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Abstract

In this thesis, we apply stochastic control methodology to analyze the trading of stocks and futures
dynamically. The trader’s quest for profits is formulated as an optimal control problem with finite
horizon, where the objective is to maximize the expected utility of wealth at the end of the horizon,
and the optimized trading strategy is given by the optimal control. Based on various well-established
stochastic models of these financial securities, we derive the stochastic differential equations that describe
the price dynamics in each model, formulate the utility maximization problems, analyze the associated
Hamilton-Jacobi-Bellman (HJB) equations, and solve for the trading strategies in closed form. Numerical
examples based on securities traded in the US markets are presented for all models.

Specifically, we investigate pairs trading with cointegrated stock pairs under the Duan-Pliska model,
and with volatility index futures where the spot index is modeled as a Central Tendency Ornstein-
Uhlenbeck process. We also study optimal trading of commodity futures under the two-factor Schwartz
model, and under a more general n-factor Cortazar and Naranjo model. Given the closed-form expressions
for the optimal strategies, the value functions, and the wealth processes, we see directly the dependence of
the optimal positions on different model parameters, and therefore we can quantify the impact of varying
parameter and coefficient values. Qualitatively, we will see, in line with intuition, that the optimal
positions in general decrease in magnitude as the volatilities in the underlying factors increase. In all
cases we find that the magnitudes of the optimal positions are inversely proportional to the degree of risk
aversion, as expected.

In the pairs trading cases where two stocks or two futures contracts are traded, the optimal positions
are of opposite signs, corresponding to a long and a short position, where the quantities are given explicitly
by the closed-form formulae. Based on parameters calibrated from VIX futures historical data, we find
that traders should take bigger positions in the long end of the futures curve. In the WTI oil futures
trading example, we see that the optimal positions are insensitive to time to maturity. We also find that
the certainty equivalent for trading two contracts simultaneously is significantly greater than that derived
from trading only a single contract, regardless of the maturity of either of the single contract. Analogous
result holds for the more general n-factor model as well.
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Optimal trading of financial securities has long been a central area of finance, in practice as well as
in research. With the availability of a wide array of assets, such as stocks, bonds, currency, futures, and
more recently, cryptocurrencies, participants in the financial markets trade these securities in order to
maximize their economic benefits. Regardless of the asset class, once chosen, the three key questions
are: 1. whether to buy or sell, 2. how many shares or how many contracts, and 3. when to initiate
and subsequently unwind the trade, that is, the timing of the entry and exit. This thesis aims to answer
these questions by taking a quantitative approach. While the mathematical techniques and the financial
models considered in this thesis are well-established, the novelty of this work is the derivation of the
optimal trading strategies in closed form using tools from stochastic control theory.

To the extent that these well-documented models capture the realistic dynamics of these securities,
the strategies given by the closed-form formulae are optimal with respect to the trader’s risk preference.
The main contribution of this thesis is the formulation of a quantitative approach to trading that can be
applied in practice, which is illustrated by concrete examples throughout.

The relatively basic, and non-mathematical, approaches to trading based on technical indicators and
charting have been in existence since the beginning of the establishment of stock markets [47]. While
their effectiveness were examined by studies such as [7, 89], technical analysis nonetheless forms the basis
of trading strategies for a certain segment of market participants. On the other hand, academic research
in the finance departments traditionally has considered trading in the context of investing and asset
allocation, and the theory developed therein is the foundation for quantitative hedge funds whose goal
is to generate superior risk-adjusted return, the so-called alpha [20]. Another major strand of studies
in trading that originates from computer science departments focuses on generation of trading signals
through machine learning techniques such as neural networks [46]. Thanks to the availability of market
data and computing power, nonlinear statistical models have been developed in order to exploit patterns
in time series data. While the main critique of the nonlinear models upon which these black-box trading
models are based is the lack of transparency in the relationship of the model parameters, the allure of the
ability of artificial intelligence to uncover patterns in large data sets and to generate profitable trading
signals continues to attract further research.

In contrast, the approach taken in this thesis originates from the area of mathematical finance, which
was essentially started by the Black-Scholes option pricing formula. Since their publication, no-arbitrage
models of various underlying securities have been extensively developed, mostly for the purpose for pricing
options and other derivatives. Among many others, [67] is a basic introduction to this field, while [23]
focuses on interest rate models. [35] and [106] survey jump diffusion models and describe methods to
price and hedge derivatives.

Given this wide array of financial models, this thesis attempts to exploit these models, not for pricing
derivatives, but for trading the securities. Robert Merton, in addition to his significant contribution to
option pricing, applied stochastic control theory to finance, and determined explicitly the consumption
and investment rules for an agent with a hyperbolic absolute risk aversion (HARA) utility function,
under basic Brownian motion models [92]. In this thesis, we follow the same approach: we formulate
optimization problems of finite horizons, and assume the trader fixes a pre-determined future date as
the terminal time for optimization, and assume the trader measures economic benefits through a utility
function, parametrized by the trader’s risk aversion coefficient. In practice, while the finite horizon
assumption is a natural one for futures trading, namely, the horizon should be the maturity of the
earliest-to-expire contract, for stocks trading, it should be the time at which the investor must liquidate
her positions. For traders who cannot maintain overnight positions, the daily market closing time is
the correct specification of their horizon; while for long-term retail investors, it is reasonable to set the
horizon to the date of retirement. Infinite horizon is appropriate for traders who have no limitations on
when their positions have to be liquidated; however this results in a slightly different control problem
with other technical difficulties, which is outside of the scope of this thesis.

For more detailed introductions to Merton’s problem and solution, and stochastic control theory in
general, we refer to [45, 57, 96], and to the lecture notes [105] which provide a clear introduction, and
to [58] for a detailed and technical overview of the theory. When the market is frictionless, and consists
only of a bond paying a fixed interest rate and a stock driven by geometric Brownian motion, Merton
showed that the optimal strategy is to keep a constant proportion of wealth in the stock. To achieve this
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constant proportion requires constant rebalancing, which is similar to delta-hedging the options within
the Black-Scholes framework.

Since Merton’s work, there has been a large literature incorporating more realistic features and re-
fining the basic model along different angles. [41] was one of the first papers that considered portfolio
optimization in the presence of transaction costs. [117] provided numerical scheme for an investment
and consumption problem with transaction costs. Many other features, for examples capital tax gains
as considered in [74], default risks as in [69], counter-party risks as in [100], or fixed-income portfolios
as in [122], have been explored. [98] summarized theoretical results when the assets are modeled by
jump-diffusions. Recently, among the large number of papers that investigated limit order books, the
same methodologies are again applied extensively; see the seminal papers [9] and [64], and a recent paper
by [1] and the references therein which uses a mean-reverting process to model the underlying price.

These studies illustrate the wide range of realistic financial problems in which stochastic control theory
is applicable. In this thesis, we contribute by adding to the literature a novel application of the theory,
namely, finding optimal strategies to dynamically trade financial securities. Briefly, the steps consist of 1.
deriving the stochastic differential equations (SDEs) that describe the dynamics of the securities under
consideration; 2. formulating the value function, which is the maximized expected utility of terminal
time t = T wealth, as a function of time t, of amount of wealth at time t, and of the levels of the state
variables at time t; 3. obtaining a candidate solution by solving the associated Hamilton-Jacobi-Bellman
(HJB) equation; and finally, 4. checking the conditions to verify that the candidate solution is equal to
the value function.

Exponential utility functions are assumed throughout due to their tractability: it is well-known that
the factoring out of the wealth variable reduces the dimension of the equation by one. Another con-
sequence of the separation of wealth variable is the independence of the trading strategy on the level
of wealth. This feature effectively addresses the question of the relationship between risk aversion and
margin requirements, for both stocks and futures, within our framework. Margin is a good-faith deposit,
or an amount of capital, that the trader needs to post to initiate a trade. To avoid margin calls, we would
argue that posting a larger margin, that is assuming a larger initial wealth, would suffice, which will not
affect the choice of the risk aversion coefficient γ.

Without loss of generality, we can assume that any margin requirement change takes place prior to
time t = 0. If the margin requirement is increased, the trader would only need to increase the initial
wealth endowment, without adjusting γ, since γ only enters our control problems through the objective
function, that is, the maximization of terminal wealth at time T . Whatever happens before time zero
should not affect the choice of γ. If the trader is more directly concerned about margin calls, for example
if the goal is to minimize the probability of violating the margin requirement (over the entire optimization
horizon, or, only at time T ), then a different objective function should be formulated, which will require
totally different solution methodology, and is outside the scope of this thesis. Hence, within our models,
increasing margin requirement increases initial wealth w. Since our solutions lead to optimal strategies
that are independent of wealth, margin changes will not affect our results.

We now preview the coming chapters and highlight the main contributions. In Chapter 2, we apply
these steps to the Duan-Pliska [44] model where the stocks are cointegrated. Cointegration is a statistical
concept that quantifies the tendency of different time series to move in tandem. In this chapter, the focus
is on the time series of different, but related (for example, in the same sector) stock prices. The idea
of pairs trading in the stock market has been well-known, and well-applied, for a long time, where the
objective, loosely speaking in qualitative terms, is to execute trades when a pair of related stocks diverge
from their usual relationship, in the hope that the mean reverting process that drives the drifts in both
stocks will revert back to its equilibrium level. The novelty of this chapter, as published in [116], is the
application of stochastic control theory in the pairs trading context, which results in a closed-form formula
that precisely prescribes the exact positions to take, dynamically as a function of time and stock prices.
We then furthermore add correlation into the stocks’ dynamics in a later section, which complicates the
formula but makes the model more realistic.

We continue the study of optimal trading in Chapter 3, and apply the same methodology in volatility
index futures, when the spot index is modeled as a Central Tendency Ornstein-Uhlenbeck process (CTOU)
[91]. In contrast to stocks, futures contracts on the same underlying, but of different maturities, typically
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exhibit a pattern, commonly referred to as the term structure. For example, for futures on a volatility
index such as VIX, the contracts of longer maturities typically have lower volatility, as compared to those
of shorter maturities, and the decrease is monotonic. Furthermore, since the VIX index itself is based on
the implied volatilities of S&P options [31], as the stock market cycles through bull and bear markets, the
VIX index exhibits mean-reversion, a property from which the VIX futures will obviously inherit. For
trading strategies to be effective, they clearly have to be based on models such as CTOU that captures
these various features, and we contribute to the literature by presenting the optimal trading strategy in
a closed-form formula for trading volatility index futures.

After studying futures on a volatility index, we next consider commodity futures under the well-known
two-factor Schwartz model [107] in Chapter 4. In contrast to models for volatility indices, models for the
spot prices of commodities typically include convenience yield, which reflects the value of direct access
minus the cost of carry, and can be interpreted as the dividend yield for holding the physical commodity. It
is a benefit to the holder of the spot commodity, but not to the owner of the futures contract; this benefit
is absent, for example, in the VIX futures case where the underlying is not a physical, or even tradable,
asset. Furthermore, mean-reversion in the spot commodity price processes is not relevant under the
Schwartz model. In light of these differences, we again apply the same steps, and the main contribution
of this study is a closed-form formula for the optimal strategy under the Schwartz model.

All of the previous chapters are based on stochastic models driven by two factors. The natural next
step is to consider a more general n-factor model. They are by definition more complex than their two
factor counterparts, and the complication is necessary since these fit the futures term structures better,
as described in [37]. We therefore study optimal trading under the more general n-factor Cortazar and
Naranjo model in Chapter 5. The main contributions from extending the closed-form trading strategies
to multi-factor models is two-fold: we will show how the CTOU model, and Schwartz model, are nested
under this general model when n = 2, and we present a tractable formula for the trading strategy, under
a sufficiently realistic model, that fits the observed term structures.

In all chapters, we proved that the candidate solution is equal the value function, based on a standard
verification theorem presented in Appendix A. Essentially, the theorem requires a uniform integrability
condition to hold, and will be proved in the various chapters, under different models. In the cointegrated
and correlated stocks pairs trading case in Chapter 2, we derived the sufficient conditions, in the form
of inequalities, for uniform integrability to hold. We will see that these inequalities are independent of
the risk aversion parameter, which obviates any restriction on the arbitrarily chosen parameter. On the
other hand, the uniform integrability condition holds unconditionally for the futures trading cases in
Chapter 3-5.

In general, we find that the optimal positions decrease in magnitude as the volatilities in the underlying
factors increase, which is in agreement with a risk-averse trader’s intuition. In all cases, we find that the
magnitudes of the optimal positions are inversely proportional to the degree of risk aversion. Using the
calibrated, hence realistic, model parameters, for all the 2-factor models, the positions are shown to have
opposite signs, corresponding to one long and one short position.

For the futures trading applications, we find that the certainty equivalent for trading two contracts
simultaneously is significantly greater than that derived from trading only a single contract, regardless of
the maturity of either of the single contract. Similar result extends to the more general n-factor model.
Furthermore, it will be shown, in general, for the futures trading models, the wealth processes controlled
by the optimal strategies are submartingales with a positive drift.

In Chapter 3, based on parameters calibrated from VIX futures historical data, we find that traders
should take bigger positions in the long end of the futures curve, in line with the monotonic decrease
in the volatility term structure. It is an open question whether this can actually be verified in practice.
This investigation would first entail collection of firm or individual-specific open interests and volume data
on VIX futures; the emergence of dark pools certainly complicates the information content of publicly
available trading data. Second of all, data for which the individual only trades single maturities would be
filtered out. Moreover, even with such data, taking bigger positions on maturities with lower volatilities
requires the subject being risk-averse and rational (and therefore follows optimal strategies specified by
the solution of the control problem in this thesis), which is itself questionable and has attracted many
studies in the area of behavioral finance and economics. We will leave empirical investigations along this
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line to future studies.
In Chapter 4, based on parameters calibrated from WTI crude oil futures data, we see that the optimal

positions change little with respect to maturities; in other words they are insensitive to time to maturity.
The optimal strategies are independent of the optimization horizon for all futures trading cases, but not
for the cointegrated stock case.

In the models with underlying hidden processes (spot process coupled with the stochastic convenience
yield in Schwartz model, stochastic equilibrium in CTOU model, and all the factors in the n-factor
model), it is important to note that the optimal holdings are independent of the hidden processes,
thereby eliminating the need to estimate the state variables. Moreover, as noted the optimal holdings
are also independent of the optimization horizon, which is chosen arbitrarily. These findings greatly
facilitate the practical implementation of the strategies, as illustrated by the numerical examples given
in the corresponding chapters.

While closed-form solutions to control problems are relatively rare, a class of solvable problems, in
addition to Merton’s, is the so-called linear regulator or linear quadratic problems. They are often given
as textbook examples (see for example in pg.233 in Chapter 11 of [96], or pg.165 of Chapter 6 of [57], or
Chapter 6 in [126]), which feature a linear quadratic objective function, and result in optimal controls and
value functions being characterized by two coupled backward stochastic differential equations (BSDE)
[13]. However, we are the first to solve a portfolio optimization problem for a wide, yet specialized,
class of futures models. This class of futures models is characterized by their time-dependent drifts and
volatilities for the log futures price processes which are Gaussian, and this class includes the futures price
processes from models such as CTOU, Schwartz and Cortazar-Naranjo as special cases, to be considered
in this thesis. This class of futures models are readily estimated using Kalman filtering. The optimal
trading strategy for futures of this class is readily obtained in closed form; moreover, no restrictions on
the values of parameters and the horizon is necessary. The optimized wealth processes for this class
of futures models are submartingales. Based on parameters estimated from actual data, the certainty
equivalents from trading more maturities are higher than that from trading fewer in this class of futures
models.

1.1 Student’s Contribution

For the paper with Agnès Tourin [116] on pairs trading cointegrated stocks, I formulated the control
problem and derived the HJB equation. I coded a numerical scheme based on finite-difference in Matlab.
Agnès observed that the log substitutions led to a closed-form solution, which obviated the need for
numerical calculations. She derived the closed-form solution and stated the verification theorem in the
original paper, but the details of the proof was not published. However, the proof in this thesis was
completely derived by myself, as suggested by Traian. For the paper, I furthermore collected the data
and completed the numerical example.

After the successful publication of [116], I saw the need for a different model for the futures market,
due to the presence of term structure. I formulated the problem based on Schwartz’s model and derived
the closed-form solution, and proceeded to work on the paper, eventually published as [82], with Tim
Leung. I originally tested the solution in both commodity and volatility index futures markets. However,
Tim suggested that these are two different markets so I should treat them separately. He guided me
through my writing and my presentation of the results, such as what graphs to plot, how the optimal
wealth process should be derived, and the implications of the optimal strategies.

For the paper on VIX Futures Trading under CTOU with Tim Leung [81], Tim pointed me to the
CTOU model, which is mean-reverting so it is a better model for volatility indices. Under his guidance,
I applied the same methodology and completed the whole paper by myself.

For the last chapter on the generalization to a n-factor model, Tim pointed me to the work of [37].
I examined the work of [87] and [65], derived the equations in matrix form, and the solution. Traian
suggested that I should investigate trading m < n contracts under a n factor model. I completed the
chapter myself.

5



Chapter 2

Pairs Trading Cointegrated Equities
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In this chapter, as published in [116], we develop an optimal stochastic control model for analyzing
dynamic pairs trading strategies, where the asset price processes are cointegrated. Here we consider a
portfolio composed of a risk-free asset and two cointegrated and correlated stocks. As in the classic
Merton’s problem, the goal is to determine the trading policies that maximize the expected utility of
terminal wealth.

The statistical concept of cointegration was initiated by Engle and Granger, as described in [53], who
considered security price processes which are not themselves mean-reverting when considered in isolation,
but a linear combination of them are. From a statistical perspective, the goal is to select a combination of
securities that exhibits mean-reversion, which would have been more difficult or impossible by considering
a single security alone. Empirically, the persistence of cointegration in the US stock market has been
studied in [32]. The related statistical methodologies, such as detection of cointegration, and parameter
estimation, are the tools behind pairs trading.

Pairs trading involves two, usually related, securities, and the trader executes trades upon detection
of deviations from the pairs’ equilibrium level. By taking opposite positions in the securities, the trader
hopes to maintain market-neutrality so that in aggregate the portfolio is immune to systemic market
shocks, and to generate profits regardless of the general market trend. While [59], or more recently [24],
among many others, studied the empirical profitability in the finance area, mathematical formulation of
the problem have been given in [50], [95], and [101]. A survey of the literature on statistical approaches
to pairs trading is given in [72], and a non-technical introduction is given in [120].

Our work was inspired by [95] who applied the optimal stochastic control approach to a simplified
model of optimal pairs trading. In their model, they only allow positions that are short one stock and
long the other, in equal dollar amounts. This is not realistic since in any stock market, the trader is not
restricted to buy or sell equal amounts of different stocks: any participant can buy or sell any quantity
(up to the margin requirement, of course). We use a similar cointegration model but we relax the above
constraint to mirror reality more closely, and allow strategies with arbitrary amounts in each stock.
Mathematically, this results in expanding the set of admissible strategies. The model for the cointegrated
stocks is taken from [44] who obtain it as the diffusion limit of a discrete time cointegration model.
While their focus is to value options on cointegrated assets, our goal is to compute optimal allocations
directly on the cointegrated assets. Consequently, we work with the historical probability measure, not
a risk-neutral measure. The parameters in our cointegration model can be estimated as in [44], by using
a two-step [53] method coupled with a Dicker–Fuller test. It is worth noting that, alternately, a filtering
method could be used as in [50].

For the exponential utility function and for a zero risk-free interest rate, we are able to reduce the
problem to a one-dimensional linear parabolic partial differential equation (PDE); we compute explicitly
the optimal the value function which turns out to be smooth. As in the standard Merton problem,
the amounts invested in each stock are inversely proportional to the risk aversion coefficient. From a
practitioner’s point of view, the investor must pick a particular value for the risk aversion coefficient,
since this quality is investor specific, and the quantification of which, given by the coefficient, is different
based on the individual’s risk appetite. For instance, cutting in half the risk aversion level is equivalent to
investing twice as much capital in each stock, as can be seen in the explicit formula given later. Besides,
at the optimum, the amounts invested in each stock do not depend on the values of the individual stocks,
but rather on a mean reverting process which is a linear combination of the stock prices.

There is a similar paper by [18] who consider a Merton investment problem with a mean reverting
asset price. They derive an explicit solution for the value function and the optimal trading strategies
by reducing the model to a one-dimensional linear parabolic PDE. Although our application is different
than theirs, our calculations and proofs are similar.

Since the publication of [116], which focused on two stocks, the generalization to the trading of a
larger number of stocks was carried out in [87] and [29], and more recently in [65]. Based on similar
frameworks as ours, [65] generalized the continuous-time control problem to higher dimensions, and
furthermore solved the problem in a sequence of optimally chosen trading times. [29] and [87] provided
closed-form formula for optimal holdings of a basket of securities when they are cointegrated. While [29]
focused on stocks in Nasdaq, the authors in [87] focused on Bitcoins, compared their strategy to different
ones derived outside of control theory, and conducted out-of-sample tests. [56] studied the trading of

7
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cryptocurrency further, and formulated optimal trading rules based on machine-learning predictions.
There has been many other development on the application of stochastic control theory to pairs and

basket trading of multiple cointegrated securities. In [28], the authors formulated a control problem
for stock market participants seeking to liquidate a large basket of assets, derived and solved the HJB
equation, and took price impact into account. [30] examined a mean-variance portfolio optimization
problem where the assets are cointegrated, and the cointegration parameters vary in different regimes.
[94] applied ideas of pairs trading and stochastic control methodology in operational management to
determine relative operational performance between firms. [52] studied Lévy-driven Ornstein-Uhlenbeck
processes with regime-switching in the context of high-frequency pairs trading – their complicated model
captured many realistic aspects in the market, but their strategy is based on a regime classification
algorithm, outside the theory of stochastic control.

2.1 Formulation of the optimal stochastic control model

We essentially use for the co-integrated stocks the model derived in [44] as the diffusion limit of a discrete-

time model, in the case when there are only two assets. We fix a time horizon T > 0. We denote by S
(1)
t

and S
(2)
t the co-integrated stock prices for t ∈ [0, T ]. S

(1)
t , S

(2)
t satisfy the stochastic differential equations

d logS
(1)
t =

(
µ1 −

σ2
1

2
+ δzt

)
dt+ σ1dB

(1)
t

d logS
(2)
t =

(
µ2 −

σ2
2

2

)
dt+ σ2dB

(2)
t

where
(
B

(1)
t , B

(2)
t

)
is a 2-dimensional Brownian motion defined on a filtered probability space (Ω,Ft,P),

the underlying filtration is Ft = σ((B
(1)
s , B

(2)
s ) : 0 ≤ s ≤ t) and the co-integrating vector zt is defined by

zt = a+ logS
(1)
t + β logS

(2)
t . (2.1)

The main differences with [44] are the following: first of all, we work under the historical probability
measure instead of the risk-neutral probability measure; secondly, for the sake of simplicity, the co-
integration term zt appears only in the drift of the first stock instead of affecting the drifts of the two stocks
as in [44]. However, our results can be easily generalized to the fully symmetric case. Thirdly, we omit
the deterministic linear trend in our definition of zt. This only affects the estimation of the coefficients
in the dynamics of zt and our results are readily applicable in the case when a linear deterministic trend
is present.
Furthermore, as in [44], we can see that zt is mean-reverting

dzt =

(
µ1 −

σ2
1

2
+ δzt

)
dt+ σ1dB

(1)
t + β

(
µ2 −

σ2
2

2

)
dt+ βσ2dB

(2)
t

=

(
µ1 −

σ2
1

2
+ βµ2 − β

σ2
2

2
+ δzt

)
dt+ σ1dB

(1)
t + βσ2dB

(2)
t

= α(η − zt)dt+ σβdBt

where α = −δ is the speed of mean reversion, σβ =
√
σ2

1 + β2σ2
2 ,

Bt =
σ1

σβ
B

(1)
t + β

σ2

σβ
B

(2)
t

is a Brownian motion process adapted to Ft, and

η = −1

δ

(
µ1 −

σ2
1

2
+ β

(
µ2 −

σ2
2

2

))

8
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is the equilibrium level.
We also assume that there is a risk-free asset such as a money market account. In this chapter, we

set the risk-free interest rate to 0 because this allows us to derive a closed-form solution by factoring out
the wealth variable. This can be done by a change of numeraire.

Next, we introduce the variable Ws representing the value of the investor’s portfolio at time s. Note
that we do not require the wealth Ws to be nonnegative. The investor starts at time t with an initial
wealth Wt = w, in the money market account. Then she invests, at every time s ∈ [t, T ], in both the

risk-free money market account and the two stocks. We denote by π
(1)
s , π

(2)
s the number of shares held

respectively in the first and second stocks at time s. We only consider self-financing strategies and hence,
the evolution of the wealth variable is given by

dWs = π(1)
s dS(1)

s + π(2)
s dS(2)

s .

The value of the portfolio Ws satisfies the SDE

dWs = π(1)
s (µ1 + δzs)S

(1)
s ds+ π(2)

s µ2S
(2)
s ds+ π(1)

s σ1S
(1)
s dB(1)

s + π(2)
s σ2S

(2)
s dB(2)

s .

Finally, the dynamics of the state variables Ws, S
(1)
s , S

(2)
s are given by the following controlled system

of SDE

dWs = π(1)
s (µ1+δzs)S

(1)
s ds+π(2)

s µ2S
(2)
s ds+π(1)

s σ1S
(1)
s dB(1)

s +π(2)
s σ2S

(2)
s dB(2)

s , (2.2)

dS(1)
s = (µ1+δzs)S

(1)
s dt+ σ1S

(1)
s dB(1)

s , (2.3)

dS(2)
s = µ2S

(2)
s ds+ σ2S

(2)
s dB(2)

s , (2.4)

Wt = w, S
(1)
t = s1, S

(2)
t = s2, (2.5)

where zt is defined in (2.1).
A pair of controls (π(1), π(2)) is said to be admissible if π(1), π(2) are real-valued, progressively measur-

able, are such that, (2.2),(2.3),(2.4),(2.5) define a unique solution (Ws, S
(1)
s , S

(2)
s ) for every time s ∈ [0, T ]

and (π(1), π(2), S(1), S(2)) satisfy the integrability condition

Et
∫ T

t

(π(1)
s S(1)

s )2 + (π(2)
s S(2)

s )2ds < +∞. (2.6)

where Et denote the expectation operator, conditional on the filtration Ft at time t.
We denote the set of admissible controls at the initial time of investment t, by At. Next, we define

the value function u(t, w, s1, s2) of the following backward dynamic optimization problem: the investor

seeks an admissible strategy (π
(1)
s , π

(2)
s ) for every s ∈ [t, T ), that maximizes the utility he derives from

wealth at time T , that is,

V (t, w, s1, s2) = sup
(π1,π2)∈At

Et[U(WT )]. (2.7)

Furthermore, in this chapter, we only treat the case of the exponential utility function, i.e.

U(w) = −e−γw,

where γ > 0 denotes the constant risk aversion coefficient.
One could alternately use the power function U(w) = 1

γ c
γ as in [18]. However, for this model, we are

unable to carry out the calculations explicitly and derive a solution in closed form. As we will see in the
next section, the exponential utility function allows us to factor out the wealth variable and reduce the
problem to a two-dimensional PDE. We simply cannot make the same ansatz for the power function.

9
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2.2 The Hamilton-Jacobi-Bellman equation and its solution

Since we do not know a priori the regularity of the value function of the stochastic control problem, we
only proceed formally with the hope of obtaining a smooth candidate solution, denoted by u(t, w, s1, s2),
for the stochastic control problem. We will verify later that our candidate solution coincides with the
solution of the stochastic control problem, which is the value function. We use the following short hand
notations for partial derivatives

ut =
∂u

∂t
, uw =

∂u

∂w
, uww =

∂2u

∂w2
,

u1 =
∂u

∂s1
, u11 =

∂2u

∂s2
1

, u2 =
∂u

∂s2
, u22 =

∂2u

∂s2
2

,

uw1 =
∂2u

∂w∂s1
, uw2 =

∂2u

∂w∂s2
, u12 =

∂2u

∂s1∂s2
.

We expect the candidate solution defined above to satisfy the following HJB partial differential equation:

ut+ sup
π1,π2

[
(π1(µ1 + δz)s1 + π2µ2s2)uw + (µ1 + δz)s1u1

+ µ2s2u2 + π1σ
2
1s

2
1uw1 + π2σ

2
2s

2
2uw2 (2.8)

+
1

2
(π2

1σ
2
1s

2
1 + π2

2σ
2
2s

2
2)uww +

1

2
σ2

1s
2
1u11 +

1

2
σ2

2s
2
2u22

]
= 0,

for all 0 ≤ t < T,w, 0 ≤ s1, 0 ≤ s2, together with the final condition

u(T,w, s1, s2) = U(w) = − exp(−γw). (2.9)

We introduce the linear operator L(π1,π2) that will be needed in order to apply the verification theorem
in Appendix A:

L(π1,π2)u(t, w, s1, s2) = (π1(µ1 + δz)s1 + π2µ2s2)uw

+ (µ1 + δz)s1u1 + µ2s2u2 + π1σ
2
1s

2
1uw1 + π2σ

2
2s

2
2uw2

+
1

2
(π2

1σ
2
1s

2
1 + π2

2σ
2
2s

2
2)uww +

1

2
σ2

1s
2
1u11 +

1

2
σ2

2s
2
2u22.

The HJB equation can be written compactly as

ut + sup
π1,π2

L(π1,π2)u = 0.

We then proceed by making two classic changes of variable: we first apply the standard logarithmic
transformation and secondly, we reduce the number of dimensions in the HJB equation by factoring out
the wealth variable. To this end, we let s1 = ex, s2 = ey and u(t, w, s1, s2) = −e−γwg(t, x, y). Then g
solves the transformed HJB equation

−gt + sup
π1,π2

[
(π1(µ1 + δz)s1 + π2µ2s2)γg − (µ1 + δz)gx

− µ2gy + π1σ
2
1s1γgx + π2σ

2
2s2γgy

− 1

2
(π1)2σ2

1s
2
1γ

2g − 1

2
(π2)2σ2

2s
2
2γ

2g

− 1

2
σ2

1(gxx − gx)− 1

2
σ2

2(gyy − gy)
]

= 0, (2.10)

subject to

g(T, x, y) = 1. (2.11)

10
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We notice that the maximization over π1, π2 in (2.10) is achieved at

π∗1 =
(µ1 + δz)g + σ2

1gx
σ2

1s1γg
, (2.12)

π∗2 =
µ2g + σ2

2gy
σ2

2s2γg
. (2.13)

Substituting the formulae (2.12), (2.13) into the PDE (2.10), we obtain

gt =
1

2

(
(µ1 + δz)2

σ2
1

+
µ2

2

σ2
2

)
g +

σ2
1

2
gx +

σ2
2

2
gy

+
1

2

(
σ2

1g
2
x

g
+
σ2

2g
2
y

g

)
− 1

2

(
σ2

1gxx + σ2
2gyy

)
. (2.14)

Note that we can recover the HJB equation for the standard Merton problem (see [92]) in 2 dimensions
by setting δ = 0 in our model; in this well-known case, the value function is independent of the stocks
and the dollar amounts invested in each stock are constant. We recall below the closed-form formulae for
the value function and the dollar amounts corresponding to the particular case δ = 0.

g(t, x, y) = exp

(
− µ2

1

2σ2
1

(T − t)− µ2
2

2σ2
2

(T − t)
)
,

π∗1(t, x, y)s1 =
µ1

σ2
1γ
,

π∗2(t, x, y)s2 =
µ2

σ2
2γ
.

In the co-integrated case, the solution is no longer independent of the stocks. It essentially depends on
the value of the co-integration process z, rather than on the individual stocks. We can therefore reduce
(2.14) to a one dimensional equation in the variable

X = µ1 + δz = µ1 + δ(a+ x+ βy).

Furthermore, we combine this change of variable with a logarithmic transformation of the value function,
in order to get rid of the nonlinearity. Indeed, simple calculations show that the function Φ(t,X) =
− log(g(t, x, y)) solves the linear parabolic PDE

Φt = −1

2

(
X2

σ2
1

+
µ2

2

σ2
2

)
+

1

2
(σ2

1 + βσ2
2)(δΦX)− 1

2
(σ2

1 + β2σ2
2)
(
δ2ΦXX

)
(2.15)

for any real number X and time 0 ≤ t < T and satisfies the terminal condition

Φ(T,X) = 0. (2.16)

It is easy to see that Φ(t,X) = a(t)X2 + b(t)X + c(t) is an explicit solution of the linear PDE
(2.15),(2.16), where the coefficients a, b, c are given by

a(t) =
1

2

(T − t)
σ2

1

, (2.17)

b(t) = −1

4

(σ2
1 + βσ2

2)δ

σ2
1

(T − t)2, (2.18)

c(t) =
1

2

µ2
2

σ2
2

(T − t) +
1

4

(σ2
1 + β2σ2

2)δ2

σ2
1

(T − t)2 +

1

24

(σ2
1 + βσ2

2)2δ2

σ2
1

(T − t)3. (2.19)
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We also compute the optimal policies

π∗1s1 =
X

σ2
1γ

+
δ(−2a(t)X − b(t))

γ
,

π∗2s2 =
µ2

γσ2
2

+
δβ(−2a(t)X − b(t)

γ
.

After substituting for a(t), b(t) their expressions in (2.17),(2.18), we obtain the dollar amounts invested
in the two stocks as

π∗1s1 =
(µ1 + δz)

γσ2
1

−δ (µ1+δz)

γσ2
1

(T− t)+
1

4

δ2(σ2
1 +βσ2

2)

γσ2
1

(T− t)2, (2.20)

π∗2s2 =
µ2

γσ2
2

− βδ (µ1+δz)

γσ2
1

(T− t)+
1

4
β
δ2(σ2

1 +βσ2
2)

γσ2
1

(T− t)2. (2.21)

2.3 Verification Theorem

We must verify that the smooth candidate solution we derived in the previous section is indeed the value
function of the stochastic control problem. This can be achieved by proving a verification result, which
connects the HJB equation to the optimal control problem. The statement of the theorem and proof is
presented in Appendix A, Theorem 7. The next step then consists in checking that the assumptions of
the verification theorem are satisfied and we show that this is indeed the case, under certain conditions
on the parameters in the model.

The main assumption to verify is that the uniform integrability condition holds. The proof of this
fact follows along the lines of [18]. More precisely, we apply Lemma 4.3 in [18] to prove the exponential
integrability of the square of an Ornstein-Uhlenbeck process, and use it to derive some sufficient conditions
on the parameters of our model, under which the uniform integrability condition holds. First, we recall
the lemma in [18], adapted to the parameters here.

Lemma 1 (Benth-Karlsen, Lemma 4.3 in [18]). If λ is a constant such that

λ <
|δ|

2σ2
β(T − t)

,

Then

Et
[

exp

{
λ

∫ T

t

z2
udu

}]
<∞.

We then state our main result. It provides an explicit solution for the control problem, under some
conditions on the parameters.

Theorem 1. For some ε > 0, if

2(1 + ε)

(∣∣∣∣2δµ1

σ2
1

∣∣∣∣+

∣∣∣∣δ2 (2µ1 + βµ2)

σ2
1

∣∣∣∣T +

∣∣∣∣δ3
(
σ2

1 + βσ2
2

)
4σ2

1

∣∣∣∣T 2

)
≤ |δ|

2σ2
βT

, (2.22)

then the value function of the optimal stochastic problem is given by

V (t, w, s1, s2) = − exp(−γw) exp(−a(t)X2 − b(t)X − c(t)),

where
X = µ1 + δz = µ1 + δ(a+ log s1 + β log s2),

and the coefficients a(·), b(·), c(·) are given by (2.17),(2.18),(2.19). Furthermore, the optimal control pair
is given by (2.20),(2.21).
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The proof of Theorem 1 uses exactly the same arguments as in [18], and we are presenting it here.

Proof. The optimized wealth process W ∗t , that is, the wealth process following the optimal controls,
satisfies the SDE

dW ∗t = π
(1)∗
t (µ1 + δzt)S

(1)
t dt+ π

(2)∗
t µ2S

(2)
t dt+ π

(1)∗
t σ1S

(1)
t dB

(1)
t + π

(2)∗
t σ2S

(2)
t dB

(2)
t

= (a0(t) + a1(t)zt + a2(t)z2
t )dt+ (σ10(t) + σ11(t)zt)dB

(1)
t + (σ20(t) + σ21(t)zt)dB

(2)
t , (2.23)

where

a0(t) =
µ2

2σ
2
1 + µ2

1σ
2
2

γσ2
1σ

2
2

− δµ2
1 + βδµ1µ2

γσ2
1

(T − t) (2.24)

+
δ2µ1

(
σ2

1 + βσ2
2

)
+ βδ2µ2

(
σ2

1 + βσ2
2

)
4γσ2

1

(T − t)2, (2.25)

a1(t) =
2δµ1

γσ2
1

− δ2 (2µ1 + βµ2)

γσ2
1

(T − t) +
δ3
(
σ2

1 + βσ2
2

)
4γσ2

1

(T − t)2, (2.26)

a2(t) =
δ2(1− δ(T − t))

γσ2
1

σ10(t) =
µ1

γσ1
− δµ1

γσ1
(T − t) +

δ2
(
σ2

1 + βσ2
2

)
4γσ1

(T − t)2,

σ11(t) =
δ(1− δ(T − t))

γσ1
,

σ20(t) =
µ2

γσ2
− βδµ1

γσ1
(T − t) +

βδ2
(
σ2

1 + βσ2
2

)
4γσ1

(T − t)2,

σ21(t) =
δ2(T − t)σ2β

γσ2
1

.

Let ε > 0 be an arbitrary positive number. From the verification theorem in Appendix A, it suffices
to show that |u(τ,W ∗τ , Xτ )|1+ε < ∞ uniformly with respect to any stopping time t ≤ τ ≤ T . We have
by Cauchy-Schwarz inequality

Et[|u(τ,W ∗τ , Xτ )|1+ε] =Et[exp(−γ(1 + ε)W ∗τ ) exp(−(1 + ε)(a(τ)X2
τ + b(τ)Xτ + c(τ)))]

≤ Et[exp(−2γ(1 + ε)W ∗τ )]1/2× (2.27)

Et[exp(−2(1 + ε)(a(τ)X2
τ + b(τ)Xτ + c(τ)))]1/2. (2.28)

For the first expectation in (2.27), we can assume without loss of generality W ∗0 = 0, so

Et[exp(−2γ(1 + ε)W ∗τ )] =Et
[

exp

(
− 2(1+ε)γ

∫ τ

t

(a0(u) + a1(u)zu + a2(u)z2
u)du

− 2(1+ε)γ

∫ τ

t

(σ10(u) + σ11(u)zu)dB(1)
u − 2(1+ε)γ

∫ τ

t

(σ20(u) + σ21(u)zu)dB(2)
u

)]
≤Et

[
exp

(
−4(1+ε)γ

∫ τ

t

(a0(u) + a1(u)zu + a2(u)z2
u)du

)]1/2

× (2.29)

Et
[
exp

(
−8(1+ε)γ

∫ τ

t

(σ10(u) + σ11(u)zu)dB(1)
u

)]1/4

× (2.30)

Et
[
exp

(
−8(1+ε)γ

∫ τ

t

(σ20(u) + σ21(u)zu)dB(2)
u

)]1/4

. (2.31)

13
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by two applications of Cauchy-Schwarz inequality.
First we look at the expectations in (2.30). By Doob’s martingale inequality [103] we have

Et
[
exp

(
−8(1+ε)γ

∫ τ

t

(σ10(u) + σ11(u)zu)dB(1)
u

)]1/4

≤ 2 sup
t≤s≤T

Et
[
exp

(
−8(1+ε)γ

∫ s

t

(σ10(u) + σ11(u)zu)dB(1)
u

)]1/4

. (2.32)

We will show this expectation is finite. We will add and subtract 32(1+ε)2γ2
∫ s
t
(σ10(u)+σ11(u)zu)2du in

the exponential

Et
[
exp

(
−8(1+ε)γ

∫ s

t

(σ10(u) + σ11(u)zu)dB(1)
u

)]1/4

= Et
[

exp

(
−
∫ s

t

8(1+ε)γ(σ10(u)+σ11(u)zu)dB(1)
u +

1

2

∫ s

t

(8(1+ε)γ)2(σ10(u)+σ11(u)zu)2du

−32(1+ε)2γ2

∫ s

t

(σ10(u)+σ11(u)zu)2du

)]1/4

. (2.33)

Then we split up the above by Cauchy-Schwarz again

≤ Et
[

exp

(
− 2

∫ s

t

8(1+ε)γ(σ10(u)+σ11(u)zu)dB(1)
u +

∫ s

t

(8(1+ε)γ)2(σ10(u)+σ11(u)zu)2du

)]1/8

(2.34)

× Et
[

exp

(
−64(1+ε)2γ2

∫ s

t

(σ10(u)+σ11(u)zu)2du

)]1/8

. (2.35)

Using the martingale property of the first expectation in (2.34) which is finite, we are left with the second
expectation in (2.35)

Et
[

exp

(
−64(1+ε)2γ2

∫ s

t

(σ10(u)+σ11(u)zu)2du

)]1/8

,

but this is clearly bounded by 1.
Similarly, for the expectation in (2.31), we use the same arguments to arrive at

Et
[
exp

(
−8(1+ε)γ

∫ τ

t

(σ20(u) + σ21(u)zu)dB(2)
u

)]1/4

≤ Et
[
exp

(
−64(1+ε)2γ2

∫ s

t

(σ20(u) + σ21(u)zu)2du

)]1/8

, (2.36)

which is also bounded by 1.
Now we look at the expectation in (2.29), which is

Et
[
exp

(
−4(1+ε)γ

∫ τ

t

(a0(u) + a1(u)zu + a2(u)z2
u)du

)]1/2

.

Since a0(u) is a quadratic function of u ∈ [t, T ], it has a minimum in [t, T ]. Also, since a2(u) is
positive, we only need to find conditions under which

Et
[
exp

(
−4(1+ε)γ

∫ τ

t

a1(u)zudu

)]
≡ Et

[
exp

(
−4(1+ε)

∫ τ

t

ã1(u)zudu

)]
(2.37)

is finite. We define ã1(u) ≡ γa1(u), and note that it is independent of γ.

14
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We can see that

ã1(u) =
2δµ1

σ2
1

− δ2 (2µ1 + βµ2)

σ2
1

(T − u) +
δ3
(
σ2

1 + βσ2
2

)
4σ2

1

(T − u)2

is in general not monotone, not concave or convex, and can be positive or negative in t ≤ u ≤ T . However,
the maximum is bounded by

|ã1(u)| ≤
∣∣∣∣2δµ1

σ2
1

∣∣∣∣+

∣∣∣∣δ2 (2µ1 + βµ2)

σ2
1

∣∣∣∣T +

∣∣∣∣δ3
(
σ2

1 + βσ2
2

)
4σ2

1

∣∣∣∣T 2 ≡ ã∗1, (2.38)

which we denote by ã∗1. We will now find a bound for (2.37). We have

Et
[
exp

(
−4(1+ε)

∫ τ

t

ã1(u)zudu

)]
≤ Et

[
exp

(
4(1+ε)

∣∣∣∣∫ τ

t

ã1(u)zudu

∣∣∣∣)]
≤ Et

[
exp

(
4(1+ε)

∫ τ

t

|ã1(u)zu|du
)]

≤ Et
[
exp

(
4(1+ε)ã∗1

∫ τ

t

|zu|du
)]

≤ Et

[
exp

(
4(1+ε)ã∗1

∫ T

t

|zu|du

)]

≤ Et

[
exp

(
4(1+ε)ã∗1

∫ T

t

(
1

2
+
z2
u

2

)
du

)]

= cEt

[
exp

(
2(1+ε)ã∗1

∫ T

t

z2
udu

)]
.

We can now apply Lemma 4.3 from [18] and see that a sufficient condition for the finiteness of (2.37) is

2(1 + ε)

(∣∣∣∣2δµ1

σ2
1

∣∣∣∣+

∣∣∣∣δ2 (2µ1 + βµ2)

σ2
1

∣∣∣∣T +

∣∣∣∣δ3
(
σ2

1 + βσ2
2

)
4σ2

1

∣∣∣∣T 2

)
≤ |δ|

2σ2
β(T − t)

. (2.39)

For the second expectation

Et[exp(−2(1 + ε)(a(τ)X2
τ + b(τ)Xτ + c(τ)))]1/2

in (2.28), since a(t) and c(t) are positive for all 0 ≤ t ≤ T , we only have to look at

Et[exp(−2(1 + ε)b(τ)Xτ )]1/2 = Et[exp(−2(1 + ε)b(τ)(µ1 + δzτ ))]1/2. (2.40)

Recall that

zt = e−αtz0 + η(1− e−αt) + σβe
−αt

∫ t

0

eαsdBs

which is normally distributed with

zt ∼ N
(
e−αtz0 + η(1− e−αt), 1− e−2αt

2α

)
.

Now since the Ito integral
∫ t

0
eαsdBs ≡ Mt is a martingale, and since by Jensen’s inequality ekMt is a

submartingale for any k ∈ R, and in particular it is a positive submartingale, we can apply again Doob’s
martingale inequality [103] in Eq (2.40). The function b(t)

b(t) = −1

4

(σ2
1 + βσ2

2)δ

σ2
1

(T − t)2

15
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is zero at t = T and has a maximum bounded by b(0). By defining

k ≡ −2(1 + ε)b(0)δ =
(1 + ε)

2

(σ2
1 + βσ2

2)δ2

σ2
1

T 2,

and picking some ξ > 0, we will estimate the expectation in (2.40) as

Et[exp(kMτ )] =

∥∥∥∥ exp

(
k

1 + ξ
Mτ

)∥∥∥∥1+ξ

1+ξ

(2.41)

≤
∥∥∥∥ sup
t≤s≤T

exp

(
k

1 + ξ
Ms

)∥∥∥∥1+ξ

1+ξ

(2.42)

≤
(

1 +
1

ξ

)1+ξ

sup
t≤s≤T

Et[exp(kMs)] (2.43)

≤ c (2.44)

where c is a positive constant independent of the stopping time τ .

We can see that the condition (2.22) on the parameters translates into a limit on the time-horizon.
Beyond a certain time horizon, we cannot guarantee that the solution we computed is the unique solution
of the control problem. However, this condition is only a sufficient condition, which means the violation
of the condition does not necessarily invalidate the solution.

2.4 A more general model with correlations

It is also possible to incorporate correlations between the stocks into the above model and we present
briefly this extension in this section. The dynamics will read in this case

dWt = π1dS
(1)
t + π2dS

(1)
t

dS
(1)
t = (µ1 + δzt)S

(1)
t dt+ σ1S

(1)
t dB

(1)
t

dS
(2)
t = µ2S

(2)
t dt+ σ2S

(2)
t (ρdB

(1)
t +

√
1− ρ2dB

(2)
t )

where −1 ≤ ρ ≤ 1 denotes the correlation coefficient between B
(1)
t and B

(2)
t , and the co-integrating vector

zt is still defined by

zt = a+ logS
(1)
t + β logS

(2)
t .

Substituting, we find that the wealth satisfies the SDE

dWt = π1(µ1 + δzt)S
(1)
t dt+ π2µ2S

(2)
t dt+ π1σ1S

(1)
t dB

(1)
t

+π2σ2S
(2)
t (ρdB

(1)
t +

√
1− ρ2dB

(2)
t ).

In this case, zt satisfies the SDE

dzt =

(
µ1 −

σ2
1

2
+ δzt

)
dt+ σ1dB

(1)
t + β

(
µ2 −

σ2
2

2

)
dt+ βσ2dB

(2)
t

=

(
µ1 −

σ2
1

2
+ βµ2 − β

σ2
2

2
+ δzt

)
dt+ σ1dB

(1)
t

+βσ2

(
ρdB

(1)
t +

√
1− ρ2dB

(2)
t

)
= α(η − zt)dt+ σβdBt

16
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where α = −δ is the speed of mean reversion, σβ =
√
σ2

1 + β2σ2
2 + 2βσ1σ2ρ,

Bt =
σ1 + βσ2ρ

σβ
B

(1)
t + β

σ2

√
1− ρ2

σβ
B

(2)
t

is a Brownian motion process adapted to Ft, and

η = −1

δ

(
µ1 −

σ2
1

2
+ β

(
µ2 −

σ2
2

2

))
is the equilibrium level. The value function of this stochastic control problem is defined, as earlier, in
(2.7).

Next, we expect the candidate solution u(t, w, s1, s2) to solve the HJB equation

ut + sup
π1,π2

[
(π1(µ1 + δz)s1 + π2µ2s2)uw + (µ1 + δz)s1u1 + µ2s2u2

+ π1σ
2
1s

2
1uw1 + π2ρσ1σ2s1s2uw1 + π2σ

2
2s

2
2uw2

+ π1ρσ1σ2s1s2uw2 +
1

2
(π2

1σ
2
1s

2
1 + π2

2σ
2
2s

2
2 + ρπ1π2σ1σ2s1s2)uww

+
1

2
σ2

1s
2
1u11 +

1

2
σ2

2s
2
2u22 + ρσ1σ2s1s2u12

]
= 0

The function g(t, x, y) satisfies the HJB equation

−gt + sup
π1,π2

[
(π1(µ1 + δz)s1 + π2µ2s2)γg − (µ1 + δz)gx − µ2gy

+ π1σ
2
1s1γgx + π2γρσ1σ2s2gx + π2σ

2
2s2γgy + π1γρσ1σ2s1gy

− 1

2
(π1)2σ2

1s
2
1γ

2g − 1

2
(π2)2σ2

2s
2
2γ

2g − γ2π1π2ρσ1σ2s1s2g

− 1

2
σ2

1(gxx − gx)− 1

2
σ2

2(gyy − gy)− ρσ1σ2gxy

]
= 0, (2.45)

subject to

g(T, x, y) = 1. (2.46)

The optimal controls are

π∗1 =
(µ1 + δz)

γ(1− ρ2)σ2
1s1

+
gx
γgs1

− ρ µ2

γ(1− ρ2)σ1σ2s1
, (2.47)

π∗2 =
µ2

γ(1− ρ2)σ2
2s2

+
gy
γgs2

− ρ (µ1 + δz)

γ(1− ρ2)σ1σ2s2
. (2.48)

After substituting the controls into the HJB equation, we obtain the PDE

gt =

(
1

2

(µ1 + δz)2

(1− ρ2)σ2
1

+
1

2

µ2
2

(1− ρ2)σ2
2

− ρµ2(µ1 + δz)

(1− ρ2)σ1σ2

)
g

+
σ2

1

2
gx +

σ2
2

2
gy +

1

2
σ2

1

g2
x

g
+

1

2
σ2

2

g2
y

g
+ ρσ1σ2

gxgy
g

− 1

2
σ2

2σ
2
1gxx −

1

2
σ2

2gyy − ρσ1σ2gxy.

Replacing the variables (x, y) by the single variable X = µ1 + δz and by using the exponential change
of variable g = exp(−Φ), we reduce the problem to the linear parabolic PDE

Φt = − 1

1− ρ2

(
1

2
(
X2

σ2
1

+
µ2

2

σ2
2

)− ρµ2X

σ1σ2

)
+

1

2
(σ2

1 + βσ2
2)(δΦX)

−1

2
(σ2

1 + β2σ2
2 + 2σ1σ2βρ)

(
δ2ΦXX

)
(2.49)
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for any real number X and time 0 ≤ t < T and is subject to the terminal condition

Φ(T,X) = 0. (2.50)

The above linear PDE has the explicit solution φ(t,X) = a(t)X2 + b(t)X + c(t) where

a(t) =
1

2

(T − t)
(1− ρ2)σ2

1

, (2.51)

b(t) = −1

4

(T − t)2

(1− ρ2)σ2
1

(σ2
1 + βσ2

2)δ − ρ

(1− ρ2)

µ2(T − t)
σ1σ2

, (2.52)

c(t) =
1

2

(T − t)µ2
2

(1− ρ2)σ2
2

+
1

4

(σ2
1 + β2σ2

2 + 2σ1σ2βρ)δ2

(1− ρ2)σ2
1

(T − t)2

+
1

4

δρ

(1− ρ2)

µ2(σ2
1 + βσ2

2)(T − t)2

σ1σ2

+
1

24

(σ2
1 + βσ2

2)2δ2

(1− ρ2)σ2
1

(T − t)3. (2.53)

Finally, we substitute the values of g, gx and gy into the formulae (2.47),(2.48), in order to obtain the
optimal policies

π∗1s1 =
µ1+δz

γ(1−ρ2)σ2
1

+
δ(−2a(t)(µ1 + δz)−b(t))

γ
− ρµ2

γ(1−ρ2)σ1σ2
,

π∗2s2 =
µ2

γ(1−ρ2)σ2
2

+
δβ(−2a(t)(µ1+δz)−b(t))

γ
− ρ(µ1+δz)

γ(1−ρ2)σ1σ2
.

Written out explicitly,

π∗1s1 =
µ1 + δz

γ(1− ρ2)σ2
1

− ρµ2

γ(1− ρ2)σ1σ2

+
δ

γ(1− ρ2)

(
− (µ1 + δz)

σ2
1

+
ρµ2

σ1σ2

)
(T − t)

+
1

4

δ2(σ2
1 + βσ2

2)

γ(1− ρ2)σ2
1

(T − t)2, (2.54)

π∗2s2 =
µ2

γ(1− ρ2)σ2
2

− ρ(µ1 + δz)

γ(1− ρ2)σ1σ2

+
δβ

γ(1− ρ2)

(
− (µ1 + δz)

σ2
1

+
ρµ2

σ1σ2

)
(T − t)

+
1

4

δ2β(σ2
1 + βσ2

2)

γ(1− ρ2)σ2
1

(T − t)2. (2.55)

We summarize our findings in the following Theorem.

Theorem 2. For some ε > 0, if

2(1 + ε)

(∣∣∣∣2δ (µ1σ2−ρµ2σ1)

(1− ρ2)σ2
1σ2

∣∣∣∣+

∣∣∣∣δ2 (ρµ2σ1−2µ1σ2−βµ2σ2)

(1− ρ2)σ2
1σ2

∣∣∣∣T +

∣∣∣∣δ3
(
σ2

1 + βσ2
2

)
4 (1− ρ2)σ2

1

∣∣∣∣T 2

)
≤ |δ|

2σ2
βT

(2.56)

the value function of the optimal stochastic problem with correlation coefficient ρ is given by

u(t, w, s1, s2) = − exp(−γw) exp(−a(t)X2 − b(t)X − c(t)),

where
X = µ1 + δz = µ1 + δ(a+ log s1 + β log s2),

and the coefficients a(·), b(·), c(·) are given above by (2.51), (2.52) and (2.53). Furthermore, the optimal
control pair is given by (2.54),(2.55).
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Proof. The optimized wealth process W ∗t , that is, the wealth process following the optimal controls,
satisfies the SDE

dW ∗t =π
(1)∗
t (µ1 + δzt)S

(1)
t dt+ π

(2)∗
t µ2S

(2)
t dt+ π

(1)∗
t σ1S

(1)
t dB

(1)
t + π

(2)∗
t σ2S

(2)
t (ρdB

(1)
t +

√
1− ρ2dB

(2)
t )

=π
(1)∗
t (µ1 + δzt)S

(1)
t dt+ π

(2)∗
t µ2S

(2)
t dt+

(
π

(1)∗
t σ1S

(1)
t + ρπ

(2)∗
t σ2S

(2)
t

)
dB

(1)
t +

√
1− ρ2π

(2)∗
t σ2S

(2)
t dB

(2)
t

=(a0(t) + a1(t)zt + a2(t)z2
t )dt+ (σ10(t) + σ11(t)zt)dB

(1)
t + (σ20(t) + σ21(t)zt)dB

(2)
t ,

where

a0(t) =
µ2

1

γ (1− ρ2)σ2
1

+
µ2

2

γ (1− ρ2)σ2
2

− 2ρµ1µ2

γ (1− ρ2)σ1σ2
−
(
δ(µ2

1 + βµ1µ2)

γ (1− ρ2)σ2
1

− δρ(µ1µ2 + βµ2
2)

γ (1− ρ2)σ1σ2

)
(T − t)

+

(
δ2µ1 + βδ2µ2

) (
σ2

1 + βσ2
2

)
4γ (1− ρ2)σ2

1

(T − t)2,

a1(t) =
2δ (µ1σ2 − ρµ2σ1)

γ (1− ρ2)σ2
1σ2

+
δ2 (ρµ2σ1 − 2µ1σ2 − βµ2σ2)

γ (1− ρ2)σ2
1σ2

(T − t) +
δ3
(
σ2

1 + βσ2
2

)
4γ (1− ρ2)σ2

1

(T − t)2,

a2(t) = δ2 1− δ(T − t)
γ(1− ρ2)σ2

1

,

σ11(t) =
δ

γσ1
− δ2 σ1σ2 + βρσ2

2

γ (1− ρ2)σ2
1σ2

(T − t),

σ10(t) =
µ1

γσ1
+ δ2σ

3
1σ2 + βρσ2

1σ
2
2 + βσ1σ

3
2 + β2ρσ4

2

4γ (1− ρ2)σ2
1σ2

(T − t)2

− δ µ1σ1σ2 + βρµ1σ
2
2 − ρµ2σ1 (σ1 + βρσ2)

γ (1− ρ2)σ2
1σ2

(T − t),

σ20(t) =
µ2σ

2
1 − ρµ1σ1σ2

γ
√

1− ρ2σ2
1σ2

+
βδ(ρµ2σ1σ2 − µ1σ

2
2)

γ
√

1− ρ2σ2
1σ2

(T − t) +
δ2(βσ2

1σ
2
2 + β2σ4

2)

4γ
√

1− ρ2σ2
1σ2

(T − t)2,

σ21(t) = − δρ

γ
√

1− ρ2σ1

− βδ2σ2

γ
√

1− ρ2σ2
1

(T − t).

We proceed using the same arguments as in the uncorrelated case, and note that again a2(t) is positive,
and that again we can define ã1(t) ≡ γa1(t), which has γ canceled out. Again, the maximum in ã1(t) can
be bounded by∣∣∣∣2δ (µ1σ2 − ρµ2σ1)

(1− ρ2)σ2
1σ2

∣∣∣∣+

∣∣∣∣δ2 (ρµ2σ1 − 2µ1σ2 − βµ2σ2)

(1− ρ2)σ2
1σ2

∣∣∣∣T +

∣∣∣∣δ3
(
σ2

1 + βσ2
2

)
4 (1− ρ2)σ2

1

∣∣∣∣T 2,

from which the condition (2.56) holds after applying Benth-Karlsen Lemma 4.3.

2.5 Example

We provide an example to illustrate our results. We wish to emphasize that we are not conducting
a comprehensive study here, on whether stock market indices are co-integrated or not; this exercise is
merely to illustrate our equations with a concrete real-life example. More precisely, we did not include
a detection component in our algorithm. We simply browsed a number of arbitrary data sets and we
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picked one among those. We collected on October 17, 2011, minute-by-minute data, on two stocks traded
on the New York Stock Exchange, Goldman Sachs Group, Incorporated, with ticker symbols GS, and
JPMorgan Chase and Company, with ticker symbol JPM. This gives us a 2 dimensional time series with
390 data points. As in [44], we follow the standard two-step Engle-Granger methodology coupled with a
Dickey-Fuller test [53], to test for co-integration and estimate the parameters in our co-integration model.
We also performed in addition a Phillips-Ouliaris [102] test whose outcome further confirmed that our
time series were co-integrated. We also refer to the book by Enders [51] for a general presentation of
co-integration tests. We first run a regression as in equation (7) in [44], but without a time trend variable,
which seems reasonable for an intra-day data set. Also following [44], we provide the Ordinary Least
Square (OLS) standard errors for the regression results. For the parameters in the cointegrating vector zt,
which is a Ornstein-Uhlenbeck process, we use the Maximum Likelihood Estimators (MLE) and display
asymptotic standard errors as given in [115]. For the normally distributed (log) stock price increments
after removing the effect of the cointegrating vector in the drift terms, we again provide Maximum
Likelihood Estimates, and the standard errors are based on the Fisher information matrix as described in
[62]. For the standard error of the correlation parameter, a formula is given in [8]. Running the so-called
Augmented-Dickey-Fuller (up to 16 lags) test suggests that log(S(1)) and log(S(2)) are co-integrated at
the 5% level. We perform, in addition, the Phillips-Ouliaris [102] test. The variance-ratio test statistic
suggests that after detrending with constant and linear trend, the data are co-integrated at the 5% level.
We obtain the following annualized parameters in Table 2.1, with standard errors displayed in parenthesis
underneath:

a β δ η σβ
−3.105148 −0.5363258 −3561.194 9.298768e− 04 0.3081191
(0.10374) (0.03816) (1366.112) (0.001375323) (0.009598445)

µ1 µ2 ρ σ1 σ2

4.662472 2.623764 0.61181479 0.3828025 0.5076713
(1909.959) (2532.981) (0.0009814703) (0.02748362) (0.03644868)

Table 2.1: Parameters for the cointegration model with correlation

For this set of parameters, we estimate the maximal time horizon T satisfying the sufficient condition
(2.56) to be 0.75 day, assuming 6.5 hours trading per day, and 252 trading days per year. For the purpose
of illustrating, we choose to go over the bound of 0.75 day, or about 300 minutes, and plot our stock
prices and the optimal policies for a whole trading day. We show the stock prices S(1), S(2), as well as the
optimal policies π∗1 , π∗2 in figure 2.1. We then present in figure 2.2, the ratio |π∗1/π∗2 | and the cumulative
profit and loss function.

As expected, in a pairs trading setting, the controls are opposite in sign. For this data set and for a
risk tolerance γ = 0.1, a significant profit is instantly realized. The profit then fluctuates throughout the
day but remains strongly positive and by the end of the day, it is approximately $1,348. Of course, this
figure does not take into account the cost of borrowing or transaction costs which are both assumed to
be 0 in this model. We also notice that the positions, which are large during the first half of the day, are
both progressively unwound in the second half, ending close to 0 by the end of the trading day.

We now examine certainty equivalent, as a function of time t and wealth w at t, which is denoted by
C(t, w) in the following. It is the inverse of the utility function; for the cointegration model it is

C(t, w) = w +
1

γ

(
a(t)X2 + b(t)X + c(t)

)
.

We will assume w = 0 and will be plotting C(t, 0). Furthermore, we examine certainty equivalent in the
absence of cointegration, that is, when δ = 0, as in the classical Merton case. The certainty equivalent
in this case is denoted by C̃(t, w), and is given by

C̃(t, w) = w +
1

γ

(
µ̃2

1σ̃
2
2 + µ̃2

2σ̃
2
1 − 2ρ̃µ̃1µ̃2σ̃1σ̃2

2(1− ρ̃2)σ̃2
1 σ̃

2
2

)
(T − t),
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Figure 2.1: Stocks and optimal policies
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Figure 2.2: The optimal ratio and the Profit and Loss processes
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µ̃1 µ̃2 ρ̃ σ̃1 σ̃2

4.722745 2.623764 0.6130236 0.3841824 0.5076713
(1916.844) (2532.981) (0.001001615) (0.02758269) (0.03644868)

Table 2.2: Parameters for the classical Merton model when there is no cointegration

where the parameter values are re-estimated in the absence of cointegration, and are displayed in Table 2.2.
We plot the results on Fig 2.3, for the last 50 minutes in a trading day. The certainty equivalent

for the cointegration case is much higher. In fact, if we set δ = 0, and use the same set of parameters
in the cointegration model without re-estimation, the certainty equivalent is similarly much lower than
that derived from the cointegrated case. We can observe that trading in a market in the presence of
cointegration yields significantly higher utility.

Figure 2.3: Comparison of Certainty Equivalents
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We further study the effect of correlation on the optimal strategies, with cointegration (Fig 2.4) and
without (Fig 2.5). In Fig 2.4, it can be seen that the optimal position sizes are at their minimums when
ρ = 0. The interpretation is that when the stocks are uncorrelated, there is less offsetting between the
stocks; the higher risk leads to lower trade sizes. However, even with negative correlation, the optimal
strategy is still to have opposite (long S1 and short S2) positions, when cointegration is present. When
cointegration is absent (δ = 0, Fig 2.5), at sufficiently negative correlation the optimal strategy is to keep
both stocks in long positions. This shows the cointegration effect dominates correlation, and the model is
a non-trivial generalization of that in the classic Merton’s problem. However, this also shows that while
the incorporation of cointegration increases certainty equivalent (Fig 2.3), it also increases the risk of
model or parameter mis-specification.

2.6 Summary

In this chapter, we propose a dynamic model for pairs trading based on the theory of optimal stochastic
control, and we illustrate the applicability of our method with minute-by-minute historical stock data.
In our model, the two stock processes are cointegrated, correlated, and have constant volatility. We note
that the asymmetry in the drifts, that is, the presence of the cointegrating vector zt only in (2.3) but not
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Figure 2.4: Effect of Correlation on π∗
i , in the presence of cointegration

in (2.4), is for the sake of simplicity. For the generalization to a symmetric case, and moreover to a more
general multi-factor model, we refer to [87]. We also assume that the risk-free interest rate is zero and
we ignore the costs associated with trading. The simplicity of the present formulation enables a feasible
implementation of parameter calibration and the derivation of analytical formulae for the optimal trading
strategies. For the numerical example, the pair of stocks chosen from the financial sector, are positively
correlated, and have a negative β in (2.1), which means that the pair tends to move together.

Based on a verification theorem in Appendix A, we deduce sufficient condition on the model parameters
in the form of an inequality. It is interpreted as a bound on the optimization horizon, based on a fixed set
of model parameters. Interestingly, this bound does not depend on the coefficient of risk aversion γ, which
is an investor-specific quantity chosen according to the investor’s risk preference. Our model generalizes
the Merton’s problem by including cointegration; we can see that the optimal policy reduces to that in
the classical Merton portfolio optimization problem, if the cointegrating vector z were absent by setting
δ = 0. Another generalization results from adding correlation between the stocks, which complicates the
formula and the inequality but is more realistic.

While we focus solely on the exponential utility function due its tractability, the power utility functions
have been considered in for example [127] and [18]. We acknowledge that we have not addressed in this
work the question of detecting two instruments whose market prices tend to evolve in tandem, although
this is undoubtedly a fundamental issue. Empirically, as observed in [32], the cointegration property in
US stock market are not generally persistent, meaning a good number of pairs of stocks which are tested
positive for cointegration in a year might not be cointegrated in the next. See also the excellent overview
by [72] for a general survey of empirical studies on pairs trading. Detecting cointegration in other asset
classes, or other markets, is a critical issue for the strategies to be effective.
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Figure 2.5: Effect of Correlation on π∗
i , in the absence of cointegration
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Chapter 3

VIX Futures Trading under the
Central Tendency
Ornstein-Uhlenbeck model
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While the equity market is the usual setting in which pairs trading and cointegration are consid-
ered, the futures market, composed of contracts on the same spot asset but with different maturities,
is fundamentally different. Futures contracts on the same underlying asset are obviously related, and
they exhibit a term structure, that is, a pattern associated with increasing maturities, which is absent in
stocks, since there is no natural ending dates. This leads us to explore pairs trading using the stochastic
control approach in the futures market.

In this chapter, as published in [81], we combine the ideas of pairs trading and dynamic portfolio, and
apply them to the trading of two futures on the same underlying. We consider a two-factor mean-reverting
model, where the spot price mean-reverts around its stochastic equilibrium, which is itself also mean-
reverting. Since we are considering pairs trading where two futures contracts are traded, we need at least
a two-factor model, since in a one-factor model, contracts of different maturities are perfectly correlated
with one another. We will study a general n-factors model in the last chapter, but for now two-factor
models are tractable enough to allow us to obtain closed-form expressions, as well as realistic enough
to capture dynamics observed in the market. The model we work with is called the Central Tendency
Ornstein-Uhlenbeck (CTOU), as studied by [91] for pricing volatility index (such as VIX) futures. See
the references therein for a survey of the history of, and other approaches to, VIX modeling. There
has been researches that explored cointegration in the futures market, and they focus on the existence
of cointegration between spot and forward prices; [22] is a representative paper. Since VIX is based on
the implied volatility of S&P options, there also has been a substantial literature that model VIX and
S&P simultaneously: see [33], [12] or [99] for examples of the joint modeling of a volatility index and the
underlying. Empirical examination of the VIX term structure was described in [90]. In addition, we refer
to [85] and [109] for other studies of the trading of VIX futures.

We determine the optimal futures trading strategy by solving a utility maximization problem. By
analyzing the associated HJB equation, we solve the utility maximization explicitly and provide the
optimal trading strategies in closed form. Our strategies are applied to VIX futures trading, and are
illustrated in a series of numerical examples. The CTOU model is also suitable for other time series
where mean-reversion is present, such as interest rates or credit-related products.

A number of approaches apply machine learning and optimization algorithms to identify mean-
reverting portfolios with a few assets from a larger collection of stocks [38, 128]. Typically in pairs
trading the portfolio is static during the trading horizon. There are numerical empirical studies on the
empirical performance of pairs trading and timing of trades given mean-reverting prices [71]. For portfolio
optimization when the assets are mean-reverting, [18], [21], [111] or [121] are early examples. Optimal
stopping/switching approach, with features like transaction costs and stop-loss exits, are incorporated by
[76] and [101]. For more related studies, we refer to [77] and references therein. From an economic per-
spective, [124] solve for the equilibrium in a market populated with convergence traders, who are similar
to traders practicing pairs trading in our context, along with noise traders and long-term investors.

On the other hand, futures has been an integral part of the global financial market and continues to
grow. There are also existing studies that investigate cointegration and trading strategies in the futures
market. [125] examine large-scale multiple pairs trading using a derivative-free optimization algorithm.
[4] provides theoretical conditions under which the pairs trading optimization problem is market neutral.
These related studies motivate us to consider a two-factor mean-reverting model for the underlying index
to effectively capture the price dynamics of futures, and develop a stochastic control approach for pairs
trading in the futures market.

We found that, based on parameters calibrated from VIX futures historical data, traders should take
bigger positions in the long end of the futures curve. As is well-known, the volatility of longer-term
VIX contracts are in general lower than the short-term contracts. Therefore, as the model calibrated to
VIX data shows, it is optimal for the risk-averse trader to make larger bets on the pair trade when the
contracts are far from maturity since volatility is lower in the long end as observed empirically. Again,
as mentioned in the Introduction, to the extent that market participants are risk-averse and rational and
therefore are allocating bigger positions as volatilities of the securities decrease, and that market data
on multiple maturities can be obtained at the firm or individual levels, it might be possible to observe
such allocation empirically; but this type of investigation is beyond the scope of this thesis. We also
found, from the explicit formulae, that the optimal positions are inversely proportional to the degree of
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risk aversion, as well as to the volatility of the stochastic equilibrium process. The details of these results
and other findings will be given in later sections.

3.1 Futures Price Dynamics

The two-factor mean-reverting model we consider is called the Central Tendency Ornstein Uhlenbeck
(CTOU). This model has been used for pricing volatility futures (see [91]). One major feature of this
model is the mean-reverting dynamics of the spot price. Specifically, the spot price tends to evolve around
its stochastic equilibrium, which is also mean-reverting. The CTOU is able to capture the stylistic features
of empirically observed mean reversion in volatility indices and commodity prices. Empirically, the spot
price mean-reverts relatively faster than the stochastic equilibrium to its long-run mean.

Moreover, our choice is also motivated by the model’s tractability. As we will see, the structure of the
associated stochastic differential equations (SDEs) is very amenable to analysis and allows us to obtain
closed-form solutions for the optimization problem. As noted in [91], the simplicity of this model allows
for easy estimation, and it is shown that the model fits well with historical data empirically. They further
note that if a jump component is added, the resulting estimates become less stable, which suggests a
jump component would unnecessarily complicate model estimation and application.

The spot price is denoted by Vt. The spot’s log-price mean-reverts to a stochastic equilibrium process
θt, which in turn mean-reverts to its own constant equilibrium level θ̄. Under the risk-neutral measure
Q, the log-price process and its stochastic equilibrium follow the SDEs

d log Vt = κ(θt − log Vt) dt+ σ dZ̃vt , (3.1)

dθt = κ̄(θ̄ − θt) dt+ σ̄ dZ̃θt . (3.2)

Here, the constants κ and κ̄ represent the speeds of mean reversion for log Vt and θt respectively, while
σ and σ̄ are the respective volatilities. The model has two independent standard Brownian motions, Z̃vt
and Z̃θt , defined on the probability space (Ω,F ,Q), with the filtration F generated by (Z̃vt , Z̃

θ
t )t≥0.

To relate the dynamics of log Vt and θt to the physical measure P, we specify the market prices of risk
as the constants ζ and ζ̄. Under the physical measure P, we have

dZvt = dZ̃vt − ζ dt, (3.3)

dZθt = dZ̃θt − ζ̄ dt. (3.4)

Note that the conditions under which the P measure is identical to Q is: ζ = ζ̄ = 0.
Thus, we can recover the dynamics of Vt and θt under the physical measure P as

d log Vt = κ

(
θt +

σζ

κ
− log Vt

)
dt+ σ dZvt , (3.5)

dθt = κ̄

(
θ̄ +

σ̄ζ̄

κ̄
− θt

)
dt+ σ̄ dZθt . (3.6)

Remark 1. The CTOU model is a variation of the concatenated SQR (CSQR)

dVt = κ(θt − Vt) dt+ σ
√
Vt dZ̃

v
t ,

dθt = κ̄(θ̄ − θt) dt+ σ̄
√
θt dZ̃

θ
t ,

which has been studied by [16], among others, and is presented in [91] as well.

We now consider futures contracts of different maturities written on the spot V . For the futures
contract with maturity Ti, i = 1, . . . , n, we define the price at time t ∈ [0, Ti] by

F (i)(t, Vt, θt) = Ẽ[VTi |Vt, θt].
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We will continue to work with log prices for both the spot and its futures prices. Hence, we define

vt ≡ log Vt, (3.7)

f (i)(t, vt, θt) ≡ logF (i)(t, Vt, θt). (3.8)

From Appendix C of [91], we obtain the explicit log futures price:

f
(i)
t ≡ f (i)(t, vt, θt)

= θ̄ +D(Ti − t)(θt − θ̄) + e−κ(Ti−t)(log Vt − θt) +
σ2

4κ
(1− e−2κ(Ti−t))

+
σ̄2

2

(
κ

κ− κ̄

)2(
1− e−2κ̄(Ti−t)

2κ̄
+

1− e−2κ(Ti−t)

2κ
− 2

1− e−(κ+κ̄)(Ti−t)

κ+ κ̄

)
,

where

D(τ) =
κ

κ− κ̄
e−κ̄τ − κ̄

κ− κ̄
e−κτ .

Since our objective is to dynamically trade a futures portfolio under the physical measure P, we derive

the SDE for f
(i)
t using Ito’s Lemma (see Appendix 3.5.1).

df
(i)
t = mi(t) dt+ σe−κ(Ti−t) dZvt +

σ̄κ(e−κ̄(Ti−t) − e−κ(Ti−t))

κ− κ̄
dZθt ,

where the drift is a deterministic function time, given by

mi(t) =
e−κ̄(Ti−t)

κ− κ̄
κσ̄ξ +

e−κ(Ti−t)

(κ− κ̄)2
(κσ̄κ̄ξ − κ2σ̄ξ + κ2ζσ − 2κζκ̄σ + ζκ̄2σ) (3.9)

+
κ2σ̄2

2(κ− κ̄)2

(
2e−(κ+κ̄)(Ti−t) − e−2κ̄(Ti−t)

)
+
e−2κ(Ti−t)

2(κ− κ̄)2
(2κκ̄σ2 − κ2σ̄2 − κ2σ2 − κ̄2σ2).

In turn, we can write the futures price dynamics under P compactly as

dF
(i)
t

F
(i)
t

= µi(t) dt+ σvi(t) dZ
v
t + σθi(t) dZ

θ
t , (3.10)

where all three time-deterministic coefficients are defined by

σvi(t) ≡ σe−κ(Ti−t), (3.11)

σθi(t) ≡
σ̄κ(e−κ̄(Ti−t) − e−κ(Ti−t))

κ− κ̄
, (3.12)

and

µi(t) ≡
e−κ̄(Ti−t) κ σ̄ ζ̄ − e−κ (Ti−t)

(
κ σ̄ ζ̄ − κ ζ σ + ζ κ̄ σ

)
κ− κ̄

(3.13)

= mi(t) +
σi(t)

2

2
, (3.14)

where

σi(t)
2 ≡ σvi(t)2 + σθi(t)

2. (3.15)

The instantaneous correlation between the two futures is defined by

ρ12(t) ≡ σv1(t)σv2(t) + σθ1(t)σθ2(t)

σ1(t)σ2(t)
, (3.16)

which is a deterministic function of time only, independent of the state variables.

29



Ph.D. Thesis - Raphael Yan McMaster - Mathematics

3.2 Utility Maximization Problem

Having established the dynamics of the futures prices in the previous section, we now consider the utility
maximization problem involving a pair of futures. Let T1 and T2 be the maturities of the two futures in
our portfolio. The optimization horizon will be denoted by T . Since the futures cannot be traded past
expiry, we require Ti ≥ T for i = 1, 2. Using the futures price dynamics in (3.10), we write down the
SDE for the portfolio wealth process as

dWt = π1(t, F
(1)
t , F

(2)
t ) dF

(1)
t + π2(t, F

(1)
t , F

(2)
t ) dF

(2)
t , (3.17)

where πi(t, F
(1)
t , F

(2)
t ), i = 1, 2, denote the number of contracts, and positive/negative values mean a

long/short position, respectively. For brevity, we may write πi ≡ πi(t, F (1)
t , F

(2)
t ).

Re-writing in matrix form in terms of the two fundamental sources of randomness (Zvt , Z
θ
t ), we get dWt

dF
(1)
t

dF
(2)
t

 =

π1µ1(t)F
(1)
t + π2µ2(t)F

(2)
t

µ1(t)F
(1)
t

µ2(t)F
(2)
t

 dt

+

π1σv1(t)F
(1)
t + π2σv2(t)F

(2)
t π1σθ1(t)F

(1)
t + π2σθ2(t)F

(2)
t

σv1(t)F
(1)
t σθ1(t)F

(1)
t

σv2(t)F
(2)
t σθ2(t)F

(2)
t

[dZvt
dZθt

]
. (3.18)

A pair of controls (π1, π2) is said to be admissible if (π1, π2) are real-valued, progressively measurable,

and are such that the system of SDE (3.18) defines a unique solution (Wt, F
(1)
t , F

(2)
t ) for every time

t ∈ [0, T ] and (π1, π2, F
(1), F (2)) satisfy the admissibility condition

E

(∫ T

t

[π1(s, F (1)
s , F (2)

s )F (1)
s ]2 + [π2(s, F (1)

s , F (2)
s )F (2)

s ]2ds

)
<∞.

We denote by At the set of admissible controls with an initial time of investment t. Next, we define
the value function V (t, w, F1, F2) of the following optimization problem: the investor seeks an admissible
strategy (π1, π2) that maximizes the utility from wealth at time T , that is,

V (t, w, F1, F2) = sup
(π1,π2)∈At

E
(
U(WT ) |Wt = w,F

(1)
t = F1, F

(2)
t = F2

)
. (3.19)

Here we only treat the case of the exponential utility function U(w) = −e−γw where γ denotes the
constant risk aversion coefficient. Following the standard verification approach to dynamic programming
[58, 105, 96], we assume the existence of a sufficiently smooth candidate solution u(t, w, F1, F2), which
will later be shown to be equal to the value function V in (3.19).

3.2.1 HJB Equation and Closed-Form Solution

To facilitate presentation, we define the partial derivatives by

ut =
∂u

∂t
, uw =

∂u

∂w
, uww =

∂2u

∂w2
,

u1 =
∂u

∂F1
, u11 =

∂2u

∂F 2
1

, u2 =
∂u

∂F2
, u22 =

∂2u

∂F 2
2

,

uw1 =
∂2u

∂w∂F1
, uw2 =

∂2u

∂w∂F2
, u12 =

∂2u

∂F1∂F2
.
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We determine the value function u(t, w, F1, F2) by solving the HJB equation

ut + sup
π1,π2

(
π1µ1(t)F1uw + π2µ2(t)F2uw

+ (π1σ1(t)2F 2
1 + π2(σv1(t)σv2(t) + σθ1(t)σθ2(t))F1F2)uw1

+ (π2σ2(t)2F 2
2 + π1(σv1(t)σv2(t) + σθ1(t)σθ2(t))F1F2)uw2

+
1

2
(π2

1σ1(t)2F 2
1 + π2

2σ2(t)2F 2
2 )uww

+ (π1π2(σv1(t)σv2(t) + σθ1(t)σθ2(t))F1F2)uww

)
+
σ1(t)2

2
F 2

1 u11 +
σ2(t)2

2
F 2

2 u22 + µ1(t)F1u1 + µ2(t)F2u2

+ (σv1(t)σv2(t) + σθ1(t)σθ2(t))F1F2u12 = 0, (3.20)

subject to the terminal condition
u(T,w, F1, F2) = −e−γw.

We introduce the linear operator L(π1,π2) that will be needed in order to apply the verification theorem
in Appendix A

L(π1,π2)u = π1µ1(t)F1uw + π2µ2(t)F2uw

+ (π1σ1(t)2F 2
1 + π2(σv1(t)σv2(t) + σθ1(t)σθ2(t))F1F2)uw1

+ (π2σ2(t)2F 2
2 + π1(σv1(t)σv2(t) + σθ1(t)σθ2(t))F1F2)uw2

+
1

2
(π2

1σ1(t)2F 2
1 + π2

2σ2(t)2F 2
2 )uww

+ (π1π2(σv1(t)σv2(t) + σθ1(t)σθ2(t))F1F2)uww

+
σ1(t)2

2
F 2

1 u11 +
σ2(t)2

2
F 2

2 u22 + µ1(t)F1u1 + µ2(t)F2u2

+ (σv1(t)σv2(t) + σθ1(t)σθ2(t))F1F2u12.

The HJB equation can now be written compactly as

ut + sup
π1,π2

L(π1,π2)u = 0.

Next, we apply the transformation

u(t, w, F1, F2) = −e−γwG(t, f1, f2),

with f1 = logF1 and f2 = logF2. By direct substitution, we obtain the PDE for G:

−e−γwGt + sup
π1,π2

[ (π1µ1F1 + π2µ2F2)γe−γwG

+ (π1σ
2
1F

2
1 + π2ρ12σ1σ2F1F2)γe−γwG1/F1 + (π2σ

2
2F

2
2 + π1ρ12σ1σ2F1F2)γe−γwG2/F2

+
1

2
(π2

1σ
2
1F

2
1 + π2

2σ
2
2F

2
2 + ρ12π1π2σ1σ2F1F2)(−γ2e−γwG) ]

+ µ1F1(−e−γwG1/F1) + µ2F2(−e−γwG2/F2)

+
σ2

1

2
F 2

1 (e−γw(G1 −G11))/F 2
1 +

σ2
2

2
F 2

2 (e−γw(G2 −G22))/F 2
2

+ ρ12σ1σ2F1F2(−e−γwG12)/F1F2 = 0, (3.21)

where we have defined the partial derivatives

Gt =
∂G

∂t
, G1 =

∂G

∂f1
, G2 =

∂G

∂f2
,

31



Ph.D. Thesis - Raphael Yan McMaster - Mathematics

G11 =
∂2G

∂f2
1

, G22 =
∂2G

∂f2
2

, G12 =
∂2G

∂f1∂f2
,

and suppressed the dependence on t, in µi, σi, σvi, σθi and ρ12, in order to simplify notation.
Canceling e−γw and rearranging, we get

−Gt + sup
π1,π2

[
(π1µ1F1 + π2µ2F2)γG

+ (π1σ
2
1F1γ + π2γρ12σ1σ2F2)G1 + (π2σ

2
2F2γ + π1γρ12σ1σ2F1)G2

− σ2
1

2
π2

1F
2
1 γ

2G− σ2
2

2
π2

2F
2
2 γ

2G− γ2π1π2ρ12σ1σ2F1F2G

]
− σ2

1

2
(G11 −G1)− σ2

2

2
(G22 −G2)− ρ12σ1σ2G12 − µ1G1 − µ2G2 = 0, (3.22)

with the terminal condition
G(T, f1, f2) = 1.

Performing the optimization in (3.22), we obtain the optimal controls

π∗1(t, F1, F2) =
µ1

γ(1− ρ2
12)σ2

1F1
+

G1

γGF1
− ρ12

µ2

γ(1− ρ2
12)σ1σ2F1

, (3.23)

π∗2(t, F1, F2) =
µ2

γ(1− ρ2
12)σ2

2F2
+

G2

γGF2
− ρ12

µ1

γ(1− ρ2
12)σ1σ2F2

. (3.24)

Then we substitute the optimal controls as in (3.23) and (3.24) to arrive at a nonlinear PDE for G:

Gt =

(
1

2

µ2
1

(1− ρ2
12)σ2

1

+
1

2

µ2
2

(1− ρ2
12)σ2

2

− ρ12µ1µ2

(1− ρ2
12)σ1σ2

)
G

+
1

2G

(
G2

1σ
2
1 + 2G1G2ρ12σ1σ2 +G2

2σ
2
2

)
− 1

2
((G11 −G1)σ2

1 + (G22 −G2)σ2
2 + 2G12ρσ1σ2). (3.25)

To solve (3.25), we apply another transformation

G(t, f1, f2) = e−Φ(t,f1,f2) (3.26)

to (3.25) to obtain a linear PDE for Φ:

0 = Φt +

(
1

2

µ2
1

(1− ρ2
12)σ2

1

+
1

2

µ2
2

(1− ρ2
12)σ2

2

− ρ12µ1µ2

(1− ρ2
12)σ1σ2

)
+
σ2

1

2
(Φ11 − Φ1) +

σ2
2

2
(Φ22 − Φ2) + ρ12σ1σ2Φ12, (3.27)

subject to Φ(T, f1, f2)=0.
We can solve this linear PDE of Φ by using the ansatz

Φ(t, f1, f2) = a11(t)f2
1 + a1(t)f1 + a22(t)f2

2 + a2(t)f2 + a12(t)f1f2 + a(t)

to deduce that
a′11(t) = a′22(t) = a′12(t) = 0, a11(t) = a22(t) = a12(t) = 0,

a′1(t) = a′2(t) = 0, a1(t) = a2(t) = 0.
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From this, we deduce that Φ is a function of t only, independent of f1 and f2, and satisfies the first-order
differential equation

dΦ

dt
= −µ1(t)2σ2(t)2 + µ2(t)2σ1(t)2 − 2ρ12(t)µ1(t)µ2(t)σ1(t)σ2(t)

2(1− ρ12(t)2)σ1(t)2σ2(t)2
.

Solving this and applying (3.13), (3.15), and (3.16), we obtain a closed-form expression for Φ. Precisely,

Φ(t) =
(T − t)

(
ζ2 + ζ̄2

)
2

. (3.28)

Unraveling the transformations, we write the candidate solution as

u(t, w, F1, F2) = −e−γw−Φ(t) (3.29)

which will later be verified to be the value function.
Very interestingly, the value function depends on only two model parameters, namely, the market

prices of risk ζ and ζ̄, along with the optimization horizon T . Moreover, the value function does not
depend on the two futures current prices (F1, F2). The simplicity of the value function is unexpected,
especially since there are two stochastic factors and two futures in the trading problem. This is a very
useful result that shows clearly the dependence of the value function on the two model parameters (see
Fig. 3.2 below). Nevertheless, it does not mean that the corresponding trading strategies are trivial. In
fact, the strategies depend not only on other model parameters but also the futures prices, as we will
discuss next.

3.2.2 Optimal Wealth Process

By applying (3.26) and (3.28) to (3.23) and (3.24), we obtain the optimal trading strategies (i.e. number
of futures contracts)

π∗1(t, F1, F2) =
1

γ(1− ρ12(t)2)σ1(t)F1

(
µ1(t)

σ1(t)
− ρ12(t)

µ2(t)

σ2(t)

)
, (3.30)

π∗2(t, F1, F2) =
1

γ(1− ρ12(t)2)σ2(t)F2

(
µ2(t)

σ2(t)
− ρ12(t)

µ1(t)

σ1(t)

)
. (3.31)

We recall (3.13), (3.15), and (3.16), and express the optimal strategies explicitly in terms of model
parameters. Precisely,

π∗1(t, F1, F2) =
−e−κ̄(T2−t)κζσ̄ + e−κ(T2−t)

(
κζσ̄ + κζ̄σ − κ̄ζ̄σ

)
et(κ+κ̄) (e−κ̄T1−κT2 − e−κT1−κ̄T2)κγσ̄σF1

, (3.32)

π∗2(t, F1, F2) =
e−κ̄(T1−t)κζσ̄ − e−κ(T1−t)

(
κζσ̄ + κζ̄σ − κ̄ζ̄σ

)
et(κ+κ̄) (e−κ̄T1−κT2 − e−κT1−κ̄T2)κγσ̄σF2

. (3.33)

Note that the optimal controls are functions of time and the futures prices, but not functions of the spot
price Vt and its equilibrium level θt. The strategies are inversely proportional to γ, as is expected. For
each i ∈ {1, 2}, the optimal strategy π∗i depends only on the corresponding futures price Fi, but not the
other futures price.

If we substitute the optimal controls π∗1 and π∗2 into the wealth process (3.17), we have

dW (t) = π∗1 dF
(1)
t + π∗2 dF

(2)
t

= π∗1F
(1)
t µ1(t) dt+ π∗2F

(2)
t µ2(t) dt+

+
(
π∗1σv1(t)F

(1)
t + π∗2σv2(t)F

(2)
t

)
dZvt +

(
π∗1σθ1(t)F

(1)
t + π∗2σθ2(t)F

(2)
t

)
dZθt

≡ µW dt+ σW dZWt , (3.34)
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where we have defined

µW = π∗1F
(1)
t µ1(t) + π∗2F

(2)
t µ2(t),

σ2
W =

(
π∗1σv1(t)F

(1)
t + π∗2σv2(t)F

(2)
t

)2

+
(
π∗1σθ1(t)F

(1)
t + π∗2σθ2(t)F

(2)
t

)2

.

Direct computation simplifies µW and σW to

µW =
ζ2 + ζ̄2

γ
, and σ2

W =
ζ2 + ζ̄2

γ2
=
µW
γ
. (3.35)

Substituting (3.35) into (3.34) implies that the optimal wealth process is in fact a Brownian motion
with constant drift µW and volatility σW parameters. As a result, the optimal wealth depends on the
market prices of risk, ζ and ζ̄ (see (3.3)-(3.4)), as well as the investor’s risk aversion parameter γ.

3.2.3 Verification Theorem

Based on the verification theorem in Appendix A, Theorem 7, in order to show that the candidate
solution is the value function, it suffices to prove the uniform integrability of the family of random
variables {u(τ,W ∗τ )} for any stopping time τ ∈ [0, T ].

Theorem 3. The candidate solution found in (3.29) is equal to the value function (3.19): namely,

V (t, w) = u(t, w) = − exp(−γw − Φ(t))

on (t, w) ∈ [0, T ]× R, where Φ(t) is given by (3.28), and the optimal control pair is given by (3.32) and
(3.33).

Proof. Let ε > 0 be an arbitrary positive number. From the verification theorem in Appendix A, it suffices
to show that E(|u(τ,W ∗τ )|1+ε) < ∞, uniformly with respect to any stopping time τ with 0 ≤ τ ≤ T .
First, after applying the Cauchy-Schwarz inequality, we find that

E(|u(τ,W ∗τ )|1+ε) ≤E(exp (−2(1 + ε)γW ∗τ ))1/2× (3.36)

E(exp (−2(1 + ε)Φ(τ)))1/2. (3.37)

For the first expectation (3.36), clearly

E[exp (−2(1 + ε)γW ∗τ )]

=E
[

exp

(
−2(1 + ε)

(∫ τ

0

µW ds+

∫ τ

0

σW dZ
W
s

))]
=E
[

exp

(
− 2(1 + ε)

(
µW τ + σWZ

W
τ

))]
≤cE

[
exp

(
− 2(1 + ε)σWZ

W
τ

)]
(3.38)

for some constant c, since µW is a constant and τ ≤ T .
Now since ZWt is a martingale, we have that for any constant k, exp(kZWt ) is a submartingale by

Jensen’s inequality, since

E0(exp(kZWt )) ≥ exp(kE0(ZWt )) = exp(kE0(ZW0 )) = 1.
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Moreover, exp(kZWt ) is positive. Therefore we can use Doob’s martingale inequality [103]: for ξ > 0,

E[exp(kZWτ )] =

∥∥∥∥ exp

(
k

1 + ξ
ZWτ

)∥∥∥∥1+ξ

1+ξ

≤
∥∥∥∥ sup

0≤t≤T
exp

(
k

1 + ξ
ZWt

)∥∥∥∥1+ξ

1+ξ

≤
(

1 +
1

ξ

)1+ξ

sup
0≤t≤T

E[exp(kZWt )]

≤ c

where c is another positive constant, independent of the stopping time τ .
For the second expectation (3.37), recalling that

Φ(t) =
(T − t)

(
ζ2 + ζ̄2

)
2

,

we can clearly see that E(exp (−2(1 + ε)Φ(τ))) is bounded as well. Hence we proved that {u(τ,W ∗τ )}τ is
uniformly integrable for any stopping time τ ∈ [0, T ].

3.3 Numerical Implementation

We will now further examine our results with numerical examples with simulated and empirical data. For
our examples, we will set γ to be 1, and use the estimated parameters from the “full sample” in Table 4
of [91], which are displayed here in Table 3.1.

κ κ̄ θ̄ σ σ̄ ζ ζ̄

5.827 0.300 3.019 1.037 0.446 −0.010 2.242

Table 3.1: CTOU model parameters

According to Section 3 in [91], the parameters are obtained from maximization of the so-called pseudo
likelihood in state-space modeling, which is described in more details in [118]. The parameters so obtained
were further tested by comparing to VIX option prices and compared on the basis of Root Mean Square
Error (RMSE). As noted, one of the advantages of the CTOU model is its tractability, and in the context
of estimation, the continuous time SDE for log Vt and θt can be easily written as a Gaussian VAR(1), for
which the transition density is known in closed forms.

In Figure 3.1, we show the dependence of the optimal trading strategies, π∗1 and π∗2 , on the volatility σ̄
of the stochastic equilibrium θt in the CTOU model. Observe that π∗1 is positive and increasing concave
while π∗1 negative and decreasing convex. With the parameters given in Table 3.1, we are short the
T1-futures F (1) and long the T2-futures F (2). When we rearrange the formulae (3.32) and (3.33) for π∗1
and π∗2 , and collect terms involving σ̄, we see that for both i = 1, 2, the optimal strategies are of the
form Ai + Bi/σ̄, which means that the absolute value of the each strategy π∗i decreases as σ̄ gets large,
with other variables held constant. The practical consequence is that the number of contracts held, on
both the long and short sides, are decreasing as the volatility of the stochastic equilibrium increases.
This is in line with a risk-averse trader’s intuition, who would prefer less exposures on both legs of the
paired-trade, if the volatility of the stochastic equilibrium is high. To verify this empirically, we would
have to first identify the subset of traders in the whole universe of market participants who first of all are
risk-averse, who practice pairs trading of futures contracts, and who model the spot price as a process
with a stochastic equilibrium such as CTOU; moreover, we would also have to gain access to their trading
records. This type of data might be available in self-reporting surveys; however it is beyond the scope of
this thesis to investigate actual trading empirically.
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Figure 3.2 illustrates how the optimal trading strategies, π∗1 and π∗2 , vary with respect to the time-
to-maturity. We see the number of contracts to buy, or to sell, are both increasing as maturity increases,
with π∗1 becoming more negative and π∗2 more positive. From the trader’s perspective, this corresponds to
taking bigger positions in the long end of the futures curve. As is well-known [2], the volatility of longer-
term VIX contracts are in general lower than the short-term contracts. Therefore, under the CTOU
model with parameters as calibrated to the VIX futures price history, it is optimal for the risk-averse
trader to make larger bets on the pair trade when the contracts are far from maturity since volatility is
lower in the long end as observed empirically.

In Figure 3.3 we compare the optimal trading strategies, π∗1 and π∗2 (for two futures) to the optimal
strategy π̃∗i for trading a single futures. The case of dynamically trading a single futures is discussed in
an appendix later. The optimal strategy is explicitly given in (3.30) and (3.31). As in Figure 3.2, we plot
the strategies as functions of Ti, using same set of parameters. When trading a single contract, either
with maturity T1 or T2, the corresponding optimal strategy, π̃∗1 and π̃∗2 , is positive. This is in contrast
to the two-contract case where the optimal strategies, π∗1 and π∗2 , are of opposite signs. This is intuitive
because when two contracts are available, along with the fact that the two futures are based on the same
sources of randomness, risk aversion drives the investor to reduce risks by taking long and short positions
simultaneously.

A related question is: when only one contract is traded, does the investor favor the longer or shorter
maturity? As we can see, π̃∗2 is greater than π̃∗1 . This means that, given only one contract is available,
the trader tends to take a larger position in the contract if it is further away from maturity. When
we compare the long and short positions in the two-contract case to the single-contract case in terms of
position size, we can see the optimal long-short strategy requires taking bigger positions in both contracts
than either position in the single-contract case.

Using historical VIX futures data, we consider two contracts, one with maturity January 2011 and the
other with maturity February 2011. We show the empirical optimal positions over the period October
2010 to December 2010. This period is chosen to correspond to the post-calibration period of the full
sample in Table 4 of [91]. Over this post-crisis period, the market was relatively calm compared to the
market during the crisis, with the VIX index hovering around 20. Applying our explicit formulae for the
strategies, we compute π∗1 , π∗2 , and π∗1 +π∗2 based on the daily settlement prices of these contracts as well
as the parameters in Table 3.1. As shown in Figure 3.4, the optimal strategy π∗1 is negative throughout
this period, corresponding to a short position in the front-month contract, and the opposite holds for π∗2 .
However, the absolute value of position of π∗2 is larger, leading to a net positive position.

We now turn our attention to the value functions. To distinguish between the single-contract and
two-contract cases, we let ũ(i) denote the value function in the single-contract case with the superscript
(i) indicating the maturity Ti of that single contract in the portfolio. In Figure 3.5 we plot ũ(1), ũ(2)

and u as functions of t, and set w = 0. We observe that the maximized expected utility from trading
two contracts simultaneously is greater than the maximized expected utility derived from trading only a
single contract regardless of the choice of maturity. In fact, the value function u is larger than the sum
of the two value functions ũ(1) and ũ(2). This makes sense since the single-contract case can be viewed
as two-contracts case but with one strategy constrained at zero. Effectively, the single-contract case is
restricting the admissible set At, thus reducing the maximum expected utility. Our result confirms the
intuition that more choices of trading instruments are preferable to fewer.

Next, we consider the certainty equivalent for the trading opportunity in the two futures with wealth
w at time t. Recall that the value function is in exponential form

u(t, w, F1, F2) = −e−γw−Φ(t).

We define the certainty equivalent by taking the inverse of the exponential utility function. Precisely, we
have

C(t, w) = w +
Φ(t)

γ
.

As we can see, the certainty equivalent is the sum of the investor’s wealth w and the positive value
Φ(t)/γ. The latter is inversely proportional to the risk aversion parameter γ. Like the value function,
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the certainty equivalent does not depend on the current futures prices (F1, F2) but it does depend on the
model parameters that drive the futures prices.

We now evaluate the behavior of C at time t = 0 and with zero initial wealth W0 = 0. In other words,
we will examine the following quantity:

C0 =
Φ(0)

γ
,

and its sensitivity with respect to as we have plotted in Figure 3.6. In Figure 3.6 we plot the certainty
equivalent against the price of risk. From (3.28) it is clear that C0 is quadratic in ζ and ζ̄ under the
CTOU model, and tends to infinity as the prices of risk increase.
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Figure 3.1: Optimal controls π∗
1 and π∗

2 as a function of σ̄ under the CTOU model, with
κ = 5.827, κ̄ = 0.300, θ̄ = 3.019, σ = 1.037, ζ = −0.010 and ζ̄ = 2.242 as displayed in
Table 3.1, at T1 = 30/365 and T2 = 60/365.
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Figure 3.2: Optimal controls π∗
1 and π∗

2 as a function of T1 and T2 respectively, under the
CTOU model, with parameters as displayed in Table 3.1, and T1 ranges from [30/365,60/365],
and T2 ranges from [60/365,90/365].
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eters as displayed in Table 3.1, and T1 ranges from [30/365,60/365], and T2 ranges from
[60/365,90/365].
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Figure 3.5: The value functions u, ũ(1) and ũ(2) at w = 0, with optimization horizon
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Figure 3.6: Certainty equivalent C0 as a function of the market prices of risk ζ and ζ̄ under
the CTOU model, with parameters as displayed in Table 3.1.
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3.4 Summary

We have analyzed the problem of dynamically trading two futures contracts with the same underlying.
Under a two-factor mean-reverting model for the spot price, we derive the futures price dynamics, solve the
portfolio optimization problem in closed form, and give explicit optimal trading strategies. By studying
the associated HJB equation, we solve the utility maximization explicitly and provide the optimal trading
strategies in closed form. In addition to the analytic properties of our solutions, we also apply our results
to VIX futures trading and present numerical examples to illustrate the optimal holdings.

In summary, the optimal controls are functions of time and the futures prices, but not functions of
the spot price and its equilibrium level. They are inversely proportional to γ, as expected. Furthermore
they depend only on the corresponding futures price Fi, but not the other futures price Fj for j 6= i. All
of these features greatly simplify implementation.

We have focused only on volatility index futures to trade volatility in this chapter. Volatility trading,
as described in [26], or in the book [112], in the early years mostly involved trading stock options directly,
delta-hedged with the underlying stocks. These securities are publicly accessible to retail investors; on
the other hand variance swaps have long been traded over-the-counter. More recently, products tied
to realized variance began to appear in retail option exchanges. Furthermore, volatility indexes on a
varieity of underlyings such as interest rates, single stocks, or even on VIX itself (VIX of VIX), have been
created, and Exchange-Traded-Funds (ETFs) or Notes (ETNs) are the vehicles to obtain exposures to
various aspects of volatility trading. The open question is whether the CTOU model, considered in this
chapter, is still applicable for these indices; on the hand, since the underlying securities are no longer
futures, the modeling of which will clearly require further refinement.

Since the VIX index is derived from S&P options, various models that incorporate dynamics of both
S&P and VIX in the equations have been developed, see for example [27]. It will be fruitful to apply
the stochastic approach for trading VIX futures under a more comprehensive joint model. Moreover, in
addition to mean-reversion, since the VIX time series historically exhibits long periods of low activities,
punctuated by sudden spikes, jump diffusion is obviously appropriate [108]. Another possibility is to
incorporate self-excited jumps, followed by exponential decay, such as the dynamic contagion [39] model
which generalizes the Hawkes model. They are frequently studied in the high frequency literature [11],
but are potentially suitable for VIX modeling, since they capture the features of VIX well. The design
of optimal trading strategies for securities other than VIX futures, and for models other than CTOU, is
clearly a challenging and practical question.

3.5 Appendix

3.5.1 Drift of df
(i)
t under CTOU

By Ito’s Lemma, the drift of df
(i)
t , denoted by mi(t), is given by

mi(t) =
df (i)

dt
+ κ

(
θ +

σζ

κ
− v
)
df (i)

dv
+ κ̄

(
θ̄ +

σ̄ζ̄

κ̄
− θ
)
df (i)

dθ

We have the following derivatives

df (i)(t, v, θ)

dt
= e−κ(Ti−t)κ (v − θ)−

(
eκTi+t κ̄ − eκt+Tiκ̄

)2
κ2σ̄2

2e2Ti(κ+κ̄)(κ− κ̄)
2

+

(
e−κ(Ti−t) − e−κ̄(Ti−t)

)
κκ̄
(
θ̄ − θ

)
κ− κ̄

− e−2κ(Ti−t) σ2

2
,

κ

(
θ +

σζ

κ
− v
)
df (i)(t, v, θ)

dv
+ κ̄

(
θ̄ +

σ̄ζ̄

κ̄
− θ
)
df (i)(t, v, θ)

dθ
=

e−(κ+κ̄)(Ti−t)
(
eκ(Ti−t)κ

(
θ̄κ̄− θκ̄+ σ̄ζ̄

)
+ eκ̄(Ti−t)

(
ζ (κ− κ̄)σ −

(
κ
(
κ (v − θ) + (θ̄ − v)κ̄+ σ̄ζ̄

))))
κ− κ̄

.
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In turn, we obtain

mi(t) =
e−κ̄(Ti−t)

κ− κ̄
κσ̄ξ +

e−κ(Ti−t)

(κ− κ̄)2
(κσ̄κ̄ξ − κ2σ̄ξ + κ2ζσ − 2κζκ̄σ + ζκ̄2σ)

+
κ2σ̄2

2(κ− κ̄)2
(2e−(κ+κ̄)(Ti−t) − e−2κ̄(Ti−t)) +

e−2κ(Ti−t)

2(κ− κ̄)2
(2κκ̄σ2 − κ2σ̄2 − κ2σ2 − κ̄2σ2).

Interestingly, the drift is a deterministic function of time, and does not depend on vt, θt, and θ̄. To
see this, we collect v, θ and θ̄ in mi(t), and get

df (i)(t, v, θ)

dt
= e−κ (Ti−t) κ v −

κ2 σ̄2
(
eκTi+t κ̄ − eκ t+Ti κ̄

)2
2 e2Ti (κ+κ̄) (κ− κ̄)

2 +
θ̄ κ κ̄

(
e−κ (Ti−t) − e−κ̄(Ti−t)

)
κ− κ̄

+
κ θ
(
e−κ̄(Ti−t) κ̄− e−κ (Ti−t) κ

)
κ− κ̄

− e−2κ (Ti−t) σ2

2
,

κ

(
θ +

σζ

κ
− v
)
df (i)(t, v, θ)

dv
= e−κ (Ti−t) κ θ + e−κ (Ti−t) (ζ σ − κ v) ,

κ̄

(
θ̄ +

σ̄ζ̄

κ̄
− θ
)
df (i)(t, v, θ)

dθ
=
θ̄κ κ̄

(
e−κ̄(Ti−t) − e−κ (Ti−t)

)
κ− κ̄

+
θκκ̄

(
e−κ (Ti−t) − e−κ̄(Ti−t)

)
κ− κ̄

+
κ σ̄ζ̄

(
e−κ̄(Ti−t) − e−κ (Ti−t)

)
κ− κ̄

.

When added together, the terms involving v, θ and θ̄ cancelled out, and we are left with (3.9).

3.5.2 Portfolio with a Single Futures Contract

We now discuss the case when the portfolio consists of only one futures contract. The system of SDEs
for the wealth process and futures price is[

dWt

dF
(1)
t

]
=

[
π̃1µ1(t)F

(1)
t

µ1(t)F
(1)
t

]
dt+

[
π̃1σv1(t)F

(1)
t π̃1σθ1(t)F

(1)
t

σv1(t)F
(1)
t σθ1(t)F

(1)
t

] [
dZvt
dZθt

]
, (3.39)

where we use the tilde notation to denote the single contract case. In order to avoid confusion when
we later compare the optimal controls and the value function to the two contracts case, we keep the
subscript i in π̃i ≡ π̃i(t, Fi) to denote the optimal control in the single contract case when the contract
has a maturity of Ti, i = 1, 2. The single contract case with the contract maturing in T1, for example,
can be interpreted as fixing π2 identically to zero over the entire optimization horizon T .

We expect the value function ũ(t, w, F1) to solve the HJB equation

ũt + sup
π̃1

[ π̃1µ1(t)F1ũw + π̃1σ1(t)2F 2
1 ũw1 +

1

2
π̃2

1σ1(t)2F 2
1 ũww ]

+
σ1(t)2

2
F 2

1 ũ11 + µ1(t)F1ũ1 = 0,

and the optimal control π̃∗1 is given by

π̃∗1(t, F1) =
ũwµ1(t) + F1ũw1σ1(t)2

F1ũwwσ1(t)2
.

After substituting in π̃∗1 , we have the equation

ũt −
ũ2
wµ1(t)2

2ũwwσ1(t)2
− F1ũwũw1µ1(t)

ũww
+
F1(2ũ1ũwwµ1(t)− F1(ũ2

w1 − ũ11ũww)σ1(t)2)

2ũww
= 0.
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Next, we apply the transformation

ũ(t, w, F1) = −e−γweΦ̃(t,f1),

where f1 = logF1, and the tilde on Φ to again denote the single contract case, to get the PDE for Φ̃ as

−Φ̃t =
µ1(t)2

2σ1(t)2
+
σ1(t)2

2
(Φ̃11 − Φ̃1),

subject to Φ̃(T, f1)=0. We can see that Φ̃ is a function of t only. Explicitly,

dΦ̃

dt
= − µ1(t)2

2σ1(t)2
= −

(
e−κ̄ (T1−t) κ σ̄ ξ − e−κ (T1−t) (κ σ̄ ξ − κ ζ σ + ζ κ̄ σ)

)2
2 (κ− κ̄)

2

(
(e−κ (T1−t)−e−κ̄ (T1−t))

2
κ2 σ̄2

(κ−κ̄)2 + e−2κ (T1−t) σ2

) .
In turn, we numerically evaluate the integral

Φ̃(t) =

∫ T

t

µ1(t′)2

2σ1(t′)2
dt′.

Now if we express the optimal control in terms of Φ̃, we will have

π̃∗1(t, F1) =
µ1(t)− σ1(t)2Φ̃1

γF1σ1(t)2
=

µ1(t)

γF1σ1(t)2
,

since Φ̃ is a function of t only. We can see from (3.30) that π̃∗1 is identical to that in the 2 contracts case,
when ρ12(t) as defined in (3.16) equals zero. Explicitly, π̃∗1 in the single contract case equals

π̃∗1(t, F1) =
−
(
e−κ̄(T1−t) σ̄ κ ξ

)
+ e−κ (T1−t) (σ̄ κ ξ − ζ κ σ + ζ κ̄ σ)

γF1 (κ̄− κ)

(
(e−κ (T1−t)−e−κ̄ (T1−t))

2
σ̄2 κ2

(κ−κ̄)2 + e−2κ (T1−t) σ2

) . (3.40)

3.5.3 CTOU with Correlation

We now generalize the CTOU to the case where Zvt and Zθt are correlated with coefficient ρ. To this end,
we solve the following linear parabolic PDE with constant coefficients for the futures contract F (t, v, θ)
with maturity Ti:

1

2
σ2 ∂

2F

∂v2
+

1

2
σ̄2 ∂F

∂θ
+ κ(θ − v)

∂F

∂v
+ κ̄(θ̄ − θ)∂F

∂θ
+ ρ σσ̄

∂2F

∂v∂θ
+
∂F

∂t
= 0,

coupled with the terminal condition F (Ti, v, θ) = ev. We assume F (t, v, θ) is of the form

F (t, v, θ) = exp(a(t)v + b(t)θ + c(t)).

After substitution, we obtain the coupled set of linear ODE

a′(t)− κa(t) = 0

b′(t) + κa(t)− κ̄b(t) = 0

c′(t) +
1

2
σ2a(t)2 + κ̄θ̄b(t) + ρ σ̄σa(t)b(t) +

1

2
σ̄2b(t)2 = 0

with the terminal conditions
a(Ti) = 1, b(Ti) = c(Ti) = 0.
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We can solve for a(t), b(t) and then c(t) sequentially, and obtain

a(t) = exp(−κ(Ti − t)),

b(t) =
eκ̄t−t(κ̄−κ)−Ti(κ̄−κ)−Tiκ

(
et(κ̄−κ) − eTi(κ̄−κ)

)
κ

κ− κ̄
,

c(t) =−
(
e−2κ̄(t+3Ti)−(t+7Ti)κ+2(t+3Ti)(κ̄+κ)κ̄θ̄

κ̄− κ

)
− e4κ̄(t+Ti)−2κ̄(t+3Ti)σ̄2κ2

4κ̄(κ̄− κ)
2

+
e3κ̄t+5κ̄Ti−2κ̄(t+3Ti)+tκ+7Tiκ−(t+7Ti)κθ̄κ

(
κ̄2 − κ2

)
(κ̄− κ)

2
(κ̄+ κ)

+
e3κ̄t+5κ̄Ti−2κ̄(t+3Ti)+2tκ+6Tiκ−(t+7Ti)κσ̄κ (σ̄κ+ (κ̄− κ) ρσ)

(κ̄− κ)
2

(κ̄+ κ)

−
e2κ̄t+6κ̄Ti−2κ̄(t+3Ti)+3tκ+5Tiκ−(t+7Ti)κ

(
σ̄2κ2 + 2σ̄ (κ̄− κ)κρσ + (κ̄− κ)

2
σ2
)

4(κ̄− κ)
2
κ

+
e2κ̄t+6κ̄Ti−2κ̄(t+3Ti)+tκ+7Tiκ−(t+7Ti)κ

(
σ̄2κ2 + κ̄2

(
4θ̄κ+ σ2

)
+ κ̄κ

(
4θ̄κ+ σ (2σ̄ρ+ σ)

))
4κ̄κ (κ̄+ κ)

.

We can now apply Ito’s lemma to obtain the futures SDE under P, as

dF
(i)
t

F
(i)
t

= µi(t) dt+ σvi(t) dZ
v
t + σθi(t) dZ

θ
t ,

where

σvi(t) =
−
(
eκ̄t+Tiκσ̄κρ

)
+ ekTi+tκ (σ̄κρ+ (κ̄− κ)σ)

eTi(κ̄+κ) (κ̄− κ)
,

σθi(t) =

(
eκ̄Ti+tκ − eκ̄t+Tiκ

)
σ̄κ
√

1− ρ2

eTi(κ̄+κ) (κ̄− κ)
.

Again we define

σi(t)
2 ≡ σvi(t)2 + σθi(t)

2.

The drift of df
(i)
t , denoted by mi(t), is

mi(t) =
df (i)

dt
+ κ

(
θ +

σζ

κ
− v
)
df (i)

dv
+ κ̄

(
θ̄ +

σ̄ζ̄

κ̄
− θ
)
df (i)

dθ
.

The drift of dF
(i)
t , denoted by µi(t), is

µi(t) =mi(t) +
σi(t)

2

2

=
e−κ̄(Ti−t)κσ̄ζ̄ − e−κ(Ti−t)

(
κσ̄ζ̄ − κζσ + ζκ̄σ

)
κ− κ̄

,

which is identical to that in the case of no correlation.
We use the following matrix notation

µ(t) =

[
µ1(t)
µ2(t)

]
,v(t) =

[
σv1(t) σθ1(t)
σv2(t) σθ2(t)

]
.
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From Chapter 5, we know immediately that the value function is given by

u(t, w) =− exp

(
−γw − 1

2
µ(t)′(v(t)v(t)′)−1µ(t)(T − t)

)
=− exp (−γw − φ(t)) ,

where

φ(t) =
1

2

ζ2 + ζ̄2 − 2ζζ̄ρ

1− ρ2
.

The optimal control is

π∗(t, F1, F2) =
1

γ
(v(t)v(t)′)−1µ(t) =

[
π∗1
π∗2

]
,

where

π∗1 =
e(−t+T1)(κ̄+κ)

(
eκ̄t+T2κσ̄κ

(
ζ − ζ̄ρ

)
+ eκ̄T2+tκ

(
σ̄
(
−ζκ+ κζ̄ρ

)
+ (κ̄− κ)

(
ζ̄ − ζρ

)
σ
))

γF1 (eκ̄T2+T1κ − eκ̄T1+T2κ) σ̄κ (ρ2 − 1)σ

π∗2 =
e(−t+T2)(κ̄+κ)

(
eκ̄t+T1κσ̄κ

(
ζ − ζ̄ρ

)
+ eκ̄T1+tκ

(
σ̄
(
−ζκ+ κζ̄ρ

)
+ (κ̄− κ)

(
ζ̄ − ζρ

)
σ
))

γF2 (−eκ̄T2+T1κ + eκ̄T1+T2κ) σ̄κ (ρ2 − 1)σ
.
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Commodity Futures Trading under
the Schwartz Model
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Missing in the literature are investigations of the trading of a portfolio of commodity futures contracts.
Thus in this chapter, as published in [82], we shift the focus from futures on a mean-reverting spot index
(such as VIX) to commodity futures, as motivated by the prevalence of managed futures funds. Managed
futures funds constitute a significant segment in the universe of alternative assets. These funds are
managed by professional investment individuals or management companies known as Commodity Trading
Advisors (CTAs), and typically involve trading futures on commodities, currencies, interest rates, and
other assets. Regulated and monitored by both government agencies such as the U.S. Commodity Futures
Trading Commission and the National Futures Association, this class of assets has grown to over US$350
billion in 2017. One appeal of managed-futures strategies is their potential to produce uncorrelated and
superior returns, as well as different risk-return profiles, as compared to the equity market [63, 49]. While
the types of securities traded and strategies are conceivably diverse among managed futures funds, details
of the employed strategies are often unknown. It was suggested in [68] that momentum-based strategies
can help explain the returns of these funds.

In light of the tremendous growth, we aim to shed light on the opacity of this industry by proposing a
feasible strategy to trade commodity futures, based on the well-established machinery of stochastic control
theory. In this chapter, we analyze a stochastic dynamic control approach for portfolio optimization in
which the commodity price dynamics and investor’s risk preference are incorporated. We apply a no-
arbitrage approach to construct futures prices from a stochastic spot model. Specifically, we adopt
the well-known Schwartz two-factor model as described in [107], which takes into account the stochastic
convenience yield in commodity prices. We determine the optimal futures trading strategies by solving the
associated HJB equations in closed form. We use the Schwartz model due to its analytic tractability, which
enables us to obtain closed-form expressions for the optimal holdings, despite the various shortcomings as
pointed out in [25]. Parameter estimation for the Schwartz model is also well-studied, and is implemented
using Kalman filtering, as reported in the R package schwartz97, and independently in [54].

The explicit formulae of our strategies allow for straight-forward financial interpretations and instant
implementation. Moreover, our optimal strategies are explicit functions of the prices of the futures in-
cluded in the portfolio, but do not require the continuous monitoring of the spot price or stochastic
convenience yield. Related to the strategies, we also discuss the corresponding wealth process and cer-
tainty equivalent from futures trading. We provide some numerical examples and illustrate the optimal
trading strategies using WTI crude oil futures data.

With the closed-form formulae, we found that the optimal number of contracts held, on both the
long and short sides, are decreasing as the volatility of the stochastic convenience yield process increases.
Moreover, the position sizes are still inversely proportional to risk aversion coefficient, similar to previous
chapters. Based on realistic parameters calibrated from historical data, we found that positions change
little with respect to maturities; in other words they are insensitive to time to maturity, ceteris paribus.
We also found that the certainty equivalent for trading two contracts simultaneously is significantly
greater than that derived from trading only a single contract, regardless of the choice of maturity. It will
be shown later that this also holds when we divide initial wealth into two halves and trade two separate
single maturity contracts simultaneously.

There is a host of research on the pricing of futures, but relatively few studies apply dynamic stochastic
control methods to optimize futures portfolios. Among them, a study that examines how investors risk
behavior affects the portfolio allocation to commodity futures is [6]. [19] consider trading a pair of
futures but use the arithmetic Brownian motion. In a recent study, [5] study the problem of dynamically
trading the price spread between a futures contract and its spot asset under a stochastic basis model.
They model the basis process by a scaled Brownian bridge, and solve a utility maximization problem
to derive the optimal trading strategies. These two related studies do not account for the well-observed
no-arbitrage price relationships and term-structure in the futures market. Our work fills in the void by
using a tractable spot model that can generate no-arbitrage futures prices and effectively capture their
joint price evolutions. On the other hand, in contrast to a stochastic control approach to futures trading
considered here, [75] introduced an optimal stopping approach to determine the optimal timing to open or
close a futures position under three single-factor mean-reverting spot models. Futures portfolios are also
often used to track the spot price movements, and we refer to [78, 79] for examples using gold and VIX
futures. In this chapter we worked with the relatively simple two-factor Schwartz model for commodity;
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we will leave to future research to investigate the application of our method to more complicated models
such as [43].

4.1 Futures Price Dynamics

Let us denote the commodity spot price process by (St)t≥0. Under the [107] model, the spot price is
driven by a stochastic instantaneous convenience yield, denoted by (δt)t≥0 here. This convenience yield,
which was originally used in the context of commodity futures, reflects the value of direct access minus the
cost of carry and can be interpreted as the“dividend yield” for holding the physical asset. It is the “flow
of services accruing to the holder of the spot commodity but not to the owner of the futures contract”
as explained in [107].

For the spot asset, we consider its log price, denoted by Xt. Under the [107] model, it satisfies the
system of stochastic differential equations (SDEs) under the physical probability measure P:

Xt = log(St), (4.1)

dXt =

(
µ− η2

2
− δt

)
dt+ ηdZst , (4.2)

dδt = κ (α− δt) dt+ η̄dZδt . (4.3)

Here, Zst and Zδt are two standard Brownian motions under P with instantaneous correlation ρ ∈ (−1, 1).
The stochastic convenience yield follows the Ornstein-Uhlenbeck model, which is mean-reverting with
a constant equilibrium level α, volatility η̄, and speed of mean-reversion equal to κ. We require that
κ, η̄, η > 0 and µ, α ∈ R.

The investor’s portfolio optimization problem will be formulated under the physical measure P, but
in order to price the commodity futures we need to work with the risk-neutral pricing measure Q. To
this end, we assume a constant interest rate r ≥ 0, and apply a change of measure from P to Q. The
Q-dynamics of the correlated Brownian motions (Zst , Z

δ
t ) are given by

dZ̃st =
µ− r
η

dt+ dZst , (4.4)

dZ̃δt =
λ

η̄
dt+ dZδt . (4.5)

Consequently, the risk-neutral log spot price evolves according to

dXt =

(
r − δt −

η2

2

)
dt+ ηdZ̃st ,

dδt = κ(α̃− δt)dt+ η̄dZ̃δt ,

where we have defined the risk-neutral equilibrium level for the convenience yield by

α̃ ≡ α− λ

κ
.

It is adjusted by the ratio of the market price of risk λ associated with Zδt and the speed of mean reversion
κ. With a constant λ, the convenience yield again follows the Ornstein-Uhlenbeck model under measure
Q but with a different equilibrium level compared to that under measure P.

We consider a commodity market that consists of n traded futures contracts with maturities Ti, i =
1, . . . , n. Let

F
(i)
t ≡ F (i)(t,Xt, δt) = E[ eXT |Xt, δt ]

be the price of the Ti-futures at time t, which is a function of time t, current log spot price Xt, and
convenience yield δt. For any i = 1, . . . , n, the price function F (i)(t,X, δ) satisfies the PDE

η2

2

∂2F (i)

∂X2
+ ρηη̄

∂2F (i)

∂X∂δ
+
η̄2

2

∂2F (i)

∂δ2
+

(
r − δ − η2

2

)
∂F (i)

∂X
+ κ(α̃− δ)∂F

(i)

∂δ
= −∂F

(i)

∂t
, (4.6)
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for (t, x, δ) ∈ [0, Ti)×(−∞,∞)×(−∞,∞), where we have compressed the dependence of F (i) on (t,X, δ).
The terminal condition is F (i)(Ti, X, δ) = exp(X) for x ∈ R. As is well-known (see [107, 37]), the futures
price admits the exponential affine form:

F
(i)
t = exp (Xt +Ai(t) +Bi(t)δt) (4.7)

for some functions Ai(t) and Bi(t) that depend only on time t and not the state variables. The functions
Ai(t) and Bi(t) are found from the ODEs

r +
η̄

2
Bi(t)

2 +Bi(t)(ακ+ ρηη̄) +A′i(t) = 0, (4.8)

B′i(t)− κBi(t)− 1 = 0, (4.9)

for t ∈ [0, Ti), with terminal conditions Ai(Ti) = 0 and Bi(Ti) = 0. The ODEs (4.8) and (4.9) admit the
following explicit solutions:

Ai(t) =

(
r − α̃+

η̄2

2κ2
− ηη̄ρ

κ

)
(Ti − t)

+
η̄2

4

1− e−2κ(Ti−t)

κ3
+

(
α̃κ+ ηη̄ρ− η̄2

κ

)
1− e−κ(Ti−t)

κ2
, (4.10)

Bi(t) = −1− e−κ(Ti−t)

κ
. (4.11)

Applying Ito’s formula to (4.7), the Ti-futures price evolves according to the SDE

dF
(i)
t

F
(i)
t

= µi(t)dt+ ηdZst + η̄Bi(t)dZ
δ
t , (4.12)

under the physical measure P, where the drift is given by

µi(t) = (λ+ α̃κ+ ρη̄η)Bi(t) +
η̄2

2
Bi(t)

2 + µ+A′i(t) + δ(B′i(t)− κBi(t)− 1) (4.13)

= µ− r − λ(1− e−κ(Ti−t))

κ
. (4.14)

The last equality follows from (4.8) and (4.11). As a consequence, the drift of F
(i)
t is independent of Xt

and δt, meaning that the investor’s value function (see (4.22) or (4.32)) will also be independent of Xt

and δt. This turns out to be a crucial feature that greatly simplifies the investor’s portfolio optimization
problem and ultimately leads to an explicit solution.

To facilitate presentation, let us rewrite the linear combination of dZst and dZδt in (4.12) as

σi(t)dZ
(i)
t ≡ ηdZst + η̄Bi(t)dZ

δ
t ,

where Z
(i)
t is a standard Brownian motion and

σi(t)
2 = η2 + 2ρη̄ηBi(t) + η̄2Bi(t)

2 (4.15)

is the instantaneous volatility coefficient.
Under this model, futures prices are not independent and admit a specific correlation structure. For

example, consider the T1 and T2 contracts. The SDE for the respective futures price is

dF
(i)
t

F
(i)
t

= µi(t)dt+ σi(t)dZ
(i)
t , i ∈ {1, 2}, (4.16)

The two Brownian motions, Z
(1)
t and Z

(2)
t , are correlated with

dZ
(1)
t dZ

(2)
t = ρ12(t) dt.
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where

ρ12(t) =
η̄2B1(t)B2(t) + (B1(t) +B2(t))ρηη̄ + η2

σ1(t)σ2(t)
(4.17)

is the instantaneous correlation that depends not only on the spot model parameters (ρ, η, η̄) but also
the two futures price functions through B1(t) and B2(t).

4.2 Utility Maximization Problem

We now present the mathematical formulation for the futures portfolio optimization problem. To begin,
we discuss the case where the investor trades only futures with the same maturity in Section 4.2.1. Then,
we extend the analysis to optimize a portfolio with two different futures in Section 4.2.2. We will also
investigate in Section 4.2.4 the value of trading using the notion of certainty equivalent.

4.2.1 Single-Maturity Futures Portfolio

Suppose that the investor trades only futures of a single maturity Ti for some chosen i ∈ {1, 2, . . . , n}.
The trading horizon, denoted by T , must be equal to or shorter than the chosen maturity Ti, so we
require T ≤ Ti.

We will let π̃i(t, Fi) denote the number of Ti-futures contracts held in the portfolio. The investor can
choose the size of the position in the Ti-futures, and the position can be long or short at any time. For
brevity, we may write π̃i ≡ π̃i(t, Fi).

Without loss of generality, we arbitrarily set i= 1 in our presentation of the optimization problem
and solution. The investor is assumed to trade only the futures contract and not other risky or risk-
free assets. The dynamic portfolio consists of π̃1(t, F1) units of T1-futures at time t. The self-financing
condition means that the wealth process satisfies

dW̃t = π̃1(t, F
(1)
t ) dF

(1)
t . (4.18)

Applying the futures price equations (4.7) and (4.12), we can express the system of SDEs for the wealth
process and futures price as[

dW̃t

dF
(1)
t

]
=

[
π̃1µ1(t)F

(1)
t

µ1(t)F
(1)
t

]
dt+

[
π̃1ηF

(1)
t π̃1η̄B1(t)F

(1)
t

ηF
(1)
t η̄B1(t)F

(1)
t

] [
dZst
dZδt

]
, (4.19)

=

[
π̃1µ1(t)F

(1)
t

µ1(t)F
(1)
t

]
dt+

[
π̃1σ1(t)F

(1)
t

σ1(t)F
(1)
t

]
dZ

(1)
t . (4.20)

A control π̃1 is said to be admissible if π̃1 is real-valued progressively measurable, and is such that

the system of SDE (4.19) admits a unique solution (W̃t, F
(1)
t ) and the admissibility condition

E

(∫ T

t

π̃1(s, F (1)
s )2 (F (1)

s )2ds

)
<∞

is satisfied. We denote by Ãt the set of admissible strategies in this case given an initial investment time
t.

The investor’s risk preference is described by the exponential utility function

U(w) = −e−γw, for w ∈ R, (4.21)

where γ > 0 is the constant risk aversion parameter. For a given trading horizon, [0, T ], the investor
seeks an admissible strategy that maximizes the expected utility of terminal wealth at time T by solving
the optimization problem

Ṽ (t, w, F1) = sup
π̃1∈Ãt

E
(
U(W̃T ) | W̃t = w,F

(1)
t = F1

)
. (4.22)
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We note that the value function is only a function of time t, current wealth w, and current futures
price F1, and does not depend on the current spot price or convenience yield. Following the standard
verification approach to dynamic programming [58, 105, 96], we assume the existence of a sufficiently
smooth candidate solution ũ(t, w, F1), which will later be shown to be equal to the value function Ṽ in
(4.22).

To facilitate presentation, we define the following partial derivatives

ũt =
∂ũ

∂t
, ũw =

∂ũ

∂w
, ũww =

∂2ũ

∂w2
,

ũ1 =
∂ũ

∂F1
, ũ11 =

∂2ũ

∂F 2
1

, ũw1 =
∂2ũ

∂w∂F1
.

We expect the candidate function ũ(t, w, F1) to solve the HJB equation

ũt + sup
π̃1

{ π̃1µ1(t)F1ũw + π̃1σ1(t)2F 2
1 ũw1 +

1

2
π̃2

1σ1(t)2F 2
1 ũww } (4.23)

+
σ1(t)2

2
F 2

1 ũ11 + µ1(t)F1ũ1 = 0,

for (t, w, F1) ∈ [0, T ) × R × R+, with terminal condition ũ(T,w, F1) = e−γw for (w,F1) ∈ R × R+.
Performing the optimization in (4.25), we can express the optimal control π̃∗1 as

π̃∗1(t, F1) =
ũwµ1(t) + F1ũw1σ1(t)2

F1ũwwσ1(t)2
. (4.24)

Substituting this into (4.25), we obtain the nonlinear PDE

ũt −
ũ2
wµ1(t)2

2ũwwσ1(t)2
− F1ũwũw1µ1(t)

ũww
+
F1(2ũ1ũwwµ1(t)− F1(ũ2

w1 − ũ11ũww)σ1(t)2)

2ũww
= 0. (4.25)

Next, we conjecture that ũ depends on t and w only, and apply the transformation

ũ(t, w) = −e−γw−Φ̃(t), (4.26)

for some function Φ̃(t) to be determined. By direct substitution and computation, we obtain the ODE

dΦ̃

dt
= − µ1(t)2

2σ1(t)2
= −1

2

(λ(1− e−κ(T1−t))− κ(µ− r))2

(1− e−κ(T1−t))2η̄2 − 2(1− e−κ(T1−t))κρηη̄ + κ2η2
, (4.27)

subject to Φ̃(T )=0. In turn, we obtain Φ̃(t) by integration

Φ̃(t) =

∫ T

t

µ1(t′)2

2σ1(t′)2
dt′, 0 ≤ t ≤ T.

Applying (4.26) to (4.24), we obtain the optimal strategy

π̃∗1(t, F1) =
µ1(t)− σ1(t)2Φ̃1

γF1σ1(t)2
=

µ1(t)

γF1σ1(t)2
. (4.28)

Using (4.11), (4.14), and (4.15), the optimal strategy π̃∗1 in the single-contract case is explicitly given by

π̃∗1(t, F1) =
1

γF1

κ(λ(1− e−κ(T1−t))− κ(µ− r))
(1− e−κ(T1−t))2η̄2 − 2(1− e−κ(T1−t))κρηη̄ + κ2η2

. (4.29)

We observe from (4.29) that π̃∗1 is inversely proportional to γ and F1. This means that a higher risk
aversion will reduce the size of the investor’s position. A higher futures price will also have the same effect.
However, the total cash amount invested in the futures, i.e. π̃∗1(t, F1)F1, does not vary with the futures
price, and is in fact a deterministic function of time. Note that the investor’s position is independent of
the equilibrium level of the convenience yield α or α̃, but it depends on the speed of mean reversion κ,
volatility η̄, and market price of risk λ of the convenience yield.
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4.2.2 Trading Futures of Two Different Maturities

We now consider the utility maximization problem involving a pair of futures with different maturities.
Without loss of generality, let T1 and T2 be the two maturities of the futures in the portfolio. The trading
horizon T satisfies T ≤ min{T1, T2}. The investor continuously trades only the two futures over time.
The trading wealth satisfies the self-financing condition

dWt = π1(t, F
(1)
t , F

(2)
t ) dF

(1)
t + π2(t, F

(1)
t , F

(2)
t ) dF

(2)
t , (4.30)

where πi(t, F
(1)
t , F

(2)
t ), i = 1, 2, denote the number of Ti-futures held. If it is negative, the corresponding

futures position is short. For notational simplicity, we may write πi ≡ πi(t, F (1)
t , F

(2)
t ). Writing the trading

wealth and two futures prices together in terms of two fundamental sources of randomness (Z
(1)
t , Z

(2)
t ),

we get  dWt

dF
(1)
t

dF
(2)
t

 =

π1µ1(t)F
(1)
t + π2µ2(t)F

(2)
t

µ1(t)F
(1)
t

µ2(t)F
(2)
t

 dt+

π1σ1(t)F
(1)
t π2σ2(t)F

(2)
t

σ1(t)F
(1)
t 0

0 σ2(t)F
(2)
t

[dZ(1)
t

dZ
(2)
t

]
. (4.31)

A pair of controls (π1, π2) is said to be admissible if it is real-valued progressively measurable, and such

that the system of SDE (4.31) admits a unique solution (Wt, F
(1)
t , F

(2)
t ) and the integrability condition

E
( ∫ T

t
[πi(s, F

(1)
s , F

(2)
s )F

(1)
s ]2ds

)
< ∞, for i = 1, 2, is satisfied. We denote by At the set of admissi-

ble controls with an initial time of investment t. Next, we define the value function V (t, w, F1, F2) of
the investor’s portfolio optimization problem. The investor seeks an admissible strategy (π1, π2) that
maximizes the expected utility from wealth at time T , that is,

V (t, w, F1, F2) = sup
(π1,π2)∈At

E
(
U(WT ) |Wt = w,F

(1)
t = F1, F

(2)
t = F2

)
. (4.32)

Following the standard verification approach to dynamic programming [58, 105, 96], we assume the
existence of a sufficiently smooth candidate solution u(t, w, F1, F2), which will later be shown to be equal
to the value function V in (4.32).

HJB Equation and Closed-Form Solution

To facilitate presentation, we define the following partial derivatives

ut =
∂u

∂t
, uw =

∂u

∂w
, uww =

∂2u

∂w2
,

u1 =
∂u

∂F1
, u11 =

∂2u

∂F 2
1

, u2 =
∂u

∂F2
, u22 =

∂2u

∂F 2
2

,

uw1 =
∂2u

∂w∂F1
, uw2 =

∂2u

∂w∂F2
, u12 =

∂2u

∂F1∂F2
.

We determine the candidate solution u(t, w, F1, F2) by solving the HJB equation

ut + sup
π1,π2

[
(π1µ1(t)F1 + π2µ2(t)F2)uw

+ (π1σ1(t)2F 2
1 + π2ρ12(t)σ1(t)σ2(t)F1F2)uw1 + (π2σ2(t)2F 2

2 + π1ρ12(t)σ1(t)σ2(t)F1F2)uw2

+
1

2
(π2

1σ1(t)2F 2
1 + π2

2σ2(t)2F 2
2 + ρ12(t)π1π2σ1(t)σ2(t)F1F2)uww

]
+ µ1(t)F1u1 + µ2(t)F2u2

+
σ1(t)2

2
F 2

1 u11 +
σ2(t)2

2
F 2

2 u22 + ρ12(t)σ1(t)σ2(t)F1F2u12 = 0, (4.33)

for (t, w, F1, F2) ∈ [0, T )× R× R+ × R+, along with the terminal condition

u(T,w, F1, F2) = −e−γw, for (w,F1, F2) ∈ R× R+ × R+.
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We introduce the linear operator L(π1,π2) that will be needed in order to apply the verification theorem
in Appendix A:

L(π1,π2)u = (π1µ1(t)F1 + π2µ2(t)F2)uw

+ (π1σ1(t)2F 2
1 + π2ρ12(t)σ1(t)σ2(t)F1F2)uw1 + (π2σ2(t)2F 2

2 + π1ρ12(t)σ1(t)σ2(t)F1F2)uw2

+
1

2
(π2

1σ1(t)2F 2
1 + π2

2σ2(t)2F 2
2 + ρ12(t)π1π2σ1(t)σ2(t)F1F2)uww + µ1(t)F1u1 + µ2(t)F2u2

+
σ1(t)2

2
F 2

1 u11 +
σ2(t)2

2
F 2

2 u22 + ρ12(t)σ1(t)σ2(t)F1F2u12

The HJB equation can be written compactly as

ut + sup
π1,π2

L(π1,π2)u = 0

Next, we apply the transformation

u(t, w, F1, F2) = −e−γw−Φ(t,f1,f2), (4.34)

with f1 = logF1 and f2 = logF2. Substituting (4.34) into (4.33), we obtain the linear PDE for Φ:

0 = Φt +

(
1

2

µ2
1

(1− ρ2
12)σ2

1

+
1

2

µ2
2

(1− ρ2
12)σ2

2

− ρ12µ1µ2

(1− ρ2
12)σ1σ2

)
+
σ2

1

2
(Φ11 − Φ1) +

σ2
2

2
(Φ22 − Φ2) + ρ12σ1σ2Φ12, (4.35)

with Φ(T, f1, f2)=0. We have defined the partial derivatives

Φt =
∂Φ

∂t
, Φ1 =

∂Φ

∂f1
, Φ2 =

∂Φ

∂f2
,

Φ11 =
∂2Φ

∂f2
1

, Φ22 =
∂2Φ

∂f2
2

, Φ12 =
∂2Φ

∂f1∂f2
,

and suppressed the dependence on t, in µi, σi, and ρ12 to simplify the notation.
We can solve this linear PDE of Φ by using the ansatz

Φ(t, f1, f2) = a11(t)f2
1 + a1(t)f1 + a22(t)f2

2 + a2(t)f2 + a12(t)f1f2 + a(t)

to deduce that
a′11(t) = a′22(t) = a′12(t) = 0, a11(t) = a22(t) = a12(t) = 0,

a′1(t) = a′2(t) = 0, a1(t) = a2(t) = 0.

From this, we deduce that Φ is in fact a function of t only, independent of f1 and f2, and satisfies the
first-order differential equation

dΦ

dt
= −µ1(t)2σ2(t)2 + µ2(t)2σ1(t)2 − 2ρ12(t)µ1(t)µ2(t)σ1(t)σ2(t)

2(1− ρ12(t)2)σ1(t)2σ2(t)2
.

Solving this and applying (4.14), (4.15), and (4.17), we obtain a closed-form expression for Φ. Precisely,

Φ(t) =
(T − t)

(
(r − µ)

2
η̄2 + 2λ (r − µ) ρη̄η + λ2 η2

)
2 (1− ρ2) η̄2η2

. (4.36)

Applying (4.36) to (4.34), the candidate solution is given by

u(t, w) = −e−γw−Φ(t). (4.37)
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Interestingly, as in the single-futures case, the value function is independent of the speed of mean
reversion κ and equilibrium level α of the convenience yield process. Intuitively, it suggests that the
optimal strategy effectively removes the stochasticity of the convenience yield in the investor’s maximum
expected utility. This feature is evident again later in the characterization of the optimal wealth process.
Moreover, the value function does not depend on the current futures prices (F1, F2). The simplicity of
the value function is unexpected, especially since there are two stochastic factors and two futures in the
trading problem. Nevertheless, it does not mean that the corresponding trading strategies are trivial. In
fact, the strategies depend not only on other model parameters but also the futures prices, as we will
discuss next.

By applying (4.34) and (4.36) to (4.33), we obtain the optimal trading strategies

π∗1(t, F1, F2) =
1

γ(1− ρ12(t)2)σ1(t)F1

(
µ1(t)

σ1(t)
− ρ12(t)

µ2(t)

σ2(t)

)
, (4.38)

π∗2(t, F1, F2) =
1

γ(1− ρ12(t)2)σ2(t)F2

(
µ2(t)

σ2(t)
− ρ12(t)

µ1(t)

σ1(t)

)
. (4.39)

In this case with two futures, for either i = 1, 2, the corresponding optimal strategy π∗i is a function of
Fi, but does not depend on the price of the other futures Fj , for i 6=j.

We recall (4.14), (4.15), and (4.17), and express the optimal strategies explicitly in terms of model
parameters. Precisely,

π∗1 = −
eκ(T1−t)

((
etκ − eκT2

)
(r − µ) η̄2 +

(
etκλ+ eκT2 (rκ− λ− κµ)

)
ρη̄η + eκT2κλη2

)
F1 (eκT1 − eκT2) γ (1− ρ2) η̄2η2

, (4.40)

π∗2 =
eκ(T2−t)

((
etκ − eκT1

)
(r − µ) η̄2 +

(
etκλ+ eκT1 (rκ− λ− κµ)

)
ρη̄η + eκT1κλη2

)
F2 (eκT1 − eκT2) γ (1− ρ2) η̄2η2

. (4.41)

Thus we see that the optimal controls π∗1 and π∗2 do not depend on the current spot price St or con-
venience yield δt, and is also independent on the equilibrium of the convenience yield α. For practical
applications, this independence removes the burden to estimate or continuously monitor the spot price
or convenience yield. Nevertheless, the optimal controls do depend on all the other parameters, namely
µ, r, κ, η, η̄, ρ, and λ.

Remark 2. Naturally, one can consider trading futures with more than two maturities. However, in such
case under the Schwartz two-factor model, there is an infinite number of solutions to the corresponding
utility maximization problem and the additional futures are redundant, since we can replicate a third
contract with two. To this end, remember that the Ti-futures price evolves according to the SDE

dF
(i)
t

F
(i)
t

= µi(t)dt+ ηdZst + η̄Bi(t)dZ
δ
t ,

under the physical measure P, where

Bi(t) = −1− e−κ(Ti−t)

κ

and

µi(t) = µ− r − λ(1− e−κ(Ti−t))

κ
= µ− r + λBi(t).

We seek to find π1 and π2 such that µ1F
(1)
t µ2F

(2)
t

ηF
(1)
t ηF

(2)
t

η̄B1F
(1)
t η̄B2F

(2)
t

[π1

π2

]
=

 µ3F
(3)
t

ηF
(3)
t

η̄B3F
(3)
t

 . (4.42)
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Noting that µi(t) can be written as

µi(t) =
µ− r
η

η +
λ

η̄
η̄Bi,

we can see that the first equation in (4.42) is redundant and is a linear combination of the second and
third, and therefore the system of equations in (4.42) has a unique solution for πi, i = 1, 2.

Optimal Wealth Process

To derive the optimal wealth process, we substitute the optimal futures positions, π∗1 and π∗2 , into the
wealth equation (4.30) and get

dWt = π∗1dF
(1)
t + π∗2dF

(2)
t

= µW dt+ (π∗1F
(1)
t + π∗2F

(2)
t )ηdZst + (π∗1F

(1)
t B1(t) + π∗2F

(2)
t B2(t))η̄dZδt

≡ µW dt+ σW dZ
W
t ,

where we have defined

µW = π∗1F
(1)
t µ1(t) + π∗2F

(2)
t µ2(t)

=
(r − µ)

2
η̄2 + 2λ (r − µ) ρη̄η + λ2 η2

γ (1− ρ2) η̄2η2
(4.43)

and

σ2
W = (π∗1F

(1)
t + π∗2F

(2)
t )2η2 + (π∗1F

(1)
t B1(t) + π∗2F

(2)
t B2(t))2η̄2

+2ρηη̄(π∗1F
(1)
t + π∗2F

(2)
t )(π∗1F

(1)
t B1(t) + π∗2F

(2)
t B2(t))

=
(r − µ)

2
η̄2 + 2λ (r − µ) ρη̄η + λ2 η2

γ2 (1− ρ2) η̄2η2

=
µW
γ
. (4.44)

In (4.43) and (4.44) we have used (4.40) and (4.41).
Note that both µW and σW are constant. This implies that the wealth process, under the optimal

trading strategy, is an arithmetic Brownian motion with constant drift and volatility. Moreover, these
two constants do not depend on the speed of mean reversion κ and equilibrium level α of the convenience
yield process. This is why the value function is also independent of these two parameters. The financial
intuition is that the optimal strategy suggests trading in a way that removes the randomness stemmed
from the convenience yield process. As a special case, when µ = r and λ = 0, the P measure is identical
to Q. This will lead to π∗i = 0, i = 1, 2, and in turn a constant wealth, with µW = σW = 0.

4.2.3 Verification Theorem

Based on the verification theorem in Appendix A, Theorem 7, in order to show that the candidate
solution is the value function, it suffices to prove the uniform integrability of the family of random
variables {u(τ,W ∗τ )}τ for any stopping time τ ∈ [0, T ]. We will only present the 2 futures case since the
1 maturity case follows the same argument.

Theorem 4. The candidate solution found in (4.37) is equal to the value function (4.32); namely,

V (t, w) = u(t, w) = − exp(−γw − Φ(t))

on (t, w) ∈ [0, T ] × R, where Φ(t) is given by (4.36). Furthermore, the optimal control pair is given by
(4.40) and (4.41).
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Proof. Let ε > 0 be an arbitrary positive number. From the verification theorem in Appendix A, it suffices
to show that E(|u(τ,W ∗τ )|1+ε) < ∞, uniformly with respect to any stopping time τ with 0 ≤ τ ≤ T .
First, after applying the Cauchy-Schwarz inequality, we find that

E(|u(τ,W ∗τ )|1+ε) ≤E(exp (−2(1 + ε)γW ∗τ ))1/2× (4.45)

E(exp (−2(1 + ε)Φ(τ)))1/2. (4.46)

For the first expectation (4.45), clearly

E[exp (−2(1 + ε)γW ∗τ )]

= E
[

exp

(
−2(1 + ε)

(∫ τ

0

µW ds+

∫ τ

0

σW dZ
W
s

))]
= E

[
exp

(
− 2(1 + ε)

(
µW τ + σWZ

W
τ

))]
≤ cE

[
exp

(
− 2(1 + ε)σWZ

W
τ

)]
(4.47)

for some constant c, since µW is a constant and τ ≤ T .
Now since ZWt is a martingale, we have that for any constant k, exp(kZWt ) is a submartingale by

Jensen’s inequality, since

E0(exp(kZWt )) ≥ exp(kE0(ZWt )) = exp(kE0(ZW0 )) = 1.

Moreover, exp(kZWt ) is positive. Therefore we can use Doob’s martingale inequality [103]: for ξ > 0,

E[exp(kZWτ )] =

∥∥∥∥ exp

(
k

1 + ξ
ZWτ

)∥∥∥∥1+ξ

1+ξ

≤
∥∥∥∥ sup

0≤t≤T
exp

(
k

1 + ξ
ZWt

)∥∥∥∥1+ξ

1+ξ

≤
(

1 +
1

ξ

)1+ξ

sup
0≤t≤T

E[exp(kZWt )]

≤ c

where c is another positive constant, independent of the stopping time τ .
For the second expectation (4.46), recalling that

Φ(t) =
(T − t)

(
(r − µ)

2
η̄2 + 2λ (r − µ) ρη̄η + λ2 η2

)
2 (1− ρ2) η̄2η2

,

we can clearly see that E(exp (−2(1 + ε)Φ(τ))) is bounded as well. Hence we proved that {u(τ,W ∗τ )}τ is
uniformly integrable for any stopping time τ ∈ [0, T ].

Since the uniform integrability for {ũ(τ,W ∗τ , F
(1)
τ )}τ in the 1 futures case can be proved using the

exact same argument, we can conclude as well that the candidate solution in the 1 futures case (4.26) is
the value function (4.22).

4.2.4 Certainty Equivalent

Next, we consider the certainty equivalent associated with the trading opportunity in the futures. The
certainty equivalent is the cash amount that derives the same utility as the value function. First, we
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consider the single-futures case. Recall from (4.21) and (4.26) that the investor’s utility and value
functions are both of exponential form. Therefore, the certainty equivalent is given by

C̃(i)(t, w) ≡ U−1(ũ(t, w)) = w +
Φ̃(i)(t)

γ
. (4.48)

Here, the superscript (i) refers to the futures with maturity Ti in the portfolio. From (4.48), we observe
that the certainty equivalent is the sum of the investor’s wealth w and the time-deterministic component
Φ̃(i)(t)/γ, which is positive and inversely proportional to the risk aversion parameter γ. All else being
equal, a more risk averse investor has a lower certainty equivalent, valuing the futures trading opportunity
less. Interestingly, the certainty equivalent does not depend on the current futures prices F1 but it does
depend on the model parameters that appear in the futures price dynamics.

Similarly, the certainty equivalent from dynamically trading two futures with different maturities is
given by

C(t, w) ≡ U−1(u(t, w)) = w +
Φ(t)

γ
, (4.49)

where u(t, w) is the value function in (4.37) and Φ is given by (4.36).
Since the certainty equivalents in both the single-futures and two-futures cases have the same linear

dependence on wealth w, we will for simplicity set w = 0 in our numerical examples to compare across

these cases. To this end, we denote C̃
(i)
0 (t) ≡ C̃(i)(t, 0) and C0(t) ≡ C(t, 0).

4.3 Numerical Implementation

We now examine our model through a number of numerical examples using simulated and empirical data.
For our examples, we will use the estimated parameters values found in [54]. They are displayed here
in Table 4.1. The drift parameter µ of the spot price was not given in [54], so we set µ = 1% for our
examples. We use federal funds rate as a proxy for the instantaneous interest rate r which, during the
calibration period, hovered around 0.1%.1 The default value for the risk aversion coefficient γ is 1%
unless noted otherwise.

µ κ η η̄ ρ λ r

0.010 0.800 0.450 0.500 0.750 0.050 0.001

Table 4.1: The Schwartz model parameters estimated by Ewald, Zhang, and Zong.

In Figure 4.1, we show the dependence of the optimal positions, π∗1 and π∗2 , respectively in the T1-
futures and T2-futures in the two-futures case on the volatility parameter η̄ of the convenience yield
process, for three different risk aversion levels. Observe that π∗1 at all three levels of γ is positive and
decreasing in η̄ while π∗2 is negative and increasing in η̄. With the parameters given in Table 4.1, we
are long the T1-futures F (1) and short the T2-futures F (2). When we rearrange the formulae (4.40)
and (4.41) for π∗1 and π∗2 , respectively, and collect terms involving η̄, we see that for both i = 1, 2,
the optimal strategies are of the form Ai + Bi/η̄ + Ci/η̄

2, which means that the absolute value of each
strategy π∗i decreases as η̄ increases, with other variables held constant. The practical consequence is
that the number of contracts held, on both the long and short sides, are decreasing as the volatility of
the stochastic convenience yield process δt increases. This is in line with a risk-averse trader’s intuition
that less exposures on both legs of the traded pair should be preferred, if the volatility of the stochastic
convenience yield is high. Furthermore, the positions increase in size (more positive for π∗1 and more
negative for π∗2) as risk aversion decreases. This is obvious given the inverse relationship between γ and
π∗i as seen in Eq (4.38) and (4.39).

1Data from www.macrotrends.net.
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Figure 4.1: Optimal positions, π∗
1 and π∗

2 , respectively in the T1-futures and T2-futures in
the two-futures case plotted for η̄ ∈ [0.25, 0.75], at three levels of risk aversion γ. Common
parameters are displayed in Table 4.1, with F1 = 100 and F2 = 100.

Figure 4.2 illustrates how the optimal futures positions, π∗1 and π∗2 , vary with respect to maturity.
First of all, the two positions are of different signs and their sizes are very close. As maturity T1 or T2

lengthens, the size of the corresponding futures position increases, with π∗1 becoming more positive and
π∗2 more negative. However, the change is very small as the scale on the y-axis shows, so one can interpret
this as the positions are not very sensitive to the futures maturities.

In Figure 4.3 we compare the optimal trading strategies, π∗1 and π∗2 for two futures to the optimal
strategy π̃∗i for trading a single futures. We plot the strategies as functions of η, the volatility of the spot
price, using same set of parameters as in Table 4.1. When trading a single contract, the corresponding
optimal strategy, π̃∗1 and π̃∗2 , are both very small near zero. However, it can be seen that they do increase
slightly in size when η becomes small, as volatility decreases.

This is in contrast to the two-contract case where the optimal strategies are π∗1 and π∗2 . Both increases,
in opposite directions, as η increases. This shows that despite the increase in risk as η increases, paired
positions in π∗1 and π∗2 , of opposite signs, will increase as volatility of the spot process increases.

It is also interesting to note the size of the positions in the single contract cases as compared to the
pair-trading case. When we are constrained to trade only single contracts, that is when the admissible set
is Ãt as opposed to At, the position is much smaller. Under the current model, the presence of multiple
contracts of different maturities significantly increases trade volume and allows the trader to take much
bigger hedged trades.

In Figure 4.4 we plot the optimal strategies as functions of γ, the risk aversion coefficient. Obviously,
given the inverse relationship between γ and π∗i as seen in Eq (4.38) and (4.39), as well as between γ and
π̃∗i as seen in Eq (4.28), the optimal positions are expected to decrease in magnitude. What is interesting
to note is the insensitivity of π̃∗i with respect to γ, in comparison to π∗i . This means that in the single
futures case, the position will be small regardless of the level of risk aversion.

Having analyzed the parameter dependence of the optimal strategies in details, now we turn to their
path behavior based on historical data. We consider the June 2014 and July 2014 WTI crude oil futures.
We show the empirical optimal positions over the period March 2014 to June 2014. This period is chosen
to correspond to the post-calibration period of [54]. Applying our explicit formulae for the strategies,
we compute π∗1 , π∗2 , and π∗1 + π∗2 based on the daily settlement prices of these contracts as well as the
parameters in Table 4.1. As shown in Figure 4.5, the optimal strategy π∗1 is positive throughout this
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Figure 4.2: Optimal positions, π∗
1 in the T1-futures and π∗

2 in the T2-futures in the two-futures
portfolio, plotted as a function of T1 and T2 respectively, with parameters as displayed in
Table 4.1, and F1 = 100 and F2 = 100.

period, corresponding to a long position in the front-month contract, and the opposite holds for π∗2 . Taken
together, the sum of both positions is negligibly small, corresponding to a net neutral position. Overall,
the positions changed little when the parameters η and η̄ are kept fixed. The only variables that change
are Fi and Ti − t, of which we have already seen the relative insensitivity in Figure 4.2.

We now turn our attention to the certainty equivalents. With reference to Section 4.2.4, we plot in
Figure 4.6 the following certainty equivalents: C̃(1) in the single-futures case with T1-futures traded, C̃(2)

in the single-futures case with T2-futures traded, and C in the two-futures case with T1-futures and T2

futures traded. Their numerical values are given in Table 4.2.

C0(0) C̃
(1)
0 (0) C̃

(2)
0 (0)

0.8962 0.1418 0.1782

Table 4.2: Values of certainty equivalent: C̃(1) in the single-futures case with T1-futures
traded, C̃(2) in the single-futures case with T2-futures traded, and C in the two-futures case
with T1-futures and T2 futures traded. The certainty equivalents are evaluated at t = 0 and
w = 0.

We observe from Figure 4.6 that the certainty equivalent for trading two contracts simultaneously
is significantly greater than that derived from trading only a single contract regardless of the choice of
maturity. In fact, the certainty equivalent C is much larger than the sum of the two certainty equivalents
C̃(1) and C̃(2), or 2 C̃(i) for both i = 1, 2, as seen in Table 4.2. This makes sense since the single-contract
case can be viewed as two-contracts case but with one strategy constrained at zero. Effectively, the
single-contract case is restricting the admissible set from At to Ãt, thus reducing the maximum expected
utility as well as the certainty equivalent. Our result confirms the intuition that more choices of trading
instruments are preferable to fewer.

Lastly, we examine the behavior of C at different risk aversion levels with focus on its sensitivity with
respect to the market price of risk λ. In Figure 4.7, we see that the certainty equivalent at time 0, C0,
is increasing and quadratic in λ, and tends to infinity as λ increases. This holds for all three values of γ
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Figure 4.3: Optimal futures position π∗
i (dashed) in the 2-contract portfolio and π̃∗

i (solid)
in the single-contract portfolio (with the Ti-futures) plotted over η ∈ [0.1, 0.9]. Parameters
are taken from Table 4.1, with F1 = 100 and F2 = 100.

shown, but a lower risk aversion suggests that the certainty equivalent is higher and faster growing in λ.
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The certainty equivalents are evaluated at time t = 0 with initial wealth w = 0. The trading
horizon is T = 1, maturity of F1 is T1 = 13/12, and maturity of T2 = 14/12. Other common
parameters are from Table 4.1, along with F1 = 100 and F2 = 100.
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Figure 4.7: Certainty equivalent C0, at time t = 0 with zero initial wealth W0 = 0, as a
function of the market price of risk λ, with parameters as displayed in Table 4.1.

4.4 Summary

We have analyzed the problem of dynamically trading two futures contracts with the same underlying.
Under a two-factor mean-reverting model for the spot price, we derive the futures price dynamics and
solve the portfolio optimization problem in closed form and give explicit optimal trading strategies.
By studying the associated HJB equation, we solve the utility maximization explicitly and provide the
optimal trading strategies in closed form. The optimized wealth process is again shown to possess a
positive drift, suggesting it is profitable to follow the optimal strategies derived here. In addition to the
analytic properties of our solutions, we also apply our results to commodity futures trading and present
numerical examples to illustrate the optimal holdings.

This chapter provides a feasible strategy to quantitatively trade commodities futures, in which a
convenience yield factor is present, in contrast to the model in the previous chapter. The formula is
readily implementable, and the main reason for easy implementation is the independence of the optimal
strategy on any hidden state variables. On the other hand, for models which lead to trading strategies
that depend on hidden variables, it will be necessary to rely on the filtered state estimates that result
from the Kalman filter methodology. Another possibility is to formulate the control problem as described
in [17] and to solve stochastic partial differential equations (SPDE).

The simplicity of the trading strategy greatly facilitates actual deployment, for example by managed
futures fund managers, which is the focus in this chapter here. Although this type of asset management
strategies is opaque, it is safe to assume that they involve trading more than one commodity. There
exists an extensive literature on the complicated relationships between closely-related commodities, and
on their spread trading: for example the so-called crush spread which consists of soybean, soybean meal
and soybean oil [110] in the agricultural space, or the so-called crack spread which consists of crude oil
and related refinery products [55] in the energy space. Optimal trading in these related commodities are
important topics for further research.

The main criticism of the well-known Schwartz model studied in this chapter is the poor fit of two-
factor models to observed term structures. However, we will remedy the shortcomings of two-factor
models when we consider the Cortazar and Naranjo’s n-Factor Model [37] in the next chapter.
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In the preceding three chapters we have been working exclusively with models with two factors.
Naturally, the next step is to extend in a tractable way to an arbitrary n-factor model. In the two stocks
pairs trading setting, as originated in [116], the generalization to a larger number of stocks was carried
out in [87] and [29], and more recently in [65]. Thus in this chapter we solve for the optimal trading
strategies in the commodity futures market under a multi-factor model, which was proposed by [37].

While the factors in this type of multi-factor models are not easily interpreted to have economic
meaning, the flexibility of multi-factor models permits good fit to empirical term structure as displayed
in the market. For example, in the Schwartz model the factors are the spot price process and the stochastic
convenience yield process, which have clear economic meaning. However, the inadequate fit of two-factor
models, as for example observed in [25], overwhelms the advantage of interpretability. Especially in deep
and liquid futures markets such as crude oil or gold, with more than 10 contracts of various maturities
actively traded at any given time, the lack of fit render other uses, such as derivative pricing, forecasting,
or trading, which is the focus here, of such simple two-factor models impossible. Trading strategies are
arguably less reliable if the model prices from which the strategies are derived cannot even match observed
market prices, or if model implied volatility and correlation term structures cannot match that implied
by historical market prices.

In addition to flexibility, another advantage of the Cortazar and Naranjo model is the ease of esti-
mation, via Kalman filtering, as described in full details in [37]. As used in the Schwartz paper [107],
Kalman filtering methodology can handle multi-factor models with hidden state variables and measure-
ment errors. Inclusion of measurement errors is necessary since the number of available market prices
is generally higher than the number of state variables that need to be estimated. In addition, Kalman
filtering is capable of using a large price panel in the estimation process, avoiding the necessity of making
an arbitrary selection of contracts to include in the estimation.

While many other approaches exist in the literature, we work with the Cortazar and Naranjo model,
which leads to tractable formulae that will be given in later sections. Their sequel model [36] intro-
duced stochastic volatility into the commodity price processes; while this feature increases the model
complexity, it results in better fit to observed option prices. Other attempts to match market observables
include [93], who allow various parameters (namely, volatility of spot price, speed of mean-reversion, the
mean-reversion parameter, and the diffusion parameter of the spot convenience yield) to be time-varying
deterministic functions. [73] assumes the commodity market operates in an economy with incomplete
information, and derives closed-form solutions for forward and futures prices, as well as for European
options on forward and futures contracts. In [3], a regime-switching model for crude oil and natural gas
is proposed: one regime is found to have high convenience yield and high volatility, while the other is
found to have low convenience yield and low volatility. For other nonlinear models of commodity prices
which require more computationally intensive machine learning techniques to estimate, see for example
[15] and references therein. Regarding the literature of optimal trading of commodity futures contracts,
numerous references are given in [81] and [82].

We are primarily concerned with up to four factors in this chapter since, as shown in [37], four factors
are sufficient to fit both price and volatility term structures. With only three factors, the model fits the
term structure of futures prices, but four is required to fit the volatility term structure as well. We find
that, as expected, the position sizes decrease as volatility increases. Moreover, the certainty equivalent
increases as n increases from n = 2 to n = 4, meaning that the utility of trading, using the optimal
strategies, is higher in markets with more maturities available. Finally, with n = 4 factors, we observe
that trading any other combinations of futures maturities other than trading maximally all 4 available
maturities results in lower certainty equivalents, which again means inclusion of more futures maturities
in a portfolio is more economically beneficial.

5.1 Futures Price Dynamics

We now briefly review the model setup as described in [37]. Let xt denote the n-dimensional vector of

state variables (x
(1)
t , . . . , x

(n)
t ). The SDE for these n factors under P is

dxt = −Kxtdt+ Σdwt. (5.1)
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The n× 1 vector dwt is a vector of correlated Brownian motion increments

dwt =
[
dw

(1)
t · · · dw(n)

t

]′
such that dwt · dw′t = Ω dt, where the (i, j) element of the symmetric positive definite matrix Ω is
ρij ∈ [−1, 1], the instantaneous correlation, and the prime notation denotes the transpose of vectors and
matrices.

The matrices K and Σ

K =


0 0 . . . 0
0 k2 . . . 0
...

...
. . .

...
0 0 . . . kn

 , Σ =


σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σn


are diagonal, and they consist of the constant speeds of mean-reversion, and constant volatility parame-

ters, respectively. k1 is exogenously set to zero so that the first state variable x
(1)
t follows a random walk,

which induces a unit root in the spot price process.
The Q dynamics, as in Eq. 3 in [37], is

dxt = −(λ+ Kxt)dt+ Σdw∗t , (5.2)

where λ = (λ1, . . . , λn)′ is a n × 1 vector of constant risk premiums, so that we can see the change of
measure is effected through

w∗t = wt + Σ−1λ t. (5.3)

The futures price, of maturity T , as a function of x and t, is given in [37] by

F (x, t) = exp

(
x1 +

n∑
i=2

e−ki(T−t)xi + µt+

(
µ− λ1 +

σ2
1

2

)
(T − t)

−
n∑
i=2

1− e−ki(T−t)

ki
λi +

1

2

∑
i∗j 6=1

σiσjρij
1− e−(ki+kj)(T−t)

ki + kj

)
. (5.4)

The first derivatives are
∂F

∂xi
= Fe−ki(T−t), (5.5)

for i = 1, . . . , n, but note that k1 = 0. The second derivatives are

∂2F

∂xi∂xj
= Fe−(ki+kj)(T−t), (5.6)

and the derivative with respect to time is

1

F

∂F

∂t
=

n∑
i=2

e−ki(T−t)xiki +

(
λ1 −

σ2
1

2

)

+

n∑
i=2

e−ki(T−t)λi −
1

2

∑
i∗j 6=1

σiσjρije
−(ki+kj)(T−t)

=

(
λ1 −

σ2
1

2

)
+

n∑
i=2

e−ki(T−t)(xiki + λi)−
1

2

∑
i∗j 6=1

σiσjρije
−(ki+kj)(T−t). (5.7)

We define the lower triangular matrix C with elements cij which result from Cholesky decomposition
of the correlation matrix Ω = CC ′; that is,

C =


c11 0 . . . 0
c21 c22 . . . 0
...

...
. . .

...
cn1 cn2 . . . cnn

 .
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We also define Σ̃ ≡ ΣC; hence, the SDE for xt under P is

dxt = −Kxtdt+ Σ̃dzt, (5.8)

and under Q is
dxt = −(λ+ Kxt)dt+ Σ̃dz∗t , (5.9)

where the Brownian motion increment zt, with elements z
(i)
t , i = 1, . . . , n, are now uncorrelated. Similarly,

z∗t = zt + Σ̃−1λ t is uncorrelated.
By Ito’s Lemma, the SDE for the futures price process under P, which is now denoted using subscript

t as Ft as opposed to the function F (·, t), is

dFt =

(
∂F

∂t
−∇xF

′Kxt +
1

2
Tr(Σ̃′∇xxF Σ̃)

)
dt+∇xF

′Σ̃dzt, (5.10)

where

∇xF =

[
∂F

∂x1
· · · ∂F

∂xn

]′
, ∇xxF =


∂2F
∂x2

1

∂2F
∂x1x2

. . . ∂2F
∂x1xn

∂2F
∂x1x2

∂2F
∂x2

2
. . . ∂2F

∂x2xn
...

...
. . .

...
∂2F
∂x1xn

∂2F
∂x2xn

. . . ∂2F
∂x2
n


are the gradient vector and the Hessian matrix respectively.

In particular, for the case where n = 1, we have

dFt = λ1Ftdt+ σ1Ftdz
(1)
t .

For n = 2, we have

dFt
Ft

= (λ1 + λ2e
−k2(T−t))dt+ (σ1 + e−k2(T−t)ρ12σ2)dz

(1)
t + e−k2(T−t)σ2

√
1− ρ2

12dz
(2)
t .

In general, for an arbitrary n, the SDE of the futures price process under P is

dFt
Ft

=

(
n∑
i=1

λie
−ki(T−t)

)
dt+

n∑
i=1

 n∑
j=i

e−kj(T−t)cjiσj

 dz
(i)
t . (5.11)

We can readily see that the futures price SDE is driftless under Q.
Now consider a collection of n contracts of different maturities available to trade, with n coinciding

with the number of factors. We will denote by F (k)(x, t) as the futures price function of the contract with

maturity Tk, with T1 < . . . < Tn, and by F
(k)
t as the stochastic process for this contract, for k = 1, . . . , n.

We have

dF
(k)
t

F
(k)
t

=

(
n∑
i=1

λie
−ki(Tk−t)

)
dt+

n∑
i=1

 n∑
j=i

e−kj(Tk−t)cjiσj

 dz
(i)
t

≡ µk(t)dt+

n∑
i=1

vki(t)dz
(i)
t ,

where we define

µk(t) ≡
n∑
i=1

λie
−ki(Tk−t), (5.12)

and

vki(t) ≡
n∑
j=i

e−kj(Tk−t)cjiσj . (5.13)

67



Ph.D. Thesis - Raphael Yan McMaster - Mathematics

As usual, we define f
(k)
t = logF

(k)
t to be the log futures price process, so that

df
(k)
t =

(
µk(t)− 1

2

n∑
i=1

vki(t)
2

)
dt+

n∑
i=1

vki(t)dz
(i)
t .

In matrix notation,

dft =

(
µ(t)− 1

2
D(v(t)v(t)′)

)
dt+ v(t)dzt,

where µ(t) is a n× 1 vectors with elements µk(t), and v(t) is an n× n matrix with elements vki(t), and
D(v(t)v(t)′) is a n× 1 vector whose elements are the diagonal of v(t)v(t)′.

We now let π(t,f) = (π1(t,f), . . . , πn(t,f))′, where the elements πk(t,f) denote the amount of money

invested in F
(k)
t . The wealth process is

dWt =

n∑
k=1

πk(t,f)
dF

(k)
t

F
(k)
t

, (5.14)

and in matrix form, the system of variables is given by the set of SDE[
dWt

dft

]
=

[
π′µ(t)

µ(t)− 1
2D(v(t)v(t)′)

]
dt+

[
π′v(t)
v(t)

]
dzt. (5.15)

From (5.15), it can be seen that the control problem under the n-factor model include the 2-factor
models considered in previous chapters as special cases, due to the drift and volatility functions’ sole
dependence on time, and not on any of the state variables. This is in contrast to the situation in

Chapter 2, where the drift in the wealth process depends on (S
(1)
t , S

(2)
t ) via the cointegrating vector.

5.2 Utility Maximization Problem

We will work with the exponential utility function U(w) ≡ − exp(−γw), with γ > 0 as the coefficient of
risk aversion, as before. The trader fixes a finite optimization horizon 0 < T ≤ T1 (which means that T
has to be less than the maturity of the earliest expiring contract), and seeks to maximize the expected
utility of wealth at T . We now define a vector π(t,f) of controls to be admissible if the elements of
π(t,f) are real-valued, progressively measurable, and satisfies the integrability condition

E
∫ T

t

n∑
i=1

πi(s,f)2ds <∞.

The set of admissible controls at the initial time t is denoted by At. Next, we define the value function
V (t, w,f) of the following stochastic control problem: the trader seeks an admissible strategy π(t,f) ∈ At
that maximizes the utility of terminal wealth at time T ; that is,

V (t, w,f) = sup
π∈At

E[U(WT )]. (5.16)

Following the standard verification approach to dynamic programming [58, 105, 96], we assume the
existence of a sufficiently smooth candidate solution u(t, w,f), which will later be shown to be equal to
the value function V in (5.16).

To facilitate presentation, we suppress the dependence on t in µ(t) and v(t), and the dependence on
t and f in π(t,f), and define

ut =
∂u

∂t
, uw =

∂u

∂w
, uww =

∂2u

∂w2
,

∇fu =

[
∂u

∂f1
· · · ∂u

∂fn

]′
, ∇fuw =

[
∂uw
∂f1

· · · ∂uw
∂fn

]′
,
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and

∇ffu =


∂u
∂f2

1

∂u
∂f1f2

. . . ∂u
∂f1fn

∂u
∂f1f2

∂u
∂f2

2
. . . ∂u

∂f2fn
...

...
. . .

...
∂u

∂f1fn
∂u

∂f2fn
. . . ∂u

∂f2
n

 .
The value function u(t, w,f) satisfies the HJB equation

ut + sup
π

[
π′µuw +

(
µ− 1

2
D(vv′)

)′
∇fu+ π′vv′∇fuw +

1

2
π′vv′πuww

+
1

2
Tr (vv′∇ffu)

]
= 0, (5.17)

for (t, w, f1, . . . , fn) ∈ [0, T )× R× Rn, along with the terminal condition

u(T,w, f1, . . . , fn) = −e−γw, for (w, f1, . . . , fn) ∈ R× Rn.

The HJB equation can be written compactly as

ut + sup
π
Lπu = 0,

if we define the operator

Lπu ≡π′µuw +

(
µ− 1

2
D(vv′)

)′
∇fu+ π′vv′∇fuw +

1

2
π′vv′πuww +

1

2
Tr (vv′∇ffu) .

We will first use the ansatz
u(t, w,f) = −e−γwh(t,f)

to factor out w. Using the relations

ut = −e−γwht, uw = γe−γwh, uww = −γ2e−γwh,

∇fu = −e−γw∇fh, ∇fuw = γe−γw∇fh, ∇ffu = −e−γw∇ffh,

we see that after substitution, the PDE (5.17) becomes

−ht + sup
π

[
π′µγh−

(
µ− 1

2
D(vv′)

)′
∇fh+ γπ′vv′∇fh−

1

2
γ2π′vv′πh

− 1

2
Tr (vv′∇ffh)

]
= 0, (5.18)

with terminal condition
h(T,f) = 1.

From the first order condition, which is derived from differentiating the terms inside the supremum with
respect to π and setting the equation to zero, we have

γhµ+ γvv′∇fh− γ2hvv′π = 0,

so we can see that the optimal control can be expressed as

π∗(t,f) =
1

γ

(
(vv′)−1µ+

∇fh

h

)
.

Substituting π∗ back, the equation (5.18) becomes

−ht +
1

2
µ′(vv′)−1µh+

1

2
D(vv′)∇fh+

∇fh
′vv′∇fh

2h
− 1

2
Tr (vv′∇ffh) = 0. (5.19)
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Now if we let
h(t,f) = exp(−Φ(t,f)),

we have these relations

ht = −hΦt, ∇fh = −h∇f Φ, ∇ffh = h(∇f Φ∇f Φ′ −∇ff Φ).

After substitutions, we arrive at the linear, parabolic, PDE with only time-dependent coefficients

−Φt +
1

2
µ′(vv′)−1µ+

1

2
D(vv′)∇f Φ− 1

2
Tr (vv′∇ff Φ) = 0, (5.20)

with the terminal condition
Φ(T,f) = 0.

If we now use the ansatz
Φ(t,f) = f ′A(t)f + f ′B(t) + C(t),

for a n× n matrix A(t), a n× 1 vector B(t), and a scalar C(t), we can see the derivatives are

∂Φ

∂t
= f ′Ȧ(t)f + f ′Ḃ(t) + Ċ(t),

∇f Φ = f ′(A(t) +A(t)′) +B(t),

∇ff Φ = A(t) +A(t)′.

After substituting the derivatives back, collecting terms of f2
i and fi, and imposing the terminal condition

Φ(T,f) = 0, we can deduce that A(t) = B(t) = 0, and

C(t) =
T − t

2
µ′(vv′)−1µ.

Therefore, the candidate solution is

u(t, w,f) = − exp

(
−γw − 1

2
µ(t)′(v(t)v(t)′)−1µ(t)(T − t)

)
(5.21)

which is independent of the log futures prices f , and finally, the optimal controls are

π∗(t,f) =
1

γ
(v(t)v(t)′)−1µ(t) (5.22)

which is also independent of f .
The optimal wealth process is given by

W ∗t =

∫ t

0

π∗(s)′µ(s)ds+

∫ t

0

π∗(s)′v(s)dzs

=
1

γ

∫ t

0

µ(s)′(v(s)v(s)′)−1µ(s)ds+
1

γ

∫ t

0

µ(s)′(v(s)v(s)′)−1v(s)dzs

=
1

γ

∫ t

0

µ(s)′(v(s)v(s)′)−1µ(s)ds+
1

γ

∫ t

0

µ(s)′(v(s)′)−1dzs

We will show that the drift term is positive. To this end, define, for convenience, the square matrix
A ≡ v(s)−1. Since

(v(s)v(s)′)−1 = (v(s)′)−1v(s)−1 = (v(s)−1)′v(s)−1 ≡ A′A,

we can see that (v(s)v(s)′)−1 is a positive definite matrix, from the observation that µ′A′Aµ = ‖Aµ‖2 > 0
for any non-zero vector µ. Therefore, we conclude that W ∗t is a submartingale; that is, the optimal wealth
process, controlled by the optimal strategy π∗, is expected to drift upward.

70



Ph.D. Thesis - Raphael Yan McMaster - Mathematics

5.3 Verification Theorem

Based on the verification theorem in Appendix A, Theorem 7, in order to show that the candidate
solution is the value function, it suffices to prove the uniform integrability of the family of random
variables {u(τ,W ∗τ )} for any stopping time τ ∈ [0, T ].

Theorem 5. The candidate solution found in (5.21) is equal to the value function (5.16); namely,

V (t, w) = u(t, w) = − exp

(
−γw − 1

2
µ(t)′(v(t)v(t)′)−1µ(t)(T − t)

)
on (t, w) ∈ [0, T ]× R. Furthermore, the optimal control is given by (5.22).

Proof. Let ε > 0 be an arbitrary positive number. From the verification theorem in Appendix A, it suffices
to show that E(|u(τ,W ∗τ )|1+ε) < ∞, uniformly with respect to any stopping time τ with 0 ≤ τ ≤ T .
First, after applying the Cauchy-Schwarz inequality, we find that

E(|u(τ,W ∗τ )|1+ε) ≤E(exp (−2(1 + ε)γW ∗τ ))1/2× (5.23)

E(exp
(
−(1 + ε)µ(τ)′(v(τ)v(τ)′)−1µ(τ)(T − τ)

)
)1/2. (5.24)

For the first expectation (5.23), we apply Cauchy-Schwarz again to arrive at the inequality

E[exp (−2(1 + ε)γW ∗τ )]

=E
[

exp

(
−2(1 + ε)

(∫ τ

0

µ(s)′(v(s)v(s)′)−1µ(s)ds+

∫ τ

0

µ(s)′(v(s)′)−1dzs

))]
≤E
[

exp

(
− 4(1 + ε)

∫ τ

0

µ(s)′(v(s)v(s)′)−1µ(s)ds

)]1/2

× (5.25)

E
[

exp

(
− 4(1 + ε)

∫ τ

0

µ(s)′(v(s)′)−1dzs

)]1/2

. (5.26)

The expectation in (5.25) is bounded by 1 for any stopping time τ , since (v(s)v(s)′)−1 is positive definite.
Now we look at (5.26). Define for notational convenience the martingale

Mt ≡
∫ t

0

µ(s)′(v(s)′)−1dzs.

Thus we have that for any constant k, exp(kMt) is a submartingale by Jensen’s inequality, since

E0(exp(kMt)) ≥ exp(kE0(Mt)) = exp(kE0(M0)) = 1.

Moreover, exp(kMt) is positive. Therefore we can use Doob’s martingale inequality [103]: for ξ > 0,

E[exp(kMτ )] =

∥∥∥∥ exp

(
k

1 + ξ
Mτ

)∥∥∥∥1+ξ

1+ξ

≤
∥∥∥∥ sup

0≤t≤T
exp

(
k

1 + ξ
Mt

)∥∥∥∥1+ξ

1+ξ

≤
(

1 +
1

ξ

)1+ξ

sup
0≤t≤T

E[exp(kMt)]

≤ c

where c is a positive constant, independent of the stopping time τ .
For the second expectation (5.24), since we showed that (v(τ)v(τ)′)−1 is positive definite, we use this

observation again to deduce that the second expectation is again bounded by 1.
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5.4 Numerical Implementation

With the closed-form expressions derived, we now use the parameters calibrated in Panel A of Table 1 in
[37] to illustrate the optimal trading strategies for WTI crude oil futures contracts traded on NYMEX.
We fix γ = 0.01 and consider n up to n = 4 since, as discussed, with four factors the model captures the
volatility term structure accurately.
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Figure 5.1: The optimal holdings π∗
i for i = 1, . . . , 4 as functions of σ1 = . . . = σ4.

In Fig 5.1 we plot π∗ as function of the volatility parameter σ1. We let the values of all 4 volatility
parameters to be the same, σ1= . . .=σ4, and let all parameters range from (0.15, 0.50), and plot π∗1 , . . . , π

∗
4 .

We set the maturities to be 3 months apart, starting with T1 = 3/12, and so T2 = 6/12, T3 = 9/12, and
T4 = 1. As expected, the position sizes decrease as volatility increases, which agrees with the intuition of
a risk-averse investor. Moreover, the decrease is exponentially fast, which suggests volatility will decrease
position sizes faster than an increase in the coefficient of risk aversion.

Certainty equivalent is the inverse of the exponential utility function. Precisely, from (5.16) we have

C(t, w) = w +
Φ(t)

γ

= w +
1

2γ
µ(t)′(v(t)v(t)′)−1µ(t)(T − t). (5.27)

Without loss of generality, we set w = 0. We plot C(n)(0, 0) on Fig 5.2 for n = 2, 3, 4, based on different
sets of parameters from [37] under different n, as a function of T at t = 0. Here, for any particular n,
it means there are n factors as well as contracts of n different maturities available to trade. First of all,
the certainty equivalent increases as a function of T , which means that the more time the trader has,
the more profits can be made. Secondly, C(n) increases from n= 2 to n= 4. The interpretation is that
the utility derived from trading is higher in markets with more factors, and hence, more non-redundant
contracts of different maturities (which cannot be replicated by other contracts).

Now it would be interesting to look at the certainty equivalent for trading m < n contracts under a
n factor model. Individually, we can immediately see that the drifts in (5.12), and volatilities in (5.13),
remain identically the same, for the contract of maturity Tk. We will use the tilde notation µ̃(t) and ṽ(t)
to denote the smaller versions when there are m contracts with n factors where, of course, the vector µ̃(t)
is now m × 1, and the matrix ṽ(t) is now a non-square m × n matrix. The vector of diagonal elements
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Figure 5.2: Certainty equivalent Cn for n = 2, 3, 4 as functions of T at t = 0.

D(ṽ(t)ṽ(t)′) is m × 1. As an example, for a n = 4 factors market where only the first T1 and third T3

maturities are available, m = 2 in this case, and µ̃(t) contains the first and third element of µ(t), and
ṽ(t) contains the first and third row of v(t).

The vector of the log futures prices f̃ and the optimal controls π̃(t, f̃) both have dimensions m× 1.
We will use W̃t to denote the wealth process, and the system of equations in (5.15) now becomes[

dW̃t

df̃t

]
=

[
π̃′µ̃(t)

µ̃(t)− 1
2D(ṽ(t)ṽ(t)′)

]
dt+

[
π̃′ṽ(t)
ṽ(t)

]
dzt. (5.28)

The steps to derive the solution and optimal control remain the same; in particular, the certainty equiv-
alent (5.27) is now

C̃(t, w) = w +
1

2γ
µ̃(t)′(ṽ(t)ṽ(t)′)−1µ̃(t)(T − t).

To illustrate, we will set again n = 4, and consider all possible combinations of subsets of n = 4 contracts.

Denote by C(4)
1234 the certainty equivalent when there are all 4 maturities Tk, k = 1, 2, 3, 4 available, by

C(4)
123 the certainty equivalent when there are maturities T1, T2 and T3 available, by C(4)

12 the certainty
equivalent when there are maturities T1 and T2 available, and so on.

We have 15 possible combinations, and we plot the certainty equivalents for all of these 15 possibilities
in Fig 5.3 at T = 0.6 and at time T = 0.8. We can see, as expected, given the number of factors n is the
same, the more contracts available, the higher the certainty equivalent is. In other words, under a n factor
model, since the market with only m maturities, where m < n, available to trade is a more restricted
universe than that with n maturities, the expected utility is higher in a less restricted environment. This
implies contracts of different maturities are not redundant, and it is more beneficial, that is, more utility
can be derived, to trade in a market with more maturities available. Moreover, comparing the top and
bottom panels of Fig 5.3, we can see that the differences between certainty equivalents of different number
of available contracts become relatively narrower as T decreases.

Finally, historical daily futures prices were obtained from Bloomberg from 1992 to 2001, coinciding
with the period over which the parameters were calibrated. In contrast to previous graphs, we plot in
Fig 5.4 the number of contracts, that is, π∗i (t)/Fi(t). In general, throughout the period, π∗1 and π∗3 are
positive, and the opposite is true for π∗2 and π∗4 . Cyclicality can be observed as the contracts reach
maturity. A peak in terms of position sizes around the beginning of 1999 can also be seen, coinciding
with the front month futures contract trading at the low end around $10.
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Figure 5.3: Certainty equivalent C4 for all 15 possible combinations, (a) at T = 0.6, and (b)
at T = 0.8.

5.5 Summary

The stochastic approach to trading cointegrated securities in a more general multi-factor setting have
been presented in [87, 29, 65]. Our model in this chapter is simpler due to the absence of the cointegrating
vector, which was present in Chapter 2. Here, we have extended the investigation of optimal trading in
commodity futures market under two-factor models to a multi-factor model. Closed-form expressions for
the optimal controls and for the value function are obtained.

Using these formulae, we illustrated the optimal strategies using parameters calibrated from historical
price data, and conclude that position sizes decrease as volatilities increase, and as risk aversion increases.
Higher utility, as measured by certainty equivalent, can be derived from trading in multiple contracts, of
different maturities, beyond pairs trading with only two, which is possible only in multi-factor models.
Moreover, by fixing a particular n, which we illustrated using n = 4, we examined the effect of varying
the number of different maturities to trade with. Again, intuitively, it should be more beneficial to be
able to access a larger set of securities, and this intuition is confirmed quantitatively.

Given our observation that higher certainty equivalent can be achieved from trading in markets with
more factors, the interesting question is to identify these markets. This has been studied extensively in
empirical finance, in particular in the interest rate market; see for example the well-known three factor
models in [88] or [42]. Techniques in multivariate statistics such as principal component analysis or
factor analysis [104, 114] have been developed to quantify the number of factors. On the other hand,
after correctly identifying the number of factors, the next issue is still the correct characterization of
the factors’ dynamics. For example, in their sequel paper [36], the authors improve their model by
incorporating stochastic volatility.

After locating the market with a high number of factors, we take the next step in our quest for profit
to consider all available contracts of different maturities in that market. From our numerical example,
the highest certainty equivalent is achieved from trading every contract that is available. In reality, the
critical concern is transaction costs – trading more contracts might not necessarily be more profitable in
the presence of market frictions. It is equally important to identify the breakeven point in the number
of contracts beyond which profitability might be eroded by transaction costs, and the determination of
which requires incorporation of transaction costs into the model. It is an important consideration left for
future work.
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Figure 5.4: The optimal holdings π∗
i for i = 1, . . . , 4 over the period 1992-2001.
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In this thesis, we applied stochastic control theory to arrive at dynamic trading strategies for stocks
and futures. Control problems were formulated and solved, and the optimal controls and candidate
solutions to the HJB equations were obtained in closed form. Based on a verification theorem, the
candidate solutions were shown to be equal to the value functions. We further illustrated the controls’
and the solutions’ properties, using parameters calibrated by existing works in the literature, and we
could see that they were in-line with intuition, and were feasible for practical implementation due to
their simplicity.

In Chapter 2, we applied these steps to the Duan-Pliska [44] model where the stocks are cointegrated.
We considered a pair of related equities which belong to the financial sector. Pairs trading in the stock
market has been well-established approach to trading stocks, where the objective is to execute trades
when a pair of related stocks diverge from their historical equilibrium level, and to profit from the
reverting back of the pair to their equilibrium level. The chapter was published in [116], and we applied
stochastic control theory in the context of pairs trading, which resulted in a closed-form formula for the
optimal strategy. We then furthermore added correlation into the stocks’ dynamics, which complicated
the formula but made the model more realistic.

Chapter 3 was published in [81], where we applied the same methodology to volatility index futures,
when the spot index is modeled as a CTOU process [91]. In contrast to stocks, futures contracts on the
same underlying, but of different maturities, typically exhibit a term structure. Furthermore, the VIX
index exhibits mean-reversion. For trading strategies to be effective, they have to be based on models
such as CTOU that captures these various features, and we presented the optimal strategy for trading
volatility index futures in a closed-form formula. Based on parameters calibrated from VIX futures
historical data, we found that traders should take bigger positions in the long end of the futures curve,
in line with the monotonic decrease in the volatility term structure.

After studying futures on a volatility index, we proceeded to study commodity futures under the well-
known two-factor Schwartz model [107] in Chapter 4, which was published in [82]. In contrast to models
for volatility indices, models for the spot prices of commodities typically include convenience yield. which
is absent, for example, in the VIX futures case. Furthermore, mean-reversion in the spot commodity price
processes is not relevant under the Schwartz model. Hence we applied the same methodology to study a
different market, and provided a closed-form formula for the optimal strategy under the Schwartz model.
Based on parameters calibrated from WTI crude oil futures data, we saw that the optimal positions
changed little with respect to maturities. Our results could shed light on how managed futures funds or
commodity trading advisers operate their trading strategies.

All of the previous chapters are based on stochastic models driven by two factors. We then considered
a more general n-factor model in Chapter 5, since models with more factors fit the term structures better.
We therefore study optimal trading under the more general, yet tractable, n-factor Cortazar and Naranjo
model [37]. We concluded in the chapter that both CTOU model and Schwartz model are nested under
this general model when n = 2. We presented a tractable formula for the optimal trading strategies,
which was illustrated with numerical examples based again on historical WTI crude oil futures prices.

In all chapters, we proved that the candidate solutions were equal to the value function, based on
a standard verification theorem presented in Appendix A. Essentially, the theorem required a uniform
integrability condition to hold, and the condition was proved individually in all of the preceding chapters.
In the cointegrated and correlated stocks pairs trading case in Chapter 2, we derived the sufficient
conditions, in the form of inequalities, for uniform integrability to hold. We saw that these inequalities
are independent of the risk aversion parameter. On the other hand, the uniform integrability condition
held unconditionally for all the futures trading cases.

In general, we found that the optimal positions decreased in magnitude as the volatilities in the
underlying factors increased. We found that the magnitudes of the optimal positions were inversely
proportional to the coefficients of risk aversion, similar to the solutions to the classical Merton portfolio
optimization problem. Using the calibrated, hence realistic, model parameters, for all the 2-factor models,
the positions are shown to have opposite signs, corresponding to one long and one short position, which
is the typical setup in the context of pairs trading.

For the futures trading applications, we found that the certainty equivalent for trading two contracts
simultaneously was significantly greater than that derived from trading only a single contract. Similar
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result extended to the n-factor model. Furthermore, it was shown that for the futures trading models,
the optimized wealth processes controlled by the optimal strategies were submartingales with a positive
drift. The optimal strategies were independent of the optimization horizon for all futures trading cases,
but not for the cointegrated stock case. We also saw that the optimal holdings were independent of the
hidden processes, thereby eliminating the need to estimate the state variables. The optimal holdings
were seen to be independent of the optimization horizon, which is chosen arbitrarily. In the n-factor
case, we saw that markets with a higher number of factors led to higher certainty equivalent. Moreover,
given a particular number of factors, the certainty equivalent was higher when the trader could trade
more contracts of different maturities; this confirmed the intuition that trading in a less restricted asset
universe led to higher expected utility.

There are numerous directions for future research. Recall in this thesis, stocks in the equity market
was studied in Chapter 2, VIX futures was studied in Chapter 3, commodity futures was studied in
Chapter 4, which was further extended to a multi-factor model Chapter 5. The next step could be
to continue the study, along this theme, to other instrument types and markets, such as interest rates
products based on multifactor models (an example of which is [42]), or currencies in the foreign exchange
market, which was explored in [119], or cryptocurrencies, which was explored in [87]. Related securities,
other than cointegrated stocks from the same sector, are plentiful in the futures market; for example
crush spreads [110] which consists of soybean, soybean meal, and soy oil, or crack spreads [55] which
commonly refers to crude oil, gasoline and heating oil. Less researched financial instruments such as
volatility indexes on commodities, single stocks, or interest rates, or volatility index on even VIX itself,
are closely related to the securities in this thesis, and may provide opportunities for traders or researchers
to venture into less crowded areas. The goal will be to exploit features unique to different instruments
and markets, an example of which we have already seen in this thesis is the existence of term structures
in futures market, which are absent in stocks.

Different asset classes requires different models. As already seen in Chapter 3, the CTOU model
was used specifically to capture mean reversion in volatility indices. A subsequent study in the optimal
trading in, as an example, the gold futures market, might require a three-factor model with the addition
of stochastic interest rate to capture their complicated relationship; see for example [60] for a study
of how gold price is affected by macro-economic variables. Another possibility is to study options on
futures, which will require the incorporation of stochastic volatility in the spot dynamics, as formulated
in [36]. Other studies include [86] which also focuses on stochastic volatility, or [91], which, in addition
to stochastic volatility, also explores jumps diffusion. Fractional cointegration for commodity futures was
explored in [43]. A regime-switching version of the Central Tendency Ornstein-Uhlenbeck for futures
trading was presented in [84]. Regime-switching models designed for VIX options was presented in [61].
For VIX futures, where the VIX index is actually a function of the implied volatilities of S&P options, it
would be interesting to investigate trading strategies under a joint model of VIX and the S&P index (see
for example [33] or [27]), and to expand the asset universe to include the index, via futures or Exchange
Traded Funds, and options, into the investor’s portfolio.

We have already observed the independence of the strategy on the optimization horizon in futures
trading; therefore extending the horizon to infinity is not relevant there. It would be interesting to consider
problems of infinite horizon in stocks trading where the notion of contract maturity is not pertinent, but
mathematically technical difficulties may arise in the proofs. Inclusion of consumption in the objective
function, for example [127], is common from an micro-economic perspective.

Stochastic control theory encompasses many different formulations of the control problems. Other
formulations, structurally different from those in this thesis, such as optimal stopping [80, 83] to determine
when to exit trades, optimal switching [101] to determine which assets to trade, or optimal control of
partially observable system to handle hidden variables [17], are promising approaches to apply the theory
in the future to design trading strategies, for different markets under possibly more complicated models.

Besides the modeling aspect, in reality, a critical factor to profitability in trading in the real world is
transaction costs. We have seen in Chapter 5 where trading more contracts of different maturities leads
to higher certainty equivalent; however the presence of transaction costs or other market frictions will
certainly impact profitability. [41],[40], or [117] are early attempts to incorporate this realistic aspect
into portfolio optimization problems. A recent study that account for transaction costs is [76], which also
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investigates optimal strategies in the context of pairs trading similar to the setting in this thesis. These
papers present the starting points to study financial control problems that incorporate transaction costs;
but further investigation is required when the stochastic models become more complicated in different
markets.

Other considerations from a finance perspective in trading include the effect of taxation. Moreover,
futures are typically traded with leverage, and margin requirement is also a core issue. On the other hand,
as opposed to speculators or investors, for traders acting on behalf of actual users of futures market, such as
oil producers or airline companies, utility maximization is not limited to expected utility of wealth alone,
and other aspects such as storage costs or the rate of consumption of the actual commodities are important
business-related factors. Incorporating these practical aspects into futures portfolio optimization may not
be straightforward, but will certainly have practical implications.

From the perspective of a market maker, stochastic control theory is also the natural methodology
to design trading policies to maximize profits and to manage inventory. Market making, in particular in
the high frequency domain, has received tremendous attention due to recent technological advances and
availability of data. In this setting, the optimal controls are the bid and ask quotes to be posted at the
dealer’s discretion. Beginning with the seminal paper [9] who computed numerically the optimal bid/ask
spreads, [64] solved the HJB equations in closed form. See [66] for a formulation of the control problem
as a Hamilton-Jacobi-Bellman quasi-variational inequality. Elaborate studies in limit order books (LOB)
are presented in [34] and the references therein, and Hawkes processes for modeling the arrivals and
cancellations of limit orders are studied in [11]. Similar approaches that applied stochastic control theory
to market making, but focused on the options market, were studied in [113] and [48]. The formulations
and models in these papers are based on stochastic control theory similar to those considered in this
thesis, and further investigations to incorporate realistic aspects to make markets in real world continue
to attract attention from practitioners and researchers.

However, under more complicated models, whether from the choice of stochastic models, or from the
consideration of other operational constraints and costs, the value functions and the optimal controls will
likely require numerical approximations. Moreover, the solutions of the HJB equations may not exist in
the classical sense, and hence the notion of viscosity solutions is needed to define them in a weaker sense.
The theory of viscosity solutions, and the numerical methods for calculating them, has been extensively
developed since the paper [14] was published, who provided very general conditions for a numerical scheme
to converge; namely, the scheme should be monotone, stable, and consistent. For detailed overviews of
the theory, we again refer to [58]. For a recent collection of control problems in finance and numerical
methods, we refer to [10], which relies on the theory of viscosity solutions. It focuses primarily on the
theory of impulse control, which is yet another formulation of control problems. Impulse control has also
been shown to effectively address the incorporation of transaction costs in relatively simple models; see
for example [97]. This technique should be a promising approach for more complicated models with more
complicated constraints, and it is left to be explored in the future.

Another major complication for practical implementation of optimal trading strategies is the estima-
tion of model parameters. Under the relatively simple models considered in thesis, the well-established
Kalman filtering methodology, and the two-step Engle-Granger procedure with Dickey-Fuller test for
cointegration, served the purpose. However the effectiveness of the strategies obtained from more com-
plicated models, or from more complicated formulation of the control problems, will inevitably hinge on
accurate estimates of parameters. From the theoretical side, more refined statistical methods, such as
unscented Kalman filter [123] for estimating nonlinear dynamic systems, or the Johansen [70] framework
of vector-autoregression to detect unit roots and cointegration in systems of time series, continue to be
developed. Techniques in multivariate statistics such as principal component analysis or the more spe-
cialized independent component analysis [114] should prove to be useful for factor identification, which
is relevant in Chapter 5 when choosing which markets to trade in. Empirically, studies such as [32]
raised questions on pairs trading based on detection of cointegration, and prompt further research on the
co-movement of stocks in aggregate. Moreover, in the presence of extensive and well-developed derivative
markets, the relationship between historically estimated versus derivatives implied parameters warrants
further exploration, since the use of one versus the other or some combination of both will have a profound
impact on the optimal trading strategies.
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Finally, arguably the most important aspect of any trading strategies is, of course, the actual profitabil-
ity, and a priori assessment of which can only come from the backtesting on historical data. Furthermore,
different metrics of optimality, besides the form of utility functions (exponential utility function in this
thesis, power utility function in [18], or log utility function), such as drawdowns, expected shortfall,
value-at-risk, mean-variance criteria, or other risk measures, will lead to interesting comparisons between
the different ensuing optimal trading strategies, where optimality is defined differently under different
metrics.
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Appendix A

Verification Theorem

Here we present a verification theorem that was used to prove that the candidate solutions derived from
the solution of the HJB equations were indeed the value functions of the optimal control problems. The
main assumption is a uniform integrability condition, which was proven previously in various chapters.
All results are standard; for more details we can refer to [58, 105, 96]. First, recall the definition of
uniform integrability:

Definition 1 (Uniform Integrability). A family of random variables {Xτ}τ indexed by τ is said to be
uniformly integrable if

lim
K→∞

(
sup
τ

E[|Xτ |1{|Xτ |≥K}]
)

= 0.

It is a standard result that uniform integrability enables us to exchange limits of expectations similar
to Lebesgue’s dominated convergence theorem.

In the proofs in all previous chapters, we rely on this sufficient condition for uniform integrability:

Theorem 6. A sufficient condition for a family of random variables {Xτ}τ to be uniformly integrable is
if

sup
τ

E[|Xτ |1+ε] <∞

for some ε > 0.

Proof. Let M < ∞ be the supremum. For all n > 0, there exists Cn ∈ R such that |x|1+ε ≥ nM |x| for
all |x| ≥ Cn; namely, we can choose Cn = (nM)1/ε for each n. Therefore,

M ≥ E[|Xτ |1+ε] ≥ E[|Xτ |1+ε1{|Xτ |≥Cn}] ≥ nME[|Xτ |1{|Xτ |≥Cn}]

Hence, supτ E[|Xτ |1{|Xτ |≥Cn}] ≤ 1
n , and the uniform integrability of {Xτ}τ follows.

In what follows we will let Xt denote, in general, the security price processes in previous chapters:

Xt = (S
(1)
t , S

(2)
t ) in Ch.2, Xt = (F

(1)
t , F

(2)
t ) in Ch.3 and 4, and Xt = ft in Ch.5.

Theorem 7. Let u(t, w,x) be a function in class C1,2,2([0, T ) × R × Rn) such that {u(τ,W ∗τ ,Xτ )}τ is
a uniformly integrable family of random variables, where π∗ is an admissible control with the property
that ut + Lπ∗u = 0, and τ ∈ [0, T ] is a stopping time for W ∗τ starting at W ∗t = w. If furthermore
u(T,w,x) = U(w) for every admissible control π and ut + Lπu ≤ 0, then

u(t, w,x) = V (t, w,x) ∀(t, w,x) ∈ [0, T ]× R× Rn.
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Proof. We need to show that for any admissible π such that Lπu ≤ 0, the expected utility of terminal
wealth will be less than or equal to what the value function would indicate, namely,

Et[U(Wπ
T )] ≤ u(t, w,x), (A.1)

and that the equality holds when the wealth process is controlled optimally by π∗; that is,

V (t, w,x) ≡ sup
π∈At

Et[U(Wπ
T )] = Et[U(W ∗T )] = u(t, w,x). (A.2)

Let {τn}n be a localizing sequence of stopping times for Wt, which starts at w at time t. Introducing
the stopping times Tn = min(τn, T ), we get from Ito’s formula

u(Tn,W
π
Tn ,XTn) = u(t, w,x) +

∫ Tn

t

∂u

∂s
+ Lπu(s,Wπ

s ,Xs)ds+

∫ Tn

t

G(s)dzs

≤ u(t, w,x) +

∫ Tn

t

G(s)dzs,

since ut + Lπu ≤ 0, where

G(s) = [uw u1 u2] ·

π1σ1S
(1)
s π2σ2S

(2)
s

σ1S
(1)
s 0

0 σ2S
(2)
s

 in Chapter 2,

G(s) = [uw u1 u2] ·

π1σv1(s)F
(1)
s + π2σv2(s)F

(2)
s π1σθ1(s)F

(1)
s + π2σθ2(s)F

(2)
s

σv1(s)F
(1)
s σθ1(s)F

(1)
s

σv2(s)F
(2)
s σθ2(s)F

(2)
s

 in Chapter 3

G(s) = [uw u1 u2] ·

π1σ1(s)F
(1)
s π2σ2(s)F

(2)
s

σ1(s)F
(1)
s 0

0 σ2(s)F
(2)
s

 in Chapter 4, and

G(s) = π′v(s)uw +∇fu′v(s) in Chapter 5.

Since the Ito’s integral is a martingale, after taking expectation, we find

u(t, w,x) ≥ Et[u(Tn,W
π
Tn ,XTn)]. (A.3)

Obviously, equality holds if Lπ∗u = 0, for π = π∗. On the other hand, due to the continuity of u, we have

lim
n→∞

u(Tn,W
π
Tn ,XTn) = u(T,Wπ

T ,XT ) = U(Wπ
T ).

Now

Et[U(Wπ
T )] = Et

[
lim
n→∞

u(Tn,W
π
Tn ,XTn)

]
= lim
n→∞

Et
[
u(Tn,W

π
Tn ,XTn)

]
since {u(τ,Wπ

τ ,Xτ )}τ is U.I.

≤ u(t, w,x) from (A.3),

and equality holds if Lπ∗u = 0. We have therefore proved (A.1) and (A.2).

So we see in order to verify that the candidate solution is the value function, it suffices to prove uniform
integrability of {u(τ,Wπ

τ ,Xτ )}τ , which was shown in the Verification sections in previous chapters.
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