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1. Abstract

We model an atomic Bose-Einstein condensate (BEC) near an instability, looking for univer-
sal features. Instabilities are often associated with bifurcations where the classical field theory
provided here by the Gross-Pitaevskii equation predicts that two or more solutions appear or dis-
appear. Simple examples of such a situation can be realized in a BEC in a double-well potential
or in a BEC rotating in a ring trap. We analyze this problem using both Bogoliubov theory
and exact diagonalization. The former describes elementary excitations which display complex
frequencies near the bifurcation. We make connections to the description of bifurcations us-
ing catastrophe theory but modified to include field quantization. In the collective dynamics of
the system, we encounter cusp catastrophes, which are structurally stable in two dimensions,
here given by the population difference z and phase difference φ between two modes. Once
the bifurcation arises, the system undergoes a topological phase transition, as shown in figure
1.1. Here, the phase space trajectories oscillating around a previously stable fixed point (e.g.
〈φ〉 = 0 and 〈z〉 = 0 ) form Cassini ovals with two new stable fixed points in the foci, where
〈z〉 6= 0.

Figure 1.1.: Bloch sphere representation of the topological phase transition at the bifurcation
occuring in the two-mode toroidal trap system for Λ = −1.
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2. Introduction

The double-well system is a two-mode BEC trapped in a double-well potential. Each mode
can either represent one of the wells or an (anti-)symmetric linear combination of both. With a
tunable hopping parameter J , bosons are allowed to tunnel between the wells. There can also
be an offset energy if the wells have different depths.

Similar to the double-well system, we can reduce a BEC in a slowly rotating toroidal trap to
a two-mode problem. Here, the modes represent the non-rotating state and the first rotational
state. Since angular momentum from the rotation is quantized, we only consider the state with
the lowest angular momentum ~. Here, the modes occupy the same space, leading to additional
exchange energies.

In both systems, the interaction strength U and coupling J between the modes can be tuned. At
|U | = J the system undergoes a phase transition, for which quasi-degeneracies in the spectrum
occur. Previously stable solutions become unstable and new solutions arise. These so-called bi-
furcations are related to self-trapping, where bosons are trapped within one side of Fock space.

One can look at the collective dynamics of those systems in Fock space, which is the space of
states of different populations in the two modes. The total number of particles is conserved,
so the particle number difference between the modes is the only variable. Here, the overlap of
many oscillating trajectories gives rise to so-called cusp catastrophes. Due to the nonlinearity
of the system, different amplitudes of excitations have different periods, leading to those cusp-
shaped lines around the focus points. Cusps are structurally stable in two dimensions, which
here are given by number difference and time. Once self-trapping occurs, some cusps disappear,
since some trajectories only oscillate around their initial mode, rather than exploring the entire
Fock space, and don’t contribute to the collective refocusing anymore.
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3. Background on the Physics of
Two-Mode Systems

The following chapter gives an overview of the theoretical background needed for the calcula-
tions in this thesis. We also present some experiments that realized a BEC in a ring trap. The
main part of the thesis will be focusing on the toroidal trap, however, we will draw comparisons
between the two systems within the two-mode approximation in the mean-field theory.

3.1. Quantum Many-Body Theory

To introduce Quantum Many-Body Theory (QMBT, second quantization), we first need to look
at quantum mechanics (first quantization), in which classical observatives such as energy and
momentum are elevated to operators

E →Ĥ = i~∂t (3.1)

p→p̂ = −i~∂x (3.2)

and the Poisson bracket is replaced by the commutation relation between operators [x̂, p̂] = i~.
States can be represented in orthonormal bases

Ψ(x1, x2, · · · ) =
∑
n

cnψn(x1, x2, · · · ), (3.3)

where cn are complex numbers. We also introduce the normalization condition

∫
dx1dx2 · · · |Ψ(x1, x2, · · · )|2 = 1, (3.4)

which leads to the conservation of probability. In first quantization, physical quantities are
represented in terms of single-particle wavefunctions.
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If we take this a little further and turn wavefunctions into field operators, we arrive at QMBT

Ψ(x)→ Ψ̂(x) (3.5)

with the commutation relation [Ψ̂(x1), Ψ̂†(x2)] = δ(x1 − x2) and the field operator Ψ̂(x). The
field operators act on many-body states to create or annihilate particles at given position x.
Depending on the choice of bases they are represented in

Ψ̂(x) =
∑
j

âjψj(x), (3.6)

the lowering operator âj annihilates a particle in state j. The corresponding creation operator is
â†j . The action of these operators on number states (Fock states) is given by

âj|n〉j =
√
n|n− 1〉j (3.7)

â†j|n〉j =
√
n+ 1|n+ 1〉j. (3.8)

We also define the number operator N̂ =
∑

j â
†
j âj =

∫
dxΨ̂†(x)Ψ̂(x), which basically counts

the total number of particles. QMBT allows us to investigate many-body behaviour, such as
phase transitions. In QMBT the Hamiltonian generally looks like

Ĥ =

∫
dxΨ̂†(x)

[
− ~2

2m
∇2 +V (x)

]
Ψ̂(x)+

1

2

∫
dx1dx2Ψ̂†(x1)Ψ̂†(x2)U(x1−x2)Ψ̂(x2)Ψ̂(x1)

(3.9)
where V (x) is an external potential and U(x1−x2) is the two-body interaction potential, which
depends on the distance between the particles. In general, more particles could be involved in
the interaction, however, we only consider pairs in this thesis.
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3.2. Double-Well System

We consider a double-well system with only one mode (the ground state) in each well, call
them left and right modes. Technically, only eigenstates of the system are referred to as modes,
however, this is only approximately true for the left and right states. Sometimes it is convenient
to take the two modes as symmetric/antisymmetric linear combinations of the left and right
modes, depending on the situation. With a tunable hopping parameter J , bosons are allowed to
tunnel between the wells. There can also be an offset energy ε if the wells have different depths.
The system is best described by the Hamiltonian 3.11.

Figure 3.1.: Sketch of a double-well potential with an offset ε. Bosons can tunnel between wells
according to hopping parameter J represented by the green line.

3.2.1. Bosonic Josephson Junction

One can use a BEC in a double-well to simulate a bosonic Josephson junction [14], where
two macroscopic quantum objects are weakly coupled to each other [10]. In the absence of
interactions, the ground state of the two-mode system with tunneling is given by the symmetric
combination of the left and right modes, and the excited mode is given by the antisymmetric
combination. The energy gap (tunneling splitting) between these two modes is 2J . The previ-
ously introduced pair interaction is a good enough approximation in a dilute gas at low temper-
atures where the interaction range is much smaller than the average distance between bosons.
The interaction strength for those collisions can be written as U(x1 − x2) = gδ(x1 − x2) with
g = 4π~2a/m, where a is the s-wave scattering length and m is the mass of the boson [23].
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The scattering length is tunable via an experimental technique known as Feshbach resonance,
and decides if interactions are attractive (a < 0) or repulsive (a > 0). In order for the two-
mode approximation to be valid, the interaction between bosons should be weak enough that
they are not excited out of the two lowest modes. This can be easily satisfied with weak enough
interactions because the tunnel coupling is exponentially small, whereas the energy needed to
excite the higher modes is set by the harmonic frequency of each individual well, which can be
made large. Under these conditions, the Hamiltonian reads as follows

Ĥ =

∫
dxΨ̂†(x)

[
− ~2

2m
∇2 + V (x)

]
Ψ̂(x) +

g

2

∫
dxΨ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x). (3.10)

We can write the field operators as Ψ̂(x) = ψg(x)b̂†g + ψe(x)b̂†e. Here, b̂†g = (b̂†r + b̂†l )/
√

2

creates a boson in the groundstate, which is the symmetric linear combinations of the operators
in the right well and left well basis [23]. For the creation operator of bosons in the excited
state, we use the anti-symmetric linear combination b̂†e = (b̂†r − b̂†l )/

√
2. The single parti-

cle ground and excited state wavefunctions are given by ψg(x) =
[
ψr(x) + ψl(x)

]
/
√

2 and
ψe(x) =

[
ψr(x)− ψl(x)

]
/
√

2. If either of those states is macroscopically occupied their time-
evolution can be evaluated by looking at the Gross-Pitaevskii equation, which we will discuss
in section 3.2.2.

Plugging in the new field operators in the left and right basis into the Hamiltonian 3.10 gives

Ĥ = εlNl + εrNr − J
(
b̂†rb̂l + b̂†l b̂r

)
+
U

2

(
b̂†rb̂
†
rb̂rb̂r + b̂†l b̂

†
l b̂lb̂l

)
, (3.11)

where we defined the energy levels of each well εl/r and the hopping parameter J over the
kinetic term of the Hamiltonian 3.10, while for the interaction strength U we assume that only
bosons in the same well can interact with each other. We will later use the parameters

ε = εr − εl (3.12)

Λ =
UN

2J
, (3.13)

where ε gives the offset energy between the wells, and Λ is the ratio of the interaction energy
UN2 and the kinetic energy 2JN [14].
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3.2.2. Gross-Pitaevskii Equation

The Gross-Pitaevskii equation (GPE) describes zero-temperature properties of the non-uniform
BEC when scattering length is much less than the mean interparticle spacing [28]. The GPE is
a non-linear Schödinger equation, where the non-linear term takes into account the mean-field
produced by other bosons. Due to the non-linearity, the superposition principle does not hold
for solutions of the GPE. The time-independent version takes the form[

− ~2

2m
∇2 + V (x) + g|ψ(x)|2

]
ψ(x) = µψ(x), (3.14)

where ψ(x) is a macroscopic wavefunction of the condensate treated as a classical field, which
is sometimes referred to as the order parameter [28]. The eigenvalue µ is the chemical potential.
The GPE is a mean-field description of the condensate. One can find the excitation energies of
small fluctuations around the condensate by linearizing the GPE [17], as we will explore later
in chapter 3.3.1.

3.2.3. Bogoliubov Theory

Different from the GPE, the Bogoliubov theory focuses on the microscopic theory of BECs.
Here, we use creation and annihilation operators rather than working with wavefunctions. To
describe a uniform system, where the momentum is a good quantum number, the Hamiltonian
generally looks as follows [28], [29]

Ĥ =
∑
p

p2

2m
â†pâp +

U0

2V

∑
p,p′,q

â†p+qâ
†
p′−qâpâp′ , (3.15)

with the volume V (not to be confused with the potential V (x) above). As we investigate small
quantum fluctiations around classical solutions, we use the Bogoliubov prescription, where all
condensate operators are replaced by â0 →

√
N0 exp(iφ), leaving only excitation operators.

Ĥ =
∑
p6=0

(
p2

2m
+ U0

N0

V

)
︸ ︷︷ ︸

ε0

â†pâp + U0
N0

V︸ ︷︷ ︸
ε1

1

2

∑
p 6=0

(
â†pâ

†
−p + âpâ−p

)
+
N2

0U0

2V︸ ︷︷ ︸
E0

, (3.16)

where we define ε0/1 (not to be confused with the tilt) for brevity and the condensate energy E0,
where N0 ≈ N . The goal is to diagonalize the Hamiltonian. The first term is already diagonal,
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however, the second term is not (sometimes referred to as the squeezing operator). To fix that,
we perform a canonical transformation, for which introduce a new set of operators b̂†p and b̂p
[7],[29] as follows

âp = upb̂p + v∗−pb̂
†
−p (3.17)

â†p = u∗pb̂
†
p + v−pb̂−p. (3.18)

We will use the coefficients up and v−p to ensure a diagonal Hamiltonian. They must satisfy
|up|2 − |v−p|2 = 1, in order for the commutation relation [b̂p, b̂

†
p′ ] = δp,p′ to hold [29]. This

is in fact true for the parametrization up = cosh(αp) and v−p = sinh(αp). If their phases are
arbitrary, we can assume them to be real [28]. Due to momentum conservation, only particles
of p and −p are coupled by the interactions, so the whole Hamiltonian reduces to the block
diagonal form

Ĥ =
[
ε0(u2

p + v2
−p)− 2upv−pε1

](
b̂†pb̂p + b̂†−pb̂−p

)
+ E0

+
[
ε1(u2

p + v2
−p)− 2upv−pε0

]︸ ︷︷ ︸
=0

(
b̂pb̂−p + b̂†pb̂

†
−p
)
. (3.19)

To digaonalize the Hamiltonian, we must get rid of the last term. Setting the prefactor to zero,
considering the parametrization of up and v−p gives tanh(2αp) = ε1

ε0
and finally

u2
p =

1

2

(
ε0√
ε20 − ε21

+ 1

)
(3.20)

v2
−p =

1

2

(
ε0√
ε20 − ε21

− 1

)
, (3.21)

where only the positive branch of the square root can be included considering that u and v are
real [28]. Using those definitions in the Hamiltonian leads to the final, diagonal form

Ĥ =
√
ε20 − ε21︸ ︷︷ ︸
Ee

(
b̂†pb̂p + b̂†−pb̂−p

)
+
√
ε20 − ε21 − ε0 + E0︸ ︷︷ ︸

Eg

, (3.22)

where Eg is the groundstate energy and Ee the energy of excitations, which must be real for the
system to be stable [19].
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Another way of thinking about the Bogoliubov transformation is to consider the fact that we
choose the new set of operators b̂†p to be eigenoperators of the Hamiltonian, thus, [Ĥ, b̂†p] = Eeb̂

†
p

must hold for either of them [33]. With the commutation relation [âp, â
†
p′ ] = δp,p′ we get coupled

equations, which we can write in matrix form as

(
ε0 −ε1
ε1 −ε0

)(
u

v

)
= Ee

(
u

v

)
, (3.23)

whose eigenvalues are given by Ee =
√
ε20 − ε21, which agrees with the excitation Ee found in

the diagonal Hamiltonian 3.22.

3.2.4. Fock Basis

Due to particle conservation, N = Nl + Nr, we can reduce the many-body states to be repre-
sented by the average population difference n = (Nr − Nl)/2 between the left and right well
in the two-mode approximation [12]. States range from |n = −N/2〉 (all the bosons in the left
well) to |n = N/2〉 (all the bosons in the right well). The Hamiltonian 3.11 can be written as
the tri-diagonal matrix [25]

Ĥn′,n =
( 2

N
Λn2 + 2εn

)
δn′,n

−
(√N2

4
+
N

2
− n(n− 1) δn′,n−1 −

√
N2

4
+
N

2
− n(n+ 1) δn′,n+1

)
. (3.24)

From this Hamiltonian, we can get the generalized Raman Nath Equation, which is a Schrödinger
equation in a different basis [14].
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3.2.5. Schwinger Representation

We introduce operators analogous to those used in the quantum theory of angular momentum
[35],[40]

Jx =
1

2

(
b̂†l b̂r + b̂†rb̂l

)
=
J+ + J−

2
(3.25)

Jy =
1

2i

(
b̂†l b̂r − b̂

†
rb̂l
)

(3.26)

Jz =
1

2

(
b̂†l b̂l + b̂†rb̂r

)
= n̂. (3.27)

Thus, the hamiltonian can be written as

H =
U

2
J2
z − 2JJx + εJz. (3.28)

3.2.6. Single-Particle Density Matrix

When looking at the dynamics of a system, it is convenient to have a tool to locate the conden-
sate over time [41]. One way to predict that is to calculate and diagonalize the Single-Particle
Density Matrix (SPDM) [29], which is defined as

ρ(x, x′) = 〈Ψ̂†(x)Ψ̂(x′)〉, (3.29)

where Ψ̂†(x) is a field operator creating a particle at position x and the average is taken over a
quantum many body state in a Fock state basis |Φ〉 =

∑N/2
n=−N/2 cn|n〉 (similar to 3.3).

In the two-mode approximation with the left and right modes we can write

ρ(x, x′) =
(
φ∗l (x) φ∗r(x)

)
MSPDM

(
φl(x

′)

φr(x
′)

)
, (3.30)
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where the 2× 2 single particle density matrixMSPDM reads as

MSPDM =

 ∑
n

(
N
2

+ n
)
|cn|2

∑
n

√
N
2

+ n+ 1
√

N
2
− n (c∗n+1cn)∑

n

√
N
2
− n+ 1

√
N
2

+ n (c∗n−1cn)
∑

n

(
N
2
− n

)
|cn|2

 .

(3.31)

When diagonalizing the SPDM, we get two eigenvectors and their associated eigenvalues. The
two-dimensional complex-valued eigenvectors Ψ+ and Ψ− give the natural orbitals, which are
linear combinations of the two original modes, here left and right. Since the SPDM is hermitian,
the eigenvalues N+ and N− are real and give the populations of the corresponding eigenstates
[29]. If one eigenvalue is much larger than the other, the corresponding eigenstate is macro-
scopically occupied, which is associated with the condensate. If the eigenvalues are similar, the
condensate is fragmented [25]. Both the eigenvectors and the eigenvalues can evolve over time
starting from an initial state, however, they always fulfill the following constraints

N+ +N− = Ntotal (3.32)

|Ψ±|2 = 1. (3.33)

Later, we will use different choices of initial states: Fock state, Coherent state, Pegg Barnett
state, and the eigenstate of the Hamiltonian. All of them will be presented in chapter 5, where
we discuss the dynamics of a BEC in a slowly rotating ring trap.

3.2.7. Mean-Field Theory

When we assume the system is in a pure condensate, we can replace the operators in the Hamil-
tonian 3.11 with complex numbers b̂l/r =

√
Nl/r exp (iφl/r). Remeber the parameter ε 3.12 and

Λ 3.13 and define the relative population difference z and the phase difference φ

z ≡ Nr −Nl

N
(3.34)

φ ≡ φr − φl, (3.35)

where also conservation of total particles N = Nr +Nl must hold [23].

14
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Plugging all of that in the Hamiltonian 3.11 leads to the mean-field Hamiltonian [22]

HMF = lim
N→∞

H

NJ
=

Λ

2
z2 −

√
1− z2 cos(φ) + εz. (3.36)

The Hamiltonian 3.36 suggests that, if we identify z with the angular momentum and φ with
the angular displacement, the system can be interpreted as a non-rigid pendulum of momentum
of inertia Λ−1, where the length depends on the angular momentum [37]. Therefore, the many-
body system can be described by a non-linear single particle, which is more accurate if all
bosons occupy the same state.

3.2.8. Hamilton’s Equations

Generally, Hamilton’s equations of motion are the derivatives of the Hamiltonian with respect
to the canonical coordinates z and φ as follows

ż = −∂H̃
∂φ

(3.37)

φ̇ =
∂H̃
∂z

. (3.38)

Applying this to the Hamiltonian 3.36 leads to the following equations of motion

φ̇ = Λz +
z√

1− z2
cos(φ) + ε (3.39)

ż = −
√

1− z2 sin(φ), (3.40)

which are the Josephson equations for this system [31]. For the case z = ±1 (all bosons in one
well), equation 3.39 has a singularity. To find stationary points, the equations of motion must
satisfy φ̇ = ż = 0. For equation 3.40 this is rather easy to achieve, by simply choosing φ0 = 0

or π, [44]. In the pendulum analogy, the point φ0 = 0 corresponds to a pendulum hanging
straight down, while φ0 = π would be a pendulum standing upright. For either choice, we can
then solve equation 3.40 to find its roots z0(ε,Λ). These solutions are shown in figure 3.2 as
a function of Λ and display the characteristic shape of a pitchfork bifurcation where a single
stable solution becomes unstable and at the same time two new stable solutions appear. In the
presence of a tilt, the left/right symmetry of the double-well potential is broken and we obtain
a broken pitchfork.

15



Denise Kamp M. Sc. Thesis 2022

a) b)

c) d)

Figure 3.2.: Stationary solutions z0(ε,Λ) of the equations of motions in dependence of Λ for a
fixed tilt (upper row: ε = 0, lower row: ε = 0.1) result in a bifurication picture,
where multiple solutions appear/disappear. The choice of φ0 (left: φ0 = 0, right:
φ0 = π) determines the orientation of the pitchfork. The dashed lines represent the
unstable solutions according to figure 3.4.
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Once we calculate z0(ε,Λ) for given φ0 = 0, π, we can plug those back into the Hamiltonian
3.36 to find the energy of the stationary points in dependence of Λ and ε, as shown in figure 3.3.

a) b)

Figure 3.3.: Energy of the system, using stationary solutions z0(ε,Λ) with φ0 = π (postitve
energies) and φ0 = 0 (negative energies) for different values of Λ with a) no tilt and
b) ε = 0.1. The dashed lines represent unstable solutions according to figure 3.4.

3.2.9. Stability Analysis

In general, we distinguish between two types of instabilities. There are dynamical instabilities
for excitations with complex energies, such that their amplitudes grow or decay exponentially
[43], causing a singularity; and then there are energetic instabilities, for excitations with nega-
tive energies [19], giving the system a tool to lower its energy by exciting particles out of the
condensate.
Now, we are interested in investigating the stability of the stationary points [36]. Therefore,
we perfom a linear stability analysis, for which we diagonalize the Hessian matrix 3.45 of the
Hamiltonian 3.36 using the stationary solutions φ0 = 0, π and z0(ε,Λ) = z0 (for brevity). First,
we introduce the following ansatz for the time dependence of z0 and φ0 with small pertubations
δz ∝ exp(iωt) and δφ ∝ exp(iωt)

φ(t) = φ0 + δφ→ φ̇ = iωδφ (3.41)

z(t) = z0 + δz → ż = iωδz. (3.42)

The fluctuations are reduced to harmonic oscillators with the frequency ω. Performing a Taylor
expansion of the Josephsons equations around the roots in the form of f(z0 + δz, φ0 + δφ) =

f(z0, φ0)︸ ︷︷ ︸
=0

+∂f(z0,φ0)
∂z

δz + ∂f(z0,φ0)
∂φ

δφ leads to the following expressions, where the tilt ε from
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equation 3.39 vanishes due to the second derivatives

φ̇(z0 + δz, φ0 + δφ) =

(
Λ +

1

(1− z2
0)

3
2

cos(φ0)

)
δz − z0√

1− z2
0

sin(φ0)δφ (3.43)

ż(z0 + δz, φ0 + δφ) = − z0√
1− z2

0

sin(φ0)δz −
√

1− z2
0 cos(φ0)δφ, (3.44)

summarized in the following matrix, which is the Hessian of the Hamiltonian 3.36

iω

(
δφ

δz

)
=

 − z0√
1−z20

sin(φ0) Λ + (1− z2
0)−

3
2 cos(φ0)

−
√

1− z2
0 cos(φ0) − z0√

1−z20
sin(φ0)

(δφ
δz

)
. (3.45)

For both φ0 ∈ {0, π} the diagonal terms vanish since sin(φ0) = 0. Finding the eigenvalues of
the Hessian Matrix 3.45 leads to

ω =

√
(1− z2

0)
1
2 cos(φ0)

(
Λ + (1− z2

0)−
3
2 cos(φ0)

)
, (3.46)

where we need to remember that z0 = z0(ε,Λ). Therefore, the tilt influences the solutions
through the root of the Josephson equation. For real frequencies ω, we find a stable oscillation,
whereas, for imaginary frequencies, the fluctuations ∝ exp(iωt) grow or decay exponentially.
The frequencies 3.46 dependent on Λ are displayed in figure 3.4 compared to the corresponding
bifurcation pictures from 3.2. Here, it is obvious that the stable solution for |Λ| < 1 becomes
unstable as soon as the two branches occur at |Λ| = 1. The tilt ε shifts the emergence of the two
new branches slightly away from |Λ| = 1.
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a) b)

c) d)

Figure 3.4.: The frequencies from equation 3.46 can be real (solid lines) or imaginary (dashed
lines) for different values of Λ. The emergence of multiple frequencies at |Λ| = 1
stem from the emergence of new roots z0(ε,Λ) displayed in figure 3.2. Here, we
see the frequencies ω for a fixed tilt (upper row: ε = 0, lower row: ε = 0.1) for
different choices of φ0 (left: φ0 = 0, right: φ0 = π).
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3.3. Toroidal Trap System

Similar to the double-well system, we can reduce a BEC in a toroidal trap to a two-mode
problem. Here, the modes represent the non-rotating state and the first rotational state. Since
angular momentum from the rotation is quantized [1], we only consider the states with the
lowest angular momenta zero and ~. One difference compared to the double-well system is
that the two modes of the toroidal trap occupy the same space [11]. This leads to an additional
exchange energy term Eex in the Hamiltonian 3.47.
In a toroidal trap, the condensate is located within an annulus, shown in figure 3.5. Experimental
realizations are further discussed in chapter 3.5. The BEC within the trap can be rotated, which
mathematically can be represented by a periodic disorder potential.

Figure 3.5.: Sketch of a toroidal trap with total radius R and cross-sectional radius of the annulus
r0. The notch on the top represents the later discussed disorder potential stirring the
condensate (pink), otherwise a superfluid would not feel the rotation of a perfectly
smooth trap.

3.3.1. Two-Mode Approximation and Motivation

As previously stated, we will focus on the two-mode approximation in our calculation, for
which the Hamiltonian takes the Nozières form [2]

H =
~2

2mR2
N1 +

g

2V

(
N2

0 +N2
1 + 4N0N1︸ ︷︷ ︸

Eex

)
, (3.47)

20



Denise Kamp M. Sc. Thesis 2022

where m is the mass of the particle, R is the radius of the thin annulus, V = 2π2r2
0R is the

volume of the annulus with the cross-sectional radius r0 � R and g is the contact interaction
strength. N0 is the number of particles in the non-rotating state |0〉, whileN1 denotes the number
of particles in the state |1〉 with the azimuthal angular momentum ~ per particle. The total
number of particles isN = N0 +N1 and the state withN = N0 is referred to as the groundstate,
while N = N1 is the single-vortex state. The exchange energy term Eex in 3.47 gives an
additional 2N0N1 term, also referred to as Fock term [11], compared to (N0 + N1)2 = N2,
which is called Hartree term [11], leading to an energy barrier between the groundstate and
the single-vortex state [11], when gN/V > ~2/2mR2 (blue curve in figure 3.6). Weakening
the interaction strength g even further leads to a decrease of the barrier until it vanishes for
gN/V � ~2/2mR2, as shown in figure 3.6. Note that the interaction can still be repulsive for
this to occur.

Figure 3.6.: Energy landscape of the two-level model as a function of N1. For gN/V >
~2/2mR2 (blue line), there is an energy barrier between the groundstate and the
single-vortex state. For gN/V = ~2/2mR2 (orange line), the slope vanishes at
N1 = N . For gN/V � ~2/2mR2 (green line) there is no energy barrier indi-
cating the instability of the single-vortex state, especially in the attractive regime.
Reproduced plot from [2].

From figure 3.6, we can see that for a condensate located on the green line in the single-vortex
state (all the way to the right of the plot) it would cost no energy to relocate to the groundstate
(all the way to the left). All the system needs is to find a way to lower its energy. Here,
excitations with negative energies (energetically unstable) give the single vortex BEC a way of
lowering its energy. In the following, we investigate how such excitations arise in this system.
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3.3.2. Second Quantized Hamiltonian in Different Frames

To represent the system of a BEC in a rotating toroidal trap, we can write the Hamiltonian in
terms of the operators a†j and aj , which create and annihilate a particle with momentum ~j.
However, we also have to make a choice in which frame we work [2].

First up, there is the laboratory frame Hamiltonian

Hlab =
∑
j

(~j)2

2mR2
a†jaj +

g

2V

∑
j,k,m

(a†j−ma
†
k+makaj), (3.48)

where g = 4π~a
m

is the two-body interaction strength mentioned earlier and V = 2π2r2
0R is the

volume of the annulus. In this frame, the condensate Ψc is a solution to the time-dependent GPE.

In the rotating frame, the Hamiltonian Hlab is shifted by the angular velocity Ω of the trap in
units of Ω0 = ~

mR2 . Obviously for Ω = 0 both frames are equal.

Hrot =−N ~Ω2

2Ω0

+
~Ω0

2

∑
j

(
j − Ω

Ω0

)2

a†jaj +
g

2V

∑
j,k,m

(a†j−ma
†
k+makaj). (3.49)

In the following, we want to restrict the system to the two-mode approximation.

Figure 3.7.: Single particle energy level in the rotation frame from Hamiltonian 3.49 depend-
ing on the angular velocity Ω. The two-mode restriction is indicated by the black
square. Reproduced plot from [2].
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Thus, looking at figure 3.3.2 helps us to estimate the interval of Ω for which only the non-
rotating mode (green, j = 0) and the first rotating mode (red, j = 1) are involved on a small
energy scale (black square). We estimate that regime to be around

0.25Ω0 . Ω . 0.75Ω0. (3.50)

Applying the two-mode approximation to Hamiltonian 3.48 leads directly to the Hamiltonian
in Nozières form 3.47, however, this breaks angular momentum conservation since the j = −1

mode is not considered.

3.3.3. Linearized GPE

From the GPE in the laboratory frame

i~∂tΨc(θ, t) =
[
− ~2

2mR2

∂2

∂θ2
+

g

πr2
0

|Ψc(θ, t)|2
]
Ψc(θ, t) (3.51)

we get the stationary solution Ψc(θ, t) = ei(θjc−µt/~)/
√

2πR representing the condensate with
the chemical potential

µ =
j2
c

2
+ ηNc, (3.52)

where we introduced the dimensionless parameter η ≡ mRg/2π2~2r2
0 = 2aR/πr2

0 representing
the interaction strength [2]. From now on, we measure angular momentum in units of ~, time
in units of Ω−1

0 and energies in units of ~Ω0 and introduce another dimensionless parameter
Ω ≡ Ω/Ω0. We focus on the case with a condensate of Nc atoms in the single-vortex state |1〉,
for which jc = 1 and therefore µ = 1

2
+ ηNc, since that was the motivation from figure 3.6.

Now, we want to determine the stability of the condensate by constructing normal modes of the
BEC by perturbation around the stationary solution [2], [17],[21] as follows

Ψ(θ, t) = e−iµt/~
[
Ψc(θ) + eiS(θ)

∑
ν 6=0

(
uνϕν(θ)e

−iενt/~ − v?νϕ?ν(θ)eiενt/~
)

︸ ︷︷ ︸
δΨ(θ,t)

]
(3.53)

with the angular momentum ν relative to the condensate, the eigenenergies εν , the eigenstates
ϕν(θ) = eiνθ

√
Nc/2πR, the complex numbers uν ans vν and S(θ) the phase of Ψc(θ) [2].
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Here, we do not apply the two-mode approximation and any ±ν modes around the condensate
are considered. Plugging the perturbation 3.53 into the GPE 3.51 leads to coupled equations
that can be written as the following matrix

εν

(
uν

vν

)
=

(jc − Ω̄)ν +
[

1
2
ν2 + ηNc

]
−ηNc

ηNc (jc − Ω̄)ν −
[

1
2
ν2 + ηNc

](uν
vν

)
. (3.54)

Finding the eigenvalues of the matrix 3.54 gives the eigenenergies εν for the excitations.

εν+,− =(jc − Ω̄)ν ± |ν|
√

1

4
ν2 + ηNc, (3.55)

where jc = 1 again for a BEC in the single vortex mode. In the following we only consider the
eigenenergies εν+ for positive norm states [2]. If those energies are complex e.g. 1

4
ν2+ηNc < 0,

the system is dynamical instable. Energetic instabilities occur for negative excitation energies,
which figure 3.6 predicted to be found here. Figure 3.8 shows those regions of instabilites for
excitations in the ν = −1, non-rotating mode.

Figure 3.8.: Phase diagram for the ν = −1 mode (non-rotating mode with j = 0) excitations in
a BEC located in the single vortex state (ν = 0, j = 1). The excitations are ener-
geticly unstable (blue) for excitation energies εν < 0 and dynamically unstability
(orange) for complex εν . Now, to ensure the two-mode approximation is valid, we
must keep within the estimated interval 0.25Ω0 . Ω . 0.75Ω0 as established in
equation 3.50. Reproduced plot from [2].
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3.4. Idea of Catastrophe Theory

Generally, Catastrophe Theory is part of bifurcation theory in dynamic systems, where two or
more solutions appear or disappear while slowly changing the parameter of the system as we
have seen in the bifurcation pictures 3.2 from the double-well system. As we know, some of
those solutions turn out to be unstable. Originally, catastrophe theory was used to describe
caustics in optics, which are regions of focussing with infinite intensity, basically singularities.
The shapes of the caustics are structurally stable. In the table presented in 3.9 b), we state the
generating functions of different catastrophe shapes with their co-dimensions1 K ≤ 3.

a)

b)

Figure 3.9.: a) Example of a cusp shaped caustic in a coffe cup[27]. b) Table of structurally
stable catastrophes and their generating functions with co-dimension K ≤ 3 [23].
R represents the control parameters and s the state variables.

Caustics have also been found in wave theory, where the consideration of a phase leads to an
interference pattern with caustics where phase singularities occur. Taking it even further, one
can also find quantum caustics, which occur when looking at the collective dynamics of the
system in Fock space, which is the quantum mechanical Hilbert space. Even though we will
not go into further detail about catastrophe theory and its mathematical description within the
purpose of this thesis, we will encounter and point out the cusp catastrophes we come across
when investigating the dynamics of a two-mode BEC in a toroidal trap in chapter 5.

1Co-dimension is defined as dimensionality of control space minus dimensionality of singularity [24].
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3.5. Experimets with BECs in a Toroidal Trap

Many research groups are interested in experimentally realizing superfluids in ring traps [4],[18].
For example, at the Joint Quantum Institute the group around G. Campbell is working with so-
called atom circuits [6],[26],[32],[42]. Here, they create a superfluid BEC of approximately
500, 000 sodium atoms at temperatures about 100nK trapped into a ring shape. This is done by
using an arrangement of 1064nm lasers to optically trap the atoms in a toroid, which is about
40µm wide with a cross-sectional diameter of 8µm. Just as for superconductors in a ring, the
angular momentum of the BEC is quantized. Thus, the current in the ring can only flow at spe-
cific velocities. For the purpose of this thesis, we only focus on the lowest two angular momenta
zero and ~, which correspond to a single vortex. To excite bosons from the groundstate to any
excited state, hence giving them angular momentum, one can manipulate the angular velocity
of the trap Ω̄. Here, they use an additional 532nm laser exerting repulsive force on the bosons
as an optical paddle to stir the BEC around. Those velocities can be up to 4Hz. Using Feshbach
resonances [28], one can tune the interactions η in a BEC to be attractive or repulsive, which is
equivalent to tuning Λ ∝ η in our calculations.

Figure 3.10.: Picture taken from G. Campbell’s experiment, showing a toroidal trap with total
diameter of 40µm. Here, the rotation of the BEC is induced by a green laser
stirring along the annulus. Picture taken from [5].
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4. BEC in Toroidal Trap

Starting our calculations for a BEC in a rotating toroidal trap, we remember from chapter 3.3.1
that the Hamiltonian can be written in different frames. Previously, we discussed the laboratory
frame 3.48 and the rotating frame 3.49.
However, let us also introduce the frame relative to the condensate, where we shift the angular
momentum j in Hlab =

∑
j

(~j)2
2mR2a

†
jaj + g

2V

∑
j,k,m a

†
j−ma

†
k+makaj from equation 3.48 to be

relative to the condensate ν = j − jc [2], thus

Hrel =
∑
ν

~2(ν + jc)
2

2mR2
a†νaν +

g

2V

∑
j,k,m

a†j−ma
†
k+makaj. (4.1)

If the condensate is in the groundstate (non-rotating state |0〉) both frames are the same, but if
the BEC is in the single vortex-state (rotating state |1〉) we know that jc = 1.

4.1. Bogoliubov Transformation

As discussed in chapter 3.2.2, we can find the eigenenergies of the system by linearizing the
GPE. However, from chapter 3.2.3 we also know the alternative way is to apply Bogoliubov
theory [7], which we will do in the following section. For this, we will focus on the relative
frame Hamiltonian 4.1, where the condensate per definition is in the ν = 0 mode with the
respective ladder operators a†0 and a0. Considering the BEC to be in the single-vortex state,
we set the actual condensate momentum to jc = 1. We will also calculate the eigenenergy in
units of ~2

mR2 . For brevity, we introduce the dimensionless interaction strength η ≡ gmR2

V ~2 . For
the Bogoliubov transformation, we consider excitations around the condensate, thus, we bring
the Hamiltonian in a form containing only interactions, where two or four particles from the
condensate are involved 1. The Hamiltonian now reads as

1We do not consider the two-mode approximation here, so any ±ν modes around the condensate are considered.
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Hrel =
1

2
a†0a0 +

η

2
a†0a

†
0a0a0 +

∑
ν 6=0

(ν + 1)2

2
a†νaν +

η

2

∑
ν 6=0

(4a†νa
†
0aνa0 + a†νa

†
−νa0a0 + a†0a

†
0aνa−ν).

(4.2)

Note that this Hamiltonian would be already diagonal for no interaction η = 0. However, in the
general case of η 6= 0 we need to diagonalize the Hamiltonian in order to find the eigenenergies.
We can replace the condensate operator a0 and a†0 →

√
N0 ≈

√
N as discussed previously.

However, we need to be careful this time since the condensate is not in the groundstate [9].
When replacing the operators, we have to remember the kinetic energy correction

Ekin,cor = −j
2
c

2

∑
ν

a†νaν , (4.3)

which usually vanishes for groundstate BECs. However, we are considering the BEC to be in
the first excited state |1〉 with jc = 1. Also note, that this correction sum also includes the ν = 0

mode, therefore, cancels out the 1
2
a†0a0 term in the front.

Additionally, we must be careful when replacing the condensate operators in the term containing
four of them. For this, we have to consider the following higher-order correction term [9],[29]

a†0a
†
0a0a0 = N2 − 2N

∑
ν 6=0

a†νaν . (4.4)

Considering both of these corrections is equivalent to shifting to the grand canonical ensemble,
where whereHGC = Hrel−µ

∑
ν a
†
νaν . After carefully replacing the condensate operators, the

Hamiltonian reads

HGC =
η

2
N2 +

∑
ν

((ν + 1)2

2
−1

2
− ηN︸ ︷︷ ︸
−µ

)
a†νaν +

η

2
N
∑
ν 6=0

(4a†νaν + a†νa
†
−ν + aνa−ν), (4.5)

with the chemical potential resulting from the correction terms would be µ = 1
2

+ ηN . This is
equivalent to the chemical potential 3.52 found in the GPE calculations in the earlier chapter.
Now, we can rearrange our Hamiltonian to look like

28



Denise Kamp M. Sc. Thesis 2022

HGC =
ηN2

2
+
∑
ν 6=0

([ν2

2
+ ν + ηN

]
a†νaν +

ηN

2
(aνa−ν + a†νa

†
−ν)
)
. (4.6)

Before performing the Bogoliubov Transformation it might help to shift the index of the sum
from ν 6= 0 to ν > 0 as follows

HGC =
ηN2

2︸︷︷︸
E0

+
∑
ν>0

( [ν2

2
+ ν + ηN

]
︸ ︷︷ ︸

A+

a†νaν +
[ν2

2
− ν + ηN

]
︸ ︷︷ ︸

A−

a†−νa−ν + ηN(aνa−ν + a†νa
†
−ν)
)
,

(4.7)

to keep track of the sign of the relative angular momentum ν. Here, we defined

A± ≡
(ν2

2
± ν + ηN

)
. (4.8)

Following the Bogoliubov theory from chapter 3.2.3, we introduce the new operator b†γ which
is a linear combination of the previous bosonic ladder operators

b†γ = (uγa
†
γ − vγa−γ), (4.9)

where γ is also angular momentum relative to the condensate and [bγ, b
†
β] = δγ,β . Since b†γ is

designed to be an eigenoperator of the Hamiltonian, [HGC , b
†
γ] = ~ωγb†γ must hold. Performing

the commuator calcualtion [HGC , b
†
γ] = HGCb

†
γ − b†γHGC with the Hamiltonian 4.7 and the

Bogoliubov operator 4.9, we find

~ωνb†ν = A+uνa
†
ν + A−vνa−ν + ηNuνa−ν + ηNvνa

†
ν , (4.10)

for ν > 0 with A± defined in equation 4.8. Replacing b†ν with equation 4.9 again, leads to the
following non-hermitian eigenvalue equation
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(
A+ ηN

−ηN −A−

)(
uν

vν

)
= ~ων

(
uν

vν

)
. (4.11)

Solving for the eigenvalues of this matrix leads to

~ων =
(A+ − A−)

2
±
√

(A+ − A−)2

4
+ A+A− − η2N2, (4.12)

where we can use the definition of A± from equation 4.8. The eigenenergies turn out to be

Eν = ν ± |ν|
√
ν2

4
+ ηN. (4.13)

If we want to shift this result into the rotating frame, we simply perform a Galilean shift[8],[15]
with the dimensionless angular velocity Ω̄ = Ω

Ω0
. With that, we arrive at the expression

Eν = (1− Ω̄)ν ± |ν|
√
ν2

4
+ ηN, (4.14)

which is exactly the result 3.55 we got when linearizing the GPE [2], presented in chapter 3.3.1.
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4.1.1. Mapping onto Double Well

To compare the BEC in the toroidal trap to the double-well system, we need to apply the two-
mode approximation. As mentioned before in chapter 3.3.1, this breaks angular momentum
conservation. However, to compensate for that, we need to extend our description by includ-
ing the rotation of the trap explicitly. If the trap was perfectly round and smooth, the BEC
would not feel the rotation at all. Therefore, we introduce a disorder potential υ(θ − Ωt) with
υ(θ) = 2υ cos(θ), where υ must be real and positive [2]. There are two ways one can visual-
ize the physical meaning of υ(θ) in the trap. First would be a periodically rotating notch (like
shown in figure 3.5), making the trap less smooth and stirring the condensate. The second is a
deformation of the annulus to an ellipse, like a cosine traveling along the ring. Either way, the
disorder potential represents the coupling between the modes and gives a tool for the particles
to change modes, much like tunneling in the double-well potential, given by the parameter J .
It is completely time-independent in the rotating frame, which is why we will be starting from
the Hamiltonian 3.49 in this section.
Trying to find the expectation values of this Hamiltonian 〈Ψ|Hrot|Ψ〉, we can choose Ψ to be
a coherent state. This is a convenient choice since coherent states are the eigenstate of the
ladder operators, which are the only operators appearing in our Hamiltonian. Therefore, we
can replace them with the complex eigenvalues aj →

√
Ncj , where cj ∈ C. In the two-mode

approximation we only consider j = 0, 1, thus, |c0|2 + |c1|2 = 1 must hold. The coupling term
between the condensates from the disorder potential reduces to 2NυRe(c∗1c0) and we arrive at

H = N
(1

2
− Ω̄

)
|c1|2 +

ηN2

2

(
1 + 2|c0|2|c1|2

)
+ 2NυRe(c∗1c0). (4.15)

Dividing through by Nυ gives us the new Hamiltonian H̃ = H
Nυ

as follows

H̃ = 2ε|c1|2 + Λ
(
1 + 2|c0|2|c1|2

)
+ 2Re(c∗1c0), (4.16)

where we used the following definitions, which are the equivalents to the double-well parame-
ters used in chapter 3.2 and function as a translation between the systems

ε ≡
(

1
2
− Ω̄

)
2υ

Λ ≡ ηN

2υ
. (4.17)
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Similarly to the double-well case, we want to express the Hamiltonian in terms of a phase
difference φ and a relative particle number difference z. To get there, we rewrite the complex

numbers as cj =
√

Nj
N
eiφj so that we can define2

z ≡ |c0|2 − |c1|2 φ ≡ φ1 − φ0. (4.18)

For the coupling term that means Re(c∗1c0) ∝ Re(eiφ) = cos(φ). Now, we also keep in mind
that 1 = |c0|2 + |c1|2. With all that, we arrive at

H̃ = ε+
3Λ

2︸ ︷︷ ︸
const .

−εz − Λ

2
z2 +

√
1− z2 cos(φ). (4.19)

Therefore, the Hamiltonian up to constant terms is exactly the negative of the double-well mean-
field Hamiltonian 3.36, which can be remodeled with the following transformation

Λ→ −Λ (4.20)

φ→ φ+ π (4.21)

ε→ −ε, (4.22)

which, in the pendulum analogy, corresponds to a pendulum staying upright. Even without
that transformation, we can get to the same equations of motions, due to the slightly different
definition of φ, since both the Hamilton’s equations 3.37 and 3.38 gain a global negative sign3

when using the new definition of φ from 4.18 instead. Further details on the derivation are given
in the appendix A.1. Considering the rescaling of time τ = 2υt, we arrive at

dz

dτ
= −
√

1− z2 sin(φ), (4.23)

dφ

dt
= cos(φ)

z√
1− z2

+ Λz + ε, (4.24)

which agree with the equations of motion 3.39 from the double-well case.

2Note that the definition of φ is different by a negative sign from the definition 3.35 in the double-well case.
3For equation 3.37: sin(φ)→ − sin(φ), and for equation 3.38: φ̇→ −φ̇.
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5. Dynamics

In this chapter, we will explore the dynamics of a BEC in a toroidal trap. Here, we compare the
mean-field (classical) trajectories with the quantum predictions. Since the Josephson equations
4.23 and 4.24 turned out to be the same for the toroidal trap system and the double-well system
[38],[44], we expect the same phase transition to happen for the critical values |Λ| = 1, which
were discussed in the bifurcation pictures 3.2 for the double well, which will be further explored
in the following. Here, the universal features of the cusp catastrophe appear in the dynamics.

5.1. Mean-Field Trajectories

Using the Josephson equations of motion 4.23 and 4.24 derived in the previous chapter, we
can predict the dynamics of the system after starting from a chosen initial condition zi, φi.
In classical physics, we can pick any pair of zi, φi to watch the system evolve. However, to
mimic an initial quantum state, we perform a so-called truncated Wigner approximation [13],
[20],[30],[34]. We choose many different values for the phase difference φi, while picking
one specific number difference zi, which gives a pseudo-Fock state. Figure 5.3 gives a good
overview of the color code used to denote the different initial phase differences. All mean-field
trajectories are results from the classical equations of motion. Besides the initial condition, we
can also manipulate the dimensionless interaction Λ [38] and the angular velocity of the trap Ω̄

[26]. For the latter, we must ensure to stay within the regime where the two-mode approximation
is valid: 0.25 < Ω̄ < 0.75, as discussed in equation 3.50. We calculated the expectation value
of the population difference, which is the average over all trajectories denoted by a blue curve in
the plots. In Appendix A.2 we present the effect of the parameters Λ, Ω̄ and zi on the dynamics.
To explore the expected phase transitions for the critical values |Λ| = 1, we plot the classical
trajectories in a phase diagram 5.1, which gives equivalent insight for the toroidal system as
the bifurcation pictures 3.2 did for the double well system [39],[44]. Here, we pick the critical
value Λc = −1, where the stable fixed point at φ = 0 (blue point in Bloch sphere figures 5.1)
becomes unstable and two new stable fixed points emerge.
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a) b)

c) d)

Figure 5.1.: Mean-field phase space trajcetories derived from the Josephson equation (4.23,
4.24) with Ω̄ = 0.5 (thus ε = 0) and zi = ±0.7. The many initial phase differ-
ences φi are donoted by the colors, where yellow and pink trajectories form the flat
phase space (left) overalp in the Bloch sphere representation (right). Here, we tune
the parameter Λ from Λ = −0.75 (upper row) past the critical values Λc = −1,
for which the stationary point φ = 0 becomes unstable, to Λ = −1.25 (lower
row). This reproduces the essence of the bifurcation pictures 3.2 in the double-well
system.
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The phase space trajectories show how the two parameters z and φ evolve over time, depending
on their initial conditions zi and φi. Here, we chose the same zi for all trajectories. In the usual
phase space representation in figure 5.1 (left), the different values for φi are denoted by different
colours. Here, the yellow and purple trajectories connect at the edge at φ = ±π. Another way
of representing the phase space trajectories is on a sphere, where the projection on the z-axis
represents the population difference and the azimuthal angle φ the phase difference. The radius
is set to one. Here, the previously yellow and pink trajectories overlap. We explicitly show
the initially stable fixed points at φ = 0, π (blue and red points) and all the oscillations around
them. The oscillations with 〈φ〉 = π (red point) are called π-oscillations and 〈φ〉 = 0 (blue
point) plasma oscillations [44]. Both representations in figure 5.1 give great insight into the
behavior of the trajectories when tuning Λ past the critical value Λc = |1|. The sign of the
critical value Λc = ±1 determines, whether plasma oscillations or π-oscillations undergo the
topological phase transition, as shown in the appendix in figure A.7.

For Λ > −1, we can clearly see the elliptical shape of the plasma oscillation trajectories. They
become narrower approaching the critical value, where the closest trajectory (blue line in flat
phase space) breaks up into a figure eight like shape through the stationary point forming a
Cassini oval, which constitutes a topological phase transition1. Tuning Λ < −1, some trajecto-
ries get trapped inside one loop of the figure eight and revolve around new stable fixed points
〈z〉 6= 0, which is referred to as self-trapping [44]. Note that each of the two new fixed points
stems from one of the two initial conditions zi = ±0.7. Looking at the Bloch sphere representa-
tion, those fixed points are located on opposite hemispheres. In order for both points to emerge,
we need to consider both initial conditions, otherwise, the symmetry is broken. The self-trapped
trajectories correspond to the stable bifurcation branches seen in the pitchfork pictures 3.2 [39].
Other trajectories still encircle the whole figure eight and all trajectories inside including the
point φ = 0 at 〈z〉 = 0. Those correspond to the unstable solution (dashed line) in figure 3.2.
The same behavior is evident in the classical trajectories in Fock space, figure 5.2. Initially, for
Λ > −1, all trajectories oscillate through the whole of Fock space with 〈z〉 = 0. However,
for Λ < −1, some trajectories for previously stable plasma oscillations (light blue lines in fig-
ure 5.2) are now self-trapped on one side of Fock space, oscillating around a fixed value2 with
〈z〉 6= 0. The π-oscillations (red lines) remain the same. Considering only one initial condition
zi = −0.7 leads to symmetry breaking, where trajectories are self-trapped around only one of
the fixed points3.

1The Bloch sphere for this scenario is shown in figure 1.1 in the abstract.
2Corresponding to just one of the new stable fixed point in figure 3.8.
3Plotting all trajectories for both initial conditions at once is shown in the appendix in figure A.5 for Λ > 1.
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a)

b)

Figure 5.2.: Mean-field trajectories in Fock space from the Josephson equations (4.23, 4.24)
with Ω̄ = 0.5 (thus ε = 0) and zi = −0.7, for the many different initial phase
differences φi, denoted by the colors. Here, we tune the parameter Λ from a) Λ =
−0.75 past the critical values Λc = −1, for which the stationary point φ = 0
becomes unstable, to b) Λ = −1.25. Some trajectories with φi ≈ 0 (light blue) are
self-trapped on one side of Fock space due to the bifurcation effect shown is 5.1
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Looking at the Fock space trajectories 5.2, we can clearly see that some of them refocus through-
out the time evolution. For different amplitudes φi, the oscillation is faster or slower causing the
trajectory to overshoot or miss the focus point. This leads to the appearance of cusp shapes, as
introduced in chapter 3.4. In the case of Λ > −1, before the bifurcation, two types4 of cusps ap-
pear with different orientations. For π-oscillations (red lines in figure 5.2), cusps emerge from
the focus point facing forward, whereas, for plasma oscillations (blue lines), the cusps are facing
backward, eventuating in a focus point5. Once Λ passes the critical value, the backward-facing
cusps vanish due to the self-trapping. Considering the time-evolution of the phase difference
φ in phase space 5.3 gives further insight into the behavior of the system when undergoing the
phase transition. Here, for either choice of Λ, the π-osciallations (red lines) clearly revolve
around 〈φ〉 = π and the plasma oscillations (light blue lines) around 〈φ〉 = 0. The Cassini
oval shape of the trajectories in figure 5.1 causes the phase space trajectories for the plasma
oscillations to be rather flat. Since the trajectories of π-oscillations approach a circle shape,
their phase space representation takes a more familiar sine function form. It is evident that once
Λ < −1, some of the plasma oscillations (light blue lines) stay closer to their initial value as
they become self-trapped around the new stable fixed points, which are the foci of the Cassini
oval. If we considered the other critical point Λ = 1, where the π-oscillations become unstable,
the red lines would stay closer to their initial values due to self-trapping, as shown in figure A.4.
If Λ � |1|, all trajectories will be self-trapped around one of the stable fixed points. Now, we
remember that Λ ∝ η/υ (from equation 4.17), where η is the interaction strength and υ the
coupling parameter between the modes (much like U and J in the double-well system, respec-
tively). Very large magnitudes of Λ correspond to a very small coupling between the modes.
Therefore, bosons are less likely to switch modes, such that they mostly remain in their initial
modes. Hence, the population difference varies only slightly, keeping most of the trajectories
on one side of Fock space, as shown in figure A.3 for Λ = 5.
In the following discussion, we will choose Λ = 2 to see how the self-trapped solutions behave
in different scenarios. For plots with zi 6= 0, we set the angular velocity to be Ω̄ = 0.5 (thus
ε = 0 per definition 4.17), such that neither of the modes is energetically preferred. Therefore,
the already busy plots don’t get any more confusing than necessary. However, for any plots with
zi ∼= 0, we will assume a faster rotation6 of Ω̄ = 0.7, such that the average over all trajectories
is not simply a straight line but more insight about the system.

4The appearance and disappearance of the second set of cusps stem from the additional factor of
√

1− z2 in the
Josephson equation 4.23 compared to a simple sine function, which is discussed in [24]

5If we consider the other critical value Λc = 1, the backward-facing cusps appear for the π-oscillations as shown
in figure A.4.

6Remember to keep Ω̄ within the regime given in 3.50, for which the two-mode approximation is valid.
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a)

b)

Figure 5.3.: Mean-field trajectories of the phase difference with Ω̄ = 0.5 (thus ε = 0) and
zi = −0.7 (only one side of Fock space, thus, breaking the symmetry), for the
many different initial phase differences φi, denoted by the colors. Here, we tune
the parameter Λ from a) Λ = −0.75 past the critical values Λc = −1, for which the
stationary point φ = 0 becomes unstable, to b) Λ = −1.25. Some trajectories with
φ ≈ 0 (light blue) are self-trapped on one side of Fock space due to the bifurcation
effect shown in figure 5.1
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In the following chapters, we will discuss the match between classical trajectories in Fock space
and actual quantum solutions. Here, we focus on cases similar to the classical trajectories shown
below.

a)

b)

Figure 5.4.: Mean-field trajectories in Fock space over time derived from classical equations
of motion (4.23, 4.24) with Λ = 2, for many different initial phase differences
φi denoted by different colors and fixed initial population difference between the
non-rotating |0〉 and rotating modes |1〉 given by zi = N0−N1

N
as a) zi = 0.5 with

Ω̄ = 0.5 (thus ε = 0) and b) zi ≈ 0 and Ω̄ = 0.7 (thus ε 6= 0). The blue lines denote
the average over all trajectories.
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5.2. Quantum Wavefunctions and SPDM

There are many different ways to investigate the full quantum version of the dynamics. The fol-
lowing results are produced by solving the time-dependent Schödinger equation. All findings
have been confirmed by finding the eigenvalues of the tri-diagonal Hamiltonian in Fock basis
3.24 and comparing the results, which are identical. Furthermore, we calculated the expectation
value of the population difference which turned out not to be an exact overlap with the clas-
sical expectation value as presented in several plots in the following sections. To explore the
dynamics of the wavefunction over time, we have to pick an initial condition for the population
difference and phase difference. In the following sections, we will consider different initial
quantum states.

The visual representation of the complete eigensystem of the SPDM with its complex eigenvec-
tors and real eigenvalues is rather intricate. We decided to show multiple plots in the appendix
and focus on the Fock space predictions in this section, which turn out to be in perfect agree-
ment with the expectation values of the quantum wavefunctions. To turn the eigensystem of the
SPDM into a Fock space prediction, we start with the simple expression for the eigenstates with
a± and b± being complex numbers

Ψ± = a±|0〉+ b±|1〉. (5.1)

To find the population of the original two modes, we combine the eigenvalues with the re-
spective weight of the eigenvectors. For that, we multiply the probability of each mode in the
eigenvectors with their respective eigenvalues to get the occupation of the original two modes

N±|Ψ±|2 = N±|a±|2︸ ︷︷ ︸
N0,±

+N±|b±|2︸ ︷︷ ︸
N1,±

. (5.2)

From here, we can rearrange to get

N0 = N0,+ +N0,− = N+|a+|2 +N−|a−|2 (5.3)

N1 = N1,+ +N1,− = N+|b+|2 +N−|b−|2. (5.4)
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Now that we know the population of each mode, we can also calculate z = N0−N1

N
again, to get

the relative population difference. This allows us, to represent the population of the non-rotating
and rotating modes in Fock space.

z =
1

N

[
N+

(
|a+|2 − |b+|2

)
+N−

(
|a−|2 − |b−|2

)]
. (5.5)

Here, we can find the total number of particles N = N0 +N1 from equation 5.3 and 5.4. How-
ever, N is also one of the parameters we set in the Mathematica code. In the following chapters,
we will compare the predictions of the population difference z with the expectation values of
the wavefunctions and the average over the classical trajectories from the classical equations for
motion.

In the appendix A.3.1, we plot the eigenvalues over time. Similarly for the eigenstates, we show
the evolution of probabilities per component over time as well as their spinor representation on
a sphere.

Fock State

To start with, we are looking at different Fock states, which are eigenstates of the interaction
term of the Hamiltonian. As mentioned in the classical discussion, a Fock state has a defined
particle difference and leaves the phase difference unrestricted, like a delta function in Fock
space [16]. Since this is the quantum state we simulated with the classical trajectories, we see
the best overlap between the two cases, as shown below and in the appendix in figure A.10.
Also, the initial, relative population difference zi from the classical case is exactly where the
initial Fock state peaks. However, as shown in figure 5.6, the classical average and the quantum
expectation value for z over time are slightly shifted. Consulting the SPDM, we can calculate
the location of the BEC in Fock space over time, which gives exactly the same prediction as
the quantum expectation value in figure, 5.6. For the SPDM we use the population of the
non-rotating mode N0 and the rotating mode N1 to calculate the relative population difference
z = N0−N1

N
between them as shown in equation 5.5. The eigenvalues and eigenstates of the

SPDM are presented in A.9. While the expectation value of the quantum case and the SPDM
predictions are identical, the average over all classical trajectories from figure 5.4 agrees well
at first but starts to slightly dissent from the other solutions after some time.
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a) b)

c) d)

Figure 5.5.: Quantum trajectories in Fock space over time with N = 60, Λ = 2, and a) zi = 0.5
and Ω̄ = 0.5, or b) zi ≈ 0 and Ω̄ = 0.7, compared to the classical trajectories
from the previous chapter (plots c) and d) in the lower row). Here, we reduced the
number of trajectories to ensure better visibility.

a) b)

Figure 5.6.: Comparison of the classical average of trajectories (blue) with the expectation value
(orange) of the quantum wavefunction and the SPDM prediction (green dots) ac-
cording to equation 5.5 with N = 60, Λ = 2, a) zi = 0.5 and Ω̄ = 0.5, and b)zi ≈ 0
and Ω̄ = 0.7. While the two quantum treatments lead to the same expectation, the
classical average is slightly off.
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To experimentally realize a Fock state, we must be able to control the population difference
precisely. This is easier in the previously discussed double-well system due to the spatial sepa-
ration. In the rotating trap, it is rather intricate to target particles individually with the rotation
to excite them into the rotational state. The two seemingly simple scenarios are the edge states,
where only one of the states is fully occupied. Here, all bosons are located either in the non-
rotating state zi = 1 with angular velocity Ω̄ = 0 or in the rotational state zi = −1 with Ω̄ = 1,
for which angular velocities the energy levels of the respective modes are lower than any other
levels, remembering figure 3.3.2. However, both these choices of Ω̄ are outside the two-mode
approximation. Additionally, since the trajectories start at the edge, the refocusing points will
also be located there, making it hard to identify caustics.

Coherent State

A coherent state can be described as a Gaussian around a Fock state in Fock space [16]. Instead
of just one defined initial population difference, it also includes neighboring Fock states with
smaller probabilities. Thus, neither z0 nor φ0 are perfectly defined. The coherent state in Fock
basis is given by [3]

cps[m, θ, φ] ≡
N
2∑

m=−N
2

√√√√( N
N
2

+m

)[
cos
(θ

2

)]N[
e−iφ tan

(θ
2

)]N2 +m

, (5.6)

where the sum over m includes all of Fock space, and 0 < θ < π determines the location of
the center of the distribution from the binomial coefficient in Fock space7. Fock states at the
edge of Fock space, with θ ≈ 0 or π, are considered coherent states, which is further discussed
in appendix A.3.3. Coherent states are the eigenstates of the lowering and raising operators
and are sometimes referred to as the quantum states of the harmonic oscillator. To compare
the quantum trajectories starting from a coherent state to the previously mentioned classical
trajectories from figure 5.4, we use θ = 2π

3
for zi = 0.5 and θ ≈ π

2
for zi ≈ 0, which leads to

the coherent states shown in figure 5.7. Now, comparing the dynamics starting from a coherent
state to the pseudo-Fock state is not exactly feasible, since now the population difference is less
precisely defined and the phase difference more restricted. For a more accurate comparison, we
would have to use a different truncated Wigner approximation. However, within the purpose of
this thesis, we only remove some φi and leave zi well-defined as the mean of the coherent state
distribution. This leads to some higher inaccuracy when comparing the expectation values.

7Note, φ is an arbitrary phase that does not influence the appearance of the coherent state in the Fock basis.
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a) b)

Figure 5.7.: Coherent states in Fock space with a) θ = 2π
3

for zi = 0.5, and b) θ ≈ π
2

for zi ≈ 0.
Here, N = 60, however, for larger N , the coherent state becomes more narrow.

Looking at the dynamics of the wavefunction in the symmetry broken case, figure 5.8 a), the
whole system appears to be self-trapped around 〈z〉 6= 0. Therefore, only the trajectories for
π-oscialltions (red lines) from 5.4 seem to contribute to the dynamics. For zi ≈ 0, the symmetry
is not broken and all trajectories oscillate around 〈z〉 = 0. Comparing the quantum expectation
value with the average over all classical trajectories (blue line in figure 5.9) is only reasonable
for the symmetric case, where the average over just the π-oscillations (red dashed line) is the
same as the average over all trajectories. For the symmetry broken case, the average over only
the π-oscillations (red dashed line) matches the trend of the quantum expectation value way
better than the average over all trajectories (blue line), as shown in figure 5.9.

a) b)

Figure 5.8.: Quantum trajectories in Fock space over time with N = 60, Λ = 2, compared to
the classical trajectories from figure 5.4 with only π-oscillations a) with zi = 0.5,
θ = 2π

3
and Ω̄ = 0.5, and b) with zi ≈ 0, θ ≈ π

2
and Ω̄ = 0.7.
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a) b)

Figure 5.9.: Comparison of the classical average over all trajectories (blue) and over only the
π-oscillations (dashed red) with the expectation value (orange) of the wavefunction
and the SPDM prediction (green dots) according to equation 5.5 with N = 60,
Λ = 2, a) zi = 0.5, θ ≈ 2π

3
and Ω̄ = 0.5, and b)zi ≈ 0, θ ≈ π

2
and Ω̄ = 0.7.

If we tune Λ = −2, the π-oscillations are no longer the ones that get self-trapped, as shown in
figure 5.10. They oscillate around the stable 〈z〉 = 0 fixed point at φ = 0. Here, the plasma
oscillations are now self-trapped but they do not contribute to the dynamics of a coherent state
due to zi being less well-defined, therefore, do not appear in figure 5.10.

Figure 5.10.: Quantum trajectories in Fock space over time with N = 60, Λ = −2, zi = 0.5,
θ = 2π

3
and Ω̄ = 0.5 compared to the classical trajectories from figure 5.4 with

only π-oscillations.
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Pegg Barnett State

A so-called Pegg Barnett (PB) state is an eigenstate of the hopping term of the Hamiltonian and
the Fourier transform of a Fock state [25]

|φp〉 =
1√
N + 1

zmax∑
m=zmin

exp(−imφp)|m〉, (5.7)

with φp = 2π
N+1

p, where the initial phase φpi is well-defined, while all zi in Fock space are
possible. Thus, we will use a different truncated Wigner approximation, basically the Fourier
transform of the previously discussed pseudo-Fock state. Both the quantum expectation value
and the classical average are just constant in the center of Fock space, thus, not explicitly com-
pared. Due to the symmetry, no self-trapping occurs. The dynamics for the PB state in 5.11
look similar to the Fock state dynamics in 5.5 b), however, slightly shifted and compressed. The
appearing caustics are widespread across Fock space.

a) b)

Figure 5.11.: a) Quantum trajectories in Fock space over time with N = 60, Λ = 2, Ω̄ = 0.5,
b) compared to the classical trajectories with many different zi and φi = 0.

Eigenstate of Hamiltonian

Probably the easiest state to realize experimentally is the eigenstate of the Hamiltonian itself,
which we calculated during the diagonalization. The lowest energy eigenstate, the groundstate,
can be described as a Gaussian in Fock space. We can let the system settle into the groundstate8

for the chosen parameter, before propagating after a sudden switch. The initial parameter Λi

and Ω̄i determine different characteristics of the groundstate, as shown in 5.12.

8The groundstate is a symmetric linear combination of the non-rotating and rotating mode, while the first excited
state is anti-symmetric.
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a) b)

Figure 5.12.: Groundstates in Fock space for a) Λi = 5000 with Ω̄i = 0.5, and b) Λi = 0.5 with
Ω̄i = 0.5 (blue) and Ω̄i = 1 (red). Here, N = 60, however, precision could be
enhanced with larger N , especially for the narrow state a).

Technically, Ω̄i shifts the Gaussian-like peak around in Fock space, where Ω̄i = 0 is perfectly
centered. Due to the restrictions of Ω̄ to lie within the two-mode approximation, only slight
shifts are possible9. For large Λ, the groundstate becomes more narrow in Fock space e.g. more
Fock state-like, while for small Λ it becomes very broad and more similar to a coherent state,
as shown in 5.12. In the following, we present the wavefunctions for the unshifted groundstate
with Λi = 5000 (which is very large to show clear trend) and Λi = 0.5, which we then let
propagate with Λ = 2 and Ω̄ = 0.7.
Once the groundstate has been realized, we can suddenly change the parameter, which is re-
ferred to as a sudden quench, and watch the dynamics of the system while it propagates. A
sudden switch of the parameters is possible in the experiment due to the controllable setup.
After the quench, the previous groundstate is no longer an eigenstate of the system and we can
watch it evolve over time.
Due to the symmetry of the eigenstate in Fock space, no self-trapping occurs in either case.
However, caustics are observable in the center of Fock space depending on the contributing
trajectories, thus, initial phase differences. Since the eigenstates do not have a completely well-
defined initial population difference zi, not all initial phase differences might be possible. Even
though the narrow groundstate is not quite a delta function in Fock space yet, it seems to rea-
sonably match with all previously introduced phase differences, see figure 5.13 a). On the other
hand, the broad groundstate has a very widespread initial population difference. Therefore, the
choice of initial phase difference is more restricted and we lose some trajectories compared to
the Fock state, which had valuable contributions to the caustics. As shown in figure 5.13 b),
only the plasma oscillations seem to contribute. Thus, removing all other trajectories from the

9See figure A.12 for shifted narrow groundstate with Ω̄i = 20, which is far outside the two-mode approximation.
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classical case10 gives a better overlap with the broad groundstate wavefunction. To get an even
better idea of the actual classical trajectories corresponding to the groundstate propagation, one
could apply a different truncated Wigner approximation for the initial condition in the classical
case. Instead of a pseudo-Fock state, one would use the probability distribution from the initial
quantum groundstate as the initial conditions for the classical trajectories.

a) b)

Figure 5.13.: Quantum trajectories in Fock space over time with N = 60, Λ = 2, Ω̄ = 0.7, for
initial groundstate with a) Λi = 5000 and b) Λi = 0.5. The narrow groundstate
reasonably overlaps with the classical trajectories in with many different φi, while
the broader groundstate seems to only match with the plasma oscillations.

Next, we compare the quantum expectation values with the classical average11, in figure 5.14.
For neither of the two initial groundstates, they match perfectly. However, for the narrow
groundstate, the tendency agrees better. Since the classical trajectories were made from a
pseudo-Fock state, the narrow groundstate might be approximated by a Fock state.

a) b)

Figure 5.14.: Comparison of the average over the classical trajectories (blue) with the expecta-
tion value (orange) of the quantum wavefunction and the SPDM prediction (green
dots), with N = 60, Λ = 0.5, zi = 0, Ω̄ = 0.7, for initial groundstate with a)
Λi = 5000 (narrow groundstate) and b) Λ = 0.5 (broad groundstate).

10Similar to the adjustments we had to make for the classical trajectories to match the coherent state.
11Both quantum predictions are the same, and due to the symmetry, the average over just the plasma oscillations

as the average over all trajectories.
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6. Conclusion

Using an atomic BEC model, we investigated the dynamical properties of many-body quantum
systems around instabilities and the concomitant bifurcation leading to phase transitions.

Within the many-body theory and two-mode approximation, we were able to map the BEC in
a toroidal trap onto a double-well system. We found a spontaneous phase transition to occur at
a critical value of |Λc| = 1, which breaks Z2 symmetry. Below the critical value, the system is
in the symmetric phase, where bosons strive to equally populate both the non-rotating and the
rotating modes, considering the angular velocity of the trap Ω̄ = 0.5 does not bias the system.
For a slower rotation, bosons prefer the non-rotating mode, while faster rotations excite more
bosons into the rotating mode. If |Λc| exceeds the critical value, the system enters the symmetry
broken phase, where one mode is dominantly populated, depending on the initial conditions
of the system. If we start off with more bosons in either the non-rotating or rotating mode,
the same state is preferred in the symmetry broken phase. This is referred to as self-trapping.
In both phases, we identify cusp catastrophes appearing when the trajectories in the collective
dynamics attempt to refocus. This can be further analyzed using catastrophe theory. In the
symmetric phase, both the plasma and the π-oscillations independently create cusps, however,
facing opposite directions. The directions of the cusps for each of the oscillations entirely de-
pends on the sign of Λ, as shown in figure A.3 b) for Λ = −0.5 and d) for Λ = 0.5. For negative
Λ, plasma oscillations form backward-facing cusps (blue trajectories), while the cusps formed
by π-oscillations face the opposite direction (red trajectories). For positive Λ, the directions are
switched. Entering the symmetry broken phase, the backward-facing cusps vanish. Here, some
trajectories only oscillate on one side of Fock space due to self-trapping, causing them to miss
the refocusing entirely. This can be considered a dynamical phase transition. Whether plasma
oscillations or π-oscillations become self-trapped, thus, cease to form (backward-facing) cusps,
again depends on the sign of Λ. In chapter 5, we explicitly discussed the phase transition at
Λ = −1, where plasma oscillations (blue trajectories) become self-trapped and no longer form
backward-facing cusps, as shown in figure 5.2. The phase transition at Λ = 1 is shown in figure
A.4 with self-trapped π-oscillations (red trajectories).
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One of the main theoretical tools we used in this thesis is the so-called truncated Wigner approx-
imation [13], [20],[30],[34] where one uses many classical trajectories (each being a solution of
the mean-field equations of motion with initial conditions sampled from a quantum probability
distribution) to mimic the dynamics of the quantum (many-body) wavefunction. The case of
an initial Fock state is particularly simple because the number difference is completely defined
and so the phase difference is completely undefined (all phases are equally probable). The tra-
jectories generically undergo focusing to form caustics, especially fold and cusp caustics which
according to catastrophe theory are the only stable singularities in two dimensions (e.g. when
plotting number difference versus time). Depending on the choice of an initial quantum state,
the quantum wavefunctions match fairly well with the mean-field trajectories. A coherent state
living at the edge of Fock space is also a Fock state. Here, the refocusing of the trajectories
happens too close to the edge to witness clear cusp formation. To find a centered Fock state,
that is experimentally easy to create, we investigate the eigenstates of the system. Letting it
settle into the groundstate for very large Λ, leads to a rather narrow probability distribution
around the center of Fock space, where the population difference is rather well defined and we
can approximate the ground state as a Fock state, without having to sacrifice any trajectories
from the unrestricted phase differences.

6.1. Outlook

Following the results of this thesis, one can look further into the caustics we saw appearing in
the collective dynamics using catastrophe theory. Here, we can investigate the appearance and
behavior of vortices. On the other hand, one could follow up on the dynamical and energetic
instabilities found in the toroidal trap system. Here, one could investigate the decay rates of the
different instabilities. One can also make connections to hawking radiation in sonic black holes
from the depletion. To further deepen our understanding of BEC in a toroidal trap, one could
include a third mode and investigate its comparability to a triple well system.
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A. Appendix

A.1. Josephson Equations in the Toroidal Trap

In this chapter, we show more details on deriving the equations of motion for the two-mode
BEC in a toroidal trap. Starting from the rotating frame GPE, which also includes the disorder
potential

i∂tΨc =
[
− 1

2

∂2

∂θ2
+ iΩ

∂

∂θ
+ η|Ψc|2 + 2υ cos(θ)

]
Ψc. (A.1)

Using the two-mode condensate wavefunction |Ψc〉 =
√
N
[
c0(t)|0〉+c1(t)|1〉

]
and the position

vector |r〉 = (R, θ) we can find the normalized non-interacting single-particle eigenstates Ψc =

〈r|Ψc〉 = 1√
2πR

eijcθ to be

Ψc =

√
N

2πR

[
c0(t) + eiθc1(t)

]
. (A.2)

Using equation A.2 in the GPE A.1, we find the following coupled equations [2]

iċ0 = υc1 +
[
2− |c0|2

]
c0 (A.3)

iċ1 = υc0 +
[
2− |c1|2

]
c1 +

[1

2
− Ω̄

]
c1. (A.4)

Expressing the complex numbers as cj = |cj|eiφj again allows us to switch to the parameter z
and φ from the definition 4.18 later.

i|ċ0| − |c0|φ̇0 = υ|c1|
[

cos(φ)− i sin(φ)
]

+ ηN
[
2− |c0|2

]
|c0|

i|ċ1| − |c1|φ̇1 = υ|c0|
[

cos(φ) + i sin(φ)
]

+ ηN
[
2− |c1|2

]
|c1|+

[1

2
− Ω̄

]
|c1|. (A.5)
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Now, we can separate equation A.5 into real and imaginary parts. Let’s focus on the imaginary
equations first, which read as follows

i|ċ0| = −iυ|c1| sin(φ) (A.6)

i|ċ1| = iυ|c0| sin(φ). (A.7)

If we multiply them with either |c0| or |c1| respectively leads to

|c0||ċ0| =
1

2

d

dt
(|c0|2) = −υ|c0||c1| sin(φ) (A.8)

|c1||ċ1| =
1

2

d

dt
(|c1|2) = υ|c1||c0| sin(φ). (A.9)

Now, we can subtract the latter from the first and finally use the definition z = |c0|2 − |c1|2,
such that

1

2

dz

dt
= −υ

√
1− z2 sin(φ). (A.10)

Lastly, we have to rescale the time τ = 2υt and arrive at

dz

dτ
= −
√

1− z2 sin(φ). (A.11)

This is the same as the equation of motion 3.40 as the double-well case.

Now, we will calculate the second equation of motion with a similar procedure using the real
equations from A.5, which look like

−|c0|φ̇0 = υ|c1| cos(φ) + ηN
[
2− |c0|2

]
|c0| (A.12)

−|c1|φ̇1 = υ|c0| cos(φ) + ηN
[
2− |c1|2

]
|c1|+

[1

2
− Ω̄

]
|c1|. (A.13)

Multiplying them with |c0| and |c0| respectively and taking the difference lets us use z and φ
from 4.18 again, which leads to
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dφ

dt
= 2υ cos(φ)

z√
1− z2

+ ηNz +
[1

2
− Ω̄

]
. (A.14)

Now rescaling the time τ = 2υt leads to

dφ

dt
= cos(φ)

z√
1− z2

+
ηN

2υ︸︷︷︸
Λ

z +

[
1
2
− Ω̄

]
2υ︸ ︷︷ ︸
ε

, (A.15)

where we are using the definitions for ε and Λ from 4.17 again1. Therefore, the second equation
of motion turns out the be

dφ

dt
= cos(φ)

z√
1− z2

+ Λz + ε, (A.16)

which again agrees with the equation of motion 3.39 from the double-well case.

1Remember, φ in the toroidal trap has a global negative sign compared to the one in the double-well.
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A.2. Classical Trajectories

Parameter

To deepen the understanding of the role each parameter (Λ, Ω̄ and zi) plays for the classical tra-
jectories, we present some examples of tuning one parameter while holding the other parameters
constant with N = 60.

a) b)

c) d)

Figure A.1.: Mean-field trajectories in Fock space zi = 0.6̄ and Λ = 1.5, for many different
initial phase differences φi. Here, we tune Ω̄ to increase from a) to c) within the
valid two-mode approximation region a) Ω̄ = 0.25, b) Ω̄ = 0, c) Ω̄ = 0.75 and
outside the valid two-mode approximation d) Ω̄ = 1.

Looking at the initial state with most bosons in the non-rotating state z = 0.6 in the regime
Λ = 1.5, where self-trapping of the π-oscilaltions occurs in the non-rotating mode, increasing
the angular velocity Ω̄ (figure A.1) leads to a decrease in the amount of self-trapped trajectories.
Here, bosons get more easily excited into the rotating mode. We present Ω̄ outside the two-mode
approximation to show the exaggerated effect.
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For Λ = 2 and Ω̄ = 0.5 (no preferred mode), we can see how zi determines on which the side
of Fock space the π-oscillations get trapped (figure A.2). For zi = 0, no self-trapping occurs
since no new stable fixed points appear and all π-oscillations disappear, as shown in figure A.6.

a) b)

c)

d) e)

Figure A.2.: Mean-field trajectories in Fock space Ω̄ = 0.5 and Λ = 2, for many different initial
phase differences φi. Here, we tune zi to increase from a) to e) with a) zi ≈ −1,
b)zi = 0.6̄, c)zi = 0 d) zi = 0.6̄, e) zi ≈ 1.
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Keeping zi = 0.6̄ and Ω̄ = 0.5 (no preferred mode), tunig Λ (figure A.3) determines whether
self-trapping occurs or not. The sign of Λ decides if plasma oscillations (blue linse) or π-
oscillations (red lines) become self-trapped. If Λ� Λc, more trajectories become self-trapped.
For Λ = 0, the double cusps share the same focus point.

a) b)

c) d)

e) f)

Figure A.3.: Mean-field trajectories in Fock space Ω̄ = 0.5 and zi = 0.6̄, for many different
initial phase differences φi. Here, we tune Λ to increase from a) to f) with a)
Λ = −1.5, b)Λ = −0.5, c) Λ ≈ 0, d) Λ = 0.5 , e) Λ = 1.5, f) Λ = 5
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Self-trapping in π-Oscillation

As discussed in chapter 5, the system undergoes a topological phase transition for |Λ| = 1.
Initially, we showed the plasma oscillations getting trapped on one side of Fock space for Λ <

−1, causing some of the cusps catastrophes in the collective dynamics to vanish. Here, we also
present the Λ > 1 case, where the π-oscillations are self-trapped. The self-trapping is shown
in figure A.4, where some of the red trajectories oscillate around a fixed value on one side of
Fock space, which is equivalent to trajectories remaining on one hemisphere in figure A.7. In
phase space, the red lines remain close to their initial value, indicating a very small oscillation.
In these plots, we only show the trajectories for the initial population difference zi = −0.7,
causing symmetry breaking. (See full symmetric case with zi = ±0.7 in figure A.5)).

a) b)

c) d)

Figure A.4.: Mean-field trajectories of the population difference (upper row) and phase differ-
ence (lower row) with Ω̄ = 0.5 and zi = −0.7, for many different initial phase
differences φi. Here, we tune the parameter Λ from Λ = 0.75 (left), to Λ = 1.25
(right) for which some π-oscillations (red lines) become self-trapped.

In figure A.7, we show the trajectories in a phase-space diagram. Here, we choose Λ = 0, where
plasma and π-oscillations have the same elliptical shape. Λ > 1 causes the previously stable
point at φ = π to become unstable and gives rise to two new stable fixed points, which lie in the
foci of the Cassini oval-shaped trajectories for the π-oscillations. For the special case zi = 0,
no new stable fixed points appear and all π-oscillations disappear, as shown in figure A.6.
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Figure A.5.: Mean-field trajectories in Fock space with Ω̄ = 0.5, Λ = 1.25 and zi = ±0.7, for
many different intital phase differeces φi. Here, some π-oscillations (red lines) are
self-trapped on their respective side of Fock space.

a) b)

Figure A.6.: Mean-field phase space trajcetories with Ω̄ = 0.5 (thus ε = 0), Λ = 2 and zi = 0.
The many initial phase differences φi are donoted by the colors. Here, Λ > 1, thus,
self-trapping should happen. However, for zi = 0 no new stable fixed points occur
and all π-oscillations vanish.
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a) b)

c) d)

Figure A.7.: Mean-field phase space trajcetories derived from the Josephson equation (4.23,
4.24) with Ω̄ = 0.5 (thus ε = 0) and zi = ±0.7. The many initial phase differences
φi are donoted by the colors, where yellow and pink trajectories form the flat phase
space (left) overalp in the Bloch sphere representation (right). Here, we tune the
parameter Λ from Λ ≈ 0 (upper row) past the critical values Λc = 1, for which
the stationary point at φ = π becomes unstable, to Λ = 1.25 (lower row). This
reproduces the essence of the bifurcation pictures 3.2 in the double-well system.
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A.3. Quantum Trajectories and SPDM

A.3.1. SPDM Eigenvalues and Eigenvectors

When calculating the Fock space predictions from the SPDM, we combine the information
from the time-dependent eigenvalues and eigenvectors. This is done as described in chapter
3.2.6 and presented here for completeness. Here, we present the eigenvalues over time and the
evolution of probabilities per component in the eigenstates. For that, we plot |a±|2 and |b±|2

from equation 5.1 separately over time, we can see the time-evolution of the probability for the
BEC to be in either of the two original modes. This gives us insight into what kind of linear
combination of the two modes the eigenstate forms. Lastly, we also plot the eigenvectors as
spinors on a sphere [28], with their trajectories over time. For this, we assume

Ψ± = cos(θ±/2)|0〉+ e−i∆Φ± sin(θ±/2)|1〉, (A.17)

where the global phase has been shifted to ensure the weight of the non-rotating state to be real,
with 0 < ∆Φ± < 2π. Therefore, we can compare this to equation 5.1 and say |a±| = cos(θ±/2)

and |b±| = sin(θ±/2), with the constraint 0 < θ± < π to ensure that |a±| and |b±| are always
between 0 and 1. Now, we can find the angles for the spherical coordinates

θ± = 2 arctan

(
|b±|
|a±|

)
(A.18)

∆Φ± = arg(b±). (A.19)
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a) b)

c) d)

Figure A.8.: Eigensystem of SPDM when initial state is a Fock state with N = 60, Λ = 2,
Ω̄ = 0.5 (thus ε = 0) and zi = 0.5. For the eigenstates Ψ± = a±|0〉 + b±|1〉 we
plot the evolution of |a±|2 (solid line) and |b±|2 (dashed line) over time separately
in a) Ψ+ and b) Ψ−. In plot c) we show the eigenstates represented as spinors on
a sphere according to equation A.17, where the different colors represent the time
evolution. Plot d) shows the evolution of both eigenvalues over time, where the
blue line belongs to the eigenstate Ψ+ (plot a) and the red line to Ψ− (plot b).
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a) b)

c) d)

Figure A.9.: Eigensystem of SPDM when initial state is a Fock state with N = 60, Λ = 2,
Ω̄ = 0.7 (thus ε 6= 0) and zi ≈ 0. For the eigenstates Ψ± = a±|0〉 + b±|1〉 we
plot the evolution of |a±|2 (solid line) and |b±|2 (dashed line) over time separately
in a) Ψ+ and b) Ψ−. In plot c) we show the eigenstates represented as spinors on
a sphere according to equation A.17, where the different colors represent the time
evolution. Plot d) shows the evolution of both eigenvalues over time, where the
blue line belongs to the eigenstate Ψ+ (plot a) and the red line to Ψ− (plot b).
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Fock state: full Overlap

When comparing the Fock state wavefunction to the classical trajectories, we reduced the num-
ber of trajectories and retained using the color code for the initial phases For completeness, we
show their overlap in figure A.10. One can see, that they match pretty well, however, the plots
are very busy. Therefore, we decided to reduce the colors in the main discussion.

a)

b)

Figure A.10.: Quantum trajectories in Fock space over time with N = 60, Λ = 2, compared
to the classical trajectories from figure 5.4 a) with zi = 0.5 and Ω̄ = 0.5 (thus
ε = 0), and b) with zi ≈ 0 and Ω̄ = 0.7 (thus ε 6= 0).
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A.3.2. Edge Fock State vs Coherent State

As mentioned in chapter 5.2, an extreme Fock state with z ≈ −1 (all bosons in the rotating
mode) is also considered an extreme coherent state with θ ≈ 0. Plotting the dynamics of the
system for both these initial states gives insight into their similarities. Unfortunately, we cannot
pick the exact extreme states in our code due to boundary issues. However, even for almost
extreme states, we can already identify their similar behavior. The Fock state trajectories match
better with the classical ones since they were achieved by using a pseudo-Fock state. Increasing
the number of particles even further might allow us to get closer to the edge states, however, we
already increased N compared to other plots to ensure better visualization. Here, the Fock state
still splits into two branches, which would be combined for the actual extreme Fock state.

a) b) c)

Figure A.11.: Quantum trajectories in Fock space over time with N = 141, Λ = 1.1,Ω̄ = 0.5,
for a) inital coherent state with θ ≈ 0, b) initial Fock state with z ≈ −1, c)
Pseudo-Fock state with classical trajectories.
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A.3.3. Shifted Groundstate

As mentioned in chapter 5.2, the location of the ground state peak in Fock space depends on the
value of Ω̄i. However, since the choice is limited by the two-mode approximation. Therefore,
no relevant shift can be made for a narrow ground state. Here, we present an example of a
shifted ground state, with Ω̄i = 20, which is far too large to be considered within this thesis. To
make this visible, we also had to use Λi = 500, which is a factor 10 smaller compared to the
narrow state presented before.

Figure A.12.: Groundstates in Fock space with Ω̄i = 20, for Λi = 500.
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