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Lay Abstract/ Thesis statement

Over the past decade, advances in computational power and increases in data quantity

have made deep learning a useful method of complex pattern recognition and classifi-

cation in data. There is a growing desire to be able to use these complex algorithms

on smaller quantities of data. To achieve this, a deep learning model is first trained

on a larger dataset and then retrained on the smaller dataset; this is called transfer

learning. For transfer learning to be effective, there needs to be a level of similarity

between the two datasets so that properties from larger dataset can be learned and

then refined using the smaller dataset. Therefore, it is of great interest to understand

what level of similarity exists between the two datasets. The goal of this research is

to provide a similarity metric between two time series classification datasets so that

potential performance gains from transfer learning can be better understood. The

measure of similarity between two time series datasets presents a unique challenge

due to the nature of this data. To address this challenge an encoder approach was

implemented to transform the time series data into a form where each signal example

can be compared against one another. In this thesis, different similarity metrics were

evaluated and correlated to the performance of a deep learning model allowing the

prediction of how effective transfer learning may be when applied.
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Abstract

Deep learning is increasingly becoming a viable way of classifying all types of data.

Modern deep learning algorithms, such as one dimensional convolutional neural net-

works, have demonstrated excellent performance in classifying time series data be-

cause of the ability to identify time invariant features. A primary challenge of deep

learning for time series classification is the large amount of data required for train-

ing and many application domains, such as in medicine, have challenges obtaining

sufficient data. Transfer learning is a deep learning method used to apply feature

knowledge from one deep learning model to another; this is a powerful tool when

both training datasets are similar and offers smaller datasets the power of more ro-

bust larger datasets. This makes it vital that the best source dataset is selected when

performing transfer learning and presently there is no metric for this purpose.

In this thesis a metric of predicting the performance of transfer learning is pro-

posed. To develop this metric this research will focus on classification and trans-

fer learning for human-activity-recognition time series data. For general time series

data, finding temporal relations between signals is computationally intensive using

non-deep learning techniques. Rather than time-series signal processing, a neural

network autoencoder was used to first transform the source and target datasets into

a time independent feature space. To compare and quantify the suitability of transfer
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learning datasets, two metrics were examined: i) average embedded signal from each

dataset was used to calculate the distance between each datasets centroid, and ii)

a Generative Adversarial Network (GAN) model was trained and the discriminator

portion of the GAN is then used to assess the dissimilarity between source and tar-

get. This thesis measures a correlation between the distance between two dataset

and their similarity, as well as the ability for a GAN to discriminate between two

datasets and their similarity. The discriminator metric, however, does suffer from an

upper limit of dissimilarity. These metrics were then used to predict the success of

transfer learning from one dataset to another for the purpose of general time series

classification.
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Chapter 1

Introduction

As the computational power of everyday devices increases, there is a growing desire for

use of deep learning algorithms to solve more and more classification problems. Deep

learning is attractive because it requires minimal data pre-processing; however, it does

require large datasets for its training. This requirement is particularly problematic

when data is limited, such as in areas like precision medicine, or space crew medical

support. To address this challenge, transfer learning provides an avenue for increasing

deep learning performance when a lack of data is present.

In this thesis, a new method of predicting the suitability, or most suitable, of the

selected dataset(s) as the source dataset for the transfer learning target is proposed.

Two new methods of measuring similarities are presented along with a method of

transforming datasets of time-series data into datasets of time-invariant embeddings.

One method then measures the Manhattan distance between centroids of the em-

bedding clusters. The second method uses a discriminator to learn which dataset an

example comes from, and the accuracy of the discriminator measures the similarity.

In the following sections, the background and motivation for developing such a metric
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is introduced. The main contributions are summarized, and an outline of the thesis

is presented.

1.1 Problem Statement

Classical machine learning can develop good classification predictions; however, the

current literature finds that deep learning has proven much better at making predic-

tions by finding non-linear relations in data [47]. This transition to deep learning has

been driven by the recent boom in the availability of data in conjunction with signif-

icant increases in computational power and density [21]. Deep learning is a subset of

machine learning which mimics the way a biological brain learns tasks and patterns.

It uses a layered structure of nodes, connected by weights and biases, for which input

information can pass through to generate highly accurate decisions. Within health-

care, deep learning is present in many applications, such as in imaging diagnostics,

examining unstructured electronic health records using natural language processing,

or training medical robotics to learn surgical operations [22, 42, 31]. The challenge

with deep learning classification is that there needs to be a significant amount of data

in order for a deep learning model to find generalizable patterns from a sufficiently

representative sample. When only a few data examples exist, a deep learning model

will learn to make very accurate predictions on the training data. It may struggle,

however, to make accurate predictions on validation data, or when deployed in a real-

world setting. This phenomenon is known as the overfitting problem. Many times,

it is too expensive, too time-consuming, or not feasible to collect more data. There

is also no guarantee that the data collected will be robust when compared to the

real-world data during deployment, so a need exists to ensure that the data collected

2
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is enough to make a generalizable model.

There are a few methods of combating this problem of overfitting to make a

network more generalizable such as model pruning, regularization parameters, and

dropout [25, 56, 38]. One such method that has demonstrated excellent potential is

transfer learning. Transfer learning is the method of taking a robust pre-trained deep

learning network that has been trained using a large and domain-related dataset (re-

ferred to as the source dataset), and then modifying that network using the dataset

that needs a boost (referred to as the target dataset) for deep learning to be effec-

tive [49]. The premise of using transfer learning for deep learning classification is that

datasets that come from similar domains possess shared features. A deep learning

model may have difficulty learning these features on a small dataset. However, a sim-

ilar dataset that has more data may be able to train a model to learn these features

or features that are very similar to those in a smaller dataset. By first training on

the large dataset, the network will learn weights and biases that are closer to what

the final network will learn. After training on the larger, similar dataset, the final

network will only then need to slightly adjust the weights and biases to fit the smaller

dataset. In contrast, the standard procedure would begin training a new network

with randomly assigned weights and biases from scratch. A classic, well-developed

use of transfer learning is within the image classification domain [65]. There are many

well labelled and large image datasets available online, such as ImageNet [13]. These

large datasets can be used to make pre-trained deep learning models, which learn

features in image recognition that have common image characteristics, such as edges,

lines, and shapes. New models then don’t need to learn these features and can focus

on learning features specific to the smaller dataset. One example of this was a model
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created by Krishnadas et al. [37] which used transfer learning to detect malaria in

segmented red blood cell images. Due to a lack of data, they used a ResNet50 [32]

network trained on the ImageNet dataset to obtain an accuracy of 92%.

There are some considerations that need to be made when using transfer learning.

When the source dataset is not chosen correctly, the retrained model may perform

worse after training on the larger dataset when compared to simply training on a

network with randomly initialized weights. This is known as “Negative Transfer” [49].

Fundamentally, for the success of transfer learning there needs to be a way to quantify

the similarity of the two datasets. Dissimilar datasets do not have shared features

and thus result in transfer learning which can be inferior to starting with random

parameters. This thesis will focus its work on quantifying the correct dataset for

use in transfer learning within time series classification problems, specifically time-

series signals, for which there is no large robust online dataset available, akin to the

ImageNet dataset for image recognition. On the Keras deep learning model repository,

there are thirty-three different deep learning model architectures, all of which have

been pre-trained [10]. These models can be downloaded and retrained by applying

transfer learning principles. In many cases, it may not be feasible to train these

models from scratch due to the size of the model and a lack of data to train. Without

knowing how similar the pre-trained dataset and the target dataset are, it is unclear

how much transfer learning is affecting training. Therefore, measuring the dataset

similarity between the source dataset used to pre-train the model, and the target

dataset, can provide insight on much of an effect transfer learning had on training

accuracy.
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1.2 Proposed Solution

To ensure that a deep learning researcher and/or developer doesn’t waste time search-

ing for datasets and empirically testing each of their suitability (or unsuitability), a

metric for measuring the similarity between two time series datasets is proposed.

Measuring the similarity of two time series datasets is a non-trivial task, due to

features of different signals not necessarily aligning at the same time. By encoding

signals into a feature space, measuring the similarity between those encodings is much

more efficient, and this allows for measuring the similarity between two datasets. All

signals are pre-processed so that they have the same signal length and frequency.

Next, the signals from the source dataset are encoded using an autoencoder. This

autoencoder learns to encode each time series signal into a feature embedding space.

Next, a distance metric measures the average distance between the two average en-

coded datasets, Where low distances mean two datasets are similar. Also, a machine

learning classifier is used as a discriminator, with low levels of discriminator accuracy

meaning that the two datasets are similar.

The purpose of this thesis is to use a similarity metric to determine if a source

dataset is suitable for transfer learning on a target dataset. Therefore, this similarity

method was tested to find a correlation between dataset similarity and a boost in

performance from using transfer learning.

While the focus of this thesis was to define a metric to determine the suitability

of datasets for transfer learning, the demonstration of the concept was intended to be

shown on a phone application called Back2Play. The purpose of the Back2Play app

was to objectively predict/classify the stage of recovery for youth having experienced
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a concussion. For this work, the data used in this app was movement accelerome-

try data collected using an Apple Watch. Data was labelled for concussion stages.

The goal was to use a deep learning algorithm to classify and predict the stage of

concussion recovery, based on movement data collected. Due to challenges with data

collection, there was a limited number of participants in the study. Only eighteen

participants had data collected for use in the study and the data collected was skewed

towards the final stages of recovery. As a result, a more generalizable model based

on human activity recognition (HAR) publicly available datasets is presented in this

thesis. There are a variety of open-source datasets used to perform human activity

recognition classification, which may come from a similar domain to the Back2Play

data. The similarity metrics proposed in this thesis were used to measure the sim-

ilarity between the Back2Play data, and other human activity recognition datasets

for potential application of transfer learning.

1.3 Thesis Contributions

This thesis presents two important contributions to the field of deep learning for

time series classification: i) a novel way of quantifying the similarity between two

time series datasets, and ii) a predictive approach to estimating the performance of

transfer learning datasets.

Quantifying the similarity between two time series datasets: The method of

using an autoencoder to first turn time series data into a series of feature embeddings,

then compare the datasets by using a discriminator is presented. This thesis covers

different discriminator methods that are used to discriminate the differences between

embeddings, as well as examine different distance measurements as an alternative to

6
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using a discriminator.

Predictive performance of transfer learning dataset: A correlation analysis

was performed to determine if these autoencoder methods of measuring dataset simi-

larity can predict transfer learning performance. Different metrics for measuring how

much performance boost can be achieved by using transfer learning are presented.

These metrics were then used to evaluate the similarity metric’s ability to predict

how much extra deep learning performance can be obtained by using transfer learn-

ing between two datasets.

1.4 Thesis Organization

The thesis is structured as follows:

Chapter 2 presents a literature review and gap analysis on relevant research in the

field of transfer learning and similarity metrics for time series datasets;

Chapter 3 presents relevant background information on deep learning and transfer

learning algorithms;

Chapter 4 presents an overview of the similarity metric algorithm and describes the

theory behind it;

Chapter 5 presents how to use the algorithm, as well as the experimental procedure

to show how the metric was evaluated;

Chapter 6 presents the experimental validation of the similarity metric; and,

Chapter 7 discusses the findings within the experimental validation, limitations,

conclusions, and future directions

7



Chapter 2

Literature Review

In this chapter, a comprehensive literature review on current transfer learning meth-

ods for time series classification will be presented following the guidelines for a scop-

ing literature review in software engineering [36]. The study is summarized in three

stages: 1) planning 2) conducting and 3) analyzing the review. These three stages

are examined in Sections 2.1, 2.2 and 2.3, respectively.

2.1 Planning the Review

The specific research questions and rationale are presented and the search strategy is

explained with search terms, exclusion criteria, and extracted metrics.

2.1.1 Research Questions

The purpose of this review was to survey the current state of transfer learning on

real-time series data and evaluate their usefulness in healthcare applications. To help

guide the review, a set of research questions was developed. These research questions,

8
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as well as their guiding motivations, are described below.

• RQ1: What transfer learning methods could be used on time series data in

healthcare? The purpose of this question is to filter out which types of transfer

learning are applicable to time series data.

• RQ2: What metrics are used to compare these models to non-transfer learning

counterparts, and how does the performance compare? The motivation behind

this question is to identify what parameters are used to evaluate the effectiveness

of transfer learning, and how can we determine if a transfer learning approach

is an improvement on a non-transfer learning approach.

• RQ3: What ways are being used in literature to measure similarity between

the source and target datasets, pertaining to time-series datasets? The similar

a source and target dataset are, the greater chance of a boost in performance

of a transfer learning model will be. Therefore, defining a similarity metric is

important in finding a potential performance boost, before transfer learning is

attempted.

2.1.2 Search Strategy

In this review, the types of models that are of interest include classification of real-time

series data using transfer learning or classification of medical/healthcare systems using

transfer learning. Three different databases were searched, including IEEE Xplore,

PubMed, and Science Direct. To examine the state of modern literature on the topic,

studies were limited to after 2010. If a study came up in the search with a citation

to another relevant paper, then that paper was manually searched. Each database
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was given the same strings to be searched for keywords that appeared either in the

document title or abstract. For a study to be considered, the term “transfer learning”

must appear in either the document title or abstract as a single string. For example,

“transfer” cannot appear in one area of the abstract, whereas “learning appears in

another. The following search terms were used:

• Transfer Learning AND Time Series

• Transfer Learning AND Accelerometer

• Transfer Learning AND Healthcare

• Transfer Learning AND Similarity

The following metrics were extracted from each of the papers if applicable, to aid

in the paper selection process

• Model Class - What is the general architecture of the model used for knowledge

transfer?

• Evaluation Metric - How was the model evaluated?

• Score - How well did the model score against the Evaluation Metric?

• Model Class of Competing Model - If the study compared the transfer learn-

ing model to another model, was the transfer learning model compared to a

non-transfer learning model of the same architecture, or a completely different

model?

• Increase in Score - How well did the transfer model do in comparison to the

competing model?

10
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Database Search Query: Transfer Learning AND Result

IEEE Time Series 119
IEEE Accelerometer 22
IEEE Healthcare 61
IEEE Similarity 61
PubMed Time Series 25
PubMed Accelerometer 3
PubMed Healthcare 4
PubMed Similarity 3
ScienceDirect Time Series 25
ScienceDirect Accelerometer 3
ScienceDirect Healthcare 4
ScienceDirect Similarity 0
Total 330

Table 2.1: Database Search Results

2.1.3 Exclusion Criteria

When searching for papers on transfer learning on time series data, only papers that

used time-series signal data for supervised classification problems were considered for

the review. Duplicate papers were removed. Papers were selected if they compare

their transfer learning model to either a model with similar or equivalent deep learning

architecture, but without transfer learning, or be compared to another state-of-the-

art machine learning technique. Papers were also included if the focus of the study

was on the process of transfer learning used.

11
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Figure 2.1: Results of screening papers for the review
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2.2 Analysis

2.2.1 RQ1: What transfer learning methods could be used

on time series data?

Nineteen of the fifty-five papers that were collected used transfer learning to aid in

increasing the performance of a time series classification (TSC) problem. The ar-

chitecture of these papers is sorted in table 2.2. Of these papers, fourteen of them

used a Convolutional Neural Network (CNN) as the preferred network architecture

to perform deep transfer learning. CNNs have earned their reputation as a popular

neural network architecture from their use in image processing tasks; this is because

CNNs are very good at feature extracting [69]. Many deep transfer learning models

for TSC have source features learned using a CNN. Once the source network has

learned the features, then the weights are transferred to a target network. The target

network will also have a classifier at the end of the network that uses the learned

features as its input. These classifiers can be a variety of traditional machine learning

classifiers: SVMs [52, 53, 51], or regular Deep Neural Networks (DNN), consisting

of Fully Connected (FC) layers [39, 48, 54, 9, 12, 18, 70, 19]. To help with tempo-

ral relations in the data, some networks that employ CNNs also combine Recurrent

Neural Networks (RNN), such as Long Short Term Memory (LSTM), where temporal

relations are learned prior to [54] or after [5, 43] CNN feature extraction. RNNs take

the output of the previous time step as well as the input of the current time step

to make predictions. This propagates historical information about earlier time steps

throughout the network, so these early features have an influence on the current time
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Architecture Count
CNN 14
LSTM 3
Other 2

Table 2.2: Count of different model architectures presented for time series
classification

step [8]. An LSTM is an RNN which allows for early information in longer time-

series data to not vanish and still have influence dynamically. One of the problems

with using LSTMs for transfer learning, specifically for TSC, is that there aren’t any

publicly available pre-trained networks that implement an LSTM limited public data

sources to create general models [23]. Because of this, LSTM deep transfer learning

is implemented differently from a CNN model. Dridi et al. [41] showed that transfer

learning on an LSTM increased the LSTM’s performance and training speed if the

source and target data are taken from a similar domain where the source and target

classes are similar. Two individuals were tracked to predict if they would be occupy-

ing their room, based on time-series sensor data. A network was trained on individual

A, and the parameters learned were transferred to a target model, which was trained

to predict if individual B would occupy their room. Wang et al [64] demonstrated a

method where transfer learning on a joint CNN-LSTM architecture would increase

performance, as knowledge was transferred from both the LSTM and the CNN [43].

Other models used included multilayer perceptron networks and some variants, such

as extreme learning machines [14].
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2.2.2 RQ2: What metrics are used to compare models that

use transfer learning to non-transfer learning counter-

parts, and how does the performance compare?

In the forty-six papers reviewed that examine the application of transfer learning,

metrics were used to evaluate the performance of each model, however not all studies

looked at how each transfer learning model compared to that of a non-transfer learning

model. There was no established or consistent metric to compare to non-transfer

learning models. However, this review found that the choice of metric was dictated

by model complexity, the effectiveness of other non-transfer learning models, or for

unlisted reasons.

For performance, the two main methods of determining the effectiveness of these

models were: i) compare the transfer learning model performance to that of a deep

neural network model with the same architecture, but without the transfer learning;

or, ii) compare the transfer learning model to that of another state of the art machine

learning classifier performing the same task.

Comparison Type Count
Same Architecture 24
New Network 15
No Comparison 7

Table 2.3: Tabulation of deep transfer learning model comparisons

Thirty-nine of the forty-six (85%) papers using transfer learning compared accu-

racy between a deep transfer learning model and a competitive non-transfer learning

model. The architecture for comparison models is displayed in table 2.3. When com-

paring the two models, thirty-four of the studies showed some improvement in their
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Model Metric Count
Accuracy 25
AUC 8
F1 5
Kappa 1
Unreported 7

Table 2.4: Tabulation of deep transfer learning evaluation metrics

transfer learning model when compared to another competing network. Of the stud-

ies measuring accuracy as their performance metric, most studies show an increase

between 0-10% accuracy. Six of the twenty-four studies that measured accuracy

showed that there was negative transfer between the source and target models. This

meant that transfer learning had a negative effect on the overall performance of the

model [26]. As noted in section 1.1, negative transfer can happen when the source

and target domains are not similar enough for knowledge from the source domain to

aid in the target task [49]. If the primary purpose of transfer learning isn’t to increase

classification performance, but instead to increase computational speed, then transfer

learning can still be a successful option. Saduok et al. [53] showed that even though

applying transfer learning had a 5% decrease in the model’s classification accuracy,

the transfer learning model was praised for its simplicity and reduction in compu-

tation time since a CNN was not needed to be trained from scratch [53]. Table 2.4

shows the model performance metrics used to evaluate models. Twenty-five studies

used accuracy as the primary evaluation metric. Other metrics that have been used

to measure the effectiveness of transfer learning are AUC and F-Score, which were

used by eight and five studies selected for this review.

16



M.A.Sc. Thesis – R. Clark McMaster University – Deep Learning

Figure 2.2: Amplitude of two signals using a lock-step method (Top) and an elastic
method (Bottom)

2.3 Quantifying Similarity Between Source and Tar-

get Datasets

The similarity of the source and target datasets is an important concept in transfer

learning. If the source dataset has similar features to the target dataset, then a deep

network classifier trained on the source data will learn to extract many of the same

features as the target dataset, which will lead to an increased performance via transfer

learning [23]. On the other hand, if the two datasets are from different domains,

or have no shared features between them, then the increased performance that the

network receives may be minor, negligible, or negative. Therefore, when selecting a
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source dataset for transfer learning, some form of dataset similarity analysis should

be performed to quantify the increase in performance expected by transfer learning.

Due to the nature of time-series data, finding a similarity metric between the source

and target dataset is not trivial. However, steps have been taken to find a metric

that can quantify the difference or similarity between the source and target dataset.

The first step in quantifying the similarity between the source and target dataset

of time series data is to find a way to measure the similarity between two signals.

These methods fall into two categories [44]: lock-step, and elastic. In addition, the

use of embeddings is included as another method of quantifying similarity.

Lock-Step: The first is a lock-step method, where both signals are compared at

the same point in time. This class of approaches includes Euclidean distance, where

the distance is measured as the vertical distance between two signals overlapping in

time [28]. This metric excels when events happen at the same time in both signals,

such as comparing the amplitudes of two ECG signals on the same person but on

different body parts. This is shown in figure 2.2, where the amplitude of two signals

is compared at the same time step.

Elastic: When the signal varies in both amplitude and phase, then an elastic

approach is desired. Elastic measures for comparing time-series signals measure the

distance between the two signals but allow for signal deformation to better match

each other via a one to many or a many to one approach [16]. The most common

elastic measure for comparing the similarity of two signals is dynamic time warping

(DTW) [44, 20, 23, 30, 33]. This method aims to find the distance between like

features in each signal, such as peaks and troughs, providing a more flexible imple-

mentation of signal similarity. This means that when events in time are not synced,
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a similarity measurement between the two signals can be made. A representation of

DTW can be shown in figure 2.2. Along with DTW, there are other elastic measures

of time series similarity, such as longest common subsequence (LCS) and all common

subsequences (ACS) [20]. It is important to note that DTW is not a real distance

metric, since it does not satisfy the triangle inequality [57, 16, 44]. Fawaz et al. [23]

explains a method of using DTW Barycenter Averaging (DBA) to find the mean

time series of a class within a dataset. The study then uses the DTW algorithm to

measure the intra-dataset similarity by finding the distance of each class within a

dataset, as well as inter-dataset similarity, by measuring the DTW distance between

all classes in one dataset and all classes in another, then finding the minimum of

those distances. Surprisingly, there is a lack of testing similarity measures for evalu-

ating inter-dataset similarity, let alone using these measures as a predictor for transfer

learning performance. However, many studies have used these methods of finding the

similarity between groups of signals in clustering algorithms, such as K-Means [28,

63, 67]. In the future, more work should be done on using time-series signal to signal

similarity measures as a way to quantify inter-dataset similarity, as well as predict

the performance of transfer learning based on this similarity.

Embedding: Although not currently found in the literature for time series classi-

fication using transfer learning, another method of finding similarity between datasets

is derived from the embeddings of a trained neural network. Embeddings are found

by training a neural network on a dataset and extracting the weights and biases of the

network [34]. The dissimilarity between two neural networks trained from different

datasets is proportional to the distance between the set of embeddings of each ex-

ample. Embeddings allow a simpler distance calculation, such as Euclidean distance,
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rather than DTW. Mathisen et al. [46] has demonstrated this principle by using a tra-

ditional ANN to create embeddings on many datasets in the UCI data repository, as

well as using CNNs to create embeddings on images, and using those embeddings to

find the similarity of two images. As Mathisen et al. points out, an interesting avenue

of research would be to create embeddings on time series data and use those embed-

dings to measure similarity between signals, as well as the inter-dataset similarity

between datasets containing time series, since deep neural network architectures have

been shown to accuracy classify time series data, and therefore can lean these embed-

dings. To measure the distance between these embeddings, many different distance

measurements can be used. Euclidean distance is the baseline, however more complex

distance measurements can also be used. Wasserstein Distance [40], or the Maximum

Mean Discrepancy [17], which measures the dissimilarity of probability measures be-

tween the source and target domains, are some of the measurements used to quantify

the difference between these embeddings, as it pertains to the whole dataset. These

metrics can be used as optimizers, to selectively choose which information to transfer

to the target domain, which is known as conditional transfer learning. One study that

employed conditional transfer learning used two different networks as the source and

domain models. The source model was a ResNet CNN model trained on ImageNet

data, and the target model was an LSTM-ResNet model trained on images of faces

for GH pituitary tumours. The target model produced a feature vector of a face, and

the source model made a support vector. These vectors were sent to an attention

kernel, which, with help from an LSTM to learn a connection between the source and

target vectors, produces an output [15].
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2.4 Literature Review Summary

Transfer Learning is used as a method to increase the performance of deep learning

models for time series classification. A variety of architectures are used, depending

on the classification problem. The performance of a transfer learning model can

be evaluated with respect to a non-transfer learning model by comparing various

evaluation metrics between the two models. The current primary metric used to

compare the two models is empirical accuracy. There is a lack of literature that

attempts to predict the performance gained from the use of transfer learning. All

papers in this review that focused on an application of transfer learning, did so without

any insight on the feasibility of transfer learning based on the compatibility of the

two datasets. This presents a clear gap in the literature that this research seeks to

address.
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Chapter 3

Similarity Metric Design

In this chapter, the design of the similarity metric is presented. Discussed here will

be the theory on how to generate encodings using an autoencoder. Two methods

of measuring similarity between the source and target dataset encodings are also

discussed.

3.1 Motivation

Transfer learning involves using a supplementary (source) dataset as a booster to

increase the generalizability of a model when the original dataset a model is meant

to classify (target) is too small. The model is first pre-trained on the source dataset,

then the weights are transferred to the target model, which is then trained on the

target dataset. To ensure that the target model isn’t confused, features should be

shared across both datasets. When shared features exist, the target model does not

need to worry about learning these features, as they have already been learned from

the source data. However, if there are little to no shared features, then the model
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may be confused about how to use features that don’t exist in the target data to

make classifications.

Therefore, there is a need to ensure that a source dataset is chosen that has

sufficient enough shared features with the target dataset. To do this, the similarity

between the two datasets must be considered. When dealing with time series datasets,

there are considerations that must be made when comparing two signals, let alone

two datasets. A digital signal can be represented as a time series vector, so an el-

ementary comparison between two signals can be made by measuring the difference

in amplitude of the signal at each time step. This is a viable comparison; however

many assumptions must be made. First, each signal must be of the same length and

sampling frequency, so that the two time series vectors are the same shape. More

importantly, the features from each signal must align perfectly in time. For example,

if comparing two time series accelerometer signals of a person walking forward, the

first step must occur at precisely the same time. A phase-shifted signal that would

otherwise be very similar to an original signal would have scored as being very dissim-

ilar. There are methods of correcting for this misalignment, such as Dynamic Time

Warping, however, these methods are still not perfect, as the initial and final time

points are still meant to be in alignment [50] .

This thesis attempts to solve the time-variance problem of comparing time-series

signals by transforming each signal into a space where two signals can be easily com-

pared with each other. This allows each signal from a dataset to be grouped together

and compared against signals from another dataset. To do this, an autoencoder is

used to turn a raw signal into a feature vector, independent of time.
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Figure 3.1: An overview of knowledge transfer from one deep learning model to
another.

3.2 Theoretical Background

3.2.1 Transfer Learning

Transfer learning is a technique to improve the performance of a machine learning

model, by leveraging information learned in one domain and applying it to another.

Pan and Yang [49] gives a good definition of transfer learning. A domain D is repre-

sented by the two following parts: a feature space χ, and a probability distribution

P(X), where X belongs to χ. A task T also contains two components: a label space

y, which are ground truth labels to X, and a prediction function f(x), which makes a

prediction on what the ground truth of an example in X. With these terms defined,

Pan and Yang give the following formal definition of transfer learning. Given a source

domain Ds and learning task Ts, a target domain Dt and learning task Tt, transfer

learning aims to help improve the learning of the target predictive function ft(x) in

Dt using the knowledge in Ds and Ts, where Ds does not equal Dt, or Ts does not

equal Tt.

Figure 3.1 provides a visual description of the concept of transfer learning. Source
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data is used to train a model and make accurate predictions on source labels. Any re-

lation between the source domain and the target domain, whether implicit or explicit,

can be transferred to the target model. This extra knowledge can allow the target

model to learn faster, as well as give the model a greater data source to learn more

information, which can result in greater prediction performance. The focus of this

thesis will be on a method of transfer learning known as deep transfer learning, and

how it can be used in time series classification for healthcare. Deep transfer learning

falls under the category of transfer learning known as inductive transfer learning.

Both the source data and the target data are labelled [6]. In classification problems,

this is generally the case. Deep transfer learning, as defined by Tan et al. [59], is

the following: Given a transfer learning task defined by 〈Ds, Ts, Dt, Tt, Ft(·)〉. It is

a deep transfer learning task where Ft(·) is a non-linear function that is modelled in

a deep neural network. A deep neural network is a class of machine learning model

architectures with several layers of neurons that are meant to simulate the learning

structure of the brain. The input layer collects data, the output layer makes a predic-

tion on the label of the data, and the hidden layers perform levels of abstraction, to

learn complex features and patterns within the data. The layers closer to the input

of the neural network perform low-level feature extraction, such as edges in an im-

age [66]. As information is fed forward to the later layers, more specific features of the

classification task are learned. Deep transfer learning applies this concept, by having

a source network learn on source data, then transferring the parameters learned to

the target network. If the source and target network are applied to similar datasets,

then the source model will have learned low-level features from the source data which

can be the same as the low-level features on the target data.

25



M.A.Sc. Thesis – R. Clark McMaster University – Deep Learning

There are two types of deep transfer learning used in classification problems: Fine-

tuning the weights and freezing the weights. The most common method is fine-tuning,

or model weight transfer. The method of fine-tuning the network is as follows. First, a

source network is trained on source data to create a model meant to classify the source

data. Then, that model’s parameters, such as weights and biases, are transferred to

the target model. The target model may replace the output classification layers to

better fit the target task. The model is then retrained. the source parameters are set

as the initial parameters, and training is done using the target data. The benefit of

this is if the source data contains similar low-level features to the target data, then

the source model can extract features from this data and use them to help classify

the target data. This is a good technique when there is limited target data. The

source data can give the network a boost to learn these features, which can prevent

the model from overfitting.

3.3 One Dimensional Convolutional Neural Net-

works

As deep learning has developed, specialized network architectures have been devel-

oped to perform specific tasks. One of these networks is the convolutional neural

network (CNN). The CNN is an architecture wildly used in computer vision and

image recognition problems [55], due to its ability to recognize patterns that repeat

throughout an image, as well as lower the computational complexity, due to weights

and biases being reused throughout the image [35]. An artificial neural network (Or

a multi-layer perceptron network) contains an input layer and weights that connect
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each feature from the input layer to hidden layers. Each node in a hidden layer has

weights connecting the node to each node in the previous and next layer. This is

problematic when images are being classified, since images create a large number of

features, as a single pixel represents a feature. Each pixel is treated as independent,

which prevents the network from reusing learned features across the image. CNNs

rectify these problems by passing a convolution filter across the image. The nodes

of the CNN are the filters that are passed through the image, and the values in the

kernel are the weights that are learned via backpropagation. A sample 2D CNN,

described in [35], describes the process of classifying an image:

1. A linear convolution is performed between the input image and the first filter.

The shape of the filter and the number of filters are predetermined by the

network designer. The shape of the new image is (kx − 1)(ky − 1)), where kx

and ky represent the filter shape. The number of filters used determines the

number of channels in the new feature map.

2. The feature map is passed through an activation function.

3. The feature map is passed through a pooling layer. This reduces the shape of

the feature map by finding the maximum or average of a group of features in

the feature map. For example, if a pooling layer of 2x2 is used, then the shape

dimensions of the feature map will reduce by half.

4. The first three steps are repeated, providing depth to the network. A flatten

layer is used to transform the final feature map into a single vector.

5. Dense layers are used to finish the network, similar to a vanilla neural network.

The final layer does the classification.
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These networks are trained by backpropagating the classification error through the

network and are optimized using a selected variant of gradient descent [35]. A sim-

ilar algorithm has been developed for one-dimensional data: one-dimensional CNNs

(1DCNN). They operate on the same principles as the 2DCNN, however, instead

of sliding a 2D filter across an image, a 1D filter is slid across a time-series signal.

The 1DCNN receives many of the same benefits as the 2DCNN, such as the ability

to reuse features learned throughout a signal. For example, if a 1DCNN is used in

human activity recognition, a filter may learn a specific walking pattern early in the

signal. That filter can be used to detect the same walking pattern later on in the

signal or in other signals.

3.4 Autoencoders

Autoencoders are a type of neural network which first compresses information, then

reconstructs the compressed information as accurately as possible [7]. The network

consists of two separate networks, an encoder and a decoder. The encoder has infor-

mation passed through, which reduces the dimensionality of the information. At the

end of the encoder is the layer with the least number of nodes, called the bottleneck

layer. At the bottleneck layer, the information is as compressed as possible. The sec-

ond part of the network is the decoder. The decoder takes encoded information and

attempts to recreate the original information1. The size of each layer increases from

the bottleneck layer until the layer shape is the same shape as the original informa-

tion. Training an autoencoder is a supervised learning problem. Data is compressed

1Conceptually this is no different than a digital signal encoder/decoder, or the process used to
construct/deconstruct Morse code.
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by the encoder, reconstructed by the decoder, then compared to the original data us-

ing mean squared error (MSE) loss. This loss is backpropagated through the network

until the reconstruction loss reaches a minimum.

Autoencoders can be used on a variety of data types, including time-series data.

To use a time-series autoencoder, the data must first be transformed from a time

series signal to a feature vector when encoding the data. This can be done by using

a one-dimensional convolutional neural network (1DCNN). Convolution layers and

pooling layers are used to extract features from the signals, as well as reduce the

dimensionality of the data. In this thesis, the data used have short repetition cycles

that are well suited for use in 1DCNNs, such as accelerometer signals and ECG

recordings. if the signals are longer and non-repetitive, such as the price of a stock

over time or fluctuations in wireless signal strength, a recurrent layer, such as an

LSTM or GRU should be used after the convolutional layers, to retain information

that happened earlier in the signal [68]. The signals are then flattened, and dense

layers are added to reduce the size of the signal until the bottleneck layer is reached.

To decode the signal, a mirror of the encoder is used. Dense layers that increase in size

are used to increase the dimensionality of the signal until the signal is reshaped to the

shape of the signal in the encoder before flattening. Then, the signal is transformed

back to its original shape by using depooling layers and deconvolution layers to undo

the transformations the encoder made. The output layer of the decoder has the same

shape as the input layer of the encoder.

When the network is trained, the autoencoder can transform signals from a time-

dependent signal to a feature vector and back, while retaining key information. This

allows for signal reconstruction. This is key for similarity measurements of two signals
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since the signals are now in a space where they are easily comparable, due to them

now being time-invariant.

3.5 Dataset Transformations

This section covers how to use the autoencoder to transform a source and target

dataset into a space where the two datasets can be compared.

3.5.1 Training the Autoencoder

The first step is to train the autoencoder on the source data. Training on the source

data allows for greater autoencoder accuracy, due to the amount of data available

being greater than the target dataset. The target dataset is split 90% training and

10% validation. Training is done by feeding the raw signals through the autoencoder,

which are reconstructed after the decoder. The loss of the autoencoder compares

each time step of the reconstructed signal to the original signal. Training is done

over 100 epochs, however, validation accuracy was monitored, and early stopping

was implemented so that overtraining doesn’t occur. This process is repeated five

times, each time with a different random initialization of model parameters. The

autoencoder with the highest accuracy is selected as the autoencoder for the trial.

3.5.2 Encoding the Datasets

After the autoencoder was trained, the source and target datasets were encoded. This

was done by removing the decoder portion of the autoencoder. Now, the output of

the network is an encoded feature vector of the signal, with a shape dependant on
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the size of the bottleneck layer, rather than a signal being recreated at the end of

the network. The source and target datasets were passed through the new encoder

separately, and two datasets encoded datasets were returned. The two datasets had

then been transformed from a set of time dependant signals to feature vectors.

3.6 Similarity Measurements

Once the two datasets were encoded, the similarity between the two encoded datasets

was measured. Since the source dataset was used to train the autoencoder, source

encodings retained much of the original signal information. The target dataset will

have embeddings which may be more varied than the source dataset. When two

datasets were similar and features were shared, the target dataset occupied a similar

space in the feature vector space as the source dataset. When the target dataset was

dissimilar to the source dataset, then the target signals were not encoded accurately

and did not occupy the same feature vector space.

It is the goal of this thesis to provide a quantitative measure of similarity between

the source and target dataset. Many methods are possible, but they can be split into

two categories: ”modelled” and ”learned”. This naming convention was referenced

from Mathisen et al. [45], which looked at finding a way to measure intra-dataset

similarity between classes in a dataset. A ”modelled” similarity metric is a measure

pre-designed, which requires no machine learning. An example of this is the Euclidean

distance between the source and target centroid embeddings. This metric is defined

as

Dist =
√

x2
1 + x2

2...x
2
n. (3.6.1)
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The second metric type is a ”learned” metric. Instead of using a defined measure,

a machine learning model can be used to optimize the similarity, based on the data.

Although more complex, this type of metric may be more powerful, since it optimizes

itself to fit the data best. In this thesis, the ”learned” method of measuring dataset

similarity will be the use of a discriminator. The discriminator is a classifier that

looks to classify the source dataset from the target dataset. If the source and target

dataset are similar, then the discriminator has a difficult time distinguishing the

dataset encodings from each other. Otherwise, if the datasets are dissimilar from each

other, then the discriminator will be more accurate in classifying the two datasets.
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Chapter 4

Experimental and Implementation

4.1 Datasets

There are six datasets used in this thesis. One is used as a source dataset, and five

are used as target datasets. Each dataset consists of time series signals and come

labeled for supervised learning.

4.1.1 UCI HAR

The University of California, Irvine Human Activity Recognition (UCI HAR) [60]

dataset is an open source online dataset used for classifying six different human ac-

tivities. These activities are walking, walking upstairs, walking downstairs, sitting,

standing and laying down. Thirty volunteers between 19-48 years of age were used

to collect data on each activity. Each signal is taken from the accelerometer and

gyroscope in a Samsung Galaxy S II smartphone, worn on the participant’s waist.

The data collection frequency is 50 Hz, and each signal is 2.56 seconds long, resulting
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in 128 readings per window of signal. The data from this dataset comes pre-filtered

to remove any gravitational components. Only accelerometer readings were used to

make any classifications. Each acceleration signal comes with three signals: one for

each of the three dimensions of movement. The total number of signals within the

dataset is 10299.

This dataset was chosen to be the source dataset for a variety of reasons. First,

it is well used in literature as an easy human activity recognition dataset to generate

HAR models for. A simple search on IEEE Xplore for “UCI HAR” returns 57 results,

all pertaining to using the dataset for HAR classification. This dataset was chosen

because of its low number of classes, and minimal pre-processing needed. The classes

are balanced, so training a source model on this dataset can generate a robust classifier

for both static and dynamic activities. The preprocessing steps performed on this

dataset are clearly outlined [61], so it is easy to match the target dataset’s properties

to the UCI HAR datasets, such as signal length and frequency.

4.1.2 UCI DSA

The UCI Daily Sports and Activity [4] is another HAR dataset found on the UCI

repository. This dataset consists of nineteen different activities, including all six ac-

tivities found in the UCI HAR dataset, as well as more dynamic activities, such as

playing basketball. Eight participants between the ages of twenty and thirty per-

formed the activities for five minutes, with each signal from the activity divided into

five second signals. Each participant wore five sensing units: one on their torso, one

on the left and right arm, and one on the left and right leg. Each of those sens-

ing units contained a three-axis accelerometer, which measured acceleration in three
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dimensions of movement. Each sensor captured readings at 25 Hz, resulting in 125

readings per window. In this thesis, each different sensor module is treated as its own

dataset, meaning that in the UCI DSA dataset, five separate datasets are extracted.

4.1.3 WISDM

TheWireless Sensor Data Mining (WISDM) HAR dataset [61] is another HAR dataset

which has 18 different classes, however only five are used in this thesis: walking,

sitting, jogging, standing and walking up or down stairs. This dataset contains four

sensors to record time series signals. Fifty subjects are used to create signals that

are three minutes long and are recorded at a frequency of 20 Hz. Two sensors are

accelerometers, which record acceleration on the participant’s smartphone in their

pocket, as well as on a smartwatch worn on their wrist. The other two sensors come

from the same smartphone and smartwatch; however the gyroscopic recording was

used instead. These extra sensors were included to provide a different type of recorded

data for the similarity metric.

4.1.4 ECG Datasets

All aforementioned datasets are within the HAR domain and are expected to therefore

have some similarity to the UCI HAR dataset. To include datasets that are dissimilar,

two ECG datasets are also used in this thesis. Both datasets can be found as part of

the PhysioNet competition [27] [2]. The first is the WFDB Georgia dataset, which

contains over 10,000 ECG recordings. These recordings are between 5 and 10 seconds

long with a sampling frequency of 500 Hz. The second database is the Physikalisch-

Technische Bundesanstalt (PTB) dataset. This dataset contains samples of varying
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length, between 10 seconds to 120 seconds, and are sampled at either 500 Hz or 1000

Hz. Each recording contains twelve signals, one for each of the twelve leads used in

an ECG. to ensure that these recordings fit the similarity metric input, only the first

three leads are kept. This may lead to less accuracy; however the work of this thesis

is not to achieve high accuracy models, but to see if transfer learning can improve

these models based on the similarity between the source and target dataset.

4.2 Deep Learning Models

For this research, transfer learning was done between deep learning models. These

deep learning models were used to classify time series data. Each deep learning model

for every classification experiment was created to have the same architecture. This

was done to ensure that each model was compared consistently. There is also a

practical motivation to why the same architecture was used for each model. When

searching for a dataset to use as a source for a transfer learning application, machine

learning engineers want to limit time cost of developing models. Optimizing hyper-

parameters of a source model represents a large time cost to engineers. Unrefined

models can still give good decent accuracy if the data is clean enough. Again, the

purpose of this work is not to optimize the classification, but instead this work seeks

to quantify improvement that transfer learning can provide a priori, thus offering a

more convenient metric than empirical test and re-test.

The architecture for the deep learning models used in this thesis are less complex

compared to today’s state of the art deep learning models. A graphical representation

of the architecture can be found in figure 4.1. Each deep learning model contains a

signal input layer, followed by a 1D convolution layer with 32 filters. MaxPooling is
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Figure 4.1: 1DCNN architecture for classifying signals. The input to the classifier is
a three channel signal of 51 time steps

then used to reduce the size of the signal four-fold, and dropout is used as a measure

to prevent overfitting. These three layers are repeated again, with the convolution

layer now having 64 filters. The feature map is then flattened to a vector of 128

neurons. A dense layer of 50 neurons is the last hidden layer, which provides some

more non-linear feature mapping before a final dense layer makes a prediction on the

class. The output layer’s shape is changed to fit the number of classes in a particular

dataset.

4.3 Similarity Metrics

Two similarity metrics are discussed in this thesis: one modeled similarity metric,

and one learned similarity metric.

4.3.1 Manhattan Distance

The Manhattan distance (or L1 distance) is the distance between two points where

the shortest path available is calculated based on the space’s bases vectors, rather

than a straight line. It is called the Manhattan distance because to move between
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two places in Manhattan, it is impossible to drive in a straight line from one point

to the other. A car must drive in a grid like pattern north or south, then east

or west. This distance measurement metric is used rather than Euclidean distance

because of the curse of dimensionality [1]. The greater the number of dimensions, the

less meaningful Euclidean distance becomes. The formula for Manhattan distance is

shown in equation 4.3.1:

d(I1, I2) =
∑
P

|IP1 − IP2 | (4.3.1)

Manhattan distance was chosen as the preferred metric for measuring distance in

the encoding space due to the curse of dimensionality [1]. As the dimensions of a

space increases, the data within that space becomes sparser. Distance metrics with

lower norm values have greater contrast between points for sparse data. Therefore,

Manhattan distance has a norm metric of one, therefore it was chosen over alternative

distance metrics, including Euclidean distance, which as a norm metric of two.

If the two datasets have similar features, their embeddings will be clustered near

each other. Conversely, if the two datasets are dissimilar, then the target dataset

should be clustered away from the source dataset. Therefore, the modeled similarity

metric is the Manhattan distance between the centroids of the source and target

dataset. These centroids are calculated by finding the average of each feature for the

entire dataset.

4.3.2 Discriminator

The discriminator approach uses a machine learning model to determine the similarity

between two datasets. This concept was derived from the Generative Adversarial

Network literature [3] where a generator and discriminator are used to compete with
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Figure 4.2: The discriminator architecture

each other; the generator tries to create data that statically matches the domain, and

the discriminator tries to detect the “faked” data. For the purposes of this thesis,

the discriminator concept has been applied to quantify the difference between two

datasets as though the target was “generated” and the source was used to train the

“discriminator.” The learned discriminator needs to quantify how different are the

two encoded datasets (source and target). For this quantification, a simple neural

network was employed and all data points were labelled in the embedding space

as either belonging to source or target dataset. The neural network was taught to

distinguish the two datasets. If the network has difficulty determining difference, then

the two datasets are similar. If the network easily distinguishes the two datasets, then

the two datasets are dissimilar. A low complexity network was empirically chosen to

improve performance. It is believed that the lower complexity acts to increase the

quantization binning size for classification which was suitable for this complexity of

data. This approach provided improved range in the overall accuracy between similar

and dissimilar models. Instead of a distance between two values, the similarity metric

is an accuracy score of how well the discriminator was able to discriminate the source

data from the target data.
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The similarity is scored between 0.50 and 1.00:

0.50 means the discriminator was randomly guessing, unable to discriminate the two

datasets from each other; and,

1.00 means that the discriminator was able to predict which dataset an encoding

belonged to 100% of the time.

Accuracy was validated using data unseen during training and based on a percent

split using an 85-15 train test split.

4.4 Evaluating Transfer Learning Performance

Transfer Learning performance is a difficult parameter to measure. Two different

metrics are used throughout this thesis to give a better understanding if there is a

positive boost in performance from using transfer learning:

1. overall accuracy improvement, and

2. area between the transfer learning curves.

4.4.1 Overall Accuracy Improvement

The first metric that is evaluated is overall accuracy improvement. To measure this,

the validation accuracy of the model that included transfer learning was compared

to the validation accuracy of the model without the use of transfer learning. The

best accuracy of each model was used, so if the highest validation accuracies for each

model happened at different epochs, those validation accuracies would still be used,

rather than choosing the training accuracy at the last epoch or at matching epochs.
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The author’s logic behind this choice was based on the accepted training termination,

called “early stopping”. Early stopping will terminate training when accuracy criteria

are met rather than continuing to train until (for example) 100 epochs. However, these

models did not terminate their training with early stopping so that we could observe

the same range of training cycles for each dataset.

Sometimes, a dataset may not need transfer learning, but can still see a benefit

to using the technique. There are three indicators that transfer learning has had a

positive effect on learning:

1. The overall accuracy of the model has increased. This is captured in the first

performance metric.

2. The first epoch accuracy of the model has increased.

3. The rate at which accuracy is increased over the first few epochs is higher.

Transfer learning has more benefits than just increasing the validation accuracy

on a test set. It also makes the model more generalizable when deployed, allowing

the model to have a better chance of accurately classifying unseen patterns in data.
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Therefore, it is important to note when transfer learning is successful, even when the

overall transfer learning accuracy isn’t much higher than a model without transfer

learning.

4.4.2 Area Between the Curves

To capture the overall effect of transfer learning, a new metric of measuring transfer

learning performance is introduced here. This new metric is the area between the

transfer learning curves (ABtlC). When transfer learning has a great positive effect

on learning, the area between these two curves increases. To simplify this calculation,

rather than take the area between the curves, the difference in accuracy at each epoch

is calculated and summed over the entire training period.

ABtlC =
∑

nepochs

(atl − anotl) (4.4.1)

Equation 4.4.1 is another metric which evaluates transfer learning performance

when the amount of overall accuracy boost a model can get is negligible. This metric

is preferred when the original non-transfer learning model has already achieved high

accuracy.

4.5 Pre-Processing

In this thesis, three experiments were run to determine the validity of similarity

metrics. First, the similarity between the UCI HAR dataset and itself with noise was

performed.
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4.5.1 Signal Processing

Since the UCI HAR dataset came with a lot of processing done on it, it remained

generally unprocessed throughout the thesis. One processing step that was not done

on the UCI HAR dataset was signal normalization. Each signal was normalized have

a maximum power of 1.

s(t) =
s(t)−min(s(t))

max(s(t))−min(s(t))
(4.5.1)

Each other dataset was processed to have similar characteristics to the UCI HAR

dataset. First, each signal was resampled using the SciPy resample function [62], to a

frequency of 50 Hz, which uses a Fourier method of resampling. Next, each signal was

windowed to a signal length of 2.56 seconds, and 128 readings per window of signal.

This was done to match the shape of the target signals to that of the autoencoder.

Signal segmentation was done using a fixed-width sliding window with 50% overlap.

The signals were filtered using a Butterworth high pass filter with a cut-off of 0.3 Hz

to remove gravitational noise.

Transfer learning is a method useful for increasing accuracy and generalizability

in datasets with low data samples. Therefore, to simulate smaller dataset sizes,

the target datasets were randomly sampled to 500 samples after windowing. This

represented approximately 5% of the size of the UCI HAR dataset. This was done

to give the non-transfer learning model a harder time finding generalizable features,

lower accuracies, and more susceptible to overfitting. This way, a boost from transfer

learning is expected to be easier to quantify. The datasets were reduced at random,

and five-fold validation was used. For training and validation, a 70-30 train test split

was used.
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4.5.2 UCI vs UCI + Noise

It was important in the early stages of this thesis to make sure that meaningful

similarity measurements were made before transfer learning is considered. To do

this, the similarity metrics needed to be compared to some ground truth similarity

between two datasets. One way of achieving this certainty of similarity is to compare

a single dataset with an altered version of itself. The more the dataset is altered,

the less similar it becomes to the original dataset. By applying the similarity metric

between the original and altered dataset, a prediction can be made on how altered

the dataset is, and then compared to how altered the new dataset actually is.

The original dataset used in this experiment is the UCI HAR dataset. This dataset

will be used as the source dataset moving forward. To create a new dataset altered

from the UCI HAR dataset, a known amount of artificial noise is injected into each

signal of the dataset. Eight different datasets were created by injecting different levels

of noise. The amount of noise injected was determined by the desired SNR of the new

signals. SNRs of each dataset were set to 40, 35, 30, 25, 20, 15, 10 and 5. To determine

how much noise to inject, the signal power for each of the three accelerometer axis

was calculated. The power of the noise created was calculated by dividing the noise

of the original signal by the desired SNR. A noisy signal was created by generating a

Gaussian noise signal, with the mean of the noise equalling the mean of the original

signal. The range of amplitude of the noise equalled the square root of the noise

power. This noise was then added to the original signal. This process is shown in

figure 4.3

NoisePower = SignalPower/SNR (4.5.2)
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Figure 4.3: The generation of a noisy signal by adding a known amount of Gaussian
noise to the original signal

Noise = Rand(Mean,Amplitude), (4.5.3)

where Mean = meansignal, Amplitude =
√
NoisePower.

The standard deviation of a signal is a measure of how far the amplitude of a

signal deviates away from the mean of the signal. When Gaussian noise is added to a

signal, the chance that the amplitude of that signal deviates from the mean becomes

higher. When averaged over a large dataset, if large amounts of Gaussian noise is

added to each signal, the likelihood that each signal has a greater standard deviation

increases. One way to quantify this change in likelihood is to measure the standard

deviation of the standard deviation of the dataset. The standard deviation of each

signal in the dataset is recorded, and the standard deviation of the distribution of

standard deviation is measured. Histograms of noisy datasets can be seen in figure

4.4. As the SNR of signals increases, the standard deviation of each signal tends to

increase, as the total power of each signal increases due to the addition of extra noise.

Figure 4.5 shows the distribution of standard deviation of the signals shows a clear

change in the dataset by changing the SNR of the signals in the datasets. As more

noise is added to the dataset, specifically around the 15 SNR range, the more different
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Figure 4.4: Histogram of the standard deviation of signals

the datasets become. The standard deviation of the signal is a measure of how far

the signal strays away from the mean amplitude. When the noise of the signal begins

to overpower the original signal, the greater the chance that the new signal begins to

stray away from the original signal’s mean, resulting in a greater standard deviation

of the signal. A histogram of the dataset’s standard deviation of signals for different

SNRs for the walking class’s x-axis is plotted in figure 4.5. The standard deviation

of these plots stays relatively the same for SNRs between 40 to 20, but once the

noise reaches past 20 SNR, a widening of the histogram can be seen. The standard

deviation of these plots is displayed in figure 4.4 showing the increase in standard

deviation as the SNR goes down.

To test the metric, the untouched, original UCI HAR database was used as the

source dataset. Each of the newly created and altered UCI HAR datasets was used
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Figure 4.5: The standard deviation of the standard deviation of signals in a dataset
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Figure 4.6: Autoencoder architecture. The entire network is used for training. All
layers past the ten node bottleneck layer are a part of the decoder and were

discarded after training.

as the target dataset. The source dataset was used to train the autoencoder and the

source model.

4.6 Creating the Encoder

An autoencoder was trained and the encoder was extracted to evaluate dataset sim-

ilarity. The architecture for the autoencoder is displayed in figure 4.6 Five autoen-

coders were trained, and the autoencoder with the lowest reconstruction loss was

chosen as the autoencoder to use throughout the thesis. Mean squared error was the

loss used for training, and the adam optimizer was used to update the weights of the

autoencoder. A learning rate of 0.001 was used. The autoencoder with the lowest

reconstruction loss after training had a reconstruction loss of 0.0093.

4.7 Experimental Methods

In this section, the experimental methods used to evaluate the similarity metrics are

described. Three experiments were conducted. The first two experiments attempt to
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prove the two similarity metrics can measure the similarity between two datasets by

measuring the response of injecting noise to the target dataset. The final experiment

attempts that the similarity metrics can accurately predict the potential performance

gains from using transfer learning.

4.7.1 Noise Injection Similarity: Same Dataset

The following steps were used to evaluate UCIoriginal vs. (UCI+Noise)set:

1. An autoencoder is created and trained on the UCIoriginal HAR dataset.

2. UCIoriginal HAR dataset and one of the eight different noisy datasets ((UCI+Noise)0,

(UCI+Noise)1, ... (UCI+Noise)7 ) are then passed through the encoded, gener-

ating two embedded datasets.

3. The similarity between the UCIoriginal HAR dataset and (UCI+Noise)set are

evaluated, without evaluating transfer learning.

The similarity between the encoded datasets is measured using the two similarity

metrics presented in section 4.4. The results of these similarity metrics are presented

in section 5.1 as plots comparing the results of the similarity metric to the amount of

noise injected. A good similarity metric should see a decrease in measured similarity

as the amount of noise injected increases.

4.7.2 Noise Injection Similarity: Different Datasets

Using the same methodology as the subsection 4.7.1, the similarity metric is tested by

measuring how different two datasets are when noise is injected into one. However,
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while the source dataset is still the UCI HAR dataset, the new target dataset is now

a different time series dataset. Recall these datasets were:

• UCI Daily Sports and Activities: A human activity recognition dataset

• WISDM: A human activity recognition dataset

• WFDB GA: An ECG classification dataset

Similarly, the autoencoder is trained on the UCI HAR dataset. Noise is injected at

the same levels of SNR as in the previous section, to the UCI DSA dataset (Torso), the

WFDB Ga dataset, and the WISDM dataset (From the smartphone accelerometer).

The autoencoder is used to generate encodings of the UCI HAR dataset and the

different target datasets. The similarity of the two datasets is expected to decrease

as the SNR of the noise injected dataset decreases, however, because the source and

target are distinctly different datasets there should be an initial difference when no

noise is injected (unlike UCIoriginal vs. UCI+Noise).

4.7.3 Similarity Metric vs Transfer Learning

The similarity metric is then compared to potential performance gains by using trans-

fer learning. An autoencoder is created and trained using the UCI HAR dataset.

Then, each of the eleven other datasets used in this thesis has their similarity mea-

sured against the UCI HAR dataset. A deep learning model is then trained from

scratch with random initialization on one of the target datasets. Transfer learning

is then applied between the UCI HAR and the target dataset. Another deep learn-

ing model is trained on the UCI HAR dataset, and then each trained parameter is

transferred to another model, which will be trained on the target dataset. The only
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Figure 4.7: Process diagram for comparing the similarity metric to the boost in
performance from transfer learning

parameters that are not transferred over are the final layer’s weights, which are reset

back to randomly initialized weights. The architecture for each of these models is

described in section 4.2. Each target network’s final layer is customized to fit the

number of labels that the target dataset is trying to classify. The transfer learning

network is then retrained on the target data. This is repeated for each of the other

target datasets. The difference in highest validation accuracy between the transfer

learning network and the non-transfer learning network, as well as the area between

curves, are measured. Once transfer learning is performed, the similarity between the

source dataset and the target datasets is measured using both the Manhattan distance

and the discriminatory accuracy. A correlation between the similarity between the

source and target dataset, and the performance boost gained from transfer learning

is made. Transfer learning is most needed when there is a lack of data. The target

datasets were reduced to 1000 samples each, compared to the over 9000 samples in

the UCI HAR dataset. The metrics were also evaluated at dataset sizes of 800, 600,

400 and 200 examples. A process diagram is shown in figure 4.7
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Chapter 5

Results

In this chapter, the experimental results of the similarity metric are presented. The

chapter is structured as follows: Section 6.1 provides a breakdown of how the simi-

larity metric performed in a controlled setting, measuring the similarity between the

UCI HAR dataset and a modified version of itself. Section 6.2 is the results of mea-

suring the similarity between two different datasets, with noise injected. Section 6.3

gives the results of measuring the similarity of the two datasets and compares it to

how much transfer learning performance was measured.

5.1 Noise Injection Similarity: Same Dataset

In this section, the results of the similarity metric measuring a dataset and an altered

version of itself is presented. The results of measuring the similarity using the mod-

elled Manhattan distance metric and the learned discriminator metric are displayed

in table 5.1.
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SNR Manhattan Distance Discriminator Accuracy

40 0.0049 ±0.0001 0.51 ±0.03
35 0.0100 ±0.0002 0.51 ±0.03
30 0.0200 ±0.0003 0.51 ±0.06
25 0.039 ±0.007 0.52 ±0.04
20 0.077 ±0.007 0.53 ±0.01
15 0.15 ±0.02 0.56 ±0.08
10 0.29 ±0.03 0.61 ±0.07
5 0.48 ±0.04 0.70 ±0.06

Table 5.1: Comparison of the two similarity metrics to measure the similarity
between the UCI HAR dataset and a noisy version of itself.

Note: For both metrics ↓ value means ↑ similarity.

5.2 Noise Injection Similarity: Different Datasets

This section presents the results for finding the similarity between the UCI HAR

dataset and other datasets used in this thesis. Noise was injected in the same way as

in the previous experiment. Table 5.2 shows the results of measuring the similarity

between the UCI HAR dataset and the Daily Sports and Activities dataset, with the

signals collected on the torso accelerometer. Tabular results of the other datasets can

be found in 7.3

SNR Manhattan Distance Discriminator Accuracy
40 1.153 ±0.0 0.922 ±0.006
35 1.155 ±0.0 0.923 ±0.002
30 1.158 ±0.0 0.925 ±0.004
25 1.166 ±0.001 0.926 ±0.004
20 1.176 ±0.001 0.927 ±0.006
15 1.19 ±0.002 0.932 ±0.003
10 1.216 ±0.004 0.928 ±0.004
5 1.293 ±0.015 0.937 ±0.002

Table 5.2: Comparison of the two similarity metrics to measure the similarity
between the UCI HAR dataset and a noisy version of the UCI Daily Sports and

Activities
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Figure 5.1: Top: The measured Manhattan distance between the UCI HAR dataset
and noise-injected versions of the UCI HAR dataset. Bottom: The trained

discriminator accuracy between the UCI HAR dataset and noise injected versions of
the UCI HAR dataset

5.3 Dataset Similarity vs Transfer Learning

In this section, the results of measuring the correlation between the similarity metric

and the performance boost given from transfer learning is presented. No noise is

added to any of these datasets, however, the target datasets are modified by reducing
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Figure 5.2: Manhattan distance and discriminator accuracy between the UCI HAR
dataset and the noisy Daily Sports and Activities dataset

the number of examples. This is done to simulate the typical use case of transfer

learning, where the amount of training data is insufficient to train a model on its

own. One design consideration that arose is what should the size of the bottleneck

layer be? Larger bottleneck layers resulted in less autoencoder training loss, which

resulted in better represented encodings. Smaller bottleneck layer sizes resulted in the

discriminator metric having a harder time distinguishing the source and target dataset

on datasets that were very similar. This resulted in a higher variance in the similarity

scores across the datasets. The distance metric also had an improvement when using

a smaller bottleneck layer. Distance metrics carry well into higher dimensional space

[1], so a sufficiently small bottleneck layer should be used. A 10-unit bottleneck layer
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was used as a compromise for these two problems. Table 5.3 presents the results

of the experiment measuring dataset similarity and transfer learning performance,

respectively.

Dataset Manhattan
Distance

Discriminator
Accuracy

Transfer
Learning
Boost

Area
Between
Curves

DSA
(Torso)

1.34±0.03 0.944±0.004 0.39±0.08 58±4

DSA
(Right
Arm)

0.89±0.01 0.883±0.007 0.4±0.06 53±3

DSA (Left
Arm)

1.2±0.01 0.926±0.006 0.39±0.02 48±6

DSA
(Right
Leg)

1.362±0.003 0.976±0.004 0.2±0.06 22±7

DSA (Left
Leg)

1.93±0.01 0.977±0.002 0.44±0.05 40±3

WFDB
(Ga)

3.85±0.07 0.984±0.002 0.03±0.04 6±2

WFDB
(PTB)

3.59±0.09 0.97±0.002 0.06±0.04 5±2

WISDM 1.373±0.002 0.86±0.01 0.42±0.08 29±7
WIDSM
(Gyro-
scope)

1.521±0.004 0.925±0.004 0.32±0.04 15±4

WISDM
(Watch)

1.821 pm 0.009 0.95 pm 0.003 0.44 pm
0.08

35 pm 7

WISDM
(Watch
and Gyro-
scope)

1.452 pm 0.004 0.884 pm 0.007 0.3 pm
0.05

23 pm 3

Table 5.3: Dataset similarity results at 1000 examples
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Figure 5.3: Transfer learning performance vs Measurements of Manhattan distance
results with the target dataset set to 1000 examples
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Figure 5.4: Transfer learning performance vs Discriminator accuracy results with
the target dataset set to 1000 examples
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Chapter 6

Discussion

6.1 Research Findings

This section of the thesis discusses the results presented earlier in this chapter.

6.1.1 Same Dataset Similarity

The results presented in section 5.1 show that both the Manhattan distance and the

discriminator can be used as a metric for measuring dataset similarity. Using the

noise injection method presented in section 4.7.1, it was expected that as the amount

of noise injected into each signal increased, the greater the dissimilarity between the

two datasets was going to be. The experimental results confirm this hypothesis. With

noise injections between 40 and 25 SNR, both the Manhattan distance metric and

the discriminator accuracy metric did not detect much of a difference between the

two datasets. This may be due to the low amount of noise injected having little to no

effect on the actual signal integrity. With SNRs of 20 and lower, both the Manhattan
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distance and the discriminator accuracy metrics began to detect a difference between

the two datasets. The distance between the centroids of the original and noisy datasets

became larger, and the discriminator had an easier time learning which dataset a data

point came from.

There are some noted differences between the two metrics. When an SNR of 40

was used, the Manhattan distance metric detected no difference in the two datasets.

This was the result of the autoencoder generating the same embedding for each of the

two datasets. Because of this, the centroids for each dataset lay on top of each other,

resulting in a distance metric near zero. Also because of this overlap in embeddings,

the discriminator was unable to learn which dataset each embedding came from since

each dataset is essentially the same. Therefore, the discriminator would take a random

guess at which dataset the embedding came from. Since there are two datasets, the

encoder would get a correct prediction around fifty percent of the time. As the data

gets nosier, the difference between the two datasets becomes more apparent. The

encoder is less able to generate the same encodings as the original UCI HAR dataset

is. This results in a shift in the location of the embeddings in the embedding space.

This shift is detected by the Manhattan distance metric since the centroid of the

noisy dataset is now further away from the original dataset’s centroid. This shift

was the highest when the most noise was injected. Similarly, the discriminator was

able to detect a shift in the two datasets as they began to differ. As the encodings

shifted, a decision boundary was able to be developed separating the two datasets.

This meant that the discriminator no longer was guessing at random, but learning

which data came from what dataset. The best performing discriminator was when

the noise injected reached 5 SNR, resulting in the highest discriminator accuracy.
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This agreed with the Manhattan distance metric, as well as the expected results.

Observing the plots of each similarity metric vs SNR in figure 5.4, the discrimina-

tor metric presents less precise measurements. This is observed by the higher variance

in discriminator accuracy, which is most noticeable at 20 SNR. This variability is due

to the random initialization of weights in the discriminator, and the discriminator is

trained for a fixed number of epochs.

6.1.2 Different Dataset Similarity

The results from section 5.1 carry over to results of section 5.1, supporting the au-

thor’s assertion that the experimental results carry over to real transfer learning

problems. This experiment measures the same metrics as the same dataset similarity

experiment, however, the target dataset (where noise will be injected) comes from dif-

ferent datasets, not the UCI HAR dataset. All three datasets examined exhibited the

same exponential relationship between the distance measured between the UCI HAR

dataset embeddings and the new embeddings from the target dataset with respect to

noise. However, since the two datasets are not the same, the highest SNR example

did not have a distance metric close to zero, since the encoder is not generating the

same embeddings for both datasets. The UCI DSA and the WISDM dataset had the

lowest distance measured between their embeddings and the UCI HAR embeddings,

followed by the WFDB Ga dataset. Intuitively, this makes sense because the UCI

DSA dataset and the WISDM datasets each have data recorded on accelerometers,

within the human activity recognition domain. This is the same domain as the source

UCI HAR dataset, recorded from accelerometers. The furthest dataset from the UCI
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HAR dataset is the WFDB Ga dataset; since this dataset is time series ECGs for car-

diac abnormalities, rather than accelerometer data for human activity recognition, it

is expected that this dataset is the least similar to the UCI HAR dataset.

The discriminator metric also measured a decrease in dataset similarity when

the amount of noise injected increased for all datasets, however, like in the first

experiment, the results were nosier. The curve in figure 5.2 does not match the

discriminator curve from figure 5.1. This is because the two datasets when the noise

injected is no longer the same. This resulted in discriminator accuracies greater than

random guessing. The result is a much more gradual increase in the discriminator

accuracy curve.

Where the discriminator model fails is in cross-domain similarity measurements

when the noise is increased.

6.1.3 Dataset Similarity vs Transfer Learning

The purpose of this thesis is to construct a metric to quantify the performance of

transfer learning by comparing the source and target datasets prior to conducting the

transfer learning. Figure 5.3 shows that the Manhattan distance metric is negatively

correlated with both the area between transfer learning curves and transfer learning

boost metrics. The error in the distance metric is low, suggesting that even with

random dataset shrinking, the metric will still be valid. The Daily Sports and Activity

(Right Arm) dataset had a measured Manhattan distance of 0.89, which was the

shortest distance measured between all the datasets. This dataset also had the fourth

largest boost measured boost from transfer learning, with an accuracy boost of 0.4,

and the second highest area between transfer learning curves, with a value of 53.
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Therefore, if a machine learning engineer were to attempt transfer learning to improve

the training results of the Daily Sports and Activity (Right Arm) dataset, selecting

the UCI HAR dataset would be a good option. Conversely, there was a large distance

between the centroids of the UCI HAR dataset and both the ECG datasets. This was

expected, given the dissimilarity of the domains. The UCI HAR dataset, therefore,

was not a suitable source for trying to improve the performance of both ECG datasets.

It is interesting to see that the discriminator accuracy was not a viable metric

when the dataset size was 1000 examples. Although the two ECG datasets that

both had dissimilar domains to the UCI HAR datasets still exhibited dissimilarity

by having a high discriminator accuracy, other datasets that would be suitable for

transfer learning also had high discriminator accuracies. The discriminator accuracy

metric also exhibited a much larger uncertainty in dataset similarity. The Manhattan

distance metric did not experience this uncertainty; therefore, this uncertainty must

be due to the discriminator learning different decision boundaries between the two

datasets every time. This is believed to be the result of how the standard random

initialization of weights and biases affect the discriminator.

6.1.4 Effect of Target Dataset Size

The target dataset size in this thesis ranged from 1000 examples down to 200 ex-

amples. While the ultimate goal for transfer learning is to increase accuracy and

generalizability, the transfer learning accuracy boost performance metric turned out

to be unreliable when the number of examples was very low. This is for two reasons.

First, with the low number of training examples, there isn’t a large enough sample

size to cover enough of the dataset distribution; this meant there was an opportunity
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for examples that are not captured in the training set to be captured in the test

set. This would mean that transfer learning may have a huge impact on network

performance. There also may have been other trials where a good sample of data is

captured in the training and test set which would allow for training and testing accu-

racy on the non-transfer learning models, reducing the potential performance gains of

transfer learning. This dichotomy of settings creates a large variance in the potential

performance of transfer learning boost measured. Second, is that at very low dataset

sizes, the accuracy of the model can vary drastically from epoch to epoch. Only 15%

of the data was used for testing. This means that for a 200 example dataset, only

30 examples were used for testing. If only one of those examples changes from a true

prediction to a false prediction, the accuracy of the model goes down by 3.3%. This

can be shown by looking at the learning curves of models trained on 200 example

datasets. They have many large steps in testing accuracy, rather than the smooth

curves expected when training models. The area between transfer learning curve met-

ric tended to be more reliable at lower dataset sizes. This is due to any spikes in the

accuracy of either the transfer learning model or non-transfer learning model having

less of an effect on the overall metric. Figure 5.3 shows how the area between trans-

fer learning curves metric demonstrates transfer learning performance. The transfer

learning model clearly started learning faster and reached its overall accuracy quicker

than the non-transfer learning model, even though the non-transfer learning model

had similar accuracy. Transfer learning in this case would still be useful to speed up

training time and create a more generalizable model.
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6.2 Application in Back2Play

The Manhattan distance metric was used to measure the similarity between the

Back2Play study and two different human activity recognition datasets: The UCI

HAR dataset, and the UCI Daily Sports dataset, where data was collected from a

sensor worn on the left arm. The original Back2Pay dataset had six different return

to action (RTA) classifications, however, these classifications were binned into three

classes. Stages one and two were binned into a stage, stages three and four were

binned into a stage, and stages five and six were binned into a stage. The model

used to train the Back2Play dataset was the same as the other classification models

used in this thesis. A non-transfer learning model was trained on the Back2Play data

and the results of this model are shown in table 1. The non-transfer learning model

achieved a final accuracy of forty-eight percent, with classifications skewed towards

the final two classes. To improve this classification accuracy, transfer learning be-

tween the two human activity recognition datasets was performed. Before applying

transfer learning, the measure of similarity between the datasets was measured. A

Manhattan distance of 7.51 was measured between the Back2Play dataset and the

UCI HAR dataset, and a Manhattan distance of 5.42 was measured between the

Back2Play dataset and the UCI Daily Sports dataset. These similarity measures pre-

dict that a negligible performance boost would be achieved if transfer learning was

performed. When transfer learning was performed, the total performance gains from

transfer learning were negligible and can be observed in table 1.

Changes made in the Back2Play data may give both better non-transfer learn-

ing performance, as well as greater dataset similarity, resulting in greater transfer

learning performance. The Back2Play data consisted of accelerometer signals worn
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by a participant in the study throughout the day. The accelerometer on the Apple

Watch measured movement throughout the day, regardless of what activity was being

performed by the participant. Concussion recovery stages were labelled independent

of activity performed, so activities such as walking, running and sitting were all given

the same label. This made it difficult for a deep learning model to detect the differ-

ent recovery stages. Recording participant motion when only when specific activities

are performed, such as walking, will allow the model to look for differences in only

walking patterns related to concussion stages, rather than many different activities.

Given the limited data and stage skewness, the Back2Play dataset was not suitable

for the demonstration of the metric. However, as more data is collected another

method that may increase the Back2Play model accuracy is by using a “wide and

deep” approach [11]. The deep approach would use the model architecture described

in this thesis to perform feature extraction. Features are also extracted from the

signals using traditional methods, such as signal mean, signal maximum, and signal

standard deviation. These features are used as the inputs to a shallow neural network,

known as the wide network. The output of these networks is then concatenated and

used to perform classification. By using both deep feature extraction and statistical

feature extraction, more information is provided to the classifier to recognize patterns

in the data.

6.3 Limitations

The metrics both exhibit some limitations. First, the performance of deep learning

models depends greatly on hyperparameters. Hyperparameters are the features of

a neural network that can be changed, such as the number of hidden layers, the
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size of each hidden layer, the use of regulation tools such as dropout etc. While

hyperparameter tuning is a common practice in deep learning, an interesting problem

arises when performing transfer learning. Since both the source network and the

target network need to have the same hyperparameters, a comparison between a

transfer learning model and a model without transfer becomes difficult, due to the

hyperparameters not being optimized for the source network.

A limitation with both similarity metrics is that they do rely on the autoencoder

generating a good encoding. The autoencoder in this thesis was trained five different

times, and the model with the lowest training loss was used. Due to random ini-

tialization of weights, the loss of these models varied from 0.0028 to 0.00095. Using

principal component analysis (PCA), the dimensions of the encoder can be reduced

for visualization. Figure 6.1 shows two different trained encoders with different train-

ing losses. Encoders with poor reconstruction accuracy created different encodings

on both the source and target data compared to encoders with good reconstruction

accuracy. Having an accurate encoding of the source model is crucial to making

sure that the similarity metrics pick up the difference between the source and target

datasets. To this point, hyperparameters may need to be tuned in order to create a

good source encoding.

An autoencoder can only accept a signal with one signal length, as the number

of timesteps of the signal needs to match the number of input nodes in the first

layer. Therefore, both the source signal length and the target signal length need to

be the same size. To do this, either the source or target signals need to be manually

adjusted to match each other size. Although windowing the signals may lead to

greater model performance, both datasets needing to be the same size may cause one
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Figure 6.1: UCI HAR reconstruction on a high loss autoencoder (Top) and a low
loss autoencoder (Bottom)
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of the dataset’s signal lengths to be windowed too small for accurate classification.

One future adjustment may be to include customizable input and output layers that

can accept any target signal size, before feeding the signal into the autoencoder trained

on the source dataset. However, that would lead to the encoder trying to construct

an encoding of features of the target signal, and not the raw signal itself. This would

lead to the similarity metric comparing two different types of data, leading to higher

distance measurements and greater discriminator accuracies.

69



Chapter 7

Conclusion and Future Work

7.1 Summary

In this chapter, a summary of the contributions made by this thesis are summarized

and future research directions are discussed.

7.2 Summary of Contributions

The proposed research was to develop a metric that would quantify dataset similar-

ity to determine if a source dataset was a suitable (or most suitable) candidate for

transfer learning for the purpose of performing deep learning on time series classifi-

cation. Due to the difficulty of comparing two time-series datasets, an autoencoder

was trained and used to transform the data into a time-independent feature space.

The autoencoder used a one-dimensional convolutional neural network architecture

and was trained on source data. Two metrics were used to compare the differences

between the two datasets in this space, and the metrics were then evaluated to predict

70



M.A.Sc. Thesis – R. Clark McMaster University – Deep Learning

the potential gains in accuracy and performance when transfer learning is applied to

the two datasets.

7.2.1 Similarity Between two Datasets

This research successfully shows that each metric described in this thesis can quan-

tify the difference between two time-series datasets. To measure this similarity, the

UCI HAR dataset was modified in a controlled way, and compared with an original

version of the UCI HAR dataset. To modify the dataset, known amounts of noise

were added to the dataset. As more noise was added to the dataset, the Manhat-

tan distance between the two datasets got larger, and the discriminator was able to

more accurately learn which dataset each embedding came from. This proved that

the encoder was preserving features from the signals, and the metrics were able to

distinguish when sufficient noise added altered the entire dataset. Furthermore, the

research also showed similar results when now comparing the UCI HAR dataset to

other time-series datasets. A limitation on the discriminator was that at higher levels

of dissimilarity, the discriminator has an upper limit on how much of a difference it

can detect between the two datasets.

7.2.2 Predicting Transfer Learning Performance

This research successfully shows that the metrics described in this thesis can also

be used to predict how much transfer learning performance can be obtained. The

Manhattan distance metric between the two datasets proved to be the most successful,

both in terms of a correlation between transfer learning performance, as well as in

the stability of the metric at different dataset sizes. It also had the lowest variance
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between trials. The discriminator model was less successful in predicting the exact

amount of transfer learning performance gained, but an overall negative trend was

still present. Target datasets that were largely dissimilar to the source datasets did

not provide much transfer learning boost, which correlated with a high discriminator

accuracy. Target datasets that were largely similar to the source datasets did provide

a much greater transfer learning boost, which correlated with a low discriminator

accuracy.

7.3 Future Work

The metrics may be further refined by examining different dataset similarity methods.

There are many similarity metrics that measure the difference between two probability

distributions, such as KL divergence [58] and Bhattacharyya Distance [29]. Metrics

like these are particularly sensitive to outliers and should be measuring the differences

between two normal distributions. If a transformation was performed to turn the

encoded data to a probability distribution, then use any of these metrics to measure

the similarity, it would be interesting to see if these distance measurements could

predict transfer learning better.

Another future avenue of research is to continue to develop metrics that predict

the performance boost from transfer learning. Because transfer learning is usually

done on such small datasets, it is difficult to develop a baseline model upon which

transfer learning can improve. Due to random initialization of weights, one model

may learn generalized patterns and accurately predict the test data, whereas another

model may try to overfit whichever class has the most data to obtain the highest
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accuracy on the training data. The result is a large discrepancy between what a non-

transfer learning model may be able to achieve in terms of accuracy. This creates large

differences in the total amount of accuracy gained when using transfer learning. The

area between curves metric does give a more stable result when comparing two models,

but continued development on creating a more consistent non-transfer learning model

should be explored. Finally, different types of transfer learning should also be explored

to see if the metrics still hold. When two datasets come from different domains,

substituting pure weight transfer for domain adaptation [24] has been shown to reduce

the chances of negative transfer.
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SNR Manhattan Distance Discriminator Accuracy
40 1.097 ±0.0 0.889 ±0.007
35 1.104 ±0.0 0.888 ±0.005
30 1.118 ±0.0 0.888 ±0.005
25 1.147 ±0.0 0.884 ±0.003
20 1.209 ±0.001 0.891 ±0.007
15 1.32 ±0.002 0.894 ±0.005
10 1.5 ±0.003 0.893 ±0.006
5 1.782 ±0.006 0.897 ±0.004

Table 1: Comparison of the two similarity metrics to measure the similarity between
the UCI HAR dataset and a noisy version of the WIDSDM dataset

SNR Manhattan Distance Discriminator Accuracy
40 3.724 ±0.0 0.985 ±0.001
35 3.725 ±0.001 0.988 ±0.001
30 3.726 ±0.003 0.986 ±0.001
25 3.731 ±0.003 0.987 ±0.002
20 3.741 ±0.006 0.987 ±0.002
15 3.786 ±0.007 0.986 ±0.001
10 3.887 ±0.014 0.986 ±0.002
5 4.087 ±0.029 0.985 ±0.002

Table 2: Comparison of the two similarity metrics to measure the similarity between
the UCI HAR dataset and a noisy version of the WFDB GA dataset
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Figure 1: Comparison of the two similarity metrics to measure the similarity
between the UCI HAR dataset and a noisy version of the WIDSDM dataset
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Figure 2: Comparison of the two similarity metrics to measure the similarity
between the UCI HAR dataset and a noisy version of the WFDB GA dataset
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Dataset Manhattan
Distance

Discriminator
Accuracy

Transfer
Learning
Boost

Area
Between
Curves

DSA
(Torso)

1.35 ±0.02 0.949 ±0.002 0.36 ±0.06 53 ±6

DSA
(Right
Arm)

0.89 ±0.01 0.905 ±0.0009 0.4 ±0.1 47 ±7

DSA (Left
Arm)

1.19 ±0.02 0.933 ±0.003 0.38 ±0.06 42 ±8

DSA
(Right
Leg)

1.362 ±0.004 0.974 ±0.004 0.22 ±0.1 21 ±4

DSA (Left
Leg)

1.925 ±0.004 0.98 ±0.003 0.41 ±0.06 42 ±8

WFDB
(Ga)

3.87 ±0.07 0.987 ±0.001 -0.01
±0.03

5 ±1

WFDB
(PTB)

3.57 ±0.05 0.979 ±0.004 0.05 ±0.03 8 ±5

WISDM 1.376 ±0.006 0.893 ±0.003 0.41 ±0.09 33 ±4
WIDSM
(Gyro-
scope)

1.521 ±0.005 0.933 ±0.005 0.38 ±0.07 26 ±4

WISDM
(Watch)

1.815 ±0.002 0.963 ±0.004 0.44 ±0.06 34 ±1

WISDM
(Watch
and Gyro-
scope)

1.454 ±0.006 0.897 ±0.006 0.26 ±0.09 21 ±6

Table 1: Dataset similarity results at 800 examples
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Figure 1: Dataset similarity results at 800 examples

78



M.A.Sc. Thesis – R. Clark McMaster University – Deep Learning

Figure 2: Dataset similarity results at 600 examples
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Figure 3: Dataset similarity results at 400 examples
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Figure 4: Dataset similarity results at 200 examples
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Dataset Manhattan
Distance

Discriminator
Accuracy

Transfer
Learning
Boost

Area
Between
Curves

DSA
(Torso)

1.34 ±0.02 0.955 ±0.003 0.32 ±0.07 53 ±9

DSA
(Right
Arm)

0.897 ±0.006 0.919 ±0.007 0.36 ±0.08 46 ±10

DSA (Left
Arm)

1.19 ±0.02 0.943 ±0.005 0.38 ±0.08 50 ±8

DSA
(Right
Leg)

1.362 ±0.008 0.969 ±0.005 0.24 ±0.09 26 ±10

DSA (Left
Leg)

1.925 ±0.004 0.973 ±0.004 0.4 ±0.07 38 ±9

WFDB
(Ga)

3.99 ±0.1 0.987 ±0.002 0.02 ±0.05 7 ±3

WFDB
(PTB)

3.5 ±0.1 0.98 ±0.003 0.05 ±0.04 4 ±3

WISDM 1.38 ±0.003 0.918 ±0.004 0.41 ±0.08 35 ±5
WIDSM
(Gyro-
scope)

1.524 ±0.005 0.941 ±0.005 0.32 ±0.04 21 ±5

WISDM
(Watch)

1.82 ±0.01 0.974 ±0.003 0.36 ±0.05 35 ±5

WISDM
(Watch
and Gyro-
scope)

1.455 ±0.006 0.926 ±0.007 0.3 ±0.1 23 ±10

Table 2: Dataset similarity results at 600 examples
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Dataset Manhattan
Distance

Discriminator
Accuracy

Transfer
Learning
Boost

Area
Between
Curves

DSA
(Torso)

1.34 ±0.05 0.961 ±0.003 0.32 ±0.09 52 ±8

DSA
(Right
Arm)

0.89 ±0.01 0.946 ±0.006 0.33 ±0.08 41 ±9

DSA (Left
Arm)

1.18 ±0.03 0.958 ±0.004 0.36 ±0.07 40 ±7

DSA
(Right
Leg)

1.36 ±0.01 0.953 ±0.008 0.2 ±0.2 20 ±10

DSA (Left
Leg)

1.93 ±0.02 0.972 ±0.004 0.4 ±0.1 40 ±10

WFDB
(Ga)

3.8 ±0.2 0.988 ±0.004 0.08 ±0.05 8 ±3

WFDB
(PTB)

3.6 ±0.2 0.987 ±0.002 0.04 ±0.05 1 ±4

WISDM 1.367 ±0.006 0.944 ±0.004 0.36 ±0.08 34 ±8
WIDSM
(Gyro-
scope)

1.525 ±0.009 0.951 ±0.003 0.26 ±0.04 14 ±8

WISDM
(Watch)

1.82 ±0.02 0.976 ±0.007 0.45 ±0.07 31 ±3

WISDM
(Watch
and Gyro-
scope)

1.452 ±0.005 0.951 ±0.002 0.3 ±0.1 18 ±6

Table 3: Dataset similarity results at 400 examples
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Dataset Manhattan
Distance

Discriminator
Accuracy

Transfer
Learning
Boost

Area
Between
Curves

DSA
(Torso)

1.37 ±0.05 0.974 ±0.004 0.35 ±0.05 47 ±9

DSA
(Right
Arm)

0.89 ±0.04 0.974 ±0.002 0.2 ±0.1 24 ±7

DSA (Left
Arm)

1.2 ±0.04 0.975 ±0.004 0.37 ±0.07 42 ±4

DSA
(Right
Leg)

1.364 ±0.009 0.968 ±0.005 0.2 ±0.1 30 ±10

DSA (Left
Leg)

1.92 ±0.05 0.972 ±0.003 0.41 ±0.07 36 ±6

WFDB
(Ga)

3.9 ±0.2 0.991 ±0.002 0.0 ±0.1 5 ±6

WFDB
(PTB)

3.6 ±0.2 0.993 ±0.002 -0.03
±0.02

-3 ±4

WISDM 1.367 ±0.006 0.975 ±0.002 0.4 ±0.08 30 ±10
WIDSM
(Gyro-
scope)

1.525 ±0.005 0.973 ±0.003 0.2 ±0.2 20 ±10

WISDM
(Watch)

1.81 ±0.02 0.974 ±0.003 0.4 ±0.09 40 ±9

WISDM
(Watch
and Gyro-
scope)

1.44 ±0.01 0.97 ±0.003 0.3 ±0.08 15 ±9

Table 4: Dataset similarity results at 200 examples
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Source Dataset Total Accu-
racy

Accuracy
Boost

Area Between
Curves

Manhatttan
Distance

No Transfer 48.3% - - -
UCI HAR 47.6% -0.7% -0.05 7.34
UCA DSA (Left
Arm)

47.3% -1.0% -0.005 5.42

Table 1: Back2Play Results

85



Bibliography

[1] Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim. “On the Sur-

prising Behavior of Distance Metrics in High Dimensional Spaces”. In: Proceed-

ings of the 8th International Conference on Database Theory. ICDT ’01. Berlin,

Heidelberg: Springer-Verlag, 2001, pp. 420–434. isbn: 3540414568.

[2] Erick A. Perez Alday et al. “Classification of 12-lead ECGs: the PhysioNet/Computing

in Cardiology Challenge 2020”. In: Physiological Measurement 41.12 (Dec. 2020).

Publisher: IOP Publishing, p. 124003. doi: 10.1088/1361-6579/abc960. url:

https://doi.org/10.1088/1361-6579/abc960.

[3] Hamed Alqahtani, Manolya Kavakli-Thorne, and Gulshan Kumar. “Applica-

tions of Generative Adversarial Networks (GANs): An Updated Review”. In:

Archives of Computational Methods in Engineering 28.2 (Dec. 2019), pp. 525–

552. doi: 10.1007/s11831-019-09388-y. url: https://doi.org/10.1007/

s11831-019-09388-y.

[4] Kerem Altun, Billur Barshan, and Orkun Tunçel. “Comparative study on clas-
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