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Abstract

This thesis investigates the problem of optimal design of binary joint watermark-

ing and scalar quantization (JWSQ) systems that are robust under additive Gaussian

attacks. A binary JWSQ system consists of two quantizers with disjoint codebooks.

The joint quantization and embedding are performed by choosing the quantizer corre-

sponding to the embedded message. The optimal JWSQ design for both fixed-rate and

variable-rate cases was considered in the past, but the solution approaches exhibited

high computational complexity.

In this thesis, we propose faster binary JWSQ design algorithms for both the

fixed-rate and variable-rate scenarios. We achieve the speed up by mapping the cor-

responding optimization problem to a minimum weight path problem in a certain

weighted directed acyclic graph (with a constraint on the length of the path in the

fixed-rate case). For this mapping to be possible we discretize the quantizer space and

use an approximation for the probability of decoding error. The proposed solution

algorithms have O(LN3) and O(N4) time complexity in the two cases respectively,

where N is the size of discretized source alphabet, and in the fixed-rate scenario L is

the number of cells in each quantizer.

The effectiveness of the proposed designs is assessed through extensive experiments

on a Gaussian source. Our results show that our algorithms are able to achieve

performance very close to the prior existing schemes, but only at a small fraction of

their running time.
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1 Introduction

In this thesis, we propose algorithms for the design of binary joint watermarking

and compression schemes based on scalar quantization that are robust under additive

Gaussian attacks. In this chapter we present the motivation of the problem, briefly

review the prior work and outline the contribution of the thesis.

In Section 1.1, we introduce the general description and applications of digital

watermarking. The related literature about joint watermarking and compression is

briefly reviewed in Section 1.2. Finally, the contribution and organization of this

thesis are summarized in Section 1.3.

1.1 Digital Watermarking and Applications

With the development of the Internet and of wireless networks, people can access,

download and transfer multimedia data easily. This enriches our lives, while also

introducing some potential risks. Malicious tampering and illegal reproduction of

multimedia data affect the rights of authors and catch public’s attention. To stop

theft and tampering, it is necessary to use techniques that protect the copyright of

content authors.

One common method to achieve this is cryptography. The sender encrypts the

content before delivery, then the encrypted file can be sent over the network. Only

legal receivers have access to the decryption key and can therefore decrypt the file.

This method protects the content during transit, however, but risk still exists after

the decryption. For instance, a pirate can purchase the legal decryption key and

distribute the content illegally.

Digital watermarking can be used for copyright protection after decryption. Dig-

ital watermarking refers to embedding a signal, called watermark, in the original
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content, which is called the “host signal”. The result is called “watermarked signal”.

The embedded information could be any meaningful mark, such as the author’s name,

the company’s logo or the indicator of a patent.

The watermark must satisfy certain properties in order to fulfill its purpose.

Namely, it should not cause degradation to the host signal. In other words, it has to

be imperceptible, which means that it can not be detected or noticed by human per-

ception system, and can only be extracted by a well-designed detector. On the other

hand, the watermark should survive if the watermarked signal is subjected to some

benign transformations or to malicious attacks. Examples of benign transformations

are signal compression or other processing required by the application (for instance

image cropping).

There are three major applications for digital watermarking, owner identification,

transaction tracking and content authentication. Next we give some details about

each of them.

• Owner Identification

We used to use textual copyright to protect the content. However, textual

copyright has a lot of limitations such as being easy to remove from a document

when it is copied. Additionally, it can cover only a portion of the image. A

famous example of the ineffectiveness of this technique is the image Lena. The

image is cropped from Playboy magazine but without the textual copyright.

This image was wildly used and nobody knew where it came from for a long

time.

2
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Figure 1.1: Lena image is cropped without the textual copyright

But watermarks can be made both imperceptible and inseparable from the orig-

inal work that contains them, which rends them more useful for owner identi-

fication. There is an application called Digimarc’s detector. This detector is

widely distributed by bundling with a famous image processing software, Pho-

toshop. Authors are encouraged to embed a digital watermark into their work

and save it to the database. Once Digimarc’s detector detects a watermark, the

contact information of the original owner will appear. It provides an efficient

way for creators to find out who they should contact to use an image.

• Transaction Tracking

In this application, the owner can place a different watermark in each copy

so that they can track which copy is leased. An example is the following. In

2004, Technicolor, a division of Thompson, used video watermarking technol-

3
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ogy licensed from Philips to individually watermark each of the 5,803 voting

members’ Oscar screeners. After distributing these copies, pirated videos of

the films appeared on the Internet. Analysis of these pirated copies revealed

that the original source material had been Oscar screeners provided to the actor

Carmine Caridi. [11]

• Content Authentication

In the previous applications, a watermark is designed to be robust. In this

application, the algorithms used are called fragile watermarking. Any water-

marks embedded into the original content are sensitive to intentional modifi-

cation. We call this type of watermark an authentication mark. Another field

is called semi-fragile watermark, which survives small transformations, such as

lossy compression.

1.2 Joint Watermarking and Compression

In most applications, the watermarked signal has to be compressed for a more ef-

ficient use of resources when storing or transmitting it. The most common way to do

this is by performing the watermarking and compression separately. An alternative

approach is to perform them jointly. The latter variant calls for methods that jointly

design watermarking and compression systems. We will call such schemes joint water-

marking and compression (JWC) schemes. As shown in [4], JWC can achieve better

performance than separate watermarking and compression (SWC). Although there

are plenty of research works in the digital watermarking field, not too much research

has been done in the JWC area. Some ad hoc JWC algorithms were proposed in

[12], [13] and [14] for images, audio and video seperately. [15] analyze the minimum

achievable composite rate for both the public and the private versions of the JWC

4
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problem.

Optimized practical designs for JWC were proposed in [4, 5]. In both works scalar

quantization is used for watermarking and compression and one bit per sample is

embedded, thus they are binary JWC schemes. Additionally, the robustness against

additive Gaussian attacks is maximized subject to constraints on the quantization

distortion and rate. In the sequel we will use the phrase “joint watermarking and

scalar quantization” (JWSQ) for JWC based on scalar quantization. The main dif-

ference between the JWSQ schemes of [4] and [5] is that the fixed rate is considered

in the former and the variable rate case is addressed in the latter. In both cases,

the constrained optimization problem is converted to the unconstrained problem of

minimizing the Lagrangian. The solution algorithm is an iterative algorithm which

alternates between optimizing the encoder while keeping the decoder fixed and opti-

mizing the decoder while keeping the encoder fixed.

For the information-theoretic perspective of JWC, [7] provides the capacity def-

inition of a fixed discrete memoryless channel with the public decoder. Information

hiding capacity is obtained in [8] whether or not the decoder knows the host data.

When the covertext and the attack channel are Gaussian, the upper bound of the

achievable rate region is discussed in [10].

1.3 Thesis Contribution and Organization

One drawback of the JWSQ design algorithms of [4, 5] is their high computational

complexity. In this work we address this shortcoming by proposing faster design

algorithms for binary JWSQ ensuring robustness under addittive Gaussian attacks.

We consider both the fixed rate and variable rate cases. In each case, we model

the related optimization problems to a minimum weight path problem (possibly with

5
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constraints on the number of edges) in a certain weighted directed acyclic graph. In

order to achieve this, we resort to some approximations (for instance by discretizing

the quantization space) which might lead to suboptimal designs. We show empirically

that the sacrifice in performance in comparison to [4] and [5] is very small, while the

speed up is considerable.

This thesis is structured as follows. The next chapter includes the background

knowledge related to our problem including digital watermarking techniques, evalua-

tion, and information-theoretic perspective of JWC. In Chapter 3, previous works on

binary JWSQ are reviewed. In Chapter 4, we present the proposed JWSQ systems

in both fixed-rate and variable-rate scenarios. Chapter 5 presents the simulation re-

sults and their discussion. Chapter 6 concludes this thesis and lists some potential

directions for future work.

6
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2 Background

This chapter reviews some basic knowledge regrading digital watermarking. We

first review the common models for digital watermarking in Section 2.1, followed by

the watermarking evaluation criteria in Section 2.2. Some results from the information-

theoretic perspective of joint compression and digital watermarking are presented in

Section 2.3. Finally, Section 2.4 concludes the chapter.

2.1 Models of Digital Watermarking

Many digital watermarking techniques have been developed based on the tradi-

tional communications model, which is illustrated in Figure 2.1. In this model, the

input message consists of the source data we want to transmit. The encoder maps the

source data to a codeword that can be transmitted over the channel. There are sev-

eral types of channel noise, onre of them being the additive noise, which is commonly

chosen when considering watermarking. The goal of the decoder is to reconstruct the

source input reliably. Generally, an encoder contains two parts: the source encoder

and the channel encoder. The source encoder maps the sequence of source samples to

a sequence of bits. The channel encoder converts the sequence of bits into a physical

signal.

Figure 2.1: Traditional communications model

7
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One basic model for digital watermarking is depicted in Figure 2.2. In that model,

the watermark is the input message that we want to transmit, which is added to the

host signal. In that way, we can treat the host signal as a noise of the channel.

However, this model cannot be used in all algorithms since the watermark and host

signal are not independent in many scenarios. To solve this problem, another model is

developed� which uses the host signal in the encoder. This model is a communication

system with side information at the watermark transmitter, as illustrated in Figure

2.3. The watermarking techniques considered in this thesis are based on this model.

Figure 2.2: Basic digital watermarking model

Figure 2.3: Digital watermarking model with side information

8
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2.2 Digital Watermarking System Evaluation

To evaluate a watermarking system, we need to consider different aspects. Gen-

erally, improvement in one aspect everything else being equal means a better digital

watermarking system. However, different applications require different properties. In

this section, several commonly desired properties are introduced.

2.2.1 Fidelity

Fidelity refers to the perceptual similarity between the original signal and the

watermarked signal. Different applications have different tolerance for fidelity. For

signals that are transmitted in a low-quality channel, fidelity is not important com-

pared to the channel degradations. On the contrary, the system requires high fidelity

watermarks when signals are very high in quality, such as HDTV audio and video. In

this thesis, the fidelity is evaluated as the squared error distortion D. The higher D

is, the lower the fidelity is.

2.2.2 Data Payload

Data payload refers to the number of watermark bits embedded into the host sig-

nal. Generally, we consider the normalized version, i.e., the number of embedded bits

divided by the number of samples of the host signal. This is termed “embedding bit-

rate” (and is measured in bits per sample). A watermark is called N -bit watermark if

it encodes N bits. The required data payload may vary a lot for different applications.

For example, copy control applications only require 4-8 bits while television broadcast

monitoring applications require at least 24 bits.

9
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2.2.3 Effectiveness

The effectiveness is the probability that a watermark is embedded successfully

at the encoder. Although 100% effectiveness is desired, ensuring this might lead to

other properties being sacrificed. Correspondingly, we can improve other properties

by reducing effectiveness if other properties are more important in some applications.

2.2.4 Robustness

Robustness means the ability to detect the watermark at the decoder in the pres-

ence of attacks . A watermarked signal can be attacked by attackers or be processed

by common signal processing operations (e.g. spatial filtering, lossy compression,

digital-to-analog conversion, etc.) or be added with a channel noise. Any of these

activities will cause a distortion to the watermarked signal. It is desired to guarantee

that the hidden message can still be detected.

No watermarked signal can be robust to all types of signal processing operations.

For different types of applications, the watermarked signal should be robust against

the possible operations it may encounter. For example, in video broadcast monitor-

ing, the watermark needs to survive some small amount of vertical and horizontal

translation. When it comes to broadcast radio, we obviously have no need to consider

it.

In this paper, robustness is evaluated by the error probability at the decoder,

which is denoted by Pe. The lower the Pe is, the more robust the system is.

10
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2.3 Information-theoretic Perspective of Joint Compression

and Digital Watermarking

As we illustrate in Fig 2.3, a digital watermarking system can be modeled as a

communication system with side information at the watermark transmitter. We first

represent each part mathematically. Let M denote the watermark to be embedded,

and let ZN = (z1, z2, ..., zN) denote the host data sequence that consists of independent

and identically distributed (i.i.d.) samples drawn according to p(z). The watermarked

signal is denoted by XN and the input of the decoder is Y N . After the reconstruction

that is processed by the decoder, we can get the estimated watermark M̂ . The Fig

2.3 can be represented as Fig 2.4.

Figure 2.4: Digital watermarking model with symbol notations

Joint compression and digital watermarking means embedding watermarks into

the host signal while compressing the host signal subject to distortion constraints.

The watermark needs to be reconstructed without the information of the host signal.

This kind of detection is called blind detection. Expressions of encoder and decoder

are:

• The watermarking encoder is expressed as a function fN : ZN ×M → XN . The

watermarked signal xN = fN(z
N ,m) is generated.

11
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• The watermarking decoder maps the received sequence yN to a reconstructed

watermark M̂ using ϕN : Y N →M, m̂ = ϕN(y
N).

• The error probability of watermarking is Pe = Pr{M̂ ̸= M} when encoder and

decoder pair (fN , ϕN) is provided.

• R = 1
N
log |M | is the watermark embedding rate where |M | is the cardinality of

message set M .

The distortion function for the encoder is function d1 : Z ×X → R+.

dN(zN , xN) =
1

N

N∑
k=1

d1(zk, xk)

The distortion function for the attacker is function d2 : X × Y → R+.

dN(xN , yN) =
1

N

N∑
k=1

d2(xk, yk)

To make it clear, we use di to represent dNi in this chapter.

The memoryless attack channel can be modeled as a conditional pmf A(y|x) from

X to Y such that Ed2(xN , yN) ≤ D2. The class A(fN , D2) is defined as the set of all

memoryless attack channels subject to D2 under the channel with encoding function

fN . Also, define A(fN) as A(fN , D2) ∩ B, where B is some compact set of channels

[8].1

The capacity of a fixed discrete memoryless channel with public decoder is given

by [7]

C = max
p(x,u|z)

[I(U ;Y )− I(U ;Z)] (2.1)

1B could be fixed attack channel, a finite-dimensional parametric family, or a class of channels
that introduce no signal bias: E(Y ) = X

12
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where U is an auxiliary random variable defined over a finite set U of cardinality

|U| ≤ |X ||Z|+1. I(; ) means the mutual information. This capacity also requires the

distortion constraint D1, i.e. Ed1(zN , xN) ≤ D1.

In [8], the information hiding capacity is generated upon the above definitions.

One theorem is that assume for any N ≥ 1, the attacker knows fN , and the decoder

knows both fN and the attack channel. Let Q be the set of all memoryless covert

channels subject to distortion D1. A rate R is achievable for distortion D1 and attacks

in the class A(fN) if and only if R < C, where

C = max
QX,U|Z(x,u|z)∈Q

min
A(y|x)∈A(fN )

{I(U ;Y )− I(U ;Z)} (2.2)

and the joint distribution for U,Z,X, Y forms a Markov chain (U,Z)→ X → Y .

An interesting result has been developed in [8]: the achievable rate of reliable

transmission is the same whether or not the host data are known at the decoder. The

corresponding result is shown below.

Let Z = X = Y = R and d1(x, y) = d2(x, y) = (x − y)2 be the squared-error

distortion measure. Assume that Z ∼ N (0, σ2) and the class of attack channels is

A(fN , D2). The condition D2 < (σ +
√
D1)

2 need to be satisfied. Let a be the

maximizer of expression

f(a) =
[(2a− 1)σ2 −D2 +D1][D1 − (a− 1)2σ2]

[D1 + (2a− 1)σ2]D2

(2.3)

in the interval (ainf , 1 +
√
D1/σ), where ainf = max(1, σ

2+D2−D1

2σ2 ).

Then, the hiding capacity is upperbounded by

C =
1

2
log(1 +

[(2a− 1)σ2 −D2 +D1][D1 − (a− 1)2σ2]

[D1 + (2a− 1)σ2]D2

) (2.4)

13
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The optimal covert channel 2 is given by X = aZ + B and U = αZ + B where

B ∼ N (0, D1 − (a − 1)2σ2) is independent of Z. The optimal attack A(y|x)is the

Gaussian test channel from rate-distortion theory [9]

A∗(y|x) = N (β−1x, β−1D2) (2.5)

where β = (2a−1)σ2+D1

(2a−1)σ2−(D2−D1)
α = D1−(a−1)2σ2

D1−(a−1)2σ2+βD2

For the case where the covertext and the attack channel are Gaussian, closed-form

expressions for the rate region of watermarking embedding rate Rw versus composite

rate Rc have not been found yet. However, an achievable rate region using relations

between the composite rate, the embedding rate, and the prescribed distortion con-

straint for the private decoder is established in [10]. It can be treated as an outer

bound of the Gaussian case for the public decoder. Details are shown below.

Assume the covertext ZN is i.i.d Gaussian with zero mean and variance σ2
z and

the attack is additive i.i.d Gaussian noise with zero mean and variance D2. A private,

continuous alphabet joint watermarking and compression code (2nRc , 2nRw , n) satisfies

the requirements

1

N
E∥ZN −XN∥2 ≤ D1 (2.6)

and

Pr{M̂ ̸= M} → 0 as N →∞ (2.7)

respectively, if and only if (Rc, Rw) ∈ RD1,D2 , where RD1,D2 is defined as
2Covert channel is optimally designed by information hider

14
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RD1,D2 =

 (Rc, Rw) : Rc ≥ [1
2
log( σ2

z

D1
)]+

Rw ≤ maxγ∈[σ2
z ,2

2Rc ] min{Rc − 1
2
log(γ), 1

2
log(1 + Pw(γ)

D2
)}

(2.8)

where

Pw(γ) =
γ(σ2

z +D1)− 2σ2
z + 2

√
σ2
z(γD1 − σ2

z)(γ − 1)

γ
σ2
z ≥ D1 (2.9)

2.4 Conclusion

In this chapter, we have first summarized some commonly used models for dig-

ital watermarking and system evaluation criteria. Further, we have reviewed some

information-theoretic results related to joint compression and digital watermarking.

More specifically, an upper bound on the information hiding capacity was defined and

an upper bound on the achievable rate region in terms of embedding rate, composite

rate and distortion constraint was also introduced.
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3 Review of Previous Work on Binary JWC Based

on Scalar Quantization

In this chapter, we review the previous work related to binary joint watermarking

and compression (JWC) based on scalar quantization. Recall that we use the term

binary JWSQ for such systems. First of all, a widely used coding strategy, namley

quantization index modulation, is presented in Section 3.1. The fixed-rate JWSQ

(FJWSQ) scheme proposed in [4] is presented in Section 3.2. In Section 3.3, the

variable-rate JWSQ (VJWSQ) system introduced by [5] is reviewed. Finally, this

chapter is summarized in Section 3.4.

3.1 Quantization Index Modulation

Since the need for copyright protection of contents has arisen, many digital wa-

termarking schemes have been developed. Quantization index modulation (QIM)

proposed by Chen and Wornell [2] is considered as one of the most efficient embed-

ding methods since it is capacity achiving in many scenarios when the statistics of

the attack channel are known at the watermark encoder.

In QIM, each watermak symbol m is associated a quantizer Qm. In order to

embed a watermark symbol m into a host signal sample s, s is quantized using the

quantizer Qm. In this work we focus on the case of binary watermarking and scalar

quantization. This means that we aim to embed a one bit message (m ∈ {0, 1}) into

one sample s ∈ R of the host signal and use scalar quantizers Qm.

Let Q(s) denote a uniform scalar quantizer with step size ∆, which is defined as

Q(s) = ∆ · round(s/∆), (3.1)
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where round(x) maps x to the closest integer. To generate two different quantizers

we can use the technique of dither modulation. More specifically, the quantizers can

be defined as follows:

Qm(s) = Q(s− dm) + dm, m = 0, 1 (3.2)

where d0 = −∆/4 and d1 = ∆/4. The reconstruction values of quantizer Q0 and Q1

are shown in Fig 3.1 as circles and crosses, respectively. The circles and crosses are

treated as both quantizer reconstruction points and signal constellations points

Figure 3.1: Embedding one bit m ∈ {0, 1} into one sample s using QIM

The above dither modulation approach can be generalized by using general quan-

tizers Qm,m ∈ {0, 1}. Each quantizer is a mapping from R to a codebook Y m =

{ym1 , ym2 , ..., ymLm
}. The output values ymj , 1 ⩽ j ⩽ Lm are also called reconstruction

points. The nonintersection property needs to be met to lead to host-signal interfer-

ence rejection. In other words, the two codebooks have to be disjoint3.

The decoder receives the watermarked signal ŷ, which is possibly interrupted or

distorted. Based on that, it has to estimate the transmitted message. Denote by m̂

the estimated message. The objective of the decoder is to make the error probability

Pe = P{m̂ ̸= m} as small as possible. One can use the minimum distance (MD)

decoder, which chooses the closest reconstruction point, checks to which quantizer
3According to [2], host-interference rejection can be achieved when knowledge of the host signal

at the encoder is adequately exploited in system design.
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this point belongs, and then extracts the watermark, in other words, computes

m̂(ŷ) = arg min
m∈{0,1}

(ŷ −Qm(ŷ))2. (3.3)

3.2 Joint Watermarking and Compression Using Fixed-rate

Scalar Quantization

In [4], Wu and Yang designed a binary FJWSQ to minimize the probability of

error in case of additive white Gaussian noise (AWGN) attacks. The codebooks Y 0

and Y 1 of the two quantizers have the same size L, i.e., L0 = L1 = L. The set

Tm = {tm0 , tm1 , tm2 , ..., tmL } is the set of thresholds for the quantizer Qm, which divides

the real line into L cells. More specifically, tm0 = −∞ and tmL = ∞, and tmi < tmi+1,

for 0 ≤ i ≤ L − 1, m ∈ {0, 1}. The i-th cell of Qm is Cm
i = {s ∈ R : Qm(s) =

ymi } =
[
tmi−1, t

m
i

)
. All the cells are pairwise disjoint and their union equals the whole

quantized space R, i.e.,

 Cm
i ∩ Cm

j = ∅, for all i ̸= j∪L
i=1 C

m
i = R

(3.4)

For the quantization distortion, which is measured by using squared error, to be

minimized, the threshold between two adjacent cells has to be the midpoint of the

two corresponding reconstruction points, i.e.,

tmj =
1

2
(ymj + ymj+1), 1 ≤ j ≤ L− 1. (3.5)
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Additionally, the codebooks Y 0 and Y 1 have to satisfy the following condition

y01 ≤ y11 ≤ y02 ≤ y12 ≤ · · · ≤ y0j ≤ y1j ≤ · · · ≤ y0L ≤ y1L. (3.6)

Let Y denote the codebook set Y = Y 0 ∪ Y 1, and let T denote the end points set

T = T 0 ∪ T 1.

Fig.3.2 illustrates the thresholds and the reconstruction values of a FJWSQ. The

circles and the crosses are reconstruction points of Q0 and Q1, respectively. The

positions of thresholds are marked by dashed lines.

Figure 3.2: Representation of a binary FJWSQ. The circles and the crosses are re-
construction points of Q0 and Q1, respectively. The positions of the thresholds in Tm

are marked by the dashed vertical lines.

By choosing the quantizer that corresponds to the embedded message m, the

output signal is jointly watermarked and compressed. In other words, the watermark

message m is embedded into the source signal s to generate the watermarked signal

y = Qm(s). The compression rate of the FJWSQ is

RQ = log2(2 ∗ L). (3.7)

To design a JWC system, an appropriate decoding rule needs to be chosen first. By

doing simulations, Wu and Yang observed that in small distortion scenario (distortion

≪ 1) and when the distortion to noise ratio (DNR) is larger than 4.77 dB4, the
44.77 dB is the minimum DNR required to support the reliable embedding rate of one bit per

sample[6].
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performance of the MD decoder was similar to that of the maximum likelihood (ML)

decoder. In addition, the MD decoder is preferable since it does not need to know

the source statistics and has lower implementation complexity than the ML decoder.

Therefore, in the DNR region of practical interest, the MD decoder defined in (3.3)

is used. The decoding bit error probability Pe(Y, T ) can be defined as

Pe(Y, T ) =
1

2

∑
m∈{0,1}

Lm∑
j=1

P (s ∈ Cm
j )Pm

j,e (3.8)

where P (s ∈ Cm
j ) is the probability that the host signal s lies in Cm

j . Pm
j,e is the

conditional bit error probability given m and the fact that the host signal lies in

the quantization cell Cm
j . Assuming that the watermarked symbol is attacked by an

AWGN attack channel with noise variance σ2
n, Pm

j,e can be expressed as [4]

 P 0
j,e = Q(| (y

0
L+y1L)−2y0j

2σn
|) +

∑L−1
i=1 |Q(| (y

0
i +y1i )−2y0j

2σn
|)−Q(| (y

1
i +y0i+1)−2y0j

2σn
|)|

P 1
j,e = Q(| (y

0
1+y11)−2y1j

2σn
|) +

∑L
i=2 |Q(| (y

1
i−1+y0i )−2y1j

2σn
|)−Q(| (y

0
i +y1i )−2y1j

2σn
|)|

(3.9)

where Q(x) = (1/
√
2π)

∫∞
x

e−
t2

2 dt.

The squared error is used to measure the distortion since it is differential every-

where on the real line. Assuming that the watermark messages m ∈ {0, 1} are equally

likely, the expected quantization distortion can be written as

D(Y, T ) =
1

2

∑
m∈{0,1}

Lm∑
j=1

∫ tmj

tmj−1

(s− ymj )
2p(s)ds, (3.10)

where p(s) is the probability density function of the host signal. The authors of [4]

formulate the optimization problem as the problem of minimizing Pe(Y, T ) with a
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constraint on the distortion, i.e.,

 minimizeY,T Pe(Y, T ) ,

subject to D(Y, T ) ≤ D1,
(3.11)

where D1 is the target distortion. They solve the problem by using Lagrangian relax-

ation, in other words, by solving

minimizeY,T Pe(Y, T ) + µD(Y, T ), (3.12)

where µ ≥ 0 is the Lagrangian multiplier. Note that the solution (Y ∗, T ∗) to the

problem (3.11) can be found by solving (3.12) for some µ ≥ 0 if and only if the point

(D(Y ∗, T ∗), Pe(Y
∗, T ∗)) is situated on the lower boundary of the convex hull of the

set of all pairs (D(Y, T ), Pe(Y, T )).

Note that in view of (3.5), the probability of error Pe only depends on Y . Then

Pe can be rewritten as

Pe(Y ) =
1

2

∑
m∈{0,1}

Lm∑
j=1

∫ ymj +ymj+1
2

ym
j−1

+ym
j

2

p(s)dsPm
j,e (3.13)

To solve the problem (3.12), Wu and Yang use a locally optimal algorithm that

alternates between two steps. One step fixes the codebook set Y and finds T that

minimizes D(Y, T ), i.e., it sets the thresholds according to (3.8). The other step fixes

the end points T and updates Y using the feasible direction method to minimize the

weighted sum in (3.12). According to their reported experimental results, about 1000

to 3000 iterations of these two steps are needed to generate the final quantizer, which

may result in a long running time.

Wu and Yang also compare the performance of their JWSQ system with a JWSQ
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using uniform quantizers. Based on their experiments, they find that the above algo-

rithm to generate optimal binary JWSQ systems using nonuniform quantizers achieves

better performance than using the uniform one.

3.3 Joint Watermarking and Compression Using Variable-

rate Scalar Quantization

In [5], Zhou and Yang improved the performance of the FJWSQ of [4] by using

variable-rate scalar quantization. The two quantizers Q0 and Q1 of their VJWSQ

have the same number of cells L0 = L1 = L and the condition (3.6) still has to be

satisfied. It is assumed that the output of each quantizer is encoded losslessly using

an entropy coder, in other words, an encoder which is able to achieve a rate close to

the entropy of the quantizer output. Thus the rate of the VJWSQ is defined as the

entropy of the watermarked signal, i.e.,

R =
1

2
[H(Y 0) +H(Y 1)] + 1, (3.14)

where H(Y m) denotes the entropy of Y m. It is clear that the rate R can be expressed

as a function of threshold set T as follows:

R(T ) = 1− 1

2

∑
m∈{0,1}

Lm∑
j=1

∫ tmj

tmj−1

p(s)ds log

∫ tmj

tmj−1

p(s)ds. (3.15)

The optimization problem formulated in [5] is


minimizeY,T Pe(Y, T ),

subject to D(Y, T ) ≤ D2

R(T ) ≤ R0

(3.16)

22



M.A.Sc. Thesis - Han Zhang McMaster - Computer Engineering

where R0 and D2 are given values, while D(Y, T ) and Pe(Y, T ) are defined as in the

fixed-rate case. Zhou and Yang convert the problem to the unconstrained problem of

minimizing the Lagrangian, i.e.,

minimize Pe(Y, T ) + µ1D(Y, T ) + µ2R(T ), (3.17)

with µ1 ≥ 0 and µ2 ≥ 0 are the Lagrangian multipliers. Note that the solution

(Y ∗, T ∗) to the problem (3.16) can be found by solving (3.17) for some µ1, µ2 ≥ 0 if

and only if the point (D(Y ∗, T ∗), R(T ∗), Pe(Y
∗, T ∗)) is situated on the lower boundary

of the convex hull of the set of all triples (D(Y, T ), R(T ), Pe(Y, T )).

Since the relation tmj = 1
2

(
ymj + ymj+1

)
does no longer hold for the variable-rate

scenario, the bit error probability will depend on both the set T of end points T and

the codebook Y . More specifically, it can be written as

Pe(Y, T ) =
1

2

∑
m∈{0,1}

Lm∑
j=1

∫ tmj

tmj−1

p(s)dsPm
j,e (3.18)

The following two constraints are mandatory to make equation (3.18) hold all the

time: {
y01 ≤ y11 ≤ ... ≤ y0j ≤ y1j ≤ ... ≤ y0L ≤ y1L (3.19)

An alternating algorithm that is similar in spirit to the algorithm of [4] is developed

to solve this optimization problem. The running time is even longer than the running

time of the algorithm of [4] since the optimization problem is more complex now.

According to the simulation result in [5], Zhou and Yang observed that the op-

timum binary VJWSQ has better performance than FJWSQ in [4]. There is about

0.3-dB DNR gain when i.i.d. Gaussian source is used.
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3.4 Chapter Summary

In this chapter, we have reviewed the previous work on binary JWSQ. QIM that

developed in [2] embeds information by first modulating a sequence of indices with

the embedded information and then quantizing the host signal with the sequence

of quantizers. It is easy to implement and flexible to compute. Based on QIM, a

JWSQ strategy using fixed-rate scalar quantization is formulated in [4]. The optimal

quantizers are found by solving the constrained optimization problem. The prob-

lem is converted to the unconstrained problem of minimizing the Lagrangian. The

end points are updated by getting the midpoint of two consecutive thresholds of one

quantizer and feasible direction method is used to update codebooks. An improved

JWSQ strategy using variable-rate scalar quantization is performed in [5]. A similar

Lagragian function that contains a new parameter, rate R, is used to relax the con-

straint and get the optimal quantizers. In the next chapter, we will present our faster

solution for FJWSQ and VJWSQ coding problem.
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4 Proposed Binary Joint Watermarking and Scalar

Quantization Systems

In this chapter, we propose faster design algorithms for the FJWSQ and VJWSQ

scenarios. The main idea of our designs is to model the related optimization problem

to a minimum weight path problem (possibly with constraints on the number of edges)

in a certain weighted directed acyclic graph. For this to be possible we discretize

the quantization space and use an approximation for the probability of watermark

decoding error.

In this chapter, we have two sections. Section 4.1 treats the Fast JWSQ design

in the fixed-rate. We introduce the problem formulation and propose a dynamic

programming solution. Section 4.2 presents the problem configuration and solution

algorithm for the variable-rate case.

4.1 Proposed FJWSQ Design

In this section we present the proposed FJWSQ design. We first introduce the

problem configuration in subsection 4.1.1. Similarities and differences with Wu and

Yang’s work are listed here. We then present the proposed solution algorithm using

the graph model in subsection 4.1.2.

4.1.1 Problem Formulation

The configuration of the proposed binary FJWSQ scheme is the same as the scheme

of Wu and Yang’s [4]. In other words, the JWSQ consists of a pair of quantizers Q0

and Q1, where for each m ∈ {0, 1}, quantizer Qm is determined by the set of thresholds

Tm = {tm0 , tm1 , tm2 , ..., tmLm
} and the codebook Y m = {ym1 , ym2 , ..., ymLm

}, which satisfy the
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relations (3.6) and (3.5). As in [4], we assume that the watermarked signal is subjected

to an AWGN attack and utilize the MD decoder given in (3.3) for watermark detection.

We formulate the optimization problem slightly differently than in [4] by switching

the roles of the distortion and the probability of error. More specifically, we assume

that a value Pe0 for the maximum acceptable probability of error is given and try

to minimize the distortion while keeping the probability of error no larger than Pe0.

This formulation is more realistic in applications where losses in the recovery of the

watermark are less tolerated in comparison with distortions of the source signal. For

example, if the watermark is the name of the author of a photo, then we would like

to recover it exactly without any loss, while the reconstruction of the photo can still

have very high quality even with some loss (in other words, even if it is not exactly

as the original).

To conclude, we tentatively formulate the optimization problem as follows

 minimize D(T, Y ),

subject to Pe(T, Y ) ≤ Pe0

(4.1)

where D(T, Y ) and Pe(T, Y ) are defined as in Section 3.2. Further, in order to han-

dle the problem more easily, we consider a modification based on the intuition that

for Pe to be sufficiently low, the distance between consecutive reconstruction values

corresponding to different quantizers has to be sufficiently large. This intuition is

illustrated in the Fig. 4.1. Crosses and circles are the reconstruction points of two

side quantizers respectively. Assume that the watermarked signal x is one of the

reconstruction value of one side quantizer. The probability of error is calculated by

adding up the probability that the received point lies in all shaded area. Since the

channel noise is AWGN, the further away from the center, the lower the possibility.
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As ∆i increasing, the addition of possibility of all shaded area decreases.

Figure 4.1: An example of how Pe is inflected by ∆i. x is one of the reconstruction
value of one quantizer. Crosses and circles are the reconstruction points of two quan-
tizers respectively. The probability of error is calculated by adding up the probability
of received point lies in all shaded area.

Consider now the following notation:

∆i =


y1j − y0j , i = 2j − 1, 1 ≤ j ≤ L− 1

y0j − y1j−1, i = 2j, 1 ≤ j ≤ L− 1

y1j − y0j , i = 2L− 1

. (4.2)

In the light of above insight, we formulate another optimization problem as follows

 minimize D,

subject to ∆i ≥ ∆min, 1 ≤ i ≤ 2L− 1
(4.3)

It can be easily seen that if the condition in (4.3) is satisfied then

Pm
j,e ≤ 2Q(∆min/(2σn)) (4.4)

for all j, which leads to

Pe ≤ 2Q(∆min/(2σn)). (4.5)
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Thus, if the target value ∆min is sufficiently large, then Pe is sufficiently small.

Finally, we assume that the reconstruction points can take values only in some

finite set S = {s1, · · · , sN−1}. One way to obtain S is to take N points equally spaced

in a bounded interval.

We formulate the final optimization problem as


minimizeY D(Y ),

subject to ∆i ≥ ∆min, 1 ≤ i ≤ 2L− 1

ymj ∈ S, 1 ≤ j ≤ L.

(4.6)

We consider only Y as a variable in the optimization problem, since, in virtue of (3.8),

the FJWSQ is completely specified by the set Y of reconstruction points.

4.1.2 Algorithm for Optimal FJWSQ Design

In this section, we develop a globally optimal algorithm for the problem (4.6). For

this, we show that the problem is equivalent to the minimum-weight path (MWP)

problem with a constraint on the number of edges in a certain weighted directed

acyclic graph(WDAG). Let G denote the WDAG. G consists of the triple (V,E,w),

where V denotes the set of vertices, E denotes the set of edges, and w denotes the

weight function that assigns a real number to each edge.

The vertex set is V = {ab|0 ≤ a ≤ b ≤ N − 1, sb − sa ≥ ∆min} ∪ {00, NN}

and the edge set is E = {(ab, bc)|ab, bc ∈ V }. A vertex ab represents a pair of

possible consecutive reconstruction points from the two quantizers. In other words,

sa is a reconstruction point of one quantizer and sb is a reconstruction point of the

other quantizer. Note that the condition sb − sa ≥ ∆min ensures that the constraint
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∆i ≥ ∆min is satisfied. An edge (ab, bc) represents a triple of possible consecutive

reconstruction points, namely sa and sc from one quantizer and sb from the other

quantizer. The graph is directed, which means that the order in the pair (ab, bc)

specifying an edge matters (in other words, the edge connects the two vertices in a

specified direction). A path in a graph is a sequence of connected edges. Alternatively,

a path can be regarded as a sequence of vertices, where any two consecutive vertices

are connected by an edge. The length of the path is the number of edges. The graph is

acyclic since there is no path with at least one edge ends in the node where it started.

The source vertex of the graph is 00 and the final vertex is NN . A path of

2L + 2 edges from the source to the final node corresponds to a pair of quantizers

(Q0, Q1) of a FJWSQ, where each quantizer has L cells. Specifically, if the vertices

in the path are 00, 0a1, a1b1, b1a2, a2b2, · · · , aLbL, bLN,NN , then the path corresponds

to the FJWSQ with reconstruction values y0i = sai and y1i = sbi , for all 1 ≤ i ≤ L.

This correspondence is one-to-one. Figure 4.2 illustrates the correspondence between

a path and an FJWSQ, for L = 3.
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Figure 4.2: An example of a path with 8 edges in the WDAG G, the reconstruction
points {y01, y11, y02, y12, y03, y13} of the corresponding FJWSQ and two end points {t01, t11}.
A node ab is represented by a dotted segment line connnecting a and b. An edge
(ab, bc) is represented by an arc with corresponding sequence number on it.

According to the correspondence described above, if the edge (ab, bc) with 0 <

a < c < N is in such a path, then sa and sc are consecutive reconstruction values in

one of the quantizers. Then the threshold separating the corresponding quantization

cells is t = (sa + sc)/2. This means that any sample s in [sa, t) is reconstructed as sa,

while any sample s in [t, sc) is reconstructed as sc. Then we define the weight of the

edge as the contribution of the samples s in [sa, sc) to the distortion of this quantizer,

i.e.,

w(ab, bc) =
1

2

(∫ sa+sc
2

sa

(s− sa)
2p(s)ds+

∫ sc

sa+sc
2

(s− sc)
2p(s)ds

)
(4.7)

when 0 < a < c < N . When a = 0 or c = N , the weight of the edge is defined as
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follows

w(ab, bc) =
1

2

∫ sc

−∞
(s− sc)

2p(s)ds when a = 0, (4.8)

w(ab, bc) =
1

2

∫ ∞

sa

(s− sa)
2p(s)ds when c = N. (4.9)

It can be easily seen that the weight of any path with 2L+2 edges from the source

to the final node is equal to the distortion of the corresponding FJWSQ. Since the

correspondence between such paths and the FJWSQs with L cells in each quantizer

is one-to-one, it follows that the problem (4.6) is equivalent to the problem of finding

the maximum weight path in G among all paths from the source to the final node

that contain exactly 2L+ 2 edges.

The algorithm to solve the (2L + 2)-MWP problem in G is shown in Algorithm

1. If the weights of edges are precomputed, the time complexity of the algorithm

amounts to O(LN3) since the number of nodes is O(N2), the number of edges is

O(N3) and the number of different i values is O(L).

Algorithm 1 Solution for (2L+ 2)-edge MWP problem in G

Let si be an array of size (N + 1)2, which holds the total weight of the MWP with
i edges from node 00 to any node. si[00] = 0, si[NN ] =∞ for all i.
Let ti be an array of size (N + 1)2, which holds the last visited node of the MWP
with i edges from node 00 to any node. All elements are initialized to 00.
for i=3 to 2L+2 do

for a=2 to N do
for b=a+1 to N do

for c=0 to a-1 do
Let w1 be the weight of the edge from ca to ab;
Find MWP to ab with i edges:
if i = 3 then

Let w2 be the weight of the sum of first two edges
w2 = w(00, 0c) + w(0c, ca)
if si[ab] > w2 + w1 then

si[ab]← w2 + w1;
ti[ab]← ca;
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end if
else

if si[ab] > si−1[ca] + w1 then
si[ab]← si−1[ca] + w1;
ti[ab]← ca;

end if
end if

end for
end for

end for
end for
Recover the optimal path using backtracking based on the arrays ti

Note that the aforementioned time complexity can still be achieved if the weight

of each edge is computed in O(1) time instead of being precomputed. For this, we

precompute and store the cumulative kth order moments αk(t) =
∫ t

−∞ skp(s)ds for all

possible thresholds t and k = 0, 1, 2. Note that the number of all possible thresholds t

is O(N2) in general, thus this precomputation requires O(N2) amount of time. In the

case when the values in S are equally spaced, i.e., sa = α+aβ, for all 1 ≤ a,≤ N − 1,

with fixed α and β, the possible thresholds take values in the set {α + jβ/2|1 ≤ j ≤

2N − 2}, thus the precomputation can be done in O(N) time.

When the weight of an edge is needed, its computation can be performed using

the cumulative moments by exploiting the following relations

∫ send

sstart

(s− sre)
2p(s)ds =

∫ send

sstart

(s2 − 2sres+ s2re)p(s)ds

=

∫ send

sstart

s2p(s)ds− 2sre

∫ send

sstart

sp(s)ds+ s2re

∫ send

sstart

p(s)ds,

(4.10)

∫ send

sstart

skp(s)ds =

∫ send

−∞
skp(s)ds−

∫ sstart

−∞
skp(s)ds, k = 0, 1, 2. (4.11)

32



M.A.Sc. Thesis - Han Zhang McMaster - Computer Engineering

Finally, if our goal is to solve the problem (4.1), then we solve the problem (4.3) for

various values of ∆min until Pe becomes close enough to Pe0, while satisfying Pe ≤ Pe0.

The search over ∆min can be implemented by using bisection search.

4.2 Proposed VJWSQ Design

This section is devoted to the proposed VJWSQ design. In subsection 4.2.1, we

introduce the problem formulation. The following section presents thr graph model

of the problem amd the solution algorithm.

4.2.1 Problem Formulation

We consider a VJWSQ as defined in Section 3.3 with the difference that the

number of cells of two quantizers can be either equal (L0 = L1 = L) or different by 1,

namely L0 +1 = L1. For each j and m, the reconstruction value of cell Cm
j is defined

as the center of mass Cm
j ,

ymj =

∫ tmj
tmj−1

sp(s)ds∫ tmj
tmj−1

p(s)ds
, 1 ≤ j ≤ Lm. (4.12)

The above condition is necessary for the distortion to be minimized. In virtue of

(4.12), it follows that the VJWSQ is completely specified by the set T of thresholds.

Further, in order to guarantee that condition (3.6) is also satisfied, we impose the

following constraint on the thresholds

t01 ≤ t11 ≤ ... ≤ t0j ≤ t1j ≤ ... ≤ t0L−1 ≤ t1L−1 , if L0 = L1 = L,

t11 ≤ t01 ≤ ... ≤ t1j ≤ t0j ≤ ... ≤ t1L1−2 ≤ t0L0−1 ≤ t1L1−1 , if L0 + 1 = L1. (4.13)
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According to [16], relations (4.12) and (4.13) imply that (3.6) hold as well. An example

of the case when L0 + 1 = L1 is shown in Fig. 4.3. Here, L0 = 3 and L1 = 4.

Figure 4.3: Representation of a VJWSQ system with different number of cells in the
two quantizers. The circles and the crosses are reconstruction points of Q0 and Q1

respectively. The positions of the thresholds in Tm are marked by dashed vertical
lines.

The quantization distortion and the rate are defined as in Section 3.3. The prob-

ability of watermark decoding error is the same (3.18), but the relations (3.9) for Pm
j,e

become 
P 0
j,e = Q(|

(y0L0+1+y1L1+1)−2y0j
2σn

|) +Q(| (y
0
1+y11)−2y1j

2σn
|)

+
∑L0

i=2 |Q(| (y
0
i−1+y1i )−2y0j

2σn
|)−Q(| (y

1
i +y1i )−2y1j

2σn
|)|

P 1
j,e =

∑L0+1
i=1 |Q(| (y

1
i +y0i )−2y1j

2σn
|)−Q(| (y

0
i +y1i+1)−2y1j

2σn
|)|

(4.14)

Using (4.12), the distortion, the rate and the probability of decoding error can be

written as functions of T only. We formulate the optimization problem as


minimizeT D,

subject to Pe(T ) ≤ Pe0

R(T ) ≤ R0

. (4.15)

We relax the constraints and transform the problem to the problem of minimizing the

Lagrangian

minimizeTD(T ) + λ1Pe(T ) + λ2R(T ) (4.16)
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with λ1 ≥ 0 and λ2 ≥ 0 are the Lagrangian multipliers. Note that the solution (T ∗)

to the problem (4.15) can be found by solving (4.16) for some λ1, λ2 ≥ 0 if and only

if the point (Pe(T
∗), R(T ∗), D(T ∗)) is situated on the lower boundary of the convex

hull of the set of all triples (Pe(T ), R(T ), D(T )).

Additionally, we impose the condition that the thresholds can only take values in

some finite set S = {s1, · · · , sN−1} and formulate the final optimization problem as

minimizeTD(T ) + λ1Pe(T ) + λ2R(T ) (4.17)

tmj ∈ S, 1 ≤ j ≤ Lm − 1, m = 0, 1.

4.2.2 Solution Algorithm for Optimal VJWSQ Design

In this section we present a globally optimal algorithm for the problem (4.17). To

this end, we model the problem as an MWP problem in a WDAG G′. The graph

model is more complex than in the fixed-rate scenario. Let G′ = (V ′, E ′, w′). The

set of vertices is V ′ = {abc|0 ≤ a ≤ b ≤ c ≤ N, a < c}. A vertex abc corresponds

to a possible triple of consecutive thresholds. Namely sa and sc are two consecutive

thresholds in one quantizer and sb is a threshold of the other quantizer. The edge set

is E ′ = {(abc, bcd)|0 ≤ a ≤ b ≤ c ≤ d ≤ N, a < d}. Using the information of one

vertex, we could get the reconstruction value of cell Cac ≜ [sa, sc)

γ(a, c) ≜
∫ sc
sa

sp(s)ds∫ sc
sa

p(s)ds
(4.18)

Denote E∗ = E ′ \ {(000, 00a), (aNN,NNN) : 1 ≤ a ≤ N − 1}. In any edge

(abc, bcd) ∈ E∗, there are two cells involved, Cac and Cbd. We only include the
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distortion and rate of Cbd in the weight of the edge. For this, first define

P (Cbd) ≜
∫ sd

sb

p(s)ds (4.19)

d(Cbd) ≜
∫ sd

sb

[s− γ(b, d)]2p(s)ds (4.20)

r(Cbd) ≜ −P (Cbd) log2 P (Cbd) (4.21)

P (Cbd) is the probability that host signal s lies in cell Cbd. d(Cbd) is the distortion of

cell Cbd. r(Cbd) is the rate of cell Cbd.

Substituting (4.18) into (4.20), we could get a simplified expression

d(Cbd) =

∫ sd

sb

[s2 + γ(b, d)2 − 2γ(b, d)s]p(s)ds

=

∫ sd

sb

s2p(s)ds+ γ(b, d)2
∫ sd

sb

p(s)ds− 2γ(b, d)

∫ sd

sb

sp(s)ds

=

∫ sd

sb

s2p(s)ds+ γ(b, d)2
∫ sd

sb

p(s)ds− 2γ(b, d)[γ(b, d)

∫ sd

sb

p(s)ds]

=

∫ sd

sb

s2p(s)ds− γ(b, d)2
∫ sd

sb

p(s)ds (4.22)

For every host signal that lies in the quantization cell Cac, the conditional bit error

probability of the received watermarked signal ŷ is composed by two parts. The first

part is when ŷ smaller than the sent reconstruction value, we call that left part. The

other one is when ŷ greater than the sent reconstruction value, we call that right part.

Further, we could define probability of error for the edge as

Pe((abc, bcd)) ≜ P (Cac)P
r
e (Cac) + P (Cbd)P

l
e(Cbd) (4.23)

where P r
e (Cac) is the right half of conditional bit error probability given the host signal

lies in the quantization cell Cac. Similarly, P l
e(Cbd) is the left half of conditional bit
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error probability given the host signal lies in the quantization cell Cbd. To reduce the

computational complexity, we estimate them as

P r
e (Cac) = P l

e(Cbd) ≜ Q(
γ(b, d)− γ(a, c)

2σn

) (4.24)

An example is illustated in Figure (4.4). You could see which area will be counted

when calculating P r
e (Cac) and P l

e(Cbd). Since AWGN is symmetrical about the center

and the distance between start point of integration and center is the same for γ(a, c)

and γ(b, d), P r
e (Cac) equals to P l

e(Cbd). The estimated probability of error is larger

than real one. In other words, we use the upper bound of Pe for one edge.

Figure 4.4: An example of half of conditional bit error probability for one
edge(abc, bcd). If one watermarked point γ(b, d) is transmitted and the received point
lies in the area that filled with left slash, it will cause a left half conditional error.
The probability of points lies in that area is P l

e(Cbd). The area that filled with right
slash is the same when calculating P r

e (Cac)

For each edge in E∗, we assign the weight as

w(abc, bcd) = d(Cbd) + λ1r(Cbd) + λ2Pe((abc, bcd)) (4.25)
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For the edges (000, 00a) and (aNN,NNN), the weight is defined as follows

w(000, 00a) = d(C0a) + λ1r(C0a) (4.26)

w(aNN,NNN) = 0. (4.27)

Every path from (000) to (NNN) corresponds to a pair of quantizers (Q0, Q1) of

a VJWSQ. Specifically, if the path has an even number of vertices 2L + 2, then the

path can be represented as the sequence of vertices 000, 00a1, 0a1b1, a1b1a2, b1a2b2, ...,

aL−1bL−1N, bL−1NN,NNN . The corresponding VJWSQ has the thresholds t0i = ai

and t1i = bi, for all 1 ≤ i ≤ L− 1. An example of this case is shown in Fig.4.5. If the

path has an odd number of vertices 2L+3, then the path can be represented as the se-

quence of vertices 000, 00a1, 0a1b1, a1b1a2, b1a2b2, ..., aL−1bL−1aL, bL−1aLN, aLNN,NNN .

The corresponding VJWSQ has the thresholds t0i = bi, 1 ≤ i ≤ L − 1 and t1i = ai,

for all 1 ≤ i ≤ L. An example of this case is shown in Fig.4.6. Clearly, this corre-

spondence is one-to-one. Additionally, the weight of the path equals the value of the

cost function in (4.17). It follows that the problem (4.17) is equivalent to the MWP

problem from the source node 000 to the final node NNN in the WDAG G′.
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Figure 4.5: An example of a path with even number of vertices in the WDAG G′,
L = 4. The thresholds {t01, t11, t02, t12, t03, t13} of the corresponding VJWSQ system are
marked. A node is represented by a triangle, e.g node (b1a2b2) is represented by the
triangle b1a2b2. The sequence numbers of vertices are shown in triangles. Particularly,
the first node (000) and last node (NNN) are two vertical lines and are not marked
in the figure. An edge is represented by an arrow.
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Figure 4.6: An example of a path with odd number of vertices in the WDAG G′,
L = 3. The thresholds {t11, t01, t12, t02, t13} of the corresponding VJWSQ system are
marked. A node is represented by a triangle, e.g node (b1a2b2) is represented by the
triangle b1a2b2. The sequence numbers of vertices are shown in triangles. Particularly,
the first node (000) and last node (NNN) are two vertical lines and are not marked
in the figure. An edge is represented by an arrow.

The pseudocode of the solution algorithm is presented as Algorithm 2. The weight

for all possible first two edges are initialized at the beginning of algorithm. The total

weight for one possible path are calculated by adding up the weight for the optimal

path to node (ijk) ∈ E ′ and weight for the last two edges.
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Algorithm 2 Solution for single-source MWP problem in G’
Let s be an 3D array of size (N + 1)3, which hold the total weight of the MWP
from node 000 to any other node. Initialize s[000] = 0, all other s[abc] =∞.
Let t be an 3D array of size (N +1)3, which hold the last visited node of the MWP
from node 000 to any node. All elements are initialized to 000.
Calculate weight for all possible first two edges and store:
for b=1 to N-1 do

for c=b+1 to N do
Let w1 be the weight of the sum of first two edges
w1 = w(000, 00b) + w(00b, 0bc);
s[0bc]← w1;
t[0bc]← 00b;

end for
end for
Calculate total weight for all paths without last two edges
for a=1 to N-2 do

for b=a+1 to N-1 do
for c=b+1 to N do

for u=0 to a-1 do
Let w2 be the weight of the edge from uab to abc;
Find MWP to abc :
if s[abc] > s[uab] + w2 then

s[abc]← s[uab] + w2;
t[abc]← uab;

end if
end for

end for
end for

end for
Calculate total weight for all paths
for a=1 to N-1 do

for u=0 to a-1 do
Let w3 be the weight of the sum of last two edges
w3 = w(uaN, aNN) + w(aNN,NNN)
Find MWP to NNN :
if s[NNN ] > s[uaN ] + w3 then

s[NNN ]← s[uaN ] + w3;
t[aNN ]← uaN ;
t[NNN ]← aNN ;

end if
end for
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end for

The precomputation can be done the same as in FJWSQ. When calculate the

distortion defined in (4.22) for an edge, the cumulative moments can be used by

utilizing the following relations

∫ send

sstart

s2p(s)ds− γ(start, end)2
∫ send

sstart

p(s)ds (4.28)

∫ send

sstart

skp(s)ds =

∫ send

−∞
skp(s)ds−

∫ sstart

−∞
skp(s)ds, k = 0, 2. (4.29)

The back-tracking algorithm need to be changed to satisfy node with 3 points. In

Algorithm 2, t is an array that holds the last visited node of the MWP from node 000

to any node. We get the result thresholdss from t. Since the total number of cells Lm

is not defined, we keep getting the end points of each quantizer in the reverse order

until we get the first end point. The way we get the result end points is shown in

Algorithm 3.
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Algorithm 3 Solution to get result end points
Let h0b be an array that holds all end points of one side quantizer in the reverse
order. i.e. h0b[1] holds the index of the last end point of Q0.
Let h1b be an array that holds all end points of the other side quantizer in the
reverse order.
Let pos be a variable that tracks how many elements have been stored in h0b and
h1b.
Let L0 be the total number of cells in Q0. Let L1 be the total number of cells in
Q1.
Get the end points in reverse order:
h1b[1] = t[NNN ](1);
h0b[1] = t[h1b[1]NN ](1);
h1b[2] = t[h0b[1]h1b[1]N ](1);
pos← 2
while h1b[pos] > 0 do

h0b[pos] = t[h1b[pos]h0b[pos− 1]h1b[pos− 1]];
pos← pos+ 1;
h1b[pos] = t[h0b[pos− 1]h1b[pos− 1]h0b[pos− 2]];

end while
Check if two quantizers have different total number of cells:
if h0b[pos− 1] ̸= 0 then

The first end point of Q0 is not −∞. It means two quantizers have the same
length.

L0 ← pos− 1;
L1 ← pos− 1;
Delete h1b[pos] since it is 0.
Sort h0b and h1b, we get T 0 and T 1.

else
The first end point of Q0 is −∞. It means Q1 has one more cell than Q0.
L0 ← pos− 2;
L1 ← pos− 1;
Delete h1b[pos] and h0b[pos− 1] since they are 0.
Sort h0b and h1b, we get T 0 and T 1.

end if

Our goal is to solve problem (4.15), then we solve problem (4.16) with various λ1

and λ2. Increase λ2 if Pe ≥ Pe0. Increase λ1 if R ≥ Rc. Otherwise, decrease λ2 to

get lower distortion and acceptable probability of error or decrease λ1 to get lower

probability of error. Bisection search can be used to choose appropriate λ1 and λ2.

43



M.A.Sc. Thesis - Han Zhang McMaster - Computer Engineering

5 Simulation Result and Analysis

Having described the algorithms for designing optimum JWSQ systems, this sec-

tion assesses the performance of two algorithms and compares result with [4] and [5].

We denote JWSQ in [4] as FJWSQ and our algorithm as Proposed-FJWSQ. Likewise,

JWSQ in [5] is VJWSQ and our algorithm is Proposed-VJWSQ. We construct the

source alphabet S by discretizing a continuous Gaussian source with zero mean and

unit variance.

Distortion is measured by squared error distortion and minimum distance decoder

is used. The attack channel is assumed as an AWGN channel with variance σ2
n.

Extended set of all possible reconstruction/end points S 5 is obtained by partitioning

[−5, 5] into 1000 or 500 equally length segments union two points s0 = −∞, sN =∞.

In total, N = 1003 for fixed-rate scenario, N = 503 for variable-rate scenario.

In this chapter, we first discuss the results for FJWSQ system design problem

in subsection 5.1. The results for VJWSQ system design probelm is presented in

subsection 5.2. In each of these 2 cases, we plot curves in terms of decoding bit error

probability Pe versus distortion noise ratio(DNR), which is the same as plots in [4]

and [5]. DNR is defined as

DNR = 10 log10
D(S,X)

σ2
n

(5.1)

We use σ2
n = {0.019, 0.006, 0.0019, 0.0012, 0.00095} in our experiments. The picked

σ2
n lead to DNR = {0, 5, 10, 12, 13} to compare with results in [4] and [5] for fixed-rate

and variable-rate respectively.

To analyze the performance of JWSQ and Proposed-JWSQ systems in more per-
5S represents reconstruction points while finding optimum fixed-rate quantizers. It represents

end points while finding optimum variable-rate quantizers.
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spective, we implemented JWSQ using Matlab. Particularlly, function linprog(f, A, bsimp)

in Matlab to solve linear programming problem is used. Both algorithms are running

under the same environment.

5.1 Discussion of FJWSQ Results

In this section, we present the experimental result for FJWSQ design problem. We

solve the constraint optimization problem in (4.3) for ∆min ∈ {0.1 : 0.05 : 0.22, 0.215 :

0.0005 : 0.2245}. We pick the smallest ∆min which meet the Pe constraint for all σ2
n.

The initial value of reconstruction points for FJWSQ system are set as

Y 0 = [−3.0872,−2.4177,−1.8737,−1.3594,−0.8554,−0.3554, 0.1434, 0.6425, 1.1440, 1.6516, 2.1782, 2.8202]

Y 1 = [−2.7865,−2.1412,−1.6144,−1.1065,−0.6051,−0.1060, 0.3928, 0.8928, 1.3966, 1.9108, 2.4555, 3.1218]

By analyzing the result of each iteration of FJWSQ system, we can see that the

distortion is decreasing and Pe is increasing with iteration increase. Fig. 5.1 and

Fig. 5.2 shows an example of the change of distortion D and bit error probability

Pe with iterations for FJWSQ system. Gaussian source is used and σ2
n = 0.006.

That is the reason we set this initial value. The distortion is 0.0533 if we partition

[−5, 5] into 2L + 1 equally length segments as the initial value. The distortion for

this reconstruction value set is 0.219. It is closer to our target 0.0190, which means

less running time. It takes about 900 iterations from equally partition to this initial

value.
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Figure 5.1: Change of distortion with iterations for FJWSQ system. Gaussian source
is used,σ2

n = 0.006.

Figure 5.2: Change of bit error probability with iterations for FJWSQ system. Gaus-
sian source is used, σ2

n = 0.006.

Fig 5.3 demonstrates the results of FJWSQ and Proposed-FJWSQ systems using

Gaussian source when the codebook size L = 12 and the encoding distortion D1 =

0.01909 for both systems.
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Figure 5.3: Comparisons of performance for FJWSQ and Proposed-FJWSQ systems.
Gaussian source is used. L = 12, D1 = 0.01909

Table 1 shows the running time of FJWSQ and Proposed-FJWSQ systems. The

unit for running time is second. The total number of iterations that used in FJWSQ

to get final result is also included.

Table 1: Running time of FJWSQ and Proposed-FJWSQ systems for Gaussian source.
Unit is second. And Total number of iterations for FJWSQ system

σ2
n 0.019 0.006 0.0019 0.0012 0.00095

time(FJWSQ) 2201 2546 4396 2002 3540
time(Proposed-FJWSQ) 15 16 26 27 27
# iterations(FJWSQ) 36 42 108 105 96

We can see that the FJWSQ system performs slightly better than our Proposed-

FJWSQ system. However, the running time varies a lot. Proposed-FJWSQ system
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saves 99% of the time. Time is an important measurement standard. Specifically,

Proposed-FJWSQ system’s running time is even shorter than one iteration of FJWSQ

system.

Another advantage is that the running time can be controlled by setting the dif-

ferent values to L and N in Proposed-FJWSQ system. In other words, decreasing the

total number of edges or length of the source alphabet leads to shorter running time

since the time complexity of Proposed-FJWSQ is O(LN3). However, the FJWSQ

system terminates only when the constraints are unsatisfied, which is uncontrollable.

Although the time for each iteration is similar, the solution of linear programming

problem for each iteration is unpredictable.

Fig. 5.4 illustrates the reconstruction values of result quantizers when σ2
n =

0.00095 and Table 2 lists the values of reconstruction points for these two systems.

We observed that the smallest ∆min picked for all σ2
n are the same 0.205, which lead

to the same quantizers of Proposed-FJWSQ system. Also, the result ∆i of Proposed-

FJWSQ system satisfies ∆i ≥ ∆min.

(a) Reconstruction points of Proposed-FJWSQ system

(b) Reconstruction points of FJWSQ system

Figure 5.4: Reconstruction points of FJWSQ and Proposed-FJWSQ systems. Red
stars are reconstruction points for Q0, blue circles are reconstruction points for Q1
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Table 2: Reconstruction values of result quantizers of JWSQ and Proposed-FJWSQ
systems when σ2

n = 0.00095
FJWSQ

Y 0 [-3.05,-2.24,-1.7,-1.22,-0.77,-0.32,0.13,0.57,1.03,1.49,2.02,2.76]
Y 1 [-2.73,-1.97,-1.46,-0.99,-0.54,-0.1,0.35,0.8,1.26,1.74,2.29,3.1]

Proposed-FJWSQ
Y 0 [-2.72,-2.02,-1.54,-1.1,-0.66,-0.22,0.22,0.66,1.1,1.54,2.02,2.7]
Y 1 [-2.5,-1.8,-1.32,-0.88,-0.44,0,0.44,0.88,1.32,1.8,2.48,4.99]

5.2 Discussion of VJWSQ Results

In this section, we present the experimental result of VJWSQ design problem. We

first discuss the influence of λ1 and λ2 on the results in subsection 5.2.1. Then the

comparison with VJWSQ system is presented in subsection 5.2.2. We also compare

with Proposed-FJWSQ in subsection 5.2.3.

5.2.1 Influence of λ1 and λ2 On the Proposed-VJWSQ Results

Since there are two factors that affect the Proposed-VJWSQ system’s final result,

λ1 and λ2, we first find out how λ1 and λ2 influence the final result. By setting different

ranges of values for λ1 and λ2, we plot decoding probability of error Pe, encoding

distortion D, rate R versus λ1 and λ2 in Fig. 5.5. Specifically, the values of λ1 used

are {0.0005 : 0.0001 : 0.0008, 0.001 : 0.001 : 0.008, 0.01 : 0.01 : 0.07, 0.1 : 0.1 : 0.3},

the values of λ2 used are {0.05 : 0.01 : 0.09, 0.1 : 0.1 : 1.5}. We pick Gaussian source

with zero mean and unit variance and AWGN channel with σ2
n = 0.0019.

We could see that the major changes of Pe happen around 0. A tighter range

of λ1 and λ2 can be set to see more details. New range of λ1 is {0.0005 : 0.0001 :

0.0008, 0.001 : 0.001 : 0.008}, new range of λ2 is {0.05 : 0.01 : 0.15}. With these new

ranges, we have 3D plots that shown in Fig. 5.6. It is obvious that λ1 is the dominant

part since a small change in λ1 has a great impact on the final result. For all of the
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σ2
n in {0.019, 0.006, 0.0019, 0.0012, 0.00095}, we can set smaller interval of λ1 to get

better results.

(a) Distortion versus λ1 and λ2

(b) Probability of error versus λ1 and λ2

(c) Rate versus λ1 and λ2

Figure 5.5: 3D plots show the effect of λ1 and λ2 on D,R and Pe. λ1 is picked in the
range [0.0005, 0.3], λ2 is picked in the range [0.05, 1.5]
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(a) Distortion versus λ1 and λ2

(b) Probability of error versus λ1 and λ2

(c) Rate versus λ1 and λ2

Figure 5.6: 3D plots show the effect of λ1 and λ2 on D,R and Pe. λ1 is picked in the
range [0.0005, 0.008], λ2 is picked in the range [0.05, 0.15]
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5.2.2 Comparison with VJWSQ System

The initial value of reconstruction set in VJWSQ system is obtained by parti-

tioning [−5, 5] into 2L + 1 equally length segments, where L = 12. We solve the

constraint problem (4.16) with λ1 = {0.0005 : 0.0001 : 0.0008, 0.001 : 0.001 : 0.008}

and λ2 = {0.05 : 0.01 : 0.15, 0.2 : 0.2 : 1, 1.5 : 0.25 : 3.5}. Results of VJWSQ system

are obtained from their figure in [5]. Fig. 5.7 shows the comparison of VJWSQ and

Proposed-VJWSQ systems. We achieve the same distortion D2 = 0.01909 and smaller

rate R0 = 4.127. In their case, R0 = 4.15.

Figure 5.7: Comparisons of performance for binary VJWSQ and Proposed-VJWSQ
systems. Gaussian source is used. D2 = 0.01909, R0 = 4.15

We can see that the results are similar. One thing to notice is that Proposed-

VJWSQ system doesn’t need to set constraints on the total number of cells, which
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means more flexibility. The total number of cells of Proposed-VJWSQ system is

presented in Table 3. Particularly, when σ2
n = 0.006 and σ2

n = 0.0019, the total

number of cells for two quantizers are different.

Table 3: Total number of cells of two quantizers Q0 and Q1 for Proposed-VJWSQ
system

σ2
n 0.019 0.006 0.0019 0.0012 0.0009

L0 22 21 21 21 21
L1 22 22 22 21 21

Also, the running time varies a lot. Althrough we didn’t get the same result as

in [5], we tried µ1 = {50, 100, 200, 400} and µ2 = {0.001, 0.01, 0.1, 1, 10} and stored

the running time, D, Pe and R of each iteration. We formulate another type of

comparison: within limited number of iterations of VJWSQ, which means less running

time, how is the result of JWSQ system compared with Proposed-VJWSQ system.

According to their analysis in [5], generally it takes 1000-3000 iterations to get the

final result. Let iteration constraint Iterup = 200, which is much smaller than total

iterations. The comparison of D, Pe, R and running time are included in Table 5.2.2.

We can see that within limited time, but still longer than our Proposed-VJWSQ

system’s running time, the result of VJWSQ system is worse than Proposed-VJWSQ

system.
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Table 4: Comparison of D, Pe, R and running time of VJWSQ and Proposed-VJWSQ
systems. Iteration constraint on VJWSQ system is 200.

σ2
n 0.019 0.006 0.0019 0.0012 0.00095

Proposed-VJWSQ system
D 0.0225 0.0265 0.0260 0.0239 0.0291
Pe 0.347 0.0733 0.0016 0.000145 0.0000025
R 3.99 3.88 3.89 3.95 3.81

running time 29 30 39 57 50
VJWSQ system

D 0.226 0.0296 0.0261 0.025 0.0292
Pe 0.368 0.0859 0.006 0.0075 0.024
R 4.08 3.88 3.97 4.09 3.98

running time 14056 6574 6692 15593 14457

Although Table 5.2.2 shows Proposed-VJWSQ system achieves better result. We

need to admit that the result of VJWSQ system may not be the optimal result since

Lagrangian multipliers µ1 and µ2 are picked from a finite set. It is possible that the

pair of Lagrangian multipliers for optimal result is not included in our experimental

set. However, the same situation also holds for our Proposed-VJWSQ system. In

other words, Proposed-VJWSQ system can try more pairs of Lagrangian multipliers

within the same amount of time. The possibility of getting the optimal result is higher

for Proposed-VJWSQ system.

5.2.3 Comparison with Proposed-FJWSQ system

Fig. 5.8 illustrates the comparison of performance for binary Proposed-FJWSQ

system and Proposed-VJWSQ system. Gaussian source with zero mean and unit

variance is used. To have a fair comparison, both of two systems achieve encoding

distortion D1 = D2 = 0.01909. Rate R0 = 4.127 for Proposed-VJWSQ system and

4.358 for Proposed-FJWSQ system using formula (3.15) and (3.7) respectively. Data

are obtained from Section 5.1 and subsection 5.2.2 for Proposed-FJWSQ system and
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Proposed-VJWSQ system respectively.

Figure 5.8: Comparisons of performance for binary Proposed-FJWSQ system and
Proposed-VJWSQ system. Gaussian source with zero mean and unit variance is
used. D1 = D2 = 0.01909, R0 = 4.127

We can see that the performance of Proposed-VJWSQ system is better than per-

formance of Proposed-FJWSQ. It is obvious that the smaller the σ2
n is, the greater

the difference of Pe between two systems. In particular, the difference is 0.000213

when σ2
n = 0.00095, which improves 60% of result Pe.
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6 Conclusion and Future Work

This work proposes faster solution algorithms for the optimal design of binary joint

watermarking and scalar quantization(JWSQ) systems with fixed rate and variable

rate. Each system is composed of two quantizers with disjoint codebooks. Both

problems are initially formulated as constrained optimization problems targeted at

minimizing the distortion under constraints on the rate and on the probability of

error.

The first design is for the binary joint watermarking and scalar quantization system

with fixed rate, which is a faster scheme than in [4]. We focus on finding the optimal

codebooks that minimize the distortion under a constraint on the decoding bit error

probability. The latter constraint is further converted to a constraint on the minimum

distance between codebooks. The proposed solution algorithm is based on modeling

the problem using a weighted directed acyclic graph (WDAG). For this, we assume

that the source alphabet is generated by discretizing a finite length interval into

equal-length segments. We show that there is a one-to-one correspondence between

the paths from the source node to the final node with 2L + 2 edges and the pairs of

quantizers’ codebooks of size L each. Finding the single-source minimum-weight path

(MWP) in WDAG with 2L + 2 edge is equivalent to finding the optimal codebooks.

The time complexity of the solution algorithm is O(LN3), where L is the length of

each codebook and N is the size of the source alphabet. The experimental results

show that our algorithm is much faster than Wu and Yang’s algorithm [4] while the

performance is close.

The other design is for the binary joint watermarking and scalar quantization

system with variable rate, which improves the performance in [5] with more flexibil-

ity. We design the reconstruction points under the constraints of decoding bit error
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probability and rate. By constructing the WDAG with information from two quan-

tizers, our proposed algorithm solves the single-source MWP problem in a WDAG.

The improved algorithm achieves a lower rate while having the same distortion and

probability of error than in [5]. Meanwhile, it has a significant advantage in terms

of running time and does not has any constraint on the number of cells of the two

quantizers.

We tried to replicate the simulation results of variable-rate quantizers of [5], but

did not succeed due to insufficient time. More experiments are needed in order to

obtain the exact simulation results, in order to have a more fair comparison. Also,

applying the algorithm to images would provide a better illustration of comparison.

Furthermore, another interesting aspect to study is the asymptotical performance

analysis of the proposed schemes.

Other future directions in the area of joint watermarking and scalar quantization

worth investigating are pointed out next.

• It is interesting to see if using vector quantization could help to get better

performance than scalar quantization in JWSQ systems.

• We only consider embedding one-bit watermark into the source signal. The

scenario of embedding multiple bits is also an interesting area.
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