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Lay Abstract

This thesis deals with Retail Reverse Supply Chain (RRSC) management. We consider
an independent retail company’s and its franchise stores’ ineffective inventory which may
be constituted of unsold, under-selling, slow-moving, customer-returned, end-of-life, end-
of-use, damaged, and faulty products within their inventory. We take into account the
retailer’s reverse supply chain structure and investigate the following problems: 1) How
to manage a store’s product returns under a given budgetary limitation for financial
planning and taxation reasons, due to lost income from returned items, 2) Inventory
optimization by taking into account the reverse supply chain structure of the retailer,
and 3) Providing insight to the retailer on how it can best re-negotiate its vendor (buy-
back) contracts for its product returns. The thesis covers decision making in all three
levels: day-to-day operational decisions such as which products to be returned and where
to allocate them within its reverse supply chain options, mid-term tactical decisions such
as which Return Centers (RC) to be activated for the Reverse Logistics (RL) activities,
and long-term strategic decisions such as what should be the optimal contract terms to
re-negotiate with the vendors in order to cut future return costs.
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Abstract
Unlike most of the existing literature on reverse supply chains, that focuses on product
recovery or waste management, in this thesis we consider reverse supply chain operations
for an independent retailer. The latter have forward and reverse supply chains that are
independent of the manufacturers. We study three major problems related to Retail
Reverse Supply Chains (RRSC) for independent retailers. In RRSCs, each retail store
holds some products that are not selling (and/or under-selling) and wishes to salvage
them optimally. We refer to these products as Ineffective Inventory. Salvage can be
in many forms and take place by relocating a product within the reverse supply chain
(RSC), such as sending the product from a franchise store back to a Distribution/Return
Center (RC) and then forward to another franchise store, or returning it to a vendor, liq-
uidation, etc. The RRSC network may includes system members such as stores (retailer
owned and/or franchise), RCs, warehouses, vendors and liquidators. Each of the stores
carries some inventory that is underselling, and it is important to reduce the inventory
of such products in order to refill the space with inventory that is more likely to sell.

In the first problem, we consider a basic RRSC with retail stores, vendors and a
warehouse. The retail company allocates a budget for its RRSC activities. We refer
to this budget as a Profit-Loss budget, due to lost income from the items that will be
removed from the stores that was a part of the gains resulting from the previous year tax
calculations. The objective is to use this Profit-Loss budgetary limitation as effectively
as possible with the most suitable products to relocate products within the supply chain
and/or return them back to their vendor. A heuristic algorithm is developed to solve
this problem, by making use of the problem structure, and results are compared with
the solutions of an exact state-of-the-art commercial solver.

In the second problem, we consider a network optimization model with inventory de-
cisions. The goal is to optimize ineffective inventory levels in stores and the disposition of
their returns. We model a comprehensive RRSC network with multiple stores that could
be Company-Owned or Franchise Stores, multiple warehouses, multiple RCs, multiple
vendors, and liquidators. The objective of the retailer is to minimize costs for relocating
some of this ineffective inventory within the network or scrapping. However, individual
franchise stores have their own goals of how their excessive inventory should be handled.
The franchisee goals may be conflicting with those of the franchisor in terms of how much
inventory should be chosen from each store to be relocated. In return, this conflict may
lead to a conflict among franchise stores. This issue is addressed and resolved through
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inventory transparency among all the supply chain members. The tactical decision mak-
ing process of which RC should be used for handling returns is incorporated into the
model. In order to overcome the complexities of the large size problem, a multi-stage
heuristic is developed to solve this problem within reasonable times. The results are
then compared with the solutions of state-of-the-art commercial solver.

In the third problem, we focus on the strategic decision of developing optimal ven-
dor contract parameters for the retailer, using optimization models. Specifically, we
identify optimal return penalties and associated return thresholds, between an indepen-
dent retailer and its vendors. This model will support the retailer in their contract
re-negotiation for its RSC activities. Vendors use a multi-layered penalty structure that
assigns higher penalties to higher returns. The objective is to find the optimal penalties
and/or optimal return thresholds that should be negotiated with the vendors in order to
pay a lower penalty in the upcoming return cycles compared to existing penalty struc-
tures. We first design a Mixed Integer Non-Linear Program (MINLP) where the model
makes the decision of vendor penalty fees and return thresholds simultaneously for each
vendor. We generate small size to large size problems and solve them via MINLP solvers
such as DICOPT and ANTIGONE. In order to gain insights to the inner workings of
the MINLP, the decision variables, vendor penalty fees and return thresholds, are con-
sidered as parameters and hence, two models are designed to find the optimal penalty
structure and optimal return thresholds, respectively. Useful insights from both of the
models’ solutions are derived in order to generate rule-of-thumb methodologies to find
approximate solutions close to optimal penalty percentages and return thresholds via
identifying all possible scenarios that can exist in the problem structure.
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Chapter 1

Introduction

1.1 Background and Terminology

The material flow opposite to the conventional supply chain flow is the concern of the
field of reverse logistics (RL) (Stock 1992, Kopicki et al. 1993, Fleischmann et al. 1997).
The Reverse Logistics Executive Council provides the widely accepted definition of re-
verse logistics as: ‘The process of planning, implementing, and controlling the efficient,
cost effective flow of raw materials, in-process inventory, finished goods, and related
information from the point of consumption to the point of origin for the purpose of
recapturing value or of proper disposal’ (Rogers and Tibben-Lembke 1999). Considering
the above definition, reverse logistics deals with the collection, transportation and dis-
tribution activities of products (used or new products-parts-materials (PPM)) that are
not needed anymore by its users. In this thesis, users will mostly refer to businesses such
as sales centers. Reverse logistics encompasses activities from the collection of unwanted
PPMs (UNPPMs) from end users to remanufactured products, that may be reused by
consumers, or the disposal of the collected items. In addition to the activities of reverse
logistics, in reverse supply chain (RSC) we are also concerned with coordination and
collaboration issues between the different supply chain partners that are involved in the
reverse flow activities. In this thesis we adopt this wider view where we consider deci-
sions such as location of distribution centres as well as reverse flow contract negotiation
issues. Companies need to design networks that efficiently collect recoverable PPM from
end users, inspect those products to assess their quality, assess the value or material re-
covery options, perform any reprocessing to make them reusable again and, if possible,
redistribute the reprocessed products to the markets (primary or secondary).

Recovered products can be reused in markets in different ways. In Table 1.1 we show
the different properties of recovered products with some examples. RL modelling types

1



Doctor of Philosophy– Mehmet Erdem Coskun; McMaster University– Computational
Science and Engineering

depend largely on what type of recovery is being used (Fleischmann et al. 1997).

Property Examples
Form of reuse • Direct in primary market as a new product.

• Direct in secondary market as repaired/refurbished product
• Indirect reuse as parts or material to produce new item

Types

• main product for reuse
• repair or refurbishment
• parts of the product for recovery
• parts/material for recycling

Parties

• collection points
• inspection/testing/sorting locations
• disassembly facilities
• recovery sites
• remanufacturing centers
• (re)processing centers
• incineration and landfill sites, distribution
• return centers

Reason

• material recovery
• cost reduction of source raw materials
• parts or products
• scarce raw materials
• waste reduction
• reduction of disposal costs
• promoting ‘green’ image
• legal obligations of waste generation

Table 1.1: Product recovery properties.

The main reason for a product to be recovered is to regain the value that still incor-
porated within its used or end-of-life version. There are many ways to regain value from
a returned product:

1. Direct Reuse: End-of life or returned products can be reused and resold directly,
after some detail cleaning and minor maintenance without being repaired or re-
processed, in the primary market or secondary markets. Some of the examples for
direct reuse are pallets, bottles, and containers.

2. Repair: Used or returned products can be repaired in order to bring them into a
working condition, possibly with a loss in the quality, with a fraction of its original
manufacturing costs and then can be reused or resold in the primary or, mostly,
in the secondary markets. Hence in a product repair process, product structures
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are kept intact. Some of the repaired product examples are industrial machines,
electronic equipment and appliances.

3. Remanufacture: Used or returned products which can not easily be reused di-
rectly or repaired with a small cost, can be brought back into a new condition or
a desired level quality after disassembly, overhaul, part replacement and assem-
bly operations. Products get disassembled so that their non-working parts are
replaced with working parts coming from some other dismantled product(s) for
the purpose of remanufacturing of the same product (remanufacturing), or some
working-condition parts are used in the remanufacturing process of some other
product (retrieval). Depending on the remanufacturing condition, product identi-
ties and structures might be altered in a product remanufacturing process. In most
RL literature it is assumed that the remanufacturing process preserves the prod-
uct identity and structure. However, if the collected product is dismantled into its
parts so as to be used in other products’ remanufacturing process then the identity
of the collected product would not be kept intact. Some of the remanufactured
product examples are computers, machinery tools and engines.

4. Recycle: Used or returned products which can not be recovered in whole or in
part, might contain recoverable materials which can be obtained by performing
the necessary disassembly, sorting and reprocessing operations that is referred to
as recycling. As a results, product structures can not be conserved in product
recycling. We only recover the materials we need for some other or the same
manufacturing process. The remaining parts, items or materials that can not be
recovered are scrapped and end up either in landfills or to be incinerated. Some of
the materials that are recovered after a recycling process are metal, glass, paper,
and plastic.

In general, manufacturers tend to perform direct reuse, repair and remanufacturing
options in-house because they have knowledge about the manufactured product. How-
ever, recycling is often carried out by a specialized third party company since material
recovery from a used product is a total different process than recovering a known prod-
uct by repairing or remanufacturing (Thierry 1997). Furthermore, if a company does
not have some parts of the RL processes in order, in addition to the actual recovery
processes, RL activities such as collection of used products and/or reverse distribution
of the items can also be carried out by a specialized third party logistics (3PL) provider.
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1.1.1 Product or Material Recovery Options and Activities in RSCs

There might be many echelons in a RL channel. Possible operations in these echelons are:
collection, inspection/testing, sorting, dismantle/segregation/disassembly, repair, re-
manufacture, refurbish, recycle, reuse, liquidate and disposal/discard/scrap/incineration/
landfill with the regular forward channel transportation/distribution/redistribution, han-
dling, intermediate processing and storage activities. Even though the collection function
of the RL is similar to the forward supply chain activities, where the products are pro-
cured, the remaining activities are more specific to RL.In Figure 1.1 We illustrate the
general framework of a RL network with possible activities, actors, and product recovery
facilities . Figure 1.1 is a very detailed version of a RSC network system for products that
are complex in nature (e.g., products with modular parts such as cars and computers)
and includes all the possible activities, actors, and facilities.
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Figure 1.1: Reverse Logistics Diagram, A Comprehensive Look at a
Modular Product’s Reverse Flow 5
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Collection is the first operation that needs to be done in a RL network. It refers
to all activities of collecting the used (unwanted, end-of-life, end-of-use products, and
also defective, damaged, faulty, recalled, under-warranty products) or new products (un-
sold, unwanted, end-of-life, defective, damaged, faulty products especially in business-
to-business settings for excessive or seasonal inventory) from end consumers, customers,
or clients at certain collection locations. It is the physical movement of products from
the consumer to the company or the third party collector. The collection operation may
include take-back, purchasing (buy-back), transportation, and storage activities. Some
of the examples of collection points are recycling bins, retail stores, specialized collection
locations, and centralized return centers/stores/warehouses. Deposit-refund systems are
also developed by the manufacturers in order to promote product returns for collecting
product casing, packing, containers, bottles and cans. Deposit-refund might also be
considered as a purchasing (buy-back) function of the collection operation where the
manufacturer refunds a certain amount for the returned product. Some companies, or
governments/municipalities, also provide collection centers under an incentive program
for some certain types of products. For example, consumers recycle their used batteries
directly to specialized recycling bins.

Inspection and quality-testing denotes operations that determine whether a collected
product is recoverable. If the product is recoverable then inspection and quality checking
identifies to what extent the product can be recovered by additional processing. If a
product does not pass the inspection and quality testing for product recovery, then the
product (or some of its parts) would be sent for disposal. If the collected products pass
the inspection and quality-testing stage, they will be routed to related product (and/or
material) recovery operations (direct reuse, repair, remanufacture, recycle), which can
also be observed in Figure 1.1, depending on the results of the inspection stage. This
stage is called the sorting/separation stage. In general, inspections and quality-testing,
and the sorting stages occur in the same location.

For the products that passed the inspection stage and will be routed for remanufactur-
ing, they need to be dismantled/disassembled first. Dismantling / disassembly is a stage
where collected products are disassembled into their constituent parts or components
for the next processing stage. Depending on whether the product will be dismantled
totally or not, the product can be remanufactured into a ‘working’ product or disman-
tled into its constituent components so that they can be used in some other products’
remanufacturing process or be sent to spare parts market for sale. As for the remanufac-
turing process of a product, the full set of parts or components are needed. Therefore,
if there are any shortages of parts for the remanufacturing of the product, they can be
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acquired by ordering from a supplier or using old parts that were extracted from other
disassembled products. Since the disassembly stage is followed by the remanufacturing
stage, the disassembly/dismantling stage can occur at the same location as the reman-
ufacturing stage in some RL networks and hence a separate disassembly center will not
be needed. However, since some companies offer a large variety of products and those
products are composed of many different parts and components, the RSC may need
separate disassembly centers other than the remanufacturing facilities.

In product recovery stages, a product or some of its parts can be recovered and
reused. However, collected products can also be sold to a third party buyer This stage is
referred as the liquidation stage in RL, where a value of the product is recovered rather
than its physical stock.After the re-processing centers recover as much value out of the
collected products for remanufacturing some portion of the unusable parts might be used
for raw material recovery. This process is called the recycling stage where certain raw
materials from disposed items can be extracted for building new products. Some of the
main raw materials are metals and plastics. Generally, the recycled materials need to
be further processed (melted or chemically treated) by third party recycling companies
or municipalities in order to be used in the same or other industries. The last, and least
wanted option, is the disposal of the collected products if the company cannot recover
any material or value from the collected product.

When a reverse distribution channel is to be designed, determining suitable echelons
is the most crucial issue. For example, early inspection and testing close to collection
sites instead of centralized inspection and testing close to return/distribution center
might save on transportation costs of useless products. However, a large number of
inspection testing facilities close to collection sites might involve heavy costs compared
to few centralized inspection and testing facilities with relatively reasonable costs close
to return/distribution centers. As shown in Figure 1.1, some of the echelons in the RL
network may include several types of facilties. A RL network will include some or all of
these echelons/facilities and above mentioned RL functions/activities depending on the
company, its supply chain network design and size, distribution levels and options, prod-
ucts they produce/sell and materials they were built from, market needs and government
regulations.

1.1.2 Differences Between Forward and Reverse Supply Chains

There are some significant differences between a forward supply chain and a reverse
supply chain. The ability to forecast volumes, both the supply and demand quantities, is
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one of the major differences. In forward supply chains, products, in general, have a known
expected demand.Supply quantity can also be estimated since the production quantity
of a manufacturer can be assumed as a known factor. However, forecast for a recovered
product is harder to estimate since the quantity of supply or demand (for secondary
market) is highly random. In addition, the quality and timing would also be uncertain
which makes the problem much more complex to analyse mathematically. Another major
difference is the unclear disposition routes of the productsIn a forward supply chain, the
echelons and routes for a product are known for a product, however, a collected product’s
route or location are not known until they are inspected or disassembled There are also
other differences between a reverse supply chain and forward supply chain such as the
RL having invisible cost structure, distribution speed not being a priority and many-to-
one echelons (i.e. collection centers-to-manufacturer) structure instead of one-to-many
(i.e. production facility-to-stores) echelon structure (Tibben-Lembke and Rogers 2002,
Tibben-Lembke 2002).

Comparing the fundamental characteristics of RL to forward distribution, one of the
main differences is the uncertainty of supply. In traditional (forward) supply chains, the
supply amount is typically assumed known with certainty. However, in RL, the supply
quantity is almost always uncertain.Thus, in most literature studies we find that with
the exception of demand, the supply quantity, quality and timing are, in general, known
factors or decision variables in forward supply chains. In RL models, especially if the
product will recovered, the demand is usually assumed uncertain since both its quality
and quality are difficult to predict with accuracy.

1.1.3 Reverse Supply Chain Vs. Closed-loop Supply Chains

RL channels can be within an closed(open)-loop supply chain system where a product
is (not) returned to its original manufacturer or the channel is (not) integrated with
the forward supply chain.In general, forward distribution and RL are implemented in
a sequential manner. However, there might be possible cost savings if the forward and
reverse channels are integrated in as a closed-loop supply chain network. The integration
can take place at different levels. For example, while recycling functions or third party
product recovery often occur in an open-loop supply chain system, direct reuse, repair
or remanufacturing functions often occur in a closed-loop supply chain. The problem
of deciding about the level of integration is not an obvious one as it relied in several
factors such as routing levels, distribution channels and markets involved. In reality
most forward distribution systems are not equipped to handling product movement in

8

http://www.mcmaster.ca/
https://gs.mcmaster.ca/program/computational-science-and-engineering/
https://gs.mcmaster.ca/program/computational-science-and-engineering/


Doctor of Philosophy– Mehmet Erdem Coskun; McMaster University– Computational
Science and Engineering

the reverse channel Jayaraman et al. (1999) . This is mainly due to the fact that returned
products require special handling in collection, transportation, storing, or sorting

1.2 Motivation

Although RSC and RL is widely studied, we have observed that almost all the related
literature concentrated their efforts on the RL network design issues where their goal
is to minimize costs while deciding about which RL facilities to open. These location-
allocation models address mostly strategic decisions and assume all products are re-
turnable. There is a need for research on tactical and operational models to efficiently
operate exisiting RL networks.

As for the RSC literature, we find that they concentrated their efforts on modelling
the RSC framework from a manufacturer’s point of view, hence modeling the prob-
lem as a network optimization problem, where the manufacturer is trying to collect
its used/new/end-of-life products from supply generation zones. The models objective
were to identify where to open collection centers in order to optimize costs for collecting
these products. Most of the models were location models, therefore modeling a binary
selection problem, for the RSC of the manufacturer which included facilities that are
owned by the manufacturer such as collection centers, sorting, quality checking, dis-
assembly/dismantling, repairing, and remanufacturing facilities.These models assumed
all items are collected (or processed) where they assumed an uncertain supply, which
brought attention to the complexity of the problem. However, these models did not
consuider product selection or allocation since all items were returnable.

In many realistic cases, a manufacturer of a product is not the only entity that
is capable of collecting products/material via its RSC network and hence a decision
maker of its RL. Depending on the business strategy, a manufacturer might sell products
to other businesses and then those products eventually get sold to end consumers If
a manufacturer sells products to consumers using interim channels, they will not be
able to collect the used items from the consumers or new-but-unsold products at sales
locations because the products leave the manufacturer’s supply chain at a certain point
and can only come back via returns channels of the parties that sold them, which in
most cases, is a retail company. Therefore, we find that there is a need to consider
RSC models that have the businesses that sell to consumers as the main decision maker.
These businesses, like retailers, have their own forward and reverse supply chainswhich
is separate from that of the manufacturer’s supply chain As a result, the retailers’ own
network structure, especially RSC network, should be modelled separately and carefully
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considering the complex echelons/layers of their network.RRSC environments has not
been considered or modelled in the existing vast RL literature, with the exception of
the work of Yuliawati et al. 2021; Kaboudani et al. 2020; Das 2012, which offer some
starting modeling framework.

Inspired by a need from one of our industrial partners and the gap we identified
in the literature, we concentrated our efforts on modelling the RL activities of a retail
company. In the existing RL literature, there is no framework or model that considers
the case when only a subset of product is returned This is especially more important
for the RRSC since retail companies optimize their inventory based on either inventory
levels or budget constraints. Therefore, RSC considers only a portion of the available
products (whether they are unsold, damaged, faulty, end-of-life or customer-returned)
to be reverse flowed while taking into account inventory and/or budget limitations.
Budgetary constraints are crucial to a company’s bottom line because it directly affects
the fiscal year budget. Therefore, in our first model, we focus on these issues. We
consider operational decisions of a retail company, a selection process of products to be
return flowed, with the allocation decisions that will optimize the reverse distribution
activities.

In our second problem, we address another important RRSC that takes into account
inventory optimization via RL activities. We design the supply chain network of the
retailer where we consider its stores, warehouses, distribution centers, vendors and liq-
uidators. The logical paths of moving products among these facilities are carefully con-
structed and we consider physical and financial limitations of the problem via capacity,
demand, vendor refunds. We consider a realistic retail environment by incorporating the
company’s owned stores, its franchise stores and their conflicting objectives. In addition
to the operational decisions, we also incorporate the strategic network design problem
in our model to find which distribution/return centers should be used. The objective of
our model is also designed in a way that captures all the complexities (cost of physically
moving items, penalties, margin losses and activation costs) of a retail supply chain and
its detailed cost structure related to this activity.

Large retail companies deal with hundreds, and sometimes thousands, of different
vendors. To address the issue of returned or unsold items, retailers and their vendors have
developed product return agreements with a certain multi-layered penalty structure that
affect both parties positively and negatively at the same time. From the retail company’s
perspective, returning unsold, customer returned, damaged, broken or faulty products
back to its original vendor opens inventory space for new or already selling products,
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increases inventory health, and its cash balance because of the money received from
vendors for the returned items. Even though this is a positive effect for the retailers,
they have to pay penalties for every product they return back to its vendor and this
results in loss of capital which could have been used for purchasing products that have a
potential to be sold. From the vendors’ perspective, receiving unsold, customer returned
(without damage), broken or faulty products may affect the vendors negatively since they
receive products they do not know the condition of and they have to incur the receiving,
unpacking, inspection and sorting costs. Also, vendors’ reputation and recognition might
be damaged from having a high percentage of broken or faulty products. However,
returned products can be resold to another retailer as is or it can be further processed
internally for quality control purposes. Since the vendor receives products that can
potentially be resold directly or with some minor internal processing to other retailers,
and at the same time charges a penalty to the retailer for every returned product, they
benefit from the returns. It is therefore crucial for retailers to identify and negotiate
optimal penalty strategies with vendors.We consider this problem in Chapter 5, an area
that has not received mucj attention in the literature.We take a retailer’s perspective
to re-negotiate an existing product return contract using historical returns and future
expected returns and identify the optimal penalty strategy.

1.3 Thesis Structure

The rest of this thesis is structured as follows. We review the extensive literature on
RSC in Chapter 2 and provide evidence of the gap and lack of research specifically
in retail RSCs. We also outline our main thesis contributions and how they fill in
some of the identified research gaps. Based on the distinct characteristics of RRSC,
three major issues are then studied in Chapters 3–5. Reverse logistics operations at a
retailer are often constrained by the terms of the vendors contracts. One such important
constraints is the level of refund that will be obtained from the vendors. Such refund
feeds directly in the retailer’s budget and they perform their RL operation in order to
keep their budget variances under control. We refer to such constraints as budgetary
constraints and address them in Chapter 3. Inventory impacts of RL operations in retail
are considered in Chapter 4. In particular, we consider the choice of distribution centers
and rerouting of returned stock. We then make use of our oprimization models to derive
insight for vendor contract design. We consider optimal contract-terms, such as penalty
and thresholds, in Chapter 5. In all three modelling chapters we propose novel models
and solution approaches and conduct numerical experiments. Results, comparisons and
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useful insights are then discussed. The thesis ends with a conclusion and a discussion
on potential future areas of research in the RRSC field in Chapter 6.

1.4 Relationship between RRSC Models

When a retailer wants to clean excessive inventory from all of its stores, they have two
options: allocating inventory based on a given profit-loss budget or do a full-fledged
inventory optimization. If the retailer decides to move forward to spend a pre-calculated
budget to clean a certain portion of its inventory, the model we discuss in Chapter 3
can be utilized since this model reverses margins that are lost due to income loss against
a given budget. However, if the retailer decides to move forward with a full-fledged
inventory optimization to minimize all of its reverse supply chain costs, then the model
we discuss in Chapter 4 can be utilized since in that chapter our goal is to optimize all
of the related reverse supply chain costs.

The above models can generally be used sequentially during a fiscal year. In general,
a RRSC activity is launched several times during a year and a retailer might want
to spend available profit-loss budget equally during the RRSC activities. However, a
retailer might also want to optimize all of its inventory costs during the year and spend
the remaining budget optimally at the end of its fiscal year. Therefore, the models that
are defined in Chapter 3 and Chapter 4 are highly interrelated and can be used based
on company inventory management strategy and objectives during a fiscal year.

The problem that is discussed in Chapter 5 is a strategic decision making problem to
minimize penalty costs that will paid to many vendors in the upcoming return cycles.
The optimal contract terms/parameters that will be identified in this model, if accepted
by the vendors, will be used for several years until the return contracts are due. There-
fore, the optimized contract parameters that will be identified in this problem (in order
to better negotiate with every vendor), is one of the most important parameters to
implement in the inventory optimization model that is discussed in Chapter 4. Even
though the operational model that is discussed in Chapter 4 runs several times a year
to optimize RRSC inventory costs, some of the most important parameters that are
being used to do that is the result of the optimal contract parameters that is extracted
from the strategic model discussed in Chapter 5. Therefore, all the 3 problems we have
discussed in this thesis are highly interrelated and should be used in a certain order to
optimize all related RRSC costs.

12

http://www.mcmaster.ca/
https://gs.mcmaster.ca/program/computational-science-and-engineering/
https://gs.mcmaster.ca/program/computational-science-and-engineering/


Chapter 2

Literature Review

In this chapter we summarize the most relevant literature, with a focus on reverse supply
chains in general and for retailing specifically, identify research gaps, and outline our
main thesis contributions.

2.1 Reverse Supply Chain Literature

The reverse supply chain (RSC) literature started gaining interest from the early 1990s
(e.g., see Min 1989; Caruso et al. 1993; Kroon and Vrijens 1995; Melachrinoudis et al.
1995; Fleischmann et al. 1997; Spengler et al. 1997; Marin and Pelegrin 1998; Barros
et al. 1998; Jayaraman et al. 1999; Louwers et al. 1999; Krikke et al. 1999). However, in
the past two decades the interest and published work have gone up significantly which in-
cluded many distinct approaches from frameworks, return policy designs, RSC contracts,
network design models to allocation models. The early models were mostly investigat-
ing recycling end-of-life cycle products such as carpets, used cell phones, photocopiers,
solid waste, steel by-products, sand from construction waste, hazardous waste, and re-
turnable containers. They modeled the RSC as a product recovery and distribution
network where the authors concentrated their efforts mostly on the location-allocation
decisions of collection centers, re-manufacturing facilities, or recycling facilities and the
distribution and allocation of the collected materials.

Most of the literature modelled the location and allocation decisions of a RSC from the
manufacturer’s point of view where the manufacturer was collecting end-of-life products
from collection centers, recycling bins or waste bins. The manufacturer’s objective was
mostly to identify where to open collection centers, where to put recycling or waste
bins, where to open disassembly, repair and/or re-manufacturing facilities and how to
distribute the load among these facilities (e.g., see Ashayeri and Tuzkaya 2011; Ferguson
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et al. 2011; Tuzkaya et al. 2011; Vidovic et al. 2011; Nenes and Nikolaidis 2012; Alumur
et al. 2012; Das and Chowdhury 2012; Hosseinzadeh and Roghanian 2012; Dat et al.
2012; Niknejad and Petrovic 2014; Roghanian and Pazhoheshfar 2014; Soleimani and
Govindan 2014; Alumur and Tari 2014; John et al. 2015; Godichaud and Amodeo 2015;
Yun 2015; Li et al. 2016).

From the 2000s on, the interest in RSC literature has grown exponentially and there
have been hundreds of articles (with the inclusion of closed-loop supply chain, CLSC,
literature) published in various journals since then, where most of them model location
or location-allocation decisions of recoverable end-of-life cycle products or waste material
similar to the prior studies. The proliferation of study in this area can be witnessed by
the fact that 51 review papers were published from as early as 1997 to 2021, at a rate
of two reviews per year. The interested reader is referred to the most recent reviews of
Van Engeland et al. (2020) and Ambilkar et al. (2021), where the former has presented
a categorization of the published literature.

2.2 Reverse Retail Supply Chains

Even though there has been a considerably large amount work in the RSC (and CLSC)
area, the related literature in RRSC is very scarce, especially that which is concerned
with modelling. The same observation was noted int the review papers by Dias et al.
(2019) and Borba et al. (2020), were the also review qualitative and conceptual works.
Only Yuliawati et al. (2021), Das (2012) and Wojanowski et al. (2007) have presented
modelling frameworks of the RRSC activities.

In this thesis we focus on RSC in product recovery-remanufacturing, which is s de-
parture from the main stream literature. In the remainder of this section we focus on
reviewing the RSC literature in retail environments. We consider both studies that cover
the literature on RSC in retail as well as the effects of RL on the retailer. Tibben-Lembke
and Rogers (2002) compared the forward and reverse logistics (RL) in a retail environ-
ment with a focus on the reverse flow of the productsHorvath et al. (2005) developed
a Markov chain approach to model the expectations, risks, and potential shocks associ-
ated with cash flows stemming from retail RL activities. Chaves and Alcantara (2006)
investigated the conflict between the industry and the retail from a manufacturer’s point
of view through a qualitative exploratory research in two major companies of the food
sector. Bernon and Cullen (2007) created a framework for managing RL through adopt-
ing the three management approaches of integration, collaboration and evaluation and
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argued that the level of returns currently experienced by retailers could be reduced sig-
nificantly if organizations managed product returns in a holistic way. Wojanowski et al.
(2007) studied the interplay between industrial firms and government concerning the
collection of used products from households and presented a retail-collection (drop-off
facility) network to determine the sales price that maximize the firm‘s profit under a
given deposit-refund. They have determined the net value that can be recovered from a
returned product as a key driver for the firm to voluntarily engage in collection. They
have showed that a minimum deposit-refund requirement would not achieve high collec-
tion rates for products with low return value.

Moise et al. (2008) discussed the importance of RL to retailers for meeting short-
run financial obligations or opportunities. Sonya Hsu et al. (2009) studied the business
process of RL by focusing on studying the activities of the distribution center of a
major department store and found that the biggest problem a central return center
is facing is the time required for managing damages when no return authorization is
forthcoming from the vendor. Jack et al. (2010) investigated the capabilities of RL
for retailers to enhance their return policies and improve their overall cost position
through surveying retailers, They identified that resource commitments and contractual
obligations positively influence RL capabilities and that these capabilities result in cost
savings. They also reported that RL capabilities partially mediates the relationship
between resource commitments, contractual arrangements, and RL cost savings. Bernon
et al. (2011) presented a conceptual framework for managing retail RL operations. They
observed that it needs to be managed as an integrated supply chain activity because of its
multi-faceted operation structure and proposed operational performance, organisational
integration and management reporting and control management dimensions.

Das (2012) proposed a mixed-integer programming (MIP) model for the strategic
production and distribution planning of a supply chain integrating RL system which in-
cluded collection, recovery and marketing of recovered products, in addition to returned
components and packing/wrapping materials. They used retail outlets as a two-way
channel for marketing new products, collecting used/returned products and re-marketing
recovered products as a way of promoting an effective product recovery system in SC
operation and optimizing costs. The model followed a two-step process that addresses
strategic decisions about product recovery in the first step, and the integration of the
recovery process into overall SC decisions in the final step. Bernon et al. (2013) explored
supply chain integration enabling practices, their benefits and barriers in a retail product
returns process context through a case study of an original equipment manufacturer and
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two retailers. They found out that management of retail product returns can signifi-
cantly benefit both an OEM and its customers when appropriate SCI enabling practices
are deployed but barriers are driven by the characteristics of product returns processes.
Olariu (2014) presented a theoretical approach to retail RL identifying key aspects from
network design, facility location, outsourcing, green supply chain management, organi-
zation integration to information technology.

Bajor and Babic (2014) studied retail level returns in a Croatian market and looked
at characteristics of returns and routing these products from the retail level. They
found that the majority of products in return are directed from final consumers and
are non-current inventories of the distribution chain. Bernon et al. (2016) explored the
subsequent impact on the levels of consumer retail returns experienced through online
sales and the emergent returns management strategies used by retailers in relation to
network configuration and returns management processes. They found that return rates
for online retailing can be double those for stores, while return levels for “considered
purchases” remain similar. Dias and Braga Junior (2016) analyzed the practices of
RL by a retailer and measured the amount of waste generated by each department
via monitoring the amounts of cardboard and plastic discarded by each department.
Beh et al. (2016) examined the role of an alternative approach, second-life retailing in
RL. They demonstrated the essential characteristics of second-life retailers and showed
that it could bring additional revenues, enhanced sustainability and democratization of
consumption.

Mostert et al. (2017) have done a qualitative study to explore the perspectives of re-
tailers regarding supply chain integration in the context of product returns for consumer
electronics. They identified that retailers made efforts to increase internal integration
relating to improving information availability, aligning cross functional processes and
improving inter-firm relationships and external integration efforts to improve the intra-
firm flow of information, reduce the number products returned to suppliers, expedite the
returns process in specific instances and align processes. Bernon et al. (2018) presented
a conceptual framework that supports the adoption of circular economy values within
retail RL operations and found that embedding circular economy values necessitates the
adoption of a multi-faceted approach.

Beitelspacher et al. (2018) explored the relational implications in the business-to-
business (B2B) context and found out that when salespeople respond to returns by
engaging in relationship building behaviors, these behaviors are noted by the retailer,
which in turn results in fewer returns in a future time periods. Panigrahi et al. (2018)
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identified critical factors and developed a RL strategic framework for improving cus-
tomer satisfaction and managing retail returns through reviewing published work and
interviewing logistics managers in the retail industry. Dias et al. (2019) reviewed the
retail RL literature between 2007 and 2016 and only found 10 publications for the final
analysis of the study that are relevant. Demajorovic et al. (2019) analyzed the devel-
opment of the relationships between the internal areas of a retail company, its suppliers
and customers involved in the management of RL in two contexts: product return and
returned packaging used in moving product logistics. Their results showed conflicts and
lack of objective alignment between the external actors, i.e., suppliers, producers and
partners, and within the focal firms, between the commercial and logistics departments
due to the perception that RL is a cost-generating process and thus undermining the
effectiveness of the reverse flows of products and packaging in retail.

Xu et al. (2019) probed into the existing strategic models, reviewed relevant literature
and put forward effective management strategies of RL in retail industry. Junior et al.
(2020) analyzed the willingness to implement RL in supermarket retail and used logistic
regression to generate a model for evaluating the disposition of products. They have
also observed the absence of a model for implementation and guidance of RL in a retail
environment. Frei et al. (2020) investigated the extent to which sustainable practices
and circular economy concepts have been implemented in retail returns systems and
identified vulnerabilities, barriers, and challenges to the implementation of sustainable
circular practices via in-depth interviews, observations, retailer website reviews and re-
tail community workshops. Borba et al. (2020) proposed a theoretical description of RL
applied to omnichannel retail. They presented a conceptual framework for a holistic view
and identified 43 return barriers including high investments, product restocking, addi-
tional transportation costs and poor communication. Gustafsson et al. (2021) analyzed
the current performance of a retailer’s e-commerce and return operations by estimating
costs generated by product returns, including product handling costs, tied up capital,
inventory holding costs, transportation costs, and order-picking costs from 2,229 return
transactions at a Scandinavian fashion footwear retailer and identified that the cost of
a return is approximately 17% of the prime cost. The major cost elements were prod-
uct handling costs and transportation costs, which together amount to 72% of the total
costs. They tested a digital product fitting technology with the retailer’s products and
provided estimations on how such technology could affect product returns. They ob-
served that fitting technology can cut fit-related return costs by up to 80%. Yuliawati
et al. 2021 proposed a retail-oriented closed-loop supply chain (ROCLSC) where a re-
tailer takes charge of the collection, distribution and remanufacturing processes in a two
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stage, manufacturer and retailer, supply chain system. They developed a mathematical
model to maximize the profit of each party. They introduced a fixed rate and flat rate
mechanisms used in the business-to-business (B2B) systems. They showed that the re-
tailer will get higher profits when the product returns are acquired through the fixed
rate mechanism

We remark that almost all the literature on retail RL is concerned with product
returns instead of how the retailer internally handles these returns in order to minimize
its costs. Some of the above articles discuss the potential cost aspect of these returns
to the manufacturer, however, none of them developed models that would address this
issue.In our work, we concentrate our efforts on the modelling of RSC network of the
retailer and optimize its costs from the retailers point of view.

2.3 Gaps in Modelling Frameworks in RRSC Literature

Even though there are studies done on the RRSC literature, most of the research that
was published was on the exploratory and qualitative side. Researchers developed con-
ceptual frameworks, interviewed retail supply chain managers, surveyed employees and
done case studies. The lack of quantitative work can easily be observed from Table 2.1
where we find only four studies that presented quantitative models: Horvath et al. 2005;
Wojanowski et al. 2007; Das 2012; Yuliawati et al. 2021.

Bernon et al. (2011) pointed out that the the area of retail RL is still immature
and developing. In the RRSC literature review by Dias et al. (2019), only 10 relevant
studies were found in the literature. They observe that "another factor that reaffirms
this evidence [lack of studies] is the predominant exploratory character of the research
found" and call for thBy 2020, Junior et al. (2020) als reaffirms that "in the literature,
there are no studies that suggest a model for implementation and guidance for RL".
Borba et al. (2020) added that "the link between RL and omnichannel area is recent
and publications are still scarce." Yuliawati et al. (2021), have also referred to the lack
of research in this area and stated that "research around CLSC, which focuses on the
retailer as a leader of the supply chain, which according to Yi et al. (2016) is called
the Retailer-Oriented Closed-loop Supply Chain (ROCLSC), is still very limited." As we
have mentioned earlier, the studies published in RL are carried out by the manufacturers
in the RSC literature section. This fact has also been observed by Yuliawati et al. (2021),
who stated that
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Table 2.1: RRSC Literature Review
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Unfortunately, most of the research has focused solely on Manufacturer-
Oriented CLSC. The reason for this may be most of the previous research
consider that the RL management activities are carried out by the manu-
facturer, not the retailer, which makes related research irrelevant. However,
retailers as actors who are closer to consumers should be able to further
investigate their role in the CLSC system.

We summarize the relevant literature in Table 2.1. We classify the published papers
and identify gaps, some of which will be filled in by our current work.

2.4 Gaps of Retailer-Vendor Buy-Back Contracts in RRSC

Based on Guo et al. (2017)’s literature review of supply chain contracts in RL, there
are 18 studies that considered buy-back contracts . The contracts were between man-
ufacturer, re-manufacturer, third-party collector and retailer. Only Jeong (2012) and
Matsui (2010)) considered contracts between a manufacturer and a retailer. These con-
tracts were led by the the retailer. Jeong (2012) studied the collection and transmission
of customers’ product expectations and market demand information. Matsui (2010) ex-
plored the influence of the demand uncertainty. A recent work, by Guo et al. (2021),
developed a selective buyback contract model where the retailer can forecast and deter-
mine the return quantity independent of the supplier by a put optioninstead of passively
accepting the return quantity determined by the supplier at the ordering stage before
the sales season, and the exercise price is not fixed. They have shown that contract can
coordinate the supply chain by adjusting the option exercise price and giving the retailer
more choice. The supplier receives risk compensation from the put options.

Based on the RSC of the retailer, we also consider a buy-back contract between the
retailer and its vendors, however, unlike the existing literature that uses game theory, we
use optimization models to identify the optimal contract parameters in a multi-layered
penalty structure to re-negotiate the existing contracts with all of its vendors.

2.5 Main Thesis Contributions

2.5.1 Contributions on RRSC Modeling and Problem Objectives

Our research is the only study in RRSC literature where an independent retailer’s RSC is
modelled extensively. We contribute to the RRSC literature via modelling three different
objectives. In the first model, we are the first to account for budget management, where a
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certain refund budget, a.k.a. Profit-Loss budget, is considered. The retailer has to spend
the profit-loss budget to manage margin losses due to losses in income of returned items.
In the second model, we are the first to consider a comprehensive inventory optimization
model where find optimal stores’ inventory levels via allocating the right products to the
best available disposal option. In the thirdmodel, we are the first to study how a retailer
should optimize its ‘buy-back’ contract parameters in a multi-layered penalty framework
for product returns to its vendors. We use optimization models to identify the optimal
return penalty and/or threshold parameters to re-negotiate the return contracts towards
existing contract parameters.

2.5.2 Contributions on Levels in Decision Making

We contribute to the RRSC literature on all levels in the decision making.In our first and
second models, we consider operational decisions via selection and allocation of products
within the supply chain network. In the second model, we include tactical decision
making via incorporating facility selection/location (activation of distribution/return
centers). In the third model, we make strategic decision via identifying optimal return
penalty and return threshold parameters for the retailer.

2.5.3 Contributions on Consideration of Franchisees and Their Objec-
tives

W provide the first model in RRSC literature where we separate retail stores into different
store type categories, namely company-owned and franchise stores, and their potentially
conflicting objectives related to optimizing their inventory. The RSC network we consider
incorporates individual franchises as a new network member. We manage the franchise
store’s individual objectives and this might be conflicting with the retailer’s overall
objective. We incorporate this conflict in our problem and resolve it via introducing
inventory transparency among franchise stores through several constraints that manage
proportional inventory returns.

2.5.4 Contributions on Solution Methodology

We contribute to the literature by developing heuristic algorithms to solve selection and
allocation decisions in RRSC. In the first and second problems, we develop constructive
heuristic algorithms, that make use of the problem structure, to solve budget manage-
ment and inventory optimization problems, respectively. We show that they lead to
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close to optimal solutions with reasonable solution times. The heuristics we have devel-
oped can be transformed to similar selection and allocation decision making processes in
other similar budget balancing and network allocation problems. In the third problem,
we propose a decomposition approach to identify under which conditions there exists a
better penalty and/or threshold structure for contract re-negotiation, and how we can
calculate the optimal penalty structure for the retailer. Our approach provides managers
with a plug-and-play framework that can be used to negotiate similar kind of contracts
without the need to solve complex optimization problems.
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Chapter 3

Retail Reverse Supply Chain
Optimization under Profit-Loss
Budgetary Limitation

3.1 Introduction

In this chapter, we consider a RRSC budget planning of an independent retailer where
its supply chain network consists of multiple vendors, a warehouse, and multiple stores.
Some portion of the retailer’s inventory does not sell as expected and the retailer needs
to salvage them optimally in order to refill the space with better products and hold more
effective inventory that has a higher sell through rate to increase sales and hence profit.
The goal of the retailer is to decide which products should be chosen from stores to be
relocated within the network in order to acquire a healthier inventory level against a
given ‘Profit-loss’ budget that should be consumed.

A profit-Loss budget is a budget that is calculated every year by the accountants
of the company in order to reverse the margins that are lost due to non-selling of the
purchased products by the retailer. During a fiscal year, many products are purchased
from vendors hoping that they will be sold to customers, however, some portion of
these purchases ends up not selling as well, or not selling at all, for various reasons
such as customer desires, product unpopularity, competitive products in the market,
price and/or quality of the product, etc. Over time, these products accumulate in store
inventories and fill up scarce space in the shelves and/or warehouses. In order to relieve
this limited and highly productive space to products that have a higher chance of sale,
the retailer needs to salvage some or all of this ineffective inventory optimally via a
reverse logistics process from time to time. Every year the retailer forecasts a budget
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(using expected effective and ineffective inventory levels, historical sales & non-sales of
the purchased products, and historical inventory removal amounts) that accounts for
this situation and some portion of the ineffective inventory has to be removed from store
shelves/inventory where the total expenditure of the RSC process has to fit within this
pre-calculated budget. The basic idea of the ‘profit-loss’ budget is to account for and
forecast the margin reversal cost of upcoming product returns that will be disposed of
in the current year. Once it is calculated, the profit-loss budget can then be used to
remove the profits of the ‘could-have-been sold’ products from company books (these are
the products that are already purchased within the year and presumed to be sold but
not actually sold due to many reasons as mentioned above, therefore presumed profit
margins on the books should be reversed). Therefore, this budget gets calculated by
the financial team of the company for financial planning and most importantly taxation
reasons. We note that the retailer has to file taxes before customer sales are realized.
The profit-loss budget is therefore based on customer sales predictions.

During a fiscal year, many products get sold to stores by the retailer and their possible
profit gains are incorporated and accounted for as gains. When some of these products
are not sold to the end customer by the stores, and some portion of this inventory is re-
moved from store inventories (when the retailer wants to make some inventory clearance
via returns and relocations), the margins of the disposed inventory that are entered in
the books has to be reversed, meaning that retailer’s ‘profit-loss’ (margin recovery costs,
unrecoverable costs, vendor return penalties, and similar costs of doing business) should
be calculated and then the books have to be readjusted. Since identifying the products
that are not sold, disposing some of them, reversing the margins of the returned ones,
fixing those entries on books by reversing their margins (with additional return related
costs), and then adjusting the taxation side can be a very complex and time consuming
act, the retailer uses forecasts to estimate this amount using historical data and expects
the RSC activity to fulfill this obligation of consuming the forecasted budget instead of
reversing the margins of the products that would most ideally be disposed.

As a result, when it is time to clear some portion of the inventory via a reverse supply
process, the retailer has to use a budget that is predetermined/forecasted by the finance
department. The goal is to limit the total profit losses due to these returns according to
the pre-determined budget, which we refer to as the ‘Profit-loss’ budget.

In a real retail environment, if some of the products at the stores are not selling,
the retailer identifies those products as ineffective inventory and would choose a portion
of these ineffective products to be relocated within the network, at other stores where
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there is a demand for it, or sent back to its vendor. These products (at stores which
are deemed as ineffective) move upward in the supply chain network until they reach to
their last destination which might be the products’ original vendors or the warehouse
(and then a store which has demand for those products).

If an ineffective Store-product can be returned or relocated to a warehouse or a
vendor. It will be returned to a Warehouse, if the product has warehouse demand.
Warehouse demand refers to aggregate demand from stores that are served from that
warehouse. . If any product has a purchase order/replenishment entry (most probably
from the vendor) in the regular forward supply chain system, the RSC process will
consider these purchase orders as Warehouse demand because it is preferable to satisfy
that demand from an internal source - in this case a store which has that product in
their current inventory and deemed as ineffective - as opposed to ordering them from its
original source. A product is returned to a Vendor to exhaust the ‘Vendor Funds’ if the
product is under the warranty of returnable products and the retailer has related vendor
funds to recover some portion of the product’s cost (COG). In general, a retailer has
vendor funds from a vendor that they regularly purchases products from. The amount
of vendor funds are negotiated through a purchasing agreement between the retailer and
the vendor and calculated as a certain portion of the sales in a certain period of time.
For example, if the retailer purchases $500,000 worth of products from a vendor in a
year, the return agreement might be negotiated so that the retailer can return 10% of
the yearly sales with a 25% penalty next year, i.e., the retailer can return up to $50,000
worth of products and would pay up to $12,500 in penalties.

3.2 Problem Definition

To address the challenges of a profit-loss based reverse supply chain, we propose a model
to aid the retailer in deciding on which store products should be returned and whether
they should be returned to a warehouse or to a vendor. Thus, our model involves both a
selection, and an allocation tasks. In this respect, our RRSC network is the only model
in the literature addresses a RRSC environment by considering product selection as a
decision variable. We consider product selection as a decision variable and do not pull all
of the pre-determined ineffective inventory from stores because only a certain portion of
the ineffective inventory has to be disposed of based company inventory holding policy,
related costs, and budgets available to keep inventory on certain levels.

The retailer’s goal is to efficiently use scare shelf space for products that are likely
to sell.Since continuously pulling all the pre-determined ineffective inventory is not a
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practical option, retail companies clear their ineffective inventory periodically. They
may fix the amount of cleared ineffective inventory, say $1M worth of products annually,
or keep a fixed percentage of effective inventory, say 85% at the start of each year. A
more efficient policy is to find the optimal selection and allocation in order to minimize
the RRSC costs, this is the objective of our model in this chapter.

In our RRSC budget optimization model, the retailer decides to clear certain amounts
of inventory at certain points in time, such as at the end of each fiscal year or at the
beginning of each quarter. This policy defines the basis of our problem since it entails
the retailer to clear and dispose of a certain amount of its ineffective inventory. The
retailer is obliged to dispose of some of its ineffective inventory and has to reverse the
margins of the unsold products which were reported, in their previous year’s financial
and tax statements, as profits.

An important input to our model is the profit-loss, which is predetermined by the
retailers finance department. The retailer’s goals is to use this budget as efficiently as
possible via the return of ineffective products in the inventory. The profit-loss budget
is a budget that has to be spent as much as possible, against the profit margins that
will be lost due to the relocation of products that have previously been entered in the
retailers budget as profit generating sales.

In summary, our goal is to select a set of products’ worth to be returned from a
predefined amount (in terms of store $ value) of the ineffective store products.The chosen
ineffective store-products need to be routed to a warehouse or vendors based on factors
such as demand at the warehouse, capacity of the warehouse, available vendor funds,
and products’ profit margins. The objective is to minimize all costs related to pulling
inventory from stores and relocating them, internally or externally subject to using the
available Profit-Loss Budget as much as possible.

3.3 Model

To solve the problem define in Section 2, we propose an mixed integer linear program
(MILP) where the objective is to minimize all the related RRSC costs and use the
available Profit-Loss Budget as much as possible. In the next section we define the
optimization model that is suggested to find optimal usage of the profit-loss budget via
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allocating returned products. The model is formulated in (3.1)–(3.12).

min
P∑

p=1
[(vrp − whp)SPp − 2vrpCOGp + (vrp + whp)LCp] +

V∑
v=1

V PFv vfv (3.1)

s.t.
S∑

s=1

(
1 − rts,p

)
Qs,p = vrp + whp ∀ p ∈ P (3.2)

P∑
p=1

whp COGp ≤ WRA (3.3)

whp ≤ WDCp ∀ p ∈ P (3.4)

∑
p∈Pv

vrp COGp = vfv ∀ v ∈ V (3.5)

vfv ≤ V Fv ∀ v ∈ V (3.6)

S∑
s=1

P∑
p=1

rts,pSPpQs,p ≥ TSRA (3.7)

( S∑
s=1

P∑
p=1

rts,p(SPp − LCp)Qs,p

)
+
( P∑

p=1
vrp(LCp − COGp)

)
+

( V∑
v=1

V PFv vfv

)
≤ PLB (3.8)

( S∑
s=1

P∑
p=1

rts,p(SPp − LCp)Qs,p

)
+
( P∑

p=1
vrp(LCp − COGp)

)
+

( V∑
v=1

V PFv vfv

)
≥ PLB − N (3.9)

rts,p ∈ {0, 1} ∀ s ∈ S, p ∈ P (3.10)

vrp, whp ∈ N ∀ p ∈ P (3.11)

vfv ∈ R ∀ v ∈ V (3.12)
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The objective function (3.1) represents the total costs of losses, penalties and the
cost of gains that are redeemed when a product is returned back to another store or
warehouse. Constraint set (3.2) ensures that for each product, the total number of items
that are chosen to be pulled from stores is equal to the number of items that will be
distributed to warehouses and vendors. Constraint (3.3) ensures that the maximum
return amount (in terms of $ value) to the warehouse should be less than the capacity
of that warehouse. Constraint set (3.4) ensures that for each product, the total number
of items that are returned to the warehouse can not exceed the warehouse capacity (in
terms of quantity) for that product Constraint set (3.5) ensures the value of the products
sent to vendor is equal to the total vendor funds that should be used. Constraint set
(3.6) ensures that the total vendor funds that should be used in order to return products
can not exceed the available vendor dollars of that vendor. Constraint (3.7) ensures that
a certain amount of ineffective store-products should be removed from all of the stores’
inventories. Constraints (3.8) and (3.9) enforce the profit-loss budget. Constraint sets
(3.10)–(3.12) define the set of binary, integer and continuous variables, respectively.

3.4 A Heuristic Algorithm

Our test have shown that commercial solvers run out of memory and storage space when
solving problem (3.1)–(3.12). From our experience with the industrial partner, we have
also learned that a commercial solver license can add significant operating costs. This has
convinced us of the need to develop a heuristic algorithm. The heuristic pseudo code
is shown in Subroutines 1, where an initial allocation is determined, and Subroutine
2, where the budget allocation is determined. We also illustrate the two subroutines
graphically in Figures 3.1 and 3.2. A more detailed description of the heuristic is included
in Appendix A1.
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Subroutine 1: Heuristic Allocation - Initialization
Result: Write here the result
L1 = {(s, p) for s ∈ S, p ∈ P s.t. Qs,p > 0 and W DCp > 0} sorted by LCp/SPp;
U = newSet();
whp = 0, ∀p ∈ P ;
while | L1 |> 0 and

∑
p∈P

whp × COGp < W RA do
(s, p) = pop top element from L1;
add (s, p) to U ;
if
∑

p′∈P
whp′ × COGp′ ≤W RA−Qs,p × COGp and Qs,p + whp ≤W DCp then

whp+ = Qs,p;
end

end
W arehouseReturn =

∑
p∈P

whp × SPp;
V endorReturn = T SRA−W arehouseReturn;
L2 = {(s, p, Vp) for s ∈ S, p ∈ P s.t. Qs,p > 0 and (s, p) /∈ U} sorted by −COGp V P Fp/SPp;
vrp = 0, ∀p ∈ P ;
vfv = 0, ∀v ∈ V ;
while | L2 |> 0 and

∑
p∈P

vrp × SPp < V endorReturn do
(s, p, v) = pop top element from L2;
if
∑

p′∈P
vrp′ × SPp′ ≤ V endorReturn−Qs,p × SPp and (Qs,p + vrp)× COGp ≤ V Fv then

vrp+ = Qs,p;
vfv+ = Qs,p × COGp;

end
end
Budget =∑

p∈P
vrp(SPp−COGp) +

∑
p∈P

vrp(LCp−COGp) +
∑

v∈V
V P Fv vfv +

∑
p∈P

whp (SPp−LCp);
V endorBudget← Budget−W arehouseReturn;
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Subroutine 2: Heuristic Allocation for Budget Optimization
Result: Write here the result
if Budget < P LB then

T otInv =
∑

p∈P
vrp × SPp +

∑
p∈P

whp × SPp;
ReturnCostRatio = V endorBudget/

∑
s∈S

∑
p∈P

vrp × SPp ×Qs,p;
ExpectedReturnCostRatio = (P LB − V endorReturnCost)/(T SRA−

∑
p∈p

whp × SPp);
∀p ∈ P : vrp = 0;
P icked = newSet();
ps = p ∈ P s.t. COGp/SPp ≤ ExpectedReturnCostRatio and
∀p2 ∈ P, COGp2 /SPp2 ≤ ExpectedReturnCostRatio⇒ COGp2 /Pp2 < COGp/SPp;

StartCost = COGps /SPps ;
while

∑
p∈P

vrp × SPp < T SRA−W arehouseReturn do
(su, pu) = any su ∈ S, pu ∈ P s.t. (su, pu) /∈ P icked and COGpu /SPpu ≥ StartCost and
∀p2 ∈ P, COGp2 /SPp2 ≥ StartCost⇒ COGp2 /SPp2 ≥ COGpu /SPpu ;

Add (su, pu) to P icked ;
(sd, pd) = any sd ∈ S, pd ∈ P s.t. (sd, pd) /∈ P icked and COGpd /SPpd ≤ StartCost and
∀p2 ∈ P, COGp2 /SPp2 ≤ StartCost⇒ COGp2 /SPp2 ≤ COGpd /SPpd ;

vrpu = rtsu,pu ;
Add (sd, pd) to P icked;
vrpd = rtsd,pd ;

end
else

P ′ = {(s, p) for s ∈ S, p ∈ P s.t. vri = 0} sorted by Qs,p × SPp − COGp;
P ′′ = {(s, p) for s ∈ S, p ∈ P s.t. W DCp > 0} sorted by Qs,p × SPp − LCp;
W hF ix = ∅;
while

∑
p∈P

vrp × (SPp −COGp) + W P Fv × vfv + whp × (SPp −LCp) ≤ P LB and |P ′′| > 0 do
(s, p) = pop top item in P ′′;
whp = 0;
Qs,p × COGp;
(s′, p′) = pop minimum item in P ′′ s.t. Qs,p × COGp ≤ Qs′,p′ × COGp′ ;
whp′ = 1;
Add p′ to WhFix;
diff = Qs,p × SPp −Qs′,p′ × SPp′ ;
pick = 0;
while pick < diff do

(s′′, p′′) = pop minimum item from I′ s.t. Qs′′,p′′ × SPp′′ ≥ diff ;
pick+ = Qs′′,p′′ × SPp′′ ;
vrp = Qs′′,p′′ ;

end
end
if |P ′′| = 0 then

whp = 0 for all p ∈ P except in W hF ix;
while

∑
p∈P

vrp × (SPp −COGp) + W P Fv × vfv + whp × (SPp −LCp) ≤ P LB and |P ′| > 0
do

(s′, p′) = pop minimum item from P ′;
vrp′ = Qs′,p′ ;

end
if |P ′| = 0 then

Return infeasible;
end

end
Return current assignment;

end 30
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Figure 3.1: Heuristic Algorithm for Budget Optimization, Part 1

Figure 3.2: Heuristic Algorithm for Budget Optimization, Part 2
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3.5 Test Problems, Computations and Numerical Analysis

In this section, we present our findings about the test problems we have solved using
CPLEX and compare the results and performance of our heuristic to the results of the
exact solver.

3.5.1 Test Cases and Data Generation

Our data generation was motivated from real industrial data. For every test problem,
we have considered 1000 unique products, 500 unique stores, 20 unique vendors and a
warehouse in a RRSC network. Each product is assigned to a random vendor. Each
parameter of a product is generated with random data that fits a uniform distribution
between certain bounds (lower and upper limit) that are consistent with values of the
related parameters; COG, landed cost, and store purchase price. Warehouse demand for
every unique product is also randomly generated with a uniform distribution. Overall
warehouse and vendor parameters such as capacity and available vendor funds, respec-
tively, are chosen in way that limits the returns of the ineffective inventory and hence
allows returns to both parties. A range of penalty fees/rates are generated for the 20
vendors that allows and limits returns to a specific vendor.

All the problems are generated with relatively large size, 250,000 Ineffective Store-
products. In total, 20 problems are generated, 10 unique test problems are created with
2 distinct scenarios; one with a high Profit-Loss Budget and one with low Profit-Loss
Budget. As can be observed from Table 3.1, the ‘odd’ number test cases represent
the high Profit-Loss Budget scenario of the problem, and the ‘even’ number test cases
represent the low Profit-Loss Budget scenario of the problem.

Since these 250,000 store-product combinations are randomly generated where each
product is assigned to a random vendor and all the parameters of the products; COG,
landed cost, store purchase price values are randomly generated between a certain range,
every test case’s ineffective store-product, their quantity in each location, products’
unrecoverable percentage, and profit margin differ from the other test cases and we
have wide range of problems in terms of profitability, potential return amounts to the
warehouse and vendors.

The RRSC budget optimization model is a mixed integer linear program (MILP) and
is developed and coded with an exact solver software, IBM ILOG CPLEX Optimization
Studio 12.8, on a PC with an Intel Core i7-8550U CPU @ 1.8 GHz, 4 Cores, 8 Logical
Processors and 20 GB of RAM.
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As we can observe from Table 3.1, CPLEX can solve the test problems to optimality
within a very short amount of time even with huge problem sizes such as 250,000 store-
product combinations that generates 750,000 decision variables and 2044 constraints.
The total data intake process of CPLEX can range between 3-4 minutes, however, when
the data intake process is done, CPLEX can solve the problems between 1-30 seconds
depending on the complexity of data/problem, available total store removal amount,
warehouse capacity, total available vendor funds, and most importantly profit-loss budget
given to problem.

3.5.2 Comparison of CPLEX and Heuristic

In our test case problems, these large size problems are generated and solved both using
CPLEX and our heuristic algorithm. However, the ingestion of these large size data by
the tools took most of the solution time for the given problems. As can be observed from
Table 3.1, the ingestion of the data took almost 3-4 minutes by the CPLEX and solution
times of the problem ranged between 1-30 seconds. Therefore, we do not really worry
about the solution times and their comparison of the algorithms since the ingestion
of the data took most of the solution time of the given problems. Even though the
solution times of our heuristic might take a little bit longer time than CPLEX in some
scenarios, we can find solutions close to optimality within a very short amount of time.
Our heuristic can solve problems within 4-5 seconds, on average, for the problem sizes
that are given, 250,000 store-product combinations. Basically, our heuristic can calculate
250,000 row of data points with calculated profit/cost parameters within seconds, then
rank them based on the condition and then extract the best possible store-products from
the dataset. This way a close to optimal solution can be generated within a very short
amount of time for even very large size problem such as problems with several million
store-products.

Even though the need of using a heuristic to solve this problem might seem unrea-
sonable because of the short solution times acquired by the state-of-the-art solver, the
intention to develop a heuristic results from the curiosity of understanding the inner
structure of optimal solutions so as to develop more sophisticated heuristics to solve not
only this problem, but also more complex problems in RRSC (such as problem defined
in Chapter 4) or in related/other fields (such as forward supply chains, logistics, finance,
portfolio management, etc.) that have similar budgetary limitation issues. The cost of
using state-of-the art solvers to solve this problem is also very high, especially for smaller
companies. This might also be one of the main reasons why we need to develop similar
heuristics to solve such problems.
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As can be observed from Table 3.1, when a given problem is solved without any
budgetary constraints, CPLEX can find an optimal solution mostly within 1-2 seconds.
However, when budgetary constraints are applied, the solution times increase with the
complexity of budgetary boundaries. When the test problems are solved using over-
budget constraints, the solution times does not increase significantly, however, when
the test problems are solved using under-budget constraint, the solution times might
increase significantly. We have investigated the underlying reasons and details will be
included in the next section. Our heuristic was developed based on this investigation
and insights.
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Table 3.1: Test Problem Results for Budget Optimization Model
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3.6 Results and Insights

When over-budget constraints are applied to a given problem, compared to the case of
optimized inventory where best profitable store-product are allocated to the their new
location, profit-loss budget is under spent. In order to resolve this issue, the optimal
solution needs to identify a solution where more profit-loss budget can be spent while
compromising inventory optimality. Since more budget is given to the problem than
when the inventory is optimized, the solution needs to identify less profitable products
and need to spend more of the potential profit-loss budget that is given. Since most
profitable products are already relocated to other stores where there is demand in the
case of the optimal inventory problem, similarly most profitable products will also be
relocated to other stores in the case of the over-budget constraint problem. However,
more profitable products need to be send back to their vendor which is not in line with
the optimal inventory problem. We therefore developed the first part of our heuristic
based on this fact and identified ‘good’ solutions close to optimality under over-budgetary
boundaries.

When under-budget constraints are applied to a given problem, the optimal solution
needs to spend the budget more wisely since the profit-loss budget is tighter than op-
timal inventory solution results. When the problem is solved without any budgetary
constraints, the least profitable products are send backed to their vendor (with the use
of minimal penalties). This phenomenon is in line with optimally spending the poten-
tial profit-loss budget. Therefore, optimal solution relies (mostly) on the efficient usage
of the warehouse returns because warehouse returns use more of the available budget
since it identifies most profitable products and relocates them. This causes spending
most of the available budget and therefore an optimal solution needs to be identified
where less profitable products should be relocated to warehouses, which is also not in
line with optimal inventory problem. In certain scenarios where budgetary constraints
are tighter, tightening the margins of warehouse returns might not be sufficient and an
optimal solution might exist where more vendor returns (with less profitable products)
are needed with less profitable products. We have also observed this phenomenon in
our test problems where more products (wither lower profits margins than warehouse
returned products, higher profit margin products than vendor returned products) are
returned backed to their vendor. Since the least profitable products are already returned
backed to their vendor, the additional vendor returned products are more profitable than
products already returned to vendors but less profitable than warehouse returned prod-
ucts. We therefore also developed the second part of our heuristic based on these facts
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and identified ‘good’ solutions close to optimality for under-budgetary boundaries.
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Chapter 4

Retailer’s Inventory Optimization
via Reverse Logistics

4.1 Problem Definition

In this chapter, we consider a realistic RSC network of an ‘independent’ retailer. We
model a comprehensive RRSC network where there are multiple stores under different
store types, namely, Company Owned and Franchise stores, multiple warehouses, multi-
ple distribution centers, multiple vendors and liquidators. The objective of the retailer is
to optimize inventory and minimize costs for relocating these excessive inventory within
the network for both its own company owned stores and its individual franchise stores.

Each company owned and franchise store holds a certain amount of products that
are not selling (or customer-returned, damaged, faulty, end-of-life) which is considered
as ineffective inventoryHowever, there is a certain amount of inventory that the retail
company stores and individual franchise stores can get rid of based on certain company
rules, business strategies and contracts with the individual franchise stores. For the
retail company, this amount is based on how much effective inventory and ineffective
inventory they hold among all of the company owned stores. The retail company’s goal
is to hold a certain effective inventory level at the end of this process in order to keep the
overall inventory at a certain healthy level. For the franchise stores their total ineffective
inventory removal amount is calculated based on a ratio of the overall purchases of a prior
year/term from the retail company. Hence it is a known and calculated amount for the
overall franchise stores. Since the franchise total ineffective inventory removal amount
is known and individual franchise stores have their own idea about how much ineffective
inventory they want to get rid of, there is a conflict between the retail company and its
individual franchise stores, and more importantly there is a bigger conflict among all
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of the individual franchise stores. The retailer’s objective is to minimize overall costs
both for company owned stores and its franchise store returns. However, the individual
franchise stores’ objective is to get rid of as many products as possible in order to
minimize its own inventory costs. These different objectives create a conflict between
the retailer and its franchise stores because each franchise store’s removal amount can
not be determined by them, as otherwise they want to get rid of whatever is ineffective
in their inventory. Since franchise stores also compete among each other, this leads to a
conflict among all members of the network. We deal with this issue by introducing an
inventory transparency mechanism among franchise stores.

The transparency mechanism among franchise stores is enacted by the retail company
declaring to all franchise stores how much total inventory they are holding compared the
total stock among all the franchise stores. Based on each store’s inventory level, we
propose a relative inventory pull amount based on the relative inventory in each store
and the total franchise store pull amount (e.g. Franchise store A will get an inventory pull
amount of Total Franchise Stores’ Pull Amount * Total Inventory Amount of Franchise
Store A / Overall Inventory Amount of All Franchise Stores). This way each store
gets an inventory removal amount based on how much inventory they hold compared
to total franchise inventory amount which would solve the conflict between the retailer
and its franchise stores, and the conflict among all franchise stores since every store
gets an amount that is proportional to their overall contribution the retailer’s franchise
network. In general, this proposal will reward to out-performers and penalize the under-
performers. Between two similar franchise stores that hold almost same amount of total
inventory, the one with less ineffective inventory gets same return amount as the one with
larger ineffective inventory and hence the one that holds less ineffective inventory gets
a larger portion of its ineffective returns as a returnable amount and the one hold more
ineffective inventory get a lesser portion of its ineffective return as a returnable amount.
Since this is a desired outcome, the mechanism favors the out-performer. However, the
benefits of this approach can be observed much more closely and clearly between stores
that hold large but keep healthy inventory levels vs. stores hold smaller but unhealthy
inventory levels. Since smaller stores with high ineffective inventory rate will be able to
get rid of ’relatively’ less products from its inventory, the risk penalization for under-
performers can easily be observed. This approach will push under-performers to get
them better at how to manage their inventory wisely (via discounts, clearance sales,
order better products to sell, etc.) since inventory clean-up process does not favour
them compared similar size stores with healthy inventory levels.

Our RSC model is also a network optimization problem for the retailer since we
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introduce a tactical (might also be considered strategic) decision making, in addition to
operational decision making, of which RCs should be activated during the RSC activity.
This decision is a big part of our problem since we model our problem considering
physical structure of the actual network using specific transportation routes between
stores to RCs, RCs to warehouses, RCs to vendors, and among returns centers. Based
on a specific network configuration, when the potential routes are altered then the related
costs get affected. We want to identify which RCs should be active with a given store
supply, warehouse capacity and demand, potential transportation routes and processing
fees at each RC compared to activation of each location.

In our problem, we have warehouses that have demand for certain products (which is
the cumulative store demand that the warehouse serves to) which might be supplied from
other stores that have unwanted inventory of those products (a.k.a stores’ ineffective
inventory). Each warehouse has a capacity limitation in terms of physical size and
financial amount. A product can be sent back to its vendor, however, vendor has certain
limit, a.k.a vendor funds, for receiving returned products. The available vendor funds
are multi-layered meaning that vendor charges penalty for each product it receives and
over certain thresholds the penalty rate increases. In the real retail world, the retailer
purchases products from vendors and based on the purchases it makes during the year,
the retailer negotiates return policy for the unsold products. In general, the available
vendor funds are calculated through a portion of the previous terms’ sales. Then the
vendor decides how much of this available funds can be used through via multi-level
penalties and multi-layer breaks of the vendor funds; the more you return, the more
penalty you pay per $. We consider this important phenomenon and model it in our
problem. Products can also be sent back to their vendor without using the available
vendor funds if they have deposit values.

There are other options for products to be disposed such as liquidating or getting
rid of them at their current location by throwing them into the trash. These are higher
costly and the least desired options for a product to be disposed since most or all product
value can be lost.

In order to visualize the above defined complex RRSC structure, please see Figure
4.1 to observe how the items of a product in stores can travel within the network. Based
on the Figure 4.1, you can observe that for any items of the chosen store-product, if they
are be selected to participate to the RL activity, they have to be returned to its related
RC. At this location they are received by the employees of the RC to be sorted, quality
checked and identified to be sent to their next location which might be warehouses
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under its supply chain that have a demand for the product, fellow RCs and hence their
warehouses that have demand have a demand for the product, back to the product’s
vendor for vendor return or to the liquidators. The RRSC network is very strict in
terms of product movement where a product has to follow the exact path (as in Figure
4.1) to reach its final destination and any other route is not allowed by the rigid network
design. When network design changes based on activating / de-activating one or more
RCs, the routes get updated with a pre-determined routing structure but that does not
change the rigidness of the network.

Since we deal with a problem where items move in the network where there any many
echelons/layers, it only makes sense to incorporate tactical/strategic decision making
process of which RCs should be activated / de-activated to participate into the RL ac-
tivity. Overall optimization of upstream product flow can only be minimized by globally
minimizing the all potential costs via adding design structure of the network, not only
by processing best operational actions. For each specific configuration of the RSC net-
work, the potential routes might significantly change for a product be located in its new
location which will eventually affect all the cost structure on the network. Our model
considers these effects and is designed to handle such complexities.

Based on all the above issues that need to be resolved, we can model this complex
problem as an optimization program, a Mixed Integer Linear Program (MILP), with the
objective of minimizing all the related (reverse) supply chain activity costs for relocating
products within the network. The triggering mechanism to initiate this RL stem from
the fact that retail company needs to pull certain amount of inventory from all of its
stores, both company owned and franchise, to get to a health inventory level decided by
pre-determined business rules and contracts with its franchise stores.
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Figure 4.1: Comprehensive Retail Supply Chain Network and Product
Movement
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In order to understand and visualize the origin of the costs that we would like to
minimize, the detailed cost structure of a product and the related cost derivatives are
visualized and shown in Figure 4.2. The visual representation of a product’s cost struc-
ture and the effects on relocating the product within the retail supply chain network
helps us to develop our model. For any chosen product to be relocated within the re-
tailer’s RSC network, one or many of the costs in Figure 4.2 will be incurred. As a result,
the objective of our model is come up with a relocation schema of products within the
network that would minimize overall costs while hitting the overall inventory goal of the
retail company and also satisfying the and its individual franchisees’ goals.

Figure 4.2: Visual Analysis of the Costs Incurred in a Retail Reverse
Supply Chain
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4.2 Optimization Model

We will first define the model then describe some of our assumptions.

4.2.1 Model

DestroyAtSiteCost + LiquidationCost + WarehouseReturnCost+

DepositV alueCost + V endorRefundCost + V endorRefundUnrecoverableCost+

V endorPenaltyCost + TotalStoreRefund + TotalStoreRemoval+

TotalTransportationCost + Receving&HandlingCost + PlantActivationCost

DestroyAtSiteCost =
S∑

s=1

P∑
p=1

dss,pQs,pLCp (4.1)

LiquidationCost =
P∑

p=1

D∑
d=1

lqp,d (LCp − COGpLQRp) (4.2)

WarehouseReturn =
P∑

p=1

D∑
d=1

W∑
w=1

whp,d,w (LCp − SPp) (4.3)

DepositV alueCost =
P∑

p=1

D∑
d=1

dpp,d(LCp − DVp) (4.4)

V endorRefundCost =
P∑

p=1

D∑
d=1

vrp,d (SPp − COGp) (4.5)

V endorRefundUnrecoverableCost =
P∑

p=1

D∑
d=1

vrp,d (LCp − COGp) (4.6)
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V endorPenaltyCost =

V∑
v=1


V PF1v vfv if 0 ≤ vfv ≤ RT1v

V PF1v RT1v + V PF2v (vfv − RT1v) if RT1v < vfv ≤ RT2v

V PF1v RT1v + V PF2v (RT2v − RT1v) if RT2v < vfv ≤ V Fv

+V PF3v (vfv − RT2v)

(4.7)

TotalStoreRefund =

TotalCompanyOwnedStoresStoreRefund+

TotalFranchiseStoresStoreRefund

TotalCompanyOwnedStoresStoreRefund =
S∑

s(st=CS)=1

P∑
p=1

(
dss,pSPpQs,pRp + (1 − rts,p)SPpQs,pRp

)
TotalFranchiseStoresStoreRefund =
S∑

s(st=F S)=1

P∑
p=1

(
dss,pSPpQs,pRp + (1 − rts,p)SPpQs,pRp

)
(4.8)

TotalStoreRemovalAmount =

TotalCompanyOwnedStoresStoreRemovalAmount+

TotalFranchiseStoresStoreRemovalAmount

TotalCompanyOwnedStoresStoreRemovalAmount =
S∑

s(st=CS)=1

P∑
p=1

(
dss,pSPpQs,p + (1 − rts,p)SPpQs,p

)
TotalFranchiseStoresStoreRemovalAmount =
S∑

s(st=F S)=1

P∑
p=1

(
dss,pSPpQs,p + (1 − rts,p)SPpQs,p

)
(4.9)
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TotalTransportationCost =

TransportationCostFromStoresToReturnCenters +

TransportationCostAmongReturnCenters +

TransportationCostFromReturnCentersToV endors +

TransportationCostFromReturnCentersToWarehouses +

TransportationCostFromReturnCentersToLiquidation

TransportationCostFromStoresToReturnCenters =( P−∑
p=1

S∑
s=1

D∑
d=1

(1 − rts,p,d) Qs,p V OLp TCDs,d

)
TransportationCostAmongReturnCenters =( P−∑

p=1

D∑
d=1

D∑
d′=1

trp,d,d′V OLp TCTd,d′

)
TransportationCostFromReturnCentersToV endors =( P−∑

p=1

D∑
d=1

vrp,dV OLp TCVd,v

)
+

( P−∑
p=1

D∑
d=1

dpp,dV OLp TCVd,v

)
TransportationCostFromReturnCentersToWarehouses =( P−∑

p=1

W∑
w=1

D∑
d=1

whp,d,w V OLp TCWd,w

)
TransportationCostFromReturnCentersToLiquidation =( P−∑

p=1

D∑
d=1

lqp,d V OLp TCLd

)
(4.10)

Receving&HandlingCost =
P∑

p=1

S∑
s=1

D∑
d=1

(1 − rts,p,d) Qs,p WEp/V OLp RHFd +

P∑
p=1

D∑
d=1

∑
d′∈D,where d′ ̸=d

trp,d,d′ WEp/V OLp RHFd′ (4.11)

PlantActivationCost =
D∑

d=1
acd DACd (4.12)46
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s.t. dss,p ≤ rts,p ∀ s ∈ S, p ∈ P (4.1)

1 − rts,p =
D∑

d=1
(1 − rts,p,d) ∀ s ∈ S, p ∈ P (4.2)

rts,p ≤ rts,p,d ∀ s ∈ S, p ∈ P, d ∈ D (4.3)

S∑
s=1

(
1 − rts,p

)
Qs,p =

D∑
d=1

vrp,d +
D∑

d=1
dpp,d

+
D∑

d=1
lqp,d +

D∑
d=1

W∑
w=1

whp,d,w ∀ p ∈ P (4.4)

S∑
s=1

(
1 − rts,p,d

)
Qs,p +

∑
d∈D,where d̸=d′

trp,d,d′

= vrp,d + dpp,d + lqp,d +
W∑

w=1
whp,d,w Ed,w

+
W∑

w=1
whp,d,w (1 − Ed,w) +

∑
d′∈D,where d′ ̸=d

trp,d,d′ ∀ p ∈ P, d ∈ D (4.5)

P∑
p=1

D∑
d=1

whp,d,wCOGp ≤ WRAw ∀ w ∈ W (4.6)

D∑
d=1

whp,d,w ≤ WDCp,w ∀ w ∈ W, p ∈ P (4.7)

∑
d∈D,where d̸=d′

trp,d,d′ ≤
W∑

w=1
whp,d,w +

D∑
d′=1

trp,d,d′ ∀ p ∈ P, d′ ∈ D (4.8)

trp,d,d′ ≤ btrp,d,d′ M ∀ p ∈ P, d ∈ D, d′ ∈ D (4.9)

btrp,d,d′ + btrp,d′,d ≤ 1 ∀ p ∈ P, d ∈ D, d′ ∈ D (4.10)
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P∑
p=1

D∑
d=1

vrp(v),d COGp = vfv ∀ v ∈ V (4.11)

vfv ≤ V Fv ∀ v ∈ V (4.12)

[
IEIst

−
S∑

s(st)=1

P∑
p=1

(
dss(st),pSPpQs(st),p + (1 − rt)s(st),pSPpQs(st),p

)]
≤

NIER

[
EIst + IEIst

−
S∑

s(st)=1

P∑
p=1

(
dss(st),pSPpQs(st),p + (1 − rts(st),p)SPpQs(st),p

)]
∀ st = {CS}

(4.13)

S∑
s(st)=1

P∑
p=1

(
dss(st),pSPpQs(st),p + (1 − rts(st),p)SPpQs(st),p

)
≥ FRSAst ∀ st = {FS}

(4.14)

P∑
p=1

(
dss(st),pSPpQs(st),p + (1 − rts(st),p)SPpQs(st),p

)
≥

((
EIs + IEIs

)
/

S∑
s(st)=1

(
EIs + IEIs

))
FRSAst ∀ s ∈ FS

(4.15)

(1 − rts,p,d) ≤ Es,d ∀ s ∈ S, p ∈ P, d ∈ D

(4.16)

∑
d′∈D,where d′=d

trp,d,d′ = 0 ∀ p ∈ P, d ∈ D

(4.17)
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trp,d,d′ ≤ Ed,d′ M ∀ p ∈ P, d ∈ D, d′ ∈ D (4.18)

whp,d,w ≤ Ed,w M ∀ p ∈ P, d ∈ D, w ∈ W (4.19)

1 − rts,p,d ≤ acd ∀ s ∈ S, p ∈ P, d ∈ D (4.20)

∑
d∈D,where d̸=d′

trp,d,d′ ≤ acd′ M ∀ p ∈ P, d′ ∈ D (4.21)

∑
d′∈D,where d′ ̸=d

trp,d,d′ ≤ acd M ∀ p ∈ P, d ∈ D (4.22)

whp,d,w ≤ acd M ∀ p ∈ P, d ∈ D, w ∈ W (4.23)

vrp,d ≤ acd M ∀ p ∈ P, d ∈ D (4.24)

lqp,d ≤ acd M ∀ p ∈ P, d ∈ D (4.25)

SC∑
sc=1

xsc = 1 (4.26)

acd =
SC∑

sc=1
Ed,sc xsc ∀ d ∈ D (4.27)

(1 − rts,p,d) ≤
SC∑

sc=1
Es,d,sc xsc ∀ s ∈ S, p ∈ P, d ∈ D (4.28)

trp,d,d′ ≤
SC∑

sc=1
Ed,d′,sc xsc M ∀ p ∈ P, d ∈ D, d′ ∈ D (4.29)

whp,d,w ≤
SC∑

sc=1
Ed,w,sc xsc M ∀ p ∈ P, d ∈ D, w ∈ W (4.30)
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dss,p, rts,p ∈ {0, 1} ∀ s ∈ S, p ∈ P (4.31)

acd ∈ {0, 1} ∀ d ∈ D (4.32)

btrp,d,d′ ∈ {0, 1} ∀ p ∈ P, d ∈ D (4.33)

xsc ∈ {0, 1} ∀ sc ∈ SC (4.34)

lqp,d, trp,d,d′ ∈ N ∀ p ∈ P, d ∈ D (4.35)

dpp,d, vrp,d ∈ N ∀ p ∈ P, d ∈ D (4.36)

whp,d,w ∈ N ∀ p ∈ P, d ∈ D, w ∈ W (4.37)

vfv ∈ R ∀ v ∈ V (4.38)

There are 12 main components of the objective function. The Destroy at Site Cost
(4.1) is the cost of destroying products at the store without moving them to another
location to be processed. Liquidation Cost, (4.2) is the cost of selling the products
for their scrap price, e.g. parts, metal content, etc. Warehouse Return Cost (4.3)
is the cost of gains (differences between product’s Store Purchase Price and Landed
Price) that are redeemed when a product is returned back to another store/warehouse.
Since returning products to Warehouse for re-sale is the most suitable and, in general,
least costly option among other choices, we want to maximize warehouse returns. We
also do not only want to maximize warehouse returns but also want to return the most
profitable products among other warehouse-returnable products since we will sell these
products in their new location to be able to make the most profit as possible. Deposit
Value Cost (4.4) is the cost of losses when we return a product back to its vendor
for the recovery of the product’s deposit value. Vendor Refund Cost (4.5) is the
cost of losses because of the margin differences between a product’s refund and its COG
when we return it back to its vendor for the recovery of the product’s whole COG.
Vendor Refund Unrecoverable Cost (4.6) is the cost of losses that are unrecoverable
between a product’s the landed cost and its COG differences when we return it back to
its vendor. Vendor Penalty Cost (4.7) is the cost of penalties that is charged to the
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retail company between various return thresholds. Total Store Refund (4.8) is the
cost of losses incurred by the difference between the product’s store price and its pre-
determined refund. Each product’s refund differs based on product’s type, durability,
reusability, and resell-ability. Total Store Removal Amount, (4.9) is the total store
price amount that will be returned to stores. Total Transportation Cost (4.10) is the
cost of transporting a product from one location to another location. Transportation
costs are calculated per unit bases (in terms of cm3) - averaging the total money spent
of transportation from one location to another location in the past year / total volume
carried. Therefore, transportation costs depend on the volume of the products and
which locations they are carried among. Receiving & Handling Cost (4.11) is the
cost of receiving and handling of a product at a RC. The cost depends on the weight
and size/volume of the product (g/cm3) and the distribution center. Per unit cost is
calculated based on previous years’ average using number of products received, volume
and weight processed, number of employees worked. Since different RCs have different
supply and demand, per unit cost varies among different distribution centers. Plant
Activation Cost, (4.12), is the cost of activating a RC for the RSC activity to receive,
clean, re-package, sort and send products.

Constraint Set (4.1) ensures that if the product is returned to the RC (if rts,p = 0),
then the product will NOT be destroyed at site (then dss,p = 0) or if the product is
destroyed at site (if dss,p = 1), then the product will NOT be returned to the RC (then
rts,p = 1) or if the product stays at store, the product will NOT be destroyed at site
(dss,p = 0) and the product will NOT be returned to the RC (rts,p = 1). Constraint
Set (4.2) ensures that a store-product can only be returned to one RC. Constraint
Set (4.3) ensures the logic between returning a product to a certain distribution center
and returning a store-product in general, e.g., if a store-product is NOT returned to a
distribution center, then a store-product CAN still be returned in general, if a store-
product is returned to a distribution center, then the store-product has to be returned.
Constraint Set (4.4) ensures that for each product, thst total number of items that
are leaving the stores should be equal to the number of items that will be returned to
the vendor, will be returned to the warehouses and liquidated. If there is only one distri-
bution exists then products coming into the RC should be equal to the number of items
that are going out from the RC. Constraint Set (4.5) ensures that the amount of items
received by a RC, both from stores and transfers from other distribution centers, is equal
to items that are going out, namely to vendors, warehouse replenishment, liquidation,
transfers to related distribution center(s). Constraint Set (4.6) ensures that for each
Warehouse, maximum return amount (in terms of $ value) to a Warehouse should be less
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than the capacity of that Warehouse. (Every Warehouse except products up to a certain
amount, in terms of $ value.) Constraint Set (4.7) ensures that for each Warehouse
and product, total number of items that are returned to each warehouse cannot exceed
the Warehouse Capacity (in terms of quantity) for that product (There is a Warehouse
demand for a specific product in every Warehouse and we cannot return products more
than the certain limit to a Warehouse. This amount is actually the total demand of
that product within the warehouse’s distribution network, e.g. all of the stores’ total
demand.) Constraint Set (4.8) ensures that the received transfers cannot be sent to
vendors or liquidation. They can only be sent to warehouses or further transferred to
other related distribution center(s). Constraint Set (4.9) defines the logic whether
a product is transferred or not via the existing route. If it the path is not used then
the transferred amount is 0. Constraint Set (4.10) ensures that if a product is trans-
ferred from a distribution center to another related distribution center, then reverse path
should NOT exist since it is not logical send products back and forth and the existence
of such practice would increase the transportation costs. Constraint Set (4.11) ensures
that for each Vendor, the value of the products that are going back to a Vendor is equal
to total vendor funds that should be used. Constraint Set (4.12) ensures that for
each Vendor, total vendor funds that should be used in order to return products can not
exceed the available vendor dollars of that vendor. Constraint Set (4.13) ensures that
after the removal of the ineffective inventory from company owned store, the remaining
value of the ineffective store-products in overall inventory should be less than a certain
/ predetermined ratio, (say 10% based on our example in the model). Constraint Set
(4.14) ensures that certain amount of ineffective inventory will be removed from all of the
franchise stores’ inventory. Constraint Set (4.15) ensures that the amount of ineffective
inventory that will be removed from a franchise store’s inventory, will be proportional
to total inventory it carries compared to the other stores and/or total franchise stores’
inventory (e.g., if Store A carries $100K of inventory and Store B carries $200K of in-
ventory, then 2 times of unproductive inventory will be removed from Store B compared
to Store A because Store B holds inventory twice as much and therefore should be able
get rid of more ineffective inventory). This constraint is the assurance to recognize the
transparency among franchise stores so that each franchise store can observe how much
inventory is being held in each franchise store and therefore how much inventory are
being removed from its store vs. other stores. Constraint Set (4.16) ensures that a
store can only send items of a product to RC if a path from the store to the RC exits.
Constraint Set (4.17) ensures that the a RC should not transfer items of a product
to itself. Constraint Set (4.18) ensures that a distribution center can only transfer
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items of a product to another distribution center if a path from one RC to another one
exits. Constraint Set (4.19) ensures that a distribution center can only send items of
a product to warehouse if a path from the RC to the warehouse exits. Constraint Set
4.20 ensures that if a distribution center is NOT activated, then the stores can NOT
return products to this distribution center. Constraint Set (4.21) ensures that if a
distribution center is activated then it can receive transfers from other related distribu-
tion centers, if not then there cannot be any transfer. Constraint Set (4.22) ensures
that if a distribution center is activated then it can transfer products to other related
distribution centers, if not then it cannot transfer any products. Constraint Set (4.23)
ensures that a distribution center can only send items of a product to its warehouses
if the RC is activated. Constraint Set (4.24) ensures that a distribution center can
only send items of a product to vendors if the RC is activated. Constraint Set (4.25)
ensures that a distribution center can only send items of a product for liquidation if the
RC is activated. Constraint Set (4.26) ensures that only one scenario, out of all the
possible scenarios, can be realized in the end. Constraint Set (4.27) ensures that when
one scenario is being realized, related RCs are either activated or deactivated based on
the rules of that scenario. Constraint Set (4.28) ensures that when one scenario is
being realized and if a RC is not activated within that scenario, then returning store-
products to that RC was not allowed. This constraint set is almost the same constraint
as Constraint Set(4.21). Constraint Set (4.29) ensures that when one scenario is being
realized and if a RC is not activated within that scenario, then transferring products
from that RC to another RC was not allowed. Constraint Set (4.30) ensures that
when one scenario is being realized and if a RC is not activated within that scenario,
then sending products for warehouse return from that RC was not allowed. Constraint
Set (4.31)–(4.34) declares the set of binary variables of the model. Constraint Set
(4.35)–(4.37) declares the set of integer variables of the model. Constraint Set (4.38)
declares the set of continuous variables of the model.

The model makes the decision of which ineffective store-products, from both com-
pany owned and franchise stores, to be chosen to participate in the RSC activity, where
those chosen ineffective Store-Products will be allocated within the RSC network, and
activating which RCs to be selected for the RSC activity considering important costs
such as Plant Activation Costs, Transportation and Receiving and Handling Costs. The
model considers the detailed profit and cost structure of a product. Namely; COG,
deposit value of the product, liquidation price, landed cost of the product to the re-
tail company, store purchase price and refund price (see Figure 4.2). In addition, the
model considers important logistics and distribution costs such as transportation costs
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among plants/stores/vendors, and receiving and handling costs related to movement of
the product within the RSC. Consideration of physical structure of the products such as
weight - volume and their effects on the related costs such as transportation costs and re-
ceiving and handling costs are also given importance since it affects the distribution and
allocation of the products, and therefore the costs, within the network significantly. The
model also considers a multi-vendor, multi-distribution center, multi-warehouse, multi-
store-type, and multi-store network structure. This realistic network structure lead to
a RL process that very costly and therefore consideration of activation/de-activation
of distribution centers (costs) and its effect on the overall RSC costs are also imple-
mented in order to make not only operational selection-allocation decisions, but also
tactical/strategic decisions. When certain returns centers are active, the network struc-
ture and hence network routing of the products changes drastically.

4.2.2 Assumptions

We assume transparency among store types and transparency among franchise stores
where there is absolute transparency among all network members. All stores, including
the retail company, know all other franchise stores’ inventory levels compared to overall
inventory level. Therefore, the reverse pull amount will be proportional to a certain ratio
which would provide sufficient explanation to franchise stores by the retail company
about their expected return potential. We assume that the physical (count) and value
($) based capacity issues at warehouses are known. Physical (volume) structure of
products can also be considered in our model as a realistic constraint for the warehouses
as an extension in order to deal with another aspect of physical capacity issues at the
warehouses. Just to bring a little simplicity and develop our heuristic model accordingly
without adding another layer of complexity, such consideration is eliminated in our
model design. We assume we have a limited amount of vendor funds with a multi-layer
penalty structure for each vendor when returning products back to their vendor. Such
consideration affects the return costs significantly and identify clever ways to save money
on returns.

4.3 Heuristic Algorithm

In Figure 4.3 we summarize the major steps of the suggested heuristic algorithm.

54

http://www.mcmaster.ca/
https://gs.mcmaster.ca/program/computational-science-and-engineering/
https://gs.mcmaster.ca/program/computational-science-and-engineering/


Doctor of Philosophy– Mehmet Erdem Coskun; McMaster University– Computational
Science and Engineering

Figure 4.3: Multi-Stage Heuristic Algorithm for the State-of-the-Art
Retail Reverse Supply Chain Model
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The detailed steps of the heuristic are described in Appendix A2. We will provide
more details about the heuristic logic later in this chapter.

4.4 Test Problems, Computations and Numerical Analysis

In this section, we present our findings about the test problems we have solved using
CPLEX and compare the results and performance of our heuristic to the results of the
exact solver.

4.4.1 Test Cases and Data Generation

For our test problems, we have generated a RRSC network of 500 Stores under 2 store-
types, 250 franchise stores and 250 company owned stores, 4 distribution centers, 8
warehouses (2 warehouses under each RC), and 20 vendors. The test cases’ problem
sizes ranged from 10,000 store-products up to 100,000 store-product combinations. Each
parameter of the product is generated with random data that fits a uniform distribution
between certain bounds (lower and upper limit) that are consistent with values of the
related parameters; COG, landed cost, store purchase-price cost, store refund rebate rate,
deposit value of the product, liquidation rebate rate, weight and volume of the products.
Also, other problem parameters such as unit costs of transportation, receiving & handling
fees at distribution centers, warehouse capacities, product demand at warehouses, facility
activation costs, available vendor funds, return thresholds within available vendor funds,
penalty rate between these breaks, effective inventory amount at each store, franchise
stores’ total RSC amount and company owned stores national ineffective inventory ratio
goal are generated in way that there is a wide range of variability for capacity, demand,
and cost effects on profitability.

4.4.2 Test Case Problem RRSC Network Generation

For the test problems, a complex RRSC network layout is designed with a consistent cost
structure (transportation and receiving&handling) that is traceable with the physical
layout of the actual supply chain network. All store-product combinations are randomly
generated where each product is assigned to a random vendor and since all of the above
mentioned parameters of the products are randomly generated, each product’s profit,
cost, physical structure and other related parameters differ from each other. Therefore,
we have a wide range of products in terms of profitability, costs, product dimensions.
Since other problem parameters related to stores (effective inventory amounts, total RSC
amount, goal ratio), warehouses (capacities and product demands), distribution centers
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(activation costs), vendors (funds, breaks, penalties) are generated that is consistent with
physical and financial structure of the entities, we designed and created a realistic RRSC
network for testing the performance of our test cases via CPLEX and our heuristic.

4.4.3 Test Case Problem Sizes

In total, we generated and solved 20 test problems. Small to large size problems are
generated and solved both using CPLEX and our heuristic algorithm. The first 5 test
problems consisted of 10,000 store-product combinations, the second 5 test problems
consisted of 25,000 store-product combinations, the third 5 test problems consisted of
50,000 store-product combinations and fourth 5 test problems consisted of 100,000 store-
product combinations. As can be observed from Table 4.1, smaller size problems, 10,000
store-product combination problems, were solved within 20 minutes to 1 hour and larger
size problems, 100,000 store-products combination problems, were solved within 6-8
hours while asking for solutions within 1% optimality range. Solutions found within the
given time and/or optimality range can be observed on Table 4.1.

The above RRSC inventory optimization and network planning model is a mixed
integer linear program (MILP) and is designed and coded with an exact solver software,
IBM ILOG CPLEX Optimization Studio 12.8, on a PC with an Intel Core i7-8550U
CPU @ 1.8 GHz, 4 Cores, 8 Logical Processors and 20 GB of RAM.

4.4.4 Heuristic Data Processing and Deployment

Once we have generated our data as described in above section, the data is stored into
database tables for the heuristic to run against. The heuristic is then coded in SQL
Server as Stored Procedures for inventory relocation and each heuristic stage in these
stored-procedures run sequentially for each scenario until desired amount of the store-
products are removed from stores. Once the heuristic is run for a given problem, the
resulting allocation is collected from resulting database tables and total solution time
and model results are shared in Table 4.1.

4.4.5 Solver Solution Times

We can compare the results and solution times found by CPLEX and our heuristic
algorithm using Table 4.1. In order to compare the solution times between CPLEX and
our heuristic, we first solved the test problems via CPLEX by asking 1% optimality
range and waited until a solution was found that is very close this optimality range. We
then solved the test problems via our heuristic and calculated to the optimality range
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for the heuristic. We then solve the test problems via CPLEX again by asking the
optimality range that is found by our heuristic. This way we can compare the results
founds and, more importantly, solution times between CPLEX and our heuristic under
the same given optimality range.

4.4.6 Comparison of Solver Solution Times and Heuristic

For smaller size problems, 10,000 store-product combination problems, the solutions
found by our heuristic were calculated to be within the 1-3% of the optimality range
and solution times range between 18-21 minutes. We then solved these test cases with
CPLEX for the same optimality ranges and CPLEX was able to find a solution that
is very close to this optimality range within 30-40 minutes for the test problems. Our
heuristic solution algorithm finds ‘good’ solutions, 1-3% of the optimality range, within
reasonable solution times. It also outperformed CPLEX in terms of solution times for
about 10-20 minutes depending on the test case.

When problem size got larger and larger, for 25, 000, 50, 000 and 100, 000 store-
product combinations, respectively, the heuristic was solid and was able to find solutions
within reasonable solution times that are 1-5% of the optimality range. For 25, 000 store-
product combination test problems, the solution times were about an hour, for 50, 000 the
solution times were about 2 hours and for 100, 000 store-product combination problems
the solution times were between 4-5 hours. Since our heuristic solution algorithm solves
every potential scenario within a given test case and then chooses the best solution, the
solution times increased with respective to this algorithm structure and its effect over
the problem size.

If we take a deeper look into the computation performance of our heuristic, we can
easily observe that our heuristic outperformed CPLEX in terms of solution times for
large size problems. In some test cases, CPLEX was stuck on the given optimality range
found by our heuristic with a sub-optimal solution and was not able to improve the
result within the maximum given computation time. These test problems show that our
heuristic solution algorithm is a stable solution algorithm and can solve very large size
problem with reasonable solution times that are very close to optimality and with less
computational resources even we solve all the potential scenarios for a problem.

4.4.7 Comparison when Return Centers are Stationary

We have also run test cases where we set the RRSC network to a stationary (where we
know which RCs are activated) and the solution times of our heuristic dropped drastically
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(in these test cases, almost (1/16)th on the original computation time) because we were
only solving one scenario. However, when the same scenario was solved with CPLEX, the
computation time did not change significantly since CPLEX’s internal solution algorithm
uses a different methodology, branch-and-cut, to find the near optimal solutions that
might not be consistent with the complexity of the solution space. Having a much
smaller solution space without dealing with the complexity of selection of RCs did not
affect the solution time for the CPLEX. However, since our heuristic solves each scenario,
ranks them in terms of cost, and then chooses the scenario where the costs are minimized,
our heuristic solution times grow linearly with respect to the scenarios in the problem
it has to calculate. Nevertheless, our heuristic solution algorithm still solves large size
problems within reasonable solution times and outperforms CPLEX solution times.
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Table 4.1: Test Problem Results for State-of-the-Art Retail RSC Model,
Solver vs Heuristic Results Performance Comparison
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4.5 Heuristic Design, Insights and Results

In our RRSC inventory optimization and network planning model, we were dealing
with a complex retail supply chain network where the network consisted of multi-RCs,
-warehouses, -stores, -store-types, -vendors and -products. The optimization problem
was concerned with minimizing all inventory costs while considering which RCs to be
activated for the RSC activity. The network members consisted of two different entities,
company owned stores and franchise stores. For company owned stores, the stores acted
as one, a.k.a the retail company, and the decisions made by them included all the stores
together where the overall inventory health status of the retail company was concerned.
However, for the franchise stores, they had individual objectives in terms how much
inventory they wanted to return and they wanted to optimize their inventory individually
without the status of other stores. Therefore, there was conflict between retail company
and individual franchise stores. The model has addressed this conflict by inventory
transparency between these franchise stores. The transparency worked in a way where
all franchise stores were able to share their inventory information and observe how much
effective and ineffective inventory were held by each franchise store. This way franchise
stores knew how much was going to be pulled from each store’s inventory before the
RSC activity since the total RSC pull amount was known by all the franchise stores
and each franchise store knew how much inventory others franchise stores were carrying.
The inventory removal amount from each store were directly proportional with their
total amount of inventory they were carrying. If a franchise store held more inventory,
that meant that more store-products (in terms of $ value) were going to be pulled from
those stores, no matter how much ineffective inventory they were carrying. This idea
of transparency and information sharing among franchise stores resolved the conflict
between the retail company and its franchise stores, as well as resolving the conflict
among franchise stores.

The optimization model’s consideration of multi-RC and -warehouse structure re-
sulted in a complex web of product RL paths within the huge number of network
combinations ‘potentially-generated’ RSCs. When some of the RCs were activated /
de-activated, the model considered all the new potential paths and therefore related
costs such as transportation, receiving&handling and plant activation costs that is tied
to the ‘potential’ new network plan.

The optimization model also optimized inventory based on the complex penalty struc-
ture of vendors where the penalty of returning products has several layers and different
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penalty percentages between different pre-determined thresholds. The more you re-
turned, the more penalty percentage you paid to the vendor after some pre-determined
value. This made the objective function of the optimization model much more complex
than it already is and we had to develop a complex heuristic (a sub-routine) within our
overall heuristic algorithm just to be able to address this issue.

The resulting model was a comprehensive optimization model that would minimize
all the related inventory costs while considering physical structure of the supply chain
network, and all the product, warehouse and vendor related parameters. Complexities of
dealing with conflicting objectives among different store types (and also among franchise
stores at the same time) was also a challenge from a modeling perspective.

We have then developed a very specific heuristic to solve this problem while consider-
ing all the interrelated parameters. The overall heuristic consisted of 5 main components
with sub-routines in order to achieve the main goal of optimizing inventory: Warehouse
Return Heuristic, Vendor Penalty Assignment Heuristic, Vendor Return Heuristic, De-
posit&Liquidation Heuristic and Destroy Heuristic. These smaller but interrelated parts
of the heuristic worked sequentially until all stores’ inventories is optimized against na-
tional inventory goals are reached for company owned stores and individual inventory
goals are reached for franchise stores.

As discussed in Chapter 3, the cost of using state-of-the art solvers to solve this
problem is high, especially for smaller companies. This sheer cost might be one of the
main reasons why retailers need to develop similar heuristics to solve such problems.
When these solvers run realistic large size problems (most probably much larger than
we have shown in Table 4.1), they will easily realize that there will be lots of CPU,
memory and even hard-drive issues on the computers that will run such problems. For a
relatively large size problem, we have run out of memory (20 GB) within the first hour
of the solution time and used CPLEX options to write the majority of branches of the
solution to local hard-drives. Therefore, developing a heuristic to solve this problem is
much more of a necessity to solve realistic size RRSC inventory optimization problems.
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Chapter 5

Contract Terms for Contract
Re-negotiation in Retail Reverse
Supply Chain Management

5.1 Problem Definition

In this chapter, we consider product-returns contracts between an independent retailer
and all of its vendors (or suppliers/manufacturers/producers/distributors) in RRSC
management. During contract renewal time for its product-returns, the retailer needs
to re-negotiate existing product-returns contracts with all of its vendors and needs to
come up with the best possible parameters-offer to convince its vendors to accept its new
contract terms. The retailer is aware of the tough situation where the new offers that
will be given to vendors should satisfy them in terms of the value it generates for them
and hence, combined effect of the new contract parameters offered to vendors can not
be worse than what current parameters generated in the existing contracts. The goal of
the retailer is to identify optimal contract parameters, namely penalties (penalty per-
centages) and return thresholds, between the retailer and all of its vendors for contract
re-negotiation for its RSC activities.

The retailer-vendor product-returns contracts are created for the retailer to return
unwanted products back to their vendor via a multi-layered penalty structure deal. These
kind of contracts are categorized as ‘Buy-Back’ contracts in the literature when there is
no (reverse and/or forward) supply chain coordination between the retailer and its suppli-
ers, such as profit or cost sharing, to share the burden of unsold/returned/damaged/faulty
inventory. In these kinds of return contracts, the retailer purchases are subject to a
buy-back by their suppliers with increasing levels of penalties. This buy-back contract
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between the retailer and vendor can be referred to as a multi-layered penalty structure
deal. This means that the retailer does not pay the same amount of penalty ratio all the
time, there are several and increasing layers of penalties. As the retailer returns more
products back to its vendor, after certain thresholds, the percentage of the penalty the
company pays increases. The more the retailer returns products back to its vendors,
the more ‘penalty percentage’ they pay, from the original purchase price, over certain
thresholds. This multi-layered penalty structure discourages the retailer to return more
products back to its vendors since the penalty percentage the retailer pays increases or
return-value percentage they get from every return decreases as the retailer returns more
and more products back to its vendors.

There are several important terms in the contracts, namely; total available vendor
funds, return thresholds and penalty fees/percentages. The total potential amount of
returns to a vendor, a.k.a. ‘Total Available Vendor Funds’, is the maximum amount
that a vendor can accept as returns from the retailer and depends on the purchases from
a vendor that is done in the previous year/term and is generally calculated through a
portion of the total purchase amount from a vendor in a certain time period. Total
available vendor funds is calculated at the beginning of every RSC term via a portion of
the potential purchases from the vendor at the beginning of the term and is embedded
to the problem as a fixed parameter. Since this fixed amount is the maximum amount
the vendor can accept as returns, it is the highest threshold and therefore a maximum
limit to the vendor’s acceptance level for product returns.

Since the retailer can return products back to its vendors up to a certain amount, ‘To-
tal Available Vendor Funds’, there are also multiple thresholds up to this limit, which are
called ‘Return Thresholds’, for each vendor. These thresholds are intermediary thresh-
olds that warns retailer to expect higher penalty charges to be enforced in case retailer
decides to return over these threshold. If a threshold is passed when returning products
back to the vendor, the retailer starts paying a higher percentage of the product’s pur-
chase price back to the vendor, hence discouraging the retailer to return more products
as a result. If all thresholds are passed while returning products to a specific vendor,
the retailer can return up to the total available vendor funds to that vendor. For every
vendor, its total available vendor funds and their intermediary thresholds differ signif-
icantly from one vendor to another and the retailer wants to negotiate some of these
parameters with all of their vendors in order to pay lesser penalties for future returns.

Between each of the thresholds, a vendor charges certain penalty fees/percentages
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when receiving products from the retailer and these penalties increase according to in-
creasing thresholds to discourage the retailer to return less products. This means that
the percentage penalty fee increasingly changes up to the next return threshold. This
phenomenon of increasing penalty structure can be referred as a multi-layer penalty
structure. The increasing penalty structure stops when ultimate threshold, total avail-
able vendor funds, is reached.

An example of this multi-layer penalty structure illustration of a vendor is shown
on the left hand side in Figure 5.1. This figure illustrates the relationship between a
given product return amount and penalty percentages that would be charged between
thresholds for a sample vendor. For any given return amount, the area under the function
also correspond to the total penalty that would be charged to the retailer. If we assume
that the retailer expects to make returns worth $500,000 to a specific vendor, and as a
result uses all of the available vendor funds for that vendor, then the retailer would be
charged equivalent to the area under the function, which can be calculated as $100,000
* 10% + ($250,000 - $100,000) * 25% + ($500,000 - $250,000) * 50% = $180,000. As
a easy-to-observe summary, the relationship between a given product return amount
to a specific vendor and the actual penalty that would be paid to that vendor can be
illustrated as on the right hand side in Figure 5.1 This figure summarizes the effects of
the penalty structure of a vendor and visualize the penalty that would be charged in a
concise and effective way.

Figure 5.1: Penalty Structure of a Sample Vendor
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Based on all of the above information, there are 2 important terms in the contracts
that can be negotiated with the vendor, penalty fee/percentage and return thresholds.
The objective of the retailer is to identify the best penalty fee structure and/or return
thresholds that will minimize the penalty that would be incurred for a calculated future
return compared to what would have been incurred if those same parameters were kept
the same. The retailer and the vendors know the historical return amounts for every
vendor, however, only the retailer knows, the future (expected) return amounts to every
vendor. This phenomenon is resulting from the fact that the retailer have internal sales
and inventory data (accompanied with other promotions, deals, clearance, etc. internal
data) with the capability of forecasting future sales of its products, hence can calculate
the future state of its inventory, which in return, the potential returnable inventory
amount to its every vendor. Since vendors can not have this internal data of the retailer,
they can only work with the historical data which both sides already have access to.

As a result, the retailer’s objective is to find the optimal penalty fee structure and/or
return thresholds that should be in place for each vendor, and therefore should be ne-
gotiated towards in contract re-negotiations. Since the retailer has leverage against its
vendors via its internal data and information, this can benefit the retailer to better
negotiate its future contracts for its RSC activities.

Since we have two distinct set of variables that will be negotiated with each vendor, we
first design our model in order to identify best possible parameters, both vendor penalty
fees and return thresholds, simultaneously in every vendor contract. The objective is
to find the optimal vendor penalty fees and return thresholds which will minimize the
penalty would be charged to retailer, by its vendors, for its future-expected returns. A
better explanation of the retailer’s goal would be to pay a lesser (or minimum) penalty as
much as possible, based on the pre-existing conditions and the rules of the existing agree-
ment, compared to what would have been paid if the old contract parameters were kept
as is. We model the problem as a Mixed Integer Non-Linear Program (MINLP) and solve
test case problems with the state-of-the-art MINLP solvers. We solve small size to large
size problems and try many different MINLP solvers, such as AlphaECP, ANTIGONE,
BARON, Bonmin, Knitro, DICOPT, LINDOGlobal and SBB using GAMS, to compare
the performance of these solvers on the given problem.

In order to gain more insight into the penalty fee structure and return threshold
behaviour of the problem, we model them separately as two distinct problems where
we keep the return thresholds (for vendor penalty fee problem) and vendor penalty fees
(for return thresholds problem) as known parameters. The goal for modelling them
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separately is to gain insight into the intertwined mechanism of the vendor penalty fees
and return thresholds. Since considering one of them removes the non-linearity and the
complexity of the problem, we hope to gain insights and extract a more generalized
approach from the observed results. This methodology of our approach can be observed
and tracked from Figure 5.2.

Figure 5.2: Methodology for Identifying Optimal Vendor Penalty Fees
and Return Thresholds

When return thresholds are kept as existing parameters in the contract, the new
problem can be modeled as a Linear Program (LP) and therefore response to the changes
for given parameters, such as historical and expected returns, can be extracted. The
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objective of the second is to find the optimal vendor return penalty fees/percentages
between each of return thresholds that are fixed. When the vendor penalty fees are
kept as existing parameters in the contract, the new problem can also be modeled as
a Mixed Integer Linear Program (MILP). The objective of the third problem is to find
the optimal vendor return thresholds when penalty fees/percentages are kept the same
as in the existing contract. We generate and solve test cases for the second and the
third problem using a state-of-the-art solver, CPLEX. We then investigate the results
for both of the test problems, generate rule-of-thumb strategies to solve the problems
with structured mechanisms, extract important insights, and summarize our findings.
Future research direction in this area are then provided about potential topics that might
be of interest.

We illustrate the optimal vendor penalty fees / percentages in Figure 5.3 and optimal
vendor return thresholds in Figure 5.4 for a sample vendor and show how the objective,
historical and expected returns, and boundary parameters affect the problem structure
by visually analyzing these graphics.

Figure 5.3: Identifying Optimal Vendor Penalties for a Sample Vendor,
Before & After
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Figure 5.4: Identifying Optimal Vendor Return Thresholds for a Sample
Vendor, Before & After
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5.2 Model for Vendor Penalty Fee & Return Thresholds
Decisions

Below we show the problem of jointly optimizing for the penalty and threshold. It results
in a mixed integer nonlinear problem (MINLP).

V∑
v=1



vpf1v EV Rv if 0 < EV Rv ≤ RT1Minv

vpf1v rt1v bve1v

+ vpf2v (EV Rv − rt1v) bve1v

+ vpf1v EV Rv (1 − bve1v) if RT1Minv < EV Rv ≤ RT1Maxv

vpf1v rt1v

+ vpf2v (EV Rv − rt1v) if RT1Maxv < EV Rv ≤ RT2Minv

vpf1v rt1v

+ vpf2v (EV Rv − rt1v) (1 − bve2v)
+ vpf2v (rt2v − rt1v) bve2v

+ vpf3v (EV Rv − rt2v) bve2v if RT2Minv < EV Rv ≤ RT2Maxv

vpf1v rt1v

+ vpf2v (rt2v − rt1v)
+ vpf3v (EV Rv − rt2v) if RT2Maxv < EV Rv ≤ TV Rv

s.t. RT1Minv ≤ rt1v ∀ v ∈ V (5.1)

RT1Maxv ≥ rt1v ∀ v ∈ V (5.2)

RT2Minv ≤ rt2v ∀ v ∈ V (5.3)

RT2Maxv ≥ rt2v ∀ v ∈ V (5.4)

rt1v ≤ rt2v ∀ v ∈ V (5.5)
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EV Rv − rt1v ≤ bve1v ∀ v ∈ V (5.6)

rt1v − EV Rv ≤ (1 − bve1v) M ∀ v ∈ V (5.7)

EV Rv − rt2v ≤ bve2v M ∀ v ∈ V (5.8)

rt2v − EV Rv ≤ (1 − bve2v) M ∀ v ∈ V (5.9)

bve2v ≤ bve1v ∀ v ∈ V (5.10)

HV Rv − rt1v ≤ bvh1v M ∀ v ∈ V (5.11)

rt1v − HV Rv ≤ (1 − bvh1v) M ∀ v ∈ V (5.12)

HV Rv − rt2v ≤ bvh2v M ∀ v ∈ V (5.13)

rt2v − HV Rv ≤ (1 − bvh2v) M ∀ v ∈ V (5.14)

bvh2v ≤ bvh1v ∀ v ∈ V (5.15)

V PF1Minv ≤ vpf1v ∀ v ∈ V (5.16)

V PF1Maxv ≥ vpf1v ∀ v ∈ V (5.17)

V PF2Minv ≤ vpf2v ∀ v ∈ V (5.18)

V PF2Maxv ≥ vpf2v ∀ v ∈ V (5.19)

V PF3Minv ≤ vpf3v ∀ v ∈ V (5.20)

V PF3Maxv ≥ vpf3v ∀ v ∈ V (5.21)

vpf1v ≤ vpf2v ∀ v ∈ V (5.22)

vpf2v ≤ vpf3v ∀ v ∈ V (5.23)
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(TV Rv − rt2v) vpf3v + (rt2v − rt1v) vpf2v + rt1v vpf1v ≥

(TV Rv − ORT2v) OV PF3v + (ORT2v − ORT1v) OV PF2v+

ORT1v OV PF1v ∀ v ∈ V (5.24)

(HV Rv − rt2v) vpf3v bvh2v+

(rt2v − rt1v) vpf2v bvh2v + rt1v vpf1v bvh2v+

(HV Rv − rt1v) vpf2v (1 − bvh2v) bvh1v+

rt1v vpf1v (1 − bvh2v) bvh1v+

HV Rv vpf1v (1 − bvh2v) (1 − bvh1v) ≥

(HV Rv − ORT2v) OV PF3v BPH2v+

(ORT2v − ORT1v) OV PF2v BPH2v + ORT1v OV PF1v BPH2v+

(HV Rv − ORT1v) OV PF2v (1 − BPH2v) BPH1v+

ORT1v OV PF1v (1 − BPH2v) BPH1v+

HV Rv OV PF1v (1 − BPH2v) (1 − BPH1v) ∀ v ∈ V (5.25)

(EV Rv − rt2v) vpf3v bve2v+

(rt2v − rt1v) vpf2v bve2v + rt1v vpf1v bve2v+

(EV Rv − rt1v) vpf2v (1 − bve2v) bve1v+

rt1v vpf1v (1 − bve2v) bve1v+

EV Rv vpf1v (1 − bve2v) (1 − bve1v) ≤

(EV Rv − ORT2v) OV PF3v BPE2v+

(ORT2v − ORT1v) OV PF2v BPE2v + ORT1v OV PF1v BPE2v+

(EV Rv − ORT1v) OV PF2v (1 − BPE2v) BPE1v+

ORT1v OV PF1v (1 − BPE2v) BPE1v+

EV Rv OV PF1v (1 − BPE2v) (1 − BPE1v) ∀ v ∈ V (5.26)

vpf1v, vpf2v, vpf3v ∈ R ∀ v ∈ V (5.27)

rt1v, rt2v ∈ N ∀ v ∈ V (5.28)

bve1v, bve2v, bvh1v, bvh2v ∈ {0, 1} ∀ v ∈ V (5.29)
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The objective of the retailer is to minimize the future expected cost of penalties that
will be charged by all vendor. Since the penalty structure is multi-layered, increas-
ing penalties between increasing return thresholds, the objective function is a piece-
wise non-linear cost function where the retailer tries to minimize the penalties between
these thresholds for the expected future returns. The MINLP involves combined vendor
penalty fees and return threshold decisions simultaneously and therefore they are all
considered as decision variables. The goal is to identify the optimal vendor penalty fee
structure with the best possible return threshold schema.

Constraints (5.1) and 5.2 ensure that the vendor return threshold 1 should be be-
tween a given range by the vendor. Constraints (5.3) and 5.4 ensure that the vendor
return threshold 2 should be between a given range by the vendor. Constraint (5.5)
ensures that the vendor return threshold 2 is greater than the vendor return threshold 1
for every vendor. Constraints (5.6) and 5.7 ensure that the expected vendor return is
greater than vendor return threshold 1 by using a dummy binary variable of the expected
return for every vendor. Constraints (5.8) and 5.9 ensure that the expected vendor
return is greater than vendor return threshold 2 by using a dummy binary variable of
the expected return for every vendor. Constraint (5.10) ensures the logical correct-
ness between dummy binary variables of the expected vendor return for every vendor.
Constraints (5.11) and 5.12 ensure that the last vendor return is greater than the
vendor return threshold 1 by using a dummy binary variable of the last vendor return
for every vendor. Constraints (5.13) and 5.14 ensure that the last vendor return is
greater than the vendor return threshold 2 by using a dummy binary variable of the last
vendor return for every vendor. Constraint (5.15) ensures the logic between dummy
binary variables of the last vendor return for every vendor. Constraints (5.16) and
(5.17) ensure that vendor penalty fee / percentage 1 should be between a given range
by the vendor. Constraints (5.18) and (5.19) ensure that vendor penalty fee / percent-
age 2 should be between a given range by the vendor. Constraints (5.20) and (5.21)
ensure that vendor penalty fee / percentage 2 should be between a given range by the
vendor. Constraint (5.22) ensures that ensures that vendor penalty fee / percentage 2
percentage is greater than vendor penalty fee / percentage 1 Constraint (5.23) ensure
that vendor penalty fee / percentage 3 percentage is greater than vendor penalty fee
/ percentage 2. Constraint (5.24) ensure that if the retailer uses all of its available
vendor funds for every vendor, the vendor will make more money with the new thresh-
old structure compared to the old threshold structure. This constraint ensures that the
vendor will make at least the same amount of money, if the retailer makes a huge return
in the future and it exhausts all the available vendor funds. This constraint is one of

73

http://www.mcmaster.ca/
https://gs.mcmaster.ca/program/computational-science-and-engineering/
https://gs.mcmaster.ca/program/computational-science-and-engineering/


Doctor of Philosophy– Mehmet Erdem Coskun; McMaster University– Computational
Science and Engineering

the main convincing factors of the new penalty fee and return threshold structure for
contract re-negotiation. Constraint (5.25) ensures that if the retailer makes the same
return as the historical returns, the new penalty amount that will be paid to the vendor
would be more than historical penalty amount. This constraint ensures the vendor to
make at least the same amount of money historically in case similar returns happen
in the future. Constraint (5.26) ensures that when the retailer makes the expected /
forecasted return, the new penalty amount would be less than the penalty amount which
would have been paid when the the original threshold structure was to be kept as is.
This constraint is the main constraint that ensures the retailer to pay less penalty for
future returns compared what could have been paid if existing penalty fee and return
threshold schema exist as is. Constraint (5.27)–(5.29) declares the set of continuous,
integer, and binary variables, respectively.

The model considers the multi-layered penalty structure of vendors when returning
products back to their vendor. The retailer has to come up with an initial contract
parameter schema in order to re-negotiate its existing product returns contracts with
all of its vendors and try to convince them that the proposed penalty fees and return
thresholds can be beneficial for them via (in the case of most likely scenario, historical
returns, or extreme scenario, total consumption of available funds, happens) ensuring
the potential outcomes of the newly proposed structure. The retailer proposes these new
contract terms via considering its important internal data and information and vendors
NOT knowing the expected future returns of the retailer. Since the expected vendor
returns can only be forecasted on the retailer’s end by using internal sales and inventory
data, vendors have limited knowledge what to expect in the future except for most likely
and extreme scenarios. Therefore, retail is leveraging its own source of internal data,
information and analytics capabilities to get a head in the re-negotiation of its product
returns contracts.

5.3 Test Problems, Computations and Overall Numerical
Analysis

In this section, we present the results to the test problems we have solved via the existing
MINLP solvers in GAMS Studio 1.8.

For our test problems, we have generated a set of vendors with related data. The test
scenario problems consisted from small size problems, 5 vendors, to large size problems,
2500 vendors. The penalty schema of a vendor consisted of 2 return thresholds, a total
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available vendor fund amount and therefore a 3-layer increasing penalty fee structure for
each vendor.

The the details of the problems we have generated can be observed in Table 5.1.
The smallest size problem we have generated included 5 vendors which generated 45
decision variables (10 integer variables, 20 binary variables and 15 continuous variables)
and 130 constraints (115 linear constraints and 15 nonlinear constraints). The largest
size problem we have generated included 2500 vendors which generated 22500 decision
variables (5000 integer variables, 10000 binary variables and 7500 continuous variables)
and 65000 constraints (57500 linear constraints and 7500 nonlinear constraints).

Problem parameters such as total available vendor funds, minimum and maximum
penalty fees, and minimum and maximum return thresholds of the vendor are generated
with random data that fits a uniform distribution between certain bounds (lower and
upper limit) that are consistent with values of the related parameters. Expected and
historical return amounts are also generated randomly that fits a uniform distribution
between 0 and total available vendor funds amount of the vendor. This allowed us
generate all possible combinations of distinct test problems to test the performance of
the MINLP solvers.

The combined vendor penalty fee and return thresholds parameter optimization prob-
lem defined in Section 5.2 is a Mixed Integer Non-Linear Program (MINLP). The MINLP
is coded using a commercial exact solver software, GAMS Studio 1.8, on a PC with an In-
tel(R) Xeon(R) CPU E5-2680 0 @ 2.70GHz, 2700 Mhz, 1 Core(s), 1 Logical Processor(s)
and 32 GB of RAM.

5.3.1 Test Case Problem Sizes and MINLP Solver Solution Times

In total, we have generated 20 test problems and these problems included small size to
large size problems. The details of the these test problems can be found in Table 5.1.
In order to observe the performance of the available MINLP solvers on these test prob-
lems, these test problems were given to all of the available MINLP solvers (AlphaECP,
ANTIGONE, BARON, Bonmin, Knitro, DICOPT, LINDOGlobal and SBB) separately
to solve and compare the results using GAMS Studio 1.8. Problems were asked to give
solutions within 0.01% optimality range. Unfortunately, AlphaECP, BARON, Bonmin,
Knitro, LINDOGlobal and SBB were not able to solve even small size problems (prob-
lems greater than 10 vendors which generated at least 90 decision variables and 260
constraints) within reasonable solution times (more than 120 minutes, 2 hours, were
given to all MINLP solvers). Therefore, the results of these MINLP solvers were not
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included in Table 5.1 and only successful solver results were included in the summary
report.

DICOPT and ANTIGONE MINLP solvers were the only 2 solvers that were able
to solve small and larger size problems within reasonable solution times. ANTIGONE
solver’s performance also dropped significantly for mid-size problems (problems that
have more than 250 vendors which generated at least 2250 decision variables and 6500
constraints). The results of the DICOPT and ANTIGONE solvers to given test problems
can be observed in Table 5.1.

As can be observed from Table 5.1, DICOPT was able to solve all the problems, small
to large size problems, within reasonable solution times. Small size problems, 5-100 ven-
dors took less than a second to solve. Larger size problems, up to 2500 vendors, DICOPT
was able to find a good solutions within 20 minutes. ANTIGONE also performed well
for smaller size problems and was able to find good solution within reasonable solution
times. However, when the problem size increased, problems with more than 250 vendors,
the performance of the solver dropped significantly and was not able to find a solution
within 2 hours given to the solver.

5.3.2 Results and Insights

In this section we present summaries of our numerical study. More detailed numerical
results are included in Appendix A3. Based on the 25 test problems we have performed
from small size to larger size problems, we can observe that the combined effect of
optimal vendor penalty fees and return thresholds decisions can save the retailer 5-7
% (Table 5.1) in terms of penalties that would be paid to its vendors for returning
products. The results suggest that re-negotiating the existing contract parameters, with
the optimal parameters calculated through our model, can have significant savings for
the retailer in terms of the penalty it pays to all of its vendors for its product returns in
the upcoming return cycles. Since the optimal contract parameters that were identified
on our model guarantees the vendors to charge at least the same amount of penalty for
historical returns (most likely scenario) or in the case of the usage of all available vendor
funds (worst case scenario), convincing the vendors to accept the retailer’s offers is to
be expected.

As can be observed from Table 5.1, even the best MINLP solver that was able to solve
this problem, DICOPT, was not able to find an optimal solution within the given solution
time (1 hour) for larger size problems (problems over 4500 Vendors). In order to find
a ‘good’ solution within reasonable times and observe the inner workings of the linear
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models to develop heuristics and/or certain solution mechanisms, the original MINLP
was decomposed into 2 separate problems. First problem is modelled as an LP to find an
optimal vendor penalty fee schema while keeping the original return thresholds as is, and
the second problem is modelled as a MILP to find an optimal return threshold schema
while keeping the original penalty fee structure as is. The models and detailed analysis
(rule-of-thumb mechanisms) of the solutions are presented in the following subsections.

The optimal penalty and threshold schema solutions of a sample problem that has 50
vendors can be observed in Table A1.1. These solutions are the optimal solutions that
are identified by the DICOPT solver. As can be found from the results in Table A1.1,
the optimal penalty fee and return threshold schema, penalty savings with an individual
vendor and aggregate penalty savings from all vendors can be identified from this chart.
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Table 5.1: Results of Test Problems for the Vendor Penalty Schema and
Return Threshold Model
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5.4 LP for the Vendor Penalty Fees / Percentages

V∑
v=1



vpf1v EV Rv if 0 ≤ EV Rv ≤ ORT1v

vpf1v ORT1v + vpf2v (EV Rv − ORT1v) if ORT1v < EV Rv ≤ ORT2v

vpf1v ORT1v + vpf2v (ORT2v − ORT1v)
+ vpf3v (EV Rv − ORT2v) if ORT2v < EV Rv ≤ TV Rv

s.t. Constraints 5.16 to 5.23,

Constraints 5.24 to 5.26 where rt.v variables are replaced with ORT.v parameters,

Constraint 5.27

The objective of the retailer is to minimize its future expected cost of penalties that
will be charged to the retailer by all of its vendor. Since the penalty structure is multi-
layered, increasing penalties between increasing return thresholds, the objective function
is a piece-wise linear cost function where the retailer tries to minimize the penalties
between these thresholds for the expected future returns. The cosntraints have already
been defined in constraints in Subsection 5.2.

The model considers the multi-layer penalty structure of vendors when returning
products back to their vendor. The retailer has to come up with a negotiation strategy
with its vendors in order to convince them that the proposed penalty structure can be
beneficial for them via (in the case of most likely scenario, historical returns, or extreme
scenario, total consumption of available funds, happens) ensuring the potential outcomes
of the newly proposed penalty schema. The retailer proposes these new contract terms
via considering its important internal data and information and vendors NOT knowing
the expected future returns of the retailer. Since expected vendor returns can only
be forecasted on the retailer’s end by using internal sales and inventory data, vendors
have limited knowledge what to expect in the future except for most likely and extreme
scenarios. Therefore, retail is leveraging its own source of internal data, information and
analytics capabilities to get a head in the negotiation curve.

79

http://www.mcmaster.ca/
https://gs.mcmaster.ca/program/computational-science-and-engineering/
https://gs.mcmaster.ca/program/computational-science-and-engineering/


Doctor of Philosophy– Mehmet Erdem Coskun; McMaster University– Computational
Science and Engineering

5.5 MILP for the Vendor Return Thresholds

V∑
v=1



OV PF1v EV Rv if 0 < EV Rv ≤ RT1Minv

OV PF1v rt1v bve1v

+ OV PF2v (EV Rv − rt1v) bve1v

+ OV PF1v EV Rv (1 − bve1v) if RT1Minv < EV Rv ≤ RT1Maxv

OV PF1v rt1v

+ OV PF2v (EV Rv − rt1v) if RT1Maxv < EV Rv ≤ RT2Minv

OV PF1v rt1v

+ OV PF2v (EV Rv − rt1v) (1 − bve2v)
+ OV PF2v (rt2v − rt1v) bve2v

+ OV PF3v (EV Rv − rt2v) bve2v if RT2Minv < EV Rv ≤ RT2Maxv

OV PF1v rt1v

+ OV PF2v (rt2v − rt1v)
+ OV PF3v (EV Rv − rt2v) if RT2Maxv < EV Rv ≤ TV Rv

s.t. Constraints 5.1 to 5.15,

Constraints 5.24 to 5.26 where vpf.v variables are replaced with OV PF.v parameters,

Constraints 5.28 to 5.29

Similar to the previous model in Section 5.4, the objective of the retailer is to min-
imize its future expected cost of penalties that will be charged to the retailer by all of
its vendor. Since the penalty structure is multi-layered, increasing penalties between
increasing return thresholds, the objective function is a piece-wise linear cost function
where the retailer tries to minimize the penalties between these thresholds for the ex-
pected future returns. However, compared to the model described in Section 5.4, return
thresholds are considered to be decision variables. The definitions of the related con-
straints in Subsection 5.2.

The model considers the multi-layer penalty structure of vendors when returning
products back to their vendor. The retailer has to come up with a negotiation strategy
with its vendors in order to convince them that the proposed return threshold structure
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can be beneficial for them via (in the case of most likely scenario, historical returns, or
extreme scenario, total consumption of available funds, happens) ensuring the potential
outcomes of the newly proposed return threshold schema. The retailer proposes these
new contract terms via considering its important internal data and information and
vendors NOT knowing the expected future returns of the retailer. Since expected vendor
returns can only be forecasted on the retailer’s end by using internal sales and inventory
data, vendors have limited knowledge what to expect in the future except for most likely
and extreme scenarios. Therefore, retail is leveraging its own source of internal data,
information and analytics capabilities to get a head in the negotiation curve.

5.6 Test Problems, Computations and Overall Numerical
Analysis

In this section, we present our findings about the test problems we have solved using
CPLEX for both of the models in Section 5.4 and 5.5, deep dive into the results for
cost savings and to identify insights for developing mechanisms to extract rule-of-thumb
methodologies to derive exact or approximate solutions close to optimal penalty per-
centages and return thresholds via identifying all possible scenarios that can exist in the
problem structures.

For our test problems, we have generated a set of vendors with all the related data
and the test scenario problems consisted of 5000 vendors with 2 return thresholds within
a total available vendor fund amount and therefore a 3-layer increasing penalty fee /
percentage structure for each vendor. The above mentioned model size test scenarios re-
sulted in a 15000 float decision variable and 55000 constraint size problem for the penalty
fee structure model and a 10000 float decision variable, 20000 binary variables, a total
of 30000 decision variables, and 90000 constraint size problem for the return thresh-
old model. Problem parameters such as penalty fees / percentages, return thresholds,
total available vendor funds, minimum and maximum penalty fees and minimum and
maximum return thresholds of the vendor are generated with random data that fits a
uniform distribution between certain bounds (lower and upper limit) that are consistent
with values of the related parameters. Expected and historical return amounts are also
generated randomly that fits a uniform distribution between 0 and total available vendor
funds amount of the vendor. This allowed us generate all possible combinations of test
problems that can happen in the real world in order to create all distinct scenarios and
investigate the results in detail.
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The above parameter optimization of the vendor contract terms models are a mixed
integer linear program (MILP) and are designed and coded with an exact solver software,
IBM ILOG CPLEX Optimization Studio 12.8, on a PC with an Intel Core i7-8550U CPU
@ 1.8 GHz, 4 Cores, 8 Logical Processors and 20 GB of RAM.

In total, we generated 20 test problems for each model and solved using an exact
solver, CPLEX. Optimal solutions to the linear problems were found in a very short
amount of time, mostly within a couple of seconds. Problem size, vendor count, number
of decision variables and constraints, solver solution times, historical penalties, expected
penalties and hence expected savings in terms of value and percentage were observed
and reported in Table 5.2 for the optimal vendor penalty schema model and Table 5.3
for the optimal vendor return threshold model.

Table 5.2: Test Problem Results for the Vendor Penalty Fee Schema
Model
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Table 5.3: Test Problem Results for the Vendor Return Thresholds
Model

5.6.1 Results and Insights

Using the 20 optimal penalty schema test problems that are generated and solved, on
aggregate, we have observed that identifying the optimal vendor penalty schema strategy
can save the retailer a minimum of 2.36%, a maximum of 2.55% and with an average of
2.45% on penalty costs (Table 5.2). Using the 20 optimal return threshold test problems
that are generated and solved, on aggregate, we have observed that identifying the op-
timal return thresholds strategy can save the retailer a minimum of 1.71%, a maximum
of 1.97%, with an average of 1.85% on penalty costs (Table 5.3). These savings could
increase or decrease based on the bounds, minimum and maximum limit of the parame-
ters that would be allowed by the vendor. Since we have generated the lower and upper
bounds of the penalty and threshold limits for each vendor based on some randomly
generated values between a certain range, this range affects the potential savings we
would have on the solution. A looser range of penalties between return thresholds (or
looser range of return threshold while keeping the same penalty structure) could allow
more savings in penalties to be paid since better solutions could be identified via more
possibilities. With a closer look at the savings of the individual vendors for the penalty
schema problem, we observed a more detailed picture of the inner workings of the model.
For the 1000 vendors that were generated on each problem, the savings for each vendor
ranged from 0% up to 90% on some cases. In order to identify the discrepancy of the
cases, we have partitioned the problem structure into 9 different scenarios (Table 5.4).
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These scenarios can be described with historical returns and expected returns being in
between different return threshold buckets such as; when historical return being less than
return threshold 1 vs. expected return being greater than return threshold 2, historical
return being greater than return threshold 2 vs. expected return being less than return
threshold 1 and so on... These scenario definitions can also be observed in detail in Ta-
ble 5.4. Since we have two mid-thresholds and a total available vendor funds being the
highest and the third threshold in our test problems, this problem structure created 9
possible scenarios to exist in our results. We have observed the most significant savings
realized on scenarios when historical returns was greater than return threshold 2 and
expected returns were less than return threshold 1. However, even though there were
some scenarios with huge savings potential (up to 90%), there were also scenarios with
little savings (down to 4%) for the retailer. We have observed that the low savings were
due to fact that random data generation generated tighter bounds and huge savings po-
tential was due to fact that random data generation generated looser bounds for those
vendor. If vendors have looser penalty boundaries, then expected future returns which
belong to this scenario could generate huge savings for the retailer.

Table 5.4: Distinct Scenarios that Exist in Vendor Penalty Schema
Problem

We have also observed that (from scenarios shown in Table 5.4) where historical
return being less than return threshold 1 vs. expected return being less than return
threshold 1 (Scenario 1), the model could not identify any better penalty schema where
the retailer pays less penalty. Even though, based on the constraints provided, the model
identified a different penalty schema for most of the scenarios, it did not result in penalty
savings on retailer’s end. There were also similar non-cost-saving cases in scenario where
historical return being greater than return threshold 2 vs. expected return being greater
than return threshold 2 and expected return being greater then the historical return
(in Scenario 9 where EV Rv > HV Rv). However, under this scenario, for only half of
the cases this argument was true. This is due to the fact that expected returns were
slightly higher than expected return under this scenario. We provide a snapshot of one
of the sample problems’ solution on Table A1.2. We can observe some of the intricacies
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of the model’s optimal solution behaviour under different scenarios (Table 5.4) on this
chart and generate a rule-of-thumb mechanisms to generate faster results. The main
reason to generate these rule-of-thumb mechanisms is to gain insights from the solution
structure that is extracted from the optimal solutions, generate a template of the possible
outcomes as a rule set and eventually share these rules with the category managers who
deal with their specific vendor portfolio on a daily basis for a fast and reliable decision
making approach. Using such a mechanism, they would not need to the rely on other
analysts/scientists to model this complex problem on their behalf and provide them with
the optimal parameters for a specific vendor’s contract re-negotiation. Therefore, such
mechanisms are highly efficient and needed all around the retail organization for faster
decision making process.

The chart in Table 5.5 outlines the rule-of-thumbs for every possible scenario in the
optimal vendor penalty schema problem.
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Table 5.5: Rule-of-Thumb Mechanism for the Vendor Penalty Schema
Problem 86
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When we take a closer look at the results and savings of the individual vendors for the
optimal return threshold schema problem, we observe a more complex solution structure
than the optimal penalty fee problem. The inner workings of the optimal solution gave
us specific scenarios (Table 5.6) and we have identified the specific conditions (and Table
5.7), under these scenarios, when a better return return threshold schema can be found
that would bring savings in terms of penalties paid to the retailer.

For the 1000 vendors that were generated on each problem, the savings for each vendor
ranged from 0% up to 35% on some certain cases. In order to identify the discrepancy of
the cases, 25 distinct scenarios are identified in the solution structure as can be observed
in Table 5.6. The number of scenario increased significantly compared to the first model
due to the fact that now we have moving return thresholds instead of stationary ones,
with the consideration of historical returns and expected returns, and this fact made the
solution structure more complex than the optimal penalty fee problem. Even though,
the optimal return threshold solution structure was more complex than the optimal
penalty fee solution structure, the potential savings of solving the threshold problem
was not great. Almost 3/4 of the vendors in each test problem, model was unable to
find better return thresholds to save future penalty costs. When we deep dived into
the reasons why the model was unable find better solutions for most of the vendors was
due to the fact that only specific arrangement of the historical return, expected return,
original return thresholds, and minimum and maximum bounds for the vendor return
thresholds allowed to obtain better return thresholds schema for penalty savings. For
instance, when expected returns are less than the minimum bound for return threshold
1 or greater than maximum bound for return threshold 2 (Scenario {1,2,3,4,5}x1 and
Scenario {1,2,3,4,5}x5 in Table 5.6) , there are no better solutions then the original
threshold schema because any kind of rearrangement of the thresholds would not affect
the penalty savings for the retailer. Therefore, for any vendor where specific conditions
hold (Table 5.7), penalty savings would not occur. There are actually very small number
of scenarios/arrangements where the model can find penalty savings. We have deep dived
into the scenarios in Table 5.6 and identified under which circumstances (Table 5.7) the
model would be able to find better solutions for an optimal return threshold schema
which would result in penalty savings for the retailer.
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Table 5.6: Distinct Scenarios that Exist in Vendor Return Thresholds
Problem

Table 5.7: Conditions Necessary for Optimal Solutions under Different
Scenarios

As can be observed from Table 5.7, only under a handful of scenarios and circum-
stances, the model is able to identify better return thresholds. For any given problem
parameters, if the conditions do not hold, the parameters can be kept as is because
there are no better thresholds to obtain. However, if the conditions hold then the op-
timal thresholds can be found by sliding the mid-piece of the piece-wise linear function
upwards and downwards. This phenomenon is a very intuitive way to observe the so-
lution structure because keeping the penalty fees as they are, the slopes of the each
piece-wise function can not change. Therefore, to obtain a better solution, only the
mid-piece of the function can move upwards or downwards. The upward movement of
the mid-piece results in decreasing return threshold 1 and increasing return threshold
2, and downward movement of the mid-piece results in increasing return threshold 1
and decreasing return threshold 2. Using the movement of the mid-piece of the piece-
wise linear function, it is possible to calculate the gains and losses in penalties for both
historical and expected returns and identify an approximate solution.

Table 5.7 provides insights to potential cases under which circumstances the decision
maker choose to negotiate parameters. If conditions on Table 5.7 do not hold, there is
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no point to try to identify, calculate and negotiate the return thresholds but only to
concentrate on optimal penalty fees. If these conditions hold, then the decision maker
has a chance to calculate an approximate solutions via calculating the gain and losses in
penalties for both historical and expected returns.

Only identifying optimal return thresholds does not provide a significant savings to
the retailer compared to identifying optimal penalty fee structure. As can be observed
from Table 5.3. If only optimal return thresholds are identified and re-negotiated to these
levels with every vendor, the penalty savings for all vendors would be 1.5-2% (Table 5.3).
If only optimal penalty fee schema are identified and re-negotiated with every vendor,
the penalty savings for all vendors would be 2-3% (Table 5.2). Since penalty schema
has a larger range to affect the penalty savings compared to identifying better return
thresholds, readjusting the penalty percentages would shrink the penalties much more
effectively than rearranging the return thresholds does. Using a combination of both
charts in Table 5.5 and Table 5.7, the decision maker can easily identify which path to
pursue and calculate an exact or an approximate solution. However, if the retailer is
able to re-negotiate all the potential parameters in the contract with all of its vendors,
which is a combined solution that identifies optimal penalty fee and return threshold
schema simultaneously, the retailer can save up 6-7 % as shown in Table 5.1 in terms of
penalties that would be incurred.
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Chapter 6

Conclusion and Future Research
Directions

In this chapter, we provide a summary of the major findings of the thesis and outline
potential future research directions.

6.1 Thesis Summary

In this thesis, a RSC system is considered in a retailing environment. Based on literature
reviewed in Chapter 2, we have observed a significant gap in operational, tactical and
strategic models in RRSC. RSC literature is over supplied with conceptual frameworks,
designs and operational models that consider almost all kinds of products, material
recovery, and waste. Hopefully, this thesis and the following studies will start a new
area of research in RSC literature where the focus is not only on product recovery and
waste management of the RL activities, but also on designing and modelling other RL
activities that may have RSC systems such as RSC of independent retailers and/or online
retailers.

In the first problem in Chapter 3, we have discussed and modelled budgetary limita-
tion, where the cost of doing business was restricted under budgetary limitations due to
financial, accounting and taxation reasons. Similar budgetary limitations can be found
in any industry where a certain amount of budget is set to be spent in order to action
a process, and if this budget is not utilized, there would be certain consequences for
over- or under- spending. The heuristic approach we have developed can be adjusted
and reconfigured to solve similar problems in any industry that has similar budgetary
limitations.
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The sheer complexity of a realistic RSC of a retailer that is discussed and modelled
in Chapter 4, and the number of network nodes, paths, rules, restrictions and elements,
emphasizes the importance and challenges of modelling these networks and the usage of
complex methodologies to solve these kinds of problems faster than available solution
techniques. The multi-stage heuristic that is developed to solve this problem can help
researchers develop similar heuristics for similar problems in nature, not just in RSC but
also for forward supply chains, network design problems, production planning, inventory
optimization, distribution, selection, allocation, location and location-allocation prob-
lems where the nature of the problems show a large number of choices, load allocation
and node activation decisions.

Independent retailers and their suppliers, such as vendors or manufacturers, are al-
ways both collaborating and competing at the same time for different reasons. When
it comes to selling products to consumers, both parties collaborate in a way to maxi-
mize their exposure to sales via providing internal and external discounts, promotions,
and easy pay structures that would allow both parties to satisfy customers’ demand.
However, due to the overloaded incentives by the suppliers, retailers might end up with
excessive inventory where the demand is not met by the end consumer for best selling
products, or there might be no demand for some portion of the ordered products, because
of customer desires. Therefore, there exists a buy-back and returns contract, discussed
in Chapter 5, between the supplier and the retailer to share the cost of doing business.
Our goal in the developed solution approach is to propose a method that is efficient but
at the same time easy to understand and implement by manager.

6.2 Future Work and Open Areas for Research

We have found that there is a significant gap in the literature of RRSC, especially on
the operational and tactical decision making problems that a retail has to deal with
during its RL activities. One of the main gaps in the literature was the lack of the
‘selection’ aspect of the decision making process in RSC where the responsible parties
had to identify which products (whether they are unsold / end-of-life / end-of-use /used /
damaged / broken / faulty) should participate in the RL activities. This issue is also valid
for the regular ‘product recovery / re-manufacturing’ RSC literature of manufacturers
or ‘recycling / waste management’ RSC literature of green supply chains. Almost all
of the existing RSC models consider all the collected products and/or material to be
returned, except for few models, e.g., Eskandarpour et al. (2013). However, similar
product selection issues are a valid concern for manufacturers due to product/material
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quality of the collected items and brings another complexity to the problem. Selection
decisions might not be of concern for RSC in waste management or recycling of products
/ materials such as used tires, construction materials, glass, plastic or paper, however in
many circumstances the collected and then ‘potentially’ returnable products should be
evaluated and selected based on some sort of quality, content, environmental concerns
or financial viability criteria to be reverse flowed in the RSC. We have observed that the
RSC, as well as the CLSC, literature has significant gaps in this regard.

We have considered three major problems that were related to RRSC. For the prob-
lems that are discussed in Chapter 3 and Chapter 4, the demand side of the returned
products by the stores / warehouses is considered to be deterministic. This assumption
was valid in our industrial partner’s context where we formulate the warehouse demand
component as the expectation of the forward supply chain forecasts. In some other en-
vironments, it is quite likely that the demand of the these products may be random.
Therefore, a natural extension of our work is to consider cases where the demand for the
returned items is stochastic.

For the two problems that are discussed in Chapter 5, assumed that future-expected
return amounts are deterministic in order to identify optimal penalty and/or threshold
parameters for contract re-negotiation with vendors. However, slight changes in these
‘expected’ return amounts can change the optimal penalty or threshold strategy signifi-
cantly, especially if the expected figures changes the ‘range’ that are shown in the Figure
5.3 and Figure 5.4 (a different range will result in a different scenario). Since retailers
can control the nature of their sales, such as through promotions, they can arrange, with
the help of sales of regular forecasts, their potential future return in a very close range.
However, there is still an uncertainty in the nature of the problem and considering the
stochastic nature of this future-expected returns is worth considering in the future.

Another avenue for future research is to formally study the complexity of the models
considered in this thesis. As well as develop more efficient computational procedures.
For example, the decomposed LP and MILP models that are defined and solved in
Chapter 5 can also be further developed to a more complex heuristic that can be solved
sequentially to find close-to-optimal solutions.

Another potential area of research is the consideration of multi-periods in RRSC
literature. For the problems we have studied in Chapter 3 and Chapter 4, we know from
our industrial partner’s that they conduct their RL activities twice in a year in order to
optimize their inventory, either under a certain budget or purely to optimize inventory
costs. Therefore a multi-period version of these models can be further developed in
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order to optimally use profit-loss budgets or optimize inventory holdings during several
time-periods within a given time horizon. Additionally, the problem we have modelled
in Chapter 5 is also multi-period in nature since when a contract is re-negotiated, it will
be on effect for several years, therefore modelling this framework in a multi-period is an
area that is worthy of further investigations.

Vendors also provide counter offers to the retailer. These counter offers can be incor-
porated in the model structure using a multi-period setting and should be investigated
further to develop a solution that is tailored to each vendor.

In time, more sophisticated vendors also learn from the new implemented contract
parameters that they are not making as much money as previously from the penalties
they charge to the retailer. As a result, these vendors might have concerns after several
return cycles that they are not satisfied with the new contract parameters. Further
revenue-sharing models can be investigated to address the concern of these vendors.
Another possible extension is to incorporate the power relationship between a single
retailer and a vendor using game theory.

In this thesis we study the RRSC from an independent retailer’s perspective. Ex-
tending it to an ‘online’ retailer’s perspective is a potential avenue for future research.
As we have shown in the related RRSC literature in Chapter 2, it is clear that there is a
significant gap in modelling the RRSC in this area of research. To the best of our knowl-
edge, our research is the only research where an independent retailer’s RRSC network
is modelled for budget, inventory and contract parameter optimization. Online retailers
bring the additional complexity that returns are often higher and they have different
channels for returns.

Finally, when conducting our research with our industrial partner we noticed that
the amount of information exchange between retailer-owned stores and franchisees, as
well as the flexibility that is given to franchisees for procuring for alternative sources,
create challenging and interesting areas for future research. The use of game theory and
mechanism design may lead to insightful models.
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Appendix A

A1 Heuristic Algorithm Detailed Steps for Chapter 3

1. Calculate the total amount of ineffective store-product returns - in terms of $ value
- that need to be pulled from all stores using constraint 2.6.
( TotalInventoryReturn = TSRA )

2. Create a list of ineffective store-products, list 1, where there is any amount of
demand for a product at the warehouse.

3. Rank list 1 by ‘Cost of Returning to Warehouse Ratio’ ( (SPp − LCp) / SPp ) in a
descending order.

4. Select the set of store-products from the ranked list 1, top-to-bottom, until either
TotalInventoryReturn is satisfied or warehouse capacity is full. If
TotalInventoryReturn is full, then STOP, else go to next step.

5. Calculate the inventory amount that is returned to warehouse
( WarehouseReturn = ∑P

p=1 whp SPp ).

6. Calculate the remaining inventory return amount from the Total Inventory Return
amount and (RemainingInventoryReturn = TotalInventoryReturn -
WarehouseReturn )

7. Remove the chosen selected store-products (that is identified in list 1) from the
overall store-product list, and create a new list, list 2.

8. Rank list 2 by ‘Total Cost of Returning (Profit Margin loss from COGs + Return
Penalty) to Vendor Ratio’ ( ((SPp−COGp)+COGp V PFv) / SPp ) in an ascending
order.

9. Select the set of store-products from the ranked list 2 until
RemainingInventoryReturn is satisfied.
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10. Observe whether the model is under-budget or not. If the model solution is
under-budget (

(∑S
s=1

∑P
p=1 rts,p (SPp −LCp) Qs,p

)
+
(∑P

p=1 vrp (LCp −COGp)
)

+(∑V
v=1 V PFv vfv

)
≤ PLB) then it means that we can minimize all the costs while

using all the available budget. We can directly proceed to Step 9 in order to use
all the available budget, if applicable. If the model solution uses more than the
given budget (

(∑S
s=1

∑P
p=1 rts,p (SPp − LCp) Qs,p

)
+
(∑IP

p=1 vrp (LCp − COGp)
)

+(∑V
v=1 V PFv vfv

)
> PLB) in the optimal solution, then we are over-budget and

therefore the costs can NOT be minimized with the given budget. In this case,
skip the next steps and directly proceed to the Step 16.

11. When the model is under-budget then it means that the minimized cost structure
uses/spends less than the given budget and products that need to be sent to the
vendors should have a higher ‘Total Cost of Returning (Profit Margin loss from
COGs + Return Penalty) to Vendor Ratio’ so that the model can use more of the
available profit-loss budget by sending more profitable products, instead of the less
profitable products, back to vendors.

12. Calculate the total amount of inventory (in terms of Store Price) that needs to
be pulled from store inventories and identify how much of the returns are vendor
returns vs warehouse returns.
(WarehouseReturn = ∑P

p=1 whp SPp, V endorReturn = ∑P
p=1 vrp SPp, in return

V endorReturn = RemainingTotalInventoryReturn in this case.)

13. Calculate the ‘Profit-loss Budget’ used by the vendor returns
(BudgetUsedByV endorReturn = ∑P

p=1 vrp (SPp − COGp) +∑P
p=1

∑V
v=1 vrp COGp V PFv), warehouse returns (

BudgetUsedByWarehouseReturn = ∑P
p=1 whp (SPp −LCp) ) and remaining bud-

get ( RemainingBudgetNewV endorReturn = PLB −
∑P

p=1 whp (SPp − LCp) )
that needs to be used by new vendor return in order to use all the available budget.

14. Calculate the ‘Total Cost of Returning (Profit Margin loss from COGs + Re-
turn Penalty) to Vendor Ratio’ for the vendor returns and then calculate the
‘Expected Total Cost of Returning to Vendor Ratio’ ( DesiredProfitLossRatio =
RemainingBudgetNewV endorReturn / (∑S

s=1
∑P

p=1 rts,p SPp Qs,p−
∑P

p=1 whp SPp)
) that should satisfy the remaining budget after we remove the profit-loss budget
that is used by warehouse returns.

15. After determining the ‘Expected Total Cost of Returning to Vendor Ratio’ for
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the remaining budget, rank remaining ineffective store-products that could be re-
turned to vendors by ‘Cost of Returning to Vendor Ratio’ ( ((SPp − COGp) +
COGp V PFv) / SPp ) in a descending order and identify a lower and upper bound
(by iteration) of ‘Cost of Returning to Vendor Ratio’ which will include a set of
store-products that will be returned to vendors which would satisfy both the re-
maining returns (V endorReturn = RemainingTotalInventoryReturn) and profit-
loss budget (RemainingBudgetNewV endorReturn), if applicable. If not, choose
the set store-products from the top of this list which could only satisfy the re-
maining return amount. In the case of picking the highest ‘Cost of Returning to
Vendor Ratio’ store-products not satisfying the profit-loss budget happens, then it
means that we would never be able to use the given budget even we choose the best
possible store-products to return to the warehouse and vendor. Even though this
solution is not a feasible solution to the original problem, the solution is letting us
know that the result is best result that is capable of using the maximum amount
of profit-loss budget that is available within the given product parameters and it
is still an acceptable solution to the general problem since we are using the given
budget as much as possible.

16. When the model is over-budget then it means that the minimized cost structure
uses all of the available profit-loss budget and products that need to be sent to
the warehouse should have a lower ‘profit margin (from the landed price)’ so that
the model can use less of the available profit-loss budget by sending less profitable
products to warehouse. Also as a result, this would most likely to end up in a
lower value of warehouse return and higher value of vendor returns, in terms of
Store Price/Refund, since we are returning the same amount of value, in terms of
COGs, with lower profit margins (from the landed price) to the warehouse because
of the warehouse’s capacity issue, in terms of COGs.

Please note that depending on the profit margins available in the store-product
data set and the amount of budget that the model is over, there might be products
with lower profit margins (from the landed price) and higher vendor unrecoverable
costs that might still end up with the same amount of warehouse and vendor
returns, in terms of Store Price/Refund. However, if the gap between profit-loss
budget available and profit-loss budget used is greater than a certain threshold,
then the model inevitable has to identify products that have lower profit margin
with higher COGs and therefore will not able to send products to the warehouse
as valuable, in terms of Store Price/Refund, as it previously could. This will most
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likely end up in a lower value of warehouse return and higher value of vendor
returns.

17. Calculate the total amount of inventory ( TotalInventoryReturn =∑S
s=1

∑P
p=1 rts,p SPpQs,p ) that needs to be pulled from store inventories and iden-

tify how much of them is a vendor return vs. a warehouse return. ( WarehouseReturn =∑P
p=1 whp SPp, V endorReturn = ∑P

p=1 vrp SPp) )

18. Calculate the ‘profit-loss budget’ used by the vendor returns
( BudgetUsedByV endorReturn = ∑P

p=1 vrp (SPp−COGp)+∑P
p=1

∑V
v=1 vrp COGp V PFv

) and warehouse return ( BudgetUsedByWarehouseReturn = ∑P
p=1 whp (SPp −

LCp) )

19. Remove existing vendor returned store-products from the list since they use the
minimal profit-loss budget as possible.

20. Rank remaining store-products by ‘Cost of Returning to Vendor Ratio’ ((SPp −
COGp) + COGp V PFv/SPp) in an ascending order, this is list 3.

21. Create a separate list, list 4, of store-products that are potentially warehouse
returnable and rank these store-products by ‘Cost of Returning to Warehouse
Ratio’ (SPp − LCp)/SPp in a descending order. Choose a set of store-products
from the TOP of the list, which were potentially going back to the warehouse, and
now some of them will stay in store inventories.

22. Calculate the Old Warehouse Return Amount ( ∑P
p=1 wh

(original)
p SPp ) and the Old

Warehouse Return COGs Amount ( ∑P
p=1 whpCOGp ) of the chosen list, which

were potentially going back to the warehouse.

23. Now, identify a set of store-products (by iteration) from the BOTTOM of the list
4, that corresponds to the same total COGs value of the above list (which, in
turn, should have a lower ‘Total Warehouse Return Amount’ than the above ‘Old
Warehouse Return Amount’).

24. Assign the new set of store-products to be returned back to the warehouse and
remove the tag of ‘Old Warehouse Returns’ to ‘stay-in-store’.

25. Calculate the Inventory Amount of the New Warehouse Returns (∑P
p=1 wh

(new)
p SPp

) and 2nd Vendor Return ( ∑P
p=1 wh

(original)
p SPp −

∑P
p=1 wh

(new)
p SPp )

26. Choose a set of store-products from the top of the ranked list 3 where 2nd Vendor
Return Amount is satisfied.
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27. Calculate Used Profit-loss budget used by the new warehouse (∑P
p=1 wh

(new)
p (SPp−

LCp) and; existing and new vendor returns ( ∑P
p=1 vr

(original)
p (SPp − COGp)

+∑P
p=1

∑V
v=1 vr

(original)
p COGpV PFv +∑P

p=1 vr
(new)
p (SPp − COGp)

+∑P
p=1

∑V
v=1 vr

(new)
p COGpV PFv )

28. If New Profit-loss Budget is less than given Profit-loss Budget, then STOP, if it is
greater than the given Profit-loss Budget then go to Step 23.

A2 Heuristic Algorithm Detailed Steps for Chapter 4

1. Define all the possible scenarios that can exist in a network where all the RCs are
either activated or deactivated. Based on the given scenario where some of the
RCs are active and some of the RCs are inactive, define the RSC network paths
among the activated RCs.

2. Calculate the total store removal amount from all company owned stores as a whole
using the total effective and ineffective inventory amount in each company owned
store and the national inventory healthy ratio.

3. Calculate the individual store removal amount for all franchise stores using individ-
ual inventory levels and their relative ratios compared to total franchise inventory
amount.

4. For every scenario, calculate the total transportation cost of a Store-Product that
it would take all the items of that Store-Product from its current location to all
the warehouses, their original vendor and liquidation in the RSC network using the
volume of the products, unit transportation costs from stores to their RCs, unit
transportation cost among RCs, unit transportation cost from RCs to Warehouses,
unit transportation cost from RCs to Vendors and unit transportation cost from
RCs to Liquidation.

5. For every Ineffective Store-Product, calculate the total Receiving&Handling cost of
a Store-Product that it would take all the items of that Store-Product from its cur-
rent location to all the warehouses, their original vendor and liquidation in the RSC
network using the weight and volume of the products and Receiving&Handling Fee
at RCs.

6. After calculating all the (total) transportation, receiving&handling costs for ev-
ery Store-Product in their potential warehouse demand locations, calculate the
‘Net Gain Returning’ and therefore ‘Actual Profit Gain Ratio’ for every potential
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Warehouse Return using all the calculated costs and Profit Margins (from Landed),
Store Prices and Store Refund Rates under every scenario.

7. Identify the First-Best, Second-Best, etc. to Last-Best Warehouse for the Store-
Products under every scenario.

8. Since we observe that the highest profit margin store-products need to be routed
to the Warehouses, the Store-Product needs to be ranked using a calculated profit
margin data point. Therefore, rank the Store-Products using ‘Actual Profit Gain
Ratio’ using the First-Best Warehouse data field under every scenario. Ranking
Store-Products based on this field allows us to send most profitable store-products
to potential sources of demand in our RSC network and fill the warehouses with
profitable items.

9. Route the items of the store-product to the First-Best warehouse where there is
demand and capacity at the same time under every scenario. If the store-product
can not be routed to the First-Best Warehouse because of demand or capacity
issues at that warehouse, try to route it to the Second-Best Warehouse. If the
store-product can not be routed to the Second-Best Warehouse because of demand
or capacity issues at that warehouse, try the next warehouse, and so on. If the
store-product can be routed to any warehouse, skip to the next store-product and
search for potential demand and capacity for that to be potentially routed.

10. Route the store-products to the Warehouses until the total removal amounts from
stores are satisfied both from the overall Company Store’s perspective and individ-
ual Franchise Store’s perspective under every scenario. If enough store-products
are removed from stores, then STOP. If not, then go to next step.

11. Remove all the store-products that were returned to warehouses from the origi-
nal dataset to get the remaining store-products that have not been returned to
anywhere. This is the new list that you need to use in order to satisfy the store
removal amounts.

12. Since Vendor Return option is the second-least costly and therefore next best
option, we will use the new list to identify what the best potential store-products
to return back to their vendor. However, we need to calculate another important
cost structure to the ‘Actual Profit Loss Ratio’ for Vendor Return, which is called
Vendor Penalty. This cost should also be included in the calculation of ‘Actual
Profit Loss Ratio’ for Vendor Return with the use of Unrecoverable, Profit Margin
(from Landed), Transportation and Receiving&Handling Costs. Since we have
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a step-wise penalty function for Vendor Returns, we first need to identify which
store-product needs to get which penalty ratio. It is logical to assume that the
products with lower penalties need to be assigned to products with lower margins
(actual profit loss ratio), since we only need to extract a portion of the products
to a vendor and also vendors also will have limit of products they will accept to
receive with given penalty structures.

13. Calculate the ‘Total Cost of Returning for Vendor Returns without Penalty’ and
therefore ‘Actual Profit Loss Ratio without Penalty’ for Vendor Return using Unre-
coverable, Profit Margin (from Landed), Transportation and Receiving&Handling
Costs.

14. For every vendor, rank store-products based on ‘Actual Profit Loss Ratio without
Penalty’ in an ascending order and assign the relevant penalties to those ranked
products in order to calculate the correct Vendor Penalty Cost that should be
identified and assigned for each store-product. Calculate the Vendor Penalty Cost
for each store-product if the decision is to return them back to the vendor.

15. Since Vendor Penalty Cost is calculated for every store-product, we can now calcu-
late the ‘Total Cost of Returning for Vendor Returns with Penalty’ and therefore
‘Actual Profit Loss Ratio with Penalty’. Calculate the ‘Actual Profit Loss Ratio
with Penalty’ in order to identify the lowest profit loss store-products.

16. Rank store-products based on ‘Actual Profit Loss Ratio with Penalty’ in an as-
cending order.

17. Since we observe that the lowest profit margin store-products need to be routed to
Vendors, route the items of the store-product to its Vendor starting from the top of
list and work our way down in the list until the total removal amounts from stores
are satisfied both from the overall Company Store’s perspective and individual
Franchise Store’s perspective. If enough store-products are removed from stores,
then STOP. If not, then go to next step.

18. Remove all the store-products that were returned to vendors from the second
dataset to get the remaining store-products that have not been returned to any-
where. This is the 3rd new list that you need to use in order to satisfy the store
removal amounts.

19. Since Vendor Deposit Return or Liquidation option, interchangeably, is the third-
least costly and therefore next best option, we will use the 3rd new list to identify
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what the best potential store-products to either send them for liquidation or return
back to Vendor with a Vendor Deposit Return.

20. Calculate the ‘Total Cost of Returning for Vendor Deposit Returns’ and therefore
‘Actual Profit Loss Ratio’ for Vendor Deposit Return and the ‘Total Cost of Re-
turning for Liquidation’ and therefore ‘Actual Profit Loss Ratio’ for Liquidation
using Deposit Value of the product, Liquidation Rebate Rate of the product, COG,
Profit Margin (from Landed), Transportation and Receiving&Handling Costs.

21. Generate a data field, called ‘Lowest Actual Profit Loss Ratio After Vendor Re-
turn’, that would take the lowest value between the ‘Actual Profit Loss Ratio’
for Vendor Deposit Return and ‘Actual Profit Loss Ratio’ for Liquidation. This
value will help us to decide whether the store-product should be sent back to Ven-
dor for deposit value extraction or liquidate the items of the product to a third
party buyer. If ‘Actual Profit Loss Ratio’ for Vendor Deposit Return is lower,
then store-product will be sent back to its Vendor for deposit value extraction, If
‘Actual Profit Loss Ratio’ for Liquidation value is lower, then the store-product
will be sent for liquidation to a third party buyer from store’s RC.

22. Rank store-products based on this newly calculated field, ‘Lowest Actual Profit
Loss Ratio After Vendor Return’, in an ascending order.

23. Since we observe that the lowest profit margin store-products need to be routed
to either Vendor for Deposit Value Extraction or Liquidation, route the items of
the store-product to the one of those locations starting from the top of the list
and work our way down in the list until the total removal amounts from stores
are satisfied both from the overall Company Store’s perspective and individual
Franchise Store’s perspective. If enough store-products are removed from stores,
then STOP. If not, then go to the next step.

24. Remove all the store-products that were returned to either vendors for deposit
return or sent for liquidation from the third dataset to get the remaining store-
products that have not been returned to anywhere. This is the 4th new list that
you need to use in order to satisfy the store removal amounts.

25. Since destroying the store-product at source is the most costly option, we will use
the 4th new list to identify what other store-product can also destroyed in order
to reach the total store removal amount goals. Destroy store-product from stores
until the total removal amounts from stores are satisfied both from the overall
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Company Store;s perspective and individual Franchise Store’s perspective. When
enough store-products are destroyed at source, STOP.

26. Once overall store removal amount is satisfied for company owned stores and indi-
vidual removal amount is satisfied for every franchise store under every scenario,
calculate the related costs in each scenario.

27. Rank the scenarios by the total cost of the process in an ascending order and pick
the top scenario that is ranked the highest.

A3 Detailed Numerical Results for Chapter 5

Table A1.1: Sample Problem (For 50 Vendors) Results for the Vendor
Penalty Schema and Return Threshold Model
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Table A1.2: Optimal Solutions Found for the Vendor Penalty Schema
Problem
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Table A1.3: Optimal Solutions Found for the Vendor Return Thresholds
Problem
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