (r = 16) was made only of classifiers using q = 10 latent

variables.
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Chapter 5

Conclusions

In this thesis, two types of mixForests were used to analyze three datasets each.

The first is a mixForest based on the family of GPCMs and is applicable to lower

dimensional data. The second is a mixForest based on the family of PGMMs and is

applicable to the higher dimensional case. Let these be known as type I and type II

mixForests, respectively. In both mixForest cases, computation time is significantly

greater than for MDA. Arguably, the mixForests performed at least as well as MDA,

with the caveat being the correct selection of the only real tuning parameter (r).

It was shown that the ensemble size K does not affect inference as long as K

is chosen large enough that the OOB error sequence for the mixForest stabilizes.

However, the selection of the number of randomly selected features, r, is critical to

the performance of the mixForest. While OOB error proved to be a surprisingly

good predictor of the final test errors, it still proved to be problematic to choose

the value of r which always performed the best. Thus, it is possible to generate a
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mixForest which will not perform as well as the optimal choice, though the difference

is marginal.

The real justification for the extra computation time, in the cases of marginal

performance increase or decrease, is the added inferential advantage that mixForests

provide. Firstly, OOB error estimates provide an unbiased estimator for test error,

which can be calculated during the generation of the mixForest. Secondly, variable

importance is easily deduced from simple permutations of the data. Data reduction

can be performed easily based on these scores for both types of mixForests, though

the type II mixForest has an added advantage since dimensional reduction is a natural

by product of factor analyzers. While it was not demonstrated herein, mixForests

handle missing data easily since the missing values do not have to be imputed. Since

each classifier in the mixForest is generated from a random selection of features,

when a value is missing in the data, a consensus amongst the classifiers which do

not use the missing feature can still be achieved. Performance would then depend

on the importance of the missing feature. Future work will be needed to study this

phenomenon, including the impact of missing data when calculating the OOB error

estimate.

For the type II mixForest, the fitting procedure required numerous models to

be fitted for each bootstrap replicate, based on a range of values for G and q, as

well as all the model types in the PGMM family of models. This required a great

deal of extra computation time, though in the final mixForest the chosen classifiers

exhibited very little diversity in terms of model type and number of latent factors (q).

While type II mixForests require far fewer classifiers before the OOB error sequence
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stabilizes, computation time can still be saved with a precursory analysis of the latent

structure so that a smaller range of q is tried.

There are a number of possibilities for future work. This includes the develop-

ment of new types of mixForests. The FMM literature is rich with mixtures based

on many different probabilistic structures. Each of these can lead to a new type of

mixForest. In addition to this, a heterogeneous mixForest is also possible, where the

classifiers can be fitted using a variety of base learning algorithms. In the heteroge-

nous mixForest, a number of different model types would be fitted for each bootstrap

replicate and the best one would be chosen by a model selection criterion such as the

BIC.

Another possibility for future work is the development of an algorithm that can

self-select the number of randomly selected features (r). Classifiers can be added to

this type of self-selecting mixForest based on an overall decrease in the OOB error. In

this way, an optimal value for r can be chosen. The end result would be a mixForest

using classifiers with a variety of values for r, with the most critical value(s) of r

having a greater frequency in the mixForest.

As a final note, there is one data analysis that appears to be quite significant.

With the exception of one single dataset, MDA produced test errors which can be

considered to be reasonably small. However, for the forest types mapping data MDA

produced a test error of 27.62%. When mixForests were applied to this data, the

test error decreased to 8.57%. In fact, there was a wide range of values for r which

produced mixForests which also provided significant decreases in test error when

compared to MDA. It is a definite possibility that in cases when MDA does not
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perform well, mixForests will provide significant improvements.
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Appendix A

Tables for Ionosphere Data

Tables for the ionosphere data are provided here as Tables A.1 to A.6.
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Table A.1: OOB errors for the ionosphere data with r = 1, . . . , 17 and K = 50.

# of Random Features OOB Error

1 0.3679

2 0.2903

3 0.2643

4 0.2366

5 0.1835

6 0.1577

7 0.1661

8 0.1183

9 0.1223

10 0.1547

11 0.1151

12 0.1111

13 0.1434

14 0.1505

15 0.1685

16 0.1547

17 0.1685

110



Ph.D. Thesis - Muz Mallo McMaster - Mathematics and Statistics

Table A.2: OOB errors for the ionosphere data with r = 18, . . . , 33 and K = 50.

# of Random Features OOB Error

18 0.1685

19 0.1475

20 0.1750

21 0.1788

22 0.1398

23 0.1505

24 0.1864

25 0.1286

26 0.1357

27 0.1470

28 0.1720

29 0.1475

30 0.1685

31 0.1393

32 0.1821

33 0.1536
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Table A.3: Part 1: sorted OOB errors for the ionosphere data.

# of Random Features OOB Error

12 0.1111

11 0.1151

8 0.1183

9 0.1223

25 0.1286

26 0.1357

31 0.1393

22 0.1398

13 0.1434

27 0.1470

19 0.1475

29 0.1475

14 0.1505

23 0.1505

33 0.1536

10 0.1547

16 0.1547
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Table A.4: Part 2: sorted OOB errors for the ionosphere data.

# of Random Features OOB Error

6 0.1577

7 0.1661

15 0.1685

17 0.1685

18 0.1685

30 0.1685

28 0.1720

20 0.1750

21 0.1788

32 0.1821

5 0.1835

24 0.1864

4 0.2366

3 0.2643

2 0.2903

1 0.3679
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Table A.5: Part 1: Ionosphere data variable importance for mixForest with r = 25
and K = 50.

Variable Raw Score Z Score P Value

2 5.81 3.06 0.0022

1 5.88 2.42 0.0156

8 5.75 1.94 0.0519

4 4.25 1.78 0.0746

7 6.98 1.75 0.0804

10 4.52 1.72 0.0860

16 1.55 1.39 0.1652

6 3.29 1.22 0.2220

20 1.86 1.11 0.2679

32 1.31 0.83 0.4062

13 3.10 0.77 0.4398

24 1.85 0.68 0.4944

30 1.51 0.64 0.5245

12 1.02 0.62 0.5332

11 1.88 0.61 0.5430

9 1.98 0.58 0.5625

26 3.00 0.57 0.5677
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Table A.6: Part 2: Ionosphere data variable importance for mixForest with r = 25
and K = 50.

Variable Raw Score Z Score P Value

22 0.66 0.47 0.6383

28 5.17 0.44 0.6589

27 0.79 0.42 0.6709

25 0.33 0.38 0.7003

3 0.90 0.38 0.7068

21 0.28 0.31 0.7590

18 0.27 0.30 0.7617

5 0.43 0.29 0.7709

33 0.20 0.28 0.7758

17 0.18 0.23 0.8162

23 0.18 0.23 0.8202

19 0.13 0.22 0.8244

14 0.12 0.20 0.8454

15 0.10 0.13 0.8935

29 0.17 0.10 0.9171

31 -0.09 -0.17 0.8628
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